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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that constitutes the most com-
mon dementia pathology. It represents a global epidemic that expands exponentially as
the life expectancy increases with no yet useful treatment. Currently, it represents a huge
social and economic burden for our societies and it is expected to tension public health
infraestructures and finances in the near future.

AD is characterized by amyloid plaque deposition and neurofibrillary tangles measured
by ex-vivo examination of the brain. Recent developments in fluid biomarkers and brain
imaging allow in-vivo quantification of pathophysiological processes of amyloid deposition
or tau tangles formation in the brain, providing the community with highly sensitive and
specific in-vivo biomarkers for Alzheimer’s disease diagnosis. Abnormal levels of these
biomarkers are thought as the initiating event to a cascade of subsequent events that
continue with synapse loss, cell death, memory impairment, functional dysfunction and
cognitive decline. All these events constitute the Alzheimer’s continuum which can be
broadly split into two main parts: an initial long and silent preclinical stage characterized
by abnormal AD biomarkers and cognition within the normal range that could last from
15 to 30 years and a posterior clinical stage where subjects develop dementia symptoms.

The etiology of AD is still poorly understood even though several risk factors are iden-
tified. Large observational studies can help the study of AD and its related biomark-
ers and risk factors. In this thesis we provide methodological tools for the analysis of
Alzheimer’s disease using magnetic resonance imaging (MRI). We focus on the study
of subjects within the preclinial stage of AD by using statistical learning and pattern
recognition frameworks to perform inferential statistics and develop predictive models.

The main outcomes of this thesis are three-fold: firstly, we develop an open-source tool-
box for nonlinear neuroimage analysis in population studies. While nonlinear association
between medical images and several factors is already known, standard neuroimaging
softwares only provide linear statistical frameworks that limit the analyses. Secondly, we
study the relationship between brain structure using MRI and the underlying Alzheimer’s
pathology along the disease continuum and at different stages. The close relationship be-
tween MRI and clinical symptoms has been widely studied but describing AD using
biomarkers instead of clinical phenotypes allows us to study preclinical stages of AD.
Finally, we present a framework to predict cognitively unimpaired and amyloid positive
subjects using MR imaging and machine learning. We report the results in a cross-
sectional study and in a longitudinal study that compares the volumetric rate-of-change
between subjects with different amyloid status. We further test the proposed methodol-
ogy as a part of the triaging process in clinical trials showing great potential benefits.
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lot with the scholarship application and set the initial link with our collaborators at
BarcelonaBeta Brain Research Center (BBRC).

I would also like to express my gratitude to all Neuroimaging Research Group at BBRC
and specially to Dr. Juan Domingo Gispert (PI) for what I think has been a succesful
collaboration. More than that, they have been an indispensable guidance and a source
of ideas through really helpful discussions.

I acknowledge that this thesis would not have been possible without the financial as-
sistance of the Image Processing Group (GPI) at UPC and the Spanish Government
through the FPU 14/05988 Research Fellowship and the projects TEC2013-43935-R and
TEC2016-75976-R. I must also acknowledge Albert Gil and Josep Pujal, for setting up
and maintaining the computing server at GPI, and also for the high-quality technical
support they steadily provide us with.

These years of my PhD would have been much harder without the support of my family
and friends. Very special thanks to all colleagues at D5-120 that created a better work
environment. I would also to extend thanks to all colleagues that I met at conferences,
seminars, summer schools and during my visit at CMIC from whom I learned a lot.

To all of them and with love, thank you!





Contents

List of Figures vii

List of Tables ix

Glossary xi

1 Introduction 1

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature review 7

2.1 Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Diagnostic criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Preclinical AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Structural MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Functional MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Pattern recognition in neuroimaging . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Pattern recognition in Alzheimer’s research . . . . . . . . . . . . . 21

3 NeAT: a nonlinear Neuroimaging Analysis Toolbox. 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 NeAT overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Post-hoc analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.6 NeAT specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Case study 1: Atrophy patterns across the Alzheimer’s disease continuum 33

3.4 Case study 2: Effects of APOE -ε4 in brain aging . . . . . . . . . . . . . . 34

3.4.1 APOE genotype effects on brain morphology in normal aging pop-
ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Interaction between APOE genotype and age in normal aging pop-
ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Brain structure in AD pathology 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



vi

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Partial least squares . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Partial least squares orthogonalization . . . . . . . . . . . . . . . . 46
4.2.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Univariate brain structural effects . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Multivariate brain structural effects . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 MRI and Machine Learning in Clinical Trials 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Past clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 On-going clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.4 Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Cross-sectional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Longitudinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Conclusions 107

Publications 109

Bibliography 113

Appendices 139
Appendix A Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1 List of relevant regions along the AD continuum . . . . . . . . . . 139
A.2 List of relevant regions in different clinical AD stages. . . . . . . . 141
A.3 List of relevant regions in presymptomatic AD . . . . . . . . . . . 143
A.4 Linear regression for prediction . . . . . . . . . . . . . . . . . . . . 145
A.5 Statistical inference tables . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix B Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.1 Cross-sectional analysis . . . . . . . . . . . . . . . . . . . . . . . . 150
B.2 Longitudinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Figures

1.1 Estimated number of people living with dementia worldwide (2015-2050) . . . 2

1.2 An illustrative figure of amyloid plaque deposition and neurofibrillary tangles
in a brain neuron compared to a healthy neuron. . . . . . . . . . . . . . . . . 3

1.3 Comparison of a normal aged brain and the brain of a person with Alzheimer’s. 3

2.1 Different MRI contrasts: T1, T2 and FLAIR. . . . . . . . . . . . . . . . . . . 16

2.2 Typical machine learning pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Toolbox pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Comparison between different curve fitting models: GLM, GAM, polynomial
SVR and gaussian SVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Curve clustering algorithm run on relevant atrophy patterns along the AD-
CSF index using GAM fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Statistical inference using volumetric data and different curve fitting modules:
GLM, GAM and polynomial SVR. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Statistical inference using cortical thickness data and GLM. . . . . . . . . . . 36

3.6 Differences between statistical maps of HE model using GLM and GAM at
different brain ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Interaction between age and the APOE -ε4 genotype using second order poly-
nomial expansion of GLM and B-splines GAM. . . . . . . . . . . . . . . . . . 39

4.1 Brain morphometric effect type related to confounders (age and sex) . . . . . 51

4.2 Pairwise CSF biomarker relationship along the Alzheimer’s continuum: . . . . 51

4.3 Effect type of AD pathology on brain morphology for subjects along the
Alzheimer’s continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Effect type of AD pathology on brain morphology for subjects in the CU stage 54

4.5 Effect type of AD pathology on brain morphology for subjects in the MCI stage 54

4.6 Effect type of AD pathology on brain morphology for subjects in the AD-
dementia stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Pairwise CSF biomarker relationship in asymptomatic subjects: . . . . . . . . 55

4.8 Effect type of AD pathology on brain morphology for subjects in the T0 tertile. 57

4.9 Effect type of AD pathology on brain morphology for subjects in the T1 tertile. 57

4.10 Effect type of AD pathology on brain morphology for subjects in the T2 tertile. 58

4.11 Absolute value of the effect size (single model) on several indicators evaluated
at different cognitive stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.12 Examples of relevant latent brain morphological patterns (effect-type) using
volumetric features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.13 Examples of relevant latent brain morphology patterns (effect-type) using
cortical thickness features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



viii

4.14 Absolute value of the effect size (multiple models) on several indicators eval-
uated at the respective disease stages . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 AD-related effect-type of the brain latent model using volumetric features. . . 67
4.16 AD-related effect-type of the brain latent model using cortical thickness features. 68

5.1 AD prevention hypothesis: applying disease modifying therapies before neu-
ronal loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Outline of clinical recruitment protocol of subjects with preclinical (PC)
Alzheimer’s pathology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Core model training and validation for automated MRI-based classification of
Aβ positive (Aβ+) subjects using logistic regression. . . . . . . . . . . . . . . 84

5.4 Examples of distributions of T1 features . . . . . . . . . . . . . . . . . . . . . 86
5.5 Classification results using T1 features . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Classification results using multimodal (T1+DTI) features . . . . . . . . . . . 89
5.7 Workflow of the optimization and evaluation of the classification method. . . 95
5.8 Distribution of the interval ∆t between reference and follow-up visits across

the whole dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 AUC and savings (blue, green) reported using Jacobian determinant maps

with different time intervals (∆t) . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.10 ROC and PR curves for Jacobian determinant maps with time spans in the

range 2.5 < ∆t < 3.5 years using 0.5% of the features . . . . . . . . . . . . . 99
5.11 Normalized feature maps of the 0.5% of features selected during the 100 dif-

ferent splits of the development/test sets . . . . . . . . . . . . . . . . . . . . . 101
5.12 Statistical maps for group comparison between HC and PC (preclinical AD

signature) and HC and MCI/AD-dementia (AD signature) subjects. . . . . . 102
B.1 Top 10 most relevant features for (a) HC vs MCI and (b) HC vs AD-dementia

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



List of Tables

2.1 Historical overview of diagnostic criterias developed by two main working
groups (NIA-AA and IWG) used in Alzheimer’s clinical and research practice. 12

4.1 Unsupervised cluster analysis of CSF effect types on brain morphology along
the Alzheimer’s continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Unsupervised cluster analysis of CSF effect types on brain morphology along
the Alzheimer’s continuum stratified by cognitive stage. . . . . . . . . . . . . 56

4.3 Unsupervised cluster analysis of CSF effect types on brain morphology in the
asymptomatic stage of AD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Predictive error of response variables for each diagnosis label and feature type
using a single model for all Alzheimer’s continuum. . . . . . . . . . . . . . . . 65

4.5 Predictive error of response variables for each diagnostic label and feature
type using a separate models . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Past phase III clinical trials that failed to show significant results in their
primary outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Phase II trials conducted in Europe that are currently recruiting. . . . . . . . 75

5.3 Phase III trials conducted in Europe that are currently recruiting. . . . . . . 76

5.4 Late-stage development trials (phase II/III or III) that attempt in cognitively
unimpaired subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Demographics of the ADNI subset and HCB cohort used for this study . . . . 83

5.6 Performance of the PC classification model according to the number of T1
features selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Performance of the PC classification model according to the number of mul-
timodal (T1+DTI) features selected . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Savings summary using the simple and the complex model for population
screening in clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Distribution of the number of 3D-T1 MRI acquisitions per subject. . . . . . . 93

5.10 Dataset demographics at baseline. . . . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Demographics of the subset of the study cohort for which ∆t > 2.5 used for
machine learning classification . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.12 Performance of the system using a different number of features evaluated on
the interval 2.5 < ∆t < 3.5 years . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.1 List of statistically relevant brain ROIs along the AD continuum. . . . . . . . 141

A.2 List of statistically relevant brain ROIs at different cognitive categories along
the AD continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 List of statistically relevant brain ROIs at preclinical stages. . . . . . . . . . . 145

A.4 Predictive error of response variables for each diagnosis label and feature type
using a single linear regression model Alzheimer’s pathology. . . . . . . . . . 145



x

A.5 Predictive error of response variables for each diagnosis label and feature type
using linear regression fitting a specific model for each Alzheimer’s cognitive
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.6 Effect size (p-value) of each associated marker of interest on on average brain
ROI volume using a single PLS model for Alzheimer’s pathology. . . . . . . . 146

A.7 Effect size (p-value) of each associated marker of interest on on average brain
ROI cortical thickness using a single PLS model for Alzheimer’s pathology. . 147

A.8 Effect size (p-value) of each associated marker of interest on on average brain
ROI volume using a multiple PLS model for Alzheimer’s pathology. . . . . . 148

A.9 Effect size (p-value) of each associated marker of interest on on average brain
ROI cortical thickness using a multiple PLS models for Alzheimer’s pathology. 149

B.10 Classification of (a) HC vs MCI and (b) HC vs AD-dementia using T1 features.150
B.11 Classification of (a) HC vs MCI and (b) HC vs AD-dementia using T1+DTI

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.12 Features derived from T1 images as normalized GMV from ROIs. . . . . . . . 151
B.13 Multimodal top ranking features as weighted by the LR decision function on

the training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.14 Acquisition characteristics of the selected subjects on the interval 3.5 > ∆t >

2.5 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.15 Percentage of discriminant voxels that correspond to each of the brain regions

of interest (ROIs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
B.16 erformance of the system using a different feature selection method (l1-norm

selection) and evaluated on the interval 3.5 > ∆t > 2.5 years . . . . . . . . . 159
B.17 Performance of the system trained on the interval 3.5 > ∆t > 2.5 years and

evaluated in all other cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Glossary

AAL Automated Anatomical Labeling.

AD Alzheimer’s disease.

ADNI Alzheimer’s Disease Neuroimaging Initiative.

AIBL Australian Imaging, Biomarker & Lifestyle Study of Ageing.

APOE Apolipoprotein E.

AUC Area under receiver operating characteristic (ROC) curve.

CDR Clinical Dementia Rating.

CSF Cerebrospinal fluid.

CU Cognitively unimpaired.

CV Cross-validation.

DMN Default-mode network.

dMRI Diffusion Magnetic Ressonance Imaging.

DTI Diffusion-tensor Imaging.

fMRI Functional Magnetic Ressonance Imaging.

GAM General Additive Model.

GLM General Linear Model.

GM Grey-matter.

HC Healthy controls.

IWG International Working Group.

MCI Mild Cognitive Impairment.

ML Machine Learning.

MMSE Mini-Mental State Examination.

MRI Magnetic Ressonance Imaging.



xii GLOSSARY

NeAT Neuroimaging Analysis Toolbox.

NIA-AA National Institute of Aging & Alzheimer’s Associations.

NMR Nuclear Magnetic Ressonance.

PACC Preclinical Alzheimer’s Cognitive Composite..

PET Positron Emission Tomography.

PLS Partial Least Squares.

PR Precision-Recall.

ROC Receiver Operating Characteristic.

ROI Region of Interest.

rs-fMRI Resting-state fMRI.

SBM Surface-based morphometry.

sMRI Structural Magnetic Ressonance Imaging.

SVR Support Vector Regression.

TBM Tensor-based morphometry.

VBM Voxel-based morphometry.

WM White-matter.



1
Introduction

The aim of this thesis is to study and model Alzheimer’s disease (AD) signature in
Magnetic Resonance Imaging (MRI), with special attention and focus in early, preclinical
stages where subject’s brains present AD-related pathology without expressing dementia
related symptoms [1, 2].

1.1 Context and motivation

Over the last decades, research in medical imaging has made significant progress in ad-
dressing challenging tasks using model-based approaches (e.g: segmentation or disease
prediction). More recently, the hand-crafted and explicitly designed models are being
replaced by learning-based approaches that use data-driven solutions and machine learn-
ing techniques. The success of deep learning and the improvements in computing power
may accelerate this trend. At the same time, the number of observational and interven-
tional studies is increasing, providing large-scale datasets, some of them publicly available
(ADNI1, UK Biobank2), and including both imaging and non-imaging data. All these
constitute a great opportunity for methodological development, reproducibility studies
or benchmarking. However, the principal challenge of the medical imaging community is
the slow uptake of cutting edge methodology by both clinicians and industry. The main
reason for this is the lack of robustness of many algorithms due to large variability across
subjects and acquisition protocols and/or the low interpretability of the results. Hence,
researchers should be focusing more on finding interpretable solutions that solve clinical
problems [3].

One of the most widespread applications of medical imaging is the study of neurodegen-
erative diseases, an irreversible process that result in the progressive death of nerve cells
in the brain. Neurodegeneration is the principle cause of dementia, a syndrome associ-
ated with a progressive loss of memory, cognition, change in behaviour and the ability
to perform everyday activities. A recent estimate from the World Health Organization
(WHO) indicates that there are nearly 50 million people worldwide living with dementia,
currently being the 5th cause of death [4]. Nonetheless, there are still huge differences
between low- to mid-income countries where the prevalence of dementia is much lower
and high- income countries where it represents the 3th cause of death. A possible expla-
nation is that neurodegeneration is a condition of the aging brain and hence it is linked
with life expectancy that presents a huge gap between rich and poor countries (15-20
years as stated in [5]). Moreover, death causes in low- and mid- income countries are
more related to communicable diseases, maternal causes or nutritional deficiencies, while
in high-income countries non-communicable diseases are the main cause of death (71%).

1http://adni.loni.usc.edu/
2https://www.ukbiobank.ac.uk/
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Figure 1.1: Estimated number of people living with dementia worldwide (2015-2050)
stratified by countries of different income level. Source: World Alzheimer’s report in
2015 [6] (Table 2.8). In black the last projection for 2050 from [4].

However, as low- and mid- income countries have poor infraestructures and diagnostic
systems, figures might be estimated from incomplete data.

In the World Alzheimer’s report in 2015 [6], the future projection estimate almost doubles
the number of people living with dementia worldwide every 20 years (Figure 1.1), reaching
131 million people in 2050. A more recent estimate [4] projects 152 million people with
dementia in the 2050, the triple of the current estimate (50m, 2018), and so will increase
the associated economic and social burden. Last estimates and projections of the total
worldwide cost of dementia [6] were US$818 billion, reaching US$1 trillion in 2018 and
doubling to US$2 trillion by 2030. If dementia were a country, it would be the 18th
biggest economy in 2015, accounting for 1.1% of the global gross domestic product (GDP).
Altogether, dementia poses significant global challenges for our societies, national health
services, carers and families, making research into its prevention and treatment a major
public health priority [7].

Among many other diseases, Alzheimer’s disease (AD) is the most common underlying
pathology of dementia patients, accounting from 60% to 70% of subjects that develop de-
mentia symptoms [4]. AD is a neurodegenerative disease characterized by brain extracel-
lular amyloid plaques deposition and intracellular tau neurofibrillary tangles (Figure 1.2)
and may eventually lead to dementia in later stages of the disease. The presence of these
two pathologies may induce synapse loss and dead neurons (Figure 1.3). The etiology
of AD is poorly understood, even though many risk factors are known such as genetic,
cerebrovascular diseases or brain injury, among others [8], and has been associated to
many factors, e.g: sleep quality [9] or menopause [10].

In current clinical practice, AD dementia is diagnosed as “probable AD” or “possible AD”
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Figure 1.2: An illustrative figure of amyloid plaque deposition and neurofibrillary tan-
gles in a brain neuron (down) compared to a healthy neuron (up). Source: Wikimedia
Commons.

Figure 1.3: Comparison of a normal aged brain (left) and the brain of a person with
Alzheimer’s (right). Some of the typical characteristics are pointed out in both figures.
Source: Wikimedia Commons.

[11] based on medical history, clinical examination and neuropsychological testing. These
clinical criteria have been widely used for clinical diagnosis providing modest yet useful to
date sensitivity (71-81%) and specificity (70%) [12, 13] against post-mortem verification.
Definite AD dementia can only be diagnosed through histopathological examination of
brain tissue ex-vivo using autopsy (or, rarely, using in-vivo biopsy) for those patients
that meet the criteria for “probable AD” [14]. A prodromal stage where subject present
mild memory deficits and cognition impairment but do not reach dementia levels has
also been defined as mild cognitive impairment (MCI). However, these diagnostic criteria
are not enough for clinical research and do not provide a useful framework for clinical
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trials. Increasing number of large and publicly available observational studies and the
use of in-vivo biomarkers in research have helped a lot in the understanding of the
disease and bring us closer to the development of beneficial therapies. Recent updates
of diagnostic frameworks incorporate the use of pathophysiological and topographical
biomarkers [15, 16] even though they are mostly intended for research and have been
taking off in clinical trials for the past 5-10 years. The use of biomarkers in clinical
practice will increase the sensitivity and specificity of the diagnosis.

AD symptoms have been the target of the development of several disease modifying ther-
apies, even though all trials failed, so far. One hypothesis is that we are tackling the
disease too late, when subjects have suffered irreversible major neuronal damage and
synapse loss. By the time of diagnosis, patients already show a significant volume re-
duction of some brain anatomical regions compared with normal aging subjects. This
suggests that the pathophysiological process of AD begins years prior to the diagnosis of
clinical dementia. Following this rationale, therapeutic interventions should take place
before the onset of symptoms. Recent developments in fluid and imaging biomarkers
show evidence that subtle changes in the brain start to occur 15-30 years before the
onset of clinical symptoms and cognitive decline. Cerebrospinal fluid (CSF) and positron
emission tomography (PET) are used as in-vivo proxies for AD underlying pathology
with increasing accuracy compared to clinical tests, being able to better capture the
heterogeneity of AD among subjects. This early stage of the disease is called “preclin-
ical stage of AD” where subjects present Alzheimer’s pathology in their brains without
developing dementia symptoms. In this thesis we use the label “preclinical Alzheimer’s
pathology” (PC) for cognitively unimpaired subjects that show in-vivo amyloid evidence
in the brain either using CSF Aβ1−42 or amyloid PET. Moreover, for clinical AD cate-
gories (MCI, dementia) we only consider subjects with abnormal levels of brain amyloid
yielding to what we label as “MCI due to AD” (MCI) and “dementia due to AD” (AD-
dementia). Besides PET, magnetic resonance imaging (MRI) is another relevant imaging
technique that provides in-vivo macroscopic images of brain tissue configuration and it
is also incorporated in diagnostic frameworks as a valid biomarker of neurodegeneration.

Preclinical AD represents a window of opportunity for disease modifying therapies and
secondary prevention practices that hopefully will halt or slow down the progress of the
disease. However, they face a common challenge: how to identify subjects at risk. On-
going clinical trials use either increased genetic risk or positive amyloid biomarkers as
valid strategies. Cerebral amyloid-beta deposition is considered a necessary yet not suffi-
cient condition for sporadic Alzheimer’s disease [17] while the genetic is neither necessary
nor sufficient condition. Overall, on one hand eligibility poses several issues both oper-
ational and ethical, such that overdiagnosis [18], and on the other hand, larger samples
are required in order to cover the entire heterogeneity of the disease and get statistically
significant results. Hence, we need to develop precise and cost-effective techniques that
are able to detect subjects at risk of AD.

1.2 Contributions

Among many other factors, the heterogeneity of the disease and the different acquisition
protocols among sites need analytically complex modeling techniques. The increasing
amounts of data gathered in both observational studies and clinical trials allow us to
develop advanced techniques based on pattern recognition and artificial intelligence. The



1.2 Contributions 5

study of AD as biological continuum uses and will unequivocally involve brain imaging
as a powerful biomarker on one hand and will benefit from the large literature about
image analysis from the computer vision society on the other. Hopefully, brain imaging
techniques will eventually translate to standard clinical practice despite some of their
current drawbacks, such as universal availability or cost.

This thesis will use statistical and pattern recognition methods from the literature to
develop new methodological frameworks for the study and prevention of AD using MRI,
with special focus on the early stages of AD. This moves us from the definition of AD
as a dementia syndrome using clinical outcomes to using in-vivo pathological biomarkers
(e.g: cerebrospinal fluid) to account for the whole spectrum of AD biological continuum.
We are interested in the analysis of brain structure using MRI and its relationship to
Alzheimer’s pathology and Alzheimer’s related markers. Nonetheless, most of the tech-
niques developed in this thesis are generalizable and can be also used for other studies.

In Chapter 2, we provide a common ground to set the basis of this thesis. we begin
with an historical overview of Alzheimer’s disease diagnostic frameworks, comparing the
terminology adopted by different research groups and stressing their main similarities
and differences. From the historical perspective of Alzheimer’s disease as a dementia
syndrome there is a recent trend towards defining Alzheimer’s as a purely biological
continuum [16] that could help research and also improve the development of preven-
tion therapies. Deriving a common terminology is key not only for the understanding
of this thesis but also for the development of the field. After defining AD, we continue
by introducing Magnetic Resonance Imaging (MRI), its different modalities and high-
lighting some of the main findings relating AD and MRI. Finally, we dedicate a section
to introduce pattern recognition in the neuroimaging field and review the use of pattern
recognition methods in Alzheimer’s disease research.

The following three chapters represent the main contributions of this thesis. We develop
MRI based statistical and pattern recognition modeling techniques and use them to
study brain morphology along the Alzheimer’s continuum. In Chapter 3, we present
an open-source statistical analysis toolbox for neuroimaging studies. We extend the
current neuroimaging software capabilities by introducing several non-linear modeling
techniques followed by a statistical inference module with several available metrics. We
complement the toolbox with model comparison strategies and an interactive graphical
user interface (GUI) for visualization purposes. The overall design is compatible with
standard neuroimage processing softwares used by the community and can be seen as
complementary software for statistical analysis in population studies. We use the toolbox
to examine the relationship between MRI and AD related markers reporting two different
study cases: (i) atrophy patterns across the Alzheimer’s continuum and (ii) effects of
APOE-ε4 in brain aging.

After studying the possible nonlinear patterns of brain morphology related to several
factors, in Chapter 4, we are precisely interested in studying the concrete relationship
between AD pathology and brain structure and evaluate the capacity of MRI to predict
pathophysiological markers. For that purpose, we use regional MRI-derived features
(volume and cortical thickness) and cerebrospinal fluid (CSF) biomarkers as a proxy of
AD pathology. As a multifactorial disease, we use a multivariate model for AD pathology
involving amyloidosis, tauopathy and neurodegeneration and we investigate the use of an
univariate and a multivariate models for brain structure. Our initial hypothesis is that
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AD pathology may trigger few underlying processes driving brain structural changes.
Hence, we model the joint variability of both measurements by means of latent variables
that then can be further used for prediction.

The results in the two previous chapters highlight that MRI can constitute an earlier
biomarker of AD that become abnormal a few years before the onset of clinical symp-
toms, suggesting its potential to detect subjects at risk for dementia. In Chapter 5, we
further investigate this by studying the predictive capacity of AD pathology in asymp-
tomatic subjects using MRI. Concretely, we use machine learning (ML) algorithms to
detect amyloid positive subjects from a pool of cognitively unimpaired subjects using
cross-sectional and longitudinal studies using MRI. This methodology could be used
for triaging in clinical trials for secondary prevention of AD as gold standard measures
(CSF/PET) are unsuited for screening of the general population given their invasiveness
and cost. Hence, the main contribution of Chapter 5 is the proposal of a modified pro-
tocol for population screening and the development of a theoretical framework to assess
its potential in reducing costs and participant burden.

We end up this thesis by summarizing the main results of this PhD thesis as well as
highlighting the contributions and suggesting some directions for future work.



2
Literature review

In this chapter we review the characteristics of Alzheimer’s disease (AD) and different
diagnostic criteria used in the last decades. We focus on the preclinical stage of AD
(PC) where subjects experiment brain pathological changes before the onset of clinical
symptoms of dementia. The literature on AD diagnosis is substantial and we do not
attempt to cover all the wide variety of biomarkers ranging from genetics, blood or
demographic factors to cerebrospinal fluid (CSF) or brain imaging. Instead, we focus on
magnetic resonance imaging (MRI) as a biomarker of neurodegeneration that provides
brain structural information regarding its morphology, connectivity and brain functional
activity. We introduce the typical MRI modalities used in the study of neurodegerative
diseases and the most common type of analysis. MRI has extensively been used for
statistical inference of the effect of several factors (e.g: age, dementia, risk factors) in
brain structure. Lately, the appearence of larger observational studies have allowed the
development of more complex models within the pattern recognition field to study disease
progression and diagnosis. In the last section of this chapter, we provide an extensive
yet ordered review of the methodology used to study the relationship between MRI and
AD.

2.1 Alzheimer’s disease

Alzheimer’s disease (AD) is classically defined as a dual clinicopathological entity con-
sisting of (i) neuropathological changes that usually involve the presence of intracellular
β-amyloid neuritic plaques and extracellular neurofibrillary tangles (NFT) and (ii) clinical
phenotypes of dementia such as progressive episodic memory loss and cognitive impair-
ment. This dichotomy is a source of confusion whenever individuals match only one
of the definitions, either because different pathological processes share common clinical
phentoypes [19, 20] or because pathological changes exist without the concomitant clini-
cal manifestations [21, 22]. This last case constitute an interesting group of individuals
for research and specially in preventive studies, as we will see throughout this thesis.

From the initial belief of AD as a presenile dementia defined in Alzheimer’s original
case [23], there have been numerous attempts to describe AD and standardize a unified
diagnostic criteria. In the following, we provide a brief historical path of AD definition
with focus on early stages of the disease.

2.1.1 Diagnostic criteria

Prior to 1970s, AD was seen as a presenile dementia where the symptoms appeared earlier
in life. However, different research studies during the 70s and early 80s decade [24, 25, 26]
did not show neurological nor pathological differences between presenile and most of the
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senile dementia cases. Hence, despite temporal differences it was believed that both con-
stituted a single form of dementia due to neuritic plaques and neurofibrillary tangles. This
brough up the definition of AD as a dual clinicopathological entity by the Work Group
on the Diagnosis of Alzheimers Disease created by the National Institute of Neurological
and Communicative Disorders and Stroke (NINCDS) and the Alzheimers Disease and Re-
lated Disorders Association (ADRDA) [14] in 1984. The NINCDS-ADRDA Alzheimer’s
Criteria adopted the term “probable AD” to clinically diagnose in-vivo dementia between
the ages of 40-90 years with deficits on at least two areas of cognition measured based
on medical history, clinical examination and neuropsychological tests. The 1984 criteria
of “probable AD” explicitly exclude subjects with evidence of other cerebrovascular and
neurodegenerative disease that could cause dementia. Even though it was extensively
accepted in the research community and clinical practice for the rest of the 20th century
and the beginning of the 21th century, “definite AD” could only be accurately diagnosed
by histopathological evidence from autopsy or biopsy of those subjects that met the clin-
ical criteria for “probable AD”. The overall modest sensitivity (71-81%) and specificity
(70%) [12, 13] of the criteria has proven to be useful in clinical practice until nowadays
yet not sufficient for drug and/or preventive therapies development.

The flaws of the 1984 criteria rapidly became apparent: “probable AD” diagnosis was not
sufficiently sensitive to detect neuritic plaques and neurofibrillary tangles as it excluded
(i) a wide and heterogeneous group of people that had very mild cognitive impairment
[27] and (ii) nonamnestic syndromes that were related to the same pathologies such as
the “visual variant AD” [28]. The term mild cognitive impairment (MCI) first appeared
in [29] and accounted for those subjects discarded by the 1984 criteria filling the gap
between “probable AD” and cognitively unimpaired subjects. Initially, MCI was defined
as a predementia stage with memory impairment whilst preserving other cognitive do-
mains [30] and it was rapidly presumed to be an early (prodromal) stage of probable
AD [31]. However, it has been recognized that the concept of MCI is very heterogeneous
comprising many subtypes affecting different cognitive domains and with different clin-
ical phenotypes [32]. The most common subtype is amnestic MCI (aMCI) and involves
subjects with promiment memory complaints while other subtypes involve either very
mild impairment of multiple-domains with or without memory deficits or a single non-
memory related domain. Concerned by the heterogeneity of the MCI concept and trying
to increase the clinical relevance of MCI diagnosis, the authors in [33] propose to rede-
fine MCI depending on the underlying disorder. In their article, they propose a clinical
criteria to diagnose “MCI of Alzheimer’s type” or “prodromal AD” based on amnestic
syndrom diagnosis involving memory changes and recall deficits. However, subsequent
longitudinal studies [34] showed that not all aMCI subjects had neuritic plaques and neu-
rofibrillary tangles (71%). Moreover, people with aMCI might have multiple pathologic
changes besides neuritic plaques and neurofibrillary tangles such that α-synucleinopathy
or cerebrovascular diseases, among others [35]. To date, the diffuse boundary between
MCI and dementia is still object of debate and out of the scope of this thesis.

More than two decades after the first AD diagnostic criteria, in 2005, the International
Working Group (IGW) was created in order to explore a new diagnostic framework for AD
that would extend the previous one by including the use of recently developed biomark-
ers and the definition of the “prodromal AD stage”. They stated several factors that
highlighted the need for an updated criteria: insufficient diagnosic specificity, improved
AD phenotypes, improved non-AD phenotypes, histopathological definition of non-AD
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dementias, need for early diagnosis, poor definition of MCI, unclear distinction between
MCI and dementia and the appearence of new biomarkers (in-vivo evidence) that helped
the study of the disease identifying molecular and structural changes in the brain [36].
Concretely, β-amyloid positron emision tomography (PET) imaging revolutionized the
field by introducing a neuropathologically validated biomarker for neuritic plaques and
hence, a proxy to the pathobiological path of AD. Other useful biomarkers are cere-
brospinal fluid (CSF) and magnetic resonance imaging (MRI). The IGW proposed the
first research criteria that used both clinical phenotypes and in-vivo biological evidence for
AD diagnostic purposes [36]. They accounted for the typical representation of AD and de-
fined “probable AD” as having early and significant memory impairment supported by at
least one biomarker evidence among the following: (i) medial temporal lobe (MTL) atro-
phy using structural MRI, (ii) abnormal CSF biomarkers including amyloid β1−42 (Aβ42),
total tau (t-tau) and phospho-tau (p-tau) and (iii) abnormal PET biomarkers, including
reduced glucose metabolism measured using fludeoxyglucose (FDG) or increased Pitts-
burg compound B (PiB). We refer to positive/negative Alzheimer’s biomarkers whenever
their values lie within an abnormal/normal range compared to normal aging values.

With the inclusion of supportive features in the core diagnostic framework, the IWG
moved AD from a clinicopathological to a clinicobiological entity and offered unified cri-
teria applicable at all clinical states along the disease continuum, from “prodromal AD”
to AD. However, it only focused on the typical amnestic representation of AD and it
still missed situations where the clinicobiological duality is not present, such that when
clinically asymptomatic subjects have positive Alzheimer’s biomarkers or when clinically
symptomatic subjects have partially positive or negative Alzheimer’s biomarkers. The
same IWG introduced a new lexicon in 2010 [37] aiming to provide a broader diagnos-
tic coverage of the full AD clinical spectrum. In their definitions they used the most
validated Alzheimer’s biomarkers at that time: pathological markers (CSF Aβ42, CSF
p-tau, CSF t-tau and Amyloid PET) and topographical markers (FDG PET and MTL
atrophy using MRI). They began by defining Alzheimer’s disease as a clinical continuum
that starts with the onset of clinical symptoms and encompassed both predementia (la-
beled as “prodromal AD”) and dementia (labeled as “AD dementia”) stages. According
to the clinical phenotype and supported by one or more biomarker evidence, AD can
be labeled as (i) “typical AD”, referred to the typical pattern of early and progressive
memory deficit that stays until later stages of the disease, (ii) “atypical AD”, referred
to a less common pattern of deterioration of non-memory cognitive domains and (iii)
“mixed-AD”, referred to patients that follow a typical AD pattern mixed with evidence
of other clinical phenotypes or biological evidence of other comorbidities. Irrespective of
the existence of clinical manifestation, they define “Alzheimer’s pathology” as the under-
lying neurobiological changes responsible for AD that span the earliest pathogenic events
comprising brain neuronal lesions (neuritic plaques and neurofibrillary tangles), synaptic
loss and vascular amyloid depositions. Earlier in the Alzheimer’s pathology continuum,
they define the “preclinical stage of AD” as the period that spans from the earliest patho-
logical events to the first appearence of cognitive changes. Two states were defined for
preclinical AD: “asymptomatic at-risk state for AD” and “presymptomatic AD”. The
former comprise subjects with in-vivo evidence of Alzheimer’s pathology measured either
using PET imaging with amyloid tracers or CSF concentrations, while the later comprise
individuals who carry an autosomal dominant AD mutation that will inevitability develop
clinical manifestations of AD. Finally, the “MCI” label was used to describe individuals
with measurable MCI in the absence of signifiant effect on instrumental living activities
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without a disease to which MCI can be attributed.

This new lexicon was then used for the IGW-2 criterion [15], an update to the previ-
ous IGW diagnostic criteria crystallising all refinements introduced in 2010. A broader
clinical core diagnostic was defined by accounting for both amnestic and non-amenstic
variants of AD and considered different weighting of Alzheimer’s pathology biomarkers
along the disease continuum. Pathophysiological biomarkers (amyloid imaging or molec-
ular CSF), as in-vivo indicators of underlying amyloidosis or tauopathy, were used as
markers of Alzheimer’s pathology. They were included in the core diagnostic criteria
providing high specificity for AD and allowing to better define the boundary between
prodromal AD and undefined MCI. Moreover, the term “probable AD” was then dis-
carded since they were able to provide in-vivo evidence of Alzheimer’s pathology. On
the other hand, topographical biomarkers (FDG PET, structural MRI) are used for as-
sessment of disease stage and progression rather than diagnostic markers. The IGW-2
criterion was initially designed for rigorous research purposes but intented to be applied
in clinical practice at least in favourable cases (young-onset or atypical AD) in which
biomarkers might help boost the diagnostic accuracy. However, the use of biomarkers
poses other challenges that should be further addressed such that the disagreement be-
tween biomarkers or their use at older ages where the evidence is less salient and other
comorbitidies might be present.

In parallel to the IWG work, in 2009 the National Institute of Aging (NIA) and the
Alzheimer’s Association (AA) sponsered a series of round tables that concluded with
the creation of three separate working groups responsible for revising and updating the
established 1984 criteria: one work group was assigned the task to formulate a diagnostic
criteria for the dementia phase of AD, a second group focused on a diagnostic criteria
for symptomatic pre-dementia stage of AD and a third group was asked to develop a
research criteria for preclinical AD. Hence, a different diagnostic criteria was developed
for each disease stage. The work from NIA-AA groups attempted to disambiguate the
term AD by using AD-P when referred to Alzheimer’s pathology supported by in-vivo
biomarker evidence and AD-C when referred to Alzheimer’s clinical dementia. The re-
sults were summarized in four different papers [38, 11, 39, 1]. An introduction of the
NIA-AA criteria is found in [38], motivating the work done in the three separate groups
and highlighting the need for an update of the criteria that incorporated biomarkers yet
could still be used in clinical practice. The works in [11, 39] attempted to define a clini-
cal criteria for AD dementia and MCI, respectively, with different levels of probabilistic
likelihood. They used the “probable AD” definition from 1984 as the core clinical crite-
ria for AD dementia with increasing level of certainty if cognitive decline in subsequent
studies, genetic mutations and/or in-vivo pathophysiological evidence were present. For
MCI subjects, they defined a general core clinical criteria as baseline and provided higher
levels of certainty about the underlying pathology when amyloid and/or neuronal injury
biomarkers were available. Finally, in [1], a conceptual framework was introduced us-
ing the pathophysiological model proposed in [40] to define the Alzheimer’s continuum.
This work was intended only for research purposes providing the basis to define and
characterize the preclinials stages of AD.

The works from NIA-AA and IGW share many features, such as the integration of
biomarkers, the identification of a preclinical stage and the recognition of biomarker
diversity along the disease based on [40]. However, both works conceptually differ on
several points. The NIA-AA propose a stagewise diagnostic criteria while the IWG pro-
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pose a simpler unified criteria for AD. The NIA-AA might be more adequate for clinical
practice since it still works when biomarkers are not available, while the IWG might
provide more accurate diagnosis when biomarkers are available. In the preclinical stage,
subjects with positive amyloid biomarkers would be diagnosed with AD following the
NIA-AA criteria while only considered as asymptomatic at-risk of AD using the IWG
criteria.

Jack et al. in [41] went one step further in proposing a biomarker-based protocol inde-
pendent of any clinical criteria that can be used in both cognitive-aging and dementia
studies. They selected seven key Alzheimer’s biomarkers used to define three binary
(+/-) categories (A/T/N): “A” category refers to the β-amyloid biomarker (CSF Aβ42
or amyloid PET), “T” category refers to the value of tau biomarker (CSF phospho tau
or tau PET) and “N” category refers to biomarkers of neurodegeneration or neuronal
injury (structural MRI, CSF total tau or [18F]-fluorodeoxyglucose PET). In total, they
defined eight different biomaker profiles without assuming any causality among them and
hence, accounting for different hypothesis about AD pathogenesis. Currently, the most
used hypothesis states that proteinopathy “causes” the disease in the elderly [42], while
other investigate other less Aβ centric pathways [43].

The A/T/N system set the basis for the new research framework proposed in 2018 by the
NIA-AA group as an attempt to update and unify the 2011 guidelines. This new research
framework, [16], is intended for observational studies and intervential research but not for
clinical routine care. It is a purely biological (biomarker-based) framework that uses the
AT(N) system for profiling. While A and T categories use specific pathological biomark-
ers for AD, (N) uses biomarkers indicative of neurodegeneration that might not be specific
for AD and therefore placed in parentheses. The 2018 framework defines the Alzheimer’s
continuum using all biomarker profiles with positive amyloid (A+) biomarkers, differen-
tiating between Alzheimer’s disease (AD) individuals that also present positive tau (T+)
biomarkers, and individuals with Alzheimer’s pathologic changes that present normal tau
(T-) biomarkers and that are considered to be in early stages along the Alzheimer’s con-
tinuum. Individuals with a (A-T-(N)-) profile are defined as to have normal Alzheimer’s
biomarkers while having amyloid negative (A-) and either tau positive (T+) or neu-
rodegeneration ((N)+) is indicative of non-AD pathologic changes. Herein, genetics are
excluded as gene variants do not measure neuropathological change but rather indicate
an individual’s risk to develop pathological changes (e.g: APOEε4 or the certainty pro-
vided by typical autosomal dominant mutations). The research framework is flexible to
incorporate new biomarkers within the existing categories (e.g: CSF neurogranin [44, 45]
within the (N) category) or create new categories, i.e. ATX(N), when new groups can
clearly be defined. TDP43 [46], α-synuclein [47] and vascular biomarkers [48, 49] are some
promising AD biomarkers currently under study. One of the limitations of this frame-
work is the sensitivity of in-vivo biomarkers to detect the presence of neuritic plaques,
pathologic tau tangles or the loss of neurons.

The NIA-AA research framework also use clinical (C) markers to define a cognitive contin-
uum and its relation to the AT(N) system. They propose two different cognitive staging
systems: a syndrome cognitive staging defined over the whole population (all biomarker
profiles) that can be used in observational studies and a numeric clinical staging de-
fined only over those subjects along the Alzheimer’s continuum and mostly intended for
interventional studies. The syndrome cognitive staging system also accounts for compat-
ibility with NIA-AA 2011 guidelines where they defined three different cognitive entities
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(dementia, MCI and cognitively unimpaired (CU)), and that is widely used in several
ongoing studies such as ADNI [50] or AIBL [51]. The numerical clinical staging system
was created for those subjects within the Alzheimer’s continuum as a sequential evoution
from an initial stage with the onset of abnormal AD biomarkers in asymptomatic sub-
jects. This numerical system splits the cognitive continuum into 6 stages, very similary
to the recent FDA reccomendations [52].

While IGW and NIA-AA groups are going towards the same direction when defining AD
and AD biomarkers, still some differences exist between their last published guidelines.
The IGW work in 2014 [15] is not purely a biological entity, as the diagnosis of AD
requires both cognitive symptoms and AD biomarker signature. In contrast, NIA-AA in
2018 [16] proposes a biomarker-only based system for AD diagnosis. The former requires
either positive amyloid PET or positive CSF Aβ and t-tau to diagnose AD, while the
latter considers CSF total tau as a non-AD specific marker of neuronal injury and, apart
from amyloid markers, requires abnormal tau PET or CSF p-tau values to define AD.
Nonetheless, tau PET is a very recent and promising AD biomarker and did not exist
prior to the IGW definition in 2014. Another difference is found on the lexicon for early
stages of the Alzheimer’s continuum: while IGW considers subjects with only amyloid
positive biomarkers to be “asymptomatic-at-risk for AD”, NIA-AA considers them part
of the “Alzheimer’s continuum” presenting “Alzheimer’s pathological changes”. Other
nomenclature differences are present in the preclinical stages of AD between NIA-AA
and a more recent article about preclinical AD from IGW group in 2016 [2]

An overview of the diagnostic criteria from established research groups can be found in
Table 2.1

Diagnostic criteria of Alzheimer’s disease

Year
[Ref.]

Research
Group

Diagnostic labels Biomarkers Intended use

1984 [14]
NINCDS-
ADRDA

Probable and possible
AD

No
Clinical &

Research practice

2011 [11] NIA-AA Dementia due to AD
Not

required
Clinical &

Research practice

2011 [39] NIA-AA MCI due to AD
Not

required
Clinical &

Research practice

2011 [1] NIA-AA Preclinical AD Yes Research practice

2014 [15] IWG
Preclinical AD and

typical/atypical/mixed
AD

Yes
Clinical &

Research practice

2016 [2] IWG Preclinical AD Yes Research practice

2018 [16] NIA-AA A/T/(N) Yes Research practice

Table 2.1: Historical overview of diagnostic criterias developed by two main working
groups (NIA-AA and IWG) used in Alzheimer’s clinical and research practice.

2.1.2 Preclinical AD

The preclinical stage of AD is thought to be the temporal span that starts with the first
neuropathological changes and extends until the onset of clinical and cognitive symptoms.
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However, in practice, setting both upper and lower boundaries is challenging. Moreover,
the mismatch between different definitions of AD may induce confusion in the nomencla-
ture. On the one hand, the NIA-AA group propose a purely biological framework that
exclude clinical outcomes in the categorization losing the concept of preclinical/clinical
AD. In an attempt to integrate past diagnostic categories [38], they propose a categorical
cognitive staging that relates traditional syndromal categories with their proposed frame-
work. Here, preclinical AD is defined over CU subjects that present both Alzheimer’s
pathologies (amyloid plaques and neurofibrillary tangles), while CU subjects with only
amyloid plaques are described as “preclinical Alzheimer’s pathologic change”. On the
other hand, the IGW group in their last published work [15] suggest to differenciate
two different preclinical states of AD: (i) an asymptomatic AD state, that groups peo-
ple without clinical evidence of prodromal AD that carry an autosomal dominant AD
mutation and (ii) an asymptomatic at-risk for AD state, that groups subjects without
clinical evidence of prodromal AD and that have in-vivo evidence of Alzheimer’s pathol-
ogy showing either decreased CSF Aβ1−42 and increased CSF p-tau/t-tau or increased
uptake of fibrillar amyloid PET. In a more recent update that can be attributed to the
IGW group [2], they propose to restrict the term “preclinical AD” to subjects with high
risk to progress to clinical AD (i.e. showing both pathological brain lesions related to
AD) while preserving the “asymptomatic at risk for AD” to those subjects with only
one biomarker evidence (either amyloidosis or tauopathy). This last claim differs from
the NIA-AA research works based on the work in [40] that suggests amyloid positive
marker triggers the start of Alzheimer’s pathology and hence exclude subjects showing
only tauopathy evidence from the Alzheimer’s continuum. The NIA-AA framework is
based on the hypothetical biomarker model of Jack et al. in [40]. The model suggests that
an abnormal level of β-amyloid in the brain is the initiating event in the Alzheimer’s con-
tinuum, followed by tau concentrations, brain structural alterations, memory impairment
and clinical symptoms.

Both works agree on the pathophysiological biomarkers for AD: CSF Aβ1−42 or amyloid
PET as a proxy for amyloidosis while CSF p-tau and tau PET are used for in-vivo
evidence of tauopathy. The IGW group also includes CSF total tau as a biomarker of
tauopathy even though they acknowledge that both p-tau and t-tau are less specific for
AD than tau PET. Biomarkers used to asses neurodegeneration are MRI and FDG-PET
biomarkers to asses neuronal injury (N) and the NIA-AA group include CSF t-tau in this
category.

The preclinical stage of AD is also a window of opportunity for disease modifying thera-
pies [53]. The continuous failure of clinical trials for drug development targeting mild-to-
moderate AD dementia subjects combined with the increasing evidence of a long asymp-
tomatic stage of AD supported by new biomarker developments have produced a shift
towards AD prevention initiatives [54]. The challenge it poses is how to identify subjects
at risk to develop AD. A current solution is to detect subjects with β-amyloid in the brain
as it is thought to start accumulating 15-30 years before the onset of clinical symptoms.
The prevalence of amyloid pathology in the brain is associated with age, APOE-ε4 status
and the presence of cognitive impairment [55]. In late middle-age adults, i.e. 65 years,
the expected ratio of amyloid positivity among cognitively unimpaired subjects is 20%,
increasing to around 65% for subjects carrying two copies of the APOE-ε4 allele.

A recent study from the INSIGHT-preAD group [56] explores the relation between brain
β-amyloid depositions and cognitive and neuroimaging features. They recruited 318
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participants at baseline aged between 70-85 years and that reported subjective memory
complaints but had normal memory and neuropsychological tests. The mean age at
baseline was 76.0 (SD=3.5) years, amyloid PET scans revealed 88 (28%) amyloid positive
subjects and 62 (20%) subjects were APOE-ε4 carriers of whom 33 (38%) were amyloid
positive. No difference was found in cognition, structural metabolism or connectivity at
baseline between amyloid positive and negative participants and only differences in CSF
biomarkers (Aβ, p-tau, t-tau) were found. A total of 274 subjects remained in the study
after 30 months of follow up time with cognitive and clinical testing every 6 months and
brain imaging (FDG PET, structural MRI, functional MRI and amyloid PET) every 24
months. After 30 months no differences in cognition were found between amyloid status
groups and only four subjects (2%) progressed to prodromal AD, all of whom were
amyloid positive at baseline. Hence, the authors conclude that participants in clinical
trials of preclinical AD should be followed up for longer times. These findings are in line
with the longitudinal study in [57] where they observed individuals for a median time of
3.1 years with maximum follow up times of 10.3 years. They show different trajectories
for clinical and cognitive markers - Preclinical Alzheimer’s Cognitive Composite (PACC),
Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) - between
positive and negative amyloid groups. However, these differences began apparent at
follow up times t > 4 years, being PACC the most sensitive marker showing differences
almost 1 year prior to CDR. Both studies had an increased likelihood of amyloid positivity
within APOE-ε4 carriers and the expected prevalence of amyloid pathology in cognitively
unimpaired subjects increases with the APOE-ε4 status [55, 58]. The relation between
β-amyloid depositions, clinical progression and APOE-ε4 status suggest that the latter
could be used as a first-level screening marker prior to brain Aβ assessment. Other
risk factors for sporadic AD are currently investigated and summarized in the report
from the Lancet Commission [59], accounting for little education in early life, mid-life
hypertension, obesity or hearing loss as well as social and physical activity, smoking
habits, diabetes or depression in late life.

Even though brain amyloidosis is the strongest risk factor for sporadic AD, Aβ pathology
increases steeply with advancing age. Consequently, it results in comorbid Aβ positivity
in non-AD neurodegenerative disorders or increasing prevalence in elderly cognitively
unimpaired population reducing the specificity of Aβ biomarkers. The [18F]flortaucipir
PET tracer (tau PET) arise as a potentially more specific biomarker as its prevalence
is less associated with age and is well suited for differential diagnosis [60]. Tau PET is
more linked to anatomical and clinical variation due to Alzheimer‘s disease than amyloid
PET [61]. Hence, the penetrance of tau PET in both observational and interventional
studies is increasing rapidly. A couple of studies analyze the prevalence of both amyloid
and tau biomarkers by using the AT(N) framework [58, 62]. The prevalence of each
group changes substantially with age following non-monotonically increasing/decreasing
pattern as it could have been expected.

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique used to capture brain
anatomyin-vivo [63]. It is based on the Nuclear Magnetic Resonance (NMR) effect that
non-zero spin particles produce in the brain when excited by a strong constant magnetic
field (B0) and an oscilating, weak and orthogonal magnetic field (B1). Different tissue
configurations will appear to have different signal intensities in the resulting image. More
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diffuse mediums, such as intracranial cerebrospinal fluid (CSF) will produce different sig-
nal than white matter (WM) or grey matter (GM) tissues, which are less diffuse and
contain higher proportion of other particles (e.g: fat). Brain lesions (e.g: tumors, white
matter hyperintensities or traumatic injuries among others) would also appear differently
than their surrounding. MRI can produce several image modalities adapting the acquisi-
tion parameters to produce different contrasts between brain tissues and thus providing
complementary information. The ability to use multiple contrasts in the same session
is a powerful technique interesting for many brain imaging applications. Moreover, one
could use contrast agents that alter the configuration of brain tissue and produce more
contrast between different mediums (e.g: the use of gadolinium [64] to better detect brain
tumors). A clinical overview of MRI can be found in [65].

MRI is used as a non-invasive biomarker of neurodegeneration not specific to AD. How-
ever, there exists a vast literature relating MRI and AD looking for different temporal and
spatial changes related to AD that could define the so-called AD signature and, more re-
cently, the preclinical AD signature. Atrophy in Alzheimer’s disease patients is thought
to appear years after the beginning of amyloid plaques deposition and neurofibrillary
tangles creation and right before the appearance of the first symptoms [40]. Different
spatial patterns of atrophy correlate with neuropathological subtypes of AD [66] that
display different clinical phenotpyes [67]. However, there exists significant neuroanatom-
ical heterogeneity among subjects in the Alzheimer’s continuum [68] due to variability
in underlying genetics, brain pathologies, environmental factors or cognitive reserve and
may lead to large variations in clinical phenotypes. Cognitive reserve is a still poorly
understood concept used to explain cases where patients with advanced brain damage
do not develop clinical symptoms or cognitive decline [69].

Different MRI imaging techniques provide information about magnetic properties of brain
tissue (structural MRI), diffusivity of molecules in brain tissues (diffusion MRI) or brain
activity (functional MRI).

2.2.1 Structural MRI

Structural MRI provides static anatomical information about the brain. It describes
qualitatively and quantiatively the shape, size and texture of gray and white matter
structures in the brain. It can be used either in clinical practice for radiological reporting
or for detailed analysis.

Different acquisition parameter configurations can be used to provide complementary
information as seen in Figure 2.1

- T1-weighted: it emphasizes the contrast between GM and WM. CSF appears
dark, WM appears bright and GM appears gray.

- T2-weighted: it emphasizes the contrast between brain tissue (GM and WM) and
CSF. GM and WM appear light and dark gray while CSF appears bright.

- T2*-weighted: it is a modified T2 sequence to correct for magnetic field inhomo-
geneities. It is used to better detect hemorrhage or calcifications and it forms the
basis of functional MRI.
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- FLAIR: it emphasizes the contrast between brain tissue and abnormalities. It is
very similar to T2-weighted contrast but CSF appears darker while abnormalities
(e.g: white matter hyperintensities) are kept bright.

Figure 2.1: Different MRI contrasts: T1 (left), T2 (middle) and FLAIR (right).

The T1-weighted sequence is the most widely used due to the contrast between brain
tissue (GM and WM) and it is used to assess brain anatomy, specially the cerebral
cortex. The T2-weighted, T2*-weighted and FLAIR images are most widely used for
abnormality detection, (e.g: brain tumors [70], multiple sclerosis [71] or white matter
hyperintensities [72]).

Population studies relate structural MRI to any factors describing, for example, biological
processes, behavioral assessments or clinical phenotypes. Quantitative analysis pipelines
require extensive preprocessing of MRI images ecompassing different processes such as
denoising [73], bias field correction [74, 75] or tissue segmentation [76], among others.
Morphometric studies measure the volume and shape of grey matter structures and the
surface of the cerebral neocortex. Different types of morphometric techniques are used
in medical image analysis: voxel-based (VBM), tensor-based (TBM) and surface-based
(SBM). All techniques require a registration step to a template (spatial normalization
step) in order to be able to compare different subjects. VBM measures voxel-by-voxel
differences in brain tissue concentrations [77] and it is the most widely used technique
due to its simplicity compared to the other methods. To increase statistical robustness
and account for potential registration errors, a smoothing step is usually used to average
neighbouring voxels intensities. TBM study brain shape directly by means of deformation
fields from the registration step [78]. SBM focuses on the analysis of the brain neocortex
unfolding the gyrus and sulcus as a 2D surface [79]. Other type of analyses are based on
region of interest (ROIs) and are usually based on predefined anatomical atlases of the
brain [80, 81, 82]. Robust segmentation algorithms that may involve a registration step
are used to process MR images prior to the analysis. Segmentation and registration are
two of the main processing steps for structural MRI studies. Several publicly available
software [83, 84, 85, 86] help with the preprocessing and processing steps.

2.2.2 Diffusion MRI

Diffusion weighted imaging (DWI) provides information about the medium diffusitivity.
It uses the rate of diffusion of molecules, mainly water, to generate a contrast in MRI.
It is specially useful in areas such as cerebral infarction or tumor detection. In cognitive
aging and dementia-related neuroimaging studies, diffusion tensor imaging (DTI) appears
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to be relevant because it builds a 3D representation of the likelihood of the direction of
diffusion at every single voxel. Due to the underlying structure of white matter tissue
where the architecture of axons in myelinated parallel bundles facilitate the diffusion to
a certain direction, DTI can help to reconstruct in-vivo the main white matter pathways
as well as to asses the integrity of white matter bundles.

Related to Alzheimer’s disease, DTI studies show increased mean diffusivity (MD) in
white matter and decreased fractional anisotropy (FA) in people with dementia, indi-
cating loss of directionality in fiber bundles [87]. Moreover, the use of tractography
algorithms indicate degeneration of cortical [88] and subcortical [89] networks. More-
over, it shows early disconnections in the temporal lobe at preclinical stages, followed by
disconnections in the parietal and frontal lobes at the MCI stage [90].

2.2.3 Functional MRI

Functional magnetic ressonance imaging (fMRI) is a technique that measures brain ac-
tivity by targeting changes in the associated blood flow. This technique relies on the
assumption that cerebral blood flow and neuronal activation are coupled. It is used to
map task-related functional areas, such as to identify regions related to critical functions
such as speaking, planning or reasoning. Surgery planning can use fMRI to avoid altering
critical brain functions when removing brain tissue due to tumor or lesion. Moreover, it
can be used to assess therapy development from patients with depression or that suffered
a stroke.

Resting state fMRI (rs-fMRI) is a fMRI method that maps brain activity at rest, i.e.
when an explicit task is not being performed. A number of conditions are identified
in the brain, such as de default mode network (DMN) that comprise highly correlated
regions that experiment an increase of brain activity when at rest. The resting-state
approach is useful to examine neurological conditions or psychological disorders.

In Alzheimer’s disease, rs-fMRI is used to compute functional connectivity revealing net-
work dynamic changes and the association between activity in distant regions regardless
of the underlying structural connectivity [91]. Most of the studies reported decreased
activity in some regions (e.g: medial temporal lobe) and increased activity in others
(e.g: frontal lobe) within the DMN [92]. This idea of increased activity could be in-
terpreted as compensatory mechanisms from the loss of activity within the DMN. In
the same study, they show that patients in advanced dementia stages show decreased
activity in the whole DMN bringing up the hypothesis of hyper-metabolism preceding
hypo-metabolism. Moreover, other studies show interesting results beyond the DMN with
functional changes in other brain networks such as early changes in medial parietal brain
activity [93]. Despite interesting results, fMRI studies suffer from several limitations such
as the acquisition noise or the low statistical power [94].

2.3 Pattern recognition in neuroimaging

Traditionally, in epidemiological studies, statistics have played a central role by looking
at group-level (usually case-control) differences related to certain outcome measure (e.g:
the exposure to certain condition or risk factor). In the neuroimaging field, statistical
inference has significantly increased the understanding of brain structure, function or
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metabolism and their link to brain disorders. Concretely, mass-univariate analysis us-
ing the general linear model (GLM) has been the dominant paradigm in neuroimaging
studies for several decades [95] to make separate group-level inferences for each voxel
and/or region in the brain. However, statistically significant group-differences have lim-
ited translation in clinical practice and other analysis techniques have been developed
in the field. With the advances in neuroimaging techniques and computer hardware as
well as the increasing amounts of data available, pattern recognition methods emerged
as complimentary approaches to classical inference.

The problem of searching regularities in data has a long history and has been useful in
order to find empirical models of the world. As Bishop wrote in [96], “pattern recognition
is the field concerned with the automatic discovery of regularities in data through the
use of computer algorithms and with the use of these regularities to take actions such
as classifying the data into different categories”. The field of machine learning (ML) is
closely related to pattern recognition and we will use both terms interchangeably. Bishop
[96] continues stating that the main difference between them is that “pattern recognition
has its origins in engineering, whereas machine learning grew out of computer science”.
In contrast, despite its apparent similarity, machine learning and statistics are two dif-
ferent fields. Statistics is the branch of mathematics that deals with data and hence,
machine learning is built upon a statistical framework. However, machine learning draws
upon a large number of other items from mathematics (e.g: optimization, algebra and
calculus) or computer science and engineering (e.g: computational frameworks and im-
plementation efficiency). The main difference between classical statistical models and
pattern recognition lies in their purpose (inference vs. generalization) even though they
may use the same mathematical underlying model. The goal of pattern recognition and
machine learning models is to make predictions about new (unseen) data as accurately
as possible and trying to understand the behaviour of the learning algorithms [97]. On
the other hand, statistical models aim at making inferences about data creating a math-
ematical model that characterizes the relationship between data and outcome variables.
An overview of the pattern recognition field from a statistical perspective can be found
in [98].

Machine learning has proven successful in a wide range of fields such as computer vi-
sion, speech processing, text analysis and also neuroimaging. Image-based diagnosis and
disease prognosis are amongst the most succesful applications of machine learning in
neuroimaging. The authors in [99] found more than 500 papers between 1990-2015 tack-
ling the problem of single subject prediction of brain disorders such that Alzheimer’s
disese (AD), schizophrenia, depressive disorders or attention-deficit hyperactivity disor-
der. The TADPOLE challenge [100] aims at forecasting future evolution of AD-related
biomarkers. More recently, deep learning frameworks have been applied in a wide range
of neuroimaging problems, with rather notable success in registration and segmentation
tasks that usually required computationally intensive optimization techniques. However,
machine learning poses many challenges in the field such as the costly process of manual
labeling or interpretation and evaluation of the methods [101]. From the medical imaging
community perspective, the main challenge remains the slow uptake of methodological
advances by both clinicians and industry. The lack of robustness of many algorithms
due to large variability across subjects and acquisition protocols and/or the low inter-
pretability of the results are amongst the reasons that hinder methodological translation
between scientific development and the clinic. Accounting for that, researchers should
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be focusing more on finding interpretable solutions that solve clinical problems [3].

Broadly speaking, a machine learning algorithm has, at least, two separate phases: the
training and the testing phases. The former is used to tune model parameters and
adapt them to the problem in hand while the latter uses the trained model to predict
new samples and assess the generalization of the model to unseen examples during the
training phase. A good and comprehensive coverage of pattern recognition and machine
learning methods can be found in [96]. It covers both supervised learning where for
each observation there is a tuple available consisting of input data and its corresponding
target measures and unsupervised learning techniques where there are no target values
for input data. Supervised learning techniques learn associations between input data
(e.g: hippocampal volume) and target measures in the training phase and predict target
values for the test examples. Depending on the nature of target values, we can distinguish
between classification if the target values are discrete (e.g: disease status) and regression
if the target is continuous (e.g: age). The goal of unsupervised learning techniques is to
discover associations between input data points in order to group similar examples (e.g:
clustering), estimate the distribuiton of the data (e.g: density estimation) or to discover
underlying low-dimensional relationships (ex: dimensionality reduction).

Typical machine learning pipelines consist of several parts: feature extraction, feature-
selection, ML algorithm and error estimation Figure 2.2. However, recent success of deep
learning methods (specially, convolutional neural networks) embed all modules into one
single module. A good implementation of machine learning methods for neuroimaging
can be found in [102].

Feature-
extraction

Feature-
selection

ML
Algorithm

Error
estimation

Input Output

Figure 2.2: Typical machine learning pipeline.

Feature-extraction Feature-extraction uses the raw data from initial measurements,
possibly unstructured, untractable, noisy and high-dimensional, and derive features in-
tented to be informative, non-redundant and structured to facilitate the subsequent anal-
ysis. Feature extraction methods can also be seen as a way to reduce the dimensionality
that could lead to better interpretation and/or visualization. The physical process and
the high-dimensional nature of medical imaging data makes this step crucial.

The main aim of feature-extraction is to retrieve and quantify a set of accurate and proper
information from neuroimaging data, such as size, shape or volume, among others. These
features can vary from single-voxels, ROI-level or whole-brain features. Here, we include
voxel-based morphometry (VBM, [103]), tensor-based morphometry (TBM, [78]) and
surface-based morphometry (SBM, [104]), as we saw in section 2.2.1. Getting the most
relevant imaging phenotypes is crucial for different types of problems [105]. However,
voxel-wise and vertice-wise analysis is limited by noise, registration errors and large
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inter-individual variability. To account for this and to increase the robustness of the
extracted features against noise, some methods use a fixed anatomical brain structure
built upon several regions of interest (ROI), and extract features at the ROI level after
performing registration to a template (e.g. AAL 1 template [106] ). In [107], 93 ROIs
are defined and grey matter (GM) volume averages are computed for each ROI. In [108],
7 features are extracted for each of the 90 ROIs: tissue percentile (GM, WM, CSF and
background) and the averaged voxel-wise Jacobian determinant in WM, GM and CSF,
used for registration. A combination of multiple types of features can be found in [109],
where they used cortical thickness and volumetry of a-priori selected ROIs as well as
hippocampal texture and shape for automatic clinical diagnosis of the AD syndrome.

A common problem using predefined ROIs is that neurodegeneration patterns may not
necessarily follow standard definitions of anatomical regions. Hence, predefined regions
with regular shapes may reduce the power of the features. In [110], a data-driven ap-
proach that adaptively define regions of discriminative features with spatial consistency is
proposed. Moreover, with the increasing quality and diversity of images, higher-resolution
atlases can be used in order to track regional subfields [111].

Feature-selection After the extraction, it is possible to obtain many features from
neuroimaging data. However, curse of dimensionality might be a problem when dealing
with high-dimensional medical images with only few samples available (normally ranging
from a few dozens to a few hundreds) resulting in poor generalization results [112]. Thus,
feature selection becomes an important stage prior to the machine learning algorithm of
choice. Feature selection methods aim to select the most relevant features for a given
task omitting the improper ones in order to reduce the number of input variables to the
classifier. The main approaches are filter-based, wrapper-based and embedded techniques
[113]. Filter-based approaches rank features according to a given metric and select the k -
most relevant ones. In [114] a paired t-test to select the most discriminative feature subset
is used, while the work in [115] is based on the mRMR (minimum redundancy maximum
relevance) feature selection algorithm that identifies the minimal set of features that
jointly maximizes the discriminative power of the subset. Wrapper-based approaches use
a predefined machine learning method, such as a classifier with a certain regularization
(L1, L2, elastic net, ...) and rank and select features according to their relevance (i.e:
weights) in the final classification model [116]. Finally, the embedded methods perform
feature selection as a part of the classifier (e.g. random forests) [117].

Another way to tackle the curse of dimensionality problem is by using manifold learning,
a set of machine learning techniques that aim at finding a low-dimensional representation
of the high-dimensional data while preserving its intrinsic geometry. Manifold learning
examples are principal component analysis (PCA) [118], partial least squares (PLS) [119],
Laplacian eigenmaps [120] or isomap [121].

Machine learning algorithms A wide variety of machine learning algorithms could
be used depending on the problem in hand. A complete survey can be found in [96]. To
name a few, if we are dealing with a classification problem we could use logistic regression
(LR, [122]), support vector machines (SVM, [96]), random forests (RF, [123]) or neural
networks (NN, [98]), among others. Moreover, an ensemble of classifiers may boost the
overall performance [124]. For regression problems we have the equivalent algorithms

1Automatic Anatomical Labeling (AAL)
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but suited for continuous target values. Regularization techniques are normally included
in order to ensure smooth solutions and to prevent over-fitting, the scenario where your
model fits accurately the training data but do not generalize to fit the testing set. It
normally occurs when your input data is high-dimensional but only few observations are
available for training. Other available models are graphical models, widely used when
relationships between samples are known or can be inferred, and probabilistic models,
preferred when a family of solutions is required. For unsupervised learning settings, we
could use k-means for clustering or gaussian mixture models for density estimation.

Most of the aforementioned algorithms have hyper-parameters that need to be tuned
during the learning phase. This is called model selection and can be done by model
averaging or using a (nested) cross-validation strategy [125].

Error estimation The ability of the algorithm to predict unseen data is used to asses
its performance. A common approach is to use the hold-out method, which randomly
divides the dataset into two independent training and test subsets. The training set is
used to train the classifier while the test set is used for evaluation purposes. However,
the hold out estimation depends on the test subset size, requiring large sample sizes to
generalize well. Due to the scarcity of annotated medical imaging data it can easily over-
fit. Instead, k-fold cross-validation (CV) can be used [125]. In k-fold CV the dataset is
split into k independent folds, using k− 1 folds for training and 1 fold for evaluating the
algorithm. Iterating this scheme k times, the test fold is changed at each iteration and
thus, each fold is used for model evaluation only once when the process is finished. Finally,
gathering the model performance at each iteration, the overall system performance can
be computed. Another approach is the Leave-one-out (LOO) method, which is equivalent
to the k-fold when k is equal to the number of samples in the dataset. LOO is a much
less biased statistical estimator of the algorithm performance compared to the k-fold
approach, but produce larger variances if different training sets are sampled from the
same distribution. The LOO scheme is also more computational intensive, so for rather
large datasets is not recommended.

2.3.1 Pattern recognition in Alzheimer’s research

Alzheimer’s disease, as the most common form of dementia, has attracted a lot of atten-
tion from the clinical to the pattern recognition community. There exists a proliferation
of observational studies gathering AD related markers with increasing efforts to deliver
rich imaging biomarkers. Their increasing sample sizes allow to design more complex
models. Some examples are ADNI [126], DIAN Study [127], AlfaStudy [128], INSIGHT-
preAD [56], IDEAS [129] , EMIF [130] or GAAIN [131] . Some of these initiatives are
publicly available, such as the aforementioned ADNI, OASIS [132] or AIBL [51] datasets,
which facilitates the comparison between models and performance. In this section we
will focus on AD prediction using imaging biomarkers.

During the past 15 years, neuroimage-based prediction of Alzheimer’s disease clinical
diagnosis has been increasingly reported in the literature. The goal is two-fold: find
image-based biomarkers related to AD and derive individual diagnosis using a single
brain MRI and an already trained model in a larger pool of individuals [133]. An initial
approach was to use univariate models, such as using the entorhinal or hippocampal
volume as features [134]. However, neurological conditions are associated with large-scale



22 Literature review

networks of distributed regions [135]. Hence, aggregating information across multiple
regions using multivariate methods might increase the sensitivity and specificity of brain
biomarkers. A wide range of modalities trying to predict AD clinical diagnosis have been
published in the literature, as summarized in [133].

Structural MRI (sMRI) has been by far the most used imaging biomarker as a rather
cheap, non-invasive yet powerful biomarker of neuronal loss [136] that is highly available
in current clinical practice and research. Structural imaging biomarkers are able to detect
atrophy which is closely linked to neuropsychological and cognitive deficits hence con-
sidered sensitive for diagnosis and prognosis of clinical AD [137]. The neuroimaging AD
signature has been established as structural changes in AD-vulnerable regions (i.e. me-
dial temporal lobe structures such as entorhinal cortex and hippocampus) that constitute
diagnostic markers of cognitive impairment and AD progression [39, 138]. Several mor-
phological features can be derived from structural images such as volume, cortical thick-
ness or shape. The authors in [139] provide a good review of machine learning algorithms
using structural MRI. Sabuncu et al. in [140] aimed at creating a benchmark to compare
with when using different structural MRI features to predict AD clinical diagnostic cat-
egories, CSF Aβ levels or Mini Mental State Examination (MMSE). They performed 12
different baseline experiments using 4 different types of morphological features (region of
interest averages of grey matter volumes, cortical thickness, a combination of both and
the cortical thickness from a mesh of 20k points) and 3 different multivariate algorithms
(SVM, Relevant Voxel Machine and Neighborhood Approximation Forest). Any combi-
nation resulted significantly superior to any other even though they show consistently
better results comparing multivariate to classical univariate models.

In the literature, many studies assessed the predictive capacity of sMRI to distinguish
between cognitively unimpaired and dementia (due to AD) subjects. The study in [141]
showed comparable performance between trained radiologists and pattern recognition al-
gorithms (SVM) achieving both roughly 90% accuracy. Automatic methods can achieve
high accuracies, such as 90.5% ([142]) or 92% ([143]) that are representative of the liter-
ature. Different morphological features are used achieving similar performances. Whole
brain grey matter (GM) tissue maps where used in [144] with 89% accuracy. Downsam-
pled grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) probability
tissue maps were used to derive a Structural Abnormality Index Score (STAND-Score)
that gives a 89.3% accuracy [145]. A combination of volumetric and cortical thickness
within regions of interest averages and demographic features (age and APOE ε4) reported
a total accuracy of 87.6% [146]. The heterogeneity in subjects within the MCI group
hamper the use of automatic methods to differenciate from CU or dementia subjects.
In longitudinal studies, MCI subjects are usually separated into those that converted
to dementia (MCI-C) in the time span of the study and those that remained as MCI
(MCI-NC). Nho et al. [142] and Costafreda et al. [147] trained a pattern recognition
system to predict dementia from CU subjects and applied to predict MCI-C/MCI-NC
with 72.3% and 80% of accuracy, respectively. The later used features from a 3D mesh
representation of the hippocampus from both hemispheres. Eskildsen et al. [148] re-
ported an accuracy of 76% using only cortical thicknes measures and Davatzikos et al.
[149] used a combination of morphological features and CSF achieving an accuracy of
73.4%. Nonetheless, most studies use the clinical MCI definition in [39] without in-vivo
biomarker confirmation of underlying Alzheimer’s pathology, yielding non-specific and
probably less accurate studies.



2.3 Pattern recognition in neuroimaging 23

In addition to neuronal loss, structural changes in AD are also characterized by the loss
of axons and myelin sheaths ([150]), white matter tissue atrophy ([78],[151]) and loss of
structural integrity in white matter pathways (Stebbins and Murphy, 2009). Diffusion
MRI (dMRI) appear as a sensitive biomarker to these microstructural changes and has
also been used in automatic clinical AD diagnosis studies. AD subjects are usually char-
acterized by elevated mean diffusivity (MD) and decreased fractional anisotropy (FA)
[152]. Tractography algorithms are also used upon dMRI to assess structural connectiv-
ity between brain ROIs. Nir et al. in [153] used a tractography algorithm to compute
MD and FA along identified WM tracts and use those features for CU/dementia clas-
sification, achieving accuracies up to 80% in their experiments. Similarly, resting-state
functional MRI (rs-fMRI) is emerging as an interesting biomarker for measuring con-
nectivity in dementia studies. The default mode network (DMN) is the most studied
large scale brain network and show decreased activity in typical AD regions that might
be initially compensated by increasing activity in other regions at early AD stages [92].
Functional connectivity is often used as input features to pattern recognition systems
and are derived by computing the mean activity in different brain regions of interest and
the correlation between them. High accuracies can be found when discriminating CU
individuals from those with dementia (100%, [154]), MCI converters from non-converters
(91.4%, [155]) and MCI from CU or dementia subjects (75% and 97%, [156]). Inter-
estingly, several studies exploit the complimentary information between different MRI
modalities for clinical AD diagnosis. Several strategies are explored, such as multi-task
learning [157], neural networks [158] or graph-based techniques [159].

The study of preclinical (PC) stages of AD has lately become a major research focus for
the community as early intervention and preventive therapies may have better chances
of treatment success. This preclinical stage constitutes a long and “silent” stage along
the Alzherimer’s continuum characterized by abnormal pathological, metabolic and neu-
ronal changes before the onset of clinical AD symptoms. Hence, detecting brain changes
due to preclinical Alzheimer’s pathology is gaining interest in the pattern recognition
community. According to several studies in the literature [160, 161, 162, 163, 164, 165]
subjects in the preclinical stage of AD experiment subtle changes in brain morphology.
Recently, some studies have investigated the use of MRI to predict amyloid positivity in
the brain [166] and its potential impact in clinical trials [167].

Other imaging techniques (e.g: amyloid PET [168], tau PET [61], FDG PET [169]) or
pathological markers (e.g: CSF [170]) provide different but complementary information
to MRI. Risk factors (e.g: genetics) may influence the disease onset and progression.
Hence, multimodal studies would provide a more complete picture of the disease helping
its diagnosis and prognosis. Liu et al. provide a recent review of multimodal techniques
in [171]. Some challenges these studies face are how to combine different sources of in-
formation or how to deal with missing data. According to the hypothetical model in [40]
AD biomarkers become abnormal at different time points along the Alzheimer’s contin-
uum. Disease progression models (DPM) are data-driven models that aim at explicitly
model the temporal evolution of such biomarkers providing better interpretation of the
evolution of the pathology. Gaussian processes (GP) have been used for this purpose
[172]. Event Based modeling (EBM) are DPM computational algorithms that describe
a disease as a series of events which may help to validate biomarker ordering helping
understanding the progression pattern of disease [173, 174]. A recently published work
from Young et al. [175] uses ideas from disease progression modeling and clustering to
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develop an unsupervised machine learning framework able to capture both spatial and
temporal disease heterogeneity for staging and subtyping different subjects.



3
NeAT: a nonlinear Neuroimaging

Analysis Toolbox.

The etiology of Alzheimer’s disease is poorly understood, even though it is related to many
risk factors. Brain imaging provides powerful biomarkers that measure brain metabolism,
structure or activity, among others. In this chapter we introduce a toolbox for the analysis
and study of nonlinear effects on medical images. We implement several linear and non-
linear curve-fitting methods and statistical inference metrics. We embed a graphical user
interface (GUI) for 3D visualization of the results as well as some other functionalities
for curve clustering or model comparison. Finally, we perform validation analysis with
two cases of studies published in the literature.

This work was motivated by our BarcelonaBeta Brain Research Center (BBRC) col-
leagues, specially in the person of Dr. Juan Domingo Gispert, for the analysis of nonlin-
ear effects on MRI data. Several people have been involved in the toolbox development,
specially Mr. Asier Aduriz and Mr. Santi Puch during their BSc. thesis.

3.1 Introduction

The increase of computational power and advances in neuroimaging acquisition that
enable faster scans and provide multiple image contrasts and modalities has motivated
the development of complex modeling techniques. There are many neuroimaging tools
available to the neuroscientific community, whose ultimate goal is to conduct statistical
tests to identify significant effects in the images without any a priori hypothesis on the
location or extent of these effects. In the literature, analysis at different levels of brain
morphometry are found, involving voxel-based [84], surface-based [83] or boundary-based
analysis [176].

Irrespective of these differences, the vast majority of them perform statistical inference
upon different implementations of the General Linear Model (GLM). GLM has been
shown to be flexible enough for conducting most of the typical statistical analysis [95].
However, it has a rather limited capability to model nonlinear effects. To this regard,
it is worth noting that linear models are not sufficient to describe neuroimage variation
with cognitive decline [177, 178] or pathological depositions in neurodegenerative disease
[179, 180, 181, 182, 183, 127, 162] in neurodegenerative diseases progression. Moreover,
many relevant confounders in neuroimaging are shown to be better described by nonlinear
processes, such as the impact of aging on cognitive decline [184] or grey matter volume
[185]. Under the GLM, the modeling of non-linear effects is limited to using polynomial
expansion or transforming the variables of interest to linearize their effects. However,
such approximations are suboptimal [186, 187, 188] and, with the increasing availability
of neuroimaging data, a wide range of non-linear modeling methods can be reliably
applied for statistical inference [189].
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In this work, we describe a new neuroimaging toolbox which is able to model nonlinear
effects on data at two different levels: voxel-based and surface-based. We pool together
several nonlinear parametric models, provide different model comparison strategies and
implement a graphical user interface (GUI) for visualization purposes. In the following
sections we briefly describe the main functionalities of the toolbox and illustrate its
features with two studies: (i) nonlinear atrophy patterns across the Alzheimer’s disease
continuum defined as a function of cerebrospinal fluid (CSF) biomarkers [162] and (ii)
the effects of apolipoprotein ε4 genotype on brain aging, a risk factor to develop sporadic
Alzheimer’s disease (AD) [190].

3.2 The toolbox

A general overview of the tool operatibility and its options and functionalities are in-
troduced in this section. A more detailed mathematical description of the curve fitting
methods and statistical inference metrics is provided, even though the reader is en-
couraged to read the original sources for a more deep understanding of such methods.
More instructions on how to download and use the tool can be found in https://imatge-
upc.github.io/neat-tool/.

3.2.1 NeAT overview

The NeAT toolbox is a modular and easy-to-use toolbox for the analysis of non-linear ef-
fects on medical images. Several curve fitting methods are used to model the relationship
between certain factors (e.g: age, disease phenotype, genotype) and medical images (e.g:
T1-weighted MRI). Those methods may include multiple covariates (factors) that can
be split into confounder factors and variables of interest by using constrasts. A simple
preprocessing step allow to orthogonalize, orthonormalize or simply normalize all covari-
ates. A wide range of metrics can be used to assess the goodness of fit of each model.
Statistical inference also allow the use of contrasts on modeling factors. The embedded
3D visualization GUI provide an unified and interactive environment to visualize both
3D statistical inference maps and the estimated curve at each voxel.

A high-level overview of the toolbox pipeline is provided in Figure 3.1. It consists of
several interdependent modules connected through a Processing library that performs
serialization between functionalities. Each other module (curve fitting, fit evaluation
and visualization) is designed separately using abstract classes that facilitate both con-
tinuous adaptation and possible extensions of the toolbox. A description of each mod-
ule/functionality is detailed in the following sections.

3.2.2 Model estimation

The model estimation step finds a parametric function of several explanatory variables
that best fits the observations in terms of maximizing a quality metric or minimizing
a loss function. Different specification of the latter two give rise to different models or
fitters. To analyze the basics of each fitter, we consider the regression model

Y = f(X) + e (3.1)

where Y = [Y1, Y2, ..., YN ] ∈ RLxN are the N dependent observations (e.g. number
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Figure 3.1: Toolbox pipeline. The Processing module govern the interaction between all
other libraries that will be explained through the manuscript

of voxels), X = [X1, X2, ..., XM ] ∈ RLxM are the M independent factors (covariates),
f(X) ∈ RLxN is the fitted curve and e ∈ RLxN is the estimation noise. Each input
variable (Yi, Xj) is an L-dimensional vector corresponding to different measures (e.g.
different subjects) of the same magnitude. Each covariate can be independently mod-
eled using different models and the overall estimated model is found by adding up the
contribution of each one:

Ŷ =
M∑
m=1

fm(Xm) (3.2)

being fm the associated curve fitting method for each covariate. The available methods
are detailed below. All observations are processed in chunks and fitted independently
(Yi = f(X) + ei). Data processing (normalization and orthogonalization) techniques are
optionally prepended to the overall analysis.

In this toolbox we consider the general framework that splits explanatory variables into
variables of interest (predictor variables) and confounder factors (corrector variables)
as explained in [191]. The goal of this scheme is to deduct confounder effects on the
dependent variables to isolate the main effects of the variables of interest we want to
analyze. This paradigm is widely used in neuroimaging: for example, using age (correc-
tor) as confounder variable when analyzing the effect of Alzheimer’s disease (predictor)
on hippocampus volume (observation or dependent variable). Concretely, we split the
initial space S, defined by all explanatory variables X, into two subspaces: predictor (Sp)
and corrector (Sc) subspaces of dimensions P and C, respectively (M = C + P ). The
predictor subspace is defined using a contrast matrix C, described by Xp = XC, and
its model is defined as Ŷp = fp(Xp). On the other hand, the corrector subspace is built
using a null-contrast matrix (orthogonal to the contrast matrix), C0 = I − CC#, where
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C# the pseudoinverse of C. Hence, the corrector subspace is described by Xc = XC0,
and its model is defined as Ŷc = fc(Xc). Even though C and C0 are orthogonal, both
subspaces are orthogonal only if the columns of X are orthogonal.

We model the contribution of each subspace on explaining the observations variance using
an additive model Y = Ŷc + Ŷp + e, fitting first the corrector model on the observations
(Y = fc(Xc)+ec) and then the predictor model on the residuals (ec = fp(Xp)+e). Since
the fitting is done separately, both corrector and predictor functions, fc and fp can be
any nonlinear model implemented in the toolbox. Note that each corrector and predictor
variables can be modeled using different curve fitting methods:

Ŷ = Ŷc + Ŷp = fc(Xc) + fp(Xp) =
C∑
i=1

fci(Xci) +
P∑
i=1

fpi(Xpi) (3.3)

Baseline curve fitting methods implemented in the toolbox are: (i) general linear model,
(ii) generalized additive model and (iii) support vector regression. Each subspace (pre-
dictor and corrector) can be modeled by any of these techniques. While the first two
methods model each dimension independently, the third allows for interactions between
different dimensions.

3.2.2.1 General Linear Model: GLM

The General Linear Model [192] is the extension of multiple regression models to the case
of multiple observations. The effect of each factor is independently analyzed without
accounting for interactions between them. The model reads as follows:

Y = f(X) + e = Xβ + e (3.4)

where β are the model parameters and e is the error of the model. GLM optimization
involves minimizing the mean squared error ‖e‖2 between data points and the fitted curve.
Nonlinear relationships can be modeled in the GLM framework by using a polynomial
basis expansion of each regressor. The total number of degrees of freedom is the number
of covariates in the analysis (df = M), including each basis expansion if used.

3.2.2.2 Generalized Additive Model: GAM

A Generalized Additive Model [193] is an extension of additive models (AM) to the case of
multiple observations. In GAM, each observation depends on unknown smooth functions
of each covariate:

Y = f(X) + e = f1(X1) + f2(X2) + ...+ fM (XM ) + e (3.5)

In the context of this toolbox, fi refer to parametric smooth functions, called smoothers,
that are iteratively estimated using the backfitting algorithm [194] to minimize the mean
squared error ‖e‖2. If linear or polynomial smoothers are used, GAM is equivalent to
GLM. Other smoothers available are B-splines or natural splines, implemented using the
Patsy library1. The total number of degrees of freedom is the sum of degrees of freedom

1https://patsy.readthedocs.io/en/latest/
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of each smoother df = df1 +df2 + ...+dfM . For a linear smoother, the number of degrees
of freedom is one dfi = 1, for polynomial smoother, the number of degrees of freedom is
the polynomial order dfi = d and for splines-based smoothers, the number of degrees of
freedom is an input parameter set by the user.

3.2.2.3 Support Vector Regression: SVR

In opposition to GLM or GAM, that only account for the additive effect between covari-
ates, Support Vector Regression [195] is a multivariate method that inherently accounts
for interaction between covariates. In SVR, the goal is to find a function f(x) that has
at most ε-deviation from the observations and that is as smooth as possible. However,
since the ε-deviation constraint might not be feasible, a hyperparameter C controls the
balance between smoothness and errors greater than ε. SVR is a linear method in the
parameters with a closed form solution. To introduce nonlinearities, SVR uses the kernel
trick which implicitly transforms the inputs to a higher dimensional feature space by
only specifying their inner product, i.e. the kernel function k(Xi, Xj) = 〈φ(Xi), φ(Xj)〉,
where Xi and Xj are two different data points. Hence, the overall model is parameterized
using parameters β as follows

Y = f(X) + e =

L−1∑
i=0

k(Xi, X)βi + e (3.6)

where Xi are all data points used to fit the model and X the feature vector to regress.
Two kernel functions are implemented in this toolbox using the scikit-learn library [196]:
polynomial and the radial basis function (RBF) defined as k(Xi, Xj) = exp(−γ‖Xi −
Xj‖2), where γ is a hyperparameter defining the width of the kernel. The total number
of degrees of freedom depends on the kernel used and it is based on the solution proposed
in [197].

Hyperparameter search: SVR relies on the election of several hyperparameters: ε
and C for the general solution and kernel related hyperparameters, such as γ in RBF
kernels. The hyperparameter values can be automatically determined by a grid search
on the hyperparameter space [198]. This method consists of several steps: (i) sample
M different value combinations from the hyperparameter space using one of the sam-
pling strategies provided in this toolbox: random or deterministic sampling with linear
or logarithmic scale, (ii) fit a subset T of the observations on all M hyperparameter
combinations and (iii) select the hyperparameter combination that minimizes the metric
of interest, q on the subset S (Q =

∑
i∈t qi). The available metrics are: (i) minimum

squared error, (ii) F-test goodness of fit and (iii) Mallow’s Cp statistic [199, p. 211]. To
avoid selection bias, this procedure is iterated varying the selected subset of observations
(T ). Larger subset sizes provide better hyperparameter estimations but increasing time
and memory requirements, due to the intensive search performed. However, we allow
parallelization of the second step and further iterations of the algorithm. To account for
large between-subject variability, the voxelwise metric values are weighted by the inverse
of the variance of each observation (q̂i = qi/σi, Q̂ =

∑
i∈T q̂i). Moreover, due to the vast

amount of background voxels, only those with minimum variance (σmin) can be included
in the subset of observations.



30 NeAT: a nonlinear Neuroimaging Analysis Toolbox.

3.2.3 Statistical inference

Statistical maps evaluating the goodness of fit and penalizing by the complexity of the
model can be computed for each of the fitting methods presented in Section 3.2.2. For
statistical inference, two different thresholds can be used: numerical, over the metric
used, and spatial, to ensure minimum cluster size of relevant voxels. For this purpose,
several metrics are available in the tool:

• Minimum squared error (MSE) and Coefficient of determination (R2):
these two metrics evaluate the predictive power of the model without penalizing
for its complexity.

MSE =
1

N
‖Y − f(X)‖2 (3.7)

R2 = 1− SSres
SSy

, SSres = ‖Y − f(X)‖2, SSy = ‖Y − Y ‖2 (3.8)

where Y = 1/L
∑L−1

i=0 Y
i is the mean of the observations.

• Akaike Information Criterion (AIC): the AIC criteria [200] is founded on
information theory. It is useful for model comparison as it provides a trade-off
between the quality or goodness of fit and the complexity of the model, which is
proportional to the number of parameters.

AIC = 2k − 2LLR, LLR = −N
2

(log (2π ·MSE) + 1) (3.9)

where k is the total number of parameters and LLR is the log likelihood ratio

• F-test: the F-test is a statistical test following an F-distribution under its null-
hypothesis. In the context of this toolbox, it evaluates whether the variance of the
full model (correctors and predictors) is significantly lower than the variance of the
restricted model (only correctors). Under the null-hypothesis, the full-model does
not provide any significantly better fit than the restricted model, resulting an F-
statistic with (dffull, dfrestricted) degrees of freedom and the corresponding p-value.
Rejection of the null hypothesis is based upon the p-value.

fscore =

SSrestricted−SSfull

dffull−dfrestricted
SSfull

N−dffull

(3.10)

pvalue = 1− F (fscore, dfrestricted, dffull) (3.11)

where SSrestricted = ‖Y − fc(Xc)‖2, SSfull = ‖Y − fc(Xc) − fp(Xp)‖2 and
F (x, d1, d2) is the F -distribution.

• Penalized Residual Sum of Squares (PRSS), Variance-Normalized PRSS:
PRSS is introduced in this toolbox as another evaluation metric that accounts for
the goodness of fit and penalizes for the model complexity. However, differently
from other metrics, complexity is not computed with the degrees of freedom but
using the curve shape itself. Hence, a complex model such as SVR with Gaussian
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kernel that provides a linear curve will penalize as much as the GLM. VNPRSS
is an adaptation of PRSS for data with high-variability, like medical images, and
penalizes each error term by the inverse of the observations variance.

PRSS = MSE + φcabruptness, cabruptness =

∫
f

′′
(X)dx (3.12)

VN-PRSS =
PRSS

cvariance
, cvariance = ‖f(X)− Y ‖2 (3.13)

3.2.4 Post-hoc analysis

The NeAT toolbox provides several functionalities for post-hoc analysis of the generated
curves and statistical maps. Different model comparison strategies and a curve clustering
algorithm are presented in what follows.

3.2.4.1 Model comparison

In order to compare K statistical maps generated using different fitting models we com-
bine them into a single statistical map providing different information:

• Diff-map (K = 2): it provides the difference between maps, being useful for
quantitative detection of differences between K=2 fitting models.

• ABSdiff-map (K = 2): it provides the absolute difference between maps, being
useful for quantitative detection of differences between K=2 fitting models.

• SE-map (K = 2): it provides the squared difference between maps, being useful
for quantitative detection of differences between K=2 fitting models.

• RGB-map (K = 3): it places each map in a different color channel. It might be
useful to compare the intersection of several fitting models showing agreement and
disagreement among them.

• Best-map (K > 1): it computes the best fitting model at each voxel. It might be
useful for model localization in the brain.

3.2.4.2 Clustering

We incorporate a curve clustering functionality [201] for comparing the behavior of dif-
ferent brain regions. In that sense, we provide a scalable and non-parametric algorithm
that is able to explore similarities and dissimilarities of the fitted curves across the brain
and group them in a total of Nc clusters.

We adopted the hierarchical clustering framework [202] implemented in scikit-learn [196].
It is a bottom-up approach where initially each curve defines its own cluster. Next, pairs
of clusters are successively merged according to a certain similarity metric and a linkage
criterion. As a similarity metric, we use a weighted sum of distances:

S(x, y) =

ND−1∑
i=0

wndn(x, y) (3.14)
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where (x, y) are two different curves, dn is the Euclidean distance between the nth discrete
derivative of each curve, wn is the weight of each derivative to the total similarity metric
and ND is the total number of derivatives used. In our implementation, we fix ND = 3
and wT = [0.2, 0.8, 0.2]. As a linkage criterion, we use the average distance between all
possible pairs of elements of both clusters.

L(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

S(a, b) (3.15)

where A,B are two different clusters, |A|, |B| are the cardinalities of the clusters and a, b
represent a curve from each cluster. Hence, at each step of the hierarchy, the two clusters
that minimize the linkage criterion are combined. The algorithm stops when it reaches
Nc clusters (a parameter predefined by the user).

3.2.5 Visualization

This toolbox provides show-curves and show-data-distribution functionalities and a
graphical user interface (GUI) for visualization purposes. The show-curves is a command
line functionality that reads either the voxel coordinates in mm (x,y,z) for voxel-based
morphometry (VBM) analysis, or the vertex number (x) for surface-based morphometry
(SBM) analysis, both referenced to the template specified in the configuration file. The
show-data-distribution functionality allows the user to visualize the input data distribu-
tion (observations, residuals, covariates) using different types of plots: univariate and
bivariate densities, boxplots and a categorical boxplots.

3.2.5.1 Graphical User Interface (GUI)

An interactive visualization GUI for 3D volumes (VBM) is provided for further analysis
of the results. It allows to load 3D overlays over a template and visualize the generated
curves for one or several fitting models of interest. Overlays must have the same extension
as specified in the configuration file and can be either generated by the tool (e.g: statistical
maps, model comparison maps or clustering maps) or external (e.g: brain structure
atlases). The GUI simultaneously shows the three orthogonal planes (axial, coronal and
sagittal) and the corresponding curve at any selected voxel. Inspection of the overall brain
and associated curves can be done online using the cursor in an interactive way. Due to
long rendering times, for visualization of 2D surfaces (2D) we recommend using other
visualization software (e.g: FreeSurfer) in parallel with the show-curves functionality.

3.2.6 NeAT specifications

NeAT toolbox uses a configuration file to specify experiment related options such as
input/output files or experiment parameters. The overall analysis pipeline (model es-
timation, statistical inference, visualization) is split into smaller steps using different
scripts. A command line interface (CLI) is used for communication between the toolbox
and the user, allowing to run the scripts and set specific parameters for the analysis
(e.g. which fitting module to use as model estimator). The toolbox input files consists
of covariates and images. Input covariates need to be stored in a spreadsheet either
in .csv or .xls extension. Input images can be either preprocessed using voxel-based
morphometry (VBM) or surface-based morphometry (SBM): nifti formats (.nii/.nii.gz),
the Massachusetts General Hospital formats (.mgh/.mgz) and measurements of cortical
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thickness (.thickness) and surface area (.area) can be used in the tool. Each analysis
step of the global pipeline generates different output files saved under the directory spec-
ified in the configuration file. Statistical maps are saved using the same extension as
input files allowing compatibility with other neuroimaging packages (e.g: visualization
software). As a programming language, Python (version 3.6) is used due to its object-
oriented programming paradigm that provides flexibility in toolboxes with increasing size
and complexity. Moreover, Python is becoming progressively popular in the neuroimag-
ing field with growing scientific libraries (e.g: scipy [203]), neuroimaging (e.g: nibabel
[204]) or machine learning toolkits (e.g: sklearn [196]).

3.3 Case study 1: Atrophy patterns across the
Alzheimer’s disease continuum

Nonlinear volumetric changes in grey matter across the Alzheimers disease (AD) contin-
uum are shown to better fit some regions of the brain [162]), suggesting that pathological
processes may affect different brain locations at different times during disease progression.
In [162] nonlinearity is modeled using GLM with a 3rd-order polynomial basis expan-
sion, comparing the relevance of linear against higher-order predictors. In this work, we
use NeAT to fit several nonlinear models to voxelwise grey matter volume (GMv) and
statistically compare them.

Study participants were enrolled in a single-cohort study from the Alzheimer’s Disease
and Other Cognitive Disorders Unit in Hospital Clinic of Barcelona (HCB). The cohort
comprises 129 subjects (62 controls, 18 preclinical AD, 28 mild cognitive impairment
(MCI) due to AD and 21 diagnosed AD) that underwent an MRI scan, registered to a
common space, and a CSF lumbar puncture. The AD continuum is defined biologically
by the AD-CSF index [205] which combines CSF biomarkers into a single indicator that
determines the position of each subject along the AD continuum. For further details on
both MRI processing and CSF acquisition, refer to [162].

Following the standard procedure of splitting covariates into confounding factors and
predictors, we fit a corrector GLM model using gender and a second order polynomial
expansion of age. We use AD-CSF index as the predictor variable fitting several models
to the GMv corrected observations: (i) GLM with third order polynomial expansion,
(ii) GAM using b-splines as smoothing function (iii) SVR using third order polynomial
kernel and (iv) SVR using Gaussian kernel. We use an F-test to statistically compare all
predictor models. Statistical significance was set to p < 0.001 uncorrected for multiple
comparisons with a cluster-extent threshold of 100 voxels.

In Figure 3.2 we show some examples of the visualization GUI using the best-map option
to compare the aforementioned fitting methods. Results using GLM with polynomial
basis expansion are coherent with the ones found in [162]. Moreover, using the toolbox
we are able to detect regions that result in larger goodness-of-fit using nonlinear models
even though they use greater number of degrees of freedom, indicating that may be
better described using nonlinear rather than linear models. There is a high overlap
between second order polynomial expansion of GLM, GAM with b-splines and SVR with
polynomial and Gaussian kernels. Due to the low numbers of degrees of freedom used,
GLM and GAM appear to be the most relevant models across the brain. On the other
hand, using a Gaussian kernel on SVR employ higher number of degrees of freedom and its
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relevance is restricted at the center of typical AD subcortical regions (e.g: hippocampus
and amygdala).

Figure 3.2: Comparison between different curve fitting models: third order polynomial
expansion of GLM (blue), B-splines GAM (green), SVR with polynomial kernel (yellow)
and SVR with Gaussian kernel (red). The best-map is used for statistical comparison,
showing the best (in terms of F-test) model among all four models with statistical sig-
nificance using uncorrected p<0.001 separately for each model. Estimated curves show
the variation of grey matter volume (y-axis) and AD-CSF index (x-axis). Based on CSF
amyloid-beta and tau levels, the AD-CSF index measures biomarker progression using a
single index normalized between 0 (no altered biomarkers) and 2 (full AD-like alteration)
[205]. The figure on (A) corresponds to the left hippocampus and the figure on (B)
corresponds to the right precuneus.

Further analysis of the results can be done using the clustering functionality of the tool.
Using the GAM model, we look for regions with similar atrophy patterns along the AD
continuum. In Figure 3.3, we show the result for Nc = 6 clusters. Symmetric patterns
are found in both hemispheres and, interestingly, inner and outer parts of brain regions
show similar patterns at different scales, showing this characteristic onion-like map.

3.4 Case study 2: Effects of APOE -ε4 in brain aging

The apolipoprotein E (ApoE) has an important role in regulating amyloid-beta (Aβ)
plaques deposition in the brain, a key neuropathological AD biomarker that shows ab-
normal levels of accumulation in cognitively intact individuals, characterizing the pre-
clinical phase of AD. The ApoE gene, APOE, is polymorphic and contains three different
alleles referred as APOE -ε2, -ε3 and -ε4 coding three different isoforms and six different
genotypes. The isoform APOE -ε4 has been shown to be less efficient in Aβ clearance
than other isoforms (ε2, ε3), related to loss of neuroprotective function [206], memory
decline [207] on cognitively healthy subjects or grey matter hippocampal degeneration
[208]. Hence, APOE -ε4 allele is considered the major genetic risk for late-onset AD.

In this work, we analyze the impact of APOE -ε4 allele load on brain morphology and its
interaction with age. The ALFA (ALzheimer’s and FAmilies) cohort presented in [128]
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Figure 3.3: Curve clustering algorithm run on relevant atrophy patterns along the AD-
CSF index using GAM fitting. The number of clusters is set to Nclusters = 6. On the
left, we show the relevant voxels color-coded to describe the association of each voxel
with each cluster. On the right, we show all curves associated to each cluster (red) and
their respective centroid (black).

was used for this purpose, involving 533 subjects that underwent APOE genotyping and
an MRI scan. For statistical analysis, participants were pooled according to the APOE -
ε4 allele load: 65 homozygotes (HO) that have APOE -genotype with 2 copies of the
APOE -ε4 allele, 207 heterozygotes (HE) with a single copy of the APOE -ε4 allele and
261 non-carriers (NC).

3.4.1 APOE genotype effects on brain morphology in normal aging
population.

In this second case study, we begin replicating the results of [190] with respect to the
APOE genotype effects on brain morphology and explore possible non-linear effects. The
baseline model consists of three dummy variables characterizing each genotype (NC, HE,
HO) defining the number of ε4 alleles. Sex, years of education, total intracranial vol-
ume and linear and quadratic expansions of age were included as covariates. Due to the
reported interactions [209] of APOE status and age, we fit the model with the interac-
tion terms APOE x age and APOE x age2. We apply the contrast [-1,0,1] on dummy
variables indicating APOE-ε4 count, defining an additive model that predicts incremen-
tal/decremental effects of APOE genotype. Results using the linear model are shown in
Figure 3.4(A), replicating the findings in [190]. The use of the tool allowed us to study
non-linear effects of the genotype. Concretely, in Figure 3.4(B) and Figure 3.4(C) we
show results using GAM and SVR with polynomial kernel models, respectively. Smaller
effects are observed and only relevant effects are found in regions such as bilateral thala-
mus, right hippocampus, right superior frontal and small cluster around the right caudate
and the left middle occipital. Nonlinear modeling fails behind linear modeling of APOE-
ε4 count, probably because it is a categorical (C=3) predictor. Hence, due to higher
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degrees of freedom used in GAM and SVR, only larger significant values survive the used
threshold.

Figure 3.4: Statistical inference using volumetric data and different curve fitting modules:
using GLM (A), using GAM (B) and using SVR with a polynomial kernel (C). For
visualization purposes, statistical significance threshold is set to p<0.05 uncorrected.

Figure 3.5: Statistical inference using cortical thickness data and GLM. For visualization
purposes, statistical significance threshold is set to p<0.05 uncorrected.

Using the tool, we could also study the APOE genotype effects in cortical thickness data.
In Figure 3.5, we show the results on different surface views using the GLM model. In
this case, even smaller effects are found being statistically relevant (p < 0.05) in small
clusters across the brain, specially in regions such as the insular cortex and fusiform.
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3.4.2 Interaction between APOE genotype and age in normal aging
population.

In this second part, we investigate the interaction between APOE genotype and age on
brain morphology. For this purpose, we model each APOE genotype separately to find
their associated curves and generate a goodness-of-fit metric using the F-test. Statistical
inference threshold is set to p < 0.001. We perform post-hoc analysis combining statistical
maps into an RGB-map that sums up the results of all three APOE -genotype models:
we place each model (NC, HE, HO) in each R, G, B channel, respectively. Volumetric
and cortical thickness analyses were performed but no significant results were found with
the latter.

In Figure 3.7, we show the RGB-map and the associated curves of regions corresponding
to significant effect of age on brain morphology of homozygotes APOE -e4 carriers (see
Section 3.4.1): right hippocampus, right caudate and right cerebellar crus. We present
two different curve fitting models: using polynomial expansion of second order of the
GLM on the left and B-splines GAM on the right. Clearly, relevant regions for the
HO group show nonlinear relationship between age and voxel intensities. Statistical
and RGB-maps present analogous results on polynomial expansion of GLM and GAM
analysis. The right hippocampus and the right cerebellar crus follow a quadratic curve
with age similar to GLM fitting. HO subjects show an earlier decreasing of GMv in both
regions compared to NC and HE around their fifties with an initial volumetric increase on
middle-aged individuals, more pronounced in the cerebellum, again replicating the results
in [190]. On the other hand, GMv volume on the right caudate appears to decrease at
the sixth decade for all APOE genotypes but decaying faster for HO subjects. Due to
the non-quadratic behaviour of the right caudate, it appears to be better modeled with
GAM, as shown in Figure 3.6.

Figure 3.6: Differences between statistical maps of HE model using GLM and GAM at
different brain ROIs: right hippocampus (A), right caudate (B) and right cerebellar crus
(C). A positive (negative) value indicates that GAM (GLM) is statistically better using
the f-test metric.

3.5 Conclusions

The standard neuroimaging software suites incorporate linear effects analysis in their
pipelines. However, it has been shown that many factors describe a non-linear associa-
tion with imaging modalities. NeAT arises as a tool for non-linear analysis of medical
images. NeAT is a modular, flexible and user-friendly toolbox suited for the study of
non-linear associations between imaging and non-imaging features. It provides several
curve fitting methods for voxelwise and surface-based modeling and different metrics for
statistical inference of the results. Several visualization features are available, such as
an interactive GUI that shows statistical maps together with the resulting fitted curves.
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Finally, post-hoc analysis functionalities such as model comparison (e.g: linear vs. non-
linear) or a curve clustering algorithm that show similar fittings across the brain are
available. Altogether defines a complementary tool to standard processing software that
uncovers non-linear associations between neuroimaging and a set of factors (e.g: age, en-
vironmental factors, disease, genetics or demographics). We illustrate NeATs capabilities
with two already published study cases for validation and show some features of the tool.
Moreover, we stressed out the benefits of using NeAT, such as a comparison between
linear and non-linear models.

In the first case of study, we analysed the nonlinear patterns of brain atrophy along the
Alzheimer’s continuum. We found that in many typical AD regions (e.g: hippocampus
and precuneus) non-linear models better describe their evolution than linear methods
and that using a linear model with polynomial basis expansion of the non-linear factors
is limiting the analysis. However, due to the low-complexity of the linear model, it still
becomes relevant at other parts of the brain. In the second case of study we replicate
and extend the previous work from [190] analyzing the APOE − ε4 count effect on
brain volume and surface for cognitively unimpaired individuals. Significant effects were
found in already reported regions such that thalamus or hippocampus. Morevoer, we use
nonlinear methods to model the interaction between APOE− ε4 count and age, findings
regions (e.g: caudates) were nonlinear effects were larger than linear ones.

Future work: the potential of NeAT is expected to expand as it will grow. At the
short term, the expansion of the tool to ROI-based analysis is granted. Moreover, a
longitudinal analysis module might be interesting due to the increasing number of cohorts
with longitudinal follow-up visits. Seemingly, the integration of some imaging modalities
(PET, DTI) should be easy and the implementation of others (fMRI) can be considered
for future revisions of the tool. Other statistical methods, such as Partial Least Squares
(PLS) or Canonical Correlation Analysis (CCA) can be incorporated for multivariate
effects modeling. Finally, other curve fitting models (e.g: based on neural networks) can
be designed and implemented.
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Figure 3.7: Interaction between age and the APOE -ε4 genotype using second order
polynomial expansion of GLM (left) and B-splines GAM (right). Three different regions
are shown at each row: (A) right hippocampus, (B) right caudate and (C) right cerebellar
crus. Statistical analysis using F-test and uncorrected p < 0.001 threshold with cluster
size of 100 voxels. Statistical comparison using the RGB map, where R corresponds to
0 copies of the allele, G to 1 copy and B to 2 copies. Other colors are any possible
combination of them, meaning that are relevant for more than one APOE genotype.





4
Brain structure in AD pathology

Alzheimer’s disease is a multi-factorial disease that can be measured in-vivo using patho-
physiological and topographical biomarkers. While the former reflect in-vivo AD pathol-
ogy (amyloidosis and tauopathy), the latter provide evidence of brain damage and are
useful to monitor disease progression and staging and support the diagnosis, even though
they are not specific to AD. Magnetic resonance imaging (MRI) is an example of down-
stream topographical biomarker that provides information about brain tissue configura-
tion and is used as a valid biomarker of neuronal loss. Relating both types of biomarkers
is useful to study the whole Alzheimer’s continuum and may provide better understand-
ing of brain changes due to underlying AD pathology. In this chapter we study the
relationship of cerebrospinal fluid (CSF) and MRI biomarkers in the whole continuum
of AD with special focus on preclinical stages. We report the results of a univariate and
a multivariate model of the brain concluding that different topographical patterns apply
at different stages of the disease, specially at early stages.

4.1 Introduction

Human brains are constantly evolving throughout life, changing their neurobiological
structure according to an uncountable number of factors ranging from genetics or hor-
monal to vascular factors [210]. Hence, we can define multiple interdependent processes
occurring at the same time in each subject’s brain. As an example, a normal aging process
describes common changes in groups of subjects with similar age and can be characterized
by subject’s real age. Often, in elderly subjects, other processes related to dementia occur
in parallel and eventually result in cognitive or memory decline. The etiology of most of
those processes is still unknown but a large literature of promising research is being pub-
lished, specially for the Alzheimer’s disease (AD), the most common type of dementia.
The work in [211] goes through several examples of recent findings and comments on the
found evidences related to AD. In this line, cerebrospinal fluid (CSF) biomarkers, as a
proxy measure of AD pathophysiological processes (Aβ and tau deposition), show an ac-
ceptable sensitivity and specificity for diagnostic purposes and can be used as a measure
of disease progression along the AD continuum [205]. Promising developments in PET
imaging could provide us with more sensitive and specific pathophysiological biomarkers
[60]. The incorporation of pathophysiological markers into diagnostic frameworks lead
to the definition of the preclinical stage of AD (PC), where subjects present abnormal
levels of Aβ in the brain without cognitive decline or clinical symptoms [2].

On the other hand, brain cell integrity can be assesed by high-field MR imaging that
provides detailed brain anatomical information, as explained in Section 2.2. MRI can
be used to study neurodegenerative processes associated with brain development and
aging [212], cognitive decline [213, 214] and amyloid positivity [166, 167, 215]. The inter-
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relationship between AD pathophysiological markers, neurodegeneration and cognition
is highly studied in the literature [216, 217]. Compared to pathophysiological markers
(CSF and PET), MRI constitute a late but cheaper and non-invasive biomarker for
disease diagnosis and progression. The goal of this chapter is to relate brain anatomical
structure to underlying AD pathology to find characteristic patterns of brain structural
variations due to AD. To this end, we consider two separate processes governing brain
morphology along the AD continuum: a process driven by confounders that we call
“cAD” (e.g. normal aging) and a process driven by disease pathology that we call “AD”.
We acknowledge the presence of other processes (e.g: non-AD pathologies) specially in
later stages of the disease, but these analyses are out of the scope of this work.

Structural brain changes are heterogeneous among subjects [218] and may not be uni-
form across the brain, specially if related to dementia. However, we hypothesize that
these changes can be described by a small set of interdependent underlying processes
that define common morphological patterns across all subjects. In this work, partial
least squares (PLS) is used to jointly model the variation of brain morphology (measured
using MRI biomarkers) and both confounders and AD pathology (measured through CSF
biomarkers).We build two different models to find specific effects due to confounders fac-
tors and AD and couple them in a single brain structural model. Moreover, we constrain
both models to be orthogonal to each other in order to disentangle confounders from AD
processes on brain morphology.

We investigate two different modeling techniques of the brain: a univariate model that
studies brain anatomical regions separately and a multivariate model that study all brain
regions in a single model. For that purpose, we use PLS Correlation (PLSC) and PLS
Regression (PLSR), respectively. We perform statistical inference on the models learned
and derive a predictive model that uses MRI (cheap, non-invasive biomarker) to predict
CSF biomarkers in the latter case.

4.1.1 Related work

Studies integrating both CSF and MRI information can be found in the literature in di-
agnostic [219] or prediction [220] contexts. The first work attempts to use cross-sectional
MRI and CSF measurements to predict different clinical stages along the disease contin-
uum, comparing the discriminative power of both biomarkers. In the latter, baseline mea-
surements are used to predict future clinical change measured through Clinical Dementia
Rating-sum of boxes (CDR-SB) and mini mental score examination (MMSE). Both works
show that MRI outperforms CSF features in their tasks but they show complementary
information when integrated in a joint model providing a boost in performance for clas-
sification and prediction. Other works study the impact of CSF biomarkers in brain
integrity and clinical progression. Concretely, the work in [221] studies the relationship
between CSF biomarkers with baseline values and longitunal changes in brain morphom-
etry across different clinical AD categories. In a general linear model (GLM) framework,
multiple comparisons between each CSF biomarker and each brain ROI are performed,
concluding that CSF biomarkers can not explain group differences in baseline values and
that they have a modest relationship to longitudinal brain atrophy. Finally, recent works
from our group [215, 222] or others [166, 167] attempt to use MRI derived measure-
ments to predict amyloid positivity in cognitively unimpaired subjects, with potential
applications in clinical screening.
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On the other hand, PLS modeling was first used in neuroimaging studies by McIntosh
et al. in [223]. Since then, it has been widely used in neuroimaging analysis as indicated
by the work in [224] that extensively reviewes subsequent applications of PLS in the
field. As an example, PLS was used to study the relationship between the cognitive
profile and voxelwise MRI volumetric features in children and adolescents in [225]. In
Alzheimer’s disease research, PLS has been used to relate MRI phenotypes with genetics,
cognitive tests and disease categories. The work in [226] jointly models the variation of
genotype and phenotype in Alzheimer’s disease, using single nucleotide polymorphisms
(SNP) and 5 regional brain volumes as measurements, respectively. A white matter
integrity analysis through diffusion tensor imaging (DTI) is analyzed in [227], where
several diffusion parameters (axial diffusivity (AD), radial diffusivity (RD) and fractional
anisotropy (FA)) are used to study group differences in white matter between different
clinical AD stages. Similar to our work, the authors in [228] attempt to disentangle aging
and disease processes using age and MMSE cognitive test as proxies, respectively. They
show overlap between both processes using cross-sectional data while could disentangle
both effects when using longitudinal data. However, MMSE may only characterize clinical
AD stages and not the full continuum of the disease while using CSF biomarkers one could
capture variability from a broader spectrum, specially at earlier stages, as we attempt
to do in this chapter. Finally, PLS has also been used a feature extractor in a machine
learning analysis. [229].

4.2 Methodology

4.2.1 Partial least squares

In general, partial least squares (PLS) methods (also known as projection to latent struc-
tures) analyze the relationship between two sets of measurements (X and Y) on the same
observations. PLS methods also find a latent subspace built from linear combinations of
the input measurements.

These methods were first introduced by Herman Wold in [230] for structural equation
modeling (SEM) and have successfully been applied to chemometrics [231], econometrics
[232] and psychology [233]. Two variants of this initial approach have been proposed in
the literature: partial least squares regression (PLSR) and partial least squares correla-
tion (PLSC). PLSR is used in the context of regression when the goal is to predict one
measurement set (called response variables) from the other (called predictor variables)
[234]. The model finds a latent subspace, derived from the predictor set, whose projec-
tions best predict the response variables. On the other hand, PLSC technique is used
when the goal is to uncover shared information between the two sets of measurements
[223]. PLSC finds two latent subspaces related to each of the measurement sets such that
the latent projections have maximal covariance.

PLS techniques have been proven to work well when the number of observations is much
smaller than the number of variables from the measurement sets as well as to cope well
with correlated covariates.
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4.2.1.1 Partial least squares Correlation

Partial Least Squares Correlation (PLSC) is a statistical method that describes the re-
lationship between two sets of measurements, X and Y, on the same observations. This
relationship is modeled as the covariance between both input spaces (X, Y) and the goal
is to examine their shared information. The underlying assumption of PLSC modeling
is that most of the joint variability between X and Y lies in a lower dimensional space,
i.e. can be described by means of few latent patterns.

Let us assume we have N subjects with two sets of different measurements: K descriptive
variables X ∈ RNxK (e.g. brain structure using MRI) and M condition-related variables
Y ∈ RNxM (e.g. CSF biomarkers). Without loss of generality, we assume both variables
to be mean-centered. Formally, PLSC is applied to identify two new sets of variables T ∈
RNxL, U ∈ RNxL, called latent variables, which are linear combinations of the original
measurements X and Y, respectively. These new variables lie in lower and unobserved
L-dimensional spaces derived by simultaneous decomposition of input variables trying to
maximize their cross-covariance [235]. This idea is translated into finding the directions of
maximum covariance between the original input spaces under the orthogonal constraint
on the L projection vectors:

maximize cov(Xwl,Ycl) = cov(tl,ul) (4.1)

s.t w>l wl′ = δ(l − l′), c>l cl′ = δ(l − l′)

where wl ∈ RKx1, cl ∈ RMx1 are the projection weight matrices from input to latent
spaces. It follows from the properties of singular value decomposition (SVD) that wl, cl
are the left and right singular vectors of the covariance matrix R = X>Y [236], respec-
tively. Moreover, the covariance of the latent space at each dimension, i.e. cov(tl,ul), is
equal to the corresponding singular value. The final L-dimensional latent space is built
by concatenating the corresponding latent variables:

T = [t0, t1, ..., tL−1] , T = XW (4.2)

U = [u0,u1, ...,uL−1] , U = YC

where W = [w0,w1, ...,wL−1] , C = [c0, c1, ..., cL−1]

4.2.1.2 Partial least squares Regression

Partial least squares regression (PLSR) is used when the goal is to predict one set of
measurements, referred as reponse variables (Y), from the other set called predictor
variables (X). PLSR is not only a multivariate method that can handle colinear predictors
but can also predict multiple response variables and exploit the relation between them.

Formally, from a pool of N observations, PLSR finds a latent space (T ∈ RNxL) that
both characterizes the predictor variables (X ∈ RNxK) and predict the response variables
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(Y ∈ RNxM ):

X = TP>, Ŷ = XB (4.3)

where P ∈ RKxL is the X-loading matrix and B ∈ RKxM is the regression matrix
whose computation is explained in the following. The number of predictors and response
variables is K and M , respectively, while the latent subspace dimension is L.

Herein, we present the NIPALS solver solution [237] that attempts to iteratively solve
the optimization problem by maximizing the covariance between input spaces (X,Y) at
each iteration imposing orthogonality between consecutive latent dimensions (ti ⊥ ti+1).
Other solvers (e.g. SIMPLS [238]) impose different orthogonality constraints between
subspace dimensions resulting in different solutions. For a single latent dimension (L = 1)
PLSR finds the underlying representations as linear combinations of input measurements
t0 = Xw0, u0 = Yc0 such that

maximize cov(Xw0,Yc0) = cov(t0
>u0) (4.4)

s.t w0
>w0 = 1, c0

>c0 = 1

Solving Equation 4.4 using Lagrange multipliers, weight vectors have the following ana-
lytic expression:

w0 =
X>u0√

u0
>XX>u0

, c0 =
Y>t0√

t0>YY>t0
(4.5)

For a latent space of dimension L > 1, each subsequent latent factor is computed by
iterating over the same optimization process (i.e. Equation 4.4 and Equation 4.5) and
concatenating the results:

W = [w0,w1, ...,wL−1] ∈ RKxL

C = [c0, c1, ...cL−1] ∈ RMxL

T = [t0, t1, ..., tL−1] ∈ RNxL

U = [u0,u1, ...,uL−1] ∈ RNxL

However, at each iteration, PLS uses deflated versions of input spaces (X and Y) from
previous iterations as new predictor and response variables, forcing successive latent
directions to be orthogonal to previous ones and hence, maximizing the input variance
explained. The deflated version of X and Y at i-th iteration is:

Xi+1 = Xi − tipi
> = (I− ti · ti>

ti
>ti

)Xi, pi = Xi
>ti/(ti

>ti)

Yi+1 = Yi − tiqi
> = (I− ti · ti>

ti
>ti

)Yi, qi = Yi
>ti/(ti

>ti) (4.6)
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with i = 0, ..., L− 2, X0 = X and Y0 = Y. Due to continuous deflation of input spaces,
weight matrices (W,C) do not directly relate input (X,Y) and latent (T,U) spaces.
Accounting for that, rotation matrices, Rx,Ry, are defined:

Rx = W · (P> ·W)−1, T = X ·Rx,

Ry = C · (Q> ·C)−1, U = Y ·Ry (4.7)

where P = [p0,p1, ...,pL−1] ∈ RKxL, Q = [q0,q1, ...,qL−1] ∈ RMxL are the so-called
loadings. Finally, from Eq. 4.6 arise the initial Eq. 4.3 for prediction:

Y = TQ> + E = XRxQ> + E = XB + E

(4.8)

where B = RxQ> is the regression matrix and E ∈ RNxM models the regression error.

4.2.2 Partial least squares orthogonalization

A common assumption in neuroimaging studies is that the object of study (e.g: brain
morphology) is affected at the same time by the condition of interest (e.g: dementia) and
confounding variables (e.g: age, genetics). Hence, we need to control for confounding
variables in any neuroimaging analysis in order to find meaningful results. The standard
solution is to regress-out the unwanted factors on the condition of interest. In a PLS
framework, it can be done estimating two separate models for confounders (MC) and the
variable of interest (M I) and imposing orthogonality between both models. Each model
is characterized by using two different Y-space variables (YC ,YI) and the same X-space.
Similarly to the work in [227], we introduce the orthogonality constraint in the optimiza-
tion process forcing the associated latent subspace (TC ,TI) to be orthogonal. Moreover,
we add a coupling step in order to account for X-space related variance explained by the
confounder variables YC .

Firstly, the confounder model, MC , is estimated using the data tuple (X,YC) as predictor
and response variables, respectively. The associated subspaces (TC ,UC) are found by
solving the regular expressions in Equation 4.1 and Equation 4.4 for an LC-dimensional
subspace with weights wi

C and ci
C for i = 0 : LC − 1.

Secondly, the model of interest, M I , is estimated using the data tuple (X,YI). To
account for the variance explained by confounding variables, we define the new predictor
variable X = X − TC · (PC)> where we subtract the measurement variance explained
by MC . Moreover, we impose orthogonality between the estimated weights (wl) and the
projection vectors of the confounder model ri

C). The optimization process for M I model
is as follows:

maximize cov(Xwl,Y
Icl) (4.9)

s.t wl
>wl′ = δ(l − l′), cl

>cl′ = δ(l − l′), wl
>ri

C = 0

∀i = 0, ..., LC − 1
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where for PLSC models rCi are the columns of the weight matrix WC and the deflation
process between models to estimate X ensures the orthogonality between subspaces. In
PLSR models rCi are the columns of the rotation matrix RCX and wl = w0, cl = c0. For
an LI -dimensional subspace, the use of Lagrangian multipliers in the iterative solution
results in a closed form solution for weight projections:

wl = Xl
> · ul −

LC−1∑
i=0

(ri
C)> ·Xl

>
ul

(riC)> · riC
ri
C ⇒ wl =

wl

||wl||

cl = (Yl
I)> · tl ⇒ cl =

cl
||cl||

l = 0 : LI − 1 (4.10)

where Xl and YI
l are the deflated versions of X0 and YI

0 at lth iteration.

Finally, the full PLS model (M , L-dimensional) is built by concatenating latent scores and
rotation matrices from both models: T = concat(tCl, t

I
r) and R = concat(RC

Xl,R
I
Xr)

where l = 0, ..., LC − 1 and r = 0, ..., LI − 1.

4.2.3 Statistical inference

The outcome measures for statistical inference of the estimated models are the effect
size (ρ) and the effect type (νX , νY ). The effect size is a quantitative measure of the
magnitude of a certain phenomenon while the effect type is defined over multivariate
phenomena as the vector of proportions indicating relative effect sizes of each parameter.
We use different definitions of both analytical metrics in PLSC and PLSR analyses.

4.2.3.1 Inference metrics for PLSC

Inherently, PLSC models have estimated two different latent subspaces each one related
to X and Y input spaces, respectively. Hence, a good definition for the effect size is the
covariance between both estimated subspaces at each dimension, while the effect types
are defined as the vectors of projection to the associated subspace

ρl =
1

N − 1
t>l ul, νXl = wl, νY l = cl ∀l = 0, ..., L− 1 (4.11)

4.2.3.2 Inference metrics for PLSR

On the other hand, even though PLSR models use projections from both X and Y
input spaces in the learning process, only one associated latent subspace is estimated
and used for prediction. The latent subspace is related to predictor variables (X) and
it is characterized by their associated scores (T) and projections (R). Hence, we use
S additional variables of interest (qs) to evaluate their correlation with the estimated
latent subspace and use it as the effect size. Accordingly, the effect type is the vector of
projections from the input space to the associated latent subspace.
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ρl(s) =
cov(tl, qs)

σtl · σqs
=

t>l · qs
σtl · σqs

, ∀l = 0, ..., L− 1

νl = rl ∀s = 0, ..., S − 1 (4.12)

4.2.3.3 Permutation testing

Statistical hypothesis testing over the outcome measures of PLS models require to for-
mulate a null hypothesis with an associated sampling distribution, referred as the null
distribution. The null hypothesis states that the effect size is small/non-significant, i.e.
there is no relationship between the two sets of measurements used to compute the effect
size. The associated null-distribution can be estimated in various ways and in this work
we use the non-parametric permutation testing framework [239]. It consists of randomly
permuting subject indices in one measurement to break the initial relationship between
both input sets and generating a new sample of unrelated variables. This process is
repeated Nperm times, and for each permutation (π(i), ∀i=0, ..., Nperm − 1) a new PLS

model is computed along with the associated effect size ρ
π(i)
l at each dimension.

ρ
π(i)
l =

1

N − 1
t>l,π(i) · ul (4.13)

(4.14)

where π(i) is the i-th permutation without replacement of subject indices. The null

distribution for the effect size is empirically built using ρ
π(i)
l . Statistical significance level

(p-value) of the observed effect size at each dimension (ρl) is determined by the ratio of
permutations that result in higher effect size.

p-value(ρl) =
1

Nperm
‖ρπ(i)l > ρl‖0 (4.15)

where ‖ · ‖0 is the 0-norm operator, that counts the number of non-zero elements of a
vector.

An important parameter for inference using permutation testing is the number of per-
mutations (Nperm) to estimate the null distribution. Larger Nperm provides better esti-
mations but increases the computational cost. Hence, there is a trade-off between com-
putational complexity and the precision (P) of the p-value(ρk) estimation. It is known

that the Monte Carlo approximation of the p-value has a standard deviation of
√

p(1−p)
Nperm

involving the true real value of p. Since p is unknown, the authors in [240] suggest to use
the upper bound 1√

Nperm
and model p-value(ρl) as approximately Gaussian with standard

deviation P, referred to as the precision of the estimate. Then, for a desired precision P,
the minimum number of permutations is

Nperm ≥
1

4 · P 2
(4.16)
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4.3 Univariate brain structural effects

Magnetic resonance imaging (MRI) is useful for measuring brain soft-tissue (grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF)) and provides a good anatom-
ical description of the brain. On the other hand, CSF biomarkers describe the biological
state or condition of the brain and are used for staging the AD pathophysiological con-
tinuum. Jointly analyzing both sources of information may help to describe AD-related
underlying processes that occur in the brain. In this section, we are interested in com-
paring regional effects of brain pathology in brain volume. For that purpose, we use the
PLSC framework introduced in Section 4.2.1.1.

4.3.1 Material and methods

4.3.1.1 Data

In our experiments we use the publicly available dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, [241]) with imaging data preprocessed using FreeSurfer
[242]. According to [1], we split the Alzheimer’s continuum (N = 801) in three stages:
a total of NCU = 321 cognitively unimpaired (CU) subjects, NMCI = 332 subjects with
mild cognitive impairment (MCI) and NAD-dementia = 148 subjects diagnosed with de-
mentia due to AD (AD-dementia). For symptomatic stages (MCI and AD-dementia),
only amyloid positive subjects (CSF Aβ < 192 pg/mL, [170]) are considered. To study
the presymptomatic stage of AD, we use subthresholds and build a separate data sam-
ple splitting the CU stage in three groups (T0, T1, T2) based on CSF Aβ tertiles:
AβT0 ∈ (230, 295], AβT1 ∈ (175, 230], AβT2 ∈ (88, 175] with 104, 109, 108 subjects
respectively. All subjects have cortical and subcortical grey matter volumetric informa-
tion available for each of the K = 84 brain ROI [81, 243], age, sex and CSF biomarkers
(Aβ, phosphorylated tau (p-tau), total tau protein (t-tau)) as condition-related variables.
Both sets of features are mean-centered and scaled by the control (CU) group standard
deviation.

4.3.1.2 Model definition

In neurodegenerative disease studies, it is normally assumed that there coexist many
processes in the brain affecting its morphology and that they can be grossly classified
into disease-related (variables of interest) and non-disease-related (confounders). Hence,
according to the nomenclature introduced in Section 4.2.2, we define two different models:
a confounder model (MC = M cAD) estimated using age and sex as response variables
(YcAD ∈ RNx2) and a pathological model (M I = MAD) that uses CSF biomarkers as
response variables (YAD ∈ RNx3). As predictor variables we use ROI-based volumetric
features (X,X ∈ RNxK).

We set LcAD = 1 to ease the interpretability yielding a multivariate model that describes
the joint variability of regional brain volume and age and sex. Therefore the effect size
and effect type read as follows:

ρcAD =
1

N − 1
t0
> · u0, νcAD

X = w0, νcAD
Y = c0 (4.17)

For the pathological model, MAD, we create K univariate submodels (MAD
k , ∀k =
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0, ...,K − 1) each one using the deflated version of regional volumetric features for the
k-th ROI (Xk) as predictor variables. For each submodel we set LAD

k = 1 yielding
univariate strucutral model that describes regional effects of multivariate pathological
effects. Therefore we define an effect size and effect type for each ROI:

ρADk =
1

N − 1
t0k

> · u0k
, νADY k = c0k , where k = 0, ...,K − 1 (4.18)

The statistical significance of the pathological model is computed as stated in Sec-
tion 4.2.3.3. The null distribution of the effect size for each submodel can be computed
by permuting samples from the X-space:

ρ
π(i)
k =

1

N − 1
t>0,π(i)k · u0k

(4.19)

For all experiments, we use a total of Nperm = 10000 permutations, corresponding to a
precision of the p-value estimate of P=0.005. Statistical significance is set to p-value <
0.05 (uncorrected).

4.3.1.3 Clustering

Unsupervised clustering techniques allow to uncover common characteristics between sets
of data without the need of specific labeling processes [244]. In this work we are interested
in grouping brain ROI with similar CSF biomarker effects on their average volume. We
use the k-means algorithm [244] on regional effect types νADY k . We aim at finding a total of
C clusters and their associated centroid in order to find the main modes (latent patterns)
of volumetric variation. We choose C = 4 to study the full AD continuum and C = 2 for
the analysis of the preclinical stage of AD.

4.3.2 Results

In this section we analyze the relationship between brain morphology and both con-
founders and markers of AD pathology along the Alzheimer’s continuum. Using the
PLSC framework presented in Section 4.2.1.1, we find morphological patterns associated
with CSF biomarkers along the Alzheimer’s continuum. We further split the data sam-
ple into clinical categories and perfom the same analysis (cognitively unimpaired (CU)
subjects, mild cognitive impairment (MCI) and dementia due to AD (AD-dementia)) to
investigate specific effect sizes on different disease stages. Finally, we specifically study
the presymptomatic stage of AD by splitting CU subjects into three tertiles (T0, T1, T2)
regarding subject’s CSF Aβ burden.

4.3.2.1 Study of age association with brain morphometric features in
normal aging

We first estimate the M cAD model to regress-out the effect size of confounders (age and
sex) on brain morphology in posterior analysis. In Figure 4.1 we show the confounders’
effect type representing the regional contribution of age and sex variability to brain mor-
phology. M cAD model involves reduced whole brain volume with increasing age except
for the choroid-plexus and the anterior cingulate. Regions that show higher decrease in
volume with age are found in the temporal lobe, specially the hippocampus, while sex
effect size is rather low in the whole brain.
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Figure 4.1: Brain morphometric effect type vcADX related to confounders (age and sex)
usingM cAD model. Color-code represents negative (blue) and positive (red) contributions
on explaining confounder variability related to decreased and increased ROI volumes,
respectively

4.3.2.2 Study of CSF biomarkers association with brain morphometric
features along Alzheimer’s continuum

AD pathological effects are thought to be spread non-uniformly across the brain [245]
and may be only described by a small set of patterns along the disease continuum. To
capture these characteristic patterns, we use the corrected MAD model for regional anal-
ysis of CSF biomarkers association with brain volume at separate ROIs. CSF biomarkers
pairwise relationship is shown in Figure 4.2 where CSF Aβ show clear nonlinear aspect
along the continuum with phosphorylated and total tau while tau proteins are shown to
be highly correlated.

Figure 4.2: Pairwise CSF biomarker relationship along the Alzheimer’s continuum: (A)
CSF Aβ vs. p-tau, (B) CSF Aβ vs. t-tau and (C) CSF p-tau vs. t-tau. Different colors
refer to different clinical categories: CU (blue), MCI (red) and AD-dementia (black)

All effect types are normalized to unit norm (‖νAD
Y k ‖2 = 1) and each value corresponds
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to the relative contribution of each CSF biomarker on explaining the variance of ROI
volumes. In Figure 4.3, we show the condition-related effect type (νADY k ) in statistically
significant regions (p<0.05). Each effect type value is splitted in different subfigures. A
complete list of relevant regional AD effect sizes is found in Supplementary Table A.1.

Figure 4.3: Effect type (νADY k ) of AD pathology on brain morphology for subjects along
the Alzheimer’s continuum. Each figure represents the contribution of CSF biomarkers
in explaining ROI volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only
brain ROIs with statistically significant effect size (p<0.05) are shown.

We fit the k-means clustering algorithm to find a small set of representative CSF-related
patterns that group all effect types (νADY k ) across the brain and along disease stages. It
effectively results in four different clusters with the corresponding centroid representing
patterns of AD pathology on brain morphology. Hence, we can define 4 different underly-
ing processes governing brain morphology. In Table 4.1, we provide a list of the relevant
ROIs associated to each process. CSF t-tau appears to explain most of the variability in
many brain ROIs (clusters 0 and 1). Amyloid plaque deposition appears to favour the
presence of tau protein in several temporal regions (e.g. hippocampus, middle temporal
or amygdala) and reduce their volume (cluster 1). In contrast, several regions such as pal-
lidum, precental, lateral orbitofrontal or precentral appear to follow the opposite pattern
once discounted the aging effect (cluster 0). On the other hand, CSF Aβ levels appear to
highly affect regions such as insula, caudate and choroid plexus showing reduced volume
with amyloid deposition once corrected by the aging process (clusters 3 and 4).

4.3.2.3 Study of CSF biomarkers association with brain morphometric
features in different clinical AD stages.

In a second type of analysis, we consider that AD effects might be different along the dis-
ease continuum, as suggested by [245], Hence, we repeat the analysis in separate clinical
diagnostic groups (CU, MCI and AD-dementia) and provide a post-hoc comparison. At
each stage, we use the corrected MAD model to separately analyze regional CSF biomark-
ers effect size on each brain ROI volume. The statistically significant regions (p <0.05)
are listed in Supplementary Table A.2. The effect type is shown in Figures 4.4, 4.5 and
4.6 for CU, MCI and AD-dementia respectively. Each effect type value is displayed in
separate subfigures. All effect types are normalized to unit norm (‖νAD

Y k ‖2 = 1) and each
value corresponds to the relative contribution of each CSF biomarker on explaining the
variance of each ROI volume.

Effect types in each ROI can be effectively clustered into four different characteristic
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Centroid 0 Centroid 1 Centroid 2 Centroid 3

-1 -0.5 0 0.5 1

ttau

ptau

Aβ

-1 -0.5 0 0.5 1

ttau

ptau

Aβ

-1 -0.5 0 0.5 1

ttau

ptau

Aβ

-1 -0.5 0 0.5 1

ttau

ptau

Aβ

ADc

Pallidum R Precuneus R Insula R Choroid Plexus R
Pallidum L Precuneus L Insula L Choroid Plexus L

Precentral L Amygdala R Caudate R
Precentral R Amygdala L Caudate L

Lateral Orbitofront. L Bankssts R Paracentral R
Lateral Orbitofront. R Bankssts L ParsOpercularis R

Frontal Pole L Entorhinal R Pericalcarine R
Frontal Pole R Entorhinal L Postcentral R

Superior Temporal R Fusiform R Rostral Mid Front. R
Supramarginal R Fusiform L Cuneus L

Caudal Ant. Cingul. R Hippocampus R Medial Orbitofront. L
Medial Orbitofront. R Hippocampus L

ParsOrbitalis L Inferior Temporal R
Pericalcarine L Inferior Temporal L
Postcentral L Middle Temporal R

Rostral Mid Frontal L Middle Temporal L
Temporal Pole L Inferior Parietal R

Transverse Temporal L Inferior Parietal L
Accumbens Area L

Table 4.1: Unsupervised cluster analysis of CSF effect types on brain morphology along
the Alzheimer’s continuum. Statistically relevant (p<0.05) brain ROIs are clustered into
four separate regions defined by their respective centroid (first row). Centroids show the
relative contribution to the latent space of each CSF measure: CSF Aβ, CSF p-tau and
CSF t-tau. A positive (negative) value corresponds to increased (decreased) ROI volume
with each measure.

patterns. In Table 4.2, we provide a list of relevant ROIs associated to the four centroids
describing each cluster. Among the four clusters, we find that increasing AD pathology
(i.e. decreasing CSF Aβ and increasing CSF t-tau/p-tau burden) are related to decreased
ROI volume in clusters 0 and 2 and to increased ROI volume in clusters 1 and 3. Clusters
0 and 1 group regions whose variance is related to CSF t-tau/p-tau proteins variation
while clusters 2 and 3 appeared to be described by CSF Aβ load. Along the Alzheimer’s
continuum, the choroid plexus appears to be relevant at each AD stage showing decreased
ROI volume associated with an increment of CSF t-tau/p-tau values (cluster 0). The
same pattern is followed by subcortical regions like amygdala, pallidum or putamen as
well as the inferior temporal cortex at CU stage, the middle temporal at MCI stage or the
inferior parietal region at AD-dementia. Interestingly, at early stages (CU) both caudate
regions show increased volume with decreased CSF Aβ values (cluster 3). Latent pat-
terns 1 and 2 group most of the relevant regions at MCI stage. In cluster 1, subcortical
regions such as the pallidum or thalamus as well as cortical regions like the precentral
show increased mean ROI volumes with increasing CSF t-tau/p-tau values (cluster 1).
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Figure 4.4: Effect type (νADY k ) of AD pathology on brain morphology for subjects in the
CU stage. Each figure represents the contribution of CSF biomarkers in explaining ROI
volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only brain ROIs with
statistically significant effect size (p<0.05) are shown.

Figure 4.5: Effect type (νADY k ) of AD pathology on brain morphology for subjects in the
MCI stage. Each figure represents the contribution of CSF biomarkers in explaining ROI
volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only brain ROIs with
statistically significant effect size (p<0.05) are shown.

Typical AD-related regions within the temporal lobe such as the hippocampus, parahip-
pocampus or the amygdala show decreased volumetric features with decreasing CSF Aβ
value (cluster 2). Other relevant regions for MCI stage are inferior parietal, superior
temporal sulcus, precuneus or entorhinal showing decreased ROI volume associated to
AD progression, either to increasing values of CSF p-tau/t-tau (cluster 0) or decreasing
values of CSF Aβ (cluster 2). Finally, in the AD-dementia stage, brain morphology can
be explained mostly by CSF t-tau values. Already mentioned regions like the inferior
parietal, choroid plexus, amygdala or entorhinal cortex show decreased mean ROI volume
with increasing CSF t-tau/p-tau values (cluster 0), while subcortical pallidum shows the
opposite effect.

4.3.2.4 Study of CSF biomarkers association with brain morphometric
features at the asymptomatic stage of AD.

An interesting stage for prevention trials and clinical recruitment is the presymptomatic
stage of AD, involving only cognitively unimpaired (CU) subjects. We study the use
of subthresholds to find specific effect sizes at different phases of this presymptomatic
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Figure 4.6: Effect type (νADY k ) of AD pathology on brain morphology for subjects in
the AD-dementia stage. Each figure represents the contribution of CSF biomarkers in
explaining ROI volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only
brain ROIs with statistically significant effect size (p<0.05) are shown.

stage. For this purpose, we split the sample into 3 balanced subsets divided using CSF
Aβ tertiles at thresholds 230 and 175 mg/mL. This categorization resulted in two groups
(T0, T2) far above and below the standard amyloid-positive threshold at 192 mg/ml (used
as a hallmark for preclinical AD stages), respectively, and a third group (T1) around it.
Following the results in [246], nonlinear pairwise relationship between CSF Aβ and tau
proteins is shown in Figure 4.7, highlighting the three different groups.

Figure 4.7: Pairwise CSF biomarker relationship in asymptomatic subjects: (A) CSF Aβ
vs. p-tau, (B) CSF Aβ vs. t-tau and (C) CSF p-tau vs. t-tau. Different colors refer to
different categories: T0 (blue), T1 (red) and T2 (black)

Following the same methodology as previous analysis, we use PLSC to define the MAD

model that relates corrected ROI-based volumetric features and CSF biomarkers. We
perform statistical inference independently for each tertile and list the results in Supple-
mentary Table A.3. CSF-related effect types of the statistically significant ROIs (p<0.05)
are shown in Figure 4.8 (T0), Figure 4.9 (T1) and Figure 4.10 (T2), where each subfigure
is related to each CSF biomarker. Relevant regions are mostly found in temporal and
parietal lobes. All patterns are normalized to unit norm (‖νAD

Y k ‖2 = 1) and correspond to
the relative contribution of each CSF biomarker on explaining the variance of each ROI
volume.

We use the clustering algorithm to find similar effect types at each ROI throughout all
preclinical tertiles resulting in two different clusters (cluster 0 and cluster 1) associated
(positively and negatively) to CSF p-tau/t-tau. In Table 4.3, we provide a list of relevant
ROIs associated to the two centroids describing each cluster. The choroid plexus is the
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Centroid 0 Centroid 1 Centroid 2 Centroid 3
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CU

Pallidum R Pericalcarine R AccArea L Caudate L
Pallidum L Postcentral R TransvTempl L Caudate R
Amygdala L Insula L Supramarg L
Amygdala R LatOrbitofront L

ChoroidPlexus L
ChoroidPlexus R
InfTemporal L
InfTemporal R

Putamen L

MCI

Precuneus R Pallidum R Parahipp. R Paracentral L
ChoroidPlexus L Pallidum L Parahipp. L TransvTemp L
MidTemporal L Precentral R Amygdala R
MidTemporal R Precentral L Amygdala L

InferiorParietal R Thalamus R Hippocampus R
Thalamus L Hippocampus L

ParsOrbitalis L Bankssts L
Entorhinal L

InferiorParietal L

AD-dem

Bankssts L Pallidum L RostMidFront R
ChoroidPlexus L Pallidum R
InferiorParietal L
InferiorParietal R

Amygdala R
Entorhinal R

Table 4.2: Unsupervised cluster analysis of CSF effect types on brain morphology along
the Alzheimer’s continuum stratified by cognitive stage. Statistically relevant (p<0.05)
brain ROIs are clustered into four separate regions defined by their respective centroid
(first row). Centroids show the relative contribution to the latent space of each CSF
measure: CSF Aβ, CSF p-tau and CSF t-tau. A positive (negative) value corresponds
to increased (decreased) ROI volume with each measure.

main exponent of cluster 0, showing decreased mean ROI with increasing CSF t-tau/p-tau
values while examples of regions associated with cluster 1 are insula in T0, supramarginal
and accumbens in T1 or pericalcarine in T2, showing increased mean ROI volume with
increasing AD pathophysiological markers. Interestingly, this analysis of presymptomatic
stages of AD using subthresholds shows that subcortical regions from the basal ganglia
(amygdala or pallidum as well as the caudates), normally associated with Alzheimer’s
disease, are not characteristic of any specific tertile and only appear to be relevant when
studying the CU stage as a whole. On the other hand, the choroid plexus appears to be
relevant at later tertiles (T1,T2). In Supplementary Table A.3, we provide the summary
of regions across the brain related to each cluster for different preclinical tertiles.
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Figure 4.8: Effect type (νADY k ) of AD pathology on brain morphology for subjects in the
T0 tertile. Each figure represents the contribution CSF biomarkers in explaining ROI
volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only brain ROIs with
statistically significant effect size (p<0.05) are shown.

Figure 4.9: Effect type (νADY k ) of AD pathology on brain morphology for subjects in the
T1 tertile. Each figure represents the contribution CSF biomarkers in explaining ROI
volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only brain ROIs with
statistically significant effect size (p<0.05) are shown.

4.3.3 Discussion

In this section, we report the effect of normal aging and AD pathological processes on
brain morphology. Age and sex are used as covariates in the confounder model mainly
driven by age effects of global volume reduction [247] - except for the choroid plexus
- that usually characterize cognitively unimpaired, amyloid-beta negative population.
Its associated latent space is used as a confounding factor model to correct the disease
model. AD pathological model is measured using CSF biomarkers and shows high effect
sizes on brain morphology along the disease spectrum. Brain structure can be effec-
tively described by a small set of underlying patterns correlated with CSF biomarkers.
Comparing regional brain volume by whole brain marker of pathology show two differ-
ent types of behavior once corrected by the confounder model: decreased and increased
regional volume with biomarker progression showing patterns of faster and slower dete-
rioration compared to the confounder model. Cerebral atrophy is defined as decreasing
volumetric features with increasing CSF t-tau and p-tau and decreasing CSF Aβ and is
found in typical-AD regions in the temporal lobe (hippocampus, superior, middle and
inferior temporal, amygdala, fusiform and entorhinal cortex) as well as other regions such
as precuneus and inferior parietal. Tau accumulation describes most of the volumetric
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Figure 4.10: Effect type (νADY k ) of AD pathology on brain morphology for subjects in the
T2 tertile. Each figure represents the contribution CSF biomarkers in explaining ROI
volume variability: (A) CSF Aβ, (B) CSF p-tau, (C) CSF t-tau. Only brain ROIs with
statistically significant effect size (p<0.05) are shown.
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t-tau
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t-tau

p-tau
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T0

InferiorTemporal R SuperiorTemporal R
PosteriorCingulate L

Insula R
Insula L

T1
ChoroidPlexus R Supramarginal R
ChoroidPlexus L Fusiform L

Putamen L AccumbensArea R

T2
ChoroidPlexus R Pericalcarine R
ChoroidPlexus L LateralOrbitofrontal L

Table 4.3: Unsupervised cluster analysis of CSF effect types on brain morphology in the
asymptomatic stage of AD. Statistically relevant (p<0.05) brain ROIs are clustered into
four separate regions defined by their respective centroid (first row). Centroids show the
relative contribution to the latent space of each CSF measure: CSF Aβ, CSF p-tau and
CSF t-tau. A positive (negative) value corresponds to increased (decreased) ROI volume
with each measure.

variability on those regions associated with amyloid plaques deposition. On the other
hand, increased mean ROI volume CSF biomarker progression is also present across the
brain. This pattern is found in many regions, specially in the frontal lobe and in regions
regions like pallidum, caudate nucleus and insular cortex. Even though it does not belong
to the central nervous system (CNS), a well deserved remark for the choroid plexus, a
region in the ventricles of the brain that produces CSF, that shows decreased volume
with tau accumulation although seemed independent of CSF p-tau levels, indicating its
non-specific character for AD.
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Further analysis by using clinical diagnosis show different effect types along AD stages.
At presymptomatic stage of AD (i.e. cognitively unimpaired (CU) subjects), volumetric
variation of most brain ROI can be described by CSF t-tau/p-tau values. Subcortical
regions such as pallidum, amygdala and putamen show decreased mean ROI volume
with increasing tau protein concentrations. The same pattern is found in the cortical
plexus or in cortical regions such as the inferior temporal. In contrast, pericalcarine,
postcentral or the insular cortex show increasing their volume with increasing CSF p-
tau/t-tau values. In order to further study the presymptomatic stage and with the aim
to uncover specific CSF biomarkers association to brain morphology at different phases
of early AD, we use subthresholds to split CU subjects into three tertiles (T0,T1,T2)
based on CSF Aβ burden. In the T0 tertile, considered as normal aging with high CSF
Aβ values, the insular cortex, cingulate and superior temporal show increased volume
with CSF t-tau values. The most affected region is the choroid plexus and appears to
decrease volume with increasing CSF tau proteins for subjects in later tertiles (T1 and
T2). However, CSF effect size on subcortical regions becomes irrelevant when splitting
the CU stage using subthresholds. More interestingly, the use of subthresholds hide CSF
Aβ-related patterns. To find variations in brain morphology associated to CSF Aβ we
need to analyze the CU stage as a whole and prominent effect sizes on the expansion of
both caudates is found, related to expansion of lateral ventricles [163].

The relation between CSF biomarkers and brain morphology increases at MCI stage,
becoming the clinical stage where most of the brain structure variation appears to be
associated with CSF variation. Relevant effects of CSF on brain volume appear to be
highly symmetrical. CSF Aβ appears to be more relevant than in any other stage es-
pecially at subcortical regions. At MCI stage, typical AD regions in the temporal lobe
such as hippocampus, parahippocampus and amygdala or middle temporal as well as
the inferior parietal show decreased volume with markers of AD progression, confirming
previous findings in the literature (e.g. [160]). Interestingly, central brain regions such
as thalamus, precentral and pallidum show increased volume with pathology progression.
At dementia stages, the influence of CSF biomarkers on brain morphology drastically
diminishes, specially for CSF Aβ, which appears to be almost irrelevant. Only typical
regions related to later stages of AD (inferior parietal, entorhinal cortex or pallidum)
show significant effect sizes on the AD-dementia stage.

Nonetheless, there are some limitations in this work. First, we report preliminary results
on the ADNI cohort but validation on an independent cohort would be required to asses
the generalization of the results to other datasets as well as to the general population.
Second, the oversimplification on the number of brain processes occurring in healthy
adults brain, grossly split into AD and non-AD processes. Age and sex are used as the
main confounders for non-AD effects while we acknowledge that many other factors (e.g:
environmental, genetic) might be added to the model [69]. CSF biomarkers are used as
a proxy for AD effects considering that amyloidosis, tauopathy and neurodegeneration
are driving AD pathology. However, many other comorbidities might be found in AD
subjects, specially at later stages [248]. Nonetheless, the work provides a methodology for
the analysis of joint variation of imaging and non-imaging features and consistent results
with the literature are found. New insights on brain morphology along the Alzheimer’s
continuum are also reported.
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4.4 Multivariate brain structural effects

In this section, we aim at predicting pathophysiological markers (i.e: CSF biomarkers)
using brain morphological (i.e. MRI) multivariate features. Our modeling assumptions
are that there coexist two main process in the brain driven by (i) aging and (ii) AD
pathology) that can be described by means of few underlying structures related to brain
morphometry. As opposed to Section 4.3 where we analysed pathological effects indepen-
dently for each brain ROI, here we consider multivariate methods that account for inter-
and intra-relations between brain regions. Besides descriptive analyses, these latent pat-
terns are further used to predict AD pathophysiological markers. For this purpose, we
use Partial Least Squares regression (PLSR) methodology introduced in Section 4.2.1.2.

4.4.1 Material and methods

4.4.1.1 Data

In our experiments we use the publicly available dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, [241]). We build a sample of N = 802 subjects split into
diagnostic categories following recently published guidelines [16]: NHC = 185 healthy
controls (HC), NPC = 136 preclinical (PC) subjects, NMCI = 330 subjects labeled
as mild cognitive impairment (MCI) and NAD−dementia = 148 subjects diagnosed with
dementia due to AD (AD-dementia). MCI and AD-dementia subjects are diagnosed
following the standard criteria used in ADNI and reported in [38] while for PC subjects
we select cognitively unimpaired (CU) subjects with positive amyloid-beta using the
suggested threshold at [170] (Aβ < 192 pg/mL). All subjects have a T1-weighted MRI
available, preprocessed using FreeSurfer, [242], and segmented according to [81] and [243]
into regions of interest. Grey matter volume divided by the total intracranial volume (V)
and cortical thickness (CT) averages are computed for each ROI and used as predictor
variables. A total of KCT = 64 and KV = 84 cortical and subcortical ROIs are used,
accordingly. Both types of features are mean-centered and scaled by the control (CU)
group standard deviation. Age and CSF biomarkers (Aβ, p-tau, t-tau) are used as
response variables. Together with age and CSF biomarkers, a normalized CSF index as
diagnostic metric for disease progression (AD-CSF, [205]) is used for descriptive statistics
of the derived latent model. The AD-CSF index is a combination of CSF biomarkers and
has two different forms: (i) AD-CSF1 that involves Aβ and p-tau protein and (ii) AD-
CSF2 that involves Aβ and t-tau.

4.4.1.2 Model definition

According to Section 4.2.2, we define two separate models for brain aging and AD
effects (MC=M cAD, M I=MAD). The M cAD model is built using brain morphometric
features as predictor (XcAD ∈ RNxK) and age as response (YcAD ∈ RNx1) variables and
fitted on HC subjects only. Thereafter, we use the methodology stated in Section 4.2.2
to estimate the MAD model using a deflated version of brain morphometric features

as predictor (X
cAD ∈ RNxK) and CSF biomarkers (Aβ, p-tau, t-tau) as response

variables (YAD ∈ RNx3). To fit the MAD model only subjects in the Alzheimer’s
continuum (PC, MCI, AD-dementia) are considered. The linear regression model in
Equation 4.8 is used to define the dimension of each latent space, (LcAD, LAD), by
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evaluating the total mean absolute error (MAE) of the predicted response variables
in a 5-fold cross-validation framework [125]. Accordingly, we set LcAD = 2 and
LAD = 4. The final latent space, M with L = 6, is built by concatenating both models
(t0 = tcAD

0 , t1 = tcAD
1 , t2 = tAD

0 , t3 = tAD
1 , t4 = tAD

2 , t5 = tAD
3 ). As brain morphometric

features, we study separately the effects on volumetric and cortical thickness data. We
use tVi and tCTi to refer to the latent subspaces build using volumetric and cortical
thickness features, respectively.

In order to model AD pathology, we adopt two different modeling techniques based on
different priori hypothesis: (i) we consider that latent patterns (effect-type) governing AD
pathology are linear across all Alzheimer’s continuum with possibly different effect sizes at
different clinical stages and (ii) we consider separate models for each clinical stage of AD
yielding a stage-wise linear model across the Alzheimer’s continuum. For the first case,
we fit a single model using all subjects in the Alzheimer’s continuum, including preclinical
and clinical stages, while for the second hyptothesis we use 4 different models to analyze
the effects of pathophysiological markers separately at each stage of the Alzheimer’s
continuum (PC, MCI and AD-dementia) and in normal AD biomarker subjects (HC).

For statistical inference, we will use age, CSF biomarkers and AD-CSF indices as vari-
ables of interest (qs, ∀s = 0, ..., 5). The statistical relevance will be assessed using
permutation testing, as stated in Section 4.2.3.3. For all experiments, we use a total
of Nperm = 10000 permutations, corresponding to a precision of the p-value estimate of
P=0.005. Statistical significance is set to p-value < 0.05 (uncorrected). Furthermore we
study the predictive power of each model using a 5-fold cross-validation framework to
report the mean absolute error (MAE) of each variable of interest.

4.4.2 Results

4.4.2.1 Single model for AD pathology

Using a single model for all disease continuum we assume that the effect type of AD
pathology is preserved throughout the Alzheimer’s continuum even though the effect size
might change at each stage. The effect size of brain condition markers on each latent
factor (ρl(s)) is shown in Figure 4.11 and listed in Supplementary Tables A.6 and A.7
with the associated p-values for models using volumetric and cortical thickness features,
respectively.

To better understand the model of each measurement (volumetric and cortical thickness),
we first analyze the effect size related to the variables of interest at each latent dimension
ρl(s). In Figure 4.11, we show the absolute value of the correlation between each latent
variable tl and the respective indicators s = age, CSF biomarkers, AD-CSF1 and AD-
CSF2 evaluated separately on subjects with normal AD biomarkers (HC) and subjects
at specific Alzheimer’s continuum stages (PC, MCI, AD-dementia).

Each effect type can be seen as a morphological pattern responding to certain conditions.
According to the results in Supplementary Tables A.6 and A.7, we can distinguish three
different types of relevant (p<0.05) patterns along the Alzheimer’s continuum: (i) age-
related patterns associated with high correlation with age, (ii) AD-related patterns that
present high correlation with AD markers and (iii) mixed age and AD-related patterns
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(a) Volume (b) Cortical Thickness

Figure 4.11: Absolute value of the effect size (single model) on several indicators evaluated
at different stages: age (black), amyloid-beta (red), p-tau (green), t-tau (blue), AD-CSF1

(magenta), AD-CSF2 (cyan). Latent variables 0 and 1 correspond to brain aging model
and latent variables 2, 3, 4 and 5 correspond to brain AD and are shown in the x-axis.

that show high correlation values with age and several indicators of AD progression.
The first one is found relevant on normal aging subjects, while the other two coexists
along the Alzheimer’s continuum, meaning that aging and AD processes might partially
overlap across the brain. We show an example of each type of pattern for volumetric
features in Figure 4.12 and for cortical thickness features in Figure 4.13, in line with the
corresponding effect sizes at each stage.

In Figure 4.12a we show an age-related pattern with high effect size at pre-dementia stages
(HC, PC and MCI) but low effect size at AD-dementia stage. This pattern is estimated
using only HC subjects and MnAD model and shows whole brain atrophy except for the
choroid plexus regions. An AD-related pattern (t2) is depicted in Figure 4.12b showing
high correlation with AD pathophysiological markers both on subjects along the whole
Alzheimer’s continuum and independently at all stages. It shows a highly symmetric
pattern were positive and negative values indicate neurodegeneration and increased ROI
volume, respectively, due to its positive correlation with CSF Aβ and negative correla-
tion with CSF p-tau and CSF t-tau values. Cortical regions (parahippocamapus, middle
temporal, transverse temporal, inferior temporal) and subcortical regions (hippocampus,
amygdala and fusiform) of the temporal lobe as well as regions such as the choroid plexus
and, specially, the entorhinal cortex are the most affected regions positively correlated
with t2, indicating neurodegeneration over the course of AD. Other regions such as the
precentral or the pars orbitalis are negatively correlated with t2. Finally, a mixed age
and AD-related pattern (t3) is shown in Figure 4.12c, which is negatively correlated with
age and positively correlated with CSF p-tau, CSF t-tau and their associated indices
along the Alzheimer’s continuum and independently at each stage while it remains inde-
pendent of CSF Aβ values. Among the regions driving this pattern, we found choroid
plexus, precuneus (negatively correlated with t3), temporal pole and parahippocampus
(positively correlated with t3) the most relevant ones, indicating that they are involved
in both brain aging and brain AD processes.

Similarly, patterns associated with cortical thickness are shown in Figure 4.13 and are
also split into age-related, AD-related and mixed age and AD-related effects. Firstly,
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(a) Age-related pattern corresponding to the first latent dimension of the model tV0

(b) AD-related pattern corresponding to the third latent dimension of the model tV2

(c) Mixed age and AD-related pattern corresponding to the fourth latent dimension of the model tV3

Figure 4.12: Examples of relevant latent brain morphological patterns (effect-type) using
volumetric features. Values at each ROI represent their influence to the latent space.
The corresponding effect size of each condition at different stages of the disease is shown
on the right.
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(a) Age-related pattern corresponding to the first latent dimension of the model
tCT
0

(b) AD-related pattern corresponding to the third latent dimension of the
model tCT

2

(c) Mixed age and AD-related pattern corresponding to the third latent dimen-
sion of the model tCT

3

Figure 4.13: Examples of relevant latent brain morphology patterns (effect-type) using
cortical thickness features. Values at each ROI represent their influence to the latent
space. The corresponding effect size of each condition at different stages of the disease
is shown on the right.
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Figure 4.13a presents an age-related pattern involving overall cortical reduction with age
in the normal aging model MnAD except for the cingulate regions that show mild increased
thickness. Secondly, an AD-related pattern is depicted in Figure 4.13b, involving cortical
shrinkage of temporal regions (superior, middle, inferior) and the entorhinal cortex and
increased thickness at regions such as precentral or transverse temporal. Finally, an age-
AD mixed related pattern with opposite relationship between age (-) and CSF p-tau/t-
tau (+) is shown in Figure 4.13c. It is associated with cortical shrinkage of parietal lobe
regions and precuneus and increased thickness on parahippocampus, precentral, pars
orbitalis, insula and superior temporal on the left hemisphere. Overall, similar findings
are found for cortical thickness and volumetric data.

Finally, we evaluate the predictive power of the latent factors found for both age and
CSF biomarkers at different disease stages. For better comparison, all indicators are
globally standardized using z-score on all subjects (i.e. mean centered and normalized
by variance). Table 4.4 shows the mean absolute error (MAE) for each class using
cortical thickness and volumetric features and can be interpreted as the fraction of error
per standard deviation. These results can be compared with standard linear regression
method found in Spplementary Tables A.4 and A.5.

Features Diagnosis Age CSF Aβ CSF p-tau CSF t-tau

Volume HC 0.49 1.91 0.74 0.71
PC 0.68 0.46 0.72 0.63

MCI 0.67 0.4 0.70 0.72
AD 0.85 0.37 0.88 0.94

Cortical Th. HC 0.55 1.94 0.7 0.63
PC 0.76 0.48 0.68 0.66

MCI 0.77 0.42 0.69 0.72
AD 0.91 0.38 0.87 0.88

Table 4.4: Predictive error of response variables for each diagnosis label and feature type
using a single model for all Alzheimer’s continuum.

Age is best predicted using HC subjects and the prediction worsens at later stages at
the Alzheimer’s continuum, showing that features affected by age are also affected by
the disease. CSF Aβ biomarker presents lower predictive error at Alzheimer’s continuum
stages and high predictive error at HC stage probably due to the standardization process,
where it presents low variance at Alzheimer’s continuum stages and higher variance at
HC stage. On the other hand, CSF p-tau/t-tau seem not very predictable using brain
morphometry measurements. Compared to standard linear regression, we found no clear
gain of our methodology for the regression task even though the model provides relevant
brain structural patterns related to AD pathophysiological markers.

4.4.2.2 Multiple models for AD pathology

Under the assumption that underlying processes governing brain structure along the
Alzheimer’s continuum might differ between clinical and pathological conditions, we fit
a brain AD model independently for each stage including (i) HC, (ii) PC, (iii) MCI and
(iv) AD-dementia. Similarly to Section 4.4.2.1, we perform the analysis for volumetric
and cortical thickness measurements and show the effect size of each brain latent model
with respect to several variables of interest at their corresponding stage (Figure 4.14). A
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complete list of all effect sizes with their associated p-values is listed in Supplementary
Tables A.8 and A.9.

(a) Volume (b) Cortical Thickness

Figure 4.14: Absolute value of the effect size (multiple models) on several indicators evalu-
ated at the respective disease stages: age (black), amyloid-beta (red), p-tau (green), t-tau
(blue), AD-CSF-1 (magenta), AD-CSF-2 (cyan). Latent variables 0 and 1 correspond to
brain aging model and latent variables 2, 3, 4 and 5 correspond to stagewise brain AD
and are shown in the x-axis.

Underlying patterns from the brain aging model remain the same while latent factors
related to brain AD model increase their effect size and statistical relevance at each
stage. More specific patterns of brain AD are found for each Alzheimer’s continuum stage.
Here, we focus on AD-related latent factors found in previous section (Section 4.4.2.1)
to discover differences between brain morphological patterns related to AD at specific
stages. Hence, in Figure 4.15 and Figure 4.16 we show the effect-type of the third latent
dimension using volumetric (tV2 ) and cortical thickness features (tCT2 ), respectively. Both
figures show the highest correlation with AD pathophysiological markers.

Here, we concretely study the third dimension of the model (t2), an AD-related process
that presents the highest correlation with AD pathophysiological markers with both
cortical thickness and volumetric features. In Figure 4.15 we present the underlying
pattern found at each stage of the disease using volumetric features. Compared to effect
type found in previous analysis (Figure 4.12b), the effect type on MCI and AD-dementia
stages appears to be very similar with the addition of the pallidum showing compensatory
effect in the later. On the other hand, in the PC stage slightly differs from the global AD
pattern yielding an specific preclinical signature. The neurodegeneration pattern involve
choroid plexus and pallidum while pericalcarine show increased mean ROI volume. Again,
similar results are found addressing volumetric and cortical thickness features.

For predictive analysis, all indicators are globally standardized using z-score on all sub-
jects (i.e. mean centered and normalized by variance). In Table 4.5 we summarize the
mean absolute error (MAE) per class that can be interpreted as the fraction of error
per standard deviation. Even though stage-wise modeling provides a higher effect size
and more relevant brain AD patterns, the predictive power of CSF biomarkers is slightly
worse for late stages of the Alzheimer’s continuum, probably indicating a lower gener-
alization power of the brain features found for the same number of latent dimensions.
Nonetheless, PLSR has higher predictive power than the standard linear regression using
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(a) effect size

(b) PC stage

(c) MCI stage

(d) AD-dementia stage

Figure 4.15: AD-related effect-type of the brain latent model using volumetric features. It
corresponds to the third latent dimension of the model tV2 at each stage of the Alzheimer’s
continuum. The effect size at each disease stage is shown on the top.
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(a) PC stage (b) MCI stage

(c) AD-dementia stage (d) Correlation

Figure 4.16: AD-related effect-type of the brain latent model using cortical thickness
features. It corresponds to the third latent dimension of the model tCT2 at each stage
of the Alzheimer’s continuum. The effect size at each disease stage is shown on the
bottom-right.

raw morphometric features (Supplementary Table A.5).

Features Diagnosis Age CSF Aβ CSF p-tau CSF t-tau

Volume HC 0.49 0.51 0.38 0.34
PC 0.68 0.5 0.75 0.58

MCI 0.67 0.41 0.72 0.75
AD 0.85 0.33 1.07 1.0

Cortical Th. HC 0.55 0.54 0.36 0.36
PC 0.76 0.48 0.73 0.61

MCI 0.77 0.43 0.7 0.77
AD 0.91 0.34 0.98 1.05

Table 4.5: Predictive error of response variables for each diagnostic label and feature type
using a separate models for subjects with normal AD biomarkers and for each Alzheimer’s
continuum stage.

4.4.3 Discussion

In this work we aim at predicting AD pathophysiological markers from brain morphology
in elderly adults. To this end, we disentangle aging and pathological processes by or-
thogonal projections in a lower-dimensional subspace describing brain morphology along
the disease continuum. We provide two different approaches to model the Alzheimer’s
continuum: linear and stage-wise linear models, assuming in the later that brain anatomy
might differ between preclinical and clinical Alzheimer’s continuum stages. Statistical sig-
nificance and predictive power of each model is assessed using either grey matter volume
or cortical thickness measurements as brain morphological features. Joint modeling of
both types of features do not reveal further insights since the overall effect and predictive
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power remain similar indicating that they might not provide sufficient complementary
information.

Both linear and stage-wise linear models find relevant patterns related to age, AD and
a mixture of both, meaning that aging and disease processes might overlap, specially
significant for later stages of the disease (MCI, AD-dementia). Using a single model
for the whole Alzheimer’s continuum, we find common structures that are affected over
the course of the disease, delineating the AD signature supported in the literature [39].
On the other hand, fitting a model to each disease stage allows uncovering temporally
specific patterns and increase the effect size of AD pathophysiological markers at each
stage. While a single model finds relevant patterns involving typical AD-related regions
in the temporal lobe, using multiple models allows to uncover significant structures at
specific stages. Fitting a separate model for each stage along the Alzheimer’s contin-
uum increases the correlation between descriptive brain morphological patterns and AD
pathophysiological markers. Concretely, we found that brain structure at MCI and AD-
dementia stages retrieve morphological patterns overlapping with the previously found
AD signature. However, at preclinical stage the join variability of CSF biomarkers and
brain structure follows a different and more specific pattern and thus, motivating the sep-
arate study of a preclinical AD signature, as several recent studies point out [163, 160].
Interestingly, the pallidum effect over the course of AD is only detected using stage-wise
modelling since it shows early degeneration but then it remains unaffected through the
course of the disease. Some other structures, such as pericalcarine at PC stage or pal-
lidum at AD-dementia stage, showed increased volume/thickness once corrected by age,
which might be interpreted as compensatory effects due to increasing brain activity at
those regions [249, 250].

Moreover, we provide a confounder model orthogonal to the Alzheimer’s continuum model
that attempts to describe the brain aging process. It is estimated using only healthy con-
trol subjects and presents consistent results with the literature [251, 252, 253] for both
volumetric and cortical thickness features involving global atrophy and cortical thinning,
except for the choroid plexus region. This pattern appears to be highly correlated with
pre-dementia stages (HC, PC, MCI) but has low effect size at the dementia stage, pro-
viding more evidence of a higher overlap between aging and disease processes at later
stages.

Finally, we assess the predictive power of both models and compare it to a standard linear
regression model. Using stage-wise modeling increases the overfitting at each stage, but
the effect is mitigated using PLSR compared to linear regression. However, using a single
model for the whole Alzheimer’s continuum provides similar results for both methods.
Overall, the predictive performance is moderate to low depending on the disease stage,
being worse at later stages (AD-dementia).

Our results highlight the potential of using multivariate models to better detect and dis-
entangle aging and AD pathological effects on brain structure instead of using univariate
regression models and hypothesis testing studying each brain region independently [245].
Multivariate models are able to capture relevant and spatially distributed patterns of
structural changes in the brain. In this work, we identify patterns of common variability
between AD pathology, defined using CSF biomarkers, and brain structure, defined us-
ing either volumetric or thickness features. Throughout the literature, many multivariate
approaches define AD pathology with binary or categorical variables (e.g: clinical diag-
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nosis [219, 254] or amyloid status [215, 166]) and use machine learning as a multivariate
model. However, the quantization of AD pathology in few categories reduces the mod-
eling capacity of its variability and heterogeneity. To account for that, other works use
single continuous clinical scores [228, 220], which is suited for modeling the later stages
of the disease. Instead, CSF biomarkers, as used in our approach, are shown to better
describe the full spectrum of AD [41]. Another recent multivariate approach to detect
brain changes uses an event-based model (EBM) [175] that clusters subjects depending
on spatially distributed and temporally aligned brain changes, being well-suited for e.g.
patient staging. However, EBM makes a set of assumptions such that biomarkers vary in-
dependently and do not make use of underlying AD pathophysiological markers. Instead
of finding a sequence of events, in this work we could identify few underlying patterns
of brain variability that are maximally related to AD pathology finding three different
types of patterns: age-related, AD-related and mixed age and AD related.

4.5 Conclusions

In this chapter, we study the relationship between brain morphology and AD pathology.
We present a framework able to uncover latent patterns that capture most of the joint
variability between both domains. Moreover, we extend it to embed a confounder model
of brain morphology able to disentangle patterns of normal aging and AD pathology.
Two different analysis of brain structure have been performed: (i) a univariate analysis,
where each brain region is modeled independently and (ii) a multivariate analysis where
we attempt to model inter- and intra-relationships between brain anatomical regions. In
the univariate analysis we show that brain regions are affected different by the underlying
AD pathology with regions more related to amyloid plaques deposition and other to neu-
rofibrillary tangles. Those brain regions are also affected differently throughout different
clinical stages in Alzheimer’s disease. In the multivariate analysis we show that brain
structural patterns of variation along the Alzheimer’s continuum can be age-related, AD-
related and a mixture of both, indicating overlap between aging and disease processes.
An AD-related pattern is found in the first mode of variation and can be seen as the
Alzheimer’s signature also found throughout the literature. A different pattern of varia-
tion is found at preclinical stages fostering a specific preclinial Alzheimer’s signature that
should be further investigated in future studies. An extension of this work might account
for other processes present in the brain of subjects along the Alzheimer’s continuum.
This would need the use of other biomarkers (e.g: DTI, FDG-PET, tau PET) and thus,
an extension of this methodology to multi-domain approaches. In this line, the literature
from the computer vision community on cross-modality retrieval using neural networks,
autoencoders and different regularization strategies would be a good direction to take.



5
MRI and Machine Learning in Clinical

Trials

The preclinical stage of Alzheimer’s disease has become a major focus in AD research
as it constitutes an opportunity for disease modifying therapies. It is believed that
early intervention and prevention have a better chance of success. Following the amyloid
hypothesis, a promising research direction is to study anti-amyloid drugs either to stop
amyloid production or to clear the amyloid from the brain in asymptomatic subjects with
already elevated levels of amyloid. General population screening using gold standard tests
becomes rapidly unfeasible when conducting large-scale studies due to invasiveness and
cost. Hence, in this chapter we propose a protocol for clinical recruitment that includes a
pre-screening layer using machine learning (ML) and magnetic resonance imaging (MRI)
to detect subjects with abnormal levels of amyloid from a pool of cognitively unimpaired
participants. We assess the predictive capacity of the methodology in cross-sectional and
longitudinal studies and its utility in reducing the number of gold-standard tests and the
cost burden in clinical trials.

This work has been done in collaboration with BarcelonaBeta Brain Research Center
(BBRC), his Principal Investigator Dr. Juan Domingo Gispert and Dr. Paula Petrone,
who proposed the longitudinal approach developed in Section 5.4.

5.1 Introduction

In Chapter 4, we showed some of the singular characteristics of the preclinical Alzheimer’s
signature in structural MRI compared to the AD signature. It characterizes early changes
in brain structure due to Alzheimer’s pathology and that might differ from those found
in clinical stages of AD. Structural MRI, as a non-invasive and cheaper biomarker than
invasive pathophysiological AD biomarkers, has great potential applications. Hence, the
first question we attempt to answer in this chapter is whether preclinical Alzheimer’s
pathology can be predicted from MR images. For that purpose, we use machine learning
and cross-sectional data to evaluate the capacity of T1-weighted MR images to predict
amyloid deposition in cognitively unimpaired individuals. We use a pattern recognition
framework similar to the one introduced in Section 2.3. We further investigate whether
other imaging modalities (diffusion and functional MRI) add some value to the final
prediction, even though we rapidly discard functional MRI due to lack of sufficiently clean
data. Secondly, we propose a new protocol for recruitment in clinical trials involving the
previously derived metholdology and we try to assess its potential as a pre-screening tool.
The third question we formulate is whether volumetric rate of change between different
acquisitions carry information about amyloid profile. We derive Jacobian determinant
features as a measure of local tissue change between two acquisitions. A longitudinal
study with follow-up times over 4 years is used to assess group-differences at different
follow-up times. Finally, we attempt to find the minimum optimal time-span between
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(a) Hypothetical biomarker model (b) Hypothetical biomarker model after DMT

Figure 5.1: AD prevention hypothesis: applying disease modifying therapies (DMT)
before neuronal loss may slow down bot dead brain cells and cognitive decline progression.
The figure (a) is based on the cascade hypothesis pictured in [40]. The figure (b) is mainly
intented for visualization purposes and the curves are not based on any theoretical nor
empirial model.

MRI acquisitions to capture differences due to amyloid depositions in the brain and
evaluate the method in the clinical recruitment framework.

5.1.1 Motivation

As detailed in Section 2.1, nowadays Alzheimer’s disease has been established as a con-
tinuum preceded by a preclinical stage defined by cognitively healthy individuals with
abnormal pathophysiological biomarkers. Following the amyloid hypothesis [40], we use
the Aβ status, measured using either CSF lumbar puncture or an amyloid PET scan, to
define subjects at preclinical stage (Aβ-) or healthy controls (Aβ-). This preclinical stage
is thought to last for 15-30 years before the onset of clinical and cognitive symptoms.

To date, agents aiming to slow down cognitive decline in symptomatic subjects have
failed. So far, all phase III clinical trials conducted using agents targeting the amyloid
cascade with the primary goal to halt or lessen disease progression have dropped out.
Nonetheless, the anti-amyloid drugs tested do remove or stop the production of amyloid
in the brain. A great deal of reasons may explain these failures, such as the validity of
the amyloid hyptohesis [255] or the heterogeneity of subjects with not enough evidence
of amyloid [256]. The main reason, though, might be that these trials involved symp-
tomatic subjects, a late stage in the disease continuum. From these failed results, it
seems that once clinical symptoms appear, brain damage may be already irreversible and
intervention at earlier stages of AD (pre-dementia stages) must be considered. There-
fore, interventional studies and clinical trials have been shifting towards prevention of
AD. Here, the preclinical stage is also a window of opportunity for disease modifying
therapies hoping to revert or slow down the course of the disease before it is too late.
We hypothetically represent this idea in Figure 5.1.

The challenge that early interventions are facing is how to identify cognitively healthy
individuals at risk for AD dementia. The current gold standards for participant screening
are amyloid PET and CSF-Aβ. PET scans use radioactive tracers and CSF lumbar
puncture is invasive. Both tests are also expensive and many subjects have to be tested
in order to find a few eligible ones, rising the overall cost of the trial and making it very
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risky undermining the development of preventive therapies. Hence, these techniques are
unsuited for the screening of the general population. Instead, our approach is to use
less invasive and cost-effective tools for pre-screening. In this chapter, we propose to use
machine learning and structural MRI information for prediction of preclinical Alzheimer’s
pathology (i.e. amyloid positivity) and use it for population screening in clinical trials.

5.2 Clinical trials

In this section, we provide an overview of some of the past clinical trials for drug devel-
opment in Alzheimer’s disease that failed and present some of the current clinical trials
in late-stage development (phase II or III). The standard procedure in clinical trials is to
test a treatment in a randomized and double-blinded study splitting the participants into
at least two arms (experimental vs. placebo) and comparing several predefined outcomes
among them. We focus on anti-amyloid therapies even though we show examples of oth-
ers, as well. After that, the initial hypothesis of this work is formulated by proposing a
modified version of the protocol used for population screening in clinical trials. A couple
of models (simple and complex) are derived and used to test the hypothesis throughout
the chapter.

5.2.1 Past clinical trials

The etiology of Alzheimer’s disease is still unknown and hence, several hypothesis are
under study. In earlier times, the neurotransmitter hypothesis was dominant, stating that
the loss of cholinergic neurotransmitters was an indirect cause of cognitive impairment
and that cholinergic drugs would improve cognitive functions [257]. In this line, donepezil
and memantine were approved for medical use in the United States in late 90s and early
2000s. Currently, they are widely used for Alzheimer’s disease interventions, being useful
to relieve symptoms for short period of times, even though they are not able to delay
the progression of AD. Since then, and for more than 15 years, no more drugs have been
approved by the U.S. Food and Drug Administration (FDA) for Alzheimer’s disease
treatment.

At present times, the most prevalent hypothesis is the amyloid cascade, introduced by
John Hardy and David Allsop in 1991 [258]. Anti-amyloid treatments represent almost a
quarter (22.3%) of the total number of clinical trials (N=2173) up to 2019 [259]. Two dif-
ferent types of treatments targeting amyloid deposition can be distinguised: β-secretase
amyloid precursor protein cleaving enzyme (BACE) inhibitors and anti-amyloid beta an-
tibodies. The former attempts to stop the amyloid production while the latter aims at
removing already produced amyloid from the brain. Many pharmaceutical companies are
involved in drug development for Alzheimer’s disease as it may represent huge revenues if
approved for medical use. The most common practice for them is to sponsor clinical trials
in public-private partnerships with institutions, universities, consortiums and initiatives.

Many anti-amyloid treatments have progressed to phase III because they were reported
safe and show the ability to decrease the amount of amyloid in the brain in previous
phases. Safety measures usually involve looking at amyloid related imaging abnormalities
(ARIA) as well as side effects. However, to date, all of them show no significant effect
on primary outcomes, i.e. related to cognition decline between experimental and placebo
arms. Noteworthy, even some BACE inhibitors show worse cognition in participants that
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Failed Phase III trials

Study Main study spon-
sors

Name of the drug Condition

MISSION AD Eisai Elenbecestat MCI due to/mild AD

EPOCH Merck Verubecestat Mild to moderate AD

EXPEDITION-1/-
2/-3/Pro

Eli Lilly Solanezumab Prodromal, mild and mod-
erate AD

Marguerite RoAD Hoffmann-La
Roche

Gantenerumab Mild AD

CREAD Hoffmann-La
Roche

Crenezumab MCI/prodromal AD with
amyloid pathology

EARLY Janssen Atabacestat Asymptomatic at risk of
Alzheimers dementia

ENGAGE/EMERGE Eisai & Biogen Aducanumab MCI due to/mild AD

AMARANTH AstraZeneca and
Eli Lilly

Lanabecestat MCI due to AD and mild
AD

Generation S1/S2 Novartis and Am-
gen

Umibecestat CU with two copies of
APOE4 or one copy and
amyloid positive

Table 5.1: Past phase III clinical trials that failed to show significant results in their
primary outcomes.

undergo the treatment (e.g. AMARANTH and APECS studies) posing questions about
the optimal dose, as high doses have been shown to interfere with synaptic plasticity and
memory formation in mouse studies [260]. A promising BACE inhibitor was tested in
the EARLY clinical trial, but dropped out due to serious liver toxicity and the sponsor
(Janssen), in a press release, concluded that “the benefit-risk ratio is no longer favorable
to continue development of atabecestat for people who have late-onset preclinical stage
Alzheimer’s disease”. Nonetheless, BACE inhibitors remain the leading canditate for
primary intervention. A list of some recent failed clinical trials is found in Table 5.1.

A systemic problem of failed clinical trials is that most of them have no publicly available
data to analyze their failures and normally report that “internal futility studies” (which
balance potential benefit vs. risk) “recommend to discontinue the trial”. Hence, no exact
knowledge from several negative clinical trials avoiding to draw conclusions that could
improve future trial designs. Moreover, these studies may account for risks other than
patient health (e.g: economical) risking small potential benefits.

5.2.2 On-going clinical trials

After the aforementioned results, the community must formulate and try to answer sev-
eral questions ranging from the validity of the amyloid hypothesis and the therapeutic
effect of lowering brain amyloid depositions to clinical trial design. In this line, even
though the amyloid hypothesis is still predominant in current phasse II and phase III
trials (specially using anti-amyloid beta antibodies), there are other hypotheses currently
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Phase II trials

Study Main study spon-
sors

Name of the drug Condition

Abvac40 Araclon Biotech
S.L.

ABvac40 Amnestic mild cognitive
impairment or very mild
Alzheimer’s disease

ACI-24-1801 AC Immune ACI-24 Mild Alzheimer’s disease

DESPIAD University Col-
lege London

CPHPC Mild Alzheimer’s disease

ETHERAL Oryzon ORY-2001 Mild-moderate Alzheimer’s
disease

LAURIET Genentech RO7105705 Moderate Alzheimer’s disease

LM11A-31-BHS PharmatrophiX
Inc.

LM11A-31-BHS Mild-moderate Alzheimer’s
disease

MAPT-CS1 Ionis Pharmaceu-
ticals, Inc.

IONIS MAPTRx Mild Alzheimer’s disease

VALZ-PILOT Hugo Lovheim Valaciclovir Early Alzheimer’s disease

Table 5.2: Phase II trials conducted in Europe that are currently recruiting. Soucre:
Clinical Trial Watch initiative from Alzheimer’s Europe (last accessed: 23-09-2019)

being tested: targeting tau (e.g: RO7105705, IONIS MAPTRx, TRx0237), trageting neu-
rotransmitters (e.g: the dopamine receptor Brexpiprazole), involving diet (e.g: OMEGA3
supplements) and targeting psychiatric disorders such as depression (e.g: Mirtazapine)
or hyperactivity (e.g: Guanfacine), among others. A list of on-going european clinical
trials is shown in Table 5.2 (phase II) and Table 5.3 (phase III).

A common characteristic of past clinical trials of amyloid-related treatments is that all
targeted already symptomatic subjects (prodromal, moderate, mild AD). At these late
stages of the Alzheimer’s continuum is believed that brain damage is already irreversible
yielding no improvement in cognition measures. Thus, amyloid treatments might be
performed earlier in the disease continuum shifting towards prevention of AD. Some of the
treatments that failed in earlier studies (BACE: elenbecestat, or antibodies: solanezumab
and BAN2401) as well as new ones are used in trials targeting cognitively unimpaired
individuals at risk for AD. This risk is evaluated by either amyloid status in sporadic AD
(e.g: A4 study, A45) or by mutation carriers in DIAN-TU Next Generation or ADAD
trial. A list of clinical trials in asymptomatic subjects is shown in Table 5.4.

5.2.3 Hypothesis

In this shift towards secondary and, eventually, primary prevention of AD, clinical tri-
als face the same challenge: how to identify asymptomatic subjects at risk to develop
AD dementia. In familial AD studies, a genetic verification of the autosomal dominant
Alzheimer’s disease mutations (APP, PSEN1, PSEN2) and clinical tests might suffice.
However, for sporadic AD studies, in-vivo gold standard measures of Alzheimer’s pathol-
ogy are required for the intial characterization. Currently accepted pathophysiological
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Phase III trials

Study Main study spon-
sors

Name of the drug Condition

BREXPIPRAZOLE Otsuka Pharma-
ceutical

Brexpiprazole Agitation in people with de-
mentia of the Alzheimer’s
type

GRADUATE 1 &
GRADUATE 2

Hoffmann- La
Roche

Gantenerumab Prodromal to mild
Alzheimer’s disease

LO-MAPT University Hospi-
tal, Toulouse

Omega-3 treat-
ment

Subjective memory com-
plaints of family history of
Alzheimer’s disease

LUCIDITY TauRx Therapeu-
tics Ltd

TRx0237 Mild Alzheimer’s disease

NorAD Imperial College
London

Guanfacine Mild to moderate Alzheimer’s
disease

SYMBAD University of Sus-
sex

Mirtazapine Alzheimer’s disease and agi-
tated behaviours

17-AVP-786-305 Avanir Pharma-
ceuticals

AVP-786 Agitation in people with de-
mentia of the Alzheimer’s
type

Table 5.3: Phase III trials conducted in Europe that are currently recruiting. Soucre:
Clinical Trial Watch initiative from Alzheimer’s Europe (last accessed: 23-09-2019)

Study Main study sponsors Name of the drug Condition

DIAN-TU Next Generation
Trial

Washington Uni-
versity School of
Medicine

Santenerumab or
solanezumab

ADAD mutation
carriers

A4 Trial Anti-Amyloid
treatment in Asymptomatic
Alzheimers Disease

Eli Lilly and Co. Solanezumab CU and Aβ+

The A3 Study: Ante-Amyloid
Prevention of Alzheimer’s dis-
ease

Eisai and NIA/NIH Elenbecestat CU just below
amyloid positive
threshold

The A45 Study Eisai and NIA/NIH BAN2401 and
elenbecestat

CU and Aβ+

Autosomal Dominant
Alzheimers Disease (ADAD)
Colombia Trial

Genentech, Inc. Crenezumab Asymptomatic
subjects who
carry the PSEN1
E280A mutation

Table 5.4: Late-stage development trials (phase II/III or III) that attempt in cognitively
unimpaired subjects.
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biomarkers are either a lumbar puncture or a PET scan which are invasive and radioac-
tive, respectively, and may hinder the initial recruitment process. Moreover, both gold
standard biomarkers are rather expensive representing an important spending in the ini-
tial budget. As reviewed in section 2.1.2, the prevalence of Alzheimer’s pathology in
cognitively unimpaired subjects might be rather low meaning that a great deal of par-
ticipants (those who turn out to be amyloid-negative) would be unnecessarily scanned,
as they won’t take part in the trial. Hence, an important amount of money is wasted
in the screening phase for detecting subjects with Alzheimer’s pathology, which may
unnecessarily increase the overall cost of the trial and so would the risk taken for the
sponsors and collaborators. Therefore, we need less invasive and cost-effective techniques
for Alzheimer’s pathology screening in general population.

In this chapter, we follow the amyloid hypothesis and thus, restrict the analysis on
cognitively unimpaired subjects with evidence of amyloid positivity (which we refer to as
preclinical subjects) as inclusion criteria. Our first hypothesis is that MRI can be used
as a non-invasive and cheap biomarker for predicting amyloid positivity in asymptomatic
subjects using machine learning techniques. If this holds true, the second hypothesis is
that it can be used in clinical trials as a prescreening tool that may reduce the number
of unnecessary gold standard tests and with that, the overall cost of the trial.

5.2.3.1 Standard vs. proposed clinical recruitment protocol

In clinical trials, the standard (S) recruitment protocol (Figure 5.2a) starts by a initial
screening of the general population to build a initial pool of NS cognitively healthy
participants measured using standard clinical and cognitive tests. All NS participants
undergo a MRI scan to exclude subjects with brain injury and other unmet radiological
criteria, leaving a total of MS subjects. Finally, all MS subjects are tested using gold
standard measures (PET or CSF) looking for K amyloid positive subjects to enter the
trial.

In the proposed (P) protocol (Figure 5.2b), we will add a layer of machine learning that
will capitalize on already acquired images to pre-filter subjects which are more likely to
be positive in the gold standard. If this approach is viable, this classifier would avoid
unnecessary PET/CSF acquisitions. Since the pre-screening is not ideal, for the same
number of K amyloid positive subjects we would require a larger intial pool of cognitively
unimpaired subjects NP > NS . Assuming the same drop-out rate in the radiological
exclusion criteria, we use all the available MRI scans for the remaining subjects to predict
their amyloid status using machine learning. We then select those subjects most likely to
be amyloid positive and, if our hypothesis holds true, a smaller number of subjects will
remain to be tested using gold standard measures MP < MS yielding the same number
of K amyloid positive subjects in the end.

5.2.4 Savings

To study the viability of the proposed protocol, we analyze its performance in terms
of overall savings that, at the same time, depends on the performance of the machine
learning algorithm, the expected prevalence of amyloid positive subjects in the general
population ρ = 20%, the cost of the gold standard test (CPET = 3000AC)), MRI acquisi-
tion (CMRI = 700AC)) and clinical/cognitive assessment (CCOG = 200AC).
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Figure 5.2: Outline of clinical recruitment protocol of subjects with preclinical (PC)
Alzheimer’s pathology. (a) Standard recruitment protocol used in clinical trials. (b) Our
proposed protocol with MRI-based machine learning. In the standard protocol, cogni-
tively unimpaired participants undergo an MRI scan to identify radiological exclusion
criteria (e.g. cerebrovascular disease). All cognitively unimpaired subjects with no brain
injuries then participate in a PET/CSF test, and the fraction of Aβ positives is deter-
mined only by the disease prevalence. The proposed protocol adds an exclusion layer in
which automated MRI-based classification predicts a subset of amyloid positive subjects
that are later subjected to PET/CSF acquisition. In this case, the target cohort is defined
by the true positive rate (TP%) of the classification algorithm. The initial participant
pool needs to be larger for the proposed protocol due to classifier false negatives that
may be excluded.
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In statistical learning, to evaluate the performance of algorithms, the confusion matrix
and its measures are often used. The confusion matrix is defined as follows:

C =

[
TP FP
FN TN

]
(5.1)

where TP are the true-positives, FP are false-positives, FN are false negatives and TN
are true negatives. See that amyloid positive subjects correspond to positive samples
(P = TP + FN) and are represented in the first row while healthy control subjects are
negative examples and represented in the second row (N = FP + TN ). Predicted amyloid
positive (TP + FP) and predicted healthy controls (FN + TN ) correspond to first and
second columns, respectively. From the confusion matrix, other metrics arise:

Precision (P) =
TP

TP + FP

Recall or sensitivity (R) =
TP

TP + FN

Specificiy (S) =
TN

TN + FP
(5.2)

Accuracy (A) =
TP + TN

TP + TN + FP + FN
F1-score (A) = 2

PR

P +R

We develop two different models to represent a real clinical recruitment scenario: a simple
model of a frictionless scenario (no drop-out) used to present preliminary results and a
more complex model for further applications.

5.2.4.1 Simple model

In the standard protocol, cognitively healthy participants first undergo an MRI scan to
identify radiological exclusion criteria (e.g. cerebrovascular disease). In this model we
consider the ideal scenario where no subjects drop out at this stage (MS = NS) and we
will tackle the non-ideal case afterwards. Hence, all subjects are then tested using either
PET or CSF. The number of Aβ positive subjects recruited, K, is given by the expected
disease prevalence as K = ρ ·NS , where NS is the total number of individuals that will
be screened. The overall economic cost in this scenario can be expressed as:

CS = NS · (CPET + CMRI) =
K

ρ
· (CPET + CMRI) (5.3)

However, this procedure is costly and invasive and hampers large-scale studies. We
propose another methodology that uses the available MR images and machine learning
(ML) in the first place and provides an initial classification between healthy controls
and subjects within the preclinical stage of AD. Then, only the subset of participants
predicted as potential Aβ positives subjects by the machine learning algorithm (MP =
TP + FP ) undergo a verification step using a PET scan, where TP and FP are the
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truly and falsely predicted positive respectively (Equation 5.1). The cost of the proposed
methodology, CP , is

CP = NP · CMRI +MP · CPET (5.4)

where NP is the required number of intial participants in the proposed protocol with
machine learning. The number of participants in the MRI-based screening is defined by
the Aβ positives (TP + FN) in the sample. Then, in the frictionless scenario assumed
before where all subjects pass the radiological exclusion criteria (NP = MP ), the total
amount of participants is NP = (TP + FN)/ρ, where TP = K is the target number of
Aβ positives that need to be recruited. Using NP , TP and the formulae for precision
and recall (Equation 5.2), Equation 5.4 can be rewritten in terms of K, P (precision)
and R (recall) as:

CP =
1

ρ
· (TP + FN) · CMRI + (TP + FP ) · CPET =

K

ρ
· CMRI

R
+
K

P
· CPET (5.5)

CP =
K

ρ
·
(
CMRI

R
+ ρ

CPET
P

)
(5.6)

In addition, the number of individuals predicted Aβ+ that will undergo PET/CSF vali-
dation is :

MP = TP + FP =
TP

P
=
K

P
(5.7)

We can calculate the percentatge savings as the differences in cost:

SavingsCOST =
CS − CP
CS

= 1− 1

1 + Cratio

(
Cratio
R

+
ρ

P

)
(5.8)

where Cratio = CMRI
CPET

is the cost ratio of the scans. Savings in terms of participant burden
(i.e. avoided PET/CSF tests):

SavingsCSF/PET =
NS −MP

NS

SavingsCSF/PET = 1− ρ

P
(5.9)

While the number of participants that will avoid a CSF/PET due to the classifier layer
depends on the classifier precision, the total number of participants that need to be
screened depends on the recall: NP = K/R. Thus, we use precision-recall (PR) curves to
compute the savings achieved and assess the performance of the classification algorithm.
We overlap the PR curves with a savings’ heatmap to produce a full description of the
system’s performance and add several contour lines connecting points in the PR curve
with constant savings.
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5.2.4.2 Complex model

A more complex model is developed, taking into account a three layer of exclu-
sion/inclusion tests that are applied sequentially: cognition/clinical assessment, MRI
and PET/CSF acquisition. Cognition/clinical tests involve a visit with a doctor and
cognitive tests that are designed to rule-out individuals with mental disorders that may
interfere with the study outcomes (the rate of individuals excluded by this test is es-
timated at eCOG=30%). An MRI scan is intended to identify incidental findings such
as cerebrovascular disease. The amount of individuals excluded due to brain injury is
estimated as eMRI=20%. Individuals who pass these requirements are considered cogni-
tively healthy subjects with no brain injuries and they participate in a PET/CSF study
to test for abnormal Aβ levels (Figure 5.2a). Estimates of exam costs are:

CS = NCOG · CCOG +NMRI · CMRI +NPET · CPET (5.10)

where CS is the cost of standard protocol for a fixed number of K amyloid-positive
subjects, NPET = MS = K

ρ is the required number of subjects that are tested using gold

standard measures, NMRI = K
ρ·(1−eMRI)

is the required number of subjects that undergo
an MRI scan taking into account a certain amount of dropout rate due to radiological
exclusion criteria and NCOG = K

ρ·(1−eMRI)(1−eCOG) is the required pool size of subjects
that are tested clinically taking into account a certain amount of dropout rate due to
clinical exclusion criteria.

The factors
(

1
1−eMRI

)
and

(
1

1−eCOG

)
increase the amount of subjects to be screened to

compensate for the amount of subjects excluded by brain injury and abnormal cognition
respectively. This can be factored in as an increment in the cost of the tests:

ĈMRI =
1

ρ · (1− eMRI)
· CMRI

ĈCOG =
1

ρ · (1− eMRI) (1− eCOG)
· CCOG

Then:

CS =
K

ρ

(
ĈCOG + ĈMRI + CPET

)
(5.11)

Our proposed protocol incorporates an exclusion layer in which automated MRI-based
classification predicts a fraction of Aβ+ subjects that are likely to test positive in a
CSF/PET scan (Figure 5.2b). The predictions amount to MP = TP + FP . The follow-
ing equations estimate the percentage of savings obtained by using the desired protocol
instead of the standard protocol to recruit an identical number of Aβ+ individuals. Es-
timates of the exam costs take into account the machine learning classifier P (prediction)
and R (recall):

CP = N
′
COG · CCOG +N

′
MRI · CMRI +N

′
PET · CPET (5.12)

where CP is the cost of the proposed protocol and for a fixed number of K amyloid-
positive subjects, N

′
PET = MP = K

P is the required number of subjects that are tested
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using gold standard measures, N
′
MRI = K

ρ·(1−eMRI)R
is the required number of subjects

that undergo an MRI scan taking into account a certain amount of dropout rate due to
radiological exclusion criteria and N

′
COG = K

ρ(1−eMRI)(1−eCOG)R is the required pool size
of subjects that are tested clinically taking into account a certain amount of dropout rate
due to clinical exclusion criteria. Substituting those expressions, the overall cost of the
proposed protocol is:

CS =
K

ρ

(
ĈCOG
R

+
ĈMRI

R
+ ρ

CPET
P

)
(5.13)

Hence, the fraction of savings can be computed as follows:

SavingsCOST =
CS − CP
CS

= 1− 1

1 + Cratio

(
Cratio
R

+
ρ

P

)
(5.14)

where now, the cost ratio between cognitive and MRI costs and gold standard measures

cost is Cratio = ĈCOG+ĈMRI
CPET

. Hence, we see that the reduction of CSF/PET tests is the
same for either model, while for the savings related to cost the only difference is the cost
ratio between pathological markers and other tests. In the simple model only MRI is
considered, while in the more complex we account for cognitive testing and drop-out rate
due to exclusion criteria, hence increasing the cost ratio.

5.3 Cross-sectional analysis

We begin by developing a proof-of-concept using cross-sectional data and study the vi-
ability of the proposed protocol using the simple savings models. We finally report the
results using both savings models presented.

5.3.1 Material and methods

5.3.1.1 Subjects

CSF as well as T1 and DTI imaging data from 96 subjects of the ADNI cohort [241] has
been downloaded. This subset of ADNI is selected to collect T1 and DTI images acquired
on the same 3T scanner. In this sample, cognitively normal subjects are classified as PC
if they had Aβ42 CSF concentration below 192 pg/mL and as healthy control (HC) if
else. This threshold for Aβ positivity (Aβ+) is selected as it optimally discriminates
between controls and AD-dementia patients on the ADNI-independent autopsy-based
AD CSF samples analysed with the multiplex xMAP Lumnex platform [170]. MCI
and AD-dementia classification criteria applied in the ADNI project have been reported
elsewhere [38] and are further refined by exclusively considering Aβ+ individuals. This
classification criteria results in 28 healthy controls (HC), 16 PC, 23 MCI due toAD (MCI),
29 dementia due to AD (AD-dementia) subjects.

Equivalent CSF, T1 and DTI imaging data is also acquired from a single-site cohort at
the AD Unit Hospital Clinic of Barcelona (HCB) including 87 subjects (40 HC, 12 PC, 21
MCI due to AD (MCI), 14 dementia due to AD (AD-dementia)). Subjects are classified
as PC if they were cognitively normal and Aβ+, defined according to recommended
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Age Sex (M/F) School years APOE-ε4 carriers # Subjects

ADNI (All) 73.4 ( 5.3) 20/25 16.9 ( 2.5) 18 45

ADNI (HC) 72.0 ( 5.2) 14/15 17.2 ( 2.6) 8 29

ADNI (PC) 75.8 ( 4.6) 6/10 16.2 ( 2.1) 10 16

HCB (All) 64.6 ( 9.2) 33/19 11.6 ( 4.3) 19 52

HCB (HC) 61.1 ( 8.5) 26/14 11.9 ( 4.4) 13 40

HCB (PC) 72.7 ( 6.0) 7/5 10.6 ( 4.0) 6 12

Table 5.5: Demographics of the ADNI subset and HCB cohort used for this study

reference values with the INNOTEST ELISA (CSF Aβ42 < 500 pg/mL) [164, 162, 90].
Criteria for MCI and AD-dementia have been previously reported [164] and, of note,
only included Aβ+ patients. The local ethics committee approved the study and all
participants gave written informed consent.

5.3.1.2 Image acquisition and processing

HCB participants undergo MRI in the same 3T Siemens TrioTIM scanner providing
3D T1- weighted images with the following parameters: Repetition Time (TR) = 2300
ms, Echo Time (TE) = 2.98 ms, Inversion Time (TI) = 900 ms, Flip Angle = 9, voxel
resolution of 111 mm3 on 240 sagittal slices; and two diffusion-weighted sequences: TR
= 7600 ms, TE = 89 ms, Flip Angle = 90, 30 non-collinear directions (b = 1000 s/mm2)
and 1 non-gradient volume (b = 0), voxel size of 2.05 x 2.05 x 2 mm3 on 60 axial slices.
ADNI participants are scanned on 3T MRI devices, comprising 3D T1-weighted images:
TR = 7.256 ms, TE = 2.988 ms, TI = 400 ms, Flip Angle = 11, voxels resolution of 1.02
x 1.02 x 1.2 mm3 on 196 sagittal slices; and a diffusion-weighted sequence: TR = 13000
ms, TE = 69.1 ms, Flip Angle = 90, 41 non-collinear directions (b = 1000 s/mm2) and
5 non-gradient images, voxel resolution 1.3672 x 1.3672 x 2.7 mm3 on 59 axial slices.

T1-weighted images are segmented with the Statistical Parametric Mapping (SPM)
VBM8 toolbox [261] to obtain CSF, grey matter (GM), and white matter (WM) proba-
bilistic maps. Then, a binary GM mask is formed by those voxels whose probability of
belonging to GM is bigger than the probability of belonging to any other tissue. The
AAL atlas [80] in the Montreal Neurological Institute (MNI) standard space is warped
to each subjects T1 native space by means of ANTS [85] and using the DARTEL tem-
plate obtained from the segmentation step. AAL maps are resliced to the T1 resolution
using nearest neighbour interpolation and intersected with the GM mask. Volumes of all
AAL regions are computed for every subject and normalized by total intracranial volume,
calculated as the sum of the CSF, WM and GM masks.

Structural connectivity matrices (SCM) are also computed. To this end, AAL regions
are superimposed to the DTI data using a similar protocol as the one described above.
For tractography, to create a seed mask insensitive to grey matter volume changes, the
interface between grey and white matter is dilated by one voxel. Then, probabilistic
tractography is performed between pairs of AAL regions using FSL’s ProbtrackX [86]
(see further details in [90]).
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Figure 5.3: Core model training and validation for automated MRI-based classification
of Aβ positive (Aβ+) subjects using logistic regression. The ADNI dataset is used for
model training. Feature extraction from GMVs of ROIs is followed by feature selection
for dimensionality reduction. The parameters of the model are optimized iteratively
based on the training data to maximize performance measured in terms of area under
the receiver-operating characteristic curve (ROC). The final model is tested on the HBC
dataset to predict Aβ+ subjects and validated using CSF biomarkers as ground truth.
Model predictivity and performance are assessed in terms of area under the ROC and the
overall savings produced in the alternative recruitment scenario that includes MRI-based
classification.

5.3.1.3 Overview of machine learning methods

Our core machine learning pipeline is trained using the ADNI cohort dataset and tested
with our local dataset from HBC (Figure 5.3). The performance of the overall system is
validated using CSF biomarkers as gold-standard.

Feature extraction and selection. Feature selection techniques are used to retrieve
a reduced set of informative features from high dimensional medical images. From each
T1-weighted image, we extract a 90-dimensional vector corresponding to the grey matter
volume (GMV) of each of the 90 regions of interest (ROIs) described in the AAL atlas.
From each DTI image, we extract a 90x90 structural connectivity matrix (SCM) for
atlas ROIs (SCM). Due to its symmetry, the upper triangular of SCM determines a
4005-feature vector.

The different acquisition protocols across medical centers introduce biases that are re-
flected in considerable variability in the distribution of imaging feature vectors. Thus,
imaging features are normalized using z-scores computed independently for each cohort
to make data comparable and ensure standardized feature weights.

Different filter feature selection methods have been compared for performance. We focus
on balancing the relevance and the redundancy of the subset of features and three meth-
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ods are evaluated for this purpose: F-test, mRMR-FCD and mRMR-FCQ [262]. The
first two provided optimal performance in the selection of T1 and DTI imaging features
respectively and were used throughout this study. We discard the use of wrapper and
embedded feature selection methods since they are sensible to small sample sizes and
result in high generalization error indicating severe overfitting of the training set.

Classification. Cognitively unimpaired individuals (HC and PC) in the two cohorts
are used to train and test a classifier to predict dichotomous Aβ status (either positive
or negative). The ADNI cohort is used for training the classifier and the HCB data
for test. In addition, two different classifiers are built, one based on T1 data alone and,
another one, based on a combination of T1 and DTI data. Different classification schemes
are tested out, including logistic regression (LR), support vector machine (SVM) with
linear and gaussian kernels, random forests and k-nearest neighbours. Linear models
(logistic regression and linear-SVM) are the most succesful in practice, giving similar
results in practice. Finally, due to slightly better performance and easier interpretation
of the model, a binary LR classifier is used with L2 regularization and a penalty term
λ, optimized by a leave-one-out cross-validation strategy in the ADNI cohort. The LR
classifier outputs a score for each subject that can be interpreted as the probability of
being Aβ+ or Aβ-, as validated by the CSF biomarker readout. The optimized model
is tested for performance in terms of the savings in cost of clinical trial recruitment.
To this end, precision (fraction of positive prediction correctly classified), recall (also
known as sensitivity, i.e. fraction of positive instances correctly classified) and specificity
(fraction of negative instances correctly classified) are calculated using the dichotomized
CSF Aβ as gold standard. Precision-recall (PR) and receiver-operating characteristic
(ROC) curves are also computed to evaluate method performance. For a target normal
population of mean age 65, the prevalence of amyloid pathology is estimated to be 20%
[55]. We employ a bootstrapping approach to simulate the required disease prevalence
and iteratively repeat the classification protocol, yielding different splits of the test set
at each run. For that purpose, at each iteration we randomly select Ntest subjects form
the test set with an HC/PC ratio fixed by the prevalence ρ. As a parallel analysis
and for the sake of comparability with previously reported AD-dementia/MCI classifiers,
an “optimized diagnostic” classifier is derived with an identical pipeline and using HC,
MCI and AD-dementia subjects in the two cohorts to discriminate between HC-MCI and
HC-AD-dementia (for further details see Appendix B.1.1). Finally, we also assess the
performance of the classifier optimized to discriminate PC from HC to classify between
of HC vs. clinical diagnostic categories (MCI and AD-dementia).

5.3.2 Results

First we report our standardization protocol to make data actionable across training and
testing cohorts (Section 5.3.2.1). Then, we evaluate the performance of a classifier based
on GMV from T1-weighted images only (Section 5.3.2.2) and an extended classifier based
on a combination of T1 and DWI features (Section 5.3.2.3). Demographic characteristics
of the studied samples are shown in Table 5.5.

5.3.2.1 Data normalization

Following normalization of the raw imaging features from the training cohort (ADNI) and
test cohort (HCB), the resulting distributions of z-score features are confirmed as match-
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Figure 5.4: Examples of distributions of T1 features for three GMV ROIs (a) before and
(b) after the z-score normalization. The ADNI and HBC cohort distributions are shown
in red and blue respectively.

HC vs. PC

Features AUC Precision Recall Savings% (Cost) Savings% (CSF/PET)

10 0.65 0.48 0.75 40.9 58.3

20 0.76 0.54 0.83 47.1 62.9

30 0.70 0.37 0.83 33.4 45.9

40 0.65 0.42 0.66 32.7 52.3

50 0.61 0.36 0.58 22.3 44.4

Table 5.6: Performance of the PC classification model according to the number of features
selected (10, 20, 30, 40, 50). In the classification HC vs PC, optimal performance (AUC
= 0.76) is achieved with 20 features and the optimal P-R threshold that produces the
highest savings is highlighted.

ing distributions under the Kolmogorov-Smirnov (KS) test (p <= 0.05) (Figure 5.4).

5.3.2.2 Classification of PC subjects using T1-weighted images

F-test selection provides the most discriminative features in the classification HC vs
PC based on ADNI data (Figure 5.5, Appendix B.1.2). The classification algorithm
provides a ranking and a weight for these features (Figure 5.5) based on their relevance.
Maximal area under the ROC curve (AUC) and maximal clinical recruitment savings can
be achieved for 20 T1 features (Table 5.6).

Using the complex model presented in 5.2.4.2, for a machine learning classifier with P=
0.54, R= 0.83, the savings in the cost of recruiting 300 subjects amounts to: 34%. In
terms of amount of CSF/PET scans saved it is kep to 62.9%. as it only depends on the
preclinical prevalence and the precision of the method.
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Figure 5.5: (a) ROI Features selected for the best performing method (F-test, 20 fea-
tures). (b) Ranked list of most informative features according to the weights provided
by the LR decision function (ADNI cohort). (c) ROC analysis of the method perfor-
mance for 10, 20, and 30 top ranking features based on the validation cohort (HCB). (d)
SavingsCOST as a function of precision-recall calculated based on the optimal number
of features (n = 20) applied to the HCB cohort. Color scale and dashed contour lines
indicate savings. In particular, a contour line with savings= 0.001 demarks the bound-
ary of area of the precision-recall curve above which savings > 0. Optimal PR threshold
provides the highest savings (P = 0.54, R = 0.83, Savings = 47%). Horizontal dotted line
at P=0.2 denotes savings of a random classifier, note that this precision value is equal to
the prevalence of the PCs population.
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HC vs. PC

Features AUC Precision Recall Savings% (Cost) Savings% (CSF/PET)

10 0.70 0.41 0.68 32.6 51.2

20 0.65 0.60 0.59 40.9 66.6

30 0.70 0.54 0.59 37.9 62.9

40 0.69 0.83 0.51 43.3 75.9

45 0.69 0.85 0.60 49.3 76.5

50 0.70 0.66 0.60 43.8 69.7

Table 5.7: Performance of classification according to the number of features selected (10,
20, 30, 40, 45, 50). Optimal performance (AUC = 0.69) is provided by 45 features. The
optimal PR threshold that produces the highest savings is listed (SavingsCOST = 49%,
SavingsCSF/PET = 76.5%).

5.3.2.3 Classification of PC subjects using multimodal feature vectors

Multimodal classification is performed combining imaging features from T1 and DTI.
Z-score transformed features concatenated from both modalities yield 4095-dimensional
feature vectors. The optimal PR threshold that yields the highest savings depends on
the number of features used in the classifier (Table 5.7, Figure 5.6). Feature selection
with the mRm-FCD [262] method results in a 45-dimensional feature vector (features
listed in Appendix B.1.3). Notably, only 2 out of these 45 most informative features are
T1 features (feature 18: Olfactory (L), feature 23: Pallidum), while 43 are DTI feature-
pairs. This result suggests that DTI features may be more informative than T1 features
for identifying preclinical subjects. Figure 5.6 shows the most DTI-connected regions,
given by the weighted sum of the DTI-feature pairs and reflects their relevance in the
identification of PC. For example, the Pallidum is highlighted as a ROI with multiple
connections as well as by itself as a GMV feature. Remarkably, almost same performance
(AUC) and cost savings are obtained for both T1 and the multimodal classifiers but
precision is higher (P = 0.85) in the multimodal model than in the T1 case (P = 0.54)
resulting in larger savings with regards to participant burden (76.5%). The description
of the association between CSF A42 levels and tractography falls beyond the interest of
this work as it has been described elsewhere [90]

Using the complex model presented in 5.2.4.2, for a machine learning classifier with P=
0.85, R= 0.60, the savings in the cost of recruiting 300 subjects amounts to: 36%. In
terms of amount of CSF/PET scans saved it is kept to 76% as it only depends on the
preclinical prevalence and the precision of the method.

5.3.3 Discussion

Our work investigates the automated screening of PC individuals using machine learning
methods on features derived from structural MRI. We present the potential integration
of such a technology as a pre-screening tool for the recruitment of subjects in secondary
prevention trials and present a framework to quantify the benefits of such approach in
economic and participant burden terms. Noteworthy, it is not proposed to replace the
gold standard PET/CSF tests, but to provide a prediction of amyloid positivity in order
to avoid unnecessary PET/CSF tests and, thus, reduce participant burden and economic
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Figure 5.6: (a) Example ROI DTI connections to Pallidum as feature-pairs in the multi-
modal vector for machine learning. (b) Ranked list of most connected ROIs according to
weighted sum of features from the SCM matrix based on the training set ADNI. Weights
are provided by the LR decision function. (c) ROC analysis of the method performance
for 30, 44, and 55 top ranking features for the multimodal T1+DTI feature vector based
on validation dataset HCB. (d) SavingsCOST as a function of precision-recall calculated
based on the optimal number of features (n = 45) calculated on the validation dataset
HCB. Color scale and dashed contour lines indicate savings. Contour line with savings=
0.001 demarks the boundary of the meaningful area of the precision-recall curve below
which all savings= 0. Optimal P vs R pairing provides the highest savings (P = 0.85,
R = 0.60, SavingsCOST = 49%). Horizontal dotted line at P=0.2 denotes savings of a
random classifier.
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costs.

Validation across cohorts. We utilize public MRI and CSF data available from ADNI
for feature selection and model training. Our independent HCB cohort serves for model
testing, simulating a real trial recruitment scenario. The data normalization scheme
enables validation overcoming the differences between data acquisition protocols and
scanners in both institutions. Thus, the relevance of our models can be generalized to
other population samples, with different age and education ranges. Of note, performance
of the algorithm is stable when reversing the training and test datasets. Therefore, we
foresee that the performance of our PC classification will hold when prospectively applied
to independent cohorts with practical utility for PC screening purposes.

Feature selection. By design, our data-driven approach is agnostic to previously re-
ported anatomical changes due to AD. This allows us to validate the selected features
given their role in preclinical and prodromal stages of AD according to the literature. As
expected, many of the features found informative in PC classification relate to the estab-
lished AD signature. In the case of T1, characteristic AD affected regions include atlas
ROIs such as the hippocampus and amygdala, temporal and parietal areas as well as the
cingulum, thalamus, rectus and fusiform giri (Figure 5.5). Regions such as olfactory bulb
pertain to well documented alterations of the olfactory system in the pathogenesis of
AD and other dementias [209]. Other regions showing a high discriminative power such
as the caudates, have been found altered in cognitively normal individuals at high ge-
netic risk of developing AD [263, 264]. Finally, the role of other regions such the globus
pallidus is not as clear in PC (Figure 5.6). One explanation would be that this atlas
ROI includes the nucleus basalis of Meynert, which is an adjacent region not explicitly
identified in the AAL parcellation. In a previous voxelwise analysis of the HCB cohort,
the nucleus basalis showed alterations in PC [162] and, moreover, this region has been
consistently reported to degenerate in early AD stages [128]. Interestingly, the features
that classify between HC and PC yield an AUC<0.2 to discriminate among HC and the
diagnostic categories (i.e. MCI, AD-dementia). An AUC significantly departing from 0.5
is classifying de facto. However, being well below 0.5 suggests that some features that
characterize PC from HC appear in the opposite direction as some of the features that
classify HC vs. AD-dementia. This interpretation is further reinforced by the fact that
classification models built using an identical pipeline but trained specifically to recognize
diagnostic categories perform accordingly to what has been reported in the literature
(AUC=0.95 for 20 T1 features, P=1.0, R=0.76), and are based mainly on hippocampal
and temporal lobe volumes (Appendix B.1.1). Future work should improve the iden-
tification of discriminant brain regions using voxelwise approaches to fully characterize
the preclinical AD signature using MRI and to identify overlaps with the established
AD signature [264]. Overall, our results show that feature selection has prioritized DTI
features over T1 features in a multimodal imaging vector. Thus, DTI feature-pairs may
be more robust than T1 features, compensating for the lower image quality (resolution,
noise, blur) and artifacts given by surrogate measures of brain anatomical connectivity
in DTI. Also, DTI conveys complementary information from white matter connectivity.
Our data raises the question of whether changes in connectivity may be more evident
in early AD than volumetric changes [90]. Nevertheless, the relevance of DTI over T1
features observed in this study should be further confirmed in other datasets. Despite
its similar performance, the multimodal model is more precise than the T1-based model,
which translates into less false positives and therefore less unnecessary PET/CSF tests
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Simple protocol Complex protocol

T1 T1 + DTI T1 T1 + DTI

Savings in cost (AC) 47% 49% 34% 36%
Savings in PET/CSF 63% 76% 63% 76%

Table 5.8: Savings summary using the simple and the complex model for population
screening in clinical trials.

in exchange for more MRI scans given the low recall of the model.

Range of application and PC prevalence. In this proof-of-concept study, our MRI-
based classifier thresholds are optimized to maximize the cost savings. The model can be
tuned for other applications such as minimizing participant burden (Equation 5.9). The
practical utility of our MRI-based screening protocol highly depends on the prevalence of
PC subjects, which in turn, is intimately related with the age range and age distribution
of the clinical study. At lower disease prevalence, savings rely on higher classifier preci-
sion to make the MRI-based screening layer worthwhile (Equation 5.8). This proposed
recruitment protocol is most efficient for younger cohorts which are also best suited for
secondary intervention trials.

Precision vs. recall. Higher classifier precision reduces the number of unnecessary
PET/CSF acquisitions (less false-positives). Higher classifier recall reduces the size of
the initial participant pool for which MRI images need to be acquired by limiting the
amount of false negatives that are missed in the classification. Ensuring a cognitively
healthy participant pool also incurs associated costs (e.g. additional cognitive/clinical
tests) that scale up with the number of participants. While it is true that MRI-based
screening relies on recruiting a larger initial cognitively healthy participant pool and
therefore more MRI scans and cognition tests, we estimate that the proposed protocol is
still more efficient in terms of saving economic and participant burden.

Example of application. In a standard clinical trial recruitment protocol, if the preva-
lence of PC is 20%, 1500 individuals need to undergo CSF/PET test in order to identify
300 Aβ+ subjects. First, a preliminary MRI scan is acquired to exclude participants
displaying incidental findings or other neuroradiological exclusion criteria. Instead, a
modest MRI-based classifier (0.54 precision/0.84 recall), requires 1807 MRI images to
predict an identical pool of 300 Aβ positive individuals. From these images, only 555
will be predicted positive and sent for CSF/PET validation, with 300 resulting to be true
positive and 255 will be false positives. This second protocol would spare 945 PET/CSF
tests, in exchange for the additional 307 MRIs required to compensate for the false
negatives missed by the classifier. In economic terms, the savings provided by the MRI-
screening layer can prevent up to 63% unnecessary PET/CSF scans and save 47% of the
cost as compared to the standard protocol that relies only the gold standard CSF/PET
measures. Smaller figures are reported if using the more complex model introduced in
Section 5.2.4.2, as seen in Table 5.8

Comparison to other approaches to detecting Aβ. At present, blood-based ap-
proaches to detecting Aβ+ are being actively pursued [265, 266, 267].These methods show
a high concordance (AUCs 0.80-0.90) between plasma Aβ species against PET imaging.
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Unlike our PC group that only included cognitively normal subjects, the performance of
these methods was estimatied including MCI and/or AD-dementia patients which might
have favoured them. Nevertheless, these works demonstrate a link between cerebral and
peripheral Aβ alterations and, when validated and automated, they will represent a ma-
jor resource to screen the general population and implement secondary AD prevention
strategies. On the other hand, our MRI-based approach might be particularly useful in
the context of research studies in which CSF and or PET imaging is envisaged, as in this
case MRI scans are typically prescribedfor safety reasons.

Limitations. The main limitation in our study is the small sample size of the studied
groups. This is due to the limitation of available T1 and DTI data of the same individ-
uals in the two cohorts. Nevertheless, previous reports on standardizing the evaluation
of algorithms for computed-aided diagnosis of dementia based on structural MRI recom-
mend using small training sets (N ≈ 30) to mimic the clinical setting where limited data
is available and to avoid overtraining issues [268]. On the other hand, to maximize the
generalizability of the developed methods, they prioritized applying the algorithms to
independent datasets with different demographics and scanning parameters. Based on
this rationale, we prioritised testing the algorithm in independent cohorts over the total
sample size. Nevertheless, future studies will focus on validating similar approaches in
larger test sets to better account for sample demographics and confounders. To this end,
and given the results in this report, T1 data might solely achieve similar levels of clas-
sification accuracy. In addition, the small sample size has limited the complexity of the
machine learning schemes that could be implemented robustly. Future studies with bigger
samples sizes will also allow the investigation of potential improvements in classification
performance of more complex classifying schemes. Nevertheless, we consider this work
as a promising proof-of-concept as, even with a simple logistic regression model, robust
performance can be achieved across two independent datasets with distinct demographic
characteristics, potentially leading to significant savings of gold-standard procedures.

Another limitation of our experimental approach is that thresholds for Aβ+ might not be
completely equivalent across the two cohorts. The respective CSF Aβ cut-offs have been
independently validated to yield optimal discrimination between HC and AD-dementia
patients on the respective analytical platforms (INNOTEST ELISA for HCB and xMAP-
Luminex for ADNI). While absolute values are definitely not comparable, the correlation
between them has been shown to be very high (r> 0.75 [269, 270, 271]. Nevertheless,
according to published conversion equations, the respective thresholds are within the
interlaboratory reproducibility of the analytical platforms which fall in the rage of 15-
30% [272]. Based on this rationale, we prefer to use published and validated cut-offs for
comparability with previous reports with the respective datasets. A similar limitation
may arise from equating positivity based on CSF and PET data unless cut-offs are defined
against modalities, like in [273].

5.4 Longitudinal analysis

In this section, we study how amyloid positivity affects rate of change in brain mor-
phological features. Moreover, we aim at finding the minimal follow-up time to detect
substantial changes in brain structure.
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Number of visits Number of subjects

2 295

3 63

4 27

5 15

6 3

Total 403 subjects and 841 Jacobian maps

Table 5.9: Distribution of the number of 3D-T1 MRI acquisitions per subject.

5.4.1 Material and methods

5.4.1.1 Subjects

Subjects for this study are selected from the ADNI database [241] provided that they
have two or more longitudinal 3D-T1 MRI acquisitions and cerebrospinal fluid (CSF)
biomarker data publicly available. Subjects are assigned biomarker-assisted diagnostic
categories following recently published guidelines [16]. Subjects labelled as “Normal” in
ADNI were classified as amyloid negative cognitively unimpaired healthy controls (HC)
if CSF Aβ was above 192 pg/mL and preclinical (PC) if CSF Aβ was below 192 pg/mL.
Subjects are categorized as MCI dut to AD (MCI) or dementia due to AD (AD-dementia)
according to the ADNI diagnostic categories reported in [38] and we select only those
individuals with CSF Aβ levels below 192 pg/mL to exclude subjects harboring non-AD
pathological changes. At baseline, this diagnostic algorithm yield 79 HC, 50 PC and
274 MCI/AD-dementia, a total of 403 subjects with complete imaging and CSF data.
As an additional inclusion criteria, in follow-up visits, all subjects must remain stable
in the same diagnostic category. We exclude subjects that progress between diagnostic
categories within the time span of the study due to small sample size (13 PC converters
from HC, 13 MCI/AD-dementia converters from PC and 1 MCI/AD-dementia converter
from HC).

5.4.1.2 MRI data

Structural 3D-T1 MRI images are acquired across different scanners and institutions.
Each image is associated with a cognition score and a set of CSF biomarker values
(amyloid-beta, total tau and phosphorylated tau). The date of the CSF extraction is
selected to be within 90 days from the date of the MRI scan. Each subject has at
least one follow-up visit with the corresponding T1-MRI image, cognition score and CSF
biomarker values. The number of visits may differ across subjects (Table 5.10). The
total number of MRI scans analyzed is 980. The time interval between visits is, at least,
6 months apart.

Image Analysis The SPM12 [261] neuroimaging software suit is used for every step
of this longitudinal analysis pipeline. All image pairs corresponding to the same subject
from the ADNI database are processed with longitudinal pairwise registration. Images in
each pair are averaged and their respective Jacobian determinant is calculated, which re-
flects the regional cerebral volumetric changes between the respective time-points. DAR-
TEL normalization [274] is applied onto average images to normalize Jacobian determi-
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nant maps to MNI space [275] and allows comparison across subjects. The intensity of
each voxel in the Jacobian image is normalized by the interval of time between reference
and follow-up visits (i.e. ∆t ). The number of Jacobian determinant maps for each sub-
jects diagnostic category is: 184 HC, 114 PC and 543 MCI/AD-dementia. On top of the
voxelwise analysis, a regional analysis is also performed. To this end, regions of interest
(ROIs) in the AAL atlas are masked by each subjects grey matter segmentation and the
mean value of the remaining voxels intensity per region is computed [80].

5.4.1.3 Automated recognition of PC volumetric changes using machine
learning

All Jacobian determinant maps from each subject are labeled using subjects label (i.e.
PC, HC), leaving a study cohort of N = 129 (NHC = 79, NPC = 50). Importantly, as
mentioned before, we only consider pairs of images for which no transitions have been
observed across categories. This analysis is performed only on the PC and HC subjects.

Feature selection: Due to the limited sample size and high-dimensionality of the
Jacobian determinant maps, we perform feature selection to keep an optimal percentage
of the most relevant features. To this end, we use a filter feature selection method based
on F-test, taking into consideration Jacobian features and subject labels. The F-test
metric is used to create a ranking of all Jacobian features and finally a fixed percentage
of the highly ranked features are used for classification [117].

Classification and performance evaluation: Ridge logistic regression with hyper-
parameter C [276] is used for binary classification of Jacobian features within the nested
cross-validation (CV) framework [125] defined in Figure 5.7. It consists of an inner CV
loop for model selection and an outer CV loop for assessing model performance. First,
in the outer loop, subjects are randomly divided into 80% train set and 20% test set pre-
viously fixing a prevalence of interest (the percentage of samples of the amyloid positive
class). For each subject in either set, all available Jacobian determinant maps are used
for classification. The train set is used for feature selection and model optimization while
the test set is left out for final model evaluation. The random split by subject ensures
that there is no contamination of the test set with Jacobian determinants of the train
set.

Feature selection is computed using only the train set. In the model optimization step, the
train set is further split into sub-train (2/3) and validation (1/3) sets using a (k=3)-fold
cross-validation. A grid search strategy is used to optimize the classifier hyperparameter
C by maximizing the f1-score on the validation set. Finally, the model is estimated using
the optimized hyperparameter C on the whole train set. Then, the model is applied
to the test set to compute standard performance metrics (i.e. area under the receiver
operating curve (AUC), accuracy, precision, recall/sensitivity, specificity and f1-score).
We also report the reduction of economic cost (i.e. savings) of using this classification
framework as a tool for AD screening. iThis procedure is repeated n=100 times and
performance results are reported using the average and standard deviation.
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Figure 5.7: Workflow of the optimization and evaluation of the classification method.
The performance of the final classifier is evaluated on a fresh test set that has not been
used for training.

5.4.1.4 Statistical Analysis

The aim of the statistical analysis is to identify significant group differences in brain
volumetric change rate between AD stages. We investigate the location of these stage-
specific changes, and whether they represent a volume increase (positive changes) or
decrease (negative changes). Every Jacobian determinant map is treated as an indepen-
dent variable.

Two-sample t-test: Statistical analyses are performed by comparing any combination
of two subject categories. The uncorrected threshold for statistical significance is p <
0.005. Spatial clustering of regions with statistically relevant voxels is applied to rule out
false-positives, with a clustering threshold of k > 100 voxels under which voxel clusters
with smaller sizes are discarded.

Data normalization: The effects of normal ageing on brain structural changes is
considered as a confounder and regressed out [277]. Coefficients for linear regression on
age are fitted using only HC (i.e. individuals that are amyloid negative, asymptomatic in
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Category HC (Aβ-) PC (Aβ+)
MCI

(Aβ+)

AD-
dementia
(Aβ+)

MCI/AD-
dementia
(Aβ+)

Number of
subjects

79 50 196 78 274

Age (years) at
baseline (mean;

std)
73.97 (5.97) 76.04 (6.25) 73.55 (6.55) 75.44 (7.37) 74.1 (6.85)

Sex (F/M) 37/42 21/29 79/117 33/45 112/162

Follow-up (years)
period (mean;

std)
2.48 (1.38) 2.32 (1.32) 2.2 (1.09) 1.4 (0.46) 1.97 (1.02)

Table 5.10: Dataset demographics at baseline.

all visits). The age corresponding to each Jacobian determinant is defined as the mean
age between the two visits i.e. age = (agereference + agefollow−up)/2.

5.4.2 Results

5.4.2.1 Demographic and follow-up comparisons

We include a total of 430 subjects at baseline with at least one follow-up visit over three
categories: HC (n=79), PC (n=50) and MCI/AD-dementia (n=274). Demographic data
and follow-up period is presented in Table 5.10 split into different categories.

We denote as ∆t the time interval between two follow-up visits (i.e. reference and target
images). The distribution of the time interval (∆t) between follow-up visits on all subjects
is given in Figure 5.8. The median of the distribution is 2.01 years. A subset of the cohort
for which 3.5 > ∆t > 2.5 years is used for some of the machine learning studies, given that
longer ∆t account for more signal-to-noise ratio into disease progression. Demographics
for this subset of subjects is provided in Table 5.11. Supplementary Table B.14 provides
information about the research facility and type of scanner that were used for each of
the subjects in this reduced cohort.

5.4.2.2 Machine learning

We use machine learning for voxelwise prediction of amyloid positive subjects (PC) among
cognitively unimpaired subjects. A realistic prevalence for PC subjects on middle-age
adults is 20% [55]. We use this prevalence to fix the ratio of PC subjects in the test set on
all machine learning experiments. Another key parameter of the analysis is the temporal
distance (∆t) between reference and target images used to compute the Jacobian deter-
minant maps. In Figure 5.9, we report the performance of the classifier as a function of
minimal ∆t values in the test set. It is observed that even though we normalize each
Jacobian determinant map with respect to the ∆t parameter, the preclinical signature
is within the detection range when visits are at least 2.5 years apart. In the case in
which ∆t > 2.5 years, the performance of the classifier based on structural changes is
much better than a classifier trained on individual images as reported in the previous
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Figure 5.8: Distribution of the interval ∆t between reference and follow-up visits across
the whole dataset.

Category HC (Aβ-) PC (Aβ+)
MCI

(Aβ+)

AD-
dementia
(Aβ+)

MCI/AD-
dementia
(Aβ+)

Number of
subjects

15 10 38 0 38

Age (years) at
baseline (mean;

std)
76.51 (6.18) 76.0 (3.97)

72.987
(6.11)

-
72.987
(6.11)

Sex (F/M) 8/7 5/5 27/11 - 27/11

Follow-up (years)
period (mean;

std)
4.17 (1.035) 4.21 (0.98) 3.91 (0.82) - 3.91 (0.82)

Table 5.11: Demographics of the subset of the study cohort for which ∆t > 2.5 used for
machine learning classification
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cross-sectional study that reports an AUC = 0.76 (Section 5.3). When using Jacobian de-
terminant maps with smaller temporal distance (∆t < 2.5 years), the mean performance
is worse than the cross-sectional analysis, probably due to the low signal to noise ratio
between the changes due to normal brain aging and the changes due to amyloid positiv-
ity. The optimal temporal span in terms of AUC and savings between data acquisitions
is ∆t > 2.5 years. The number of subjects with follow-up visits between 2.5 < ∆t < 3.5
years from baseline is reduced to 15 HC, 10 PC and 38 MCI/AD-dementia subjects with
25, 16 and 52 Jacobian determinant maps respectively. In what follows, throughout the
chapter, we use only Jacobian determinant maps within the optimal temporal span (2.5
< ∆t < 3.5 years) for evaluation purposes. The use of jacobians within this temporal
span (2.5 < ∆t < 3.5 years) for training the system and evaluating it in all other cases
has also been tested, with poor generalization (Supplementary Table B.17). Receiver
operating characteristic curve (ROC) and precision-recall (PR) curves of the classifier
are shown in Figure 5.10. A savings heatmap that responds to Equation 5.8 is overlaid
on the PR curve, while the mean and standard deviation of the model performance are
plotted against the random classifier on the ROC curve.

Figure 5.9: AUC and savings (blue, green) reported using Jacobian determinant maps
with different time intervals (∆t) between reference and target and a fixed prevalence of
ρ = 20% amyloid positive subjects on the test set. To compute savings we use optimal
precision and recall values plotted in dashed orange and red lines, respectively using the
cost function defined in Equation 5.8.

The impact of different number of features used to train our multivariate algorithm is
presented in Table 5.12, evaluated on our dataset which is imbalanced (36% of preclinical
subjects). Note that the prevalence of preclinical subjects on the test set is forced to 20%
using permutations. When using a low number of features, the model underrepresents the
preclinical signature, not being able to capture all data heterogeneity. In contrast, when
using a high number of features, the model is not able to generalize results to unseen
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(a) Receiver operating curve (b) Precision-Recall curve

Figure 5.10: ROC and PR curves for Jacobian determinant maps with time spans in
the range 2.5 < ∆t < 3.5 years using 0.5% of the features. On the left, the ROC curve
is averaged across different development/test splits: the mean curve (blue) with the
standard deviation (gray) and the curve of a random classifier (red). On the right, the
PR curve of the classifier (blue) is overlaid on a savings heatmap (Equation 5.8). Black
lines indicate points of equal savings.

Jacobian determinant maps, overfitting the development set. Hence, the best results
are obtained using a moderate number of features that are able to both represent the
preclinical signature and still generalize well to the test set. We also test an embedded,
multivariate feature selection method based on l1-norm minimization resulting in lower
performance (Supplementary Table B.16).

An optimal compromised solution between several metrics is to design our model using
a 0.5% of the total Jacobian features. In this case, after the 100 iterations of the nested
cross-validation framework, a heatmap of selected features is shown in Figure 5.11. As
expected, the top selected features correspond to typical regions affected by AD pathology
like the caudates, fusiform or parahippocampal gyrus, presenting high overlap with the
statistical analysis presented in the next section. This result shows that a machine
learning classifier trained on changes in specific brain regions has the capacity to predict
the presence of early amyloid pathology in asymptomatic individuals as measured by
MRI.

5.4.2.3 Volumetric changes in preclinical stage of AD

In parallel to the machine learning classification model, we carry out a voxel-wise statis-
tical analysis using the full dataset of Jacobian determinant maps to identify the regions
of volumetric change that are statistically significant between the different categories
HC, PC and MCI/AD-dementia (Figure 5.12). Stable PC individuals show significantly
higher grey matter (GM) atrophy in the parahippocampal and fusiform gyri as compared
to amyloid negative cognitively unimpaired subjects, as shown on the left hand side of
Figure 5.12. Apparent mild GM increments are detected in the caudate heads, probably
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#
features

(%)

AUC
(95%
CI)

B.acc
(95%
CI)

Acc.
(95%
CI)

Prec.
(95%
CI)

Sens.
(95%
CI)

Spec.
(95%
CI)

F-score
(95%
CI)

6 (0.00)
0.78

(0.50-
0.99)

0.70
(0.375-
0.875)

0.57
(0.20-
0.80)

0.33
(0.13-
0.50)

0.91
(0.33-
1.00)

0.48
(0-0.75)

0.48
(0.19-
0.67)

65 (0.01)
0.81

(0.60-
0.97)

0.74
(0.478-
0.834)

0.63
(0.27-
0.73)

0.38
(0.18-
0.43)

0.91
(0.33-
1.00)

0.56
(0.12-
0.75)

0.50
(0.28-
0.6)

653
(0.10)

0.85
(0.67-
1.0)

0.77
(0.60 -
0.88)

0.65
(0.53-
0.8)

0.37
(0.27-
0.50)

0.97
(0.67-
1.00)

0.57
(0.42-
0.75)

0.53
(0.38-
0.67)

1633
(0.25)

0.86
(0.72-
1.00)

0.77
(0.67-
0.88)

0.65
(0.46-
0.8)

0.37
(0.27-
0.50

0.98
(0.67-
1.00)

0.53
(0.33-
0.75)

0.53
(0.43-
0.67)

3266
(0.50)

0.86
(0.71-
0.97)

0.77
(0.60 -
0.88)

0.64
(0.46-
0.8)

0.36
(0.26-
0.50)

0.97
(0.67-
1.00)

0.56
(0.33-
0.75)

0.53
(0.38-
0.67)

6532
(1.00)

0.87
(0.72-
0.97)

0.76
(0.58 -
0.88)

0.65
(0.53-
0.80)

0.36
(0.25-
0.50)

0.933
(0.67-
1.00)

0.58
(0.42-
0.75)

0.52
(0.36-
0.67)

13064
(2.00)

0.86
(0.64-
1.00)

0.75
(0.50-
0.88)

0.65
(0.46-
0.80)

0.36
(0.20-
0.50)

0.917
(0.67-
1.00)

0.58
(0.33-
0.75)

0.51
(0.31-
0.67)

32661
(5.00)

0.80
(0.49-
1.00)

0.67
(0.42 -
0.86)

0.57
(0.40-
0.77)

0.30
(0.14-
0.47)

0.837
(0.33-
1.00)

0.50
(0.33-
0.71)

0.44
(0.33-
0.71)

65323
(10.00)

0.77
(0.40-
1.00)

0.66
(0.42-
0.86)

0.573
(0.4-
0.77)

0.298
(0.14-
0.47)

0.813
(0.33-
1.00)

0.51
(0.33-
0.75)

0.43
(0.33-
0.75)

Table 5.12: Performance of the system using a different number of features evaluated
on the interval 2.5 < ∆t < 3.5 years. Metrics used are: area under the curve (AUC),
balanced accuracy (B.acc.), accuracy (Acc.), precision (Prec.), recall/sensitivity (Sens.),
specificity (Spec.) and F-score.
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Figure 5.11: Normalized feature maps of the 0.5% of features selected during the 100
different splits of the development/test sets, representing the frequency of selection of
each feature. Those features have optimal capacity to detect the presence of early amyloid
pathology in asymptomatic individuals.

as a surrogate effect of ventricular expansion. Furthermore, comparison of longitudi-
nal volumetric changes between amyloid negative cognitively unimpaired subjects and
stable symptomatic ones (amyloid positive MCI or AD-dementia subjects) reveals the
well-known AD signature involving temporo-parietal and posterior cingulate areas, as
well as most of the basal ganglia [278], as shown on the right hand side of Figure 5.12.
Of note, apparent GM increments are also detected in periventricular areas, including
the caudates and medial thalamus.

5.4.3 Discussion

The goal of this work is to assess whether brain structural changes captured by subse-
quent magnetic resonance images can indicate the presence of abnormal amyloid levels
in cognitively unimpaired subjects using machine learning-techniques. In addition, we
also aim at characterizing the preclinical signature voxelwise using Jacobian determinant
maps as a measure of volumetric rate of change.

A machine learning framework is implemented for the classification of amyloid posi-
tive subjects using Jacobian determinant maps as features for classification. The best
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Figure 5.12: Statistical maps for group comparison between HC and PC (preclinical AD
signature) and HC and MCI/AD-dementia (AD signature) subjects. Statistical signifi-
cance was set to uncorrected p-value < 0.005 and minimum spatial extent k > 100.

achieved performance in our longitudinal classifier (AUC: 0.87) significantly improves
the performance we previously reported for a cross-sectional classifier (AUC 0.76) in Sec-
tion 5.3. This performance is significantly higher than what was reported in previous
works that, on top of using MRI ROI data, built classifiers adding demographics (AUC:
0.63), demographics and genetics (AUC: 0.62-0.66) and demographics, neuropsychology
and APOE (AUC: 0.74) [166, 167]. It is possible that adding complementary information
to the MRI such as demographics and genetic risk factors may improve the performance
of our machine learning classifier. While the field strength of the scanners is 1.5T for all
subjects, there is large heterogeneity in the site ID, so we believe this has had small or
no influence on the performance metrics of the classifier.

The increased performance of our classifier may be accounted for two factors. On the
one hand and unlike similar previously reported classifiers, we use voxelwise data as
features. Coupled with an efficient feature selection strategy, this allows the classifier to
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select the most discriminant brain regions, independent of a-priori cortical parcellations.
On the other hand, we use subsequent images that correspond to the same individuals,
thus eliminating an important percentage of the between-subject variability present in
cross-sectional setups. In this regard, we observe that our classifier works significantly
better only when the pairs of MRI scans that are used for evaluation are acquired more
than 2.5 years apart. This time period is likely related to the protracted evolution
of the neuroanatomical changes in preclinical AD stages. At more advanced stages of
the disease, more rapid evolution of brain structural changes is expected, and thus,
the benefits of a longitudinal classifier would potentially be evident with shorter time
intervals. It remains to be explored how these promising results would be affected by
the use of different scanners. Still, a time gap of 2.5 years for resolving PC is within the
timescale of relevance for AD screening or the follow up of subjects enrolled in secondary
prevention clinical trials, which typically last a decade. In this context, this work and
our earlier cross-sectional study on MRI using ML (Section 5.3) show that even though
the performance of the ML classifier is not high, if implemented as a screening tool it
can save resources in a clinical trial setting.

The main discriminative features between amyloid positive and healthy controls mostly
include AD-related areas in the medial and inferior temporal lobe, as well as the lateral
ventricles which can be considered as the preclinical AD signature. Increased expansion of
the lateral and inferior lateral ventricles in cognitively unimpaired individuals with lower
levels of CSF amyloid-beta has been shown previously, along with increased atrophy in
the fusiform gyri as well as in middle temporal and posterior cingulate cortices [279,
280, 281, 282, 283]. In this regard, the preclinical AD signature found in our study
does not significantly depart from published reports and, as can be seen in Figure 5.12,
is very much in line with the expected pattern of atrophy in AD, though to a lesser
magnitude and extent. In addition to (peri)ventricular regions, Figure 5.11 also shows the
fusiform gyri and middle temporal regions to display significant discriminative capacity to
discriminate amyloid positive vs negative CU individuals, as expected [280]. Additional
detail on the brain areas contributing to such discriminative power is now provided in
Supplementary Table B.15.

The predictive capacity achieved by this classifier does not place this method as substitute
of gold-standard tests to detect amyloid abnormalities. Still, if used for triaging of
subjects, e.g. clinical trial recruitment, we demonstrated that it could allow significant
savings in terms of the number of costly gold-standard tests that would have to be
performed to detect a fixed number of amyloid positive, cognitively healthy subjects.
Used in this way, in a cognitively unimpaired population with a prevalence of amyloid
positivity of 20%, the accuracy of the longitudinal classifier would allow a reduction of
up to 55% of unnecessary PET or CSF tests, which translates to a 40% reduction of the
total cost, according to the savings model (Section 5.2.4). Nevertheless, in a clinical trial
recruitment setting, it can be more advantageous instead to optimize the sensitivity of
the classifier to maximize the number of detected at-risk individuals, at the cost of a
slightly poorer specificity which might decrease these cost savings.

Due to the limited sample size for training and the large inter-subject variability of cere-
bral morphology, we use a simple but effective model for prediction of amyloid positivity.
Our method is fully automatic from feature extraction and signature learning to classifi-
cation. However, the presence of high-dimensional and low informative features together
with the overlap between normal aging and AD processes in the brain, reduces the overall
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precision of the system. To account for that, future efforts will need larger longitudinal
datasets and many initiatives are contributing to achieve this [166, 128].

We observe much higher sensitivity than specificity. This is likely given the limited size
and imbalance of the cohort but also most likely due to the fact that we are impos-
ing an imbalance on the test set to simulate the amyloid positivity prevalence of 20%
typically found in a clinical trial setting. On top of this, given the limited sample size
and the large amount of features used for classification (voxels), we might have incurred
in an overfitting of the existing data, potentially resulting in an overestimation of the
capacity of the classifier. Therefore, our results need to be validated on independent
datasets, but the scarcity of longitudinal MRI datasets with CSF biomarker levels has
prevented us to conduct such validation in this work. Still, in the previous ROI-based
cross-sectional study (Section 5.3), we successfully validated a very similar classifier with
two independent datasets without a major loss of the classifiers performance.

To further characterize the preclinical AD signature, a statistical analysis is conducted
and we report longitudinal morphological changes in cognitively unimpaired subjects
with abnormal amyloid CSF levels. This preclinical AD signature comprises atrophy
of the parahippocampal and fusiform gyri and expansion of the lateral ventricles. This
pattern is in line with previous reports of longitudinal volumetric changes associated to
the presence of abnormal amyloid levels from ADNI participants that have been replicated
in an independent cohort [163]. On the other hand, expansion of the caudate heads falls
beyond this known pattern. Being in the proximity of the lateral ventricles, it may be
questioned whether the detected increase in the volume of the caudates is an actual
feature associated to preclinical AD stages or an artifact of the processing methodology
to detect volumetric changes. By smoothing spatially continuous Jacobian determinant
maps, it could be considered that the observed increase in caudate volumes could be a
side effect of the “spillover of” the Jacobian determinant maps due to the expansion of
the ventricles. To address this question, we performed a post-hoc analysis of the caudate
volumes between the HC and PC groups, but using the longitudinal Freesurfer pipeline to
compute change in caudate volumes. Since the subcortical segmentation implemented in
Freesurfer uses an ROI-approach based on a probabilistic atlas [81], it can be considered
to be virtually free from the potential spillover effect of continuous Jacobian determinant
maps. Results show that the changes in caudate volumes is not significantly different
between HC and PC individuals (p > 0.3) and, thus, it can be concluded that the
observed caudate head expansion is artifactual and secondary to ventricular expansion.
Still, this signal might contribute to the detection of the presence of amyloid-burden in
cognitively unimpaired individuals.

This study has some limitations. Even though data comes from a heterogeneous sample
with different sites, and MRI scanners, the MRI acquisition is harmonized according
the ADNI protocol. Therefore, the performance of our method when applied to MRI
samples using different acquisition protocols may deviate from what is here reported.
Actually, the ultimate validation of the generalizability of the results here reported can
only be accomplished by applying the method here developed to an independent sample.
In the previous section, the performance of a similar cross-sectional classifier was kept
stable when derived and validated in two independent cohorts. Therefore, it can be
expected the same behaviour in this longitudinal extension of the classifier. Our study
relies on the ADNI cohort which is well-known for its data quality and unique in having
corresponding MRI and CSF data and a longitudinal aspect required for a study using
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Jacobian determinants. The low amount of subjects with MRIs acquired with more
than 2.5 years needed for a good signal to noise ratio certainly impose a limitation to
our results and encourage future validation efforts. For example, one misclassification
error has a huge impact in the performance metrics. To mitigate this effect, we repeat
the workflow 100 times in order to report mean performance metrics. Nevertheless, the
effect of misclassification can still be observed in the large confidence intervals that are
found for each one of the metrics.

Finally, we use CSF amyloid as the gold-standard for amyloid positivity and not PET
imaging. It could be argued that the performance of the classifier could be sensitive
to the selection of the gold-standard method. However, the agreement between CSF
and PET determinations of amyloid is very high, particularly in the intermediate ranges
where thresholds for positivity typically lie.

Unfortunately, only a subset of 13 subjects respond to these criteria, from these only 2
subjects undergo this transition within a time frame of ∆t<2.5 years between consecutive
scans. The sample size is therefore too small for a machine learning workflow. Never-
theless, the prediction of a transition from normal to preclinical AD stages is a question
of utmost importance to research (e.g. observational studies) and clinical practice (e.g:
clinical trials) and a natural follow-up to the present study.

5.5 Conclusions

In this last chapter, we provide a brief overview about clinical trials for Alzheimer’s
disease treatments, with focus in the recent shift to study anti-amyloid therapies in pre-
clinical stages of the disease. We hypothesize that if preclinical subjects could be detected
using MRI in combination with machine learning algorithms it can have potential benefits
when used for triaging in recruitment protocols for clinical trials.

We begin by presenting a proof-of-concept study establishing that machine learning can
detect amyloid pathology in cognitively normal populations using cross-sectional (T1-
weighted alone and together with DTI MRI) and longitudinal data (Jacobian determinant
maps derived from T1-weighted MRI). The performance of the cross-sectional classifier
achieved a modest AUC of 0.76 while it improved in the longitudinal study (AUC= 0.87).
Even though the performance of the classifier does not allow for it to substitute gold-
standard methods to determine the presence of amyloid pathology, results show that this
method could be used prospectively for preclinical subjects’ screening in future cohorts,
following appropriate data standardization. Such an approach can lead to significant
reduction in participant burden and economic costs.

Hence, we propose a modified clinical recruitment protocol that introduces a pre-screening
layer using machine learning layer that capitalizes the already acquired MRI scan for
safety reasons and assess its viability in terms of reduction of the gold standard tests’
reduction and monetary savings. We provide a theoretical framework to evaluate the
impact of the proposed method using two different models trying to mimic real clinical
recruitment scenarios. The potential benefits of the proposed method depend on the
algorithm performance as well as the impact of expected prevalence of amyloid pathology
over the general population and the cost of biomarker acquisitions. We report the results
in a cross-sectional study using T1-weighted features (reduction of 60% of unnecesssary
gold-standard test and 47% in the recruitment costs) and T1+DTI features (reduction
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of 76% of unnecesssary gold-standard test and 49% in the recruitment costs).

Finally, we use longitudinal data to asses the minimum follow-up time in order to detect
morphologic changes due to amyloid pathology. We conclude that a time span of 2.5
years is required to detect significant changes in brain structure. When use it as triaging
tool, it would lead to significant reductions of 55% of unnecessary gold-standard tests
and of 40% of the cost to detect a fixed number of cognitively healthy individuals in
preclinical AD stages.

The main limitations of this work from the clinical perspective are that (i) we miss
amyloid positive subjects at the prescreening step and this could be perjudicial for those
individuals and (ii) not all amyloid positive subjects will develop Alzheimer’s disease in
their life span. Both limitations should be addressed in the future, for example, following
the discarded subjects for, at least, 2.5 years (as suggested by our results) or incorporating
tau pathological biomarkers in later stages of the trial. Future works should also focus
on studying large multi-center samples that allows more complex modeling of amyloid
pathology using MRI as well as validate the methodology in operational environments.
Other complementary biomarkers in the triaging step can be easily incorporated due to
the flexibility of the theoretical framework developed.



Conclusions and future work

Summary

The goal of this thesis is to study the Alzheimer’s pathology signature present in MR
images. MRI is a valid topographical biomarker of disease progression that measures
synaptic loss and dead neurons. It is highly correlated with clinical phenotpyes and can
be used for patient staging. In this thesis, we use MRI to model brain structure along the
Alzheimer’s continnuum which may have applications in interventional studies and clini-
cal practice. As from recent updates to diagnostic frameworks in the literature, we define
Alzheimer’s disease as a clinicobiological entity characterized by early biological changes
that may result in cognitive decline. We use in-vivo pathophysiological biomarkers (cere-
brospinal fluid, concretely) to describe AD multi-pathological continuum accounting for
amyloidosis, tauopathy and neurodegeneration.

Our analysis is focused in the understanding and modeling of brain structure at preclinical
stages of AD: the preclinical AD signature. MRI biomarkers (e.g: hippocampal volume)
are thought to become abnormal just before the onset of clinical symptoms even though
brain damage begin much before that, according to the amyloid hypothesis [40]. Besides
regional biomarkers of brain atrophy, studying brain structure as a whole undercovers
hidden patterns of neurodegeneration as seen in Chapter 4. We use statistical learning
and pattern recognition methods to develop descriptive (Chapters 3, 4) and predictive
(Chapters 4, 5) models of Alzheimer’s pathology.

We have developed an open-source toolbox for the analysis of nonlinear effects on medical
images in Chapter 3. We provide the community a tool for statistical analysis which
is flexible, modular and compatible with standard processing softwares. It helps to
uncover regions with relevant nonlinear effects that could be hidden in linear analysis.
We experiment with two cases of study: firstly, we analyze neurodegeneration along the
Alzheimer’s continuum and secondly we examine the interaction between APOE4 and
age on brain atrophy. In both studies, we show several nonlinear effects on brain regional
volume and cortical thickness.

The framework developed in Chapter 4 disentangles morphometric patterns associated
to aging and Alzheimer’s disease. It can be used to study other conditions or related-
factors that may influence brain tissue configuration. The methodology is based on
latent modeling (partial least squares) assuming that underlying brain processes lie in
a low dimensional space. The work in Chapter 4 reflects that brain regions might be
differently affected by the underlying pathology (amyloidosis or tauopathy) along the
Alzheimer’s continuum. Moreover, each region is differently related to pathophysiological
markers depending on cognitive severity. Multivariate structural patterns reveal different
brain structure at preclinical and clinical stages of AD, supporting the idea of an existing
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preclinical AD signature in line with the reported literature in Chapter 2.

Finally, in Chapter 5 we study the capacity to detect amyloid positive subjects from a pool
of cognitively unimpaired individuals. We propose a new recruitment protocol for clinical
trials that uses machine learning and MRI as a triaging tool for preclinical subjects. Using
this methodology, we develop a framework to study the impact of the proposed protocol in
reducing the number of unnecessary gold-standard tests and monetary savings for clinical
trials. A proof-of-concept study for clinical recruitment that capitalizes the already taken
MRI for safety measures is presented and we report benefits in reducing the number of
unnecessary gold-standard tests (76%) and monetary savings (49%) in clinical trials. In
a longitudinal setting, we found that a minimum follow-up time of 2.5 years is required
to detect significant changes due to amyloid positivity which remains within the range
of clinical trial duration.

Future work

As a result of this thesis, several on-going, planned and suggested works can be derived.
We hope that the toolbox developed in Chapter 3 could be used by the neuroimaging com-
munity to model nonlinear effects in brain imaging in a wide range of applications that
haven’t been tested. A natural extension of Chapter 4 would be to use multimodal (two
or more measurements) modeling of biomedical data of the same observations. Latent
models from the autoencoder literature (noisy autoencoder or variational autoencoders)
constitute a natural generalization of the framework developed in this thesis. Adversar-
ial training techniques can also be used in order to learn common distributions across
different data modalities to uncover similarities between different sources of informa-
tion. These methods must account for subjects with uncomplete data for which all the
aforementioned frameworks result a suitable solution.

As for Chapter 5, there is work in progress to validate the framework in an operational
environment: the ALFA project from Barcelona Beta Brain Research Center1 [128]. Our
study is restricted to a limited subject sample and therefore our models can only recog-
nize a limited aspect of the PC signature. We expect an enhancement in performance
when using larger training sets helping to develop more complex models and including
demographic, genetic and cognitive data in the model. Another line of improvement is
to predict the actual CSF Aβ42 levels in order to dichotomize the result at a later stage
and accommodate for optimal Aβ42 thresholds in different applications. Future evalua-
tion in a clinical trial setting, with the required regulatory measures, would report the
overall potential of the framework. The utility of this methodology for disease-modifying
trials in other mental disorders is still not explored and may widen the range of clinical
applications of this work. With regards to the longitudinal study, one interesting area for
further exploration is the classification of subjects that undergo a transition between nor-
mal and preclinical amyloid biomarkers within the timeframe of two consecutive scans.
In principle, one could hypothesize that this category of transitioning subjects will not
necessarily follow the same pattern of brain volumetric change as either the normal or
the preclinical group.

1https://www.barcelonabeta.org
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Domingo Gispert. NeAT: a nonlinear analysis toolbox for neuroimaging. Neuroin-
formatics, 2019. Submitted
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Domingo Gispert and Verónica Vilaplana. Projection to latent spaces disentangles
specific cerebral morphometric patterns associated to aging and preclinical AD.
Alzheimer’s Association International Conference, 2018. [286]

• Paula Petrone, Verónica Vilaplana, Adrià Casamitjana, Dalila Sánchez Es-
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C. Falcon, G. Sánchez-Benavides, N. Gramunt, K. Fauria, M. J. Cardoso, et al.,
“Patterns of white matter hyperintensities associated with cognition in middle-aged
cognitively healthy individuals,” Brain imaging and behavior, pp. 1–12, 2019. 11

[50] R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst, D. J.
Harvey, C. R. Jack, W. J. Jagust, L. M. Shaw, A. W. Toga, J. Q. Trojanowski, and
M. W. Weiner, “Alzheimer’s Disease Neuroimaging Initiative (ADNI),” Neurology,
vol. 74, no. 3, pp. 201–209, 2010. 12

[51] K. A. Ellis, A. I. Bush, D. Darby, D. De Fazio, J. Foster, P. Hudson, N. T. Laut-
enschlager, N. Lenzo, R. N. Martins, P. Maruff, et al., “The Australian Imaging,
Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline char-
acteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s
disease,” International Psychogeriatrics, vol. 21, no. 4, pp. 672–687, 2009. 12, 21

[52] B. Dunn, “Early Alzheimer’s Disease: Developing Drugs for Treatment;
Draft Guidance for Industry,” Services USDoHaH, Administration FaD,(CDER)
CfDEaR,(CBER) CfBEaR, eds. Silver Spring, MD: Office of the Federal Register,
National Archives and Records Administration, pp. 7060–1, 2018. 12

[53] J. Cummings and N. Fox, “Defining disease modifying therapy for Alzheimer’s
disease,” The journal of prevention of Alzheimer’s disease, vol. 4, no. 2, p. 109,
2017. 13

[54] M. Crous-Bou, C. Minguillón, N. Gramunt, and J. L. Molinuevo, “Alzheimers
disease prevention: from risk factors to early intervention,” Alzheimer’s research &
therapy, vol. 9, no. 1, p. 71, 2017. 13

[55] W. J. Jansen, R. Ossenkoppele, D. L. Knol, B. M. Tijms, P. Scheltens, F. R.
Verhey, P. J. Visser, P. Aalten, D. Aarsland, D. Alcolea, et al., “Prevalence of
cerebral amyloid pathology in persons without dementia: a meta-analysis,” Jama,
vol. 313, no. 19, pp. 1924–1938, 2015. 13, 14, 85, 96

[56] B. Dubois, S. Epelbaum, F. Nyasse, H. Bakardjian, G. Gagliardi, O. Uspenskaya,
M. Houot, S. Lista, F. Cacciamani, M.-C. Potier, et al., “Cognitive and neuroimag-
ing features and brain β-amyloidosis in individuals at risk of alzheimer’s disease



118

(insight-pread): a longitudinal observational study,” The Lancet Neurology, vol. 17,
no. 4, pp. 335–346, 2018. 13, 21

[57] M. C. Donohue, R. A. Sperling, R. Petersen, C.-K. Sun, M. W. Weiner, and P. S.
Aisen, “Association between elevated brain amyloid and subsequent cognitive de-
cline among cognitively normal persons,” Jama, vol. 317, no. 22, pp. 2305–2316,
2017. 14

[58] S. Kern, H. Zetterberg, J. Kern, A. Zettergren, M. Waern, K. Höglund, U. An-
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Baker, J. P. ONeil, M. Janabi, A. Lazaris, A. Cantwell, et al., “Tau PET pat-
terns mirror clinical and neuroanatomical variability in Alzheimer’s disease,” Brain,
vol. 139, no. 5, pp. 1551–1567, 2016. 14, 23

[62] C. R. Jack Jr, H. J. Wiste, S. D. Weigand, T. M. Therneau, D. S. Knopman,
V. Lowe, P. Vemuri, M. M. Mielke, R. O. Roberts, M. M. Machulda, et al., “Age-
specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neu-
rodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-
sectional study,” The Lancet Neurology, vol. 16, no. 6, pp. 435–444, 2017. 14

[63] C. Westbrook and J. Talbot, MRI in Practice. John Wiley & Sons, 2018. 14

[64] R. Felix, W. Schörner, M. Laniado, H. Niendorf, C. Claussen, W. Fiegler, and
U. Speck, “Brain tumors: MR imaging with gadolinium-DTPA.,” Radiology,
vol. 156, no. 3, pp. 681–688, 1985. 15

[65] R. Bitar, G. Leung, R. Perng, S. Tadros, A. R. Moody, J. Sarrazin, C. McGre-
gor, M. Christakis, S. Symons, A. Nelson, et al., “MR pulse sequences: what
every radiologist wants to know but is afraid to ask,” Radiographics, vol. 26, no. 2,
pp. 513–537, 2006. 15

[66] J. L. Whitwell, D. W. Dickson, M. E. Murray, S. D. Weigand, N. Tosakulwong,
M. L. Senjem, D. S. Knopman, B. F. Boeve, J. E. Parisi, R. C. Petersen, et al.,
“Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease:
a case-control study,” The Lancet Neurology, vol. 11, no. 10, pp. 868–877, 2012. 15

[67] M. E. Murray, N. R. Graff-Radford, O. A. Ross, R. C. Petersen, R. Duara, and
D. W. Dickson, “Neuropathologically defined subtypes of Alzheimer’s disease with



119

distinct clinical characteristics: a retrospective study,” The Lancet Neurology,
vol. 10, no. 9, pp. 785–796, 2011. 15

[68] A. Dong, J. B. Toledo, N. Honnorat, J. Doshi, E. Varol, A. Sotiras, D. Wolk,
J. Q. Trojanowski, C. Davatzikos, and A. D. N. Initiative, “Heterogeneity of neu-
roanatomical patterns in prodromal Alzheimer’s disease: links to cognition, pro-
gression and biomarkers,” Brain, vol. 140, no. 3, pp. 735–747, 2016. 15

[69] Y. Stern, “Cognitive reserve in ageing and alzheimer’s disease,” The Lancet Neu-
rology, vol. 11, no. 11, pp. 1006–1012, 2012. 15, 59

[70] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,
Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor
image segmentation benchmark (BRATS),” IEEE transactions on medical imaging,
vol. 34, no. 10, pp. 1993–2024, 2014. 16

[71] P. Pretorius and G. Quaghebeur, “The role of MRI in the diagnosis of MS,” Clinical
radiology, vol. 58, no. 6, pp. 434–448, 2003. 16

[72] H. J. Kuijf, J. M. Biesbroek, J. de Bresser, R. Heinen, S. Andermatt, M. Bento,
M. Berseth, M. Belyaev, M. J. Cardoso, A. Casamitjana, et al., “Standardized
assessment of automatic segmentation of white matter hyperintensities; results of
the wmh segmentation challenge,” IEEE transactions on medical imaging, 2019.
16, 111

[73] J. V. Manjón, J. Carbonell-Caballero, J. J. Lull, G. Garćıa-Mart́ı, L. Mart́ı-
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Appendices

Appendix A Chapter 3

Appendix A.1 List of relevant regions along the AD continuum

Relevant regions list

ROI name AD continuum

Pallidum R 0.0005
Pallidum L 0.0014

Paracentral R 0.0112
Paracentral L

Parahippocampal R -
Parahippocampal L -
ParsOperuclaris R 0.001
ParsOperuclaris L -
ParsOrbitalis R -
ParsOrbitalis L 0.0

ParsTriangularis R -
ParsTriangularis L -

Pericalcarine R 0.0031
Pericalcarine L 0.0
Postcentral R 0.0012
Postcentral L 0.0425

PosteriorCingulate R -
PosteriorCingulate L -

Precentral R 0.0
Precentral L 0.0
Precuneus R 0.0001
Precuneus L 0.0034
Putamen R -
Putamen L -

RostralAnteriorCingulate R -
RostralAnteriorCingulate L -

RostralMiddleFrontal R 0.0384
RostralMiddleFrontal L 0.0411

SuperiorFrontal R -
SuperiorFrontal L -
SuperiorParietal R -
SuperiorParietal L -

SuperiorTemporal R 0.0064
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Relevant regions list

ROI name AD continuum

SuperiorTemporal L -
Supramarginal R 0.023
Supramarginal L -
TemporalPole R -
TemporalPole L 0.0042

Thalamus R -
Thalamus L -

TransverseTemporal R -
TransverseTemporal L 0.0008

Insula R 0.0281
Insula L 0.0002

AccumbensArea R -
AccumbensArea L 0.0302

Amygdala R 0.0
Amygdala L 0.0
Bankssts R 0.0045
Bankssts L 0.0

CaudalAnteriorcingulate R 0.0211
CaudalAnteriorcingulate L -

CaudalMiddleFrontal R -
CaudalMiddleFrontal L -

Caudate R -
Caudate L 0.0029

ChoroidPlexus R 0.0028
ChoroidPlexus L 0.0013

Cuneus R 0.0028
Cuneus L 0.0027

Entorhinal R 0.0
Entorhinal L 0.0
FrontalPole R 0.0006
FrontalPole L 0.0233
Fusiform R 0.0084
Fusiform L 0.0093

Hippocampus R 0.0
Hippocampus L 0.0

InferiorParietal R 0.0
InferiorParietal L 0.0

InferiorTemporal R 0.0006
InferiorTemporal L 0.0
IsthmusCingulate R -
IsthmusCingulate L -
LateralOccipital R -
LateralOccipital L -

LateralOrbitofrontal R 0.0
LateralOrbitofrontal L 0.0

Lingual R -
Lingual L -
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Relevant regions list

ROI name AD continuum

MedialOrbitofrontal R 0.007
MedialOrbitofrontal L 0.0161

MiddleTemporal R 0.0
MiddleTemporal L 0.0

Table A.1: List of statistically relevant (p<0.05) brain ROIs and their associated p-value
in the AD continuum analysis of the CSF effect on mean ROI volume

Appendix A.2 List of relevant regions in different clinical AD stages.

Relevant regions list

ROI name CU MCI AD

Pallidum R 0.0078 0.0124 0.0254
Pallidum L 0.0224 0.0086 0.0167

Paracentral R - - -
Paracentral L - 0.039 -

Parahippocampal R - 0.0287 -
Parahippocampal L - 0.02 -
ParsOperuclaris R - - -
ParsOperuclaris L - - -
ParsOrbitalis R - - -
ParsOrbitalis L - 0.0021 -

ParsTriangularis R - - -
ParsTriangularis L - - -

Pericalcarine R 0.0006 - -
Pericalcarine L - - -
Postcentral R 0.0121 0.0 -
Postcentral L - - -

PosteriorCingulate R - - -
PosteriorCingulate L - - -

Precentral R - - -
Precentral L - 0.0037 -
Precuneus R - 0.0208 -
Precuneus L - - -
Putamen R - - -
Putamen L 0.0298 - -

RostralAnteriorCingulate R - - -
RostralAnteriorCingulate L - - -

RostralMiddleFrontal R - - 0.0465
RostralMiddleFrontal L - - -

SuperiorFrontal R - - -
SuperiorFrontal L - - -
SuperiorParietal R - - -
SuperiorParietal L - - -

SuperiorTemporal R - - -
SuperiorTemporal L - - -

Supramarginal R - - -
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Relevant regions list

ROI name CU MCI AD

Supramarginal L 0.0203 - -
TemporalPole R - - -
TemporalPole L - - -

Thalamus R - 0.0421 -
Thalamus L - 0.0389 -

TransverseTemporal R - - -
TransverseTemporal L 0.0424 0.0308 -

Insula R - - -
Insula L 0.0176 - -

AccumbensArea R - - -
AccumbensArea L 0.0018 - -

Amygdala R 0.0197 0.0289 0.0271
Amygdala L 0.0096 0.0381 -
Bankssts R - - -
Bankssts L - 0.0006 0.0068

CaudalAnteriorcingulate R - - -
CaudalAnteriorcingulate L - - -

CaudalMiddleFrontal R - - -
CaudalMiddleFrontal L - - -

Caudate R 0.0014 - -
Caudate L 0.0012 - -

ChoroidPlexus R 0.0 - -
ChoroidPlexus L 0.002 0.0079 0.0088

Cuneus R - - -
Cuneus L - - -

Entorhinal R - - 0.0163
Entorhinal L - 0.0304 -
FrontalPole R - - -
FrontalPole L - - -
Fusiform R - - -
Fusiform L - - -

Hippocampus R - 0.0023 -
Hippocampus L - 0.0016 -

InferiorParietal R - 0.0003 0.0024
InferiorParietal L - 0.0 0.0316

InferiorTemporal R 0.0035 - -
InferiorTemporal L 0.0218 - -
IsthmusCingulate R - - -
IsthmusCingulate L - - 0
LateralOccipital R - - -
LateralOccipital L 0.0094 - -

LateralOrbitofrontal R - - -
LateralOrbitofrontal L - - -

Lingual R - - -
Lingual L - - -

MedialOrbitofrontal R - - -
MedialOrbitofrontal L - - -
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Relevant regions list

ROI name CU MCI AD

MiddleTemporal R - 0.0004 -
MiddleTemporal L - 0.0 -

Table A.2: List of statistically relevant (p<0.05) brain ROIs and their associated p-value
of the CSF effect on mean ROI volume. The analysis is performed independently on
different cognitive categories along the AD continuum.

Appendix A.3 List of relevant regions in presymptomatic AD

Relevant regions list

ROI name T0 T1 T2

Pallidum R - - -
Pallidum L - - -

Paracentral R - - -
Paracentral L - - -

Parahippocampal R - - -
Parahippocampal L - - -
ParsOperuclaris R - - -
ParsOperuclaris L - - -
ParsOrbitalis R - - -
ParsOrbitalis L - - -

ParsTriangularis R - - -
ParsTriangularis L - - -

Pericalcarine R - - 0.0002
Pericalcarine L - - -
Pastcentral R - - -
Pastcentral L - - -

PosteriorCingulate R - - -
PosteriorCingulate L 0.0282 - -

Precentral R - - -
Precentral L - - -
Precuneus R - - -
Precuneus L - - -
Putamen R - - -
Putamen L - 0.0194 -

RostralAnteriorCingulate R - - -
RostralAnteriorCingulate L - - -

RostralMiddleFrontal R - - -
RostralMiddleFrontal L - - -

SuperiorFrontal R - - -
SuperiorFrontal L - - -
SuperiorParietal R - - -
SuperiorParietal L - - -

SuperiorTemporal R 0.0293 - -
SuperiorTemporal L - - -

Supramarginal R - 0.039 -
Supramarginal L - - -
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Relevant regions list

ROI name T0 T1 T2

TemporalPole R - - -
TemporalPole L - - -

Thalamus R - - -
Thalamus L - - -

TransverseTemporal R - - -
TransverseTemporal L - - -

Insula R 0.0227 - -
Insula L 0.0284 - -

AccumbensArea R - 0.0209 -
AccumbensArea L - - -

Amygdala R - - -
Amygdala L - - -
Bankssts R - - -
Bankssts L - - -

CaudalAnteriorcingulate R - - -
CaudalAnteriorcingulate L - - -

CaudalMiddleFrontal R - - -
CaudalMiddleFrontal L - - -

Caudate R - - -
Caudate L - - -

ChoroidPlexus R - 0.0005 0.0
ChoroidPlexus L - 0.0096 0.0083

Cuneus R - - -
Cuneus L - - -

Entorhinal R - - -
Entorhinal L - - -
FrontalPole R - - -
FrontalPole L - - -
Fusiform R - - -
Fusiform L - 0.0209 -

Hippocampus R - - -
Hippocampus L - - -

InferiorParietal R - - -
InferiorParietal L - - -

InferiorTemporal R 0.0135 - -
InferiorTemporal L - - -
IsthmusCingulate R - - -
IsthmusCingulate L - - -
LateralOccipital R - - -
LateralOccipital L - - -

LateralOrbitofrontal R - - -
LateralOrbitofrontal L - - 0.033

Lingual R - - -
Lingual L - - -

MedialOrbitofrontal R - - -
MedialOrbitofrontal L - - -

MiddleTemporal R - - -
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Relevant regions list

ROI name T0 T1 T2

MiddleTemporal L - - -

Table A.3: List of statistically relevant (p<0.05) brain ROIs and their associated p-value
in the preclinical analysis of the CSF effect on mean ROI volume

Appendix A.4 Linear regression for prediction

We use linear regression with raw brain morphometric features as a baseline method
for predictive analysis. Linear regression uses raw features to predict AD pathological
markers and age. Tables A.4 and A.5 summarize the results using a single model for the
whole AD continuum and a model for each AD stage, respectively.

Features Diagnosis Age CSF-Aβ CSF-ptau CSF-ttau

Volume HC 0.5 1.91 0.8 0.72
PC 0.69 0.51 0.74 0.71

MCI 0.68 0.43 0.74 0.73
AD 0.85 0.41 0.93 0.89

Cortical Th. HC 0.53 1.89 0.77 0.76
PC 0.72 0.51 0.73 0.78

MCI 0.74 0.43 0.71 0.78
AD 0.88 0.4 0.96 0.99

Table A.4: Predictive error of response variables for each diagnosis label and feature type
using a single linear regression model Alzheimer’s pathology.

Features Diagnosis Age CSF-Aβ CSF-ptau CSF-ttau

Volume HC 0.5 0.67 0.58 0.49
PC 0.69 0.88 1.4 0.86

MCI 0.68 0.47 0.8 0.8
AD 0.85 0.63 1.82 1.7

Cortical Th. HC 0.53 0.67 0.46 0.47
PC 0.72 0.78 1.41 0.96

MCI 0.74 0.46 0.76 0.83
AD 0.88 0.58 1.4 1.35

Table A.5: Predictive error of response variables for each diagnosis label and feature type
using linear regression fitting a specific model for each Alzheimer’s cognitive stage.

Appendix A.5 Statistical inference tables

We provide numbers of effect-strength and associated p-value of AD pathological mark-
ers and age on the brain morphological latent model at different AD stages in Ta-
bles A.6, A.7, A.8, A.9.



14
6AD stage Marker Latent dimension

First Second Third Fourth Fifth Sixth

HC

Age -0.44 (0.003) 0.49 (<0.001) 0.01 (0.789) -0.01 (0.89) -0.0 (0.983) 0.0 (0.941)

CSF Aβ -0.01 (0.899) 0.06 (0.311) 0.01 (0.903) 0.14 (0.072) 0.12 (0.205) 0.09 (0.245)

CSF p-tau -0.01 (0.807) -0.01 (0.808) -0.01 (0.894) 0.06 (0.422) 0.06 (0.508) 0.1 (0.216)

CSF t-tau -0.0 (0.996) -0.01 (0.937) -0.19 (0.076) 0.22 (0.016) 0.08 (0.485) 0.09 (0.418)

AD-CSF1 -0.13 (0.197) 0.02 (0.893) 0.02 (0.776) 0.04 (0.601) -0.03 (0.609) -0.04 (0.638)

AD-CSF1 0.05 (0.497) -0.0 (0.976) -0.01 (0.958) 0.04 (0.672) 0.08 (0.539) -0.13 (0.224)

PC

Age -0.42 (0.031) 0.28 (0.465) -0.14 (0.31) -0.19 (0.211) -0.1 (0.462) -0.16 (0.168)

CSF Aβ -0.01 (0.844) -0.07 (0.282) 0.18 (0.064) 0.05 (0.734) 0.11 (0.314) 0.05 (0.572)

CSF p-tau 0.05 (0.61) 0.03 (0.769) -0.31 (0.011) 0.32 (0.003) -0.13 (0.349) -0.04 (0.754)

CSF t-tau 0.07 (0.452) -0.0 (0.999) -0.32 (0.006) 0.35 (<0.001) -0.2 (0.082) 0.02 (0.891)

AD-CSF1 0.02 (0.767) 0.08 (0.238) -0.28 (0.005) 0.15 (0.148) -0.15 (0.202) -0.07 (0.466)

AD-CSF1 0.05 (0.426) 0.01 (0.921) -0.2 (0.015) 0.16 (0.074) -0.26 (0.002) -0.01 (0.836)

MCI

Age -0.36 (0.072) 0.31 (0.196) -0.12 (0.524) -0.38 (<0.001) -0.08 (0.693) -0.05 (0.705)

CSF Aβ 0.12 (0.205) -0.09 (0.427) 0.26 (0.001) 0.01 (0.982) 0.06 (0.693) -0.01 (0.929)

CSF p-tau 0.04 (0.387) -0.05 (0.364) -0.22 (0.006) 0.26 (<0.001) -0.27 (<0.001) -0.19 (0.01)

CSF t-tau 0.04 (0.468) -0.03 (0.616) -0.33 (<0.001) 0.33 (<0.001) -0.21 (0.048) 0.08 (0.394)

AD-CSF1 -0.08 (0.436) -0.04 (0.712) -0.28 (<0.001) 0.17 (0.068) -0.18 (0.065) -0.11 (0.179)

AD-CSF1 -0.05 (0.412) 0.03 (0.623) -0.33 (<0.001) 0.19 (0.069) -0.18 (0.114) 0.05 (0.601)

AD

Age -0.15 (0.25) 0.26 (0.092) 0.26 (0.181) -0.48 (<0.001) -0.32 (0.122) 0.01 (0.96)

CSF Aβ -0.15 (0.38) -0.1 (0.576) 0.02 (0.771) 0.0 (0.977) -0.09 (0.294) -0.03 (0.725)

CSF p-tau 0.12 (0.336) 0.05 (0.769) -0.25 (0.003) 0.25 (0.004) -0.24 (0.003) -0.12 (0.164)

CSF t-tau 0.12 (0.229) -0.09 (0.399) -0.28 (0.003) 0.37 (<0.001) -0.15 (0.191) 0.17 (0.093)

AD-CSF1 0.18 (0.336) 0.12 (0.576) -0.09 (0.213) 0.23 (<0.001) -0.26 (<0.001) -0.07 (0.386)

AD-CSF1 0.15 (0.238) -0.06 (0.717) -0.11 (0.304) 0.3 (0.002) -0.16 (0.104) 0.09 (0.384)

AD continuum

Age -0.31 (0.079) 0.29 (0.136) -0.03 (0.82) -0.37 (<0.001) -0.15 (0.312) -0.07 (0.544)

CSF Aβ 0.15 (0.189) -0.12 (0.385) 0.33 (<0.001) 0.02 (0.958) 0.04 (0.893) 0.0 (0.976)

CSF p-tau -0.05 (0.43) 0.03 (0.723) -0.35 (<0.001) 0.25 (0.001) -0.22 (0.058) -0.14 (0.153)

CSF t-tau -0.09 (0.431) 0.01 (0.94) -0.45 (<0.001) 0.31 (0.005) -0.18 (0.314) 0.08 (0.518)

AD-CSF1 -0.12 (0.243) 0.06 (0.679) -0.35 (<0.001) 0.17 (0.351) -0.19 (0.175) -0.1 (0.335)

AD-CSF1 -0.15 (0.246) 0.06 (0.709) -0.43 (<0.001) 0.18 (0.517) -0.18 (0.326) 0.03 (0.804)

Table A.6: Effect size (p-value) of each associated marker of interest on on average brain ROI volume using a single PLS model for Alzheimer’s
pathology.
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AD stage Marker Latent dimension

First Second Third Fourth Fifth Sixth

HC

Age -0.42 (0.026) 0.45 (0.011) -0.03 (0.85) -0.18 (0.033) -0.03 (0.752) -0.1 (0.216)
CSF Aβ 0.03 (0.739) 0.07 (0.335) 0.04 (0.611) 0.1 (0.24) 0.02 (0.849) -0.13 (0.06)

CSF p-tau -0.01 (0.864) 0.01 (0.865) 0.09 (0.308) 0.02 (0.795) -0.05 (0.512) 0.11 (0.252)
CSF t-tau 0.03 (0.892) 0.19 (0.064) -0.08 (0.292) 0.1 (0.179) -0.01 (0.941) 0.08 (0.414)
AD-CSF1 -0.13 (0.16) 0.15 (0.114) 0.22 (0.005) -0.07 (0.493) 0.01 (0.927) 0.09 (0.217)
AD-CSF1 0.11 (0.267) -0.0 (0.98) -0.03 (0.754) 0.18 (0.015) 0.16 (0.03) 0.06 (0.561)

PC

Age -0.4 (0.055) 0.15 (0.676) -0.33 (0.147) -0.2 (0.588) -0.07 (0.668) -0.05 (0.701)
CSF Aβ 0.02 (0.672) -0.14 (0.087) 0.14 (0.157) -0.06 (0.492) 0.13 (0.318) -0.01 (0.937)

CSF p-tau -0.13 (0.2) 0.18 (0.166) -0.35 (0.011) 0.34 (0.003) -0.06 (0.8) -0.02 (0.923)
CSF t-tau -0.11 (0.254) 0.18 (0.162) -0.35 (0.011) 0.35 (<0.001) 0.07 (0.732) 0.17 (0.268)
AD-CSF1 -0.14 (0.174) 0.14 (0.304) -0.34 (0.008) 0.17 (0.245) -0.13 (0.55) 0.05 (0.742)
AD-CSF1 -0.04 (0.46) 0.14 (0.151) -0.24 (0.025) 0.17 (0.095) -0.01 (0.977) 0.22 (0.059)

MCI

Age -0.41 (0.026) 0.13 (0.723) -0.19 (0.551) -0.36 (0.03) 0.04 (0.815) -0.08 (0.394)
CSF Aβ 0.15 (0.063) -0.06 (0.584) 0.12 (0.095) -0.0 (0.988) 0.02 (0.749) 0.24 (<0.001)

CSF p-tau -0.02 (0.551) -0.01 (0.894) -0.21 (0.006) 0.27 (<0.001) 0.22 (0.009) -0.08 (0.422)
CSF t-tau -0.11 (0.184) 0.08 (0.401) -0.26 (0.001) 0.3 (<0.001) 0.3 (<0.001) -0.07 (0.455)
AD-CSF1 -0.14 (0.129) 0.02 (0.858) -0.23 (<0.001) 0.15 (0.065) 0.09 (0.435) -0.11 (0.152)
AD-CSF1 -0.17 (0.102) 0.1 (0.433) -0.25 (0.002) 0.21 (0.009) 0.14 (0.193) -0.1 (0.244)

AD

Age -0.06 (0.5) 0.17 (0.318) 0.19 (0.556) -0.6 (<0.001) 0.21 (0.568) 0.01 (0.942)
CSF Aβ -0.12 (0.49) -0.08 (0.482) -0.06 (0.508) -0.06 (0.508) 0.03 (0.733) 0.19 (0.01)

CSF p-tau -0.06 (0.541) -0.05 (0.555) -0.25 (0.004) 0.21 (0.022) 0.2 (0.066) -0.2 (0.017)
CSF t-tau -0.15 (0.533) -0.13 (0.31) -0.24 (0.003) 0.27 (0.002) 0.19 (0.112) 0.06 (0.569)
AD-CSF1 0.0 (0.911) -0.08 (0.182) -0.11 (0.075) 0.15 (0.017) 0.12 (0.133) -0.18 (0.016)
AD-CSF1 0.03 (0.422) -0.09 (0.181) -0.07 (0.551) 0.25 (<0.001) 0.13 (0.255) -0.02 (0.88)

AD continuum

Age -0.31 (0.053) 0.15 (0.609) -0.11 (0.723) -0.4 (<0.001) 0.07 (0.733) -0.04 (0.667)
CSF Aβ 0.18 (0.068) -0.08 (0.644) 0.25 (0.003) -0.03 (0.924) 0.02 (0.883) 0.21 (<0.001)

CSF p-tau -0.17 (0.187) 0.02 (0.912) -0.35 (<0.001) 0.25 (0.016) 0.17 (0.316) -0.14 (0.174)
CSF t-tau -0.25 (0.136) 0.03 (0.912) -0.42 (<0.001) 0.28 (0.046) 0.23 (0.161) -0.05 (0.692)
AD-CSF1 -0.22 (0.117) 0.03 (0.904) -0.35 (<0.001) 0.15 (0.511) 0.07 (0.716) -0.13 (0.145)
AD-CSF1 -0.24 (0.099) 0.07 (0.794) -0.39 (<0.001) 0.19 (0.356) 0.13 (0.507) -0.07 (0.499)

Table A.7: Effect size (p-value) of each associated marker of interest on on average brain ROI cortical thickness using a single PLS model
for Alzheimer’s pathology.
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First Second Third Fourth Fifth Sixth

HC

Age -0.44 (0.01) 0.49 (<0.001) -0.07 (0.22) -0.01 (0.88) -0.14 (0.01) 0.1 (0.06)
CSF Aβ -0.01 (0.9) 0.06 (0.29) -0.32 (<0.001) 0.36 (<0.001) -0.23 (<0.001) -0.05 (0.59)

CSF p-tau -0.01 (0.81) -0.01 (0.8) -0.27 (<0.001) -0.22 (<0.001) -0.24 (<0.001) -0.25 (<0.001)
CSF t-tau -0.0 (0.99) -0.01 (0.93) -0.52 (<0.001) -0.2 (0.07) -0.28 (<0.001) 0.28 (<0.001)
AD-CSF1 -0.13 (0.2) 0.02 (0.88) 0.01 (0.87) -0.08 (0.29) -0.09 (0.19) -0.16 (0.02)
AD-CSF1 0.05 (0.5) -0.0 (0.98) -0.16 (0.13) -0.23 (0.02) 0.07 (0.55) 0.14 (0.21)

PC

Age -0.42 (0.04) 0.28 (0.45) 0.1 (0.5) 0.12 (0.44) -0.15 (0.28) 0.25 (0.04)
CSF Aβ -0.01 (0.85) -0.07 (0.28) -0.18 (0.04) -0.06 (0.61) 0.33 (<0.001) -0.19 (0.03)

CSF p-tau 0.05 (0.61) 0.03 (0.8) 0.6 (<0.001) 0.35 (<0.001) -0.22 (0.08) -0.22 (0.09)
CSF t-tau 0.07 (0.48) -0.0 (1.0) 0.58 (<0.001) 0.43 (<0.001) -0.21 (0.1) -0.18 (0.14)
AD-CSF1 0.02 (0.79) 0.08 (0.26) 0.39 (<0.001) 0.28 (<0.001) -0.29 (<0.001) 0.03 (0.8)
AD-CSF1 0.05 (0.47) 0.01 (0.92) 0.33 (<0.001) 0.25 (0.01) -0.27 (<0.001) 0.02 (0.82)

MCI

Age -0.36 (0.07) 0.31 (0.18) 0.02 (0.94) 0.37 (<0.001) 0.08 (0.61) 0.1 (0.52)
CSF Aβ 0.12 (0.21) -0.09 (0.4) 0.25 (0.01) -0.09 (0.6) -0.15 (0.14) 0.01 (0.94)

CSF p-tau 0.04 (0.39) -0.05 (0.36) -0.37 (<0.001) -0.27 (<0.001) 0.11 (0.16) 0.27 (<0.001)
CSF t-tau 0.04 (0.5) -0.03 (0.64) -0.47 (<0.001) -0.28 (<0.001) 0.24 (<0.001) 0.03 (0.75)
AD-CSF1 -0.08 (0.43) -0.04 (0.73) -0.36 (<0.001) -0.11 (0.31) 0.11 (0.23) 0.15 (0.08)
AD-CSF1 -0.05 (0.44) 0.03 (0.61) -0.4 (<0.001) -0.12 (0.27) 0.21 (0.01) 0.07 (0.48)

AD

Age -0.15 (0.27) 0.26 (0.08) 0.48 (<0.001) -0.07 (0.73) -0.22 (0.27) -0.21 (0.28)
CSF Aβ -0.15 (0.36) -0.1 (0.62) -0.02 (0.81) -0.04 (0.59) -0.11 (0.23) 0.02 (0.85)

CSF p-tau 0.12 (0.32) 0.05 (0.79) -0.41 (<0.001) -0.31 (<0.001) -0.32 (<0.001) 0.07 (0.4)
CSF t-tau 0.12 (0.23) -0.09 (0.42) -0.49 (<0.001) -0.32 (<0.001) 0.09 (0.4) -0.27 (<0.001)
AD-CSF1 0.18 (0.34) 0.12 (0.58) -0.25 (<0.001) -0.25 (<0.001) -0.17 (0.02) 0.06 (0.41)
AD-CSF1 0.15 (0.25) -0.06 (0.73) -0.33 (<0.001) -0.24 (0.02) 0.09 (0.34) -0.2 (0.05)

Table A.8: Effect size (p-value) of each associated marker of interest on on average brain ROI volume using a multiple PLS model for
Alzheimer’s pathology.
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AD stage Marker Latent dimension

First Second Third Fourth Fifth Sixth

HC

Age -0.42 (0.02) 0.45 (0.01) -0.05 (0.64) -0.09 (0.43) -0.13 (0.14) -0.16 (0.06)
CSF Aβ 0.03 (0.74) 0.07 (0.33) 0.17 (0.01) -0.37 (<0.001) 0.31 (<0.001) -0.09 (0.23)

CSF p-tau -0.01 (0.83) 0.01 (0.84) 0.42 (<0.001) -0.1 (0.33) -0.18 (0.04) -0.22 (0.01)
CSF t-tau 0.03 (0.88) 0.19 (0.06) 0.44 (<0.001) -0.28 (<0.001) -0.19 (0.02) 0.2 (0.02)
AD-CSF1 -0.13 (0.14) 0.15 (0.12) 0.11 (0.22) 0.13 (0.14) -0.06 (0.45) -0.12 (0.12)
AD-CSF1 0.11 (0.28) -0.0 (0.98) 0.16 (0.05) -0.05 (0.63) 0.02 (0.8) 0.14 (0.09)

PC

Age -0.4 (0.06) 0.15 (0.65) 0.22 (0.39) 0.15 (0.81) -0.24 (0.26) -0.07 (0.66)
CSF Aβ 0.02 (0.67) -0.14 (0.08) -0.24 (0.02) -0.01 (0.89) -0.0 (0.98) -0.33 (<0.001)

CSF p-tau -0.13 (0.17) 0.18 (0.16) 0.56 (<0.001) -0.26 (0.03) -0.23 (0.2) 0.2 (0.23)
CSF t-tau -0.11 (0.23) 0.18 (0.17) 0.52 (<0.001) -0.25 (0.03) -0.25 (0.11) -0.05 (0.76)
AD-CSF1 -0.14 (0.19) 0.14 (0.31) 0.49 (<0.001) -0.05 (0.87) -0.14 (0.51) 0.27 (0.05)
AD-CSF1 -0.04 (0.44) 0.14 (0.16) 0.35 (<0.001) -0.1 (0.37) -0.16 (0.23) 0.12 (0.39)

MCI

Age -0.41 (0.03) 0.13 (0.7) 0.04 (0.91) -0.3 (0.28) -0.3 (0.07) 0.01 (0.88)
CSF Aβ 0.15 (0.07) -0.06 (0.57) 0.08 (0.31) 0.05 (0.54) 0.17 (<0.001) -0.36 (<0.001)

CSF p-tau -0.02 (0.56) -0.01 (0.91) -0.42 (<0.001) 0.2 (<0.001) -0.18 (0.02) 0.05 (0.57)
CSF t-tau -0.11 (0.19) 0.08 (0.41) -0.45 (<0.001) 0.19 (<0.001) -0.22 (0.01) 0.12 (0.2)
AD-CSF1 -0.14 (0.14) 0.02 (0.86) -0.3 (<0.001) 0.03 (0.77) -0.16 (0.05) 0.21 (<0.001)
AD-CSF1 -0.17 (0.1) 0.1 (0.45) -0.34 (<0.001) 0.06 (0.4) -0.18 (0.05) 0.24 (<0.001)

AD

Age -0.06 (0.49) 0.17 (0.32) 0.49 (0.02) -0.07 (0.94) 0.08 (0.78) -0.33 (0.06)
CSF Aβ -0.12 (0.5) -0.08 (0.5) -0.06 (0.53) -0.09 (0.34) 0.05 (0.55) -0.03 (0.66)

CSF p-tau -0.06 (0.58) -0.05 (0.52) -0.39 (<0.001) -0.3 (<0.001) -0.25 (0.01) -0.17 (0.06)
CSF t-tau -0.15 (0.57) -0.13 (0.31) -0.4 (<0.001) -0.35 (<0.001) -0.03 (0.78) 0.18 (0.08)
AD-CSF1 0.0 (0.91) -0.08 (0.2) -0.24 (<0.001) -0.17 (0.01) -0.26 (<0.001) -0.13 (0.08)
AD-CSF1 0.03 (0.4) -0.09 (0.17) -0.25 (<0.001) -0.33 (<0.001) -0.08 (0.4) 0.2 (0.01)

Table A.9: Effect size (p-value) of each associated marker of interest on on average brain ROI cortical thickness using a multiple PLS models
for Alzheimer’s pathology.
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Appendix B Chapter 5

Appendix B.1 Cross-sectional analysis

Appendix B.1.1 Multiclass classification

Feature selection was carried out in the ADNI dataset for the classification of (i) healthy
controls (HC) vs MCI due to AD and (ii) HC vs dementia due to AD (Figure B.1)
following identical workflow to the one utilized in the classification of HC vs PC listed in
the main text. T1 derived features in the HC vs MCI and HC vs AD-dementia models
are highly overlapping. Notably, all discriminants of diagnostic categories have a negative
weight indicating a loss of ROI volume for AD-dementia patients.

(a) HC vs. MCI (b) HC vs. AD-dementia

Figure B.1: Top 10 most relevant features for (a) HC vs MCI and (b) HC vs AD-dementia
models. All features have a negative sign, indicating decreased volumes in MRI of AD-
dementia patients with respect to HC.

The classification performance is shown in Tables B.10 and B.11 using T1 and T1+DTI
derived features.

HC vs MCI (a) HC vs. AD-dementia (b)

AUC Prec Rec AUC Prec Rec

10 0.968 0.89 0.92 0.931 0.709 0.895

20 0.956 0.885 0.85 0.92 0.70 0.84

30 0.945 0.821 0.852 0.92 0.7 0.84

40 0.947 0.774 0.889 0.91 0.61 0.89

50 0.926 0.75 0.889 0.892 0.57 0.89

Table B.10: T1 features have been trained on the ADNI cohort for the classification of
(a) HC vs MCI and (b) HC vs AD-dementia. Preclinical subjects are excluded from
the training and test sets. Performance (AUC) is evaluated on the HCB cohort for the
classification of HC vs MCI and HC vs AD-dementia. Precision and recall are reported
for the threshold that maximizes F1-score [293]
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HC vs MCI (a) HC vs. AD-dementia (b)

AUC Prec Rec AUC Prec Rec

10 0.932 0.85 0.81 0.96 0.86 0.86

20 0.947 1.0 0.762 0.94 0.8 0.86

30 0.93 0.78 0.86 0.95 0.76 0.93

40 0.94 1.0 0.71 0.94 0.8 0.86

50 0.93 1.0 0.71 0.91 0.71 0.86

Table B.11: T1+DTI features have been trained on the ADNI cohort for the classification
of (a) HC vs MCI and (b) HC vs AD-dementia. Preclinical subjects have been excluded
from the training and test sets. Performance (AUC) is evaluated on the HCB cohort
for the classification of HC vs MCI and HC vs AD-dementia. Precision and recall are
reported for the threshold that maximizes F1-score [293]

Appendix B.1.2 Feature selection: T1-derived features

In Table B.12, we show the top 20 features selected by the F-test method, ranked by
logistic regression (LR) weight.

Ranking order Brain ROI LR weight

1 Caudate (L) 1.05

2 Amygdala (R) 0.86

3 Parietal Sup (L) 0.79

4 Temporal Pole Mid (L) 0.78

5 Olfactory (L) 0.78

6 Frontal Inf Tri (R) 0.70

7 Pallidum (L) 0.65

8 Occipital Inf (L) 0.54

9 Temporal Inf (R) 0.47

10 Rectus (L) 0.38

11 Cingulum Ant (R) 0.37

12 Frontal Inf Tri (L) 0.36

13 Parietal Inf (R) 0.34

14 Temporal Inf (L) 0.33

15 Fusiform (R) 0.32

16 Hippocampus (R) 0.15

17 Occipital Inf (R) 0.10

18 Olfactory (R) 0.05

19 Caudate (R) 0.04

20 Frontal Inf Oper (R) 0.04

Table B.12: Features derived from T1 images as normalized GMV from ROIs. Top-20
features selected using F-test are ranked according to the logistic regression (LR) absolute
weights estimated on the training set (ADNI cohort).
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Appendix B.1.3 Feature selection: Multimodal-derived features

In Table B.13, we show the top 45 features selected by mrm-FCD feature selection
method.

Ranking order Brain ROI LR weight

1 Frontal Inf Orb (L), Temporal Pole Mid (L) 0.71

2 Occipital Inf (L), Parietal Inf (L) 0.46

3 Hippocampus (L), Frontal Inf Tri (R) 0.43

4 Angular (R), Pallidum (R) 0.39

5 Frontal Mid Orb (L), Pallidum (R) 0.39

6 Frontal Mid Orb (R), Thalamus (R) 0.39

7 Frontal Sup Medial (R), Amygdala (R) 0.38

8 Occipital Inf (L), Angular (L) 0.37

9 Frontal Inf Orb (L), Rectus (L) 0.37

10 Precentral (L), Hippocampus (L) 0.37

11 Cingulum Ant (L), Pallidum (L) 0.36

12 Frontal Med Orb (L), Pallidum (R) 0.35

13 Caudate (L), Pallidum (L) 0.34

14 Parietal Sup (R), Precuneus (R) 0.33

15 Occipital Inf (L), Cingulum Post (R) 0.31

16 Cingulum Ant (L), Pallidum (R) 0.31

17 Cingulum Post (R), Calcarine (R) 0.30

18 Olfactory (L) 0.27

19 Cingulum Mid (L), Temporal Pole Sup (R) 0.25

20 Putamen (L), Supp Motor Area (R) 0.24

21 Pallidum (R), Temporal Mid (R) 0.23

22 Pallidum (L), Parietal Sup (R) 0.22

23 Pallidum (L) 0.20

24 Frontal Sup Medial (L), Pallidum (R) 0.20

25 Cingulum Post (L), Fusiform (R) 0.20

26 Frontal Med Orb (L), Temporal Pole Mid (L) 0.20

27 Frontal Sup Medial (L), Temporal Sup (L) 0.19

28 Cuneus (L), Fusiform (R) 0.19

29 Cingulum Ant (R), Pallidum (R) 0.19

30 Occipital Inf (R), Temporal Mid (R) 0.17

31 Cingulum Post (R), Parietal Sup (R) 0.17

32 Frontal Sup (R), Temporal Pole Sup (R) 0.17

33 Cingulum Ant (L), Cingulum Post (L) 0.17

34 Putamen (L), Temporal Pole Mid (L) 0.14

35 Caudate (R), Pallidum (R) 0.14

36 Occipital Sup (L), Putamen (L) 0.13

37 Parietal Inf (R), Pallidum (R) 0.13

38 Temporal Pole Mid (L), Caudate (R) 0.12

39 Frontal Sup Medial (L), Insula (L) 0.10

40 Pallidum (L), SupraMarginal (R) 0.09

41 Fusiform (R), Angular (R) 0.08

42 Frontal Sup (L), Pallidum (R) 0.08
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Ranking order Brain ROI LR weight

43 Cingulum Post (R), Occipital Inf (R) 0.05

44 Frontal Sup (R), Parietal Sup (R) 0.03

45 Caudate (R), Putamen (R) 0.00

Table B.13: Multimodal (T1+DTI) top ranking features as ordered by the logistic re-
gression (LR) absolute weights estimated on the training set (ADNI cohort). Only two
of these highly informative features are GMV from the T1 modality (Olfactory (L) and
Pallidum (R)).

Appendix B.2 Longitudinal analysis

Appendix B.2.1 Selected subjects

In Table B.14, we show the acquisition sites and field strenght of the selected subjects
with available Jacobians that are, at least, 2.5 years apart.

RID Diagnosis Site ID Field streght

96 Control 10/16 (m60,m72) 1.5T

118 Control 13/19(m60,m72) 1.5T

260 Control 114/47 (m60,m72, m84, 96, 108) 1.5T

352 Control 45/39 (m60,m72, m84, 96) 1.5T

498 Control 103/4 (m48,m60,m72) 1.5T

519 Control 110/11 (m48,m60,m72) 1.5T

559 Control 101 1.5T

619 Control 101 1.5T

637 Control 108 1.5T

672 Control 17/25(m48) 1.5T

677 Control 16/22(m60,m72,m84) 1.5T

685 Control 101 1.5T

923 Control 52/23(m48,m60,m72,m84,m96) 1.5T

1169 Control 16/22(m60,m72,m84) 1.5T

1250 Control 57/29(m48,m72,m84) 1.5T

257 PC 32 1.5T

259 PC 114/47 (m60,m72, m84, 96) 1.5T

295 PC 101 1.5T

479 PC 16/2 (m60,m72) 1.5T

403 PC 13 1.5T

520 PC 110/11 (m48,m60,m72) 1.5T

555 PC 6/24 (m48,m60,m72, m96) 1.5T

984 PC 9/15(m48,m60,m72,m84,m96) 1.5T

1098 PC 52/23(m48,m60,m72,m84,m96,m120) 1.5T

1276 PC 109 1.5T

Table B.14: Acquisition characteristics of the selected subjects on the interval 3.5 > ∆t
> 2.5 years.
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Appendix B.2.2 F-test feature selection

In Table B.15, whe show the percentage of each region that best discriminate amyloid
positivity in a pool of cognitively unimpaired subjects.

ROI
number

ROI description
% of relevant

voxels

minimum
relevant voxels
per iterations

1 Left Precentral 0 0

2 Right Precentral 3.19E-03 7.65E-05

3
Left Superior

Frontal
0 0

4
Right Superior

Frontal
0 0

5
Left Superior

Frontal Orbital
0 0

6
Right Superior
Frontal Orbital

9.33E-04 3.26E-05

7
Left Middle

Frontal
0 0

8
Right Middle

Frontal
0 0

9
Left Middle

Frontal Orbital
0 0

10
Right Middle

Frontal Orbital
0 0

11
Left Inferior

Frontal
Operculum

0 0

12
Right Inferior

Frontal
Operculum

2.96E-03 1.15E-04

13
Left Inferior

Frontal
0 0

14
Right Inferior

Frontal
0 0

15
Left Inferior

Frontal Orbital
0 0

16
Right Inferior

Frontal Orbital
0 0

17
Left Rolandic
Operculum

0 0

18
Right Rolandic

Operculum
3.97E-03 7.28E-05

19
Left Superior

Motor
0 0

20
Right Superior

Motor
0 0
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ROI
number

ROI description
% of relevant

voxels

minimum
relevant voxels
per iterations

21 Left Olfactory 1.23E-01 8.82E-03

22 Right Olfactory 2.04E-01 9.78E-03

23
Left Superior

Medial Frontal
0 0

24
Right Superior
Medial Frontal

0 0

25
Left Medial

Frontal Orbital
0 0

26
Right Medial

Frontal Orbital
0 0

27 Left Rectus 1.37E-02 4.42E-04

28 Right Rectus 3.40E-02 1.60E-03

29 Left Insula 3.99E-03 6.64E-05

30 Right Insula 6.17E-02 6.86E-03

31
Left Anterior

Cingulum
0 0

32
Right Anterior

Cingulum
0 0

33
Left Middle
Cingulum

1.23E-02 8.40E-04

34
Right Middle

Cingulum
7.98E-04 1.20E-05

35 Left Cingulum 4.34E-02 3.96E-03

36 Right Cingulum 4.08E-02 1.15E-03

37
Left

Hippocampus
1.43E-01 2.16E-02

38
Right

Hippocampus
2.25E-01 3.97E-02

39
Left Parahip-

pocampus
5.96E-02 1.62E-03

40
Right Parahip-

pocampus
1.17E-01 1.10E-02

41 Left Amygdala 6.48E-02 1.84E-03

42 Right Amygdala 1.03E-02 4.54E-04

43 Left Calcarine 7.78E-02 1.52E-02

44 Right Calcarine 4.65E-02 3.93E-03

45 Left Cuneus 4.14E-02 1.38E-03

46 Right Cuneus 3.12E-02 4.97E-04

47 Left Lingual 1.03E-02 3.10E-04

48 Right Lingual 9.21E-03 5.08E-04

49
Left Superior

Occipital
1.39E-01 8.83E-03

50
Right Superior

Occipital
1.18E-01 7.87E-03
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ROI
number

ROI description
% of relevant

voxels

minimum
relevant voxels
per iterations

51
Left Middle

Occipital
4.07E-02 2.16E-03

52
Right Middle

Occipital
7.65E-02 3.94E-03

53
Left Inferior

Occipital
0 0

54
Right Inferior

Occipital
8.79E-04 8.79E-06

55 Left Fusiform 2.03E-02 2.98E-04

56 Right Fusiform 3.40E-01 6.58E-02

57 Left Postcentral 0 0

58 Right Postcentral 6.50E-03 8.87E-05

59
Left Superior

Parietal
4.49E-02 2.14E-03

60
Right Superior

Parietal
7.61E-02 4.36E-03

61
Left Inferior

Parietal
1.28E-02 2.70E-04

62
Right Inferior

Parietal
1.41E-02 2.58E-04

63
Left

Supramarginal
1.74E-02 2.86E-04

64
Right

Supramarginal
8.86E-03 1.56E-04

65 Left Angular 7.68E-04 7.68E-06

66 Right Angular 4.39E-02 2.30E-03

67 Left Precuneus 1.59E-01 1.58E-02

68 Right Precuneus 7.09E-02 6.82E-03

69
Left Central
Paracentral

Lobule
0 0

70
Right Central
Paracentral

Lobule
0 0

71 Left Caudate 6.03E-01 3.99E-01

72 Right Caudate 7.50E-01 6.04E-01

73 Left Putamen 0 0

74 Right Putamen 2.86E-03 4.77E-05

75 Left Pallidum 0 0

76 Right Pallidum 0 0

77 Left Thalamus 1.49E-01 7.09E-02

78 Right Thalamus 1.89E-01 6.16E-02

79 Left Heschl 0 0

80 Right Heschl 0 0
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ROI
number

ROI description
% of relevant

voxels

minimum
relevant voxels
per iterations

81
Left Superior

Temporal
1.96E-02 7.83E-04

82
Right Superior

Temporal
4.93E-03 1.27E-04

83
Left Superior

Temporal Pole
5.55E-02 3.92E-03

84
Right Superior
Temporal Pole

2.08E-03 3.28E-05

85
Left Middle
Temporal

7.12E-03 4.07E-04

86
Right Middle

Temporal
2.20E-02 4.87E-04

87
Left Middle

Temporal Pole
7.08E-03 3.12E-04

88
Right Middle

Temporal Pole
2.18E-01 1.53E-02

89
Left Inferior

Temporal
9.15E-04 1.07E-05

90
Right Inferior

Temporal
1.63E-01 1.64E-02

91 Left Cerebellum 1.99E-04 1.99E-06

92 Right Cerebellum 0 0

93
Left Cerebellum

3
0 0

94
Right Cerebellum

3
0 0

95
Left Cerebellum

4-5
0 0

96
Right Cerebellum

4-5
0 0

97
Left Cerebellum

6
0 0

98
Right Cerebellum

6
8.68E-04 2.89E-05

99
Left Cerebellum

7b
0 0

100
Right Cerebellum

7b
0 0

101
Left Cerebellum

8
0 0

102
Right Cerebellum

8
7.14E-03 1.63E-04

103
Left Cerebellum

9
0 0
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ROI
number

ROI description
% of relevant

voxels

minimum
relevant voxels
per iterations

104
Right Cerebellum

9
1.09E-03 1.09E-05

105
Left Cerebellum

10
0 0

106
Right Cerebellum

10
0 0

107 Left Vermis 1-2 0 0

108 Right Vermis 1-2 0 0

109 Left Vermis 3 0 0

110 Right Vermis 3 0 0

111 Left Vermis 4-5 0 0

112 Right Vermis 4-5 0 0

113 Left Vermis 6 0 0

114 Right Vermis 6 0 0

115 Left Vermis 0 0

116 Right Vermis 0 0

117 Left Vermis 8 0 0

118 Right Vermis 8 4.48E-03 4.48E-05

119 Left Vermis 9 0 0

120 Right Vermis 9 0 0

121 Left Vermis 10 0 0

122 Right Vermis 10 0 0

Table B.15: Percentage of discriminant voxels that correspond to each of the brain regions
of interest (ROIs)

Appendix B.2.3 L1-feature selection

Performance of the voxelwise classifier using a feature selection method based on l1-
penalization in the optimization step is shown in Table B.16

Appendix B.2.4 Classification: training on a close ∆t interval

In contrast to the approach used in the main text (Chapter 5) we used a voxelwise
classifier trained on a restricted interval (3.5 > ∆t > 2.5 years) and tested in all other
cases. Results are listes in Table B.17.
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Reg.
parameter
(mean #
features)

AUC B.acc Acc. Prec. Sens. Spec. F-score

20000
(205.31)

0.748 0.651 0.575 0.303 0.777 0.525 0.429

50000
(576.17)

0.742 0.628 0.534 0.277 0.783 0.472 0.4046

100000
(1286.95)

0.8 0.634 0.537 0.28 0.8 0.4725 0.41

500000
(3814.73)

0.768 0.64875 0.541 0.286 0.817 0.48 0.42

1000000
(5130.59)

0.77 0.65 0.54 0.283 0.823 0.47 0.42

Table B.16: Performance of the system using a different feature selection method (l1-
norm selection) and evaluated on the interval 3.5 > ∆t > 2.5 years. The number of
features depend on the l1-norm regularization parameter and on the training data. We
report the average number of features used per iteration of the evaluation loop. Metrics
used are: area under the curve (AUC), balanced accuracy (B.acc.), accuracy (Acc.),
precision (Prec.), sensitivity (Sens.), specificity (Spec.) and F-score.

# features
(%)

AUC B.acc Acc. Prec. Sens. Spec. F-score

6 (0.001) 0.57 0.52 0.44 0.66 0.21 0.39 0.31

65 (0.01) 0.59 0.54 0.46 0.68 0.23 0.4 0.33

653 (0.1) 0.63 0.56 0.5 0.66 0.24 0.46 0.34

1633 (0.25) 0.62 0.55 0.52 0.61 0.24 0.49 0.33

3266 (0.5) 0.62 0.55 0.52 0.59 0.24 0.5 0.33

6532 (1) 0.62 0.55 0.51 0.61 0.24 0.49 0.33

13064 (2) 0.64 0.56 0.52 0.63 0.24 0.49 0.34

32661 (5) 0.65 0.58 0.5 0.71 0.25 0.44 0.36

65323 (10) 0.64 0.59 0.51 0.73 0.26 0.45 0.37

Table B.17: Performance of the system trained on the interval 3.5 > ∆t > 2.5 years and
evaluated in all other cases. Metrics used are: area under the curve (AUC), balanced ac-
curacy (B.acc.), accuracy (Acc.), precision (Prec.), sensitivity (Sens.), specificity (Spec.)
and F-score.
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