
 

 

 

 

 

 

 

 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH 

HEMITHIOINDIGO AND SPIROPYRAN UNITS 
 

Giulia Moncelsi 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



 
 
 
 
 
 

 

 

Stimuli-responsive host-guest systems decorated 
with hemithioindigo and spiropyran units 
 

 

 

GIULIA MONCELSI 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

DOCTORAL THESIS 
2019 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



DOCTORAL THESIS 

 

Giulia Moncelsi 

 

STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED 

WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 

 

Supervised by Prof. Pablo Ballester Balaguer 

 

 

 

 

 

 

 

 

 

Tarragona 

2019 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Acknowledgements 

When reading the acknowledgements section in other theses, I often empathize with the writer 

as the words condensed in those few pages describe vividly some of the most important 

moments or ensembles of moments that occurred during the time of their studies. It happens 

to be my favorite part of the manuscript. 

For now it’s my turn, the time has come to squeeze these past three and a half years of life 

and doctorate into a couple of pages and describe with the best accuracy possible the separate 

or joint contribution that the following people have, consciously or not, given to my journey 

as a PhD candidate culminating with this thesis. To me, acknowledging someone for their 

help and advice is one of the most rewarding parts of personal and professional life. 

If I got here to pursue my PhD studies is all thanks to one person, that is my supervisor and 

mentor Pau. Muchísimas gracias Pau por esa primera entrevista en Julio 2015; por aceptarme 

en tu grupo de investigación aún sabiendo que no tenía experiencia previa en el campo de la 

química supramolecular; por ser siempre tán paciente en enseñar, por empujarme fuera del 

estado fundamental cuando tenía que espabilarme y aprofundizar más en entender los 

resultados de mi investigación. Puedo no haber reconocido o apreciado todos tus esfuerzos 

constantes en haber intentado mejorarme como científica, pero ahora lo veo todo. Gracias por 

compartir parte de tu visión del mundo científico y de la sociedad conmigo, y por cuidar tanto 

a tus estudiantes. 

When I first arrived in the PB4, the research was very new to me. At this time, a post-doc who 

later became one of my best pals here, Frank, guided me through the world of organic 

synthesis, photoswitches and molecular capsules. Later on, we shared many significant 

moments in and outside of the lab. Te agradezco muchísimo por tu amistad y apoyo, Frank. 

Thank you for all your original ideas, and your bright enthusiasm. Tambien quiero agradecer 

a Dani, que siempre tuvo tiempo para ayudarme con sus conocimientos de la química 

experimental, y por demonstrarme su amistad de tal manera que en realidad sospechaba caerle 

mal. During that time I shared the PB4 with other wonderful people that made the lab life and 

Tarragona much more enjoyable: thank you Alejandro, Rajesh, Ramón, Nelson, Albano 

and Jordi for the good times together. I would also like to thank the exchange students and 

research fellows with whom I had the pleasure to coincide at ICIQ, even for just a few months. 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



In particular, I would like to acknowledge Martina, Ryo, Angelina, Lorena, David, Sven, 

Diana, Jia, Giacomo and Kaisa for their help and kindness in and out of the PB4. 

During my second year I moved to the LMU München for my short research stay in the group 

of Dr. Henry Dube, who I thank immensely for all the help in understanding more about 

hemithioindigos, the fruitful discussions and the many fun moments in the coffee kitchen (I 

am still the winner of all the sketching battles on the blackboard, though). And I want to give 

a huge shoutout to Chris and Ed for welcoming me in their very special way in the tiny lab, 

for showing me the weird side of the internet in countless occasions, and overall for making 

my stay epic and keeping in touch afterwards. A big thanks goes to Sandy, Moni, Kerstin, 

Ludwig, Sa(w)brina, Thomas, Esteban, A-a-Ron und Fabi. Outside the lab, I had the 

invaluable friendship of Amelie, Irene and Tom, that helped me discover and fall in love with 

München. 

Finally, upon my return to Tarragona and until now, I found the lab populated by a “hard 

nucleus” (nucleo duro) of people that made these last two years unforgettable. This past year 

in particular, every day felt like living inside a spin-off episode of “The Office” taking place 

in a chemistry lab. If it could all have been recorded in a documentary, I genuinely think it 

would be a bingeable show! Entoncessss, gracias Ricardo por haberte convertido, quizás sin 

querer, en mi molt millor amic del laboratorio, por nuestros chistes, memillos dibujados, 

momentos Gallo®, pausas platán, club del libro, admiración por la obra de Pérez-Reverte, y 

en fin por todas las risas que nos hemos hechado a lo largo del tiempo. Y que no se enfade o 

ponga celoso el señor Lluís (¿quien es ese chico?), a quien también le debo mucho y que tuvo 

el privilegio de compartir mesa conmigo. Not in the contract! Gracias a mi mallorquino 

favorito por haberme regalado tantos momentos inolvidables y metaleros (Macaulay Culkin), 

tantos que tengo mucha pereza en escribirlos aquí ¡jajaja! Quiero darle las gracias a Luis por 

su amistad, su infalible ayuda y profesionalidad durante este tiempo que coincidimos en el 

laboratorio. I also want to thank Felipe, Dragos and Qingqing for sharing your knowledge 

and friendship and for making the lab a more comfortable place to work in. Thanks to the new 

generation of PhDs, i carusi Chiara and Pedro, for bringing new air from Sicilia and Portugal 

in town. I leave the PB4 in very good hands. Overall, I believe we had a lot of fun together. 

Sin duda, no me puedo olvidar de agradecer a Gemma por su ayuda pragmática, sus consejos 

prácticos y los buenos momentos compartidos durante las comidas. Un gracias inmenso a 

Bea, por cuidarnos y simplificarnos tanto la vida, y por hacerlo todo con tu mejor sonrisa. 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



También quiero agradecer a toda la unidad de soporte a la investigación del ICIQ, en particular 

modo a las unidades de RMN y Chromtae, por la ayuda proporcionada durante estos años. 

Outside of the lab, I had another large group of people, near and far, who were essential to get 

through the (many) bad times and make the good ones memorable. My experience here would 

have been completely different (and maybe miserable) if I had lacked your selfless support. 

Thank you Enisa, for being part of all this notwithstanding the distance, for the countless 

messages, pictures, memes and calls that formed part of my daily routine. Thank you for 

visiting me wherever I roam and bringing over your special luggage of perfume, flowers, 

wine, poetry, chocolate and je-ne-sais-quoi. 

Un grazie molto speciale agli amici di sempre Gabriele, Federica, Valentina, per continuare 

ad accompagnarmi nei miei avventurosi spostamenti ed avere sempre un pensiero per me; per 

ricordarmi con affetto sincero le mie radici e chiedermi quando tornerò a vivere in Umbria, 

sapendo che la risposta probabilmente non vi piacerà. A Giulia, Nadina, Stefano ed Elena per 

il vostro sostegno continuo, i lunghi (e sottolineo lunghi) aggiornamenti e per rendere 

l’inesorabile transizione all’etá adulta meno temibile. A tutta la mia famiglia sparsa per 

l’Italia, composta da nonni, zii e cugini, per farmi sentire sempre coccolata e a casa. 

For the invaluable and many new friends that I made here at ICIQ, in Tarragona and around 

the world, I want to mention in particular Franzi, probably my longest-lasting friend of these 

years: danke! danke! danke! for all the Fun (capital letter is required here) that we have 

together and also for comforting each other with earthy food, drinks, sports, unlikely cults and 

good conversation! Thank you Laura, Ilario, Sofia, Jesús, Cristina, Barbara, Giacomo, 

Giacomo, Luca, Luca, Elisa, Marcos, Conchi, Justine, Ivo, Joe, Rosie, Manu, Paulina, 

Bradley, Carla, Serena, Marta, Primavera and the Grande Italia crew. All you guys went 

beyond my expectations as colleagues and friends during our time together, and I can say 

without a doubt that my PhD experience here in Catalunya would not have been the same 

without you. 

Infine, arriva il momento di ringraziare chi c’è sempre stato dall’inizio, chi è rimasto vicino 

durante questo percorso e chi ci sarà dopo, a vivere con me e attraverso me quello che sarà il 

mio futuro: grazie a mamma Maddalena e a Lorenzo, cardini indispensabili, colonne 

portanti, porto sicuro. Tutto quello che faccio, ogni risultato e successo che ottengo, lo dedico 

a voi e ad Alcide. 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



The work contained in this thesis has been made possible thanks to the financial support of 

Ministerio de Ciencia, Innovación y Universidades, the Severo Ochoa accreditation, the 

Fondo Europeo de Desarrollo Regional, the Generalitat de Catalunya, the Centres de Recerca 

de Catalunya, the Agència de Gestió d’Ajuts Universitaris i de Recerca and the ICIQ 

Foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mamma, Lorenzo e Alcide, 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Table of Contents 

Chapter 1: General introduction ............................................................ 19 

1.1 General introduction............................................................................................. 21 

1.2 Photoswitchable host-guest systems .................................................................... 22 

1.2.1 Applications of hemithioindigos in host-guest chemistry ............................. 24 

1.2.1.1 Z/E photoisomerism of hemithioindigos ................................................ 24 

1.2.1.2 Hosts containing HTI units .................................................................... 25 

1.2.1.3 HTI derivatives as guests ....................................................................... 28 

1.2.2 Host-guest chemistry of spiropyran photoswitches ....................................... 35 

1.2.2.1 Ring-opening photoisomerization of spiropyrans .................................. 35 

1.2.2.2 Hosts containing SP units ...................................................................... 37 

1.2.2.3 SP derivatives as guests ......................................................................... 41 

1.2.3 Conclusions ................................................................................................... 45 

1.3 Aims of the thesis ................................................................................................. 48 

1.4 Outline of the thesis ............................................................................................. 50 

1.5 References and notes ............................................................................................ 51 

Chapter 2: 2-(4’-Pyridyl-N-oxide)-substituted hemithioindigos as 

photoresponsive guests for a super aryl-extended calix[4]pyrrole receptor   

 ................................................................................................................. 55 

2.1 Introduction .......................................................................................................... 57 

2.2 Results and discussion.......................................................................................... 59 

2.2.1 Design and synthesis ..................................................................................... 59 

2.2.2 Photoisomerization studies of hemithioindigos Z-2 and Z-3 ......................... 61 

2.2.3 Binding studies of hemithioindigos Z-2 and Z-3 with super aryl-extended 

calix[4]pyrrole 1 ..................................................................................................... 63 

2.2.4 Light-irradiation experiments of the inclusion complexes ............................ 65 

2.2.5 Determination of accurate association constant values for the inclusion 

complexes .............................................................................................................. 69 

2.2.6 Binding and photoisomerization studies of 1 with tetramethylammonium 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

4-(phenylazo)benzoate 9 ........................................................................................ 73 

2.2.7 Binding and photoisomerization studies of HTI 2 with tetranitro 

calix[4]pyrrole 10 .................................................................................................. 75 

2.3 Conclusions.......................................................................................................... 78 

2.4 Experimental section............................................................................................ 79 

2.4.1 General information and instrumentation ..................................................... 79 

2.4.2 Synthetic procedures ..................................................................................... 80 

2.4.3 Figures and tables ......................................................................................... 84 

2.5 References and notes ........................................................................................... 97 

Chapter 3: Synthesis of hemithioindigo-decorated tetraurea calix[4]arenes. 

Study of their dimerization into capsular assemblies .............................. 99 

3.1 Introduction........................................................................................................ 101 

3.2 Results and discussion ....................................................................................... 102 

3.2.1 Design and synthesis ................................................................................... 102 

3.2.2 Photoisomerization studies of HTI-3a and the tetraurea monomers ........... 104 

3.2.3 Dimerization and photoisomerization studies of 1 and 2 in non-polar 

organic solvents ................................................................................................... 108 

3.3 Conclusions........................................................................................................ 113 

3.4 Experimental section.......................................................................................... 114 

3.4.1 General information and instrumentation ................................................... 114 

3.4.2 Synthetic procedures ................................................................................... 115 

3.4.3 Figures ........................................................................................................ 124 

3.5 References and notes ......................................................................................... 136 

Chapter 4: Self-assembly of homo- and heterodimeric capsules based 

on a tetraspiropyran tetraurea calix[4]arene .......................................... 137 

4.1 Introduction........................................................................................................ 139 

4.2 Results and discussion ....................................................................................... 141 

4.2.1 Design and synthesis ................................................................................... 141 

4.2.2 Photoisomerization studies of all-SP-1 ....................................................... 142 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

4.2.3 Self-assembly of a homodimeric capsule derived from all-SP-1 

in chloroform ....................................................................................................... 143 

4.2.4 Exclusive self-sorting of tetraureas all-SP-1 and 2 into a heterodimeric 

capsule in dichloromethane .................................................................................. 146 

4.2.5 Encapsulation studies of Me4X+ salts with all-SP-1 .................................... 149 

4.2.6 Photochemical and acid-base modulation of the SP-to-MC isomerization 

processes of the tetraurea all-SP-1 assembled in homo- and heterocapsules. ...... 151 

4.3 Conclusions ........................................................................................................ 156 

4.4 Experimental section .......................................................................................... 156 

4.4.1 General information and instrumentation.................................................... 156 

4.4.2 Synthetic procedures ................................................................................... 158 

4.4.3 Figures and tables ........................................................................................ 160 

4.5 References and notes .......................................................................................... 172 

General conclusions ............................................................................. 175 

List of abbreviations ............................................................................ 177 

 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

 

Chapter 1 

General introduction 

 

 

 

 

 

 

 

 

Part of this chapter has been published in: 

G. Moncelsi, P. Ballester, ChemPhotoChem 2019, 3, 304-317.

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



 

 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



General introduction 

21 

 

1.1 General introduction 

Photochromism (phos = light; chroma = color), a term coined by Hirshberg in 1950,1 defines 

the light-induced reversible transformation between two forms of a compound with different 

color/absorption spectrum. Nowadays, the phenomenon of photochromism is found coupled 

to a wide variety of chemical systems, ranging from photo-2,3 and chiroptical switches4 to 

light-driven molecular motors,5,6 biological receptors7,8,9 and materials10 of daily use.11 Within 

them, organic photoswitches can be regarded as the structurally simplest and most studied 

examples of photochromic molecules.12 The switching motion is generated by a reversible 

structural change between the two isomeric states of a compound upon light-irradiation. In 

most cases the isomeric states of a photoswitch can be discriminated using standard 

spectroscopic techniques owing to the difference in their absorption and emission spectra. The 

human eye may also serve as a detector at the macroscopic scale, when the change in the 

absorption profile associated to the isomerization takes place in the visible region of the 

electromagnetic spectrum (380-740 nm). The photochromic feature, i.e. the light-induced 

change in color, is common to the several families of molecular photoswitches that have been 

studied and developed over the years. However, the instrinsic switching ability and the type 

of isomerization process experienced upon light-irradiation induce properties that are unique 

to each family of photoswitches.13 Therefore, a common method of classification is based on 

the type of isomerization process of the different synthetic photoswitches.14 For example, 

azobenzenes,15 stilbenes,16 hemiindigos/hemithioindigos17 and acyl hydrazones18,19 undergo 

trans/cis or E/Z isomerization. On the other hand, spiropyrans/spirooxazines,20,21,22 

diarylethenes,23,24 chromenes,25,26 fulgides/fulgimides27,28,29 and donor-acceptor Stenhouse 

adducts (DASAs)30,31,32 feature open/closed-ring isomerization. Photoswitches can also be 

classified as P-type or T-type depending on the thermal stability of the bistable system.33 The 

metastable state of T-type photoswitches is thermally unstable and reverts spontaneously and 

at different rates to the thermally stable state. On the other hand, P-type photoswitches are 

thermally stable in both states and require light-irradiation to recover the thermodynamically 

more stable state. Despite the excellent photochromic properties displayed by many 

photoswitches (very different absorption spectra for the two isomeric states), their optimal 

performance remains limited by different factors. The problems most frequently encountered 

in the applications of molecular photoswitches include: non-quantitative switching efficiency, 

low quantum yields, photofatigue, synthetic accessibility and limited function at the bio-
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optical window (650-1350 nm). Hence, the real application of photoswitchable compounds in 

chemical and biocompatible systems still represents a challenging endeavor.34 A further 

understanding of the functioning of the different molecular photoswitches is essential to 

overcome their limitations and warrant their application in the design of complex molecular 

photoresponsive architectures.35 Having used azobenzenes in our research endeavors for 

several years, we became especially interested in studying the photochemical behavior and 

investigate the applicability to supramolecular systems of two other switches: 

hemithioindigos (HTIs)36 and spiropyrans (SPs) (Scheme 1.1).37  

 

Scheme 1.1 Switching behavior of hemithioindigos and 6’-substituted spiropyrans. 

Specifically, in this chapter we will go through selected examples of relevant host-guest 

systems incorporating these photoactive units in the receptor’s or the guest’s scaffold.38 These 

examples serve to easily grasp the desired coupling between the photoswitching process and 

the modification of the composition of the host-guest systems (thermodynamic and dynamic 

equilibria). 

1.2 Photoswitchable host-guest systems 

Synthetic host-guest systems lead to the formation of supramolecular complexes between two 

or more chemical entities, which are held together by non-covalent, weak intermolecular 

forces. These forces are usually referred as molecular recognition interactions.39,40 Simple 

host-guest systems may be decorated with moieties that display a selective and controllable 

response to an external stimulus: light, pH, temperature, solvation, metal ions, redox potential 

and mechanical force.41 Photochromic compounds are nearly ideal candidates for this 

purpose. Light is a privileged external input given its typically non-damaging and non-

invasive nature, and its high spatial and temporal resolution. In particular, organic 

photoswitches offer a higher ease of preparation with respect to other photochromic systems. 
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Hence, they have been employed in the functionalization of several smart materials, 

nanostructures, biopolymers and photopharmacophores.42 As anticipated before, in this 

chapter we concern ourselves with host-guest systems incorporating hemithioindigos and 

spiropyrans. Although both photoswitches have been known for many years, more than 100 

in the case of HTIs and more than 50 for SPs, their covalent attachment to organic receptors 

and guests, as well as the function of the resulting photoswitchable host-guest systems, has 

received limited attention in literature. Instead, photoswitchable supramolecular systems 

(host-guest and self-assembled) mainly based on azobenzene and diarylethene units are 

typically reviewed.43,44,45 Hemithioindigos and spiropyrans feature reversible photoswitching 

in the ultraviolet and visible regions of the electromagnetic spectrum. However, they differ 

significantly in the light-induced isomerization process and in the modification of the physical 

properties of the metastable photoproducts. That is, irradiation of the thermally stable state of 

the photoswitch with UV light produces a photostationary state (PSS) rich in the metastable 

isomer. Subsequent irradiation with visible light produces a new PSS enriched in the 

thermodynamically stable state. Moreover, HTI and SP photoswitches are T-type, that is, their 

photoinduced metastable isomers undergo thermal relaxation to the original thermally stable 

state.46 In the following sections, we describe a selection of fundamental studies involving 

HTI- and SP-based host-guest systems published in the last 30 years. Firstly, we discuss 

examples of synthetic receptors (hosts) covalently functionalized with HTI or SP units, and 

their use in molecular recognition studies of organic and biological molecules in solution. 

Secondly, we describe photoswitchable guests equipped with hemithioindigo or spiropyran 

units. We comment on the effects exerted by the switching process on the binding properties 

of the resulting complexes. We show that the intermolecular interactions involved in the 

stabilization of the host-guest complexes are modulated by the structural changes experienced 

by the photoswitches upon light-irradiation.47 In some cases, the light-induced structural 

change experienced by the photoswitch does not translate into significant changes in the 

stability constants of the complexes. Nevertheless, other examples do reveal that it is possible 

to couple the photoprocess to dramatic changes in the composition of the host-guest systems. 
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1.2.1 Applications of hemithioindigos in host-guest chemistry 

1.2.1.1 Z/E photoisomerism of hemithioindigos 

Hemithioindigos are a family of indigoid photoswitches that consist of a thioindigo fragment 

covalently connected to a stilbene fragment through a central double bond. Although the 

discovery of this hybrid chromophore dates back to 1906,48 it was only recently that it became 

of high interest owing to the efficient photoswitching properties using visible light-

irradiation.49,50 In a similar manner to azobenzenes and stilbenes, the double bond of the 

hemithioindigos can be reversibly photoisomerized between the thermodynamically stable Z-

configuration and the metastable E-configuration (Figure 1.1a). In the Z-configuration, the 

stilbene fragment is placed in a cis orientation with respect to the sulfur atom of the thioindigo. 

Irradiation with visible light (λ > 400 nm) produces the Z-to-E isomerization, with the stilbene 

fragment facing the thioindigo’s carbonyl group. The E-to-Z photoisomerization is achieved 

at longer wavelengths of irradiation (λ > 500 nm). In general, the Z-isomer of hemithioindigos 

is lower in energy than the E-isomer. For the unsubstituted HTI, the thermal equilibrium is 

exclusively populated by Z-isomers (99.9%). The theoretical energy difference between the 

Z/E isomers in their electronic ground state is of 4.2 kcal∙mol-1.51  

 

Figure 1.1 a) Z/E photoisomerization of hemithioindigos:36 Z-HTI (left) and E-HTI (right). Thioindigo 

and stilbene fragments are indicated. b) UV/Vis absorption spectra of the Z and the E-isomers of 

unsubstituted HTI in dichloromethane solution.52 [Adapted with permission from Ref. [46] (Copyright 

2007 ACS Publications)] 
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Additionally, the metastable E-isomer reverts thermally to the thermodynamic product, the Z-

isomer. The barrier for the thermal E/Z isomerization (typically > 27 kcal∙mol-1) of the 

hemithioindigo is higher than that of the azobenzene photoswitch (> 25 kcal∙mol-1). 

Interestingly, the hemithioindigo switch can be photoisomerized in both directions using 

visible light. Despite the low quantum yields of the photoisomerization processes, the red-

shifted absorption of the E-isomer (20-30 nm) allows the accumulation of both isomers in 

high yields at the respective PSSs (Figure 1.1b). In dichloromethane solution, the 

photoirradiation (λ = 420 nm, 60 min) of the Z-HTI affords the E-HTI to a 94% extent at the 

PSS. The E-to-Z back-conversion at 505 nm for 25 min restores quantitatively the starting Z-

isomer. The E-isomer of unsubstituted hemithioindigo is stable for a remarkable 349 years at 

ambient conditions in toluene solution.49 The introduction of substituents at either fragment 

of the hemithioindigo allows the modulation of its photoisomerization properties.52,53 For 

example, the introduction of an electron-donating dimethyl-amino group in the para-position 

to the sulfur atom in the thioindigo fragment (R1) significantly improves the thermal 

bistability of the photoswitch while rendering the compound susceptible to protonation.54 In 

fact, protonation results in dramatic changes in the photophysical properties of the compound 

and can be used as a second independent input signal (light, pH) leading to 2-bit digital 

information processing behavior. 

1.2.1.2 Hosts containing HTI units 

Since the early work of Tanaka and co-workers in 2008 (vide infra),55 there has been an 

increasing interest in the use of HTI photoswitches in host-guest supramolecular systems. 

Recently, Dube et al. developed photoresponsive molecular tweezers based on a HTI spacer 

unit equipped with two electron-rich biphenyl arms. In two representative works, they showed 

how the careful design of the HTI-based receptors (1-3 in Scheme 1.2Scheme 1.3) is essential 

to achieve the desired binding geometry and subsequent light-induced cargo (guest) release. 

Electron-poor aromatic guests, such as 9-(dicyanomethylene)-2,7-dinitrofluorene (4) and 9-

(dicyanomethylene)-2,4,7-trinitrofluorene (5), were suitable for binding with the HTI-

tweezers. In the first report, the bis-HTI receptor 1 was synthesized by a condensation reaction 

of a tricyclic bis-thiophenone with two equivalents of biphenyl aldehyde.56 The presence of 

two isomerizable double bonds implies the existence of 1 as four possible configurational 

isomers (Z,Z; Z,E; E,Z and E,E). The Z,Z-1 isomer was isolated as the thermodynamically 
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stable product, displaying a planar S-shaped geometry (Scheme 1.2). Remarkably, irradiation 

of the Z,Z-1 isomer with visible light (λ = 420 nm) in toluene solution resulted in a highly 

selective conversion (94%) to the E,Z-1 isomer, as confirmed by 2D NMR spectroscopic 

techniques. The steric congestion between the terminal anilines of the biphenyl arms of 1 

forces the E,Z-1 isomer to adopt a helically folded structure. The E,Z-1 isomer binds one 

molecule of 4 producing a 1:1 complex with sandwich-like binding geometry (Scheme 1.2). 

 

Scheme 1.2 First generation of HTI-based molecular tweezers reported by Dube and co-workers 

involving the cargo/release of guest 4 upon irradiation with visible light.56  

The polar aromatic interactions (π-π) established between the two binding partners accounted 

for an association constant value Ka (4⊂E,Z-1) = 240 M-1 in toluene solution. In contrast, the 

binding constant value determined for the 4⊂Z,Z-1 complex was negligible. Therefore, the 

thermal treatment of a solution of the 4⊂E,Z-1 complex afforded the Z,Z-1 isomer and 4, as 

free components. This result demonstrated the efficient cargo-release of the bis-HTI receptor 

1 owing to the large difference in binding affinity of the E,Z-1 and Z,Z-1 isomers for 4. In the 

second generation of HTI-based molecular tweezers, the binding/release of the guest is 

achieved simultaneously by using two tweezers receptors, 2 and 3, and a single light signaling 

event. The Z-isomers of receptors 2 and 3 are structurally complementary. That is, their 

electron-rich biphenyl arms are either oppositely directed to each other, Z-2, or face-to-face 

oriented one to another, Z-3 (Scheme 1.3).57 The different substitution of 2 and 3 does not 

perturb their absorption properties, thus, upon irradiation with visible light (λ = 435 nm), both 

receptors isomerized to their E-counterparts, to a 86% extent for E-2 and 63% for E-3 at the 

PSS. The E-isomers show opposite orientations of the biphenyl arms with respect to the Z-

counterparts. In turn, irradiation at 530 nm triggered the back-conversion to a mixture of the 

Z-isomers of both receptors in high yields (80-84 %). The closed-tweezers forms, E-2 and Z-
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3, are expected to bind the electron-deficient guest 5 via polar aromatic interactions, 

analogously to receptor 1. 

 

Scheme 1.3 Second generation of HTI-based molecular tweezers reported by Dube and co-workers 

involving the relocalization of guest 5 upon irradiation with visible light.57 

A series of 1H NMR titration experiments were performed using tweezers 2 and 3, in both Z 

and E configurations, in order to assess their binding affinities with 5 in CDCl3 solution at -

20 ºC. As expected, the open-tweezers forms, Z-2 and E-3, showed a complete absence of 

binding towards 5. On the other hand, when the closed-tweezers forms, E-2 or Z-3, were 

titrated with 5 at -20 ºC, they showed the formation of 1:1 complexes with sandwich-like 

binding geometry and high association constant values (Ka (5⊂E-2) = 1.2 × 104 M-1 and Ka 

(5⊂Z-3) = 2.3 × 103 M-1). Using a sequential irradiation cycle, the authors demonstrated the 

dynamic relocation of guest 5 from its binding equilibrium with tweezers Z-3 to a new binding 
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equilibrium with tweezers E-2. An equimolar mixture of Z-2 and Z-3 containing 0.6 equiv. of 

5 was irradiated at 435 nm in chloroform solution until reaching the PSS. At this point, two 

species with high affinity for 5, Z-3 and E-2, are present in solution to a different extent. E-2 

is predominant and it possesses the largest affinity for 5. Consequently, 5 is primarily bound 

by E-2. Subsequent irradiation of the mixture at 530 nm reverses the relative ratio of high 

affinity species for 5. Z-3 is the predominant species under these circumstances. However, 

because E-2 features a larger affinity for 5 than Z-3, the former reduces the relocation of the 

guest in tweezers Z-3 to a 70%. A second irradiation cycle proved the complete reversibility 

of the translocation process, which was also evidenced using 1H NMR spectroscopy.  

1.2.1.3 HTI derivatives as guests 

The use of photoswitchable guests constitutes an alternative methodology for the 

photochemical control of supramolecular host-guest systems. The introduction of molecular 

photoswitches in the guests’ scaffolds is synthetically less demanding. Photoisomerizable 

guests can be addressed not only free in solution but also in the bound state.58 In this vein, 

Rebek et al. showed that photoirradiation of azobenzene and hemithioindigo isomerizable 

guests can be used to expel them from the interior cavities of self-assembled hydrogen-bonded 

dimeric capsules based on the resorcin[4]arene cavitand 6 having 2-benzimidazolone 

bridges59 (Figure 1.2a).60 Initially, they used 4,4’-dimethylazobenzene, trans-8, to induce the 

quantitative thermal assembly of the encapsulation complex trans-8⊂62
61,62 in mesitylene 

solution. Likewise, working under strict stoichiometric control, a mixture of cavitand 6, 

glycoluril 7 and HTI Z-9 led to the quantitave formation of the extended capsular system Z-

9⊂62∙74 (Figure 1.2b). 
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Figure 1.2 a) Line-drawing structures of resorcin[4]arene 6 and glycoluril 7; b) energy-minimized 

(MM3) structures of the capsules trans-8⊂62 and Z-9⊂62∙74. The hosts are depicted in stick 

representation and the included guests as CPK models. The undecyl chains in 6 were pruned to methyl 

groups and non-polar hydrogen atoms were removed for clarity. The Bu2N-Ph substituents and non-

polar hydrogen atoms of 7 were removed for clarity. 

All capsular assemblies were characterized using 1H NMR spectroscopy. With the systems 

trans-8⊂62 and Z-9⊂62∙74 in hand, the authors were able to control the encapsulated guest and 

the type of assembly present in solution by combining an expectant mediocre guest with light 

and heat stimuli. Rebek and co-workers engineered a two modes light-triggered guest 

exchange by mixing cavitand 6, the two photoswitchable guests, azobenzene trans-8 and HTI 

Z-9, glycoluril 7 and the mediocre guests, 4,4’-dibromobenzil 10 and p-cymene 11 (Figure 

1.3). 
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Figure 1.3 Sequential guest exchange triggered by distinct light inputs and thermal equilibration of the 

molecules described in the work of Dube and Rebek.60 
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When a mixture of all components, in proper stoichiometries, was heated to 160 °C for six 

minutes and then cooled down, only the two capsular assemblies trans-8⊂62 and Z-9⊂62∙74 

were detected in the 1H NMR spectrum. Extensive light-irradiation of the mixture at 430 nm 

started the sequential guest exchange. No guest exchange occurred in the capsular dimer 

trans-8⊂62, but the guest exchange in the extended capsule was complete yielding 112⊂62∙74 

owing to the Z-to-E isomerization of the bound HTI-9 in the original assembly. Because HTI-

E-9 displays a pronounced bent shape compared to HTI-Z-9, it was not complementary to the 

cavity of 62∙74 and was readily replaced by two molecules of p-cymene (11). Subsequent 

irradiation at 365 nm generated the azobenzene cis-8 isomer, which was released from the 

capsular dimer 62 to the bulk solution, and replaced by one molecule of the dibromo derivative 

10. The two consecutive inputs of light at different wavelengths produced a whole different 

mixture of capsular assemblies in which both photoswitches are released to the solution and 

two new encapsulation complexes are formed. The original conditions of the experiment 

could be restored by thermal stabilization of the solution, proving the reversibility of the 

irradiation process. It is worth mentioning here that the driving force for the exchange 

processes depends both on the external stimulus (light irradiation) and the presence of the 

mediocre competing guests (10 and 11) that are complementary to the cavity volumes of the 

dimeric capsule and extended capsule, respectively. 

In the work of Tanaka and co-workers mentioned at the beginning of this section,55 a 

repeatable movement between two kinds of free-base porphyrins involving the HTI-pyridyl 

derivative 14 was controlled by photoirradiation. The free-base porphyrin hosts, 12 and 13, 

formed 1:1 complexes with both E-14 and Z-14 isomers of the HTI-pyridyl guest (Figure 1.4). 

Remarkably, the bis-urea porphyrin 12 complexed the E-14 isomer with substantially larger 

affinity than the Z-14 counterpart (Ka (E-14⊂12) = 2.7 ± 0.7 × 103 M-1, Figure 1.5a; Ka (Z-

14⊂13) = 4.8 ± 0.1 × 102 M-1). Conversely, the bis-amide porphyrin 13 preferred to bind the 

HTI-Z-14 isomer (9.3 ± 0.1 × 102 M-1) over the HTI-E-14 analogue (4.5 ± 1.8 × 102 M-1, 

Figure 1.5b). All binding constant values were determined using 1H NMR titrations in 

toluene-d8 solutions. 
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Figure 1.4 Line-drawing structures of the molecules described in Tanaka’s work.55 

The HTI-E-14 isomer was prepared by irradiation of the thermodynamically stable HTI-Z-14 

analogue with 440 nm light and contained a 3% of the Z-isomer. In turn, the metastable E-

isomer was reverted to the thermally stable conformer by irradiating at 490 nm. The superior 

binding ability of the ureido-porphyrin 12 for the HTI-E-14 isomer was ascribed to tight cis-

hydrogen bonding interactions between the two NH protons of one ureido group and the 

pyridine nitrogen and carbonyl oxygen atoms of the guest, together with two additional π-π 

stacking interactions (Figure 1.5a). For the HTI-Z-14 isomer this ditopic hydrogen bonding 

interaction cannot be attained geometrically. 

 

Figure 1.5 Energy-minimized (MM3) structures of the HTI⊂porphyrin complexes a) E-14⊂12 and b) 

Z-14⊂13. The hosts are depicted in stick representation and the included guests as CPK models. Non-

polar hydrogen atoms of the receptors were removed for clarity. 
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On the other hand, the preference of porphyrin 13 for the complexation of the HTI-Z-14 

isomer was assigned to a strong trans-hydrogen bonding of the pyridine nitrogen and carbonyl 

oxygen atoms of the guest and the two acidic pentafluorobenzamido protons (Figure 1.5b). 

The shuttling process of the HTI-14 between the two porphyrins, 12 and 13, was confirmed 

by 1H NMR spectroscopy upon irradiation (440 nm) of a toluene-d8 solution containing a 1 

mM equimolar mixture of the porphyrins and 0.5 equiv. of HTI-Z-14. The preferential 

formation of the HTI-E-14⊂12 complex was evidenced by the downfield shift experienced 

by the PhNH urea protons of 12, while the amido protons of 13 moved upfield. Subsequent 

irradiation with 490 nm light produced the reversed chemical shift changes in the NH protons 

of 12 and 13, supporting the preferential capture of the HTI-Z-14 isomer by the 

pentafluorobenzamido porphyrin 13. The observed chemical shift changes were reproduced 

three times by consecutive photo-irradiation processes. The authors noted that, at mM 

concentration and taking into consideration the calculated binding constants, 35% of the HTI-

Z-14 isomer is captured by 13 while 20% is bound to 12 and the remaining 45% is free in 

solution. Reversely, 13% of HTI-E-14 binds to 13 and 58% to 12, with 29% remaining free 

in solution. The binding preferences of receptors 12 and 13 towards a specific photoisomer of 

14 were also used to control the photo-induced catch and release of p-benzoquinone 15 with 

the two porphyrins. The Ka values for the complexes of p-benzoquinone 15 with porphyrins 

12 and 13 were slightly lower than those of HTI-14 in its two isomeric forms. Nevertheless, 

irradiation with 440 nm light of a toluene-d8 solution of bis-ureido porphyrin 12 (2 mM), p-

benzoquinone 15 (0.2 mM) and HTI-Z-14 (5 mM) showed a downfield shift of the olefinic 

protons of p-benzoquinone 15. This result indicated that the p-benzoquinone 15 captured by 

porphyrin 12 was released to the solution due to the increased binding affinity of the porphyrin 

for the HTI-E-14 isomer. Subsequent irradiation with 490 nm light returned the system to the 

original position. Similar light-irradiation experiments were performed using porphyrin 13 

and also a mixture of the two porphyrins. In this latter case, the quantification of the quinone 

distribution (free and bound) was not possible because one porphyrin captures the quinone 

released by the other. Remarkably, chemical shift changes in the olefinic protons of 15 were 

still detectable, suggesting that the reversible distribution of the quinone between the two 

porphyrins is also triggered by the photoswitching and shuttling processes of HTI-14. 

Recently, we studied the effect exerted by the isomerization process of two HTI-N-oxide 

derivatives, 17 and 18, used as photoresponsive guests for a super aryl-extended 

calix[4]pyrrole receptor (16, Figure 1.6a).63 The Z-isomers of 2-(4’-pyridyl-N-oxide)-

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Chapter 1 

 

34 

 

substituted hemithioindigos, 17 and 18, (Figure 1.6a) displayed the characteristic Z/E 

isomerization processes upon irradiation with blue light (λ = 450 nm). At the PSS the 

metastable E-isomer was present to an 80% extent. The Z-isomers of both HTIs were bound 

in the deep aromatic cavity provided by the elongated super aryl-extended calix[4]pyrrole 16. 

The shape, size and function complementarity that exists between the receptor’s cavity and 

the guests produced the formation of kinetically and thermodynamically stable 1:1 inclusion 

complexes in chloroform solution (Figure 1.6b).  

 

Figure 1.6 a) Line-drawing structures of calix[4]pyrrole 16 and Z/E-HTIs 17 and 18; b) energy-

minimized (MM3) structures of the inclusion complexes Z-17⊂16 and E-17⊂16.63 The host is depicted 

in stick representation and the included guest as CPK model. Non-polar hydrogen atoms of 16 were 

removed for clarity. 

We used isothermal titration calorimetry (ITC) experiments to assess the binding constant 

values of the deep inclusion complexes. The calculated Ka values were of the order of 106 M-

1. Upon irradiation with 450 nm light, the bound Z-HTI N-oxides photoisomerized affording 

the corresponding E-HTI⊂16 complexes. We evaluated the changes experienced by the 

photophysical properties of the free and bound chromophores. We discovered that the rates 
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of the Z-to-E photoisomerization processes and thermal relaxations of the HTIs were 

significantly reduced by the inclusion of the photoswitch in the receptor’s cavity. Moreover, 

the conformational flexibility of the receptor was responsible for the reduced changes in the 

binding affinities measured for the two isomeric forms of the guests. The binding constant 

values of the HTI E-isomers were only 2.2-2.8 fold lower than those of the HTI Z-

counterparts. This result suggested that the number and nature of the different interactions 

(CH-π, π-π, π-sulfur) between the photoswitchable guests and the macrocyclic host are not 

significantly modified by the photoisomerization process. Likewise, the small decrease in 

binding affinity experienced by the 1:1 complexes of the HTI E-forms of photoswitches 

explained the lack of release of the cargo to the solution. 

1.2.2  Host-guest chemistry of spiropyran photoswitches 

1.2.2.1 Ring-opening photoisomerization of spiropyrans 

Spiropyrans (SPs) are a widely studied class of organic photoswitches used as prominent 

building blocks in the design of dynamic materials.37 Their photo-, acido- and 

solvatochromism have been extensively investigated for many decades since their discovery 

by Fisher and Hirshberg in 1952.64 The reversible switching of simple SPs was applied in the 

development of colorimetric molecular thermometers,65 selective sensors for metal cations,66 

molecular logic gates,67,68 polymer nanoparticles,69,70 photoregulated oligonucleotides71,72 and 

chiroptical materials, such as self-assembled supramolecular gels.73,74 

The photo-induced isomerization of SPs relies on the reversible interconversion between the 

colorless closed SP-form and the open and colored zwitterionic merocyanine-form (MC) 

(Scheme 1.4). The closed SP-form consists of two perpendicular indoline and chromene 

moieties fused at the central sp3 hybridized spiro-carbon. The UV light-irradiation of the SP-

form gives rise to the open conjugated MC-form with a central trans-double bond between 

the methine carbon atoms. This is a first order process that has been extensively investigated 

both experimentally and theoretically. In-between the starting SP and the final all-trans-MC 

photoproduct, other transoid and cisoid merocyanine conformers are formed, although they 

are rarely detected (a priori 16 possible structures can exist for the open MC products).20 The 

reverse MC-to-SP isomerization usually occurs spontaneously, and can be accelerated by 

visible light-irradiation. The trans-MC species, in its zwitterionic resonance form, is 
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characterized by the concomitant presence of two charged moieties: the N-indolenium cation 

and the O-phenolate anion. The photogenerated charge separation gives rise to a large 

difference between the electric dipole moments of the SP isomer (4-6 D) and the MC isomer 

(14-18 D). Moreover, the stacking of the MC isomer is known to have a strong stabilizing 

effect and leads to the formation of aggregates in solution.75 The dipoles of the MCs can 

arrange in a parallel (head-to-head) or antiparallel (head-to-tail) fashion to afford J- or H-

aggregates, respectively. These assemblies experience a red (J-type) or blue (H-type) shift in 

their UV/Vis absorption spectra, as compared with the isolated merocyanine molecules. In 

general, the photoisomerization behavior of SP in solution is strongly dependent on the nature 

of the solvent. Interestingly, some SP derivatives show negative photochromism in polar 

environments i.e. water, silica, or reverse micelles. In such cases, the MC-form is the 

thermodynamically stable isomer and the SP-to-MC conversion occurs spontaneously with 

time, even in the dark.76 The SP-form only exists if the system is exposed to visible light, that 

is why this property is referred to as inverse or reverse photochromism.77 The absorption 

spectrum of the MC-isomer is also strongly solvent-dependent. Non-polar solvents favor the 

quinoidal form and decrease the energy gap between ground and excited state of MC, resulting 

in a red shift of the MC band. 

 

Scheme 1.4 Formation of the photo- and acido-products of the SP-to-MC conversion of 6’-substituted 

spiropyrans. 
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Further applicability of SP-based systems in aqueous media is limited by the instability of the 

MC towards hydrolysis at basic pH. The mechanism consists in the conjugate addition of 

water to the ene-iminium cation of the MC isomer, followed by a retro-aldol reaction to afford 

the corresponding Fischer’s base and 4-substituted salicylaldehyde.78 

Acidochromism is another distinct feature of SPs, that occurs in addition to photochromism. 

Typically, the open protonated merocyanine-form (MCH+) and its conjugate base (MC) have 

distinctly different absorption spectra. This phenomenon is common to phenols and aromatic 

amines.12 Several works on the pH-regulated conversion of SP derivatives into the MCH+-

form, even in the absence of any UV irradiation, have been reported.79 The initial neutral SP 

can be restored by addition of a suitable base, usually a tertiary amine.68,80 Browne et al. 

showed through a combined experimental and theoretical study that in aprotic solvents the 

acidochromism of SPs is highly dependent on the acid strength.81 They also achieved a pH-

gated photochromism switching cycle of simple SPs between four-states. The protonated β-

cis-MCH+ displayed an absorption spectrum very similar to the one of the neutral SP isomer 

and the authors warned about the possible wrong assignment of the closed-form in previous 

studies. The commercially available 6’-nitrospiropyran (1′,3′-dihydro-1′,3′,3′-trimethyl-6-

nitrospiro[2H-1-benzopyran-2,2′-(2H)-indole]; NSP-27, vide infra) is the most extensively SP 

studied and, together with its derivatives, has been used as model compound to increase the 

understanding about the photo-, acido-, thermo- and solvatochromic properties of activated 

spiropyrans.80,82,83 

1.2.2.2 Hosts containing SP units 

Receptors based on mono- and bis-SP photoswitches have been employed as “smart” sensors 

for the detection of several ionic species, especially cyanide and metal cations.84 The 

molecular recognition function is generally performed by the open MC isomer of the 

photoswitch owing to its reactive functions, phenolate and N-indolenium units of the 

zwitterionic resonance form, and its colored properties that are absent in the closed SP-form. 

In aqueous media, the cyanide anion is known to react selectively and reversibly with the N-

indolenium unit of the MC, produced by UV light-irradiation, affording a covalent adduct. 

The reaction is associated with a change in color of the solution from pink (MC) to yellow 

(MC-CN-adduct). On the other hand, the phenolate unit either alone or in combination with a 

nearby heteroatom (N,O) has been extensively exploited for the interaction with metal cations. 
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Using this strategy, Yang, Chan and co-workers described a SP functionalized with a 

dimethylamino methyl substituent in the 8’ position that selectively chelated Cu2+ with the 

phenolate oxygen forming a 2:1 (MC:M) complex.85 The same authors demonstrated the use 

of an ensemble of the SP with Cu2+ or Hg2+ for the efficient recognition and quantification of 

cysteine (Cys) and homocysteine (Hcy) in neutral aqueous solution. They proposed that the 

deprotonation of the Cys at the sulfhydryl group formed a bridged dimer (cystine) through the 

redox activity of the metal. Next, a complex involving two metal centers and one cystine self-

assembled with two molecules of the chelating MC-form into a ternary aggregate (2:1:2 

M:cystine:MC) producing a significant change (red-violet to yellow) in the color of the 

solution.86 In an effort to extend the recognition and sensing properties of the SPs to organic 

guests and biomolecules, the research group of Inouye synthesized the spiropyridopyran 19 

(Figure 1.7a), which could bind guanosine derivative 21a in both the SP- and MC-forms.87  

 

Figure 1.7 Line-drawing structures of the a) 21⊂MC-19 and b) 22⊂MC-20 complexes and the 

molecules described in Inouye’s work.87,88 

The binding process was monitored using UV/Vis and 1H NMR spectroscopy. The profiles of 

the UV/Vis and 1H NMR spectra registered during the incremental addition of guanosine 21a 

to a chloroform solution of 19 suggested the concomitant formation of the 21a⊂SP-19 and 
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21a⊂MC-19 complexes, which were in equilibrium. The equilibrium shifted towards the 

formation of the 21a⊂MC-19 complex as the concentration of the guanosine was increased 

(Figure 1.7a). Later, Inouye et al. also used the spiropyridopyran 19 to bind the guanosine 

derivative 21b, and prepared a ferrocene-based bis(spiropyridopyran) receptor 20 for the 

recognition of guanine-guanine dinucleoside 22 (Figure 1.7b).88 Notably, receptor 20 

constitutes the first example of a molecular architecture containing two SP motifs for the 

recognition and binding of small organic molecules. Upon guest binding, receptors 19 and 20 

adopt mainly the open-ring MC configuration using the generated phenolate anion to better 

satisfy the triple hydrogen-bonding complementarity interaction that is established with the 

purine base of the nucleosides. The authors performed UV/Vis titration experiments of the 

receptors with the mono- and bis-nucleosides in dichloromethane solutions. The titration data 

were mathematically analyzed assuming that all the 1:1 complexes of the SPs existed as the 

MC-forms 21b⊂MC-19 and 22⊂MC-20 (Figure 1.7). Indeed, the absorption profiles of the 

UV/Vis spectra showed the appearance of the characteristic band for the merocyanine species 

at ca. 575 nm. The fit of the titration data returned association constant values of 2.4 × 104 M-

1 for the 21b⊂MC-19 complex, and 4.2 × 105 M-1 for the 22⊂MC-20 analogue. The authors 

noticed that the increase in binding energy was lower than expected for the double interaction 

featured by the 22⊂MC-20 complex. They suggested an electrostatic repulsion between the 

two MC units as responsible for this result. 

Several years later, Yang, Chan and co-workers also synthesized a bis-SP receptor with a 

piperazine linker covalently connecting the 8’ methylene substituents of the photoswitches, 

SP-23 (Figure 1.8a). This tweezers-like receptor recognized dipolar organic molecules.89 

Significantly, host 23 was employed for the highly selective binding of glutathione (GSH) 24 

(Figure 1.8a), a biologically relevant tripeptide. The interaction of receptor 23 with the 

tripeptide 24 in 20:80 ethanol:water solution was probed using UV/Vis and fluorescence 

spectroscopy. In solution, receptor 23 exists in the thermodynamically stable closed-form SP-

23. Remarkably, irradiation of the solution with UV light did not produce changes in its 

absorption spectrum. This result was indicative of the almost complete absence of the open-

ring MC-form of the free receptor under these conditions. It was also a positive premise for 

the use of the receptor as a molecular sensor because the photochromic behavior of the free 

host in solution should not interfere with its optical response in the presence of the analytes 

capable of complexation-inducing the conversion of the SP-form into the MC-form. 

Incremental addition of GSH 24 to an aqueous solution of SP-23 produced significant spectral 
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changes in the absorption spectrum. These changes reflected the conversion of the closed SP-

form of 23 into the open MC counterpart induced by the complexation to the GSH 24. The 

bound MC-23 receptor features two zwitterionic motifs along with the pre-existing binding 

cleft of the molecule (Figure 1.8b). 

 

Figure 1.8 a) Line-drawing structures of bis-spiropyran SP-23, guest 24 and complex 24⊂MC-23; b) 

Energy-minimized (MM3) structure of the inclusion complex 24⊂MC-23.89 The host and guest are 

depicted in stick representation and the bound guest is shown with a yellow transparent Van der Waals 

surface. Non-polar hydrogen atoms of 23 were removed for clarity. The electrostatic interactions are 

marked with dashed lines. 

The MC units of MC-23 have four possible binding sites: the two indolenium nitrogens and 

the two phenolate oxygens. Most likely, one of the phenolates is protonated upon 

complexation with GSH and does not participate in direct coulombic host-guest interactions 

but its participation in hydrogen-bonding interactions cannot be ruled out. The 1H NMR 

spectrum of an equimolar mixture of SP-23 and GSH 24 in ethanol-d8 solution displayed 

characteristic proton signals for the MC-form. In particular, the signals for the vinyl protons 

of the MC units were observed and the two singlets of the magnetically non-equivalent methyl 
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protons of the SP-form coalesce into one singlet. The methylene protons of the spacer and the 

methylene protons of the piperazine unit moved downfield. Furthermore, the fit of the 

fluorescence titration data was consistent with a 1:1 binding model and returned an association 

constant value of the order of 104 M-1 for the 24⊂MC-23 complex. Although the recognition 

properties of MC-23 are limited to non-directional coulombic/electrostatic interactions, the 

selectivity demonstrated by the receptor for the recognition of GSH over other dipolar 

substrates can be ascribed to the cooperativity in the multivalent binding displayed by the 

host-guest complex.90 The 24⊂MC-23 complex was stable up to 6 h in the dark at RT, whereas 

visible light-irradiation for 15 min resulted in a 80% dissociation and conversion to the SP-

form of the 23 receptor, as shown by the analysis of the emission spectra of the corresponding 

solutions. The complexation and irradiation de-complexation cycles could be repeated up to 

five times, showing complete reversibility and little fatigue of the host-guest system. 

1.2.2.3 SP derivatives as guests 

There are many examples in literature involving SP-based guests. In two representative works, 

Tiburcio and co-workers explored the binding properties of a dibenzo-24-crown-8 ether host 

towards hybrid spiropyran-viologen guests. In the first example, the acid- or photo-induced 

isomerization of the spiropyran-viologen induced the threading of the corresponding 

merocyanine-viologen through the macrocyle. The process was assisted by N+···O ion-dipole, 

C-H···O hydrogen-bonding and π-stacking interactions. The resulting host-guest complex 

displayed a [2]pseudorotaxane topology.91 In the second example, a spiropyran-methyl-

viologen (SP-MV) guest is partially threaded through the crown ether by hydrogen-bonding 

interactions between the N+-CH3 moiety on the MV and the oxygen atoms of the host. The 

subsequent treatment with acid yielded two [2]pseudorotaxane architectures in equilibria 

between the partially and the fully threaded MC-MV guest, performing a shuttling motion in 

fast exchange.92  

Recently, the groups of Mukherjee93 and Klajn94 independently demonstrated the stabilization 

of the MC-form of 6‘-substituted SP by inclusion in the cavity of conformationally flexible 

coordination cages. With respect to purely organic receptors, it is known that in the solid state 

n-membered cyclodextrins (CD[n]; n = 6,7,8) bind spiropyrans yielding inclusion complexes 

with a 1:1 stoichiometry.95,96 Sueishi and Nishimura investigated the complexation of 6-SO3
-

-SP with β- and γ-cyclodextrins in aqueous solution. Using UV/Vis absorption spectroscopy, 
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they demonstrated preferential inclusion of the SP-form in the 1:1 complexes formed with the 

cyclodextrins in solution.97  

Conversely, cucurbit[n]urils and sulfonatocalix[n]arenes are suitable receptors for the MC-

form of the SPs. We will focus our discussion on the studies performed with these receptors 

in aqueous solution. CB[n]s have two electron-rich open portals at the opposing ends of their 

cavities where several polar carbonyl groups converge. In addition, CB[n]s possess a highly 

hydrophobic cavity suitable for the inclusion of hydrophobic molecules or residues. These 

structural characteristics made CB[n]s suitable receptors for protonated akyl and arylamines, 

as well as neutral organic molecules and ions.98 Miskolczy and Biczók investigated the 

influence of complex formation of 1-(2-hydroxyethyl)-3,3-dimethylindolino-6'-

nitrobenzopyrylospiran 25 (Figure 1.9) with CB[8] on the MC-SP equilibrium in aqueous 

solution at different pHs. They showed that the MC and the protonated MCH+ were the most 

stable forms both free in water solution and included in the cavity of CB[8].99 Using 

absorption and fluorescence titrations, a binding constant value of Ka = 1.7 × 105 M-1 was 

determined for the MC-25⊂CB[8] complex. Similar absorption titrations performed at pH 3.1 

provided a binding constant value of Ka = 2.0 × 106 M-1 for the analogous MCH+-25⊂CB[8] 

complex.  

 

Figure 1.9 Line-drawing structures of merocyanine guests 25-26 and CB[n] receptors. 
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The complexes are stabilized by the hydrophobic effect derived from the deep inclusion of 

the N-alkyl substituent of 25 into the host’s cavity, and the establishment of ion-dipole 

interactions between the carbonyl groups of the CB[8] and the cationic part of the guest at the 

portal of the cavity. Unfortunately, the structures of the two complexes could not be 

determined using 1H NMR spectroscopy owing to the reduced solubility of the binding 

partners. Remarkably, the emission spectrum of MC-25 turned out to be identical to the one 

of its protonated form MCH+-25. This result indicated that MCH+-25 rapidly loses one proton 

in its excited state owing to acidity enhancement upon excitation. Nevertheless, the inclusion 

of MCH+-25 in CB[8] diminishes the acidity of the dye. The presence of CB[8] significantly 

decelerated the light-induced (505 nm) formation of the SP-form. Most likely, the strong host-

guest interactions stabilizing the MC-25⊂CB[8] complex and steric clashes hindered the 

trans-cis isomerization preceding the formation of the SP-form. The subsequent isomerization 

of the SP-form to the MC isomer carried out in the dark was faster for the SP-25 included in 

CB[8] than free in water. 

In a follow-up work, the authors reported a complete different thermodynamic and 

photochromic behavior for the inclusion of MC-25 and its protonated counterpart in CB[7].100 

Firstly, only MCH+-25 is bound by CB[7] and the stability constant of the complex is reduced 

almost two orders of magnitude (Ka = 7.4 × 104 M-1) compared to the inclusion complex with 

CB[8]. Probably, the larger cavity of CB[8] produces a deeper inclusion complex stabilized 

by stronger intermolecular interactions. Remarkably, the authors concluded that the cavity 

size does not influence the acidity change observed for the bound MCH+-25. Secondly and in 

striking contrast with the findings obtained for CB[8], the inclusion of MCH+-25 in CB[7] 

accelerates the photoinduced transition of the merocyanine-form to the SP. 

Andréasson, Pischel and co-workers101 explored the binding of 6’-nitrospiropyran 26 

featuring a cadaverine-substituted anchor to CB[7] in water solution using neutral or acidic 

conditions (Figure 1.9). At pH 7, the SP-form of 26 converted thermally to a 90% extent into 

the MC-form, as indicated by 1H NMR spectroscopy. The kinetic data of the process were 

obtained from a bi-exponential fit of the time-dependent changes in the absorbance of MC-

26. The observed “rise and decay” behavior was assigned to the reversible initial formation 

of MC-26 (1 = 6.5 h) followed by its hydrolytic decomposition (2 = 47.4 h). We already 

mentioned that the hydrolytic instability of the MC-form is one of the limitations of the use 

of SP molecular switches in water. At pH < 3, the MC-26 form is protonated and produces 
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MCH+-26. At this pH the hydrolysis is suppressed and no signs of absorbance decay were 

observed. The rapid conversion of SP-26 into MC-26 hampered the determination of a binding 

constant for the SP-26⊂CB[7] complex. However, binding experiments performed under 

continuous visible light-irradiation provided evidence for the complex formation. The fit of 

the titration data to a 1:2 theoretical binding model afforded K1 = 7.9 × 105 M-1 and K2 = 1.3 

× 103 M-1 for the MCH+-26⊂CB[7] complex. Tentatively, K1 was assigned to the inclusion of 

the cadaverine-substituent in the cavity of CB[7]. The second binding event was considered 

to be related to an exo complex formation of CB[7] with the indolenium unit. The MC-26 

form was stable enough to be titrated with CB[7]. The data were also fitted to a 1:2 binding 

model (K1 = 1.2 × 105 M-1 and K2 = 8.6 × 103 M-1). The diminution in magnitude of K1 for 

MC was interpreted based on the existence of negative repulsions between the phenolate anion 

and the electron-rich portal of CB[7]. The analysis of the mixtures using 1H NMR 

spectroscopy supported the idea that the preferential site for binding of MC-26 with CB[7] is 

the cadaverine substituent. The formation of the inclusion complexes was also evidenced in 

the gas-phase using ESI-MS experiments. The formation of the MC-26⊂CB[7] complex 

accelerated 70-fold the thermally induced opening of the ring of SP-26 (1 = 5.2 min) and 

increased the hydrolytic stability of the MC-form. This result highlights the importance of the 

cadaverine-substituent in 26, because in the case of SP-25 no kinetic effect of CB[7] for the 

thermal ring-opening reactions was observed at acidic pH. The rate acceleration observed for 

the ring-opening of SP-26 was explained by considering the indolenium nitrogen as part of 

the binding unit. In contrast to the accelerations measured for the SP-26 to MC/H+-26 

reactions induced by the presence of CB[7], the photoinduced back-conversions of MC-26 

and MCH+-26 were not affected by inclusion in CB[7]. 

Biczók and co-workers also employed merocyanine dyes as guests for water-soluble 

sulfonatocalix[n]arenes (SCXn; n = 4-8).102 In their work, the receptors did not inhibit the 

hydrolysis of the open-ring trans-MC species in aqueous solution at neutral or basic pH. This 

is in contrast with the previously discussed results with CB[n] hosts. The cavity of the 

calixarene receptors lacks to some extent the negative charge density of the carbonyl groups 

in cucurbiturils, which protects the iminium unit of MC from the nucleophilic attack of OH- 

at basic pH. Similarly to the previous findings with CB[8],99 visible light-irradiation of the 

trans-MCH+⊂SCXn complexes at acidic pH produced their cis-MCH+⊂SCXn counterparts, 

confirming the lack of deprotonation of the switch when bound to the receptor. 
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Recently, Ramamurthy and co-workers showed that 6’-nitro substituted NSP-27 formed a 1:2 

capsular assembly with Gibb’s water-soluble octa-acid calix[4]arene cavitand 28103 (Figure 

1.10).104 The photoinduced isomerization of NSP-27 into the NMC-27 form is coupled with 

the disassembly of the dimeric capsular aggregate and the formation of simple 1:1 NMC-

27⊂28 complexes to a reduced extent (< 10%). The assembly-disassembly process of the 

capsular dimer was shown to be reversible. The inclusion of NMC-27 in 28 protects the dye 

from the hydrolytic reaction and increases its excited-state singlet lifetime. 

 

Figure 1.10 a) Line-drawing structures of NSP-27 and calix[4]arene 28; b) energy-minimized (MM3) 

structure of the capsule NSP-27⊂282. The host is depicted in stick representation and the included guest 

as CPK model. Non-polar hydrogen atoms and the terminal carboxylates of 28 were removed for clarity. 

1.2.3  Conclusions 

Hemithioindigos are visible light-responsive photoswitches that can be structurally tuned to 

isomerize at the bio-optical window with appropriate functionalization. Spiropyrans respond 

to a variety of external stimuli (light, heat, pH, etc.) which favors their use as multi-responsive 

molecular logic systems. The main photochemical and photophysical properties of 

unsubstituted HTI and 6’-nitrospiropyran NSP-27 in different solvents are summarized in 

Table 1.1. 
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Compound Extinction 
λmax [nm] (ε 
[103 M-1cm-1]) 

Isomer yield at 
PSS (at irradiation 
λ in solvent) 

Quantum 
yield ϕ 
(solvent) 

Activation barrier 
of thermal 
isomerization 
[kcal∙mol-1] 

49 

433 (12.6), 
328 (17), 315 
(19.8) in 
CH2Cl2 

94% E (420 nm, 
CH2Cl2) 

ϕZ/E = 0.23 
(CH2Cl2) 

 

49 

457 (5.6), 321 
(13.5) in 
CH2Cl2 

100% Z (505 nm, 
CH2Cl2) 

ϕE/Z = 0.05 
(CH2Cl2) 

ΔG* = 31 (toluene) 

 

298 (8.57) in 
EtOH105 

100% NMC (334 
nm, THF)106 

ϕSP = 0.15 
(EtOH)105 

 

 

537 (36.8) in 
EtOH105 

 ϕMC = 0.04 
(EtOH)105 

ΔG* = 22 
(DMSO)107 

Table 1.1 Comparison of the photochemical and photophysical properties of HTI with NSP-27.36 

[Adapted with permission from ref. [31] (Copyright 2015 Elsevier)] 

Despite the clear differences in the structure and mechanism of isomerization of the two 

photochromic fragments, the tabulated data show similar trends. For instance, the quantum 

yield values for the Z/E and the NSP/NMC processes of the two switches are comparable in 

both directions, in a solvent suitable for their determination. Moreover, the switching 

efficiencies for the Z/E- HTI and the NSP-to-NMC isomerizations are quantitative, when the 

most appropriate irradiation wavelength and solvent system are employed. The molar 

extinction coefficient ε is similar for the Z and the E-isomer of hemithioindigo, whereas the ε 

of NMC-27 is considerably higher with respect to that of NSP-27 (in agreement with the 

known literature). In general, the photochemical and photophysical properties of these 

representative compounds of hemithioindigos and spiropyrans are of the same order of 
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magnitude, depending on the experimental conditions in which the measurements are carried 

out. 

One of the goals of incorporating molecular switches to the scaffolds of receptors and their 

guests has to do with coupling their photoisomerization process with the thermodynamic 

stability of the resulting complexes. Based on the reviewed literature, we extract the following 

trends. The internal cavity of synthetic receptors is a privileged space for the confinement of 

photoswitchable molecules. Spiropyrans have been used as guests for a wide array of 

molecular receptors, whereas analogous studies with hemithioindigos are more limited. The 

photochromic properties of HTI and SP switches when included in molecular receptors might 

be significantly altered compared to their behavior in the bulk solution. At the molecular level, 

one might expect a significant response, for example, if the thermodynamically stable isomer 

of the photoswitch has high affinity for the receptor, whereas the photo- or acidogenerated 

counterpart cannot be accommodated in its binding cavity. Likewise, the binding properties 

of the receptors can be modified by the incorporation of one or more HTI or SP 

photoresponsive units into their scaffolds, however this approach is less commonly found in 

literature because it represents a more challenging synthetic effort. In the HTI-based tweezers, 

visible light-irradiation triggered an isomerization process that was coupled with a 

modification in the binding affinity of the receptor for the guest. In the examples of the SP-

based receptors, the SP-to-MC isomerization was induced by the complexation of the receptor 

with a suitable guest. Such interaction could then be modulated by application of a light input. 

Typically, the light-induced photoisomerization processes experienced by the molecular 

switches are reversible, allowing the return to their initial state and the repetition of the cycle 

several times. The incorporation of molecular switches in host-guest systems aims at the 

modulation of their physicochemical properties with light. The photocontrolled release and 

uptake of cargo constitutes a general endeavor in this field. We are convinced that 

notwithstanding the successful applications of the HTI and SP molecular switches described 

in the reviewed examples, their use is still in the infancy state. The current research interest 

in the field of organic photoswitches is oriented towards the fabrication of smart materials and 

devices, as well as engineered biomolecules. For what concerns host-guest systems 

incorporating HTI and SP photoswitches, the main efforts translate into the design and 

preparation of molecular machines, nanoparticles, metal-organic assemblies, supramolecular 

polymers and self-assembled systems.108 To warrant real-life applications and manufacturing 

of photocontrollable systems, i.e. as chemical sensors and biomimetic drug carriers, many 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Chapter 1 

 

48 

 

practical challenges need yet to be overcome. Among them, we can highlight the synthetic 

cost and the retention of the photochemical and photophysical properties of the 

photoresponsive fragments guaranteeing the function of the resulting material or compound. 

Such challenges rise (and must be addressed) at the early stage of design of a simple molecular 

switch with its intrinsic limitations and amplify bottom-up to the host-guest systems and to 

the more elaborated molecular architectures discussed above. We expect that many 

photocontrolled host-guest systems and their applications will be developed in the years to 

come. 

1.3 Aims of the thesis 

The aim of the research work included in this thesis is the design and synthesis of stimuli-

responsive inclusion complexes and molecular containers. In the host-guest systems presented 

herein, the photoactive unit is covalently incorporated into either the receptor’s or the guest’s 

scaffold. We use two photoswitches with distinct properties, hemithioindigos and spiropyrans, 

and two types of macrocyclic scaffolds based on calix[4]arene and calix[4]pyrrole. We aim 

at studying how light-irradiation and acid-base treatments induce the isomerization of the 

molecular switch. Moreover, we are interested in coupling the isomerization of the molecular 

switch with the binding affinity and the encapsulation properties of the synthesized molecular 

receptors and supramolecular capsules, respectively. 

Specifically, we pursued the following objectives: 

O.1) Modulation of the reversible photoisomerization of two light-responsive 

hemithioindigo guests by inclusion in a super aryl-extended receptor. 

We sought the preparation of unprecedented N-oxide guests incorporating a 

photoisomerizable hemithioindigo unit. We aim at assessing their binding affinities towards 

a super aryl-extended calix[4]pyrrole receptor. Hemithioindigo switches photoisomerize 

between the thermodynamically stable Z-configuration and the metastable E-configuration 

under visible light-irradiation. The polar interior core and the deep aromatic cavity provided 

by the upper-rim extended aromatic walls of the calix[4]pyrrole receptor is, a priori, well 

suited for the binding of large polar guests with high affinity. We wanted to quantify the 

modulation in binding affinity with the calix[4]pyrrole receptor that is exerted by the Z/E 
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isomerization of the guest. The interaction between the receptor and the light-responsive 

guests was probed by different techniques (UV/Vis, 1H NMR, ITC experiments). 

O.2) Upper-rim incorporation of four hemithioindigo switches on a tetraurea 

calix[4]arene scaffold. 

Recently, our group described the synthesis of light-responsive capsular dimers based on 

tetra-azobenzene tetraurea calix[4]arenes and calix[4]pyrroles. These macrocyclic scaffolds 

when decorated with four urea groups at their upper rims are known to form dimeric capsules 

in non-polar solvents. The dimerization process requires the presence of a suitable guest acting 

as template for the capsular self-assembly. Inspired by the previous systems, we designed two 

tetraurea calix[4]arenes containing four hemithioindigo units at their upper rim. We studied 

the coupling of the photoswitching properties of the responsive fragments to the self-assembly 

behavior (dimerization). We also investigated the encapsulation abilities of the assembled 

capsular dimers towards solvent molecules and small polar guests, as well as the light-

controlled release of the capsular cargo. 

O.3) Homo- and hetero-dimeric capsules based on a tetraspiropyran tetraurea 

calix[4]arene. Studies on coupling of the light-mediated and acid-base modulated 

spiropyran-to-merocyanine isomerization of the switches with the assembly/disassembly 

processes of the capsular dimers. 

Following a similar molecular design to the one described in O.2), we sought to efficiently 

couple the switching properties of stimuli-responsive spiropyran units to the 

assembly/disassembly processes of capsular dimers based on tetraurea calix[4]arene and 

calix[4]pyrrole scaffolds. We prepared a tetraurea calix[4]arene featuring four appended 

spiropyran groups at its upper rim. We further explored the self-assembly of the tetraurea into 

homo- and hetero-dimeric capsules in organic solvents. Next, we investigated the photo- and 

acidochromic responsiveness of the capsules using UV/Vis and 1H NMR spectroscopy 

techniques. We wanted to show that the capsular assembly/disintegration process is reversible 

owing to the acid/base properties of the spiropyran/merocyanine substituents.  
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1.4 Outline of the thesis 

This doctoral thesis is divided in 4 chapters: the present introduction (chapter 1), three 

chapters describing the results and their discussion (chapters 2-4) and a final chapter dedicated 

to the general conclusions of the work. 

Following the general introduction, in chapter 2 we describe the synthesis and photochemical 

characterization of two hemithioindigos featuring a terminal N-oxide moiety. We probe their 

Z/E reversible photoisomerization with visible light (λ = 450 nm). We provide a detailed study 

of the binding processes of the two guests with a super aryl-extended calix[4]pyrrole receptor. 

We evaluated the binding properties of the Z- and E-HTI isomers. Finally, we studied the 

influence exerted by the inclusion of the molecular switch into the polar aromatic cavity of a 

super aryl-extended calix[4]pyrrole receptor to its photoswitching properties. 

Chapter 3 deals with the design and synthesis of a series of tetraurea calix[4]arenes decorated 

with four hemithioindigo units at their upper rims. We describe the synthetic efforts to obtain 

these receptors and we investigate their dimerization in a variety of non-polar organic solvents 

and in the presence of tetramethyl phosphonium salts. We also report our attempts at the 

photoisomerization of the tetraureas in the monomeric state (in dimethylsulfoxide) and 

dimerized in capsular aggregates (in non-polar solvents). 

Finally, chapter 4 reports the synthesis of a light- and pH-responsive tetraurea calix[4]arene 

featuring four appended spiropyran groups at its upper rim. The prepared tetraurea self-

assembles into a homocapsule. Remarkably, in the presence of a calix[4]pyrrole counterpart 

and a suitable N-oxide template, both tetraureas experience a self-sorting process yielding 

exclusively the hetero-dimeric capsule. The self-assembly, self-sorting, photo- and 

acidochromic studies of the capsular systems in chlorinated solvents are discussed in this 

chapter. A summary of the preliminary encapsulation studies performed with tetramethyl 

phosphonium and tetramethyl ammonium cations is also described. 
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At the end of the thesis, we provide a concise summary of the most relevant conclusions drawn 

from the work carried out. 
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2.1 Introduction 

The photocontrolled uptake and release of guest molecules from synthetic hosts relies on two 

strategies that share the use of appended photoswitchable units and differ in the selection of 

the binding partner (the host or the guest) to which they are covalently attached.1 The 

isomerization of the photoswitch, induced by light or heat, modifies its shape, spectrum, size, 

polarity, hydrophobicity, and so on. In turn, these changes can be coupled to modulate the 

selectivity and affinity of the host–guest complex. Examples of unimolecular natural2 and 

synthetic hosts3,4 that bind photoresponsive guests have made extensive use of azobenzene 

groups as photochromic switches.5,6,7 Likewise, photoresponsive guests containing 

azobenzene units have been employed for photocontrolled modulation of the binding affinity 

by using multicomponent host assemblies, that is, capsules8 and cages.9 Dube and Rebek 

introduced the Z/E photoinduced isomerization of hemithioindigo (HTI) derivatives to realize 

photocontrolled guest exchange in the encapsulation complexes of dimeric capsules derived 

from resorcinarene cavitands.10 Irie and co-workers exploited the differences in binding 

ability exhibited by the Z/E isomers of 2-pyridyl-substituted HTIs with two Zn porphyrin 

receptors to control the shuttling of the former between the latter by using light irradiation.11 

The Z-to-E light-induced isomerization of HTI derivatives requires longer wavelengths (λ = 

410-430 nm) than the trans-to-cis photoisomerization of azobenzenes (λ = 365 nm).12 

Remarkably, the E-HTI isomer can be reverted to the Z counterpart by subsequent irradiation 

at wavelengths > 500 nm or completely by thermal equilibration in the dark. The switching 

between the two states shows high efficiency and proceeds with little photofatigue. In recent 

years, HTI derivatives have been exploited as peptide modulators13 and as prototypes of 

molecular logic gates,14 machines,15,16 and supramolecular receptors,17,18 and their switching 

properties have been studied19 and modulated20 for possible applications at the bio-optical 

window (λ = 650-900 nm). The tetra-α isomers of aryl- and super aryl-extended 

calix[4]pyrroles are known to form thermodynamically and kinetically stable 1:1 inclusion 

complexes with pyridyl-N-oxide derivatives. The association constant values determined for 

these inclusion complexes are in the range of 104 to 107 M-1.21 The pyridyl-N-oxide is deeply 

included in the aromatic cavity and forms four convergent hydrogen bonds between the 

oxygen atom of the N-oxide and the pyrrole NHs of the receptor. Additional π-π and CH-π 

interactions are established between the two binding partners. 
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In this chapter, we aimed at evaluating the affinity modulations experienced by super aryl-

extended calix[4]pyrrole receptor 1 upon binding of photoresponsive pyridyl-N-oxides 2 and 

3 containing an HTI molecular switch (Figure 2.1). 

 

Figure 2.1 Molecular structures of a) super aryl-extended calix[4]pyrrole receptor 1 and b) 2-(4’-

pyridyl-N-oxide)-substituted hemithioindigos 2 and 3, Z (left) and E (right) isomers. In the case of 3, 

the lower energy rotamers of the two isomers are shown. The values of the angles defined by the O, 

CHe, and C(CH3)3 atoms are indicated in the Z and E isomers. The E isomer displays a pronounced 

bending of the pyridyl-N-oxide and the HTI unit, which suggests a less favorable fit in the cylindrical-

shaped cavity of 1 in cone conformation (see text). Protons assigned to the E isomer are marked with a 

‡ symbol. 

We describe the synthesis of two 2-(4’-pyridyl-N-oxide)-substituted hemithioindigo 

derivatives. We study their photoresponsive behavior and probe the interaction of the Z 

isomers with super aryl-extended calix[4]pyrrole receptor 1 by using 1H NMR spectroscopy. 

We investigate the photoisomerization processes induced by light irradiation of the formed 

inclusion complexes. Finally, we use isothermal titration calorimetry (ITC) experiments to 

assess the binding constants of the inclusion complexes formed by the Z and E isomers of the 

photoswitches with super aryl-extended calix[4]pyrrole 1 and quantify the binding affinity 

modulation exerted by the photoisomerization.  
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2.2 Results and discussion 

2.2.1 Design and synthesis 

The nucleophilic substitution reaction of 4-tert-butylbenzenethiol with 2-bromoacetic acid 

afforded aryl thioglycolic acid 4 in 69% yield.22 The aryl acyl chloride formed “in situ” by 

reaction of 4 with thionyl chloride was cyclized under Friedel-Crafts acylation conditions to 

provide labile thioindoxyl 5, which was used without further purification in condensation 

reactions with carboxaldehyde N-oxides 6 and 7. Aldehyde 6 is commercially available. 

However, to the best of our knowledge, N-oxide 7 has not been previously described in the 

literature. Aldehyde derivative 7 was prepared in two synthetic steps starting from 3,4-

lutidine. First, lutidine N-oxide 8 was isolated as white needles in 63% yield by using sodium 

perborate (PBS) in acetic acid as the oxidant.23 Next, the para-methyl substituent of 8 was 

selectively oxidized by using SeO2 to afford N-oxide 7 in 17% yield after purification of the 

reaction crude by column chromatography.24 The reactions of thioindoxyl 5 with N-oxides 6 

and 7 by using piperidine (PIP) as a base produced desired 2-(4’-pyridyl-N-oxide)-substituted 

HTI derivatives 2 and 3 as yellow powders in yields of 21 and 59%, respectively, after 

purification by column chromatography and trituration with ethyl acetate (see Scheme 2.1). 

 

Scheme 2.1 Synthetic schemes for the preparation of hemithioindigo N-oxides Z-2 and Z-3. The 

synthesis of the aldehyde N-oxide 8 is also shown. PIP = piperidine, PBS = sodium perborate 

tetrahydrate. 

On the basis of 1H NMR spectroscopy analyses of CDCl3 solutions, the isolated solids of the 

HTI derivatives contained the thermodynamically stable Z isomers to an extent greater than 

95%. The diagnostic vinylic proton (He) of the Z-HTI isomers is considerably downfield 

shifted with respect to the corresponding signal in the E isomers owing to the +δ anisotropy 
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of the carbonyl group. On the contrary, the proton signal Hf resonates at lower chemical shift 

in the Z isomer with respect to the E counterpart; in this case, the anisotropic effect of the 

C=O oxygen atom towards Hf is more pronounced in the E isomer. These observations are 

in agreement with the assignment of the Z/E configuration of the isomers of hemithioindigos 

and related compounds prepared from the acid- or base-catalysed condensation with aromatic 

aldehydes (e.g. acetophenones, cyclohexanones, tetralones, flavanones, indanones and 

aurones) by simple 1H NMR characterization.25 Compounds 7, Z-2, and Z-3 were fully 

characterized by a complete set of high-resolution spectra (NMR and MS). In the case of HTI 

Z-3, the energy-minimized structures (MM3) returned a difference in energy of ca. 8 

kcal∙mol-1 for the two possible rotamers. Accordingly, it was possible to assign all the proton 

signals unambiguously and exclude one of the two rotamers of Z-3 by using standard 2D 

NMR techniques. By means of NOE spectroscopy, we detected cross-peaks between the 

methyl proton Hi and protons Hh
 and He (Figure 2.2). 

 

 

Figure 2.2 Selected region of the NOESY spectrum of HTI Z-3 showing the diagnostic cross-peaks for 

the indicated protons. 
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Additionally, we obtained single crystals of Z-3 suitable for X-ray diffraction analysis (Figure 

2.3).  

 

Figure 2.3 X-ray structure (ORTEP) of a single crystal of the Z-3 isomer grown from a ACN:CHCl3 

1:1 solution. Thermal ellipsoids are set at 50% probability. 

In the solid state, the angle defined by the O, CHe, and C(CH3)3 atoms of Z-3 was 211º. This 

value is in good agreement with the one (208º) measured for its energy-minimized structure 

(MM3). Super aryl-extended calix[4]pyrrole 1 was synthesized using a procedure previously 

described by our group.21 

2.2.2 Photoisomerization studies of hemithioindigos Z-2 and Z-3 

We monitored the photoisomerization process of HTI N-oxides Z-2 and Z-3 at micromolar 

concentration in chloroform solution by using UV/Vis absorption spectroscopy. We prepared 

a solution of 2 (30 μm) that mainly contained Z-2, and we acquired its UV/Vis absorption 

spectrum. 

 

Figure 2.4 UV/Vis absorption spectra of chloroform solutions of 2 (30 μM): a) as the Z isomer (red), 

at the PSS after photoirradiation at λ = 450 nm for 30 s (blue) and b) as the Z isomer (red solid) and 

after thermal re-equilibration (red dashed). 
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The absorption spectrum of Z-2 showed three bands of similar intensity with maxima 

centered at λ = 324, 369 and 457 nm, respectively. Then, the same solution was 

photoirradiated at λ = 450 nm, and we recorded the UV/Vis spectra at different irradiation 

times. The photoirradiation process caused noticeable changes in the absorption bands of 2. 

After 30 s of irradiation, the absorption spectrum remained unaltered, which indicated that 

the photostationary state (PSS) was reached. At the PSS, the high-energy band centered at λ 

= 324 nm increased in intensity. In contrast, the band appearing at λ = 369 nm displayed a 

decreased intensity, and a bathochromic shift (Δλ = +5 nm) was observed. The lower energy 

band with a maximum at λ = 457 nm was redshifted (Δλ = +17 nm) and was also diminished 

in intensity (Figure 2.4a). It is known that the absorption spectra of the E isomers of most 

HTIs are moderately bathochromically shifted relative to those of the Z isomers.12 

Consequently, the observed spectral changes are in agreement with an increase in the 

concentration of the E-2 isomer in solution and support the Z-to-E photoisomerization 

process. An analogous photoirradiation experiment was performed with a freshly prepared 

solution (30 μM) of HTI N-oxide Z-3. The initial absorption spectrum of Z-3 was almost 

identical to the one registered for Z-2 (three bands centered at λ = 308, 370, and 460 nm). 

The chloroform solution was irradiated with λ = 450 nm light, and the PSS was reached 

within 30 s. The resulting UV/Vis spectrum of the solution showed the same earmarks for 

the Z-to-E photoisomerization of the HTI switch. Afterwards, the chloroform solutions of 2 

and 3 at the PSSs were thermally equilibrated in the dark at 40 ºC for 12 h. The UV/Vis 

spectra of the equilibrated HTI N-oxide solutions were similar to the ones acquired for the Z 

isomers. All together, these results established that 1) N-oxides 2 and 3 are clearly responsive 

to light stimuli; 2) light irradiation at a wavelength of 450 nm induces the PSSs, in which the 

E isomer is the major component; 3) the Z-to-E photoisomerization process can be thermally 

reversed to a limited extent. The short times required to achieve the PSSs in the performed 

photoisomerization experiments are a direct consequence of the employed highly diluted 

conditions (30 μM) (see below). We also studied the photoisomerization process of both HTI 

N-oxides in millimolar chloroform solution by using 1H NMR spectroscopy. Separate 

thermally equilibrated solutions of Z-2 and Z-3 (6-7 mM) were photoirradiated at λ = 450 

nm. The solutions reached the PSSs after 7-10 min, as evidenced by the fact that the 1H NMR 

spectra remained unchanged after this period of time. The mixture of HTI isomers at the PSSs 

showed E/Z compositions of 80:20 and 85:15 for 2 (Figure 2.5) and 3, respectively. Most 

likely, the larger concentrations used in the 1H NMR experiments are responsible for the 
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longer irradiation times required to achieve the PSSs in comparison to the analogous UV/Vis 

experiments. 

 

Figure 2.5 Selected region of the 1H NMR spectra (400 MHz, CDCl3, 298 K) recorded during 

photoirradiation at λ = 450 nm of a 6.5 mM solution of Z-2 for a) 0, b) 3 min, c) 5 min, d) 7 min, and 

e) 10 min, reaching the PSS after 7 min with a final Z/E ratio of 20:80. Protons assigned to the E-2 

isomer are marked with a ‡ symbol. * Residual solvent signals. 

2.2.3 Binding studies of hemithioindigos Z-2 and Z-3 with super aryl-extended 

calix[4]pyrrole 1 

We probed the interaction of HTI N-oxide Z-2 with super aryl-extended calix[4]pyrrole 1 by 

using 1H NMR titration experiments. The 1H NMR spectrum of super aryl-extended 1 in 

CDCl3 solution (3.5 mM) is in agreement with a C4v symmetry (Figure 2.6a). However, the 

NH and β-pyrrole proton signals are somewhat broadened, which suggests that 1 is involved 

in a dynamic equilibrium between conformers. The addition of 0.4 equiv. of HTI Z-2 to the 

millimolar solution of 1 produced the appearance of a new set of signals that were assigned 

to the protons of bound 1 (Figure 2.6b). Significantly, the pyrrole NH protons (H1’) of bound 

1 appeared highly downfield shifted (δ = 9.8 ppm, Δδ = +2.1 ppm), which suggested their 
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involvement in hydrogen-bonding interactions with the oxygen atom of the N-oxide. The β-

pyrrole protons (H2’) in bound 1 also moved downfield (Δδ = +0.3 ppm), and the four signals 

of its aromatic protons shifted upfield. The binding of N oxide Z-2 locked receptor 1 in the 

cone conformation. As the amount of HTI Z-2 increased, the new set of signals of bound 1 

grew at the expense of those of free 1. In the presence of 1 equiv. of Z-2, only the set of 

signals assigned to the protons of bound 1 was observed (Figure 2.6c). 

 

Figure 2.6 Selected region of the 1H NMR spectra (300 MHz, CDCl3, 298 K) acquired during titration 

of tetraester calix[4]pyrrole 1 with Z-2: a) 1, b) 1 + 0.4 molar equiv. of Z-2, c) 1 + 1 molar equiv. of Z-

2, and d) Z-2. Primed letters and numbers correspond to the proton signals of bound components. * 

Residual solvents signals. 

Taken together, these results indicated that Z-2 and 1 formed a 1:1 inclusion complex, Z-

2⊂1, that was kinetically stable on the chemical shift timescale and for which a binding 

constant larger than 104 M-1 could be estimated. All proton signals of Z-2 in the Z-2⊂1 

complex were upfield shifted relative to those of Z-2 free in solution. The largest upfield shift 

was experienced by the N-oxide pyridyl protons α to the nitrogen atom, Hg” (Δδ = -3.67 

ppm). These observations support the deep inclusion of Z-2 in the aromatic cavity defined by 
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the meso-aryl substituents of receptor 1 in the cone conformation. The inclusion is mainly 

driven by the formation of four simultaneous hydrogen bonds between the pyrrole NHs of 1 

and the N-oxide oxygen atom of Z-2. We also probed the interaction of HTI N-oxide Z-3 with 

calix[4]pyrrole 1 by using 1H NMR titration experiments in CDCl3 solution. The obtained 

results were completely analogous to the ones described above for the Z-2 counterpart. 

Notably, the two chemically nonequivalent protons α to the nitrogen atom of included 

pyridyl-N-oxide Z-3 (Hg” and Hh’) experienced similar upfield shifts, Δδ = -3.6 and -3.1 ppm, 

respectively. Moreover, the magnitude of the upfield shifts is in agreement with the one 

experienced for the analogous protons of Z-2. This result supports similar binding geometries 

for the Z-2⊂1 and Z-3⊂1 inclusion complexes. 

2.2.4 Light-irradiation experiments of the inclusion complexes 

As discussed above, an equimolar mixture of Z-2 and super aryl-extended 1, at millimolar 

concentration, afforded the quantitative formation of the Z-2⊂1 complex. The resulting 

CDCl3 solution was photoirradiated with λ = 450 nm light and was analyzed at different time 

intervals by using 1H NMR spectroscopy (Figure 2.7). After 10 min of irradiation, the 1H 

NMR spectrum of the solution showed the diagnostic signals of the initial Z-2⊂1 complex 

together with a new set of signals that were assigned to the protons of the E-2⊂1 complex 

(Figure 2.7b). The complexes of the E and Z isomer of 2 could be easily identified, in the 

region of the NHs, as two separate singlets resonating at δ = 9.9 and 9.8 ppm, respectively. 

Further irradiation (20 and 40 min) induced an increase in the NH signal corresponding to 

the E-2⊂1 complex (δ = 9.9 ppm) at the expense of the signals assigned to the Z-2⊂1 

counterpart (Figure 2.7c-d). After 60 min of irradiation, the 1H NMR spectra of the solution 

remained unchanged, which indicated that the PSS was reached (Figure 2.7e).26 Remarkably, 

the PSS of the mixture of inclusion complexes 2⊂1 was reached after 1 h of photoirradiation. 

The times required for free HTI 2 and the 2⊂1 complex to reach the PSS were significantly 

different, 7 min and 1 h, respectively. The intensity of the absorbance at λ = 450 nm in the 

UV/Vis absorption spectrum of the 2⊂1 complex is drastically reduced relative to that of free 

2 (vide infra). This observation supports the finding that photoirradiation at this wavelength 

is less efficient in the case of the inclusion complex, and thus, longer irradiation times are 

required to achieve the PSS. At the PSS, the composition of the mixture of isomeric 

complexes E-2⊂1:Z-2⊂1 was determined as approximately 75:25. This value is in good 
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agreement with the 80:20 mixture of HTI isomers obtained at the PSS (λ = 450 nm) for free 

2. We did not observe any of the expected proton signals for either free receptor 1 or free 

HTI N-oxide E-2. 

 

Figure 2.7 Selected region of the 1H NMR spectra (400 MHz, CDCl3, 298 K) acquired during 

photoirradiation at λ = 450 nm of the 1:1 Z-2⊂1 complex for a) 0, b) 10, c) 20, d) 40, and e) 60 min. 

Primed letters and numbers correspond to the proton signals of the bound components of Z-2⊂1. Double 

primed letters and numbers correspond to the proton signals of irradiated bound components of E-2⊂1. 

* Residual solvent signals. 

All together, these results show that the inclusion of the HTI N-oxide has little effect on the 

isomerization level of the molecular photoswitch and that its E-form is also bound by 1 with 

a stability constant larger than 104 M-1. In short, at millimolar concentration, the Z-to-E 

photoisomerization of the bound guest did not modulate the binding constant of the resulting 

E-2⊂1 inclusion complex at a level suitable to induce its dissociation. Thermal equilibration 

in the dark at 55 ºC for 12 h of the mixture of isomeric complexes afforded a final composition 
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of approximately 5:95 E-2⊂1/Z-2⊂1, which is in agreement with the composition of free 

HTI 2 after thermal equilibration. Analogous results were obtained in the irradiation 

experiments performed with the Z-3⊂1 complex. Photoisomerization at λ = 450 nm produced 

an approximately 75:25 ratio of the E-3⊂1/Z-3⊂1 complexes, a value that is also in line with 

the photoisomerization level obtained for free Z-3. As observed above for Z-2, the inclusion 

of Z-3 in calix[4]pyrrole receptor 1 does not affect the PSS composition significantly. To 

characterize the kinetic stability of the Z-3⊂1 complex, we determined its rate dissociation 

constant value as k-1 = 1.8 s-1 by using EXSY NMR experiments (entry 2 in Table 2.1). 

Complex k (s-1) ΔG‡
 (kcal∙mol-1) k-1 (s-1) ΔG‡

-1 (kcal∙mol-1) k1 (M-1s-1) 

Z-2⊂1 1.36 17.25 0.68 17.67 3.69 × 106 

Z-3⊂1 1.84 17.07 0.92 17.48 4.83 × 106 

Table 2.1 Magnetization rate constants (k), energy barriers of the magnetization exchange (ΔG‡), 

magnetization rate constants and chemical exchange rate constants of the dissociation process (k-1’ = k-

1) and the energy barriers of dissociation (ΔG‡
-1) for the complexes Z-2⊂1 and Z-3⊂1. Data obtained 

from 2D 1H-EXSY experiments (tmix = 0.3 s). Rate constants for the formation of both complexes (k1) 

determined from Ka (ITC titrations) and k-1 (2D 1H EXSY experiments). 

This dissociation rate constant translates into an energy dissociation barrier of approximately 

18 kcal∙mol-1 at 298 K,27 which is in complete agreement with the observed slow chemical 

exchange between the free and bound components. Using 1H NMR spectroscopy, we also 

monitored the thermal E-to-Z isomerization processes at 25 ºC. First, separate CDCl3 

solutions of the free guests, 2 and 3, and their inclusion complexes, 2⊂1 and 3⊂1, at 

millimolar concentrations, were irradiated at λ = 450 nm in NMR tubes until the PSSs were 

reached (10 or 45 min for the free and the bound species, respectively). Immediately, the 

NMR tubes were introduced into the spectrometer probe previously thermostated at 25 ºC. 

Multiple 1H NMR spectra of the evolving mixtures of stereoisomers were acquired every 5 

min for the free guest and every 30 min for their inclusion complexes. 

Compound k (h-1) t1/2 (h) ΔG‡ (kcal∙mol-1) 

2 0.50 1.38 22.69 

2⊂1 0.16 4.33 23.36 

3 0.33 2.10 22.94 

3⊂1 0.14 4.95 23.44 

Table 2.2 Kinetic parameters (k, t1/2 and G‡) of the E-to-Z isomerizations at RT of free and bound 2 

and 3 obtained from the fit of the data to a first-order kinetic equation. 
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The E-to-Z compositions of the mixtures were determined from the integral values of selected 

proton signals assigned to the respective isomers. The data obtained by monitoring the 

increase in concentration for the Z isomer, as well as the decrease in the E counterpart, were 

plotted versus time and fit to a first-order kinetic equation in all cases (Table 2.2). 

Remarkably, the half-lives for the thermally induced isomerization reactions of the free HTI 

guests were approximately three times shorter than those of the bound counterparts (1.5 vs. 

4.5 h). These results indicate that the thermal E-to-Z isomerization of the HTIs is also affected 

by the inclusion in 1. We calculated that the free-energy barriers for the isomerization 

processes are of the order of approximately 23 kcal∙mol-1. This magnitude corresponds to the 

lower range of values measured for related processes. It is known that the electron-donor or 

electron-acceptor nature of the para substituent at the stilbene fragment of HTIs has an effect 

on the Z-to-E photoisomerization and E-to-Z thermal isomerization rates.12 The effect is more 

noticeable for the latter process, in which an increase in the electron-donor nature of the 

substituent promotes a faster thermal E-to-Z isomerization reaction. 

 

Figure 2.8 Energy-minimized structures (MM3) of the inclusion complexes (top and side view) of a) 

Z-2⊂1 and b) E-2⊂1. Included guest molecules are shown as CPK models and receptor 1 is depicted 

in stick representation. Non-polar hydrogen atoms of 1 are omitted for clarity. 
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Surprisingly, the pyridyl N-oxide HTIs reported in this work show thermal isomerization 

rates that are similar to those of stilbene derivatives bearing a strong electron-donor 

dimethylamino para substituent (σ+ = -1.7).28 The two inclusion complexes are stabilized by 

four simultaneous hydrogen bonds established between the N-oxide oxygen atom of the HTI 

and the pyrrole NHs of the calix[4]pyrrole unit. We surmise that the involvement of the N-

oxide unit in hydrogen-bonding interactions might be responsible for the observed increase 

in the half-life for the thermal photoisomerization reactions of the inclusion complexes 

compared to those of the free guests. Simple molecular modeling studies (MM3) of the 

inclusion complexes, Z-2⊂1 and E-2⊂1, show that bound HTI 2 isomers are somewhat shape, 

size, and function complementary to the aromatic polar cavity of 1 (Figure 2.8). This binding 

motif induces receptor 1 to adopt the cone conformation. In addition, multiple CH-π and π-π 

interactions take place between the aromatic rings of included HTI 2 and the four meso-

aromatic substituents of 1.29,30 The linear shape of Z-2 provides a better complementary to 

the deep and cylindrical aromatic cavity defined by the meso-aryl substituent of 1 in cone 

conformation. Upon complex formation, the bent shape of the E-2 isomer provokes 

significant flexing in the aryl-extended aromatic walls of receptor 1. This is mainly due to 

maximization of CH-π and π-π interactions. Likewise, the shape complementarity between 

the host and the guest in the E-3⊂2 complex is reduced relative to that in the Z-3⊂2 analogue. 

In contrast, π-sulfur interactions seem to be favored for the E-3⊂2 complex. These types of 

interactions are observed in the crystal structures of folded proteins. They are established 

between methionine or cysteine residues and aromatic side chains of neighboring amino 

acids.31,32,33 All in all, the calculated energy difference for the two isomeric complex is 

approximately 3 kcal∙mol-1, in favor of the Z-3⊂2 complex, which is the one including the 

thermodynamically stable Z-3 isomer of the HTI derivative. 

2.2.5 Determination of accurate association constant values for the inclusion complexes 

We performed a series of isothermal titration calorimetry (ITC) experiments to assess the 

modulation of thermodynamic stability experienced by the inclusion complexes of 1 as a 

function of the included photoisomer of 2 and 3. The 1H NMR binding studies discussed 

above indicated that the four possible 1:1 isomeric inclusion complexes featured association 

constant values larger than 104 M-1. First, we determined the thermodynamic parameters for 

the formation of the 1:1 complexes of 1 with the thermodynamically stable Z-form of the two 
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photoswitches. We also performed UV/Vis titrations of the Z-2/3 isomers with incremental 

amounts of calix[4]pyrrole 1 in order to determine the association constants for the 1:1 

inclusion complexes based on the changes in the absorption profiles. Small aliquots of a 

solution of receptor 1 (1.4-1.7 mM) were added to a 30 µM solution of compound Z-2 (Figure 

2.9) or Z-3 in the same solvent. The UV/Vis spectra were acquired after the addition of each 

aliquot. The titration data were fit to a simple 1:1 binding model at the wavelength 

corresponding to the maximum of absorbance of the lower-energy band of the inclusion 

complexes (ca. 470 nm) using the HypSpec module. 

 

Figure 2.9 a) UV/Vis absorption spectra acquired during the titration of a 30 µM CHCl3 solution of 

HTI N-oxide Z-2 with super aryl-extended calix[4]pyrrole 1 and b) observed (red) and calculated (black 

line) absorbances at 470 nm plotted against the equivalents of 1. 

Because saturation was achieved after the addition of 1 equiv. of the host to the solution of 

the guest, the data were only useful to determine the 1:1 stoichiometry of the complexes and 

to estimate that their binding constants are larger than 106 M-1. An accurate assessment of the 

binding constants of the two complexes Z-2/3⊂1 would require working at concentrations 

that are too diluted for UV/Vis spectroscopy titrations. Accordingly, we determined the 

corresponding values using ITC titration experiments. The timed injection of incremental 

aliquots (15-20 μl) of chloroform solutions of Z-2 (Figure 2.10a) or Z-3 by using a computer-

controlled microsyringe to a solution of super aryl-extended 1 in the same solvent produced 

the release of heat pulses. Next, we performed analogous ITC experiments by charging the 

syringe with diluted chloroform solutions of mixtures of HTIs isomers obtained by irradiating 

photoswitches 2 (Figure 2.10b) and 3 with λ = 450 nm light until their PSSs were achieved. 
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In all cases, the concentration of guest solutions (0.72-0.76 mM) was ca. 9 times the 

concentration of the calix[4]pyrrole (0.07-0.08 mM). 

 

Figure 2.10 Top - Trace shows raw data for one set of experiments for the titration of the guest into the 

host: a) Z-21 and b) E-21. Titration was performed at 25 °C in chloroform by timed injection of 15 

μl of guest solution into the host solution. Bottom - Binding isotherm of the calorimetric titration shown 

on top. The enthalpy of binding for each injection is plotted against the molar ratio of host:guest in the 

cell. The continuous line represents the least-squares-fit of the data to a single-site binding model. 

The photoisomerization levels were analyzed by using 1H NMR spectroscopy before and 

after performing the ITC experiments. For the ITC titration of isomers E-2 and E-3 with 1, 

control NMR experiments were conducted on the same sample, before and after irradiation 

to the PSS: a 3 mM solution of Z-2 or Z-3 in CDCl3 was placed in a NMR tube and irradiated 

with a LED source at 450 nm for 10 min. NMR spectra showed a 15:85 E-2:Z-2 or a 80:20 

E-3:Z-3 ratio, in accordance with expected values for the PSS. Then, aliquots were taken 

from the irradiated solutions and diluted for use in the ITC experiments. To assess the ratio 

of E/Z isomers after completion of an ITC experiment, we titrated a PSS-photoirradiated 

CDCl3 solution of HTI 2 (80:20) with receptor 1 (reverse ITC experiment). An aliquot of the 

solution in the calorimeter cell was analyzed by using NMR spectroscopy immediately after 

finishing the experiment (~ 1 h). The 1H NMR spectrum of the mixture showed that the 
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composition of the E-2⊂1 and Z-2⊂1 complexes was close to the initial 80:20 ratio. As 

discussed above, the E isomers were present in the photoisomerized mixtures at 

approximately 80%. This result indicated that by the end of the ITC experiment the isomeric 

thermal equilibration did not evolve to a significant extent. The integrated and normalized 

data of all titrations provided sigmoidal binding isotherms with inflection points centered at 

a guest:host molar ratio equal to 1. The experimental binding isotherm showed very good fits 

to the “one set of sites” binding model implemented in the Microcal analysis software. The 

thermodynamic parameters determined from the fits (Ka, ΔH) are summarized in Table 2.3 

together with those calculated from them (ΔG and TΔS). Because the thermodynamic values 

of the binding constants derived from the ITC experiments performed with the mixtures of 

photoisomers (entries 2 and 5 in Table 2.3) are weighted averages of the two inclusion 

complexes that are formed, we consider them as maximum estimates for the inclusion 

complexes of the E isomers. 

Complex[a] Ka/106[a] ΔH[b] TΔS[c] ΔG[c] 

Z-2⊂1 5.4 ± 0.5 -8.1 ± 0.6 1.1 ± 0.6 -9.2 ± 0.1 

Z-2⊂1/E-2⊂1 2.6 ± 0.4 -6.8 ± 0.1 1.9 ± 0.1 -8.7 ± 0.1 

E-2⊂1[d] 1.9 ± 0.5    

Z-3⊂1 5.2 ± 0.7 -11.6 ± 0.3 -2.4 ± 0.3 -9.2 ± 0.1 

Z-3⊂1/E-3⊂1 2.9 ± 1.0 -10.1 ± 1.4 -1.3 ± 1.4 -8.8 ± 0.2 

E-3⊂1[d] 2.3 ± 1.2    

[a] M-1. [b] kcal∙mol-1. [c] kcal∙mol-1 at 298 K. [d] Values calculated using equation (1). 

Table 2.3 Thermodynamic constant values (Ka, ΔH, TΔS and ΔG) determined for the complexation of 

HTIs Z-2 and Z-3 and the photoisomerized mixtures at the PSS (450 nm) with receptor 1 in chloroform 

solutions. All values represent the average of at least two ITC titration experiments. Errors in Ka and 

ΔH are reported as standard deviations. 

Using Equation (1), we determined more accurate stability constant values for the E inclusion 

complexes (entries 3 and 6 in Table 2.3): 

Ka(E⊂1) = [Ka(Z⊂1/E⊂1) - χ Z⊂1·Ka(Z⊂1)]/ χ E⊂1   (1) 

in which χZ⊂1 and χ E⊂1 are the molar fractions of the two complexes and Ka(Z⊂1/E⊂1) is the 

stability constant as derived from the fits of the titrations with the mixtures of photoisomers. 

Thus, the calculated stability constant values are Ka[E-2⊂1] = (1.9 ± 0.5) × 106 M-1 and Ka[E-3⊂1] 

= (2.3 ± 1.2) × 106 M-1. Several conclusions can be drawn from the tabulated and calculated 

data. First, the formation of all inclusion complexes is mainly enthalpically driven. Second, 

entropy favors the formation of the complexes with HTI 2 but opposes the formation of the 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



2-(4’-Pyridyl-N-oxide)-substituted hemithioindigos as photoresponsive guests for a super 

aryl-extended calix[4]pyrrole receptor 

73 

 

complexes with HTI 3. We assign this dissimilar behavior mainly to different 

solvation/desolvation processes of the HTI. Third, enthalpy-entropy compensation effects34 

are also evident in the studied binding processes. The fact that the binding constant values 

for the pair of complexes Z-2/Z-3 and E-2/E-3 with receptor 1 are very similar indicates that 

the presence of the methyl group in the meta position of the pyridyl-N-oxide residue of 3 

does not impact the thermodynamic stability of the inclusion complexes. Remarkably, the Z-

to-E photoisomerization of the HTI guests produces a very small reduction in the binding 

constant value (2.2-2.8-fold), which corresponds to a free-energy difference of approximately 

0.5-0.6 kcal∙mol-1. This value is significantly smaller than the 3 kcal∙mol-1 estimated from the 

molecular modeling studies (MM3). We attribute the experimentally measured decrease in 

binding affinity to the fewer CH-π and π-π interactions in the E-HTI⊂1 complexes with 

respect to the Z-HTI⊂1 counterparts and to the worst fit of shapes between the host and guest. 

2.2.6 Binding and photoisomerization studies of 1 with tetramethylammonium 4-

(phenylazo)benzoate 9 

We probed the interaction of receptor 1 with tetramethylammonium 4-(phenylazo)benzoate 

(9) (Figure 2.11), an azobenzene derivative in order to assess the modulation of its binding 

affinity. 

 

Figure 2.11 Molecular structure of tetramethylammonium 4-(phenylazo)benzoate 9 in the trans 

conformation. 

In principle, the trans-to-cis photoisomerization produces a more dramatic conformational 

change between the two isomers with respect to the hemithioindigo fragment. Initially, a 

millimolar solution of 9 in CDCl3 was thermally equilibrated at 60 ºC in the dark overnight 

(Figure 2.12a). The irradiation (λ = 365 nm) of the trans-9 isomer produced a mixture 

enriched in the cis-9 counterpart after 30 min, with a final trans:cis ratio of 15:85 at the PSS 

(Figure 2.12c). A small amount of unknown compound could be observed in the freshly 
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dissolved sample and throughout the experiment: it was attributed to a decomposition product 

of 9 in this solvent. 

 

Figure 2.12 1H NMR spectra (400 MHz, CDCl3, 298 K) recorded during photoirradiation at λ = 365 

nm of a 1.6 mM solution of trans-9 for a) 0, b) 10 min, and c) 30 min, reaching the PSS after 30 min 

with a final trans:cis ratio of 15:85. d) Thermally equilibrated sample at 60 ºC in the dark overnight. 

Protons assigned to the cis-9 isomer are marked with a ‡ symbol. * Residual solvent signals. 

A 1H NMR titration experiment was performed by the addition of incremental amounts of 

trans-9 to a CD2Cl2 solution of receptor 1 (Figure 2.13). Upon addition of 1 molar equiv. of 

the guest to the solution of the host, we observed the diagnostic proton peaks of the bound 

host and guest indicating the formation of the trans-9⊂1 complex, for which a binding 

constant larger than 104 M-1 could be estimated. In this solvent, the decomposition product 

of 9 was not detected. Afterwards, the trans-9⊂1 complex was photoirradiated at 365 nm 

until the PSS was reached (15 min). The irradiation provoked the formation of the inclusion 

complex containing the cis isomer, cis-9⊂1. At the PSS, the composition in the inclusion 

complexes was 65:35 trans-9⊂1:cis-9⊂1 by integration of the pyrrole NH protons (H1’ and 

H1’’) of 1. Similarly to our results obtained for the HTI-2/3⊂1 complexes, the absence of the 

diagnostic signals of free cis-9 indicated the lack of photoinduced release of the guest to the 

bulk solution at millimolar concentration. 
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Figure 2.13 1H NMR spectra (400 MHz, CD2Cl2, 298 K) acquired during titration of a 0.9 mM solution 

of: a) 1, b) 1 + 0.5 molar equiv. of trans-9, c) 1 + 1 molar equiv. of trans-9 before and d) after 

photoirradiation at λ = 365 nm for 15 min (PSS). Primed and double primed numbers correspond to the 

proton signals of bound components. * Residual solvents signals. 

2.2.7 Binding and photoisomerization studies of HTI 2 with tetranitro calix[4]pyrrole 10 

We also probed the interaction of HTI Z-2 with tetranitro tetraester calix[4]pyrrole (10) by 

1H NMR titration in CDCl3 solution. Aryl-extended calix[4]pyrroles adopt mainly the 1,3-

alternate conformation in non-polar organic solvents,  and the binding of a polar molecule (2 

or 3) induces the receptor to adopt the cone conformation. The 1H NMR spectrum of 10 in 

chloroform solution (4.6 mM) showed sharp and well-defined proton signals. The addition 

of incremental amounts of HTI Z-2 to a millimolar solution of 10 provoked chemical shifts 

changes on the proton signals of the receptor. The β-pyrrole protons of 10 suffered a 

downfield shift, while its aromatic protons experienced an upfield shift. The NH pyrrole 

protons of 10 became too broad for their observation. Overall, the proton signals of Z-2 

experienced an upfield shift with respect to those of Z-2 free in solution. These observations 

indicated that Z-2 was included in the aromatic cavity of 10 and the presence of only one set 

of proton signals for the host and the guest after each addition of Z-2 was indicative of a fast 

chemical exchange on the 1H NMR chemical shift timescale between the free and bound 

components (Figure 2.14).  
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Figure 2.14 1H NMR spectra (400 MHz, CDCl3) acquired during the titration of a 4.6 mM solution of 

tetranitrocalix[4]pyrrole 10 with a) 0; b) 0.5; c) 1; d) 3 and e) 5 equiv. of Z-2; f) Z-2. * Residual solvents 

peaks. 

The fit of the titration data returned an association constant for the complexation event that 

was indicative of weak interaction between the two binding partners. Specifically, the 

changes in the chemical shift of the diagnostic β-pyrrolic protons from the 1H NMR titration 

and the corresponding concentration of guest Z-2 in chloroform solution were fit to a 1:1 

binding model using the software HypNMR2008. From the fitting of the experimental data 

(Figure 2.15) we estimated a value for the association constant of 1.0 102 M-1. 
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Figure 2.15 Observed (blue dots) and calculated (black line) chemical shifts of the diagnostic β-pyrrolic 

protons of receptor 10 vs. the concentration of guest Z-2 added to the solution. 

The 1H NMR spectrum of an equimolar solution of Z-2 and 10 in CD2Cl2 also showed the 

proton signals of Z-2 upfield shifted with respect to those of the free guest in solution due to 

its inclusion in the aromatic cavity of tetranitro 10. Based on the speciation profile, 26 % of 

HTI Z-2 was bound to host 10. The solution was photoirradiated at 450 nm for 15 min 

producing 85 % of the E-2 isomer at the PSS. The proton signals of E-2 appeared also upfield 

shifted with respect to those of free E-2 in solution.  

 

Figure 2.16 1H NMR spectra (400 MHz, CD2Cl2) acquired during the photoirradiation at 450 nm of a 

1:1 millimolar solution of tetranitro calix[4]pyrrole 10 with HTI Z-2 for: a) 0; b) 2; c) 4; d) 10; e) 15 

min. Benzyl methyl ether was used as internal standard (I.S.). * Residual solvents peaks. 
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This observation suggested that photoirradiation of the Z-2⊂10 complex induced the 

appearance of the E-2⊂10 counterpart without promoting the release of E-2 to the bulk 

solution. As in the case of receptor 1, the Z-to-E photoisomerization of 2 did not provoke a 

reduction in thermodynamic stability of the inclusion complex dramatic enough to induce the 

release of the guest to the bulk at millimolar concentrations. Afterwards, the mixture of 

inclusion complexes was back-irradiated (E-to-Z) at 530 nm for 40 min and returned to its 

original state, as monitored by 1H NMR spectroscopy. 

2.3 Conclusions 

In conclusion, we reported the synthesis and characterization of two photoswitchable 

hemithioindigo N-oxides, Z-2 and Z-3, that were found to be suitable for deep inclusion in 

the polar aromatic cavity defined by the cone conformation of super aryl-extended 

calix[4]pyrrole 1. Photoirradiation of thermally stabilized milli- and micromolar chloroform 

solutions of the HTI derivatives, Z-2 and Z-3, with λ = 450 nm light produced isomeric 

mixtures enriched with the E-form to an extent >80% at the PSS. The Z-to-E 

photoisomerization of the HTI derivatives could be reversed by a thermal equilibration 

process, which produced mainly the Z-form. 1H NMR titration experiments evidenced the 

formation of kinetically and thermodynamically stable 1:1 inclusion complexes of the HTI 

derivative Z-forms of 2 and 3 and super aryl-extended receptor 1. Photoirradiation of the Z-

HTI⊂1 complexes produced mixtures enriched with the E-HTI⊂1 counterparts, which 

required extensive irradiation times to achieve the PSSs compared to the analogous 

experiments performed with the free Z-HTI. Photoirradiation of the inclusion complexes 

produced identical levels of isomerization of the HTI derivatives to those obtained for the 

free guest. At millimolar concentration, the Z-to-E photoisomerization of the HTI guests did 

not induce their release to detectable extents to the bulk solution. The results from the 

isothermal titration calorimetry experiments allowed us to determine that the binding 

constant values of all isomeric inclusion complexes were of the order of 106 M-1 (ΔG ~ 9.5 

kcal∙mol-1). Likewise, we quantified that the modulation in binding affinity exerted by the 

isomerization of the guest was approximately 0.5 kcal∙mol-1. The design of related host–guest 

systems capable of efficient “cargo release” by light stimulus remains a challenging endeavor 

in our laboratory. 
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2.4 Experimental section 

2.4.1 General information and instrumentation 

All syntheses were carried out using chemicals as purchased from commercial sources unless 

otherwise noted. All commercial solvents and chemicals were of reagent grade quality and 

were used without further purification except as noted. Dry solvents were taken from a 

solvent system MB SPS 800 (MBraun) and freshly distilled unless otherwise stated. Thin-

layer chromatography (TLC) and flash column chromatography were performed with DC-

Alufolien Kieselgel 60 F254 (Merck) and silica gel 60 Å for chromatography (Sigma-Aldrich), 

respectively. Routine 1H and 13C NMR spectra were recorded on Bruker Avance 300 (300 

MHz for 1H NMR), Avance 400 (400 MHz for 1H NMR) or Avance 500 (500 MHz for 1H 

NMR) ultrashield spectrometers, or on a Bruker Avance III 500 with a QNP cryoprobe. 

Deuterated solvents (Sigma-Aldrich) used are indicated in the characterization and chemical 

shifts are given in ppm. Residual solvent peaks were used as reference. All NMR J values 

are given in Hz. High Resolution Mass Spectrometry (HRMS) experiments were performed 

on a MicroTOF, Bruker Daltonics ESI. The diagnostic peaks are reported in m/z units. 

UV/Vis spectra were recorded on a Shimadzu UV-2401PC spectrophotometer (equipped with 

a photomultiplier detector, double beam optics and D2 and W light sources). The spectra were 

recorded in a quartz cuvette (10 mm path length). Chloroform for spectroscopy was obtained 

from Merck. IR spectra were recorded on a Bruker Optics FT-IR Alpha spectrometer 

equipped with a DTGS detector, KBr beam splitter at 4 cm-1 resolution using a one bounce 

ATR accessory with diamond windows. Melting points were measured on a MP70 Melting 

Point System instrument from Mettler Toledo. Irradiation experiments for the HTI 

derivatives and inclusion complexes were conducted using a high power LED-diode from 

Roithner Lasertechnik GmbH (450 nm, 26 mW∙cm-2) mounted on a heat sink from Fischer 

Elektronik. Isothermal titration calorimetry experiments were carried out on a MicroCal VP-

ITC microcalorimeter. Chloroform of HPLC grade was passed through basic alumina 

(Merck) prior to use. 
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2.4.2 Synthetic procedures 

The syntheses of super aryl-extended calix[4]pyrrole 1 and tetranitro tetraester 

calix[4]pyrrole 10 were carried out following procedures reported in literature.21,35 4-

Pyridinecarboxaldehyde N-oxide 6 was purchased from Sigma-Aldrich. 

2-(4’-Pyridyl-N-oxide)-HTI Z-2: 5-(tert-butyl)benzo[b]thiophen-3(2H)-one 5 (210 mg, 1.02 

mmol, 1 equiv.) was added to a 25 mL Schlenk flask and dried under vacuum for 30 min, 

then dissolved in 10 mL anhydrous benzene turning to a red color. Afterwards, 5 drops of 

piperidine were added, and subsequently 4-Pyridinecarboxaldehyde N-oxide 6 (82 mg, 0.67 

mmol, 0.65 equiv.) in one portion. All reagents were added under nitrogen flow. Reaction 

was carried out under nitrogen at 45°C and protected from light. After 5 h it was stopped 

according to TLC (DCM:MeOH 99:1), that indicated the absence of the starting materials. 

The crude was dissolved in 50 mL EtOAc and partitioned once between 50 mL 3:2 

water:NH4Cl saturated solution. The aqueous phase was then extracted with EtOAc (2x 50 

mL). The organic phases were combined, dried over sodium sulfate and in vacuo to afford a 

deep red solid. The crude was redissolved in acetone. Column chromatography (SiO2, 

acetone:MeOH 98:2) afforded the product as a bright yellow solid. The compound was 

triturated in ethyl acetate, sonicated thoroughly until a golden dispersion appeared, filtered 

out and dried under high vacuum to afford a yellow powder (67 mg, 0.215 mmol, 21% yield). 

Rf = 0.37 (acetone:MeOH 99:1). M.p. = >200 °C (decompose). 1H NMR (CDCl3, 400 MHz) 

δ (ppm): 8.24 (d, J = 6.5 Hz, 2H); 7.96 (d, J = 2.0 Hz, 1 H); 7.74 (s, 1 H); 7.69 (dd, J = 8.3, 

2.1 Hz, 1 H); 7.55 (d, J = 6.4 Hz, 2 H); 7.45 (d, J = 8.3 Hz, 1 H); 1.36 (s, 9 H). 13C {1H} 

NMR (CDCl3, 101 MHz) δ (ppm): 188.24; 150.10; 141.72; 139.55; 136.01; 133.90; 131.73; 

129.52; 127.03; 126.91; 124.04; 123.65; 34.83; 31.23. FT-IR ν (cm-1) = 2951; 1674 (C=O 

stretching); 1581; 1476; 1441; 1362; 1326; 1263 (N-O stretching); 1213; 1174; 1070; 1020; 

909; 824; 740; 575; 538; 513; 491. HRMS (EI): m/z calcd. for C18H17NO2S: 311.0979; found: 

311.0974. 

2-(4’-Pyridyl-N-oxide)-HTI Z-3: 5-(tert-butyl)benzo[b]thiophen-3(2H)-one 5 (55 mg, 0.27 

mmol, 1 equiv.) was added to a 25 mL Schlenk flask and dried under vacuum for 30 min, 

then dissolved in 10 mL anhydrous benzene turning to a red color. Afterwards, 2 drops of 

piperidine were added, and subsequently N-oxide 7 (29.25 mg, 0.21 mmol, 0.80 equiv.) in 

one portion. All reagents were added under nitrogen flow. Reaction was carried out under 
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nitrogen at 45 °C and protected from light. After 12 h it was stopped according to TLC 

(DCM:MeOH 98:2), that indicated the absence of the starting materials. The crude was 

dissolved in 40 mL EtOAc and partitioned once between 35 mL 3:2 water:NH4Cl saturated 

solution. The aqueous phase was then extracted with EtOAc (2x 40 mL). The organic phases 

were combined, dried over sodium sulfate and in vacuo. Column chromatography (SiO2, 

acetone:MeOH 98:2) afforded the product as a golden solid. The compound was triturated in 

ethyl acetate, sonicated thoroughly until a golden dispersion appeared, filtered out and dried 

under high vacuum to afford a yellow powder (51 mg, 0.16 mmol, 59% yield). Rf = 0.55 

(DCM:MeOH 98:2). M.p. = > 240 °C (decompose). 1H NMR (CDCl3, 400 MHz) δ (ppm): 

8.12 (d, J = 7.0 Hz, 1H); 8.09 (s, 1 H); 7.96 (d, J = 1.85 Hz, 1 H); 7.88 (s, 1 H); 7.68 (dd, J 

= 8.3 Hz, 1 H); 7.62 (d, J = 6.8 Hz, 1 H); 7.43 (d, J = 8.3 Hz, 1 H); 2.44 (s, 3 H); 1.36 (s, 9 

H). 13C {1H} NMR (CDCl3, 101 MHz) δ (ppm): 188.38; 150.18; 142.15; 139.36; 137.29; 

137.10; 134.87; 133.95; 131.47; 129.92; 124.81; 124.74; 124.10; 123.72; 34.93; 31.33; 

17.30. FT-IR ν (cm-1) = 3026; 2952; 1669 (C=O stretching); 1598; 1575; 1553; 1462; 1266 

(N-O stretching); 1212; 1065; 921; 819; 743; 575; 550; 487; 440. HRMS (EI): m/z calcd. for 

C19H19O2NS: 325.11365; found: 325.1133. 

2-((4-(Tert-butyl)phenyl)thio)acetic acid 4: commercially available 4-tert-butylbenzenethiol 

(1 g, 6.01 mmol, 1 equiv.) was added with a syringe to a Schlenk flask, then dried under high 

vacuum until bubbling stopped, due to the hygroscopicity of the reagent. The thiol was then 

dissolved in 20 mL of HPLC grade THF. Afterwards, K2CO3 (1.66 g, 12.03 mmol, 2 equiv.) 

and 2-bromoacetic acid (877.4 mg, 6.31 mmol, 1.05 equiv.) were added at once to the flask. 

The whole procedure was carried out under nitrogen atmosphere at room temperature. The 

flask was equipped with a nitrogen balloon and stirred. After 3 h the reaction was stopped 

upon formation of a white precipitate. The excess of THF was removed and the reaction crude 

was dissolved in 100 mL water. The aqueous phase was acidified to pH = 2 with HCl 2 M, 

then extracted with EtOAc (2x 100 mL). The organic phase was dried over sodium sulfate 

and in vacuo, to afford a colorless sticky solid (930 mg, 4.15 mmol, 69% yield). Rf = 0.43 

(DCM:MeOH 98:2). M.p. = 53-54 °C. 1H NMR (MeOD, 400 MHz) δ (ppm): 7.34 (s, 4 H); 

3.64 (s, 2 H); 1.30 (s, 9 H). 13C {1H} NMR (CDCl3, 101 MHz) δ (ppm): 173.48; 151.10; 

133.17; 130.68; 126.96; 37.44; 35.19; 31.51. FT-IR ν (cm-1) = 2956; 2905; 1708 (C=O 

stretching); 1497; 1419; 1302; 1270; 1192; 1121; 1011; 876; 815; 740; 660; 542; 470; 440. 

HRMS (EI): m/z calcd. for C12H16O2S: 224.0871; found: 224.0877. 
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5-(Tert-butyl)benzo[b]thiophen-3(2H)-one 5: 2-((4-(tert-butyl)phenyl)thio)acetic acid 4 (543 

mg, 2.42 mmol, 1 equiv.) was added to a 50 mL Schlenk flask and dried under high vacuum 

for 1h, until bubbling stopped, due to its hygroscopicity. Afterwards, thionyl chloride (1.4 

mL, 19.37 mmol, 8 equiv.) was added dropwise under nitrogen atmosphere. Upon addition 

of the chloride the mixture took on a golden color. After 15 min at 70 °C the solution was 

cooled at RT and excess SOCl2 was removed in vacuo. The resulting golden oil was dissolved 

in 20 mL dry 1,2-dichloroethane. Upon addition of coarse AlCl3 (1.29 g, 9.67 mmol, 4 equiv.) 

at 0 °C over 5 min, the mixture turned green and then, slowly, brown with a red shade. The 

mixture was left stirring under nitrogen flow and protected from light. After 3 h the mixture 

was quenched with ice and water under nitrogen flow until it became light orange, then the 

crude was extracted with CH2Cl2 (2x 50mL). The orange organic phase was washed twice 

with water (2x 50 mL), dried over sodium sulfate and in vacuo, protected from light. A red 

brown oil (392.2 mg, 1.71 mmol, apparent 71% yield) was isolated and used for the next step 

without further purification due to its instability. Rf = 0.68 (CH2Cl2). 1H NMR (CD2Cl2, 400 

MHz) δ (ppm): 7.75 (s, 1 H); 7.65 (dd, J = 8.3 Hz, 1 H), 7.38 (d, J = 8.5 Hz, 1 H); 3.79 (s, 2 

H); 1.33 (s, 9 H). 

4-Formyl-3-methylpyridine N-oxide 7: 3,4-lutidine N-oxide was oxidized to the 

corresponding aldehyde via benzylic oxidation:36 a mechanically stirred mixture of 8 (1.10 

g, 8.93 mmol, 1 equiv.), dioxane (9.57 mL, 112.18 mmol, 12.56 equiv.), and powdered 

selenium dioxide (961 mg, 8.66 mmol, 0.97 equiv.) was refluxed at 109 °C. The SeO2 slowly 

darkens to black. After 24 h the reaction was stopped according to TLC (DCM:MeOH 98:2). 

The hot yellow mixture was filtered through a short celite column and washed with 300 mL 

DCM. The crude was concentrated under vacuum to afford a yellowish solid. The solid was 

purified with column chromatography (DCM:MeOH 97:3), to afford the desired aldehyde as 

a white solid (213 mg, 1.55 mmol, 17 % yield). Rf = 0.26 (DCM:MeOH 98:2). M.p. = 151-

153 °C. 1H NMR (CDCl3, 400 MHz) δ (ppm): 10.16 (s, 1 H), 8.15 (d, J = 6.9 Hz, 1 H), 8.10 

(s, 1 H), 7.67 (d, J = 6.9 Hz, 1 H), 2.61 (s, 3 H). 13C{1H}  NMR (CDCl3, 101 MHz) δ (ppm): 

187.85; 140.90; 137.87; 137.72; 129.93; 127.12; 16.27. FT-IR ν (cm-1) = 3035; 1688 (C=O 

stretching); 1604; 1528; 1457; 1379; 1308; 1263 (N-O stretching); 1227; 1122; 844; 803; 

737; 632; 545; 497; 448. HRMS (EI): m/z calcd. for C7H7NO2: 137.04768; found: 137.0473. 

3,4-Lutidine N-oxide 8: commercially available 3,4-lutidine (200 mg, 1.87 mmol, 1 equiv.) 

was oxidized to the corresponding N-oxide following a known procedure for π-deficient 
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azines:37 the reagent was added with a syringe to a round bottom flask. Acetic acid (1.87 mL, 

32.66 mmol, 17.5 equiv.) was added dropwise and finally, sodium perborate tetrahydrate 

(PBS, 316 mg, 2.05 mmol, 1.1 equiv.) in two portions. The flask was left stirring overnight 

at 45 °C leading to a turbid milky mixture. The acetic acid was carefully evaporated under 

vacuum, then the crude was redissolved in 20 mL saturated NaHCO3 solution and extracted 

with chloroform (3x 50 mL). The organic phase was dried over sodium sulfate and under 

reduced pressure to afford white crystalline needles (144 mg, 1.17 mmol, 63 % yield). Rf = 

0.20 (DCM:MeOH 98:2). M.p. = 68-69 °C. 1H NMR (CDCl3, 400 MHz) δ (ppm): 8.0 (s, 1 

H); 7.96 (d, J = 6.4 Hz, 1 H); 6.99 (d, J = 6.4 Hz, 1 H); 2.21 (s, 3 H); 2.16 (s, 3 H). 13C {1H} 

NMR (CDCl3, 101 MHz) δ (ppm): 138.82; 137.32; 136.31; 135.51; 126.59; 18.38; 16.80. 

FT-IR ν (cm-1) = 3374; 3075; 2958; 1682; 1485; 1458; 1288; 1247 (N-O stretching); 1213; 

1122; 1016; 959; 890; 840; 743; 567; 517; 467; 436. HRMS (EI) m/z calcd. for C7H9NO: 

123.0684; found: 123.0678. 

Tetramethylammonium 4-(phenylazo)benzoate 9: commercially available 4-

(phenylazo)benzoic acid (151 mg, 0.67 mmol, 1 equiv.) and TMAOH (121 mg, 0.67 mmol, 

1 equiv.) were added to a 50 mL round bottom flask. Then, MeOH (10 mL) was added and 

the mixture was stirred vigorously at RT for 2 h. The color of the solution was dark red. 

Afterwards, the reaction was stopped and MeOH was removed under reduced pressure. 

Finally, hexane (0.2 mL) was added and the dispersion sonicated. The resulting solid was 

dried under high vacuum and with P2O5 overnight to afford a dark green solid (200 mg, 0.67 

mmol, 99% yield). 1H NMR (ACN-d3, 500 MHz) δ (ppm): 8.11 (d, J = 8.3 Hz, 2H); 7.93 

ppm (d, J = 7.7 Hz, 2H); 7.83 (d, J = 8.3 Hz, 2H); 7.59 (m, 3H); 3.13 (s, 12H). 13C {1H} 

NMR (ACN-d3, 126 MHz) δ (ppm): 169.60; 153.74; 153.46; 145.80; 132.02; 130.97; 130.31; 

123.53; 122.60; 56.14. 
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2.4.3 Figures and tables 

 

Figure 2.17 1H NMR (CDCl3, 400 MHz) of 2-(4’-Pyridyl-N-oxide)-HTI Z-2. * Residual solvent peaks. 

 

 

Figure 2.18 13C NMR (CDCl3, 101 MHz) of 2-(4’-Pyridyl-N-oxide)-HTI Z-2. * Residual solvent peaks. 

 

 

Figure 2.19 1H NMR (CDCl3, 400 MHz) of 2-(4’-Pyridyl-N-oxide)-HTI Z-3. * Residual solvent peaks. 
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Figure 2.20 13C NMR (CDCl3, 101 MHz) of 2-(4’-Pyridyl-N-oxide)-HTI Z-3. * Residual solvent peaks. 

 

 

Figure 2.21 1H NMR (MeOD, 400 MHz) of 2-((4-(tert-butyl)phenyl)thio)acetic acid 4. * Residual 

solvent peaks. 

 

 

Figure 2.22 13C NMR (MeOD, 101 MHz) of 2-((4-(tert-butyl)phenyl)thio)acetic acid 4. * Residual 

solvent peaks. 
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Figure 2.23 1H NMR (CD2Cl2, 400 MHz) of 5-(tert-butyl)benzo[b]thiophen-3(2H)-one 5. * Residual 

solvent peaks. 

 

 

Figure 2.24 1H NMR (CDCl3, 400 MHz) of 4-formyl-3-methylpyridine N-oxide 7. * Residual solvent 

peaks. 

 

 

Figure 2.25 13C NMR (CDCl3, 101 MHz) of 4-formyl-3-methylpyridine N-oxide 7. * Residual solvent 

peaks. 

 

Single crystals suitable for X-Ray diffraction were grown by slow diffusion of heptane in 

dichloromethane solution of 7 in order to distinguish between the position isomers 4-formyl-

3-methylpyridine and 3-formyl-4-methylpyridine N-oxides. The latter was unequivocally 

excluded. 
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Figure 2.26 Preliminary solution of the X-ray structure (ORTEP) of compound 7: thermal ellipsoids 

set at 50% probability and hydrogens shown as fixed spheres of 0.15 Å. 

 

 

Figure 2.27 1H NMR (CDCl3, 400 MHz) of 3,4-lutidine N-oxide 8. * Residual solvent peaks. 

 

 

Figure 2.28 13C NMR (CDCl3, 101 MHz) of 3,4-lutidine N-oxide 8. * Residual solvent peaks. 

 

 

Figure 2.29 1H NMR (ACN-d3, 500 MHz) of tetramethylammonium 4-(phenylazo)benzoate 9. * 

Residual solvent peaks. 
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Figure 2.30 13C NMR (ACN-d3, 126 MHz) of tetramethylammonium 4-(phenylazo)benzoate 9. * 

Residual solvent peaks. 

 

 

Figure 2.31 UV/Vis absorption spectra of chloroform solutions of 3 (30 μM): a) as the Z isomer (red), 

at the PSS after photoirradiation at λ = 450 nm for 30 s (blue) and b) as the Z isomer (red solid) and 

after thermal re-equilibration (red dashed). 

 

 

Figure 2.32 UV/Vis absorption spectra of a dichloromethane solution of a) Z-2 (30 μM) light-

irradiated at 435 nm at different times up to 3 min and b) Z-3 (40 μM) light-irradiated at 365 nm at 

different times up to 40 s. 
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Figure 2.33 1H NMR spectra (400 MHz, CDCl3) recorded during the photoirradiation at 450 nm of a 7 

mM solution of compound Z-3 for a) 0; b) 3 min; c) 5 min; d) 10 min and e) 15 min, reaching the PSS 

after 10 min with a final Z:E ratio of 15:85. Protons assigned to the E-3 isomer are marked with a ‡. * 

Residual solvent peaks. 
 

 

Figure 2.34 a) UV/Vis absorption spectra acquired during the titration of a 30 µM CHCl3 solution of 

hemithioindigo N-oxide Z-3 with super aryl-extended calix[4]pyrrole 1 and b) observed (red) and 

calculated (black) absorbances at 470 nm plotted against the equivalents of 1. 
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Figure 2.35 Molar absorption coefficients ε of: a) the experimental spectra of 30 µM CHCl3 separate 

solutions of Z-2 and 1 and the calculated spectrum of Z-2⊂1; and b) the experimental spectra of 30 µM 

CHCl3 separate solutions of Z-3 and 1 and the calculated spectrum of Z-3⊂1. The spectra of the 

inclusion complexes Z-2⊂1 and Z-3⊂1 were calculated from the fitting of the titration data with 

HypSpec. 

 

Z-21 E-21 

Signal δfree δbound Δδ Signal δfree δbound Δδ 

g 8.35 4.68 -3.67 g 8.25 4.55 -3.70 

d 7.97 7.43 -0.54 d 7.87 7.58 -0.29 

e 7.72 7.03 -0.69 e 7.01 6.27 -0.74 

b 7.70 7.45 -0.25 b 7.67 7.47 -0.20 

f 7.59 7.00 -0.59 f 8.10 7.36 -0.74 

a 7.44 5.89 -1.55 a 7.36 7.08 -0.28 

c 1.36 1.35 -0.01 c 1.35 1.34 -0.01 

Table 2.4 Chemical shifts of the proton signals of Z-2 (, ppm) and complexation induced chemical 

shifts (, ppm) between free and bound guest to receptor 1 in CDCl3. 
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Figure 2.36 1H NMR spectra (400 MHz, CDCl3) acquired during the titration of super aryl-extended 

calix[4]pyrrole 1 with hemithioindigo N-oxide Z-3: a) 3.9 mM solution of 1; b) 1 + 0.5 eq. of Z-3; c) 

equimolar amount of 1 and Z-3 and d) Z-3. Primed letters and numbers correspond to proton signals of 

bound components.* Residual solvents peaks. 

 

Figure 2.37 1H NMR spectra (400 MHz, CDCl3) acquired during the photoirradiation (450 nm) of the 

1:1 Z-31 complex for: a) 0; b) 1; c) 5; d) 30 and e) 60 min. Primed letters and numbers correspond to 
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proton signals of bound components. Double primed letters and numbers correspond to proton signals 

of irradiated bound components. * Residual solvents peaks. 

 

Z-31 E-31 

Signal δfree δbound Δδ Signal δfree δbound Δδ 

g 8.37 4.77 -3.6 g 8.13 4.54 -3.59 

h 8.28 5.15 -3.13 h 8.18 4.95 -3.23 

d 7.96 7.42 -0.54 d 7.82 7.68 -0.14 

e 7.85 7.21 -0.64 e 7.10 6.38 -0.72 

b 7.74 6.93 -0.81 b 7.67 7.49 -0.18 

f 7.70 7.42 -0.28 f 7.99 7.32 -0.67 

a 7.42 6.37 -1.05 a 7.37 7.32 -0.05 

i 2.48 2.11 -0.37 i 2.33 1.97 -0.36 

c 1.37 1.35 -0.02 c 1.34 1.35 0.01 

Table 2.5 Chemical shifts of the proton signals of Z-3 (, ppm) and complexation induced chemical 

shifts (, ppm) between free and bound guest to receptor 1 in CDCl3. 

 

 

Figure 2.38 Top - Trace shows raw data for one set of experiments for the titration of the guest into the 

host: a) Z-31 and b) E-31. Titration was performed at 25 °C in chloroform by timed injection of 20 

μl of guest solution into the host solution. Bottom - Binding isotherm of the calorimetric titration shown 

on top. The enthalpy of binding for each injection is plotted against the molar ratio of host:guest in the 

cell. The continuous line represents the least-squares-fit of the data to a single-site binding model. 
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Figure 2.39 Selected regions of the 1H NMR spectra (400 MHz, CDCl3). a) Solution taken from the 

calorimeter cell after finishing a reverse ITC run for the complexation of E-2 with 1. A 5 mM solution 

of Z-2 in CDCl3 was placed in a NMR tube and irradiated with a LED source at 450 nm for 7 min until 

the PSS. Then, an aliquot was taken from the irradiated solution and diluted to 0.3 mM for use in the 

ITC experiment. The ITC run was carried out by timed injection of 15 μl of a 2.1 mM solution of the 

host into the 0.3 mM solution of the guest in the same solvent. b) Photoirradiated solution at 450 nm of 

the Z-21 complex during 60 min. Primed letters and numbers correspond to proton signals of bound 

components. Double primed letters and numbers correspond to proton signals of irradiated bound 

components. * Residual solvents peaks. 

 

 

Figure 2.40 Selected regions of the 2D 1H EXSY NMR (500 MHz, CDCl3, 298 K) experiments (tmix = 

0.3 s) of a) Z-2+1 and b) Z-3+1 (2:1 molar ratio). Primed letters correspond to proton signals of the 

guest in the inclusion complex Z-2/3⊂1. Diagonal and EXSY cross-peaks are positive (blue) and 

NOESY cross-peaks are negative (red). 
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Figure 2.41 a) 1H NMR analysis of the kinetics of thermal E-to-Z isomerization of a 1.7 mM solution 

of 2 in CDCl3 at RT. Starting point is a mixture of Z-2 and E-2 in a ratio of 14:86. The starting E:Z ratio 

is reversed after 4 h of thermal equilibration. The composition in the E-2 isomer was determined from 

the integration of protons Hd‡ of the E isomer and Hd of the Z counterpart. The concentration in the E 

conformers was then calculated from the mass balance [2] = [Z-2] + [E-2]. b) First order kinetic analysis 

of the 1H NMR data recorded every 5 min at RT for 6 h of thermal equilibration. 

 

 

Figure 2.42 a) 1H NMR analysis of the kinetics of thermal E-to-Z isomerization of a 1.5 mM solution 

of 3 in CDCl3 at RT. Starting point is a mixture of Z-3 and E-3 in a ratio of 19:81. The starting E:Z ratio 

is reversed after 5 h of thermal equilibration. The composition in the E-3 isomer was determined from 

the integration of protons Hc‡ of the E isomer and Hc of the Z counterpart. The concentration in the E 

conformers was then calculated from the mass balance [3] = [Z-3] + [E-3]. b) First order kinetic analysis 

of the 1H NMR data recorded every 5 min at RT for 9 h of thermal equilibration. 

The concentration changes in the E isomers were fit to a first-order kinetic equation and the rate constant 

(k) (3), half-life (t1/2) (4) and energy barrier (G#) (5) values were determined.The first-order rate 

constant k(therm. E→Z) is the slope of the linear fit:15 

(1) Z-2  E-2 or Z-3  E-3  

(2) d[Z-2]/dt = -d[E-2]/dt = k1·[ E-2] or d[Z-3]/dt = -d[E-3]/dt = k2·[E-3]  
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(3) ln[E-2] = ln[E-2]0 – k1·t or ln[E-3] = ln[E-3]0 – k2·t; k = k(therm. E→Z) = rate constant  

(4) t1/2 = (ln 2)/k; t1/2 = half-life  

(5) k = (kB·T/h)·e(-G#/RT); kB = Boltzmann’s constant; h = Planck’s constant; R = Gas constant; T = 

Temperature and G# = Energy barrier. 

 

 

Figure 2.43 a) 1H NMR analysis of the kinetics of thermal E-to-Z isomerization of a 1.7 mM solution 

of 2⊂1 in CDCl3 at RT. Starting point is a mixture of Z-2⊂1 and E-2⊂1 in a ratio of 27:73. The Z-2⊂1 

complex is quantitatively restored after 17 h. The concentration in the E complex was determined from 

the pyrrolic N-H1’ bound protons assigned to the E and Z counterparts and the mass balance [2⊂1] = 

[Z-2⊂1] + [E-2⊂1]. b) First order kinetic analysis of the 1H NMR data recorded every 30 min at RT 

for 10 h of thermal equilibration. 

 

 

Figure 2.44 a) 1H NMR analysis of the kinetics of thermal E-to-Z isomerization of a 1.5 mM solution 

of 3⊂1 in CDCl3 at RT. Starting point is a mixture of Z-3⊂1 and E-3⊂1 in a ratio of 22:78. The Z-3⊂1 

complex is quantitatively restored after 16 h. The concentration in the E complex was determined from 

the pyrrolic N-H1’ bound protons assigned to the E and Z counterparts and the mass balance [3⊂1] = 

[Z-3⊂1] + [E-3⊂1]. b) First order kinetic analysis of the 1H NMR data recorded every 30 min at RT 

for 10 h of thermal equilibration. 
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The concentration changes in the E complexes were fit to a first-order kinetic equation and the rate 

constant (k) (3), half-life (t1/2) (4) and energy barrier (G#) (5) values were determined. 

(1) Z-2⊂1  E-2⊂1 or Z-3⊂1  E-3⊂1 

(2) d[Z-2⊂1]/dt = -d[E-2⊂1]/dt = k1[E-2⊂1] or d[Z-3⊂1]/dt = -d[E-3⊂1]/dt = k2[E-3⊂1] 

(3) ln[E-2⊂1] = ln[E-2⊂1]0 – k1·t or ln[E-3⊂1] = ln[E-3⊂1]0 – k2·t; k = k(therm. E→Z) = rate constant 

(4) t1/2 = (ln 2)/k; t1/2 = half-life 

(5) k = (kB·T/h)·e (-G#/RT); kB = Boltzmann’s constant; h = Planck’s constant; R = Gas constant; T = 

Temperature and G# = Energy barrier. 

Eq. of Z-2 [Z-2] (mM) δobs δcalc 

0.12 0.5 5.904 5.898 

0.25 1.1 5.910 5.906 

0.5 2.3 5.923 5.921 

0.75 3.4 5.938 5.934 

1 4.6 5.946 5.946 

1.5 6,9 5.962 5.966 

2 9.2 5.98 5.982 

3 13.8 6.006 6.006 

5 23 6.036 6.035 

Table 2.6 Chemical shifts of the proton signals of Z-2 (, ppm) and complexation induced chemical 

shifts (, ppm) between free and bound guest to receptor 10 in CDCl3. 
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3.1 Introduction 

In the previous chapter, we have described two hemithioindigo-hemistilbene (HTI) 2-(4’-

pyridyl)-N-oxides that were used as photoresponsive guests for inclusion in the deep aromatic 

cavity of a super aryl-extended calix[4]pyrrole. While working on the synthesis of these 

organic photoswitches, we envisaged the covalent functionalization of a tetraurea 

calix[4]arene scaffold with multiple photoresponsive HTI units in order to modulate its 

dimerization process in capsular assemblies. In recent years, there has been a considerable 

increase in the design of light-responsive molecular containers and their application in 

supramolecular1,2 and materials chemistry.3,4 We focused our attention on tetraurea 

derivatives of calix[4]arenes in cone conformation.5 These compounds are known to dimerize 

quantitatively in non-polar organic solution affording discrete capsular assemblies,6,7 which 

can be further functionalized to perform specific chemical tasks.8 For instance, azobenzene 

photoswitches9 were incorporated in calix[4]arene scaffolds,10,11 at both their upper12,13 and 

lower rims.14,15,16 In 2015, our group reported a series of tetraurea calix[4]arenes (tuC[4]As 

1a-c, Figure 3.1) decorated with differently substituted azobenzene groups at their upper 

rims. The prepared tetra-azobenzene tetraurea derivatives underwent a reversible trans/cis 

photoisomerization upon UV light-irradiation (λ = 365 nm) and subsequent thermal 

equilibration in the dark.17 In a sequel, we demonstrated the exclusive assembly of the tetra-

azobenzene tetraurea calix[4]arene 1b with a tetraurea calix[4]pyrrole counterpart in a 

heterodimeric capsule.18 This result was in agreement with the previously reported self-

sorting dimerization process exhibited by structurally related tetraureas not incorporating the 

photoswitchable units.19,20,21,22 More interestingly, the reversible photoisomerization of the 

appended azo groups in (all-trans)-capsular dimers yielded cis-enriched counterparts (tttc; 

ttcc; tctc; tccc; cccc) in equilibrium with non-capsular aggregates. This methodology allowed 

the control of the assembly/disassembly process of capsular dimers and the concomitant 

uptake and release of polar guests using light irradiation. 
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Figure 3.1 Schematic representation of the a) (all-trans)-tetra-azo tetraurea calix[4]arenes 1a-c and b) 

trans/cis switching of the attached azobenzene fragments.17,18 

Inspired by these works, we designed two tetraurea calix[4]arenes containing four 

hemithioindigo (HTI) units at their upper rim (Scheme 3.1). Our aim was to couple the Z/E 

isomerization process of the HTIs with the assembly/disassembly process of the capsular 

aggregates resulting from the dimerization process of the tetraurea calix[4]arenes decorated 

with HTI units. In principle, the possibility of using a visible light-input (λ > 400 nm) for the 

isomerization of the HTIs constitutes an advantage with respect to our previous 

photoswitchable designs based on UV light-irradiation. In due course, such containers were 

expected to provide systems for transport and release of cargo compatible with biological 

applications owing to the less-damaging energy of the light employed in the isomerization 

process. 

Herein, we describe the synthesis of two tetrahemithioindigo tetraurea calix[4]arenes. We 

report preliminary studies of the dimerization process of the synthesized tetraurea derivatives 

into capsular aggregates. We describe our attempts to encapsulate tetramethylphosphonium 

cation in the putative dimeric aggregates assembled in solution. 

3.2 Results and discussion 

3.2.1 Design and synthesis 

The macrocyclic building blocks for the synthesis of our target compounds were the known 

tetra-amino23 (6, Figure 3.25) and tetracarbamate17 (7, Figure 3.26) calix[4]arene derivatives. 

For the synthesis of the HTI switching units, we developed a synthetic route that started with 

a Fischer’s esterification reaction of thiosalicylic acid with EtOH.24 Next, the nucleophilic 
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substitution reaction of the obtained (2-carboxyethyl)benzene thiol with 2-bromoacetic acid 

afforded the aryl thioglycolic acid 9 (see the experimental part for more details). The labile 

thioindoxyl 8 was prepared by intramolecular Friedel-Crafts acylation reaction of the “in 

situ” prepared acyl chloride of 9. The HTI photoswitches bearing terminal amino and diethyl 

ester groups were prepared by reacting 8 with the commercially available m-amino-, p-

amino- or p-aminomethyl- benzaldehyde. The conditions of the Knoevenagel condensation 

reaction were adapted to the synthesis of HTI derivatives.25 Finally, cleavage of the N-Boc 

protecting group with trifluoroacetic acid afforded free amines 3, 4 and 5. The aminomethyl-

HTI 5 was reacted with p-nitrochloroformate to afford the corresponding carbamate 

derivative 5b. The X-ray structures of the prepared amino- and carbamate-HTI derivatives 

showed that in the solid state all compounds adopted the Z-conformation (Figure 3.2). In 

solution and at ambient conditions, the 1H NMR spectra of the isolated solids evidenced the 

existence of 3, 4 and 5a as mixtures of Z/E photoisomers in different ratios. However, the 

use of an amber NMR tube prior to the dissolution of the compound for the spectroscopic 

analysis, or heating the solutions of Z/E isomers protected from light, produced 1H NMR 

spectra displaying exclusively the proton signals corresponding to the Z isomers. We 

assigned the configuration of the HTI derivatives based on the methodology described in 

chapter 2.26 

 

Figure 3.2 Preliminary single crystal X-Ray structures of compounds a) Z-3, b) Z-4 and c) Z-5a 

(thermal ellipsoids set at 50% probability and hydrogen atoms shown as fixed spheres of 0.15 Å). 

Amino-HTI Z-3 was reacted with tetracarbamate (7) to produce the tetra-HTI tetraurea 

calix[4]arene, Z-1. On the other hand, the tetra-amino (6) calix[4]arene was coupled with 

four equiv. of the carbamate-HTI 5b affording tetra-HTI tetraurea calix[4]arene, Z-2.27,28 

Both tetra-HTI tetraurea calix[4]arenes were obtained as the (all-Z)-1 and (all-Z)-2 in 

moderate yields after purification of the reaction crudes (Scheme 3.1). 
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Scheme 3.1 Synthetic routes for the preparation of the hemithioindigo derivatives and the 

corresponding tetra-HTI tetraurea calix[4]arenes described in this chapter. The tetra-amino (6) and 

tetracarbamate calix[4]arene (7) derivatives were prepared according to reported procedures.17,29 

Surprisingly, while the synthesis of tetra-HTI tetraurea calix[4]arene (all-Z)-1 from amino-

derivative Z-3 was straightforward, the preparation of (all-Z)-2 from the carbamate-HTI 

derivative Z-5b and the tetra-amino calix[4]arene 6 proved to be tricky. In our hands, this 

reaction could not be scaled up. The coupling of the amino-HTI Z-4 with calix[4]arene 

tetracarbamate 7 did not lead to the isolation of the expected tetra-HTI tetraurea 

calix[4]arene. Most likely, the HTI Z-4 featuring the amino substituent in para position had 

an even reduced reactivity in the nucleophilic reaction with tetracarbamate 7 than the meta-

amino-HTI Z-3, leading to the recovery of the starting HTI. The preparation of Z-1 and Z-2 

was also undertaken using the complementary reaction conditions, that is coupling the 

carbamate of the HTI with the tetra-amino calix[4]arene 6 and the tetracarbamate 

calix[4]arene 7 with the amino-HTI, respectively. However, the reaction conditions described 

above provided better yields. 

3.2.2 Photoisomerization studies of HTI-3a and the tetraurea monomers 

Initially, we analyzed the photoisomerization process of the hemithioindigo 3a by means of 

1H NMR and UV/Vis spectroscopies. The 1H NMR spectrum of 3a under ambient conditions 
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revealed the existence of the compound as a mixture of Z/E isomers in 83:17 ratio. We 

obtained a 1H NMR spectrum displaying the exclusive signals of the protons of the Z-3a 

isomer by dissolving the isolated solid in an amber NMR tube. We probed the 

photoisomerization process of a 30 μM chloroform solution of Z/E-3a using UV/Vis 

spectroscopy. Based on literature precedents, the initial irradiation of the mixture with 425 

nm light produced spectral changes that are consistent with a preferential Z-to-E 

isomerization of the photoswitch.29,30,31,32,33 We reached a PSS enriched in the E-3a isomer 

after 5 min of irradiation. During the irradiation process, we observed the emergence of an 

isosbestic point at 452 nm. At the PSS, the strongest absorption band of the E-3a enriched 

mixture has a maximum at 449 nm. Subsequently, we irradiated the solution with 475 nm 

light for 5 min. The resulting absorption spectrum was consistent with the almost quantitative 

formation of the Z-3a isomer. For the Z-3a isomer the largest absorption band is red-shifted 

compared to the E-isomer (Δλ = +10 nm) displaying a maximum at 439 nm. Analogous 

irradiation experiments monitored by 1H NMR spectroscopy using a millimolar solution of 

Z-3a gave consistent results with those obtained by UV/Vis spectroscopy. A millimolar 

solution of Z-3a was photoirradiated (λ = 425 nm) until the PSS was reached (5 min). At the 

PSS, the composition of the Z:E mixture was 9:91 by integration of the diagnostic proton 

signals assigned to the respective isomers. The sample was irradiated again using 475 nm 

light for 5min. The new PSS showed a Z:E composition of 74:26. This ratio of isomers is 

similar to the one obtained by letting the solution exposed to ambient light for a whole day 

(Figure 3.3). 
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Figure 3.3 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a 7 mM solution of a) Z-3a; b) Z-3a 

photoirradiated at 425 nm for 5 min (Z:E 9:91 ratio) and c) Z-3a photoirradiated at 475 nm for 5 min 

(Z:E 74:26 ratio). Protons assigned to the E-3a isomer are marked with a ‡ symbol. * Residual solvents 

peaks. 

Upon irradiation with 425 nm light, the color of the solution changed from yellow to orange. 

The isomerization state of most hemithioindigos can be detected by the naked eye, because 

the change in their absorption spectrum takes places in the visible region. 

Having studied the photoisomerization properties of a simple HTI derivative, we focused on 

evaluating the photochemical behavior of receptors 1 and 2 in solution. In polar solvents that 

compete for hydrogen-bonding interactions with the urea moieties (i.e. dimethyl sulfoxide, 

dimethylformamide, acetone), receptors 1 and 2 are in the monomeric state and the four 

covalently attached photoswitchable HTI units can be isomerized to the thermodynamically 

more stable conformer, (all-Z)-1 and (all-Z)-2, by thermal equilibration in the dark. Starting 

from this single isomer, in principle, the four photoresponsive groups appended to the 

calix[4]arene scaffold can be isomerized by visible light-irradiation producing a mixture 

containing up to six different conformational isomers (all-Z; Z,Z,Z,E; Z,Z,E,E; Z,E,Z,E; 

Z,E,E,E and all-E). The mixture should be enriched in the isomers having the HTI units in 

the E-form. We investigated the behavior of (all-Z)-1 to visible light-irradiation (λ = 450 nm) 

at micromolar concentration in different solvents using UV/Vis spectroscopy. Interestingly, 
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the absorption spectra of 1 in (CH3)2SO, CHCl3 and CH2Cl2 solutions were very similar and 

all showed a decrease in the absorbances of the bands centered at ca. 325 and 438 nm upon 

light-irradiation (Figure 3.4). We did not observe shifts to the red for the maxima of these 

bands. On the contrary, the band having a maximum at 275 nm experienced a slight increase 

in intensity and a blue-shift. These findings are in striking contrast with our observations for 

the simple HTI derivative (vide supra). 

 
Figure 3.4 UV/Vis absorption spectra of a 10 µM (CH3)2SO solution of (all-Z)-1 light-irradiated at 450 

nm at different times. 

Next, we studied the changes experienced by a millimolar solution of (all-Z)-1 in (CH3)2SO 

to 425 nm visible light-irradiation using 1H NMR spectroscopy (Figure 3.5). After a 

prolonged irradiation time (30 min), the diagnostic peaks of the tetraurea monomer were not 

detectable. We continued the irradiation for an additional 60 min: the 1H NMR spectrum of 

the solution showed multiple broad and ill-defined proton signals and was very similar to the 

one acquired after the initial 30 min of irradiation. This result is consistent with the Z-to-E 

isomerization of the HTI units in 1 producing a complex mixture of isomers having reached 

the PSS after 30 min. Subsequently, we thermally equilibrated the solution at 80 ºC for 12 h 

in the dark and recovered, to some extent, the proton signals that are diagnostic to the (all-

Z)-1 isomer. We concluded that the photoisomerization process of the HTI units in 1 is 

reversible but under the employed irradiation conditions compound 1 is not fully photostable. 
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Figure 3.5 1H NMR ((CD3)2SO:CDCl3 70:30, 400 MHz) spectra at 298 K of a millimolar solution of 

(all-Z)-1 photoirradiated at 425 nm for a) 0, b) 30 and c) 90 min and d) thermally equilibrated at 80 ºC 

for 12 h. * Residual solvents peaks. 

The analysis of an analogous irradiation experiment performed on a millimolar solution of 

(all-Z)-2 in (CD3)2SO solution using 1H NMR spectroscopy provided similar results to those 

described for (all-Z)-1 in the same solvent. 

3.2.3 Dimerization and photoisomerization studies of 1 and 2 in non-polar organic solvents 

We were interested in studying the dimerization of all-Z tetra-HTI tetraurea calix[4]arenes 1 

and 2 in organic solvents to produce well-defined capsular assemblies. Our aim was to 

evaluate the coupling of the Z-to-E photoisomerization process of the HTI units with the 

assembly/disassembly process of the putative dimeric cage. The energy minimized structure 

(MM3) of the homodimeric capsule (all-Z)-12 is depicted in (Figure 3.6a). The two 

calix[4]arene components dimerize by establishing an array of 16 hydrogen bonds through 

the unidirectional orientation of the urea groups. Additionally, the Z-HTI substituents of the 

hemispheres are closely packed without experiencing steric clashes. These observations 

augured well for the dimerization of the all-Z ureas in solution. In contrast, the energy 

minimized structure of the (all-E)-12 dimer shows a reduced close contact of the E-HTI 

substituents that might translate in a change of the thermodynamic stability of the assembly. 
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Figure 3.6 Side and top views of the energy minimized structures (MM3) of the putative homodimers 

a) (all-Z)-12 and b) (all-E)-12. The two tetraurea monomers of 1 are shown as in stick representation, 

one using the atom color code and the other with all atoms in yellow ((all-Z)-12) or orange ((all-E)-12). 

The O-pentyl chains were pruned to ethyl groups and the HTI-ethyl esters were pruned to methyls. 

Non-polar hydrogen atoms were removed for clarity. Hydrogen bonds are evidenced by green dashed 

lines in the top view representations. 

Unfortunately, the 1H NMR spectra of (all-Z)-1 at millimolar concentrations in chloroform-

d, dichloromethane-d2, benzene-d6, nitrobenzene-d5, toluene-d8 and tetrachloroethane-d2 

solutions showed broad and not-resolved proton signals. These observations suggested that 

the (all-Z)-1 tetraurea did not assemble into a structurally well-defined dimeric capsules in 

any of the solvents. Most likely, (all-Z)-1 prefers to assemble in ill-defined polymeric 

aggregates. Another sensible explanation is the presence of at least one E-arm in the dominant 

isomer of tetraurea 1 in these solvents. The addition of 0.5 equiv. of tetramethylphosphonium 

hexafluorophosphate17 (Me4P+PF6
-, 10), as a solid, to the solutions above followed by thermal 

equilibration in the dark did not produce noticeable changes in the corresponding 1H NMR 

spectra. The Me4P+ cation was expected to act as a template and induce the dimerization of 

the ureas owing to the good fit with the volume of the aromatic cavity and the formation of 

additional cation-π interactions. Taken together, these observations indicated that (all-Z)-1 
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did not assemble significantly into dimeric capsules even in the presence of unknown 

concentrations of the Me4P+ cation. 

Because the Me4P+PF6
- salt, 10, had a reduced solubility in the used solvents, we envisaged 

the possibility to use an alternative anion to increase the salt’s solubility and thus the 

concentration of the Me4P+ cation in solution. Hence, we prepared tetramethylphosphonium 

tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BArF-) Me4P+ salt, 12. The 1H NMR spectra 

of a millimolar solution of (all-Z)-1 in CDCl3 containing incremental amounts of 12 displayed 

the sharpening of the aromatic proton signals of (all-Z)-1 and the emergence of two separate 

set of signals for the protons of the Me4P+. The doublet resonating at δ = 1.5 ppm corresponds 

to the methyl protons of Me4P+ free in solution. The broad signal appearing at δ = -0.90 ppm 

was assigned to bound Me4P+ (Figure 3.7). The chemical shift value of the bound Me4P+ is 

in nice agreement with the one observed for the same guest encapsulated in tetra-azo tetraurea 

calix[4]arene dimeric capsules.17 

 

Figure 3.7 1H NMR (CDCl3, 500 MHz) spectra at 298 K of a 1 millimolar solution of a) (all-Z)-1 + b) 

0.25; c) 0.5; d) 0.75 and e) 1 equiv. of 12. Primed letters and numbers correspond to proton signals of 

bound components. * Residual solvents peaks. 
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We concluded that the Me4P+ cation was effective in templating the assembly of (all-Z)-1 in 

dimeric capsules in CDCl3 solution to a limited extent. Surprisingly, an analogous 

experiment, performed in CD2Cl2 solution (in which 12 is completely soluble) displayed a 

1H NMR spectrum lacking the diagnostic signals of the capsular assembly. 

Based on the results obtained with tetraurea (all-Z)-1, we investigated the dimerization of 

(all-Z)-2 (Figure 3.8). 

 

Figure 3.8 Side-view of the energy minimized molecular models (MM3) of the putative homodimeric 

capsules a) (all-Z)-22 and b) (all-E)-22. The two tetraurea monomers are shown as CPK models, one 

using the atom color code and the other with all atoms in yellow ((all-Z)-2) or orange ((all-E)-2). 

The 1H NMR spectra of millimolar solutions of (all-Z)-2 in CDCl3 and CD2Cl2 revealed that 

the tetraurea does not assemble into well-defined and discrete homodimers (all-Z)-22 (the 

spectra in these solvents showed broad, ill-defined non-capsular aggregates). The addition of 

incremental amounts of Me4P+PF6
- (10) to a CDCl3 solution of (all-Z)-2 induced the 

formation of encapsulation complexes, Me4P+⊂22, as evidenced by the appearance of a broad 

doublet resonating at δ = -0.92 ppm and the sharpening of the aromatic proton signals of (all-

Z)-2. Most likely, the encapsulation dimeric complex is in equilibrium with ill-defined, non-

capsular aggregates. These latter aggregates constitute the major species present in solution 

producing the observed base-line broadened proton signals. (Figure 3.9). 
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Figure 3.9 1H NMR (CDCl3, 400 MHz) spectrum at 298 K of a 0.8 millimolar solution of (all-Z)-2 + 

0.5 equiv. of 10 after thermal equilibration at 50 ºC in the dark for 6 h. Primed letters and numbers 

correspond to proton signals of bound components. * Residual solvents peaks. 

We attribute the complexity of the 1H NMR spectra assigned to the dimeric encapsulation 

complexes Me4P+⊂12 and Me4P+⊂22 to the existence in solution of tetraureas as multiple 

diastereoisomers owing to their HTI units adopting E and Z configurations. The observation 

of a broad doublet for the methyl proton signals of the encapsulated Me4P+ cation provided 

additional support to the hypothesis of multiple conformers of the tetraureas that can dimerize 

to form the encapsulation complexes. All our attempts to induce the assembly of 

heterodimeric capsules of the HTI tetraurea calix[4]arenes with a p-tolyl counterpart (11)34,35 

were unsuccessful. 

It is worthy to note that the low solubility of Me4P+PF6
- salt 10 in the employed chlorinated 

solvents hampered the accurate calculation of the equivalents added. 

The irradiation at 425 or 450 nm of millimolar solutions of (all-Z)-1 in chloroform-d, 

dichloromethane-d2, benzene-d6, nitrobenzene-d5, toluene-d8 and tetrachloroethane-d2 did 

not produce detectable changes in the 1H NMR spectra. We performed light-irradiation 

experiments with tetra-HTI tetraurea (all-Z)-2 at micromolar concentration. The UV/Vis 

absorption spectra of a 1 µM chloroform solution of receptor (all-Z)-2 registered at different 

times during light-irradiation at 450 nm are showed in Figure 3.10. 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Synthesis of hemithioindigo-decorated tetraurea calix[4]arenes. Study of their dimerization 

into capsular assemblies 

 

113 

 

 
Figure 3.10 UV/Vis absorption spectra of a 1 µM CHCl3 solution of (all-Z)-2 light-irradiated at 450 

nm at different times. 

The changes observed by UV/Vis spectroscopy are in line with those discussed above for 

(all-Z)-1. 

3.3 Conclusions 

In this chapter, we have presented the synthesis of different hemithioindigo derivatives and 

their incorporation onto a macrocyclic calix[4]arene scaffold. We initially probed the visible 

light-induced Z/E photoisomerization of HTI 3a, which was consistent with the 

photochemical behavior of reported hemithioindigo analogs. Afterwards, we were able to 

isolate moderate amounts of the desired tetraurea compounds in their thermodynamically 

stable conformations (all-Z)-1 and (all-Z)-2. They were used in photophysical and binding 

studies in different organic solvents and in the presence of tetramethylphosphonium cation 

as the target guest for the binding cavity of the hosts. 

We showed the nice photochemical and photophysical behavior of the simple HTI 3a by 

UV/Vis and 1H NMR techniques. However, the absorption profiles of visible light-irradiated 

solutions of (all-Z)-1 and (all-Z)-2 indicated that their “aggregates” in apolar organic solvents 

do not experience the blue- or red-shifts typical of the E-HTI isomers. The lack of these 

characteristic photochromic feature might explain in part the absence of changes in the NMR 

spectra upon irradiation of the encapsulation complexes of 1 and 2, indicative of a 

reduced/hampered switching of the responsive fragments. 
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Finally, the exclusive self-assembly into discrete capsules was not achieved when the 

responsive units were incorporated onto the calix[4]arene scaffold. The use of Me4P+ salts as 

the designed guests (with either PF6
- or BArF- as counteranions) did not favor the 

homodimerization of tetraureas (all-Z)-1 and (all-Z)-2. The scarce amount of 2 synthesized 

did not allow us to perform complete titrations and additional 1H NMR experiments using 

guest 12. However, with the experimental data available we could conclude that these types 

of functionalized macrocycles are not the ideal candidates for the construction of 

photoresponsive capsular architectures. In fact, the only response to the external light 

stimulus was detected in the case of the tetra-HTI tetraurea monomers by NMR studies in 

dimethyl sulfoxide solution. Analogous systems with the HTI switches directly attached to 

the macrocyclic core (thus lacking the urea moieties responsible for the formation of 

capsular/non-capsular aggregates) could be devised as unimolecular receptors to explore 

their photochemical and molecular recognition properties in apolar organic solvents. 

3.4 Experimental section 

3.4.1 General information and instrumentation 

All syntheses were carried out using chemicals as purchased from commercial sources unless 

otherwise noted. All commercial solvents and chemicals were of reagent grade quality and 

were used without further purification except as noted. Dry solvents were taken from a 

solvent system MB SPS 800 (MBraun) and freshly distilled unless otherwise stated. Thin-

layer chromatography (TLC) and flash column chromatography were performed with DC-

Alufolien Kieselgel 60 F254 (Merck) and silica gel 60 Å for chromatography (Sigma-Aldrich), 

respectively. Routine 1H and 13C NMR spectra were recorded on Bruker Avance 300 (300 

MHz for 1H NMR), Avance 400 (400 MHz for 1H NMR) or Avance 500 (500 MHz for 1H 

NMR) ultrashield spectrometers, or on a Bruker Avance III 500 with a QNP cryoprobe. 

Deuterated solvents (Sigma-Aldrich) used are indicated in the characterization and chemical 

shifts are given in ppm. Residual solvent peaks were used as reference. All NMR J values 

are given in Hz. High Resolution Mass Spectrometry (HRMS) experiments were performed 

on a MicroTOF, Bruker Daltonics ESI. The diagnostic peaks are reported in m/z units. 

UV/Vis spectra were recorded on a Shimadzu UV-2401PC spectrophotometer (equipped with 

a photomultiplier detector, double beam optics and D2 and W light sources). The spectra were 

recorded in a quartz cuvette (10 mm path length). IR spectra were recorded on a Bruker 
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Optics FT-IR Alpha spectrometer equipped with a DTGS detector, KBr beam splitter at 4 

cm-1 resolution using a one bounce ATR accessory with diamond windows. Melting points 

were measured on a MP70 Melting Point System instrument from Mettler Toledo. Elemental 

analyses were carried out with a microanalyzer LECO CHNS-932. Irradiation experiments 

for the HTI derivatives and tetra-HTI tetraurea calix[4]arenes were conducted either by 

choosing the appropriate wavelength (λ = 425 and 475 nm) on a custom-made portable 

photoreactor, or by using a single high power LED-diode from Roithner Lasertechnik GmbH 

(450 nm, 26 mW∙cm-2) mounted on a heat sink from Fischer Elektronik. 

3.4.2 Synthetic procedures 

Ethyl 2-mercaptobenzoate: commercially available thiosalicylic acid (5 g, 32.4 mmol, 1 

equiv.) was dissolved in 300 mL anhydrous EtOH. Then, 3 mL of H2SO4 (37.5 mmol, 1.1 

equiv.) were added dropwise and the solution was refluxed at 100C for 3 days under argon 

atmosphere. Afterwards, the excess solvent was removed under reduced pressure leaving 

around 50 mL, then solid NaHCO3 was added until pH = 4-5. 50 mL of DCM were added, 

and the solution washed with 100 mL water; then, the organic phase was dried over sodium 

sulfate and concentrated to dryness to afford a colorless oil (4.58 g, 77% yield). Rf = 0.67 

(Hex:Et2O 3:1). HRMS (ESI-TOF): m/z calcd. for C9H10NaO2S [M+Na]+ : 205.0294; found: 

205.0285. 1H NMR (CDCl3, 500 MHz) δ (ppm): 8.01 (d, J = 7.8 Hz, 1H); 7.29 (dd, J = 5.1, 

2.9 Hz, 2H); 7.14 (m, J = 8.2 Hz, 1H); 4.69 (s, 1H); 4.38 (q, J = 7.1 Hz, 2H); 1.39 (t, J = 7.1 

Hz, 3H). 13C NMR (CDCl3, 126 MHz) δ (ppm): 166.8; 138.2; 132.4; 131.7; 130.9; 126.3; 

124.7; 61.3; 14.3. FT‐IR ν (cm‐1) = 2981; 2549 (S‒H stretching); 1698 (C=O stretching); 

1589; 1564; 1467; 1436; 1390; 1367; 1286; 1250 (C‒O stretching); 1168; 1144; 1112; 1060 

(C‒O stretching); 1015; 969; 871; 789; 740; 690; 652; 524; 490. 

Tetra-HTI tetraurea calix[4]arene (all-Z)-1: tetracarbamate calix[4]arene 6 (42 mg, 0.03 

mmol, 1 equiv.) was dissolved in 1 mL anhydrous DMF and added to a Schlenk tube under 

Ar atmosphere. To this solution, 25 μl of dry Et3N (0.178 mmol, 6 equiv.) were added with 

a syringe. Finally, hemithioindigo Z-3 (53 mg, 0.163 mmol, 5.49 equiv.) previously dissolved 

in 1 mL anhydrous DMF was added to the reaction vessel. The solution was stirred at 50 C 

for 24 h under argon atmosphere, protected from light. Afterwards, the reaction mixture was 

added dropwise to 20 mL of water, and stirred for a couple of minutes upon formation of a 

yellow suspension. The precipitate was vacuum filtered, washed thoroughly with water to 
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remove p-nitrophenol and air dried. The resulting solid was purified by column 

chromatography on silica gel (DCM:MeOH 99:1): the isolated fraction was dissolved in 2 

mL DCM and precipitated with an equal amount of diethyl ether. The solvents were 

evaporated to afford the product as a yellow-orange powder (30 mg, 46 % yield). Rf = 0.57 

(DCM:MeOH 98:2). HRMS (ESI/-): m/z calcd. for C124H118N8O20S4 [M – 2H]2- : 1083.3678; 

found: 1083.3672. 1H NMR ((CD3)2SO:CDCl3 80:20, 500 MHz) δ (ppm): 8.62 (s, 4H); 8.29 

(s, 4H); 8.03 (dd, J =7.7,0.8 Hz, 4H); 7.85 (dd, J =7.7,0.8 Hz, 4H); 7.67 (d, J = 8.1 Hz, 4H); 

7.56 (s, 4H); 7.45 (s, 4H); 7.32 (m, 8H); 7.19 (d, J = 7.5 Hz, 4H); 6.85 (s, 8H); 4.39 (d, J = 

12.8 Hz, 4H); 4.16 (q, J = 7.1 Hz, 8H); 3.84 (t, J = 6.9 Hz, 8H); 3.13 (d, J = 13.1 Hz, 4H); 

1.91 (br s, 8H); 1.40 (m, 16H); 1.26 (t, J = 7.0 Hz, 12H); 0.94 (br s, 12H). 13C{1H} NMR 

(((CD3)2SO:CDCl3 80:20, 126 MHz) δ (ppm): 186.7; 163.8; 152.2; 151.2; 147.1; 140.5; 

135.9; 134.5; 133.8; 133.6; 133.2; 131.0; 130.3; 130.0; 129.2; 129.0; 125.5; 124.3; 124.0; 

119.8; 119.3; 118.0; 79.0; 74.6; 61.1; 29.3; 27.9; 22.2; 13.8. 

Tetra-HTI tetraurea calix[4]arene (all-Z)-2: tetra-amino calix[4]arene 7 (5 mg, 6.63 μmol, 1 

equiv.) was added to an oven-dried 5 mL Schlenk tube and the system was purged with 3x 

vacuum-Ar cycles. Then, the compound was dissolved in 0.5 mL anhydrous DMF, under Ar 

atmosphere. Dry Et3N (4.6 μl, 33 μmol, 5 equiv.) was added dropwise with a hamilton 

syringe. Finally, compound Z-5 (17 mg, 33 μmol, 5 equiv.) was dissolved in 0.2 mL 

anhydrous DMF and added dropwise to the reaction vessel. The resulting yellow solution 

was left stirring at RT protected from light. After 4 h the solution was heated up to 35°C and 

left stirring. After 2 days the reaction was stopped, a yellow dispersion formed. The reaction 

mixture was transferred to a flask and 1 mL of 1 M aq. K2CO3 solution was added, and the 

newly formed yellow dispersion sonicated. Then, the resulting yellow solid was filtered in 

vacuo, washed with water (2-3 mL) to remove p-nitrophenolate until water came out clear, 

air dried, then stored in desiccator under argon in the dark (7 mg. 47 % yield). Rf = 0.39 

(DCM:MeOH 99:1). HRMS (ESI/+): m/z calcd. for C128H128N8Na2O20S4 [M+2Na]2+: 

1135.3970; found: 1135.3956. 1H NMR ((CD3)2SO, 500 MHz) δ (ppm): 8.17 (s, 4H); 8.04 

(d, J = 7.7 Hz, 4H); 7.81 (d, J = 7.7 Hz, 4H); 7.57 (s, 4H); 7.54 (d, J = 7.7 Hz, 4H); 7.33 (m, 

8H); 6.75 (s, 8H); 6.33 (s, 4H); 4.30 (d, J = 13.0 Hz, 4H); 4.23 (m. 16H); 3.79 (t, J = 6.9 Hz, 

8H); 3.04 (d, J = 13.0 Hz, 4H); 1.88 (br s, 8H); 1.38 (m, 16H); 1.29 (t, J = 7.0 Hz, 12H); 0.92 

(br s, 12H). 
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(m-N-Boc-amino)-HTI Z-3a: thioindoxyl 8 (0.168 g, 0.76 mmol, 1 equiv.) was added to a 

Schlenk flask and dissolved in 9 mL anhydrous benzene. Afterwards, dry piperidine (0.37 

mL, 3.78 mmol, 5 equiv.) was added dropwise over a period of 2 min. Finally, tert-butyl (3-

formylphenyl)carbamate (0.25 g, 1.13 mmol, 1.49 equiv.) was dissolved in 1 mL anhydrous 

benzene and added dropwise to the reaction mixture. The solution was left stirring at 82C 

under Ar atmosphere. After 2 h the reaction was stopped according to TLC monitoring 

(DCM). The crude was dissolved in DCM and partitioned with water (3x 80 mL) to remove 

residual base. The organic phase was isolated, dried over sodium sulfate and in vacuo. 

Finally, the compound was precipitated in Hex, filtered under vacuum and collected as a 

yellow powder (0.294 g, 91% yield). Rf = 0.27 (DCM). 1H NMR (CDCl3, 400 MHz) δ (ppm): 

8.31 (dd, J = 7.7, 1.3 Hz, 1H); 8.13 (dd, J = 7.7, 1.3 Hz, 1H); 7.93 (s, 1H); 7.66 (s, 1H); 7.59 

(d, J = 8.4 Hz, 1H); 7.48 (d, J = 7.7 Hz, 1H); 7.42 (t, J = 7.7 Hz, 1H); 7.40 (t, J = 7.7 Hz, 

1H); 6.62 (s, 1H); 4.50 (q, J = 7.1 Hz, 2H); 1.54 (s, 9H); 1.48 (t, J = 7.1 Hz, 3H). 

(m-Amino)-HTI Z-3: N-Boc-amino compound Z-3a (115 mg, 0.27 mmol, 1 equiv.) was 

dissolved in 4 mL anhydrous dichloromethane inside a 25 mL round-bottom flask. Then, 2 

mL of TFA were added dropwise over a period of 2 min and the solution turned red. The N-

Boc deprotection was run under ambient conditions. After 1 h the reaction was stopped as 

judged by TLC monitoring (DCM:EtOAc 98:2, ninhydrin staining). The excess solvent and 

acid were removed under reduced pressure and the resulting solid was dissolved in 40 mL 

DCM, washed with 50 mL of satd. aq. NaHCO3 solution, and finally with water (1x 30 mL). 

The organic phase was extracted, dried over sodium sulfate and excess solvent was removed 

in vacuo. Column chromatography (DCM:EtOAc 98:2): afforded the desired product as the 

second fraction, which was dried under reduced pressure and isolated as an orange powder 

(87 mg, 99% yield). Rf = 0.46 (DCM:EtOAc 98:2). M.p. = >185 ºC (decompose). HRMS 

(ESI/+): m/z calcd. for C18H16NO3S [M+H]+ : 326.0845; found: 326.0844. 1H NMR (CDCl3, 

500 MHz) δ (ppm): 8.30 (dd, J = 7.5,1.3 Hz, 1H); 8.12 (dd, J = 7.5,1.3 Hz, 1H); 7.89 (s, 1H); 

7.39 (t, J = 7.3 Hz, 1H); 7.27 (t, J = 7.6 Hz, 1H); 7.20 (d, J = 7.3 Hz, 1H); 7.10 (t, J = 1.9 Hz, 

1H); 6.76 (ddd, J = 7.9,2.5,0.7 Hz, 1H); 4.49 (q, J = 7.3 Hz, 2H); 3.84 (s, 2H); 1.47 (t, J = 

7.3 Hz, 3H). FT‐IR ν (cm‐1) = 3421 (N‒H stretching); 2922; 2853; 1704 (C=O stretching); 

1667; 1631; 1586; 1556; 1464; 1445; 1392; 1367; 1293; 1260 (C‒O stretching); 1184; 1142; 

1074; 1024; 908; 856; 827; 749; 701; 668; 568; 497; 450. 
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(p-N-Boc-amino)-HTI Z-4a: thioindoxyl 8 (138 mg, 0.62 mmol, 1 equiv.) was added to a 25 

mL Schlenk flask and dissolved in 7 mL anhydrous benzene. The flask was heated and stirred 

at 75°C, protected from light. Afterwards, anhydrous piperidine (0.30 mL, 3.10 mmol, 5 

equiv.) was added dropwise. Finally, tert-butyl (4-formylphenyl)carbamate (165 mg, 0.74 

mmol, 1.2 equiv.) was added at once under Ar flow. The reaction mixture slowly turned to a 

deep brown color, then to deep dark green. After 2h the reaction was stopped according to 

TLC monitoring (DCM:Et2O 99:1). The crude was dissolved in 10 mL DCM and washed 

with NH4Cl satd. solution (2x20 mL). The organic red phase was isolated, dried over sodium 

sulfate and under reduced pressure. The resulting solid was precipitated in a 1:1 Hex:Et2O 

mixture and a yellow dispersion appeared: it was filtered in vacuo and collected as a red 

powder (200 mg, 76% yield). Rf = 0.57 (DCM:Et2O 99:1). M.p. = 178-180 ºC. HRMS 

(ESI/+): m/z calcd. for C23H23NNaO5S [M+Na]+ : 448.1189; found: 448.1200. 1H NMR 

(CDCl3, 500 MHz) δ (ppm): 8.30 (dd, J = 7.7, 1.3 Hz, 1H); 8.13 (dd, J = 7.7, 1.3 Hz, 1H); 

7.94 (s, 1H); 7.76 (d, J = 8.7 Hz, 2H); 7.50 (d, J = 8.7 Hz, 2H); 7.39 (t, J = 7.7 Hz, 1H); 6.65 

(br s, 1H); 4.50 (q, J = 7.1 Hz, 2H); 1.54 (s, 9H); 1.47 (t, J = 7.1 Hz, 3H). 13C{1H} NMR 

(CDCl3, 126 MHz) δ (ppm): 188.3; 165.5; 152.3; 148.5; 140.7; 136.5; 134.7; 132.9; 132.6; 

130.9; 129.6; 128.9; 125.3; 125.1; 118.5; 81.4; 61.9; 28.4; 14.5. FT‐IR ν (cm‐1) = 3325 (N‒

H stretching); 2976; 2919; 1725 (C=O stretching); 1701; 1658 (C=O stretching); 1580; 1553; 

1503; 1411; 1366; 1317; 1290; 1268; 1230; 1152 (C‒O stretching); 1065; 1043; 1017; 901; 

834; 769; 742; 666; 564; 533; 500.  

(p-Amino)-HTI Z-4: a) N-Boc-amino compound Z-4a (141 mg, 0.32 mmol, 1 equiv.) was 

added to a 25 mL two-neck round-bottom flask and dissolved in 2 mL anhydrous DCM under 

argon flow. Then, 1 mL TFA was added dropwise under argon flow. The deprotection 

reaction was run at RT under inert atmosphere and protected from light. The solution turned 

dark red upon addition of the acid. After 1 h it was stopped as judged by TLC monitoring 

(EtOAc), and excess solvent/acid removed in vacuo. The resulting red solid was triturated by 

addition of 2 mL of DCM, and over time a golden solid precipitated. The solid was filtered 

under vacuum: the orange/red TFA salt of the hemithioindigo compound was collected and 

dried in the desiccator, protected from light. The liberation of the amine was performed in 

situ. b) The HTI-salt was dissolved in 10 mL of DCM. Then, the same amount of 4% aq. 

NaHCO3 was added and the two phases partitioned (2x 20 mL). The organic phase was 

separated, dried over sodium sulfate and under vacuum for 30 min to afford the desired 

product as small red crystals (102 mg, 98% yield). Rf  = 0.84 (EtOAc). 1H NMR (CDCl3, 400 
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MHz) δ (ppm): 8.28 (dd, J = 7.6,1.3 Hz, 1H); 8.13 (dd, J = 7.6,1.3 Hz, 1H); 7.93 (s, 1H); 

7.66 (d, J = 8.5 Hz, 2H); 7.37 (t, J = 7.4 Hz, 1H); 6.74 (d, J = 8.5 Hz, 2H); 4.49 (q, J = 7.2 

Hz, 2H); 4.12 (br s, 2H); 1.47 (t, J = 7.2 Hz, 3H). 

(p-N-Boc-aminomethyl)-HTI Z-5a: Thioindoxyl 8 (200 mg, 0.90 mmol, 1 equiv.) was added 

to a 25 mL Schlenk flask and dissolved in 10 mL anhydrous benzene. The flask was heated 

and stirred at 75°C, protected from light. Afterwards, anhydrous piperidine (0.45 mL, 4.50 

mmol, 5 equiv.) was added dropwise. Finally, tert-butyl (4-formylbenzyl)carbamate (254 mg, 

1.08 mmol, 1.2 equiv.) was added at once under Ar flow. The reaction mixture turned to a 

red-brown color, then to deep brown, and finally to deep dark green. After 2h the reaction 

was stopped according to TLC monitoring (DCM:Et2O 99:1). The crude was dissolved in 

DCM and partitioned with NH4Cl satd. solution (2x50 mL). The organic red phase was 

isolated, dried over sodium sulfate and under reduced pressure. The resulting solid was 

precipitated in Et2O and a yellow dispersion appeared: it was filtered in vacuo and collected 

as a golden powder (345 mg, 87% yield). Rf = 0.34 (DCM: Et2O 99:1). M.p. = 176-177 ºC. 

HRMS (ESI/+): m/z calcd. for C24H25NNaO5S [M+Na]+ : 462.1351; found: 462.1347. 1H 

NMR (CDCl3, 400 MHz) δ (ppm): 8.29 (dd, J = 7.6,1.3 Hz, 1H); 8.12 (dd, J = 7.6,1.3 Hz, 

1H); 7.94 (s, 1H); 7.76 (d, J = 8.2 Hz, 2H); 7.39 (d, J = 8.2 Hz, 2H); 7.37 (t, J = 6.8 Hz, 1H); 

4.93 (br s, 1H); 4.49 (q, J = 7.1 Hz, 2H); 4.37 (d, J = 5.4 Hz, 2H); 1.47 (s, 9H); 1.46 (t, J = 

7.1 Hz, 3H). 13C{1H} NMR (CDCl3, 101 MHz) δ (ppm): 188.3; 165.2; 148.6; 141.7; 136.4; 

134.3; 133.2; 132.7; 132.2; 131.6; 131.1; 131.0; 130.8; 127.9; 125.3; 125.0; 61.8; 44.3; 28.4; 

14.3. FT‐IR ν (cm‐1) = 3352 (N‒H stretching); 2990; 2938; 1702; 1678 (C=O stretching), 

1589, 1559; 1511; 1466; 1412; 1365; 1289; 1260 (C‒O stretching); 1170, 1147 (C‒O 

stretching); 1105; 1065; 1048; 1023; 965; 904; 870; 809; 742; 723; 671; 644; 550; 502; 470. 

(p-Tert-butyl N-methylcarbamate)-HTI Z-5b: a) compound Z-5a (217 mg, 0.49 mmol, 1 

equiv.) was added to a 10 mL Schlenk tube, and purged 3x with Ar-vacuum cycles. 

Afterwards, it was dissolved in 5 mL dry DCM. Then, 1 mL of TFA was added dropwise to 

the tube under Ar flow. The N-Boc deprotection was run at RT under Ar atmosphere, 

protected from light. After 2 h the reaction was stopped as judged by TLC (DCM:Et2O 95:5, 

ninhydrin staining). Excess solvent/acid were removed under reduced pressure, and the 

resulting TFA salt was dispersed in 2 mL of DCM and filtered under vacuum to afford an 

orange solid (186 mg, 83% yield). b) (p-aminomethyl)-HTI Z-5 was reacted immediately for 

the formation of the corresponding carbamate: 15 mL of HPLC DCM were added to the salt. 
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The yellow dispersion was sonicated for 3 min in order to have fine particles in suspension. 

Then, the dispersion was transferred to a 50 mL extraction funnel. The same amount of 4% 

NaHCO3 aq. solution was added and the 2 phases partitioned (2x 15 mL). The orange organic 

phase was separated, dried over sodium sulfate and under reduced pressure to afford an 

orange-yellow oil (139 mg, 83% yield). The amine (139 mg, 0.41 mmol, 1 equiv.) was 

dissolved in 4 mL dry DCM and added to a 25 mL Schlenk flask kept under Ar flow. The 

solution was cooled to 0 °C in a water/ice bath. Then, 4-nitrophenyl chloroformate (116 mg, 

0.57 mmol, 1.4 equiv.) was added to a vial equipped with a septum, purged 3x with Ar-

vacuum cycles, dissolved in 2 mL dry DCM and added dropwise to the solution of the amine. 

After 5 min the reaction was brought to RT and equipped with an Ar-filled balloon. At RT 

there's appearance of a yellow precipitate. After 12 h the reaction was stopped according to 

TLC monitoring (DCM:Et2O 98:2). The excess solvent was evaporated under vacuum, then 

the crude was triturated in Et2O and filtered out under vacuum to afford a golden solid (130 

mg, 62% yield). Rf = 0.60 (DCM:Et2O 98:2). M.p. = >185 ºC (decompose). HRMS (ESI/+): 

m/z calcd. for C26H20N2NaO7S [M+Na]+ : 527.0883; found: 527.0883. 1H NMR (CDCl3, 300 

MHz) δ (ppm): 8.31 (dd, J = 7.7, 1.2 Hz, 1H); 8.27 (d, J = 9.2 Hz, 2H); 8.14 (dd, J = 7.7, 1.2 

Hz, 1H); 7.97 (s, 1H); 7.82 (d, J = 8.3 Hz, 2H); 7.47 (d, J = 8.3 Hz, 2H); 7.41 (t, J = 7.6 Hz, 

1H); 7.37 (d, J = 9.2 Hz, 2H); 5.51 (br s, 1H); 4.54 (d, J = 5.8 Hz, 2H); 4.50 (q, J = 7.1 Hz, 

2H); 1.47 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (CDCl3, 126 MHz) δ (ppm): 188.3; 165.3; 155.7; 

153.2; 148.5; 144.9; 139.7; 139.2; 136.5; 133.9; 133.8; 132.1; 131.8; 130.9; 128.2; 125.4; 

125.1; 125.0; 122.0; 61.8; 45.0; 14.3. FT‐IR ν (cm‐1) = 3359 (N‒H stretching); 1747; 1720; 

1671 (C=O stretching); 1589; 1561; 1523; 1488; 1438; 1409; 1365; 1346; 1277; 1221 (C‒O 

stretching); 1144; 1105; 1077; 1049; 1015; 951; 925; 866; 854; 805; 742; 673; 599; 522; 488. 

Tetra-amino calix[4]arene 6 was synthesized adapting a reported procedure:23 two scoops of 

Ni Raney were carefully washed with water, ethanol, and then anhydrous toluene (3x each 

solvent) in an Ace pressure tube, leaving the Ni Raney in solution with 10 mL of toluene. 

Tetranitro calix[4]arene (1.5 g, 1.69 mmol, 1 equiv.) was added to the reaction vessel and the 

reagents were dissolved in a total of 60 mL of anhydrous toluene. The hydrogenation reaction 

was carried out in a Parr shaker hydrogenator at a pressure of 4 bar for 6 h. Afterwards, the 

reaction micture was filtered through celite in a small chromatography column under nitrogen 

flow with toluene as the eluent. The column was continuously checked by TLC to confirm 

that all the product came out. After that, the Ni Raney was quenched with acetone, then water 

and stored in its waste container. The collected solution was dried under reduced pressure 
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and under high vacuum to afford an off-white solid (1.14 g, 88% yield). 1H NMR ((CD3)2SO, 

400 MHz) δ (ppm): 5.93 (s, 8H); 4.20 (br s, 8H); 4.16 (d, J = 12.7 Hz, 4H); 3.66 (t, J = 7.4 

Hz, 8H); 2.78 (d, J = 12.7 Hz, 4H); 1.83 (m, 8H); 1.34 (m, 16H); 0.90 (t, J = 8.7 Hz, 12H). 

The 1H NMR spectrum is in total agreement with what is reported in the literature. 

Tetracarbamate calix[4]arene 7 was synthesized following a reported procedure:17 compound 

6 (300 mg, 0.39 mmol, 1 equiv.) was added to an oven dried 2-necked 100 mL round-bottom 

flask equipped with a magnet.and dissolved in 56 mL of a CHCl3:THF 3:2 mixture. The p-

nitrophenyl chloroformate (391 mg, 1.94 mmol, 4.95 equiv.) was added in one portion. 

Finally, the flask was equipped with a condenser and refluxed at 84 ºC for 12 h under argon 

flow. Afterwards, the reaction mixture was dried under reduced pressure and the resulting 

solid was sonicated in diethyl ether, filtered out and dried under high vacuum to afford an 

off-white solid (410 mg, 73% yield). 1H NMR (CDCl3, 400 MHz) δ (ppm): 8.21 (d, J = 8.3 

Hz, 8H); 7.30 (d, J = 8.3 Hz, 8H); 6.76 (br s, 8H); 4.46 (d, J = 13.7 Hz, 4H); 3.88 (s, 8H); 

3.15 (d, J = 13.7 Hz, 4H); 1.89 (m, 8H); 1.39 (br s, 16H); 0.95 (t, J = 7.2 Hz, 12H). The 1H 

NMR spectrum is in total agreement with what is reported in the literature. 

7-(Propanoyl)benzo[b]thiophen-3(2H)-one 8: compound 9 (0.253 g, 1.05 mmol, 1 equiv.) 

was added to a two-neck amber round-bottom flask and dissolved in SOCl2 (1.05 mL, 14.5 

mmol, 13 equiv.), under Ar atmosphere; the mixture was heated at 75 C and equipped with 

a bubbler for HCl release. The reaction was completed after 15 min, cooled at 70C for 10 

min and at RT, then the crude was concentrated to dryness. The resulting aryl acyl chloride 

was dissolved in 9 mL of anhydrous 1,2-dichloroethane. The solution was protected from 

light and cooled down to 0C. AlCl3 (0.561 g, 4.21 mmol, 4 equiv.) was added slowly over a 

period of 2 min, the mixture was stirred at 0C for 5 min and afterwards at RT. The flask was 

equipped with a bubbler for HCl release until no more bubbling was observed, then left 

stirring with an Ar balloon. After 4 h the reaction was completed as judged by TLC; the 

mixture was quenched with ice and water, then extracted twice between 30 mL water and 30 

mL DCM. The organic phase was dried over sodium sulfate and under reduced pressure. The 

resulting pink solid was triturated with a 1:1 Hex:Et2O mixture and filtered under vacuum 

(0.17 g, 73% yield). The beige solid was used for the next reactions without further 

purification due to its instability to light and moisture. Rf = 0.65 (DCM:Et2O 99:1). M.p. = 

101-102 ºC. HRMS (ESI-TOF): m/z calcd. for C11H10NaO3S [M+Na]+ : 245.0243; found: 

245.0242. 1H NMR (CDCl3, 500 MHz) δ (ppm): 8.29 (dd, J = 7.4, 1.2 Hz, 1H), 7.95 (dd, J = 
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7.3, 1.2 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 3.76 (s, 2H), 1.44 (t, J = 

7.1 Hz, 3H). 13C{1H} NMR (CDCl3, 126 MHz) δ (ppm): 200.0; 165.3; 157.0; 137.3; 132.9; 

130.7; 125.9; 124.6; 61.8; 39.7; 14.4. FT‐IR ν (cm‐1) = 3055; 2992; 2934; 1695 (C=O 

stretching); 1589; 1563; 1472; 1409; 1384; 1291 (C‒O stretching); 1266; 1203; 1182; 1145; 

1102; 1052; 1016; 867; 817; 753; 730; 598; 561; 502; 477. 

2-[(Carboxymethyl)thio]-1-benzoic acid ethyl ester 9: ethyl 2-mercaptobenzoate (1.02 g, 

5.60 mmol, 1 equiv.) and 2-bromoacetic acid (0.7 g, 5.04 mmol, 0.9 equiv.) were added to a 

two-neck round-bottom flask. Then, they were dissolved in 20 mL freshly distilled THF. 

Finally, oven-dried K2CO3 (1.55 g, 11.19 mmol, 2 equiv.) was added at once. Upon addition 

of the base, the reaction mixture took swiftly a milky color. The reaction was carried out 

under Ar flow at RT, vigorous stirred. Within 30 min a white precipitate formed. The reaction 

was stopped and excess solvent was removed in vacuo. The reaction crude was dispersed in 

10 mL of water. The aqueous phase was acidified with HCl 2M until pH = 2, then extracted 

with EtOAc (2x 150 mL). The organic phase was dried over sodium sulfate and over reduced 

pressure, to afford a white solid. The solid was triturated in a 1:1 DCM:Hex mixture (10 mL) 

and filtered out to afford a white crystalline solid (1.1 g, 84% yield). Rf = 0.56 (DCM:MeOH 

90:10). M.p. = 137-139 ºC. HRMS (ESI/-): m/z calcd. for C11H11O4S [M-H]- : 239.0384; 

found: 239.0379. 1H NMR (THF-d8, 500 MHz) δ (ppm): 7.95 (dd, J = 7.8 Hz, 1H); 7.53 (d, 

J = 8.2 Hz, 1H); 7.47 (td, J = 7.7, 1.5 Hz, 1H); 7.19 (t, J = 7.6 Hz, 1H); 4.36 (q, J = 7.1 Hz, 

2H); 3.73 (s, 2H); 1.39 (t, 3H); 7.91 (dd, J = 7.8, 1.5 Hz, 1H); 7.48 (d, J = 7.9 Hz, 1H); 7.42 

(td, J = 7.7, 1.5 Hz, 1H); 7.14 (td, J = 8.1, 1.1 Hz, 1H); 4.31 (q, J = 7.1 Hz, 2H); 3.67 (s, 2H); 

1.34 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (THF-d8, 126 MHz) δ (ppm): 169.9; 165.4; 141.3; 

136.1; 131.9; 130.6; 128.1; 125.9; 123.7; 60.4; 34.1; 13.6. FT‐IR ν (cm‐1) = 1697 (C=O 

stretching); 1586; 1558; 1427; 1388; 1368; 1309; 1294; 1275; 1247 (C‒O stretching); 1193; 

1176; 1146; 1108; 1061 (C‒O stretching); 1043; 1022; 880; 865; 750; 708; 690; 670; 649; 

527; 498; 468; 453. 

Tetramethylphosphonium hexafluorophosphate (V) (Me4P+PF6
-) 10: Two separate water 

solutions (5 mL each) of Me4P+Cl- (150 mg, 1.185 mmol, 1 equiv.) and Na+PF6
- (201 mg, 

1.197 mmol, 1.01 equiv.) were prepared. Me4P+Cl- was completely soluble at RT, whereas 

Na+PF6
- was warmed up at 40°C for 2-3 min until completely dissolved. The two stirred 

solutions were then mixed together. Within seconds, a white precipitate appeared. The 

mixture was left stirring for 30 min at RT. Afterwards, the precipitate was filtered out and 
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dried under high vacuum to afford an off-white solid (163 mg, 58 % yield). 1H NMR 

((CD3)2SO, 400 MHz) δ (ppm): 1.82 (d, J = 15.2 Hz, 12H). 31P NMR ((CD3)2SO, 162 MHz) 

δ (ppm): 28.37 (s); -141.08 (sept, J = 710.8 Hz). Elemental analysis (C4H12P+∙F6P-): Meas. 

%C = 20.21; %H = 5.24; %N = 0. Calc. %C = 20.35; %H = 5.12; %N = 0. 

p-Tolyl tetraurea calix[4]arene 11 was synthesized adapting a reported procedure:34 A two-

neck 100 mL round-bottom flask was oven dried and equipped with a magnet, then put under 

argon flow (vacuum-Ar 3x). The tetraamino calix[4]arene 6 (300 mg, 0.39 mmol, 1 equiv.) 

was added in one portion to the flask, then 30 mL of DCM were added with a syringe and 

the flask stirred. Finally, p-tolyl isocyanate (261 mg, 1.96 mmol, 5 equiv.) was added 

dropwise with a syringe into the reaction flask. The brownish homogeneous solution was left 

stirring at RT for 24 h. After that time a white precipitate formed. The crude mixture was 

dried under reduced pressure, redissolved in a DCM:MeOH mixture to induce the 

precipitation of an ivory solid. The solid was filtered in vacuo and collected (380 mg, 75% 

yield). The 1H NMR spectrum is in total agreement with what is reported in the literature. 

Tetramethylphosphonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (Me4P+BArF-) 12: 

a solution of sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (Na+BArF-, 260 mg, 0.29 

mmol, 1.2 equiv.) in 4 mL of anhydrous MeOH was added dropwise to a 3 mL solution of 

tetramethylphosphonium chloride (31 mg, 0.24 mmol, 1 equiv.) in the same solvent, under 

argon flow. The transparent reaction was stirred at room temperature and equipped with an 

Ar balloon. After 12 h the reaction was stopped. The solution was dried under reduced 

pressure and redissolved in 5 mL of Milli-Q water. The mixture was sonicated to generate a 

white suspension. The product was filtered out and washed several times with Milli-Q water, 

then dried under high vacuum to afford a white solid (156 mg, 67% yield). 1H NMR (CD2Cl2, 

400 MHz) δ (ppm): 7.72 (br s, 8H); 7.57 (s, 4H); 1.86 (d, J = 13.8 Hz, 12H). 13C NMR 

(CD2Cl2, 101 MHz) δ (ppm): 162.14 (q, 1JB-C = 50 Hz); 135.21; 129.26 (q, 2JC-F = 32 Hz); 

126.36; 123.65; 120.94; 117.91; 10.97 (d, J = Hz). 31P NMR (CD2Cl2, 162 MHz) δ (ppm): 

25.76. 19F NMR (CD2Cl2, 376 MHz) δ (ppm): -62.89. 11B NMR (CD2Cl2, 128 MHz) δ (ppm): 

-6.61. 
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3.4.3 Figures 

 

Figure 3.11 1H NMR (CDCl3, 500 MHz) spectrum of ethyl 2-mercaptobenzoate. * Residual solvent 

peaks. 

 

 

Figure 3.12 13C NMR (CDCl3, 126 MHz) spectrum of ethyl 2-mercaptobenzoate. * Residual solvent 

peaks. 

 

 

Figure 3.13 1H NMR ((CD3)2SO:CDCl3 80:20, 500 MHz) spectrum of (all-Z)-1. * Residual solvents 

peaks. 
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Figure 3.14 13C NMR ((CD3)2SO:CDCl3 80:20, 126 MHz) spectrum of (all-Z)-1. * Residual solvent 

peaks. 

 

 
Figure 3.15 1H NMR ((CD3)2SO, 500 MHz) spectrum of (all-Z)-2. * Residual solvents peaks. 

 

 

Figure 3.16 1H NMR spectrum of Z-3a (CDCl3, 400 MHz). * Residual solvent peaks. 
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Figure 3.17 1H NMR (CDCl3, 500 MHz) spectrum of 3 in a Z:E 80:20 ratio at ambient conditions. 

Protons assigned to the E-3 isomer are marked with a ‡ symbol. * Residual solvent peaks. 

 

Figure 3.18 1H NMR (CDCl3, 500 MHz) spectrum of Z-4a. * Residual solvent peaks. 

 

 

Figure 3.19 13C NMR (CDCl3, 126 MHz) spectrum of Z-4a. * Residual solvent peaks. 

 

 

Figure 3.20 1H NMR (CDCl3, 400 MHz) spectrum of Z-4. * Residual solvent peaks. 
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Figure 3.21 1H NMR (CDCl3, 400 MHz) spectrum of Z-5a. * Residual solvent peaks. 

 

 

Figure 3.22 13C NMR (CDCl3, 101 MHz) spectrum of Z-5a. * Residual solvent peaks. 

 

 

Figure 3.23 1H NMR (CDCl3, 300 MHz) spectrum of Z-5b. * Residual solvent peaks. 

 

UNIVERSITAT ROVIRA I VIRGILI 
STIMULI-RESPONSIVE HOST-GUEST SYSTEMS DECORATED WITH HEMITHIOINDIGO AND SPIROPYRAN UNITS 
Giulia Moncelsi 
 
 



Chapter 3 

128 

 

 

Figure 3.24 13C NMR (CDCl3, 126 MHz) spectrum of Z-5b. * Residual solvent peaks. 

 

Figure 3.25 1H NMR ((CD3)2SO, 400 MHz) of tetra-amino calix[4]arene 6. * Residual solvent peaks. 

 

Figure 3.26 1H NMR (CDCl3, 400 MHz) of tetracarbamate calix[4]arene 7. * Residual solvent peaks. 
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Figure 3.27 1H NMR (CDCl3, 500 MHz) spectrum of 8. * Residual solvent peaks. 

 

 

Figure 3.28 13C NMR (CDCl3, 126 MHz) spectrum of 8. * Residual solvent peaks. 

 

 

Figure 3.29 1H NMR (THF-d8, 400 MHz) spectrum of 9. * Residual solvent peaks. 

 

 

Figure 3.30 13C NMR (THF-d8, 126 MHz) spectrum of 9. * Residual solvent peaks. 
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Figure 3.31 1H NMR (CDCl3, 400 MHz) spectrum of 10. * Residual solvent peaks. 

 

 

Figure 3.32 31P NMR (CDCl3, 162 MHz) spectrum of 10. * Residual solvent peaks. 

 

Figure 3.33 1H NMR ((CD3)2CO, 300 MHz) spectrum of 11. * Residual solvent peaks. 

 

 

Figure 3.34 1H NMR (CDCl3, 500 MHz) spectrum of 112. * Residual solvent peaks. 
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Figure 3.35 1H NMR (CD2Cl2, 400 MHz) of Me4P+BArF- 12. * Residual solvent peaks. 

 

 

Figure 3.36 13C NMR (CD2Cl2, 101 MHz) of Me4P+BArF- 12. * Residual solvent peaks. 

 

 

Figure 3.37 UV/Vis absorption spectra of a 30 µM CHCl3 solution of Z/E-3a (ambient mixture) light-

irradiated at 425 and 475 nm at different times. 
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Figure 3.38 UV/Vis absorption spectra of a 10 µM CHCl3 solution of (all-Z)-1 light-irradiated at 450 

nm at different times. 

 

 
Figure 3.39 UV/Vis absorption spectra of a 10 µM CH2Cl2 solution of (all-Z)-1 light-irradiated at 450 

nm at different times. 
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Figure 3.40 1H NMR ((CD3)2SO, 400 MHz) spectra at 298 K of a millimolar solution of (all-Z)-2 

photoirradiated at 450 nm for a) 0, b) 1 and c) 10 min. * Residual solvents peaks. 

 

 
Figure 3.41 1H NMR (CD2Cl2, 400 MHz) spectra at 298 K of a 1 millimolar solution of a) (all-Z)-1 + 

b) 0.25; c) 0.5; d) 0.75 and e) 1 equiv. of 12. Primed letters and numbers correspond to proton signals 

of bound components. * Residual solvents peaks. 
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Figure 3.42 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a millimolar solution of 11 + a) 0 equiv.; 

b) 0.5 equiv.; c) 1 equiv.; d) 2 equiv. of 10 and e) pure 10. Primed letters and numbers correspond to 

proton signals of bound components. * Residual solvents peaks. 
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Figure 3.43 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a millimolar solution of (all-Z)-2 + a) 0.5 

equiv; b) 1 equiv.; c) 2 equiv.; d) 2.5 equiv. of 10 and e) pure 10. Primed letters and numbers correspond 

to proton signals of bound components. * Residual solvents peaks. 

 

 
Figure 3.44 1H NMR (CDCl3, 400 MHz) spectra at 298 K of 1 millimolar solutions of a) 112; b) (all-

Z)-2-; c) 112 + (all-Z)-2 (0.5:1 molar ratio); d) 112 + (all-Z)-2 + 10 (0.5:1:1 molar ratio). Primed letters 

and numbers correspond to proton signals of bound components. * Residual solvents peaks.
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4.1 Introduction 

In previous chapters, we already commented that a large number of fatigue-resistant small 

molecules able to undergo important structural changes when irradiated with UV or visible 

light have been designed.1 Well-established and promising families of photoswitches include: 

azobenzenes,2 hemithioindigos,3 acyl hydrazones,4,5 spiropyrans,6,7 diarylethenes,8,9 and 

donor-acceptor Stenhouse adducts.10,11,12 Spiropyrans are organic photoswitches that undergo 

a reversible isomerization process between the colorless, closed-ring (SP) form and the 

colored open-ring neutral (MC) or protonated (MCH+) merocyanine counterpart. The 

reversible SP-to-MC isomerization can be promoted by UV light and/or protonation (Scheme 

4.1).6 

 

Scheme 4.1 Photo- and acidochromic reversible isomerization processes between a 6’-substituted 

spiropyran (SP) and its merocyanine (MC) and protonated merocyanine (MCH+) isomers. 

The intrinsic photochromic properties of spiropyran switches make them ideal candidates for 

their use in the design of photo-responsive molecular containers. The SP-to-MC conversion 

is accompanied by a dramatic change in the geometry of the switch and by a significant 

difference in the dipole moment between the closed SP-form and the open MC-form. In 

addition, the SP is susceptible to protonation, which induces its conversion to the MCH+ 

isomer. 

The controlled uptake/release of cargo using molecular containers is usually targeted by the 

covalent attachment of appropriate responsive fragments onto the receptor’s scaffold. The 

goal consists on coupling the isomerization of the responsive fragment with the binding 

properties of the container. Thus, the application of an external stimulus (light, pH, etc.) 

induces a modification of the host-guest properties of the container/receptor.13,14 To this end, 

azobenzene photoswitches have been coupled to a wide variety of synthetic 

macrocycles15,16,17 and biomolecules.18,19,20,21 
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The adequate choice of the receptor’s scaffold and the location of the isomerizable 

substituents is essential to impart the construct with the desired property: modulation of its 

binding affinity through external stimuli. Calix[4]arenes are well-known macrocyclic 

receptors and their molecular recognition properties have been extensively reported in 

literature.22 The upper-rim functionalization of calix[4]arene scaffolds, fixed in the cone 

conformation, with four urea groups produced tetraurea derivatives that self-assemble into 

dimeric homo- and hetero-capsular assemblies. In non-polar solvents, the resulting capsular 

containers are stabilized by a cyclic array of sixteen hydrogen bonds. The formed array 

involves eight head-to-tail hydrogen-bonded urea groups that are unidirectional 

oriented.23,24,25 These elegant dimeric assemblies have been exploited for the encapsulation 

of a wide variety of guests.26,27,28,29  Many other examples of self-assembled containers, cages 

and capsules based on hydrogen-bonding and metal-ligand interactions have already been 

described.30,31,32,33,34 

Recently, we reported photoresponsive homo- and heterodimeric capsules based on tetraurea 

calix[4]arenes decorated with differently substituted azobenzene groups at their upper 

rims.35,36 On the other hand, Kobayashi et al. described the self-assembly of a hexameric 

capsule based on resorcin[4]arene units bearing azobenzene dendrons at the lower rim.37 In 

these examples, the cis/trans photoisomerization of the appended azo groups allowed to 

control the partial assembly/disassembly processes of the hydrogen-bonded capsules and the 

concomitant uptake and release of the encapsulated guests. We envisioned that the 

incorporation of SP units to a tetraurea calix[4]arene scaffold would endow the resulting 

hydrogen-bonded dimeric capsules with photoresponsive behavior. Our aim was to 

investigate the coupling of the isomerization process of the SP units with the 

assembly/disassembly process of the capsular dimers.  

Herein, we describe the synthesis of the tetra-SP tetraurea calix[4]arene 1. We study the self-

assembly process of the thermodynamically more stable isomer, all-SP-1, into a homodimeric 

capsule in chloroform solution. We also disclose the exclusive self-sorting process that takes 

places between the tetraurea all-SP-1 and the photochemical non-responsive tetraurea 

calix[4]pyrrole 2. The two tetraureas dimerize quantitatively encapsulating one molecule of 

trimethylamine N-oxide (3). Finally, we investigate the photochemical and acid-base 

modulation of the SP-to-MC equilibria occurring in both the homo- and the heterocapsular 
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assemblies. To this end, we use UV light-irradiation (λ = 365 nm) and the sequential 

treatment of the capsular dimers with trifluoromethanesulfonic acid and triethylamine. 

4.2 Results and discussion 

4.2.1 Design and synthesis 

Tetraspiropyran tetraurea calix[4]arene SP-1 was synthesized in three steps (Scheme 4.2). 

First, commercially available 6’-nitrospiropyran (BIPS) was reduced to the corresponding 

amine SP-4 with stannous chloride dihydrate by refluxing the mixture in EtOH solution.38 

After work-up, the isolated SP-4 was used for the next synthetic step without further 

purification owing to the degradation of the compound under ambient conditions. In turn, 

tetracarbamate calix[4]arene 5 was prepared from the tetraamino counterpart39 following a 

reported procedure.35 SP-4 was reacted with tetracarbamate 5 in DMF solution using 

triethylamine as base. The work-up of the quadruple acyl substitution reaction afforded 

tetraspiro tetraurea calix[4]arene SP-1 in a remarkable 67% yield. Tetraspiro tetraurea 

calix[4]arene SP-1 was characterized by a set of high-resolution spectra (NMR, HRMS). 

Spiropyrans are chiral switches possessing a stereogenic spiro-carbon atom. Thus, they can 

easily racemize through a cis-merocyanine intermediate that is prochiral.40,41 The energy 

barrier for the epimerization reaction of spiropyrans is ca. 21-22 kcal/mol in non-polar 

organic solvents.42 In the case of SP-1, this translates into the possibility of obtaining SP-1 

as a mixture of several diastereomers. Moreover, the SP units appended to the tetraurea 

calix[4]arene scaffold in SP-1 are prone to be isomerized to the open-ring merocyanine 

isomer (MC) by UV light-irradiation, acid-treatment or solvent-induced conversion.43,44 

Therefore, the tetraurea SP-1 can exist also as a mixture of possible isomeric conformers: all-

SP; SP,SP,SP,MC; SP,SP,MC,MC; SP,MC,SP,MC; SP,MC,MC,MC and all-MC. In order to 

induce the conversion of all isomers into the all-SP counterpart, a mM (CD3)2SO solution of 

the isolated solid of SP-1 was thermally equilibrated at 60 ºC for 12 h in the dark. The 

resulting solution was cooled down at RT and analyzed using 1H NMR spectroscopy. In 

(CD3)2SO solution, SP-1 is a monomer owing to the competitive nature of the solvent for 

hydrogen-bonding interactions with the urea moieties. The 1H NMR spectrum of thermally 

equilibrated SP-1 displayed a single set of sharp and well-resolved proton signals in 

agreement with a C4v symmetry. We assigned this set of signals to the thermodynamically 

stable all-SP-1 isomer.45 We obtained similar results in the thermal equilibration processes 
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performed with tetra-azobenzene tetraurea calix[4]arene35 and calix[4]pyrrole derivatives.46 

Because SP-1 shows a single set of proton signals, we assume that the barrier for the (R)/(S)-

SP racemization process is low and its dynamics are fast on the chemical shift timescale. 

 

Scheme 4.2 a) Synthetic scheme for the preparation of tetraspiropyran tetraurea calix[4]arene SP-1; the 

line-drawing structures of the b) tetraurea calix[4]pyrrole 2 and c) trimethylamine N-oxide 3 are also 

shown. 

4.2.2 Photoisomerization studies of all-SP-1 

As mentioned above, the upper rim SP groups in all-SP-1 can undergo light-induced 

isomerization to the open-ring MC-form. Firstly, we probed the photoisomerization process 

of all-SP-1 as a discrete molecule in (CH3)2SO solution using UV/Vis spectroscopy. The 

absorption spectrum of all-SP-1 shows an intense band centered at 345 nm with a shoulder 

having a maximum at 390 nm (Figure 4.1). Irradiation of the (CH3)2SO solution of all-SP-1 

with 365 nm light produced dramatic changes in the absorption spectrum. The shoulder band 
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at 390 nm increased significantly. A new band with strong absorption appeared at 460 nm. 

Taken together, these spectral changes are diagnostic of the conversion of some SP units in 

all-SP-1 into the open-ring MC-form.47 After 30 min of light-irradiation, the photostationary 

state of the mixture was reached.  

 

Figure 4.1 UV/Vis absorption spectra acquired for all-SP-1 (50 µM) dissolved in (CH3)2SO solution 

upon the time-course (5 to 30 min) of a light-irradiation experiment with 365 nm light. 

Remarkably, the intense absorption band centered at 345 nm, which is assigned to the SP-

form, was not significantly modified. The results of the analysis of the light-irradiation 

experiment using UV/Vis spectroscopy did not allow us to quantify the extent of the SP-to-

MC isomerization process. For this reason, we repeated the light-irradiation experiment using 

a 1 mM (CD3)2SO solution of all-SP-1. In this case, we monitored the evolution of the 

mixture every 5 min during 1 h using 1H NMR spectroscopy. Surprisingly to us, the 

irradiation experiment did not produce noticeable changes in the acquired 1H NMR spectra. 

Most likely, the concentration of the mixture of MC-enriched isomers of 1 produced by the 

photo-induced isomerization process is too low to be detected by 1H NMR spectroscopy (i.e. 

<5 %).48 

4.2.3 Self-assembly of a homodimeric capsule derived from all-SP-1 in chloroform 

The 1H NMR spectrum of all-SP-1 in CD2Cl2 solution showed broad and unresolved proton 

signals indicative of the formation of ill-defined polymeric aggregates. It is known that 
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simple tetraurea calix[4]arenes show a reduced tendency to dimerize into well-defined 

capsular assemblies when dissolved in CH2Cl2 solution. The size of the CH2Cl2 does not 

provide a good fit for the cavity of the dimeric capsule.26 In striking contrast with the above 

results, the 1H NMR spectrum of a 1 mM solution of all-SP-1 in CDCl3 displayed an intense 

set of sharp proton signals together with other proton signals experiencing baseline 

broadening (Figure 4.2). The set of intense and sharp proton signals was diagnostic of the 

dimerization of all-SP-1 into a structurally well-defined hydrogen-bonding capsular dimer, 

(all-SP-1)2. The urea NH protons of (all-SP-1)2, Hm’ and Hn’, resonated at 9.2 and 7.0 ppm, 

respectively. The dimer features a S8 symmetry owing to the desymmetrization of the aryl 

protons (Ho1’ and Ho2’) produced by the unidirectional orientation of the urea bond belt, 

whose rotation is slow on the NMR time scale. 49 It is known that the observation of two 

separated meta-coupled aryl doublets is diagnostic of the dimerization of tetraurea 

calix[4]arenes in solution.23 

 

Figure 4.2 1H NMR (CDCl3, 400 MHz) spectrum of a 1 mM solution of (all-SP-1)2. Primed letters and 

numbers correspond to proton signals of bound components. See Scheme 4.2 for proton assignment. * 

Residual solvent peaks. 

The observation of broadened proton signals suggested the existence of a dynamic 

equilibrium in solution. Most likely, the all-SP-1 units of the dimeric capsule (all-SP-1)2 are 

in equilibrium with other aggregates of higher stoichiometry. Interestingly, the diagnostic N-

methyl proton signal of the SP units (Ha’) split into two singlets of different intensities at δ = 

2.66 and 2.61 ppm. This observation is consistent with a higher energy barrier for the (R)/(S) 

epimerization of the SP units when 1 is involved in the dimeric assembly. Therefore, the N-

CH3 will produce a different signal depending if it is inwardly or outwardly directed with 

respect to the capsular environment. Simple molecular modelling studies (MM3) on the 

homodimeric capsule (all-SP-1)2 together with previous investigations with structurally 

related tetraurea calix[4]arene capsules supported the encapsulation of one chloroform 

molecule in its cavity. In order to provide evidence to the encapsulation of CHCl3 in (all-SP-
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1)2, we performed a 1D GOESY NMR experiment. We used a 2 mM solution of (all-SP-1)2 

in a 9:1 CHCl3:CDCl3 mixture. The selective excitation of the proton signal corresponding 

to the bulk CHCl3 produced the observation in the GOESY spectrum of a small singlet with 

the same phase and resonating at δ = 4.43 ppm (Figure 4.3).  

 

Figure 4.3 Selected region of the 1H GOESY NMR spectrum (298 K, 500 MHz) of (all-SP-1)2 in a 9:1 

CHCl3:CDCl3 mixture with selective excitation of the solvent signal. 

We assigned this signal to the proton of the encapsulated CHCl3 experiencing a chemical 

exchange process with the bulk solvent molecules that is slow on the chemical shift 

timescale.50 The packing coefficient, or volume of filled space, for capsular assemblies is 

defined as the ratio between the van der Waals volumes of the guest molecules and that of 

the internal cavity of the capsule (PC = (Vguest/s/Vhost) x 100) obtained from energy-minimized 

models. The calculated PC for the CHCl3⊂(all-SP-1)2 complex is ca. 42%. This value is 

relatively small compared to the optimal 55% reported by Rebek and co-workers51 and might 

explain the reduced thermodynamic stability of the dimeric capsule, (all-SP-1)2 and its 

existence in equilibria with ill-defined aggregates of all-SP-1. Steric clashes between 

adjacent spiropyran substituents can cause the suboptimal arrangement of the two halves in 

the CHCl3⊂(all-SP-1)2 capsular assembly compared to other derivatives with less-bulky 

substituents, i.e. the phenyl in 2. The assembly of the homodimeric capsule, (all-SP-1)2 in 

CDCl3 solution was further evidenced by performing a diffusion ordered spectroscopy 

(DOSY) experiment. DOSY NMR is a fundamental analytical technique for the 

characterization of capsular systems in solution.52 The decays of the proton signals assigned 

to (all-SP-1)2 vs. the gradient strength showed a good fit to a monoexponential function and 

returned a diffusion coefficient of 3.35 ± 0.12 x 10-10 m2/s (-logD = 9.47). This value is 
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translated into a diffusing spherical particle having a radius of 12.2 Å. The volume of the 

diffusing particle is consistent with the size of the energy-minimized structure (MM3) of the 

(all-SP-1)2 dimeric capsule. To the best of our knowledge, all-SP-1 constitutes the first 

example of a calix[4]arene scaffold decorated with four spiropyrans at its upper rim. Other 

examples of scaffolds with attached spiropyran groups include a tetra(spiropyran)-substituted 

porphyrin53 and calix[4]arenes functionalized at the lower rim with one54,55 or two spiropyran 

fragments.56,57  

4.2.4 Exclusive self-sorting of tetraureas all-SP-1 and 2 into a heterodimeric capsule in 

dichloromethane 

Tetraurea calix[4]arenes are capable to self-sort with tetraurea calix[4]pyrroles to produce 

quantitatively heterodimeric capsules. In this vein, we investigated the self-sorting process 

of all-SP-1 with tetraurea calix[4]pyrrole 258 in dichloromethane solution using 

trimethylamine N-oxide 3 as template (Scheme 4.2). The 1H NMR spectrum of an equimolar 

mixture of 2 and N-oxide 3 in dichloromethane solution produced the proton signals that are 

diagnostic of the quantitative formation of the homodimeric capsular assembly, 32⊂22 

(Figure 4.4a).58 Notably, the pyrrole NHs appeared at δ = 10.6 ppm owing to the formation 

of hydrogen bonds with the oxygen atom of 3. The urea NHs, H6 and H7, resonated at δ = 6.3 

and 8.7 ppm, respectively. These chemical shift values indicated their involvement in 

hydrogen bonding interactions. In line with previous findings, we observed that the meso-

phenyl protons ortho to the urea groups (H5’ and H8’ in the proton assignment) of the 

calix[4]pyrrole 2 resonated as separate broad signals. This observation suggested that the 

change in the unidirectional orientation of the urea groups was intermediate on the chemical 

shift timescale. The signal of the methyl protons of the encapsulated N-oxide 3 (3-CH3’) 

resonated at δ = 0.8 ppm. The upfield shift experienced by the methyl protons (Δδ = -2.4 

ppm) is caused by the shielding effect of the meso-phenyl groups that define the polar 

aromatic cavity in which the N-oxide is deeply included. The addition of a CD2Cl2 solution 

of SP-1 (1 equiv., Figure 4.4c) to the one containing the homodimeric capsular assembly, 

32⊂22, produced a new set of sharp proton signals. The urea NHs of calix[4]pyrrole 2 

resonated at δ = 9.1 and 5.4 ppm. These chemical shift values are different to those observed 

for 32⊂22. Additionally, the urea NH protons of all-SP-1 assembled into a dimeric capsule 

were observed at 8.8 and 8.0 ppm. Based on previous findings, we assigned the new set of 
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signals to the heterodimeric capsular complex, 3⊂(all-SP-1·2) that was quantitatively 

assembled in the equimolar mixture (Figure 4.4b). In the case at hand, the signal of the methyl 

protons of encapsulated 3 (3-CH3’’) appeared at δ = 0.6 ppm (δ = -2.6). The small difference 

in complexation induced shift (CIS), 0.2 ppm, experienced by the methyl protons of 3 in its 

homo- and hetero-encapsulation complexes, 32⊂22 and 3⊂(all-SP-1·2), reflects the different 

magnetic environments of the two capsules’ interiors. 

 

Figure 4.4 1H NMR (CD2Cl2, 400 MHz) spectra at 298 K of 1.3 mM solutions of a) all-SP-1; b) all-

SP-1, 2 and 3 (1:1:1 molar ratio) (0.65 mM) and c) 32⊂22. Primed letters and numbers correspond to 

proton signals of bound components. Double primed letters and numbers correspond to proton signals 

of bound components involved in the heterocapsular assembly 3⊂(all-SP-1∙2). 1,3,5-

tris(trifluoromethyl)benzene was used as internal standard (I.S.). See Scheme 4.2 for proton assignment. 

* Residual solvent peaks. 

The energy-minimized structure (MM3) of the heterocapsular complex 3⊂(all-SP-1·2) begs 

for the co-encapsulation of a dichloromethane molecule with the N-oxide 3. We determined 

a PC value of 63% for the co-encapsulation complex (CH2Cl2·3)⸦(all-SP-1·2) complex. 

Although the calculated value is slightly larger than the optimal 55%, it is in agreement with 

those we determined for the encapsulation complexes of polar molecules in dimeric capsules 

with polar interiors.59 The energy minimized structure of the (CH2Cl2·3)⸦(all-SP-1·2) 

complex displays a reduction in the steric clashes produced by the spiropyran substituents 

compared to the homodimeric (CHCl3)⸦(all-SP-1)2 assembly (Figure 4.5b). Most likely, this 

effect causes an increase in the thermodynamic stability of the former assembly. In the 
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heterodimer, the aromatic protons ortho to the urea groups of the two halves appear as sharp 

diastereotopic signals. This observation supports an increase in the energy barrier for the 

interconversion between the two senses of rotation of the unidirectional oriented urea groups 

owing to stronger hydrogen bonds. The formation of the heterocapsular assembly was also 

supported by the results of a DOSY experiment (Figure 4.5a). The calculated diffusion 

coefficient for 3⸦(all-SP-1·2) is 4.36 ± 0.02 x 10-10 m2/s (-logD = 9.36). This value 

corresponds to a spherical diffusing particle with a radius of 12.1 Å. The volume of the 

spherical diffusing particle fits nicely with the energy-minimized structure of the 

heterocapsule 3⸦(all-SP-1·2) (Figure 4.5b).49 

 

Figure 4.5 a) Selected regions of the pseudo-2D plot of the DOSY experiment performed with the 

solution containing 3⊂(all-SP-1·2). Double primed letters and numbers correspond to proton signals of 

bound components. See Scheme 4.2 for proton assignment. b) Energy-minimized structure (MM3) of 

(CH2Cl2·3)⊂(all-SP-1·2) superimposed to a sphere with a radius of 12.1 Å centered at the geometrical 

centre of the capsule. The halves of the capsule are depicted in stick representation and the encapsulated 

guests as CPK models. The allylic chains in 2 were pruned to methoxy groups, and non-polar hydrogens 

of 1 and 2 were omitted for clarity. 
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4.2.5 Encapsulation studies of Me4X+ salts with all-SP-1 

Similarly to the previous chapter, we carried out encapsulation studies using all-SP-1 and 

tetramethyl-onium salts, Me4X+ salts (X = N, P). The addition of incremental amounts of 

Me4N+BArF- (8) to a millimolar dichloromethane solution of all-SP-1 produced a sharpening 

of all proton signals belonging to the tetraurea (Figure 4.6). In the presence of 0.5 molar 

equiv. of 8, a broad singlet appeared in the upfield region of the 1H NMR spectrum, δ = 0.14 

ppm. The signal was assigned to the methyl protons of the encapsulated cation (Me4N+’) in 

the dimeric assembly. Upon the addition of more than 0.5 equiv. of 8 to the solution, we 

detected the singlet belonging to free Me4N+ resonating at δ = 3.19 ppm (Δδ = 3.05 ppm). 

We attribute the broadening of the methyl signal of the species Me4N+’ to the presence of 

multiple isomers of the hydrogen-bonded capsular dimer. The rotation barrier of the single 

bond connecting the spiropyran fragments to the ureas on the receptor’s scaffold might 

increase in the capsular dimer and, as mentioned above, the energy barrier for the 

racemization of the spiropyran units may also be modified. 

 

Figure 4.6 Selected regions of the 1H NMR (CD2Cl2, 400 MHz) spectra at 298 K of a 1 mM solution 

of receptor all-SP-1 + a) 0; b) 0.25; c) 0.5; d) 1 and e) 1.5 equiv. of 8. Primed letters and numbers 
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correspond to proton signals of bound components. 1,3,5-tris(trifluoromethyl)benzene was used as 

internal standard (I.S.). * Residual solvent peaks. 

Next, we titrated a millimolar dichloromethane solution of all-SP-1 with Me4P+BArF- (7). 

The addition of incremental amounts of 7 produced a sharpening of all proton signals 

belonging to the receptor. This result contrasts with our findings described in chapter 3 upon 

titrating the tetra-HTI tetraurea calix[4]arene with 7, for which we did not observe any 

evidence of the formation of the dimeric assembly. In the presence of 0.5 molar equiv. of 7, 

a broad doublet appeared in the highly upfield region of the 1H NMR spectrum, δ = -0.90 

ppm. The signal was assigned to the methyl protons of the encapsulated cation (Me4P+’). We 

also detected the doublet belonging to the methyl protons of free Me4P+ resonating at 1.90 

ppm (Δδ = 2.80 ppm). When 1 equiv. of 7 was added to the solution, the peak for the free 

Me4P+ cation was observed at 25.8 ppm in its 31P NMR spectrum. When a more concentrated 

CD2Cl2 solution of all-SP-1 was prepared (2 mM) and 1 equiv. of 7 was added to the solution, 

the resulting 1H NMR spectrum displayed a set of well-resolved proton peaks (Figure 4.7). 

Notably, the doublet belonging to the included cation appearing at -0.87 ppm was now sharp 

and indicative of the formation of the homocapsular assembly 7⊂(all-SP-1)2. The phosphorus 

signal for the encapsulated cation was also evident in the corresponding 31P NMR spectrum 

resonating at δ = 24.6 ppm (Figure 4.7, inset). 

 

Figure 4.7 Selected regions of the 1H and 31P NMR (CD2Cl2, 400 and 162 MHz) spectra at 298 K of a 

2 mM solution of receptor all-SP-1 + 1 equiv. of 7. Primed letters and numbers correspond to proton 

signals of bound components. * Residual solvent peaks. 

In the experiments above, the detection of the Me4P+ free in solution in the presence of 0.5 

equiv. of 7 indicated that the self-assembly of the dimeric capsule was not quantitative. 
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4.2.6 Photochemical and acid-base modulation of the SP-to-MC isomerization processes of 

the tetraurea all-SP-1 assembled in homo- and heterocapsules. 

The light-irradiation experiments of the homocapsule (all-SP-1)2 and heterocapsule 3⊂(all-

SP-1·2) in chloroform and dichloromethane solutions, respectively, were monitored using 

UV/Vis and 1H NMR spectroscopy. For the UV/Vis experiments, aliquots (100 µl) of 

thermally equilibrated 1 mM solutions of the capsular assemblies, previously analyzed by 1H 

NMR spectroscopy, were taken and diluted to 2 mL in a quartz cuvette affording 50 µM 

solutions. Based on literature precedents,60 we assume that the dimerization constant is larger 

than 108 M-1. For this reason, at 50 µM concentration of the tetraurea we estimate its 

quantitative assembly into the dimer. It is also known that some tetra-aryl tetraurea 

calix[4]arene derivatives dimerize exclusively at the dilution limit of the 600 MHz NMR 

spectrometer (i.e. 72 µM in CDCl3). The UV/Vis absorption spectra of the initial solution 

and after irradiation at 365 nm up to 6 (Figure 4.8a) or 10 min (Figure 4.8b) (PSSs) were 

recorded. The solutions changed from colorless to red or pink after 2 min of irradiation. The 

absorption spectra of (all-SP-1)2 in CHCl3 showed the appearance of two intense bands at 

393 and 490 nm upon irradiation with 365 nm light. Similarly to the results obtained for 1 in 

(CH3)2SO solution (vide supra), the observation of these two bands is consistent with the 

formation of open-ring merocyanine isomer units in 1. The photoirradiation of 3⊂(all-SP-

1·2) also produced absorption spectra changes characteristic of the formation of open-ring 

merocyanines units in the calix[4]arene half. 

 

Figure 4.8 UV/Vis absorption spectra of a 50 µM solution of a) (all-SP-1)2 in CDCl3 and b) 3⊂(all-

SP-1·2) in CD2Cl2 light-irradiated at 365 nm at different times. 
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Owing to the observation of the earmarks of the spiropyran ring-opening to the merocyanines 

by UV/Vis spectroscopy, we monitored the photoirradiation experiments of the homo- and  

heterocapsular assemblies using 1H NMR spectroscopy.61 The irradiation at 365 nm up to 7 

min of a millimolar chloroform solution of homocapsule (all-SP-1)2 produced a general 

broadening and decrease in intensity in the diagnostic signals of the assembly. The irradiation 

at 365 nm for 5 min of the 3⊂(all-SP-1·2) capsular assembly did not lead to changes in its 

proton signals. This result indicates that the heterocapsule 3⊂(all-SP-1·2) is stable and 

persists in solution after exposure to UV light. The photochromic SP units, probably acting 

as “inert filters”, absorb the high-energy photons and form open-ring merocyanines to a 

reduced extent or dissipate the energy through a different pathway, either way protecting the 

other components of the assembly from photodegradation. 

Next, we investigated the acid-base modulation of the SP-to-MC isomerization occurring in 

the spiropyran substituents of all-SP-1 assembled as both the homo- and heterodimeric 

capsules. Rudkevich and co-workers62 reported that the addition of up to 20 equiv. of 

trifluoroacetic acid to a solution of a polymeric capsule derived from a bis-tetraurea 

calix[4]arene did not break the self-assembling polymeric chain. Moreover, it is well-known 

that the acidochromism of 6’-nitroSP requires large amounts of trifluoroacetic acid. It 

manifests in small bathochromic shifts and results in the formation in minor amounts of the 

protonated MCH+ species.63,64 On the contrary, in polar solvents, the use of strong acids like 

trifluroromethanesulfonic (TfOH; pKa = 0.7) in near to stoichiometric amounts results in the 

extensive formation of the Z-isomer of the MCH+ form. The addition of 8 equiv. of TfOH to 

a 2 mM CDCl3 solution of the homodimer (all-SP-1)2 (1 equiv. of TfOH per spiropyran 

group) induced the colorless solution to adopt a deep red color. The analysis of the mixture 

using 1H NMR spectroscopy displayed significant broadening of the proton signals all-SP-1 

(Figure 4.9b). Taken together, these results suggested the isomerization of, at least some, of 

the SP substituents of all-SP-1 into the open MCH+-form. The exact quantification of the 

extent of the isomerization process is not trivial owing to signal broadening and reduced 

changes in chemical shifts. Likewise, it is difficult for us to ascertain if the SP-1 derivatives 

enriched with MCH+ substituents are capable to assemble into capsular dimeric aggregates. 

Most likely, an equilibrium between dimeric and oligomeric aggregates deriving from the 

MCH+ enriched SP-1 units is established in solution producing the observed broadening of 

the proton signals. We hypothesized that the MCH+ units of 1 have a strong tendency to 

aggregate and form large polymeric assemblies that are not detectable by 1H NMR 
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spectroscopy. We support this hypothesis in the known tendency of merocyanine and cyanine 

dyes to aggregation.65 The addition of base (8 equiv. of dry triethylamine to the above 

solution) restored the initial color and produced a 1H NMR spectrum displaying the 

diagnostic proton signals of the (all-SP-1)2 dimeric capsule (Figure 4.9c). This result 

evidenced the reversibility of the acid/base induced SP-to-MC isomerization and the 

chemical stability of the multiple isomers of the tetraurea calix[4]-arene 1 in the employed 

acid/base conditions.  

 

Figure 4.9 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a 2 mM solution of homocapsule (all-SP-

1)2 treated with a) 0, b) 8 equiv. of TfOH and c) 8 equiv. of Et3N. 1,3,5-tris(trifluoromethyl)benzene 

was used as internal standard (I.S.). See Scheme 4.2 for proton assignment.* Residual solvent peaks. 

The acid/base modulation of the SP-to-MC isomerization for (all-SP-1)2 was also monitored 

by using UV/Vis spectroscopy (Figure 4.10). Briefly, the addition of TfOH to the solution of 

(all-SP-1)2 produced the increase of the absorption band centered at 393 nm and the 

emergence of a new band with a maximum at 510 nm. The observed spectral changes are in 

agreement with the isomerization of the SP-substituents in all-SP-1 into the open-ring 

protonated MCH+-counterparts, thus, putatively producing all-MCH+-1 or a mixture of 

isomers of 1 enriched with MCH+ units. The subsequent addition of triethylamine restored 

the absorption spectrum assigned to (all-SP-1)2. 
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Figure 4.10 Normalized UV/Vis absorption spectra of (all-SP-1)2 in chloroform (50 µM): initial 

solution (black); treatment with 8 equiv. of TfOH (red) and neutralization with 8 equiv. of Et3N (green). 

The spectra were normalized to the value of maximum absorbance of (all-SP-1)2 (ca. 338 nm). 

An analogous acid/base modulation of the SP-to-MCH+ isomerization of the substituents of 

1 was performed starting from the heterodimeric 3⊂(all-SP-1·2) capsule in dichloromethane 

solution. In this case, the 1H NMR spectrum of the solution acquired after the addition of 

TfOH (4 equiv.) still showed a set of sharp and well-defined proton signals of the 

heterodimeric capsule (Figure 4.11). Nevertheless, some broadened proton signals were also 

evident in the baseline of the 1H NMR spectrum. Most likely, some of the added equiv. of 

TfOH acid protonated other basic centers of the assembly in addition to the SP-units. The 

observation of a broad singlet, resonating at δ = 2.95 ppm, was assigned to the partially 

protonated N-oxide 3 released to the bulk solution. The observation of two separate signals 

for the methyl protons of released and encapsulated N-oxide 3 indicated that they are involved 

in a chemical exchange process that is slow on the chemical shift timescale. On the other 

hand, the appearance of a broad and downfield shifted signal for the N-oxide 3 released to 

the bulk solution supports that the chemical exchange between the protonated and non-

protonated forms is fast on the same timescale.  
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Figure 4.11 1H NMR (CD2Cl2, 400 MHz) spectra at 298 K of a 2 mM solution of heterocapsule 3⊂(all-

SP-1∙2) treated with a) 0, b) 4, c) 8 equiv. of TfOH and d) 4 equiv. of Et3N. Double primed letters and 

numbers correspond to proton signals of bound 3. 1,3,5-tris(trifluoromethyl)benzene was used as 

internal standard (I.S.). * Residual solvent peaks. 

Based on the integral values, we estimated that the ratio of released and encapsulated N-oxide 

3 was 55:45. Because the singlet of the methyl protons of the encapsulated N-oxide 3 shifted 

slightly downfield after the addition of TfOH acid, we must conclude that partially protonated 

capsular dimeric species in addition to 3⊂(all-SP-1·2) might be present in solution. Most 

likely, the disassembly of the heterodimeric aggregates requires and extensive protonation of 

the SP units of 1, i.e. dimeric assemblies having one or more MCH+ units are 

thermodynamically stable (i.e. 3⊂(1MCH+-3SP-1·2)). The addition of 4 equiv. more of 

TfOH acid produced a significant increase and downfield shift of the broad singlet assigned 

to the N-oxide 3 in the bulk solution. This observation was concomitant with the broadening 

of the signals assigned to the two halves of the dimeric assemblies. This result further 

confirmed that the increase of MCH+ units in 1 reduces the thermodynamic stability of the 

resulting dimers and induces the formation of non-capsular aggregates.66 Finally, the addition 

of 8 equiv. of Et3N to the latter solution produced a new set of sharpened proton signals that 

coincided with those of the 3⊂(all-SP-1·2) capsule.67 The obtained results demonstrated the 
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reversibility of the acid-base modulation of the SP-to-MCH+ isomerization process of the 

substituents of 1 and the stability of the capsular component to the used conditions. 

4.3 Conclusions 

In this chapter, we reported the synthesis of an unprecedented tetraurea calix[4]arene 

decorated with four upper rim spiropyran groups. The synthetized calix[4]arene self-

assembles into a dimeric capsule in chloroform solution. The response of the homodimeric 

capsule to light-irradiation was only detected at micromolar concentrations by UV-Vis 

spectroscopy. However, the spiropyran groups of the calix[4]arene are isomerized to 

protonated merocyanines at both milli- and micromolar concentrations using TfOH. The 

tetraspiropyran tetraurea calix[4]arene all-SP-1 and tetraurea calix[4]pyrrole 2 form a 

heterodimeric capsular assembly with one molecule of trimethylamine N-oxide (3) and one 

molecule of solvent in dichloromethane solution. The photo- and acid-behavior of the 

heterocapsule 3⊂(all-SP-1·2) were also studied and suggest that the heterocapsule is 

disintegrated by the addition of a strong acid causing the release of the guest to the bulk 

solution. The initial state of the system is restored by addition of a suitable base. The work 

contained in this chapter constitutes an extension to our previous findings on hydrogen-

bonded homo- and heterodimeric capsules, and explores the effect of upper rim substitution 

of the calix[4]arene scaffold with photo- and acidochromic spiropyran fragments on its self-

assembly behavior in chlorinated solvents. 

4.4 Experimental section 

4.4.1 General information and instrumentation 

All syntheses were carried out using chemicals as purchased from commercial sources unless 

otherwise noted. All commercial solvents and chemicals were of reagent grade quality and 

were used without further purification except as noted. Dry solvents were taken from a 

solvent system MB SPS 800 (MBraun) and freshly distilled unless otherwise stated. Thin‐

layer chromatography (TLC) was performed with DC‐Alufolien Kieselgel 60 F254 (Merck) 

or neutral Al2O3 F254 (Sigma‐Aldrich). Column chromatography was performed with silica 

gel 60 Å for chromatography (Sigma‐Aldrich), or active neutral Al2O3 90 for chromatography 

(Merck). Routine 1H and 13C NMR spectra were recorded on Bruker Avance 300 (300 MHz 
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for 1H NMR), Avance 400 (400 MHz for 1H NMR) or Avance 500 (500 MHz for 1H NMR) 

ultrashield spectrometers, or on a Bruker Avance III 500 with a QNP cryoprobe. Deuterated 

solvents (Euriso-Top) used are indicated in the characterization and chemical shifts are given 

in ppm. Residual solvent peaks were used as reference. All NMR J values are given in Hz. 

Mass Spectrometry experiments were performed on a MicroTOF, Bruker Daltonics ESI. The 

diagnostic peaks are reported in m/z units. IR spectra were recorded on a Bruker Optics FT‐

IR Alpha spectrometer equipped with a DTGS detector, KBr beamsplitter at 4 cm‐1 resolution 

using a one bounce ATR accessory with diamond windows. Melting points were measured 

on a MP70 Melting Point System instrument from Mettler Toledo. Irradiation experiments 

were conducted using a custom-made high power light source purchased from Sahlmann 

Photochemical Solutions and consisting of 3 LED‐diodes from Nichia (365 nm, 241.5 

mW∙cm‐2). UV/Vis spectra were recorded on a Shimadzu UV‐2401PC spectrophotometer 

(equipped with a photomultiplier detector, double beam optics and D2 and W light sources). 

For the photo- and acidochromic studies, thermally stabilized millimolar solutions of the 

samples were analyzed by 1H NMR technique. Afterwards, 10÷100 µl aliquots were taken 

and diluted to 2 mL in a quartz cuvette to afford ca. 50 µM solutions of the compounds in 

different solvents. UV/Vis absorption spectra of the plain samples, after acid/base additions 

and/or after irradiation at 365 nm were recorded in a quartz cuvette (10 mm path length). 

Solvents for spectroscopy are indicated in the characterization and were obtained from 

Merck. For the 1H DOSY NMR experiments, working solutions of 1 and 2 were prepared by 

directly weighting the required amount of solid into the NMR tube. 1H DOSY NMR 

experiments were performed on samples prepared as stated above and fixing the acquisition 

parameters to D20 = 0.10 s and P30 = 2 ms. The data were analyzed with the Dynamics 

Centre software (Bruker). The diffusion coefficient (D) value of each diagnostic signal was 

determined by applying a one-component exponential fit. The reported D values are an 

average of the D values of at least four different proton signals of two different experiments, 

giving the corresponding standard deviations. For the theoretical size, computational models 

were obtained by MM3 energy minimization (SCIGRESS FJ 2.6). Then, the structure 

centroid was calculated (Biovia Discovery Studio Visualizer v16) and used as the centre of 

an imaginary sphere with the diameter calculated from the corresponding DOSY data using 

the Stokes-Einstein equation: 

𝑅𝐻 =
𝑘𝐵𝑇

6𝜋𝑛𝐷
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were RH is the Stokes radius, kB the Boltzmann constant (1.38·10-23 J·K-1), T the temperature 

(298 K), n the viscosity of the solvent (CHCl3 (298 K)= 5.36·10-4 Pa·s; CH2Cl2 (298 K)= 

4.13·10-4 Pa·s) and D the diffusion coefficient. 

4.4.2 Synthetic procedures 

Tetra-amino calix[4]arene 6, tetracarbamate calix[4]arene 5 and Me4P+BArF- 7 were 

synthesized following the methodology described in chapter 3.35,39 

Tetraspiropyran tetraurea calix[4]arene SP-1: tetracarbamate calix[4]arene 5 (50 mg, 0.035 

mmol, 1 equiv.) was added to an oven-dried 10 mL Schlenk tube purged 3x with Ar, and 

dissolved in 2 mL anhydrous DMF under Ar atmosphere. The SP-amine 4 (60 mg, 0.2 mmol, 

5.8 equiv.) was dissolved in 2 mL anhydrous DMF and added dropwise to the tube under Ar 

flow. Finally, freshly distilled Et3N (28 μl, 0.2 mmol, 5.8 equiv.) was added dropwise to the 

solution. The yellow solution was left stirring at RT protected from light, equipped with an 

Ar balloon. After 12 h the reaction was stopped, and 10 mL of HPLC DCM were added to 

the reaction vessel. The solution was transferred to a small extraction funnel. The organic 

phase was washed with 4% aq. NaHCO3 solution (4x 10 mL) to remove p-nitrophenolate 

until the aqueous phase was clear, and citric acid 1 M solution (1x 10 mL) to remove residual 

Et3N and excess amine. The organic blood red phase was again washed with 4% aq. NaHCO3 

(1x 10 mL) and finally with water (1x 10 mL). The light brown organic phase was dried over 

sodium sulfate and under reduced pressure to leave around 0.5 mL DCM. MeOH was added 

dropwise to the brown solution, and slowly a grey dispersion appeared. The suspended liquid 

was removed by filtration in vacuo, the solid collected and left drying overnight under high 

vacuum (48 mg, 67% yield). Rf = 0.37 (CH2Cl2:CH3OH 99:1). M.p. = >230 °C (decompose). 

1H NMR ((CD3)2SO, 500 MHz) δ (ppm): 8.11 (s, 4H); 8.09 (s, 4H); 7.22 (s, 4H); 7.08 (t, J = 

7.8 Hz, 4H); 7.06 (d, J = 7.2 Hz, 4H); 6.95 (dd, J = 8.9, 2.3 Hz, 4H); 6.93 (d, J = 10.2 Hz, 

4H); 6.78 (s, 8H); 6.75 (t, J = 7.3 Hz, 4H); 6.55 (d, J = 8.6 Hz, 4H); 6.52 (d, J = 7.7 Hz, 4H); 

5.73 (d, J = 10.2 Hz, 4H); 4.32 (d, J = 12.0 Hz, 4H); 3.80 (s, 8H); 3.08 (d, J = 12.0 Hz, 4H); 

2.61 (s, 12H); 1.90 (s, 8H); 1.38 (s, 16H); 1.18 (s, 8H); 1.06 (s, 8H); 0.93 (s, 12H). 13C {1H} 

NMR (CDCl3, 126 MHz) δ (ppm): 152.6; 151.0; 148.9; 147.8; 136.3; 134.3; 133.5; 132.4; 

129.4; 127.3; 121.3; 120.2; 119.7; 118.8; 118.4; 118.1; 117.0; 114.2; 106.7; 103.4; 74.8; 51.2; 

30.7; 29.4; 28.5; 27.9; 25.6; 22.3; 19.8; 14.0. FT‐IR ν (cm‐1) = 3368 (urea N-H stretching); 

2955 (C-H stretching); 1666; 1606; 1539; 1483 (aromatic C=C stretching); 1376; 1301; 1206; 
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1119; 1016; 967; 873; 814; 739; 503. HRMS (MALDI/+) m/z: [M+H]+ Calcd. for 

C128H141N12O12: 2038.0786; found: 2038.0759. 

Tetraurea calix[4]pyrrole 2 (tuC[4]P) was prepared according to a previously reported 

procedure.58 1H NMR ((CD3)2CO, 400 MHz) δ ppm: 8.79 (s, 4H); 8.15 (s, 4H); 7.98 (s, 4H); 

7.34 (d, J = 8.1 Hz, 8H); 7.16 (s, 4H); 7.09 (t, J = 8.4 Hz, 4H); 6.94 (d, J = 7.7 Hz, 4H); 6.97 

(d, J = 8.4 Hz, 8H); 6.52 (dd, J = 8.1, 1.4 Hz, 4H); 5.98 (s, 8H); 5.81 (m, 4H); 4.99 (dd, J = 

17.1, 1.7 Hz, 4H); 4.90 (d, J = 10.2 Hz, 4H); 3.91 (t, J = 6.3 Hz, 8H); 2.81 (m, 8H); 1.87 (s, 

12H); 1.72 (quint., J = 7.3 Hz, 8H); 1.41 (m, 24H). The 1H NMR spectrum is in total 

agreement with what is reported in the literature. 

1',3',3'-trimethylspiro[2H-1-benzopyran-2,2′-(2H)-indol]-6-amine SP-4 was synthesized 

adapting a reported procedure:68 1′,3′-dihydro-1′,3′,3′-trimethyl-6-nitrospiro[2H-1-

benzopyran-2,2′-(2H)-indole] (BIPS) (210 mg, 0.65 mmol, 1 equiv.) and stannous dichloride 

dihydrate (728 mg, 3.22 mmol, 4.95 equiv.) were added to a 25 mL amber glass 2-neck round 

bottom flask purged 3x with argon. Then, the reagents were dissolved in 4 mL of anhydrous 

EtOH. The reaction mixture was refluxed and magnetically stirred under argon flow. After 2 

h the reaction was stopped. The crude was rinsed with EtOH and filtered under vacuum to 

remove the unreacted stannous dichloride. The resulting turbid red solution was poured into 

a stirred mixture of 10 mL 1 N aq. NaOH and 5 mL CHCl3. The solution became green and 

it was poured into a 100 mL separatory funnel. After shaking, the organic layer was separated 

and the aqueous layer extracted with CHCl3 (1x 50 mL). The combined chloroform solutions 

were washed with water (2x 50 mL) and dried over sodium sulfate. The resulting brownish 

solution was dried in vacuo to afford a brown oil (152 mg, 80% yield). The amine is air- and 

light-sensitive and was used for the next step without further purification. Rf = 0. 66 (neutral 

Al2O3, EtOAc:Hex 1:1). 1H NMR (CDCl3, 400 MHz) δ (ppm): 7.18 (td, J = 7.7, 1.3 Hz, 1H); 

7.08 (dd, J = 7.2, 1.1 Hz, 1H); 6.84 (td, J = 7.7, 1.3 Hz, 1H); 6.76 (d, J = 10.2 Hz, 1H); 6.56 

(t, J = 8.4 Hz, 1H); 6.52 (d, J = 7.7 Hz, 1H); 6.49 (dd, J = 8.3, 2.7 Hz, 1H); 6.45 (d, J = 2.7 

Hz, 1H); 5.67 (d, J = 10.2 Hz, 1H); 3.36 (br s, 2H); 2.73 ppm (s, 3H); 1.32 (s, 3H); 1.17 (s, 

3H). 

Tetramethylammonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate 8 (Me4N+BArF-): a 

solution of sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (Na+BArF-, 362 mg, 0.41 

mmol, 1.1 equiv.) in 4 ml of anhydrous methanol was added dropwise to a 3 ml solution of 

tetramethylammonium chloride (38 mg, 0.35 mmol, 1 equiv.) in the same solvent, under 
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argon flow. The colorless solution was stirred at room temperature and equipped with an Ar 

balloon. After 7 h the reaction was stopped. The solution was dried under reduced pressure 

and redissolved in 5 ml of Milli-Q water. The mixture was sonicated to generate a white 

suspension. The product was filtered out and washed several times with Milli-Q water, then 

dried under high vacuum to afford a white solid (271 mg, 83% yield). 1H NMR (CD2Cl2, 400 

MHz) δ (ppm): 7.76 (br s, 8H); 7.61 (s, 4H); 3.19 (s, 12H). 13C {1H} NMR (CD2Cl2, 101 

MHz) δ (ppm): 162.16 (q, 1JB-C = 50 Hz); 135.21; 129.28 (q, 2JC-F = 33 Hz); 126.37; 123.66; 

120.96; 117.92; 57.13. 19F {1H} NMR (CD2Cl2, 376 MHz) δ (ppm): -62.90. 11B {1H} NMR 

(CD2Cl2, 128 MHz) δ (ppm):-6.67. 

4.4.3 Figures and tables 

 

Figure 4.12 1H NMR ((CD3)2SO, 500 MHz) of compound SP-1. * Residual solvent peaks. 

 

Figure 4.13 13C NMR ((CD3)2SO, 126 MHz) of compound SP-1. * Residual solvent peaks. 
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Figure 4.14 1H NMR ((CD3)2CO, 400 MHz) of a 1 mM solution of compound 2. * Residual solvent 

peaks. 

 

 

Figure 4.15 1H NMR (CDCl3, 400 MHz) of 1',3',3'-trimethylspiro[2H-1-benzopyran-2,2′-(2H)-indol]-

6-amine SP-4. * Residual solvent peaks. 

 

 

Figure 4.16 1H NMR (CD2Cl2, 400 MHz) of Me4N+BArF- 8. * Residual solvent peaks. 
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Figure 4.17 13C NMR (CD2Cl2, 101 MHz) of Me4N+BArF- 8. * Residual solvent peaks. 

 

Figure 4.18 Selected aromatic region of the 1H COSY NMR spectrum ((CD3)2SO, 500 MHz) of SP-1 

showing the diagnostic cross‐peaks for the indicated protons. * Residual solvent peaks. 
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Figure 4.19 Selected aromatic region of the 1H NOESY NMR spectrum ((CD3)2SO, 500 MHz) of SP-

1 showing the diagnostic cross‐peaks for the indicated protons. * Residual solvent peaks. 

 

Figure 4.20 a) Experimental and b) theoretical isotopic distributions for [M+H]+ of SP-1. The exact 

mass for the monoisotopic peak in a) and b) is indicated. 
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Figure 4.21 Normalized UV/Vis absorption spectra of a 50 µM CD2Cl2 solution of 3⊂(all-SP-1∙2) 

before (black) and after treatment with 4 equiv. of TfOH (orange), 8 equiv. of TfOH (red) and then with 

4 equiv. of Et3N (blue). The spectra were normalized to the value of maximum absorbance of the 

heterocapsule 3⊂(all-SP-1∙2) (ca. 338 nm). 

 

 

Figure 4.22 1H NMR (CD2Cl2, 400 MHz) spectrum at 298 K of a 1.1 mM solution of SP-1. * Residual 

solvent peaks. 
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Figure 4.23 1H NMR (CD2Cl2, 400 MHz) spectra at 298 K of a 1.3 mM solution of a) receptor 2; b) 2 

+ 0.5 equiv. of 3; c) 2 + 0.75 equiv. of 3; d) 2 + 1 equiv. of 3 (32⊂22). Primed letters and numbers 

correspond to proton signals of bound components. 1,3,5-tris(trifluoromethyl)benzene was used as 

internal standard (I.S.). * Residual solvent peaks. 
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Figure 4.24 Selected region of the 1H COSY NMR spectrum (CD2Cl2, 500 MHz) of 3⊂(all-SP-1∙2) 

showing the diagnostic cross‐peaks for the indicated protons. Double primed letters and numbers 

correspond to proton signals of bound components involved in the heterocapsular assembly 3⊂(all-SP-

1∙2). 1,3,5-tris(trifluoromethyl)benzene was used as internal standard (I.S.). * Residual solvent peaks. 

 

 

Figure 4.25 Selected region of the 1H NOESY NMR spectrum (CD2Cl2, 500 MHz) of 3⊂(all-SP-1∙2) 

showing the diagnostic cross‐peaks for the indicated protons. Double primed letters and numbers 

correspond to proton signals of bound components involved in the heterocapsular assembly 3⊂(all-SP-

1∙2). 1,3,5-tris(trifluoromethyl)benzene was used as internal standard (I.S.). * Residual solvent peaks. 
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Figure 4.26 (left) 1H pseudo 2D-plot DOSY (500 MHz with cryoprobe, (CDCl3, 298 K, D20 = 0.10 s; 

P30 = 2.0 ms) of (all-SP-1)2 (2 mM). (right) Top: energy minimized molecular model (MM3) of (all-

SP-1)2. The host is depicted in stick representation and the encapsulated guest as CPK model. Non-

polar hydrogen atoms of 1 were removed for clarity. The hydrodynamic radius rH defines a green sphere 

with diffusion coefficient D (Stokes-Einstein equation) from the respective 1H DOSY NMR 

experiments in CDCl3: 12.18 ± 0.44 Å. Bottom: fit of the decay of diagnostic proton signal e’ of the 

capsular assembly to a mono-exponential function using Dynamics Center from Bruker. Errors are 

indicated as standard deviations. Primed letters correspond to proton signals of (all-SP-1)2. * Solvent 

residual peaks. 

 

Figure 4.27 (left) 1H pseudo 2D-plot DOSY (500 MHz, (CD2Cl2, 298 K, D20 = 0.10 s; P30 = 2.0 ms) 

of 32⊂22 (1.9 mM). (right) Top: energy minimized molecular model (MM3) of 32⊂22. The allylic chains 

in 2 were pruned to methoxy groups and non-polar hydrogen atoms were removed for clarity. 

Encapsulated guests are represented as CPK models. The hydrodynamic radius rH defines a green 

sphere with diffusion coefficient D (Stokes-Einstein equation) from the respective 1H DOSY NMR 

experiments in CD2Cl2: 10.02 ± 1.50 Å. Bottom: fit of the decay of the diagnostic β-pyrrole proton 
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signal 2’ of 2 in the capsular assembly to a mono-exponential function using Dynamics Center from 

Bruker. Errors are indicated as standard deviations. Primed letters correspond to proton signals of 

32⊂22. * Solvent residual peaks. 

 

Figure 4.28 (left) 1H pseudo 2D-plot DOSY (500 MHz, (CD2Cl2, 298 K, D20 = 0.10 s; P30 = 2.0 ms) 

of 3⊂(all-SP-1∙2) (2 mM). (right) Top: energy minimized molecular model (MM3) of 3⊂(all-SP-1∙2). 

The allylic chains in 2 were pruned to methoxy groups and non-polar hydrogen atoms of 1 and 2 were 

removed for clarity. Encapsulated guests are represented as CPK models. The hydrodynamic radius rH 

defines a green sphere with diffusion coefficient D (Stokes-Einstein equation) from the respective 1H 

DOSY NMR experiments in CD2Cl2: 12.23 ± 0.05 Å. Bottom: fit of the decay of the diagnostic proton 

signal 9’’ of 2 in the capsular assembly to a mono-exponential function using Dynamics Center from 

Bruker. Errors are indicated as standard deviations. Double primed letters correspond to proton signals 

of 3⊂(all-SP-1∙2). * Solvent residual peaks. 

 

Capsule D (10-10 m2/s) -logD rH (Å) PC (%) 

(all-SP-1)2 3.35 ± 0.12 9.47 12.18 ± 0.44 42 

32⊂22 5.33 ± 0.8 9.27 10.02 ± 1.50 47 

3⊂(all-SP-1∙2) 4.36 ± 0.02 9.36 12.13 ± 0.05 63 

Table 4.1 Diffusion coefficient (D) values obtained from the 1H DOSY NMR experiments. 

Hydrodynamic radius (rH) values corresponding to an imaginary sphere as calculated (Stokes-Einstein 

equation) from the respective experimental D values. Errors in D and rH are indicated as standard 

deviations. Packing coefficients (PC = (Vguest/s/Vhost/s) x 100) of the capsular assemblies obtained from 

the energy-minimized structures (MM3). The internal volumes of the hosts and the external volumes 

of the guests were determined using the Swiss PDB Viewer software. 
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Figure 4.29 Selected aromatic region of the 1H NMR ((CD3)2SO, 400 MHz) spectra at 298 K of a 

millimolar solution of SP-1 irradiated at 365 nm for a) 0; b) 5, c) 10 min and d) after thermal 

equilibration at 60 ºC in the dark for 12 h. 

 

 

Figure 4.30 Selected aromatic region of the 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a 1.1 

millimolar solution of homocapsule (all-SP-1)2 irradiated at 365 nm for a) 0; b) 1, c) 5 and d) 7 min. 

Primed letters and numbers correspond to proton signals of bound components. * Residual solvent 

peaks. 
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Figure 4.31 1H NMR (CDCl3, 400 MHz) spectrum at 298 K of a 1 mM solution of heterocapsule 

3⊂(all-SP-1∙2) photoirradiated at 365 nm for 5 min. 1,3,5-tris(trifluoromethyl)benzene was used as 

internal standard (I.S.). * Residual solvent peaks. 

 

 

Figure 4.32 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a 1 mM solution of homocapsule 32⊂22 

treated with a) 0; b) 1; c) 4; d) 8 equiv. of TfOH and e) 8 equiv. of Et3N. Primed letters and numbers 

correspond to proton signals of bound 3. * Residual solvent peaks. 
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Figure 4.33 1H NMR (CDCl3, 400 MHz) spectra at 298 K of a 1 mM equimolar solution of 

homocapsule 32⊂22 and BIPS treated with a) 0; b) 1; c) 4; d) 8 equiv. of TfOH and e) 8 equiv. of Et3N. 

Primed letters and numbers correspond to proton signals of bound 3. * Residual solvent peaks. 

 

Figure 4.34 1H NMR ((CD3)2SO, 500 MHz) spectrum at 298 K of a photoirradiated mixture (365 nm) 

of 1 and 2 after centrifugation and separation from the supernatant, starting from an equimolar acetone 

solution of all-SP-1, 2 and 3. The blue circles represent signals of 1 and the orange squares those of 2. 

* Residual solvent peaks. 
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General conclusions 

This thesis deals with the design, synthesis and comprehensive studies of a series of inclusion 

complexes and capsular assemblies covalently incorporating stimuli-responsive 

hemithioindigo or spiropyran units in either the receptor’s or the guest’s scaffold. The general 

objective of the research work was the efficient coupling of the isomerization of the 

molecular switches with the binding affinity and the encapsulation properties of host-guest 

systems derived from calix[4]arene and calix[4]pyrrole macrocyclic scaffolds. 

In the first system, described in chapter 2, both the Z- and E-isomers of light-responsive HTI 

N-oxide guests formed highly thermodynamically and kinetically stable 1:1 complexes with 

a super aryl-extended calix[4]pyrrole in organic solvent. Surprisingly, the photoirradiation at 

450 nm of the Z-HTI⊂1 complexes produced mixtures enriched with the E-HTI⊂1 

counterparts and required extensive irradiation times to achieve the same levels of 

isomerization at the PSSs compared to the analogous experiments performed with the free Z-

HTIs. In this project, we were able to modulate the kinetics of the reversible Z/E 

photoisomerization of the two HTI guests by inclusion into the polar aromatic cavity of the 

receptor, whereas the Z/E HTI isomeric ratio remained unaffected by the inclusion. We were 

also expecting a substantial decrease in the binding affinity of the receptor towards the E-

HTIs with respect to the Z-isomers. However, the Ka values of all bound isomers were of the 

same order of magnitude (106 M-1), meaning that the number and nature of the different 

interactions between the host-guest counterparts were not significantly modified by the 

photoisomerization process. At millimolar concentration, the Z-to-E photoisomerization of 

the guests did not induce their detectable release to the bulk solution.  

The study of the photoisomerizable 1:1 inclusion complexes yielded valuable knowledge and 

know-how for devising related host-guest systems capable of efficient transport and release 

of cargo by application of a remote stimulus. We postulated that the modulation in the 

structure of the receptor, and not the guest, would provide the desired coupling. Accordingly, 

we designed hydrogen-bonded capsular dimers based on tetraurea calix[4]arene scaffolds 

equipped with four upper rim stimuli-responsive units.  

In chapter 3, we isolated two tetra-HTI tetraurea calix[4]arenes. Our findings on the 

photoisomerization and self-assembly behavior in a variety of non-polar organic solvents and 
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in the presence of templating guests showed that these containers experience reduced 

switching of the photoresponsive HTI units, as well as a lack of quantitative dimerization 

into well-defined discrete capsules. Overall, the tetra-HTI tetraureas prepared herein are not 

the ideal candidates for the construction of photoresponsive capsular architectures capable of 

light-controlled release of molecular cargo. 

Following a similar molecular design, in the last chapter we successfully synthesized an 

unprecedented light- and pH-responsive tetraspiropyran tetraurea calix[4]arene. The 

prepared tetraurea self-assembles into a homocapsule in chloroform solution or in 

dichloromethane using tetramethylphosphonium cation as the templating guest. Remarkably, 

in the presence of a calix[4]pyrrole counterpart and a suitable N-oxide template, the tetraureas 

experience a self-sorting process yielding exclusively the heterodimeric capsule including 

the N-oxide and one molecule of dichloromethane solvent. The SP/MC isomerization of the 

decorating units and the dimerization equilibrium are highly and inversely solvent-

dependent: non-polar organic solvents favor the self-assembly of the tetra-SP tetraurea 

capsules over the light-induced formation of merocyanines, which is achieved to a reduced 

extent. Although the SP/MC response to light-irradiation was not efficient, the acid-base 

modulation between the SP/MCH+ substituents using triflic acid and triethylamine was 

indeed effective towards the reversible capsular assembly/disintegration process at both 

micro- and millimolar concentrations, provoking the uptake and release of the N-oxide guest 

to the bulk solution. In conclusion, we were able to efficiently couple the acid-base modulated 

SP-to-MC isomerization of the appended switches to the assembly/disassembly processes of 

capsular dimers based on tetraurea scaffolds. Our results augur well for future studies of these 

assemblies as stimuli-responsive systems for the efficient transport of specific cargo. 
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List of abbreviations 

ACN  ―  Acetonitrile 

ATR  ―  Attenuated total reflectance 

BArF-  ―  Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate 

BIPS  ―  6’-Nitrospiropyran 

C[4]A  ―  Calix[4]arene 

C[4]P  ―  Calix[4]pyrrole 

CB[n]  ―  Cucurbit[n]uril 

CD[n]  ―  n-Membered cyclodextrin 

COSY  ―  Correlation spectroscopy 

CPK  ―  Corey-Pauling-Koltun space-filling model 

Cys  ―  Cysteine 

DASA  ―   Donor-acceptor Stenhouse Adduct 

DCM  ―  Dichloromethane 

DMF  ―  Dimethylformamide 

DTGS  ―  Deuterated triglycine sulfate 

DOSY  ―  Diffusion-ordered spectroscopy 

ESI  ―  Electrospray ionization 

EXSY  ―  Exchange spectroscopy 

FT-IR  ―  Fourier-transform infrared spectroscopy 

GOESY  ―  Gradient enhanced nuclear Overhauser effect 

GSH  ―  Glutathione 
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HCy  ―  Homocysteine 

HPLC  ―  High performance liquid chromatography 

HRMS  ―  High resolution mass spectrometry 

HTI  ―  Hemithioindigo 

IR  ―  Infrared spectroscopy 

ITC  ―  Isothermal titration calorimetry 

Ka  ―  Association constant 

LED  ―  Light emitting diode 

MALDI  ―  Matrix-assisted laser desorption/ionization 

MC  ―  Merocyanine 

MCH+  ―  Protonated merocyanine 

MM3  ―  Molecular Mechanics force field 

MS  ―  Mass spectrometry 

MV  ―  Methyl viologen 

NMC  ―  6’-Nitromerocyanine 

NMR  ―   Nuclear magnetic resonance 

NOE  ―  Nuclear Overhauser effect 

NOESY  ―  Nuclear Overhauser effect spectroscopy 

NSP  ―  6’-Nitrospiropyran 

ORTEP  ―  Oak Ridge thermal ellipsoid plot 

PBS  ―  Sodium perborate 

PC  ―  Packing coefficient 

PIP  ―  Piperidine 
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PSS  ―  Photostationary State 

QNP  ―  Quattro nucleus probe 

RT  ―  Room temperature 

SCXn  ―  Sulfonatocalix[n]arene 

SP  ―  Spiropyran 

TFA  ―  Trifluoroacetic acid 

THF  ―  Tetrahydrofuran 

TLC  ―  Thin-layer chromatography 

Tu  ―  Tetraurea 

UV  ―  Ultraviolet 

Vis  ―  Visible 
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