
Communication Reduction Techniques
in Numerical Methods and Deep Neural

Networks

Sicong Zhuang

Advisors: Dr. Marc Casas Guix
Dr. Eduard Ayguadé Parra

Department of Computer Architecture
Universitat Politècnica de Catalunya

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2019

Acta de calificación de tesis doctoral
Curso académico:

Nombre y apellidos

Programa de doctorado

Unidad estructural responsable del programa

Resolución del Tribunal

Reunido el Tribunal designado a tal efecto, el doctorando / la doctoranda expone el tema de la su tesis doctoral

titulada __

__.

Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del

tribunal, éste otorga la calificación:

NO APTO APROBADO NOTABLE SOBRESALIENTE

(Nombre, apellidos y firma)

Presidente/a

(Nombre, apellidos y firma)

Secretario/a

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

______________________, _______ de __________________ de _______________

El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la Escuela

de Doctorado, a instancia de la Comisión de Doctorado de la UPC, otorga la MENCIÓN CUM LAUDE:

SÍ NO

(Nombre, apellidos y firma)

Presidente de la Comisión Permanente de la Escuela de
Doctorado

(Nombre, apellidos y firma)

Secretario de la Comisión Permanente de la Escuela de
Doctorado

Barcelona a _______ de ____________________ de __________

Abstract

Parallelism sees an ever-growing adoption in an ever-expanding number of fields. Modern HPC
systems are designed to be massively parallel in mind where an immense amount of computational
units are available. Yet it proves to be difficult to design parallel algorithms because not all the regions
of the program can be parallelized. Furthermore, many problems can only be split into sub-problems
with inter-dependencies. The negative impact of communication is not negligible beyond merely a
couple of processes.

This thesis provides communication-reduction solutions on three problems in the field of numerical
methods and deep learning. We first set out to speed up one of the iterative Krylov methods, the
Conjugate Gradient Methods. This work intends to fuse iterations together and thus defer the need for
synchronization at the end of the fuse phase. This approach also impedes the application of some
error correction routines. This thesis explores the possibility to fuse iterations and its implication on
the convergence of the entire algorithm. Empirical evidences from the experiments indicate that it
achieves speedups without hampering the convergence of the algorithm.

We then move on to DNN training with multiple GPUs in which the up-to-date parameters stored
and updated on the hosting CPU has to be constantly transferred to each GPU at the beginning of
each batch. We propose to use a dynamic scheme that compresses the parameters to a lower precision
on the CPU side before the transfer takes place. This way it cuts the amount of data transfer while
the training on the GPU sides uses lower precision parameters. The compress rate is guided by a
heuristics metric and the approach proceeds to increment the precision of the parameters accordingly.
It provides competitive accuracy while outperforms our baseline in terms of training time.

We eventually strive to improve the training of DNNs in a distributed-memory system with
model parallelism using the message passing paradigm. By replicating the neurons on each process
once every two layers, we essentially cut the communication in half during both the forward- and
backward-propagation at the cost of a 25% increase in floating point computation. The trade-off turns
out to pay off according to our experiments and this approach is able to offer significant speedups
over the baseline approach where we naïvely split the neurons at each layer.

Acknowledgements

I would like to extend my gratitude and appreciation to my advisors Dr. Marc Casas and Dr. Eduard
Ayguadé, without their patience and guidance this thesis would not have been possible. I would also
like to thank Dr. Cristiano Malossi and Dr. Panagiotis Hadjidoukas from IBM Zürich Lab who, during
the course of our collaboration, gave me valuable feedbacks and insights that lead to the success of
my work. As well as for their hospitality during my month-long stay in Zürich that warmed a lone
traveler’s heart.

It has been a long five-year journey. One does not simply navigate through those times alone,
not to mention the place I call home is ten thousand km away. I want to thank those who were or
still are by my side giving me support, talking me through things when the getting is tough. My
appreciation goes to my bestie Kallia, along with Rajiv, Danai, Tomasz and David with whom we
shared invaluable moments and countless chuckles during the good part of my PhD. To Ariel, a close
friend, that we get along well enough to share an apartment with, that is not easy to come by. To Ilia
and Klaudia who we shared a close connection despite the little time we spent. Last but not least, a
group of people of all ages and from all walks of life yet have enough synergy to form a close group
that I came across over the final months of my PhD: Alex, Asaf, Ettore, John "El Cucho" Osorio,
Louis "LeDur" Ledoux, Robin and Tamara. A group that offers laughters and stories that makes an
otherwise stressful conclusion of a PhD a lot more entertaining.

This thesis has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493,
SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P),
by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the IBM/BSC
Deep Learning Center Initiative.

Table of contents

1 Introduction 1
1.1 Thesis Objectives and Contributions . 2

1.1.1 Communication Reduction in Conjugate Gradient Method 2
1.1.2 Communication Reduction in Training Deep Neural Network Models 3
1.1.3 Communication Reduction in Deep Learning Model Parallelism 3

1.2 Thesis Structure . 4

2 Background 5
2.1 Modern Parallel Systems . 5
2.2 Parallel Programming Models . 6

2.2.1 Shared-Memory Programming Model . 7
2.2.2 Task-based Parallel Programming Model 7
2.2.3 Distributed-Memory Programming Model 8

2.3 Numerical Methods For Systems of Linear Equations 9
2.3.1 Direct Methods . 9
2.3.2 Iterative Methods . 10

2.4 Deep Supervised Learning and Its Parallelization 11
2.4.1 Parallelism in Deep Learning . 12

3 Experimental Setup 15
3.1 Hardware Platforms . 15
3.2 OmpSs Programming Model . 16
3.3 Deep Learning Frameworks . 16

3.3.1 Tensorflow . 17
3.3.2 KANN . 17

3.4 Datasets . 17
3.4.1 SuiteSparse Matrix Collection . 17
3.4.2 CIFAR-10 dataset . 18
3.4.3 ImageNet ILSVRC 2012 Challenge . 19

x Table of contents

4 Communication Reduction in Conjugate Gradient Method 21
4.1 Introduction . 21
4.2 The Preconditioned and The Pipelined CG Algorithms 23

4.2.1 Preconditioned Conjugate Gradient . 23
4.2.2 Pipelined Conjugate Gradient . 24

4.3 Iteration-Fusing Conjugate Gradient . 24
4.3.1 IFCG1 Algorithm . 25
4.3.2 IFCG2 Algorithm . 26

4.4 Characteristics of The IFCG Algorithms . 28
4.4.1 Numerical Stability of the IFCG Algorithms 28
4.4.2 Parallel Execution of the IFCG Algorithms 29
4.4.3 Task-based Formulations of the Pipelined CG and IFCG algorithms 30

4.5 Experimental Setup . 31
4.6 Evaluation . 32

4.6.1 Optimizing the FUSE Parameter. 32
4.6.2 Evaluation of the IFCG1 and IFCG2 algorithms against state-of-the-art tech-

niques . 34
4.6.3 Visualizing The Overlap Pattern . 35
4.6.4 Tolerance to System Noise . 36

4.7 Conclusions . 38

5 Communication Reduction in Deep Neural Network Training 39
5.1 Introduction . 39
5.2 The Adaptive Weight Precision (AWP) Algorithm 41
5.3 The Approximate Data Transfer (ADT) Procedure 42

5.3.1 Bitpack . 44
5.3.2 Single Instruction Multiple Data Bitpack 44
5.3.3 Bitunpack . 47

5.4 Experimental Setup . 47
5.4.1 Image Dataset . 47
5.4.2 DNN Models and Training Parameters . 48
5.4.3 Implementation . 49
5.4.4 Hardware Platforms . 49

5.5 Evalutation . 50
5.5.1 Methodology . 50
5.5.2 Evaluation on Alexnet . 50
5.5.3 Evaluation on VGG . 52
5.5.4 Evaluation on Resnet . 54
5.5.5 Average Performance Improvement . 54

Table of contents xi

5.5.6 A2DTWP Performance Profile . 56
5.5.7 Experiments with ImageNet1000 . 56

5.6 Conclusions . 59

6 Communication Reduction in Model Parallelism of Deep Neural Networks 61
6.1 Introduction . 61
6.2 Communication Reduction in Model Parallelism of DNN 62

6.2.1 State-of-the-Art Approach . 62
6.2.2 The Altsplit (Alternate Split) Approach . 64

6.3 Experimental Setup . 66
6.3.1 Hardware Platforms . 66
6.3.2 Implementation . 66

6.4 Evalutation . 66
6.4.1 Parallelism Scalability . 67
6.4.2 Network Versatility . 68
6.4.3 Traces . 69

6.5 Conclusions . 70

7 Conclusions 71
7.1 Further Down The Road . 72

Appendix A Publications 73
A.1 Publications Related With The Thesis . 73
A.2 Other Publications . 73

Appendix B Pragmas 75
B.1 Description . 75
B.2 Annotations . 75

Bibliography 77

List of Figures 87

List of Tables 89

List of Abbreviations 91

1

Introduction

Modern HPC systems make extensive use of their massive amount of CPU core count and their
peripheral accelerators (GPU, FPGA, ASIC etc.) to achieve a high performance [1, 2, 3, 4]. In order
to effectively utilize such systems, algorithm designers need to parallelize their problems either by
hand or relying on compiler or runtime system support. The problems need to be meticulously split
into smaller chunks that can be executed on the individual computational units simultaneously.

Not all parallelization problems are created equal. For some, denoted as embarrassingly parallel
problems, the task is relatively simple because they can be easily solved in a divide and conquer
fashion. Each component is inherently independent in that it does not require the computational
results from its counterparts.

While on the other hand, others oftentimes have non-parallelizable sections that create interleaving
parallel-sequential-parallel patterns during the execution where synchronization is required. It is also
a commonplace that parallel sections possess dependencies in which case communication inevitably
occur. Such problems are ubiquitous in numerical linear algebra and other fields of computational
mathematics like matrix multiplication, matrix decomposition, eigenvalue solvers, mathematical
optimization problems just to name a few [5, 6, 7, 8].

As peripherals, the various types of accelerators are connected through external buses like PCIe,
NVlink [9] etc. Necessary data has to be transferred from the host CPUs to the accelerators before
carrying out any meaningful computation. It is prominent among iterative-based numerical methods
and with the rise of deep neural networks [10, 11, 12, 13].

Imbalanced synchronization and communication may force the involved computational units to
waste its computing resources. The scale of the parallel system is the primary impact factor of the
efficiency of the communication for the following reasons.

• The physical proximity of the communicating nodes determines the quality of the commu-
nication. In a distributed system with nodes scattered at different physical locations, the
communication imbalance could create serious bottlenecks.

2 Introduction

• The need to send data back and forth is alleviated on a shared-memory system where all the
computational units have access to entire memory region. Nevertheless, such systems are
inherently limited by size. Another type of underlying memory hierarchy is distributed-memory
systems where each node is in possess of a portion of the entire memory. The acquisition of
contents from other memory regions has to be resolved by passing messages which could raise
contention on the bus system.

1.1 Thesis Objectives and Contributions

This thesis strives to alleviate the communication by reducing either the occurrences of communication
points or the quantity of data in the domain of iterative numerical methods and deep neural networks,
while in the meantime retaining the quality of the results the algorithms produce.

1.1.1 Communication Reduction in Conjugate Gradient Method

The conjugate gradient method solves a linear system in an iterative manner. Conventionally, syn-
chronization is needed at the end of each iteration in a parallel implementation for some bookkeeping
tasks such as checking the convergence and applying the residual replacement strategy. We propose
the Iteration-Fusing Conjugate Gradient which fuses some of the iterations by removing the inter-
iteration synchronization points within those fused iterations and moving the bookkeeping tasks to
the end of the last iteration from the fusion. Also we use a task-based parallel programming model
to split numerical kernels into subkernels to relax data-dependencies. By carrying out these two
optimizations, our approach allows computations belonging to different iterations to overlap if there
are no specific data or control dependencies between them. The main contributions of this approach
are:

• The Iteration-Fusing Conjugate Gradient (IFCG) approach, which aims at aggressively over-
lapping different iterations. IFCG is implemented by means of two algorithms: IFCG1 and
IFCG2.

• A task-based implementation of the IFCG1 and IFCG2 algorithms that automatically overlaps
computations from different iterations without the need for explicit programmer specification
on what computations should be overlapped.

• A comprehensive evaluation comparing IFCG1 and IFCG2 with the most relevant state-of-
the-art formulations of the CG algorithm. IFCG1 and IFCG2 provide parallel performance
improvements up to 42.9% and 41.5% respectively and average improvements of 11.8% and
7.1% with respect to the state-of-the-art techniques and show similar numerical stability.

• A demonstration that under realistic system noise regimes IFCG algorithms behave much better
than previous approaches. IFCG algorithms achieve an average 18.0% improvement over the
best state-of-the-art techniques under realistic system noise regimes.

1.1 Thesis Objectives and Contributions 3

1.1.2 Communication Reduction in Training Deep Neural Network Models

We describe and evaluate a method to accelerate the training of DNNs by reducing the cost of data
transfers across heterogeneous high-end architectures integrating multiple GPUs. By relying on DNNs
tolerance to data representation formats smaller than the commonly used 32-bit Floating Point (FP)
standard [14, 15], we describe how to dynamically adapt the size of data sent to GPU devices without
hampering the quality of the training process. Our solution is designed to efficiently use the incoming
bandwidth of the GPU accelerators. It relies on an adaptive scheme that dynamically adapts the data
representation format required by each DNN layer and compresses network parameters before sending
them over the parallel system. This scheme enables DNNs training to progress in a similar rate as if
the 32-bit FP format was used. This work makes the following contributions:

• It proposes the Adaptive Weight Precision (AWP) algorithm, which dynamically adapts the
numerical representation of DNN weights during training. AWP relies on DNNs’ tolerance for
reduced data representation formats. It defines the appropriated data representation format per
each network layer during training without hurting network accuracy.

• It proposes a new Approximate Data Transfer (ADT) procedure to compress DNN’s weights
according to the decisions made by the AWP algorithm. ADT relies on both thread- and SIMD-
level parallelism and is compatible with architectures like IBM’s POWER or x86. ADT is able
to compress large sets of weights with minimal overhead, which enables the large performance
benefits of our approach.

• It evaluates ADT and AWP on two high-end systems: The first is composed of two x86
Haswell multicore devices plus four Tesla GK210 GPU accelerators and the second system
integrates two POWER9 chips and four NVIDIA Volta V100 GPUs. Our evaluation considers
the Alexnet [16], the VGG [17] and the Resnet [18] network models applied to the ImageNet
ILSVRC-2012 dataset [19]. Our experiments report average performance benefits of 6.18%
and 11.91% on the x86 and the POWER systems, respectively. Our solution does not reduce
the quality of the training process since networks final accuracy is the same as if they had been
trained with the 32-bit Floating Point format.

1.1.3 Communication Reduction in Deep Learning Model Parallelism

This work describes a novel approach Altsplit aims at accelerating the training of DNNs and improving
the scalability of the current model parallelism approach by reducing the communication occurrences
during both the forward- and backward- propagation phases. It achieves so by alternating the splitting
and the replication of the neurons in successive layers in a distributed-memory system. We compare
this approach with a baseline approach, where the neurons of all the layers are split, on two HPC
clusters with high-end CPUs (x86 Xeon and POWER9). Our experiments see an average performance
benefits of 66.12% and 57.16% respectively on both clusters.

4 Introduction

1.2 Thesis Structure

This thesis has the following structures. Chapter 2 equips the reader with sufficient knowledge
regarding the status quo and state-of-the-art research on the fields this thesis strives to improve upon.
Chapter 3 gives a brief coverage of the various software, hardware and datasets used throughout the
thesis. The three contributions are presented in Chapter 4, Chapter 5 and Chapter 6 respectively.
Chapter 7 offers a conclusion to the thesis.

2

Background

This section provides a description on the state-of-the-art and the current challenges presented in
the field of parallel computing and deep learning in order to grasp the works carried out from this
thesis. Section 2.1 prepares the reader with the acquaintances of the various forms of modern parallel
systems. Section 2.2 provides background on the parallel programming models on modern parallel
systems. Subsequently, section 2.3 and 2.4 present an introduction to the two application domains this
work deals with, namely, parallel numerical algorithms and DNNs.

2.1 Modern Parallel Systems

Exascale supercomputers are expected to come into operation near 2020. In order to reach that, major
improvements need to be achieved including the energy and power, memory and storage, concurrency
and locality and resiliency [20]. Nevertheless, the mainstream trend stays with the massive parallelism
with accelerators approach. This section provides a background on both types of systems and an
introduction to some major parallel programming models.

With the roll-out of 7 and 5 nm node, the VLSI (very large scale integration) manufacturing
technology is rapidly approaching its end due to its physical limitation. Furthermore, the power and
energy consumption, as a consequence the heat dissipation, on a modern VLSI chip has become a
major limiting factor in processor design. All the above impede the efforts to push a single-core
processor to go faster. In response, industry turns its attention into designing multi-core multiprocessor
systems which exploit parallelism at the application level. Figure 2.1 illustrates a typical multi-core
multiprocessor system [21]. Each of the processors (processor 0 and 1) packs two separate cores with
their own L1 and L2 caches. The two processors are connected via a system bus which also connects
to the RAM. All the cores thus are able to access to the entire memory region. Nonetheless, since all
the access to the memory and communication among processors are conducted on the system bus, the
system is limited in its scale in that the inevitable contention on the bus system while the number of
processors grows eventually renders a large-scale system unresponsive.

6 Background

Fig. 2.1 A typical chip multithreaded, multi-core, multiprocessor system

With the ever-growing demand of computation power, a large amount of such processors are
grouped close together into a computer cluster with high speed interconnection system to further scale
the system. All the cores belonging to the same node in the cluster shares the resources (memory
system, last-level cache etc.) whereas cross-node resources are private to their respective nodes. This
essentially segregates the memory system into various regions not directly accessible to all the cores.
This type of memory system is known as distributed-memory system. Accessing remote contents is
possible by sending them as message to the requesting node which implies that accessing to different
memory regions incurs distinct latency. This offloads the task of ensuring the performance of the
program to the programmer because careless handling of the physical location and topology of the
nodes can easily saturate the interconnection system and cause different processors to have imbalanced
accessing time to the same data.

Since the dawn of the artificial intelligence, GPU, due to its immense data parallelism capability,
has accelerated its transformation from a peripheral device used in niche domains to a general-
purpose mass adoption. Along with the re-configurability of FPGAs and domain-specific ASICs,
heterogeneous systems contribute to a significant portion of computation power on some modern
parallel systems. As external devices, to be able to exploit their parallelism, data has to be transferred
from the CPU to the device and vice versa in the face of any synchronization or communication.

2.2 Parallel Programming Models

Parallel programming models can roughly be categorized into two class: one for shared-memory
systems and the other for distributed-memory systems. The classification is due to the distinct ways
these models deal with the underlying memory system.

2.2 Parallel Programming Models 7

2.2.1 Shared-Memory Programming Model

OpenMP [22, 23] is a standard programming model on a shared-memory system. It is an application
programming interface (API) that supports shared memory multiprocessing programming in C, C++,
and FORTRAN.

OpenMP (prior to version 3.0) uses a fork-join model for its parallel executions as seen in
Figure 2.2 [24]. All OpenMP programs begin as a single process: the master thread. The master
thread executes sequentially until the first parallel region construct is encountered. The master thread
then creates a team of parallel threads. The statements in the program that are enclosed by the parallel
region construct are then executed in parallel among the various team threads. When the team threads
complete the statements in the parallel region construct, they synchronize and terminate, leaving only
the master thread.

Fig. 2.2 OpenMP uses a fork-join model

2.2.2 Task-based Parallel Programming Model

A fork-join model creates parallel regions each of which is dedicated to solving a specific problem
whereas the program logic is executed in sequential on the master thread. It introduces inefficiencies
because the parallel regions can be far between and the sequential execution in-between keeps all the
other threads idle.

Task-based parallel programming model sets off to tackle this problem. In a task-based approach
the problem is ideally re-factorized and decomposed into smaller functions called tasks that have clear
set of inputs and outputs from which data dependencies can be derived unambiguously. Therefore,
tasks can be launched and executed in parallel as long as they don’t have data dependencies among
each other and hardware resources are available. A dedicated runtime system is in charge of building
the dependency graph and orchestrating the task scheduling. Figure 2.3 illustrates a typical task
dependency graph which is a DAG (directed acyclic graph) that the runtime system uses to check the
pending dependencies. There are many task-based parallel programming models, the most prominent
of which includes the OpenMP (version 3.0 onwards) [23], Clik++ [25], TBB [26] and OmpSs [27].

8 Background

Fig. 2.3 A typical task dependency graph

2.2.3 Distributed-Memory Programming Model

MPI (Message Passing Interface) is the main parallel programming paradigm for distributed memory
environments [28]. It is a library specification for message-passing, proposed as a standard by a
broadly based committee of vendors, implementors, and users. It primarily addresses the message-
passing parallel programming model: data is moved from the address space of one process to that of
another process through cooperative operations on each process.

The MPI interface is meant to provide essential virtual topology, synchronization, and communi-
cation functionality between a set of processes (that have been mapped to nodes/servers/computer
instances) in a language-independent way, with language-specific syntax (bindings), plus a few
language-specific features. MPI programs always work with processes, but programmers commonly
refer to the processes as processors.

MPI library functions include, but are not limited to, point-to-point rendezvous-type send/receive
operations, choosing between a Cartesian or graph-like logical process topology, exchanging data
between process pairs (send/receive operations), combining partial results of computations (gather
and reduce operations), synchronizing nodes (barrier operation) as well as obtaining network-related
information such as the number of processes in the computing session, current processor identity
that a process is mapped to, neighboring processes accessible in a logical topology, and so on [29].
Point-to-point operations come in synchronous, asynchronous, buffered, and ready forms, to allow
both relatively stronger and weaker semantics for the synchronization aspects of a rendezvous-send.

2.3 Numerical Methods For Systems of Linear Equations 9

2.3 Numerical Methods For Systems of Linear Equations

Systems of equations are used to represent physical problems that involve the interaction of various
properties. The variables in the system represent the properties being studied, and the equations
describe the interaction between the variables. The system is easiest to study when the equations are
all linear. Often the number of equations is the same as the number of variables, for only in this case
is it likely that a unique solution will exist. Although not all physical problems can be reasonably
represented using a linear system with the same number of equations as unknowns, the solutions to
many problems either have this form or can be approximated by such a system. In fact, this is quite
often the only approach that can give quantitative information about a physical problem. The problem
is to find the vectors of unknown x in Ax = b

A =


a11 a12 ... a1n

a21 a22 ... a2n

...

am1 am2 ... amn


where x ∈ℜn, b ∈ℜm and A ∈ℜm x ℜn.

Two classes of numerical methods are available for solving the system:

• Direct Methods that provide the exact solution x by a finite sequence of operations.

• Iterative Methods that start with a first approximation x(0) and compute in an iterative manner a
sequence of approximations x(i), in the hope to obtain increasingly better results, without ever
reaching x.

2.3.1 Direct Methods

A common way to obtain the exact numerical results of systems of linear equations is using matrix
factorization.

LU factorization of a matrix is the factorization of a given square matrix into two triangular
matrices, one upper triangular matrix and one lower triangular matrix, such that the product of
these two matrices gives the original matrix. The LU factorization method comes handy whenever
it is possible to model the problem to be solved into matrix form. Conversion to the matrix form
and solving with triangular matrices makes it easy to do calculations in the process of finding the
solution [30, 31].

For

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33



10 Background

we have

L =

 1 0 0
l21 1 0
l31 l32 1


and

U =

u11 u12 u13

0 u22 u23

0 0 u33


such that A = LU . The system of equations Ax = b can thus be solved by the following steps:

1. Factorize the matrix A so that LUx = b

2. Solve the equation Ly = b for y by forward substitution

3. Solve the equation Ux = y for x by backward substitution

Cholesky factorization is a faster method if the matrix A is symmetric positive-definite. In which
case A can be factorized into A = LLT where where L is a lower triangular matrix with real and
positive diagonal entries, and LT denotes the transpose of L [31].

2.3.2 Iterative Methods

In the absence of rounding errors, direct methods would yield an exact solution yet iterative methods
are indispensable when facing linear problems involving a large number of variables (in the order of
millions or more), where direct methods would be prohibitively expensive even with the best available
computing power [31].

Krylov methods are among the most successful iterative methods and see a wide application in
numerical linear algebra. Krylov subspace methods solves a linear system Ax = b by forming a basis
of the sequence of successive matrix powers times the initial residual, {b,Ab,A2b, . . . ,Amb}. The
approximations to the solution are then formed by minimizing the residual over the subspace formed.
The prototypical method in this class is the conjugate gradient method (CG) [32] which assumes that
the system matrix A is symmetric positive-definite. For symmetric (and possibly indefinite) A one
works with the minimal residual method (MINRES) [33]. In the case of not even symmetric matrices
methods, such as the generalized minimal residual method (GMRES) [34] and the biconjugate gradient
method (BiCG) [35], have been derived.

Parallel CG

Driven by the ongoing transition of hardware towards the exascale regime, research on the scalability
of Krylov subspace methods on massively parallel architectures has recently garnered attention in
the scientific computing community [36]. The system operator A is oftentimes sparse for many
applications and in turn rather inexpensive to apply in terms of computational and communication

2.4 Deep Supervised Learning and Its Parallelization 11

cost, the main bottleneck for efficient parallel execution is typically not the sparse matrix-vector
product (spmv), but rather the communication overhead due to global reductions in dot product
computations and the related global synchronization bottleneck [37].

Much effort has been put on an efficient parallel version of the CG algorithm. One of the most
prominent is the introduction of pipelined CG [38]. It aims at hiding global synchronization latency by
overlapping the communication phase in the Krylov subspace algorithm by the application of the spmv.
Hence, idle core time is reduced by simultaneous execution of the time-consuming synchronization
phase and independent compute-bound calculations. Other efforts includes the enlarged CG [39] and
[40, 41].

2.4 Deep Supervised Learning and Its Parallelization

Deep learning uses multi-layer neural networks to carry out wide range of tasks such as image
recognition [16], video classification [42], various NLP (natural language processing) tasks [43, 44,
45, 46] and art generation [47, 48] just to name a few. A neural network consists of layers of neurons
which are themselves a mathematical model of a linear classifier. Figure 2.4 depicts the inner workings
of a neuron. The neuron takes a vector of inputs x, first calculate its weighted sum y = ∑

n
i=1 xiwi

and apply a non-linear step function o = δ (y). An MLP (multi-layer perceptron) is thus comprised
of multiple layers each of which is constituted of multitudes of neurons with their respective set of
weights per input.

Fig. 2.4 The workings of a neuron

This thesis has its focus on one particular branch of the deep learning, namely, deep supervised
learning. It utilizes a MLP (multi-layer perceptron) or CNN (convolutional neural network) to learn
a function that maps an input to an output based on example input-output pairs. It infers a function
from labeled training data consisting of a set of training examples. The dataset in supervised learning

12 Background

are a pair of input and a ground truth (the desired output). The neural network learns by adjusting all
the weights from each neuron according to its gradient w′ = w−µ∆w to the lost yielded by a loss
function that measures the difference of the output of the neural network and the ground truth. A
typical loss function is MSE (mean square error), cross entropy etc.

2.4.1 Parallelism in Deep Learning

Effectively training a neural network demands an immense amount of data. This inevitably raise the
need for parallelization. Currently, there are two paradigms:

• Data parallelism aims to run the training on data batches simultaneously.

• Model parallelism aims to split the neural network itself to available computation units.

Data Parallelism

The most common way in the data parallelism paradigm is the use of a parameter server [49].
The dataset is split into data shards that are consequently fed to each and every computation units
respectively. The parameters (weights w, biases b etc.) are stored separately in dedicated units called
parameter servers. At the beginning of each batch of the training, all the computation units involved
in the training request a up-to-date copy of the parameters from the servers. They carry on with the
training and at the end of the batch send their respective gradient ∆w, ∆b back to the servers. The
servers then are responsible for updating the parameters with regard to the gradients. Figure 2.5
illustrates a schematic of two parameter servers and three trainers.

Fig. 2.5 Two parameter server and three trainers

Model Parallelism

Model parallelism is also called network parallelism. It can be seen as a orthogonal to data parallelism.
This strategy divides and distributes part of the network to different machines. Figure 2.6 shows the

2.4 Deep Supervised Learning and Its Parallelization 13

difference between data and model parallelism. Model parallelism is suitable for models that are too
large to fit into one machine but this comes at a cost of incurring additional communication during
one batch of training [50].

Fig. 2.6 The difference between data and model parallelism

Nevertheless, the DNN architecture creates layer interdependencies, which, in turn, generate
communication that determines the overall performance. Fully connected layers, for instance, incur
all-to-all communication (as opposed to allreduce in data parallelism), as neurons connect to all the
neurons of the next layer [51].

3

Experimental Setup

This chapter introduces the experimental setup for the works. First a description of the three HPC
clusters and their characteristics on which we run our experiments is given. Then the chapter
provides information regarding the task-based parallel programming model and the two deep learning
frameworks used in the work. Finally we give a description of the datasets used.

3.1 Hardware Platforms

Our experiments are run on four HPC clusters with distinct characteristics. They are the MareNostrum
III and its upgrade MareNostrum IV supercomputer, MinoTauro supercomputer and CTE-POWER
supercomputer at Barcelona Supercomputing Center (BSC). The results from the Iteration-Fusing
Conjugate Gradient algorithm is evaluated on the MareNostrum III supercomputer. The evaluations
of the deep neural networks are from the MinoTauro and CTE-POWER supercomputers. Their
configurations are as follows:

• MareNostrum III: It consists of 3,065 compute nodes in total. Each node is IBM System
X server iDataPlex dx360 M4, composed of two 8-core Intel Sandy Bridge processors E5 -
2.60Hz, 20 MB of shared last-level cache. There are eight 4GB DDR3 DIMM’s running at 1.6
GHz (a total of 32GB per node and 2BG per core).

• MareNostrum IV: An upgrade to the MareNostrum III supercomputer. It consists of 3,456
compute nodes with a grand total of 165,888 processor cores and 390 TB of main memory. Each
node is Lenovo system composed of SD530 Compute Racks, 2 sockets Intel Xeon Platinum
8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores, 33 MB of shared last-level
cache, 96 GB of main memory 1.880 GB/core, 12x 8GB 2667Mhz DIMM, 100 Gbit/s Intel
Omni-Path HFI Silicon 100 Series PCI-E adapter.

• MinoTauro: It is a heterogeneous cluster with 38 bullx R421-E4 servers. Each server with 2
Intel Xeon E5 U2630 v3 (Haswell) 8-core processors, (each core at 2.4 GHz,and with 20 MB

16 Experimental Setup

L3 cache), 2 K80 NVIDIA GPU Cards 128 GB of Main memory, distributed in 8 DIMMs of 16
GB DDR4 @ 2133 MHz - ECC SDRAM 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectX ®3FDR
56 Gbit.

• CTE-POWER: Another heterogeneous cluster with 52 compute nodes. Each of which is
equipped with 2 x IBM Power9 8335-GTH @ 2.4GHz (3.0GHz on turbo, 20 cores and 4
threads/core, total 160 threads per node). 512 GB of main memory distributed in 16 dimms x
32 GB @ 2666MHz. 4 NVIDIA V100 (Volta) GPUs with 16 GB HBM2. Single Port Mellanox
EDR.

3.2 OmpSs Programming Model

OmpSs is a programming model composed of a set of directives and library routines that can be used
in conjunction with a high level programming language in order to develop concurrent applications.
This programming model is an effort to integrate features from the StarSs programming model family,
developed by the Programming Models group of the Computer Sciences department at Barcelona
Supercomputing Center (BSC), into a single programming model [27].

OmpSs is based on tasks and dependences. Tasks are the elementary unit of work which represents
a specific instance of an executable code. Dependences let the user annotate the data flow of the
program, this way at runtime this information can be used to determine if the parallel execution of
two tasks may cause data races. In OmpSs the task construct also allows the annotation of function
declarations or definitions in addition to structured-blocks [52]. When a function is annotated with
the task construct each invocation of that function becomes a task creation point.

The task construct allows expressing data-dependences among tasks using the in, out and inout
clauses (standing for input, output and input/Output respectively). They allow to specify for each task
in the program what data a task is waiting for and signaling is readiness.

Each time a new task is created, its in and out dependences are matched against those of existing
tasks. If a dependency, either RaW, WaW or WaR, is found the task becomes a successor of the
corresponding tasks. This process creates a task dependency graph at runtime. Tasks are scheduled
for execution as soon as all their predecessor in the graph have finished (which does not mean they
are executed immediately) or at creation if they have no predecessors.

3.3 Deep Learning Frameworks

From a functionality-wise perspective, to construct a neural network boils down to stringing together
a sequence of simple arithmetic functions. The derivatives of such functions have to be computed
when applying the backpropagation process. Since the surge of deep learning, neural networks are
getting deeper which means stacking up more layers. Each layer would have basically the same set of

3.4 Datasets 17

arithmetic functions. It soon becomes a redundant and error-prone procedure for a programmer to
build a neural network from ground up every time.

Software libraries that implement common arithmetic functions, perform auto-differentiation
set off to alleviate the hassle. Such libraries are called deep learning frameworks and has become a
common practice to build neural networks. Common frameworks are Keras [53], Theano [54], Tensor-
Flow [55], PyTorch [56] etc. These frameworks are usually build neural networks by constructing a
computational graph that defines the type and sequence of operations prior to the actual computation.
In order to facilitate the development and debugging of building neural networks, modern deep
learning frameworks also encapsulate and expose APIs of the entire neural networks etc.

3.3.1 Tensorflow

TensorFlow is an open source software library for numerical computation using data flow graphs [55].
The graph nodes represent mathematical operations, while the graph edges represent the multidimen-
sional data arrays (tensors) that flow between them. This flexible architecture enables you to deploy
computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting
code. TensorFlow also includes TensorBoard, a data visualization toolkit.

TensorFlow also takes a graph-based approach to construct neural networks in which each node
in the graph represents an op. An op is a function that runs on the desired devices. Its functionality
can thus be extended by adding customized ops using its C++ interface and API.

3.3.2 KANN

KANN is a standalone and lightweight library in C for constructing and training small to medium
artificial neural networks such as multi-layer perceptrons, convolutional neural networks and recurrent
neural networks (including LSTM and GRU) [57]. It implements graph-based reverse-mode automatic
differentiation and allows to build topologically complex neural networks with recurrence, shared
weights and multiple inputs/outputs/costs. In comparison to mainstream deep learning frameworks
such as TensorFlow, KANN is not as scalable, but it is close in flexibility, has a much smaller code
base and only depends on the standard C library. In comparison to other lightweight frameworks such
as tiny-dnn, KANN is still smaller, times faster and much more versatile, supporting RNN, VAE and
non-standard neural networks that may fail these lightweight frameworks.

3.4 Datasets

3.4.1 SuiteSparse Matrix Collection

The SuiteSparse Matrix Collection (formerly known as the University of Florida Sparse Matrix
Collection), is a large and actively growing set of sparse matrices that arise in real applications [58].
The Collection is widely used by the numerical linear algebra community for the development and

18 Experimental Setup

performance evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments:
robust because performance results with artificially-generated matrices can be misleading, and repeat-
able because matrices are curated and made publicly available in many formats. Its matrices cover a
wide spectrum of domains, include those arising from problems with underlying 2D or 3D geometry
(as structural engineering, computational fluid dynamics, model reduction, electromagnetics, semicon-
ductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics,
and other discretizations) and those that typically do not have such geometry (optimization, circuit
simulation, economic and financial modeling, theoretical and quantum chemistry, chemical process
simulation, mathematics and statistics, power networks, and other networks and graphs).

3.4.2 CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6,000 images per
class [59]. There are 50,000 training images and 10,000 test images. The dataset is divided into
five training batches and one test batch, each with 10000 images. The test batch contains exactly
1000 randomly-selected images from each class. The training batches contain the remaining images
in random order, but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class. Figure 3.1 illustrates
the classes in the dataset, as well as 10 random images from each.

Fig. 3.1 Classes in CIFAR-10

3.4 Datasets 19

3.4.3 ImageNet ILSVRC 2012 Challenge

ImageNet is an image dataset organized according to the WordNet hierarchy. Each meaningful
concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym
set" or "synset" [19]. There are more than 100,000 synsets in WordNet, majority of them are nouns
(80,000+). ImageNet aims to provide on average 1000 images to illustrate each synset. Images of
each concept are quality-controlled and human-annotated. In its completion, ImageNet will offer tens
of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

The ImageNet Large Scale Visual Recognition Challenge or ILSVRC for short is an annual
competition helped between 2010 and 2017 in which challenge tasks use subsets of the ImageNet
dataset. The goal of the challenge was to both promote the development of better computer vision
techniques and to benchmark the state of the art. The annual challenge focuses on multiple tasks for
image classification that includes both assigning a class label to an image based on the main object in
the photograph and object detection that involves localizing objects within the photograph.

We use the dataset released from the 2012 challenge. The validation and test data for this
competition consists of 150,000 photographs, collected from flickr and other search engines, hand
labeled with the presence or absence of 1000 object categories. The 1000 object categories contain
both internal nodes and leaf nodes of ImageNet, but do not overlap with each other. A random subset
of 50,000 of the images with labels is released as validation data. The remaining images are used
for evaluation and are released without labels at test time. The training data, the subset of ImageNet
containing the 1000 categories and 1.2 million images.

4

Communication Reduction in Conjugate
Gradient Method

4.1 Introduction

Many relevant High Performance Computing (HPC) applications have to deal with linear systems
derived from using discretization schemes like the finite differences or finite elements methods to solve
Partial Differential Equations (PDE). Typically, such discretization schemes produce large matrices
with a significant degree of sparsity. Direct methods like the LU or the QR matrix factorizations
are not applicable to such large matrices due to the significant number of steps they require to fully
decompose them. Iterative methods are a much better option in terms of computational cost and, in
particular, Krylov subspace methods are among the most successful ones. The basic idea behind
Krylov methods when solving a linear system Ax = b is to build a solution within the Krylov subspace
composed of several powers of matrix A multiplied by vector b, that is, {b,Ab,A2b, ...,Amb}.

The fundamental linear operations involved in Krylov methods are the sparse matrix-vector
(SpMV) product, the vector-vector addition and the dot-product. The performance of the sparse
matrix-vector product is strongly impacted by irregular memory access patterns driven by the irregular
positions of the sparse matrix’s non-zero coefficients. As such, SpMV is typically an expensive
memory-bound operation that benefits from large memory bandwidth capacity and also from high-
speed interconnection networks. The vector-vector additions involved in Krylov methods typically
have strided and regular memory access patterns and benefit a lot from resources like memory
bandwidth and mechanisms like hardware pre-fetching to enhance their performance. Finally, the
dot-product kernels involve expensive parallel operations like global communications and reductions
that constitute an important performance bottleneck when running Krylov subspace methods [20].

Taking into account the performance aspects of the most fundamental linear algebra kernels of
Krylov subspace methods, there are some natural improvements that are described in detail in the
literature. For example, reducing the number of global reductions required by Krylov methods is a
well-known option [60, 61]. Indeed, several variations of the Conjugate Gradient (CG) algorithm

22 Communication Reduction in Conjugate Gradient Method

have been suggested to reduce the number of global dot-products to just one [62, 63, 64, 65]. There is
also work focused on reducing the number of global synchronizations targeting other subspace Krylov
methods (e. g. BiCG and BiCGStab) [66, 67, 68, 69]. S-step Krylov methods also aim at reducing the
number of global reductions [70, 71, 72, 73]. Besides reducing the number of global synchronization
points, another alternative to boost Krylov subspace methods performance is to overlap the two most
expensive kernels (SpMV and dot-product) either with other computations or between them. Indeed,
overlapping the two dot-products of the CG algorithm with the residual update has already been
proposed [74], as well as an asynchronous version of the CG algorithm to overlap one of the global
reductions with the SpMV and the other with the preconditioner [1]. A variant of the CG algorithm
that performs the two global reductions per iteration at once and also hides its latency by overlapping
them with the SpMV kernel has also been proposed [38]. Despite this extensive body of work devoted
on improving the CG algorithm, performance enhancements brought by state-of-the-art approaches
are still far from providing good scalability results [38].

In this chapter we propose the Iteration-Fusing Conjugate Gradient (IFCG) method, a new
formulation of the CG algorithm that outperforms the existing proposals by applying a scheme that
aggressively overlaps iterations, which is something not considered by previous work. Our approach
does not update the residual at the end of each iteration and splits numerical kernels into subkernels to
relax data-dependencies. By carrying out these two optimizations, our approach allows computations
belonging to different iterations to overlap if there are no specific data or control dependencies between
them. This chapter provides two algorithms that implement the IFCG concept: IFCG1, which aims at
hiding the costs of global synchronizations and IFCG2, which starts computations as soon as possible
to avoid idle time.

From the programming perspective, there are several ways to enable the overlap of different pieces
of computation during a parallel run. For example, such overlaps can be expressed at the parallel
application source code level by using sophisticated programming techniques like pools of threads
or asynchronous calls [75]. Other alternatives conceive the parallel execution as a directed graph
where nodes represent pieces of code, which are named tasks, and edges represent control or data
dependencies between them. Such approaches require the programmer to annotate the source code in
order to express such dependencies and let a runtime system orchestrate the parallel execution. In
this way, the maximum available parallelism is dynamically extracted without the need for specifying
suboptimal overlaps at the source code level. Approaches based on tasks are becoming important in
the parallel programming area. Indeed, commonly used shared memory programming models like
OpenMP include advanced tasking constructs [23] and it is also possible to run task-based workloads
on distributed memory environments [52].

This chapter adopts this task-based paradigm and applies it to the IFCG1 and IFCG2 parallel algo-
rithms. Specifically, this chapter improves the state-of-the-art by doing the following contributions:

4.2 The Preconditioned and The Pipelined CG Algorithms 23

• The Iteration-Fusing Conjugate Gradient (IFCG) approach, which aims at aggressively over-
lapping different iterations. IFCG is implemented by means of two algorithms: IFCG1 and
IFCG2.

• A task-based implementation of the IFCG1 and IFCG2 algorithms that automatically overlaps
computations from different iterations without the need for explicit programmer specification
on what computations should be overlapped.

• A comprehensive evaluation comparing IFCG1 and IFCG2 with the most relevant state-of-
the-art formulations of the CG algorithm: Chronopoulos’ CG [62], Gropp’s CG [1], Pipelined
CG [38] and a basic Preconditioned CG method. All 6 CG variants are implemented via a
task-based programming model to provide a fair evaluation. IFCG1 and IFCG2 provide parallel
performance improvements up to 42.9% and 41.5% respectively and average improvements
of 11.8% and 7.1% with respect to the state-of-the-art techniques and show similar numerical
stability.

• A demonstration that under realistic system noise regimes IFCG algorithms behave much better
than previous approaches. IFCG algorithms achieve an average 18.0% improvement over the
best state-of-the-art techniques under realistic system noise regimes.

This chapter is structured as follows: In section 4.2 we describe in detail some state-of-the-art
approaches that motivate the IFCG algorithms. Section 4.3 contains a detailed description of the
IFCG1 and IFCG2 algorithms. Section 4.4 compares the numerical stability of IFCG1 and IFCG2
with other relevant state-of-the-art techniques and explains how task-based parallelism is applied to
IFCG1 and IFCG2 and how they are executed in parallel. Section 4.6 shows a comparison of IFCG1
and IFCG2 against other state-of-the-art techniques when run on a 16-core node composed of two
8-core sockets. It also discusses other important aspects like the inter-iteration overlap achieved by
IFCG1 and IFCG2 and a comparison of the system jitter tolerance of these algorithms against state-of-
the-art approaches. Finally, section 4.7 contains several conclusions on this work and describes future
directions.

4.2 The Preconditioned and The Pipelined CG Algorithms

We describe the basic Preconditioned Conjugate Gradient Algorithm and one of its most important
evolutions, the Pipelined Conjugate Gradient [38], which aims at improve CG’s performance by
reducing the cost of its global reductions.

4.2.1 Preconditioned Conjugate Gradient

The fundamental Preconditioned Conjugate Gradient (PCG) algorithm is a Krylov subspace method
that iteratively builds a solution in terms of a basis of conjugate vectors built by projecting the

24 Communication Reduction in Conjugate Gradient Method

maximum descent direction, i.e. the gradient, into the closest conjugate direction. PCG is shown in
Algorithm 1. Performance-wise, steps 4 and 8 are important bottlenecks since they involve a global
reduction. Pre-conditioning the vector ri+1 (carried out by step 7) is also typically expensive.

Algorithm 1 PCG
1: r0 := b−Ax0;u0 := M−1r0; p0 := u0
2: for i = 0 . . . imax do
3: s := Api
4: α := (ri,ui)/(s, pi)
5: xi+1 := xi +α pi
6: ri+1 := ri−αs
7: ui+1 := M−1ri+1
8: β := (ri+1,ui+1)/(ri,ui)
9: pi+1 := ui+1 +β pi

10: end for
11: Inter-iteration synchronization

4.2.2 Pipelined Conjugate Gradient

The Pipelined Conjugate Gradient (Pipelined CG) [38] is an alternative formulation of the PCG
algorithm aiming at i) reducing the cost of the two PCG’s reduction operations per iteration by con-
centrating them into a single double reduction point and ii) hiding the cost of this double reduction by
overlapping it with other PCG kernels: SpMV and the preconditioner. The Pipelined CG formulation
is mathematically equivalent to PCG and, indeed, both techniques would give the exact same solution
if they operated with infinite precision. However, when operating under realistic scenarios, i.e. 32-
or 64-bits floating point representations, Pipelined CG exhibits worse numerical accuracy than PCG
since the way Pipelined CG builds the basis of conjugate vectors is more sensitive to round-off errors,
which ends up having an impact on the basis’ orthogonality.

The Pipelined CG technique is detailedly shown in Algorithm 2. The two reductions are computed
at the beginning of each iteration (lines 3-4), which makes it possible to combine them. Additionally,
this double reduction operation is overlapped with two costly computations: the application of the
preconditioner to vector wi (line 5) and a sparse matrix-vector product (line 6). It is important to
state that, although the potential of Pipelined CG in terms of overlapping computations and hiding
reduction costs is remarkable, the algorithm still has limitations. For example, the update of the z
vector in line 12 needs the whole ni vector and the βi scalar to be carried out. However, such restriction
can be relaxed by breaking down the z update into several pieces that only have to wait for their n
counterpart and the βi scalar to be carried out. In this way, some pieces of the z vector can be updated
without the need for waiting until the whole ni vector is produced.

4.3 Iteration-Fusing Conjugate Gradient

In this section we present the Iteration-Fusing Conjugate Gradient (IFCG) approach, which breaks
down some of the Pipelined CG computations into smaller pieces to relax data dependencies and

4.3 Iteration-Fusing Conjugate Gradient 25

Algorithm 2 Pipelined CG

1: r0 := b−Ax0;u0 := M−1r0;w0 := Au0
2: for i = 0 . . . imax do
3: γi := (ri,ui)
4: δi := (wi,ui)
5: mi := M−1wi
6: ni := Ami
7: if i > 0 then
8: βi := γi/γi−1;αi := γi/(δi−βiγi/αi−1)
9: else

10: βi := 0;αi := γi/δi
11: end if
12: zi := ni +βizi−1
13: qi := mi +βiqi−1
14: si := wi +βisi−1
15: pi := ui +βi pi−1
16: xi+1 := xi +αi pi
17: ri+1 := ri−αisi
18: ui+1 := ui−αiqi
19: wi+1 := wi−αizi
20: end for
21: Inter-iteration synchronization

reduce idle time. Also, IFCG enables the overlap of different iterations by removing inter-iteration
barrier points. We present two algorithms that implement the IFCG approach: The first one (IFCG1)
improves the Pipelined CG formulation by letting different iterations to overlap as much as possible
while the second one (IFCG2) aims at increasing performance even more by splitting Pipelined
CG’s single synchronization point into two and exploiting additional opportunities to reduce idle
time. While both IFCG1 and IFCG2 algorithms apply the IFCG approach, they aim at increasing
performance by targeting different goals.

4.3.1 IFCG1 Algorithm

IFCG1 is an evolution of the Pipelined CG algorithm described in section 4.2.2. IFCG1 aims
at increasing the potential for overlapping different pieces of computation by breaking down the
Pipelined CG kernels into smaller pieces or subkernels. Each subkernel just needs a subset of the data
required by the whole kernel. For example, as mentioned a few paragraphs above, the update of the z
vector in line 12 of Algorithm 2 requires the whole ni vector and the βi scalar. Instead of considering
the update of z as a single operation, IFCG1 breaks it down into N pieces in a way that instead of
computing the whole zi := ni +βizi−1 it computes N updates of the form zi j := ni j +βiz(i−1) j where
zi = {zi1,zi2, ...,ziN} and i refers to the ith iteration. In this way, the computation of zi j only depends
on a subset ni j of the ni vector and the scalar βi. The only operation that can not always be broken
down into pieces is the computation of the preconditioning vector wi (step 5 of Algorithm 2). While
some preconditioning schemes can be decomposed into pieces (e. g. Block-Jacobi preconditioning
with incomplete Cholesky factorization within the blocks) some others do not admit a straightforward
decomposition (e. g. multi-grid preconditioning), although preconditioners that can be decomposed
are often applied [38].

26 Communication Reduction in Conjugate Gradient Method

Algorithm 3 IFCG1
1: r0 := b−Ax0;u0 := M−1r0;w0 := Au0
2: for i = 0 . . . imax do
3: for j = 1 . . .N do ▷ The computation is split in N blocks
4: γi j := (ri j,ui j)
5: δi j := (wi j,ui j)

6: mi j := M−1wi j
7: ni j := A jmi
8: end for
9: γi :=

N
∑

j=1
γi j;δi :=

N
∑

j=1
δi j ▷ Global reduction

10: if i > 0 then
11: βi := γi/γi−1;αi := γi/(δ −βiγi/αi−1)
12: else
13: βi := 0;αi := γi/δi
14: end if
15: for j = 1 . . .N do
16: zi j := ni j +βiz(i−1) j
17: qi j := mi j +βiq(i−1) j
18: si j := wi j +βis(i−1) j
19: pi j := ui j +βi p(i−1) j
20: x(i+1) j := xi j +αi pi j
21: r(i+1) j := ri j−αisi j
22: u(i+1) j := ui j−αiqi j
23: w(i+1) j := wi j−αizi j
24: end for
25: end for

Besides breaking down linear algebra kernels into pieces, the second innovative aspect of the
IFCG approach is the elimination of inter-iteration synchronizations to check algorithm’s convergence.
Instead of checking for convergence at the end of each iteration, IFCG only checks it once every n
iterations. The number of iterations between two checks is called the FUSE parameter.

We apply these two approaches (decomposition of linear kernels and elimination of inter-iterations
checks) across the whole Pipelined CG algorithm, which ends up producing the IFCG1 algorithm
(Algorithm 3). IFCG1 can potentially overlap steps 4-7 of iteration i with steps 16-23 of iteration
i− 1. Also, each repetition of steps 16-23 depends on just one of the N repetitions of steps 6-7,
significantly relaxing data-dependencies between the algorithm’s main kernels.

4.3.2 IFCG2 Algorithm

The IFCG2 algorithm splits Pipelined CG and IFCG1’s single synchronization point, which is
composed of two reductions, into two synchronization points composed of a single reduction operation
each. IFCG2 aims at updating the si and pi vectors, which only depend on one of the two reductions
and on some data generated by iteration i−1, as soon as possible. The IFCG2 algorithm is detailedly
shown in Algorithm 4. The global reductions producing δi and γi are run in separate steps. Also, the
updates on vectors si and pi do not need to wait for the reduction producing δi to finish as they can be
overlapped with it. Computing qi and ni is left after the second reduction since these computations
require mi and we want the reductions to be overlapped as much as possible with the most expensive
computational kernel, the preconditioning of vector ωi (step 6 of Algorithm 4).

4.3 Iteration-Fusing Conjugate Gradient 27

Algorithm 4 IFCG2
1: r0 := b−Ax0;u0 := M−1r0;w0 := Au0
2: for i = 0 . . . imax do
3: for j = 1 . . .N do
4: γi j := (ri j,ui j)
5: δi j := (wi j,ui j)

6: mi j := M−1wi j ▷ The most expensive step
7: end for
8: γi :=

N
∑

j=1
γi j ▷ Global reduction on γi

9: if i > 0 then
10: βi := γi/γi−1
11: else
12: βi := 0
13: end if
14: for j = 1 . . .N do ▷ AXPYs that only depend on βi
15: si j := wi j +βis(i−1) j
16: pi j := ui j +βi p(i−1) j
17: end for
18: δi :=

N
∑

j=1
δi j ▷ Global reduction on δ

19: if i > 0 then
20: αi := γi/(δi−βiγi/αi−1)
21: else
22: αi := γi/δi
23: end if
24: for j = 1 . . .N do
25: qi j := mi j +βiq(i−1) j
26: ni j := A jmi
27: zi j := ni j +βiz(i−1) j
28: x(i+1) j := xi j +αi pi j
29: r(i+1) j := ri j−αisi j
30: u(i+1) j := ui j−αiqi j
31: w(i+1) j := wi j−αizi j
32: end for
33: end for

28 Communication Reduction in Conjugate Gradient Method

There is an interesting trade-off between the IFCG1 and IFCG2 algorithms: While the first one is
focused on reducing the cost of the two global reductions by overlapping them with computations,
which implies delaying the update of the si and pi vectors, the second tries to run these updates as
soon as possible, which requires splitting the single synchronization point composed of two reductions
into two parallel dot-products. As such, the IFCG1 formulation aims at reducing the cost of reduction
operations while the IFCG2 aims at starting the computations as soon as possible to avoid idle time.
IFCG1 and IFCG2 algorithms are thus two complementary approaches that constitute an evolution
of the Pipelined CG algorithm aiming at increasing performance. Besides the parallel programming
and performance aspects, which are detailedly discussed in sections 4.4.2 and 4.6, it is also important
to verify that both IFCG algorithms have similar numerical stability properties as state-of-the-art
approaches like Pipelined CG.

4.4 Characteristics of The IFCG Algorithms

4.4.1 Numerical Stability of the IFCG Algorithms

The main issue with the numerical stability of IFCG algorithms is the same as the one displayed
by many other Krylov-based methods: The way the residual vector r is computed. It is usually
done by just updating the residual of iteration i from the one in iteration i−1 via expressions like
ri = ri−1−α Api−1. However, by doing so, residual ri may deviate from the true residual b−Axi. State-
of-the-art approaches use a residual replacement strategy to prevent the updated residual ri to deviate
from the true residual. The remedy is to periodically replace the updated ri by b−Axi [38, 76, 77].
The frequency of such replacement is a trade-off between convergence speed and accuracy and
some sophisticated strategies exist [77, 78] to deal with it. In the case of IFCG and IFCG2 we do
the ri = b−Axi replacement every FUSE iterations to avoid hurting the overlap between different
iterations.

We run some experiments considering several sparse matrices obtained from the Florida Sparse
Matrix Collection [58]. These experiments involve parallel executions of the IFCG1, IFCG2, Pipelined
CG and Preconditioned CG algorithms on a 16 cores NUMA node composed of two 8-core sockets.
More specific details on the parallel implementations and the precise experimental setup can be
found in sections 4.4.2 and 4.5, respectively. Also, Table 4.1 contains a description of the matrices
considered in the experiments.

Figure 4.1 displays the evolution of the relative residual ||b−Axi||2/||b||2 on matrix consph
considering the IFCG1, IFCG2, Pipelined CG and Preconditioned CG methods. Data concerning
IFCG1 and IFCG2 are expressed in a coarser-grain pattern than Pipelined and Preconditioned CG’s
data points since we calculate the relative residual every 100 iterations (i. e. FUSE=100). We can see
that the convergence of the IFCG1 and IFCG2 algorithms is the same as Pipelined CG. Interestingly,
Figure 4.1 also displays how the basic Preconditioned CG algorithm has better convergence properties
than Pipelined CG, which is consistent with previously reported numerical results [38, 79]. We omit

4.4 Characteristics of The IFCG Algorithms 29

0 500 1000 1500 2000 2500 3000 3500

Iterations

−14

−12

−10

−8

−6

−4

−2

lo
g 1

0
||b
−
A
x
|| 2
/
||b
|| 2

consph

PCG

Pipelined

IFCG2

IFCG1

Fig. 4.1 Convergence of the Preconditioned CG, Pipelined CG, IFCG1 and IFCG2 algorithms. Data
regarding IFCG1 and IFCG2 is reported every 100 iterations since FUSE = 100.

results concerning the rest of the matrices in Table 4.1 since they exhibit the exact same behavior as
the one observed with consph. Our experiments show how the numerical behavior in terms of the
relative residual ||b−Axi||2/||b||2 achieved by IFCG1 and IFCG2 matches the state-of-the-art.

Name Dimension Nonzeros Nonzeros%
G3_circuit 1585478 7660826 0.0003%
thermal2 1228045 8580313 0.0006%
ecology2 999999 4995991 0.0005%
af_shell8 504855 17579155 0.0068%

G2_circuit 150102 726674 0.003%
cfd2 123440 3085406 0.02%

consph 83334 6010480 0.087%

Table 4.1 Matrices used for experiments

4.4.2 Parallel Execution of the IFCG Algorithms

The IFCG algorithms have been carefully designed to hide the impact of their global synchronization
points by overlapping them with other numerical kernels. Also, IFCG algorithms aim at relaxing
data-dependencies between these different kernels by breaking them down into several subkernels that
just require a reduced input data set to carry on. These features can significantly improve performance
but, in order to exploit them, the IFCG algorithms must run in parallel and enforce the overlap of the

30 Communication Reduction in Conjugate Gradient Method

different computational kernels as much as possible. Therefore, we need to specify at the source code
level a parallel scheme that meets these requirements and there are several ways to do so.

One option is to statically specify at the application source code level the way different kernels
overlap with each other, which should be done by means of sophisticated parallel programming
techniques like pools of threads or active waiting loops that trigger work once its input data is ready.
However, the optimality of these techniques depends a lot on the parallel hardware where the parallel
execution takes place. Therefore, a static approach is not practical since it needs to be adapted to
each parallel execution scenario. In this paper we follow a dynamic approach that conceives the
parallel execution as a directed acyclic graph where the nodes represent pieces of code (also known as
tasks) and the edges are control or data dependencies between them. This approach requires from
the programmer to specify the pieces of code or tasks that run in parallel by means of annotations
that contain their input or output dependencies. A runtime system orchestrates the parallel run by
considering tasks’ input or control dependencies and scheduling them into the available parallel
hardware once all dependencies are satisfied. The most important shared-memory programming
models, like OpenMP, have support for this kind of task-based parallelism and there is also support
for running task-based workloads on distributed memory environments [52].

4.4.3 Task-based Formulations of the Pipelined CG and IFCG algorithms

The Pipelined CG, IFCG1 and IFCG2 algorithms can be easily formulated in terms of tasks by just
looking at each one of the steps in algorithms 2, 3 and 4 and considering them tasks. Indeed, by
means of the #pragma annotations provided by OpenMP it is possible to specify that each one of
these steps is a task as well as which are its data dependencies. Control dependencies are typically
expressed in terms of sentinels. Importantly, IFCG1 and IFCG2 have many more tasks per iteration
than Pipelined CG. Indeed, steps 3-6 and 12-19 of Pipeline CG (Algorithm 2) are split into N substeps
in Algorithms 3 and 4, which implies that we have N tasks in IFCG1 and IFCG2 per each Pipeline
CG task. The only exception to this rule is the preconditioning step which is typically split depending
on whether or not the chosen preconditioner allows a decomposition in terms of tasks.

Figure 4.2 shows two iterations of the Pipelined CG, IFCG1 and IFCG2 algorithms represented in
terms of task graphs. Parameter N is equal to 3, which means that many of the Pipelined CG tasks
appearing in the task graph are broken down into 3 tasks by the IFCG1 and IFCG2 methods. In the
case of the Pipelined CG algorithm the task named DOT represents steps 3 and 4 of Algorithm 2
while tasks named Precond represents step 5, which in this particular case is divided into several tasks.
Tasks α and β represent the computations done within step 8. Finally, the task designated as AXPY
represents steps 12-19. Similarly, the task graph representations of the IFCG1 and IFCG2 methods
represent all the steps displayed by algorithms 3-4.

By comparing the center and the left hand side task graphs in Figure 4.2 we can observe how by
removing the iteration barrier and breaking the computation routines into blocks we expose much
more parallelism to the hardware. Indeed, Pipelined CG has a limited potential for overlapping tasks

4.5 Experimental Setup 31

belonging to the same iteration and cannot overlap tasks from different iterations at all since its
inter-iteration barrier prevents it from doing so. In contrast, IFCG1 displays a much more flexible
parallel pattern that can easily overlap tasks belonging to different iterations. IFCG2, by further
extracting two AXPYs operations (s, p) that only depend on β , is able to create even more concurrency.
The implications and analysis of these varying level of parallelism shown by the different algorithms
are explained in Section 4.6.

DOT

AXPY

Beta

Alpha

SpMV

Precond

Iteration Barrior

DOT

AXPY

Beta

Alpha

SpMV

Precond

DOT1

AXPY

Beta

Alpha

SpMV

Precond

s, p

DOT2

Fig. 4.2 Graphs of tasks representing two Iterations of Pipelined CG (left), IFCG1 (center) and IFCG2
(right), N = 3.

4.5 Experimental Setup

We conduct our parallel experiments on a 16-cores node composed of two 8-core Intel Xeon®

processors E5-2670 at 2.6 GHz and a 20 MB L3 shared cache memory with SuSe Linux OS. All the
algorithms we consider in the evaluation (IFCG1, IFCG2, Preconditioned CG, Pipelined CG [38],
Chronopoulos CG [62] and Gropp CG [1]) are implemented using the OpenMP4.0 programming
model running on top of the Nanos++ (v0.7a) parallel runtime system [80]. We use the Intel’s
MKL [81] library to compute the fundamental linear algebra kernels involved in our experiments. All
the aforementioned algorithms are implemented with the Block-Jacobi preconditioner with incomplete
Cholesky factorization within the blocks. The block size N is set to 64 throughout the experiments
and the convergence threshold is ||b−Axi||2/||b||2 < 10−7

We consider 7 Symmetric and Positive Definite (SPD) matrices from The University of Florida
Sparse Matrix Collection [58]. We use two matrices from circuit simulation problems (G3_circuit
and G2_circuit), two matrices from unstructured Finite Element Method schemes (thermal2, consph),
one matrix from material engineering problems (af_shell8) and one matrix from a computational

32 Communication Reduction in Conjugate Gradient Method

fluid dynamics problem (cfd2). In Table 4.1 we show a more precise description of all considered
matrices in terms of their dimensions and sparsity. The considered matrices cover a wide range of
dimensions (from 72,000 up to 1,585,478 rows and columns) and sparsity degrees, which makes them
representative of the typical problems faced by the CG method and its variants.

1 2 4 8 16
0

2

4

6

8

10

12

14
af shell8

1 2 4 8 16

cfd2

1 2 4 8 16

ecology2

1 2 4 8 16

consph

1 2 4 8 16

G2 circuit

1 2 4 8 16

G3 circuit

1 2 4 8 16

thermal2

1 2 4 8 16

Mean

fuse 1 fuse 5 fuse 20 fuse 50 fuse 80 fuse 100 fuse 200

Fig. 4.3 Impact of the FUSE parameter on IFCG1. The y-axis represents the achieved speedups with
respect to the FUSE=1 configuration running on 1 core while x-axis represents core counts.

4.6 Evaluation

In this section we provide a comprehensive evaluation of the IFCG1 and the IFCG2 algorithms and we
compare them in terms of performance with the 4 state-of-the-art techniques mentioned in Section 4.5.
We first carry out a sensitivity study of the FUSE parameter to determine its optimal value. We
then compare the performance of IFCG1 and IFCG2 running with this optimal FUSE value against
the 4 state-of-the-art methods mentioned above. We demonstrate that IFCG1 and IFCG2 achieve a
significant degree of overlap between iterations, which provides them with much better performance
results than their competitors. Finally, we compare the noise tolerance of IFCG1 and IFCG2 against
other CG variants. We consider two different noise regimes, both of them close to realistic noise
scenarios, and we demonstrate that the IFCG algorithms are much more tolerant to system noise than
state-of-the-art approaches.

4.6.1 Optimizing the FUSE Parameter.

As explained in previous sections, by removing the convergence check at the end of each iteration and
just checking for convergence once every FUSE algorithmic steps, we let computations to overlap
across different iterations. However, the algorithm may keep running once the threshold is met
since convergence is only checked once every several iterations, which has an impact over the total
execution time. If this extra time is larger than the benefits obtained from increasing the overlap across

4.6 Evaluation 33

iterations, IFCG1 and IFCG2 will perform poorly. On the contrary, if we restrict the FUSE Parameter
too much, that is, if we check for convergence too often, the potential for overlap will be undermined.

In Figure 4.4 we show the impact of the FUSE parameter on the scalability of the IFCG1 algorithm
when applied to the 8 matrices described in section 4.5. We consider the FUSE parameter to be 1, 5,
20, 50, 80, 100 and 200. For each matrix we show the speedup achieved by varying the FUSE value
and running IFCG1 on 1, 2, 4, 8 and 16 cores over the execution with FUSE = 1 on 1 core. In the
x-axis we represent the total number of cores involved in the parallel execution while in the y-axis
we show the speedup achieved by each technique. The input matrices and the experimental setup are
described in Section 4.5.

1 2 4 8 16
0

2

4

6

8

10

12

14
af shell8

1 2 4 8 16

cfd2

1 2 4 8 16

ecology2

1 2 4 8 16

consph

1 2 4 8 16

G2 circuit

1 2 4 8 16

G3 circuit

1 2 4 8 16

thermal2

1 2 4 8 16

Mean

fuse 1 fuse 5 fuse 20 fuse 50 fuse 80 fuse 100 fuse 200

Fig. 4.4 Impact of the FUSE parameter on IFCG1. The y-axis represents the achieved speedups with
respect to the FUSE=1 configuration running on 1 core while x-axis represents core counts.

When running on a single core we achieve speedups of 1.12x, 1.12x and 1.09x over the FUSE
= 1 configuration when FUSE is set to 5, 20 and 50, respectively. This modest speedups are due
to the reduction of overheads brought by checks for convergence, i. e. computing Axi−b, which is
done once every FUSE iterations. These small benefits decrease for large FUSE values due to the
extra iterations the algorithm carries out. When the experiments are run on larger core counts the
benefits of increasing the FUSE value are very significant. Indeed, we achieve average speedups
of 10.44x, 11.15x and 10.99x when FUSE is set to 5, 20 and 50 and IFCG1 runs on 16 cores with
respect to the sequential run with FUSE = 1. In general, the benefits of increasing FUSE stall at 20
and start to decline when FUSE reaches the 200 value. Matrix-wise, results are very consistent since
IFCG1 reaches optimal or very close to optimal performance when FUSE = 20 for 5 matrices: cfd2,
ecology2, consph, G2_circuit and thermal2. Just for the af_shell8 and G3_circuit matrices the FUSE
optimal value is different from 20 (80 in the first case and 5 in the second) although the speedups in
these optimal points (12.5x and 11.33x respectively), are very close to the ones achieved by the FUSE
= 20 configuration (11.62x and 10.38x). In general, a FUSE value of 20 is the best one for the IFCG1
algorithm. By conducting the same analysis for IFCG2 we find its optimal FUSE parameter to be 20
as well.

34 Communication Reduction in Conjugate Gradient Method

4.6.2 Evaluation of the IFCG1 and IFCG2 algorithms against state-of-the-art tech-
niques

This section provides an evaluation of the parallel speedups achieved by the IFCG1 and the IFCG2
algorithms and compares them with 4 state-of-the-art techniques: Preconditioned CG (PCG), Pipelined
CG [38], Chronopoulos CG [62] and Gropp CG [1]. Both IFCG1 and IFCG2 run with FUSE = 20,
which is the configuration that provides the best performance on average, as shown in section 4.6.1.
Figure 4.5 provides a comparison in terms of speedup considering all 6 CG variants. The x-axis
represents the number of cores involved in the parallel run while the y-axis shows the speedups
achieved by the different techniques taking the execution time of the Preconditioned CG algorithm on
a single core as reference. The experimental setup is described in Section 4.5.

1 2 4 8 16
0

2

4

6

8

10

12
af shell8

1 2 4 8 16

cfd2

1 2 4 8 16

ecology2

1 2 4 8 16

consph

1 2 4 8 16

G2 circuit

1 2 4 8 16

G3 circuit

1 2 4 8 16

thermal2

1 2 4 8 16

Mean

PCG Pipelined Gropp Chronopoulos IFCG2 IFCG1

Fig. 4.5 Speedup of all considered CG versions with respect to PCG running on 1 core. The y-axis
represents the speedups achieved by the different techniques while x-axis represents core counts.

The most dramatic improvements are achieved when applying IFCG1 and IFCG2 to the af_shell8
and cfd2 matrices. For these two matrices IFCG1 running on 16 cores achieves speedups of 10.92x
and 10.96x while IFCG2 reaches speedups of 9.72x and 9.62x, respectively. These results are much
better than the speedups achieved by the other considered techniques. Indeed, the speedups achieved
by the Preconditioned, Pipelined, Gropp and Chronopoulos variants of the CG algorithm are 9.13x,
8.41x, 8.46x and 8.91x in the case of af_shell8 and 6.41x, 6.63x, 6.66x and 6.8x in the case of
cfd2, respectively. In the case of the cfd2 matrix the performance improvements achieved by IFCG1
and IFCG2 are 42.9% and 41.5% better than Chronopoulos, the best state-of-art-technique. IFCG1
provides the highest performance in almost all the cases. The only exception is ecology2. In this case,
the best speedup on 16 cores is achieved by the Chronopoulos CG (10.98x) although IFCG1 provides
a very close speedup of 10.82x when run on 16 cores. This represents a case where techniques
proposed in this paper are not better than the state-of-the-art since the input matrix makes the linear
system easily scalable (all CG variants achieve speedups close to 10x with respect to PCG running on
a single core when solving the ecology2 on 16 cores).

4.6 Evaluation 35

Besides individual observations, the average speedup over the PCG algorithm running in a single
core of both IFCG1 and IFCG2 is significantly better than the one achieved by the other CG versions.
Indeed, we can observe from Figure 4.5 that IFCG1 and IFCG2 reach an average speedup when run on
16 cores of 10.06x and 9.64x, respectively. The other variants achieve speedups of 8.20x (PCG), 8.40x
(Pipelined), 8.70x (Gropp) and 8.99x (Chronopoulos) when run on 16 cores. On average, IFCG1 and
IFCG2 provide 11.8% and 7.1% performance improvements over the best state-of-the-art technique
(Chronopoulos CG). Table 4.2 lists the iteration counts for all considered matrices and CG variants.
Due to the residual check done once every FUSE iterations the IFCG1 and IFCG2 algorithms are
bound to take more iterations than the other approaches and indeed they take 16 more iterations on
average than the other CG variants. This overhead is effectively compensated by overlapping adjacent
iterations, as Figure 4.5 demonstrates.

PCG Chronopoulos Pipelined Gropp IFCG IFCG2
af_shell8 676 676 676 676 680 680

cfd2 563 563 563 563 580 580
ecology2 678 678 678 678 680 680
consph 912 911 926 911 940 940

G2_circuit 430 430 430 430 440 440
G3_circuit 428 428 428 428 480 480
thermal2 2076 2076 2077 2076 2080 2080
Average 794 794 796 794 810 810

Table 4.2 Iteration counts of all considered methods and matrices. FUSE = 20 for IFCG1 and IFCG2

4.6.3 Visualizing The Overlap Pattern

The main reason behind the good behavior of IFCG1 and IFCG2 in terms of performance is their
capacity to overlap different iterations and this section aims to provide a visual proof of this overlap.
Figure 4.6 displays three 16-core runs composed of 19 iterations. On top of Figure 4.6 we represent a
Pipelined CG execution while IFCG1 is shown in the middle and IFCG2 at the bottom. In the y-axis
we represent the 16 threads involved in the parallel run while in the x-axis we show time. The three
represented algorithms are applied to the af_shell8 matrix. In all three views the iterations are marked
by distinct colors and all are trimmed for the same time duration (the duration of the pipelined CG
since it takes the longest time). The white gaps in Figure 4.6 represent either idle time or system
software activity.

Boundaries between iterations are clearly marked by white gaps in the Pipelined CG representation
of Figure 4.6. Computations belonging to the same iteration are clearly executed in isolation by the
Pipelined CG algorithm while this lock-step execution mode is not present in the IFCG1 and IFCG2
representations. For these two cases computations belonging to different iterations are overlapped
in a way that only their color identifies the iteration they belong to. There are some small regions
represented in white in the IFCG1 and IFCG2 parallel runs that are overlapped with iterations, which
account for system software activity. The idle time is almost completely eliminated. The white areas
overlapped with the first iteration of IFCG1 and IFCG2 represent computations belonging to previous

36 Communication Reduction in Conjugate Gradient Method

iterations while the large white areas that appear after the 19 iterations mean that the parallel execution
has already finished.

Fig. 4.6 Visualization of 19-iteration runs on 16 cores of Pipelined CG (top), IFCG1 (middle) and
IFCG2 (bottom). The input matrix is af_shell8

4.6.4 Tolerance to System Noise

HPC infrastructures frequently get their performance severely degraded by system noise or jitter, which
is caused by factors like OS activity, network sharing effects or other phenomena [82]. Although
the effects of system jitter may be negligible as long as they are kept at the local scale, parallel
operations like reductions or synchronizations are known to strongly amplify its effects by propagating
jitter across the whole parallel system [83]. Since algorithms IFCG1 and IFCG2 presented in this
paper perform much less reductions or synchronization operations than the Preconditioned CG or
the Chronopoulos CG algorithms, they are much more tolerant to jitter effects. To evaluate this
additional advantage of IFCG algorithms, this section compares the performance of these 4 algorithms
(Preconditioned CG, Chronopoulos CG, IFCG1 and IFCG2) on a noisy regime. The Gropp and

4.6 Evaluation 37

Pipelined versions of CG are not considered in this section since, as Figure 4.5 demonstrates, their
behavior is between the one displayed by PCG and Chronopoulos.

We run the 4 algorithms mentioned above on 16 cores considering the input matrices and the
experimental setup described in Section 4.5 and we inject uniformly distributed random noise with
an amplitude of 10µs and frequencies of 8kHz and 2kHz. Such noise regimes are close to the
measured ones on real systems (1kHz and 25µs [84]) and produce, on average, overheads of 8%
(8 ·103 ·10−5 = 0.08) and 2% in sequential computations, respectively. Therefore, any extra overhead
suffered by parallel applications under these noise regimes is brought by amplification effects due to
parallel synchronization or reduction operations. Parallel executions may also filter out noisy events
that take place during idle execution phases.

In Figure 4.7 we show the elapsed time running on 16 cores of the Preconditioned CG, Chronopou-
los CG, IFCG1 and IFCG2 under a noiseless, a 10µs-2kHz and a 10µs-8kHz noise regimes. The
y-axis displays the execution time normalized to the Preconditioned CG execution without noise
and the x-axis shows the obtained results per matrix plus their average values. On average, the
Preconditioned and the Chronopoulos CG algorithms suffer degradation of 19.0% and 14.6% of
their execution time, respectively under the 10µs-8kHz noise regime. They are much larger than
the 8% degradation expected to be suffered by purely sequential applications, which implies that
noise is amplified by parallel operations like reductions or synchronizations. In contrast, IFCG1
and IFCG2 suffer much milder degradation of just 6.2% and 6.9%, respectively, when exposed to
10µs-8kHz noise. IFCG1 has a 1.18x speedup over Chronopoulos under the 10µs-8kHz, that is,
it runs 18.0% faster. Interestingly, both IFCG algorithms run faster under this noisy regime than
their state-of-the-art counterparts under the noiseless regimes. In Figure 4.7 we also show results
considering the 10µs-2kHz scenario. For this case, the Preconditioned and the Chronopoulos CG
algorithms suffer degradation of 6.1% and 5.1% of their execution time, respectively. In contrast,
IFCG1 and IFCG2 suffer milder degradation of just 1.1% and 1.7%, respectively.

af
sh

el
l8

cf
d2

ec
ol

og
y2

co
nsp

h

G2
ci

rc
uit

G3
ci

rc
uit

th
er

m
al

2

M
ea

n

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

E
la

p
se

T
im

e

PCG Noiseless

PCG 10µs-2kHz

PCG 10µs-8kHz

Chronopoulos Noiseless

Chronopoulos 10µs-2kHz

Chronopoulos 10µs-8kHz

IFCG2 Noiseless

IFCG2 10µs-2kHz

IFCG2 10µs-8kHz

IFCG1 Noiseless

IFCG1 10µs-2kHz

IFCG1 10µs-8kHz

Fig. 4.7 Behavior of different variants of CG running on 16 cores under noiseless, 10µs-2kHz and
10µs-8kHz noise regimes.

38 Communication Reduction in Conjugate Gradient Method

4.7 Conclusions

This chapter presents the IFCG1 and IFCG2 algorithms, which are variants of the CG algorithm where
most of the inter-iteration barriers are removed and linear kernels are split into several subkernels. The
main difference between IFCG1 and IFCG2 is that the first one aims at hiding parallel reduction costs
while the second one avoids idle time by starting the execution of the linear subkernels as soon as
possible. The FUSE parameter specifies how often both IFCG1 and IFCG2 check for convergence. To
maximize the performance of these algorithms the FUSE parameter needs to be set up to the optimal
value by means of an exhaustive search. This parameter is not input dependent and we find its optimal
value to be 20.

To compare the performance of IFCG1 and IFCG2 against other relevant variants of the CG
algorithm, we consider 8 matrices from the Florida Sparse Matrix Collection [58] with varying
sparsity degrees and dimensions. We find that IFCG1 and IFCG2 achieve significant performance
improvements with respect to the state-of-the-art due to their flexibility to overlap computations
belonging to different iterations. We also show how reducing the number of global synchronization
points makes IFCG1 and IFCG2 much less sensitive to system noise perturbations than their state-of-
the-art counterparts. Also, both IFCG1 and IFCG2 display the same numerical stability properties as
the most relevant previous techniques.

5

Communication Reduction in Deep
Neural Network Training

5.1 Introduction

The use of Deep Neural Networks (DNNs) is becoming ubiquitous in areas like computer vision (e.g.,
image recognition and object detection) [16, 85], speech recognition [86], language translation [87],
and many more [88]. DNNs provide very competitive pattern detection capabilities and, more
specifically, Convolutional Neural Networks (CNNs) classify very large image sets with remarkable
accuracy [89]. Indeed, DNNs already play a very significant role in the large production systems
of major IT companies and research centers, which has in turn driven the development of advanced
software frameworks for the deep learning area [55] as well as DNN-specific hardware accelerators [90,
91]. As an example, deep learning solutions are being coupled with physical computational models for
solving pattern classification problems in the context of large-scale climate simulations [92]. Despite
all these accomplishments, deep learning models still suffer from several fundamental problems: the
neural network topology is determined through a long and iterative empirical process, the training
procedure has a huge cost in terms of time and computational resources, and the inference process of
large network models incurs considerable latency to produce an output, which is not acceptable in
domains requiring real-time responses like autonomous driving.

The DNN training process typically relies on the backpropagation procedure [93], which requires
solving an optimization problem aimed at discovering the values of network weights that better fit the
training data. A possible way to carry out the backpropagation process is the Gradient Descent (GD)
method [94], which aims at fitting the weights to the training data by considering, at each iteration,
the steepest descent direction in terms of an error function. A popular variant of the GD procedure is
the Stochastic Gradient Descent (SGD) method [95], which computes the gradient against several
randomly chosen samples at each iteration. Today’s common practice to train DNNs is to split the data
set into several subsets, called batches, and let each iteration of SGD to compute a descent direction
or gradient that contains contributions of all the samples belonging to the same batch. SGD converges

40 Communication Reduction in Deep Neural Network Training

faster than GD since it updates network parameters at the end of each batch once all samples are
processed.

To tackle the large amount of Floating Point computations required to train a DNN, GPUs are
usually employed [96]. They exploit the large amount of data-level parallelism of deep learning
workloads. Although GPUs and other hardware accelerators have been successfully employed to
boost the training process, data exchanges involving different accelerators may incur significant
performance penalties.

This chapter describes and evaluates a method to accelerate the training of DNNs by reducing
the cost of data transfers across heterogeneous high-end architectures integrating multiple GPUs. By
relying on DNNs tolerance to data representation formats smaller than the commonly used 32-bit
Floating Point (FP) standard [14, 15], this chapter describes how to dynamically adapt the size of
data sent to GPU devices without hurting the quality of the training process. Our solution is designed
to efficiently use the incoming bandwidth of the GPU accelerators. It relies on an adaptive scheme
that dynamically adapts the data representation format required by each DNN layer and compresses
network parameters before sending them over the parallel system. This scheme enables DNNs training
to progress in a similar rate as if the 32-bit FP format was used. This chapter makes the following
contributions:

• It proposes the Adaptive Weight Precision (AWP) algorithm, which dynamically adapts the
numerical representation of DNN weights during training. AWP relies on DNNs’ tolerance for
reduced data representation formats. It defines the appropriated data representation format per
each network layer during training without hurting network accuracy.

• It proposes a new Approximate Data Transfer (ADT) procedure to compress DNN’s weights
according to the decisions made by the AWP algorithm. ADT relies on both thread- and SIMD-
level parallelism and is compatible with architectures like IBM’s POWER or x86. ADT is able
to compress large sets of weights with minimal overhead, which enables the large performance
benefits of our approach.

• It evaluates ADT and AWP on two high-end systems: The first is composed of two x86
Haswell multicore devices plus four Tesla GK210 GPU accelerators and the second system
integrates two POWER9 chips and four NVIDIA Volta V100 GPUs. Our evaluation considers
the Alexnet [16], the VGG [17] and the Resnet [18] network models applied to the ImageNet
ILSVRC-2012 dataset [19]. Our experiments report average performance benefits of 6.18%
and 11.91% on the x86 and the POWER systems, respectively. Our solution does not reduce
the quality of the training process since networks final accuracy is the same as if they had been
trained with the 32-bit Floating Point format.

Many proposals describe how data representation formats smaller than the 32-bit Floating Point
IEEE standard can be applied to deep learning workloads without harming their accuracy [14, 97, 98].
This chapter presents the first approach that uses reduced data formats to minimize data movement

5.2 The Adaptive Weight Precision (AWP) Algorithm 41

during DNN training. This chapter is particularly relevant from the high-performance computing
perspective since it proposes a methodology to accelerate DNNs training in heterogeneous high-end
systems, which are extensively used to run deep learning workloads [96].

This chapter is structured as follows: Section 5.2 describes our first contribution, the Adap-
tive Weight Precision algorithm (AWP). Section 5.3 details the Approximate Data Transfer (ADT)
procedure. Section 5.5 describes the experiments we conduct to evaluate AWP and ADT on three
state-of-the-art neural networks. Finally, Section 5.6 summarizes the main conclusions of this chapter.

5.2 The Adaptive Weight Precision (AWP) Algorithm

The Adaptive Weight Precision (AWP) algorithm relies on the tolerance of DNNs to data representation
formats smaller than the 32-bit Floating Point standard. Indeed, previous work indicates that, unlike
scientific codes focused on solving partial differential equations or large linear systems, neural
networks do not always require 32-bit representation during training [14, 97]. Even more, adding
stochastic noise to certain variables during the learning phase improves DNNs accuracy [99, 100, 101].
Nevertheless, when facing unknown scenarios in terms of new workloads or parameter settings, the
data representation requirements of DNNs are non-trivial to be determined and, to make things more
complicated, they may change as the training phase progresses.

Algorithm 5 Adaptive Weight Precision (AWP) Algorithm
1: BitsPerLayer := [B0,B1, . . . ,BNumLayers] ▷ List storing the number of bits corresponding to the data representation of

each layer
2: IntervalCounter := [0, 0, . . ., 0] ▷ List storing the number of times the relative change rate fails to meet the threshold per

layer
3: for batch := 0 . . . NumBatches do
4: Apply backpropagation to batch
5: for layer := 0 . . . NumLayers do
6: δ := (|Wbatch,layer |−|Wbatch−1,layer |)

|Wbatch−1,layer |
7: if δ < T then
8: IntervalCounterlayer += 1
9: end if

10: if IntervalCounterlayer == INTERVAL then
11: BitsPerLayerlayer += N
12: IntervalCounterlayer := 0
13: end if
14: end for
15: end for

The AWP algorithm dynamically determines data representation requirements per each network
layer by monitoring the evolution of the l2-norm of the weights. AWP identifies the number of bits
that are needed to represent DNNs weights and guarantees the progress of the training process. AWP
assigns the same data representation format to all weights belonging to a certain network layer. The
training starts with a relatively small data representation that is independently increased for each layer.

Algorithm 5 displays a pseudo-code description of AWP. Once the backpropagation process has
been applied to a given batch, AWP iterates over all network layers. The algorithm computes per
each batch and network layer the l2-norm of all its weights’ values and derives the relative change

42 Communication Reduction in Deep Neural Network Training

rate δ of the l2-norm with regard to the previously processed batch. For the batch i, the change rate
is defined as δi = (|Wi|− |Wi−1|)/|Wi−1|, where Wi is the vector of weights of a certain layer while
batch i is processed. Every time the change rate is below a given threshold T for a certain layer, the
algorithm accounts for it by increasing the IntervalCounter parameter. The algorithm increases N bits
of precision if the change rate is below T during a certain number of batches defined by the parameter
INTERVAL and sets the IntervalCounter parameter of the corresponding layer to zero. Section 5.5.1
describes how we determine the values of parameters T, INTERVAL, and N.

5.3 The Approximate Data Transfer (ADT) Procedure

The Approximate Data Transfer (ADT) procedure compresses network’s weights before they are
transferred to the GPUs. In the context of DNNs training on heterogeneous multi-GPU nodes, CPU
multicore devices are typically responsible for orchestrating the parallel run and updating DNN
parameters. Once the process of a batch starts, the updated parameters including the weights W are
sent to each GPU. If the set of parameters does not fit in GPUs’ main memory, they are sent on several
phases as the different GPUs need them. The different samples of each batch are evenly distributed
across all GPUs. Therefore, each GPU computes its contribution to the gradient ∆W by processing its
corresponding set of samples. The CPU multicore device subsequently gathers all contributions to the
gradient and combines them to update the weights W ←W −µ(1

n ∑
n
i ∆Wi), where µ is the learning

rate.
Data movement involving different GPU devices increases as the network topology becomes

more complex or the number of training samples grows, which can saturate the system bandwidth
and become a major performance bottleneck. This paper mitigates this issue by compressing network
weights before they are sent to the GPU devices. The AWP algorithm described in Section 5.2
determines, for all weights belonging to a particular network layer, the number of bits to send. In this
context, to efficiently compress and decompress network weights, ADT uses of two procedures that
constitute its fundamental building blocks. These procedures are complementary and applied either
before or after data transfers to GPU devices.

• Bitpack compresses the weights discarding the less significant bits on the CPU side;

• Bitunpack converts the weights back to the IEEE-754 32-bit Floating Point format on the
GPUs.

Figure 5.1 provides an example including a multicore CPU and two GPU devices to describe the
way both Bitpack and Bitunpack procedures operate. All neural network parameters (weights and
biases) are updated at the CPU level, which is where the Bitpack procedure takes place. We do not
apply the Bitpack procedure to the network biases since we do not observe any significant performance
benefit from compressing them. Since each output neuron requires just one bias parameter, the total
number of them is significantly smaller than the total number of weights. At the beginning of

5.3 The Approximate Data Transfer (ADT) Procedure 43

CPU

GPU 2

Update

Variables

BitPack
Model

BitUnpack

Loss

Gradient
Contribution

Model

BitUnpack

Weights BiasesBiases

GPU 1
Gradient

Loss

Gradient
Contribution

Fig. 5.1 The ADt on a 2-GPU system. Variables include: weights which go through the ADt procedure
and biases which are sent directly to the GPUs to build the network model together with the unpacked
weights.

each SGD iteration the compressed weights are sent to each GPU together with the biases and the
corresponding training samples. Each GPU uncompresses the weights, builds the neural network
model and, finally, computes its specific contribution to the gradient. These contributions are sent to
the CPU, which gathers all of them, computes the gradient and updates network parameters.

The Bitpack operation runs on CPU multicore devices. To boost Bitpack we use OpenMP [22]
and Single-Instruction Multiple Data (SIMD) intrinsics. OpenMP is used to run Bitpack on several
threads. The use of SIMD instructions allows Bitpack to operate at the SIMD register level, which
avoids incurring large performance penalties in the process of producing the reduced-size weights.
We implement two versions of Bitpack. One version uses Intel’s AVX2 [102] instruction set and
the other one relies on AltiVec [103]. Bitpack can be implemented on top of any SIMD instruction
set architecture supporting simple byte shuffling instructions at the register level. The Bitunpack
procedure runs on the GPUs.

It can be trivially parallelized since each weight is mapped to a single 32-bit FP variable, which
means that GPUs can process a large amount of weights simultaneously and efficiently build the DNN
model. In fact, Bitunpack incurs negligible overhead as Section 5.5.6 shows.

44 Communication Reduction in Deep Neural Network Training

ADT manipulates the internal representation of network weights by discarding some bits. We use
the standard 32-bit IEEE-754 single-precision Floating Point format [104] (1 bit sign, 8 bits exponent
and 23 bits mantissa) for all the computation routines. The Bitpack method considers network weights
as 32-bit words where rounding to N bits means discarding the lowest 32−N bits.

Algorithm 6 High Level Pseudo-code Version of Bitpack
1: W ▷ Array of 32-bit Floating Point values containing weights
2: Pw ▷ Array containing the reduced precision weights
3: RoundTo ▷ Number of bytes to keep per weight
4: POffset := 0 ▷ Indicates the current size (in bytes) of Pw
5: for weight in W do
6: Pw[POffset : POffset+RoundTo] := weight[0 : RoundTo] ▷ Copy most significant RoundTo

bytes to Pw
7: POffset := POffset + RoundTo
8: end for

5.3.1 Bitpack

A high-level version of the Bitpack procedure in terms of pseudo-code is illustrated by Algorithm 6.
The algorithm requires a couple of arrays: the input array W , which contains all the weights of
a certain network layer, and an output array Pw, which stores the compressed versions of these
weights. The algorithm goes through the entire W input array, per each weight, copies the most
significant RoundTo bytes to the output array Pw. Our Bitpack implementation manipulates data
at the byte granularity. We do not observe significant performance benefits when operating at finer
granularity in the experiments we run. The AWP algorithm described in Section 5.2 determines the
data representation format per each network layer. The number of bits of the chosen format is rounded
to the nearest number of bytes that retains all of its information (E.g., if AWP provides the value
14, RoundTo will be set to 2 bytes). The Pw array is sent to the GPUs once the Bitpack procedure
finishes compressing network weights.

Deep networks usually contain tens or even hundreds of millions of weights [16, 17, 105], which
makes any trivial implementation of Algorithm 6 not applicable in practice. We mitigate compression
costs by observing that Algorithm 6 is trivially parallel since processing one weight just requires the
RoundTo parameter. Algorithm 7 shows how to parallelize the Bitpack procedure by using OpenMP
threads. Each thread takes care of a certain portion of the array storing network weights.

5.3.2 Single Instruction Multiple Data Bitpack

Since all weights within one layer are processed in the same way by the Bitpack procedure, we can
leverage Single Instruction Multiple Data (SIMD) instructions to vectorize it. Most state-of-the-
art architectures implement SIMD instruction set: IBM’s AltiVec [103], Intel’s Advanced Vector
Extensions (AVX) [102], and ARM’s Neon [106]. In our experiments we use Intel’s AVX2 [102],
which implements a set of SIMD instructions operating over 256-bit registers, and IBM’s AltiVec

5.3 The Approximate Data Transfer (ADT) Procedure 45

Algorithm 7 Bitpack with OpenMP
1: W ▷ Array of 32-bit Floating Point values containing weights
2: Pw ▷ Array containing the reduced precision weights
3: RoundTo ▷ Number of bytes to keep per weight
4: NumThreads ▷ Number of OpenMP threads
5: #pragma omp parallel for
6: for weight in W do
7: POffset := Corresponding position in Pw
8: Pw[POffset : POffset+RoundTo] := weight[0 : RoundTo] ▷ Copy the most significant

RoundTo bytes to Pw
9: end for

instruction set [103], which has SIMD instructions operating over 128-bit registers. Section 5.4
describes the specific details of our evaluation considering both x86 and POWER architectures.

Figure 5.2 shows the byte-level operations of SIMD-based Bitpack applied to eight 32-bit weights
and implemented with AVX2. The RoundTo parameter is set to 3, which implies discarding the last
8 bits of each weight since the target data representation is 24-bit long. First, eight 32-bit Floating
Point weights are loaded to a 256-bit register. In the next step, we use _mm256_shuffle_epi8 to shuffle
the least significant eight bits of each weight to the least significant bits of their respective 128-bit
lane (see the grey area of Figure 5.2 Step 2) and pack the rest of the bits together. Afterwards we use
_mm256_permutevar8x32_epi32 to do the same operation across the two 128-bit lanes. Finally, we
use _mm256_maskstore_epi32 to just store the resulting 192 bits to the target array. Not all AVX2
instructions operate over the entire 256-bit register. Instead, many of them conceive the register as
two 128-bit lanes and operate on them separately. This is the reason way we can not carry out Steps 2
and 3 by using a single AVX2 instruction.

46 Communication Reduction in Deep Neural Network Training

Step 1: Load 8 32-bit weights into a 256-bit AVX2 register. (_mm256_loadu_si256)

H3..0 G3..0 F3..0 E3..0 D3..0 C3..0 B3..0 A3..0

037111519232731

Step 2: Pack weights on the 2 128-bit lanes. (_mm256_shuffle_epi8)

H3..1 G3..1 F3..1 E3..1 D3..1 C3..1 B3..1 A3..1

036912151922252831

Step 3: Pack the 8 weights together by rearranging 32-bit across 128-lanes.
(_mm256_permutevar8x32_epi32)

H3..1 G3..1 F3..1 E3..1 D3..1 C3..1 B3..1 A3..1

071013161922252831

Step 4: Store the most significant 24 bytes (192 bits) of data into the target array.
(_mm256_maskstore_epi32)

Fig. 5.2 Bitpack implemented with AVX2, RoundTo=3

Algorithm 8 Bitpack with OpenMP + AVX2
1: W ▷ Array of 32-bit Floating Point values containing weights
2: Pw ▷ Array containing the reduced precision weights
3: RoundTo ▷ Number of bytes to keep per weight
4: #pragma omp parallel for
5: for weights in W do
6: _mm256_loadu_si256 ▷ Load 8 32-bit weights
7: _mm256_shuffle_epi8 ▷ Compress at each 128-bit lane
8: _mm256_permutevar8x32_epi32 ▷ Shuffle the compressed weights into the most

significant bits
9: _mm256_maskstore_epi32 ▷ Store compressed weights to the target array

10: end for

Algorithm 9 Bitunpack on GPU
1: Pw ▷ Array containing compressed weights
2: W ▷ Array of 32-bit Floating Point values containing weights
3: RoundTo ▷ The number of bytes that are going to be kept
4: for UnitId := 0 . . . NumUnit do
5: Distribute W and Pw across all the computation units in the GPU
6: POffset := 0
7: for weight in W do
8: weight := Pw[POffset : POffset+RoundTo]≪ (4 - RoundTo) * 8
9: POffset := POffset + RoundTo

10: end for
11: end for

Algorithm 8 summarizes our implementation of the Bitpack procedure with AVX2. It exploits
two-level parallelism: first, the input array of weights is distributed across several threads. Second,

5.4 Experimental Setup 47

within each thread, the compression of each eight 32-bit weights subset is performed at the register
level by means of byte shuffling instructions. This sophisticated procedure exploiting parallelism
at both thread and SIMD register levels uses all the available hardware and avoids costly memory
accesses.

5.3.3 Bitunpack

Once data in reduced-size format reaches the target GPU, the Bitunpack procedure immediately
restores them into their original IEEE-754 32-bit Floating Point format. We display pseudo-code
describing this process in Algorithm 9. Bitunpack reads the reduced-sized weights from array Pw and
assigns additional bits to them. Bitunpack gives zero values to these additional bits. We distribute the
Bitunpack process across the whole GPU, which enables an extremely parallel scheme exploiting
GPUs manycore architecture.

The Bitunpack routine is developed using CUDA [107]. Our code runs in parallel on N CUDA
threads and the CUDA runtime handles the dynamic mapping between threads and the underlying
GPU compute units. Since each thread involved in the parallel run targets a different portion of the
Pw array, our Bitunpack procedure exposes a large amount of parallelism able to exploit the large
number of compute units integrated into high-end GPU devices.

5.4 Experimental Setup

The experimental setup considers a large image dataset, three state-of-the-art neural network models
and two high-end platforms. The following sections describe all theses elements in detail.

5.4.1 Image Dataset

We consider the ImageNet ILSVRC-2012 dataset [19]. The original ImageNet dataset includes three
sets of images of 1000 classes each: training set (1.3 million images), validation set (50,000 images)
and testing set (100,000 images). Considering 1000 classes makes the training process around 170
hours long, which is prohibitively expensive since our large experimental campaign considers different
network models, batch sizes and hardware platforms. To reduce the execution time of our experiments
we consider a subset of 200 classes for both the training and the validation dataset, which keeps the
training time under manageable margins. For the rest of this paper, we refer to the 200 classes dataset
as ImageNet200. Since it is a common practice [17], we evaluate the ability of a certain network in
properly dealing with the ImageNet200 dataset in terms of the top-5 validation error computed over
the validation set.

48 Communication Reduction in Deep Neural Network Training

Table 5.1 Neural network configurations: The convolutional layer parameters are denoted as
“conv<receptive field size>-<number of channels>”. The ReLU activation function is not shown for
brevity. The building blocks of Resnet and the number of times they are applied are shown in a single
cell.

Alexnet VGG Resnet-34
input(224x224 RGB image)

conv11-64 conv3-64 conv7-64
maxpool

conv5-192 conv3-128
conv3-64
conv3-64

x3
maxpool

conv3-384
conv3-256
conv3-256

conv3-128
conv3-128

x4
maxpool

conv3-384
conv3-512
conv3-512

conv3-256
conv3-256

x6
maxpool

conv3-256
conv3-512
conv3-512

conv3-512
conv3-512

x3
maxpool avgpool
FC-4096

FC-4096
FC-4096

FC-4096

FC-200
softmax

5.4.2 DNN Models and Training Parameters

We apply the AWP algorithm along with the ADT procedure on three state-of-the-art DNN models: a
modified version of Alexnet [16] with an extra fully-connected layer of size 4096, the configuration
A of the VGG model [17] and the Resnet network [18]. All hidden layers are equipped with a
Rectified Linear Units (ReLU) [16]. The exact configurations of the three neural networks are shown
in Table 5.1. The Alexnet model is composed of 5 convolutional layers and 4 fully-connected ones,
VGG contains 8 convolutional layers and 3 fully-connected ones and Resnet is composed of 33
convolutional layers and a single fully-connected one.

We use momentum SGD [108] to guide the training process with momentum set to 0.9. The
training process is regularized by weight decay and the L2 penalty multiplier is set to 5×10−4. We
apply a dropout regularization value of 0.5 to fully-connected layers. We initialize the weights using a
zero-mean normal distribution with variance 10−2. The biases are initialized to 0.1 for Alexnet and 0

5.4 Experimental Setup 49

for both VGG and Resnet networks. For the Alexnet and VGG models we consider training batch
sizes of 64, 32 and 16. To train the largest network we consider, Resnet, we consider batch sizes of
128, 64 and 32. The 16 batch size incurs in a prohibitively expensive training process for Resnet and,
therefore, we do not use it in our experimental campaign.

For Alexnet we set the initial learning rate to 10−2 for the 64 batch size and decrease it by factors
of 2 and 4 for the 32 and 16 batch sizes, respectively. In the case of VGG we set the initial learning
rate to 10−2 for the 64, 32 and 16 batch sizes, as in the state-of-the-art [17]. In the case of Resnet the
learning rate is 10−2 for the batch size of 32 and 0.1 for the rest. For all network models we apply
exponential decay to the learning rate throughout the whole training process in a way the learning rate
decays every 30 batches by a factor of 0.16, as previous work suggests [105]. For Resnet we obtain
better results by adapting precision at the Resnet building blocks level [18] instead of doing so in a
per-layer basis.

5.4.3 Implementation

Our code is written in Python on top of Google Tensorflow [55]. Tensorflow is a data-flow and graph-
based numerical library where the actual computation is carried out according to a computational
graph constructed beforehand. The computational graph defines the order and the type of computations
that are going to take place. It supports NVIDIA’s NCCL library.

To enable the use of both Bitpack and Bitunpack routines, we integrate them into Tensorflow
using its C++ API. Tensorflow executes the two routines before sending the weights from the CPU to
the GPU and right after receiving the weights on the GPU side, respectively. The Bitpack routine is
implemented using the OpenMP 4.0 programming model. There are two versions of this routine using
either Intel’s AVX2 or AltiVec instructions, as explained in Section 5.3. Bitunpack is implemented
using CUDA 8.0 and CUDA 10.0 respectively on the two platforms [107].

5.4.4 Hardware Platforms

We conduct our experiments on two clusters featuring the x86 and POWER architectures. The x86
machine is composed of two 8-core Intel Xeon ®E5-2630 v3 (Haswell) at 2.4 GHz and a 20 MB L3
shared cache memory each. It is also equipped with two Nvidia Tesla K80 accelerators, each of which
hosts two Tesla GK210 GPUs. It has 128 GB of main memory, distributed in 8 DIMMs of 16 GB
DDR4 @ 2133 MHz. The 16-core CPU and the four GPUs are connected via a PCIe 3.0 x8 8GT/s.
The operating system is RedHat Linux 6.7. Overall, the peak performance of the two 8-core sockets
plus the four Tesla GK210 GPUs is 6.44 TFlop/s.

The POWER machine is composed of two 20-core IBM POWER9 8335-GTG at 3.00 GHz. It
contains four NVIDIA Volta V100 GPUs. Each node has 512 GB of main memory, distributed in
16 DIMMS of 32 GB @ 2666 MHz. The GPUs are connected to the CPU devices via a NVIDIA
NVLink 2.0 interconnection [9]. The operating system is RedHat Linux 7.4. The peak performance
of the two 20-core sockets plus the four V100 GPUs is 28.85 TFlop/s.

50 Communication Reduction in Deep Neural Network Training

5.5 Evalutation

In this section we evaluate the capacity of the AWP algorithm and the ADT procedure to accelerate
DNNs training. We show how our proposals are able to accelerate the training phase of relevant DNN
models without reducing the accuracy of the network.

5.5.1 Methodology

Our experimental campaign considers batch sizes of 64, 32 and 16 for the Alexnet and VGG models
and 128, 64 and 32 for the Resnet network. For each model and batch size, the baseline run uses the
32-bit Floating Point precision for the whole training. The data represention formats we consider to
transfer weights from the CPU to the GPU are: 8-bit (1 bit for sign, 7 bits for exponent), 16-bit (1
bit for sign, 8 for exponent, 7 for mantissa), 24-bit (1 bit for sign, 8-bits for exponent and 15 bits
for mantissa) and 32-bits (1 bit for sign, 8 bits for exponent and 23 bits for mantissa). We train the
network models with dynamic data representation by applying the AWP algorithm along with the
ADT procedure. We denote this approach combining ADT and AWP as A2DTWP. For each DNN and
batch size, we select the data representation format that first reaches the 35%, 25% and 15% accuracy
thresholds for Resnet, Alexnet and VGG, respectively, and we denote this approach as oracle. For the
case of the oracle approach, data compression is done via ADT. The closer A2DTWP is to oracle, the
better is the AWP algorithm in identifying the best data representation format.

During training we sample data in terms of elapse time and validation error every 4000 batches.
The total number of training batches corresponding to the whole ImageNet200 dataset are 16020,
8010, 4005 and 2002 for batch sizes 16, 32, 64 and 128, respectively. The values of AWP parameters
T , INT ERVAL, and N are determined in the following way: In the case of T we monitor the execution
of several epochs until we observe a drop in the validation error. We then measure the average
change, considering all layers, of weights’ l2-norm during this short monitoring period. The obtained
values of T are −5×10−2, −2×10−3 and −2×10−5 for Alexnet, VGG and Resnet, respectively.
We set the INT ERVAL parameter to 4000 for both AlexNet and VGG and 2000 for Resnet. These
values correspond to a single batch (for the ImageNet200 dataset and batch sizes 64 and 128) and
avoid premature precision switching due to numerical fluctuations. We set N to 8 since the smallest
granularity of our approach is 1 byte. AWP initially applies 8-bit precision to all layers. We use
ImageNet200 in Sections 5.5.2, 5.5.3, 5.5.4, 5.5.5, and 5.5.6. Section 5.5.7 uses ImageNet1000.

5.5.2 Evaluation on Alexnet

The evaluation considering the Alexnet model on the x86 system is shown in Figure 5.3, which plots
detailed results considering batch sizes of 32 and 16, and Figure 5.5, which shows the total execution
time of the oracle and A2DTWP policies normalized to the baseline for the 64, 32 and 16 batch sizes
on both the x86 and the POWER systems. The two top plots of Figure 5.3 depict how the validation
error of the baseline, oracle, and A2DTWP policies evolves over time for the 32 and the 16 batch

5.5 Evalutation 51

sizes until the 25% accuracy is reached. The two bottom plots provide information regarding the
performance improvement of both oracle and A2DTWP over the 32-bit baseline with regard to a
certain validation error. Such performance improvement is computed by looking at the time required
by the oracle and A2DTWP techniques to reach a certain validation error with respect to the baseline.

0 20000 40000 60000
Time(s)

20

40

60

80

100

T
op

-5
V

al
id

at
io

n
E

rr
or

(%
)

32-oracle 32-baseline 32-A2DTWP

0 25000 50000 75000 100000
Time(s)

20

40

60

80

100

T
op

-5
V

al
id

at
io

n
E

rr
or

(%
)

16-oracle 16-baseline 16-A2DTWP

406080100
Top-5 Validation Error (%)

−20

−10

0

10

20

Im
pr

ov
em

en
t

(%
)

32-oracle 32-A2DTWP

406080100
Top-5 Validation Error (%)

10

20

30

40

Im
pr

ov
em

en
t

(%
)

16-oracle 16-A2DTWP

Fig. 5.3 Alex training considering 32 and 16 batch sizes. The two upper plots show the top-5 validation
error evolution of baseline, oracle and A2DTWP. The two bottom figures provide information on
the performance improvement of oracle and A2DTWP against baseline during the training process.
Experiments run on the x86 system.

It can be observed in the upper left-hand side plot of Figure 5.3 how the oracle and the A2DTWP
approaches are 10.82% and 6.61% faster than the baseline, respectively, to reach the 25% top-5
validation error when using a 32 batch size. The upper right-hand side plot shows results considering
a 16 batch size. The improvements achieved by the oracle and A2DTWP approaches are 11.52% and
10.66%, respectively. This demonstrates the efficiency of the ADT procedure in compressing and
decompressing the network weights without undermining the performance benefits obtained from

52 Communication Reduction in Deep Neural Network Training

sending less data from the CPU device to the GPU. It also demonstrates the capacity of AWP to
quickly identify the best data representation format per layer.

The two bottom plots of Figure 5.3 provide information on performance improvement of oracle
and A2DTWP over the baseline during the training process. For the 32 batch size, oracle reaches a
peak improvement of 24.11% when the 90% validation error is reached and steadily declines from
that point although it keeps a significant improvement of 10.82% over the baseline once the 25%
top-5 validation error is reached. A2DTWP falls in-between the baseline and the oracle and keeps its
improvement above 7.03% until it reaches the 27% top-5 validation error. Once it reaches the 25%
validation error A2DTWP is 6.51% faster than the baseline. In conclusion, the A2DTWP policy is able
to provide performance improvements that are close to the ones achieved by the best possible accuracy.
For the 16 batch size, the performance benefits of the oracle policy reach a 41.64% peak at the 94%
validation error point. The A2DTWP policy reaches its maximum performance benefit, 34.21%, when
the validation error is 97%. At the 25% validation error point, the oracle and the A2DTWP policies
reach 13.00% and 10.75% performance improvement, respectively. Overall, results considering the
Alexnet network for batch sizes 32 and 16 confirm that A2DTWP, which combines both the AWP
algorithm and the ADT procedure, successfully delivers very similar performance benefits to the best
possible accuracy.

Figure 5.5 shows the normalized execution time of the oracle and A2DTWP policies with respect
to the 32-bit FP baseline on the x86 and the POWER systems. The top chart reports performance
improvements of 10.75%, 6.51%, and 0.59% for batch sizes 16, 32 and 64 in the case of Alexnet
runnig on the x86 system. For the 64 batch size, the marginal gains of A2DTWP over the baseline are
due the poor performance of the 8-bits format employed by A2DTWP at the beginning of the training
process. This format does not contribute to reduce the validation error for the 64 batch case, which
makes the A2DTWP policy to fall behind the baseline at the very beginning of the training process.
Although A2DTWP eventually increases its accuracy and surpases the baseline, it does not provide
the same significant performance gains for Alexnet as the ones observed for batch sizes 16 and 32.

A2DTWP performance improvements on the POWER system in the case of Alexnet are 18.61%,
14.25% and 10.01% with respect to the baseline for batch sizes 16, 32 and 64, respectively. The
POWER system achieves larger performance improvements than x86 since the Bitpack procedure can
be further parallelized over the 40 cores of the POWER9 multicore chips than the 16 cores available
in the Haswell multicore devices of the x86 system. This mitigates the costs of weigths’ compression
and thus provides larger performance improvements.

5.5.3 Evaluation on VGG

Figure 5.4 shows results for batch sizes 64 and 32 when using the VGG architecture on the x86
system. The upper figures display the temporal evolution of the validation error until the 15% top-5
validation error is reached. Like in Alexnet, both the A2DTWP and the oracle policies outperform the
baseline. In the case of batch size 64, both oracle and A2DTWP display a similar evolution in terms

5.5 Evalutation 53

of validation error, which translates to very close performance improvement over the baseline. They
maintain an overall improvement of over 13.00% against the baseline during most of their training.
The A2DTWP technique outperforms the baseline by 12.88% when reaches 15% of top-5 validation
error while the oracle policy achieves the same improvement. For batch size 32 the final improvement
achieved by A2DTWP over the baseline is 5.02%. This improvement is not as large as the one achived
for the 64 batch size since the AWP algorithm does not identify a numerical precision able to beat the
baseline until the 57% validation error is reached, as it can be seen in the bottom right hand side plot
of Figure 5.4.

0 20000 40000 60000
Time(s)

20

40

60

80

100

T
op

-5
V

al
id

at
io

n
E

rr
or

(%
)

64-oracle 64-baseline 64-A2DTWP

0 25000 50000 75000 100000
Time(s)

20

40

60

80

100

T
op

-5
V

al
id

at
io

n
E

rr
or

(%
)

32-oracle 32-baseline 32-A2DTWP

20406080100
Top-5 Validation Error (%)

2.5

5.0

7.5

10.0

12.5

15.0

Im
pr

ov
em

en
t

(%
)

64-oracle 64-A2DTWP

20406080100
Top-5 Validation Error (%)

−10

−5

0

5

10

15

Im
pr

ov
em

en
t

(%
)

32-oracle 32-A2DTWP

Fig. 5.4 VGG training considering 64 and 32 batch sizes. The two upper plots show the top-5 validation
error evolution of baseline, oracle and A2DTWP. The two bottom figures provide information on
the performance improvement of oracle and A2DTWP against baseline during the training process.
Experiments run on the x86 system.

Figure 5.5 shows the normalized execution time of A2DTWP and oracle with respect to the
baseline for VGG considering batch sizes of 16, 32 and 64 on the x86 and POWER systems. When
applied to the VGG model on the x86 system, A2DTWP outperforms the 32-bit Floating Point baseline

54 Communication Reduction in Deep Neural Network Training

by 12.88%, 5.02% and 7.31% for batch sizes 64, 32 and 16, respectively. Despite the already described
issues suffered by the A2DTWP technique when applied to the 32 batch size, this approach achieves
very remarkable performance improvements over the baseline in all considered scenarios.

The performance improvements observed when trying VGG on the POWER system are even
higher. A2DTWP outperforms the baseline by 28.21%, 20.19% and 11.13% when using the 16, 32
and 64 batch sizes, respectively. The performance improvement achieved on the POWER system are
larger than the ones observed for x86 since the Bitpack procedure can be parallelized over 40 cores
when running on the POWER system. We observe the same behavior for Alexnet, as Section 5.5.2
indicates.

5.5.4 Evaluation on Resnet

We display the normalized execution time of the A2DTWP and the oracle policies when applied to
the Resnet model using batch sizes of 128, 64 and 32 in Figure 5.5. In the case of Resnet we do
not show detailed plots describing the evolution of the validation error during training because its
behavior is very close to some previously displayed scenarios like VGG. On the x86 system, A2DTWP
beats the 32-bit Floating Point baseline by 4.94%, 4.39% and 3.11% for batch sizes of 128, 64 and
32, respectively, once a top-5 validation error of 30% is reached. The relatively low performance
improvement achieved in the case of 32 batch size is due to a late identification of a competitive
numerical precision, as it happens in the case of VGG and batch size 32.

The performance gains on the POWER system display a similar trend as the ones achieved on
x86. While they show the same low improvement for the 32 batch size, 2.12%, A2DTWP achieves
6.92% and 11.54% performance gains for batch sizes 64 and 128, respectively. A2DTWP achieves the
largest performance improvement with respect to the 32-bit baseline when run on the POWER system
due to the reasons described in Sections 5.5.2 and 5.5.3.

5.5.5 Average Performance Improvement

The average performance improvement of A2DTWP over the baseline considering the Alexnet, VGG
and Resnet models reach 6.18% and 11.91% on the x86 and the POWER systems, respectively. As we
explain in previous sections, A2DTWP obtains larger improvements on the POWER system than on
x86 since the ADT procedure can be further parallelized over the 40 cores of the POWER9 multicore
devices. In contrast, the two Haswell devices of the x86 system offer just 16 cores for ADT.

The combination of the AWP algorithm and the ADT procedure properly adapts the precision of
each network layer and compresses the corresponding weigths with a minimal overhead. The large
performance improvement obtained while training deep networks on two high-end computing systems
demonstrate the effectiveness of A2DTWP.

5.5 Evalutation 55

Alexnet-B
S16

Alexnet-B
S32

Alexnet-B
S64

VGG-BS16

VGG-BS32

VGG-BS64

Resnet-B
S32

Resnet-B
S64

Resnet-B
S128

Average

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

Baseline A2DTWP Oracle

Alexnet-B
S16

Alexnet-B
S32

Alexnet-B
S64

VGG-BS16

VGG-BS32

VGG-BS64

Resnet-B
S32

Resnet-B
S64

Resnet-B
S128

Average

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

Baseline A2DTWP Oracle

Fig. 5.5 Normalized execution times of the A2DTWP and the oracle policies with respect to the
baseline. Results obtained on the x86 system appear in the upper plot while the evalution on the
POWER system appears at the bottom.

56 Communication Reduction in Deep Neural Network Training

5.5.6 A2DTWP Performance Profile

This section provides a detailed performance profile describing the effects of applying A2DTWP when
training the VGG network model with batch size 64 on the x86 and POWER systems described in
section 5.4.4. To highlight these effects we also show a performance profile of applying 32-bit Floating
Point format during training. The main kernels involved in the training process and their corresponding
average execution time in milliseconds are shown in Tables 5.2 and 5.3. Each kernel can be invoked
multiple times by different network layers and it can be overlapped with other operations while
processing a batch. Tables 5.2 and 5.3 display for all kernels the average execution time of their
occurrences within a batch when run on the x96 and the POWER systems, respectively.

Results appearing in Table 5.2 show how time spent transferring data from the CPU to the GPU
accelerators when applying A2DTWP on the x86 system, 52.27 ms, is significantly smaller than
the cost of performing the same operation when using the 32-bit configuration, 153.93 ms. This
constitutes a 2.94x execution time reduction that compensates the cost of the operations involved
in the ADT routine, Bitpack and Bitunpack, and in the AWP algorithm, the l2-norm computation.
On POWER we observe a similar reduction of 3.20x in the time spent transferring data from the
CPU to the GPUs when applying A2DTWP. These reductions in terms of CPU to GPU data transfer
time are due to a close to 3x reduction in terms of weights size enabled by A2DTWP. The average
execution time of operations where the A2DTWP technique plays no role remains very similar for the
32-bit Floating Point baseline and A2DTWP in both systems, as expected. Tables 5.2 and 5.3 indicate
that performance gains achieved by A2DTWP are due to data motion reductions, which validates the
usefulness of A2DTWP.

Tables 5.2 and 5.3 also display the overhead associated with AWP and ADT in terms of mil-
liseconds. The AWP algorithm spends most of its runtime computing the l2-norm of the weights,
which takes a total of 3.88 ms within a batch on the x86 system. On POWER, the cost of computing
the l2-norm of the weights is 0.93 ms. The other operations carried out by AWP have a negligible
overhead. The two fundamental procedures of ADT are the Bitpack and Bitunpack routines, which
take 19.71 and 4.51 ms to run within a single batch on the x86 system. For the case of POWER,
Bitpack and Bitunpack take 10.51 and 1.11 ms, respectively. Overall, measurements displayed at
Table 5.2 indicate that AWP and ADT constitute 1.05% and 6.60% of the total batch execution time,
respectively, on x86. On the POWER system, AWP and ADT constitute 0.54% and 6.82% of the total
batch execution time according to Table 5.3. Figures 5.3, 5.4 and 5.5 account for this overhead in
the results they display.

5.5.7 Experiments with ImageNet1000

We run experiments considering ImageNet1000 to confirm they display the same trends as executions
with ImageNet200. Network parameters are the same as the ones described in Section 5.4. AWP pa-
rameters are the ones described in Section 5.5.1. The experimental setup of the evaluation considering
ImageNet1000 is the same as the one we use for ImageNet200. We consider batch sizes that produce

5.5 Evalutation 57

Table 5.2 Performance profiles of both the A2DTWP and the 32-bit Floating Point approaches
expressed in milliseconds on the x86 system. We consider the VGG network model with batch size
64.

32-bit FP A2DTWP
Data Transfer CPU→GPU 153.93 52.27
Data Transfer GPU→CPU 68.51 73.55

Convolution 128.72 126.13
Fully-connected 33.51 34.17
Gradient update 54.39 52.86
AWP (l2-norm) N/A 3.88
ADT (Bitpack) N/A 19.71

ADT (Bitunpack) N/A 4.51

Table 5.3 Performance profiles of both the A2DTWP and the 32-bit Floating Point approaches
expressed in milliseconds on the POWER system. We consider the VGG network model with batch
size 64.

32-bit FP A2DTWP
Data Transfer CPU→GPU 39.12 12.21
Data Transfer GPU→CPU 17.34 17.87

Convolution 69.78 71.21
Fully-connected 12.66 13.51
Gradient update 41.29 42.98
AWP (l2-norm) N/A 0.93
ADT (Bitpack) N/A 10.51

ADT (Bitunpack) N/A 1.11

58 Communication Reduction in Deep Neural Network Training

4 8 12 16 20 2 4 6 8 4 8 12 16
0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
E

la
p

se
T

im
e

Alexnet-BS64 VGG-BS64 Resnet-BS128

Fig. 5.6 Normalized execution time of A2DTWP with respect to baseline considering the Imagenet1000
data set. Training for Alexnet, VGG and Resnet considers up to 20, 8, and 16 epochs, respectively.

the fastest 32-bit FP training for each one of the network models: 64, 64, and 128 for Alexnet, VGG
and Resnet, respectively.

Figure 5.6 displays results corresponding to the experimental campaign with ImageNet1000 on
the x86 system. In the x-axis we display different epoch counts for each one of the three models: 4, 8,
12, 16, and 20 epochs for Alexnet; 2, 4, 6, and 8 for VGG; and 4, 8, 12, and 16 epochs for Resnet.
The y-axis displays the normalized elapsed time of A2DTWP with respect to the the 32-bit Floating
Point baseline per each model and epoch count. For the case of Alexnet with batch size 64, A2DTWP
is slightly faster than the baseline as it displays a normalized execution time of 0.995, 0.992, 0.992,
0.996, and 0.990 after 4, 8, 12, 16 and 20 epochs, respectively. Figure 5.5 also reports small gains for
the case of Alexnet with batch size 64, which confirms that experiments with ImageNet1000 show
very similar trends as the evaluation with ImageNet200. When applying A2DTWP to VGG with 64
batch size, it displays a normalized execution time of 0.907, 0.920, 0.936, and 0.932 with respect to
the baseline after running 2, 4, 6 and 8 training epochs, respectively. For the Resnet example, we
observe normalized execution times of 0.765, 0.770, 0.778, and 0.777 for A2DTWP after 4, 8, 12, and
16 training epochs, respectively, which constitutes a significant performance improvement.

In terms of validation error, both A2DTWP and baseline display very similar top-5 values at the
end of each epoch. For example, for the case of VGG, the Floating Point 32-bit baseline approach
displays a validation error of 88.04% after 2 training epochs while A2DTWP achieves a validation
error of 89.97% for the same epoch count, that is, an absolute difference of 1.93%. After 4, 6, and
8 training epochs absolute distances of top-5 validation errors between A2DTWP and baseline are
3.09%, 0.47%, and 0.71%, respectively. Top-5 validation error keeps decreasing in an analogous way
for both baseline and A2DTWP as training goes over more epochs, although A2DTWP is significantly
faster. Our evaluation indicates that A2DTWP can effectively accelerate training while achieving the
same validation error as the 32-bit FP baseline when considering ImageNet1000.

5.6 Conclusions 59

5.6 Conclusions

This chapter proposes A2DTWP, which reduces data movement across heterogeneous environments
composed of several GPUs and multicore CPU devices in the context of deep learning workloads. The
A2DTWP framework is composed of the AWP algorithm and the ADT procedure. AWP is able to
dynamically define the weights data representation format during training. This chapter demonstrates
that AWP is effective without any deterioration on the learning capacity of the neural network. To
transform AWP decisions into real performance gains, we introduce the ADT procedure, which
efficiently compresses network’s weights before sending them to the GPUs. This procedure exploits
both thread- and SIMD-level parallelism. By combining AWP with ADT we are able to achieve a
significant performance gain when training network models such as Alexnet, VGG or Resnet. Our
experimental campaign considers different batch sizes and two different multi-GPU high-end systems.

This chapter is the first in proposing a solution that relies on reduced numeric data formats to
mitigate the cost of sending DNNs weights to different hardware devices during training. While our
evaluation targets heterogeneous high-end systems composed of several GPUs and CPU multicore
devices, techniques presented by this chapter are easily generalizable to any context involving several
hardware accelerators exchanging large amounts of data. Taking into account the prevalence of deep
learning-specific accelerators in large production systems [91], the contributions of this chapter are
applicable to a wide range of scenarios involving different kinds of accelerators.

6

Communication Reduction in Model
Parallelism of Deep Neural Networks

6.1 Introduction

Deep Neural Networks (MLPs, CNNs, RNNs etc.) have seen a mass adoption into the industry in
recent years [86, 87, 88]. DNNs provide very competitive pattern detection capabilities and, more
specifically, Convolutional Neural Networks (CNNs) classify very large image sets with remarkable
accuracy [89].

As DNNs are gaining traction in more and more fields, the needs to accelerate the otherwise
notoriously slow training has become a prominent topic in the HPC (high performance computing)
community. Furthermore, with the ever-increasing size of the datasets and the ever-growing complexity
of the DNN architecture [18, 85, 109], nowadays it takes HPC clusters to train DNNs to reach a
competitive accuracy [50]. A simple yet prevalent method to accelerate the training is to use data
parallelism [49, 51] in which the input data are distributed onto various available computational
units (CPUs, GPUs, FPGAs etc.) [96, 110, 111] and the training on different portion of the data are
being carried out simultaneously. Nevertheless, it does not tackle the problem of the architectural
complexity of the DNNs where the memory capacity of a computational unit is not sufficient to hold
the parameters of the entire network. It is then natural to develop ways to distribute the network onto
multiple computational units. Model parallelism is thus the parallelism paradigm to this end [50, 51].

Unlike data parallelism where the trainings on portions of data have no inter-dependencies, model
parallelism inevitably introduces dependencies among the computational units. As a consequence,
communication will have to occur so that each computational unit is updated with the contribution
from the rest of the units. This impedes the network to scale on the current massively parallel systems
with the message passing paradigm.

This chapter describes a novel approach Altsplit to accelerate the training of DNNs and improving
the scalability of the current model parallelism approach by reducing the communication occurrences
during both the forward- and backward- propagation phases. It achieves so by alternating the splitting

62 Communication Reduction in Model Parallelism of Deep Neural Networks

and the replication of the neurons in successive layers in a distributed-memory system. We compare
this approach with a baseline approach, where the neurons of all the layers are split, on two HPC
clusters with high-end CPUs (x86 Xeon and POWER9). Our experiments see an average performance
benefits of 66.12% and 57.16% respectively on both clusters.

This chapter is structured as follows: Section 6.2 describes our baseline and Altsplit approaches.
Section 6.3 provides information on the HPC clusters we run experiments on as well as the imple-
mentation details. We evaluate our approach in Section 6.4. Section 6.5 offers the conclusion to this
chapter.

6.2 Communication Reduction in Model Parallelism of DNN

6.2.1 State-of-the-Art Approach

We consider model parallelism to accelerate the training of DNN on a distributed-memory system
using MPI. Figure 6.1 illustrates the state-of-the-art approach to it which also serves as the baseline
of this chapter. It depicts a 5-hidden-layer all-connected DNN split on two MPI processes and the 4
neurons per layer are evenly assigned to each MPI process. The input and output layer are omitted
and we assume they are replicated in every MPI process. The black arrows in the figure indicate
all-to-all communications between the two MPI processes. During both the forward- and backward-
propagation, each neuron from the current layer needs the outputs of the entire neurons from the
preceding layer. All-to-all communication must be performed across all the MPI processes. In the
figure, prior to the computation of each layer 4 all-to-all communication need to occur so that the
output information from the preceding layer can get to be fully propagated to the respective portions
of the current layer to all the MPI processes. Albeit some numerical rounding errors introduced due to
the non-deterministic nature of the all-to-all communication, this approach guarantees that the output
information from the preceding layer is consistent and identical to all the MPI processes prior to the
computation of their respective portions of the current layer.

Fig. 6.1 State-of-the-art model parallelism scheme

6.2 Communication Reduction in Model Parallelism of DNN 63

We first show the sequential training of a DNN using matrix operations in Algorithm 10. We
denote bs as the batch size, L as the number of layers and Nl as the number of neurons in layer l.
Matrix of layer l is denoted as AAAl[m,n] whereas m and n stand for the number of rows and columns
respectively of the matrix and (AAAl)

T [m,n] denotes the transpose of the matrix AAAl and [m,n] represents
the dimension of the transposed matrix. ∇AAAl[m,n] represents the gradients of matrix AAAl . φ is an
element-wise non-linear function (tanh, relu etc.). Only the operations on the forward- and backward-
propagation phases for the hidden layers are shown in detail since they are the regions of interest with
regard to the subsequent parallel versions of the algorithm.

Algorithm 10 Sequential DNN
1: for l = 1 . . .L do ▷ Forward-propagation
2: YYY l [bs,Nl] =OOOl−1[bs,Nl−1]∗ (WWW l)

T [Nl−1,Nl]
3: OOOl [bs,Nl] = φ(YYY [bs,Nl])
4: end for
5: for l = L . . .1 do ▷ Backpropagation
6: ∇WWW l [bs,Nl] = ∇WWW l+1[bs,Nl+1]∗WWW l+1[Nl+1,Nl]
7: ∇WWW l [bs,Nl] = ∇WWW l [bs,Nl]∗ (∂OOOl [bs,Nl]/∂YYY l [bs,Nl])
8: end for
9: Update parameters

The state-of-the-art model parallelism of a DNN is shown in Algorithm 11. Besides the notations
we introduced in Algorithm 10, we give some additional notations due to the introduction of paral-
lelism. size denotes the number of MPI processes, rank denotes the ID of the current MPI process and
Nl represents the number of neurons assigned to each MPI process which is equivalent to Nl_total/size
(here we assume that Nl_total/size is divisible). This algorithm allocates some extra space for holding
the information gathered across all the MPI threads:

• The weight matrix of each hidden layer WWW l should be of dimension [Nl,Nl−1 ∗ size].

• An extra matrix to store the outputs from the preceding hidden layer from all the MPI threads
OOOl−1[bs,Nl−1 ∗ size].

• An extra matrix to store the gradients of the succeeding layer from all the MPI threads
∇WWW l[bs,Nl ∗ size].

At the beginning of the forward-propagation phase of each hidden layer an MPI_Allgather precedes
the computation to gather outputs from all local portions from the preceding layer. Subsequently,
each MPI thread needs to perform a MPI_Allreduce with the sum operation on ∇WWW l[bs,Nl ∗ size] and
extract its respective gradients from it during the backpropagation phase.

64 Communication Reduction in Model Parallelism of Deep Neural Networks

Algorithm 11 State-of-the-art approach to model parallelism of DNN
1: for all p ∈MPI_Processes do ▷ Forward-propagation
2: for l = 1 . . .L do
3: MPI_Allgather on OOOl−1[bs,Nl−1 ∗ size] from all local OOOl−1[bs,Nl−1]
4: YYY l [bs,Nl] =OOOl−1[bs,Nl−1 ∗ size]∗ (WWW l)

T [Nl−1 ∗ size,Nl]
5: OOOl [bs,Nl] = φ(YYY [bs,Nl])
6: end for
7: end for
8: for all p ∈MPI_Processes do ▷ Backpropagation
9: for l = L . . .1 do

10: ∇WWW l [bs,Nl ∗ size] = ∇WWW l+1[bs,Nl+1]∗WWW l+1[Nl+1,Nl ∗ size]
11: MPI_Allreduce_sum on ∇WWW l [bs,Nl ∗ size]
12: Extract ∇WWW l,p[bs,Nl] from ∇WWW l [bs,Nl ∗ size] according to rank
13: ∇WWW l,p[bs,Nl] = ∇WWW l,p[bs,Nl]∗ (∂OOOl,p[bs,Nl]/∂YYY l,p[bs,Nl])
14: end for
15: end for
16: for all p ∈MPI_Processes do
17: Update parameters
18: end for

6.2.2 The Altsplit (Alternate Split) Approach

We propose the Altsplit approach which splits or replicates the layers alternately. The scheme is
illustrated in Figure 6.2 with the same 5-hidden-layer DNN as in Figure 6.1. The first hidden layer
is split across MPI processes whereas the next layer is replicated on the MPI processes with the
same initialization values. Subsequent layers are constructed with alternating splits and replications.
Therefore, we cut the amount of communication by half during the entire training compared to
the state-of-the-art approach by triggering communication every other layer while at the cost of
replicating layers on each MPI process. As a consequence, the floating point computation is increased
by 50% (twice every other layer).

6.2 Communication Reduction in Model Parallelism of DNN 65

Fig. 6.2 The Altsplit scheme

Algorithm 12 illustrates the Altsplit approach to model parallelism. Unlike the state-of-the-art
approach, there is no need for extra storage in Altsplit. If the preceding layer during the forward-
propagation phase is a split, an MPI_Allreduce with the sum operation must be performed on
YYY l−1[bs,Nl]. Similarly, the same routine must be called upon on ∇WWW l[bs,Nl] while in the backpropa-
gation phase if the succeeding layer is a split.

Algorithm 12 Altsplit approach to model parallelism of DNN
1: for all p ∈MPI_Processes do ▷ Forward-propagation
2: for l = 1 . . .L do
3: YYY l [bs,Nl] =OOOl−1[bs,Nl−1]∗ (WWW l)

T [Nl−1,Nl]
4: if l−1 == SPLIT then
5: MPI_Allreduce_sum on YYY l−1[bs,Nl]
6: end if
7: OOOl [bs,Nl] = φ(YYY [bs,Nl])
8: end for
9: end for

10: for all p ∈MPI_Processes do ▷ Backpropagation
11: for l = L . . .1 do
12: ∇WWW l [bs,Nl] = ∇WWW l+1[bs,Nl+1]∗WWW l+1[Nl+1,Nl]
13: if l +1 == SPLIT then
14: MPI_Allreduce_sum on ∇WWW l [bs,Nl]
15: end if
16: ∇WWW l,p[bs,Nl] = ∇WWW l,p[bs,Nl]∗ (∂OOOl,p[bs,Nl]/∂YYY l,p[bs,Nl])
17: end for
18: end for
19: for all p ∈MPI_Processes do
20: Update parameters
21: end for

66 Communication Reduction in Model Parallelism of Deep Neural Networks

6.3 Experimental Setup

6.3.1 Hardware Platforms

We conduct our experiments on two clusters featuring the x86 and POWER architectures. The x86
machine is composed of two 24-core Intel Xeon ®E5-2630 v3 (Haswell) at 2.4 GHz and a 20 MB L3
shared cache memory each. It is also equipped with two Nvidia Tesla K80 accelerators, each of which
hosts two Tesla GK210 GPUs. It has 128 GB of main memory, distributed in 8 DIMMs of 16 GB
DDR4 @ 2133 MHz. The 16-core CPU and the four GPUs are connected via a PCIe 3.0 x8 8GT/s.
The operating system is RedHat Linux 6.7. Overall, the peak performance of the two 8-core sockets
plus the four Tesla GK210 GPUs is 6.44 TFlop/s.

The POWER machine is composed of two 20-core IBM POWER9 8335-GTG at 3.00 GHz. It
contains four NVIDIA Volta V100 GPUs. Each node has 512 GB of main memory, distributed in
16 DIMMS of 32 GB @ 2666 MHz. The GPUs are connected to the CPU devices via a NVIDIA
NVLink 2.0 interconnection [9]. The operating system is RedHat Linux 7.4. The peak performance
of the two 20-core sockets plus the four V100 GPUs is 28.85 TFlop/s.

6.3.2 Implementation

We build the baseline and our approach on top of KANN [57] which is a deep learning framework
written in C/C++. Section 3.3.2 provides its information in detail.

It builds a computational graph prior to carrying out the actual computations and the operation
and the computation of its derivative are performed in the same node in the graph. Furthermore,
we observe that all the MPI calls in both approaches are performed either right before or after a
matrix-matrix multiplication. We thus insert appropriate MPI calls inside the computational nodes
that are responsible for carrying out the multiplication and its derivative computation according to
their relative order to the multiplications.

Due to the fact that MPI all-to-all communication possess non-deterministic behavior since the
order the messages arriving to each MPI process may vary, the two approaches may show minor
differences in the accuracy. Apart from that we make sure that the initial values of each layer are
identical.

We use OpenMPI [112, 113] as our MPI implementation. The version we use on the x86 machine
is 1.10.0 and the version on the POWER machine is 3.0.0.

6.4 Evalutation

We conduct extensive experiments on various aspects of Altsplit. We demonstrate its scalability in
Section 6.4.1 and show that it is applicable in different machines by providing results on two HPC
clusters in Section 6.4.2. In Section 6.4.3 we visualize the Altsplit and the baseline approach to get
more insights.

6.4 Evalutation 67

6.4.1 Parallelism Scalability

We run Altsplit and baseline side-by-side on the x86 clusters up to 16 nodes (640 MPI threads). We
use a total of 4 configurations of MLP networks:

• 16,000-neuron-per-layer, 3-layer, batch size of 512, denoted as 16000.3.512

• 16,000-neuron-per-layer, 3-layer, batch size of 1024, denoted as 16000.3.1024

• 16,000-neuron-per-layer, 5-layer, batch size of 512, denoted as 16000.5.512

• 16,000-neuron-per-layer, 5-layer, batch size of 1024, denoted as 16000.5.1024

We measure the elapse time of runs of 50 batches (51 batches but excluding the result from the first
batch to minimize system noises). We execute them on the dataset from Cifar-10 [59]. We use 40
MPI threads per node which are mapped to 40 distinct physical cores. Hence, the measurements are
taken in a stride of 40 MPI threads.

Figure 6.3 shows the results in 4 plots. Each plot depicts the performance of Altsplit against
baseline in terms of elapse time normalized with regard to baseline with varied number of MPI
threads, from 80 MPI threads (2 nodes) all the way up to 640 MPI threads (16 nodes).

We can see from the top left plot (80 MPI threads) that Altsplit goes slower than baseline.
Nevertheless, starting from 160 MPI threads (top right) and beyond Altsplit begins to gain track and
consistently outperforms baseline. More specifically, Altsplit runs 18.3%, 39.32% and 66.11% faster
than their respective baseline in average.

68 Communication Reduction in Model Parallelism of Deep Neural Networks

16
00

0.
3.

51
2

16
00

0.
3.

10
24

16
00

0.
5.

51
2

16
00

0.
5.

10
24

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

baseline altsplit

16
00

0.
3.

51
2

16
00

0.
3.

10
24

16
00

0.
5.

51
2

16
00

0.
5.

10
24

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

baseline altsplit

16
00

0.
3.

51
2

16
00

0.
3.

10
24

16
00

0.
5.

51
2

16
00

0.
5.

10
24

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

baseline altsplit

16
00

0.
3.

51
2

16
00

0.
3.

10
24

16
00

0.
5.

51
2

16
00

0.
5.

10
24

av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
la

p
se

T
im

e

baseline altsplit

Fig. 6.3 Performance improvements of 16k neurons on x86. Top left: 80 MPI processes, Top right:
160 MPI processes, Bottom left: 320 MPI processes, Bottom right: 640 MPI processes

6.4.2 Network Versatility

We launch a more extensive set of experiment that covers more network configurations. We use two
neurons-per-layer numbers: 16k and 32k, two layers: 3 and 5 along with two batch sizes: 512 and
1024 on both machines. We find out that Altsplit achieves the greatest performance gain on 640
MPI threads (16 nodes on both machines). Table 6.1 illustrates the results we obtain from of all the
configurations.

We observe that Altsplit with 16k neurons-per-layer outperforms baseline over 66.12% and 55.47%
on x86 and POWER9 respectively whereas with 32k neurons-per-layer the figures are 41.10% and

6.4 Evalutation 69

32.64% respectively. A low neuron-per-layer count attributes to a better performance with an average
gain in average of 25.02% and 24.51% respectively on x86 and POWER9. Since we are effectively
trading communication with additional computation with the Altsplit approach. In general Altsplit
also performs better under smaller batch sizes. This indicates that there is a sweet spot where the
benefit of reducing the communication is maximized.

Table 6.1 Performance improvements over the baseline on 640 MPI threads

Parameters Machine

Neurons Layers BS x86 POWER9

16k
3

512 68.12% 58.65%
1024 61.47% 56.12%

5
512 68.21% 58.43%
1024 66.68% 55.47%

Average 66.12% 57.16%

32k
3

512 45.28% 32.75%
1024 37.69% 31.58%

5
512 43.87% 34.37%
1024 37.58% 31.91%

Average 41.10% 32.65%

6.4.3 Traces

We run both the Altsplit and baseline on the x86 cluster with 80 MPI threads and generate running
traces. Figure 6.4 illustrates a run with 10 batches (9 are actually shown to exclude the system
noises introduced by the first batch). The x-axis represents the elapse time whereas each row from
the y-axis is the chronological activity from one of the 80 MPI threads. MPI calls are displayed
as the short burst of colored lines in the traces and the blank areas represents computation or other
system activities. Their length are proportional to the total elapse time. Two types of MPI all-to-all
communication involved in the baseline implementation, namely, MPI_Allreduce and MPI_Allgather
which corresponds with the trace on the top. Those marked with red are calls from MPI_Allgather
while the pink ones are calls from MPI_Allreduce. The duration of the trace of the Altsplit is the
same as in the baseline. One batch in the trace of the baseline is marked with two consecutive
MPI_Allgather (red) calls followed with two MPI_Allreduce (pink) ones. On the other hand, in
the trace of Altsplit one batch is marked with two MPI_Allreduce calls with a blank area sparsely
dotted with small bursts of MPI calls. The dark blue activities displayed at the end of both traces are
MPI_Finalize calls to mark the end of the MPI execution.

We can see that despite the similar duration of MPI_Allreduce calls on both approaches and
the fact that it takes a longer time for the Altsplit to commence the subsequent batch, the additional

70 Communication Reduction in Model Parallelism of Deep Neural Networks

MPI_Allgather incur a significant slow down compared to the blank area in-between the successive
MPI_Allreduce calls from the Altsplit approach.

Fig. 6.4 Traces on 80 MPI processes 9 batches. Top: baseline approach Bottom: altsplit approach

6.5 Conclusions

This chapter presents the Altsplit approach that intends to provide a model parallelism of the DNN
with less communication. It achieves this by distributing the neurons and replicating them across
all the computational units alternately in-between successive layers so that all-to-all communication
only occurs every other layers instead of in a lock-step fashion in an state-of-the-art approach. Our
experiments are conducted taking multiple hyper-parameters into consideration: the number of
neurons per layer, the number of layers and batch sizes. We conduct the experiments on two high-end
multicore multinode clusters with distinct CPU architecture.

We find that the Altsplit approach achieves significant speedups over our baseline state-of-the-art
approach regardless the underlying cluster. Furthermore, we show that the speedup is retained among
various hyper-parameters and we visualize the speedup by generating traces on both approach and
shows that the trade-off between additional floating-point computations and reduced communication
pays off.

7

Conclusions

This thesis intends to alleviate the bottlenecks brought about by all-to-all communication in the modern
HPC systems due to the constant scaling-up of the system size, problem size and the appearances of
emerging fields. This proves to be a daunting task because there is not an one-size-fits-all approach
to it. Each field possesses its own requirements and patterns on communication. Furthermore, the
trade-offs applicable differ from field to field.

This thesis utilizes three trade-off techniques in concrete for the communication reduction purpose.

• Exploiting the resilience towards accumulation of rounding errors and loss of precision of the
problem at hand to reduce communication.

• Trading with a decreased computational precision with a marginal deterioration of the accuracy
of the problem for reduced amount of communication.

• Trading at the cost of additional computation with reduce amount of communication.

The thesis first takes on reducing communication in one of the Krylov iterative methods, CG.
Compare to the various available direct methods the CG method displays greater tolerance towards
the accumulation of rounding errors. We thus fuse a certain amount of iterations together which
means some efforts to bring down the accumulated error such as the residual replacement strategy
has to be deferred to the end of the fused phase. Nevertheless, we show that further incorporating a
task-based parallelism approach, significant speedup can be achieved without much hampering to the
convergence of the algorithm.

On tackling the problem of accelerating the DNN training with multiple GPUs, we exploited
the fact that DNNs are intrinsically tolerant to a lowered precision of both its parameters. Guided
by the L2-norm of the weights of each layer, we start by transferring compressed weights with
low precision and dynamically increment the precision in a per-layer granularity if needed. Our
experiments confirms that this approach greatly reduces the amount of data needed to be transferred
from the CPU host to GPUs prior to the beginning of each batch and consequently outperforms the
training with full 32-bit floating point weights in terms of the training time.

72 Conclusions

In order to remove some amount of communication from applying model parallelism to DNNs,
we try to replicate every other layers rather than splitting each and every layer so that communication
only occurs once every two layers. Despite the higher count of computation inevitably introduced by
the approach, our experiments indicate that it is a trade-off well justified. It outperforms our baseline
approach by a large margin on two high-end clusters with completely distinct CPU architectures.

7.1 Further Down The Road

With the first exascale clusters on the horizon, the pursuit of more accurate models in computational
sciences and the awe-inspiring speed deep learning and data science are taking over multiple industries,
the potential benefit for a communication-reduction solution to a particular problem will not diminish
any time soon. The techniques this thesis explores all come off as trade-offs of various sorts since
communication is closely entangled with other aspects of the algorithm: computation, space, precision
etc. A deeper understanding into their synergy on an per-algorithm basis is of great importance.
Furthermore, we need some level of generalization to derive techniques that are applicable to multiple
fields.

Appendix A

Publications

A.1 Publications Related With The Thesis

• Sicong Zhuang and Marc Casas. Iteration-fusing conjugate gradient. In Proceedings of the
International Conference on Supercomputing, ICS ’17, pages 21:1–21:10, New York, NY, USA,
2017. ACM

• Sicong Zhuang, Cristiano Malossi and Marc Casas. Reducing Data Motion to Accelerate the
Training of Deep Neural Networks (submitted to IPDPS’20)

• Sicong Zhuang, Panagiotis Hadjidoukas, Cristiano Malossi and Marc Casas. Altsplit: Commu-
nication Reduction In DNN Model Parallelism (future submission)

A.2 Other Publications

• Ilia Pietri, Sicong Zhuang, Marc Casas, Miquel Moretó, and Rizos Sakellariou. Evaluating
scientific workflow execution on an asymmetric multicore processor. In Euro-Par 2017: Parallel
Processing Workshops, pages 439–451, Cham, 2018. Springer International Publishing

Appendix B

Pragmas

B.1 Description

The following are the list of the pragma annotations of the routines used in the various CG imple-
mentations of Chapter 4. The source code is open source and can be downloaded from Github. The
annotations follow the syntax and semantics of the OmpSs programming model. The exact definitions
of those annotations can be found at the OmpSs official page.

B.2 Annotations

1 # pragma omp t a s k i n (X[i n i t x : i n i t x +bm−1] , Y[i n i t y : i n i t y +bm−1]) c o n c u r r e n t (r e s u l t [0 : bn−1])
no_copy_deps p r i o r i t y (p) l a b e l (ddo t)

2 vo id _ _ t _ d o t (i n t p , i n t bm , i n t bn , i n t m, i n t n , do ub l e *X, d oub l e *Y, i n t i n i t x , i n t
i n i t y , do ub l e * r e s u l t) ;

3
4 # pragma omp t a s k i n (X1 [0 : bm−1] , X2 [0 : bm−1] , Anum [0 : bn−1] , Aden [0 : bn−1] , Y1 [0 : bm−1] , Y2 [0 : bm

−1]) o u t (Z1 [0 : bm−1] , Z2 [0 : bm−1]) no_copy_deps p r i o r i t y (1) l a b e l (dcpaxpy_comb)
5 vo id __t_cpaxpy_comb (i n t bm , i n t bn , i n t m, i n t n , do ub l e a lpha , do ub l e *Anum , d oub l e *Aden

, d ou b l e *X1 , do ub l e *X2 , do ub l e *Y1 , do ub l e *Y2 , do ub l e *Z1 , d ou b l e *Z2) ;
6
7 # pragma omp t a s k i n (X[0 : bm−1] , Y[0 : bm−1] , SAnum [0 : bn−1] , SAden [0 : bn−1]) o u t (Z [0 : bm−1])

no_copy_deps p r i o r i t y (p) l a b e l (extm_axpy)
8 vo id __t_ex tm_axpy (i n t bm , i n t bn , i n t m, i n t n , do ub l e *SAnum , d ou b l e *SAden , do ub l e *X,

do ub l e *Y, d oub l e *Z , i n t p) ;
9

10 # pragma omp t a s k i n (X[i n i t x : i n i t x +bm−1] , Y[i n i t y : i n i t y +bm−1] , A[i n i t a : i n i t a +bm−1] , B[i n i t b :
i n i t b +bm−1]) c o n c u r r e n t ([bn] r e s u l t , [bn] r e s u l t 2) no_copy_deps p r i o r i t y (p) l a b e l (
cg_do t2)

11 vo id _cg_do t2 (i n t p , i n t bm , i n t bn , i n t m, i n t n , do ub l e *X, d oub l e *Y, i n t i n i t x , i n t
i n i t y , do ub l e * r e s u l t , d ou b l e *A, d oub l e *B , i n t i n i t a , i n t i n i t b , do ub l e * r e s u l t 2) ;

12
13 / * Computa t ion o f t h e c o e f f i c i e n t s * /
14 # pragma omp t a s k i n (gamma [i] , d e l t a) o u t (b e t a [i] , a l p h a [i]) l a b e l (c e n t i n e l)
15 {
16 i f (k > 0) {

git@github.com:zhuangsc/IFCG.git
https://pm.bsc.es/ftp/ompss/doc/spec/

76 Pragmas

17 b e t a [i] = gamma [i] / gamma [i p r e v] ;
18 a l p h a [i] = gamma [i] / (d e l t a − b e t a [i] * gamma [i] / a l p h a [i p r e v]) ;
19 } e l s e {
20 b e t a [i] = (dou b l e) 0 ;
21 a l p h a [i] = gamma [i] / d e l t a ;
22 }
23 gamma [i p r e v] = d e l t a = 0 ;
24 }

Bibliography

[1] W. Gropp. Update on libraries for blue waters. http://jointlab-pc.ncsa.illinois.edu/events/
workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf, 2010.

[2] J. A. Kahle, J. Moreno, and D. Dreps. 2.1 summit and sierra: Designing ai/hpc supercomputers.
In 2019 IEEE International Solid- State Circuits Conference - (ISSCC), pages 42–43, Feb
2019.

[3] Christopher Zimmer, Don Maxwell, Stephen McNally, Scott Atchley, and Sudharshan S.
Vazhkudai. Gpu age-aware scheduling to improve the reliability of leadership jobs on titan. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18, pages 7:1–7:11, Piscataway, NJ, USA, 2018. IEEE Press.

[4] Marenostrum 4 technical information. https://www.bsc.es/marenostrum/marenostrum/
technical-information, 2019.

[5] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz. Communication-
avoiding parallel strassen: implementation and performance. In SC Conference on High
Performance Computing Networking, Storage and Analysis, SC ’12, Salt Lake City, UT, USA -
November 11 - 15, 2012, page 101, 2012.

[6] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication in
numerical linear algebra. SIAM J. Matrix Analysis Applications, 32(3):866–901, 2011.

[7] Edgar Solomonik, Grey Ballard, James Demmel, and Torsten Hoefler. A communication-
avoiding parallel algorithm for the symmetric eigenvalue problem. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC,
USA, July 24-26, 2017, pages 111–121, 2017.

[8] Edgar Solomonik, Grey Ballard, James Demmel, and Torsten Hoefler. A communication-
avoiding parallel algorithm for the symmetric eigenvalue problem. CoRR, abs/1604.03703,
2016.

[9] Nvidia Corp. Nvlink fabric. https://www.nvidia.com/en-us/data-center/nvlink/, 2016.

[10] J. Demmel. Communication-avoiding algorithms for linear algebra and beyond. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing, pages 585–585, May
2013.

[11] Edgar Solomonik, Grey Ballard, James Demmel, and Torsten Hoefler. A communication-
avoiding parallel algorithm for the symmetric eigenvalue problem. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’17, pages 111–121,
New York, NY, USA, 2017. ACM.

[12] Yang You, Zhao Zhang, Cho-Jui Hsieh, and James Demmel. 100-epoch imagenet training with
alexnet in 24 minutes. CoRR, abs/1709.05011, 2017.

http://jointlab-pc.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf
http://jointlab-pc.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.nvidia.com/en-us/data-center/nvlink/

78 Bibliography

[13] Yang You, James Demmel, Kenneth Czechowski, Le Song, and Richard Vuduc. Ca-svm:
Communication-avoiding support vector machines on distributed systems. In Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS ’15,
pages 847–859, Washington, DC, USA, 2015. IEEE Computer Society.

[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 1737–1746, 2015.

[15] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz
Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J Pai,
and Naveen Rao. Flexpoint: An adaptive numerical format for efficient training of deep neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 1742–1752.
Curran Associates, Inc., 2017.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June
2016.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[20] Exascale Mathematics Working Group(EMWG). Applied mathematics research for exascale
computing. Technical report, US Department of Energy, 2012.

[21] Software design for multi-core multiprocessor architectures. https://developer.ibm.com/articles/
au-aix-multicore-multiprocessor, 2013.

[22] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.

[23] Application Program Interface. OpenMP Architecture Review Board, 2013.

[24] Llnl openmp tutorial. https://computing.llnl.gov/tutorials/openMP, 2019.

[25] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN Not.,
30(8):207–216, August 1995.

[26] Thread building blocks (tbb). https://www.threadingbuildingblocks.org, 2019.

[27] A.Duran, E.Ayguade, R.M.Badia, J.Labarta, L.Martinell, X.Martorell, and J.Planas. Ompss: A
proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters,
21(2), 2011.

[28] Llnl mpi tutorial. https://computing.llnl.gov/tutorials/mpi, 2019.

https://developer.ibm.com/articles/au-aix-multicore-multiprocessor
https://developer.ibm.com/articles/au-aix-multicore-multiprocessor
https://computing.llnl.gov/tutorials/openMP
https://www.threadingbuildingblocks.org
https://computing.llnl.gov/tutorials/mpi

Bibliography 79

[29] Mpi. https://en.wikipedia.org/wiki/Message_Passing_Interface, 2019.

[30] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[31] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[32] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. Technical report, Pittsburgh, PA, USA, 1994.

[33] Misha Kilmer and G. W. Stewart. Iterative regularization and minres. SIAM J. Matrix Anal.
Appl., 21(2):613–628, October 1999.

[34] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, July 1986.

[35] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. Alistair Watson, editor,
Numerical Analysis, pages 73–89, Berlin, Heidelberg, 1976. Springer Berlin Heidelberg.

[36] Siegfried Cools, Jeffrey Cornelis, Pieter Ghysels, and Wim Vanroose. Improving strong
scaling of the conjugate gradient method for solving large linear systems using global reduction
pipelining. CoRR, abs/1905.06850, 2019.

[37] Jeffrey Cornelis, Siegfried Cools, and Wim Vanroose. The communication-hiding conjugate
gradient method with deep pipelines. CoRR, abs/1801.04728, 2018.

[38] P.Ghysels and W.Vanroose. Hiding global synchronization latency in the preconditioned
conjugate gradient algorithm. Parallel Computing, 40, 2014.

[39] L. Grigori, S. Moufawad, and F. Nataf. Enlarged krylov subspace conjugate gradient methods
for reducing communication. SIAM Journal on Matrix Analysis and Applications, 37(2):744–
773, 2016.

[40] Paul R. Eller and William Gropp. Scalable non-blocking preconditioned conjugate gradient
methods. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’16, pages 18:1–18:12, Piscataway, NJ, USA, 2016.
IEEE Press.

[41] Mark Hoemmen. Communication-avoiding Krylov Subspace Methods. PhD thesis, Berkeley,
CA, USA, 2010. AAI3413388.

[42] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat
Monga, and George Toderici. Beyond short snippets: Deep networks for video classification.
CoRR, abs/1503.08909, 2015.

[43] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural machine
translation without explicit segmentation. CoRR, abs/1610.03017, 2016.

[44] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. arXiv e-prints, page arXiv:1409.0473, Sep 2014.

[45] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring
the limits of language modeling. CoRR, abs/1602.02410, 2016.

[46] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. CoRR, abs/1611.01576, 2016.

https://en.wikipedia.org/wiki/Message_Passing_Interface

80 Bibliography

[47] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief
survey of deep reinforcement learning. CoRR, abs/1708.05866, 2017.

[48] Ahmed M. Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. CAN:
creative adversarial networks, generating "art" by learning about styles and deviating from
style norms. CoRR, abs/1706.07068, 2017.

[49] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 583–598, Berkeley, CA, USA, 2014. USENIX
Association.

[50] Amir Gholami, Ariful Azad, Kurt Keutzer, and Aydin Buluç. Integrated model and data
parallelism in training neural networks. CoRR, abs/1712.04432, 2017.

[51] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. CoRR, abs/1802.09941, 2018.

[52] Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. Imple-
menting ompss support for regions of data in architectures with multiple address spaces. ICS
’13.

[53] François Chollet et al. Keras. https://keras.io, 2015.

[54] Theano Development Team. Theano: A Python framework for fast computation of mathemati-
cal expressions. arXiv e-prints, abs/1605.02688, May 2016.

[55] Martín Abadi, Paul Barham, Jianmin Chen, et al. Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016. USENIX Association.

[56] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[57] Kann: A lightweight c library for artificial neural networks. https://github.com/attractivechaos/
kann, 2019.

[58] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1), 2011.

[59] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto,
05 2012.

[60] John Van Rosendale. Minimizing inner product data dependencies in conjugate gradient
iteration. ICASE-NASA 172178, 1983.

[61] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, 1994.

[62] A. T. Chronopoulos and C. W. Gear. s-step iterative methods for symmetric linear systems.
Journal of Computational and Applied Mathematics, 25(2), 1989.

https://keras.io
https://github.com/attractivechaos/kann
https://github.com/attractivechaos/kann

Bibliography 81

[63] Yousef Saad. Practical use of some krylov subspace methods for solving indefinite and
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 5(1),
1984.

[64] Gérard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48. Parallel
Computing, 5(3), 1987.

[65] Eduardo D’Azevedo, Victor Eijkhout, and Charles Romine. Lapack working note 56: Reducing
communication costs in the conjugate gradient algorithm on distributed memory multiproces-
sors. Technical report, Knoxville, TN, USA, 1993.

[66] Laurence Tianruo Yang and Richard P. Brent. The improved bicg method for large and sparse
linear systems on parallel distributed memory architectures. PDSECA ’02.

[67] Laurence Tianruo Yang and Richard P. Brent. The improved bicgstab method for large and
sparse unsymmetric linear systems on parallel distributed memory architectures. ICA3PP ’02.

[68] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication latency
in the gmres algorithm on massively parallel machines. SIAM Journal on Sci. Computing,
35(1), 2013.

[69] A. T. Chronopoulos. s-step iterative methods for (non)symmetric (in)definite linear systems.
SIAM Journal on Numerical Analysis, 28(6), 1991.

[70] E. de Sturler and H. A. van der Vorst. Reducing the effect of global communication in gmres(m)
and cg on parallel distributed memory computers. Appl. Numer. Math., 18(4), 1995.

[71] Z. Bai, D. Hu, and L. Reichel. A newton basis gmres implementation. IMA Journal of
Numerical Analysis, 14(4), 1994.

[72] Wayne Joubert and Graham F. Carey. Parallelizable restarted iterative methods for nonsymmet-
ric linear systems. SIAM PP ’91.

[73] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, University of
California, 2010.

[74] James W. Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel numerical linear
algebra. Acta Numerica, 2, 1993.

[75] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: Characterization and architectural implications. PACT ’08.

[76] Erin Carson and James Demmel. A residual replacement strategy for improving the maxi-
mum attainable accuracy of s-step krylov subspace methods. Technical report, University of
California, Berkeley, 2012.

[77] Henk A. Van Der Vorst and Qiang Ye. Residual replacement strategies for krylov subspace
iterative methods for the convergence of true residuals. Technical report, 1999.

[78] Erin Carson and James Demmel. A residual replacement strategy for improving the maximum
attainable accuracy of s-step krylov subspace methods. SIAM Journal on Matrix Analysis and
Applications, 35(1), 2014.

[79] Siegfried Cools, Wim Vanroose, Emrullah Fatih Yetkin, Emmanuel Agullo, and Luc Giraud.
On rounding error resilience, maximal attainable accuracy and parallel performance of the
pipelined conjugate gradients method for large-scale linear systems in petsc. EASC ’16.

82 Bibliography

[80] BSC. Programming models group. the nanos++ parallel runtime. https://pm.bsc.es/nanox,
2015.

[81] Intel Math Kernel Library Reference Manual. Intel Corporation, 2009.

[82] A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and M. Valero. A quantitative analysis
of os noise. IPDPS ’11, May 2011.

[83] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Characterizing the influence of
system noise on large-scale applications by simulation. SC ’10.

[84] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell. Characterizing application sensitivity to
os interference using kernel-level noise injection. SC ’08.

[85] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9, 2015.

[86] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[87] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[88] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
3642–3649, June 2012.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In Proceedings of the 25th International Conference on
Neural Information Processing Systems, NIPS’12, pages 1097–1105, USA, 2012. Curran
Associates Inc.

[90] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, et al. A million spiking-neuron inte-
grated circuit with a scalable communication network and interface. Science, 345(6197):668–
673, 2014.

[91] Norman P. Jouppi, Cliff Young, Nishant Patil, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[92] Thorsten Kurth, Jian Zhang, Nadathur Satish, et al. Deep learning at 15pf: Supervised and semi-
supervised classification for scientific data. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’17, pages 7:1–7:11,
New York, NY, USA, 2017. ACM.

[93] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University, 1974.

https://pm.bsc.es/nanox

Bibliography 83

[94] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, NY,
USA, 1988.

[95] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, 23:462–466, 1952.

[96] Yang You, Aydin Buluc, and James Demmel. Scaling deep learning on gpu and knights landing
clusters. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 9:1–9:12, New York, NY, USA, 2017. ACM.

[97] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, pages 161–168, 2008.

[98] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. Seventh International Conference on Learning Representations
(ICLR), 2018.

[99] A. F. Murray and P. J. Edwards. Enhanced mlp performance and fault tolerance resulting from
synaptic weight noise during training. IEEE Transactions on Neural Networks, 5(5):792–802,
Sep 1994.

[100] Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Comput.,
7(1):108–116, January 1995.

[101] K. Audhkhasi, O. Osoba, and B. Kosko. Noise benefits in backpropagation and deep bidirec-
tional pre-training. In The 2013 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, Aug 2013.

[102] Chris Lomont. Introduction to intel advanced vector extensions. intel white paper, 2011.

[103] Linley Gwennap. AltiVec Vectorizes PowerPC. Microprocessors Report, 12(6):1–5, May 1998.

[104] Ieee standard for floating point arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

[105] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997, 2014.

[106] Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. Efficient arithmetic on arm-
neon and its application for high-speed rsa implementation. IACR Cryptology ePrint Archive,
2015:465, 2015.

[107] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming
with cuda. Queue, 6(2):40–53, March 2008.

[108] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks,
12(1):145 – 151, 1999.

[109] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

[110] Teng Wang, Chao Wang, Xuehai Zhou, and Huaping Chen. A survey of FPGA based deep
learning accelerators: Challenges and opportunities. CoRR, abs/1901.04988, 2019.

84 Bibliography

[111] Norman P. Jouppi, Cliff Young, Nishant Patil, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[112] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open mpi: A flexible
high performance mpi. In Roman Wyrzykowski, Jack Dongarra, Norbert Meyer, and Jerzy
Waśniewski, editors, Parallel Processing and Applied Mathematics, pages 228–239, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[113] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lumsdaine.
Open mpi: A high-performance, heterogeneous mpi. In 2006 IEEE International Conference
on Cluster Computing, pages 1–9, Sep. 2006.

[114] Sicong Zhuang and Marc Casas. Iteration-fusing conjugate gradient. In Proceedings of the
International Conference on Supercomputing, ICS ’17, pages 21:1–21:10, New York, NY,
USA, 2017. ACM.

[115] Ilia Pietri, Sicong Zhuang, Marc Casas, Miquel Moretó, and Rizos Sakellariou. Evaluating
scientific workflow execution on an asymmetric multicore processor. In Euro-Par 2017:
Parallel Processing Workshops, pages 439–451, Cham, 2018. Springer International Publishing.

Bibliography 85

List of Figures

2.1 A typical chip multithreaded, multi-core, multiprocessor system 6
2.2 OpenMP uses a fork-join model . 7
2.3 A typical task dependency graph . 8
2.4 The workings of a neuron . 11
2.5 Two parameter server and three trainers . 12
2.6 The difference between data and model parallelism 13

3.1 Classes in CIFAR-10 . 18

4.1 Convergence of the Preconditioned CG, Pipelined CG, IFCG1 and IFCG2 algorithms.
Data regarding IFCG1 and IFCG2 is reported every 100 iterations since FUSE = 100. 29

4.2 Graphs of tasks representing two Iterations of Pipelined CG (left), IFCG1 (center)
and IFCG2 (right), N = 3. 31

4.3 Impact of the FUSE parameter on IFCG1. The y-axis represents the achieved speedups
with respect to the FUSE=1 configuration running on 1 core while x-axis represents
core counts. 32

4.4 Impact of the FUSE parameter on IFCG1. The y-axis represents the achieved speedups
with respect to the FUSE=1 configuration running on 1 core while x-axis represents
core counts. 33

4.5 Speedup of all considered CG versions with respect to PCG running on 1 core. The
y-axis represents the speedups achieved by the different techniques while x-axis
represents core counts. 34

4.6 Visualization of 19-iteration runs on 16 cores of Pipelined CG (top), IFCG1 (middle)
and IFCG2 (bottom). The input matrix is af_shell8 36

4.7 Behavior of different variants of CG running on 16 cores under noiseless, 10µs-2kHz
and 10µs-8kHz noise regimes. 37

5.1 The ADt on a 2-GPU system. Variables include: weights which go through the ADt
procedure and biases which are sent directly to the GPUs to build the network model
together with the unpacked weights. 43

88 List of Figures

5.2 Bitpack implemented with AVX2, RoundTo=3 . 46
5.3 Alex training considering 32 and 16 batch sizes. The two upper plots show the top-5

validation error evolution of baseline, oracle and A2DTWP. The two bottom figures
provide information on the performance improvement of oracle and A2DTWP against
baseline during the training process. Experiments run on the x86 system. 51

5.4 VGG training considering 64 and 32 batch sizes. The two upper plots show the top-5
validation error evolution of baseline, oracle and A2DTWP. The two bottom figures
provide information on the performance improvement of oracle and A2DTWP against
baseline during the training process. Experiments run on the x86 system. 53

5.5 Normalized execution times of the A2DTWP and the oracle policies with respect to
the baseline. Results obtained on the x86 system appear in the upper plot while the
evalution on the POWER system appears at the bottom. 55

5.6 Normalized execution time of A2DTWP with respect to baseline considering the
Imagenet1000 data set. Training for Alexnet, VGG and Resnet considers up to 20, 8,
and 16 epochs, respectively. 58

6.1 State-of-the-art model parallelism scheme . 62
6.2 The Altsplit scheme . 65
6.3 Performance improvements of 16k neurons on x86. Top left: 80 MPI processes, Top

right: 160 MPI processes, Bottom left: 320 MPI processes, Bottom right: 640 MPI
processes . 68

6.4 Traces on 80 MPI processes 9 batches. Top: baseline approach Bottom: altsplit
approach . 70

List of Tables

4.1 Matrices used for experiments . 29
4.2 Iteration counts of all considered methods and matrices. FUSE = 20 for IFCG1 and

IFCG2 . 35

5.1 Neural network configurations: The convolutional layer parameters are denoted as
“conv<receptive field size>-<number of channels>”. The ReLU activation function is
not shown for brevity. The building blocks of Resnet and the number of times they
are applied are shown in a single cell. 48

5.2 Performance profiles of both the A2DTWP and the 32-bit Floating Point approaches
expressed in milliseconds on the x86 system. We consider the VGG network model
with batch size 64. 57

5.3 Performance profiles of both the A2DTWP and the 32-bit Floating Point approaches
expressed in milliseconds on the POWER system. We consider the VGG network
model with batch size 64. 57

6.1 Performance improvements over the baseline on 640 MPI threads 69

List of Abbreviations

API Application Programming Interface.
ASIC Application Specific Integrated Circuit.

BiCG Biconjugate Gradient Method.

CG Conjugate Gradient Method.
CNN Convolutional Neural Network.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.

DNN Deep Neural Network.

FPGA Field Programmable Gate Array.

GMRES Generalized Minimal Residual Method.
GPU Graphics Processing Unit.

HPC High Performance Computing.

MINRES Minimal Residual Method.
MLP Multi-Layer Perceptron.
MPI Message Passing Interface.

NLP Natural Language Processing.

RNN Recurrent Neural Network.

TDG Task Dependency Graph.

VLSI Very Large Scale Integration.

	Table of contents
	1 Introduction
	1.1 Thesis Objectives and Contributions
	1.1.1 Communication Reduction in Conjugate Gradient Method
	1.1.2 Communication Reduction in Training Deep Neural Network Models
	1.1.3 Communication Reduction in Deep Learning Model Parallelism

	1.2 Thesis Structure

	2 Background
	2.1 Modern Parallel Systems
	2.2 Parallel Programming Models
	2.2.1 Shared-Memory Programming Model
	2.2.2 Task-based Parallel Programming Model
	2.2.3 Distributed-Memory Programming Model

	2.3 Numerical Methods For Systems of Linear Equations
	2.3.1 Direct Methods
	2.3.2 Iterative Methods

	2.4 Deep Supervised Learning and Its Parallelization
	2.4.1 Parallelism in Deep Learning

	3 Experimental Setup
	3.1 Hardware Platforms
	3.2 OmpSs Programming Model
	3.3 Deep Learning Frameworks
	3.3.1 Tensorflow
	3.3.2 KANN

	3.4 Datasets
	3.4.1 SuiteSparse Matrix Collection
	3.4.2 CIFAR-10 dataset
	3.4.3 ImageNet ILSVRC 2012 Challenge

	4 Communication Reduction in Conjugate Gradient Method
	4.1 Introduction
	4.2 The Preconditioned and The Pipelined CG Algorithms
	4.2.1 Preconditioned Conjugate Gradient
	4.2.2 Pipelined Conjugate Gradient

	4.3 Iteration-Fusing Conjugate Gradient
	4.3.1 IFCG1 Algorithm
	4.3.2 IFCG2 Algorithm

	4.4 Characteristics of The IFCG Algorithms
	4.4.1 Numerical Stability of the IFCG Algorithms
	4.4.2 Parallel Execution of the IFCG Algorithms
	4.4.3 Task-based Formulations of the Pipelined CG and IFCG algorithms

	4.5 Experimental Setup
	4.6 Evaluation
	4.6.1 Optimizing the FUSE Parameter.
	4.6.2 Evaluation of the IFCG1 and IFCG2 algorithms against state-of-the-art techniques
	4.6.3 Visualizing The Overlap Pattern
	4.6.4 Tolerance to System Noise

	4.7 Conclusions

	5 Communication Reduction in Deep Neural Network Training
	5.1 Introduction
	5.2 The Adaptive Weight Precision (AWP) Algorithm
	5.3 The Approximate Data Transfer (ADT) Procedure
	5.3.1 Bitpack
	5.3.2 Single Instruction Multiple Data Bitpack
	5.3.3 Bitunpack

	5.4 Experimental Setup
	5.4.1 Image Dataset
	5.4.2 DNN Models and Training Parameters
	5.4.3 Implementation
	5.4.4 Hardware Platforms

	5.5 Evalutation
	5.5.1 Methodology
	5.5.2 Evaluation on Alexnet
	5.5.3 Evaluation on VGG
	5.5.4 Evaluation on Resnet
	5.5.5 Average Performance Improvement
	5.5.6 A2DTWP Performance Profile
	5.5.7 Experiments with ImageNet1000

	5.6 Conclusions

	6 Communication Reduction in Model Parallelism of Deep Neural Networks
	6.1 Introduction
	6.2 Communication Reduction in Model Parallelism of DNN
	6.2.1 State-of-the-Art Approach
	6.2.2 The Altsplit (Alternate Split) Approach

	6.3 Experimental Setup
	6.3.1 Hardware Platforms
	6.3.2 Implementation

	6.4 Evalutation
	6.4.1 Parallelism Scalability
	6.4.2 Network Versatility
	6.4.3 Traces

	6.5 Conclusions

	7 Conclusions
	7.1 Further Down The Road

	Appendix A Publications
	A.1 Publications Related With The Thesis
	A.2 Other Publications

	Appendix B Pragmas
	B.1 Description
	B.2 Annotations

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

