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Abstract 

 

The shape of particles is known to play an important role in soil behaviour, with signif-

icant effects of engineering responses. Investigating how the shape of particles can be 

measured and quantified is therefore considered increasingly important in modern soil 

mechanics. This is propelled by the advent of computer based image-analyses and dis-

crete modelling algorithms, which have opened new ways to tackle this problem. This 

work demonstrates how these two techniques can be made to work together. 

Image analyses are performed on x-rays micro-tomographs (μ-CT) of triaxial sand spec-

imens, focusing on the characterisation and quantification of particle shapes. Two very 

different particle shape sands are studied in details: Caicos ooids (rounded) and Hostun 

sand (angular). A discrete Digital Volume Correlation (DVC) algorithm is then used to 

track the kinematics of individual grains (around 50000 for each sand specimen) during 

the triaxial test and measure, with good precision, their cumulated displacements and 

rotations. Joint analysis of the shape and kinematic databases acquired is performed to 

find how particle shape descriptors are related to observed kinematics at the microscale 

level. It appears that true sphericity is a good predictor of upper bound rotational re-

straint. 

Modelling is based on the Discrete Element Method (DEM). Models that introduce roll-

ing resistance at the contact are widely employed in DEM simulations, these approaches 

offer substantial computational benefits at the price of increased calibration complexity. 

In this work, the values of true sphericity obtained by image analysis of the grains, either 

directly by 3D acquisition or by correlation with simpler to obtain 2D shape measures, 

are used to establish mechanically equivalent rotational restrictions. An empirical rela-

tion between a contact parameter (rolling friction) and a 3D grain shape descriptor (true 

sphericity is first calibrated - using both specimen-scale and grain scale results from two 
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triaxial tests in Hostun sand and Caicos ooids. It is then validated by simulating other 

triaxial tests (1) with the same sands, but in different conditions (2) with Ottawa sand, 

for which 3D grain images were also available for examination, and (3) with Ticino sand, 

for which only 2D grain images were available. 

Finally, results of large-scale DEM simulations on the Cone Penetration Test (CPT) -   ex-

ploiting the new proposed contact model - are presented. Experimental data on the CPT 

performed in a Calibration Chamber (CC) comprised of Ticino sand are successfully fit-

ted by the numerical penetration curves at different confining pressures and conditions. 

A parametric study about the influence of particle shape and particle shape variability 

put in evidence the strong-coupled effects of rolling and frictional resistances at the par-

ticles contacts. The work described in this thesis will ease the use of DEM for large-scale 

simulations of geotechnical engineering problems. 

 

Keywords 

CPT test; DEM; Granular materials; Large strains; Particle-scale behaviour; Particle 

shape; Rolling resistance; Shear strength; Statistical analysis; X-rays microtomography. 
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Resumen 

 

Se sabe que la forma de las partículas juega un papel importante en el comportamiento 

del suelo, con efectos significativos de las respuestas mecánicas relevantes en ingeniería 

geotécnica. Por lo tanto, investigar cómo se puede medir y cuantificar la forma de las 

partículas se considera cada vez más importante en la mecánica del suelo moderna. Esto 

se acrecienta debido a las técnicas de análisis computacionales de imágenes y algoritmos 

de modelado discreto (DEM), que han abierto nuevas formas de abordar este problema. 

Este trabajo demuestra cómo se pueden hacer que estas dos técnicas funcionen juntas. 

Los análisis de imagen se realizan sobre micro-tomografías de rayos X (μ-CT) de mues-

tras de arena en celdas triaxiales, centrándose en la caracterización y cuantificación de la 

forma de las partículas. Se estudian en detalle dos arenas con la forma de sus partículas 

muy diferentes: Caicos ooids (redondeados) y Hostun sand (angular). Luego se utiliza 

un algoritmo discreto de correlación de volumen digital (DVC) para rastrear la cinemá-

tica de granos individuales (alrededor de 50000 por cada muestra de arena) durante la 

prueba triaxial y medir, con buena precisión, sus desplazamientos y rotaciones acumu-

lados. El análisis conjunto de la forma y las bases de datos cinemáticas adquiridas se 

realiza para encontrar cómo los descriptores de forma de partículas se relacionan con la 

cinemática observada a nivel de micro-escala. Resulta que la esfericidad verdadera pre-

dice bien el límite superior de rotación de una partícula. 

La modelización numérica se basa en el Método de Elementos Discretos (DEM). Los mo-

delos que introducen resistencia a la rotación en el contacto se emplean ampliamente en 

simulaciones DEM, estos enfoques ofrecen beneficios computacionales sustanciales a 

costa de una mayor complejidad de calibración. En este trabajo, los valores de esfericidad 

verdadera (i.e., true sphericity) obtenidos mediante análisis de imagen de los granos, ya 

sea directamente por adquisición 3D o por correlación con medidas de forma 2D más 
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simples, se utilizan para establecer restricciones de rotación mecánicamente equivalen-

tes. Una relación empírica entre un parámetro de contacto (rolling friction) y un descrip-

tor de forma de grano 3D (la esfericidad verdadera) se calibra primero, utilizando los 

resultados de la escala de muestras y de la escala de granos de dos pruebas triaxiales en 

las arenas de Hostun y de Caicos. Luego se valida simulando otras pruebas triaxiales (1) 

con las mismas arenas, pero en diferentes condiciones (2) con arena de Ottawa, para la 

que también estaban disponibles imágenes 3D de granos para su examen, y (3) con arena 

de Ticino, para la cual solo estaban disponibles imágenes 2D de los granos. 

Finalmente, se presentan resultados de simulaciones DEM a gran escala de la prueba de 

penetración de cono (CPT), aprovechando el nuevo modelo de contacto propuesto. Los 

datos experimentales del CPT realizado en una cámara de calibración (CC) sobre arena 

de Ticino se ajustan con éxito por las curvas de penetración numérica a diferentes pre-

siones y condiciones de confinamiento. Un estudio paramétrico sobre la influencia de la 

forma de las partículas y la variabilidad de las formas de las partículas puso de mani-

fiesto los efectos fuertemente acoplados de las resistencias rotacional y friccional en los 

contactos entre partículas. El trabajo descrito en esta tesis facilitará el uso de DEM para 

simulaciones a gran escala en problemas de ingeniería geotécnica. 

 

Palabras clave: 

CPT test; DEM; Materiales granulares; Grandes deformaciones; Comportamiento a la 

escala de las partículas; Forma de las partículas; Resistencia rotacional; Resistencia al 

corte; Análisis estadística; Microtomografía Rayos-X. 
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         Introduction 

_______________________________________________ 

 

1.1 Research motivation 

In-situ soil testing is a very important branch of geotechnical engineering. While labora-

tory tests are executed on soil samples extracted from the field, in-situ tests are tests con-

ducted on or in the soil at the site. Examples of in-situ tests are the Standard Penetration 

test (SPT), the Cone Penetration Test (CPT), the Flat Dilatometer Test (DMT), the Pre-

bored Pressumeter Test (PMT) and the Vane Shear Test (VST).  

There are many advantages to conducting in-situ geotechnical tests, for example, they 

allow (a) testing larger volumes of (undisturbed) soil, (b) recording continuously soil 

parameters with depth considering stratigraphy, (c) testing soils in which sampling is 

hard to perform, (d) faster and economical soil characterisation compared to laboratory 

tests. However, the interpretation of the testing results is a boundary value problem that 

is not easy to formulate and to solve mathematically in a rigorous manner. Moreover, 

the disturbance induced in the soil by the testing instruments permits only an empirical 

interpretation of the test results.  

Calibration Chambers have been therefore developed to simulate full-scale in-situ tests in 

the laboratory, in which the sample size, properties and the boundary conditions are 

known a priori. Such equipment can be hence used to establish correlations between test 

results and geotechnical parameters of the soil, in order to calibrate the interpretations 

of in-situ tests. However, calibration chamber testing is extremely expensive and time 

consuming. Few calibration chambers exist around the world and each test requires the 

preparation of several tons of soil. Therefore, numerical models can provide an efficient 
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alternative to simulate physical experiments in a computer, but numerical models need 

to be calibrated as well, though in a completely different way. 

The initial motivation for this doctoral thesis was to improve the Cone Penetration Test 

(CPT) simulations performed in a Virtual Calibration Chamber (VCC) using DEM (Dis-

tinct Element Method) by Joanna Butlanska in her PhD thesis (Butlanska, 2014). As indi-

cated in the recommendations for future work of her dissertation, she envisaged two 

main lines of future research. The first one was to include a particle-crushing model in 

the DEM simulations. This task has been successfully carried out by Ciantia who imple-

mented a crushable double-porosity model in PFC framework, achieving satisfactory 

results (Ciantia et al., 2019a, 2015). The second issue was regarding particle rotations. All 

the DEM simulations there presented (Butlanska, 2014) were done with rigid spheres 

with inhibited particle rotations, in order to represent the angular shape of Ticino sand 

grains, as originally proposed -and still suggested- by Calvetti (Calvetti, 2008; Calvetti 

et al., 2004, 2003). Although the macro results were always satisfactory when compared 

with experimental data, this approach seemed unnecessarily reductive.  

The current doctoral work here presented aims to overcome this limitation. A novel 

DEM contact that allows particle rotations, but also to consider particle shape effects is 

proposed. It is extensively described in the thesis that there are several techniques to run 

DEM simulations taking particle shape into account. Nowadays, the increment of com-

puting power allows representing numerical particles with the exact shape of the phys-

ical grains. In a first approximation, this would seem the best approach to tackle the 

problem of particle shape in DEM. However, a geotechnical engineer with experience in 

DEM modelling may dissent. In some circumstances, for instance for large-scale geotech-

nical problems, it is important to consider a large number of particle. This is achievable 

only if spherical particles -for which the contact detection is very efficient- are used. 

When CPT DEM simulations are performed, it is essential to guarantee a high number 

of contacts between the cone and the granular material simulated. Therefore, a rolling 

resistance contact model is exploited to add rotational constrains at the contacts able to 

mimic particle shape effects without dramatically affect the computational time. How-
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ever, this is not a straightforward operation. In this work, the resisting moments are ap-

plied depending on -beside other quantities- the shape of the particles in contacts. A 

systematic and exhaustive study about the quantification of particle shape is necessary 

and it is the starting point of this doctoral work. Moreover, an in-depth investigation 

about the influence of particle shape on the kinematics of shearing granular materials 

has to be made. This knowledge will be then used to calibrate the proposed DEM rolling 

resistance contact model, that was thereafter successfully validated under different con-

ditions.  

The contact detection remains economical and advanced algorithms are not required, 

maintaining low the computational time. This will open new possibilities to the use 

DEM for studying engineering applications at larger scales, especially in geotech-

nical problems in which the particulate nature of the soil cannot be ignored. 

1.2 Aim & Objectives 

The specific goals for this doctoral work are: 

 Develop efficient and reliable image analysis algorithms to quantify the shape of 

thousands of sand particles in three dimensions; 

 Measure accurately the kinematics (i.e., displacements and rotations) of single 

grains during standard geotechnical tests by using Digital Volume Correlation 

(DVC); 

 Understand the influence of particle shape on the kinematics of sheared granular 

materials exploring the statistical relation existing between shape and rotations 

of single grains; 

 Select an appropriate DEM rolling resistance contact model to use as starting 

point for all the numerical simulations; 

 Calibration and validation of a new advanced DEM rolling resistance contact 

model (i.e., the resisting moment at each contact) based on the measured shape 

of particles in contact; able to represent particle shape effects in an efficient way, 

albeit respecting the measured kinematics at failure; 
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 Exploit the newly proposed DEM contact model to simulate large-scale geotech-

nical tests as the CPT test performed in a Virtual Calibration Chamber (VCC), 

reproducing physical experiments; 

 Investigate numerically the effect of particle shape on the CPT tip and shaft pen-

etration resistance. 

1.3 Outline of the thesis 

Each chapter starts with introductory remarks to recall some of the main aspects of the 

topic and to set the context for the following discussions. At the end of each chapter, the 

main outcomes are recapitulated in a concise summary. The main body of the text is 

divided in five parts, which gather ten chapters plus appendices as follows. 

 

 Part I: Introduction and State of the Art 

 

Chapter 1 presents the motivations behind this research doctoral project and the objec-

tives to attain. 

Chapter 2 details how the shape of soils particles has been historically measured and 

quantified in two and three-dimensions.  

Chapter 3 describes the influence of particle shape on geotechnical properties observed 

during laboratory and field tests. 

Chapter 4 presents the fundamentals of the Distinct Element Method (DEM) with par-

ticular focus on how particle shape is treated in previous researches.  

 

 Part II: Experimental dataset and image analysis 

 

Chapter 5 aims to describe in details the employment of x-rays microtomography for soil 

mechanics purposes. Moreover, the experimental data used as starting point for this doc-

toral work is presented, as well as the basis of image analysis. 
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Chapter 6 explains how the shape of a particle can be analysed and quantified in three-

dimensions. The statistical correlations between three and bi-dimensional shape descrip-

tion are presented. 

Chapter 7 describes the use of 3D Digital Volume Correlation (DVC) for particle track-

ing. The observed relation between particle shape and rotations is also illustrated and 

explained. 

 

 Part III: Numerical Simulations 

 

Chapter 8 introduces the rolling resistance contact model that is centrepiece of this doc-

toral project, detailing the microscopic calibration and relative validation under different 

conditions. 

Chapter 9 explores the newly proposed contact model for large-scale Dem simulations, 

as the CPT test performed in a Virtual Calibration Chamber (VCC). 

 

 Part IV: Conclusions 

 

Chapter 10 summarizes the achievements, the lessons learned and presents suggestions 

for future work. 

 

 Part V: Appendices 

 

Appendices give complementary information that is too extensive to be included in the 

document’s main body. The interested reader can consult them for further information 

on specific topics.  

Appendix A lists the python scripts developed for the image analysis studies as well as 

the PFC scripts for the DEM simulations. 

Appendix B provides some information about the dataset that has been used in this 

work. The most relevant data is available in open-access.  
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Appendix C presents an equation to estimate the number of particles involved in DEM 

simulations performed in a cylindrical chamber. 
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      Experimental Description 

of Particle Shape 

_______________________________________________ 

 

2.1 Introduction  

It has been extensively shown in the geotechnical literature that particle shape has a sig-

nificant influence on granular soil behaviour. However, even if such influences are gen-

erally acknowledged they remain very difficult to quantify and measure. Since the early 

1900’s, several authors tried to characterise the grain shape and to understand its influ-

ence on the overall soil behaviour. Among the most important, Wadell (Wadell, 1932) 

introduced the concept of “sphericity” that quantifies how a particle differs from a 

sphere, in terms of surface area. Krumbein (Krumbein, 1941) created the first chart to 

visually estimate shape from the grain length ratios ("flatness" and "elongation" indices). 

This and similar works were difficult to apply and develop, because particle shape meas-

urements typically made by hand or eye, were tedious and not objective. 

In recent years, this unsatisfactory situation has changed significantly. In particular, 

computer-based automated or semi-automated image analysis techniques are replacing 

measurements made by hands or eyes. Moreover, as computer performance increases, it 

has become increasingly feasible to move from the analysis of two-dimensional meas-

urements -ultimately based on particular planar projections of volumes- to fully three-

dimensional measurements. Taking profit of this to fully characterise grain shape, new 

3D shape descriptors able to capture the tri-dimensional nature of particles have been 

recently developed. 
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The next Section gives an overview of how the shape of granular soil particles has been 

historically studied and described in literature: tracing the development from the bi-di-

mensional projection approaches of the 1920s, to the three-dimensional computational 

methods existing nowadays. While doing that the main terminology used on particle 

shape studies is introduced. 

2.2 Shape characterization 

Particle shape characterization can be based on two-dimensional or three-dimensional 

descriptors. Bi-dimensional shape descriptors can be obtained from the projection of a 

particle on a plane, that results is a particle outline drawn on a specified plane. The ad-

vantage of 3-D shape characterization is evident: a single 3D parameter can fully describe 

one aspect of the particle shape (i.e., sphericity) whereas in bi-dimensional studies, a list 

of 2D parameters measured onto several projection planes is required. For example, a 

cylinder presents completely different outlines depending on the orientation of the pro-

jection plane. On the other hand, bi-dimensional studies are less demanding in terms of 

equipment. Even the naked eye can be employed to obtain two-dimensional shape data, 

whereas a three-dimensional image of a particle is much more difficult to obtain. It re-

quires sophisticated equipment to scan the particles (i.e., x-rays tomography) and to cre-

ate and study a 3-D model of the grain.  

Particle shape studies can be also organized according to the relative scale of analysis. 

Barret (Barret, 1980) defined shape as the combination of three independent aspects in 

function of the scale at which they are evaluated: morphology/form, measured at large 

scale, roundness, measured at the intermediate scale, and surface texture, measured at 

small scale. The three aspects are represented in Figure 2.1. The term “independent” in 

this context  means that one aspect can change without affecting the others. The inde-

pendence of the three aspects just described has been traditionally assumed, although 

recent approaches (e.g. Zhou et al. 2015) use functional bases to obtain a rigorous set of 

independent descriptors. These approaches, well suited to computer-based storage and 

reconstruction of grain images, will not be considered here in detail. 
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Figure 2.1: Three independent aspects of shape (Barret, 1980) 

2.2.1 Form (or morphology) 

At large scale the particle lengths (a, b and c, respectively the major, intermediate and 

minor axis dimension of the particle) are the most important ingredients for defining the 

overall morphology of a particle. Simply calculating their ratio, it is possible to quantify 

how a particle is elongated of platy, which is a first approach to characterise the form of 

the particle, irrespective of the sharpness of edges and corners. However, the most used 

term for shape description at large scale is “sphericity”. 

Sphericity is the measure of the degree of conformity of particle shape to that of a sphere 

(circumference in 2D).  

2.2.1.1 Two-dimensional form descriptors 

A very large set of bi-dimensional descriptors of shape have been historically used. This 

dissertation is based on a three-dimensional study of particle shape, therefore only a 

short review of 2D descriptors is presented here. In particular, the descriptors listed be-

low are defined in (ISO, 2006), and based on a 2D projection of a 3D particle. 

The Feret diameters are defined as the distance between two parallel tangents to the par-

ticle outline. There are infinite parallel tangents that can be chosen, but only two of them 
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are relevant: the maximum Feret diameter, also called the maximum distance in some refer-

ences, is defined as the furthest distance between any two parallel tangents on the parti-

cle. Likewise, the minimum Feret diameter, also called the minimum distance, is defined as 

the shortest distance between any two parallel tangents on the particle. 

 

Figure 2.2: Feret diameters of a particle outline 

 

The aspect ratio (AR) is the ratio of the Feret minimum length (𝑑𝐹𝑚𝑖𝑛) to the Feret maxi-

mum length (𝑑𝐹𝑚𝑎𝑥) as given in Equation (2.1). This is done to scale the aspect ratio such 

that the value is always in the range 0 < 𝐴𝑅 < 1. 

𝐴𝑅 =
𝑑𝐹𝑚𝑖𝑛
𝑑𝐹𝑚𝑎𝑥

 (2.1) 

The terminology of the following form descriptors is taken from Zheng and Hryciw 

(Zheng and Hryciw, 2016). 

Area sphericity (𝑠𝑎) is the ratio between the squares of the diameter (dn) of the equivalent 

(same area as the particle) circle and the diameter (dcm) of the maximum circumscribing 

circle.  

Diameter sphericity (𝑠𝑑) is the square root of area sphericity. 

Circle ratio sphericity (𝑠𝑐) is the ratio between the diameter of the maximum inscribed 

circle (𝑑𝑖𝑀) and the diameter of the minimum circumscribed circle (𝑑𝑐𝑚). 

𝑠𝑐 =
𝑑𝑖𝑀
𝑑𝑐𝑚

 (2.2) 

Perimeter sphericity (𝑠𝑝) is a measure of the degree of conformity of a particle outline (hav-

ing area 𝑎𝑛 and perimeter p) to that of a circle. It is defined as the ratio between the 

perimeter (pn) of the circle with the same area of the particle and the perimeter of the 

particle (p) 
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𝑠𝑝 =
𝑝𝑛

𝑝
 . (2.3) 

KS sphericity (𝑠𝐾𝑆) is defined as the ratio between the minimum (d1) and maximum (d2) 

dimensions of the particle, originally proposed by (Krumbein and Sloss, 1951) and de-

fined as  

2

1

KS

d
s

d
 . 

2D Convexity (Co-2D) is the measurement of the overall concavity of a particle. It is de-

fined as the image area, 𝑎𝑛, divided by the convex hull area, 𝑎𝐶𝐻, as given in Equation 

(2.4). Thus, as the particle becomes more solid, the image area and convex hull area ap-

proach each other, resulting in a solidity value of one. However, as the particle form 

digresses from a closed circle, the convex hull area increases and the calculated convexity 

decreases. 

Co-2D =
𝑎𝑛
𝑎𝐶𝐻

 (2.4) 

 

Name Symbol Formula 

Aspect Ratio AR 𝐴𝑅 =
𝑑𝐹𝑚𝑖𝑛
𝑑𝐹𝑚𝑎𝑥

 

Area sphericity As   

2

2

n
A

cm

d
s

d
  

Diameter sphericity Ds  
n

D A

cm

d
s s

d
   

Circle ratio sphericity Cs  
iM

D

cm

d
s

d
  

Perimeter sphericity Ps  
n

P

p
s

p
  

KS sphericity KSs  

2

1

KS

d
s

d
  

2D Convexity Co-2D Co-2D =
𝑎𝑛
𝑎𝐶𝐻

 

Table 2.1: 2D form parameters, terminology following (Zheng and Hryciw, 2015) 
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Shape property Symbol 
Equivalent  

diameter 

Equivalent 

perimeter 

Feret’s minimum diameter 𝑑𝐹𝑚𝑖𝑛   

Feret’s maximum diameter 𝑑𝐹𝑚𝑎𝑥   

Projected area an dn pn 

maximum & minimum di-

mensions of projected area 
d1, d2  

 

Diameter of minimum  

circumscribing circle 
dcm  

 

Diameter of maximum 

inscribed circle 
diM  

 

Projected perimeter p   

Area of the convex hull 𝑎𝐶𝐻  𝑝𝐶𝐻 

Table 2.2: Fundamental measures from which 2D sphericity proxies are derived 

2.2.1.2 Three-dimensional form description 

Wadell was one among the first authors to study and quantify particle shape. Still today, 

Wadell’s shape descriptors are widely used or taken as reference for comparisons with 

new ones. Wadell (Wadell, 1932) choose the sphere as standard and defined “degree of 

true sphericity (𝜓)” as the as the ratio of the area (s𝑛) of a sphere with the same volume 

as the particle (V) to the particle surface area (S).  

𝜓 =
s𝑛
𝑆
=
√36π𝑉2
3

𝑆
= 𝑡𝑟𝑢𝑒 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 (2.5) 

Although the definition was clear, this index has seen very little use because measuring 

the surface area on irregular particles is difficult. Only in recent years, the use of com-

puter algorithms has made this task feasible (Fonseca et al., 2012; Hayakawa and Oguchi, 

2005; Komba et al., 2013; Zhou et al., 2015). An interesting feature of this index is that, 

although it was originally proposed as a form descriptor, it is also sensitive to smaller 

scale features, like those associated with roundness, as long as those are captured by the 

measurement of particle surface area. 
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Krumbein (Krumbein, 1941) proposed another definition of sphericity, more suitable for 

operational purposes, as the ratio of the particle volume (𝑉) and the volume of the min-

imum circumscribed sphere (𝑉𝑐𝑚), or equivalently, as the ratio of the diameter (D𝑛) of the 

sphere having the same volume as the particle diameter and that (D𝑐𝑚) of the minimum 

circumscribed sphere. This value will be named in this work as “operational sphericity” 

and denoted by. 

𝜓𝑜𝑝 = √
𝑉

𝑉𝑐𝑚

3

= [
(
𝜋
6
)𝐷𝑛

3

(
𝜋
6
)𝐷𝑐𝑚

3
]

1
3

=
𝐷𝑛
𝐷𝑐𝑚

≈
𝐷𝑛
𝑎
= 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 (2.6) 

 

Equation (2.6) is more straightforward to apply than equation (2.5) because D𝑛 and D𝑐𝑚 

are easier to get rather than the particle surface area. D𝑐𝑚 has often been substituted by 

the major particle axis (a) for faster calculation (Krumbein, 1941). 

As reported by Cavarretta (Cavarretta, 2009), the value of operational sphericity ob-

tained from equation (2.6) cannot be considered as an exact alternative to true sphericity 

(𝜓) and usually the two values differ. For example, the degree of true sphericity of a 

cube is 0.877, but its operational sphericity is 0.716. 

Moreover, the relation between true and operational sphericity is not one-on-one. In-

deed, all the particles having a given volume V (and therefore a given D𝑛) and a given 

Dcm have the same value of  operational sphericity, which is not necessarily the case for 

true sphericity. 

An alternative approximation is given by intercept sphericity, defined as (Krumbein, 1941) 

by: 

𝜓𝑖𝑛𝑡 = [
𝑏𝑐

𝑎2
]

1
3
= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 

 
(2.7) 

 

Zingg (Zingg, 1935) developed a more versatile shape characterisation based on relations 

amongst the three particle axes. Particles are classified into four class categories, as 

shown in Figure 2.3. The ratios between the particle axes are usually called in literature 

the “flatness index” and “elongation index”, defined as: 



16 

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 = 𝐹𝐼 =
𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑎𝑥𝑖𝑠

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑎𝑥𝑖𝑠
=
𝑐

𝑏
 (2.8) 

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = 𝐸𝐼 =
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑎𝑥𝑖𝑠

𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑎𝑥𝑖𝑠
=
𝑏

𝑎
 (2.9) 

 

Figure 2.3: Zingg’s shape classification based on the flatness and elongation indexes (Krumbein 1941) and 

relation between “intercept sphericity” and Zingg’s classification (Krumbein and Sloss, 1963) 

 

Flatness and elongation uniquely define intercept sphericity. Indeed intercept sphericity 

Eq. (2.7) may then be plot onto Zingg’s chart Figure 2.3 as a family of hyperbolae with 

asymptotes the axis 𝑏/𝑎 = 0 and 𝑐/𝑏 = 0. Intercept sphericity can indeed also be defined 

as: 

𝜓𝑖𝑛𝑡 = √
𝑏𝑐

𝑎2

3

= √𝐹𝐼(𝐸𝐼)2
3

= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 (2. 10) 

One of the most important outcomes of this comparison is that it clearly shows how 

particles having different form (e.g. disks and rollers) may have the same intercept sphe-

ricity. As Cavarretta (Cavarretta, 2009) notes: “this lack of uniqueness seems more dependent 

on the ….simplification introduced in the definition of the intercept sphericity than a real feature 

of a 3D shape”. 
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Cailleux (Cailleux, 1945) developed his form index based upon the relationship between 

the particle dimensions along the three principal axes. The index is given by: 

𝐹𝑐𝑎𝑖𝑙𝑙𝑒𝑢𝑥  =
𝑎 + 𝑏

2𝑐
 (2.11) 

The index ranges from a minimum value of 1 for an equant particle and becomes pro-

gressively larger the flatter the particle. There is no maximum limit. 

Aschenbrenner (Aschenbrenner, 1956) proposed another  definition, called working sphe-

ricity, 𝜓𝑤𝑜𝑟𝑘: 

𝜓𝑤𝑜𝑟𝑘 = 
12.8√(

𝑐
𝑏
)
2
(
𝑏
𝑎
)

3

1 + (
𝑐
𝑏
) (1 +

𝑏
𝑎
) + 6√1 + (

𝑐
𝑏
)
2
(1 + (

𝑏
𝑎
)
2

)
2

= 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 
(2.12) 

Sneed and Folk (Sneed and Folk, 1958) developed a different sphericity index, the maxi-

mum projection sphericity, 𝜓𝑚𝑝𝑠 , which they believed represented the hydrodynamic be-

haviour of particles in a fluid. The maximum projection sphericity of a particle is given 

by the equation: 

 𝜓𝑚𝑝𝑠 = [
𝑐2

𝑎𝑏
]

1
3

= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦  (2.13) 

Equation (2.13) is represented in the sphericity-form diagram of Sneed and Folk (1958) 

in Figure 2.4. As in the case of the Zingg’s diagram Figure 2.3, lines of equal maximum 

projection sphericity span several form fields in the diagram. 
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Figure 2.4: Sphericity-form diagram of Sneed and Folk (1958) (from (Lewis and McConchie, 1994)). 

 

Recently, new sphericity definitions have been proposed. Alshibli (Alshibli et al., 2015) 

defined the sphericity index (𝜓𝑎𝑙) as the ratio between the volume (V) of the particle and 

the volume (𝑉𝑑=𝑐) of a sphere with a diameter equal to the shortest particle axes (c). 

 𝜓𝑎𝑙 =
𝑉

𝑉𝑑=𝑐
 (2.14) 

Jerves (Jerves et al., 2016) used the ratio between the diameters of the maximum in-

scribed (𝐷𝑐𝑚) and the minimum circumscribed spheres (𝐷𝑖𝑀) to describe sphericity. This 

value is usually referred as irregularity (𝐼𝑅2𝐷) in 2D analysis, where circles are used in-

stead of spheres (Chapter 2.2.1.1). 

𝐼𝑅3𝐷 =
𝐷𝑖𝑀
𝐷𝑐𝑚

= 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦3𝐷 (2.15) 

Other parameters along this line but requiring the use of more advanced 3D shape cap-

ture procedures are convexity and solidity. Both use the definition of convex hull, which 

is the minimal convex polytope (generalised polyhedron) covering of a 3-D object, as 

used by Fonseca (Fonseca et al., 2012). Solidity (𝑆𝑜3𝐷) can be defined as the ratio of the 

surface areas of the convex hull (𝑆𝐶𝐻) of the boundary and the original boundary (𝑆). 

𝑆𝑜3𝐷  =
𝑆𝐶𝐻
𝑆

 (2.16) 
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Convexity (Co3D) is defined as the ratio between the volume of the particle (V) and the 

volume of the convex hull bounding the particle (𝑉𝐶𝐻) 

Co3D  =
𝑉

𝑉𝐶𝐻
 (2.17) 

Both the parameters range from zero to one (for a perfect convex grain). 

 

Table 2.3 and Table 2.4 store respectively the 3D form descriptors and the fundamental 

measures from which they are derived. 

 

Name Symbol Definition Reference 

True  

Sphericity 
Ψ 

s𝑛
𝑆

 (Wadell, 1932) 

Operational 

Sphericity 
Ψop 3

n n

cm cm

D DV

V D a
   

(Krumbein, 

1941) 

Intercept 

Sphericity 
Ψint  

2
33

2

bc
FI EI

a
  

(Krumbein, 

1941) 

Flatness  

index 
FI 𝑐/𝑏 (Zingg, 1935) 

Elongation 

index 
EI 𝑏/𝑎 (Zingg, 1935) 

Form  

Cailleux 
𝐹𝑐𝑎𝑖𝑙𝑙𝑒𝑢𝑥 

𝑎 + 𝑏

2𝑐
 (Cailleux, 1947) 

Working 

Sphericity 
Ψwork 

12.8√(
𝑐
𝑏
)
2
(
𝑏
𝑎)

3

1 + (
𝑐
𝑏
) (1 +

𝑏
𝑎) + 6

√1 + (
𝑐
𝑏
)
2
(1 + (

𝑏
𝑎)

2

)
2

 
(Aschenbrenner, 

1956) 

Maximum 

projection 

sphericity 

Ψmps [
𝑐2

𝑎𝑏
]

1
3

 

(Sneed and 

Folk, 1958) 

Alshibli  

Sphericity 
Ψal 

𝑉

𝑉𝑑=𝑐
 

(Alshibli et al., 

2015) 
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Irregular-

ity3D 
𝐼𝑅3𝐷 

𝐷𝑖𝑀
𝐷𝑐𝑚

 
(Jerves et al., 

2016) 

Convexity 𝐶𝑜3𝐷 𝑉/𝑉 𝐶𝐻 
(Fonseca et al., 

2012) 

Solidity 𝑆𝑜3𝐷   
𝑆𝐶𝐻
𝑆

  

Table 2.3: Three dimensional form descriptors (see Table 2 for symbol definitions) 

 

Shape property Symbol 
Equivalent 

diameter 

Volume 𝑉 Dn 

Surface area 𝑆  

Surface area of the equivalent sphere 

(same volume) 
𝑠𝑛  

Maximum, intermediate, minimum lengths 𝑎, 𝑏, 𝑐  

Convex hull volume 𝑉𝐶𝐻 𝐷𝐶𝐻 

Convex hull surface area 𝑆𝐶𝐻  

Volume of the maximum inscribed sphere 𝑉𝑖𝑀 𝐷𝑖𝑀 

Volume of the minimum circumscribing sphere 𝑉𝑐𝑚 𝐷𝑐𝑚 

Volume of the sphere with diameter the mini-

mum length 
𝑉𝑑=𝑐 c 

Table 2.4: Fundamental measures from which 3D shape descriptors are derived 

 

Other form and shape factors have been widely used in literature by several authors. 

Among the most important ones: 

 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑐

√𝑎𝑏
     (Blott and Pye, 2008) (2.18) 

 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 = {
1 −

𝑎𝑐

𝑏2
   𝑖𝑓   𝑏2 > 𝑎𝑐

𝑏2

𝑎𝑐
− 1   𝑖𝑓   𝑏2 ≤ 𝑎𝑐 

     (Williams, 1965) (2.19) 

 𝑓𝑜𝑟𝑚 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑐

√𝑎
2+𝑏2+𝑐2

3

     (Janke, 1966) 
(2.20) 
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 𝑜𝑏𝑙𝑎𝑡𝑒 − 𝑝𝑟𝑜𝑙𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 =
10(

𝑎−𝑏

𝑎−𝑐
−0.5)

𝑐

𝑎

    (James E. Dobkins, Jr., 

1970) 

(2.21) 

 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑎𝑐

𝑏2
   (Aschenbrenner, 1956) (2.22) 

 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝐹 =
𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜
=

𝑐/𝑏

𝑏/𝑎
     (Lees, 1964) (2.23) 

 

In other articles (e.g., (Zhao and Wang, 2016) and (Alshibli et al., 2015), as well as the 

manual of the image analysis Software ImageJ Fiji1), another parameter is mentioned 

using different names, here it will be called “𝐹𝑜𝑟𝑚𝐹𝑎𝑐𝑡𝑜𝑟3𝐷”, defined as: 

𝐹𝑜𝑟𝑚𝐹𝑎𝑐𝑡𝑜𝑟3𝐷 =
6𝜋

1
2𝑉

𝑆1.5
 (2.24) 

Where S is the particle surface area and V its volume. 

2.2.2 Roundness 

Roundness typically refers to second order approximations of shape, reflecting the varia-

tions on particle corners. Historically sphericity was treated as a three-dimensional con-

cept, whereas roundness was only obtained by considering plane projections. 

Wadell (Wadell, 1932) argued that roundness was a property independent on sphericity, 

but he was opposed by Wentworth (Wentworth, 1933). Wadell (Wadell, 1933) responded 

that a solid may possess a maximum degree of roundness and still not be a sphere, or 

have a high degree of sphericity and no roundness. He used Figure 2.5 to explain this 

concept. 

                                                      

 

1 Open-source image processing package widely used in this work for image analysis. 
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Figure 2.5: Illustration of the conception “roundness” (Wadell, 1932) 

 

In stage “a” the particle has two sharp corners. Then, stage “a” evolves in stage “b” (e.g. 

because of erosion) where the extremities have reached the maximum degree of round-

ness, and finally it reaches stage “c” in which new corners are generated and roundness 

decreases. So, Wadell considered the ratio 𝑟/𝑅0 as descriptor of the roundness of the 

surface at a given point, where r is the corner’s radius of curvature and 𝑅0 the radius of 

the maximum inscribed sphere. 

Since the radius of curvature of a corner may attain any value up to the maximum (which 

equals the value of the maximum inscribed circle), Wadell defined the degree of roundness 

as the arithmetic mean of the roundness of the individual corners in that plane, as in 

Equation (2.25). 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =
∑ (

𝑟𝑖
𝑅0
)𝑁

𝑖=1

𝑁
 (2.25) 

Where N is the number of corners of radius 𝑟𝑖. 

The degree of roundness thus defined has some evident inadequacies. Firstly, only the 

convex corners of the outline are considered in Eq. (2.25). Furthermore, if the particle is 

scaled up, the mean radius of curvature increases and vice-versa. In particular, at the 

smallest scale, a protruded mineral crystal may provide a highly curved corner, although 

it does not reflect gravel roundness. 

Therefore, Wadell’s roundness is a scale dependent parameter, contrary to sphericity. 

Measurement of roundness has always presented difficulties and the roundness defini-

tion has been controversial, especially because of its scale dependence. 

Wentworth (Wentworth, 1919) proposed the ratio of the diameter (𝐷𝑆) of the circle fitting 

the sharpest corner to the diameter (𝐷𝑋) of the particle through that point, as in Eq. (2.26). 
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He later changed the divisor to the average of the long (L) and short (S) diameter of the 

particle in the maximum plane of projection (Wentworth, 1922), as in Eq. (2.27). 

𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠ℎ𝑎𝑟𝑝𝑒𝑠𝑡 𝑐𝑜𝑟𝑛𝑒𝑟 (Wentworth, 1919)  =
𝐷𝑆
𝐷𝑋

 (2.26) 

𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠ℎ𝑎𝑟𝑝𝑒𝑠𝑡 𝑐𝑜𝑟𝑛𝑒𝑟 (Wentworth, 1922)  =
𝐷𝑆

(𝐿 + 𝑆)/2
 (2.27) 

Cailleux (Cailleux, 1947) proposed a similar measure of roundness, expressed as the ratio 

between the radius of the most convex part and the longest axis, and many other authors 

proposed similar definitions (i.e. (Kuenen, 1956), (James E. Dobkins, Jr., 1970) (Swan, 

1974)). 

 

The application of these definitions of roundness (and shape) has been done traditionally 

by means of visual comparison with standard charts. Powers (Powers, 1953) developed  

a chart of reference using physical particles of different shapes. The chart offers a quick 

and easy way to estimate two-dimensional particle shape, based on six classes of round-

ness in which two classes of sphericity were considered, as in Figure 2.6.  

 

Figure 2.6: Power’s chart for shape classification (Powers, 1953) 

 

However, any comparing chart to describe particle shape has a high degree of subjectiv-

ity. Folk (Folk, 1955) claimed that when charts are used for classification, the risk of get-

ting errors is negligible for sphericity but large for roundness. 
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Krumbein (Krumbein and Sloss, 1963) proposed another chart which had great impact 

on later studies of shape (Figure 2.7). Based on visual estimation of the particle shape, 

the chart provides the values of sphericity and roundness, scaled from 0 to 1. 

 

Figure 2.7: Chart used to characterise sphericity and roundness of particles (Krumbein and Sloss, 1963) 

 

Some authors (e.g., (Zheng and Hryciw, 2016) (Altuhafi et al., 2012) developed compu-

tational methods in order to replace the slower and un-objective chart methods, although 

always based on bi-dimensional projections. Beyond subjectivity, bi-dimensional round-

ness parameters also suffer from lack of uniqueness, as they are strongly dependent on 

the selected projection direction. Although the problem may be reduced by tight speci-

fication of the projection method. This can be for example projecting grains in order to 

minimise the projected area (an) or projecting grains lying on their plane of “greatest 

stability”, that means with the minor length perpendicular to the horizontal plane). A 

fundamental alternative is to use 3D descriptors - which, of course, requires different 

image acquisition techniques. Along this line, some new three-dimensional descriptors 

of roundness have been recently defined. 

 

Al-Raush (Al-Raoush, 2007) proposed another roundness index called: 
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𝐼𝑅
𝑃  =

𝑆

4𝜋 (
𝐷𝑚𝑖𝑛
𝑝

+ 𝐷𝑚𝑎𝑥
𝑝

4 )

2 
(2.28) 

Where 𝑆 is the surface area of the particle p and 𝐷𝑚𝑖𝑛
𝑝

 and 𝐷𝑚𝑎𝑥
𝑝

 are respectively the min-

imum and maximum particle length. The surface area was here computed summing up 

the areas of the external faces of the external voxels. However this approach overesti-

mates the measure of surface area. 

Druckrey (Druckrey et al., 2016) slightly modified Eq. (2.28) in Eq. (2.29). 

𝐼𝑅  =
𝑆

4𝜋 (
𝑎 + 𝑏 + 𝑐

6
)
2 

(2.29) 

The denominator of Eq. (2.29) represents the surface area of a sphere having diameter 

equal to the average of 𝑎, 𝑏 and 𝑐. 𝐼𝑅 equals unity for a particle without asperities on the 

surface and having the same surface area as a sphere with an equivalent grain diameter. 

Zhao (Zhao and Wang, 2016) used x-rays tomography to measure particle morphology. 

He claimed that existing 3D roundness indexes do not involve corner identification and 

curvature evaluation, so he proposed a novel method to evaluate 3D roundness based 

on the local curvatures on the reconstructed triangular surface mesh. A similar approach 

was also used by (Nadimi and Fonseca, 2017). The interest in this new method is that it 

goes back to the original idea of roundness proposed by Wadell (1932), but extending it 

to three dimensions. 

To close this section it is worth mentioning another shape descriptor that mix aspects of 

form and roundness.  Cho (Cho et al., 2006) proposed a new parameter called regularity 

(𝜌) obtained by averaging the values of sphericity and roundness provided by the refer-

ence chart from Krumbein and Sloss (1963). 

𝜌 =
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 + 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠

2
 (2.30) 

They used this parameter for an exhaustive investigation about the influence of shape 

on the geotechnical properties, as it will later detailed in Chapter 3. 
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2.2.3 Surface Texture (roughness) 

The third classical parameter of shape is measured at the smallest scale, the scale of the 

asperities. It is called surface texture (or roughness) and it has been long described by re-

searchers but it always has been difficult to measure, however, the use of computer tech-

nology made this task realisable. 

Roughness is a scale-dependent parameter, as well as roundness. As reported by Bhu-

shan (Bhushan, 2001), a unique property of rough surfaces is that if a surface is repeat-

edly magnified, roughness is observed at every scale. In addition, the roughness at all 

scales present a simile structure, as shown in Figure 2.8, such behaviour can be charac-

terized by fractal geometry. Therefore, when measurements of roughness are made, it 

should be specified which range of scales has been considered. 

 

Figure 2.8: Self-affinity of a surface profile (Bhushan, 2001) 

 

Several attempts have been done in the last century to quantify surface roughness. 

Wright (Wright, 1955) proposed a method to quantify the surface texture of particles of 

concrete aggregates. This method consisted in the direct comparison between the 

measures of the length of the particle profile (obtained using a map-measuring wheel) 

with the length of an unevenness line drawn as a series of chords. Similar approaches 

have been lately developed in rock mechanics to quantify the roughness of rock discon-

tinuities (i.e., JCR) (Barton and Choubey, 1977; Tse and Cruden, 1979), as shown in Figure 

2.9. 
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Figure 2.9: Roughness profiles with relative JCR value (Barton and Choubey, 1977) 

 

Some authors (i.e., (Janoo, 1998) (Mora and Kwan, 2000) used the concept of convex hull 

(or perimeter in 2-D) for describing roughness, since a rough surface presents convexi-

ties at the small scale. Therefore, they claimed that the previously mentioned parameters 

convexity (Eq. (2.16)) and solidity (Eq. (2.17)) are suitable for measuring and quantifying 

roughness. 

An alternative technique to measure roughness is to use an interferometer, capable of 

providing the optical profilometry of complex surfaces with a very high resolution of 

about 1 nanometre (Alshibli et al., 2015; Altuhafi and Coop, 2011; Cavarretta et al., 2010).  

An example of interferometer profile, from (Cavarretta, 2009), is shown in Figure 2.10. 
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(a) (b) 

Figure 2.10: Microscope image of glass ballottini (a) and relative surface texture profile measured by inter-

ferometer (b), from (Cavarretta, 2009) 

 

An accurate measure of roughness is out of the scope of this dissertation, because the 3D 

images used in this study do not have the high resolution required to quantify properly 

the surface texture of sand particles. 

2.3 Summary 

In this Chapter, the state of the art of particle shape description in two and three dimen-

sion is reported. The main concepts can be summarised as follow: 

 Particle shape has been historically quantified using 2-D descriptors and graph-

ical charts (Krumbein and Sloss, 1963; Powers, 1953) but recent advances in com-

puter power allow straightforward 3-D shape evaluations; 

 According to Barret (Barret, 1980), particle shape is the combination of three in-

dependent aspects in function of the scale at which they are evaluated: morphol-

ogy/form, measured at large scale, roundness, measured at the intermediate scale, 

and surface texture, measured at small scale. 

 Wadell was one among the first authors to study and quantify particle shape. 

Still today, Wadell’s shape descriptors are widely used or taken as reference for 



29 

comparisons with new ones. Wadell (Wadell, 1932) choose the sphere as stand-

ard and defined “degree of true sphericity (𝜓)” as the as the ratio of the area (s𝑛) of 

a sphere with the same volume as the particle (V) to the particle surface area (S).  

 Roundness and roughness are scale-dependant parameters, therefore their use 

must be restricted to narrow ranges of particle size, which must be specified a 

priori; 

 Particle roughness has not been studied in this current doctoral work. 
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      Influence of particle shape 

on Geotechnical Properties 

_______________________________________________ 

 

3.1 Introduction 

The behaviour of granular soils depends on the re-arrangement of grains during loading. 

This re-arrangement is affected by particle shape, therefore particle shape plays an im-

portant role that must be investigated. 

Small grains and large grains usually have different origin, the final shape depends on 

the material composition (mineralogy, chemical composition) but also the agent of 

transport affects grain shape. In particular, the shape of recently formed coarse grains 

firstly depends on the nature of the mother rock, then the size and shape can change 

with time because of mechanical and chemical effects: older sands tend to be more spher-

ical and rounder. Moreover, large particles have a higher probability to present imper-

fections in their micro-structure, facilitating brittle fracture.  

In the following sections, the influence of shape on some selected soil properties (e.g., 

packing, grain size distribution) and geotechnical properties (e.g.; shear resistance) is in-

vestigated and detailed. 

3.2 Packing limits 

The Void ratio (e) is defined as the ratio of the volume of voids to the volume of solids. 

e  =
𝑉𝑉
𝑉𝑆

 (3.1) 
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Porosity (n) is the ratio of the volume of voids to the total volume of the soil.  

n =
𝑉𝑉
𝑉

 (3.2) 

The maximum and minimum void ratio that a granular material can reach are called 

𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥, respectively in its loosest and densest states. In soil mechanics practice, 

they are usually obtained in a geotechnical laboratory using standard established testing 

procedures (i.e., ASTM D7263-09(2018)e2). For spheres these values have been studied 

by physicists and can be theoretically obtained even for random packings (Mackay, 1962; 

Scott and Kilgour, 1969; Torquato et al., 2000).  

For a closed monodisperse packing of spheres, the loosest state is the cubic lattice model 

(coordination number 6) with a porosity of 0.4764 (e = 0.9099), whereas the densest mod-

els are the face-centred cubic (fcc) and the hexagonal closed packed (hcp) crystal lattices 

(coordination number 12) with a porosity of 0.2595 (e = 0.3504). 

Holubec and D’Appollonia (Holubec and D’Appolonia, 1973) found a relation between 

the particle angularity and the void ratio. In particular, they found a direct proportion-

ality between the maximum and minimum void ratio and true sphericity (𝜓) - measur-

ing the specific surface area of a sand on average, using an indirect method based on its 

permeability - given by the following relations: 

𝑒𝑚𝑖𝑛  = 0.4549𝜓
0.434 (3.3) 

𝑒𝑚𝑎𝑥  = 0.6112𝜓
0.5152 (3.4) 

Santamarina and Cho (Santamarina and Cho, 2004) investigated how particle shape af-

fects the packing limits . They investigated several sands for which shape was evaluated 

using the Krumbein’s chart presented in Figure 2.7. The results are shown in Figure 3.1, 

including the relations they found. Denser packings are possible when roundness and 

sphericity increase. Note that also the void ratio difference (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛) decreases as 

roundness and sphericity increase. 
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Figure 3.1: Relation between shape parameters (roundness, sphericity, regularity) and void ratios 

(Santamarina and Cho, 2004) 

3.3 Grain Size Distribution from sieve analysis 

The grain-size distribution (GSD) is one of the basic and most important properties of a 

soil. It is primarily used for soil classification and provided a first-order estimate of other 

soil engineering properties. The classical method, which is still standard (ISO 17892-

4:2016), establishes the GSD of soils by sieve analysis. In this method the particle size is 

characterized by a single linear dimension representing the minimum square sieve ap-

erture at which the particle just passes through. Therefore, particles passing through a 

sieve can actually have one dimension that is larger than the size of the sieve apertures. 

It follows that the standard GSD measure may be biased by grain shape.   

 

Arasan et al. (Arasan et al., 2011) selected by hand size fractions of 4.75 – 8mm of flat 

(called IA-Flat Particles), elongated (IA-Elongated Particles) and spherical (IA-Spherical 

Particles) grains (classified using Zingg’s diagram of Figure 2.3), and calculated the grain 

size distributions of these fractions; they also created new sand mixing the different 

shapes. Then, they compared the GSD of mixed particles (IA-Mixed particles) with the 

GSDs of flat and elongated particles. They noticed that there was a variation in the vol-

ume of the particles retained on the sieve: the GSD from elongated particles was farthest 
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(Figure 3.2) from the mixed one. Therefore, they concluded that particle shape is one of 

the most important factor affecting the GSD of soils, as previously showed also by 

(Fernlund, 1998) and (Mora et al., 1998) using image analysis techniques. 

 

Figure 3.2: GSD of gravel soil (4.75mm-8mm) with different shapes (Arasan and Akbulut, 2008) 

3.4 Shear strength 

The shear strength of soils is usually expressed by the Mohr-Coulomb failure criterion. 

According to it, the failure is caused by a critical combination of normal (𝜎𝑛) and shear 

(𝜏𝑛) stresses, which induces a slippage if the following criterion is met. 

𝜏𝑛   = 𝜎𝑛 tan(𝜑) + 𝑐0 (3.5) 

In which 𝑐0 is the intercept of the failure criterion (cohesion), and 𝜑 is the slope of the 

envelope (internal angle of friction). 

It is well known that the shear strength of a soil depends on the relative density. Indeed, 

a soil behaves differently depending on its state, which can be dense, loose and critical, as 

shown in Figure 3.3. 
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Figure 3.3: Macro-mechanical responses of a dense and loose material 

 

A dense soil is stiffer than a loose soil and presents a peak resistance (at which the con-

tribute of dilatancy is maximum) before reaching the critical state (Schofield and Wroth, 

1968). After a short contractancy phase, which is prevented by granular interlocking 

(that depends on shape, as mentioned in Chapter 3.2), the soil increases its volume until 

failure. In dense soils rotation is frustrated because of the high number of contacts be-

tween particles (coordination number) therefore the energy applied during loading is dis-

sipated in friction at contacts and in dilatation, in order to reduce the coordination num-

ber. Figure 3.4 illustrates the rotational inhibition existing in dense packings 

(Santamarina and Cho, 2004). 

On the other hand, a loose soil will contract during shearing, without developing any 

peak strength. Therefore, the shear stress increases until the critical state is reached, ar-

riving to the soil critical state strength. 

Micromechanical reasons for this behaviour have been suggested: the coordination num-

ber is low in loose soils, therefore during shear loading the particle rotation is not inhib-

ited as in dense soils (Figure 3.4) and the particles bridges (or chains), that may form in low 

density soils, can easily become instable and break (buckling), leading to a denser assem-

bly.  
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Figure 3.4: Rotational tendency in loose (low e) and dense (high e) packing (Santamarina, 2004) 

 

Rothenburg and Bathurst (Rothenburg and Bathurst, 1989) claimed that the shear 

strength of a soil depends on its ability to develop internal forces and fabric anisotropy. 

But the particle shape strongly affects the tendency of particle to re-arrange and to form 

an anisotropic fabric. Therefore, it is possible to say that particle shape induces interlock-

ing effects which reduce the possibility for particles to rotate easily, increase dilatancy 

and fabric anisotropy, resulting in a greater shear resistance.  

 

Santamarina and Cho (Santamarina and Cho, 2004) studied the large strain response of 

sands, at the critical state. He plotted the friction angle at the critical state (φ𝑐𝑣) against 

the particle roundness (R) for several sands and he found the empirical linear relation as 

in Figure 3.5. The value of roundness was obtained from the Krumbein chart, Figure 2.7. 

 

Figure 3.5: Empirical correlation between particle shape (roundness) and 𝜑
𝑐𝑣

 (Santamarina and Cho, 2004) 

φ𝑐𝑣  = 42 − 17𝑅 (3.6) 
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Other authors (i.e. (Rousé et al., 2008)) proposed similar relationships: 

φ𝑐𝑣  = 41.7 − 14.4𝑅 (3.7) 

where R is the roundness based on its original definition as proposed by (Wadell, 1932). 

Santamarina (2004) also claimed that the local dilatation (tan𝜓) of three horizontally 

aligned elliptical particles is proportional to the particle aspect ratio (𝐿𝑁/𝐿𝑇) in the shear-

ing direction (sub index “T”) 

tan𝜓  = (
𝐿𝑁
𝐿𝑇
) tan 30° (3.8) 

Where the sub index N refers to the normal direction. Moreover, since the dilatancy an-

gle 𝜓 gives a contribution to the peak friction angle (𝜑𝑝 = φ𝑐𝑣 + 0.8 𝜓, (Bolton, 1986)), as 

a result the peak friction angle also depends on the particle shape. 

The role of shape parameters on shear strength is amply recognized in rock mechanics. 

For instance, Barton and Kjaernsli (Barton and Kjaernsli, 1981) suggested a model to pre-

dict the peak friction angle of rockfill: 

𝜑𝑝  = 𝑅𝑒Log (
𝑆𝑒
𝜎𝑛
) + 𝜑𝑏 (3.9) 

Where: 

 𝑆𝑒 = equivalent strength of the particle 

 𝑅𝑒 = equivalent roughness of the particle 

 𝜑𝑏 = base friction angle (calculated from basic tilting test) 

 𝜎𝑛 = normal stress 

They provided charts for estimating the all the properties to use in their equation. 

 

Cho (Cho et al., 2006) studied the effect of shape on the other critical state parameters. 

Roscoe (Roscoe et al., 1958) defined the critical state line (CSL) as the loci of the critical 

state conditions in the e-p’-q space, where q is the deviatoric stress. Its projection onto the 

e-logp’ space defines the slope λ and the intercept Γ of the CSL. 

𝑒𝑐𝑠  = Γ − 𝜆 log (
𝑝′𝑐𝑠
1 𝑘𝑃𝑎

) (3.10) 
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The intercept Γ has been found to be dependent on their value of roundness rather that 

other shape parameters. In particular, this correlation is shown in Figure 3.6. 

 

Figure 3.6: Empirical correlation between particle shape (roundness) and 𝛤 (Cho, 2006) 

 

Γ = 0.12 − 0.4R (3.11) 

The slope 𝜆 was found to be not too dependent on shape parameters (a slight decrease 

is observed), however, the critical state void ratio (𝑒𝑐𝑠100) at a mean pressure p’ of 100kPa 

presents dependency on regularity (𝜌)  

𝑒𝑐𝑠100 = Γ − 2 𝜆 = 1.1 − 0.42𝜌 (3.12) 

In summary, the critical state parameters decrease when particles become more rounded 

and spherical. As a result, starting with the constant volume friction angle φ𝑐𝑣, the soil 

strength decreases with regularity. In other words, particle irregularity contributes to 

the overall soil resistance. 

Furthermore, the decrease of Γ with regularity implies that regular grains reach the CSL 

at denser states than irregular grains, which fail in a looser state because they activate a 

greater amount of dilatancy during shearing. 

Finally, the slight decrease of 𝜆 means that the critical state of rounded sands is slightly 

less sensible to the mean stress. 
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3.5 Stiffness 

Stiffness is a measure of the rigidity of an object, it quantifies how much a body resists 

deformation in response to an applied load. In soil mechanics, the stiffness of single 

grains is relevant mainly during small-strain deformation, when the strains are still elas-

tic. At this strain level, the number of contacts between grains does not change, because 

grains have not started rotating and sliding with respect to the neighbours. In other 

words, fabric is invariant and governs the small strain response. Because fabric is de-

pendent on grain shape, small strain stiffness will be also affected.  Moreover, the inter-

nal deformation of a grain also depends on its shape, which introduces another depend-

ency.  

 

Santamarina and Cho (Santamarina and Cho, 2004) studied the effect of particle orienta-

tion on the shear-wave velocity (S-wave) anisotropy. They generated two specimens 

from flat particles (i.e. rice and flakes grains) having a preferential particle alignment, 

and then applied an isotropic pressure into a triaxial cell. The experiment showed that 

the S-wave velocity was higher (around 1.1-1.5 times) in the direction parallel to the main 

axis of the particles. It is known that the S-wave velocity (𝑉𝑆) is controlled by the shear 

modulus (G), and it can be related to the mean stress (𝜎0
′) on the polarisation plane. It is 

expressed by: 

𝑉𝑆 = √
𝐺

𝜌
= 𝛼 (

𝜎0
′

1𝑘𝑃𝑎
)

𝛽

 (3.13) 

Where 𝛼 is the shear wave velocity at 1kPa, and the exponent 𝛽 reflects the sensitivity of 

𝑉𝑆 to the state of stress. Figure 3.7 shows the effect of shape (sphericity and roundness 

obtained from the Krumbein chart of Figure 2.7) on the (𝛼, 𝛽) parameters. 
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Figure 3.7: Influence of shape (sphericity and roundness) on the parameters (𝛼, 𝛽)  (Santamarina, 2004) 

 

It is evident that when sphericity and roundness increase, the exponent 𝛽 decreases and 

the parameter 𝛼 increases. In other words, particle irregularity decreases the shear wave 

velocity (related to stiffness) but it increases the sensitivity of stiffness to the  stress level. 

3.6 Liquefaction 

Liquefaction is a phenomenon in which a saturated or partially saturated soil loses a 

large percentage of its shear resistance and stiffness in response to an applied stress un-

der undrained or partly drained conditions. Static and dynamic liquefaction may occur, 

but in both cases the fluid pressure inside the pores can increase inducing a decreasing 

of the effective pressure between particles. Liquefaction occurs if the effective stress be-

tween grains reaches zero, and all the stress is held by the fluid phase. Resistance to 

liquefaction is usually quantified through a direct comparison between the Cyclic Stress 

Ratio (CSR), with the Cyclic Resistance Ratio (CRR). When the resistance of the soil is 

less than the seismic demand (i.e., CRR < CSR), liquefaction triggering occurs. 
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Ishibashi et al. (Ishibashi et al., 1982) showed a strong dependency between the particle 

sphericity (defined as 2D area sphericity, or As  in Table 2.1) and the liquefaction poten-

tial. In particular, the CSR (after 30 cycles) significantly decreased as particle sphericity 

increased.  

 

Figure 3.8: Relationship between CSR (30th cycle) and sphericity ( As  following the terminology presented 

in Table 2.1) (Ishibashi et al., 1982) 

 

They claimed this increase in resistance to liquefaction might be due to the greater inter-

particle frictional resistance mobilised by angular sands under dynamic stresses. 

A similar study was later presented by Vaid et al. (Vaid et al., 1985), who showed that 

particle angularity had an effect on liquefaction response even at higher confining pres-

sures. In particular, they tested both rounded and angular sands with identical grada-

tion, noting a decrease in resistance to liquefaction with increase in confining pressure. 

This reduction of resistance was stronger with increase in initial relative density and 

larger for angular particles. Indeed, angular sands can be susceptible to liquefaction even 

for very high relative densities and moderate earthquake, if the confining pressure is 

high.  However, at low confining pressure, angular sands are more resistant to liquefac-

tion for the entire range of relative densities. They claimed that this trend might be re-

lated to the breakage of particle corners in angular grains that happen at high confining 

pressure. 
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3.7 Cone Penetration Test 

It has been proven experimentally that particle shape has an influence on the end re-

sistance measured during the Cone Penetration Test (CPT) (Liu and Lehane, 2013). They 

conducted a series of centrifuge tests on four uniformly graded silica materials having 

different shape (in decreasing order of roundness: glass ballottini, UWA sand and two 

glass fragments). Since the primary mineral in all the specimens was silica, it was possi-

ble to attribute differences in the test results to the grain shape –although that assumed 

invariant shape properties during the tests. The CPTs were performed at three different 

centrifuge g-levels (g) and two different relative densities (𝐷𝑅). At a given relative den-

sity and g-level, the tip resistance 𝑞𝑐 varies with the sand type and therefore with particle 

shape. Values of 𝑞𝑐 are higher for the angular glass fragments and lower for the more 

spherical glass ballottini. Figure 3.9 shows the CPT end resistance observed in a centri-

fuge test having g-level equal to 50 and relative density of 0.8. A similar trend was ob-

served for every tested stress state and relative density. 

 
Figure 3.9: CPT tip resistance in the centrifuge test performed at g=50 and 𝐷𝑅=0.8 (Liu and Lehane, 2013) 
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3.8 Summary 

In this Chapter, previous studies about the influence of particle shape on the geotech-

nical properties of granular soils are reported. The main concepts can be summarised as 

follow: 

 The behaviour of granular soils depends on the re-arrangement of grains during 

loading. This re-arrangement is affected by particle shape; 

 Particle shape affects both physical and mechanical properties of sands, and 

therefore it must be considered in numerical simulations. 
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      Particle shape in Discrete 

Element Modelling 

_______________________________________________ 

 

4.1 Introduction 

Advances in computer technologies experienced in the last thirty years, have powered 

the expansion of numerical techniques able to simulate the behaviour of geomaterials, 

solving physical problems which have important features at multiple scales, both spatial 

and temporal. Some problems can be represented adequately by sets of differential equa-

tions that describe the system behaviour at the field points. Such systems are termed 

continuous and have infinite degrees of freedom. 

In other situations, the global behaviour of the system may be difficult to formulate pre-

cisely in continuum terms, but can be determined through well-defined inter-relations 

between individually specified components (elements. Such approaches are termed dis-

crete. 

In this chapter, a synthetic overview on the most popular and widely used discrete nu-

merical method is presented: The Discrete Element Method (DEM). Particular emphasis 

is given on the existing approaches used in practice for take into account the shape of 

particles into DEM simulations. As originally defined, 

 

“The discrete element method is a numerical tool capable of describing the mechanical behaviour 

of assemblies of discs or spheres. The method is based on the use of an explicit numerical scheme 

in which the interaction of the particles is monitored contact by contact and the motion of the 

particle modelled particle by particle […]” (Cundall and Strack, 1979) 
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The key concept of the Discrete Element Method is thus that the domain of interest is 

occupied by a set of rigid or deformable bodies –which are named either particles (e.g., 

PFC, YADE) or blocks (i.e. UDEC, 3DEC). Bodies and the contacts among them need to 

be identified and continuously updated during the entire deformation/motion process, 

and contact behaviour represented by contact models. The fundamental concepts lead 

naturally to three central issues:  

 

 Identification of particles (or blocks) system topology based on particle shape as-

sumptions within the domain of interest, or the fracture system geometry; 

 Formulation and solution of equations of motion of the particles system;  

 Detection and updating of varying contacts between the particles as the conse-

quences of motion and deformations of the discrete system. 

 

4.2 DEM fundamentals 

Granular materials are modelled by a set of particles, that, for presentational purposes 

are assumed in this section to be spheres –see alternatives in the next section. Each sphere 

is identified by its own mass m, radius R and moment of inertia I0. The calculation alter-

nates between the application of Newton’s second law to the particles and a force-dis-

placement law at the contacts. Newton’s second law is used to determine the motion of 

each particle arising from the contact and body forces acting upon it, whereas the force-

displacement law is used to update the contact forces arising from the relative motion 

previously obtained. 

The calculation cycle is therefore a time-stepping algorithm that requires the repeated 

application of the law of motion to each particle, a force-displacement law at each con-

tact, and a constant updating of wall positions, being the wall the virtual entity acting as 

the boundary of the problem to be modelled. Contacts, which may exist between two 
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balls, or between a ball and a wall, are formed and broken automatically during simula-

tion.  

 

Figure 4.1: Calculation cycle in DEM, from PFC5 reference guide (Itasca Consulting Group Inc., 2014) 

 

All the process of calculation is represented in Figure 4.1 and detailed hereafter. At the 

start of each cycle, the timestep must be determined. The DEM methodology requires a 

finite timestep for the numerical integration of the Newton’s laws, able to ensure the 

stability of the explicit algorithm employed in the numerical calculation. If the timestep 

is too large, contacts may not be identified, if it is too small the simulation time is penal-

ized. Therefore, the timestep should be chosen as large as possible, as far as the stability 

is guaranteed. An efficient way is to calculate the critical timestep for all the degrees of 

freedom of the bodies and select the minimum one. The i-th timestep for the i-th body is 

estimated considering the one-dimensional mass-spring system of Figure 4.2. 

 

Figure 4.2: Single mass-spring system 

 

The motion of the mass m is governed by the differential equation:  

−𝑘𝒙 = 𝑚𝒙̈ (4. 1) 
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Where k is the stiffness of the spring and x the displacement vector. The critical timestep 

can be written as (Bathe and Wilson, 1976): 

𝑡𝑐𝑟𝑖𝑡 =
𝑇

𝜋
(4. 2) 

Being T the period of the system, defined as 

𝑇 = 2𝜋√
𝑚

𝑘
(4. 3) 

In the case of an infinite series-connected set of identical masses and springs, the critical 

timestep for this system can be written as: 

𝑡𝑐𝑟𝑖𝑡 = 2√
𝑚

4𝑘
= √

𝑚

𝑘
(4. 4) 

Concluding, the final critical timestep for the entire model (at a given cycle) is taken to 

be the minimum of all the timesteps calculated for all the degree of freedom of all the 

bodies. 

Some other techniques to calculate the critical timestep exist in DEM literature. For in-

stance, O’Sullivan and Bray (O’Sullivan and Bray, 2004) proposed an alternative method 

to estimate the critical timestep taking into account the particles arrangement configura-

tion and the number of contacts per particle. They claimed it guarantees a more stable 

solution for simulations involving particles with high coordination numbers (i.e., when 

clumps or non-convex particles are used). Another approach consider the Rayleigh wave 

speed to determine the timestep (Li et al., 2005; Thornton, 2000; Thornton and Randall, 

1988). 

Otsubo et al. (Otsubo et al., 2017) tested different DEM samples with different packing 

(i.e., monodisperse-polydisperse) and loading (constant-varying mean effective stress) 

conditions to see how the critical timestep was influenced. Their empirical study showed 

that some very simple methods used to calculate the critical timestep can result in sim-

ulations either unstable or having a very high computational cost. Therefore, they sug-

gested that the critical timestep must be set with care depending on the situation. 

 

Once the timestep for one calculation cycle has been fixed, the position and velocities of 

all bodies are calculated by integrating the Newton’s laws of motion, using the contact 

forces of the previous cycle. This is done by integrating the equation: 
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𝑚(𝒙̈ − 𝒈) = 𝑭 (4. 5) 

Where m is the inertia mass matrix, 𝒙̈ is the acceleration vector and F is the resultant 

force vector. The typical time integration method used in DEM is the Verlet algorithm 

(Verlet, 1967), in which the velocity at step (𝑡 +
Δ𝑡

2
) (half-step velocity) is computed as in 

equation (4.6): 

𝒙̇
(𝑡+

Δ𝑡
2
)
= 𝒙̇(𝑡) +

1

2
(
𝑭(𝒕)

𝑚
+𝒈)Δ𝑡 (4. 6) 

This velocity is then used to calculate the position at step 𝑡 + Δ𝑡 as: 

𝒙(𝑡+Δ𝑡) = 𝒙(𝑡) + 𝒙̇
(𝑡+

Δ𝑡
2
)
 Δ𝑡 (4. 7) 

The velocity at 𝑡 + Δ𝑡 is subsequently updated. It is not calculated at this step of the cycle 

sequence but after the application of the force-displacement law (when the contact forces 

are calculated) through: 

  

𝒙̇(𝑡+Δ𝑡) = 𝒙̇
(𝑡+

Δ𝑡
2
)
+
1

2
(
𝑭(𝑡+Δ𝑡)

𝑚
+𝒈)Δ𝑡 (4. 8) 

Similar considerations apply to the rotational motion but are omitted here as they can be 

easily found in the PFC5 reference guide (Itasca Consulting Group Inc., 2014). 

At this point the current timestep is updated to (𝑡 + Δ𝑡), the contacts are detected based 

on the new bodies positions (from the applied law of motion) and the force-displacement 

law is applied to each couple of particles in contact. Here, assumptions on the constitu-

tive contact model need to be done: the most common contact model used in DEM is the 

linear model, because of its simple formulation, but many other more advanced models 

exist (e.g., parallel bond (Holt et al., 2005; Lu and McDowell, 2008), Hertzian (Ciantia et 

al., 2019b; Cundall, 1988a), rolling resistance (Iwashita and Oda, 1998; Jiang et al., 2005), 

etc.). The rolling resistance contact model will be detailed in Chapter 4.3.2. 

In the linear contact model contact forces are proportional to the degree of the relative 

interpenetration between the bodies (usually named overlap, 𝑈𝑛) and the selected contact 

stiffness (𝑘𝑛 and 𝑘𝑠, respectively for the normal and tangential direction). 

Regarding the tangential direction, the simplest approach is to assume the Coulomb fric-

tion model as yield criterion, in which 𝜇 is named the coefficient of friction. For the contact 

‘i’: 
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𝑵𝒊
𝑡+Δ𝑡 = 𝑘𝑛𝑈𝑛      (along the normal direction)       (4.9) 

∆𝑻𝒊
𝑡+Δ𝑡 = −𝑘𝑠∆𝑈𝑠,    ∆𝑻𝒊

𝑡+Δ𝑡 ≤ 𝜇𝑵𝒊
𝑡+Δ𝑡   (along the tangential direction)    (4.10) 

 

The tangential equation is defined in an incremental way, because it is important to take 

into account the cumulative shear displacement (∆𝑈𝑠) at the contact. Therefore, when a 

contact is created, the tangential force and displacements are set to zero. After some 

timesteps, the shear force depends on the cumulated displacement in the tangential di-

rection, given as the sum of the incremental relative displacements of the particles at the 

contact point that occur at each timestep from the time of the contact creation. Moreover, 

the shear force presents an upper limit where the contact fails, given by the Coulomb 

criterion. 

4.3 Particle shape modelling in DEM 

There are several techniques to take the shape of particles into account in DEM simula-

tions, which are briefly described hereafter. In broad terms, the problem of shape in DEM 

can be tackled either using non-spherical particles, either constraining the rotations of 

spherical particles.  

4.3.1 Continuous analytical particle shape description  

A first possibility to include particle shape into DEM simulations employs a continuous 

analytical description of the particles outlines. The most common non-spherical analyti-

cal geometries employed in DEM have been ellipses (in 2D) and ellipsoids (in 3D) (Gan 

et al., 2016; Jiang et al., 2016; Ng, 1994; Rothenburg and Bathurst, 1992). Elliptical parti-

cles are considered a good trade-off between computational time and shape complexity, 

indeed, they do introduce resistance to rotation (due to the non-collinearity of contacts) 

but only one contact may exist between each couple of particles. Others tried to model 

DEM particles with more complex superquadrics surfaces (G W Mustoe and Miyata, 
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2001; Podlozhnyuk et al., 2017). Superquadratics rely on analytical solution (complex 

closed-form expressions) for the detection of contacts, which can be computationally 

very expensive, especially when non-linear equations must be solved, limiting the prac-

tical applications of this method. 

4.3.2 Polyhedral particles  

Another school of thought exploits non-spherical particles (e.g., triangles, squares, hexa-

gons in 2D; polyhedrons in 3D) (Elias, 2013; Langston et al., 2013; Ouhbi et al., 2016) to 

generate complex-shaped particles. The contact detection is the most complex and ex-

pensive task to carry out for this methodology. Indeed, it requires the evaluation of the 

coordinates of the polygons vertices, the edges and the particle orientation, whereas only 

the radii and the positions of the centres are required for spheres. Moreover, the contact 

between two polyhedral particles can occur in six different situations (Cundall, 1988b): 

corner-corner, corner-edge, edge-edge, corner-face, edge-face and face-face; adding fur-

ther complexities to the contact identification and calculation of the contact forces. Poly-

hedrons are defined by several vertices, edges and faces, and therefore they can well 

represent the shape of physical grains. Historically polyhedrons have seen limited use 

in DEM because of the difficulty to implement efficient contact detection algorithms. 

Recently, Itasca released the new version of their Particle Flow Code (PFC6), able to 

model polyhedrons using a variation of the Gilbert-Johnson-Keerthi algorithm (Gilbert 

et al., 1988) for the contact detection and resolution.  

4.3.3 Aggregates of spheres (clumps) 

Clumps are single entities of overlapping balls (used as “building blocks”) behaving as 

rigid bodies, used in DEM to create particles with more realistic geometries. The internal 

overlapping contacts are not considered in the calculations.  The use of clumps provides 

an interlocking within the assembly leading to a more realistic overall stress-strain be-

haviour. 
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The advantages of clumps are the simplicity of the model creation and the possibility to 

refine the clump shape (depending on the number of spheres forming the clump), there-

fore clumps are widely used (e.g. (Lu and McDowell, 2007) (Lim and McDowell, 2005) 

(Sun et al., 2014)). 

The main advantage of using clumps is that they do not require complex contact models 

to consider the effect of particle shape, since contact is always between spherical sur-

faces. However, the calculation time is strongly affected by the use of clumps, since each 

clump is formed by many spherical elements, and the number of possible contacts is 

controlled by the number of total spherical elements in the simulation, not by the num-

ber of clumps. As a result the number of clumps involved in the simulations must be 

kept relatively small, thus affecting the model size and therefore the physics of the sys-

tems that can be represented.  

 

Figure 4.3 shows some examples of three-dimensional clumps, ranging from simple ge-

ometries to more complex ones.  

 

Figure 4.3: Examples of 3D clumps (Yang et al., 2017) 

 

Several authors have proposed algorithms able to create clumps from digital images of 

real soil particles (Das, 2007) (Garcia et al., 2009). Usually, these algorithms try to fill the 

region delimited by the particle outline with several spheres of different sizes, as shown 

in Figure 4.4. An optimal target resolution must be set, in order to guarantee a realistic 

shape without using too many elements for each clump, increasing dramatically the cal-

culation time. 
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Figure 4.4: Example of algorithm used for creating clumped particles (Das, 2007) 

 

The moment of inertia depends on the p-elements making up the single particle. It can 

be written as following (O’Sullivan, 2011), calculated about a local Cartesian axis centred 

at the cluster centroid 𝐼𝑐𝑙𝑢𝑠𝑡𝑒𝑟: 

𝐼𝑖𝑗
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = ∑(𝐼𝑖𝑗

𝑝
𝛿𝑖𝑗 +𝑚

𝑝𝑎𝑖
𝑝
𝑎𝑗
𝑝
)

𝑁𝑝

𝑝=1

(4. 11) 

Where 𝑁𝑝 is the number of building blocks, each with mass 𝑚𝑝 and inertia 𝐼𝑝, and 𝛿𝑖𝑗 is 

the Kronecker delta. The vector a is given by the difference between the vectors defining 

the centroids of the p-element and the cluster respectively. 

Similar approach can be done regarding the mass density and distribution. If the cluster 

is composed by non-overlapping particles, the total mass is simply given by the sum of 

the masses of the p-elements. In case of overlapping geometries, it is necessary to scale 

down the cluster density in order to avoid having huge masses in regions where several 

spheres overlap. 

This can be done following a procedure used by (Ashmawy et al., 2003) and (Lu and 

McDowell, 2008), in which the density of the base spheres is scaled to a value 𝜌𝑠𝑐𝑎𝑙𝑒𝑑
𝑏  

defined as: 

𝜌𝑠𝑐𝑎𝑙𝑒𝑑
𝑏 =

𝜌𝑝𝑉𝑝

∑ 𝑉𝑖
𝑏𝑁𝑝

𝑖=1

(4. 12) 

Where 𝜌𝑝 and 𝑉𝑝 are the required density and volume of the target cluster, whereas 𝑉𝑖
𝑏 

is the volume of the i-th base sphere. 
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4.3.4 Other approaches 

Other approaches exist to take the shape of particles into account in DEM simulations 

(Coetzee, 2016; Lane et al., 2010), beside rotational constrains and aggregates of spheres.  

One of them, originally proposed by (Hentz et al., 2004), exploits the concept of “contact 

at distance”: it means a contact between two particles can be created even if the particles 

are not actually in contact (do not overlap). This is done by defining a “proximity” dis-

tance under which the contact is created, even though there is no physical overlapping 

between the particles. The particle shape can be approximated by defining fictitious 

proximity distances to apply to the spheres depending on the angularity of the physical 

grain and on the contact orientation. It is an efficient way because it only introduces new 

terms into the force-displacement law but the “interaction range” is difficult to physi-

cally calibrate. 

 

Calvetti et al. (Calvetti et al., 2004, 2003; Calvetti and Nova, 2004) proposed to inhibit the 

particle rotations, doing so the deformation of the assembly is entirely governed by the 

sliding between particles providing realistic results in an unrealistic framework. This 

approach can be seen as the extreme limit of the rolling resistance contact model de-

scribed later, in which resistant torques are applied at the contacts in order to resist the 

relative rotation between spherical particles (see chapter 4.3.5). 

 

Jerves et al. (Jerves et al., 2016) proposed a variation of the conventional DEM, called 

“level-set discrete element method (LS-DEM), able to take into account particle shape 

using level set to represent the grain geometry. Level-set is an implicit function repre-

senting the distance from a point to an interface (i.e., the particle external surface). There-

fore, each particle boundary can be related to a level set function, as illustrated in Figure 

4.5. 
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Figure 4.5: Particle representation using level set function. The black dots are the boundary node discreti-

sation (Jerves et al., 2016). 

 

This approach allows a high-level shape representation of each particle that can be input 

either analytically either from image-based methods, as shown in Figure 4.6. The main 

disadvantage of this shape representation is the huge computational time. Kawamoto 

(Kawamoto et al., 2018) simulated the triaxial test on Hostun sand (representing 

specimen HNEA01, having size 2 × 1 𝑐𝑚) in 17 hours on the San Diego Supercomputer 

Center’s XSEDE cluster Comet, using 470 cores. 

 

Figure 4.6: Level-set DEM representation of HNEA01 sand specimen before and after triaxial shearing 

(Kawamoto et al., 2018) 
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A similar methodology is adopted by Nadimi & Fonseca in their combined discrete-fi-

nite element model approach (Nadimi et al., 2019; Nadimi and Fonseca, 2018). They sim-

ulated a triaxial test performed on a granular sample filled with Martial regolith-like 

grains (scanned by x-rays and reproduced by micro-finite elements). A deformable nu-

merical membrane (made by thin-shell elements) is also implemented to model more 

realistically the laboratory conditions. The results obtained appear promising, however 

only 3000 grains were included in the simulations. 

4.3.5 Rolling resistance contact models 

Traditional DEM simulations are based on smooth spherical particles with no resistance 

to rotation at the contact point. However, the surface irregularity, rugosity and particle 

angularity may add a resistance to rotation that may be taken directly into account, this 

resistance is usually referred as “rolling resistance”.  

4.3.5.1 Formulations 

There are different implementations of the rolling resistance contact model. Iwashita & 

Oda (Iwashita and Oda, 1998) studied the microstructure of shear bands in two-dimen-

sions noting that rolling, rather than sliding, is the major mechanism controlling the di-

latancy into the shear bands, something that had also been demonstrated by Bardet 

(Bardet, 1994) using DEM. Moreover, since the contacts in real particles are not points 

but rather surfaces, rolling resistance provides a key contribution for a realistic shear 

band development at failure. Therefore, they proposed an elasto-plastic “Modified” ver-

sion of the original DEM, called MDEM, able to take into account rolling resistance. 

In conventional DEM, the contact (elastic and viscous) forces (normal 𝑁𝑖 and tangential 

𝑇𝑖) at the contact ‘i’ are defined as: 

𝑁𝑖 = 𝑘𝑛𝑈𝑛 + 𝐶𝑛
𝑑𝑈𝑛
𝑑𝑡

(4. 13) 

𝑇𝑖 = 𝑘𝑠𝑈𝑠 + 𝐶𝑠
𝑑𝑈𝑠
𝑑𝑡

     𝑖𝑓     |𝑇𝑖| ≤ 𝜇𝑁𝑖 (4. 14) 
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Where 𝑘𝑛, 𝑘𝑠 are the stiffness of the normal and tangential springs respectively; 𝑈𝑛, 𝑈𝑠 

are the relative normal and shear displacements at contacts, 𝐶𝑛, 𝐶𝑛 are the viscous damp-

ing coefficients of the normal and shear dashpots, and 𝜇 is the coefficient of sliding fric-

tion. 

In their proposed MDEM, illustrated in Figure 4.7, an additional equation is added to 

the contact model in order to provide the resistant torque termed as rolling resistance 

𝑀𝑖: 

𝑀𝑖 = −𝑘𝑟𝜃𝑟 − 𝐶𝑟
𝑑𝑈𝑟
𝑑𝑡

     𝑤𝑖𝑡ℎ     |𝑀𝑖| ≤ 𝜂𝑁𝑖 = 𝛼𝐵𝑁𝑖 (4. 15) 

Where 𝑘𝑟 is the rolling stiffness, 𝜃𝑟 the relative rotation, 𝐶𝑟 the viscous coefficient and 𝜂 

the coefficient of rolling friction which has a dimension of length. The authors, in a subse-

quent publication (Iwashita and Oda, 2000), proposed 𝜂 to be equal the product between 

an adimensional parameter 𝛼 and half of the contact width B. The term 𝑑𝑈𝑟 is defined as 

the displacement due to the rolling component only, quantified studying the kinematics 

of the contact point of two disks (having radii 𝑟1 and 𝑟2) in contact (see (Iwashita and 

Oda, 1998), for more details). They concluded that 𝑑𝜃𝑟 can be written as: 

𝑑𝜃𝑟 =
𝑑𝑈𝑟
𝑟𝑖𝑤𝑎

(4. 16) 

Where 𝑟𝑖𝑤𝑎 =
𝑟1+𝑟2

2
 is named as common radius. 

The authors argued that there was no obvious rationale to choose a value of the rolling 

stiffness 𝑘𝑟. However, they assumed 𝑘𝑟 to be the same order of magnitude of 𝑘𝑠, leading 

to: 

𝑘𝑟 = 𝑘𝑠𝑟𝑖𝑤𝑎
2  
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Figure 4.7: Rolling resistance model proposed by (Iwashita and Oda, 1998) 

 

At this step, 𝑀𝑖 and 𝑇𝑖 can be substituted in the rotational dynamic equilibrium equation 

indicated in Eq. 4.17. 

∑(𝑇𝑖𝑟 + 𝑀𝑖) = 𝐼
𝑑𝜔

𝑑𝑡

𝑚

𝑖=1

(4. 17) 

Where m is the total number of contact forces and moments, I is the moment of inertia 

and 𝜔 the angular velocity, expressed in terms of displacements at contacts. 

Their results showed that the use of rolling resistance had a large effect on both the peak 

and residual stresses at failure, the stress-strain curve lying between the free and fixed 

rolling tests, as shown in Figure 4.8. Moreover, when the MDEM is used, the specimen 

showed a strain localisation that was not visible in the other tests (Figure 4.9). 

 

Figure 4.8: Triaxial responses of DEM simulations performed on spherical particles with three different 

rotational constrains: free rolling, fixed rolling and rolling resistance (Iwashita and Oda, 1998) 
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Figure 4.9: Strain localisation after triaxial testing in the free rolling test (a), fixed rolling test (b) and 

rolling resistance test (c) using MDEM. 

 

Jiang et al. (Jiang et al., 2005) modified the Iwashita & Oda rotational model in order to 

solve its perceived limitations. In particular, the authors claimed that: 1) the kinematical 

model of Iwashita and Oda was stated for discs of equal radius only, without any theo-

retical proof for the decomposition of contact displacements and for the (empirical) re-

lation with particle rotation; 2) the model introduced four additional parameters chosen 

separately by trial and error procedure; and 3) the angular motion equations were not 

linked to the equilibrium of the system. 

Firstly, they proposed two new definitions of pure sliding and pure rolling in order to 

decompose in a unique manner the displacements at contacts. They provided theoretical 

proof that these decomposition leads to 

𝑑𝑈𝑟 =
𝑟2d𝑎 − 𝑟1d𝑏

𝑟1 + 𝑟2
 ;     𝑑𝑈𝑠 =

d𝑎 + d𝑏

2
(4. 18) 

Where da and db are the arc length covered by the contact point along the two disks in 

contact, having radii 𝑟1 and 𝑟2. 

These definitions are more rigorous and general than the ones proposed by Iwashita and 

Oda because they include the case in which 𝑟1 ≠ 𝑟2 and the special case where both the 

disks rotate rigidly as a single body. The same considerations can be done for the relative 
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particle rotation, 𝑑𝜃𝑟, and the common radius r, which are similar to the definitions of 

(Iwashita and Oda, 1998).  

𝑑𝜃𝑟 = 2
𝑑𝑈𝑟
𝑟𝑗𝑖𝑎𝑛𝑔

(4. 19) 

Where: 

𝑟𝑗𝑖𝑎𝑛𝑔 =
2𝑟1𝑟2
𝑟1 + 𝑟2

(4. 20) 

Secondly, they defined a new contact width defined as: 

𝐵 = 𝛿 ∙ 𝑟𝑗𝑖𝑎𝑛𝑔 (4. 21) 

Where 𝛿 is a dimensionless geometrical parameter related to the grain shape.  However, 

the authors did not provide any methodology to evaluate this shape parameter. 

Subsequently, they represented the contact interaction through a series of springs and 

dashpots acting in parallel along its length B, as in Figure 4.10. 

 

Figure 4.10a-b: Rolling resistance model proposed by (Jiang et al., 2005) 

 

The resistant torque is originated by a system of parallel springs placed along the contact 

(Figure 4.10a). The resulting distribution of the normal contact force is showed in Figure 

4.10b. The normal and shear stiffness (for the normal and tangential motions) are com-

puted as function of the contact length 𝐵. 

In the framework of rational mechanics, it is straightforward to study the stress distri-

bution along the element (Figure 4.10b), leading to an expression for the resistant mo-

ment M: 

𝑀 =
𝐾𝑛𝐵

2

12
𝜃𝑟 = 𝐾𝑚𝜃𝑟 (4. 22) 

Where 𝐾𝑚 is the rolling stiffness, that can be written as Eq. (4.23) by substituting Eq. 

(4.21) into (4.22): 
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𝐾𝑚 =
𝐾𝑛𝐵

2

12
=
𝐾𝑛𝑟

2

12
𝛿2 (4. 23) 

The proportionality between normal and rolling stiffness that was simply postulated by 

Iwashita & Oda appears here as a consequence of contact geometry. It can be noted that 

the condition 𝐵 = 0, equivalent to 𝛿 = 0 (it means the contact is a point), leads to 𝑀 = 0. 

The authors proposed also an equation for modelling the plastic behaviour at the contact, 

described by the following equations: 

𝑀 = 𝑀0 [3 − 2(
𝜃𝑟
0

𝜃𝑟
)

0.5

] (4. 24) 

Where 𝑀0, 𝜃𝑟
0 are the critical values of 𝜃𝑟 and 𝑀 that separate the elastic and plastic zones, 

and are defined as 

𝑀0 =
1

6
𝐹𝑛𝐵,         𝜃𝑟

0 =
2𝐹𝑛
𝐾𝑛𝐵

(4. 25) 

Where 𝐹𝑛 is the normal contact force. Again all these quantities are only dependent on 

the normal contact properties and the shape parameter 𝛿. 

Eq. (4.24) and (4.25) constitute the elasto-plastic non-linear model of the rolling re-

sistance contact model, shown in Figure 4.11. 

 

Figure 4.11: Moment-relative rotation response for the model introduced by (Jiang et al., 2005) 

 

The non-linearity induces complexity in the numerical solution, and therefore they sim-

plified the original model into two different idealized elastic-perfectly plastic models, 

(Model 1 and Model 2), as described in equations (4.26 – 4.28). 
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{
 
 

 
 𝑀 =

𝐾𝑛𝐵
2

12
𝜃𝑟 = 𝐾𝑚𝜃𝑟 ,     𝜃𝑟 < 𝜃𝑟

0

𝑀 = 𝑀0 =
1

6
𝐹𝑛𝐵,     𝜃𝑟 > 𝜃𝑟

0  (Model 1)

𝑀 = 0,     𝜃𝑟 > 𝜃𝑟
0  (Model 2)

(4. 26 − 4. 27 − 4. 28) 

Model 1 is similar to the one proposed by (Iwashita and Oda, 1998), but the approaches 

were different. Model 2 is meant for crushable grains, with an instant vanishing of the 

contact width and therefore the rolling resistance. 

It worth to point out that both the model reduce to standard DEM if the shape parameter 

𝛿 equals 0. Figure 4.12 shows the influence of the shape parameter 𝛿 on the shear re-

sistance of the specimen. 

 

Figure 4.12: Angle of internal friction at peak and critical states in function of the shape parameter 𝛿 (Jiang 

et al., 2005) 

 

Estrada et al. (Estrada et al., 2008) claimed that particles interlocking affects the force 

network by enhancing the arching effects, and that rolling resistance may imitate this 

phenomenon. They implemented a rolling resistance contact model in which a resistant 

torque 𝑀 is applied depending on the sign (i.e.,  direction) of the relative angular velocity 

of the particles and it is a function of a parameter 𝜂, the radii of the spheres (𝑟1, 𝑟2 ) and 

the normal force 𝐹𝑛. 

𝑀 = ±𝜂(𝑟1 + 𝑟2)𝐹𝑛 (4. 29) 
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Figure 4.13: Relationship between the rolling torque M and relative rotation 𝜔𝑟 (Estrada et al., 2008) 

 

The most important outcome of their work was to clearly show how the effects given by 

sliding (𝜇) and rolling (𝜂) frictions are not independent but rather strongly coupled. It 

means, in order to reach high shear resistances, it is necessary to increase together 𝜇 and 

𝜂, otherwise the shear resistance saturates independently on the magnitude of the single 

coefficient, if increased alone. The physical reason behind this observation is that two 

particles in contact tend to slide if the 𝜇 is low and 𝜂 is large and tend to roll if vice versa. 

 

They run 221 shear tests varying the values of 𝜇 (0-0.8) and 𝜂 (0-0.6) and recorded the 

internal friction coefficient (𝜇∗). It is evident that 𝜇∗ tends to saturate very rapidly if both 

𝜇 and 𝜂 are not increased together, thus originating a narrow zone in which high shear 

resistance can be reached, as shown in Figure 4.14. 

 

Figure 4.14: Contour map of the internal friction coefficient (𝜇∗) as function of the rolling friction (𝜂) and 

sliding friction (𝜇) (Estrada et al., 2008) 
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Ai et al. (Ai et al., 2011) summarized previous work classifying rolling resistance models 

into four categories, highlighting the suitability of each model for different applications. 

First of all, they defined the coefficient of rolling resistance 𝜂 as:  

𝜂 = tan(𝛽) (4. 30) 

Where 𝛽 is the maximum slope angle at which the resistant rolling torque balances the 

torque induced by the body forces acting on the particle. 

Regarding the rolling stiffness 𝑘𝑟, they used the 2D Hertzian formulation proposed by 

Bardet and Huang (Bardet and Huang, 1993). 

𝑘𝑟 = 2𝐽𝑛𝑅𝑟𝐹𝑛 (4. 31) 

Where 𝐽𝑛 is a dimensionless coefficient usually between 0.25 and 0.5, and 𝑅𝑟 is the com-

mon radius defined as 0.5𝑟𝑗𝑖𝑎𝑛𝑔 

𝑅𝑟 = 0.5(𝑟𝑗𝑖𝑎𝑛𝑔) =
𝑟1𝑟2
𝑟1 + 𝑟2

(4. 32) 

The first category of models (Model A) they defined, is the “directional constant torque 

models”, that apply a constant resistant torque (M) on a particle, not depending on the 

relative angular velocity (𝜔𝑟𝑒𝑙 = 𝜔1 −𝜔2) or on the relative cumulated rotation between 

two particles (e.g. (Estrada et al., 2008; Zhou et al., 1999)). 

𝑀 = −
𝜔𝑟𝑒𝑙
|𝜔𝑟𝑒𝑙|

𝜂𝑅𝑟𝐹𝑛 (4. 33) 

The negative sign guarantees that the rolling torque M is applied in the opposite direc-

tion with respect to the relative rotation, in order to resist it. 

The second category (Model B) are the “viscous models”, in which the rolling resistance 

moment is function of the angular velocity: 

𝑀 = −𝜂𝑅𝑟𝐹𝑛(𝜔1𝑟1 −𝜔2𝑟2) (4. 34) 

The third category of rolling resistance contact models (Model C) are named “elastic-

plastic spring-dashpot” models, in which there are two components that participate to the 

final resistant torque applied: the mechanical spring torque and the viscous damping 

torque. This is the approach used by Iwashita & Oda (1998) and (Jiang et al., 2005) de-

scribed previously. However, Ai (Ai et al., 2011) argued that their model could work 

well only if rolling back or cyclic rolling were not involved. Therefore, he proposed a 

modification introducing a rolling backward part in the constitutive model, as shown in 

Figure 4.15. 
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Figure 4.15: Elastic part of the rolling resistance contact model (Ai et al., 2011) 

 

In Figure 4.15, Mrk is the spring torque and Mrm is the maximum limit value of the re-

sistant torque having expression: 

𝑀𝑟
𝑚 = 𝜂𝑅𝑟𝐹𝑛 (4. 35) 

Details regarding the viscous part of the rolling resistant torque can be found in (Ai et 

al., 2011). 

The fourth and last category (Model D) included models in which different resistant tor-

ques are applied to each particle of the couple in contact, thus violating the equilibrium. 

These models were not investigated in detail because of their clear inadequacy. 

Their simulations were carried out on PFC2D (Itasca, 2008) using the Hertz-Mindlin con-

tact model for the normal and tangential directions and the rolling resistance model for 

the rotational part. The first set of simulations tried to model a disk rolling on a flat sur-

face, applying an initial translational velocity to it. The second test case simulated a disk 

rolling up a slope and the third tried to replicate a sandpile formation. 

Their outcomes were that the Models A produce a permanent oscillation when the sys-

tem becomes quasi-stationary, therefore their use is recommended only in dynamic sim-

ulations. Models B are good when viscous effects are important, like in rapid motions. It 

is not suitable for simulations were static zones exist, since the resistant torque M goes 

to zero if there is no relative angular velocity between the particles. 
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Models C produced the best results in most situations. The viscous damping component 

can be switched off if the spring torque is fully mobilised in cases where the viscous 

hysteresis is not important.  

4.3.5.2 Calibration approaches 

Wensrich and Katterfeld (Wensrich and Katterfeld, 2012) tried to relate analytically the 

real shape of particles to the rolling resistance torque applied, by studying the effect of 

eccentricity of the contacts. In particular, they studied the similarity between the torque 

provided by the rolling resistance contact models previously described (Ai et al., 2011) 

and the torque produced by the eccentricity of a normal contact on a non-spherical par-

ticle.  

The authors claimed that rolling resistance can mimic two different mechanisms for en-

ergy dissipation: attrition at the contact and the effect of shape, that they considered the 

main factor. They run several simulations in order to compare the angles of repose of 

angular shaped particles (clumps) with rolling resistant spheres, implementing the 

model C proposed by Ai (2010). However, they did not implement the damping torque 

because they argued that particles oscillation (contrasted by rolling damping, as men-

tioned by (Ai et al., 2011)) is not so important if the rolling stiffness is high. This is be-

cause, in this scenario, the shear damping is fully mobilised (plastic flow takes place) 

and oscillations are damped without the need of any further rotational damping. More-

over, rolling damping introduces a new parameter difficult to set and calibrate. 

The maximum value for the rolling resistance moment is given by: 

𝑀𝑟
𝑚𝑎𝑥 = 𝜂𝑅𝑟|𝐹𝑛| (4. 36) 

The starting point of their study was the consideration that there must be a physical 

sense of this applied torque that should be explained by Figure 4.16. 



67 

 

Figure 4.16: Non-spherical particles in contact. The contact normal forces shows an eccentricity that in-

duces a torque (Wensrich and Katterfeld, 2012) 

 

It is evident that the contact normal force does not pass through the particles centres of 

mass, therefore the eccentricity ‘e’ creates a rolling moment of magnitude 

|𝑀| = 𝑒 ∙ |𝐹𝑛| (4. 37) 

That should be comparable to any value of rolling resistance torque provided by the 

mentioned contact models. A comparison between Eq. (4.36) and (4.37) inspires the fol-

lowing relationship: 

〈𝑒〉 ≅ 𝜂𝑅𝑟  → 𝜂 ≅
〈𝑒〉

𝑅𝑟
(4. 38) 

Where 〈𝑒〉 represents the average eccentricity of all the contacts. It is an easy and elegant 

method to assess the rolling friction coefficient 𝜂 from the contact forces eccentricity, 

however caution must be adopted. In reality, particle shape may resist rotation as well 

as enhance it, whereas rolling resistance always acts to resist relative rolling between 

particles. 

The first case study they considered are prolate and oblate spheroids, for which the ec-

centricity may be analytically evaluated, and therefore Eq. (4.38) can be exploited to eval-

uate rolling friction coefficient as function of the ellipsoids’ axis (Figure 4.17). The result-

ant coefficients of rolling friction had values generally used in practice, encouraging the 

prosecution of their study. 
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Figure 4.17: Relationships between the coefficient of rolling friction (above) and rolling radius (below) as 

function of the aspect ratio of the spheroid (Wensrich and Katterfeld, 2012) 

 

In a second case study, Wensrich and Katterfeld took advantage of the simplicity of 

PFC3D (Itasca) to mimic shape through clumps. In particular, they created binary and 

ternary clumps of the same diameter for which the shape can be numerically varied from 

almost spherical to very angular, only playing with the spacing parameter 𝛿 shown in 

Figure 4.18. 

 

Figure 4.18: Tertiary clump with the spacing parameter 𝛿 used to vary the angularity (Wensrich and 

Katterfeld, 2012) 
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Then the calculation of the eccentricity of every contact is straightforward since the con-

tact direction passes through the centre of the embedded sphere of the clump in contact, 

and the relative position of this centre and the clump centre is well known. The average 

eccentricity was calculated by a Monte-Carlo procedure in order to take into account 

some difficulties originated by the fact that not all the contact points are possible. 

Again in this case, the results showed a good agreement between the coefficient of roll-

ing friction obtained in this study (Figure 4.19) and typical values used in practice. The 

rolling radius shown in Figure 4.19 is defined as the radius of a sphere having the same 

volume of the clump. 

 

Figure 4.19: Relationships between the coefficient of rolling friction (above) and rolling radius (below) as 

function of the spacing parameter 𝛿 for binary and tertiary clumps (Wensrich and Katterfeld, 2012) 

 

Finally, the validity of the rolling friction coefficient is evaluated by comparing the angle 

of repose (AOR) of three different types of numerical specimen (50 simulations each, var-

ying the coefficient of inter-particle friction 𝜇 and initial packing) composed by binary, 

tertiary clumps and spheres with rolling friction.  

Figure 4.20 summarises all the results. It is evident that the AOR is very sensible to shape 

(≅ 𝜂) for low values of 𝜂. Then, it becomes less and less dependent on 𝜂 when 𝜂 increases. 
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The explanation to this trend is that the mechanism of resist rolling must work together 

with the mechanism of resist sliding, in other words in order to reach high values of 

OAR both the coefficients of frictions (𝜇 and 𝜂) must be high, as the work by (Estrada et 

al., 2008) highlighted as well. 

 

Figure 4.20: Measured angles of repose (AOF) for 150 simulations of different shaped particles in function 

of the rolling friction and the sliding friction (Wensrich and Katterfeld, 2012) 

 

It can be concluded that rolling resistance induces a “shape-like” behaviour but it must 

be used with caution. Indeed, the AOR of spherical particles with rolling resistance are 

at least 10 degrees higher than the ones presented by clumped particles. In particular, it 

seems that the effect of rolling resistance is much stronger than what Eq. (4.38) provides 

for the clumps (and non-spherical particles): about half of rolling resistance is required 

to give similar AORs to the simulations involving clumps. The possible explanation to 
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this evidence is that, as already mentioned, shape may resist as well as encourage rota-

tion whereas rolling resistance always resists rotation. 

Cheng (Cheng et al., 2017) proposed an alternative approach to calibrate the microscopic 

parameters for DEM (i.e., Young modulus, Poisson ratio, rolling stiffness coefficient, slid-

ing friction coefficient, rolling friction coefficient). Their approach, albeit attractive, re-

quires several simulations to be run (at least one hundred) to calibrate one sand type, 

limiting the practical applicability of their method. 

4.4 Effects of particle shape observed in DEM-based studies 

Following the different approaches just explained, the effect of particle shape has been 

extensively investigated using DEM. It is not easy to quantify the influence of shape ex-

perimentally, since shape effects are coupled with those of many other parameters. How-

ever, DEM allows separating all of these properties (i.e. friction, shape, stiffness, confin-

ing pressure, initial porosity, etc.), so that that the effect of shape can be systematically 

studied.  

Figure 4.21 shows the results of a Direct Shear Test (DST) performed by Das (Das, 2007) 

on two different types of assemblies one constituted by spherical particles, the other by 

clumps representing Daytona Beach. It is evident that the shear resistance is strongly 

affected by the use of clumps, that provide a better interlocking between the particles 

and therefore more resistance than spherical particles. 



72 

 

Figure 4.21: Failure envelopes of DEM simulations performed on spherical and clumped particles (Das, 

2007) 

 

Figure 4.22 lists the values of the internal friction for both the assemblies, in 2D and 3D. 

The 3-D simulations with clumps can provide very similar results with respect to the 

experimental ones. 

 

Figure 4.22: Values of the internal friction angles for Daytona Beach Sand and rounded particles (from 2D-

3D simulations and experiments) (Das, 2007) 

 

Cleary (Cleary, 2008) investigated the effect of particle shape on simple shear flows, per-

forming 2D DEM of flow in a Couette shear cell. The 3D Couette flow consists of a vis-

cous fluid confined in the gap between two rotating cylinder, different flow regimes can 

start depending on their relative angular velocity. This flow is often studied in two-di-

mensions using two infinite flat plates, one of which moves tangentially relative the 

other, with the viscous fluid in the space between the surfaces. 

Four different shapes were considered in the DEM study (i.e., circular, squarish, ellipsoi-

dal and brick), ranging from rounded to angular, built using super-quadrics. He showed 
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that particle shape (Aspect Ratio, in particular) has an important effect on the shear flow 

of granulates. The shear strength of the material increased by a factor 15-30 because of 

the interlocking between grains and the higher number of contacts. In addition, the flow 

behaviour changed dramatically with particle shape. In particular, the aspect ratio 

change induces an effective change in the boundary layer which is reflected on the flow 

structure.  

 

Similar considerations have been reported by Morigouchi et al. (Moriguchi et al., 2015). 

They tried to reproduce a granular flow experiment performed by Denlinger & Iverson 

(Denlinger and Iverson, 2001) using 3D-DEM, consisting in a rectangular flume with a 

bed surface inclined at 31.4 degrees adjoined to a horizontal runout surface, with a well-

rounded quartz sand placed at the top. The comparison between the experimental setup 

(a) and the numerical model (b) is showed in Figure 4.23. 

  

  

(a) (b) 

Figure 4.23: Experimental (a) and numerical (b) models for the granular flow study  

 

Spherical and non-spherical elements (built using clumps) were used in DEM to study 

the effect of particle shape on the granular flow. The obtained flow behaviours, in terms 

of velocity and runout distance, were very different depending on the shape of particles. 

They concluded that particle shape must be considered in numerical simulations to 

model a realistic granular flow. 
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Zhou et al. (Zhou et al., 2013) conducted a 2D DEM analysis to investigate the effect of 

particle shape on the mechanical behaviour of granular materials subjected to quasi-

static shearing (i.e., triaxial tests), with particular emphasis on the particles rotations 

mechanisms. They compared the mechanical responses of numerical samples comprised 

of (a) disc particles (testing different values of rolling resistance, exploiting the Iwashita 

& Oda contact model), (b) squared particles and (c) triangular particles, as showed in 

Figure 4.24. 

 

Figure 4.24: Disc, square and triangular particles built using clumps 

 

They demonstrated that both the shear resistance and the volumetric strain are strongly 

affected by particle shape (Figure 4.25). Indeed, angular particles lead to higher material 

strength and more dilatant behaviour. In addition, they noted that the shear bands 

formed after shearing the clump samples present a more “uniform” localisation pattern 

compared to the more rounded samples that exhibit a clear shear band, as showed in 

Figure 4.26. Moreover, the strain localisation appears in an earlier stage for the disc sam-

ples. 

  

(a) (b) 

Figure 4.25: Stress-strain (a) and volumetric (b) responses of the DEM simulations using disks with dif-

ferent rolling resistance values and clumped particles (squares, triangles) 
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(a) (b) (c) (d) (e) 

Figure 4.26: Accumulated shear strain at the critical state (10% axial strain) for spheres with increasing 

values of rolling resistance (a-b-c), and the clump samples made with squares (d) and triangles (e) as in 

Figure 4.24. 

 

Ashmawy et al. (Ashmawy et al., 2003) studied the liquefaction susceptibility making 

use of 2D DEM. He created some numerical samples composed by grains with different 

shape, representing a range from Glass Beads to Ottawa angular sands. The angularity 

for a single discrete element representing a grain was obtained making use of a series of 

overlapping, rigidly connected elements (i.e., clumps). They performed cyclic pure shear 

tests on the numerical samples and found that the liquefaction susceptibility has a strong 

relationship with particle shape, but only at low relative densities. Figure 4.27 shows the 

plot of the cyclic stress ratio (CSR) versus the number of cycles to liquefaction (N) for 

several samples prepared by static compaction, in order to induce a low void ratio equal 

to 0.245 for all the samples. 

 
Figure 4.27: Cyclic stress ratio (CSR) versus number of cycles to liquefaction (N) for simulated samples 

prepared by static compaction (Ashmawy et al., 2003) 
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It is evident that the highest liquefaction susceptibility corresponds to Glass Beads and 

Ottawa rounded sand, whereas the angular sands exhibit a higher resistance to liquefac-

tion. This tendency was not found for samples prepared at their maximum index densi-

ties. 

4.5 Summary 

In this Chapter, after a short part explaining the fundamentals of the DEM methodology, 

it is detailed how the shape of particles can be included in DEM simulations. The main 

concepts can be summarised as follow: 

 Particle shape is computationally expensive to consider but cannot be neglected; 

 Non-spherical particles (i.e., superquadrics, polyhedrons, clumps) can be intro-

duced in the simulations but the contact detections are inefficient; 

 Freely rotating spheres give a behaviour that is not physical for soils; 

 Rolling resistance contact model are widely used as alternative efficient tech-

nique to mimic particle shape, but are difficult to calibrate; 

 The most popular rolling resistance contact model was proposed by Iwashita & 

Oda (Iwashita and Oda, 1998). 
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      X-Rays micro-computed 

tomography for geomaterials 

_______________________________________________ 

 

5.1 Introduction 

The aim of this Chapter is to give a short overview on the methods, procedures and 

materials that were used to procure the data that was taken as starting point for the work 

described in the next two chapters. It is based on previous work, not done by the author, 

but it is reported here to give the reader adequate understanding of the thesis contribu-

tion. A full detailed explanation of the aspects treated in the current Chapter can be 

found in the doctoral thesis by Edward Andò (Andò, 2013), specifically in Chapters 2, 3 

and 4. 

The first part of this Chapter (5.2) describes the basis of x-rays tomography, with empha-

sis on the experimental equipment located at Laboratoire 3SR of “Université Grenoble 

Alpes” (France). 

The second part (Chapter 5.3) aims to detail the experimental campaign which is used 

as starting point of this doctoral work. In particular, the experimental data consists in a 

series of triaxial tests and relative 3D x-rays scans performed on different sands. Andò 

(2013) performed a series of test at different confining pressures (100kPa and 300kPa) on 

three different sands (Caicos, Hostun and Ottawa sands) having considerably different 

grain shape. In this work, the two extreme ranging angular and rounded sands are 

deeply investigated, respectively Hostun sand (Chapter 5.3.1) and Caicos ooids (Chapter 

5.3.2). Some results about Ottawa sand (medium angular sand) have also been reported 
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in Chapter 5.3.3 because then used for validation in a subsequent stage of the project (the 

numerical simulations presented in Chapter 8). 

All the triaxial tests have been scanned during time using x-ray micro-tomography. It 

means the triaxial experiments were performed into the triaxial cell which is located into 

the 3SR Laboratory’s x-rays scanner. Several x-rays images are taken during the execu-

tion of each test, resulting in a series of 3-D scans of the specimen for several loading 

steps. 

Subsequently, each 3D x-rays image can be studied by image analysis procedures. Chap-

ter 5.4 briefly describes how the images are binarised in order to separate the solid phase 

and the voids, segmented, in order to separate the single inter-connected solid phase in 

individual particles, and finally labelled, in order to assign an integer value (a name) to 

each grain within the specimen. 

5.2 X-rays tomographic equipment  

The use of x-rays micro-tomography for studying geomaterials is relatively recent, the 

main advantage of x-rays in every field of science is the fact that it is a non-destructive 

technique. In other words, it is possible to extract many useful information from an ob-

ject without physically touching it, thus without inducing irreversible damage.  Moreo-

ver, x-rays are sensitive to the mass density, therefore the solid and void phases of gran-

ular materials, like the ones studied in this doctoral work, can be easily detected and 

distinguished. Indeed, the grains stop x-rays transmission more than the surrounding 

air, resulting in different grey-scale values on a radiograph. The same concept is applied 

in medicine, allowing distinguishing the bones from the flesh. However, a radiograph is 

a two-dimensional measurement representing the amount of photons which are ad-

sorbed by each point of an object. X-ray tomography was developed during the 1960s. 

Tomography is a technique that consists in taking a series of radiograph of the object, in 

order to reconstruct a three-dimensional image of it. Usually, in industrial/laboratory 

applications, the object is rotated around one axis allowing the sequence of image to be 

taken from different perspectives.  
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The x-ray source emits a cone beam that travels through the specimen and terminates on 

the x-ray detector. The specimen can be approached to the source allowing the scan to 

be enlarged without losing resolution, although the field of view is then reduced. 

Figure 5.1 shows a photograph of the experimental equipment of the Laboratoire 3SR x-

ray scanner. 

 

Figure 5.1: Laboratoire 3SR x-rays scanner equipment (Andò, 2013) 

 

The specimen is located into the triaxial cell, which is mounted onto the rotation stage. 

This element is hollow, so that the experimental equipment can pass through it for being 

scanned. 

The detector governs the special resolution of the radiographs, indeed the number of 

pixels in the detector is fixed (in the Laboratoire 3SR’s detector, a pixel 

measures 127 μm). However, it is possible to zoom in the specimen by translating it 

closer to the source, as mentioned above. As an example, a radiograph of a cylindrical 

specimen ready to be tested in triaxial conditions is shown in Figure 5.2. 
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Figure 5.2: Radiograph (1920 × 1536 pixels) of the Caicos ooids specimen (Andò, 2013) 

 

The radiograph is taken from a specimen containing around eighty thousand grains of 

Caicos sand. It is evident that the centre of the specimen is darker, because more x-rays 

have been adsorbed by the grains located on that central vertical section. 

Once a series of radiograph is taken, it is possible to reconstruct the 3-D volume of the 

specimen. This is done making use of a mathematical tool, the Radon transform. It de-

scribes how a function can be reconstructed from an infinite number of projections of the 

function itself. In our case, the projections are the radiographs acquired at different an-

gles and the function to be reconstructed is the one describing the field of x-rays attenu-

ation coefficients inside the object. The software used for the reconstruction process is 

“DigiCT” from Digisens. The files coming out from this process are three-dimensional 

images in which the grey-scale values are stored in each voxel. These images have been 

used as starting points in the following Chapters. 

5.3 Experimental campaign  

A triaxial test campaign was performed on several sand specimens. The goal was to fol-

low the evolution of the micro-structure during the deformation process, at the scale of 

the grains. The triaxial tests are scanned by x-rays at some loading steps, in order to 
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capture the macroscopic results during time (from the triaxial experiment), as well as the 

microscopic information (from x-rays tomography, without disturbance of the speci-

men). 

In order to visualise individual grains from the tomographic images, the specimen must 

be positioned relatively close to the laser beam. Consequently, the typical cylindrical cell 

size historically used in soil mechanics for triaxial testing (10 cm diameter × 20 cm height) 

is excessively large to be used for this purpose. Therefore, the specimens used in this 

work were cylinders of approximately 22 mm height and 11 mm diameter. All the test 

are performed in drained conditions, therefore σ' = σ. 

The pixel size selected to image the studied sands is 15.56 μm, in order to ensure the field 

of view of the detector to be approximately 30.5 mm × 23.0 mm. Doing so, that the spec-

imens can fit inside this area, as detailed above. This pixel size guarantees an average of 

30 pixels across the thickest section of a grain, allowing distinguishing individual grains. 

5.3.1 Hostun sand 

Hostun sand is produced in a quarry located in the commune of Hostun in the Rhone-

Alpes region of France, the particles are very angular and elongated (see Figure 5.3) be-

cause they are generated by crushing and have not been transported very far, since they 

were crushed in-situ. Hostun is a quartz sand used in many previous laboratory studies 

(Calvetti et al., 2004; Desrues et al., 1996; Schanz and Vermeer, 1996). 

On the left of Figure 5.3, a horizontal radiograph section of the Hostun sand specimen is 

shown, on the right, the image shows a microscope image of few grains of Hostun sand, 

scanned by an electron microscope. 
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Figure 5.3: Horizontal section of the scanned 3D Hostun sand specimen (on the left). On the right, a scan-

ning with an Electron Microscope (Andò, 2013) 

 

The Grain Size Distribution of Hostun sand is shown in Figure 5.4, it was provided by 

the manufacturer “Sibleco France”.  

 

Figure 5.4: Grain Size Distribution of Hostun sand (Andò, 2013) 

 

The grain size distribution is very narrow (CU = 1.41) because the particles were already 

sorted by grain size after quarrying. The D50 is equal to 338 μm. 

The triaxial test were performed at a strain rate of 0.1% per minute: it means the ram is 

driven up at 21 μm/min, considering that the specimen is 22 mm height. The x-rays scans 

are taken at around every 1% of axial shortening, but some other criterion was adopted 

for specific purposes at some steps (i.e., the onset of the critical state of Caicos). 
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Obviously, loading is interrupted when a scan is performed, because the scanning pro-

cess takes time (the specimen makes a revolution around its vertical axis during which 

radiographs are taken for each rotation angle). 

Four tests were carried out on Hostun sand by Edward Andò (Andò, 2013) in Grenoble 

at different confining pressure, as summarised in Table 5.1. 

Confining Pressure Experiment name 

100 kPa 
HNEA01 

HNEA03 

300 kPa 
HNEA02 

HNEA04 

Table 5.1: Triaxial tests performed on Hostun sand by Andò (Andò, 2013) 

 

The name of the experiment is labelled as six characters where the first two letters (HN) 

denotes the material (Hostun), the second two letters designate the researcher in charge 

of the test (EA: Edward Andò, CV: Cino Viggiani), and finally the two numbers (i.e., 01) 

indicate the number of the specimen under testing. 

As can be seen in Figure 5.5, the stress strain material responses show some sharp fluc-

tuation during the deformation, characterised by a rather regular strain rate. This is due 

to the scanning stages, indeed the stress ratio is kept constant during scanning and a 

redistribution of the grains contacts may induce a rapid variation of the measured stress 

ratio. The “instant” (although actually it is not an instant) at which images are taken is 

named using two further numbers added at the end of the specimen name. For instance, 

HNEA01-01 represents the loading step “01” (the end of the isotropic compression) of 

specimen HNEA01. Moreover, a single loading step increment is named as HNEA01-01-

02. In this case, it refers to the loading phase between the incremental states “01” and 

“02” of specimen HNEA01. Therefore, the response of specimen HNEA01 during the 

whole experiment, from the isotropic compression (step “01”) until failure (step “16”), is 

named HNEA01-01-16. 
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The four specimens were prepared by dry pluviation and the final relative densities 

achieved were similar, however there is some variability because of the difficulty to cre-

ate small size specimens. Figure 5.5 shows the macroscopic result of the triaxial tests 

performed at 100kPa confining pressure on two specimens: HNEA01 and HNEA03. The 

initial densities are equal respectively to 83.2% and 73.1%, hence they can be classified 

as dense. 

 

Figure 5.5: Stress-strain responses of the triaxial tests on specimens HNEA01 and HNEA03 (Andò, 2013) 

 

The stress-strain curves are moderately similar, both present a peak followed by a sof-

tening phase until the critical state is reached. The peak corresponds to a stress ratio (
σ1

σ3
) 

around 6.15 (615kPa) and an axial strain of 5% for both specimens, whereas the residual 

stress ratio is 4.15 (415kPa) at 13% shortening for HNEA03 and 4.4 (440kPa) at 13.3% for 

HNEA01, which resists longer. Therefore, the peak (φP) and the residual (φCS) friction 

angles are respectively 46.1° and 37.7° for both the specimens. 

The dilatancy angle at the peak is 17.0° for HNEA01 and is 18.3° for HNEA03, it reaches 

zero at the end of the test, thus confirming that both the specimens reached the critical 

state, although recent numerical works (Kawamoto et al., 2018) casted some doubts on 

this aspect, pointing out the stress state was still rotating when the experiment was 

stopped.  
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The specimens tested at 300kPa confining pressure (HNEA02 and HNEA04) have simi-

lar responses as well, as shown in Figure 5.6. The initial relative densities are very high 

and respectively equal to 95.4% and 84.3%. 

 

Figure 5.6: Stress-strain responses of the triaxial tests on specimens HNEA02 and HNEA04 

(Andò, 2013) 

 

The peaks state for HNEA02 and HNEA04 correspond to a stress ratio (
σ1

σ3
) respectively 

equal to 5.50 and 5.35, which give a peak friction angle of 43.8° and 43.2°, at approxi-

mately the same axial strain of 7.2%. 

The critical state is not reached at the end of the tests, indeed the dilatancy angle never 

reaches zero, however it seems that HNEA02 reaches a critical stress ratio greater than 

HNEA04. The higher resistance of HNEA02 at both peak and critical states can be due 

to its higher initial density. 

 

In order to test the representativeness of the small specimens such the ones used in this 

study, the material responses were compared to the responses of larger specimens. If the 

small specimens’ responses are comparable to the larger ones, it means the samples used 

in this work can represent well the behaviour of the sand tested at larger scale. 

In particular, the results of Combe (Combe, 1998) are used in the comparisons. First of 

all, the material tested at large scale was found to deform in the same way as the small 
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size specimens: both present a single shear band. Figure 5.7 shows the comparison be-

tween the responses of the Hostun samples tested at 100kPa and 300kPa confining pres-

sure at both scales, small (respectively HNEA01 and HNEA02, tested by Andò) and large 

(respectively called TS28D01 and TS28D03, tested by Combe). The slenderness ratio of 

the sample tested at large scale is 1 (the diameter, 100 mm, equals the height), unlike the 

small specimens that have a slenderness ratio equal to 2 (22 mm ÷ 11 mm). 

 

Figure 5.7: Stress-strain responses on specimens HNEA01, HNEA03, TS28D01 and TS28D03 (Andò, 

2013) 

 

The first evident fact is that both the peak and the critical states are reached for much 

larger axial strain for the large size specimens, at both the confining pressures. However, 

at 100kPa confining pressure the stress ratio at the peak is 6.15 for HNEA01 and 6.16 for 

TS28D01. Also at higher confinements (300kPa) the peak stress ratios are comparable: 

5.50 for HNEA02 and 5.46 for TS28D02. Also the dilatancy angles at the peak state are 

very similar. 

Moreover, the small size specimen tested at 100kPa confining pressure shows an initial 

stiffness higher than its relative large size specimen TS28D01, however this tendency is 

not occurring in the high confined tests. 

In conclusion, the main difference between the responses is that small size specimens 

approach the peak and the residual state much faster than the large size ones, approach-

ing failure more rapidly. 
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Nevertheless, it is important to point out that the geometry of the small specimen created 

by dry pluviation is less homogenous compared to the large specimen. As a conse-

quence, particles bridges can be determinant in the material response and potential 

strain localisation phenomenon can arise earlier. In addition, the greater slenderness ra-

tio of small specimens may anticipate the failure in compare to a specimen with slender-

ness ratio 1. Indeed, the shear banding formation is geometrically more difficult to 

achieve in a sample in which the ends are relatively close. 

 

Considering the previous results and remarks, it can be concluded that the small speci-

mens response can represent with satisfying accuracy the mechanical response of the 

material tested at larger scale. 

5.3.2 Caicos ooids 

Caicos ooids is a much rarer material that has not been extensively studied and tested, 

for which little data available beyond that is reported by Andò (Andò 2013). 

It is generated from small seeds like shell fragments or calcite grains that subsequently 

become larger because some material gets attached to the grain while rolling or by pre-

cipitation over the surface. Ooids grow in marine environment, where the sea waves 

facilitate this phenomenon. In particular, the material tested comes from the Caicos Is-

lands, in the British West Indies.  

The mentioned mechanisms tend to generate rounded particles, as evident in the hori-

zontal section of the tomographic image of Caicos sand (Figure 5.8 on the left) and on 

the radiograph of a single Caicos particle (Figure 5.8 on the right). 
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Figure 5.8: Horizontal slice of COEA04 (left) and single radiograph of Caicos sand (right) (Andò, 2013) 

 

The microstructure of this material is calcium carbonate (CaCO3), the 96% is aragonite 

and the rest is calcite. 

Even in this case, the ooids under analysis were previously cleaned and sieved, therefore 

the sand is poorly graded CU = 1.39 and the grain size distribution is tight, as shown in 

Figure 5.9. 

 

Figure 5.9: Grain Size Distribution of Caicos ooids (Andò, 2013) 

 

The triaxial experiments were performed at 100kPa and 300kPa confining pressure as 

well as Hostun, as shown in Table 5.2. 
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Confining Pressure Experiment name 

100 kPa 

COEA01 

COEA03 

COEA04 

300-400 kPa 
COEA02 (300 kPa) 

COCV02 (400 kPa) 

Table 5.2: Triaxial tests performed on Caicos sand by Andò (Andò, 2013) and Viggiani 

 

Unfortunately, the relative densities are not reported because the material was not sys-

tematically studied. However, specimen COEA01 seems having a higher relative density 

compared to the others, since it was prepared by pluviation from a different height. 

Three specimens were tested at 100kPa confining pressure because the response of the 

first two (COEA01 and COEA03) were quite different, therefore a third test was per-

formed (COEA04). The macroscopic response of the three tests is shown in Figure 5.10. 

 

Figure 5.10: Stress-strain responses of the triaxial tests on specimens COEA01, COEA03 and COEA04 

(Andò, 2013) 

 

The three specimens behave as a dense material, showing a peak state followed by sof-

tening. In particular, COEA01 presents a very high peak stress with respect to the others: 

the stress ratios are respectively 6.79 and 5.77. In addition, the axial strain corresponding 
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to the peak is higher for COEA01 than COEA03 and COEA04: 3.64% versus 3.4% short-

ening. It means the peak friction angles are respectively 48° and 44.8°. 

After the peak stress, specimens COEA01 and COEA04 reach the critical state at around 

11% shortening, confirmed by a dilatancy angle that goes to zero in both test. Specimen 

COEA03 seems more resistant in approaching the critical state, which indeed is not 

reached at the end of the test. The residual stress ratio is around 3.70 for the three speci-

mens.  

The volumetric response is quite similar for the three tests: the dilatancy angle at the 

peak is 20.4° for COEA01 and COEA04, whereas it is 19.3° in COEA03. 

The shear resistance for all the three specimens is relatively high for a rounded sand, 

especially for COEA01 that was though presenting a higher initial density. The variance 

in the responses can be due to the small size of the specimens that may induce large 

differences in the initial porosity and anisotropy, because of the small amount of grains 

involved in the experiment. However, carbonate sand are known to present high friction 

angles as reported by Coop (Coop, 1990). 

 

Regarding the specimens tested at higher confining pressures, although the confining 

pressure are not the same (COEA02 is tested at 300kPa whereas COCV02 at 400kPa), the 

macroscopic responses are plotted together in Figure 5.11. 

 

Figure 5.11: Stress-strain curves of the triaxial tests on specimens COEA02 and COCV02 (Andò, 2013) 
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Both specimens present an initial stiffer response in compare to the materials tested at 

lower confining pressure. Indeed, the stress peak is reached at around 5.2% shortening 

for COEA01 and 5.85% for COCV02. Therefore, the stress ratios (
σ1

σ3
) are respectively 5.97 

(φP = 44.5°) and 5.85 (φP = 45.1°).   

The critical state seems to be reached by both specimens after 11% shortening, although 

the critical stress ratio is different: 3.65 for COEA02 and 3.11 for COCV02. 

5.3.3 Ottawa sand 

Ottawa sand is a siliceous sand made up of quartz grains. Grains are less angular com-

pared to Hostun because of the anterior deposition process. The material studied is Ot-

tawa 50-70. The D50 is about 310μm and the PSD is narrow because the material was 

previously sieved. In particular, the coefficient of uniformity (Cu) and the coefficient of 

curvature (Cc) are respectively equal to 1.31 and 0.95.   

Four specimens have been tested in triaxial conditions by Andò (Andò, 2013), according 

to Table 5.3. The triaxial responses, respectively for 100kPa and 300kPa confinements, 

are showed in Figure 5.12 and Figure 5.13. 

 

Confining Pressure Experiment name 

100 kPa 
OUEA04 

OUEA06 

300 kPa 
OUEA02 

OUEA03 

Table 5.3: Triaxial tests performed on Ottawa sand by Andò (Andò, 2013) 
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Figure 5.12: Stress-strain curves of the triaxial tests on specimens OUEA04 and OUEA06 (Andò, 2013) 

 

 

Figure 5.13: Stress-strain curves of the triaxial tests on specimens OUEA02 and OUEA03 (Andò, 2013) 

 

The responses of OUEA04 and OUEA06 (100kPa - Figure 5.12) are very similar. The peak 

stress of about 550kPa (φP = 44°) is reached at around 4.5% shortening. A plateau stress 

ratio of 3.75 (φCS = 36°) is reached at around 13% axial shortening, although the critical 

state of OUEA04 has not been perfectly reached, since the dilatancy does not equals zero 

at the end of the test. The dilatancy angles at the peak are respectively 16.1° and 20.2° 

for OUEA04 and OUEA06. The sample OUEA06 presents a slightly more contractive 

volumetric behaviour compared to OUEA04. 
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Regarding the tests performed at 300kPa (OUEA02, OUEA03 - Figure 5.13), again the 

macroscopic response are similar, although OUEA02 presents a stiffer response before 

reaching the peak stress ratio of 5.2 (5.02 for OUEA03), that means respectively  φP =

42.6° and φP = 41.9°. The critical state has been reached for both samples, with a stress 

ratio of 3.7 and 3.5 respectively for OUEA02 and OUEA03, at around 11.6% shortening. 

The dilatancy angles at the peak are 16.1° and 17.1°. 

5.4 Image analysis procedure 

After performing the triaxial tests into the x-rays scanner of Laboratoire 3SR, and after 

having taken some radiographs (resulting in 3D tomographic images after reconstruction) 

at some established loading steps, it is possible to start analysing these images. 

The 3D tomographic images are simply stored as grey-scale images, in which the only 

variable (the greyscale of each pixel) represents the x-rays attenuation coefficient evalu-

ated all over the specimen, as evident in Figure 5.8, showing an horizontal slice and a 

radiograph of a single grain. 

However, such a grey-scale assembly of pixels (or voxels in 3D) makes impossible to 

study single grains. The eyes can do what a computer cannot: distinguish one grain from 

the others and from the void phase. It is possible to numerically extract single grains 

from the 3D images only if individual particles are previously defined. Subsequently, 

some geometrical properties can be calculated (as it will be detailed in Chapter 6.2, e.g. 

volume, surface area, inertia tensor). 

 

This section shortly details how an image can be processed in order to define individual 

grains from a 3D grey-scale image coming from tomography. It consists in three steps: 

Binarisation, separation (or segmentation) and labelling. 

 

 Binarisation is the process in which the solid phase is separated by the void phase. 

It creates a binary image in which all the voxels representing the solid phase are 

labelled with one single value (i.e., 1 = white) as well as the “void” voxels (i.e., 0 
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= black). The choice of a threshold value is very important in order to separate 

the two phases of the image with satisfying accuracy. In particular, the threshold 

was determined from a physical measurement: the volume of the solid phase can 

be easily measured from the real specimen if the grains densities are known. 

Therefore, the threshold was chosen so that it includes the number of voxels cor-

responding to the measured solid volume. 

 Separation (or segmentation) is the process applied to the black-and-white images 

coming from binarisation in order to separate the single interconnected solid 

phase into individual grains. This is a crucial procedure for all the next studies 

on grain shape, since it determines the final geometry of each particle. 

This work was carried out by the watershed algorithm implemented in Visilog® 

(Bernard et al., 2011). The final goal of the watershed is to assign a marker for 

each individual grain that at this stage still belong to a unique solid skeleton. This 

is achieved by computing a Euclidean Distance Map to find the local maxima at 

which the markers are placed. The result of the segmentation process is always a 

binarised image, but where the individual particles are separated, storing a 

marker, and can be individually extracted from the whole numerical specimen. 

The separation algorithm may fail under some circumstances because of the huge 

amount of grains and the variety of sizes and shapes. In particular, if two markers 

are placed in one single grain, there is an “over-segmentation” error. An “under-

segmentation” error occurs if one single marker is assigned to multiple grains. 

These errors cannot be avoid completely, but only few grains were affected as 

reported in (Andò, 2013). Other separation algorithms exist in literature, for ex-

ample the “inter-pixel” (i.e., the separated grains can touch) watershed algorithm 

implemented in the external open-source Python package SPAM (Andò et al., 

2017) or the adaptive watershed algorithm recently proposed by Kong & Fonseca 

(Kong and Fonseca, 2018). 

 Labelling is the last procedure which is applied to the 3D images coming from the 

separation process. It consists in assigning a unique value to all the voxels be-

longing to an individual particle. In other words, it assigns a “name” (a positive 
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integer assigned in ascending order starting from one) to each grain contained in 

the 3D image. 

 

Figure 5.14 summarises the three described procedures as flow chart. 

 

Figure 5.14: Flow chart showing how to go from a greyscale image to a labelled image in which individual 

particles can be extracted (Andò, 2013) 

 

Figure 5.15 illustrates the information contained into a labelled image. The pixels (it is a 

slice) representing the void phase have value 0, whereas the pixels making up single 

particles (i.e., 1, 2 and 3 in the figure) have value equal to the “grain name”: a positive 

integer number. 

1 1 1 1 0 0 0 2 2 2 

1 1 1 1 1 0 2 2 2 2 

1 1 1 1 1 0 2 2 2 2 

1 1 1 0 0 0 0 0 2 2 

1 1 1 0 3 3 3 0 0 2 

1 1 0 0 3 3 3 3 0 0 

0 0 0 3 3 3 3 3 3 0 

0 0 3 3 3 3 3 3 3 3 

Figure 5.15: Matrix representation of the pixels of a labelled image’s slice 

5.5 Summary 

This Chapter aimed at giving some basis about the use of x-rays tomography to study 

granular materials, as widely described by Edward Andò in his PhD dissertation (Andò, 

2013). The main concepts can be summarized as follows: 
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 The tomographic equipment of 3SR Laboratory (Grenoble) allows scanning (with 

time) entire deforming cylindrical sand samples of small size (22 mm height and 

11 mm diameter); 

 A triaxial test campaign (scanned with x-rays) has been carried out by Andò 

(Andò, 2013) on three different sands, ranging from rounded to very angular 

(Caicos ooids, Ottawa sand, Hostun sand); 

 The triaxial responses of the three materials are different, although prepared with 

the same procedure, achieving similar initial porosities, and tested at the same 

confining pressures, because of particle shape; 

 An image analysis procedure (in order, binarisation, segmentation and labelling) 

allows extracting single particles from the entire 3D raw images coming from x-

rays; 

 Individual grains are now ready to be studied in three-dimensions. 
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        Shape analysis of 

Sand Particles 

_______________________________________________ 

 

6.1 Introduction 

The objective of this chapter is to explain how the shape of a particle was established 

starting from the 3-D labelled images coming from the image analysis procedures de-

scribed in Chapter 5.4. 

Every grain is composed by an assembly of voxels (a “tri-dimensional pixel”) that can 

be numerically studied in order to get some properties (i.e., volume, surface area, inertia 

tensor, etc., in section 6.2) which are used to quantify shape parameters (i.e., sphericity, 

elongation, convexity, etc., in section 6.3). 

 

Not all the specimens mentioned in Chapter 5 are considered. In particular, two speci-

mens were initially selected for detailed morphological study: HNEA01 and COEA04. 

Results obtained from examination of these two specimens constitute the backbone of 

this chapter. However, at a later stage in the project, motivated by the numerical model-

ling described in Chapter 8, data from the Ottawa sand specimen OUEA02 was also ex-

amined. For completeness, relevant results from this sand specimen are also presented 

hereafter, where available. 

 

 

The HNEA01 and COEA04 specimens were tested in triaxial conditions at 100kPa con-

fining pressure, and the macro-mechanical responses of the two materials are reported 



112 

in Figure 5.5 and Figure 5.10.  A direct comparison of the responses is illustrated in Fig-

ure 6.1, as well as the loading steps at which the x-rays scans are performed. 

 

Figure 6.1: Macro-mechanical responses of HNEA01 and COEA04 with associated loading steps 

 

It is interesting to note that the peak stress ratio of Caicos ooids is greater than Hostun 

sand. Chapter 5.3.2 detailed the experiments performed on Caicos sand, and all the spec-

imens (tested at different confining pressure) exhibited high resistance, despite consid-

erable variation due to initial anisotropy of the small sample. A large inter-particle fric-

tion may be a reason that can explain such high resistance. 

 

The labelled images studied in this Chapter are referred to the first loading steps of both 

specimens, at the end of the consolidation phase at which the stress state is isotropic. 

These imaged are named “HNEA01-01” and “COEA04-01”, following the convention 

described in Chapter 5.3.1, and have size (in pixels) respectively 960 × 960 × 1750 and 950 

× 950 × 1600. 

In addition, before being analysed, the images are slightly modified in order to enhance 

the efficiency of the algorithms described below. In particular, some filters (based on the 

particles barycentre positions, see Table 6.1) were applied in order to remove the loading 
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platens (which are erroneously labelled as particles), as well as particles excessively close 

to the loading platens, as shown in Figure 6.2. 

  

Figure 6.2: Vertical slices of HNEA01. On the left, the original labelled image. On the right, after the filter 

is applied 

 

Moreover, another filter was applied on the particle volume (see Table 6.1). Only grains 

having volume greater than 50 voxels (0.00019 mm3) (see Chapter 6.2.1) are included in 

the new 3D filtered image. This is done to exclude very small grains (some particles are 

composed by 1 single voxel) from the calculations: a numerical analysis such as de-

scribed in Chapter 6.2 is impossible or misleading if applied to such particles. Table 6.1 

lists the filters applied to the 3D labelled images representing the specimens, as well as 

the number of grains contained before and after the application of the filters. 

 Hostun sand Caicos ooids 

Number of grains before filters 

(original labelled image size: x-y-z) 

54.889 

960 × 960 × 1750 

72.680 

950 × 950 × 1600 

Filters applied 
volume < 50 vox 

150 px < z < 1600 px 

volume < 50 vox 

50 px < z < 1550 px 

Number of grains after filters 48.612 65.056 

Table 6.1: Description of the filters applied to the original labelled images 
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The following Chapters use the filtered labelled images as reference, therefore every par-

ticle that will be mention and studied is extracted from these filtered labelled images. 

Figure 6.3 shows the top of the 3-D reconstructed numerical filtered specimen COEA04 

visualised on Paraview. From a similar visualisation, it is easier to appreciate the reso-

lution of the images used in this work, in which each grain can be clearly distinguished 

by the others. 

 

Figure 6.3: 3D representation of the specimen COEA04 

6.2 Numerical quantification of particle geometry  

Particle images have been numerically analysed using dedicated scripts written in Py-

thon programming language and its related scientific packages: Numpy (Oliphant, 2006) 

and Scipy (Jones et al., 2001). The main advantage of the Python language is its open-

source philosophy; every researcher can run a script in every computer without compat-

ibility problems. Moreover, many open-source external packages (i.e., for image analy-

sis) exist and can be easily downloaded and installed. Every algorithm of every external 

packages can be accessed and explored in order to understand the implementation and 

modify it in case of need. 

The shape properties are calculated starting from the 3D labelled image representing the 

whole sand specimens, as shown in Chapter 5.4. 

To give an idea about the efficiency of each algorithm used, the calculation time for one 

selected grain is indicated in each of the following sections. The reference grain is the 
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number “46972”, it has been extracted from the labelled image representing the Hostun 

specimen at the beginning of the triaxial test (HNEA01-01). It is one of the most compu-

tationally expensive grains, giving the fact that its volume is larger than the 92% of all 

the grains contained within the specimen. The calculations were carried out on an Intel 

Core i7-6820HQ CPU 16GB RAM laptop, with Linux O.S. 

A python function allows extracting a single grain (or rather, a single assembly of voxels) 

from the specimen and studying it. This step is by far the most computationally expen-

sive, because the selected grain must be searched within the entire 3-D volume, com-

posed by more than one billion voxels. The computational time requested by this oper-

ation for the example case was 3.7068 seconds, which means 84.1% of the total calcula-

tion time for this grain. 

In the following, a detailed description of each grain property is presented, as well as 

the technique used to calculate it. For validation purposes, some algorithms are tested 

on artificial 3-D images representing fictitious grains with perfect spherical (or spheroi-

dal) shape, so that the numerical results can be compared with the analytical solutions. 

The general flow diagram of the operations is presented in Figure 6.4. 

 

Figure 6.4: Flow diagram of image treatment operations (Rorato et al., 2019) 
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6.2.1 Volume and centre of mass 

The volume of a grain is the easiest property to get from a labelled 3-D image: it is equal 

to the sum of all the voxels making up the grain. Doing so, the volume is expressed as 

number of voxels but, since the scans resolution is known, it is possible to convert it in 

[mm3]. The reference grain labelled as “46972” from HNEA01-01 has 13860 voxels, which 

means 0.052 mm3, given the scan resolution of 15.56 μm per pixel size. 

 

The grain centre of mass is calculated making use of the Scipy function called 

“scipy.ndimage.measurements.center_of_mass”. Since all the voxels are considered having 

the same unitary mass and the voxels absolute coordinates are known, the coordinates 

of the grain’s centre of mass are given as vector addition of the position vectors which 

point to the same global reference origin of the whole 3-D image containing all the grains. 

The computational time requested by these two operations on the reference grain was 

only 0.0027 seconds, which means 0.1% of the total calculation time for this grain. 

6.2.2 Volume – Particle Size Distribution 

If the particle volume is known, it is straightforward to calculate the Volume Size Distri-

bution (VSD) of the numerical specimen, and also a first attempt to get the Particle Size 

Distribution (PSD) can be done. In particular, the diameter of the equivalent sphere (hav-

ing the same number of voxels as the particle) can be obtained, hence the PSD can be 

calculated and compared to the GSDs of the physical specimens HNEA01 and COEA04, 

shown in Figure 5.4 and Figure 5.9. 

The volume size distribution of HNEA01 is shown in Figure 6.5. The x-axis represents 

the particle’s volume (expressed in mm3 after conversion from the number of voxels), 

whereas the y-axis represents the percentage of grains passing a certain value. Two 

curves are plotted in Figure 6.5: the VSD of specimen HNEA01 at the beginning of the 

deviatoric phase (HNEA01-01) and at the critical state (HNEA01-16). It is clear that the 
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curves are very close to each other, therefore it is possible to claim that grain crushing is 

not significant during the experiment, as expected. 

Figure 6.6 shows the grains volume histogram of HNEA01 at the loading step “01”, 

which is expected to be equal to step “16”. The mean volume is equal to 0.027 mm3 and 

the median is 0.022 mm3. 

 

Figure 6.5: VSD of HNEA01 at the beginning and the end of the (scanned) triaxial test 

  

Figure 6.6: Histogram of the particles volume in specimen HNEA01 

 

The same considerations can be done for Caicos sand. Figure 6.7 shows the VSD of the 

specimen COEA04 at the beginning (step “01”) and at the end (step “11”) of the triaxial 

test. The curves coincide perfectly, therefore grain crushing did not occur at all in this 

case. The histogram of the volumes is illustrated in Figure 6.8, the mean volume is 0.025 

mm3 and the median is 0.021 mm3. 
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Figure 6.9 shows the comparison between Hostun sand (HNEA01) and Caicos ooids 

(COEA01 and COEA04) calculated at the loading step “01”. 

 

Figure 6.7: VSD of COEA04 at the beginning and the end of the (scanned) triaxial test 

 

Figure 6.8: Histogram of the particles volumes in specimen COEA01 and COEA04 

 

Figure 6.9: Comparison between the GSDs of HNEA01 and COEA04 during isotropic compression 
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(step “01”) 

 

In the next plots, the grains volumes have been substituted with the equivalent grain di-

ameter (the diameter of the sphere having the same volume as the grain), in order to 

compare the numerical GSDs with the experimental ones, presented in Chapter 5.3. 

Regarding Hostun sand (Figure 6.10) the numerical GSDs fit well with the experimental 

one measured by the manufacturer “Sibleco France”. Moreover, the equivalent diame-

ters seem extracted from a normal distribution (Figure 6.11) having mean equal to 0.356 

mm and median (D50) 0.350 mm, which is very close to the value indicated by the man-

ufacturer: 0.338 mm.   

Regarding Caicos ooids (Figure 6.12 and Figure 6.13), the same considerations can be 

done. The numerical GSDs are compared with the experiments performed by Exxon and 

Laboratoire 3SR: the curves are similar, however there is a slight difference given by the 

fact that the numerical GSDs are calculated with a continuous approach, whereas the 

experimental GSDs are obtained from sieve analysis, hence presenting steps. In addition, 

it worth to point out that the x-axis of Figure 6.12 only ranges from 0.0 mm to  0.7 mm, 

and is drawn in linear scale, unlike typical GSD in log-scale, thus emphasizing the gaps. 

In conclusion, the comparison between the numerical GSDs of Hostun sand and Caicos 

ooids at the first loading step “01” is shown in Figure 6.14. 

 

Figure 6.10: GSDs of HNEA01 compared to the GSD measured by the manufacturer 
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Figure 6.11: Histogram of the equivalent diameter in the specimen HNEA01  

 

Figure 6.12: GSDs of COEA04 compared to the GSD measured by Exxon and Laboratoire 3SR 

 

Figure 6.13: Histogram of the equivalent diameter in the specimen COEA04 
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Figure 6.14: Comparison between the GSDs of HNEA01 and COEA04 

6.2.3 Surface Area 

Accuracy of particle surface area measurement is important, since it is used in many 

shape descriptors, as detailed in Chapter 2.2. There are different ways to calculate the 

surface area of a particle. One approach is to sum up all the external faces of the external 

voxels making up the particle. This solution is conceptually easy and computationally 

convenient but results in large overestimations of the actual grain surface area. Some 

codes (i.e., Visilog® (Bernard et al., 2011)) apply a reducing coefficient calculated based 

on the configuration to every external voxel face. No more details are given in the refer-

ence guide of this commercial software about how those coefficients are computed. 

In this work, the “Marching Cubes (MC) algorithm” (Lorensen and Cline, 1987) is used to 

create a surface mesh composed of n triangular elements whose n-areas can be sum up 

in order to get the surface area. The Marching cubes algorithm takes as input a three-

dimensional array, representing a single particle. An initial surface is defined for all 

points where the scalar field (i.e., the grey-scale value) is equal to a certain value. Then, 

the whole space is divided into a grid of little cubes and the intersection of each cube 

with the surface is studied. The corners of each cube can be either inside or outside the 

mentioned surface, therefore a Boolean value is assigned to them. For 8 corner points, 

there are 28 possible configurations. If all the corners are entirely inside or outside the 
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space, it means the surface is not intersected and therefore there is nothing to do. How-

ever, if some corners are inside and some others are outside, it means the initial surface 

is intersected and therefore it is necessary to position the mesh vertex by determining 

the intersection configuration, in order to find the exact intersection point. This step is 

usually done by linearly interpolating the two scalar values that are connected by that 

edge. A detailed explanation of the algorithm can be found in the original paper pub-

lished in 1987 by Lorensen and Cline (Lorensen and Cline, 1987). 

In this study, before applying the MC-algorithm, a Gaussian filter is applied to the par-

ticles, in order to smooth its external surface, as exemplified in Figure 6.15. 

 

 

 

 

Figure 6.15: Visualisation of the Gaussian filter applied to grain number 46972 

 

The external surface of the binarised grain on the top of Figure 6.15 is very irregular 

because of its pixels and the MC-algorithm cannot provide a good mesh. The Gaussian 

filter origins a wide range of grey-scale values on the surface, ranging from 1 (the grain, 

in white) to 0 (the void phase, in black), as shown in the bottom of Figure 6.15. A smooth 

surface between the solid and void phases is obtained as the iso-surface which connects 

all the voxels having a grey-scale value of 0.5 (exactly between the grain and the void 

1 

1 

1 

0 

0 

0 

0 

Iso-surface 0.5 

1 
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phase). The Marching Cubes algorithm can now be applied on the iso-surface, coloured 

in green in Figure 6.15. The resulting Marching Cubes mesh of grain number 46972 is 

represented in Figure 6.16. 

 

Figure 6.16: Mesh of grain 46972 from Marching Cubes algorithm 

 

Finally, once the mesh is created, it is possible to sum up the area of all the triangles 

composing the mesh.  

This procedure has been carried out using an external package for Python, called “scikit-

image”. In particular, the function “skimage.measure.marching_cubes” provides the list of 

vertices and faces of the final mesh. The final surface area of the example particle 

is 3757.10 px2.  

The result coming from the Marching Cubes algorithm and its related surface area are 

compared to the result of a commercial software (Visilog®), that uses a completely dif-

ferent algorithm as already mentioned. The surface area of grain 46972 computed with 

Visilog® is equal to 3854.16 px2, higher by 2.6%. 

The MC-algorithm was tested on a sphere to compare the numerical and the analytical 

results. A binarised sphere with volume equal to 
4

3
π(25)3 voxels was artificially built 

(Figure 6.17), the surface of this sphere is intentionally “rough” (i.e., voxelated), as the 

labelled grains of the images. The same procedure used for grains was applied to this 

sphere: firstly, the Gaussian filter (Figure 6.17 on the right), secondly, the MC-algorithm 

(Figure 6.18) and finally the surface area was calculated.  
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Figure 6.17: On the left, slice of the initial binarised sphere. On the right, the same sphere after the Gaussian 

filter is applied 

 

Figure 6.18: Surface mesh visualisation after application of the MC-algorithm 

 

The surface area (analytical solution) of a sphere having radius equal to 25 pixels 

is 7853.98 px2, whereas the surface area of the equivalent numerical sphere from the 

MC-algorithm is 7815.38 px2, therefore the difference is only 0.49%. Discrepancies of 

similar magnitude were measured for an ellipsoid having axis a, b, and c respectively 

equal to 50, 50 and 25 pixels. 

The computational time requested by this operation is relatively low: 0.0845 seconds, 

which means 1.9% of the total calculation time for this grain. 

6.2.4 Inertia Tensor 

The Inertia tensor quantifies the tendency of a body to rotate in the space around a given 

axis of rotation, it contains the information about its mass spatial distribution. In a three-

dimensional framework it is a 3 × 3 matrix that can be expressed as: 
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I = [

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

] (6.1) 

Where Ixx, Iyy, Izz are called the moments of inertia along respectively x, y and z axis. The 

other terms are called the products of inertia. It is important to point out that the inertia 

tensor is symmetric, therefore Iij = Iji. 

The inertia tensor can be re-written in a computationally efficient form as: 

I =∑mn

n

[(xn ∙ xn)I3-(xn ∙ xn
T)] 

(6.2) 

Where xn is the position vector of the point “n” having mass mn, and I3 is the identity 

matrix. 

The labelled grains of the 3-D images are assumed homogeneous in terms of density ρ, 

therefore the inertia tensor for a single particle only depends on the spatial distribution 

(and amount, V) of the voxels making up the grain, and not on mn. 

I = ρ[(xn ∙ xn)I3-(xn ∙ xn
T)] ∙ V 

Once the inertia tensor is known, it can be diagonalised in order to get the principal axes 

of inertia and the principal moments of inertia. These axes provide a unique coordinate ori-

entation for which Ixy = Ixz = Iyz = 0. This is an eigenvalue problem that can be easily 

numerically solved by the numpy function “numpy.linalg.eig”, the resulting eigenvalues 

(I1, I2, I3) are the principal moments of inertia, whereas the resulting eigenvectors are the 

principal directions of inertia (w1, w2, w3). 

The inertia tensor of grain 46972 (all quantities are expressed in px4) is: 

I = [
2542149 198137 44756
198137 1062625 33326
44756 33326 1980036

]  

The inertia tensor eigenvectors (principal directions of inertia) are: 

w1 = [ 0.9879  0.1315  0.0821]
w2 = [-0.0851 0.0179 0.9962]

w3 = [0.1295 -0.9912 0.0288]
  

The inertia tensor eigenvalues (principal moments of inertia) are: 

I11 = 2572235.56 px
4

I22 = 1976809.18 px
4

I33 = 1035765.26 px
4
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The validation of the inertia tensor calculated in Python has been done by comparing 

the analytical and numerical results for a spheroidal shaped particle. 

For a spheroid with the z-axis along the axis of symmetry, characterised by the equatorial 

radius (a) equal to 50 and the polar radius (c) equal to 25, the inertia tensor is given by: 

I =
1

5
[
a2 + c2 0 0
0 a2 + c2 0
0 0 2a2

] = [

625px4 0 0

0 625px4 0

0 0 1000px4
] (6.3) 

An artificial, binarised oblate spheroid (a > c) has been created, implementing its equation 

with a python code, for comparison with the analytical solution. The lengths a and c are 

respectively set equal to 50 and 25 pixels. Figure 6.19 shows the voxelated spheroid and 

the principal axis of inertia centred in the particle’s centre of mass, the colours of the ar-

rows, as well as their length, represent the magnitude of the principal moment of inertia. 

 

Figure 6.19: Paraview representation of the artificial spheroid with its principal inertia axis 

 

As shown in Figure 6.19, the principal directions are properly individuated by the nu-

merical algorithm. Moreover, the ratio between the eigenvalues of the inertia tensor is 

practically identical to the analytical result: 

(
I1
I3
)
numerical

=
7381514.568px4

4610245.433px4
= 1.601 ≅ 1.600 =

1000

625
= (

I1
I3
)
analytical

 (6.4) 

The computational time requested by this operation is 0.3977 seconds, which means 9.0% 

of the total calculation time for this grain: it is the second most expensive operation. 



127 

6.2.5 Particle characteristic lengths 

The calculation of characteristic lengths for a grain poses several problems. Firstly, it is 

necessary to define in a three-dimensional framework what are those characteristic 

lengths. For instance, one possibility is to use the Feret diameters, as defined in Chapter 

2.2.1.1. The maximum and minimum Feret diameters can be obtained from 2-D projections 

of a 3-D body, otherwise they can be directly measured on the 3D object, by rotating two 

parallel tangents to the grain of a 4π steradians solid angle. However, Feret diameters 

are not the length measures used in the most relevant particle shape descriptors.  

In this work, the characteristic lengths are defined as three perpendicular dimensions 

called respectively the maximum, the intermediate and the minimum grain lengths. Many 

researchers (Alshibli et al., 2015; Druckrey et al., 2016; Fonseca et al., 2012; Kong and 

Fonseca, 2018; Zhao and Wang, 2016) obtained these three dimensions making use of a 

statistical procedure called Principal Component Analysis (PCA). Principal component 

analysis is a procedure for identifying a smaller number of uncorrelated variables, called 

“principal components”, from a large set of data. They are obtained from the eigendecom-

position of the variance-covariance matrix C of the initial dataset. 

In the context of particles lengths, the variables (for each grain voxel) are three, and the 

ranges of the dataset (after reference frame rotation) along the three different principal 

components (pc1, pc2, pc3) give respectively the maximum, intermediate and minimum 

lengths of the particle. 

In this current work, we obtained the orientations of the particles from the eigenvectors 

of the inertia tensor (i.e., the principal directions of inertia), following the procedure ex-

plained in the previous section. The two approaches to obtain the grains lengths (PCA 

and inertia tensor) are equivalent. Indeed the inertia tensor reported in Eq. (6.2)  can be 

rewritten as: 

I =∑mn ∙

n

[(xn ∙ xn)I3-(xn ∙ xn
T)] =∑mn ∙ (xn ∙ xn)I3-

n

∑mn ∙ xn ∙ xn
T =

n

= I3 ∙ tr(C)-C 

(6.5) 



128 

where C is the mass-weighted variance-covariance matrix defined as 

C =∑mnxn ∙ xn
T

n

 
(6.6) 

The variance-covariance matrix C is symmetric, and therefore it can be diagonalised (ob-

taining the matrix D) by the matrix R (i.e., the rotation matrix), as 

C = RDR-1 = RDRT . (6.7) 

It is now possible to rewrite the inertia tensor I as: 

I = I3 ∙ tr(C)-C = RR
T ∙ tr(C)-RDRT = R[tr(C)I3-D]R

T (6.8) 

and since the matrix [tr(C)I3-D] is diagonal, it follows both the I and C are diagonalised 

by the same rotation matrix R. Therefore the eigenvectors, which are the body orienta-

tion in space, are the same for both approaches: PCA and inertia tensor. This has also 

been verified numerically, comparing both techniques in the validation that follows, ob-

taining exactly the same results.  

The validation of the numerical algorithm has been done with the same oblate spheroid 

used for the validation of the inertia tensor. The only difference from the previous is that 

the spheroid is progressively rotated around one axis in order to test the ability of the 

algorithm to capture the exact spheroid diameters when its special orientation varies. 

Seven different orientations are tested: 0, 15, 30, 45, 60, 75 and 90 degrees of rotation 

around the z-axis, the spheroid lengths never differ more than 2% from the actual radius 

of the analytical spheroid. 

For grain 46972 the gran lengths (L1, L2, L3) are listed below, as well as their visual rep-

resentation in Figure 6.20. 

L1 = 50.75 px
L2 = 38.04 px
L3 = 18.96 px
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Figure 6.20: Longest (a), intermediate (b) and shortest (c) lengths of grain 46972. 

 

The three arrows representing the grain lengths are perpendicular, as expected. They are 

drawn passing through the grain’s centre of mass, however the dimensions calculated 

numerically do not intersect inevitably from this point: this is why the arrows’ ends can 

fall outside the grain’s surface. 

The computational time requested by this operation is 0.0040 seconds, which means only 

0.1% of the total calculation time for this grain. 

6.2.6 Convex hull 

The convex hull is defined as the minimal convex polytope (generalised polyhedron) 

covering of a 3-D object. 

The calculation of the convex hull is carried out by the scipy function “scipy.spatial.Con-

vexHull”. It takes as input an array of points (the voxels coordinates) to construct the 

convex hull from. 

Then, the embedded functions “hull.volume” and “hull.area” allow calculating the vol-

ume surrounded by the convex hull and its surface area. 

The computational time requested by this operation is 0.0075 seconds, which means 0.2% 

of the total calculation time for this grain. 

6.2.7 Maximum inscribed sphere 

The maximum inscribed sphere is obtained by calculating the Euclidean distance transform 

(also called distance map) on the 3-D array representing the labelled grain (the assembly 
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of voxels). In particular, the scalar value into each cell of the array (a Boolean value i.e., 

“1” if the grain, “0” if the void) is substituted with the value of the Euclidean distance 

measured from the cell itself to the grain boundary, individuated by the Boolean value 

“0”.  As a result, the maximum distance into this transformed array represents the radius 

of the maximum inscribed sphere, whereas the position of this voxel represents the co-

ordinates of the sphere`s centre. 

The transformed array has been calculated in Python by the scipy function 

“scipy.ndimage.morphology.distance_transform_edt” giving as input the binarised grain. 

For grain 46972 the maximum inscribed sphere radius is equal to 8.60 pixels. Note that 

the diameter is relatively close to the shortest characteristic grain length (L3) previously 

calculated. 

The computational time requested by this operation is 0.0942 seconds, which means 2.1% 

of the total calculation time for this grain. 

6.2.8 Minimum circumscribed sphere 

The minimum circumscribed sphere (also called bounding sphere) can be obtained by 

means of different algorithms characterised by a different efficiency and precision. The 

implementation chosen in this work is the Ritter’s algorithm (Ritter, 1990). It is computa-

tionally efficient, although it can slightly overestimate the bounding sphere’s radius. 

Given a list of points (i.e., the grain voxels), the algorithm works as follows: 

1. Pick a point x from the list of points and search the point y having the maximum 

distance from x. 

2. Search another point z having the maximum distance from y. The midpoint be-

tween y and z is the centre of the first trial sphere, and the distance between the 

two points is the diameter. 

3. If all the points of the initial list are contained within the trial sphere, this is the 

bounding sphere. Otherwise, let p be a point outside the trial sphere, construct a 

new trial sphere including the point p and the old trial sphere. Repeat this proce-

dure until all points are covered in order to get the bounding sphere. 
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Making use of the Ritter’s algorithm on grain 46972, it is possible to obtain the radius of 

the minimum circumscribed sphere, equal to 26.32 pixels. 

The computational time requested by this operation is 0.1083 seconds, which means 2.5% 

of the total calculation time for this grain. 

 

The total computational time for calculating the geometric properties for all the grains 

within each specimen is around 40 hours on an Intel Xeon CPU E5-1620 3.5GHz with 

48GB RAM. Nevertheless, it is a calculation that needs to be done only once for each 

specimen. 

6.3 Numerical quantification of the particles shape descriptors 

After evaluating the particles geometric properties particle shape descriptors (explained 

in Chapter 2) were evaluated. Not all the shape descriptors mentioned in Chapter 2 were 

computed. The selected shape descriptors for the study that follows are focused on sphe-

ricity and are listed below. 

 Degree of true sphericity, Eq. (2.5) 

 Flatness index, Eq. (2.8) 

 Elongation index, Eq. (2.9) 

 Intercept sphericity, Eq. (2.7) 

 Operational sphericity, Eq. (2.6) 

 Convexity, Eq. (2.17) 

 Alshibli sphericity, Eq. (2.14) 

 

The table below lists the mentioned shape descriptors calculated for grain 46972. 

Shape descriptor Equation Value 

Degree of true sphericity, Ψ 
sn
S

 0.7427 

Flatness index, FI c/b 0.4982 

Elongation index, EI b/a 0.7496 
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Shape descriptor Equation Value 

Intercept sphericity, Ψint  
2

33
2

bc
FI EI

a
  0.6542 

Operational sphericity, Ψop √
V

VCS

3

 0.5661 

Convexity, Co V/V CH 0.8274 

Alshibli Sphericity, Ψal 
V

Vd=c
 3.8868 

Table 6.2: Shape descriptors for grain 46972 [V, S = volume and surface area of the grain. sn = surface area 

of the equivalent sphere. VCS, Dcirc,min = volume and diameter of the minimum circumscribed sphere. Dins,max 

= diameter of the maximum inscribed sphere. a, b, c = grain lengths. VCH = volume of the convex hull] 

 

These shape descriptors were calculated for all the grain contained within both the spec-

imens of Caicos, Hostun and Ottawa sands. Therefore, it is possible to plot the histo-

grams of the sands on the same graph and calculate some statistical values, as reported 

below. The statistical data of the Ottawa sand sample OUEA02 are also reported in Table 

6.3. 

Name 

Mean 

Hostun 

Caicos 

Ottawa 

St. Dev. 

Hostun 

Caicos 

Ottawa 

Skew 

Hostun 

Caicos 

Ottawa 

CV 

Hostun 

Caicos 

Ottawa 

Volume (mm3) 

0.027 

0.025 

0.014 

0.017 

0.017 

0.005 

1.53 

2.31 

3.21 

0.63 

0.68 

0.39 

True Sphericity 

0.82 

0.94 

0.88 

0.06 

0.04 

0.05 

-0.75 

-1.89 

-1.55 

0.07 

0.04 

0.06 

Flatness index 

0.73 

0.85 

0.78 

0.14 

0.09 

0.11 

-0.22 

-0.65 

-0.24 

0.19 

0.11 

0.14 

Elongation index 

0.76 

0.80 

0.79 

0.12 

0.11 

0.11 

-0.24 

-0.65 

-0.28 

0.16 

0.14 

0.14 

Intercept sphericity 0.74 0.09 -0.18 0.12 
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Name 

Mean 

Hostun 

Caicos 

Ottawa 

St. Dev. 

Hostun 

Caicos 

Ottawa 

Skew 

Hostun 

Caicos 

Ottawa 

CV 

Hostun 

Caicos 

Ottawa 

0.81 

0.779 

0.08 

0.07 

-0.64 

-0.21 

0.10 

0.09 

Operational Sphericity 

0.58 

0.71 

0.64 

0.07 

0.09 

0.06 

-0.09 

-0.45 

-0.31 

0.12 

0.13 

0.10 

Convexity 

0.79 

0.92 

0.84 

0.08 

0.06 

0.07 

-1.00 

-2.10 

-1.88 

0.10 

0.06 

0.09 

Alshibli Sphericity 

2.08 

0.75 

1.90 

1.05 

0.09 

0.69  

2.34 

-0.18 

1.62 

0.51 

0.12 

0.36 

Table 6.3: Statistics of the 3D shape descriptors for the three sands at the initial state 

 

For instance, the normalised histogram of the “degree of true sphericity (ψ)” is reported in 

Figure 6.21. As expected, it is clear from the plot that the mean value of Caicos sand 

sphericity (0.9426) is higher than the value of Hostun sand (0.8184). Moreover, the histo-

gram of Caicos is more asymmetric and presents a lower variance, whereas the Hostun 

histogram seems representing a normal distribution. The true sphericity of Ottawa sand 

(specimen OUEA02) is located between the histograms of Caicos and Hostun sands 

(mean = 0.88), as expected. 
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Figure 6.21: Normalised histogram of the “degree of true sphericity” for the three sands 

 

In addition, the meshed surface of four selected grains characterised by the lowest and 

highest degree of true sphericity (ψ) for both, Caicos ooids and Hostun sand, are plotted in 

Figure 6.22. 

 Minimum  ψ Maximum ψ 

Hostun  

Grain “38536” : ψ = 0.5075 

 

Grain “25161” : ψ = 0.9753 

 

Caicos 

Grain “1536” : ψ = 0.5667 

 

Grain “5866” : ψ = 0.9998 

 

Figure 6.22: Meshed surfaces of the grains having extreme values of Sphericity (ψ) 

 

The grains characterised by the minimum ψ are errors coming from the segmentation 

post-processing in image analysis (described in Chapter 5.4) in particular, probably they 
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are multiple grains which have not been separated (this error is called under-segmenta-

tion). However, it is evident how the numerical algorithms are able to capture the desired 

quantity (sphericity) as they are intended for, with satisfying quality. 

 

The same approach can be done with all the others shape parameters, for example the 

normalised histograms of the flatness and elongation index are presented in Figure 6.23 

and Figure 6.24. In addition, the meshed surfaces of the grains having the maximum and 

minim value of the flatness/elongation indices are plotted in Figure 6.25 and Figure 6.26. 

 

Figure 6.23: Histograms of the flatness index for HNEA01 and COEA04 

 

Figure 6.24: Histograms of the elongation index for HNEA01 and COEA04 
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 Minimum  flatness index (FI) Maximum flatness index (FI) 

Hostun  

Grain “48612” : FI = 0.2551 

(“coin” shaped) 

 

Grain “37522” : FI = 0.9999 

(L3 ≅ L2) 

 

Caicos 

Grain “50892” : FI = 0.3597 

(“coin” shaped) 

 

Grain “15119” : FI = 0.9999 

(L3 ≅ L2) 

 

Figure 6.25: Meshed surfaces of the grains having extreme values of Flatness indices 

 

 Minimum  elongation index (EI) Maximum elongation index (EI) 

Hostun  

Grain “223” : EI = 0.2993 

(“stick” shaped) 

 

Grain “5544” : EI = 0.9999 

(L1 ≅ L2) 

 

Caicos 

Grain “10338” : EI = 0.1716 

(“stick” shaped) 

 

Grain “4909” : EI = 0.9999 

(L1 ≅ L2) 

 

Figure 6.26: Meshed surfaces of the grains having extreme values of Elongation indices 

 

Convexity is defined as the ratio between the particle volume and the volume of the con-

vex hull bounding the particle itself. The meshed surface of four selected grains charac-

terised by the lowest and highest values of convexity, are plotted in Figure 6.27. 
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 Minimum  3D-Convexity Maximum 3D-Convexity 

Hostun  

Grain “21805” : S-3D = 0.2129 

 

Grain “34437” : S-3D =0.9999 

 

Caicos 

Grain “2690” : S-3D = 0.2692 

 

Grain “11130” : S-3D = 0.9999 

 

Figure 6.27: Meshed surfaces of the grains having extreme values of 3D-Convexity 

 

It is important to note that the grains having a high value of convexity are not necessarily 

spherical, but rather that their surface is “convex”, without asperities. On the other hand, 

grains with very low value of convexity (as the ones in Figure 6.27), are also likely errors 

of the segmentation process described in Chapter 5.4. 

 

Alshibli et al. (Alshibli et al., 2015) presented some shape data for Hostun sand. The 

mean true sphericity obtained here for Hostun is not far from the 0.77 value they re-

ported. Figure 6.28 shows a more detailed comparison, now between the histogram of 

the Alshibli sphericity index (Ψal) as reported by Alshibli (2015) and that obtained from 

this study. Somewhat higher values are obtained here, but taking into account that dif-

ferent sand specimens, image acquisition systems and data treatment algorithms are em-

ployed, the agreement between the two distributions is satisfactory. 
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Figure 6.28: Comparison between the histograms of the Alshibli sphericity (see Table 6.2) of Hostun sand 

measured in this work with the data presented in (Alshibli et al., 2015) 

 

The larger spectrum of shapes contained in the Hostun specimen is also visible in Figure 

6.29, where the Zingg diagram (Zingg, 1935) is used to represent a bivariate distribution 

of  flatness and elongation indexes. The Hostun specimen data spans three flatness Blott & 

Pye classes (Blott and Pye, 2008), whereas Caicos is contained in just two classes. 

 

(a) (b) 
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(c) (d) 

Figure 6.29: Bivariate density plot of Hostun (a-c) and Caicos (b-d) shown on the Zingg form space with 

Blott & Pye (2008) classifications for Elongation (a-b) and Flatness (c-d). Isoline spacing is 10%. 

6.4 3D shape descriptions: correlations 

The correlations existing between some shape descriptors can be investigated simply 

plotting a couple of shape descriptors onto different axis in order to explore their distri-

bution on a scatter plot. Since particle shape should convey geometrical information dis-

tinct from grain size, shape descriptors independent of particle volume are desirable. In 

Figure 6.30, 2D bivariate frequency distributions showing the mutual relationship be-

tween the degree of true sphericity and particle volume are plotted. The width of the 

sphericity marginal distribution at constant volume reduces as volume increases and the 

number of particles reduces. The mode, on the other hand, appears rather stable despite 

a slight negative bias towards lower Ψ with size for the artificial Hostun sand (Figure 

6.30a). 
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(a) 

 

(b) 

Figure 6.30: Relation between true sphericity and particle volume for Hostun sand (a) and Caicos ooids 

(b). Marginal distributions are also shown alongside the axis 

 

Pearson product-momentum correlation coefficients for the shape parameters in speci-

mens HNEA01 and COEA04 are summarized in correlation matrices presented in Table 

6.4 and Table 6.5. The correlation matrix for the Ottawa specimen OUEA01 is reported 

also in Table 6.7. It appears that the correlation values for the three sands are similar, 
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particularly for the stronger correlations. It is interesting that the degree of true sphericity 

shows a relatively good correlation with a simple measure like Operational sphericity. 

However, the stronger correlation is with Convexity. That strong correlation is indicative 

of a relatively rotund shape for these sand grains. 

 

On the other hand, Krumbein intercept sphericity, Ψint is not as satisfactory as it is closer 

to Elongation Index than to either true or operational sphericity. The slight negative cor-

relation between flatness and elongation indexes was already visible in Figure 6.29. The 

behaviour of other descriptors is more unexpected: for instance, the sphericity proposed 

by Alshibli (Ψal) appears negatively correlated with most other descriptors. 

SHAPE 

DESCRIPTOR 
V Ψ FI EI Ψint Ψop Co Ψal 

Grain 

volume 
1.00 -0.26 0.13 0.09 0.16 0.03 -0.39 -0.20 

True 

Sphericity 
-0.26 1.00 0.37 0.26 0.47 0.62 0.84 -0.31 

Flatness 

index 
0.13 0.37 1.00 -0.21 0.36 0.34 0.05 -0.80 

Elongation 

index 
0.09 0.26 -0.21 1.00 0.83 0.32 0.10 -0.17 

Intercept sphericity 0.16 0.47 0.36 0.83 1.00 0.51 0.12 -0.62 

Operational 

sphericity 
0.03 0.62 0.34 0.32 0.51 1.00 0.43 -0.33 

Convexity -0.39 0.84 0.05 0.10 0.12 0.43 1.00 0.11 

Alshibli 

Sphericity 
-0.20 -0.31 -0.80 -0.17 -0.62 -0.33 0.11 1.00 

Table 6.4:  Correlation matrix of the shape parameters for Hostun sand (48.612 grains). 
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SHAPE 

DESCRIPTOR 
V Ψ FI EI Ψint Ψop Co Ψal 

Grain 

volume 
1.00 -0.07 0.08 0.07 0.10 0.13 -0.28 -0.11 

True 

Sphericity 
-0.07 1.00 0.30 0.46 0.59 0.70 0.86 -0.32 

Flatness 

index 
0.08 0.30 1.00 -0.22 0.17 0.25 0.15 -0.69 

Elongation 

index 
0.07 0.46 -0.22 1.00 0.92 0.56 0.18 -0.37 

Intercept sphericity 0.10 0.59 0.17 0.92 1.00 0.67 0.24 -0.65 

Operational 

sphericity 
0.13 0.70 0.25 0.56 0.67 1.00 0.48 -0.39 

Convexity -0.28 0.86 0.15 0.18 0.24 0.48 1.00 0.04 

Alshibli 

Sphericity 
-0.11 -0.32 -0.69 -0.37 -0.65 -0.39 0.04 1.00 

Table 6.5: Correlation matrix of the shape parameters for Caicos sand (65.056 grains). 
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SHAPE 

DESCRIPTOR 
V Ψ FI EI Ψint Ψop Co Ψal 

Grain 

volume 
1.00 -0.65 0.08 -0.24 -0.20 -0.29 -0.68 -0.13 

True 

Sphericity 
-0.65 1.00 0.20 0.42 0.53 0.63 0.91 -0.16 

Flatness 

index 
0.08 0.20 1.00 -0.27 0.26 0.22 -0.03 -0.81 

Elongation 

index 
-0.24 0.42 -0.27 1.00 0.85 0.39 0.31 -0.12 

Intercept sphericity -0.20 0.53 0.26 0.85 1.00 0.51 0.30 -0.57 

Operational 

sphericity 
-0.29 0.63 0.22 0.39 0.51 1.00 0.52 -0.23 

Convexity -0.68 0.91 -0.03 0.31 0.30 0.52 1.00 0.15 

Alshibli 

Sphericity 
-0.13 -0.16 -0.81 -0.12 -0.57 -0.23 0.15 1.00 

Table 6.6: Correlation matrix of the shape parameters for Ottawa sand (112.411 grains) 

6.5 Projected (2D) measures of shape 

2D measures of shape were acquired on all particles using as projection direction that of 

the minor principal axis (i.e., projecting the particle outline on the plane containing the 

larger and intermediate axes, also called the “plane of greatest stability”).  Suh et al. (Suh 

et al., 2017) demonstrated that this kind of projection results in 2D shape measures 

within 5% of the values obtained when particles are displayed on a flat surface (i.e., when 

they are under equilibrium under self-weight). 

 

For comparison purposes, randomly oriented particle projections were also obtained for 

a subset of particles of each sand. To do so, all the particles have been projected on a 

fixed vertical plane, but maintaining the particle in-specimen orientation. The specimens 
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were built using a dry pluviation procedure (Andò, 2013) and it is assumed that this 

resulted in random particle orientations. Once the projected outline of the particle was 

obtained, similar (simplified) algorithms employed for the three-dimensional case 

(Chapter 6.2) were used to measure bi-dimensional geometrical quantities (Chapter 

2.2.1.1) that, when combined, result in the 2D sphericity descriptors listed in Table 6.7 

and Table 6.8, respectively for the randomly and oriented particles projections. 

 

Name 

Mean 

Hostun 

Caicos 

St. Dev. 

Hostun 

Caicos 

Skew 

Hostun 

Caicos 

CV 

Hostun 

Caicos 

Area sphericity 
0.60 

0.75 

0.12 

0.12 

-0.36 

-0.68 

0.20 

0.16 

Diameter sphericity 
0.76 

0.88 

0.08 

0.07 

-0.63 

-0.95 

0.11 

0.08 

Circle ratio sphericity 
0.59 

0.72 

0.11 

0.11 

-0.43 

-0.75 

0.19 

0.15 

Perimeter sphericity 
0.84 

0.92 

0.05 

0.04 

-0.64 

-1.22 

0.06 

0.04 

KS sphericity 
0.65 

0.70 

0.12 

0.13 

-0.22 

-0.70 

0.18 

0.19 

Table 6.7: Statistics of the 2D shape descriptors for the two sands (obtained from randomly oriented pro-

jections) 
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Name 

Mean 

Hostun 

Caicos 

St. Dev. 

Hostun 

Caicos 

Skew 

Hostun 

Caicos 

 

CV 

Hostun 

Caicos 

Area sphericity 
0.66 

0.77 

0.10 

0.10 

-0.39 

-0.82 
 

0.15 

0.13 

Diameter sphericity 
0.81 

0.88 

0.07 

0.06 

-0.61 

1.05 
 

0.09 

0.07 

Circle ratio sphericity 
0.65 

0.75 

0.09 

0.11 

-0.37 

0.86 
 

0.14 

0.15 

Perimeter sphericity 
0.85 

0.92 

0.05 

0.05 

-0.86 

-1.70 
 

0.06 

0.05 

KS sphericity 
0.76 

0.80 

0.12 

0.12 

-0.25 

-0.78 
 

0.16 

0.15 

Table 6.8: Statistics of the 2D shape descriptors for the two sands (obtained from projections oriented along 

the minor principal axis) 

 

Random orientation introduced a significant bias, decreasing the mean values for all 2D 

parameters. Random particle orientation also increased the variability of almost all 2D 

shape measures, except that of perimeter sphericity.  

6.6 Relation between 2D and 3D shape descriptors 

In both cases (randomly and not-randomly oriented grain projections), the grain label is 

preserved from the three-dimensional sample, therefore 2D and 3D shape parameters 

can be directly compared and statistically studied in order to explore potential correlates 

between them. 

Table 6.9 and Table 6.10 show the correlation matrices of true sphericity (3D) and the 2D 

sphericity proxies listed in Table 6.7 and Table 6.8, as measured, respectively, on the 

randomly and non-randomly oriented particle projections. Data for Caicos and Hostun is 

merged in this analysis. 
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SHAPE 

DESCRIPTOR 
Ψ As

 Ds
 Cs

 Ps
 

KSs
 

True Sphericity 

3D 
1.00 0.58 0.61 0.66 0.55 0.49 

Area sphericity 

2D 
0.58 1.00 0.99 0.95 0.72 0.81 

Diameter sphericity 

2D 
0.61 0.99 1.00 0.93 0.65 0.80 

Circle ratio sphericity 

2D 
0.66 0.95 0.93 1.00 0.71 0.77 

Perimeter sphericity 

2D 
0.55 0.72 0.65 0.71 1.00 0.34 

KS sphericity 

2D 

0.49 0.81 0.80 0.77 0.34 1.00 

Table 6.9: Correlation matrix between 3D and 2D sphericity parameters (obtained from randomly oriented 

projections). Merged data for Hostun and Caicos, 2000 grains for each one. 

 

SHAPE 

DESCRIPTOR 
Ψ As

 Ds
 Cs

 Ps
 

KSs
 

True Sphericity 

3D 
1.00 0.70 0.69 0.72 0.83 0.36 

Area sphericity 

2D 
0.70 1.00 1.00 0.96 0.80 0.81 

Diameter sphericity 

2D 
0.69 1.00 1.00 0.96 0.80 0.81 

Circle ratio sphericity 

2D 
0.72 0.96 0.96 1.00 0.82 0.79 

Perimeter sphericity 

2D 
0.83 0.80 0.80 0.82 1.00 0.45 

KS sphericity 

2D 

0.36 0.81 0.81 0.79 0.45 1.00 

Table 6.10: Correlation matrix showing 3D and 2D sphericity parameters (obtained from projections ori-

ented along the minor principal axis). Merged data for Hostun and Caicos, 2000 grains for each one. 

 

It is noteworthy, but not surprising – given its close relation to elongation – that the 

Krumbein-Sloss sphericity 2D proxy offers the poorest correlation with the 3D true sphe-

ricity measure. Correlation strength increases significantly for all other 2D proxies when 
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the 2D measurements are taken on oriented (i.e., maximum area) projections. In particu-

lar, perimeter sphericity (SP) is the 2D descriptor that appears best correlated with true 

sphericity (Pearson correlation coefficient equal to 0.83). This perhaps reflects the fact 

that the definition of perimeter sphericity (Eq. 2.3 and Table 2.1) is equivalent to that of 

true sphericity for the 2D case. For practical purposes, a linear regression line can be 

drawn (Figure 6.31) through the data to link the 3D true sphericity with the 2D perimeter 

sphericity resulting in the expression 

ψ = 1.075(SP)-0.067 

 
(6.8) 

 

 

Figure 6.31: Linear regression line between true sphericity (3D) and perimeter sphericity (2D). The arrows 

show the ranges (5% and 95% percentiles) of the two sands. 

6.7 Statistical convergence of sample size 

The sand specimens studied in this work contain many thousands grains each. Shape 

was measured in all of them. This exhaustive procedure was necessary for other studies 

– not reported here – but will not have been so if the goal was simply shape characteri-

zation. Figure 6.32 shows the deviation from the whole specimen value of the three first 

statistical moments (i.e., mean, standard deviation and skew) of the true sphericity distribu-

tion computed in random sub-samples of varying sample size.  
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(a) 

 
(b) 

Figure 6.32: Evolution of the first three sample moments (mean, standard deviation, skew)  

of true sphericity with sample size 

 

As expected, it is evident that the error decreases with sample size, and it suggests that 

sample sizes of at least 1000 particles should be employed to capture shape variability in 

sands. This number, although far smaller than that used in this study is still one order of 

magnitude higher of that reported in most 3D studies of sand shape to date. The effect 

of shape variability has been studied by (Rorato et al., 2018). Using a DEM model it was 

shown that the macroscopic response under triaxial loading was strongly affected by the 

variance of the particle shape distribution, and not just by its mean.  
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6.8 Sphericity evolution during triaxial shearing 

The sand specimens analysed here were then tested in triaxial compression under a cell 

confinement of 100 kPa (Andò, 2013). The stress level applied in these tests is well below 

that required for breakage and indeed no breakage was visible in tomography. Using a 

reduced subset of grains (i.e., 2000) a check was made on the evolution of shape param-

eters during the triaxial test. The summary statistics for some parameters at the final 

state are reported in Table 6.11. The averages and standard deviations remain practically 

unchanged when compared with the initial values (Table 6.3), particularly for the harder 

Hostun sand. Minor changes are noted in skew, a statistic that is highly sensitive to 

changes at the extremes of the distribution. A tiny decrease in particle size is detected in 

Caicos. These very small changes are consistent with previous work (e.g. Altuhafi and 

Coop 2011) where insignificant shape change was noted for tests below the onset of par-

ticle breakage.  

Name 

Mean 

Hostun 

Caicos 

St. Dev. 

Hostun 

Caicos 

Skew 

Hostun 

Caicos 

CV 

Hostun 

Caicos 

Volume (mm3) 
0.028 

0.023 

0.017 

0.014 

1.61 

2.75 

0.62 

0.63 

True Sphericity 

0.82 

0.95 

0.06 

0.04 

-0.75 

-2.14 

0.07 

0.05 

Flatness index 

0.73 

0.84 

0.13 

0.09 

-0.17 

-0.74 

0.18 

0.11 

Elongation index 

0.76 

0.80 

0.12 

0.11 

-0.24 

-0.80 

0.16 

0.14 

Intercept sphericity 

0.74 

0.81 

0.08 

0.08 

-0.20 

-0.80 

0.11 

0.10 
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Name 

Mean 

Hostun 

Caicos 

St. Dev. 

Hostun 

Caicos 

Skew 

Hostun 

Caicos 

CV 

Hostun 

Caicos 

Operational Sphericity 

0.58 

0.72 

0.07 

0.08 

-0.15 

-0.62 

0.11 

0.11 

Convexity 

0.77 

0.93 

0.08 

0.05 

-1.14 

-2.97 

0.11 

0.05 

Alshibli Sphericity 

1.96 

0.86 

0.91 

0.15 

2.04 

-0.16 

0.47 

0.21 

Table 6.11: Statistics of the 3D shape descriptors for the two sands at the critical state on 2000 grains 

6.9 Summary 

In this chapter, it is shown how individual particles can be (1) extracted from a three-

dimensional image representing a sand sample and (2) studied in order to quantify 

shape properties and descriptors. In particular, the main findings are summarised here-

after: 

 The shape of more than 200.000 particles has been quantified in three-dimen-

sions, exploiting efficient open-source algorithms; 

 True sphericity is independent of particle size and well correlated with 3D Con-

vexity; 

 True sphericity (3D) is well correlated with Perimeter sphericity (2D) under max-

imum particle projections; 

 Two thousand (2000) grains are enough to capture the statistical variability of 

true sphericity for a sand sample; 

 Hostun and Caicos sands do not change shape (and do not crash) after triaxial 

shearing at 100kPa confining. 
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      Study of grain kinematics 

during triaxial tests 

_______________________________________________ 

 

7.1 Introduction 

As explained in Chapter 3 particle shape has a strong effect on the mechanical response 

of coarse soils. This has been usually observed examining specimen-scale or engineer-

ing-scale responses, which are the result of many microscale interactions. Granular soils 

are made of discrete particles that interact with each other, therefore changes at the 

small-scale (i.e., grain-scale) affect the material response at the large-scale (i.e., engineer-

ing-scale) (Baudet and Bolton, 2010; Jiang et al., 2011; Soga et al., 2014).  

It follows that particle shape must affect grain-scale interactions to produce those effects. 

This hypothesis has been repeatedly supported, from various perspectives, by the results 

of numerical simulation. In numerous discrete element models direct control of element 

shape has been shown to result in major changes in ensemble mechanical responses (e.g. 

(Cleary, 2008; Ferellec and Mcdowell, 2010; Jiang et al., 2016; Ng and Lin, 1997; 

Rothenburg and Bathurst, 1992)). It is noteworthy, however, that similar macroscopic 

effects are observed when particle shape effects are represented indirectly, through ap-

propriately modified element contact interaction laws, for instance introducing some re-

sistance against rolling at the contact (Belheine et al., 2009; Huang et al., 2017; Iwashita 

and Oda, 1998; Jiang et al., 2005). Both direct and indirect shape modelling strategies 

inevitably involve some degree of simplification, to be adjusted in applications under 

typically conflicting constraints of computational speed, accuracy and ease of calibration 

(Coetzee, 2016).  
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In this context, direct experimental observation of the microscale effects of particle shape 

appears relevant, as it may provide evidence beyond that implicit in the ensemble be-

haviour of the specimen. This has been a relatively unexplored avenue, because it re-

quires relevant and accurately measured shape descriptors, as well as particle-scale res-

olution of internal mechanisms. There are few experimental techniques useful for that 

purpose (Guillard et al., 2017) and the main one is relatively recent: microfocus or μX-

ray tomography (Hall et al., 2010; Hasan and Alshibli, 2010; Matsushima et al., 2006; Oda 

et al., 2004). 

 

Despite significant difficulties, progress in 3-D tomographic imaging and post-pro-

cessing technologies, (Alshibli et al., 2015; Fonseca et al., 2012; Kong and Fonseca, 2018; 

Rorato et al., 2019; Zhao and Wang, 2016), has made accurate grain shape determination 

feasible for most sands. Identification of particle-scale mechanisms is more difficult, as 

it requires imaging not just isolated particles, but particles in collective interaction, 

within specimens. Particles need to be separated from one another, within the imaged 

ensemble. Ideally, the existing contacts amongst particles need to be identified, as inter-

actions between particles occur through contact forces in coarse soils. Single snapshots 

of microstructures (typically acquired “post-mortem”, after dismounting the test, Oda 

et al. 2004, Hasan and Alshibli 2010, Fonseca et al. 2013) cannot reveal kinematics. For 

that purpose a sequence of images needs to be acquired during a test, and triaxial tests 

have been the target for most of this kind of work (Alshibli et al., 2017; Andò et al., 2012a; 

Cheng and Wang, 2018a; Hasan and Alshibli, 2012; Higo et al., 2013). Clearly, one added 

difficulty here is the need to track particles confidently across different images. 

Progress in these tasks has been also very significant, but there are still some important 

obstacles, particularly in the area of contact detection and measurement. Indeed, the 

level of image resolution required to image particle contacts – and contact properties 

such as orientation - appears far more demanding than that required to image, identify 

and measure particles (Wiebicke et al., 2018, 2017). This has implicitly limited the scope 

(number of tracked particles and/or number of imaged test steps) of kinematic contact 
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fabric imaging studies (Alshibli and Alramahi, 2006; Cheng and Wang, 2018b; Hasan 

and Alshibli, 2012; Vlahinić et al., 2017). 

Current technology may be exploited to obtain more statistically sound results if the fo-

cus is restricted to particle kinematics. This is the avenue explored in this Chapter, in 

which it is examined in detail the relations between individual grain shape and individ-

ual kinematical history of sand grains as observed during triaxial compression of two 

dense sand specimens comprising more than 100.000 grains altogether. For the purposes 

of this study, the specimens selected for examination had the advantage of failing in 

sharply localized shear modes. As clearly identified in previous research (Hall et al., 

2010; Hasan and Alshibli, 2010; Oda et al., 2004) the structure and kinematics of particles 

within a shear band are very different from those outside, as particles in a shear band 

approach critical state flowing conditions. As long as a criterion for belonging or not into 

the shear band could be clearly established, this experimental feature ensured that the 

influence of particle shape could be examined in two very different and separate kine-

matic settings (i.e., within the band and outside it), thus making the study relevant for a 

larger set of conditions. 

7.2 Digital image correlation for particle tracking 

Digital Image Correlation (DIC) is the ideal tool for comparing and analysing images of 

deforming materials, such the ones obtained from x-ray scans. DIC is a widely used tech-

nique in experimental mechanics to deduce motion and shape features of an object by 

comparing its appearance in different images (Sutton et al., 2009). A first classification of 

DIC may be based on the dimensional support of the images employed in the compari-

son (Hall, 2012): surface-DIC is based on bi-dimensional images, whereas volumetric 

DIC (or, simply, digital volume correlation, DVC), is based on three-dimensional images. 

Surface-DIC is widely employed in field and laboratory experimental geotechnics (Take, 

2015). DVC has seen fewer applications because of the increased difficulties associated 

with 3D image acquisition. 
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In DIC a subset F of intensity values from a reference image is systematically compared 

with subsets Gi of the transformed image until some optimality condition is achieved 

(Pan et al., 2009). This optimality condition is frequently based on a cross correlation 

measure, for instance searching for a maximum normalised cross correlation:  

i

i

F G
NCC

F G


  (7.1) 

Different algorithms are obtained depending on how the subset F is chosen, what kind 

of motion is assumed to relate F and Gi and how the search window (SW, the zone in 

which Gi is searched for) is defined.  

Two broad variants of DVC have been employed in geotechnical applications: continuum 

(C-DVC) and discrete (D-DVC). In C-DVC, the subset F (usually referred to as correlation 

window, CW) is a cubical cell centred around some pre-established evaluation grid 

points. Although more complex transformations are sometimes used (Stanier et al., 

2016), the motion relating F and G is usually assumed as a simple rigid translation, and 

cross correlation is employed to find a displacement vector, which is assigned to the grid 

node. From the displacement field thus obtained, strain measures are derived using dif-

ferent procedures (Pinyol and Alvarado, 2017). The underlying assumption is that subset 

F is a representative volume element RVE in a continuum; therefore, the scale of the CW 

should contain enough grains to make that assumption realistic. 

C-DVC ignores the discrete nature of a granular material. If the resolution of the images 

is such that individual grains may be identified, other alternatives are possible. Hall 

(Hall et al., 2010) proposed a novel discrete grain-based approach (D-DVC) to track indi-

vidual particles. The method has as a starting point a segmented labelled image, in which 

groups of voxels are identified as grains. In D-DVC the subset F is selected considering 

which voxels have been previously assigned to a certain grain and is named a grain 

mask. The assumed motion between F and G is a rigid body motion, including transla-

tion and rotation. With D-DVC the kinematics of each identified particle is thus directly 

obtained. An example output of D-DVC is shown in Figure 7.2, giving as input the grey-

scales images of Figure 7.1. 
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Figure 7.1: Grey-scale images (slices) of specimen COEA04 at increments “01” (left) and “11” (right). It 

is clear how the bottom plates moved upwards, inducing axial shortening and failure in the specimen. 

 

      

Figure 7.2: Vertical slices of Caicos sand showing grains vertical displacement (on the left) and rotations 

(on the right) measured from increment “01” (start of deviatoric load) to increment “11” (end of the test). 

Grains are coloured by the value of their measured z-displacement and total rotation at step “11”, although 

the image is referred to the loading step “01” (initial state). 

 

Hall (Hall et al., 2010) went on to illustrate the potential of D-DVC obtaining maps of 

incremental displacements and rotations in a triaxial specimen of Hostun sand, showing 

also that the kinematic history of single grains was very different if they were involved 

in a shear band or not.  

Andò (Andò et al., 2012a) proposed an alternative method to follow grain kinematics 

across images, called ID-track. In this method grain match between successive images is 

based on listed properties of grains, such as volume, surface area, etc. obtained through 

single-image analysis. The method requires two segmented images as input. The grain 

matching operation is faster than in D-DVC, as volume cross-correlation is not needed. 
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With some modifications, ID-track has been later used by Alshibli et al. (2017), and 

Cheng and Wang (2018a), amongst others. However, ID-track has some difficulties to 

assign precise rotation values, particularly when dealing with very spherical particles 

(Andò et al., 2012a), and was therefore extended to include a D-DVC based technique 

for rotation measurement in (Andò et al., 2012b). For this reason, the work presented 

here was based on the more robust, if slower, D-DVC technique.  

7.2.1 Single-image post-processing 

Each 3D tomograph results simply in grey-scale images, in which the only variable (the 

greyscale of each voxel) represents the x-ray attenuation coefficient assigned to that lo-

cation. Therefore, before studying individual grains, it is necessary to binarise, separate 

and label the tomographic images. This was done here following the procedures de-

scribed by Andò (Andò et al., 2012a), see chapter 5.4. At this point, it is possible to extract 

single grains from the 3D labelled images. The 3D tomographic images representing 

Hostun (specimen HNEA01) and Caicos (specimen COEA04) sands contain respectively 

48.612 and 65.056 particles. 

 

Geometrical properties (e.g. volume, surface area, inertia tensor…) of the image subset 

assigned to each grain are obtained through the post-processing procedures described 

in Chapter 6. These properties may be used, in turn, to obtain different shape descriptors 

in 3D or 2D. The procedures applied for this purpose are also described in detail in Chap-

ter 6; that also includes an exhaustive database of 3D shape descriptors for all the grains 

in these specimens, evaluating significant statistics. It was also verified in Chapter 6.8 

that the shape descriptors of the sands remained statistically invariant during the triaxial 

tests. 
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7.2.2 Tracking grains kinematics with D-DVC 

The triaxial tests mentioned were scanned by x-rays at several loading stages (16 for test 

HNEA01 and 11 for COEA04), as described in Chapter 5. The stress-volumetric-strain 

curves, with indication of scanning stages are shown in Figure 7.3. The macroscopic re-

sponses of both tests are typical of dense sands, with a stress peak followed by shearing 

to critical state. Both tests failed in a localized shear mode. 

 

Figure 7.3: Triaxial responses of the specimens HNEA01 and COEA04 with loading stages markers. The 

yellow stripes indicate loading stages that are later investigated in more detail. 

 

The D-DVC software that has been used in this work to obtain the grain kinematics (3D 

displacements and rotations) is an evolved version of the TomoWarp2 code (Tudisco et 

al., 2017). In this code, grain displacements are expressed in pixels (the pixel-size is fixed) 

and 3D rotations as rotation vectors using a Rodrigues parametrisation (Campello, 2015). 

In a rotation vector, the components represent the direction of the axis of rotation and 

the norm the magnitude of the angle of rotation around that axis. This representation 

system for rigid body rotations has significant practical advantages over more complex 

alternatives, such as those based on Euler angles or quaternions (Campello, 2015). 
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To visualize the 3D unit rotation vector orientation, stereographic projection is some-

times used below. The angular coordinates used in this projection are illustrated in Fig-

ure 7.4. The angle θ (inclination) goes from 0° (vertical) to 90° (horizontal), while the 

angle φ (azimuth) goes from 0° to 360°, being the north (φ=0°) the direction of the Car-

tesian x-axis of the specimen. Stereograms were created using the plotting tool “orienta-

tionPlotter” from the external open-source Python package SPAM (Andò et al., 2017).  

 

Figure 7.4: Spherical coordinates system adopted for the stereoplots (Wikipedia) 

 

Previous applications of D-DVC had focused mostly on incremental grain kinematics 

(Andò et al., 2012a; Hall et al., 2010). In such approach only the incremental kinematics 

between two subsequent loading steps (e.g. 1-2, 2-3, 3-4, etc…) are obtained. The starting 

point are the two 3D greyscale images bracketing the increment (i.e., initial and de-

formed configurations); of these two the image corresponding to the initial configuration 

has to be already labelled, so that grain bounding-boxes that are used as correlation win-

dows can be extracted.  

This incremental or “tangent” correlation approach cannot be applied sequentially to 

obtain cumulative kinematics of the grains. The reason is that grain labels assigned to 

the same grains by processing different scans of the same specimen will be different. To 

ensure consistency, a single set of grain labels, obtained from the first scan, is required. 

An alternative method to get the history of grain displacements and rotations, will be to 

use a “secant” correlation (usually referred to as “leapfrog” in C-DVC applications). In 

this approach, the initial labelled image is always selected for paired searches on those 

resulting from all the subsequent scans (i.e., 1-2, 1-3, 1-4, etc…). A direct secant approach 
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has clear limitations, being both very expensive (as the grain search window would have 

to increase during the process) and prone to errors. 

The algorithm applied here aims to overcome those difficulties using a mixed approach, 

in which a secant correlation scheme (1-2, 1-3, … , 1-10) is still employed, but the search 

is aided by the results of the previous steps, namely the cumulative grains displacement 

up to the last correlation step. The initial search window is translated by a vector point-

ing the position of the grain in the previous correlation and can remain of a small size, 

saving calculation time. The inputs required in this procedure are four: two greyscale 

images, one labelled image and one data file with the prior grain displacements. Since 

previous rotations are not taken into account in setting up the search window, for large 

deformations where there are large rotations the possibility of losing grains still remains. 

7.2.3 Validation of the D-DVC procedure 

To validate the implementation of D-DIC in TomoWarp2 a simple uniform rotation 

check was employed (Andò et al., 2012a; Pannier et al., 2010). The rotations of all the 

grains contained in specimen HNEA01 were individually computed after applying a five 

degrees (5° deg) rigid rotation around its vertical z-axis. The main objectives of the vali-

dation are three: (a) to evaluate the attrition rate of the algorithm (i.e., the number of 

grains that are lost from one image to the next); (b) to evaluate the accuracy and precision 

with which grain rotation was measured and (c) to explore the possible relationship be-

tween the precision of the calculation and the shape of the grains (as grains masks are 

used as correlation windows, there is some expectation that grains closer to spherical 

will present a greater deviation from the imposed motion).  

The check was positive from the attrition viewpoint, with more than 99.8% of the grains 

correctly tracked attaining a correlation coefficient between the two image subsets 

greater than 0.99 for each of them. Figure 7.5a shows the histogram of the rotations meas-

ured by D-DVC. The rotation measurements follow a normal distribution with a mean 

value of 4.998°deg and 0.042°deg standard deviation. Rotations as obtained by this code 

are as accurate (i.e., have similar mean error), but far more precise (i.e., have much 
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smaller error standard deviation), than those obtained with the ID-track implemented 

by Andò et al. (2012). Indeed, the coefficient of variation (standard deviation / mean) of 

measurement error is here below 1%, while it was above 400% for ID-track. Another way 

of conveying this information is by means of a stereogram of the computed grain rota-

tions (Figure 7.5b). The radial distance from the centre of the stereoplot represents the 

inclination θ, whereas the angles on the external perimeter represent the azimuth φ. As 

expected, all the grain rotations are located at the centre of the stereoplot (θ = 0°), indi-

cating rotations around the vertical axis, with very low deviation from the vertical. Fi-

nally, Figure 7.5c illustrates the relation between measured rotation and sphericity; it is 

clear that the deviation from the exact solution (5° deg) increases symmetrically with the 

sphericity of the grains. However, the deviation remains very limited (around ±0.1° deg) 

and, therefore, this inbuilt bias can be safely ignored. 

 

(a) 



161 

 

(b) 

 

 

(c) 

Figure 7.5a-b-c: (a) Histogram of measured rotation after rigid rotation of the specimen (b) Stereoplot show-

ing the rotation versor of each grain (c) 2D histogram showing the correlation between grains sphericity 

and grains rotation. 

7.2.4 Shear band identification 

The two specimens analysed in this work showed localised deformation through shear 

banding (Andò, 2013). In shear bands void ratio increases, coordination numbers are 

much reduced and the microstructural constraints on kinematics are therefore very dif-

ferent. Before examining the relation between grain shape and grain kinematics it was 
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therefore necessary to first classify the grains, separating those that belong to the shear 

band and those that do not. The criterion applied here to classify the grains as belonging 

to the shear band was based on shear strain.  

To assign a nominal deviatoric strain to each grain we applied a procedure developed 

for DEM post-processing by Catalano et al. (2014). In this procedure, available within 

the code YADE (Šmilauer, 2015), a Voronoi cell hosting each grain is created using a 

regular Delaunay triangulation having as vertices the mass centres of the labelled grains. 

Thus, the grain positions at the last loading increments (i.e., 15-16 for HNEA01, 10-11 for 

COEA04) were calculated by D-DVC and then introduced in YADE. Displacements of 

neighbouring grains were then used to compute a nominal displacement gradient tensor 

for the tetrahedrons whose vertices are the grains centres of mass. A nominal averaged 

deviatoric strain, εd_g was projected back to each grain and a threshold value of εd_g  used 

to classify grains as belonging to the shear band. 

7.3 Results from D-DVC 

7.3.1 Shear band identification 

The results of the shear band identification procedure are shown in Figure 7.6, in which 

the black grains form the “shear band”: it contains 7007 grains for COEA04, and 21000 

for HNEA01. The threshold value εd_g is set at 0.1; the zones identified correspond closely 

to those apparent in previous studies (Andò et al., 2013).  

The local reference system that will be used to define the virtual plane representing the 

shear band is shown in Figure 7.7, in which vector n⃗  is the normal to the plane and vector 

a⃗  indicates the steepest slope direction in the plane. Both specimens present a shear band 

with an inclination angle (θ) of about 45° (see Figure 7.4 for the definition of inclination 

angle). 
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(a) (b) 

Figure 7.6: Shear band identification for specimens COEA04 (a) and HNEA01 (b). Particles are coloured 

black if the “micro-strain” (Catalano et al., 2014) calculated on the Voronoi domain centred on the particle 

is greater than 0.10 (i.e., they belong to the shear band). 

 

Figure 7.7: Local reference system for the shear band 

 

Vector b⃗  is orthogonal to n⃗  and a⃗  and therefore is horizontal (θ = 90°) . It can be used to 

characterise the azimuthal orientation of the shear band with respect to the global Car-

tesian coordinate system. The azimuth (φ) is different, being of about 135° for Hostun 
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and 75° (from the global x-axis) for Caicos. The sections represented in Figure 7.6 corre-

spond then to vertical planes orthogonal to vector b⃗ . 

7.3.2 Spatial distribution of grain shapes and shear localization  

A check was performed to verify if particle shape was spatially homogeneously distrib-

uted in the specimens. The reason was to exclude any possibility that subsequent locali-

sation into shear bands was prompted by non-uniformity in the initial spatial distribu-

tion of grain shapes (note that a similar check was performed by Andò (2013) with re-

spect to local porosity). To do so, two vertical sections orthogonal to each other (defined 

respectively by vectors n⃗ -b⃗  and n⃗ -a⃗  ) are examined where the grains have been coloured 

by their value of degree of true sphericity, as shown in Figure 7.8. It is evident that grain 

true sphericity was initially homogeneously distributed within both specimens. 
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 Plane n⃗ ⊥ b⃗  Plane n⃗ ⊥ a⃗   

Hostun 

HNEA01 

  

0.60 

 

1.0 

Caicos 

COEA04 

  

0.60 

 

1.0 

Figure 7.8: Sphericity spatial distribution for Hostun and Caicos sand in two vertical sections: parallel and 

perpendicular to the shear band. 

 

Another check was performed on the possibility that shear banding would entrap or 

select particular grain shapes. To this end, histograms of the degree of true sphericity for 

the grains located both inside and outside the shear band were plotted; the results are 

shown in Figure 7.9. Again, it is evident that there are no significant differences of shape 

between the grains that were involved in the localisation process and those that re-

mained outside the shear band. 
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Hostun 

HNEA01 

 

(a) 

Caicos 

COEA04 

 

(b) 

Figure 7.9: Histograms of true sphericity for Hostun (a) and Caicos (b) sands both inside and outside the 

shear bands. 

7.3.3 Overall grain kinematics 

Figure 7.10 and Figure 7.11 show the cumulative kinematic histories, in terms of vertical 

displacements and rotations, for Caicos ooids (specimen COEA04) and Hostun sand 

(specimen HNEA01) during several loading increments in the triaxial test (note that sim-

ilar images reporting incremental values were presented by Andò et al., 2012). Results for 

both sands are plotted at the same scale and confirm the general observation made from 

incremental results by Andò et al. (2012): within the shear band, the very rounded Caicos 

sand grains rotate more than the more angular grains of Hostun sand. On the other hand, 

it is difficult to tell the difference between the two sands outside the shear band.  
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01-02 

εz = 0.95% 

01-04 

εz = 2.82% 

01-06 

εz = 5.17% 

01-08 

εz = 8.00% 

01-10 

εz = 10.33% 

01-11 

εz = 11.27% 

      

      

0 px (z-disp) 

0° deg rotations  

200 px (z-disp) 

~60° deg rotations 

Figure 7.10: Vertical slices of Caicos sand (specimen COEA04) showing grain vertical displacement (above) 

and rotation (below) accumulated during the test. Grains are coloured by the value of their measured z-

displacement (above) and total rotation (below). Not all the increments are shown.  

Stage “01” = start of deviatoric loading. Stage “11” = end of the TX test.  
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01-05 
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εz = 3.92% 
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01-16 
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0 px (z-disp) 

0° deg rotations  

200 px (z-disp) 

~60° deg rotations 

Figure 7.11: Vertical slices of Hostun sand (specimen HNEA01) showing grain vertical displacement 

(above) and rotation (below) accumulated during the test. Grains are coloured by the value of their meas-

ured z-displacement (above) and total rotation (below). Not all the increments are shown. 

Stage “01” = start of deviatoric loading. Stage “16” = end of the TX test. 

 

This observation is conveyed more precisely in Figure 7.12, showing the histories of the 

cumulated mean particle rotation magnitudes, both inside and outside the shear bands. 

Outside the shear band, the average grain rotations of both sands are very similar and 

appear quite flat, with a limited increase between 1% and 5% axial strain. That increase 

in the average rotation outside the shear band may reflect the fact that the shear bands 

become somewhat narrower as deformation progresses (Andò, 2013), whereas the grain 

classification criterion is only applied in the final test stage.  

 

Figure 7.12: Histories of cumulated mean particle rotations inside and outside the shear bands (SB in the 

legend), measured by D-DVC throughout the triaxial tests. The green dots represent interpreted results 

from Alshibli and Alramahi (2006) for a triaxial experiment involving 400 plastic pearls. 
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Average rotations increase much faster within the shear band. In the Caicos specimen 

(COEA04) average rotation magnitude raises to about 30 degrees. The trend in the 

Hostun specimen (HNEA01) is somewhat slower, raising to a level of about 21degrees. 

The distribution of cumulative rotation magnitudes in the shear bands is rather skewed 

(Figure 7.13) with the mode remaining almost constant but the high end tail progres-

sively thickening. 

 

 

 

(a) 

 

(b) 
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(c) 

Figure 7.13: Distribution of accumulated particle rotation magnitudes at different test stages (12-14-16) 

for particles within the shear band of the Hostun sand HNEA01 specimen. 

 

The attrition rate during this sequence of image correlations is shown in Figure 7.14. It 

is clear that in this more realistic context, the D-DVC procedure has more difficulties 

than in the idealized uniform rotation check discussed before. The correlation problems 

increase as the grains rearrange more, which is what happens in the shear band. Despite 

that, it should be noted that a) the correlation validity criterion was set at a very stringent 

limit (CC = 0.98) and b) the procedure was able to track to the end almost 80% of the 

grains within the shear bands and more than 95% outside them. 

 
Figure 7.14: Particles with correlation maximum below 98% as a percentage of total number of particles 
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7.3.4 Axes of rotation 

Stereoplots (see Figure 7.5b) can be used to investigate the alignment of particle rotation 

axes during shearing. The orientations of cumulative rotation versors are plotted for all 

grains (about 110000 in total), both inside and outside the shear bands, at two different 

test stages in Figure 7.15 (at approximately 5% axial strain, corresponding to steps 01-09 

in Hostun and 01-06 in Caicos) and Figure 7.16 (at approximately 9% axial strain, corre-

sponding to 01-12 for Hostun and 01-09 for Caicos). The raw stereoplots are presented 

alongside binned frequency diagrams.  

 Inside the shear band Outside the shear band 

HNEA01 

stage 

01-09 

  

COEA04 

stage 

01-06 

  

Figure 7.15: Stereoplots showing the rotation versor directions at 5% shortening. The green dots indicate 

the orientation of vector b⃗⃗⃗   (see Figure 7.7) belonging to the shear bands of Hostun and Caicos sands. The 

stereoplot angles markers are not shown for readability, see Figure 7.5b for reference. 

 

 Inside the shear band Outside the shear band 

HNEA01 

stage 

01-12 
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COEA04 

stage 

01-09 

  

Figure 7.16: Stereoplots showing the rotation versor directions at 9% shortening. The green dots indicate 

the orientation of vector b⃗⃗⃗   (see Figure 7.7) belonging to the shear bands of Hostun and Caicos sands. Ste-

reoplot grid not shown for readability, see Figure 7.5b for reference. 

 

Both sands exhibit similar trends (Figure 7.15). Outside the shear bands, the rotation axes 

accumulate towards the periphery of the stereoplot, with inclination angles close to 90° 

that indicate horizontal axes of rotation. The azimuthal angle, on the other hand, is al-

most homogenously distributed around the stereoplot periphery, indicating no prefer-

ential alignment for the grain rotational axis within the horizontal plane.  

The situation is different inside the shear band, which is already present at 5% strain 

(Figure 7.10; Figure 7.11). The rotation axes are still mainly horizontal (θ = 90°), but now 

the azimuthal angles (φ) concentrate around values of about 135° (Hostun sand) and 

75° (Caicos sand). As indicated in the figures these values are, precisely, the azimuths of 

vector b⃗  in Figure 7.7 i.e., those corresponding to directions orthogonal to that of steepest 

descent within the shear band. This alignment means that grains are rolling downslope 

the plane of the shear band. Another azimuthal accumulation point is observed at the 

diametrically opposed direction in the stereoplot, that is at 315° for Hostun and 255° for 

Caicos. That position corresponds to grains rotating upslope on the plane of the shear 

band. These preferential orientations become sharper as localisation progresses (com-

pare with results at 9% axial strain, shown in Figure 7.16) and appear generally sharper 

for Hostun sand than for Caicos ooids.  

The results obtained contrast with those presented in Andò (2012) in a similar analyses 

for the Hostun HNEA01 specimen. There the alignment of particle rotation axis and 

shear band normal was far less evident. The difference is likely due to the superior pre-

cision of particle rotation measurement achieved by the D-DVC technique over the ID-

track used in Andò 2012. The presence of particle with opposite spins in shear zones, 

previously documented in experiments with simplified granular media (such as flat 
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disks – Veje et al. (1999); Pasternak et al. (2015) – or uniform plastic beads – Alshibli and 

Alramahi (2006)), is here confirmed for natural sands. 

7.3.5 Relation between grain shape and magnitude of rotation 

A first indication of the relationship between particle shape and rotation is already evi-

dent in Figure 7.12. Caicos ooids rotate – on average – far more than Hostun sand grains, 

but only if belonging to the shear band; for grains that remained outside the shear band 

there is almost no difference between the more rounded Caicos ooids and the angular 

Hostun sand. This insensitivity to particle shape outside the critical shearing zone is cor-

roborated by data deduced from Alshibli and Alramahi (2006), also plotted in Figure 

7.12. Those authors reported histograms of particle rotations for 400 perforated plastic 

pearls, almost uniformly spherical, in a triaxial compression test that did not present a 

clear shear band. The averaged rotations from that test plot very close to our data. 

 

Although averaged values of rotation are interesting, the data collected allow a more 

detailed inspection of the effect of grain shape on rotation. Figure 7.17 presents bivariate 

frequency density plots exploring the effect of shape descriptors related to form on par-

ticle rotations (accumulated up to 5% axial strain). The histogram contours appear rather 

flat, indicating little sensitivity of particle rotations to form. The same approach is fol-

lowed in Figure 7.18, but now using shape descriptors that measure sphericity. The his-

togram contours are more sensitive, particularly those at the edge, indicating larger per-

centiles. This is particularly evident for convexity and to true sphericity – two shape 

descriptors that are tightly correlated for these two sands (see Chapter 6.4, Table 6.4 and 

Table 6.5). 
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HNEA01-09 COEA04-06 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.17: Normalised bivariate frequency density plots of form descriptors versus cumulative grain 

rotation magnitude at 5% shortening (loading stages HNEA01-09 and COEA04-06, respectively 48.612 

and 65.056 grains). The contours colour bar is shown in Figure 7.5c. 
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HNEA01-09 COEA04-06 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.18: Normalised bivariate frequency density plots of sphericity descriptors versus the cumulative 

grain rotations measured at 5% shortening (loading stages HNEA01-09 and COEA04-06, respectively 

48.612 and 65.056 grains). The contours colour bar is shown in Figure 7.5c. 
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 Inside the Shear Band Outside the Shear Band 

HNEA01 

stage 

01-09 

  

COEA04 

stage 

01-06 

  

Figure 7.19: Normalised histograms showing the observed relation between the degrees of true sphericity 

and the total grains rotation measured at 5% sample shortening. 

 

The histograms become more triangular if restricted to particles in the shear band. Figure 

7.19 shows that the degree of true sphericity seems to have a significant influence on the 

upper limit of particle rotation, which increases as particles become more spherical. This 

idea is explored in more detail in Figure 7.20 and Figure 7.21, where mean and extreme 

values (99.5% percentiles) of rotation, measured on both Caicos sand and Hostun sand 

specimens, are plotted as a function of true sphericity. The values are derived from mar-

ginal distributions, obtained at fixed true sphericity intervals (width 0.025). Because the 

number of particles in each interval is highly variable, error bands (plus and minus one 

standard error) are also represented. The error bands for the 99.5% quantile are esti-

mated using a bootstrapping technique (Efron and Tibshirani, 1994), resampling with 

replacement the original samples (for each interval) one thousand times. Error band 

thickness increases with small sample sizes (e.g. at low values of degree of true sphericity) 

and with marginal variability (high at large values of degree of true sphericity, as correlat-

ing very spherical grains carries more uncertainty).  
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It appears that the mean values of rotation, both inside and outside the shear band are 

insensitive to particle sphericity, whereas the extreme upper values (the 99.5 % percen-

tile) show a clear positive dependency between rotations and particle sphericity. There 

is not much difference between the mean values of Caicos and Hostun, at any given true 

sphericity. On the other hand, the upper limit rotations of Caicos are somewhat above 

those of Hostun, even at the same sphericity, and particularly for those particles inside 

the shear band. Andò (2013) observed that porosity in the shear band was higher for 

Hostun than for Caicos, so it is unlikely that connectivity –which is inversely related to 

porosity- will explain that difference. Still, the differences between the two sands not 

accounted for true sphericity are less important than the common effect of sphericity on 

the upper bound. These trends were confirmed when other test stages were analysed, 

for instance at around 9% axial strain, Figure 7.22 and Figure 7.23. 

 

 

Figure 7.20: Influence of the degree of true sphericity on the total grains rotation (at 5% shortening) outside 

the shear band. 
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Figure 7.21: Influence of the degree of true sphericity on the total grains rotation (at 5% shortening) inside 

the shear band. 

 

 

Figure 7.22: Influence of the degree of true sphericity on the total grains rotation (at 9% shortening) out-

side the shear band. 
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Figure 7.23: Influence of the degree of true sphericity on the total grains rotation (at 9% shortening) inside 

the shear band. 

7.4 New definition of “local” porosity 

This section describes an attempt to describe a new “local” (i.e., grain based) definition 

of porosity and to investigate a potential relationship existing with grain shape. 

An algorithm for the computation of the set-voronoi for each grain is implemented in 

SPAM and detailed in (Schaller et al., 2013). The entire 3D labelled images of Caicos and 

Hostun sands can be input in SPAM to get a new-labelled image with the voronoi set 

related to each grain. As a result, the original grains are “expanded” (according to the 

algorithm implemented in SPAM) in order to fill all the void space around them, though 

preserving the initial grain labels, as shown in Figure 7.24. 
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(a) (b) 

Figure 7.24: Horizontal section (800 of 1750) of the labelled image of HNEA01-01 (a). Horizontal section 

(800 of 1750) of the labelled image with the built set voronois (b). All the voids have been filled preserving 

the grains labels. 

 

It is now possible to compute the volume of the set-voronois (summing up the voxels 

making it up) and the volume of the pore space “attached” to each grain, as difference 

between the set-voronoi and the known -original- grain volume. Therefore, new local 

definitions of porosity (nlocal) and void ration (elocal) can be defined for each grain as: 

nlocal =
void volume

set voronoi volume
 (7.2) 

elocal =
void volume

grain volume
 (7.3) 

These quantities have been obtained for each grain contained in the HNEA01 and 

COEA04 specimens. The values of local porosity have been plotted for each grain in Fig-

ure 7.25. 
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Caicos sand Hostun sand 

  

< 0.20  > 0.80 

Figure 7.25: Vertical slices showing the local porosity value for each grain of Caicos and Hostun sands. 

 

The average local porosities are respectively 0.484 and 0.411 for Hostun and Caicos sand. 

These values are far from the experimental measures of porosity (31.9% Caicos and 

39.7% Hostun), however this approach is able to detect the higher initial porosity of 

Hostun compared to Caicos. 

At this point, the statistical relationship between these new quantities and the shape of 

each grain can be investigated by plotting the Pearson’s correlation coefficient in the 

form of a correlation matrix, as shown in Table 7.1a (Caicos) and Table 7.1b (Hostun). 

Note that the future particle rotations that will be measured at 9% axial strain are also 

included in the correlation matrix to check if the initial local porosity may affect the fu-

ture grains kinematics. 



182 

CAICOS sand 

Shape descriptor 
Rot. 

‘09’ 

nlocal 

‘01’ 

Grain volume, V -0.17 -0.51 

True Sphericity, Ψ 0.10 -0.06 

Flatness index; FI -0.02 -0.17 

Elongation index, EI 0.00 -0.13 

Intercept sphericity, Ψint -0.01 -0.23 

Operation. sphericity 0.02 -0.17 

Convexity, Co 0.12 0.09 

Alshibli Sph., Ψal 0.03 0.22 

Rot. (stage ‘09’- εz = 9%) 1.00 0.06 

Local porosity (stage ‘01’) 0.06 1.00 

(a) 
 

HOSTUN sand 

Shape descriptor 
Rot. 

‘12’ 

nlocal 

‘01’ 

Grain volume, V -0.15 -0.37 

True Sphericity, Ψ -0.01 -0.06 

Flatness index; FI -0.05 -0.06 

Elongation index, EI -0.04 -0.09 

Intercept sphericity, Ψint -0.06 -0.12 

Operation. sphericity -0.05 -0.14 

Convexity, Co 0.05 0.07 

Alshibli Sph., Ψal 0.06 0.10 

Rot. (stage ‘12’- εz = 9%) 1.00 0.03 

Local porosity (stage ‘01’) 0.03 1.00 

(b) 
 

Table 7.1: Pearson’s correlation coefficients between the measured particles rotations (9% axial shortening) 

and the local porosity computed at the initial state with the known shape parameters for Caicos (a) and 

Hostun (b) sands. 

 

It is evident that, at the end of the consolidation (loading stage ‘01’) at least, there is no 

any statistical correlation between the shape of a grain and the new defined local poros-

ity. A slight negative correlation (0.51 and 0.37 respectively for Caicos and Hostun sands) 

exists between local porosity and grain volume. It means smaller grains tend to have 

more space around them compared to larger grains.  

No correlation is found between local porosity and the grain rotation measured at 9% 

shortening, it means the initial local porosity does not have an influence on the rotations 

that will develop at a later stage. 

 

The local porosity has been then measured in the deformed configuration, at 9% axial 

strain, to investigate some statistical correlations at this loading stage. The localisation 

of failure (i.e., shear band) is fully developed at this stage and therefore we divided the 
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study in two parts: inside and outside the shear band, as reported in Table 7.2 and Table 

7.3 respectively for Hostun and Caicos sands. 

HOSTUN sand 

- Outside shear band - 

Shape descriptor 
Rot. 

‘09’ 

nlocal 

‘09’ 

Grain volume, V -0.11 -0.50 

True Sphericity, Ψ 0.04 0.00 

Flatness index; FI -0.02 -0.14 

Elongation index, EI 0.00 -0.12 

Intercept sphericity, Ψint -0.01 -0.19 

Operation. sphericity 0.00 -0.14 

Convexity, Co 0.07 0.09 

Alshibli Sph., Ψal 0.02 0.19 

Rot. (stage ‘09’- εz = 9%) 1.00 0.19 

Local porosity (stage ‘09’) 0.19 1.00 

(a) 
 

HOSTUN sand 

- Inside the shear band -  

Shape descriptor 
Rot. 

‘12’ 

nlocal 

‘09’ 

Grain volume, V -0.09 -0.55 

True Sphericity, Ψ 0.04 0.05 

Flatness index; FI -0.02 -0.14 

Elongation index, EI 0.01 -0.14 

Intercept sphericity, Ψint 0.00 -0.21 

Operation. sphericity 0.01 -0.13 

Convexity, Co 0.09 0.14 

Alshibli Sph., Ψal 0.03 0.21 

Rot. (stage ‘12’- εz = 9%) 1.00 0.13 

Local porosity (stage ‘09’) 0.13 1.00 

(b) 
 

Table 7.2: Pearson’s correlation coefficients between the measured particles rotations and the local poros-

ity (both measured at 9% axial shortening) with the known shape parameters for Hostun sand both out-

side (a) and inside (b) the shear band. 
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CAICOS sand 

- Outside shear band - 

Shape descriptor 
Rot. 

‘09’ 

nlocal 

‘09’ 

Grain volume, V -0.15 -0.54 

True Sphericity, Ψ 0.09 0.03 

Flatness index; FI -0.06 -0.11 

Elongation index, EI 0.02 -0.15 

Intercept sphericity, Ψint -0.04 -0.21 

Operation. sphericity 0.01 -0.10 

Convexity, Co 0.08 0.04 

Alshibli Sph., Ψal 0.08 0.14 

Rot. (stage ‘09’- εz = 9%) 1.00 0.21 

Local porosity (stage ‘09’) 0.21 1.00 

(a) 
 

CAICOS sand 

- Inside the shear band -  

Shape descriptor 
Rot. 

‘12’ 

nlocal 

‘09’ 

Grain volume, V -0.10 -0.58 

True Sphericity, Ψ 0.08 0.09 

Flatness index; FI -0.02 -0.11 

Elongation index, EI 0.00 -0.17 

Intercept sphericity, Ψint 0.01 -0.22 

Operation. sphericity 0.05 -0.15 

Convexity, Co 0.04 0.18 

Alshibli Sph., Ψal 0.06 0.17 

Rot. (stage ‘12’- εz = 9%) 1.00 0.26 

Local porosity (stage ‘09’) 0.21 1.00 

(b) 
 

Table 7.3: Pearson’s correlation coefficients between the measured particles rotations and the local porosity 

(both measured at 9% axial shortening) with the known shape parameters for Hostun sand both outside (a) 

and inside (b) the shear band. 

 

The only significant correlation that has been found, again, is with particle volume. 

Moreover, this dependency of local porosity with grain volume makes impossible any 

further investigation about the effect of local porosity on both particle shape and grain 

rotations. This is also evident from Figure 7.26b, showing that the sizes of the set voro-

nois seem uniform through the whole sample, even for the grains with more space 

around them (i.e., in the shear band), well evident in Figure 7.26a. It seems therefore that 

local porosity as defined here has limited explanatory capacity and alternatives would 

need to be explored in future work. 
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(a) (b) 

Figure 7.26: Vertical slice perpendicular to the shear band of HNEA01 at 9% axial strain (a). Representa-

tion of the set-voronois for the same slice (b).   

7.5 Summary 

This Chapter sets out to explore the relationship between particle shape and particle ro-

tation at the grain scale, for all the sand grains within triaxial specimens that failed in a 

localized shear mode. The main findings can be summarized as follows: 

 The systematic use of Discrete-Digital Volume Correlation allowed successful 

tracking of rotational kinematics in the large majority of grains; those measure-

ments were far more precise than previous attempts using 1D-track 

 Kinematics within the shear bands are very different from those outside the shear 

band. Particle rotation magnitudes increase much faster in the bands. Rotational 

axes align themselves preferentially, perpendicular to the steepest descent direc-

tion of the band.  

 Sand grains in the shear plane show both positive and negative spins (upwards 

and downwards the plane), revealing commonalities in the shear flow mecha-

nisms of sands with those of simpler granular materials. 
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 Shape descriptors related to particle form, such as elongation or flatness indexes 

appear to be poorly correlated with observed particle rotation. 

 Shape descriptors related to particle sphericity have a significant effect on parti-

cle rotation. This effect is far less important on the average value than on the 

upper limit of rotation. 

 

It may be concluded that the link between particle shape and particle kinematics is only 

effective at the margin. This was to be expected, as it is a link necessarily mediated by 

particle connectivity. Despite this limitation, and until particle connectivity can be im-

aged with equal precision in experiments, the microscale results here presented should 

facilitate the calibration of advanced DEM contact models to represent shape effects, as 

it will be detailed in Chapter 8. 
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    A rolling resistance contact model 

accounting for Particle Shape 

_______________________________________________ 

 

8.1  Introduction 

Rolling resistance elasto-plastic contact models are frequently used to approximate par-

ticle shape effects in simulations using the Discrete Element Method (DEM). These mod-

els offers substantial computational benefits at the price of increased calibration com-

plexity. Usually a calibration of several micro-parameters is required, most importantly 

a rolling resistance coefficient. A different approach is taken in this work, where the 

value of rolling resistance has been directly linked to true sphericity (Equation 2.5), a 

basic measure of grain shape. When shape measurements are performed (Chapter 6), 

this link enables independent assignment of the rolling resistance coefficient for each 

particle in a manner that is statistically compatible with shape characteristics. It does also 

allow the shape variability of natural soils to be easily taken into account. 

 

The link between rolling resistance and shape is here formulated and then calibrated to 

reproduce the triaxial tests – in terms of mechanical (see Chapter 5) and kinematic (see 

Chapter 7) responses – of two different sands: Hostun and Caicos sands. It is then vali-

dated by simulating other triaxial tests (1) with the same sands, but in different condi-

tions (2) with Ottawa sand, for which 3D grain images were also available for examina-

tion, and (3) with Ticino sand, for which only 2D grain images were available. 

The Itasca DEM software PFC5 (Itasca Consulting Group Inc., 2014) has been used for 

all the numerical simulations. 
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8.2  Contact rolling resistance model 

In this work, a simplified version of the Iwashita-Oda contact model (Iwashita and Oda, 

1998) has been used under the following assumptions: 

(1) The rolling stiffness (kr) is defined as Iwashita’s original contact model: 

kr=ksR2 (8.1) 

where ks is the contact shear stiffness and R the effective radius defined as 

R=
1

R1
+

1

R2
 (8.2) 

being R1 and R2 the radii of the two particles in contact. 

(2) The moment-rotational contact law is implemented as an elastic-perfectly plastic 

model with the yielding moment (M*) defined as: 

M* = μrFnR (8.3) 

where μ
r
 is defined as rolling friction coefficient and Fn is the normal contact force. The 

rolling resistance part of the contact model used in this study is illustrated in Figure 8.1. 

 

 

(a) (b) 

Figure 8.1: Rolling resistance contact model (Iwashita and Oda, 1998) (a) and elastic-perfectly plastic 

model accounting for rolling resistance at contact (b) 

 

Additional viscous dissipation parameters are not added to the model because not 

needed for the quasi-static condition (low inertial numbers) under the previous assump-

tions, as pointed out by (Wensrich and Katterfeld, 2012). Therefore, the rolling dashpot 

of Figure 8.1a is not included in the contact model. 



199 

8.3 Relating rolling resistance and particle shape 

This Chapter exploits a novel approach to relate the particle shape with the rolling re-

sistance applied at the contacts, extending the model that was originally proposed in 

(Rorato et al., 2018). In particular, it is hypothesized that the degree of true sphericity (ψ) 

of one particle is univocally related with a coefficient of rolling friction (μ
r
), through a re-

lation 

μr = 𝐹(ψ) (8.4) 

valid for all the spherical particles participating in the DEM simulation. Therefore, if the 

statistical distribution of sphericity is known for one particular sand (see Figure 6.21), it 

is possible to extract infinite values so that one measure of ψ can be assigned to each 

sphere of the numerical specimen, and therefore the rolling friction coefficients can distrib-

uted through all the discrete elements. 

Note that when two spheres overlap, a contact is formed and two different values of μ
r
 

participate to the contact law. The solution to avoid this ambiguity is to select the mini-

mum, as 

μr = min (μr,1 , μr,2) (8.5) 

where μ
r,1

 and μ
r,2

 are the rolling friction coefficients of the two contacting spheres. A 

similar consideration is usually made with the sliding friction coefficient when two bodies 

of different materials contact. Thus, the rolling resisting yielding moment (M*) varies at 

each contact depending on (1) the radii of the contacting spheres, that is the effective ra-

dius, R, (2) the normal contact force Fn and (3) the coefficient of rolling friction, different for 

each contact (from Eq. 8.4 and 8.5). 

8.4 Model calibration 

The question then is what shape function 𝐹(ψ) might take. Chapter 7.3 showed that 

rounded sands tend to rotate more in average than angular sands, especially inside the 

shear band, and it is known that the rolling friction coefficient is the contact parameter 

that controls the magnitude of relative rotation in the DEM. Therefore, a first reasonable 
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hint come from the fact that 𝐹(ψ) should provide low values of rolling friction when the 

grain sphericity is high, and vice-versa. Theoretically, it should be zero for a sphere 

(ψ=1), however many researchers agree that the experimental responses of real soils 

cannot be fitted numerically when freely rotating spheres are used (Ng, 1994; 

Rothenburg and Bathurst, 1992; Zhou et al., 1999). Experimentally, Skinner (Skinner, 

1969) noted that the macroscopic friction angle of an assembly of glass ballotini does not 

change significantly if the inter-particle friction is varied by a factor of 5. Therefore, it is 

crucial to assign some rotational resistance to DEM spherical elements if the goal is to 

reproduce experimental results. To the extreme, some researchers inhibited the particles 

relative rotation in order to mimic the effect of angular sand grains, achieving successful 

results (Arroyo et al., 2011; Calvetti et al., 2003; Ciantia et al., 2015), however this ap-

proach is far from physical. Bardet (Bardet and Huang, 1992) claimed that both choices 

(freely and fixed balls rotations in DEM) provide macroscopic friction angles that are 

different from those observed experimentally.  

8.4.1 Target experimental data 

In this work, the goal is to find the equation of 𝐹(ψ) that could best match the experi-

mental triaxial tests performed on Hostun sand (specimen “HNEA01”) and Caicos ooids 

(specimen “COEA04”). The calibration procedure here proposed aims to fit the conven-

tional macro-mechanical responses (shown in Figure 6.1) together with kinematic micro 

measures. In particular, the histories of the cumulated grain rotations are known for each 

grain from the experiments (Chapter 7.3) and the particles rolling frictions - that is Eq. 

(8.4) - can be adjusted trying to reproduce similar kinematic responses inside the shear 

bands of the numerical specimens (Figure 7.12). It is indeed well known from past DEM 

studies (Cheng et al., 2017; Estrada et al., 2008; Wensrich et al., 2014; Wensrich and 

Katterfeld, 2012) that the same macroscopic friction angle can be obtained from several 

couples of sliding friction coefficient (𝜇) and rolling friction coefficient (μ
r
) (see Chapter 4.3.5 

for some example results). Both parameters contribute to the shear resistance of the nu-

merical specimen, and their influence is coupled. In other words, the effect of increasing 



201 

rolling friction saturates if the sliding friction is not increased together, and vice-versa. 

The coupling between these parameters does not affect only the overall shear resistance, 

but also how the particles rearrange, slide and rotate under shearing. Fixing the rolling 

friction (μ
r
) to a value, the average rotation of the balls will be high if the sliding friction 

is high. This is because a low sliding friction eases sliding at contact between two parti-

cles, thus hindering their relative rotation. However, the rotational information available 

from Chapter 7.3 (see Figure 7.12) provides a unique solution, able to respect either the 

mechanics either the kinematics at failure. 

In order to fit the average grains rotations inside the shear bands, it is necessary first to 

individuate the grains belonging to the shear band for both the physical and numerical 

specimens. Regarding the experimental samples, this task is already accomplished in 

Chapter 7.3.1 (see Figure 7.6). The same procedure is exploited here for the numerical 

samples. As explained in section 7.2.4, it computes a local strain at the particle-level 

(called “micro-strain” by Catalano et al. 2014) on each Voronoi domain centred at each 

particle. A threshold is then set to separate the discrete elements that belong to the shear 

band with those which are outside of it. Once the labels of the particles belonging to the 

shear band are known, the average rotations can be obtained and plotted in function of 

the axial strain, so that the evolution of the mean rotations inside the shear band can be 

followed as the test proceeds, as it will be shown later in Figure 8.5 and Figure 8.7. 

8.4.2 Mapping function 

The equation of 𝐹(ψ) is finally chosen, after an iterative procedure, according to a power 

law written as 

μr = 0.1963(ψ)−8.982 (8.6) 

and plotted in Figure 8.2. 
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Figure 8.2: Power law relating the degree of true sphericity of a grain (known) with the rolling friction 

coefficient to apply to its spherical counterpart in the DEM simulation. The shaded area indicates the max-

imum  

 

The proposed equation presents an inversely proportional relationship between ψ and 

μ
r
, in which a minimum limiting rolling friction coefficient of about 0.2 is assigned to 

spherical particles (ψ=1), for the reasons previously explained. Since the maximum ad-

missible value of true sphericity is one, the plot is shaded area above this limit.  

8.4.3 Calibration procedure  

The triaxial test on Hostun and Caicos sands at 100kPa confining pressure are used to 

calibrate the contact model. The initial DEM samples are prepared matching the void 

ratio and Particle Size Distribution (PSD) of the physical specimens before performing 

the triaxial test, the target porosities are achieved by using different initial friction coef-

ficients (μ
0
). The small size of the samples (10mm diameter and 20mm height) allows 

preparing the numerical specimens at the same scale of the experiments, so that a scaling 

factor is not applied to the balls radii. Doing so, the initial models contain about 60.000 

particles, comparable to the number of grains inside specimens HNEA01 and COEA04. 
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The contact normal and shear stiffness are defined as 

 

𝑘𝑛 =
𝐴𝐸𝑚𝑜𝑑
𝐿

 ;  𝑘𝑠 =
𝑘𝑛
𝑘𝑟𝑎𝑡𝑖𝑜

 (8.7) 

where 𝐸𝑚𝑜𝑑 and 𝑘𝑟𝑎𝑡𝑖𝑜 have been set respectively equal to 0.2GPa and 2.0, being A the 

diameter of the smallest contacting sphere and L the distance between grain centres. This 

method assures that the normal and shear contact forces are independent of the element 

diameter, thus allowing scaling of the particles without affecting the deformability (Feng 

and Owen, 2014). The specimens are then isotropically compressed by a servo-controlled 

mechanism that applies 100kPa confining pressure.  

Afterwards, the sliding friction and the rolling friction coefficients equation (Eq. 8.4) are 

adjusted independently for the two sands to fit the experimental results, according to 

the described calibration procedure. After several iterations, the sliding friction coeffi-

cients is finally set to 0.575 for both sands, and Eq. 8.4 is finally set equal to Eq. 8.6 to fit 

the rotations of both experiments. Under all these assumptions, the stress-strain re-

sponses comparisons of the two sand samples are showed in Figure 8.3 and Figure 8.4, 

together with other two experimental curves of Hostun (HNEA03) and Caicos (COEA03) 

sands at same confining pressure. 
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Hostun sand at 100kPa 

 

 

Figure 8.3: Comparison between the triaxial responses (100kPa confining pressure) of the experiments 

(specimens HNEA01 and HNEA03) and the numerical model (DEM) replicating Hostun sand. The me-

chanical responses from Kawamoto et al. (2018) are also reported for comparison. 
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Caicos sand at 100kPa 

 

 

Figure 8.4: Comparison between the triaxial responses (100kPa confining pressure) of the experiments 

(specimens COEA03 and COEA04) and the numerical model (DEM) replicating Caicos sand. 

 

The macro-mechanical responses can be well reproduced using the proposed approach. 

A slight diversion can be noted for the volumetric strain of Caicos sand, however this is 

due to lateral boundary conditions that are different for the physical (flexible membrane) 

and numerical samples (rigid cylindrical wall). 

The other element our approach aims to fit is the mean particles rotations histories inside 

the shear bands. Figure 8.5 shows the results of the shear band identification procedure, 

described in the previous section, for both the experiment and the DEM simulation.  
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Caicos Hostun 

Experiment DEM Experiment DEM 

    

(a) (b) (c) (d) 

Figure 8.5: Shear band identification for the experiments and the DEM simulation for both sands (speci-

mens HNEA01 and COEA04). Physical (a-c) and numerical (b-d) particles are coloured black if the “micro-

strain” (Catalano et al., 2014) calculated on the Voronoi domain centred on the particle is greater than 

0.10 (i.e. they belong to the shear band). The same threshold separates the grains from both sands and both 

physical and numerical samples. 

 

The first important observation is that the numerical sample is clearly able to localise 

failure, whereas the extreme cases of freely and fixed rotating spheres cannot (Iwashita 

and Oda, 1998). This effect is here made visible in Figure 8.6 showing the vertical (i.e., 

“Z”) balls displacements at the end of the triaxial tests (i.e., 15% shortening) in three 

different situations (i.e. fixed rotations, free rotations, and exploiting rolling resistance). 
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Fixed rotations Free rotations Rolling resistance 

   

−1.5  +1.5 
𝑧 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 (𝑚𝑚) 

Figure 8.6: Z-displacements in a vertical section of the DEM sample representing Hostun sand compressed 

at 100kPa confining at 15% axial strain. 

 

It is evident that the shear bands geometries of Figure 8.5 compares well, although the 

band thicknesses are larger in the numerical samples because of the absence of a deform-

able lateral constrain. However, the experimental observation that the shear band of 

Hostun is thicker than that of Caicos sand (due to interlocking effects) is also visible in 

the DEM samples, proving that the DEM materials behave physically. 

Once the balls labels belonging to the shear band are known (black grains of Figure 8.4b-

d), as well as their cumulated rotations (obtained in Chapter 7), it is possible to adjust 

Eq. 8.4 to fit these experimental histories. The comparisons between these histories meas-

ured inside the shear band are shown in Figure 8.7, and it is evident they compare well. 

Therefore, it can be concluded that the set of DEM parameters used is well calibrated to 

reproduce the macroscopic triaxial responses as well as the particles kinematics where 

the material failure occurs. In other words, the rolling resistance contact model here pro-

posed induces rotations of the spheres that are comparable to those of the physical grains 

throughout the whole execution of the test. 
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Caicos (COEA04) 

Mean rotations inside the shear band 

Hostun (HNEA01) 

Mean rotations inside the shear band 

  

Figure 8.7: Mean particle rotations for the grains located inside the shear bands (the black grains of Figure 

8.5) for both the experimental and numerical samples, throughout the execution of the triaxial test. The 

good fit ensures the kinematics at failure is respected. 

 

Table 8.1 and Table 8.2 summarises respectively the initial conditions and DEM param-

eters used for the DEM calibration on Hostun and Caicos sands and the drained triaxial 

tests performed. The properties and tests of Ottawa and Ticino sands, which will be later 

used for validation, are also reported. 

Parameter Symbol Hostun Caicos Ottawa Ticino 

Specimen sizes 

(height, diameter) 

𝐻𝐶(𝑚𝑚) 

𝐷𝑐(𝑚𝑚) 

20 

10 

20 

10 

20 

10 

20 

10 

Effective normal 

contact stiffness 

𝐸𝑚𝑜𝑑 

(108𝑃𝑎) 
2.0 2.0 1.5 4.0 

Normal-to-shear 

stiffness ratio 
𝑘𝑟𝑎𝑡𝑖𝑜 2.0 2.0 2.0 2.0 

Inter-particle 

friction coefficient 
𝜇 0.575 0.575 0.450 0.600 

Degree of true sphericity ψ (Fig. 6.21) (Fig. 6.21) (Fig. 6.21) (Eq. 6.6) 

Rolling friction coefficients μ
r
 (Eq. 8.6) (Eq. 8.6) (Eq. 8.6) (Eq. 8.6) 
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Parameter Symbol Hostun Caicos Ottawa Ticino 

Rolling stiffness 𝑘𝑟 (Eq. 8.1) (Eq. 8.1) (Eq. 8.1) (Eq. 8.1) 

Local damping (-) 0.7 0.7 0.7 0.7 

Ball density 𝜌 (
𝑘𝑔

𝑚3
) 2500 2500 2500 2500 

Ball scaling factor (-) 1 1 1 1 

Confining pressures 𝑃 (𝑘𝑃𝑎) 
100 

300 

100 

300 

100 

300 

100 

200 

300 

Inertial number 𝐼 (10−4) 4.00 4.74 3.67 6.28 

Table 8.1: Parameters and input variables employed in the DEM simulations on Hostun, Caicos and Ot-

tawa sands. 

 

Sand Specimen Purpose 

Relative  

density 

(EXP) 

Confining 

pressure 

Initial 

porosity 

(EXP) 

Initial 

porosity 

(DEM) 

- - - 𝐷𝑅(%) (𝐾𝑃𝑎) 𝑛0,𝑒𝑥𝑝(%) 𝑛0,𝐷𝐸𝑀(%) 

Hostun HNEA01 Calibration 83 100 39.7 39.0 

Hostun HNEA02 Validation 95 300 38.2 38.6 

Caicos COEA04 Calibration - 100 31.9 33.2 (*) 

Caicos COEA02 Validation - 300 33.2 34.3 (*) 

Ottawa OUEA04 Validation 112 100 31.4 34.1 (*) 

Ottawa OUEA02 Validation 84.9 300 35.6 35.8 

Table 8.2: Drained triaxial compression tests performed in this chapter. The relative density and porosity 

of each experimental/numerical test are reported. The symbol (*) means that a denser specimen could not 

be generated for the DEM simulation. 
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8.5  Validation of the contact model 

A first hint that the proposed model can represent properly the effect of shape comes 

from the original work of Kawamoto et al. (Kawamoto et al., 2018). They used a level-set 

approach to build an avatar specimen of HNEA01 and simulated real shaped particles 

with DEM. The 480 cores of the San Diego Supercomputer provided the triaxial response 

of specimen HNEA01 that was found to be very close to the experiment. The fact that 

the results here obtained (using spheres with rolling resistance and very similar sliding 

friction coefficients, 0.55 vs 0.575) are comparable, suggests that the effect of particle 

shape can be well imitated by our contact model. In other words, the effect of particle 

shape in Hostun sand is adequately simulated by the proposed – more practical – ap-

proach exploiting rolling resistance. 

Apart for that, the proposed equation (Eq. 8.6) to relate univocally the degree of true 

sphericity of a particle and the coefficient of rolling friction to assign is tested for valida-

tion in three different situations: (1) higher confining pressures, (2) testing a third type 

of sand (Ottawa sand) for which the statistical distribution of 3D sphericity was known 

and (3) testing a fourth type of sand (Ticino sand) for which the distribution of 3D sphe-

ricity was not known (presented in Chapter 9). 

8.5.1 Validation 1: Triaxial test on Hostun and Caicos sands at 300kPa confining 

pressure  

The proposed approach is tested for validation at higher confining pressures, for which 

the experimental data is available from (Andò, 2013). Firstly, the initial porosities (before 

shearing) of the Caicos and Hostun samples are matched using initial friction angles (μ
0
) 

greater than zero, secondly the 300kPa confining pressure is applied by a servo-con-

trolled mechanism, and finally the specimens are compressed in triaxial condition until 

failure is reached. The model properties for balls and contacts are same as the 100kPa 

confining case, since the sand types are the same. 
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Figure 8.8 and Figure 8.9 show the stress-strain-volumetric response of the numerical 

and experimental tests. The numerical curves compare well with the experiments except 

for the volumetric dilatation of Caicos sand. A similar trend was observed at 100kPa 

confining case, this is due to boundary effects created by the rigid lateral wall. Further 

work will implement an elastic membrane in order to ease the material failure localisa-

tion along a narrow shear band that would induce a lower global volumetric dilatation 

of the soil sample. 

Hostun sand at 300kPa 

 

 

Figure 8.8: Comparison between the triaxial responses (300kPa confining pressure) of the experiments 

(specimens HNEA02 and HNEA04) and the numerical model (DEM) replicating Hostun sand. 
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Caicos sand at 300kPa 

 

 

Figure 8.9: Comparison between the triaxial responses (300kPa confining pressure) of the experiment (spec-

imen COEA02) and the numerical model (DEM) replicating Caicos sand. 

8.5.2 Validation 2: Triaxial test on Ottawa sand at 100kPa and 300kPa 

First, the shape properties of one labelled 3D tomographic image of Ottawa sand 

(scanned by Edward Andò at 3SR Laboratory, Grenoble) have been measured, so that 

the degree of true sphericity can be easily calculated, as shown in Chapter 6.3 (Figure 6.21). 

Secondly, the initial DEM specimen is prepared matching the experimental PSD and po-

rosity (31.4% for OUEA04 and 35.6% for OUEA02). Doing so, about 102.000 balls are 

generated, that approximate well the grains contained in the physical sample, 110.000.  
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The contact stiffness properties Emod and kratio (i.e. kn and ks) are set respectively 1.5.108 Pa 

and 2.0 in order to fit the initial elastic part of the stress-strain mechanical curve. 

Subsequently, the relationship proposed (Eq. 8.6) is used to relate shape with rolling 

friction, so that finally the coefficient of sliding friction (𝜇) remains the only important 

free parameter to be adjusted in order to fit the macro-mechanical response of Ottawa 

sand, and it is set 0.45.  

Figure 8.10 and Figure 8.11 shows the comparison between the experimental and nu-

merical results respectively at 100kPa and 300kPa confinements, after shearing in triaxial 

conditions at the same shear rate of the previous simulations. Additional details about 

the physical experiments can be found in Chapter 5.3.3. The simulations provide similar 

results compared to the experiments, indeed both the stress-strain and volumetric curves 

are well reproduced. 

Ottawa sand at 100kPa 
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Figure 8.10: Comparison between the triaxial responses (100kPa confining pressure) of the experiments 

(specimens OUEA04 and OUEA06) and the numerical model (DEM) replicating Ottawa sand. 

 

Ottawa sand at 300kPa 

 

 

Figure 8.11: Comparison between the triaxial responses (300kPa confining pressure) of the experiments 

(specimens OUEA02 and OUEA03) and the numerical model (DEM) replicating Ottawa sand. 
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8.5.3 Validation 3: Triaxial tests on dense, medium and loose Ticino sand at 100-200-

300 kPa 

An additional validation of the proposed approach will be shown in Chapter 9.3 for Ti-

cino sand, for which the 3D distribution of true sphericity is not known. 

8.6 Comparison with rolling frictions from particles eccentricity 

In this section, the values of rolling frictions obtained from Eq. (8.6) are compared to the 

ones computed using a completely different -geometrical- approach originally proposed 

by Wensrich & Katterfeld (2012) (Wensrich and Katterfeld, 2012) and then improved in 

(Wensrich et al., 2014). In particular, they claimed that rolling resistance is originated at 

the micro-scale level by the eccentricity of the contact, as shown in Figure 8.12. 

 

Figure 8.12: Contact of un-spherical particles producing a torque (𝑇) due to the eccentricity (e) of the nor-

mal contact force (Fn) (Wensrich and Katterfeld, 2012) 

 

Assuming the magnitude of the torque 𝑇 at the contact equal to 

|𝑇| = 𝑒|𝐹𝑛| (8.8) 

and being M* the limiting value of  from the contact model (Eq. 8.3), Wensrich & Katter-

feld supposed that a good estimation of the rolling friction is obtained imposing 

|𝑇| =  M*, that leads to 

𝜇𝑟 =
〈𝑒〉

𝑅𝑟
 (8.9) 

where 〈𝑒〉 is the average eccentricity of contact over all possible contacts and 𝑅𝑟 is the 

rolling radius.  
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In this work, the values of 𝜇𝑟 are first computed using this approach for all the grains of 

HNEA01 and COEA04, and then compared with the values obtained from Eq. (8.6). The 

average eccentricity and the rolling radius of each grain are computed numerically ex-

ploiting the vertices of the surface mesh created by the Marching Cubes algorithm im-

plemented in the Scikit-image python library (van der Walt et al., 2014). The comparison 

between the two approaches is shown in Figure 8.13. 

 

Figure 8.13: Rolling frictions of all particles involved in the simulation obtained from both eccentricity 

calculation and Equation 8.6. For high values of particle sphericity (i.e., ψ>0.90) the two approaches pro-

vide similar values. 

 

It is evident from Figure 8.13 that both approaches provide values of rolling frictions 

that decrease with particle sphericity, as expected. It is somehow surprising that the two 

approaches, although conceptually completely different, provide similar rolling frictions 

values, especially at higher values of particle sphericity (i.e., ψ>0.90). Both approaches 

suggest that even for very spherical grains, a coefficient of rolling friction of about 0.20 

should be assigned. However, the results start diverging when the grains become more 

angular. It worth reminding that Eq. (8.6) has been design to match the experimental 

material responses. Therefore, if the rolling frictions from the eccentricity calculations 

are assigned in the DEM simulation, the numerical response is weaker than the experi-

ments, especially for specimen HNEA01 as shown in Figure 8.14. 
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Hostun sand at 100kPa 

 

 

Figure 8.14: Comparison between the triaxial responses (100kPa confining pressure) of the experiments 

(specimens HNEA01 and HNEA03) and the numerical DEM models exploiting rolling resistance obtained 

from Eq. 8.6 (red curves) and from the eccentricity calculation (Eq. 8.9, dark red curves). 

 

It means that the geometrical description of particle shape is not sufficient to capture all 

of the contributions provided by shape to the shearing material resistance. However, 

some other contributions (e.g., grain interlocking, adhesion), which are not directly re-

lated to shape as a geometric property of one single particle, are somehow included in 

the proposed relationship described by Eq. (8.6). 
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8.7  Summary 

A new DEM contact model exploiting rolling resistance to mimic the effects of particle 

shape has been described in this Chapter. The main concepts and findings are summa-

rised hereafter: 

 

 An innovative technique to relate univocally the degree of true sphericity of each 

grain with the rolling friction of its numerical counterpart is proposed; 

 This approach has been calibrated to respect either the triaxial macro-mechanical 

responses (i.e., stress-volumetric-strain) of Hostun and Caicos sands (at 100kPa) 

either the kinematics at failure (i.e., the cumulated rotations in the shear bands); 

 An extensive validation for different sands and different confining pressures has 

been made; 

 If the statistical distribution of sphericity is known, either from experiments ei-

ther from the literature, the resisting rolling moment is entirely determined since 

all the parameters involved in the contact model are known or predictable; 

 Natural shape variability is automatically incorporated in the numerical samples; 

 The contact detection remains economical and advanced algorithms are not re-

quired, maintaining low the computational time; 

 If the initial numerical sample reproduces the experimental void ratio and PSD, 

the only crucial free parameter that must be determined by trial-and-error pro-

cedures is the inter-particle sliding friction coefficient. 
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    Cone Penetration Test on a Virtual 

Calibration Chamber (VCC) using DEM 

_______________________________________________ 

 

9.1  Introduction 

The Cone Penetration Test (CPT) is the most popular type of in-situ test performed 

around the world, because it is fast, economical, and provide a continuous reading of 

soil parameters with stratigraphy. It consists in pushing a cylindrical steel rod (with a 

diameter of 35.6 mm) equipped with a cone probe into the ground at constant rate (2 

cm/s). Electric sensors transmit the readings of the cone tip and shaft resistances that can 

be input in empirical relationships (calibrated in Calibration Chambers) to assess soil 

properties and parameters. Additional sensors can be used to measure pore water pres-

sure (i.e., piezocone), resistivity, and shear wave velocity among others.  

Calibration Chambers (CC) are laboratory equipments capable of representing large-

scale environmental conditions to run in situ geotechnical tests in the laboratory. The 

soil sample size is large enough and the boundary conditions are set so that the experi-

mental laboratory results can be interpreted as if they were applied in-situ, as shown in 

Figure 9.1. 
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Figure 9.1: Purpose of calibration chambers (from ISMGEO website) 

 

Calibration chambers are historically used to establish correlations between geotechnical 

parameters for CPT, for example to relate the penetration resistance with the relative 

density of the material tested (Ghionna and Jamiolkowski, 1991; Jamiolkowski et al., 

1988), to develop new geotechnical instrumental tools, to test model piles, tie roads, and 

for many other applications. 

The major disadvantage of testing soil in calibration chambers is that it is extremely ex-

pensive and time consuming. Not many calibration chambers have been built around 

the world, and each test requires the preparation of several tons of soil materials. 

This Chapter describes how a Virtual Calibration Chamber (VCC) can be built using 

DEM to investigate efficiently the effect of chamber geometry, soil parameters and 

boundary conditions on the penetration resistance of CPT tests. 
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9.2  Previous work 

A major contribution to the investigation of CPT tests performed in a virtual calibration 

chamber with DEM is given by Arroyo & Butlanska (Arroyo et al., 2011; Butlanska, 2014; 

Butlanska et al., 2014).   

Butlanska (Butlanska, 2014) simulated a discrete material representing Ticino sand un-

der different initial conditions (i.e. stress history, relative density, consolidation method) 

and different boundary conditions to (a) reproduce some experimental results, (b) inves-

tigate the effect of cone and chamber geometry, (c) explore the possibility of exploiting 

chamber radial symmetries.  

The numerical results were compared to the experimental tests performed in the calibra-

tion chamber of ENEL-CRIS (Milan, Italy) and ISMES (Bergamo, Italy) by Jamiolkowski 

(Jamiolkowski et al., 2003, 1988), that is one of the largest testing campaigns ever per-

formed on a calibration chamber. The ISMES calibration chamber is shown in Figure 9.2, 

as well as its cross-section geometry. 

 

Figure 9.2:  ISMES calibration chamber located in Bergamo (Italy) and its cross-section geometry. 
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The chamber height is 150cm and the diameter is 120cm. It can apply four types of 

boundary conditions (BC1, BC2, BC3, BC4) as schematically shown in Table 9.1 and Fig-

ure 9.3. The vertical stress is applied by a piston on the bottom boundary, whereas the 

top is fixed because of the presence of the cone. The lateral stress is applied by water 

pressure acting on the lateral membrane surrounding the soil specimen. 

 

 Top and bottom boundary Lateral boundary 

BC Name Stress Strain Stress Strain 

BC1 const. - const. - 

BC2 - 0 - 0 

BC3 const. - - 0 

BC4 - 0 const. - 

Table 9.1: Boundary conditions that can be applied by the ISMES calibration chamber 

 

 

Figure 9.3: Representation of stresses and strains applied by the ISMES calibration chamber 

 

The soil sample is prepared by pluvial deposition until the chamber is entirely filled, 

then it is left for 30 minutes at the target boundary conditions before starting penetrating.  

The Virtual CC build by Butlanska was shortened by a factor two compared to the ENEL 

chamber, while the diameter was kept of real size. The lateral walls were modelled as 
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rigid and frictionless, while in the physical chamber was flexible, the stress boundary 

conditions were applied by a servo-controlled mechanism applied on the lateral cylin-

drical wall and on the top wall only, with the bottom wall fixed. This is in contrast with 

what was performed in the physical tests, where the top wall was fixed and the bottom 

one was moved by the piston. 

The balls for the DEM simulations were generated with the radius expansion method 

inducing slightly denser specimens compared to the experiments, and the ball were 

scaled-up 50 times to have a reasonable number of spheres (about 60 thousands). The 

particles properties were calibrated by fitting the macroscopic triaxial responses of Ti-

cino sand at 100kPa at medium relative density (𝐷𝑅 = 75%) and then validated at 100-

200-300kPa for three different relative densities (𝐷𝑅 = 45%,𝐷𝑅 = 75%, 𝐷𝑅 = 90%). Ta-

ble 9.2 lists all the parameters of their VCC DEM simulations. In all the simulations, the 

ball rotations were inhibited to consider the angularity of the Ticino sand grains. 
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Parameter Symbol Value or relationship 

Chamber sizes (height, diameter) 𝐻𝑉𝐶𝐶 , 𝐷𝑉𝐶𝐶 70cm, 120cm 

Normal contact stiffness 𝑘𝑛 300𝑀𝑁/𝑚 ∙ 2.0
𝐷1 𝐷2

𝐷1+𝐷2
  

Shear contact stiffness 𝑘𝑠 0.25 𝑘𝑛 

Inter-particle friction coefficient 𝜇𝑏 0.35 (19.3º) 

Ball rotation  Inhibited 

Local damping  0.1 

Ball density 𝜌 2500 kg/m3 

Ball size  𝐺𝑆𝐷 × 50 

Boundary conditions BC BC1 - BC3 

Confining pressures 𝜎𝑣 , 𝜎ℎ 

 𝜎𝑣 = 122𝑘𝑃𝑎 − 𝜎ℎ = 54𝑘𝑃𝑎 

 𝜎𝑣 = 212𝑘𝑃𝑎 − 𝜎ℎ = 88𝑘𝑃𝑎 

 𝜎𝑣 = 313𝑘𝑃𝑎 − 𝜎ℎ = 133𝑘𝑃𝑎 

Cone size 𝑑𝑐 𝑑𝑐,𝐸𝑋𝑃 × 2 = 71.2𝑚𝑚 

Penetration velocity 𝑣𝑐 𝑣𝑐,𝐸𝑋𝑃 × 5 = 10𝑐𝑚/𝑠 

Cone tip  μ
c,t

  μ
c,t
= 𝜇𝑏 = 0.35  

Frictional cone sleeves (<100cm) 

Frictionless cone sleeves (>100cm) 

μ
c,s

 

μ
c,s

 

μ
c,s
= 𝜇𝑏 = 0.35 

μ
c,s
= 0 

Table 9.2: List of DEM properties and parameters used by Butlanska (Butlanska, 2014) 

 

The cone size has been doubled compared to the physical test in order to guarantee a 

minimum number of contacts between the particles and the con tip of ten. Below this 

number, the penetration curves presented large oscillations that make impossible any 

comparison with physical curves. However, this changes the ratio 𝑅𝑑 =
𝐷𝑉𝐶𝐶

𝑑𝑐
⁄  (dou-

bling it) which strongly affected the results, and required the application of difficult to 

calibrate size effect correction factors (Butlanska, 2014). 
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The results of the CPT DEM simulations are reported in Figure 9.4, Figure 9.5 and Figure 

9.6 for different confining pressures and boundary conditions. 

 

Figure 9.4: Comparison of raw experimental and numerical tip resistances for both BC1-BC3 

boundary conditions at 𝜎𝑣 = 122𝑘𝑃𝑎, 𝜎ℎ = 54𝑘𝑃𝑎 (Butlanska, 2014) 

 

 

Figure 9.5: Comparison of raw experimental and numerical tip resistances for both BC1-BC3 boundary 

conditions at 𝜎𝑣 = 212𝑘𝑃𝑎, 𝜎ℎ = 88𝑘𝑃𝑎 (Butlanska, 2014) 
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Figure 9.6: Comparison of raw experimental and numerical tip resistances for both BC1-BC3 boundary 

conditions at 𝜎𝑣 = 313𝑘𝑃𝑎, 𝜎ℎ = 133𝑘𝑃𝑎 (Butlanska, 2014) 

 

It is evident BC3 was well reproduced by Butlanska under all (anisotropic) confining 

pressures. However, for BC1, the numerical curves were found to be far below the ex-

perimental ones. This was due to the different ratio chamber to cone diameters (𝑅𝑑) that 

strongly influences the results under BC1 conditions, and therefore a chamber size cor-

rection would need to be applied.  

In the current work, the proposed rolling resistance approach is tested by recalibrating 

Ticino sand and simulating anew the calibration chamber tests. Moreover, a multi-scal-

ing technique for particle sizes is proposed to avoid any change in the 𝑅𝑑 ratio. 

 

Falagush et al. (Falagush et al., 2015) studied with DEM the effect of particle shape and 

crushing on the penetration resistance of the CPT test, although they did not intend to 

reproduce experimental tests, but only to reproduce qualitatively the behaviour. They 

considered only 1/4 and 1/12 (i.e., respectively 90° and 30°) of the entire calibration cham-

ber to save computational time, exploiting the cylindrical symmetry of the problem. A 

similar approach was also tested by Butlanska (Butlanska, 2014) who however claimed 

the cylindrical symmetry is hard to be maintained. Several particle shapes were tested 

by Falagush et al. (2015) using clumps, who also tested freely and fixed rotating spheres. 

In addition, they created the initial chamber using different particle scales (dividing the 
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chamber from 3 to 5 zones), in order to have finer particles near the cone tip but avoiding 

the migration of smaller particles into larger voids, as shown in Figure 9.7. They named 

this technique the particle refinement method. 

 

Figure 9.7: Virtual Calibration Chamber segment (30°) with three zones with different particle sizes 

(McDowell et al., 2012). 

 

This multi-scaling approach was previously presented by the same research group in 

(McDowell et al., 2012). Prohibiting particle rotation was found to be the most influential 

factor on the tip resistance. 

The particle refining method is still used nowadays by other researchers (e.g. (Sharif et 

al., 2019)) to achieve a fast generation of DEM samples, together with other methods as 

the Periodic Cell Replication Method (PCRM), proposed by Ciantia (Ciantia et al., 2018). 

An example of cell built using both methods together is shown in Figure 9.8. 

  

(a) (b) 

Figure 9.8: Top view of the VCC built by Sharif et al., (2019) exploiting multiple particle scales (7 zones) 

and the PCRM method showing ball sizes (a) and contact forces (b). Images from (Sharif et al., 2019). 
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9.3  Microscopic calibration of DEM parameters: Drained triaxial test on Ti-

cino sand 

Ticino sand is a poorly graded medium-sized sand, with grains of medium angularity. 

The macroscopic responses of Ticino sand have been well reproduced with DEM by sev-

eral researchers using unspherical particles (Gotteland et al., 2009) and with the assump-

tion of fixed ball rotations (Arroyo et al., 2011; Butlanska et al., 2014; Calvetti, 2008). In 

this work Ticino sand is modelled using rolling resistance to mimic grain shape, exploit-

ing the proposed relationship (Eq. 8.6). However, there are no tomographic images of 

this sand in the literature nowadays. Therefore, the statistical distribution of the 3D de-

gree of true sphericity to be input in Eq. (8.6) was not available. Nevertheless, it is shown 

by (Rorato et al., 2019) that the 3D true sphericity present a high correlation coefficient 

with a 2D sphericity measure, perimeter sphericity (𝑆𝑃), under the hypothesis of “oriented” 

particle projection, that means if the particle outline is obtained from a projection of the 

grain laying on their plane of greatest stability (i.e. perpendicularly to its minor length). 

9.3.1 Acquisition of 2D perimeter sphericity from a table scanner (oriented projec-

tion) and determination of rolling friction from 2D sphericity 

The simplest way to get a collection of perimeter sphericities under such “oriented” pro-

jection is to scan about four thousands of grains with a table scanner. Rorato et al. (2019) 

demonstrated that one thousand grains is the minimum sample size able to represent 

the population of sphericities of one sand specimen. The table scanner allows high-res-

olution parallel projection of each grain without parallax errors that can be made by a 

photograph. The table scanner used here has 1200 dpi, or equivalently about 20μm/pixel, 

which is only slightly above the 15μm voxel side used in the 3D μ-CT image acquisition 

for the other sands 

After the scan is performed, the image is binarised, segmented and labelled using the 

open-source python package SPAM (Andò et al., 2017), as shown in Figure 9.9, and the 

2D perimeter sphericity can be calculated for each grain label. 
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Original image (from scanner) Labelled image 

  

(a) (b) 

Figure 9.9: Zoom on (a) the original scan and (b) the labelled image of Ticino sand. 

 

Then, the Equation 6.6 (reported again below, for ease of reference) that relates the 

known 2D perimeter sphericity (𝑆𝑃) and the 3D true sphericity (𝜓) can be applied  for 

each grain 

𝜓 = 1.075(𝑆𝑃) − 0.067 (6.6) 

and the statistical distribution of 3D true sphericity can be plotted as in Figure 9.10, to-

gether with the Hostun, Caicos and Ottawa ones for comparison. 

 

Figure 9.10: Statistical distributions of 3D true sphericity for Hostun, Caicos and Ticino sands. 
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As expected, the mean sphericity of Ticino sand is located between Hostun and Caicos 

sands, and it can be noted that the sample deviation is higher than the other sands, es-

pecially in the left-tail of sphericities.  

9.3.2 Results at 100-200-300kPa confining pressures 

It is now possible to run the DEM simulations, a total of nine triaxial tests are carried out 

and compared to the triaxial experiments performed on Ticino sand selected for the GE-

ODIS project (2004-2005, involving 3SR Grenoble, LIRIGM Grenoble, Ecole Centrale de 

Lyon, LMGC Université de Montpellier, DIS Politecnico di Milano), as reported in 

(Calvetti, 2008). Again, the PSD and initial porosities are matched for all the dense (𝐷𝑅 ≅

90%), medium (𝐷𝑅 ≅ 75%) and loose (𝐷𝑅 ≅ 45%) states, slightly different for each con-

fining pressures (100, 200 and 300kPa).  

The triaxial specimen used for the DEM simulations has the same geometry as the ones 

used for Caicos, Hostun and Ottawa sands, as indicated in Table 8.1, together with the 

properties and parameters employed in the DEM simulations. Particle sizes are kept 

equal to the real grains, so that about 16.000 balls are generated.  The contact stiffness 

properties Emod and kratio (i.e. kn and ks) are set respectively 4.108 Pa and 2.0 in order to fit 

the initial elastic part of the stress-strain mechanical curve. 

Since the distribution of 3D true sphericity is now known, the rolling frictions are as-

signed to each sphere applying first Eq. (6.6) and then Eq. (8.6). The sliding friction co-

efficient (𝜇) is calibrated by trial-and-error using the case (100kPa confining, 𝐷𝑅 ≅ 75%) 

and finally fixed to 0.60. 

The mechanical responses (stress-strain-volumetric) of the nine DEM simulations (1 cal-

ibration, 8 predictions) and relative experiments (three relative densities tested at three 

confining pressures) are showed in Figure 9.11 (𝐷𝑅 ≅ 50%), Figure 9.12 (𝐷𝑅 ≅ 75%) and 

Figure 9.13 (𝐷𝑅 ≅ 90%).  

The complete list of triaxial tests that are performed on Ticino sand is showed in Table 

9.3. 
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Sand Specimen 

Relative 

density 

(EXP) 

Confining 

pressure 

Initial 

porosity 

(EXP) 

Initial 

porosity 

(DEM) 

- - 𝐷𝑅(%) (𝐾𝑃𝑎) 𝑛0,𝑒𝑥𝑝(%) 𝑛0,𝐷𝐸𝑀(%) 

Ticino TC1 47 109 43.5 44.1 

Ticino TC2 46 200 43.7 43.0 

Ticino TC3 41 300 44.1 43.8 

Ticino TC4 72 100 40.5 39.8 

Ticino TC5 74 200 40.3 39.7 

Ticino TC6 75 300 40.1 40.2 

Ticino TC7 90 100 38.2 38.2 

Ticino TC8 93 200 37.8 38.4 

Ticino TC9 93 300 37.8 37.6 

Table 9.3: Drained triaxial compression tests performed on Ticino sand. The relative density and porosity 

of each experimental/numerical test are reported. 
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Loose state (𝐷𝑅 ≅ 50%) 

 

 

Figure 9.11: Triaxial responses of loose Ticino sand at 100-200-300kPa 
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Medium state (𝐷𝑅 ≅ 75%) 

 

 

Figure 9.12: Triaxial responses of medium Ticino sand at 100-200-300kPa 
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Dense state (𝐷𝑅 ≅ 90%) 

 

 

Figure 9.13: Triaxial responses of dense Ticino sand at 100-200-300kPa 

 

It is evident that the triaxial response are well reproduced under all the stress and state 

conditions, confirming the reliability of the proposed approach exploiting rolling re-

sistance to take into account the shape of particles (from 2D scans) efficiently. Very slight 

diversions can be seen for the DEM simulations at 300kPa but it must be mentioned that 

some particle crushing was found in the physical samples at the end of the tests, and 

crushing has not been modelled here. 
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9.4 DEM simulations of CPT tests in the ENEL-ISMES calibration chamber  

This section describes a series of simulations aimed to reproduce several experimental 

CPT experiments performed at the geotechnical laboratories of ENEL-ISMES mentioned 

in Chapter 9.2. In particular, the aim here is to fit the macroscopic penetration curves 

obtained under low (𝜎𝑣 = 122𝑘𝑃𝑎, 𝜎ℎ = 54𝑘𝑃𝑎) and medium (𝜎𝑣 = 212𝑘𝑃𝑎, 𝜎ℎ =

88𝑘𝑃𝑎) confining pressure, under BC1 and BC3 boundary conditions. The high confine-

ment case (𝜎𝑣 = 313𝑘𝑃𝑎, 𝜎ℎ = 133𝑘𝑃𝑎) is ignored because of particle crushing, that was 

present in the experiments but it is not modelled in the current DEM contact model. 

Including crushing in the model is feasible, as demonstrated in the work of Ciantia and 

co-workers (Ciantia et al., 2019a, 2015), but is out of the scope of this work. 

9.4.1 Chamber & cone geometry and properties 

The VCC chamber used here in shown in Figure 9.14. It consists in a rigid frictionless 

cylindrical wall with diameter equal to the physical chamber (i.e., 120 cm) applying the 

target radial stresses by a servo-controlled mechanism. The top and bottom walls are flat 

and frictionless, placed at a distance of 100 cm. That means 50 cm shorter than the phys-

ical chamber, to limit computational expense. As in the experimental tests the top platen 

is fixed and is penetrated by the cone, whereas the bottom platen is servo-controlled.  

The cone is designed to have the same size of the experiment, so that the ratio 𝑅𝑑 =

𝐷𝑉𝐶𝐶
𝑑𝑐
⁄ , that strongly affects the results as evidenced by Butlanska, can be maintained 

equal to that of the physical chamber. 

As in the experimental tests, the cone diameter is set to 35.6mm, the cone tip and the first 

150cm of cone shaft are frictional (μ
c,t
= μ

c,s
= 0.60), and the rest of the shaft is friction-

less (μ
c,s
= 0). The cone is pushed from the top at a constant vertical speed of 10cm/s, 

which is five times higher than in the physical test. This penetration velocity is equiva-

lent to that used by Butlanska (Butlanska, 2014) and below the value chosen by other 
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researchers (Ciantia et al., 2019b; Falagush et al., 2015; Tran et al., 2016), who claimed 

that dynamic effects are only relevant for penetration velocities above 100cm/s. 

 

Figure 9.14: DEM-VCC model reconstruction 

9.4.2 Multiscaling approach for particle size of Ticino sand 

The number of contacts between the cone tip and the particles has a paramount im-

portance. Indeed, as reported by Butlanska (Butlanska, 2014), a minimum number of ten 

(>10) is needed to avoid large oscillations in the penetration curve. On the other hand, it 

is known that the number of elements in DEM simulations strongly affects the compu-

tational time, and that it is impossible to reproduce the real PSD of a soil without scaling-

up the particles. Arroyo (Arroyo et al., 2011) scaled up the Ticino sand granulometry by 

50 to have a reasonable number of balls but also doubled the cone diameter to guarantee 

a minimum number of contacts of 10. However, this changed the ratio  𝑅𝑑 =
𝐷𝑉𝐶𝐶

𝑑𝑐
⁄ , 

thus affecting the results. 

In this work, this problem is tackled with a different approach. In order to (a) maintain 

the ratio chamber to cone diameters (𝑅𝑑) equal to the physical specimen (b) guarantee a 
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minimum number of contacts between cone and particles of ten, and (c) have a reasona-

ble number of particles, it is necessary to adopt a multi-scaling technique  (see Chapter 

9.2) for the ball sizes. In particular, the Ticino PSD of the particles located near the cone 

tip have been multiplied by a scaling factor of 25. This is half of the scaling factor used 

by Butlanska.  

One uniform scaling factor of 25 throughout all the VCC would generates about 1.74 ×

106 of particles, as obtained (see detail in Appendix C) by exploiting the equation pro-

posed by Arroyo et al. (Arroyo et al., 2011). Simulation with such a large number of 

particles is possible but slow and unpractical –without access to large-scale computing 

facilities. 

Therefore, two other scaling factors (50 and 90) are introduced moving away from the 

cone axis (respectively at the radial distances of 0.075m and 0.20m from the cone axis). 

The scaling factor of 90 is chosen to generate a reasonable number of particles (about 

40.000) and the factor of 50 is set to avoid inter-particle penetrations between the 

fine/coarse zones. Figure 9.15 shows the results of this multi-scaling approach. 

 

     

40 𝑚𝑚  1 𝑚𝑚 

(a) 
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(b) 

Figure 9.15: Visualisations of the multi-scaling technique for particle sizes in 3D (a) and 2D, from a vertical 

slice (b). The particles located closer to the VCC vertical axis are smaller compared to the others. The balls 

are coloured by the value of their radii.  

 

The properties and parameters regarding the balls used in the DEM simulations were 

calibrated for Ticino sand in Chapter 9.3. 

Figure 9.16 shows the contact distribution at the end of the anisotropic compression at 

𝜎𝑣 = 122𝑘𝑃𝑎, 𝜎ℎ = 54𝑘𝑃𝑎. It is evident that contact forces are homogenously distributed 

and the specimen can be considered well equilibrated. Obviously, the zone near the cone 

present many weaker forces because of the smaller scale factor applied to ball sizes. This 

can be also observed from Figure 9.17 showing the cumulative density function of nor-

mal contact forces for the tree zones with different ball scaling factors. The forces are 

normalised by the mean value (for each zone). About 62% of the normal forces are below 

the mean, therefore the majority of contact forces can be considered weak. Similar con-

siderations were found in (Radjai et al., 1999). The probability density distributions (after 

normalisation) are very similar for the three zones, confirming the homogenous forces 

distribution within the entire numerical sample.  
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15 𝑘𝑁  0 𝑘𝑁 

Figure 9.16: Contact network at the initial anisotropic state (𝜎𝑣 = 122𝑘𝑃𝑎, 𝜎ℎ = 54𝑘𝑃𝑎) 

 

 

Figure 9.17: Cumulative density functions (in log scale) of the normal contact forces in the three zones with 

different ball scaling factors. Normal forces are normalised with respect to the mean force. 

9.4.3 Comparison of macro-responses with physical dataset of Ticino sand 

Table 9.4 summarises all the properties and parameters used in the CPTs performed in 

this VCC. 
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Parameter Symbol Value or relationship 

Chamber sizes (height, diameter) 𝐻𝑉𝐶𝐶 , 𝐷𝑉𝐶𝐶 100cm, 120cm 

Effective normal contact stiffness 𝐸𝑚𝑜𝑑 4.0 ∙ 108 Pa 

Normal-to-shear stiffness ratio 𝑘𝑟𝑎𝑡𝑖𝑜 2.0 

Inter-particle friction coefficient 𝜇𝑏 0.60 (calibrated) 

Wall friction 𝜇𝑤 0.0 (frictionless) 

Degree of true sphericity ψ Distributions know from 2D scans 

Rolling friction coefficients μ
r
 μ

r
= 0.1963(ψ)−8.982 (Eq. 8.6) 

Rolling stiffness 𝑘𝑟 𝑘𝑠𝑅 (Eq. 8.1) 

Local damping  0.7 

Ball density 𝜌 2500 kg/m3 

 

Ball size 

(GSD of Ticino sand) 

 

GSD 

𝐺𝑆𝐷 × 90 (coarse, far from the cone) 

𝐺𝑆𝐷 × 50 (in between coarse/fine) 

𝐺𝑆𝐷 × 25 (fine, near the cone) 

Boundary conditions BC BC1 - BC3 

Confining pressures 𝜎𝑣 , 𝜎ℎ 
 𝜎𝑣 = 122𝑘𝑃𝑎 − 𝜎ℎ = 54𝑘𝑃𝑎 

 𝜎𝑣 = 212𝑘𝑃𝑎 − 𝜎ℎ = 88𝑘𝑃𝑎 

Initial relative density 

(initial porosity, DEM) 

𝐷𝑅 

(𝑛0) 

𝐷𝑅 ≅ 90%  

(𝑛0 = 0.375) 

Cone size 𝑑𝑐 𝑑𝑐,𝐸𝑋𝑃 × 1 = 35.6𝑚𝑚 

Cone stiffness 𝑘𝑛, 𝑘𝑠 𝑘𝑛 = 𝑘𝑠 = 3 ∙ 10
6𝑁/𝑚 

Penetration velocity 𝑣𝑐 𝑣𝑐,𝐸𝑋𝑃 × 5 = 10𝑐𝑚/𝑠 

Cone tip friction coefficient μ
c,t

  μ
c,t
= 𝜇𝑏 = 0.60  
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Frictional cone sleeves (<150cm) 

Frictionless cone sleeves 

(>150cm) 

μ
c,s

 

μ
c,s

 

μ
c,s
= 𝜇𝑏 = 0.60 

μ
c,s
= 0 

Table 9.4: List of DEM properties and parameters used for the DEM-VCC CPT tests in this work 

 

The comparisons between the experimental and numerical penetration curves are shown 

in Figure 9.18 for both confinements (𝜎𝑣 = 122𝑘𝑃𝑎 − 𝜎ℎ = 54𝑘𝑃𝑎 and 𝜎𝑣 = 213𝑘𝑃𝑎 −

𝜎ℎ = 88𝑘𝑃𝑎) and both boundary conditions (BC1 and BC3).  

A steady-state cone resistance is also reported together with the numerical responses in 

order to filter out the oscillations. It has been obtained by applying the following expres-

sion: 

𝑞𝑐,𝑓𝑖𝑡(𝑥) = 𝑎(1 − 𝑒
−𝑏∙𝑥) (9.1) 

in which 𝑎, 𝑏 are fitting parameters (that need be computed by an optimization proce-

dure) governing the shape of the fitting curve, 𝑥 is the independent variable (the pene-

tration depth in our case) and 𝑞𝑐,𝑓𝑖𝑡(𝑥) is the dependent variable (i.e., the value of tip 

resistance). The best fitting parameters are reported in Table 9.5, for the four cases. 

Case 𝒂 [𝑴𝑷𝒂] 𝒃 [−] 𝑹𝟐 𝒒𝒄,𝒆𝒙𝒑 [𝑴𝑷𝒂] 

BC1 (𝜎𝑣 = 122𝑘𝑃𝑎 − 𝜎ℎ = 54𝑘𝑃𝑎) 18.36 29.71 0.35 18.68 

BC3 (𝜎𝑣 = 122𝑘𝑃𝑎 − 𝜎ℎ = 54𝑘𝑃𝑎) 19.50 23.27 0.21 22.42 

BC1 (𝜎𝑣 = 213𝑘𝑃𝑎 − 𝜎ℎ = 88𝑘𝑃𝑎) 22.84 34.32 0.49 25.11 

BC3 (𝜎𝑣 = 213𝑘𝑃𝑎 − 𝜎ℎ = 88𝑘𝑃𝑎) 27.32 21.69 0.47 29.04 

Table 9.5: Best fitting parameters for the numerical penetration curves. The representative values of 𝑞𝑐,𝑒𝑥𝑝 

were selected at 50% of the total penetration depths. 
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(a) (b) 

  

(c) (d) 

Figure 9.18: Comparison of raw experimental and numerical tip resistances (with fitting curves) respec-

tively at 121-54kPa confinement for BC1 (a) and BC3 (b) and at 212-88kPa for BC1 (c) and BC3 (d) 

  

The DEM tip penetration curves compares well with the experimental counterparts, as 

showed in Figure 9.18. A slight discrepancy can be seen in the first 20 centimetres of 

penetration, in which the numerical curves tend to reach earlier a steady-state value (i.e., 

the fitting parameter 𝑎 of Eq. 9.1).  

 

Figure 9.19a-b show respectively the cumulated ball rotations and the contact forces 

measured at a penetration depth of 40 cm. 
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15 𝑘𝑁  0 𝑘𝑁 

(a) 

 

90°𝑑𝑒𝑔  0°𝑑𝑒𝑔 

(b) 

Figure 9.19: Contact force network (a) and ball rotations (b) during cone penetration (ℎ𝑝𝑒𝑛𝑒𝑡 = 40𝑐𝑚) 

9.5  Effect of particle shape on penetration resistance: parametric study 

This chapter investigates the influence of particle shape (i.e., rolling resistance) on the 

penetration resistance during cone penetration testing. The combined effect of the inter-

particle sliding friction coefficient (𝜇𝑏), the rolling friction coefficient (𝜇𝑟) and the coeffi-

cients of friction at the interface between the frictional cone (𝜇𝑐,𝑡 and 𝜇𝑐,𝑠) and the parti-

cles, is examined through a parametric study. 
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9.5.1 Model properties 

The granular material simulated in this parametric study is similar to the one used to 

simulate the Ticino sand experiments, reported in the previous section. In particular, the 

experimental PSD of Ticino sand is reproduced making use of three different scaling 

factors for particle size (90 – 50 – 25), with finer particles near the cone tip. The target 

relative density achieved in the numerical sample is 90%, therefore it can be classified as 

dense. The balls properties are the same as listed in Table 9.4 above. 

The calibration chamber is slightly shorter than the one created in Chapter 9.4 to save 

computational time. In particular, the diameter is 120cm and the height is 70cm, as the 

one used by Arroyo & Butlanska (Arroyo et al., 2011; Butlanska, 2014). The cone is of 

standard size, with a diameter of 35.6mm. The penetration velocity is set to 10cm/s. The 

boundary conditions is BC1 type (isotropic) with a confining pressure of 100kPa, applied 

on both radial and top/bottom walls. 

Three different situations are considered regarding the coefficient of sliding friction, as 

reported in Table 9.6 below. 

Friction coefficient Case A Case B Case C 

μ
𝑏
    (ball-ball) 0.60 0.30 0.60 

μ
c,t

   (ball-cone tip) 0.60 0.30 0.30 

μ
c,s

   (ball-shaft) 0.60 0.30 0.30 

Table 9.6: Cases of study. Three different situations of frictions ball-ball, ball-tip, ball-shaft are considered 

in the parametric study. 
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Figure 9.20: Contact visualisation near the cone tip for case C. Contacts are coloured by the value of their 

friction coefficient (red=0.60, blue=0.0, green=0.30). 

 

Two inter-particle friction coefficients are considered, 0.60 and 0.30. The potential fric-

tion existing between particles and cone is assumed equal to the inter-particle friction in 

cases A (μ
𝑏
= μ

𝑐,𝑡
= μ

𝑐,𝑠
= 0.60) and B (μ

𝑏
= μ

𝑐,𝑡
= μ

𝑐,𝑠
= 0.30), whereas in case C they 

differ (μ
𝑏
= 0.60 − μ

𝑐,𝑡
= μ

𝑐,𝑠
= 0.30), to consider the potential lower friction existing 

between the soil grains and the metallic cone, as shown in Figure 9.20. 

For each of the three cases, different values of rolling frictions are applied to mimic the 

effect of particle shape. In particular, six different situations are investigated, according 

to Table 9.7. 

In Series 1, particles are left completely free to rotate, as to simulate perfect smooth 

spheres, this scenario can be obtained in our contact model simply setting μ
𝑟
= 0.0. Se-

ries 2 is conceptually opposite to Series 1, the rotations of particles is completely inhib-

ited, this approach is used by several researches to approximately take into account the 

shape effects of very angular sand types.  

Series 3 exploits the proposed Equation (8.6) to determine the coefficient of rolling fric-

tion for each contact based on grain sphericity. For a uniform shaped specimen, com-

prised of perfect spheres (𝜓 = 1.0), it assumes a single value of μ
𝑟
= 0.1963, valid for all 

the contacts. Similarly, Series 4 exploits Eq. (8.6) to obtain the rolling frictions to apply 
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at each contact formed between cubic shaped (𝜓 = 0.806) particles, leading to a single 

very high value of μ
𝑟
= 1.3621 for all contacts. 

Series 5 and 6 introduce the concept of shape variability within the soil sample. In par-

ticular, a coefficient of variation ( ratio between the sample standard deviation and 

mean) of 0.07, that is a realistic value for physical sands (see Chapter 6.3) is introduced 

in both shape distributions. 

Regarding Series 5, a Normal (ℕ) distribution of sphericities is artificially generated 

as ℕ(𝜓, 𝜎) =  ℕ(1.0, 0.07), being 𝜎 the standard deviation obtained as 𝜎 = 𝐶𝑉 ∙ 𝑚𝑒𝑎𝑛 =

0.07 ∙ 1.00 = 0.07. However, this shape distribution would assume values greater than 

one that is the upper limit of 𝜓, therefore the whole right tail is truncated and the final 

shape distribution is half Gaussian.  

Similar considerations can be done for Series 6, the artificial shape distribution is Normal 

and is defined as ℕ(𝜓, 𝜎) =  ℕ(0.806, 0.056), being the standard deviation obtained as 

𝜎 = 𝐶𝑉 ∙ 𝑚𝑒𝑎𝑛 = 0.07 ∙ 0.806 = 0.056. Again, truncation is applied to avoid values above 

1, although in this case only few extreme right-tail values are affected. 

Series 
Friction 

case 
Particle shape Rolling condition at contacts 

1 A – B – C Perfect smooth spheres 
Free rotations,  

μ
𝑟
= 0.0 

2 A – B – C Iper-angular 
Fixed rotations, 

μ
𝑟
= ∞ 

3 A – B – C 𝜓 = 1.0 (sphere) μ
𝑟
= 0.1963 

4 A – B – C 𝜓 = 0.806 (cube) μ
𝑟
= 1.3621 

5 A – B – C 

𝜓 = 1.0 − 𝜎 

(half gaussian, truncated at 

1.0) 

μ
𝑟
= distribution below 0.1963 

6 A – B – C 𝜓 = 0.806 ± 𝜎 

(gaussian, truncated at 1.0) 

μ
𝑟
= distribution around 

1.3621 

Table 9.7: Scenarios that are considered for the parametric study of particle shape effects 
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The histograms of the assigned distributions of sphericities for Series 5 and Series 6 are 

respectively shown in Figure 9.21a and Figure 9.21b. The histograms of the rolling fric-

tions distributed for each particle, after applying Eq. (8.6), are reported in Figure 9.21c 

(Series 5) and Figure 9.21d (Series 6). 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 9.21: Assigned values of true sphericity for Series 5 (a) and Series 6 (b) and resulting rolling fric-

tions for Series 5 (c) and Series 6 (d) 

9.5.2 Results 

The results of cases A, B, C for all Series 1 – 6, for both tip and shaft resistance, are shown 

in Figure 9.22a-f. It is reminded (Table 9.6) that the inter-particle friction is set 0.60 for 

both cases A and C. They differ from each other in the “roughness” of the cone-particles 

contacts. In the first case (case A) it is set equal to the particles (i.e., 0.60) in the latter (case 

C) it is set 0.30, to imitate the smoother contact between the steel cone tip and the gran-

ular material. Regarding case B, both particle-particle and cone-particle frictions are set 

equal to 0.30. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

 

Figure 9.22: Tip and shaft resistance of the CPT tests performed for the parametric study of particle shape 

effects under Cases A (a-b), B (c-d) and C (e-f) 

 

It is evident the results change significantly with the coupled variations of friction and 

rolling friction coefficients. In particular, both the penetration and shaft resistances in-

crease with an increase of both sliding and rolling friction coefficients. 

It worth pointing out that introducing some rotational constraints at the contacts 

strongly affects the results, increasing the tip resistance up to ten times, moving from 
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Series 1 (free rolling tests) to Series 2 (fixed rotations), particularly pronounced for case 

A. The use of rolling resistance (Series 3-4-5-6) does affect the results but in a relatively 

narrow range, compared to the unphysical extreme cases mentioned above.  

The results are also reported in the Robertson & Campanella chart (Robertson, 1990; 

Robertson et al., 1986) to assess the soil classification, as shown in Figure 9.23, Figure 

9.24 and Figure 9.25, respectively for Cases A, B and C. 

 

 

 

Figure 9.23: Soil classification from Robertson & Campanella chart (Robertson et al., 1986) for Case A. 

The dots colours represent the Series from 1 to 6 and respect the colours of the legend in Figure 9.22, also 

reported here. 

 

Figure 9.24: Soil classification from Robertson & Campanella chart (Robertson et al., 1986) for Case B. The 

dots colours represent the Series from 1 to 6 and respect the colours of the legend in Figure 9.22. 
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Figure 9.25: Soil classification from Robertson & Campanella chart (Robertson et al., 1986) for Case C. The 

dots colours represent the Series from 1 to 6 and respect the colours of the legend in Figure 9.22. 

 

According to the Robertson charts reported, the majority of the numerical samples tested 

in this parametric study can be identified as sandy silt/silty sand/sand, depending on the 

DEM input parameters. The only cases that fall under other domains are the extremes of 

freely and fixed rotations spheres, which are identified respectively as silty clay and very 

stiff overconsolidated fine grained, with the only exception of fixed rotations for Case B (red 

dot in Figure 9.24 that will be examined later. As expected, it is not possible to simulate 

stiffer granular soils using freely rotating spheres, as stated in Chapter 8.4. 

To better understand the effect of rolling resistance on the macroscopic results, it is use-

ful to investigate the stresses in the soil induced by the cone penetration. In order to do 

this, a MATLAB script has been created by Ciantia (Ciantia et al., 2019b) to plot the ver-

tical and radial stresses developed through the numerical samples, as shown in Figure 

9.26 and Figure 9.27 respectively for cases A (Series 1-2-3-4) and B (Series 1-2-3-4). 
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(a) (b) (c) (d) 

Figure 9.26: Vertical (top figures) and radials stress distributions induced by the cone penetration for sim-

ulation Case A for Series 1 (a), Series 3 (b), Series 4 (c) and Series 2 (d) 
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(a) (b) (c) (d) 

Figure 9.27: Vertical (top figures) and radials stress distributions induced by the cone penetration for sim-

ulation Case B for Series 1 (a), Series 3 (b), Series 4 (c) and Series 2 (d). 

 

The stress distributions around the cone differs significantly depending on the contact 

friction coefficients. It can be noted that when freely rotating spheres are used (Figure 

9.26a and Figure 9.27a), the stresses remain low. On the other hand, if particles rotations 

are inhibited, the stresses may become very high, especially for the vertical stress (𝜎𝑧𝑧) 

aligned with the direction of penetration (Figure 9.26d and Figure 9.27d).  

It is interesting to point out that the simulations performed by Arroyo & Butlanska 

(Arroyo et al., 2011; Butlanska, 2014)  on Ticino sand, with fixed rotations and a friction 

coefficient of 0.35 (similar to the here called Series 2 Case B), provide similar responses 

(both macroscopically – red curves of Figure 9.22c-d – and microscopically from Figure 

9.27d) to the ones obtained with the calibrated friction coefficient of Ticino sand (0.60, 

from triaxial tests) and the rolling resistance approach used to mimic the grain shape of 

Ticino sand, represented in Figure 9.18b, at similar confinements, and Figure 9.26b-c. 
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This fact can be confirmed observing the Robertson & Campanella charts of Figure 9.23, 

Figure 9.24 and Figure 9.25. Indeed, observing the red dot of Figure 9.24, it is evident it 

is located in the same soil classification area of the other cases exploiting rolling re-

sistance and higher coefficient of friction. Therefore, these approaches can be considered 

almost equivalent, from the physical (i.e., soil classification), macroscopic (i.e., penetra-

tion curves) and microscopic (i.e., stress distributions) points of view. 

 

Finally, it can be concluded that particle shape and shape variability do affect the results 

in terms of penetration resistance (i.e., tip-shaft resistances) at both the macro-scale and 

the micro-scale (i.e., stress distribution near the cone) levels. Moreover, the proposed 

rolling resistance contact model and model approach can be used to mimic successfully 

particle shape effects in the DEM-VCC-CPT tests. 

9.6  Summary 

Numerical simulations using the proposed rolling resistance contact model have been 

carried out in this Chapter. The major findings are summarised hereafter: 

 

 An innovative technique to get the 3D degree of true sphericity of each grain from 

a 2D image (obtained from a table scanner) is proposed; 

 Several triaxial tests performed on Ticino sand at different confinements and 

relative densities are successfully reproduced using the proposed rolling re-

sistance contact model approach, giving as input the particle shape obtained us-

ing the table scanner; 

 A multi-scaling technique for ball sizes is exploited in the Virtual Calibration 

Chamber (VCC) construction to have finer particles near the cone tip. This ap-

proach allows maintaining the ratio chamber to cone ( 𝑅𝑑 =
𝐷𝑉𝐶𝐶

𝑑𝑐
⁄ ) equal to 

the physical experiment; 
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 The experimental penetration curves from Jamiolkowski (Jamiolkowski et al., 

2003, 1988) are well reproduced by the DEM model, for different boundary con-

ditions and confining pressures. 

 The effect of particle shape on the penetration resistance is investigated. Con-

straining the rotation of particles dramatically affects both tip and shaft re-

sistances. The effect of particle shape (i.e., rolling friction coefficient) is strongly 

coupled with the choice of the sliding friction coefficient. 

 A low coefficient of friction (e.g., 0.30) combined with fixed balls rotations, pro-

vide results comparable to the calibrated rolling resistance approach proposed, 

at both the macro (i.e., penetration responses) and micro (i.e., stress distribution 

near the cone tip) levels. 
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        Conclusions 

_______________________________________________ 

 

10.1  Summary results 

This thesis presented a multidisciplinary work aimed at improving the current DEM 

simulations to reproduce standard experimental tests widely used in soil mechanics and 

geotechnical engineering. In particular, a novel rolling resistance contact model able to 

include the effects of particle shape in the simulations has been developed, calibrated 

and validated. In order to calibrate the proposed contact model, it has been necessary 

first how to measure and quantify the shape of sand grains, and then to understand the 

influence of particle shape on the kinematics of shearing granular materials. 

Regarding the first task (presented in Chapter 6), reliable replicable algorithms have been 

developed to quantify some geometrical properties of sand grains (e.g., volume, surface 

area, lengths, etc.) that have been later combined together to origin shape descriptors in 

two and three dimensions. An extensive statistical study showed the correlations exist-

ing between the computed shape parameters. After that, it was necessary to measure the 

kinematics (i.e., displacements and rotations in three-dimensions) of single grains during 

triaxial tests (scanned by x-rays with time) in order to investigate the influence of particle 

shape on their motion (Chapter 7). A direct comparison between the shape and kinematic 

datasets showed that particle shape is related to observed kinematics. In particular, true 

sphericity is a good predictor of upper bound rotational restraint. 

Chapter 8 described in detailed the central part of this doctoral project: the DEM rolling 

resistance contact model. It has been calibrated to reproduce the triaxial tests of Hostun 



264 

and Caicos sands, respecting the particles kinematics at failure. The value of rolling re-

sistance is directly linked to true sphericity. When shape measurements are performed, 

this link enables independent evaluation of the rolling resistance coefficient for each par-

ticle. It does also allow the characteristic shape variability of natural soils to be easily 

taken into account. It has been then validated by simulating other triaxial tests (1) with 

the same sands, but in different conditions (2) with Ottawa sand, for which 3D grain 

images were also available for examination, and (3) with Ticino sand (in Chapter 9), for 

which only 2D grain images were available. 

Finally, Chapter 9 presented results on the Cone Penetration Test (CPT) performed in a 

Virtual Calibration Chamber (VCC). Experimental penetration curves have been well 

reproduces exploiting the proposed rolling resistance model calibrated for Ticino sand. 

Then, a numerical study about the influence of particle shape on the tip and shaft re-

sistances has been carried out. It was shown that the combined effect of rolling friction 

and sliding friction is determinant, and therefore an accurate parameters calibration is 

crucial.   

10.2  Recommendations for future work 

Some aspects that have not been considered in this doctoral work are listed in this sec-

tion. They can eventually open future lines of research to improve or complete the results 

of the current project. They have been divided in two categories regarding (1) the anal-

ysis of particle shape and (2) the numerical simulations. 

10.2.1 Particle shape  

It is evident that the shape study carried out in this project was focused on the measure 

of particle shape at the largest scale (i.e., the grains-scale): sphericity. This choice was 

made because of the high number of particles that has been studied (more than one hun-

dred thousand) and because of the resolution of the images available (15.56𝜇𝑚/𝑝𝑥). 

However, it was presented in Chapter 6.7 that about one thousand grains are enough to 
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capture a sufficient amount of shape variability in a sand sample. In addition, 3D high-

resolution images of grains (about 1-2 𝜇𝑚/𝑝𝑥) have been recently made (Amirrahmat et 

al., 2019; Wiebicke et al., 2017), allowing an accurate measure of particle roundness and 

(perhaps) roughness (see Figure 10.1). Moreover, new image-analysis algorithms to com-

pute 3D Roundness have been recently proposed (Kong and Fonseca, 2018; Nadimi and 

Fonseca, 2017; Zhao and Wang, 2016), extending the original idea of roundness proposed 

by Wadell (Wadell, 1932). Therefore, it worth exploring systematically eventual statisti-

cal correlations existing between (a) particle sphericity and roundness (b), particle 

roundness and grains kinematics. 

  

(a) (b) 

Figure 10.1: Rendering of (a) two high-resolutions (1 𝜇𝑚/𝑝𝑥) Hostun sand grain in contact (Wiebicke et 

al., 2017) (b) a single particle of Mason sand scanned at a resolution of 2 𝜇𝑚/𝑝𝑥 (Amirrahmat et al., 2019). 

10.2.2 Numerical simulations 

Some improvements can be envisaged regarding the numerical simulations performed 

in this doctoral work, which may constitute future lines of investigation. 

 

 Particle crushing has not been considered in the DEM simulations here per-

formed. It has been clearly indicated in this dissertation that particle crushing 

was not relevant for the materials tested in the triaxial experiments (Hostun, Ot-

tawa, Caicos, Ticino sands) at the pressure levels involved. However, it is an im-

portant aspect that must be taken into account at higher stress levels (e.g., in the 
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Cone Penetration Test) or for other –more crushable- sand types. The implemen-

tation of an efficient crushing model for DEM (PFC5 in particular) has been pro-

posed by Ciantia (Ciantia et al., 2015, 2014) and successfully tested and validated 

for CPT simulations (Ciantia et al., 2019, 2016), even though particles rotations 

were inhibited in all of his numerical tests. Therefore, the natural outgrowth for 

both research projects will be to combine together the two model approaches in 

order to create a single advanced DEM contact model capable of considering both 

particle shape effects (with the here proposed rolling resistance contact model) 

and the crushing of particles. 

 

 The rolling resistance contact model proposed in Chapter 8.4 has been calibrated 

by reproducing the experimental triaxial tests of Hostun and Caicos sands, in 

terms of macroscopic responses and kinematics at failure. However, in contrast 

to the experiments, the lateral cylindrical wall used in the DEM simulations was 

built as a rigid wall with a servo-controlled mechanism to apply the target con-

fining pressure. The numerical sample was able to localise failure in a shear band 

but including an elastic deformable membrane may result in more realistic sim-

ulations of the material deformation occurring in the experiments, especially 

post-localization (Cheung and O’Sullivan, 2008; Khoubani et al., 2018). This has 

been tested in a later stage of this doctoral work, simulating the membrane with 

the finite differences Itasca software FLAC6 (PFC5-FLAC6 coupling is now avail-

able) with little success. However, other methodologies exist to build a deforma-

ble lateral wall in DEM (Cheung and O’Sullivan, 2008; de Bono et al., 2012; 

Khoubani et al., 2018; Tang et al., 2017) that are worth investigating further. 

 

 In this work, we validated the proposed DEM rolling resistance contact model 

by testing in triaxial conditions four different sands (Hostun, Caicos, Ottawa and 

Ticino sands) at different confining pressures (between 100kPa and 300kPa). 

However, it would be interesting to simulate different laboratory experimental 

tests for the sands studied in this work (e.g., repose angle test, oedometer test, 
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undrained triaxial tests, cyclic triaxial tests, direct shear tests) that can be easily 

found in the literature.  

10.3  Final remarks 

The last chapter of this doctoral thesis is dedicated to a reflection about the role that this 

45-months work may have on the future of geotechnics. It is indeed known that a PhD 

thesis represent a new drop in the ocean of knowledge but it is important to be aware of 

where this drop may be valuable.  

 

The behaviour of geomaterials is complex because of their diverse nature in size, miner-

alogy and shapes. Moreover, the addition of fluids as air and water makes the behaviour 

time-dependent and even more complex to understand and predict. The deformation of 

granular materials has been historically studied at the macro-scale level, which is the 

scale of interest for most geotechnical engineering problems, developing constitutive 

equations to predict the strains from the stresses, generally exploiting finite elements 

softwares. This approach relied on empirical observation of the soil overall response at 

the large-scale (laboratory or field tests). However, the mechanics occurring at the parti-

cle-scale was ignored, although it allows explaining complex situations that cannot be 

fully understandable or predictable focusing at larger scales (e.g., insertion problems, 

liquefaction triggering, internal erosion, sand production, etc.).  

The micro-mechanical inspection of granular soils is now an easily realisable task, thanks 

to the new technologies and the increase of computer power. The Discrete Element 

Method takes advantage of these recent developments carving out a space in this respect. 

 

We believe this doctoral work constitute a further step in the direction of using the mi-

cro-response to first understand and then predict the macro-response of granular soils, 

which is the main goal of geotechnical engineers. 
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Appendix A: Scripts 

 

Appendix A.1 Python script “GetAllGrains_MPI.py” 

This python script (1) takes a 3D labelled image as input, (2) loops through all the grains, 

(3) computes and saves the geometric properties of the grains. It is designed to work in 

MPI. Professor Edward Andò is strongly acknowledged for his help. 

1. import numpy as np   
2. import scipy.ndimage   
3. import tifffile   
4. import skimage   
5. import tracking_functions   
6. import random_orientation   
7. from scipy.spatial import ConvexHull   
8. import matplotlib.pyplot as plt   
9. # from mpl_toolkits.mplot3d.art3d import Poly3DCollection   
10. # from mpl_toolkits.mplot3d import Axes3D   
11. # from matplotlib.patches import FancyArrowPatch   
12. # from mpl_toolkits.mplot3d import proj3d   
13. import time   
14. initialtime = time.time()   
15.    
16. import multiprocessing   
17. NUMBER_OF_THREADS = 8   
18. DEBUG=False   
19.    
20. voxelVolumeMM3 = ( 15.56/1000 )**3   
21. pixelAreaMM2 = ( 15.56/1000 )**2   
22. print 'Start loading the image...'   
23.    
24. #if CAICOS   
25. # labImageShape = ( 1600, 950, 950 )   
26. # labImageFile = "/home/riccardo/Desktop/COEA01-01-0950x0950x1600-lab.tif"   
27.    
28. #if HOSTUN   
29. #labImageShape = ( 1750, 960, 960 )   
30. #labImageFile = "/home/riccardo/Desktop/HNEA01-01-0960x0960x1750-lab.tif"   
31.    
32. print "\nStarting to load labelled image file {}".format( labImageFile )   
33.    
34. lab = tifffile.imread( "labImageFile" )   
35. lab = lab.reshape( labImageShape )   
36.    
37. print "\nDone.\n"   
38. print "\tMinimum Value in labelled matrix: ", lab.min()   
39. print "\tMaximum Value in labelled matrix: ", lab.max(), '\n'   
40.    
41. if DEBUG: print "Master: Setting up queues"   
42. q_jobs    = multiprocessing.Queue()   
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43. q_results = multiprocessing.Queue()   
44.    
45. if DEBUG: print "Master: Adding jobs to queues"   
46. for grainNumber in range( 1, lab.max() ):   
47.     if grainNumber > 0:   
48.         q_jobs.put( grainNumber )   
49. for i in range( NUMBER_OF_THREADS ):  q_jobs.put( "STOP" )   
50.    
51. def processOneGrainJob( worker_number, q_jobs, q_results ):   
52.     print "Worker Number {}".format( worker_number )   
53.     while True:   
54.         grainNumber = q_jobs.get()   
55.    
56.         if grainNumber == "STOP":   
57.             q_results.put("STOP")   
58.             break   
59.              
60.         else:   
61.             print "\n\tWorking on Grain #", grainNumber   
62.                
63.             grainCoordinates = 0   
64.             grainCoordinates_array = 0   
65.             grainCoordinates_arrayTR = 0   
66.             grainVolume = 0   
67.             grainCOM = 0   
68.             xlist=0   
69.             ylist=0   
70.             zlist=0   
71.             ###########################################################   
72.             #########  1. Find our grain in space    
73.             ###########################################################   
74.             # Get a list of coordinates where the pixels of the big la-

belled volume are = to the grain   
75.             grainCoordinates = np.where( lab == grainNumber )   
76.             grainCoordinates_array = np.array (grainCoordinates)   
77.             grainCoordinates_arrayTR = np.transpose (grainCoordinates_array)   
78.                    
79.             # Count the number of coordinates to get a voxel vol-

ume for this grain   
80.             grainVolume      = np.array(grainCoordinates).shape[1]   
81.                
82.             if DEBUG: print "\n\tGrain {} has {} voxels".format( grain-

Number, grainVolume )   
83.    
84.             # Get the bounding box for this grain from the labelled volume   
85.             #grainBoundingBox  = scipy.ndimage.measurements.find_ob-

jects( lab == grainNumber )[0]   
86.                
87.             min_array = np.amin(grainCoordinates_array,axis=1)   
88.             max_array = np.amax(grainCoordinates_array,axis=1)   
89.                
90.             # Get a minimum parallepiped subvolume continaing our grain   
91.             #grainSubvolume   = lab[ grainBoundingBox ]   
92.             grainSubvolume  = np.copy(lab[ min_array[0]:max_array[0]+1,   
93.                                            min_array[1]:max_array[1]+1,   
94.                                            min_array[2]:max_array[2]+1 ])   
95.    
96.             # Erase all voxels which are not our grain   
97.             grainSubvolume[ np.where( grainSubvolume != grainNumber ) ] = 0   
98.             grainCOM = scipy.ndimage.measurements.center_of_mass( grainSub-

volume )   
99.             X_glob = grainCOM[0] + min_array[0]+1   
100.             Y_glob = grainCOM[1] + min_array[1]+1   
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101.             Z_glob = grainCOM[2] + min_array[2]+1   
102.                
103.             if grainVolume < 50:   
104.                 print 'Skip this grain!'   
105.                 continue   
106.                
107.             ###########################################################

   
108.             ######  2. Copy grain into cubic subvolume for analysis   
109.             ###########################################################

   
110.                
111.             # define size of cube to hold all data with 2 pixel bor-

der   
112.             cubeDimension  = max( grainSubvolume.shape ) + 4   
113.             grainSubvolumeCube = np.zeros( ( cubeDimension, cubeDimen-

sion, cubeDimension ), '<f4' )   
114.                
115.             # offest to this from our non-cube data   
116.             grainSubvolumeCubeOffset = ( np.array( grainSubvolu-

meCube.shape ) - np.array( grainSubvolume.shape ) ) / 2   
117.                
118.             # copy non-cube data into the vube with the offset we cal-

culated above   
119.             grainSubvolumeCube[ grainSubvolumeCubeOffset[0]:grainSub-

volumeCubeOffset[0]+grainSubvolume.shape[0],\   
120.                                 grainSubvolumeCubeOffset[1]:grainSub-

volumeCubeOffset[1]+grainSubvolume.shape[1],\   
121.                                 grainSubvolumeCubeOffset[2]:grainSub-

volumeCubeOffset[2]+grainSubvolume.shape[2]  ] = grainSubvolume   
122.             grainCubeCOM = np.array(scipy.ndimage.measurements.cen-

ter_of_mass( grainSubvolumeCube ) )   
123.             if DEBUG: print "\nThe Cen-

ter of Mass of my grain into the cube (local coordi-
nates, box) is:\n\n\t", grainCubeCOM   

124.             if DEBUG: print "\nThe Cen-
ter of Mass of my grain in global coordi-
nates, is:\n\n\t", X_glob, Y_glob, Z_glob          

125.             ##########################################################  
126.             ###########   INERTIA TENSOR     ######################### 
127.       ########################################################## 
128.      
129.             momentOfInertia = random_orientation.inertia_tensor( grain-

SubvolumeCube, grainSubvolumeCube.shape )   
130.             eigenValVec = random_orientation.eigenvalvec(  momentOfIn-

ertia )   
131.             if DEBUG: print '\nThe inertia tensor is:\n\n', momentOfIn-

ertia   
132.             if DEBUG: print '\nThe inertia tensor eigenval-

ues are: \n\t', eigenValVec[0],'\n\t', eigenValVec[1],'\n\t', eigenValVec[2]   
133.             if DEBUG: print '\nThe inertia tensor eigenvec-

tors are: \n\t', eigenValVec[3],'\n\t', eigenValVec[4],'\n\t', eigen-
ValVec[5]   

134.                
135.             #########################################################   
136.             ########   ROTATE REFERENCE FRAME and GET GRAIN LENGTHS   
137.             ######################################################### 
138.                  
139.             grain_local_Coordinates = np.where( grainSubvolu-

meCube == grainNumber )   
140.             grain_local_Coordinates = np.array (grain_local_Coordi-

nates)   
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141.             CambioBaseMatrix = np.array([ [eigenValVec[3][0],eigen-
ValVec[4][0],eigenValVec[5][0]] , [eigenValVec[3][1],eigenValVec[4][1],eigen-
ValVec[5][1]] , [eigenValVec[3][2],eigenValVec[4][2],eigen-
ValVec[5][2]]] , dtype=float)   

142.             CambioBaseMatrix_INV = np.linalg.inv(CambioBaseMatrix)   
143.             grain_NEW_local_Coordinates = np.dot(CambioBase-

Matrix_INV , grain_local_Coordinates)   
144.             AX1_max = np.amax( grain_NEW_local_Coordinates[0,:] )   
145.             AX1_min = np.amin( grain_NEW_local_Coordinates[0,:] )   
146.             AX2_max = np.amax( grain_NEW_local_Coordinates[1,:] )   
147.             AX2_min = np.amin( grain_NEW_local_Coordinates[1,:] )   
148.             AX3_min = np.amin( grain_NEW_local_Coordinates[2,:] )   
149.             AX3_max = np.amax( grain_NEW_local_Coordinates[2,:] )   
150.             AX1_length = AX1_max - AX1_min   
151.             AX2_length = AX2_max - AX2_min   
152.             AX3_length = AX3_max - AX3_min   
153.             grain_length = np.sort([AX1_length,AX2_length,AX3_length]) 

  
154.             if DEBUG: print '\nThe lengths of my grain (after refer-

ence frame rotation) are:\n'   
155.             if DEBUG: print grain_length[0] , '=', AX1_max , '-

' , AX1_min ,'\n', grain_length[1] , '=', AX2_max , '-
' , AX2_min ,'\n', grain_length[2] , '=', AX3_max , '-' , AX3_min   

156.                
157.             ########################################################   
158.             ###########    MARCHING CUBES    ####################### 
159.             ########################################################  
160.             grainSubvolumeCube_filtered = scipy.ndimage.filters.gauss-

ian_filter(grainSubvolumeCube,sigma=0.75)   
161.             verts, faces = skimage.measure.marching_cubes_clas-

sic( grainSubvolumeCube_filtered, grainNumber/2.0 )   
162.             surface_area = skimage.measure.mesh_sur-

face_area(verts, faces)   
163.             if DEBUG: print '\nThe surface area from MarchingCubes al-

gorithm (smoothed) is:\n', surface_area,' pixels^2 which corresponds to', sur-
face_area*pixelAreaMM2, 'mm2'   

164.                    
165.             #########################################################  
166.             ###########      CONVEX HULL     ########################  
167.             ######################################################### 
168.    
169.             hull = ConvexHull(grainCoordinates_arrayTR)   
170.             if DEBUG: print "\nThe volume of the con-

vex hull is {} voxels".format(hull.volume)    
171.             #print "The surface area of the convex hull is {} pix-

els2".format(hull.area)    
172.                    
173.             #########################################################   
174.             ###########   MAXIMUM INSCRIBED SPHERE    ###############   
175.             ######################################################### 
176.  
177.             distance_euclidean_tensor = scipy.ndimage.morphology.dis-

tance_transform_edt( grainSubvolumeCube )   
178.             max_inscribedSphere_radius = np.amax (distance_euclid-

ean_tensor)   
179.                
180.             for index, value in np.ndenumerate( distance_euclidean_ten-

sor ):   
181.                 if value == max_inscribedSphere_radius:   
182.                     sphere_center = index   
183.             if DEBUG: print '\nThe maximum inscribed sphere is cen-

tered at: ', sphere_center, ' and its RADIUS is: ', max_inscribedSphere_ra-
dius   
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184.                   
185.             #########################################################   
186.             ###########   MINIMUM CIRCUMSCRIBED SPHERE    ###########  
187.             #########################################################  
188.    
189.             min_cicr_sph = random_orientation.bounding_sphere (grainCo-

ordinates_arrayTR)   
190.             if DEBUG: print '\nThe minimum circumscribed sphere ra-

dius is: ', min_cicr_sph[1]   
191.             ########################################################  
192.             ###########   Save all properties in a vector    #######   
193.             ######################################################## 
194.                
195.             if DEBUG: print 'Save all the properties in a numpy ar-

ray. '   
196.             geometry_properties = np.array ([ grainNumber, grainVol-

ume, Z_glob, Y_glob, X_glob, surface_area, eigenValVec[0],eigenValVec[1],ei-
genValVec[2], grain_length[2], grain_length[1], grain_length[0], hull.vol-
ume, hull.area, 2.0*max_inscribedSphere_radius, 2.0*min_cicr_sph[1]]  )   

197.             if DEBUG: print '\nVoila:\n', geometry_properties   
198.    
199.             q_results.put( [ worker_number, grainNumber, geometry_prop-

erties ] )   
200.    
201. if DEBUG: print "Master: Launching workers"   
202. for i in range(NUMBER_OF_THREADS):   
203.     p = multiprocessing.Process( target=proces-

sOneGrainJob, args=( i, q_jobs, q_results, ) )   
204.     p.start()   
205.    
206. finished_threads  = 0   
207. nodes_processed   = 0   
208. if DEBUG: print "Master: Waiting for results"   
209.    
210. fileHandle = open( "grain_analysis-

"+time.strftime( "%Y%m%d%H%M", time.localtime( initialtime ))+".tsv", "a" )   
211. fileHandle.write( "Grain Number\tVolume (vx)\tBarX\tBarY\tBarZ\tSur-

face_Area (px2)\tEigenvalue1\tEigenvalue2\tEigen-
value3\tLength1\tLength2\tLength3\tVolume_convexHull\tSurfaceArea_convex-
Hull\tDiam_MaxInscSph\tDiam_MinCircSph\n" )   

212.    
213. while finished_threads < NUMBER_OF_THREADS:   
214.     result = q_results.get()   
215.      
216.     if result == "STOP":   
217.         finished_threads += 1   
218.         print "\nNumber of finished threads = ", finished_threads   
219.    
220.     else:   
221.         #print "Master: got {}".format( result )   
222.         for item in result[2]:   
223.             fileHandle.write( "{}\t".format( item ) )   
224.         fileHandle.write( "\n" )       
225.    
226. finaltime = time.time()   
227.    
228. fileHandle.close()   
229. print "Calculation time = ", finaltime-initialtime, " seconds"   
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Appendix A.2 Python script “GetAllGrains_2Dprojection.py” 

This python script (1) takes as input a 2D labelled image, (2) loops through all the grains, 

(3) computes the 2D geometric properties of the grains, (4) saves the 2D sphericities. 

1. import numpy as np   
2. import scipy.ndimage   
3. import tifffile   
4. import skimage.measure   
5. import skimage.morphology   
6. import tracking_functions   
7. import random_orientation   
8. from scipy.spatial import ConvexHull   
9. import matplotlib.pyplot as plt   
10. #import trimesh   
11. #import mayavi   
12. #import seaborn as sns   
13. import time   
14. import math   
15.    
16. DEBUG = 0   
17. initialtime = time.time()   
18. voxelVolumeMM3 = ( 15.56/1000 )**3   
19. pixelAreaMM2 = ( 15.56/1000 )**2   
20. labImageShape = ( 4500, 4500 )   
21. labImageFile = "/home/riccardo/labelled_2Dscan_Ticino-4500x4500.tif"   
22.    
23. print "\nStarting to load labelled image file {}".format( labImageFile )   
24. lab = plt.imread(labImageFile)   
25. lab = lab.reshape( labImageShape )   
26. print "\nDone.\n"   
27.    
28. print "\tMinimum Value in labelled matrix, exclud-

ing zero: ", np.amin(lab[lab != 0])   
29. print "\tMaximum Value in labelled matrix: ", lab.max(), '\n'   
30.    
31. t1 = time.time()   
32. fileHandle = open( "grain_analysis-"+time.strftime( "%Y%m%d%H%M", time.local-

time( initialtime ))+".tsv", "a" )   
33. fileHandle.write( "Grain Number\tProjArea (px)\tBarX\tBarY\tEigenvalue1\tEi-

genvalue2\tLength1\tLength2\tDiam_MaxInscSph\tDiam_MinCircSph\tSpheric-
ity1\tSphericity2\tSphericity3\tSphericity4\tSphericity5\n" )   

34.    
35. for grainNumber in range( 1,lab.max() ):   
36.     if grainNumber == 0: continue   
37.     print "\nWorking on grain", grainNumber   
38.     ###########################################################   
39.     ##  1. Find our grain in space    
40.     ###########################################################   
41.     # Get a list of coordinates where the pixels of the big labelled vol-

ume are = to the grain   
42.     grainCoordinates = np.where( lab == grainNumber )   
43.     grainCoordinates_array = np.array (grainCoordinates)   
44.     grainCoordinates_arrayTR = np.transpose (grainCoordinates_array)   
45.     t2 = time.time()      
46.    
47.     # Count the number of coordinates to get a voxel volume for this grain   
48.     grainVolume      = np.array(grainCoordinates).shape[1]   
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49.        
50.     if DEBUG: print "\nGrain {} has {} pixels".format( grainNumber, grainVol-

ume )   
51.     if DEBUG: print "This means {:0.3f} mm3".format( grainVolume*pixelA-

reaMM2 )   
52.     if grainVolume < 12 or grainVolume > 50000: con-

tinue #skip very small and big labels (not grains)   
53.    
54.     min_array = np.amin(grainCoordinates_array,axis=1)   
55.     max_array = np.amax(grainCoordinates_array,axis=1)   
56.     xlist = np.arange(min_array[0],max_array[0])   
57.     ylist = np.arange(min_array[1],max_array[1])   
58.        
59.     # Get a minimum parallepiped subvolume continaing our grain   
60.     grainSubvolume  = np.copy(lab[ min_array[0]:max_array[0]+1,   
61.                            min_array[1]:max_array[1]+1 ])   
62.     # Erase all voxels which are not our grain   
63.     grainSubvolume[ np.where( grainSubvolume != grainNumber ) ] = 0   
64.     grainCOM = scipy.ndimage.measurements.center_of_mass( grainSubvolume )   
65.     X_glob = grainCOM[0] + min_array[0]+1   
66.     Y_glob = grainCOM[1] + min_array[1]+1   
67.        
68.     ###########################################################   
69.     ##  2. Copy grain into cubic subvolume for analysis   
70.     ###########################################################   
71.        
72.     # define size of cube to hold all data with 2 pixel border   
73.     cubeDimension  = max( grainSubvolume.shape ) + 4   
74.     grainSubvolumeCube = np.zeros( ( cubeDimension, cubeDimension ), '<f4' )   
75.        
76.     # offest to this from our non-cube data   
77.     grainSubvolumeCubeOffset = ( np.array( grainSubvolumeCube.shape ) - np.ar-

ray( grainSubvolume.shape ) ) / 2   
78.        
79.     # copy non-cube data into the cube with the offset we calculated above   
80.     grainSubvolumeCube[ grainSubvolumeCubeOffset[0]:grainSubvolumeCubeOff-

set[0]+grainSubvolume.shape[0],grainSubvolumeCubeOffset[1]:grainSubvolumeCu-
beOffset[1]+grainSubvolume.shape[1] ] = grainSubvolume   

81.     grainCubeCOM = np.array(scipy.ndimage.measurements.center_of_mass( grain-
SubvolumeCube ) )   

82.     if DEBUG: print "\nThe Center of Mass of my grain into the cube (local co-
ordinates, box) is:\n\n\t", grainCubeCOM   

83.     if DEBUG: print "\nThe Center of Mass of my grain in global coordi-
nates (Fiji), is:\n", Y_glob, X_glob          

84.        
85.     ########################################################################   
86.     ###########   INERTIA TENSOR     #######################################  
87.     ########################################################################   
88.     t3 = time.time()      
89.     momentOfInertia = random_orientation.inertia_tensor2d( grainSubvolu-

meCube, grainSubvolumeCube.shape )   
90.     eigenValVec = random_orientation.eigenvalvec2d(  momentOfInertia )   
91.     if DEBUG: print '\nThe inertia tensor is:\n', momentOfInertia   
92.     if DEBUG: print '\nThe inertia tensor eigenvalues are: \n\t', eigen-

ValVec[0],'\n\t', eigenValVec[1]   
93.     if DEBUG: print '\nThe inertia tensor eigenvectors are: \n\t', eigen-

ValVec[2],'\n\t', eigenValVec[3]   
94.        
95.     #######################################################################   
96.     ###########   ROTATE REFERENCE FRAME and GET GRAIN LENGTH     #########   
97.     #######################################################################   
98.     t4 = time.time()      
99.        
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100.     grain_local_Coordinates = np.where( grainSubvolumeCube == grain-
Number )   

101.     grain_local_Coordinates = np.array (grain_local_Coordinates)   
102.     CambioBaseMatrix = np.array([ [eigenValVec[2][0],eigen-

ValVec[3][0]] , [eigenValVec[2][1],eigenValVec[3][1]]] , dtype=float)   
103.     CambioBaseMatrix_INV = np.linalg.inv(CambioBaseMatrix)   
104.     grain_NEW_local_Coordinates = np.dot(CambioBase-

Matrix_INV , grain_local_Coordinates)   
105.     AX1_max = np.amax( grain_NEW_local_Coordinates[0,:] )   
106.     AX1_min = np.amin( grain_NEW_local_Coordinates[0,:] )   
107.     AX2_max = np.amax( grain_NEW_local_Coordinates[1,:] )   
108.     AX2_min = np.amin( grain_NEW_local_Coordinates[1,:] )   
109.     AX1_length = AX1_max - AX1_min   
110.     AX2_length = AX2_max - AX2_min   
111.     grain_length = np.sort([AX1_length,AX2_length])   
112.     if DEBUG: print '\nThe lengths of my grain (after refer-

ence frame rotation) are:\n'   
113.     if DEBUG: print grain_length[0] , '=', AX1_max , '-

' , AX1_min ,'\n', grain_length[1] , '=', AX2_max , '-' , AX2_min ,'\n'   
114.        
115.     #################################################################   
116.     ###########   MAXIMUM INSCRIBED SPHERE    #######################   
117.     #################################################################   
118.     t7 = time.time()      
119.        
120.     distance_euclidean_tensor = scipy.ndimage.morphology.dis-

tance_transform_edt( grainSubvolumeCube )   
121.     max_inscribedSphere_radius = np.amax (distance_euclidean_tensor)   
122.        
123.     for index, value in np.ndenumerate( distance_euclidean_tensor ):   
124.         if value == max_inscribedSphere_radius:   
125.             sphere_center = index   
126.        
127.     if DEBUG: print '\nThe maximum inscribed sphere is cen-

tered at: ', sphere_center, ' and its RADIUS is: ', max_inscribedSphere_ra-
dius   

128.    
129.     #################################################################   
130.     ###########   MINIMUM CIRCUMSCRIBED SPHERE    ###################   
131.     #################################################################   
132.     t8 = time.time()      
133.    
134.     # Ritter algorithm --> https://gist.github.com/paulsw-

tang/074b612d4e5980a18a94   
135.     min_cicr_sph = random_orientation.bounding_sphere2d (grainCoordi-

nates_arrayTR)   
136.     if DEBUG: print '\nThe minimum circumscribed sphere center and ra-

dius are: ', min_cicr_sph[0], min_cicr_sph[1],min_cicr_sph[2]   
137.     ################################################################   
138.     ###########   SPHERICITY CALCULATION      ######################   
139.     ################################################################   

   
140.     grainSubvolumeCube = scipy.ndimage.morphology.bi-

nary_fill_holes(grainSubvolumeCube).astype(int)   
141.    
142.     sphericity1 = grainVol-

ume/(math.pi*min_cicr_sph[2]*min_cicr_sph[2])   
143.     sphericity2 = (2*(grainVolume/math.pi)**0.5)/(2*min_cicr_sph[2])   
144.     sphericity3 = max_inscribedSphere_radius/min_cicr_sph[2]   
145.     sphericity4 = (2*math.pi*(grainVolume/math.pi)**0.5)/(skimage.meas-

ure.perimeter(grainSubvolumeCube, neighbourhood=4))   
146.     sphericity5 = grain_length[0]/grain_length[1]   
147.     t9 = time.time()      
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148.     if DEBUG: print '\nSave all the properties in a numpy array.\n'   
149.     geometry_properties = np.array ([ grainNumber, grainVol-

ume, X_glob, Y_glob, eigenValVec[0],eigen-
ValVec[1], grain_length[1], grain_length[0], 2.0*max_inscribedSphere_ra-
dius, 2.0*min_cicr_sph[2], sphericity1, sphericity2, sphericity3, spheric-
ity4, sphericity5 ])   

150.     if DEBUG: print geometry_properties   
151.     if DE-

BUG: print '******************************************************************
**************'   

152.        
153.     finaltime = time.time()   
154.        
155.     for item in geometry_properties:   
156.         fileHandle.write( "{}\t".format( item ) )   
157.     fileHandle.write( "\n" )   
158.        
159. fileHandle.close()   
160. exit()   

Appendix A.3 Python script “GetLabels_2Dimage.py” 

This python script (1) takes a (coloured) scan of grains as input, (2) binarises the image, 

(4) segments it and assigns labels to all grains. 

1. import tifffile   
2. import matplotlib.pyplot as plt   
3. import spam.plotting.greyLevelHistogram as glh   
4. #import spam.label.ITKwatershed as ws   
5. import spam.label   
6. import scipy.ndimage.morphology   
7. import numpy   
8.    
9. # if coloured image (table scanner), first binarise it:   
10. grey = tifffile.imread( "/home/riccardo/Ticino_scan_color_4500x4500.tiff" )   
11. plt.imshow( grey[:,:,grey.shape[2]/2], cmap="Greys_r"); plt.show()   
12. glh.plotGreyvalueHistogram( grey )   
13. # following from above   
14. binary = grey >= 120 # i.e., binary is where "grey" is big-

ger than or equal to 120 (set it from Fiji)   
15. binary = scipy.ndimage.morphology.binary_fill_holes(binary)   
16. print binary.sum() # let's count the number of "True" voxels:   
17. plt.imshow( binary[:,:,binary.shape[2]/2], cmap="Greys_r"); plt.show()   
18. ######## If binarised start from here:   
19. print 'Now start labelling:'   
20. #labelled = ws.run( binary )    
21. labelled = spam.label.watershed( binary )    
22. labelled = numpy.uint16(labelled)   
23. print labelled.max()   
24. plt.imshow( labelled[:,:,labelled.shape[2]/2], cmap=ltk.ran-

domCmap); plt.show()   
25. tifffile.imsave("labelled_2Dimage.tif",labelled)   
26. exit()   
27. labelled = ltk  
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Appendix A.4 PFC5 script “Make_initial.p3dat” 

This script runs on PFC5. It creates the initial cylindrical sample with target model di-

mensions, PSD and porosity and equilibrates it. The output is the “initial.p3sav” model. 

Some of the functions/scripts which are called but not reported in the Appendices can be 

easily download from the PFC material-modelling support (FISHTank) available (open-

source) at: https://www.itascainternational.com/software/support/utilities/fishtank). 

1. new   
2. set random 10002   
3. ; STEP 1: Build initial state   
4. fish create domain_extent = 20e-3   
5. domain extent [-domain_extent] [domain_extent]   
6.    
7. [scale_factor = 1.0]   
8. [target_porosity = 0.38]    
9. [sand_type = 0] ;0=Hostun, 1=Caicos ; 2=Ottawa ;3=Ticino   
10. [fric=0.20]   
11. cmat default type ball-facet model rrlinear method deformabil-

ity emod 2.0e8 kratio 2.0 prop fric [fric] rr_fric 0.0    
12. cmat default type ball-ball  model rrlinear method deformabil-

ity emod 2.0e8 kratio 2.0 prop fric [fric] rr_fric 0.0   
13. wall generate name 'VesselLateral' cylinder axis 0 0 1 base 0 0 [-domain_ex-

tent*0.75] ...   
14.                                       radius [domain_extent*0.25] height [do-

main_extent*1.5] cap False resol 0.1   
15. wall generate name 'VesselTop' plane position 0 0 [domain_extent*0.5]   
16. wall generate name 'VesselBottom' plane position 0 0 [-domain_extent*0.5]   
17. [mvWpCyl = wall.find(1)]   
18. [mvWp0z  = wall.find(3)]   
19. [mvWp1z  = wall.find(2)]   
20.    
21. ;Get vessel initial height (the width will be set the half)    
22.    
23. define wlz   
24.     wlz = math.abs(wall.pos.z(mvWp0z) - wall.pos.z(mvWp1z))   
25. end   
26. @wlz   
27. call granulometry.p3dat   
28. define delete_fines   
29.   loop foreach local ball ball.list   
30.     if ball.radius(ball) <= dmin_scaled then   
31.       ball.delete(ball)   
32.     endif   
33.   endloop   
34. end   
35. @delete_fines   
36. ball attribute density 2500.0 damp 0.7   
37. ball property fric [fric]   
38. hist mech solve aratio   
39. cycle 2000 calm 5   
40. set timestep scale   
41. solve aratio 1e-5   
42. calm   
43. set timestep auto   
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44. cycle 1000 calm 20   
45. calm   
46.    
47. define identify_floaters   
48.   loop foreach local ball ball.list   
49.     ball.group.remove(ball,'floaters')   
50.     local contactmap = ball.contactmap(ball)   
51.     local size = map.size(contactmap)   
52.     if size <= 1 then   
53.       ball.group(ball) = 'floaters'   
54.     endif   
55.   endloop   
56. end   
57. @identify_floaters   
58.    
59. define delete_balls ;delete balls that jumped out of the initial cylin-

der (if any)   
60.   loop foreach local ball ball.list   
61.     local dist_radial = math.sqrt((ball.pos.x(ball))^2+(ball.pos.y(ball))^2)   
62.     local dist_z2 = (ball.pos.z(ball))^2   
63.     if dist_radial > wlz/4   
64.         ball.delete(ball)   
65.     endif   
66.     if dist_z2 > (wlz/2)^2   
67.         ball.delete(ball)   
68.     endif   
69.   endloop   
70. end   
71. @delete_balls   
72.    
73. save initial.p3sav   
74. call isotropic_compression.p3dat 

Appendix A.5 PFC5 script “Isotropic_compression.p3dat” 

This script runs on PFC5. It (1) restores the initial model, (2) applies the target boundary 

conditions and confining pressure, (3) equilibrates it. The output is the “isotropic.p3sav” 

model. 

1. restore initial.p3sav   
2.    
3. call utilities.p3dat   
4. call ct.fis suppress   
5. call ft_my.fis   
6.    
7. ball attribute density 2500.0 damp 0.7 ; [kg/m3]   
8.    
9. def ctSetParams   
10.   mv_type = 0 ; Physical vessel type (no periodic)   
11.   mv_shape = 1 ; Cylindrical shape   
12.   mv_H = wlz ; Set initial dimensions   
13.   mv_W = wlz / 2.0   
14.    
15. ; Set Compression-Test Parameters.   
16.   ct_testType = 0 ;Confined Test   
17.   ct_Pc = 100e3 ;Confining Pressure   
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18.   ct_eRate = 0.50; Axial strain rate   
19.   ct_loadCode = 0 ;Single stage   
20.   ;servo-control group:   
21.   ct_ARatLimit = 1e-5 ;Equilibrium ratio limit   
22.   pk_PTol = 1e-5 ; Pressure tollerance   
23.   pk_stepLimit = 20000000 ; 2 million   
24. end   
25. @ctSetParams   
26.    
27. @_ctCheckParams ;Check validity of given parameters   
28. @ctListProps ;Print things on screen   
29. @mv_wInit ;Initialise some strain-stress and force their calculation dur-

ing cycling (callbacks)    
30.    
31. [mvs_vLimit = ct_vLimit]   
32. @mvs_on ;Function for keeping updated some values through callbacks (Ra-

dial diameter and velocity of walls)   
33. @mv_mStrainZero   
34. @mv_wStrainZero   
35.    
36. hist hist_rep 100   
37. hist @mv_wPz   
38. hist @mv_wPr   
39. hist @poros   
40. hist @mv_wn   
41.    
42. ;Set my case (mvs_BCz=1, mvs_BCr=1, etc.) and perform cycles   
43. @mvs_applyConfinement( @ct_Pc, @ct_PTol, @ct_ARatLimit, @ct_stepLimit )   
44. ;Monitor volumetric strain   
45. [mv_wn0 = mv_wn] ;initial porosity after isotropic compression   
46. hist @eps_vol   
47.    
48. [topforce = wall.force.contact(mvWp0z)]    
49. [botforce = wall.force.contact(3)]   
50. list @topforce ;check if top/bottom forces are correct    
51. list @botforce   
52.    
53. save isotropic.p3sav   
54. call triaxial_compression_RR_OTTAWA.p3dat   
55. return   

Appendix A.6 PFC5 script “Triaxial_compression.p3dat” 

This script runs on PFC5. It (1) restores the isotropic model, (2) assigns the rolling friction 

to the grains, (3) executes a triaxial test.  

1. restore isotropic.p3sav   
2. set random 10010   
3. calm   
4. set orientation on   
5. wall tolerance etol 0.0 ctol [0.1*dmax_scaled/2]   
6. clean all   
7.    
8. [emod=2e8]   
9. [kratio=2.0]   
10. [fric=0.575]   
11.    



285 

12. [file_name = 'hostun_sphericity.csv']   
13. [trend='power']   
14. [coeff1 = 0.1963] ;y=Ax+B (A) -or- y=Cx^n (C)   
15. [coeff2 = -8.982] ;y=Ax+B (B) -or- y=Cx^n (n)   
16.    
17. ;ball fix spin   
18. [StrainIncrement_SaveModel = 0.03] ;save every 3% (5 times) = 15%   
19. [NameByUser='Hostun_DEM']   
20. [save_flag=1] ;1=Save models every increment, 0=do not   
21.    
22. cmat default type ball-ball model rrlin method deformability emod [emod] kra-

tio [kratio] ...   
23.                         property fric [fric] rr_fric 0.0   
24. cmat apply   
25. ;initialise some values for the deviatoric load. Real quantities!    
26. ball property fric [fric]   
27. wall property fric 0.0   
28.    
29. @mv_wPoros ;call once to get the initial porosity   
30. [mv_wn0 = mv_wn] ;set initial porosity   
31. define volumetric_strain_from_porosity   
32.     eps_vol = (mv_wn-mv_wn0)/(1-mv_wn)   
33. end   
34. set fishcallback -5.0 @volumetric_strain_from_porosity   
35. hist @eps_vol n 100   
36.    
37. call rolling_utilities.p3dat   
38. @apply_rolling_friction_from_StaTrasform([sphericity])   
39.    
40. ;New parameters for the deviatoric phase   
41. def ctSetParams   
42.   mvs_vLimit = 0.10   
43.   ct_eRate = 1.0 ;1.0=axial velocity 0.01 for each platen   
44.   ct_loadCode = 1   
45. end   
46.    
47. def ctPerformStages ; Set here the target axial strains   
48.   _ctPerformStage( 1, [-StrainIncrement_SaveModel] )   
49.   _ctPerformStage( 2, [-StrainIncrement_SaveModel] )   
50.   _ctPerformStage( 3, [-StrainIncrement_SaveModel] )   
51.   _ctPerformStage( 4, [-StrainIncrement_SaveModel] )   
52.   _ctPerformStage( 5, [-StrainIncrement_SaveModel] )   
53.   ;_ctPerformStage( 6, [-StrainIncrement_SaveModel] )   
54. end   
55. @ctSetParams   
56.    
57. hist purge   
58. hist hist_rep 100   
59. hist @mv_wsd   
60. hist @mv_wsa   
61. hist @mv_wea   
62. hist @mv_wer   
63. hist @mv_wev   
64. hist @mv_wn    
65. hist @CN_mean   
66. hist @mean_rot   
67.    
68. @ctLoadingPhase   
69.    
70. save triaxial_final.p3sav   
71. return   
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Appendix A.7 PFC5 script “Prepare_Cone.p3dat” 

This PFC5 script executes a CPT test in a virtual calibration chamber (previously built 

using two scripts similar to what reported in Appendix A.4 and Appendix A.5). 

1. restore isotropic_VCC.p3sav   
2.    
3. set orientation on   
4. [_mvCylRes=0.1]   
5. [wadd_cyl = wall.find(1)]   
6. [wadd_bot = wall.find(2)]   
7. [wadd_top = wall.find(3)]   
8.    
9. @mvs_off   
10. def _mvsActive   
11. ; Control velocities of wall pairs with pressure BCs.   
12.   local wGain, wVel   
13.   if mv_shape == 1   
14.     if mvs_BCz == 1 then   
15.       wGain = _mvsGain(3)   
16.       if wGain == -1.0 then   
17.         wVel = -mvs_vLimit  ; closing at velocity limit   
18.       else   
19.         wVel = wGain * ( mv_wPz - mvs_BCzVal )   
20.       end_if   
21.       wall.vel( mvWp0z, 3 ) = -wVel ;stress control on the bot-

tom wall (as in the exp)   
22.       wall.vel( mvWp1z, 3 ) = 0 ;set to zero the top (as in the exp)   
23.     end_if   
24.     if mvs_BCr == 1 then   
25.       wGain = _mvsGain(4)   
26.       if wGain == -1.0 then   
27.         wVel = mvs_vLimit  ; set=0 for BC3 (no lateral strain)   
28.       else   
29.         wVel = wGain * ( mv_wPr - mvs_BCrVal ) ; set=0 for BC3 (no lat-

eral strain)   
30.       end_if   
31.       _mvsSetRadVel( wVel )   
32.     end_if   
33.   end_if   
34.   _mvsEnforceVlimit   
35. end   
36. @mvs_on   
37.    
38. hist purge   
39. ;ball fix spin   
40. [penetration_vel = -0.1]   
41. [b_fric = 0.60]   
42. [rr_fric = 0.0] ;set to zero now   
43. [emod = 4e8]   
44. [kratio = 2.0]   
45. [kn_pile = 3e6] ; for linear model   
46. [c_fri_Pile = 0.00] ; frictionless sleeve   
47. [c_fri_fricPile = 0.60] ;frictional sleeve   
48. [c_fri_cone = 0.60]; set = ball fric   
49.    
50. [file_name = 'ticino_sphericity_from2DScan.csv']   
51. [trend='power']   
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52. [coeff1 = 0.1963] ;y=Ax+B (A) -or- y=Cx^n (C)   
53. [coeff2 = -8.982] ;y=Ax+B (B) -or- y=Cx^n (n)   
54. call rolling_utilities.p3dat   
55.    
56. cmat default type ball-ball model rrlin method deformability emod [emod] kra-

tio [kratio] ...   
57.                         property fric [b_fric] rr_fric [rr_fric]   
58. cmat apply   
59. ball property fric [b_fric]   
60. wall property fric 0.0   
61.    
62. @apply_rolling_friction_from_StaTrasform([sphericity])   
63.    
64. def _out_rad_cur  ; fish to determine the current radius of cylinder   
65. local radx   
66. local rady   
67.       loop foreach vp wall.vertexlist( wadd_cyl )   
68.       radx = comp.x( wall.vertex.pos(vp))    
69.       rady = comp.y( wall.vertex.pos(vp) )        
70.     end_loop   
71.     _out_rad_cur=math.sqrt(radx^2+rady^2)   
72.     _height_cur= _wdz   
73. end   
74. @_out_rad_cur   
75.     
76. define cone_geometry   
77.     ks_pile = kn_pile   ; for linear model   
78.     Theta = 60          ; cone angle   
79.     d_c = 1.0 * 0.0356  ; cone diameter   
80.     h_c = (d_c/2)*math.tan(Theta*math.pi/180)   
81.     h_fr = 0.130        ; length of friction sleeve   
82. end   
83. @cone_geometry   
84.    
85. [tip_pos0 = wall.pos.y(wadd_top) ]   
86. [cone_pos_z = wall.rotation.center.z(wadd_cone)]   
87. [h_penet =  - cone_pos_z]   
88. [tip_pos= tip_pos0 + cone_pos_z]   
89.    
90. wall generate id 4 group CONE facet cone axis 0 0 -

1 base (0.0,0.0,[tip_pos0+h_c]) height @h_c ra-
dius [d_c*0.5] cap false false onewall ...   

91.      resolution [_mvCylRes]   
92.    
93. cmat add 1 model linear property kn @kn_pile ...   
94.                       ks @ks_pile ...   
95.                       fric @c_fri_cone ...   
96.                       range group CONE   
97.    
98. [wadd_cone = wall.find(4)]   
99.    
100. def vel_pile ; set pile velocity   
101.     wall.vel.z(wadd_cone) = penetration_vel   
102.    shaft_for_z=0   
103.    shaft_for_r=0   
104.     loop i(1,pieces)   
105.         wall.vel.z(wadd_shaft(1,i)) = penetration_vel   
106.     endloop   
107. end   
108. @vel_pile   
109.    
110. call monitor_cone.fis   
111. set timestep auto   
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112. set nstep 500   
113.    
114. define stop_me   
115.   if h_penet < 0.80   
116.     exit   
117.   endif   
118.   stop_me = 1   
119. end   
120. solve fishhalt @stop_me   
121.    
122. save CPT_final.p3sav   
123. return   
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Appendix B: Dataset 

 

 

The most relevant data that has been used in this doctoral work, together with the in-

structions to open and manage the files, is available in open-access on the “Zenodo” 

open-source storage platform (www.zenodo.org). 

 

The archives can be found with a simple research from the search box by typing the 

thesis author’s name (Riccardo Rorato) and are citable with the following DOI: 

10.5281/zenodo.3407138. 

 

The full contents will be available from November 2019.       
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Appendix C: Number of particles estimation in a 

cylindrical DEM sample 

 

 

Arroyo et al. (2011) proposed an equation to estimate the number of particles (𝑁) in-

volved in CPT-DEM simulations performed in a cylindrical Virtual Calibration Chamber 

(VCC). This estimation allows a straightforward pre-setting of the chamber and cone 

diameters, in order to get a reasonable number of particles. It is defined as follow: 

𝑁 = 𝑓𝐺  
3

2
 𝑛𝑝
3  𝑅𝑑

2 𝑛ℎ(1 − 𝑛) 

in which 𝑛 represent the porosity, 𝑓𝐺 is an empirical factor accounting for the grain size 

distribution (roughly 1.3 for the fine-truncated Ticino sand they used) and the three a-

dimensional ratios are: 

𝑛𝑝 =
𝑑𝑐
𝐷50

 ;  𝑅𝑑 =
𝐷𝐶
𝑑𝑐
 ;  𝑛ℎ =

𝐻

𝑑𝑐
 

where 𝐻 and 𝐷𝐶 are respectively the VCC height and diameter, 𝐷50 is the characteristic 

grain diameter and 𝑑𝑐 is the cone diameter. It is evident this equation is valid if the VCC 

is filled with particles generated from a single scaling factor. However, it may be useful 

to extend this equation in case multiple scaling factors are applied to different zones 

within the VCC (as the ones used in Chapter 9).  

The extended equation has been developed in this work and it is reported below. It is 

valid for a VCC filled with particles originated from three different scaling factor applied 

to three cylindrical zones (see Figure C.1). It assumes the form 

𝑁 = 𝑓𝐺  
3

2
 𝐻 (1 − 𝑛){(𝐷50,1

−3 ∙ 𝐷𝐶,1
2 ) + [𝐷50,2

−3 ∙ (𝐷𝐶,2
2 − 𝐷𝐶,1

2 )] + [𝐷50,3
−3 ∙ (𝐷𝐶,3

2 − 𝐷𝐶,2
2 )]} 



292 

where 𝐷50,1−2−3 are the characteristic grains diameters for the three particle scaling fac-

tors and 𝐷𝐶,1−2−3 are the diameters of the three cylinders defining the different zones of 

the VCC (see Figure C.1). 

 

 

Figure C.1: Representation of a VCC built with three cylindrical zones with three different scaling factors  
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