
 
 
 

 
 
 
 
 

 

 
 
 
 

 
 
 

 
Targeting tumor microenvironment crosstalk  
through GPCR receptors and PI3K pathway 

 
Martina Guerrero Hernández 

 
 
 
 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
CompartirIgual  4.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – CompartirIgual  
4.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0. Spain License.  
 



PhD in Biomedicine

Targeting tumor microenvironment 
crosstalk through 

GPCR receptors and PI3K pathway

Martina Guerrero Hernández
Barcelona 2019



 

DOCTORAL PROGRAMME IN BIOMEDICINE 

Research line- Molecular and cellular biology of cancer 

2015-2019 

 

University of Barcelona- Faculty of Medicine 

 

Targeting tumor microenvironment crosstalk 

through GPCR receptors and PI3K pathway 

 
Doctoral thesis presented by: 

Martina Guerrero Hernández 

Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) 

Hematology-Oncology department 

 

 

 

Martina Guerrero Hernández       Patricia Pérez Galán       Jordi Camps Polo       Elías Campo Güerri 

                    Doctorand                           Thesis director               Thesis director                 Thesis tutor 

 

Barcelona, February 2019





 

 

 

 

 

 

 

 

 

 

 

 

INDEX 
 





 
i INDEX 

 

Table of contents 
 

Introduction ........................................................................................................................................ 1 

1. Cancer history and evolution ................................................................................................... 3 

1.1 Cancer biology .................................................................................................................... 4 

1.2 The tumor microenvironment ............................................................................................ 8 

2. Follicular lymphoma............................................................................................................... 11 

2.1 FL pathogenesis ................................................................................................................ 11 

2.2 Landscape of genomic alterations .................................................................................... 13 

2.2.1 Epigenetic deregulation ...................................................................................... 13 

2.2.2 Survival and proliferation signals ........................................................................ 15 

2.2.3 Immune evasion .................................................................................................. 16 

2.3 FL transformation ............................................................................................................. 18 

2.4 Role of tumor microenvironment ..................................................................................... 20 

2.4.1 Stromal cells ........................................................................................................ 21 

2.4.2 T cells ................................................................................................................... 22 

2.4.2.1 CD8+T cells .................................................................................................... 22 

2.4.2.2 CD4+T cells .................................................................................................... 23 

2.4.3 Myeloid cells........................................................................................................ 24 

2.5 Diagnosis and prognosis ................................................................................................... 26 

2.6 Current treatments ........................................................................................................... 28 

2.6.1 First-line treatment ............................................................................................. 28 

2.6.2 Consolidation/maintenance ................................................................................ 30 

2.6.3 Second-line treatment ........................................................................................ 30 

2.7 New treatments for relapsed/refractory Follicular Lymphoma ....................................... 32 

2.7.1 PI3k Pathway ....................................................................................................... 32 

2.7.1.1 Idelalisib ........................................................................................................ 34 

2.7.1.2 Copanlisib ..................................................................................................... 35 

2.7.2 BCL2 family proteins ........................................................................................... 37 

2.7.2.1 Venetoclax .................................................................................................... 41 

2.7.3 Other Novel agents ............................................................................................. 42 



 
ii INDEX 

3. Colorectal cancer .................................................................................................................... 45 

3.1 CRC Pathogenesis .............................................................................................................. 46 

3.1.1 Adenomatous polyposis coli (APC)-type Tubular Adenomas (Conventional) ..... 47 

3.1.2 Serrated Neoplasia Pathway Polyps .................................................................... 47 

3.2 Genomic pathogenesis in CRC .......................................................................................... 48 

3.2.1 Key genes mutated in CRC .................................................................................. 49 

3.3 Role of the tumor microenvironment (TME) .................................................................... 51 

3.3.1 Immune Inflammatory cells ................................................................................ 51 

3.3.2 Cancer Associated Fibroblast (CAFs) ................................................................... 53 

3.3.3 Endothelial cells .................................................................................................. 53 

3.3.4 The extracellular matrix (ECM) ........................................................................... 54 

3.3.5 Pericytes .............................................................................................................. 54 

3.4 CRC progression and metastatic disease .......................................................................... 55 

3.5 GPCRs in Cancer ................................................................................................................ 57 

3.5.1 Chemokines receptors ........................................................................................ 59 

3.5.1.1 CXCR4 receptors ........................................................................................... 59 

3.5.1.1.1 Current treatments targeting CXCR4/CXCL12 axis .......................... 61 

3.5.2 Endocannabinoids receptors ............................................................................... 64 

3.5.2.1 CB2 receptors ................................................................................................ 65 

3.5.2.1.1 Current treatments .......................................................................... 66 

3.6 Diagnosis and prognosis of CRC ........................................................................................ 67 

3.7 Current treatments in CRC ................................................................................................ 70 

 

Hypothesis and aims ......................................................................................................................... 75 

Study 1. Idelalisib Interferes with the Crosstalk of Follicular Lymphoma and its Immune 

Microenvironment and Potentiates the Activity of Venetoclax.............................................. 77 

Study 2. GPCRs heterodimers as a new therapeutic target in colorectal cancer  ................... 78 

 

Materials and methods ..................................................................................................................... 79 

Study 1: Idelalisib and Venetoclax in FL  ........................................................................... 81 

1. Patient samples  ......................................................................................................... 81 

2. FL microenvironment models  ................................................................................... 81 

3. Gene expression profiling (GEP) and data meta analysis  ......................................... 83 

4. Targeted Next Gene Sequencing (NGS)  .................................................................... 83 



 
iii INDEX 

5. ELISA cytokine quantification  ................................................................................... 84 

6. HUVEC tube formation assay  .................................................................................... 84 

7. Adhesion assay to HUVEC cells  ................................................................................. 85 

8. Transendothelial migration  ...................................................................................... 85 

9. T cell migration assays  .............................................................................................. 85 

10. iBH3 profiling  ............................................................................................................ 86 

11. Flow cytometry  ......................................................................................................... 87 

12. Western blot  ............................................................................................................. 87 

13. Simple Western Methods (Peggy Sue)  ..................................................................... 88 

14. Statistical analysis ...................................................................................................... 88 

Study 2: GPCRs heterodimers in CRC  ............................................................................... 89 

1. Cell lines and patient samples  ................................................................................... 89 

1.1. CRC cell lines and cell cultures  ........................................................................... 89 

1.2. Generation of SW620-GFP+/Luc+ (Cell transduction) ........................................ 89 

1.3. Patient samples: Tissue MicroArray (TMA) ........................................................ 89 

2. Immunohistochemistry  ............................................................................................. 90 

2.1. TMA samples  ..................................................................................................... 90 

2.2. In vivo samples  .................................................................................................. 90 

3. In situ Proximity Ligation Assay (PLA)......................................................................... 90 

4. Confocal microscopy  ................................................................................................. 91 

5. Image Analysis  ........................................................................................................... 92 

5.1. Cell lines PLA  ...................................................................................................... 92 

5.2. TMA samples PLA  .............................................................................................. 92 

6. Flow cytometry  .......................................................................................................... 93 

7. Determination of ERK-1/2 phosphorylation levels  .................................................... 93 

8. Western blot ............................................................................................................... 93 

9. KRH-3955 synthesis .................................................................................................... 94 

10. Wound-healing assays ................................................................................................ 99 

11. In vivo experiments .................................................................................................. 100 

12. Statistical analysis ..................................................................................................... 102 

 

Results ............................................................................................................................................. 103 

Study 1: Idelalisib Interferes with the Crosstalk of Follicular Lymphoma and its Immune 

Microenvironment and Potentiates the Activity of ABT-199 ......................................... 105 

1. Idelalisib modulates key signaling pathways in the germinal center  ............. 107 

2. Idelalisib shapes the FL immune microenvironment  ...................................... 109 

3. Idelalisib modulates FDC-induced gene sets in selected FL patients  .............. 111 

4. Idelalisib reduces FDC-induced angiogenesis and transendothelial migration in 

sensitive patients ............................................................................................. 116 

5. Mutational load does not predict sensitivity to idelalisib and mutated RRAGC 

correlates with resistance to idelalisib  ........................................................... 119 

6. Idelalisib bypasses microenvironment derived resistance to ABT-199  .......... 120 



 
iv INDEX 

 

Study 2: GPCRs heterodimers as a new therapeutic target in colorectal cancer  .......... 125 

1. CB2 and CXCR4 are simultaneously overexpressed in primary colon tumors  . 127 

2. Prognostic value of CXCR4-CB2 heterodimerization  ....................................... 129 

3. Heterogeneous formation of CXCR4 and CB2 heterodimers in in vitro models

 ......................................................................................................................... 130 

4. CXCR4-CB2 heterodimers crosstalk  ................................................................. 132 

5. Inhibition of CXCR4 and CB2 compromises phospho-ERK mediated cell 

migration  ......................................................................................................... 134 

6. Targeting the crosstalk between CXCR4 and CB2 showed anti-metastatic and 

anti-proliferative effects in vivo . ..................................................................... 135 

Discussion ........................................................................................................................................ 139 

1. Combinatorial therapy of Idelalib and Venetoclax in R/R FL ........................... 141 

2. Combinatorial therapy of KRH-3955 and JTE907 in CRC ................................. 145 

 

Conclusions ..................................................................................................................................... 151 

 

Bibliography .................................................................................................................................... 155 

 

Annexes ........................................................................................................................................... 189 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cancer begins and ends with people. In the midst of scientific abstraction,  

it is sometimes possible to forget this one basic fact. 

—June Goodfield 
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3 INTRODUCTION 

1.Cancer history and evolution 

Cancer. What does cancer mean? It is a term for disease in which abnormal cells divide without 

control and can invade nearby tissues or can also spread to other parts of the body through the 

blood and the lymph systems (definition from National Cancer Institute). Cancer is not one disease 

but many diseases. We call all of them “cancer” because they share a fundamental feature: the 

abnormal growth of cells. But what else?  

Cancer is one of the most relevant problems that has been affecting the human race since the 

beginning of time, going through 4000-years of history, with its importance increasing in the last 

300 years.  

The first medical description of cancer was in an original Egyptian text  written in 2500 BC, where it 

is described as “a building tumor in breast … like touching a ball of wrapping”. Then, the Greek 

Hippocrates was the first to use the term 'karkínos' (καρκίνος), which means crab, to refer to the 

cancer, due to its similarity in hardness to a crab shell, according to some historians. Later, during 

medieval times, Andreas Vesalius (1514-1564) launched a new search for the real cause and cure of 

cancer. There is a lot of evidence demonstrating the attempts to fight against cancer throughout 

this period. Johannes Scultetus (1595-1645) described a mastectomy, the surgical removal of breast 

cancer, using fire, acid and leather bindings. A few years later, Giovanni Battista Morgagni (1682-

1771) was the first to establish the scientific basis for the surgical removal of complicated tumors. 

Between 1800 and 1900, surgeons devised increasingly aggressive operations to attack the roots of 

cancer in the body. In the 1890’s, William Stewart Halsted at Johns Hopkins University devised the 

radical mastectomy (an operation to extirpate the breast, the muscle beneath the breast and the 

associated LNs). Until the XIX century, medicine focused on the study of where the tumor mass 

appeared and how to remove it from the organism. In 1838 a botanist named Matthias Schleiden 

and Theodor Schwann, a physiologist, proposed that all living things were composed of fundamental 

units called cells. Shortly after the introduction of this idea, in 1858, Rudolf Virchow wrote the 

Diecellulare Pathologie book, where he described the main actor in all diseases as our cells, including 

cancer. Virchow was the first to understand that our cells are the promoters of cancer and proposed 

that cells only arose from other cells and that growth could only occur as a result of hyperplasia. 

Virchow studied cancers under a microscope and recognized that they represented hyperplasia in 

an extreme form that he called “neoplasia”.  
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In the development of new strategies to fight against cancer, in 1898 radium was discovered by 

Marie and Pierre Curie, and oncologists and surgeons began to deliver high doses of radiation to 

tumors, without knowing that radiation itself was carcinogenic. Later, during World War I, mustard 

gas was indiscriminately used with horrible consequences. This led to the study by Louis S. Goodman 

and Alfred Gilman, two pharmacologists from Yale University, to use a mustard gas derivate 

(clormetina, Mustargen) in the treatment of neoplasic diseases in 1942. But it was not until the Bari 

incident in Italy during World War II in 1943, when the gas decimated normal white blood cells in 

the victim’s bodies reinforcing the hypothesis made by the pharmacologist from Yale that the use 

of these derivatives became important in killing cancers of white blood cells, such as Hodgkin’s 

lymphomas and leukemia. The results were published in 1946. It was the beginning of 

Chemotherapy. In 1947, Sidney Farber discovered that a folic acid analog called aminopterin, was 

able to kill dividing cells in the bone marrow. Using aminopterin, Farber obtained good results in the 

remission of lymphoblastic leukemia. In 1955,  radiotherapy was born at the hands of Henry Kaplan, 

a physician-scientist. It was initially used for the treatment of retinoblastoma in a baby, and then 

used to cure Hodgkin’s lymphoma. In the 1960’s physicians Emil Frei and Emil Freireich at the 

National Cancer Institute (NCI) began to use highly toxic drugs to cure acute lymphoblastic leukemia.  

In the 1990’s, Barbara Bradfield was among the first women to be treated with the drug, Herceptin, 

that specifically attacks breast cancer cells with good results1. Continuing on, in 1997,rituiximab (anti 

CD20) was one of the first monoclonal antibody used in cancer treatment in NHL2. 

1.1 Cancer biology 

Rolling underneath these medical, cultural, and metaphorical interceptions of cancer over the 

centuries was the biological understanding of the illness, an understanding that had evolved from 

decade to decade. Cancer is a disease caused by the uncontrolled growth of a cell. This growth is 

unleashed by dynamic changes in the genome, specifically mutations that produce oncogenes with 

dominant gain of function and tumor suppressor genes with recessive loss of function3. In a normal 

cell, powerful circuits regulate cell division and cell death. In a cancer cell, these circuits have been 

broken, unleashing a cell that cannot stop growing and in some cases have acquired the ability to 

migrate and invade other tissues and organs of the organism. 

That this seemingly simple mechanism, cell growth without barriers, can lie at the heart of this 

grotesque and multifaceted illness demonstrates  the power of cell growth. Cell division allows us 

as organisms to grow, to adapt, to recover, to repair, and to live. In cancer cells, this skill is distorted 
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and intensifies all of those abilities, thus creating perfect versions of themselves within our cells. 

Cancer cells can grow faster and adapt better.  

Tumors, unlike what was previously believed, are more than insular masses of proliferating cancer 

cells; they are complex tissues composed of multiple distinct cell types, which interact with each 

other. In the biology of tumors it is necessary to understand the role of tumor microenvironment 

in tumorigenesis. This tumor microenvironment is made up of stromal cells, which contribute to  

certain hallmarks and cancer capabilities4.  

The hallmarks of cancer were described for the first time by Hanahan and Weinberg in 20005, where 

they enumerated six different essential alterations in cell physiology that collectively dictate 

malignant cell growth, a common set of rules that govern the development of all types of human 

tumor cells. A few years later, in 2011, the same authors revised the original hallmarks including 

four more and expanded the functional roles and contributions made by recruited stromal cells to 

tumor biology. The hallmarks of cancer represent acquired functional capabilities by different tumor 

types through distinct mechanisms during the course of multistep tumorigenesis, that allow cancer 

cells to survive, proliferate and disseminate (described below)4. 

-Genome Instability and Mutation 

Multistep tumor progression is the succession of clonal expansions, where some of them may be 

triggered by non-mutational changes affecting the regulation of gene expression6,7. The role of p53 

is crucial in the maintenance of genome integrity8 

-Tumor-Promoting Inflammation 

Already in the 1980´s, several pathologists recognized that some tumors are infiltrated by cells of 

innate and adaptive immune system9. In the ensuing decade, the important effect of immune cells 

(from innate immune system) in neoplastic progression10 , where inflammation can participate in 

hallmark capabilities by supplying bioactive molecules to the tumor microenvironment11 was 

demonstrated.  

-Sustaining Proliferative Signaling 

This represents the most essential feature in cancer cells, which involves the ability to maintain 

chronic proliferation. Cancer cells are able to sustain proliferative signaling by different mechanisms 

that include: the autocrine production of growth factor ligands themselves 12, the production of 
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stimulus to the supportive tumor-associated stroma 13, and the deregulated expression of protein 

receptor levels on the cancer cell surface14. Moreover, somatic mutations in certain tumors are 

associated with constitutive activation of signaling pathways usually triggered by activated growth 

factor receptors, such as mutations in the catalytic subunit of phosphoinositide 3-kinase (PI3K) 

isoforms, and another example such as EGFR which triggers the hyperactivation of the signaling 

pathway15,16.  

-Evading Growth Suppressors 

Cancer cells must escape the control of powerful programs that negatively regulate cell 

proliferation, which mostly depend on tumor suppressor genes. The two principal tumor 

suppressors are the retinoblastoma-associated protein (RB), which transduce growth-inhibitory 

signals from outside of the cell17, and the p53 transcription factor, which receives inputs from stress 

and abnormal intracellular functions18. They are the central control nodes that regulate cell 

proliferation, or alternatively, activate senescence or apoptotic programs. Another mechanism that 

inhibits cell proliferation is cell contact, such as Merlin (the cytoplasmic NF2 gene product) which 

scores contact inhibition via coupling cell-surface adhesion molecules (E-cadherin) to trans-

membrane receptor tyrosine kinases (EGFR)19. In many late-stage tumors, TGF-β signaling is able to 

activate the epithelial-to-mesenchymal transition (EMT)20,21. 

-Resisting/Withstanding Cell Death 

Apoptosis (programmed cell death) has been established as a natural control in cancer 

development22-24. The apoptosis induced stress signaling is imbalanced due the elevated levels of 

oncogene signaling and DNA damage, however some tumors are able to attenuate apoptosis in high-

grade malignancy state and in resistance to therapy. The apoptotic program is divided into the 

extrinsic and intrinsic programs, the latter is more implicated as a barrier to cancer pathogenesis24. 

The apoptotic machinery and programs will be described in detail in later sections. The most 

common strategy for avoiding apoptosis in cancer cells is the loss of p53 function25,26. Alternatively, 

tumors cells are able to increase the expression of antiapoptotic regulators (Bcl-2, Bcl-x, Bfl-1, Mcl-

1), or they can downregulate proapototic factors (Bax, Bim, Puma)26. Autophagy and necrosis are 

alternative cell death mechanisms that tumor cells are able to overcome (autophagy)27 or to take 

advantage of (necrosis)10.  
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-Enabling Replicative Immortality- 

Cancers cells require unlimited replicative potential to maintain cell proliferation. One of the 

mechanisms that tumor cells use to acquire this feature is to increase the levels and activity of 

telomerase, a specialized DNA polymerase that add telomere repeat segments to the end of 

telomeric DNA to protect the end of chromosomes28. Senescence is another natural barrier to 

proliferation, that is induced by various proliferation-associated abnormalities, including high levels 

of oncogenic signaling29.  

-Inducing Angiogenesis 

The tumor-associated neo-vasculature, generated by the angiogenesis process, is required for the 

maintenance and expansion of the tumor30. This process is controlled by angiogenic regulators, 

which are signaling proteins that bind cell-surface receptors displayed by vascular endothelial cells, 

such as vascular endothelial growth factor-A (VEGF-A), which can be upregulated by hypoxia and by 

oncogene signaling31,32. The upregulation of these angiogenic factors is triggered by the expression 

of oncogenes such as Ras and Myc, or by inductive signals produced by immune inflammatory 

cells33,34. It is also known that cells of the innate immune system (macrophages, neutrophils, mast 

cells and myeloid progenitors) are capable of infiltrating tumor masses and assembling at the 

margins of lesions, helping to sustain ongoing angiogenesis and conferring a protection against 

therapy 35-37. 

-Activating Invasion and Metastasis 

During the development of some tumors, the  cells from the primary tumor acquire the ability to 

move out and invade adjacent tissues, and ultimately they are able to travel to distant sites and 

colonize themselves. This processed denominated metastasis is responsible for 90% of human 

cancer deaths38. The detailed outline of the invasion-metastasis process will be described in a later 

section (3.3). One of the main proteins involved in preventing tumor invasion and metastasis is E-

cadherin, and it is frequently downregulated as an occasional mutated in human carcinomas39,40. 

Another well-described process implicated in metastasis, dissemination an  apoptosis resistance , is 

the regulatory process “epithelial-mesenchymal transition” (EMT)41,42. Moreover, the crosstalk 

between cancer cells and the tumor microenvironment cells through the secretion of several 

stimuli36,43,44, also contributes to this acquired capability of invasion and metastasis of tumor cells.  
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-Reprogramming Energy Metabolism 

In uncontrolled proliferation state of cancer cells,  adjustments of energy metabolism are necessary 

to sustain cell growth. This phenomenon was observed for the first time in 1930 by Otto Warburg45 

and then termed “aerobic glycolysis”. Under hypoxic conditions, this dependence on glycolysis 

increases46.  

-Evading Immune System 

The immune system (innate and adaptive) has a crucial role as a barrier for tumor development and 

progression in both animal models47 and clinical epidemiology48. But in the cancer context, tumors 

cells are able to impede the infiltration of immune cells such as NK cells and CTLs49 and inactivate 

their cytotoxic activity by secreting immunosuppressive factors.   

 

1.2 The tumor microenvironment  

The biology of a tumor is the result of the genetic alterations in the tumor cell together with an 

active interaction among tumor cells and the microenvironment cells. Tumor cells are a 

heterogeneous group of distinct clonal subpopulations which reflect clonal heterogeneity50,51. And 

a tumor microenvironment is integrated by different types of cells that contribute to the progression 

of the tumor and to the acquisition of new features and new resistances.  

There are substantial differences in the composition of the tumor microenvironment between 

hematologic malignancies and solid tumors. A noticeable immune B-cell non-Hodgkin’s lymphoma 

(NHL) is characterized by immune infiltrate in secondary lymphoid organs (Lymph nodes (LN) and 

the spleen),while the infiltration of immune cells in solid tumors is more limited52. 

In many lymphomas, such as follicular lymphoma (FL), mucosa-associated lymphoid tissue 

lymphomas and classical Hodgkin’s lymphoma, the tumor microenvironment plays a crucial role in 

the proliferation of the lymphoma cells,  as well as in the activation of the B-cell receptor an antigen 

presentation 53. (An expanded description of tumor microenvironment in FL in the section 2.4). 

 In solid tumors, different types of normal cells constitute the tumor stroma, including fibroblast, 

immune cells, vascular cells, and pericytes. These groups of cells secrete a variety of growth factors 

and other molecules, such as cytokines and chemokines, which promote cell growth, tumor 
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progression, and the recruitment of other cells into the tumor54. (An expanded description of tumor 

microenvironment in CRC in the section 3.3). 
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2. Follicular Lymphoma 

Follicular lymphoma (FL) is the most common indolent non-Hodgkin lymphoma, and the second 

most frequent subtype of nodal lymphoid malignancies in Western Europe. The annual incidence of 

this disease has rapidly increased during recent decades, from 2-3/100.000 during the 1950s to 

5/100.000 recently55 , with a median age of presentation of 60 years56. FL is slightly more frequent 

in females57.  

FL is a biologically heterogeneous disease, and the prognosis varies widely among individuals 58. The 

disease is characterized by the clonal proliferation of neoplastic lymphoid cells that share 

morphological, immunophenotypic and molecular attributes of germinal center B cells59. These 

tumors contain a mixture of neoplastic centrocytes and centroblasts along with various non-

neoplastic cells including T-cells, follicular dendritic cells, and macrophages60. 

Although FL is generally characterized by slow progression and high response rates to therapy, it is 

still considered incurable, because virtually almost all the patients relapse 61,62. Currently, the 

median survival for newly diagnosed patients has significantly increased and is now approaching 20 

years 63. Moreover, it has been recently reported that the life expectancy of patients in complete 

response at 30 months is similar to that of the Spanish general population64. However, response 

duration and survival shorten after each relapse65. Additionally, there is a risk of transformation to 

an aggressive lymphoma of approximately 20% at 5 years and 30% at 10 years66. 

 

2.1 FL Pathogenesis 

The genetic hallmark of FL is the reciprocal translocation t(14;18)(q32;q21), which is present in 85-

90% of cases67 68,69. The small series of FL cases that lack a t(14;18) were divided in two subgroups: 

one with BCL2 protein overexpression not related to an IGH/BCL2 rearrangement and a second 

without BCL2 overexpression (characterized prominently by the presence of t(3;14)(q27;q32), 

implying a role for BCL6)70. Moreover, these cases shown an increased Ki67 proliferation rate, 

MUM1 higher expression, and CD10 reduced expression. Although overall survival and patient 

characteristics did not differ between FL with and without t(14;18) supporting the notion that both 

belong to the same lymphoma entity71,72. 
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The somatic rearrangement, which is thought to constitute the first step of lymphomagenesis, is 

initiated within the bone marrow during B-cell lymphopoiesis as a result of erroneous 

immunoglobulin heavy chain gene (IGH) rearrangement73,74. The t(14;18) translocation leads to 

placement of the B cell Lymphoma 2 (BCL2) gene under the inductive influence of transcriptional 

enhancers associated with IGH, resulting in overexpression of anti-apoptotic BCL2 (the  hallmark of 

the disease) leading to increased cell survival in germinal centers 75-77. BCL2, along with other anti-

apoptotic proteins, inhibits apoptosis by binding and neutralizing activated pro-apoptotic proteins 

including the mitochondrial outer membrane permeabilizers BAX and BAK, as well as the 

intracellular stress sensors BIM and PUMA that activate BAX and BAK 78-80. This prolonged survival 

favors the acquisition of further genetic lesions and ultimately may lead to the development of FL 

in some such cells81. 

The t(14;18) translocation is also present at low frequency (0.1-10 cells/million) in peripheral blood 

of 50-70% of healthy individuals, suggesting that the rearrangement itself is insufficient for 

malignant transformation and therefore secondary genetic alterations are required for cellular 

transformation to FL 67,82-84. That circulating t(14;18) positive cells have been named FL-like B cells 

(FLLCs) and their abundance has been linked to the development of FL85. 

Recently, the notion that the t(14;18) is the first, or the only genetic event initiating FL has been 

challenged by the identification as early genetic events 86,87 the presence of mutation in 1 or more 

chromatin-modifying genes; the most frequent being those in  the histone-lysine N-

methyltransferase 2D (KMT2D; previously known MLL2), the histone acetyltransferases CREB-

binding protein (CREBBP), and the Polycomb-group catalytic protein histone-lysine N-

methyltransferase (EZH2). In addition, recent results  have revealed the importance of the glycan 

modification (mannosylation) of surface immunoglobulin evident in 74% to 90% of cases. (Table 1). 

The amino acid sequence motifs are cues for addition in the endoplasmatic reticulum (ER) of a 

dolichol-linked oligosaccharide chain to the Asn residue, a process known as N-glycosylation. 

Although germ line-encoded motifs are present in the constant regions of normal immunoglobulin 

and in a few immunoglobulin variable (IGV) sequences, motifs introduced into the IGV regions 

during somatic hypermutation are rare in normal memory B cells. However, they are present in 

almost all cases of FL where they accumulate in the antigen-binding sites. They are found in most 

soluble IgM+ cases (90%) but there are slightly fewer (73.5%) in IgG+ cases 81,88. Almost all cases of 

FL express unusual mannosylated glycan in the antigen-binding site, and these mannosylated 



 
13 INTRODUCTION 

surface immunoglobulins present on the surface of the FL cells, bind with DC-SIGN present in tumor-

associated macrophages (TAM) and promote a persistent signaling mechanism for tumor 

survival/proliferation89,90. In addition the mannosylation of the surface immunoglobulin-binding 

sites could be used to assist diagnosis and, because they are clonal markers, could also be used for 

monitoring81. 

Table1. Genetic changes found in earliest inferable progenitor of FL 

Genetic change Approximate frequency in FL, % 

Translocation of BCL2 80-90 

Mutations in 1 or more chromatin-modifier genes 95 

Acquisition of N-glycosylation sites in IGV region of BCR 74-90 

 

2.2 Landscape of genomic alterations across the FL genome  

The development of next-generation sequencing technologies has led to the discovery of additional 

recurrent somatic mutations that have provided new insights into the molecular pathogenesis of FL, 

that include  epigenetic deregulation, increased stimulation of survival pathways and immune 

evasion (Table 2). 

 

2.2.1 Epigenetic deregulation 

Alteration of chromatin-modifying genes 

Disruption of histone-modifying enzymes by genetic lesions is recognized as a central hallmark of 

FL, arising in nearly every patient. These mutations principally target the gene encoding KMT2D 

KMT2C, EZH2, CREBBP and EP30087,91-95. Chromatin conformation is determined by a dynamic 

equilibrium between active and repressive histone marks placed at gene promoters and enhancers 

to control their transcription. The active regulation of these marks, due to both internal and 

environmental signals, allows B cells to undergo rapid transcriptional and phenotypic changes 

during the differentiation process. Inactivating mutations in KMT2D, CREBBP and EP300 lead to a 

loss of active marks of transcription (mainly histone H3 lysine 4 methylation (H3K4me) and histone 

H3 lysine 27 acetylation (H3K27ac))96,97, whereas hotspot gain-of-function mutations in EZH2 

increase the repressive mark H3K37 trimethylation (H3K27me3)98. Together, these mutations lead 

to the aberrant repression of gene transcription in networks with central roles in GC and post-GC 
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cell fate decision. This phenomenon may maintain the GC phenotype by suppressing programs 

required for exiting the GC reaction and promoting terminal differentiation, while enhancing 

survival pathways such as CD40, nuclear factor-κB (NF-κB), Janus kinase (JAK)-signal transducer and 

activator of transcription (STAT), Toll-like receptor (TLR) and B cell receptor (BCR) signaling96-102. 

Others participants in epigenetic remodeling are the transcription factors BCL-6, myocyte-specific 

enhancer factor 2B (MEF2B), and FOXO1. While not considered histone-modifying by themselves, 

they are able to recruit demethylases and deacetylases to promoters and enhancers. BCL-6 can 

selectively recruit histone deacetylase 3 (HDAC3) to promote H3K27 deacetylation and 

consequently inactivate B cell enhancers, contrasting the effects of CREBBP and EP300. Even so, 

BCL-6 represses expression of genes implicated in cell cycle checkpoints and plasma cell 

differentiation in collaboration with EZH2103. The transcriptional activator MEF2B interacts with 

both the transcriptional co-repressor calcineurin-binding protein (CABIN1) or class II HDACs, and this 

interaction modulates the activity of MEF2B. The mutations in MEF2B (15% of FL patients) alter its 

activity to bind to DNA or to the co-repressor CABIN1, resulting in an increased transcriptional 

activity of MEF2B, and hence increased expression of BCL6 and MYC oncogene104,105. Mutations in 

FOXO1 (present in 5% to 10% in FL patients) lead to a gain of function and cause its nuclear retention 

and consequent activity, which consists of maintaining the dark-zone program in GC B cells and 

cooperating with BCL-6106,107. Finally, mutations in genes encoding members of the switch/sucrose 

non fermentable (SWI/SNF) nucleosome remodeling complex or in the linker and core histone genes 

such as ARID1A, ARID1B, BCL7A and SMARCA4 , identified in 5-10% of patients with FL, might 

modify chromatin structure and DNA accessibility to histone-modifying enzymes 87,94,108,109. 

All these alterations induce the arrest of B cells in a GC phenotype, sustaining proliferation programs 

and genetic instability in cells that overexpress BCL-2 and therefore are resistant to apoptosis110.  

 

Aberrant DNA methylation  

Another type of epigenetic deregulation in FL is the aberrant DNA methylation. In normal GC B -cells 

a massive redistribution of cytosine methylation mediated by activation-induced cytidine 

deaminase (AID)111  occurs ,which mediates the hypomethylation of heterochromatin, and local 

hypermethylation of Polycomb-repressed regions112. In FL tumors, a hypomethylation of their DNA 
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but increased DNA methylation at the promoters of tumor suppressor genes such as BCL6 and EZH2 

and in their target genes has been demonstrated 113-115. 

Moreover, the high levels of intra-tumoral heterogeneity in the DNA methylation pattern are 

associated with higher FL histological grade, therefore contributing to disease aggressiveness114. 

 

2.2.2 Survival and proliferation signals 

One of the most important signaling pathways in FL is the BCR signaling, responsible for antigen 

activation and promoting cell survival, 53,116. Approximately 30% of FL patients show mutations in 

gene encoding proteins in the BCR-NF-κB signaling pathway, mainly in the genes encoding the 

Bruton tyrosine kinase (BTK), accounting for 5-10% of FL patients, and the caspase recruitment 

domain-containing protein 11 (CARD11), accounting for 10-15% of FL patients109,117,118. The 

functional consequences of these mutations are still unclear. Moreover, antigen-independent BCR 

activation also exists, due to the mannosylation of the surface immunoglobulins, which binds to 

dendritic cells and macrophages present in the tumor microenvironment that express the DC-SIGN, 

leading to activation of downstream BCR signaling pathway89,90.  

Equally important, mutations in gene encoding components of the mTOR complex 1 (mTOR1) 

pathway have been observed in approximately 25% of FL patients119 . mTOR1 activation increases 

protein synthesis in response to growth factors and nutrient signals. The levels of amino acids are 

tightly regulated by a complex  located in the lysosomal surface, which includes the RRAG GTPases, 

the Regulator complex, the V-ATPase complex and sodium-coupled neutral amino acid transporter 

9 (SLC38A9)120,121. Almost exclusively, activating mutations in RRAGC (which encodes RAS-related 

GTP-binding protein C (RAGC)) occur in FL, and is able to activate mTORC1 in amino acid deprivation 

conditions119. Mutations in V-ATPase complex components specifically in ATP6V1B2, ATP6AP1 and 

VMA21 have been found in 10% of the patients, and lead to defects in signaling or alter the 

interaction between the complex109.   

Additional signaling pathways that collaborate in maintaining the proliferation and survival of 

tumors cells are JAK-STAT and NOTCH pathways.  Activating mutations in the gene encoding STAT6 

cause the constitutive activation of interleukin-4(IL-4)-JAK-STAT pathway, moreover, mutations in 

genes encoding STAT3 or suppressor of cytokine signaling 1 (SOC1), sustain cell survival and 

proliferation94,122 (20%). Mutations in C-terminal PEST domain of the NOTCH1, NOTCH2 proteins, 
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and alterations in the NOTCH3 and NOTCH4 genes and in DTX1 and SPEN, which encode NOTCH 

signaling regulators, are present in 18% of patients with FL (one of these mutations in NOTCH 

pathway components), even so, the contribution of these mutations to FL pathogenesis is still 

unclear94,122,123.  

Finally, inactivating mutations in GNA13 gene (present in 10% of FL patients) promote B-cell growth 

and lymphoma cell dissemination92. GNA13 encodes the alpha subunit of a heterotrimeric G-protein 

coupled receptor responsible for modulating RhoA activity124. 

 

2.2.3 Immune evasion 

As mentioned above, mutations in CREEBP and EP300 are very frequent in FL. Recently, it has been 

demonstrated that CREBBP participates in the control of major histocompatibility complex (MHC) 

class II expression. Specifically, the decrease of H3K27ac in the enhancers of genes involved in MHC 

class II presentation reduces its expression and consequently the capacity to stimulate T cell 

proliferation (in vitro) and changes the population of T-cells that infiltrate the tumors, with a 

decrease in the stimulation of anti-tumoral CD4+ helper T cells (in vivo)87. 

On the other hand, the inactivation of the receptor herpes virus entry mediator A (HVEM; also called 

TNFRSF14) by point mutation or 1p36 deletions (in 50% of FL) increases the recruitment and 

activation of protumoral follicular helper T Lymphocytes (TFH) through impaired interaction with B 

and T lymphocytes attenuator (BTLA) receptor expressed on B and T Lymphocytes. Moreover, BTLA 

expression is under the control of KTM2, frequently mutated in FL, as described before. Altogether, 

this defect in HVEM-BTLA axis results in the secretion of different cytokines of tumor necrosis factor 

(TNF) family that activate the lymphoid stroma, creating a tumor-supportive environment 

containing a high amount of TFH
125-128. 
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Table 2 Genetic alterations in FL 

 
Pathway 

 
Gene 

Approximate 
frequency of 

mutated cases, % 

 
Proposed functional consequences 

Epigenetic and 
transcriptional 
regulation  

KMT2D (MLL2) 70-90 Reduced H3K4 methylation, promotion of   GC 
B-cell proliferation 

CREBBP 
 

50-70 Reduced histone acetylation, enhances BCL6 
function, impaired TP53 function 

EZH2 10-30 Increased bi- and trimethylation of H3K27, 
reduced expression of target genes 

EP300 10-20 Reduced histone acetylation 

MEF2B 10-20 Enforces activity of BCL6 

KMT2C 13 Reduced histone methyltransferase 

BCL7A -̴10 Alteration of chromatin remodeling, specific 
consequences unclear 
 

ARID1A -̴10 

ARID1B -̴5 

SMARCA4 -̴5 

BCL6 Mutations -̴5; 
translocations -̴10 

Increased H3K27 deacetylation, 
reduced expression of target genes 

BCR signaling  IGV regions -̴80 Promotes N-glycosylation of the surface 
immunoglobulins favoring microenvironment 
crosstalk 

CARD11 10-15 Activation of NF-κB signaling 

BTK 5-10 Function of these mutations are still unclear 

FOXO1 5-10 Mutations cause nuclear retention, maintains 
dark-zone B-cell program, cooperates with 
BCL6 

mTORC1 
signaling 

RRAGC 10-15 mTORC1 activation, promotes cellular 
metabolism and growth 

ATP6V1B2 -̴10 Defects in mTORC1 signaling or alter the 
interaction between the complex ATP6AP1 -̴10 

VMA21 5 

Migration  GNA13 5-10 Inactivating mutations promote B-cell growth 
and lymphoma cell dissemination 

Survival  BCL2 -̴85 Rescue from apoptosis in the GC 

SOCS1, STAT6 and 
STAT3 

20 Hyperactivation of JAK/STAT signaling 

NOTCH1, NOTCH2, 
NOTCH3, NOTCH4, 
DTX1 and SPEN 

18 Function of these mutations to 
lymphomagenesis is still unclear94,122,123 

Immune 
evasion 

HVEM -̴50 Loss-of-function mutations may prevent 
inhibitory HVEM signaling 
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Figure 1. Pathogenesis and genomic alterations. Scheme representing the different steps of FL pathogenesis in bone 

marrow and then in the lymph node, and the most frequent mutations (including early mutational events).  

 

2.3 FL transformation 

FL transformation to an aggressive lymphoma occurs in 2% to 3% of patients per year, and it has 

been linked to adverse prognosis129,130. The most common histology at the time of transformation 

is diffuse large  B-cell lymphoma (DLBCL) (80%), sometimes composite lymphomas (14%) followed 

by rare instances of lymphomas resembling morphologically high-grade B-cell lymphoma (6%)131,132. 

The factors involved in transformation remain unclear but appear not to be single genetic events 

but rather multiple hits within a varying molecular landscape133, summarized in table 3. The tracking 

of multiple clones in patients shows that transformation to an aggressive B-cell lymphoma occurs 

either by direct clonal evolution or by divergent evolution from a common progenitor cell134.  
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Figure 2. Analysis of FL clonal evolution. Graph represents the origin and evolution of transformed FL.  

 

The common event driving the transformation to aggressive lymphoma is MYC translocation. A 

significant proportion of transformed FLs (TFLs) are double-hit lymphomas and are classified as high-

grade B cell lymphoma, with translocations in MYC and BCL2 and/or BCL6, according to 2016 WHO 

classification135. Transformation occurs via the activation of known or putative oncogenes (MYC and 

CCND3) and inactivation of known or putative tumor suppressors genes (TP53, CDKN2A/B, B2M, 

S1PR2, GNA13)94,122,136-141. These changes lead to an increase in proliferation (resulting from cell 

cycle reregulation), defects in DNA damage response, alterations in B cell migration and escape from 

immune surveillance142. Moreover, mutations in EBF1 and regulators of NF-κB signaling (MYD88 and 

TNFAIP3) were gained at transformation94.  

The development of a new noninvasive approach for monitoring tumor evolution, the sequence of 

circulating tumor DNA (ctDNA) by liquid biopsies, is a promising method for early detection of 

transformation143.  
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Table 3. Biological risk factors that increase FL transformation.  

Category Variable with reported risk of transformation 

Microanatomical structure Disrupted CD21+ FDC meshwork’s144 

Intrafollicular localization of CD14+ FDCs145 

Tumor microenvironment Predominantly intrafollicular localization of CD4+ T cells144 

Diffuse pattern of PD1+ cells145 

Higher FOXP3 expression146 

Intra- or perifollicular distribution of FOXP3+ cells147 

Increased vessel density148 

FL grade Grade 3A132 

IRF4 tumor cell staining by IHC132 

Germ line polymorphism Single nucleotide Polymorphism (SNP) rs6457327149 

Gene expression signatures Embryonic stem cell-like signature150 

NF-κB target signature scores151 

Large-scale genetic 
alterations 

Deletions of chromosome 1p or 6q; gain of chromosomes 
2, 3q or 5152-155 

Higher numbers of structural rearrangements136 

Single gene alterations TP53 mutations or deletions138,156 

MYC translocations or mutations139 

FAS mutation137 

BCL6 translocations132,157 

BCL2 mutations158 

Circulating tumor DNA Proportion of mutations uniquely found in plasma143 
Adapted from Kridel et al., Blood, 2017133. 

 

2.4 Role of tumor microenvironment 

FL is probably the NHL with the highest dependence on microenvironment, which sustains cell 

growth and survival creating a specific FL tumor niche60. In fact, FL was the first lymphoma where 

the composition of microenvironment was related to prognosis159. 

Several highly frequent genetic alterations are not oncogenic per se but favor the crosstalk of FL 

cells with their neighboring cells. As mentioned above, the recent demonstration that the 

inactivation of HVEM contributes to the immune escape of FL, sheds more light on the relation 

between genetic alterations and development of a permissive microenvironment.   

The FL tumor is characterized by the maintenance of the follicular structure indicating that FL B cells 

remain dependent on cellular and molecular events that contribute to the normal germinal center 

(GC) reaction. The formation pattern of tumor microenvironment in FL has been defined as a ‘re-

education’ process, meaning that tumor cells take advantage of follicle structure and organization 
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to promote their survival. This organization similar to GC is supported by follicular dendritic 

cells(FDCs)  and T follicular helper (TFH) cells160. Beyond T lymphocytes, FL tumor cells also indirectly 

influence the polarization of monocytes towards an immunosuppressive phenotype. Lastly, the 

differentiation of mesenchymal stromal cells to lymphoid-like stromal cells (fibroblastic reticular 

cells) is an important process that accounts for the production of chemotactic cytokines that attract 

FL cells and may modulate the composition of FL microenvironment 161,162. 

In summary, it is now accepted that FL microenvironment, including stromal cells, TFH or tumor 

associated macrophages (TAM), supports malignant B-cell  survival, proliferation and drug 

resistance. Thus, the FL cell niche should be envisioned as a dynamic network of cell interactions 

where  factors secreted by a certain  cellular type may impact the  activation, expansion, polarization 

and migration of a different one 163.  

2.4.1 Stromal cells 

The stromal cell subset is the non-hematopoietic cell type present in LNs and is responsible for 

making up the parenchyma. These cells are fibroblastic reticular cells (FRCs), follicular dendritic 

cells(FDCs), marginal reticular cells (MRCs) and bona fide mesenchymal stromal cells (MSC) that can 

differentiate to FRC. The main common feature of lymphoid stromal cells  is to derive from resident 

local precursors and need both tumor necrosis factor (TNF)-α and lymphotoxin (LT)-α1β2 (produced 

by B and T cells) for their maturation and maintenance as immunologically competent cells. 

Furthermore, they play a central role in FL pathogenesis through both a direct tumor B-cell 

supportive activity and an indirect effect on the orchestration of FL cell niche164. 

FRCs: they form the mesenchymal stromal network on the T-cell zone. These cells provide a 

purchase for antigen delivery, immune cell recruitment, motility, interaction, and homeostasis 

within the release of extracellular matrix components (ECM) (such as the collagen-rich reticular 

fibres, ER-TR7 antigen, fibrillin, laminin and fibronectin), IL-7, VEGF, nitric oxide, and homeostatic 

chemokines CCL19, CCL21 and CXCL12. This latter cytokine induces FL tumor cell migration and 

adhesion, and also dendritic cell migration to T cell zone. FRCs also express integrin subunits, the 

adhesion ligand intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 

(VCAM1)165. 

FDCs: they represent the cluster of  the germinal center (GC) of B follicles promoting the recruitment 

of B cells and TFH through CXCL13-dependent attraction into the light zone of GC. These cells present 
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antigens as immune complex to B-cells, thereby contributing to affinity maturation and BCR survival. 

FDCs express Fc receptors (such as CD16, CD23 and CD32), complement receptors (such as CD21 

and CD35) and complement components (such as C4). They also express high levels of VCAM1, 

desmin, laminin and B cell-activating factor of the TNF family (BAFF)165. Equally important is the 

production of Hedgehog (Hh) ligands, IL-15, hepatocyte growth factor (HGF), and the adhesion 

molecule VCAM1 that has been proposed to contribute to their anti-apoptotic effect on malignant 

GC B cells166-169.  

MRCs: they have different phenotype than FRCs and FDCs but also share markers in common with 

them, such as ER-TR7 antigen, demin, laminin, VCAM1 and MADCAM1, and secrete the chemokine 

CXCL13165.However, MRCs seem to uniquely express the tumor necrosis factor family member 

RANKL (receptor activator of NF-κB ligand).  

MSC: these cells present in the LN can be triggered to FRC differentiation in response to TNF-α and 

LT-α1β2170. They also overexpress CCL2 chemokine that causes the recruitment of monocytes 

promoting their differentiation into proangiogenic and anti-inflammatory macrophages phenotype 

(TAMs)161.  

 

2.4.2 T cells 

T cells are one of the major immune cell types found within TME and coordinate the specific immune 

response to cancers cells, due the differentiation of naïve T cells to distinct specialized T cell 

subpopulations. These specialized subsets produce specific cytokines and exhibit different effector 

functions.  Two different classes of T cells are of interest, CD4+ T lymphocytes and CD8+ cytotoxic T 

cells (CTLs)171. 

2.4.2.1 CD8+ T cells 

The presence of CD8+ CTLs in the tumor, is associated to anti-tumoral immunity by the host, 

therefore inhibiting FL cell growth. They are activated by the engagement of their T-cell receptor 

(TCR) with complexes formed between antigenic peptides and MHC class I molecules displayed on 

the surface of target cells. TCR signaling leads to the rapid secretion of the pore-forming protein 

perforin, granzyme B, and other proteases stocked in CTL cytoplasmic granules (named lytic 

granules) at the CTL/ target cell contact site. Penetration of granzyme B in target cells triggers an 
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apoptotic cascade ultimately leading to target cell annihilation, in fact granzyme B expression is 

associated with prolonged PFS 172. 

2.4.2.2 CD4+ T cells 

CD4+ T cells have pivotal role in tumor cell growth. In the area around the tumor, five different types 

of CD4+T cells have been described: 

Th1 cells: they perform an essential role protecting the body against intra-cellular pathogens 

through macrophage activation. Also, they promote and regulate the CD8+ CTLs activity173. Th1 cells 

by producing some cytokines such as IFN-ɣ, IL-2 and TNF-β can mediate inflammation and delayed 

hypersensitivity. High numbers of Th1 cells in the TME have been associated to a good prognosis in 

many cancers174.  

Th2 cells: they are not directly cytotoxic immune cell types, so they mediate their effector functions 

by the release of cytokines that activate other immune cell types175. The IL-10 secretion by Th2 cells 

mediate the inhibition of DC antigen processing, presentation, and/or the activation of the immune 

suppressive regulatory T cells176. However, the secretion of IL-4 was linked to tumor clearance 

through recruitment of infiltrating eosinophils and macrophages177. 

Th17 cells: they are part of TIL sub-sets within the TME, and are more abundant near the tumor 

mass. The rich environment of pro-inflammatory cytokines secreted by fibroblast and other cells 

types in TME, favor the recruitment of Th17 cells178. These cells are able to generate pro- or 

antitumor growth effects depending on the cancer type179. Th17 cell, with a specific phenotype 

(CD45RA-, CD45RO+), express CD49, CCR2, CCR5 and CCR7 receptors, allowing their trafficking to 

peripheral tissues and limit their retention in lymph nodes180. 

T regulatory cells (Treg): they are able to suppress effector T-cells mediated antitumor functions 

within the TME, supporting disease progression, and would result in poor outcome in lymphoma. 

Treg express CD25 and secrete IL-10, IL-35 and TGF-β.181. However, in FL the presence of these 

FOXP3 + cells have been described as a good prognostic marker and associated with improved overall 

survival182,183. The role of regulatory T cells in the context of this lymphoma has been controversial 

and some authors failed to found a positive correlation144, or even associated the follicular location 

of Treg with poor outcome147. 

In the germinal center, two different types of T cells have been characterized:  
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T follicular helper (TFH): they were initially identified as CD4+ T cells expressing CXCR5 and PD-1 and 

they are located in follicular areas of secondary lymphoid organs, but recent studies defined them 

as a distinct helper T-cell lineage, under the control of BCL6, the master regulator of TFH 

differentiation pathway, playing a central role in GC B-cell localization, selection and differentiation 

in normal follicles184. FL-TFH display a specific gene expression profile compared to tonsil-TFH, with an 

overexpression of IL4, IL2, IFNG and TNF. TFH produces high levels of IL-4, and it has been associated 

with a STAT6 and Erk-dependent FL activation in a paracrine mode. Moreover, the interaction TFH 

CD40 ligand (CD40L) with CD40-FL cells promotes FL cell survival. FL-TFH could also modulate the FL 

supportive niche through their expression of TNF and LTA that activate differentiation and 

maintenance of B-cell supportive lymphoid stroma network. In addition,  the overexpression of IL-4 

may contribute to the polarization of TAM within the malignant cell niche. 

T follicular regulatory (TFR): these cells are Foxop3posCXCR5hi, sharing some  phenotypic 

characteristics with TFH, such as a high levels of BCL6 compared to classical Treg185. TFR have opposite 

functions in follicular lymphoma, they are able to suppress CD4+T cells (including TFH) and follicular 

lymphoma cells186, and conversely, they could inhibit CD8+ CTLs from the GC border172. They also 

strongly express the co-stimulatory molecule ICOS, with strong immunesuppressive functions185.  

 

2.4.3 Myeloid cells 

These types of cells are recruited into tumor as monocytes from the bloodstream by the release 

from tumor of chemokines such as CCL260.  

TAMs are highly plastic cells involved in tumor survival, growth and immunity. It is well accepted 

that the presence of macrophages in tumor microenvironment has a bad prognosis, but on the other 

hand, it has been reported that a high content of them predicts favorable outcome in FL patients 

treated with Rituximab-chemotherapy187. A later study, demonstrated that CD163-positive 

macrophages predict outcome in follicular lymphoma, but their prognostic impact is highly 

dependent on treatment received. Increased staining for CD163 was associated with poor PFS and 

OS in the patients treated with R-CVP, and favorable PFS in the patients treated with R-CHOP. On 

the other hand, CD68 staining cells did not predict outcome in these patients188. 

Once they reach the tumor, the secretion of IL-4 by Th2 leads to M2 polarization of monocytes (via 

STAT6), a phenotype that is associated with tumor dissemination, immunosuppression and 
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angiogenesis189,190. M2 classical phenotype is characterized by the co-expression CD68 and CD163, 

and the low expression of IL-12 and high expression of IL-10190. TAMs also secrete suppressive 

cytokines such as TGF-β that inhibit antitumor immunity191.  On the other hand, the secretion of IFN-

ɣ by Th1 in tumor microenvironment185, promotes and increases the migration of macrophages in 

response to CCL2 through an upregulation of STAT1 expression192. Macrophages interplay with FL 

cells also occurs through the cytokine B cell activating factor (BAFF) secreted by TAMs, which is a 

survival factor for FL patients. Moreover, it has been reported a germline mutation in TNFRSF13 

C/BAFF-R in 10% of FL patients, which induces a strong activation of BAFF-signaling193. Another 

important pathway activation by TAM interaction with FL is the BCR signaling. M2 macrophages 

overexpress C-type lectins DC-SIGN (CD209) and Mannose Receptor (CD206), which bind 

mannosylated BCR in FL cells and might help tumor progression by contributing to the proliferation 

and survival194. Moreover, the overexpression of CD40L and IL-4 secretion by TFH in FL tumor, 

increase the secretion of IL-15 by myeloid cells promoting B cells proliferation195. Finally TAMs in FL 

release immunosuppressive molecules such as IL4I1, which contribute to local immune escape196.  

 

Figure 3. Tumor microenvironment in FL. FL B-cells are supported by a variety of cell such as TAMs, FDCs and T-cells, 

which support tumor growth and survival through a complex set of cytokines, chemokines, adhesion molecules, 

angiogenic factors and stimulating molecules. 
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2.5 Diagnosis and prognosis 

For FL diagnosis purposes  a specimen/excisional LN biopsy is necessary. Due to the heterogeneity 

of the tumor sample, core biopsies and fine needle aspirations are not recommended because the 

FL grading is difficult. The histological report should give the diagnosis according to the World Health 

Organization (WHO) classification. Grading of FL based on lymph node biopsies is carried out 

according to the number of blast/high-power field (table 1 summarize the different grade 

classifications)197, and the staging is carried out according to the Ann Arbor classification system198 

(table 2), with mention of bulky disease (>7cm) when appropriate197. 

Table 4. Grading of follicular lymphoma 

Grade Description 

1 ≤5 blasts/high-power field 

2 6-5 blasts/high-power field 
3A >15 blasts/high-power field/ centroblasts with intermingled centrocytes 
3B >15 blasts/high-power field/ pure sheet of blasts 

Grade 1,2 and 3A should be treated as indolent disease199, whereas grade 3B is considered an aggressive lymphoma200.  

Table 5. Staging of follicular lymphoma according to the Ann Arbor classification system. 

Stage Area of  involvement 

I (IE) One lymph node region or extralymphatic site (IE) 

II (IIE) Two or more lymph node regions or at least one lymph node region plus a localized 
extralymphatic site (IIE) on the same side of the diaphragm 

III (IIIE, IIIS) Lymph node regions or lymphoid structures (e.g. thymus) on both sides of the 
diaphragm with optional localized extranodal site (IIIE) or spleen (IIIS) 

IV Diffuse or disseminated extralymphatic organ involvement 

 

The diagnostic work-up consists of197: 

1. Physical examination of peripheral LNs , liver and spleen. 

2. Computed tomography (CT) scan of the neck, thorax, abdomen and pelvis. 

3. Bone marrow aspirate and biopsy to carry out histology and cytology. Carrying out an 

immunophenotype by flow cytometry and PCR  for BCL2 rearrangement is also 

recommended. 

4. Positron emission tomography (PET)-CT (improves the accuracy of staining for nodal and 

extranodal sites) 
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5. Complete blood count, routine blood chemistry which includes lactate dehydrogenase 

(LDH), β2 microglobulin and uric acid. Likewise, carrying out flow cytometry on peripheral 

blood and PCR for BCL2 rearrangement is also recommended. 

6. Screening test for human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis 

C. 

For prognosis purposes, due to the heterogeneity in both disease presentation and response to 

treatment among patients with FL, different models have been developed to assist in the 

pretreatment assessment of prognosis. The first established Follicular Lymphoma International 

Prognostic Index (FLIPI)201,  was derived from a database of over 4000 FL patients treated largely in 

the pre-rituximab era, and the five strongest prognostic factors in multivariate analysis were: 

number of nodal sites of disease (>4), elevated LDH, age >60, stage III or IV disease, and hemoglobin 

>12g/dl. Later on, in the rituximab-chemotherapy (R-chemo) era, FLIPI2 was developed 

incorporating β2 microglobulin, diameter of largest LN, bone marrow involvement and hemoglobin 

levels202. Both indexes are prognostic tools that classified patients into low-, intermediate-, and high-

risk groups that correlate with overall survival (OS) or progression-free survival (PFS), respectively203. 

These models have several limitations though, as they are not useful in treatment decisions, 

response to treatment and they do not incorporate molecular data into the assessment58,204-207.  

Gene-expression profiling of 191 biopsy specimens obtained from patients with untreated FL 

suggested a more favorable clinical course in cases with infiltrating T cells, in comparison with cases 

with non-specific macrophages bystander cells, therefore the length of survival among patients 

correlates with the molecular features of nonmalignant immune cells present in the tumor at 

diagnosis159. But subsequent studies on the clinical significance of non-malignant cell populations 

have generated conflicting results, which may partly be influenced by poor reproducibility in 

immunohistochemical marker quantification208 . 

For all these problems, recently a new model has been developed, m7-FLIPI score, which 

incorporates the Easter Cooperative Oncology Group (ECOG) performance status, FLIPI, and the 

mutational status of seven candidate genes (EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP and 

CARD11), which are commonly affected in FL, to improve the prognosis in patients with high tumor 

burden receiving first-line chemoimmunotherapy58,204-206. In spite of this, the m7-FLIPI remains 

primarily a research tool and it has not been established in the clinical routine practice58,204. 

Biological parameters are still being researched for prognostic assessment, for example gene 
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expression profiling techniques are currently being explored to develop more clinically relevant 

models. A recent reported 23-gene expression panel is able to predict the risk of progression in FL 

patients at diagnosis, independently of the FLIPI score and use of anti -CD20 maintenance 

therapy.209. 

 

2.6 Current treatments 

Despite the fact that FL remains largely an incurable disease with the current available treatment 

options, it is a treatable disease mostly responsive to several regimens of chemotherapy, 

immunotherapy, radiation and targeted therapies. Initial treatment decision must be individualized 

according to the patient characteristics such as age and performance status, disease factors such as 

stage of the tumor, and goals of care. The varied presentation at diagnosis and frequent lack of 

significant symptoms result in differences in initial management strategies, from observation to 

chemoimmunotherapy210. 

 

2.6.1 First-line treatment  

Low tumor burden 

Stage I-II. For those patients who present localized disease, radiotherapy (24 Gy) is the preferred 

treatment with a good curative potential, 10-year OS rates in up to 80% of the cases and with a 

median OS of nearly 20 years211,212. In selected patients, elderly patients or patients with other 

problems, to avoid the side-effects of radiation, “watch and wait” or rituximab (anti-CD20 

monoclonal antibody) therapy is the recommended treatment58,213,214. 

Stage III-IV. In patients with low-risk profile, the current therapeutic approach is based on clinical 

risk factors, symptoms and patient perspective. Thus “watch and wait” is recommended, and when 

symptoms appear, antibody monotherapy (rituximab) is recommended 215. 

High tumor burden 

Stage I-II.  In patients with adverse clinical or biological prognosis features, or when radiotherapy is 

not applicable (lung and liver), systemic therapy (the same that is indicated for advances stages) is 

recommended214.  
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Stage III-IV. For those patients, no curative therapy is yet established. The disease is characterized 

by spontaneous regression in 10-20% of cases and varies from case to case, therapy should be 

initiated upon the symptoms appearance197. The recommended treatment is the addition of 

chemotherapy to rituximab, however, there is no consensus among experts in the field regarding 

the selection of chemotherapy. The most commonly regimens are R-CHOP (rituximab, 

cyclophosphamide, doxorubicin, vincristine and prednisone), R-CVP (rituximab, cyclophosphamide, 

vincristine and prednisone) and BR (bendamustine and rituximab). In the past, R-CHOP regimen was 

the most commonly selected by clinicians, but it has changed in recent years due to the favorable 

reports from BR treatment, improving PFS and reducing the toxicity compared to R-CHOP 

treatment216-219. Even so, in patients with more aggressive histology it is reasonable to choose first-

line R-CHOP treatment220. In elderly patients, a brief course of chemoimmunotherapy with a full 

rituximab course is an alternative with good efficacy and low toxicity221,222.In patients when 

conventional chemotherapy is contraindicated, antibody monotherapy (rituximab) or chlorambucil 

plus rituximab as an alternative223,224 is recommended. Recently, the development of a type II 

monoclonal antibody to CD20 (obinutuzumab), provides a novel antibody approach in combination 

with chemotherapy for untreated high tumor burden FL patients. The GALLIUM trial demonstrated 

that the treatment obinutuzumab plus chemotherapy (G-chemo) improves the PFS significantly , 

although with  increased serious adverse effects compared to R-chemo225.  

 

Figure 4. Representative scheme of treatment decision in newly diagnosed FL. 
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2.6.2 Consolidation/maintenance 

The PRIMA trial revealed that rituximab maintenance for 2 years improves PFS (51% versus 35% 

after 10 years)226. In addition, the use of rituximab maintenance in patients treated with frontline 

BR, improves the PFS with an acceptable safety profile227. Radioimmunotherapy consolidation after 

chemotherapy (this combines rituximab with the radioactive isotype Ytrium90, Zevalin®, that is 

delivered to tumor site) also improves PFS, but effects are inferior in comparison with rituximab 

maintenance228.   

 

2.6.3 Second-line treatment 

Even though the improved effectiveness of chemoimmunotherapy regimens, approximately 20% of 

patients with FL relapse within 2 years of first-line therapy221,226. This remains the case despite the 

benefit of additional rituximab in the form of maintenance as previously mentioned. The remarkably 

consistent frequency of early relapse across studies is suggestive of a group of patients with 

different disease biology who are uniquely at risk and who may benefit from alternate therapies, at 

frontline or at the time of relapse. Nowadays, the clinical significance of early relapse in FL is 

unknown229.  

At relapse obtaining a new biopsy to exclude transformation into an aggressive lymphoma is 

recommended. In asymptomatic patients with low tumor burden, observation is indicated. In early 

relapses (<12-24 months), a non-cross-resistant scheme should be preferred (for example 

bendamustine after CHOP or vice versa). In symptomatic cases with low tumor burden, rituximab 

monotherapy is suggested. In later relapses, R monotherapy is the recommendation with palliative 

intent in low tumour burden patient197. In younger patients with high tumour burden, early relapse 

and refractory disease an allogenic stem cell transplantation230 is indicated. In double (rituximab and 

alkylating agents)-refractory FL, PI3k inhibitor idelalisib is suggested231, although the use of 

appropriate prophylaxis to avoid the mortality risks as a consequence of opportunistic infections197 

is needed. Recently, the GADOLIN study suggests the use of obinutuzumab in combination with 

bendamustine in relapsed rituximab treated cases232. More details in figure 5. 
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Figure 5. Representative scheme of treatment decision in relapsed FL. 
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2.7 New treatments for relapsed/refractory Follicular Lymphoma 

FL is characterized by successive lines of therapy resulting in progressively shorter periods of 

disease-free survival followed eventually by the development of either chemo-refractoriness, large 

cell transformation, or death from treatment related toxicities233. For this reason, it is necessary to 

develop new treatments with new mechanisms of action to offer therapeutic options for patients 

with relapse and R-chemo refractory FL to improve disease control and to maintain high quality of 

life with minimal therapy related toxicity. 

One of the most important pathways in FL is the B cell receptor (BCR) signaling pathway that 

represents a crucial component in the survival of normal B cells throughout their development. And 

in many non-Hodgkin lymphomas (NHLs) such as FL, deregulated BCR signaling has been identified 

as a potent contributor to lymphomagenesis and tumor survival. PI3K is a common denominator 

transducing the signaling from FL crosstalk with the tumor microenvironment making it an attractive 

target.  

Equally important, considering the genetic FL hallmark t(14;18), the Bcl-2 family proteins play a 

crucial role in the regulation of apoptosis in cancer cells. 

 

2.7.1 PI3K Pathway 

The phosphatidylinositol-3-kinase (PI3K) pathway plays an important role in multiple cellular 

functions, including proliferation, differentiation, and trafficking234, and also contributes to cancer-

promoting aspects of the tumor environment, such as angiogenesis and inflammatory cell 

recruitment235,236.  

PI3K class I are heterodimeric enzymes that have both regulatory (p85) and catalytic (p110) subunits. 

The p110 subunit exists in four different isoforms: α, β, ɣ and δ, with different functions and sites of 

expression. The isoforms α and β are ubiquitous, while the isoforms ɣ and δ are restricted mainly to 

lymphocytes237. 

The activation of PI3K pathway is mediated by the activation of the Receptor Tyrosine Kinase (RTK) 

or the BCR, among others, such as the stimulation of CD40L, which recruit PI3K to the cell 

membrane. PI3K mediates the conversion of PIP2 to PIP3., while, the dephosphorylation of PIP3 to 

generate PIP2 is accomplished by the 3-phosphatase PTEN (which has tumor-suppressor function). 
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PIP3 recruits AKT through its PH domain to the inner surface of cell membrane. AKT is activated by 

a dual regulatory mechanism: translocation to the plasma membrane and phosphorylation at 

Thr308 (by PDK1) and Ser473 (by PDK2). The main biological consequences of AKT activation in 

cancer cell growth are survival, proliferation (increased cell number) and growth (increased cell 

sizes). In the matter of survival, cancers cells have several mechanisms to inhibit apoptosis and 

prolong their survival, and AKT is able to block the apoptosis blocking IGF1, phosphorylating BAD 

(preventing its interaction with BCL-XL), caspase-9 and FKHR (a member of Forkhead family of 

transcription factors). Also it is able to influence positively in NF-B (promoting its nuclear 

translocation and activation of targets genes) and negatively in p53 (pro-apoptotic tumor 

suppressor) via the phosphorylation of MDM2, which is a negative regulator of p53, that is 

translocated efficiently to the nucleus and it can bind p53. Regarding cell proliferation, AKT has an 

important role in preventing cyclin D1 degradation by the phosphorylation of GSK3β. Once 

phosphorylated, GSK3β is not able to phosphorylate cyclin D1 therefore avoiding its degradation. 

Moreover, AKT can regulate indirectly in a negative manner p27 and p21. In cell growth, AKT target 

directly mTOR, which is important regulator of cell growth238.  

 

Figure 6. PI3K pathway. Representative sheme of PI3K patwhay activation downstream of BCR receptor. 
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Currently there are two Food and Drug Administration (FDA)-approved PI3K inhibitors for R/R FL 

patients with two or more prior therapies: idelalisib and copanlisib.  

 

2.7.1.1 Idelalisib 

Idelalisib (GS-1101; Zydelig; Gilead Sciences) is δ isoform specific inhibitor, orally available, which 

was the first in class isoform-specific inhibitors to receive regulatory approval for relapsed CLL, SLL 

and FL in 2014. Idelalisib blocks  PI3K δ I(C50=2.5nM) while the IC50s for other PI3K isoforms are 40 

to 300-fold higher. On a screening assay at 10nM for 401 kinases, idelalisib  did not present 

significant off-target activity239. In addition to its recommended use to R/R FL, other indications for 

Idelalisib include relapsed chronic lymphocytic leukemia (CLL) in combination with rituximab in 

comorbid patients, and small lymphocytic lymphoma (SLL)240.  

PI3Kδ plays an essential, non-redundant role in B-cell receptor signaling critical to the pathogenesis 

of indolent NHL. Selective inhibition of PI3Kδ on lymphoma cells, reduces AKT phosphorylation. This 

leads to induce caspase-dependent death at high doses (10uM) in malignant cells, suppresses 

protumoral cytokines production by NK and T cells (such as  IL10 and CD40L), and revokes 

microenvironmental signals that promote tumor cell survival such as B-cell activating factor (BAFF), 

tumor necrosis factor (TNF), and fibronectin, blocking the adhesion of tumor cells to supporting 

stromal cells241. It also blocked survival signals derived from BCR and nurse-like cells, and it reduced 

the secretion of CXCL13, CCL3 and CCL4 chemokines242. On the other hand, to a lesser extent than 

ibrutinib, idelalisib, it has been shown to partially abrogate antibody-mediated cytotoxicity induced 

by anti-CD20 monoclonal antibodies (Rituximab). It is important to note that FL patients that present 

severe immune toxicity have decreased number and function Treg cells in peripheral blood. This 

lead to a deregulation in T-effectors cells activity, therefore it increases antitumoral immunity and 

loss of self-tolerance with autoimmune toxicity243. 

In the phase II trial (DELTA trial,NCT01282424) 125 patients were treated with 150 mg of idelalisib 

twice daily until disease progression or unacceptable toxicity . A total of 72 patients (58%) had FL, 

28 (22%) had SLL, 15 (12%) had Marginal Zone Lymphoma (MZL), and 10 (8%) had 

Lymphoplasmacytic Lymphoma (LPL). The median age was 64 years. And the median of prior 

treatments in these patients was 4.  After a median of 6.6 months of Idelalisib as a single-agent 

treatment, 90% of the patients showed tumor reduction, and they presented an ORR of 54% with a 
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median PFS of 11 months244. In a subset of 37 patients with FL and early disease progression (defined 

as EFS >= 24 months after frontline chemotherapy), idelalisib retained significant activity with an 

ORR of 57% and an PFS of 11.1 months245.  

A post hoc analysis by Gopal et al. idelalisib showed  antitumor activity in high-risk FL patients who 

relapsed within 24 months following initial chemoimmunotherapy246.  

Due the importance of the PI3K pathway in the pathogenesis of Mantle cell lymphoma (MCL)247, it 

was logical to explore the activity of Idelalisib in MCL. On a phase Ib study (NCT00710528), with 40 

patients with relapsed/refractory MCL which included many heavily pre-treated (with a median of 

4 prior therapies), but excluded patients treated previously with ibrutinib. The dose range was the 

same used in indolent NHL. The ORR was 40% and the PFS was 3.7 months, with a trend toward 

longer PFS among less heavily pre-treated patients. 22% of the patients experienced clinical benefit 

exceeding 12 months. The limited duration of response in patients with MCL suggest the rapid 

development of resistance to p110δ inhibition248. 

The most common adverse events (AEs) reported in these studies were fatigue, diarrhea, nausea, 

rash chills, pyrexia and pneumonitis, reversible in most of the cases. Monitoring liver function during 

the treatment244,248 is also recommended. Moreover, Idelalisib decrease the function of neutrophils 

and adaptative immune cells, as well as the function of Tregs249. In addition, toxicities seem to be 

more severe in non-previous treated patients, in first-line treatment, causing immune-mediated 

hepatotoxicity in CLL patients, leading to the closure of clinical trial250. 

In a phase III trial of idelalisib (NCT01539512)  in combination with rituximab in 220 relapsed CLL 

patients an ORR of 81% was reported and PFS was not reached, but 40% of the patients presented 

serious adverse events251.  The triplet of lenalidomide, idelalisib and rituximab treatment in 

relapsed/refractory indolent lymphoma studies (A051201 and A051202) caused serious toxicity 

(unacceptable rates of hepatotoxicity), including two deaths, resulting in the closure of these 

studies252. 

 

2.7.1.2 Copanlisib 

Copanlisib (BAY 80-6946; Bayer AG) is an intravenous pan-class I PI3K inhibitor, which shows potent 

activity against the isoforms α and δ. The PI3Kα isoform is expressed to a lesser extent than PI3Kδ 
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in various forms of lymphoma. Moreover, PI3Kα is fundamental for processes such as 

angiogenesis253. 

In September 2017, the FDA granted copanlisib accelerated approval for its use in relapsed FL after 

two previous lines of therapy240 Approval was based on a phase II study (NCT01660451) of 104 

heavily pretreated patients (median of 3 prior treatments) with FL and with a median age of 63 

years, in which the ORR was 58.7%, with a 14.4% complete response (CR) rate, and with a median 

duration of response 22.6 months254.  

The most common toxicities were transient hyperglycemia, transient hypertension, diarrhea, 

neutropenia, fatigue and fever, and the less frequent adverse events were pneumonitis, elevation 

of liver enzymes, opportunistic infections and colitis254. 

Although copanlisib is currently approved in third-line treatment and as monotherapy, new clinical 

trials are in progress to examine its use at earlier stages and in combination with other agents, such 

as rituximab (phase III NCT02367040 study in 450 iNHL patients), and R-CHOP or RB (phase III 

NCT02626455 study in 546 iNHL patients).  

 

Phase III testing is currently ongoing for several experimental PI3K inhibitors, including duvelisib, 

wich in September 2018 has granted FDA approval for R/R CLL and SLL after at least two prior 

therapies, –(NCT02049515 and NCT02004522). In addition, it received accelerated approval for R/R 

FL after two prior systemic therapies (NCT02204982). Umbralisib (TGR-1202; NCT02612311, 

NCT02793583). RP6530, buparlisib (BKM120)255, and INCB050465 are undergoing earlier-phase 

testing256.  
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Figure 7. Different PI3K inhibitors. Representative scheme of the different PI3K subunits and classes, and the specificity 

of the different types of PI3K inhibitors to these classes. 

 

2.7.2 BCL2 family proteins  

BCL-2 deregulation is paramount in the pathogenesis of FL and it is therefore an attractive target 

for novel therapeutic approaches. Indeed, the BCL-2 protein, encoded on chromosome 18, was the 

first anti-apoptotic protein described and was discovered to be a chromosomal fusion product with 

the immunoglobulin heavy chain machinery, t(14;18) in FL in 198569. Since then, more than 20 

proteins belonging to BCL-2 family have been described. The relevance of BCL-2 proteins in cell 

death and survival includes externally (extrinsic pathway) and internally (intrinsic pathway) initiated 

pathways of cell death. The extrinsic pathway of apoptosis is the result of binding ligands to the cell-

surface death receptors (Fas, TNF or TRAIL receptors); these death ligands are predominantly 

produced by cells of the immune system such as T cells, NK cells, macrophages and dendritic cells257. 

The intrinsic pathway is initiated by different stimuli, such as DNA damage, growth-factor or 

cytokine deprivation, viruses and oxidative stress. Both pathways conclude in the activation of 

caspase-mediated cell death, where the cell is progressively disassembled and then consumed by 

phagocytic cells, but in intrinsic pathway BCL-2 family proteins are the main mediators of this 



 
38 INTRODUCTION 

process. This family of proteins is divided into 2 groups, depending on their structure and function 

(all of them containing at least one BH domain):  

- Anti-apoptotic: These proteins contain four conserved BCL-2 homology (BH) domains, BH1-

BH4 and include BCL-2, BCL-XL, BCL-W, BFL-1 (A1), myeloid cell leukemia 1 (MCL-1) and BCL-

B proteins, and are antagonistic to pro-apoptotic BCl-2 family proteins. 

- Pro-apoptotic: 

o  BH3-only members: BID, BIM, BIK, BAD, BMF, HRK, NOXA, and PUMA, proteins are 

in this category. They just have the BH3 domain, thus they are denominated BH3-

only proteins. In response to an apoptotic signal, multidomain proteins are released 

from the anti-apoptotic proteins by being displaced by sensitizer BH3-only proteins 

that bind to anti-apoptotic proteins with higher affinity, thus promoting the 

activation of Bax and Bak, and finally the apoptosis258.  

o Multidomain members: BCL-2 associated X protein (BAX), it is located in cell 

cytoplasm, BCL-2 related ovarian killer (BOK), it is located in Golgi apparatus and in 

endoplasmatic reticulum259, and BCL-2 antagonist killer (BAK), which is embedded 

in the mitochondrial outer membrane. They contain the BH1-BH3 domains. Based 

on the sequence similarity of BOK with BAX and BAK, it has been assumed that they 

might function similarly259. BAX and BAK activated are cell death mediators, as they 

disrupt the integrity of the outer mitochondrial membrane (MOMP) causing the 

release of apoptogenic factors such as cytochrome c, second mitochondrial 

activator of caspases/direct IAP-binding protein with low pI (Smac/DIABLO), 

Omi/HtrA2260, apoptosis-inducing factor (AIF) and endonuclease G261 from the 

mitochondria into the cytoplasm262. BAX/BAK activity is inhibited by its binding to 

anti-apoptotic BCL-2 family proteins, and they may be directly activated or 

sensitized by their interaction with other family members.  
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Figure 8. BCl2 family protein. Classification according them functions. 
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Figure 9. Intrinsic and extrinsic pathways of apoptosis.  

 

Altering the balance among these opposing fractions, mainly by  anti-apoptotic protein increase,  

and rarely by mutations in BAX and BAK genes263, provides one means by which cancer cells 

undermine normal apoptosis and gain a survival advantage24,264,265. 

The role of BCL-2-related chemotherapy resistance has been described in MM, myelodysplastic 

syndrome (MDS), acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), DLBCL, MCL, FL 

and in CLL, this latter showing high sensitivity to BCL-2 antagonists266.  

The development of BH3-mimetics, which binds anti-apoptotic proteins and promote apoptosis, has 

been explored as an anti-cancer therapy. Two different strategies were explored. In an initial 

attempt to inhibit the expression of BCL-2 such as Oblimersen (an anti-sense RNA) were developed 
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to target the start codon of BCL-2 mRNA, thus reducing the expression of BCL-2267. More recently, 

small molecules compounds that inhibit the function of BCL-2 were developed. ABT-737 was the 

first anti-BCL-2 agent developed by Abbot, and it was found to inhibit BCL-2, BCL-XL and BCL-W268. 

ABT-737 is not an orally bioavailable compound, and also presented unfavorable pharmacologic 

properties, Consequently, Abbot developed ABT-263 (navitoclax), an oral bioavailable compound, 

which demonstrated significant activity in early phase clinical trials, but also presented a significant 

dose-limiting toxicity (specifically it caused thrombocytopenia in patients), due to the off-target 

binding to BCL-XL, highly expressed in platelet precursors269,270.  

 

2.7.2.1 Venetoclax 

Venetoclax (ABT-199, AbbVie) is a small molecule, orally administrated, and the third compound in 

Abbott’s series of BCL-2 inhibitors. It presents more than 100-fold higher affinity to BCL-2 compared 

to other BCL-2 family members, such as BCL-XL, thus reducing thrombocytopenia, in addition to 

other side effects271. Furthermore, Venetoclax is the first BCL-2 inhibitor approved by the FDA for 

the treatment of CLL266.  

Two clinical trials in R/R patients with CLL in monotherapy with venetoclax (NCT01328626272 and 

NCT01889186273) were evaluated with similar results. In the first study, after the dose escalation 

phase, an expansion cohort of 60 CLL patients were evaluated showing an ORR of 79% and PFS of 

15 months. In the second study in phase II, 107 patients with RR disease and del(17p) were 

evaluated showing a result similar to the previous study, an ORR 85% and the median PFS was not 

reached at the 12-month median follow-up time.  Additional studies of venetoclax in combination 

with other agents in CLL are in progress266. Phase Ib venetoclax + rituximab in 49 R/R CLL 

(NCT01682616274) study, showed an ORR of 86% and 51% of complete response. The efficacy and 

the durability of responses observed with the combination offers an attractive potential treatment 

option.  

In FL, even though 85% of patients harbor the t(14;18), which accounts for the overexpression of 

BLC2, the results of the first clinical trial with venetoclax were not  satisfactory. This reduced activity 

of Venetoclax in FL may be the result of a complex interplay among other anti-apoptotic proteins 

regulated by microenvironment, such as and BLF-1 and MCL-1, and BH3-family members266. In a 

phase I trial (NCT01328626) of Venetoclax in R/R B-NHL (M12-175275), which included a total of 106 
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patients, 28 with MCL, 29 with FL, and 34 DLBCL, ORR was 44% and the estimated median PFS was 

6 months. However in FL patients ORR was 38%, and, PFS 11 months. The recommended single-

agent dose for FL and DLBCL was 1200 mg.  

In order to increase response rates and durability, additional investigations using venetoclax in 

combination with chemo-immunotherapy in indolent lymphomas, including FL, are in progress. A 

completed phase II study (NCT02187861276), combining venetoclax  (VEN)+ rituximab(R) + 

bendamustine(B) in 164 R/R FL patients, showed an ORR of 33% in VEN+R group, ORR of 64% BR 

group, and ORR of 68% in VEN+BR group. Currently, there are several studies in progress, a phase 

Ib of venetoclax+ bendamustine+ rituximab in 60 R/R NHL (NCT01594229277), phase I/II Ibrutinib + 

Venetoclax in 41 R/R FL patients (NCT02956382), phase I Obinutuzumab+ Venetoclax in 25 

previously untreated FL Patients (NCT02877550), phase II Venetoclax +Obinutuzumab 

+Bendamustine in 56 patients with high tumor burden FL as front line therapy (NCT03113422), 

among others (information from ClinicalTrials.gov).  

Table 6. Summary of Venetoclax Clinical trials. 

Drugs combinations Name of study Patients 
Venetoclax + Bendamustine + Rituximab277 Phase Ib (NCT01594229) R/R NHL 
Ibrutinib + Venetoclax Phase I/II (NCT02956382) R/R FL 
Obinutuzumab+ Venetoclax Phase I (NCT02877550) Untreated FL 
Venetoclax +Obinutuzumab +Bendamustine Phase II (NCT03113422) High tumor burden FL 

 

 

2.7.3 Other Novel agents 

As we mentioned above, it is known that the pathogenesis of FL, as in others NHLs, is dependent on 

the crosstalk with the tumor microenvironment, the activation of B-cell receptor (BCR) and the 

interaction with the immune system278. For this reason, the development of new therapeutic agents 

that target these pathways such as immune modulators, immune checkpoint inhibitors, and BCR 

signaling pathways inhibitors, with favorable toxicity profiles220 is being worked on. Table 7 

summarizes the current trials in R/R FL with these novel agents. 
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Table 7. Summary of the current clinical trials in R/R FL with novel agents. 

 Name of study Activity ORR/PFS 

Lenalidomide279 Phase II 
(NCT00179673) 

 

Immune modulator 
(interact with the E3 
ubiquitin ligase 
cereblon (CRBN)) 

23%  
 4.4 months 

Ibrutinib280 Phase II 
(NCT01849263) 

Immune modulator 
(Bruton tyrosine kinase 
(BTK) inhibitor) 

37% 
14 months 

Vorinostat281,282 Phase II 
(NCT00253630; 
NCT00875056) 

Histone deacetylase 
(HDAC) 

 47-49% 
15-20 months 

Abexinostat283,284 Phase II  
(NCT00724984) 
 

Pan-HDAC 56-64% 
10-20.5 months 

Tazemetostat285,286 Phase II 
(NCT01897571) 

Enhancer of zeste 
homolog 2 (EZH2) 
inhibitor 

EZH2 mutants: 
63-92% 
EZH2 wt:  
 26-28%  

Nivolumab287 Phase Ib 
(NCT01592370) 

Programmed cell death 
(PD-1) mAb 

 40% 
 not reached 

CAR-T therapy 
(CTL019) 288-290 

Phase IIa 
(NCT02030834) 

Anti CD19 chimeric 
antigen receptor 

CR 70%,  
 not reached 

CC-122 + 
Obinutuzumab 
291,292 

Phase Ib 
(NCT02417285) 

Cereblon-modulating 
agent+ anti-CD20 mAb 

75% 
11 months 

CR: complete response. 

Other clinical trials combining some of these new agents with the current treatments are being 

carried out with promising results. One good example is the Rituximab and Lenalidomide 

combination  in untreated FL patients (RELEVANCE study)293, where the efficacy results were similar 

with rituximab plus lenalinomide and rituximab plus chemotherapy (with both regimens followed 

by rituximab maintenance therapy), showing a 3 years PFS of 77% in the first group and 78% in the 

second, and a 3 years OS of 94% in both groups. But rituximab plus lenalinomide showed a safer 

profile294. 
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3. Colorectal cancer  

Colorectal cancer (CRC) is the third most common cancer in males (10%) and the second in females 

(9.2%), with between one and two million new cases being diagnosed every year, and the fourth 

most common cause of cancer-related death worldwide, with 700.000 deaths per year56,295. The 

incidence of CRC has risen by more than 200.000 new cases per year from 1990 to 2012 due to diets 

and lifestyles in western countries, among others factors. However, the mortality has been 

progressively declining since 1990296. In contrast to these declines, the incidence of CRC in people 

under the age of 50 has been increasing at a rate of 1.7% per year from 2000 thought 201356. 

Most CRCs are sporadic and are diagnosed at a median age of 65-75 years; nevertheless some 20-

30% of the cases might have a familiar predisposition despite the absence of known germ-line 

defect297. Well-established hereditary syndromes that have a Mendelian pattern are familial 

adenomatous polyposis (FAP) (<1%)298, Lynch syndrome (2-3%)299, and CRC associated to MUTYH 

(<1%)300. On the other hand, serrated polyposis syndrome (SPS), a syndrome characterized by 

multiple serrated polyps (SPs) throughout the colon and accompanied by an increased risk of 

developing CRC (1.9% in 5 years)301, represents a rate ranged from 0% to 0.5%, which increased to 

0.4% to 0.8% after follow-up colonoscopy302. 

Currently, about 60-70% symptomatic patients are diagnosed with advanced stage of disease. 

Fortunately, the screening for the disease has become more available, using colonoscopy as a 

routine method, and less invasive technologies are being development to replace colonoscopy. As 

a result, earlier stage detection would allow for better outcomes in term of reducing the disease 

burden303.  

Although in patients with non-advanced CRC (stage I and III) 5- year survival rate is above 63%, 

patients with advanced and distant metastatic disease (stage IV), this survival rate drops to 10%, 

which accounts for approximately 18% of cases. Approximately, 20 % of patients in the United States 

have distant metastatic disease at the time of presentation56. CRC can spread by lymphatic and 

hematogenous dissemination, as well as by contiguous and transperitoneal routes. The most 

common metastatic sites are the regional lymph nodes, liver, lungs, and peritoneum. Albeit, the 

main organ that harbors 60% of the metastasis is the liver304.  
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3.1 CRC Pathogenesis 

CRC is a heterogeneous disease according to clinical manifestations, molecular characteristics, 

response to treatments and prognosis. 

The main feature of CRC formation is the accumulation of acquired genetic and epigenetic changes 

that transform normal glandular epithelial cells into invasive adenocarcinoma. In 1988, Volgestin 

and Fearon proposed the adenoma-carcinoma sequence model to explain the pathogenesis of CRC, 

as a normal epithelial cell that undergoes a series of changes until it becomes a carcinoma305. The 

process begins with a first step that initiates the formation of benign neoplasm (adenomas or 

serrated polyps), followed by a step that promotes the progression to more histologically advanced 

neoplasm, and the final step that transforms the tumor to invasive carcinoma. Since this model was 

proposed, the knowledge about molecular pathogenesis of CRC has increased, and led to numerous 

revisions of the original Volgestin and Fearon model306. The alteration of different molecular 

pathways leads to the progression and transformation of adenoma to carcinoma. 

Aberrant crypt foci 

The search for the earliest morphological precursors to CRC led to the description of aberrant crypt 

foci (ACF)307. They were observed for the first time in carcinogen-treated rodents by Bird and 

colleagues, resulting in the identification of lesions in the colons of animals treated with carcinogens 

suggestive of preneoplastic lesions308. Subsequently, these lesions were also observed in human 

patients, showing that an increased frequency of these very early lesions predisposes the patient to 

colon cancer309,310. Aberrant crypts foci are characterized macroscopically by enlarged diameter, 

thickened hypercellular epithelium, altered mucin pattern, and typically occur in clusters. Their 

luminal openings can have a round, slit like, or serrated appearance.  The role for ACF in colorectal 

carcinogenesis is supported by the presence of histopathological intraepithelial neoplasia 

(dysplasia) in some ACF, and is further corroborated by the presence in some ACF of genetic 

alterations that are present in colorectal carcinomas, such as mutations in the adenomatous 

polyposis coli (APC) tumor suppressor gene and KRAS proto-oncogene, microsatellite instability 

(MSI)307,311,312, and cytosine-guanine base pair (CpG island) hypermethylation313,314. Despite this, 

some reports don’t identify ACF as a CRC precursor315-317. 
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3.1.1 Adenomatous polyposis coli (APC)-type Tubular Adenomas (Conventional) 

Approximately 70% of CRC arise via APC-type tubular adenomas318. The biallelic APC mutation is the 

genetic event that produces the distinctive nuclear and cytoplasmatic alteration termed 

adenomatous. A truncated APC protein results in altered apoptosis and cell-cycle control through 

dysfunction of the Wnt/β-catenin/Axin pathway, which drives the neoplastic cell proliferation319,320. 

The APC protein also controls microtubule function in the nucleus and the cytoplasm. In the nucleus, 

microtubules attach to the kinetochore during mitosis. Truncated APC protein produces abnormal 

microtubule attachment, resulting in a defective spindle checkpoint system that allows the cell to 

prematurely exit out of mitosis into anaphase321-323. This premature exit, before each chromosome 

pair can segregate to their daughter cells, produces dicentric chromosomes that are potent initiators 

of chromosome instability (CIN)323 . In the cytoplasm, truncated APC alters microtubule formation, 

bundling and transport.   

3.1.2 Serrated Neoplasia Pathway Polyps  

Serrated polyps are an alternative pathway to malignancy (which represents 30% of CRC cases), 

where a subset of hyperplastic polyps, most likely microvesicular hyperplastic polyps, progress to 

serrated neoplasms, and a fraction of them progress to CRC324. In this type of neoplasia there is no 

direct association between specific genetic mutations and unique cytogenetic feature. Several key 

genetic mutations seem to initiate, facilitate, and/or actively enhance progressive changes in cell-

signaling pathways, causing a spectrum of specific cytologic features in the cells that form serrated 

neoplasia pathways polyps325. The early genetic changes found in right colon serrated neoplasia 

pathway polyps are the BRAF (or KRAS in some cases) activating mutation and CpG island 

hypermethylation326-329. CpG island hypermethylation is also an early event in a subset of aberrant 

crypt foci lesions313,314, as we mentioned above, and in a spectrum of serrated polyps, including 

hyperplastic polyps (HP), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated 

adenomas (TSA). The gene SLC5A8, which is especially sensitive to hypermethylation, has been 

characterized as potential early genetic alteration, along with BRAF, necessary for the development 

of right colon serrated neoplasia pathway polyps314.  
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3.2 Genomic pathogenesis in CRC.   

The hallmark features of colorectal carcinogenesis are the presence of genomic instability and 

epigenetic changes, which result in the main difference between normal colon epithelium and 

neoplasia4.  According to the genetic model for colorectal tumorigenesis proposed by Fearon and 

Volgestin in 1990330, three different molecular carcinogenesis pathways with distinct clinic-

pathologic features, and with important implications for prevention, screening, and therapy have 

been described: 

-Chromosomal Instability (CIN). The most common form of genomic instability, which is found in 

70% of colorectal tumors, is the so called sporadic tumor331,332. Aneuploidy, defined as the presence 

of numerical chromosomes changes or multiple structural aberrations of the chromosomes, is the 

result of an abnormally high rate of CIN that persists throughout the progression of the tumor333. 

Moreover, there is some evidence that CIN promotes cancer progression by increasing clonal 

diversity334,335. The deregulation of mitotic spindle checkpoint regulators, such as BUB1, entails gains 

and losses of whole arms or whole chromosomes, while the deregulation of the double strand DNA 

break repair mechanism, results in smaller gains and losses through structural chromosome 

aberrations336,337. It is also known that oncogene-driven stress, telomere erosion and DNA 

hypomethylation play a role in CIN in CRC338,339. 

-Microsatellite Instability (MSI). This accounts for approximately 15% of colorectal tumors340. MSI 

in CRC has been defined as the presence of at least 30% unstable microsatellite loci in a panel of 5-

10 loci selected at a National Cancer Institute consensus conference 341. Tumors with 10-29% 

unstable loci have been classified as MSI-low, and tumors with <10% unstable loci have been 

classified as microsatellite stable (MSS). The presence of MSI in conventional polys is unfrequent; 

however, it is almost always present in serrated polyps, and in tubular adenomas from Lynch 

syndrome patients 342,343. The mechanism leading to MSI involves inactivation of genes in the DNA 

Mismatch Repair (MMR) family, which include MLH1, MSH2, MSH6 and PMS2, aberrant DNA 

methylation, or by somatic mutations335. Mutations in POLE and POLD1 are associated with 

hypermutated CRCs as well344. 

-CpG Island Methylator Phenotype (CIMP). The hypermethylation of loci that contain CpG islands 

and the global DNA hypomethylation are the result of epigenetic changes in CRC. DNA methylation 

is a post-replicative DNA modification that consists of the covalent attachment of a methyl-group 

to the 5’ position of cytosine residues in cytosine and guanosine (CG) dinucleotides, called CpG 
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islands, regions of the genome345. The addition of methyl groups in these regions can inhibit binding 

of transcription factors, and permits recruitment of methyl-CpG-binding domain proteins to 

promote regions, which can repress transcription initiation346. Hypermethylation is present in 

essentially all CRCs; however, there is a subset of 10-20% CRCs that have a higher proportion of 

aberrantly methylated CpG loci, which includes the majority of sporadic CRC with MSI associated 

with hMLH1 methylation347. CIMP is defined as increased methylation of at least three loci from a 

selected panel of five CpG islands-associated genes348 .The mechanism responsible for aberrant DNA 

methylation in colon tumor is still unclear. Recently, some suggestions have indicated that 

overexpression of the DNA methyltransferases DNMT3B or DNMT1332, mutations in genes involved 

in chromatin remodeling, such as CHD7 and CHD8349, and changes in the chromatin structure and 

histone modification state of histone H3350,351, correlate with CIMP. Consequently, CIMP induces the 

expression of oncogenes, impedes the expression of tumor suppressor genes, and thus collaborate 

in the tumorigenesis process.  

 

3.2.1 Key genes mutated in CRC 

Adenomatous Polyposis Coli (APC). APC inactivation is one of the first event in adenoma 

development. The gene is located at the chromosome band 5q22.2 352 and encodes APC protein, 

which is a negative regulator of the β-catenin, the effector of the Wnt signaling pathway353. The Wnt 

signaling pathway controls the colon epithelial homeostasis354, and increases the levels of 

intracellular β-catenin levels which stimulates cell proliferation by transcriptional activation of C-

MYC, CCND1, growth factors, among others355. APC mutations occur in the mutational cluster region 

in codons 1286-1513 (most common point mutations or small Indels leading to stop codons and 

therefore a truncated protein), and arises early in colon cancer tumorigenesis355. 

Kirsten Rat Sarcoma virus mammalian homolog (KRAS). The mutations in KRAS are early events in 

the adenoma-carcinoma sequence, though they are only approximately in one-third of CRCs356. 

KRAS is an oncogene from the RAS gene family and is located on chromosome 12q12.1. RAS proto-

oncogenes regulate key cellular signaling pathways including phosphoinositide-3 kinase (PI3K) and 

mitogen-activated protein kinases (MAPK) pathways357. KRAS mutations are found in exon 2 from 

codons 12 and 13, and in exon 3 from codon 61. These mutations compromise the ability of GTPase 

activing proteins358. KRAS is a good biomarker and also good negative predictor to EGFR inhibition 

response, 99% of patients that show KRAS mutation do not respond to EGFR inhibition359,360.  
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V-Raf murine sarcoma viral oncogene homolog B (BRAF). A single, activating, point mutation in BRAF 

(V600E) results in constitutive signaling of the mitogen-activated protein kinase (MAPK) pathway 

through KRAS signaling, resulting in cell proliferation, survival, and inhibition of apoptosis. 

Mutations in BRAF correlates with CIMP, establishing CIMP as a biologically relevant phenotype with 

a key role in the serrated pathway326.  Additionally, BRAF is mutated very early in the serrated 

pathway, in 70-76% of cases342,361, and it has even been observed in aberrant crypt foci (in serrated 

hyperplastic aberrant crypt foci), which, as described above, are probably the earliest histologically 

evident lesions in the serrated pathway313,362. In CRC 10%-17% of patients show activating BRAF 

mutations363.  

Tumor protein p53 (TP53). TP53 is the gene that encodes for p53 transcription factor, which is a 

central coordinator of cellular response to stress364. P53 controls the transcription of several genes 

involved in, cell cycle regulation, DNA metabolism, apoptosis, senescence, cell differentiation, 

angiogenesis, immune response, motility and migration357,365. TP53 gene is located on chromosome 

17p13.1. Missense mutations represent about the 80% of TP53 mutations in codons 175, 245, 248, 

273, and 282366. The loss of function of p53 due the mutations in TP53 is present in 4-26% of 

adenomas, 50% of adenomas with invasive foci within adenomatous polyps, and 50-75% of sporadic 

CRCs367. 

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). The 

phosphatidylinositol-3-kinase (PI3K) signaling pathway plays and important role in CRC 

tumorigenesis368. PIK3CA gene is located at chromosome 3q26.32. Amplifications of this gene have 

been observed in adenomas, and are frequent events in the carcinogenesis of CRC. The 

amplifications in PIK3CA have been proposed as an independent prognostic factor for longer 

survival369. Mutations in the gene were observed in 10-30% of CRC cases370 and have been 

associated with CIMP, KRAS mutation and fatty acid synthase (FASN) expression in colorectal 

cancer371. The most frequent mutations are E542k, E545K, and H1047R, which result in dominantly 

active form of PI3K protein, that stimulates cancer cell growth and survival372. 

Mothers against decapentaplegic homolog 4 (SMAD4). SMAD4 is a tumor suppressor gene located 

in chromosome 18q21.2, and is associated with juvenile polyposis syndrome (JPS)373,374. SMAD4 

protein is an intracellular mediator that responds to transforming growth factor-β (TGF-β). When 

TGF-β binds to its receptor it activates the internalization of SMAD4 into the nucleus to promote 

apoptosis and cell cycle regulation374. SMAD4 mutations lead the progression of adenoma to 



 
51 INTRODUCTION 

carcinoma, and approximately 30% of CRC patients carry that mutation375. In addition, the loss of 

chromosome 18q is the most common cytogenetic abnormality in CRC (up to 70%) called “deleted 

in colorectal carcinoma” gene (DCC)330, therefore, SMAD4 alteration is also due to aneuploidy376.   

 

Figure 10. Stepwise progression from normal epithelium to invasive colorectal carcinoma. Adapted from 377 

 

3.3 Role of the tumor microenvironment (TME) 

As explained in the epidemiology of CRC, the survival of patients has been significantly increased in 

the recent years, but some patients undergo tumor relapse and resistance to the initially effective 

drugs. It is for that reason that the importance of tumor microenvironment in the development, 

expansion and maintenance of tumor cells is gaining value. In addition, it has been shown that the 

dependence of tumor cells on external signals from their microenvironment is determining 

carcinogenesis378,379.  

TME in solid tumors, including CRC, represents a complex network composed of different type of 

cells, such as different population of T cells, macrophages, fibroblasts, or endothelial cells, which 

are interacting among themselves.  

3.3.1 Immune Inflammatory cells 

The incidence of developing CRC increases in conditions of chronic inflammation380. In sporadic CRC, 

an extensive inflammatory infiltrates with high levels of cytokine expression in tumor 

microenvironment, such as interferon ɣ381,382 or interleukin-17A and interleukin-22383-385  are 
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present. However, the role of adaptive immune response in human cancer progression is still 

controversial10. For many solid tumors, the presence of natural killer cells (NK) and natural killer T 

cells in the TME predicts good prognosis386. Due to its importance, a specific cancer classification 

(Immunoscore) was developed using the immune infiltration on CRC cancer387,388.  

Tumor-infiltrating lymphocytes (TILs) 

TILs are the host immune response to cancer cells and predict clinical outcome in CRC patients389. 

The two principal types of T cells present in CRC are CD8+ cytotoxic T cells (CTL), which are able to 

attack and kill the tumor cell directly (through the release of granzyme B, perforin, such others), and 

the heterogeneous group of CD4+ helper cells (Th), which secrete different types of cytokines390. T-

helper type 1 lymphocytes (Th1s) are able to activate CTL, and T-helper type 2 lymphocytes (Th2s) 

stimulate humoral immunity391. In contrast, other types of CD4+ T cells, such as regulatory T cells 

(Tregs), are able to suppress the activity of CTL by cell to cell contact or by the releasing different 

cytokines, such as transforming growth factor-β (TGF-β) or forkhead box P3 (FoxP3)392. On the other 

hand, the mechanism of interaction between programmed death-1 (PD-1)+ T-cells and PD-Ligand 

1/2+ tumor cells, is a new approach for treatment of CRC patients (following the successful 

development of anti-PD-1 for melanoma, renal cell carcinoma, and non-small cell lung cancer). 

Several clinical trials provide some evidence indicating that PD-L1 expressing CRC tumors and MSI 

tumors may show signals of anti-tumor activity during PD-1 targeting therapy, due to high 

infiltration of immune cells393 .   

Tumor-Associated Macrophages (TAMs) 

TAMs are the major population of inflammatory cells in tumor stroma, and they come from 

circulating monocytes or from tissue-resident macrophages36. TAMs are abundant in most human 

and experimental murine cancers, and their activities are usually pro-tumorigenic394. They are 

essential components of the immune inflammatory response, and are very important players in 

tumor progression395. Also, it has been demonstrated that TAMs facilitate tumor invasion and 

metastasis in CRC patients through the secretion of different growth factors, proteolytic enzymes 

and inflammatory mediators396-398. M2 macrophages subtype are those commonly known as TAMs, 

as described previously in FL, and they produce anti-inflammatory cytokines, and TGF-β399. The main 

functions associated with TAMs are immune suppression and angiogenesis stimulation400, 

participating in remodeling the extracellular matrix (ECM)401. In addition, the production of ROS and 

nitrogen intermediates by TAMs contributes to genetic instability in cancer cells402. 
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Others 

Other type of tumor-promoting inflammatory cells are mast cells and neutrophils43,403. NKs are other 

type of immune inflammatory cells but they act as tumor-antagonizing cells4.   

 

3.3.2 Cancer-Associated Fibroblast (CAFs) 

CAFs are mesenchymal-like cells and are part of the diverse connective tissue components404. A 

fibroblast is a resting mesenchymal cell with potential to proliferate when stimulated by a growth 

factor, such as TGF-β or IL-6, among others405,406. Once activated, they are able to secrete 

chemokines and cytokines, and synthesize extracellular matrix407. CAFs are the dominant cellular 

population in the stroma of CRC408. The interaction of CAFs and cancer cells is mediated through 

oxygen and extracellular metabolite availability, and cytokine and chemokine signaling409. 

Chemokine secretion by CAFs (such as CXCL12) and other cytokines leads to infiltration of immune 

cells410, which further contributes to angiogenesis411 and metastasis412. Another key molecule 

secreted by CAFs is TGF-β. On the other hand, CRC cells also secrete TGF-β, which stimulates the 

secretion of IL-10 by CAFs cells that increase the efficiency of organ colonization by CRC cells, and 

confers a survival advantage to metastatic cells413. Moreover, TGF-β secretion by CAFs in tumor 

microenvironment elicits epithelial CXCR4 expression in prostate cancer cells, which triggers tumor 

cell growth when stimulated by CXCL12414.  

 

3.3.3 Endothelial cells 

The vascular cells are a very important component in the tumor microenvironment due to their 

function of providing nutrients and oxygen to the growing tumor cells415. Quiescent endothelial cells 

are activated through different signals present in the tumor compartment, described as a 

“angiogenic switch”416, which activates molecular pathways in endothelial cells that promote the 

formation of tumor-associated vasculature. These biological programs include the activation of 

VEGF, FGF, and Notch pathways, among others417,418. 

Other important types of vessels developed in tumor microenvironment are lymphatic vessels, 

which are located at the peripheries of tumors, and are closely related to the endothelial cells of the 

general circulation419. 
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3.3.4 The extracellular matrix (ECM) 

The ECM is another very important component of the TME420. ECM is mainly composed of 

fibronectin, laminin, collagens type I and IV (30%), proteoglycans, and hyaluronic acid421, and it 

forms a physical and biochemical framework. Some of the cells that form TME are responsible for 

suppling distinct ECM proteins. As mentioned above, different TME cells are able to remodel the 

ECM, and facilitate angiogenesis and inflammation. This structure plays a critical role in tumor 

development, which is commonly deregulated and becomes disorganized in later stage of tumor 

progression422. Interestingly, the composition of ECM differs in primary tumors of diverse metastatic 

potential. In fact, the composition of the extracellular TME has been used as a predictor of clinical 

prognosis423. 

3.3.5 Pericytes 

Pericytes are contractile mesenchymal cells similar to smooth muscle cells, which are located 

around the endothelial tubing of blood vessels4. These types of cells are implicated in the synthesis 

of the vascular basement membrane in collaboration with endothelial cells424. Some signaling 

pathways are implicated in the recruitment, differentiation and function of pericytes, such as 

transforming growth factor (TGF)-β425. 

 

Figure 11 Tumor microenvironment in CRC. TME in CRC represents a complex network composed by different type of 

cells, such as different population of T cells, macrophages, fibroblasts, or endothelial cells, which are interacting among 

themselves and support tumor growth and survival through a complex set of factors and stimulating molecules. 
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3.4 CRC progression and metastatic disease 

Tumor development is based on the crosstalk between tumor cells and their surrounding TME, and 

is mediated by the receptors and their ligand expression levels in both cellular components426. 

Specifically, carcinogenesis is the process that leads the epithelial tissue progression to higher 

pathological grades of malignancy, reflected in local invasion and distant metastasis4. Distant 

metastasis is preceded by previous invasion of tumor cells to their most adjacent tissue layers. This 

multistep process, also known as the invasion-metastasis cascade, starts with local invasion, 

intravasation into nearby blood and lymphatic vessels, transits through the hematogenous and 

lymphatic systems (lymph nodes), followed by escape into the parenchyma of distant tissues 

(extravasation), and finally the growth of metastatic lesions (colonization)427. However, metastasis 

is not the last step in tumor progression; some evidences indicates that cancer cells (from CRC, 

breast cancer and prostate cancer, among others) can disseminate early from the noninvasive 

lesion428-430. 

The metastatic cells have specific features, the most important ones are: deregulation in cell fate 

determinants, losing differentiation-inducing factors431; and activation of stem cell signaling, such 

as WNT-β-catenin signaling432 or Notch433, among others. The epigenomic reprogramming in cancer 

cells is a key regulator in cell fate determination434. The epithelial-mesenchymal transition (EMT) 

program, conditioned by hypoxia and inflammation in a reactive stroma, is another important fact 

to promote invasion and metastasis435. The EMT is a critical mechanism where epithelial tumor cells 

lose their intracellular junctions, cell-to-cell contact capacities, and cellular polarity acquiring a more 

motile and mesenchymal phenotype436,437.  

Different cancers have preferential sites of metastasis (known as seed and soil hypothesis)427. In 

CRC, metastatic dissemination seems to follow a stepwise manner438, the first place of 

hematogenous distant dissemination is usually the liver, as mentioned before, due to the venous 

drainage of the intestinal tract through the portal venous system, followed by the lungs, bone, and 

other sites, including the brain. In tumors originating in distal rectum, the inferior rectal veins drain 

into the inferior vena cava, and this might be the reason to explain as to why the initial site to 

metastasize in these patients are the lungs439. However, the mechanisms by which metastatic cells 

seem to choose their organ of preference to invade remains unresolved. 

As mentioned in the previous section, stromal cells are crucial for promoting tumor cell 

dissemination in primary sites, and for contributing to the tumor cell proliferation in the metastatic 
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sites379,440. Different cell populations of the tumor stroma can participate in the orchestration of 

tumor dissemination. For example, TAMs induce the intrinsic mobility of tumor cells through the 

stimulation with CSF1 in breast cancer441. In CRC, CAFs secrete IL-11 in response to TGF-β, as 

mentioned above, which activates STAT3 signaling, conferring survival advantages to metastatic 

tumor cells in lung and liver413.  

Nevertheless, not all cells that are able to arrive to the blood vessels can survive in the circulation 

and form metastasis442. The activation of survival signals, such as AKT signaling pathway in response 

to CXCL12, is necessary for the survival of cancer cells in the circulation443. Another system that 

supports cancer cell dissemination is the lymphatic system. The lymphangiogenesis (regulated by 

VEGF-C) in tumor mass is not only used by cancer cells to disseminate to lymph nodes444, but also 

to the liver in CRC445.  

Once tumor cells are in blood, or in lymphatic vessels, a substantial amount of evidence indicates 

that chemokines play an important role in the organ-selective metastasis process446,447. For example, 

cancers cells that express CXCR4 receptor disseminate and form metastasis in organs that express 

its specific ligand CXCL12, such as the lungs, liver, lymph nodes, bone marrow446,448-450. 

 

Figure 12. Schematic representation of multistep process known as the invasion-metastasis cascade, which begins with 

local invasion, intravasation into nearby blood and lymphatic vessels, transit through the hematogenous and lymphatic 

systems (lymph nodes), follow by escape into the parenchyma of distant tissues (extravasation), and finally growth of 

metastatic lesions (colonization). 
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3.5 GPCRs in Cancer 

G protein-coupled receptors (GPCRs) are an important family of membrane signaling receptors with 

seven α-helical transmembrane (7TM) structural motif, which have an important role in cancer 

growth and development through the regulation of cell proliferation, immune cell-mediated 

functions, angiogenesis, invasion, migration and survival in metastatic sites451,452. There are 

approximately 1000 GPCRs encoded by the human genome and are divided in five families based 

on sequence homology: rhodopsin, secretin, glutamate, adhesion and frizzled453. The most relevant 

and largest group are the rhodopsin family GPCRs454. Different types of cancers exhibit unusual 

overexpression of GPCRs and G proteins451. 

Upon the interaction of an extracellular ligand to its receptor, GPCRs undergo a conformational 

change that activates a signaling cascade by coupling to intracellular heterotrimeric G-proteins (α, 

β, and ɣ subunits) associated with the inner surface of the plasma membrane 455, which binds the 

guanine nucleotide GDP in its basal state. When the receptor is activated by its ligand, GDP is 

released and replaced by GTP, triggering the subunit dissociation (into βɣ dimer and α monomer). 

This dissociation leads to the activation of multiple downstream effectors, including ERK1/2, 

mitogen-activated protein kinase (MAPK), JNK, and AKT. The α monomer binds to GTP, and this is 

rapidly hydrolyzed to GDP in re-association with the receptor and the trimeric G-protein complex. 

Other pathways are activated by different subunits of Gα, such as adenyl cyclase; PLCβ (via PLC) to 

activate phosphatidylinositol-specific phospholipases, which hydrolyze PIP2 to generate IP3 and 

DAG (which increase intracellular concentrations of free Ca2+ and activate some proteins kinases 

such as PKC); and the transcription factor NFκB via PYK2. Besides, a specific Gα12 is associated with 

Rho and Ras456. 
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Figure 13. GPCR activation pathway  

GPCR dimers formation 

Classically, GPCRs were considered as monomeric functional entities, which activate a single 

signaling cascade. Nevertheless, in recent years it has become evident that GPCRs are able to form 

dimers with other GPCRs in the cell membrane457, and this dimer formation may modify the cellular 

response458-461. There are different mechanisms involved in receptor coupling to regulate the 

activation of downstream pathways. Three different mechanisms are proposed to understand the 

biological function of dimer formation:  

 GPCR dimerization plays a role in trafficking, thus both receptors are co-internalized after 

their activation. This is the example for D1 and D2 dopamine receptors461.  

 Transantagonism, which implies that the activation of one receptor induces the inhibition 

of the signaling activity of the other receptor462. 

 Transactivation, the ability to initiate the signaling cascade of one receptor upon the agonist 

binding to the other receptor463.  

Such heterodimerization increases the range of intracellular responses464 and it is proved to alter 

the pharmacodynamics of certain drugs465. 
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GPCRs show differential expression in cancer cells compared to normal tissues, and they are highly 

druggable targets. In fact, 35% of drugs approved by FDA are GPCR-targeted drugs466,467. However, 

a more accurate evaluation of interactions and off-target effects is needed468,469, which is the main 

reason as to why most of these drugs are currently in clinical trials for cancer treatment.467. 

 

3.5.1 Chemokines receptors  

Chemokines are chemotactic cytokines (approximately 8-17kDa), which bind a chemokine receptor  

rhodopsin family GPCRs470, and are produced by tumor cells and tumor microenvironment. While 

there are approximately 50 chemokines, only 20 chemokine receptors have been identified so far, 

thus some receptors interact with more than one chemokine, and some chemokines share the same 

receptor471. In addition, some receptors bind specifically to only one cytokine molecule. This is the 

example of CXCR4, CXCR5, CXCR6, CCR6, CCR9 and CX3CR1472. Besides, depending on the cellular 

type and context, chemokine receptor activation generates a variety of cellular responses473. 

In normal tissue, chemokines cause leucocytes migration, and their secretion is induced by growth 

factors, inflammatory cytokines and pathogenic stimuli474. Within the GPCR family, chemokine 

receptors are associated with tumor metastasis472. In addition, these chemokine receptors have 

been involved in chronic inflammation, which is a very important feature to induce tumor initiation 

and progression of different cancer types, such as colon, liver, breast and lung475,476. In addition, 

chemokines are able to recruit different cell types to form the tumor microenvironment, which in 

turn, represents a secondary source of chemokines, thus further promoting tumor growth, cell 

survival, angiogenesis and metastasis470. Cancer cells from different types of solid tumors express 

high levels of CXCR4, CCR7, CCR9 and CCR10 chemokine receptors477. Specifically, in CRC the 

expression of CCR7 predicts lymph node metastasis478. Furthermore, the overexpression of CXCR4 

by CRC cells is significantly associated with lymphatic and distant dissemination447, and with an 

increased risk of recurrence and poor survival in patients with colorectal cancer 479. 

 

3.5.1.1 CXCR4 receptor 

Among the well-known chemokine receptors, CXCR4 and its ligand, the stromal cell derived factor-

1 (SDF-1) or CXCL12, have been studied extensively. CXCR4 is a rhodopsin-like GPCR480 and is 
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functionally present in different cell types in adult tissues, such as peripheral blood lymphocytes, 

monocytes, dendritic cells, intestinal and alveolar epithelial cells, and neurons, among others481. The 

stimulation of CXCR4 by CXCL12 binding activates the prolonged ERK-2 and PI3K response482, 

enhances tyrosine phosphorylation, association with components of focal adhesion, and the NF-κB 

activity483.  

The physiological role of the CXCR4/CXCL12 axis in normal cells is to modulate developmental 

processes, such as hematopoiesis, organogenesis, immune response, and vascularization. Likewise, 

this axis participates in other important processes such as tissue renewal, lymphocytes maturation 

and stem cell homing484,485. During development, the CXCL12-CXCR4 axis has an important role in 

the spatial organization of stem cells and progenitor cells during the formation of specific organs, 

such as in cardiac septum formation (defects in the axis cause vascular defects)486. In kidney 

development, CXCL12 drives vascular and epithelial progenitor cells to form anatomical interactions 

between glomerular and tubular epithelium with their vascular networks487. Finally, it has been also 

described that CXCL12 gradients support stem cell migration in embryonic development488. In 

contrast, the role of chemokine signaling in stem cell homing in the bone marrow is in the opposite 

direction compared to the organ development. In fact, CXCL12 signaling maintains CXCR4+ 

hematopoietic stem cells (HSCs) within the bone marrow489. CXCL12 also regulates the number of 

mature granulocytes and monocytes in the blood through the regulation of HSCs mobilization inside 

the bone marrow490.  During the leukocyte maturation, immature T and B cells travel to the thymus 

and secondary lymphoid organs, where they are selected. CXCL12 in collaboration with other 

chemokines such as CCL17, CCL21 and CCL22, are responsible for regulating migration to different 

compartments of these secondary lymphoid organs in order to complete the maturation 

process491,492. During the tissue renewal process, CXCL12-CXCR4 axis plays an important role in 

neurogenesis of the hippocampus in adults, as well as in neural stem cells and neural progenitor 

cells, aiding the maintenance of their stemness or regulating the migration of their neural 

progeny493. This axis also participates in the homing of stem cells in mammalian testes494. In 

summary, the CXCL12–CXCR4 axis is responsible for maintaining peripheral stem cell pools that have 

important functions in homeostatic tissue renewal and regeneration . 

In cancer cells, CXCR4 plays an important role at different stages of cancer development495, and is 

involved in the metastasis of tumor cells in colorectal, breast, prostate, ovary, and lung 
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cancers446,447,477. Furthermore, the upregulation of CXCR4 has been found in many tumor types481,496, 

including CRC, where the overexpression of CXCR4 correlates with a poor prognosis497.  

At the transcriptional level, expression of CXCR4 is induced by several processes. Activation of the 

hypoxia-inducible factor-1 (HIF-1α), which occurs under hypoxia conditions, increases CXCR4 

expression498,499. Moreover, vascular endothelial growth factor (VEGF), as part of its autocrine action 

induces the expression of CXCR4 in breast cancer500. Furthermore, in breast cancer too, the 

transcription factor NF-κB, which controls cell motility, upregulates CXCR4501. Recently, gene-fusion 

events, such as PAX3-FKHR in embryonal rhabdomyosarcoma cells, have been also associated with 

CXCR4 transcriptional activity502. In addition, apart from the functions described above, it has been 

demonstrated that CXCR4 regulates other important processes in cancer progression. This receptor 

establishes a permissive tumor microenvironment and immune evasion in cancer450 . Also, it has 

been reported that CXCR4 expression is responsible for the outgrowth of micrometastasis in animal 

models of CRC503.  

As far as CXCL12 is concerned, it is well known that its production is high in lung, liver, bone marrow, 

and lymph nodes446, which usually are the main sites for CRC metastasis. Moreover, CXCL12 through 

the upregulation of Akt/PKB pathway, is capable to increase survival upon specific death signals, 

such as TRAIL signals504. 

The CXCR4-CXCL12 axis is likely to be a rather dynamic process. Whereas in some areas of the tumor 

protease production or other events could degrade or reduce CXCL12, in some tumor regions CXCR4 

expression might be increased. Consequently, gradients of CXCL12 released in other body locations 

may trigger sub-populations of tumor cells to leave the primary site472.  

Finally, the fact that CXCR4 plays a crucial role in cell stemness, its expression by sub-population of 

cells in a primary tumor might  indicate that these cells could have cancer stem cell properties505.  

 

3.5.1.1.1 Current treatments targeting CXCR4/CXCL12 axis 

It is well established that the central role of CXCR4-CXCL12 axis in regulating HSC homing has been 

used for clinical purposes. A single injection of a CXCR4 antagonist is sufficient to mobilize HSCs and 

other progenitor cells from the bone marrow into the blood506, used for therapeutic stem cell 



 
62 INTRODUCTION 

transplantation. Plerixafor (AMD3100) is the unique CXCR4 antagonist approved by the FDA and the 

EMA for clinical use.  

CXCR4 antagonist was developed in 1994 as anti-HIV drug. Results from several clinical trials showed 

that the main side effect of the drug was HSC mobilization into the blood506. This fact leads to its use 

in stem cells transplantation in hematologic neoplasm, and therefore numerous studies were 

developed to test the efficacy and safety of AMD3100 for this purpose. These clinical trials in Phase 

I-II are a clear example of the high interest in improving the use of this compound to mobilize stem 

cells: NCT00075335, NCT00082329, NCT00241358, NCT00291811, NCT00914849 and NCT00322127 

(from ClinicalTrials.gov). 

Moreover, AMD3100 is under the focus of attention to assess its efficacy in cancer treatment, but 

only in combination with regular chemotherapeutics or other current treatments, in resistant or 

recurrent patients. (Summary in table 8). In patients with relapsed/refractory acute myeloid 

leukemia (AML), a study in phase I/II was carried out to determine the safety and efficacy of CXCR4 

inhibitor in combination with mitoxantrone, etoposide, and cytarabine (NCT00512252). In pediatric 

patients with relapsed or refractory acute lymphoblastic leukemia (ALL), AML and myelodysplastic 

syndromes (MDS), the effect and safety of combining plerixafor and standard anti-cancer drugs (i.e. 

cytarabine and etoposide) was tested to enhance the cytotoxic effect of chemotherapy (phase I, 

NCT01319864). With the same objective, the effect of AMD3100 to sensitize chronic lymphocytic 

leukemia/small lymphocytic lymphoma (CLL/SLL) patients to rituximab was also prescribed (phase 

I, NCT00694590). Finally, another study in phase I in recruitment status, is preparing to evaluate 

how plerixafor may help the body to overcome resistance to immune therapy in patients with 

advanced pancreatic, ovarian and CRC (NCT02179970). 
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Table 8. Summary of plerixafor (CXCR4 inhibitor) clinical trials. 

Clinical trial 
number 

Drug Combination Disease Study phase 

NCT00512252 plerixafor mitoxantrone, 
etoposide, and 
cytarabine 

AML phase I/II 

NCT01319864 plerixafor cytarabine and 
etoposide 

Pediatric ALL, 
AML and MDS 
 

phase I 

NCT00694590 plerixafor rituximab CLL and SLL phase I 

NCT02179970 plerixafor immune therapy advanced 
pancreatic, 
ovarian and 
colorectal cancer 

phase I 
(recruitment) 

 

Other CXCR4 inhibitors, some improved versions of AMD3100 and others antibodies against CXCR4, 

are under evaluation in clinical trials for cancer treatment.  

Table 9. Summary of CXCR4 inhibitors and antibodies in clinical trials. 

Clinical trial 
number 

Drug Combination Disease Study 
phase 

NCT01010880 BKT140  Multiple Myeloma 

 

Phase I-
II 

NCT01359657 Anti-CXCR4 
(BMS-
936564) 

Lenalidomide/Dexamethasone 
or 
Bortezomib/Dexamethasone 

Multiple Myeloma 

 

Phase I 

NCT01120457 Anti-CXCR4 
(BMS-
936564) 

 Acute Myelogenous 
Leukemia,  

Diffuse Large B-Cell 
Leukemia, 

Chronic 
Lymphocytic 
Leukemia, 

Follicular 
Lymphoma 

 

Phase I 

NCT02737072 CXCR4 
peptide 
antagonist 
(LY2510924) 

Durvalumab (anti PD-1) Advanced 
Refractory Solid 
Tumors 

Phase I 
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3.5.2 Endocannabinoids receptors 

The endocannabinoid system is composed of endogenous cannabinoids (endocannabinoids), the 

enzymes that regulate the amount of endocannabinoids, and the cannabinoid receptors (mainly 

CB1
507 and CB2

508, which are GPCR receptors). Recently, it has described the function of the 

endocannabinoids as lipid mediator synthesized from common precursors, which acts in other 

receptors besides cannabinoids receptors509. Historically, in Western medicine in the XIX century, 

Cannabis (derived from marijuana plant Cannabis sp.), has been used to treat a variety of 

gastrointestinal disorders509-511. The most important compound of Cannabis is Δ9-

tetrahydrocannabinol (THC), which produces a variety of biological effects by mimicking 

endocannabinoid ligands512.  

The two better described endocannabinoid ligands are: 2-arachidonylglycerol (2-AG)513,514, 

expressed in the ilium and colon, and generated via phospholipase C or by turnover of diacylglycerol 

(DAG) via DAG lipase (DAGL)515, and anandamide (AEA)516, which is expressed in the mucosa, 

submucosa and muscular layers of colon and ilium, and is endogenously synthesized from 

membrane phospholipids by the enzyme N-acylphosphatidylethanolamine-phospholipase D (NAPE-

PLD) and through alternative biosynthetic pathways515. Both ligands are increased in CRC patients517.  

The typical endocannabinoid enzymes expressed in the gastrointestinal tract are: fatty acid amide 

hydrolase (FAAH)518,519, which degrades AEA and is placed in stomach and intestine in cells of 

myenteric plexus, and monoacylglycerol lipase (MALG)520,521, which hydrolases 2-AG and is 

expressed in fibers and in the nerve cells through mucosal layers and muscle of the duodenum, 

ileum, and colon. It has been shown that MALG is downregulated in CRC522.  

The CB1 receptor is mainly expressed in the central nervous system, in colonic epithelial, vascular 

smooth muscle cells of the colon, and plasma cells in normal tissues509,523,524. The CB2 receptor is 

mainly expressed in peripheral and inflammatory tissues, in macrophages, and lightly in plasma 

cells508,523. Both CB1 and CB2 receptors are important in modulating inflammatory processes in vitro. 

CB1 promotes epithelial wound healing in human normal colon525, and CB2 activation inhibits the 

effect of IL-8 release in human colonic epithelial normal cells526. The expression of both receptors is 

found in B cells, natural killer cells and mast cell527-529. The stimulation of other cells, such as 

macrophages, mononuclear cells and dendritic cells lead to an increase in the production of 

endocannabinoids529. In addition, cannabinoids are able to inhibit activated macrophages and mast 

cells, as well as the secretion of some cytokines530-532.  
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The first study testing cannabinoids (specifically phytocannabinoids THC and cannabinol) in cancer 

regression was in 1975 by Munson et al., showing suppression of tumor growth in Lewis lung 

adenocarcinoma in animal models533. In recent decades, different studies demonstrated that the 

use of cannabinoids (endocannabinoids, phytocannabinoids and synthetic cannabinoids) or blocking 

endocannabinoid enzymes confer a cancer growth inhibition by blocking cell proliferation and 

inducing apoptosis in breast cancer534 and in glioma535. In addition, several reports showed anti-

invasive and anti-metastatic characteristics in prostate cancer536, in CRC537 and in lung cancer538, and 

anti-angiogenic properties  in microenvironmental sites of malignant tissues such as breast539 and 

lung cancer540. 

Furthermore, it has been demonstrated that cannabinoids are able to modulate cell cycle 

checkpoints in melanoma 541 and in breast cancer542. 

In CRC a down-regulation of CB1 has been described543
. Otherwise, an up-regulation of CB2 receptor 

expression was reported in a series of 175 colorectal patients, where high CB2 expression was 

detected in lymph nodes positive patients, and it was expressed with great intensity in tumor 

epithelial cells. In addition, it correlates to tumor growth and predicts disease free survival and 

overall survival in colon cancer544
. 

 

3.5.2.1 CB2 receptor 

CB2 receptors are rhodopsin family serpentine receptors that bind primary to Gi/o proteins to 

modulate the downstream signaling. They are able to activate a wide range of signaling pathways, 

but recent investigations are focused on modulation of adenylyl cyclase545,546 and extracellular 

signal-regulated kinases 1/2 (ERK1/2)547, this latter indicating potential control of gene transcription 

by MAP kinase network with varied responses and outcomes548. As other GPCRs, CB2 exhibit variable 

internalization following agonist binding, some agonist promoting internalization and others being 

inactive549,550. In healthy organisms, it is known that CB2 receptor is expressed by cells of 

macrophage lineage, and to a lesser extent by other immune cells551. CB2 receptor, unlike CB1, does 

not produce psychotropic effects552, which makes it a good therapeutic target553,554. 

Recent reports have described the capacity of CB2 receptors to form heterodimers with other 

receptors, and this phenomenon contributes to the heterogeneity of receptor signaling, and thus 

cellular consequences458,555,556. A recent investigation demonstrates that the heterodimer formation 
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of CB2 with GPR55 (another GPCR receptor) exhibited a negative crosstalk and cross-antagonism 

between both receptors in breast cancer and glioblastoma557. In addition, another recent study 

suggested that the heterodimerization of CXCR4 and CB2 has an impact on cancer cell invasion556. 

Finally, specifically targeting CB2 with a selective CB2 receptor agonist (JWH133), it has been 

reported to show tumor regressive action on glioma cells558. 

 

3.5.2.1.1 Current treatments 

Nabilone (analogue of THC) and Epidiolex (cannabidiol analogue) are the only synthetic cannabinoid 

drugs approved by the FDA for clinical use, unfortunatly these are not used for cancer treatment.  

The anticarcinogenic effects of cannabinoids have been demonstrated in in vitro studies and in vivo 

models, however, cannabinoids have not been used as anticancer therapy in clinical trials until 

recently. Several studies are testing the effects of cannabinoids as palliative treatment in 

combination with current chemotherapeutics, reducing their cytotoxic effects such as nausea, loss 

of appetite, etc (for example NCT00380965). 

The first study that demonstrated similar effects in animal models and patients was a clinical pilot 

study in glioblastoma patients, which proved THC to be safe when administrated intracranially559. 

Recently, a few clinical trials have started to test the efficacy of cannabinoids as anticancer 

treatment. In recurrent glioblastoma patients, the combination of THC and cannabidiol (CBD, other 

cannabis component) with temozolomide (chemotherapy) (NCT01812616 and NCT01812603) have 

shown improvement in patient’s viability. In advanced solid tumors, synthetic cannabinoid (a mixed 

of CB1/CB2 receptors agonist) was used to evaluate the efficacy to destroy cancer cells 

(NCT01489826). 

On the other hand, as mentioned above, CB2 receptor is a very interesting druggable target due to 

non-psychoactive effect and also reducing pathogenic effects on liver health560. 
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Table 10. Summary of cannabinoids clinical trials in cancer. 

Clinical trial 
number 

Drug Disease Study phase 

NCT01812616, 
NCT01812603 

Sativex (THC+CBD) + 
Temozolomide 

Recurrent Glioblastoma  Phase I-II 

NCT01489826 Dexanabinol (mixed 
CB1/CB2 receptor agonist) 

Solid tumor 
 

Phase I 

 

 

3.6 Diagnosis and prognosis of CRC 

CRC is diagnosed after the onset of symptoms561, or through screening colonoscopy or fecal occult 

blood testing in the majority of patients. Routine screening of asymptomatic with high risk 

individuals for CRC (according to the edge) is supported by major societies and preventive care 

organizations. Also, this method has been shown to detect asymptomatic early-stage malignancy, 

thus improve mortality.  

Patients with colorectal cancer (CRC) may present in three ways562: 

●Symptoms and/or signs (abdominal pain, otherwise anemia, and/or a change in bowel habits, or 

rectal bleeding)563 

●Asymptomatic individuals discovered by routine screening  

●Emergency cases that show intestinal obstruction, peritonitis, or rarely, an acute gastrointestinal 

bleed 

In the last type of patients, or in patients with intolerance to colonoscopy, colonography (CT) can 

provide a radiographic diagnosis. 

The tumor-node-metastasis (TNM) classification of the American Joint Committee on Cancer (AJCC) 

at diagnosis is used for initial patient management, as the TNM provides prognosis information and 

aids in treatment decision564. 

The T, N, and M categories for colon cancer are assigned based upon: 

●Whether there are signs of cancer spread on physical examination or radiographic imaging tests 

●Findings from surgical resection and histologic examination of the resected tissues 
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Table 11. TNM classification. 

Primary tumor (T) 

T category T criteria 

TX Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

Tis Carcinoma in situ (intramucosocal carcinoma) 

T1 Tumor invades the submucosa (muscularis mucosa9 

T2 Tumor invades the muscularis propria 

T3 Tumor invades through the muscularis propria into pericolorectal tissues 

T4 Tumor invades the visceral peritoneum, or invades or adheres to adjacent 
organs or structures 

Regional lymph nodes (N) 

N category N criteria 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastases 

N1 One to three regional lymph nodes are positive 

N2 Four or more regional nodes are positive 

Distant metastasis (M) 

M category M criteria 

M0 No distant metastasis 

M1 Metastasis to one or more distant sites or organs, or peritoneal 

 

Table 12. Stage according to the TNM classification 

Stage TNM 

0 Tis; N0;M0 

I T1,T2; N0; M0 

II T3, T4; N0; M0 

III Any T; N1, N2; M0 

IV Any T; Any N; M1 
Table adapted from the AJCC Cancer Staging Manual, Eighth Edition (2017) published by Springer International 

Publishing. 

 

Albeit, in patients with stage II and III colon cancer, TNM staging is less useful for distinguishing 

patients with different prognosis (https://seer.cancer.gov/). Also in stage II patients, new 

biomarkers are needed to select high-risk patients for adjuvant therapies after surgery565. For this 

reason, recently biomarkers studies and other histologic features have been under evaluation to 

incorporate them in current routine diagnosis566. The most important aspects to consider when 

making decisions about treatment but which are not yet incorporated into the formal staging criteria 

are: 
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 Clinicopathological features (primary site localization, among others)567. 

 

 Microsatellite instability, which reflects deficiency of mismatch repair enzymes and is both 

a prognostic factor and predictive of a lack of response to fluoropyrimidine therapy568.  

 

 Mutation status of KRAS and BRAF, because mutations in these genes are associated with 

lack of response to agents targeting the epidermal growth factor receptor (EGFR)569. 

 

 Immunoscore has been defined to quantify the in situ immune infiltrate in tumor570. 

 

 The tumor-stroma ratio (TSR), which estimates the proportion of malignant epithelial cells 

and stroma, besides its prognostic value, might be used as an additional high-risk factor to 

select patients for adjuvant therapy571,572. 

 

 Tumor budding (TB), which reflects the EMT at invasive tumor front, and thus represents 

the cell-biological correlate of the tumor-stroma interphase. Moreover, it has prognostic 

value573. 

Currently, the biomarkers routinely tested are:  

Table 13. Currently tested biomarkers.  

Mutation Incidence 
(%) 

Method of testing Prognostic or 
predictive 

Clinical utility 

KRAS 35-45% Whole genome 
sequencing 

Predictive Predicts 
resistance to 
EGFR inhibitors 

BRAF 8-10% Whole genome 
sequencing 

Prognostic Indicative of 
aggressive 
disease 

MSI-H (high) 15% Polymerase chain 
reaction, 
immunohistochemistry 

Predictive Predictive 
response to 
immunotherapy 

Adapted from 574 

Finally, a new model was developed and has been proposed in order to improve the progression 

and thus prognosis of CRC. The consensus molecular subtypes (CMS) was described to classify 
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patients by integrating gene expression, mutations, copy number alterations (CNAs), methylations, 

microRNA expression, as well as patient’s outcome, to perform an accurate classification of CRC575.  

 

Table 14. CMS classification (molecular features). 

CMS1 
MSI immune 

CMS2 
Canonical 

CMS3 
Metabolic 

CMS4 
Mesenchymal 

14% 37% 13% 23% 

MSI, CIMP high, 
hypermutation 

SCNA high Mixed MSI status, 
SCNA low, CIMP low 

SCNA high 

BRAF mutation  KRAS mutations  

Immune infiltration Wnt and MYC 
activation 

Metabolic 
deregulation 

Stromal infiltration, 
TGF-β activation, 

angiogenesis 

Worse survival   Worse relapsed-free 
and overall survival 

CIMP, CpG island methylator phenotype; MSI, microsatellite instability; SCNA, somatic copy number alterations 

 

3.7 Current treatments in CRC 

Adenocarcinomas in the colon are the principal lesions in primary cancers. Therefore, the only 

curative treatment for localized colon cancer is surgical resection, where the tumor is removed 

completely, also the major vascular pedicles and the lymphatic drainage basin of the affected 

colonic segment are resected. This is only indicated in an attached or infiltrated tumor into 

resectable organ or structure. In addition, surgical resection may be indicated in selected patients 

with limited resectable metastatic disease (liver o lung)576. 

Neoadjuvant chemoradiotherapy 

In locally advanced rectal cancer, neoadjuvant chemoradiotherapy (RT + fluorouracil) or 

chemotherapy (fluorouracil), rather than initial surgery, is a common approach supported by 

randomized trials577. 

On the other hand, in locally advanced colon cancer invading adjacent organs, neoadjuvant 

chemoradiotherapy might be considered, whereas, in patients with early colon cancer, benefits are 

limited to isolated case reports. There is no consensus agreement as to which patients, if any, are 

suitable for this approach 578,579. Besides, the utility of neoadjuvant chemotherapy alone for patients 
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with primary colon cancers is unclear; this approach will be directly studied in the phase III FOxTROT 

trial, which completed accrual in 2016580. 

Adjuvant chemotherapy 

The postoperative chemotherapy (adjuvant) is indicated for patients who present occult 

micrometastasis that are present at the time of surgery (stage III-IV). The aim of this therapy is to 

eradicate these micrometastasis, thereby increasing the cure rate and reducing the likelihood of 

disease recurrence. 

Early studies of 5-fluorouracil (5-FU) monotherapy failed to show a survival benefit relative to 

resection alone581. Interest in adjuvant chemotherapy was revived in the late 1980s with reports 

that suggested a survival benefit from FU-based combination regimens582, and by the discovery of 

modulators of FU activity, such as leucovorin (LV)583 and oxaliplatin584. 

A combination of several chemotherapy drugs are given intravenously, incorporating irinotecan 

(semisynthetic inhibitor of topoisomerase), oxaliplatin (third-generation platinum compound that 

causes mitotic arrest via the formation of DNA adducts), and capecitabine (5-FU prodrug). These are 

now all established options for use as first-line, second-line and sequential treatment of CRC585. 

In stage II patients (lymph node-negative), the benefits of chemotherapy (5-FU and oxaliplatin-

based or non-oxiloplatin-based regimens) are controversial. Treatment decision must be 

individualized depending on the presence of high-risk clinicopathologic features (fewer than 12 

nodes in the surgical specimen, T4 stage, perforated/obstructed tumor, poorly differentiated 

histology, lymphovascular or perineural invasion, and tumor budding), mismatch repair protein 

status, assessment of comorbidities and anticipated life expectancy, and given the relatively good 

prognosis of stage II disease, the potential risks associated with treatment586. If adjuvant 

chemotherapy is chosen, most patients receive a fluoropyrimidine alone, unless they have a tumor 

with deficient mismatch repair status, in which case adjuvant fluoropyrimidines alone are 

ineffective. For patients receiving a non-oxaliplatin-based adjuvant therapy regimen (i.e., a 

fluoropyrimidine alone), six months of adjuvant therapy remains the standard approach587.  

In stage III patients (with node-positive), oxaliplatin-containing chemotherapy for six months is 

recommended as a standard approach for most patients, although oxaliplatin’s benefits are 

controversial in older adults588. 
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In general, older adult patients gain as much benefit from adjuvant fluorouracil (FU)-based 

chemotherapy as younger individuals do, although it is used less often in older adults, and rates of 

treatment-related toxicity may be higher. The role of oxaliplatin as a component of adjuvant therapy 

in older adult patients is controversial589,590.  

 

The most commonly used oxaliplatin-based regimens are FOLFOX591 (folinic acid (Leucovorin) + 5-

fluorouracil (5-FU) + oxaliplatin (Elotaxin) and CAPOX592 (capecitabine (Xeloda) + oxaliplatin 

(Elotaxin); also called XELOX).  

Patients with stage II disease are more often offered a regimen that does not include oxaliplatin, 

typically LV-modulated FU or single-agent oral capecitabine. 

In stage IV patients (with metastasis), treatment has been considered palliative for many years. 

Chemotherapy has expanded the therapeutic options for these patients and improved median 

survival from less than one year in the single-agent fluoropyrimidine era to more than 30 months, 

fewer than 20 percent of those treated with chemotherapy alone are still alive at five years, and 

only a few are free of disease, unless resection or ablation of metastases has been performed593 . 

For this reason, it is important to evaluate KRAS and BRAF mutations (as it has been demonstrated 

that they have an impact in the efficacy of specific anti-cancer agents) to decide the best adjuvant 

treatment combination585. FOLFOX, FOLFIRI (folinic acid (Leucovorin) + 5-FU + irinotecan (CPT-11)) 

or FOLFOXIRI (folinic acid (Leucovorin) + 5-FU + oxaliplatin (Elotaxin) + irinotecan (CPT-11)) are the 

current chemotherapeutic treatments. Three different types of targeted therapies have been 

developed and approved for metastatic CRC to use in combination with the previous mentioned 

chemotherapeutics594: 

- Monoclonal antibodies against VEGF (Bevacizumab595) and EGFR (Cetuximab596 and 

Panitumumab597. 

- Recombinant fusion proteins against angiogenic factors (Aflibercept598). 

- Molecules that inhibit tyrosine kinase receptors (Regorafenib599). 
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Figure 14. Representative scheme of treatment decision in newly diagnosed CRC. High-risk clinicopathologic features: 

fewer than 12 nodes in the surgical specimen, T4 stage, perforated/obstructed tumor, poorly differentiated histology, 

lymphovascular or perineural invasion, and tumor budding. dMMR, deficient mismatch repair; FOLFOX, folinic acid 

(Leucovorin) + 5-fluorouracil (5-FU) + oxaliplatin (Elotaxin); CAPOX capecitabine (Xeloda) + oxaliplatin (Elotaxin); FOLFIRI 

folinic acid (Leucovorin) + 5-FU + irinotecan (CPT-11)); FOLFOXIRI folinic acid (Leucovorin) + 5-FU + oxaliplatin (Elotaxin) + 

irinotecan (CPT-11). 
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The tumor microenvironment is gaining momentum due to its contribution to cancer progression 

and therapy resistance. This tumor microenvironment has a direct crosstalk with tumor cells that 

involves the activation of different pathways that promote cell survival, invasion and migration, 

among others benefits. 

 

Study 1. Idelalisib Interferes with the Crosstalk of Follicular Lymphoma and its Immune 

Microenvironment and Potentiates the Activity of Venetoclax 

In FL, PI3K is a common denominator transducing the signaling from tumor-microenvironment 

crosstalk. Likewise, the Bcl-2 family proteins play a crucial role in the regulation of apoptosis in 

cancer cells. 

Our hypothesis: PI3Kdelta targeting may interfere with tumor-microenvironment crosstalk while 

Venetoclax may target the tumor cells, thus representing a promising combination therapy that may 

improve FL outcome. 

 

Aims: 

-To characterize by gene expression profiling (GEP) the molecular effects of idelalisib in this primary 

FL co-culture system with follicular dendritic cells (FDC), and identify the potential mechanism of 

resistance 

- To delineate the effects of PI3K in FL immune microenvironment 

-To analyze the combinatorial effect of idelalisib with the BCL-2 inhibitor ABT-199 in the presence 

of FDC and M2 macrophages 
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Study 2. GPCRs heterodimers as a new therapeutic target in colorectal cancer 

In CRC, GPCRs have an important role in cancer growth and in the regulation of the angiogenesis, 

invasion, migration and survival in metastatic sites. In addition, tumor or stromal cells from the 

microenvironment may secrete GPCR ligands. 

Our hypothesis: targeting the heterodimerization of GPCRs (CXCR4 and CB2) that are biologically 

relevant in cancer can be an effective way to reduce proliferation and dissemination. 

Aims: 

-To characterize CXCR4 and CB2 receptor expression and heterodimer formation in CRC 

-To decipher the functional role of CXCR4- CB2 heterodimers  

-To analyze the potential as cancer therapeutic agent in vitro and in vivo models of single 

compounds (CXCR4 and CB2 inhibitors).  
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Study 1: Idelalisib and Venetoclai in FL 

1. Patient samples  

Primary FL cells isolated from lymph nodes or peripheral blood of 34 patients (see clinical 

characteristics in Table 15), diagnosed according to the World Health Organization (WHO) 

classification criteria were used. Written informed consent was obtained in accordance with the 

Ethics Committee of the Hospital Clínic, University of Barcelona and the Declaration of Helsinki. 

Mononuclear cells were isolated by gradient centrifugation on Ficoll (GE healthcare) and used fresh 

or cryopreserved in liquid nitrogen in RPMI 1640 containing 10% DMSO (Sigma-Aldrich) and 60% 

heat-inactivated fetal bovine serum (FBS; Life Technologies) and conserved within the 

Hematopathology collection of our institution (IDIBAPS-Hospital Clínic Biobank). The percentage of 

tumor cells was evaluated by flow cytometry as CD20+ CD10+ showing light chain restriction 

lymphocytes. FL primary samples were cultured in RPMI 1640 (Life Technologies) supplemented 

with 10% FBS, 2 mM L-glutamine, 50 µg/mL penicillin/streptomycin and were maintained in a 

humidified atmosphere at 37ºC containing 5% CO2.  

 

2. FL microenvironment models  

For the co-cultures with follicular dendritic cell line (FDC), the HK non-immortalized cell line 

generated from normal tonsils was kindly provided by Dr. Yong Sung Choi600 was cultured in IMDM 

medium supplemented with 20% FBS, 2 mM L-glutamine, and 50 µg/mL penicillin/streptomycin (all 

from Life Technologies).  

M2-macrophages were generated from monocytes isolated from buffy coats of healthy donors 

(Banc de Sang i Teixits (BST Barcelona)) previously enriched by Rosette Sep (Human monocyte 

enrichment cocktail, from Stem Cell) and followed by differentiation with 20ng/ml M-CSF for 7 days.  

FDC or macrophages cells were seeded on day 0, and FL cells (1-2 x106cells/mL) were added the 

following day onto confluent stroma layers at 1:20 ratio (FDC:FL) and 1:4 (M2:FL) and cultured for 

the times indicated in the presence or absence of Idelalisib (Gilead Sciences).  
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Table 15. FL patient characterictics. 

Study 
label 

Sex/ 
Age 

Histol. 
Grade 

Ann 
Arbor 
stage 

FLIPI 
Disease 
status 

Genomic 
alterations 

Initial 
Therapy 

DFS 
(years) 

Num. of 
Relapsed 

Progression 

FL1 M/71 2 IV I D na R 6 0 no 

FL2 M/77 na na na na 1,2,3 na na na na 

FL3 F/83 2 III I D 1,2,3 R 5 0 no 

FL4 M/65 2 I L D 1,2,3,5 R 5 0 2th neo 

FL5 F/73 2 IV H D na R-Lena 1 1 no 

FL6 M/80 2 IV I D 1 R-Benda 2 0 no 

FL7 M/73 2 IV H D 1,3 R-Benda mon 2 yes 

FL8 M/75 2 I L D 1,2,3,6 CFM-PDN 2 0 no 

FL9 M/69 2 IV H D 1,2,3,9 R-CHOP 2 0 no 

FL10 F/55 3a IV H D 1,3,4,7,8 R-CHOP mon 2 yes/death 

FL11 M/50 2 II L D 1,3,5,8 R-CHOP 5 1 1st rescue 

FL12 F/73 3a III I D 2 R-CHOP 3 1 yes/death 

FL13 F/60 2 IV I D 3,6 R-FCM 14 0 no 

FL14 F/70 2 I L R 1,3 RX 3 1 yes 

FL15 F/54 2 IV L D 1,4 R-CHOP 1 0 no 

FL16 M/54 2 IV H D 1,3,7,9 FCM 5 1 no 

FL17 F/69 2 IV I D 3,5 R-CHOP 5 0 no 

FL18 M/58 3a IV L R 1 CHLORAM 10 1 no 

FL19 M760 2 IV L D 2,3,7 R 1 1 no 

FL20 F/66 1 IV I R 1,3 CHOP mon 1 yes 

FL21 F/50 2 IV L D 3 FCM 17 0 no 

FL22 M/70 2/3 IV I R 1,2,3 RX 3 1 2th neo 

FL23 M/50 1 I L R 3 CHOP 6 1 no 

FL24 F/80 2 III H D 1,2,3,4,6 R-CHOP 13 0 no 

FL25 F/32 2 IV I D 1,2,3 R-CHOP 1 0 no 

FL26 M/53 3a IV I R 2,3,4 R-CHOP 4 2 2th rescue 

FL27 F/59 2 IV I R 1,2,3 R-CHOP 5 2 2th rescue 

FL28 F/59 2/3 IV H D no data R-CHOP 14 0 no 

FL29 M/56 2 IV I R 1,2,3,6 R-CHOP 1 2 2th rescue 

FL30 F/66 1 IV H D no data R-CHOP 1 0 no 

FL31 M/60 1/2 III I D 1,3,5,6,7 R-CHOP 1 0 no 

FL32 F/77 3 IV H D 7 R-CHOP 2 0 no 

FL33 M/57 1 IV I R no data R-CHOP 2 1 no 

FL34 F/ 2 na na na 1,2,3,6 na na na na 

Grade was evaluated by two different pathologists; FLIPI: Follicular Lymphoma International Prognostic Index: >3 high-risk 
(H), 2 intermediate risk (I), and 0-1 low-risk (L); Samples are obtained at D: diagnosis, or R: relapse; Somatic mutations 
identified by NGS: (1) CREBBP, (2) TNFRSF14, (3) KMT2D, (4) EP300, (5) MEF2B, (6) EZH2, (7) TNFAIP3, (8) TP53, and (9) 
RRAGC. Initial therapy consisted of R: Rituximab; Lena: Lenalidomide; Benda: Bendamustine; CFM: Cyclophosphamide; 
PDN: Prednisone; CHOP: Chemotherapy combination of Cyclophosphamide, Hydroxydaunorubicin, Oncovin and 
Prednisone; FCM: Chemotherapy regimen composed of Fludarabine, Cyclophosphamide and Mitoxantrone; RX: 
Radiotherapy; or Chlorambucil. DFS (Disease free survival) is referred to time passed from initial therapy to first relapse. 
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3. Gene expression profiling (GEP) and data meta analysis 

Total RNA was isolated from FL cells, previously purified using CD20 magnetic beads (Miltenyi), using 

the TRIzol reagent (Life Technologies) followed by a cleaning step using the RNAeasy kit (Invitrogen). 

RNA integrity was examined with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only high 

quality RNA was then retrotranscribed to cDNA and hybridized on HGU219 microarray. All samples 

were simultaneously run in a GeneTITAN platform (Affymetrix). For the identification of 

differentially expressed genes, MEV platform (v4.9) and Rank Products test were used, applying a 

paired analysis with False Discovery Rate (FDR)≤0.05. Multiplot Studio Tool v.1.1 was used to plot 

differences between FL patients in Idelalisib response. 

Gene Set enrichment Analysis (GSEA) v2.0 (Broad Institute) interrogating C2, C3, GO and Hallmark 

0.5 gene sets from the Molecular Signature Database v2.5, and experimentally derived custom gene 

sets601. A two classes analysis with 1000 permutations of gene sets and a weighted metric was used. 

Bonferroni correction for multiple testing was applied and only gene sets with FDR ≤0.05 and a 

normalized enrichment score (NES) of >1.5 were considered significant. The leading edge genes 

were displayed using Morpheus (https://software.broadinstitute.org/morpheus). 

 

4. Targeted Next Gene Sequencing (NGS) 

We performed NGS of 10 genes (TNFRSF14, CREBBP, TP53, MEF2B, RRAGC, EP300, KMT2D, EPHA7, 

TNFAIP3 and EZH2), targeting all exons and their flanking regions. Libraries were generated using 

HaloPlex HS target enrichment system (Agilent technologies, Santa Clara, CA; following the 

manufacturer’s protocol) with an input of 60 ng of genomic DNA. Libraries were sequenced in a 

MiSeq instrument (Illumina, San Diego, CA) in a paired-end run of 150 bp. 

Bioinformatics analysis 

The variant calling was performed using an updated version of our in-house pipeline602. Briefly, 

quality control and trimming of the raw sequencing reads was done using the FastQC (v0.11.5) and 

Surecall Trimmer (v4.0.1) algorithms, respectively. Trimmed reads were aligned to the GRCh37/hg19 

human reference genome using the Burrows-Wheeler Aligner-MEM algorithm (v0.7.17)603. Base 

quality score recalibration and indel realignment steps were subsequently performed according to 

the GATK Best Practices (GATK, v3.8)604,605. The mean coverage obtained was 2585x, with 96% of the 
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target region covered at >100x (Samtools (v1.6)606, custom scripts). The variant calling was done in 

parallel using VarScan2 (v2.4.3)607, Mutect2 (GATK, v4), VarDict (v1.4)608, and deep SNV-shearwater 

(v1.24.0)609. The post processing fpfilter was used to filter the mutations detected by VarScan2. All 

variants detected by any of the variant callers were combined and annotated using SnpEff and 

SnpSift (v4.3)610,611. Finally, a custom script was applied to filter out recurrent artifacts, low quality, 

low variant allele frequency (VAF <2%), intronic and synonymous variants. Polymorphisms described 

in the Single Nucleotide Polymorphism Database (dbSNP149) with a European population frequency 

higher than 1% (1000 Genomes Project database) were also excluded. All programs were executed 

following the authors’ recommendations. 

 

5. ELISA cytokine quantification 

CCL22, IL-10, VEGF-C were determined using specific Raybiotech ELISA Kits, and VEGF-A was 

evaluated by Mini TMB ELISA Development from Peprotech. Cytokines levels were assessed in 

duplicates in supernatants harvested from FL primary cells (2x106 cells/mL) from monocultures or 

co-cultures. A standard curve was generated for each cytokine, and mean absorbance for each set 

duplicate were interpolated and transformed into concentrations. The optical density at 450nM was 

analyzed in a spectrophotometer (Synergy Bio-tek Instrument).  

 

6. HUVEC tube formation assay  

Human umbilical vein endothelial cells (HUVEC) were kindly provided by Dr Maria C. Cid and were 

cultured as previously described612. Supernatants from FL primary cells (2x106 cells/mL) were 

harvested after 48 hours of incubation with/without (w/wo) Idelalisib in co-culture with FDC or 

monoculture. 24-well plates were coated with Matrigel (Becton Dickinson) and allowed to 

polymerize for 45 minutes at 37ºC. Afterwards, the supernatants of interest were mixed (1:1) with 

HUVEC cells (4x104 cells) in HUVEC medium (RPMI 1640 medium that contains 25% of Bovine Calf 

Serum(HyClone), 150 µg/ml medium endothelial cell growth supplement (ECGS) (BD Bioscience), 

and 4U/ml medium of sodium heparin salt(AppliChem)) and incubated for 24 hours. Photos were 

taken at x40 magnification in a DMIL LED Leica microscope coupled to a DFC295 camera and 

analyzed with Suite v 3.7 software (Leica). Then, the number of nodes and junctions was quantified 

in 5 randomly chosen fields using the Image J software (angiogenesis analyzer plugin).  

 



 
85 METHODS 

7. Adhesion assay to HUVEC cells 

HUVEC cells were plated in 96 wells plate at final concentration of 1x105cells/well. in HUVEC medium 

and incubated overnight (ON) with TNF-α (10ng/ml) (R&D System). Otherwise, FL co-cultured with 

FDC w/wo idelalisib were recovered after 48 hours of incubation and were counted and labeled with 

1 µM Calcein, AM (Invitrogen) for 30 minutes at 37ºC. After washing twice the cells with PBS, 1x105 

cells/well were seeded in a plate containing activated HUVEC cells for 3hours with RPMI 1640 

medium at 37ºC. Then, the plate was washed extensively with RPMI 1640 to remove non-adhered 

cells. Adhered cells were lysed with 1% Triton X-100, supernatant was transferred into black plates 

(Thermo Scientific, Nunc) and fluorescence was measured in a spectrophotometer (Synergy Bio-Tek 

Instrument) (excitation filter: 485 ± 20 nm; band-pass filter: 530 ± 20 nm). Data were expressed as 

relative fluorescent units (RFU) after subtraction of non-specific adhesion (empty well). 

 

8. Transendothelial migration 

HUVEC cells (0.2x106 cells/well) were seeded on gelatin 0.1% coated transwells (Costar) and 

incubated ON with TNF-α (10ng/ml). The next day, 0.5x106 FL cells coming from 48 hours of FDC co-

culture w/wo idelalisib were seeded into transwells with the endothelial monolayer in RPMI 1640 

medium with 10% FBS, and were allow to migrate for 6 hours in a gradient of FBS. (RPMI medium + 

20% FBS) CD20+ cells crossing HUVEC barrier were counted by flow cytometer (Attune Classic 

Acoustic Focusing Cytometer (Life technologies)). 

 

9. T cell migration assays 

Freshly tonsils were minced and mechanically disaggregated in RPMI 1640 medium with piston 

syringe and 70um Nylon Cell strainer (Falcon), then samples were purified using Ficoll gradient to 

obtain PBMCs. PBMCs from freshly tonsils and healthy donors were enriched in T cells (depletion of 

B cells and monocytes). Migration of T cell subpopulation (0.2x106 cells/well) was evaluated in 24-

well chemotaxis chambers containing 5 µM pore size inserts (Corning, Life Science) to supernatants 

of 48h HK (FDC) co-cultures w/wo idelalisib. Cells migrated for 3h, and then Attune flow cytometer 

was used to count the cells. Treg cells (CD4+, CB25+ and FOXP3+) from blood were selected; TFH cells 

(CD4+, CXCR5+, CD25-) and TFR cells (CD4+, CXCR5+, FOXP3+) from tonsil were selected too. Cell 

viability from these selected cells were assed using Live/Dead Fixable Aqua Dead Cell Stain kit 

(Invitrogen). Net migration was used to evaluate the migration. 
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Net migration =
num of migrate cells (subpopulation)−num of cells of the same subpopulation from Neg Ctrl 

num of cells of the same subpopulation from the input
  

Neg Ctrl = Negative controls. Migration vs medium+ 0.5% BSA 

 

10. iBH3 profiling 

BH3 profiling assesses the dependence of a certain cell on a specific anti-apoptotic BCL-2 protein. 

As we explained previously, the intrinsic pathway of apoptosis is regulated at the level of the 

mitochondria where different members of the BCL-2 family of proteins interact to make this life or 

death decision. The apoptosis induced by therapeutic agents often involves changes in the levels 

and interactions of BCL-2 family members. BH3 profiling relies on our understanding of how several 

broad groups of BCL2 family members interact with each other. The iBH3, or intracellular BH3, 

method relies on the quantification of retained cytochrome c as measure of how close is a cell to 

death, the so-called priming. A thorough method explanation and complete protocols, as buffers 

preparations could be find in https://letailab.dana-farber.org/bh3-profiling.html)., 

FL cells were co-cultured with FDC or M2 w/wo idelalisib for 24h in a cell density of 2x106 cells/ ml. 

First, isolated FL cells were stained using Live/Dead Fixable Aqua Dead Cell Stain kit for 30min. Cells 

were washed with PBS +2% of FBS. Then cells were labeled with CD19-PE (BD Bioscience) for 30 min. 

Again, cells were washed with PBS +2% of FBS. At this point, cells were placed in 96 wells plate, 

resuspendend in MEB Buffer (1x105 cells/well), permeabilized with 0.002% digitonin, and exposed 

to peptides for 1 hours at room temperature (RT). At this time, 4% of Formaldehyde were added 

and incubated for 10 min at RT. Then N2 buffer is added to neutralize the formaldehyde and 

terminate fixation at least for 5 minutes. Next, cells were incubated with anti-cytochrome c antibody 

(Biolegend) in 1:40 dilution (in 10X CytoC Stain Buffer) ON at 4ºC. Finally, cytochrome c release was 

analyzed by flow cytometer in viable and CD19+ cells, and then calculated using the next formula: 

 

% 𝐶𝑦𝑡𝑜𝑐ℎ𝑟𝑜𝑚𝑒 𝑐 𝑙𝑜𝑠𝑠 = 1 −
𝑀𝐹𝐼𝑆𝑎𝑚𝑝𝑙𝑒 –  𝑀𝐹𝐼𝑃𝑜𝑠 𝐶𝑡𝑟𝑙

𝑀𝐹𝐼𝑁𝑒𝑔 𝐶𝑡𝑟𝑙 –  𝑀𝐹𝐼𝑃𝑜𝑠 𝐶𝑡𝑟𝑙
 

Pos Ctrl = Positive release controls. Alamethicin 

Neg Ctrl = Negative release controls. DMSO  

 

https://letailab.dana-farber.org/bh3-profiling.html)
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Peptides and/or small molecules are the heart of the assay. Because of their unique interaction 

patterns (a summary of these interactions can be found in table 16), the BH3 peptides make it 

possible to determine priming class and subclass. The relative response of mitochondria to a fixed 

dose or a series of doses allows priming to be ranked across cell types or primary samples.  

Table 16. EC50 of BH3-only peptides to N-terminal GST 

 BIM BAD NOXA HRK FS-2613 

Bcl-2 <10 11 (3) - - - 

BcL-xL <10 <10 - 92 (11) - 

Bcl-w 38 (7) 60 (19) - - - 

Mcl-1 <10 - 19 (2) - - 

Bfl-1 73 (3) - - - <10 
C-terminal truncated anti-apoptotic proteins Values listed are in nM. Grayed values are greater than 1 µM. 

 

11. Flow cytometry 

Cells were seeded in co-culture or monoculture w/wo idelalisib and Venetoclax (Selleck Chemicals) 

as single agents or in combination for 72 h. Drugs cytotoxicity was evaluated by staining FL cells with 

CD19-PE (BD Bioscience), including Annexin V-FITC (eBioscience) and 7-Aminoactinomycin D (7AAD) 

(Sigma). Finally, cells were acquired and analyzed by flow cytometry. FL viable cells were identified 

as CD19+, Annexin V-FITC- and 7AAD-. 

 

12. Western blot 

FL pellets were lysated and proteins were extracted with RIPA buffer (Sigma-Aldrich) completed 

with protease and phosphatases inhibitors to perform Western blot analysis. Proteins extracts were 

quantified using the Lowry reagent (DC Protein Assay, BioRad). Next, protein samples were resolved 

by 12% SDS-PAGE gels, and electroblotted onto a PVDF membranes (Immobilon-P, Millipore). 

Membranes were blocked in Tris-buffered saline and 0.1% Tween 20 (TBST) with 5% powdered milk 

for 1h. Then, membranes were incubated with primary antibodies diluted in TBST with 5% BSA 

overnight at 4ºC. Finally, membranes were visualized on a mini-LAS4000 device (Fujifilm) by 

enhanced chemiluminescence (ECL, Amersham Life Science). Densitometry analysis of bands was 

performed with Multi Gauge V3.0 software (Fujifilm, Tokio). Data was represented using the control 

conditions as a reference.  



 
88 METHODS 

Table 17. Antibody used for Western Blot analysis. 

Primary Antibody Species Reference Dilution Source 

Bcl-xL (54H6) Rabbit 2764 1/1000 Cell signalling 

Mcl-1(s-19) Rabbit sc-819 1/500 Santa Cruz 

Bfl-1 Rabbit ABC498 1/1000 Millipore 

α-tubulin Mouse T5168 1/5000 Sigma Aldrich 

 

13.Simple Western Methods (Peggy Sue) 

FL cells were harvested in lysis buffer (Cell Signaling Technology) containing: Protease Inhibitor 

Cocktail (Roche Diagnostics Corp), and phosphatase inhibitor sets 1 and 2 (EMD Millipore). Following 

30 minutes on ice, cell lysates were cleared by centrifugation at 12,500 RPM for 10 minutes at 4°C. 

Lysates were analyzed by Simple Western using Peggy Sue™ or Sally Sue™ (ProteinSimple, San Jose, 

CA) according to manufacturer’s standard protocol. Data was processed using Compass software 

(ProteinSimple). The following antibodies were purchased from Cell Signaling Technology (Danvers, 

MA): p-AKT (S473) (#4058), pBAD (S112) (#9291), pBAD (S136) (#4366) and actin (#4968). 

 

14. Statistical analysis 

Unpaired and paired T-tests were used to assess differences between two groups using GraphPad 

Prism software 7.0. 
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Study 2: GPCRs heterodimers in CRC 

1. Cell lines and patient samples 

1.1. CRC cell lines and cell cultures 

SW480, SW620, Colo320, HT29, DLD1 and HCT116 were obtained from American Type Culture 

Collection (Manassas, VA, USA), and were cultured in RPMI 1640, DMEM-F-12 or McCoy 5A medium 

supplemented with antibiotics 1% pencillicin/streptomycin (10.000 Units/ml Pencillicin, 10.000 

µg/ml streptomycin) and 10% fetal bovine serum (FBS) (all from Life Technologies). The cells were 

maintained at 37ºC in a humidified atmosphere with 5% carbon dioxide. Mycoplasma infection was 

routinely tested by PCR. 

1.2. Generation of SW620-GFP+/Luc+ (Cell transduction)   

SW620 cells were transduced by retrovirus infection of LPNIG plasmid to generate a stable green 

fluorescence protein (GFP) and luciferase (Luc) expressing cells. Phoenix cells were used to generate 

the retrovirus supernatants. These cells were transfected with X-tremeGENE HP DNA transfection 

reagent (Roche) in 3:1 (reagent, DNA). Supernatant containing the virus was collected after 3 days, 

filtrated (0.4 µm) and then concentrated (ultracentrifugation in Sorval during 2h at 12ºC). After the 

centrifugation, the viral pellets were concentrated 100 times with PBS and added to the SW620 

cells. Then cells were treated with 1 mg/ml of Neomycin (G 418 (sigma)) antibiotic for 1 week for a 

first selection, and then were flow-sorted by fluorescence-activated cell sorting using FACS Aria cell 

sorter (BD Bioscience) recovering 5% of GFP+++ cells. Luciferase expression was assayed in vitro using 

the luciferase assay system (Promega). 

1.3. Patient samples: Tissue MicroArray (TMA) 

Colorectal primary tumors, metastasis and normal mucosa that form TMA samples were cases 

operated on the Hospital Clínic de Barcelona between 2005 and 2012. This resulted in 10 series of 

99 different patients. A tissue microarray (TMA) was constructed using multiple normal mucosa and 

tumor punches taken from formalin-fixed paraffin-embedded blocks (FFPE) using a tissue cylinder 

with a diameter of 1 mm. Those punches were transferred into one recipient paraffin block (20 x 15 

mm) using a semi-automated tissue arrayer. Four cores were obtained from the tumor center, four 

cores from the invasive tumor front and one from the normal adjacent mucosa. All patients signed 
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the corresponding informed consent form, and the Hospital Clinic Ethic Committee (IRB).approved 

the sample collection. Complete histopahological and clinical information were available. 

 

2. Immunohistochemistry 

2.1. TMA samples 

Tissue sections from TMA were subjected to citrate buffer (pH6) antigen retrieval for 20 minutes 

before to exposure to immunohistochemical staining using primary antibody against CXCR4 

receptor (1/600) or primary antibody against CB2 receptor (1/500) for 1h at room temperature. 

Immunodetection was performed using automated immunostainer system (Bond maX Processing 

Modul, Vision Biosystems, Leica) with DAB for 8 minutes at room temperature as the chromogen. 

Preparations were scanned on VENTANA iScan HT slide scanner (Roche Diagnostics), and then 

images were processed using Virtuoso v.5.6.2 Software. For the evaluation of the expression of both 

antibodies, cases were scored as 0 (no staining, only at CXCR4 staining samples), 1 (weak staining), 

2 (moderate staining), or 3 (high staining). CXCR4 and CB2 staining was scored by two independent 

pathologists from Hospital Clínic de Barcelona on U-DO3 microscope (Olympus, Tokyo, Japan). In 

order to evaluate all samples together, scores were divided into low expression (scores 0 and 1), or 

high expression (scores 2 and 3). 

2.2. In vivo samples 

Xenograft tumor samples from liver, lung and cecum, were subjected to fixation in 4% 

paraformaldehyde for at least 8h, and then incubated with 30% ethanol solution until paraffin-

embedded blocks performance. Paraffin-sections on silane-coated slides were exposed to 

immunohistochemical staining using anti-Ki-67 (clone 30-9, ready to use Roche), or subjected to 

hematoxylin and eosin staining in Tissue-Tek® Prisma™ automated slide stainer (Sakura) and were 

evaluated on BX41 microscope (Olympus, Tokyo, Japan). 

  

3. In situ Proximity Ligation Assay (PLA) 

Cells were grown on Poly-L-Lysine Cellware glass coverslips (Corning) and fixed in 4% 

paraformaldehyde, and then permeabilized with 0.1 % Saponin buffer (PBS +10% FBS). CXCR4-CB2 

heteromers were identified using the Duolink In Situ PLA detection kit (Olink, Bioscience). The cells 
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were incubated at 37ºC for 1h with the blocking solution of the kit in a preheated humidity chamber, 

after that, cells were incubated overnight in the antibody dilution medium containing the mouse 

anti-CXCR4 antibody (1:200, BD) and rabbit anti-CB2 antibody (1:100, Cayman chemical). Then, cells 

were incubated with a mixture of equal amounts of secondary antibody anti-mouse coupled directly 

to a DNA minus chain and anti-rabbit coupled directly to a DNA plus chain. Next, cells were 

incubated in a preheated humidity chamber for 30 min at 37ºC with the ligation solution from the 

kit to induce anneling and ligation of the two DNA probes. Amplification was done with the Duolink 

Detection Reagents Red kit, which contains Texas Red fluorescence nucleotides. Finally, the cells 

were mounted using mounting medium with DAPI from the kit. This technique requires both 

receptors to be close enough (<17 nm) to allow the two DNA probes from the secondary antibodies 

to be able to ligate614. 

 

 

Figure 15. PLA functional scheme. 

If both receptors are enough closer, a punctate red fluorescent signal can be detected by confocal 

microscopy. 

 

4. Confocal microscopy 

The samples were observed under a Leica TCS SP5 laser scanning confocal microscope (Leica 

Microsystems Heidelberg GmbH, Manheim, Germany) equipped with a DMI6000 inverted 

microscope, blue diode (405nm), Argon (458/476/488/496/514), diode pumped solid state (561nm) 

and HeNe (594/ 633nm) lasers, and APO 63x oil (NA 1.4) immersion objective lenses was used at the 

Unitat de Microscòpia Òptica Avançada (Centres Científics i Tecnològics , Universitat de 

Barcelona).DAPI and Alexa Fluor 633 images were acquired sequentially using 405, and 633 laser 

1. Proximity probe binding 2. Circularization and ligation 

of connector oligonucleotides 
3. Rolling circle amplification 4. Detection of rolling circle 

product 
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lines, AOBS (Acoustic Optical Beam Splitter) as beam splitter and emission detection ranges 415- 

480 and 643-680nm respectively and the confocal pinhole set at 1 Airy units. Simultaneously, bright 

field transmitted light images were acquired. Sections were acquired at a 1µm step size. Images 

were acquired at 600 Hz in a 1024 x 1024 pixels format, zoom at 3 and pixel size of 60 x 60 nm. 

Finally, acquired images were processed counting red fluorescence dots signals with ImageJ 

software. 

 

5.Image Analysis 

5.1 Cell lines PLA 

In order to analyze PLA signals on cells automatically, a macro of instructions was written to be 

executed in the open source software ImageJ (Wayne Rasband, NIH, USA) 615. First, in order to 

determine PLA particles, PLA stack images (red channel) were projected along z axis with maximum 

intensity method, Gaussian Blur filtered (sigma 0.5). Local background was subtracted from PLA 

labelling regions and labelled particles were segmented by intensity thresholding (Li 

AutoThreshold)616. Salt and pepper noise was removed by median filtering (radius 1). Second in 

order to separate close PLA structures, Find Maxima command was used to determine local maxima 

were (noise tolerance 10) and creates a watershed segmented particles binary image Minimum 

operation between intensity thresholded PLA image and segmented particles image allows to 

encode a new image with the limits between PLA structures. Finally, cells were drawn manually by 

the user from Bright Field Image and Area and number of PLA structures were measured from each 

cell. 

5.2 TMA samples PLA 

In order to analyze PLA signals on tissue automatically, a macro of instructions was written to be 

executed in the open source software ImageJ. First, in order to determine cellular regions, DAPI 

image was mean filtered (radius 2), intensity thresolded (Li autoThreshold method), and converted 

to a binary image. Small regions, not considered as cells, were size filtered with the Analyze Particles 

and excluded from the final quantification. A selection of the cells from the mask image was created 

and added to the ROI Manager. Next, in order to segment PLA structures, PLA image was Gaussian 

Blur filtered (sigma 0.5) and particles were determined as local intensity maxima that stand out from 
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neighbor pixels by more than a noise tolerance (4). Finally, PLA local maxima were counted on the 

cells selection. 

 

6. Flow cytometry 

Cells were detached using Cell stripper, a non-enzymatic cell dissociation solution (Corning). 

Immediately, 2x105cells were used for each condition. For surface detections, fresh cells were 

stained with anti-CXCR4-PE, anti-CB2-FITC label antibody, and Aqua Dead Cell stain in a buffer 

containing 10% of mouse serum and 10% of rabbit serum for 20 minutes. Moreover, for intracellular 

detection, cells were fixed in 4% paraformaldehyde, next permeabilized with 0.1 % Saponin buffer 

(PBS +10% FBS), and then stained with the same antibodies and buffer for 20 minutes also. Finally, 

cells were washed and resuspended in Attune 1x Focusing Fluid (Life Technologies), and a total of 

individualized 10.000 cells were acquired and analyzed on Attune Classic Acoustic Focusing 

Cytometer (Life technologies). Only life cells were evaluated, and Mean fluorescence ratio (MFIR) 

was calculated as the ratio between mean fluorescence intensity (MFI) of each sample and the MFI 

of fluorescence minus one (FMO) sample. FMO sample contained all the antibodies except the 

antibody that you are evaluating.   

 

7. Determination of ERK1/2 phosphorylation levels  

ERK1/2 (Thr202/Tyr204) phosphorylation levels were measured by Western Blot Cells were 

deprived ON in culture medium without FBS. Then were incubated for 3h with the drugs (100µM 

AMD3100 (Sigma) or 50µM JTE907 (Tocris)). After this 3 h, cells were stimulated with 200ng/ml of 

Human SDF-1α (CXCL12, Peprotech) or 50nM of JWH133 (Tocris) for 20 minutes. Finally, cells were 

washed with cold PBS and detached from the plate with a scraper. 

 

8. Western blot 

Cells pellets were lysated and proteins were extracted with Triton buffer (20nM Tris-Hcl pH7.6, 0.15 

M NaCl, 1M EDTA, 1% TritonX-100 (Sigma-Aldrich)) completed with protease and phosphatases 

inhibitors to perform Western blot analysis. Proteins extracts were quantified using the Lowry 

reagent (DC Protein Assay, BioRad). Next, protein samples were resolved by 4% to 12% precast SDS-
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PAGE gels (NuPAGE gels, Life Technologies) and electroblotted onto a PVDF membranes 

(Immobilon-P, Millipore). Membranes were blocked in Tris-buffered saline and 0.1% Tween 20 

(TBST) with 5% powdered milk for 1h. Then, membranes were incubated with primary antibodies 

diluted in TBST with 5% BSA overnight at 4ºC, anti-phospo-ERK1/2 antibody (Cell Signaling 

Technology), 2h at RT for anti-ERK1/2 (Santa Cruz) and 1h at RT for anti-α-tubulin (Sigma Aldrich) 

antibodies. Finally, membranes were visualized on a mini-LAS4000 device (Fujifilm) by enhanced 

chemiluminescence (ECL, Amersham Life Science). Densitometry analysis of bands was performed 

with Multi Gauge V3.0 software (Fujifilm, Tokio). Data was represented using the control conditions 

as a reference.  

Table 18. Summary of antibodies used in the different technics. 

Primary Antibody Species Reference Dilution Source Use 

CXCR4 PE Anti-
Human (CD184) 

Mouse 555974 1/20 BD Biosciences Flow 

CXCR4 clon 12GS 
Anti-Human 

Mouse 555972 1/200 BD Biosciences PLA 

CXCR4 [UMB2] 
monoclonal 

Rabbit ab124824 1/600 Abcam IHQ 

CB2-FITC polyclonal  Rabbit 10010712 1/20 Cayman Chemical Flow 

CB2  receptor 
polyclonal 

Rabbit 101550 1/100 Cayman Chemical PLA 

CNR2 polyclonal 
Anti-Human 

Rabbit PA1-744 1/500 Thermo Fisher (Pierce) IHQ 

phospo-ERK1/2 
antibody 

Rabbit 9101 1/1000 Cell Signaling 
Technology 

WB 

ERK 1 (K-23) Rabbit sc-94 1/500 Santa Cruz WB 

α-tubulin Mouse T5168 1/5000 Sigma Aldrich WB 

 

9. KRH -3955 synthesis 

All air sensitive manipulations were carried out under a dry argon or nitrogen atmosphere. THF and 

CH2Cl2 were dried using a column solvent purification system. Analytical thin-layer chromatography 

was performed on SiO2 (Merck silica gel 60 F254), and the spots were located with 1% aqueous 

KMnO4 or hexachloroplatinate. Chromatography refers to flash chromatography and was carried 

out on SiO2 (SDS silica gel 60 ACC, 35-75 mm, 230-240 mesh ASTM). NMR spectra were recorded at 

300 or 400 MHz (1H) and 100.6 MHz (13C), and chemical shifts are reported in δ values downfield 

from TMS or relative to residual chloroform (7.26 ppm, 77.0 ppm) as an internal standard. Data are 

reported in the following manner: chemical shift, multiplicity, coupling constant (J) in hertz (Hz), 
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integrated intensity, and assignment (when possible). Assignments are given only when they are 

derived from definitive two-dimensional NMR experiments (HSQC-COSY). IR spectra were 

performed in a spectrophotometer Nicolet Avantar 320 FT-IR and only noteworthy IR absorptions 

(cm-1) are listed. High resolution mass spectra (HMRS; LC/MSD TOF Agilent Technologies) were 

performed by Centres Científics i Tecnològics de la Universitat de Barcelona. 

(Dipropylamino)butanenitrile (1)  

Potassium iodide (1.55 g, 93.0 mmol) and potassium carbonate (12.2 g, 88.0 mmol) were added 

under an argon atmosphere at RT to a solution of dipropylamine (5.48 mL, 40.0 mmol) in dry 

acetonitrile (74 mL). The resulting mixture was heated to reflux and then a solution of 

bromobutyronitrile (10.0 g, 6.7 mL, 67.5 mmol) in dry acetonitrile (20 mL) was added dropwise. 

After 20 h at reflux, the reaction was cooled to RT, filtered, and evaporated under vacuum. The 

residue was diluted in an 1N aqueous hydrochloride acid solution (200 mL) and washed with diethyl 

ether (3 x 100 mL). The water layer was basified to pH 9 with an 1N aqueous sodium hydroxide 

solution and extracted with diethyl ether (3 x 100 mL). The combined organic extracts were dried 

over sodium sulfate, filtered, and concentrated under reduced pressure to give nitrile 1 as a yellow 

oil (8.85 g, 78%), which was used in the next reaction without further purification. 

N,N-Dipropylbutane-1,4-diamine (2)  

A solution of nitrile 1 (2.89 g, 17.20 mmol) in anhydrous THF (50 mL) was added dropwise at –78 °C 

and under an argon atmosphere to a solution of lithium aluminium hydride (636 mg, 16.7 mmol) in 

anhydrous THF (20 mL). The mixture was allowed to reach to RT and then stirred overnight. The 

excess of lithium aluminium hydride was hydrolyzed by the successively addition of distilled water 

(0.6 mL), a 10% NaOH solution (0.6 mL), and distilled water (1.8 mL). Sodium sulfate was added to 

the resulting mixture, and filtered through a Celite® pad. The resulting solution was concentrated 

under reduced pressure to give compound 2 as a yellow oil (2.93 g, 99%) which was used in the next 

reaction without further purification. 

[4-(aminomethyl)phenyl]methanol (3) 

Methyl 4-(aminomethyl)benzoate (2.0 g, 9.94 mmol) in anhydrous THF (30 mL) was added at 0°C 

dropwise under an argon atmosphere to a solution of LiAlH4 (756 mg, 19.4 mmol) in anhydrous THF 

(40mL). The reaction mixture was heated up to reflux for 4 h. The reaction was cooled to 0°C, and 

distilled water (756 uL), 15% NaOH solution (756 uL) and water (2.2 mL) were successively added. 
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Sodium sulfate was the added, the precipitate was filtered off using a Celite® pad, and the filtrate 

was concentrated under reduced pressure. Flash chromatography of the residue (from CH2Cl2 to 

9:1 CH2Cl2/MeOH) afforded amino-alcohol 3 (1.07 g, 82%).  

[4-(Phthalimidemethyl)phenyl]methanol (4) 

N-Carbethoxyphthalimide (1.71 g, 7.8 mmol) and amine 3 (1.07 g, 7.8 mmol) were added at RT under 

an inert atmosphere into two neck flask containing MeOH (48 mL), and the mixture was stirred and 

degassed with argon for 30 min. Triethylamine (4.3 mL, 31.2 mmol) was added and, the resulting 

mixture was stirred at RT overnight. The solvent was removed by rotary evaporation and then the 

residue was treated with a 1 M solution of HCl (20 mL), and the mixture was extracted with ethyl 

acetate. The combined organic extracts were washed with 1 M HCl and distilled water, dried over 

NaSO4, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 1:2 

hexane/EtOAc) afforded phthalimide 4 (1.68 g, 81%). 

4-(Phthalimidemethyl)benzaldehyde (5) 

MnO2 (1.09 g, 12. 6 mmol) was added at RT to a solution of alcohol 4 (334 mg, 1.26 mmol) in CH2Cl2 

(20.0 mL). After being stirred at RT for 20 h, the reaction mixture was diluted with Et2O (20 mL) and 

filtered through a pad of Celite®. The filtrate was concentrated under reduced pressure. Flash 

chromatography of the residue (hexane to 1:1 hexame/EtOAc) afforded aldehyde 5 (310 mg, 93%). 

Phthalimide derivativa (6) 

Aldehyde 5 (4.83 g, 18.2 mmol) was added under an argon atmosphere at 0 ºC to a suspension of 

primary amine 2 (4.07 g, 23.6 mmol) and anhydrous sodium sulfate (5.1 g, 36.4 mmol) in MeOH (100 

mL), and the resulting mixture was stirred for 24 h at RT. The reaction was filtrated through a Celite® 

pad, and the filtrated was concentrated under reduced pressure to give an imine derivative, which 

was used in the subsequent step without further purification. A solution of di-tert-butyl dicarbonate 

(8.8 g, 40 mol) in anhydrous MeOH (20 mL) and Pd/C (850 mg) were added to a solution of the above 

imine in anhydrous MeOH (40 mL), and the resulting mixture was stirred under a hydrogen 

atmosphere at RT overnight. After this time the suspension was filtered over Celite® and the solvent 

was evaporated under reduced pressure. Flash chromatography of the residue (from 2:1 

hexame/EtOAc to EtOAc) afforded N-Boc derivative 6 (5.5 g, 58%). 
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Tert-Butyl (4-(aminomethyl)benzyl)(4-(dipropylamino)butyl)carbamate (7) 

A solution of methylamine (40 wt % in water, 26 mL) were added at RT to a solution of N-Boc 

derivative 6 (2.6 g, 4.98 mmol) in MeOH (26 mL), and the mixture was stirred overnight at 50 ºC. 

The resulting mixture was concentrated under reduced pressure, and the excess of MeNH2 and 

water was removed under high vacuum rotavapor. CH2Cl2 and sodium sulfate were added to the 

residue, and the mixture was filtered and concentrated under reduced pressure affording 

deprotected amino derivative 7 (quantitative), which was used directly in next step without further 

purification. 

Tert-Butyl carbamate derivative (8) 

1H-Imidazole-2-carbaldehyde (413 mg, 4.3 mmol) was added at 0 ºC under an argon atmosphere to 

a suspension of primary amine 7 (4.98 mmol) and anhydrous sodium sulfate (1.4 g, 10.12 mmol) in 

MeOH (50 mL). The reaction was allowed to stir overnight at RT after which it was filtered through 

a Celite® pad, and the filtrated it was concentrated under reduced pressure. The residue was solved 

in anhydrous MeOH (50 mL) and a solution of sodium cyanoborohydride (405 mg, 6.4 mmol) in 

methanol (3 mL) was added at 0 ºC under an argon atmosphere to the reaction. The resulting 

mixture was then allowed to stir for 20 h. The reaction was concentrated under reduced pressure, 

and the resulting yellow oil was dissolved in water and extracted three times with CH2Cl2 (50 mL). 

The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, 

filtered and concentrated. Flash column chromatography (Biotage® SNAP KP-NH, from 1:9 

hexane/EtOAc to EtOAc) afforded imidazole derivative 8 (890 mg, 38%). 

Tert-Butyl carbamate derivative (9) 

1-methyl-1H-imidazole-2-carbaldehyde (45 mg, 0.418 mmol) was added at 0 ºC under an argon 

atmosphere to a suspension of secondary amine 8 (160 mg, 0.31 mmol) and anhydrous sodium 

sulfate (142 mg, 1.0 mmol) in anhydrous MeOH (5 mL). The reaction was stirred at RT for 8 h. A 

solution of sodium cyanoborohydride (36 mg, 0.57 mmol) in MeOH (1 mL) was added at 0 ºC under 

argon atmosphere to the reaction, and the resulting mixture was stirred at room temperature for 

20 h. The mixture was filtered through a Celite® pad, and the filtrated it was concentrated under 

reduced pressure. The resulting yellow oil was dissolved in water and extracted three times with 

CH2Cl2 (5 mL). The combined organic extracts were washed with brine, dried over anhydrous 
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sodium sulfate, filtered and concentrated. Flash column chromatography (Biotage® SNAP KP-NH, 

1:9 hexane/EtOAc to EtOAc) afforded imidazole derivative 9 (104 mg, 60%). 

KRH-3955 derivative (10) 

TFA (1.0 mL) was added at RT under an argon atmosphere to a stirring solution of N-Boc derivative 

9 (110 mg, 0.19 mmol) in anhydrous CH2Cl2 (1.0 mL), and the solution was stirred at this temperature 

for 4 h. Saturated solution of NaHCO3 was then added and the resulting mixture was extracted with 

CH2Cl2. The combined organic extracts were dried over sodium sulfate, filtered and concentrated 

under reduced pressure to afford deprotected amine (86 mg, 95%). 

 

In summary, the synthesis of the monomer KRH-3955-linker starts with the preparation of diamine 

2 (two steps, 77% overall yield) and aldehyde 5 (three steps, 62% overall yield). 

 

 

 
 

 

Next, the reductive amination between A and B was satisfactorily accomplished in presence of 

Boc2O using H2 as the reductive reagent, directly affording compound C in 58% yield. 

 

 

 
 

 

Finally, the phathalimide deprotection was accomplished with aqueous methylamine and the 

resulting primary amine was submitted to two consecutive reduction aminations under usual 

conditions (NaCNBH3 as a reductive agent) for the incorporation of the imidazole rings. 
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10 Wound-healing assays 

The wound-healing (scratch) assay was performed using IncuCyte®S3 Live-Cell Analysis System. A 

total number of 6x104 cells per well were seeded in a 96-well plate and allowed to adhere overnight. 

When cells were confluent, they were treated with mitomycin (Sigma-Aldrich) for 1 h at 37°C. Next 

cells were washed with saline solution to remove completely mytomycin. Mytomicin inhibit cell 

proliferation for 48 hours. Wound Maker tool from IncuCyte® was used to create straight-line 

wound area. Wells were washed twice with saline solution again to remove detached cells to avoid 

reattach of these cells into the wound area. Finally, 100µl of complete medium containing 

treatments and stimulators were added in each well. Wells containing only complete medium were 

used to normalized all the other conditions. Cells seeded in wells containing CXCL12 stimuli 

(200ng/ml of Human SDF-1α (Peprotech)) were used as a positive migration control. In the rest 

wells, drugs were added to prove its modulator power in cell migration induced by CXCL12 100µM 

AMD3100 (Sigma), or 10µM KRH-3955 (synthesized), or 50µM JTE907 (Tocris), or both 10µM 

KRH3955 and 50µM JTE907. Migration was monitored by acquiring images every 2 hours using 

IncuCyte® system for 42 hours. Images were analyzing by IncuCyte® Scratch Wound Cell Migration 

Software Module to determine the wound closure area.  
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           Figure 16 Scratch assay scheme. 

 

11 In vivo experiments 

The Animal Ethics Committee of the University of Barcelona approved all the protocols used in 

animal work. Mice were housed and bread in the specific pathogen free (SPF) animal facility of the 

Faculty of Medicine of the University of Barcelona. NOD scid gamma (NSG®) (NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (005557)) female mice (Charles River) of 6-8 weeks of age were used for 

orthotopic studies, and CB17-Scid (CB-17/Icr-Prkdcscid/scid/Rj) female mice (Janvier Labs) of 6-8 

weeks of age were used for intrasplenic injections studies. 

For both studies, animals were anaesthetized with a mixture of ketamine (Imalgene® 100mg/ml 

(100 mg/kg) and xilacine (Rompun®2% (10 mg/kg).  

For intrasplenic injections, 3x106 cells resuspended in 100 µl of RPMI 1640 serum free medium were 

injected under the spleen capsule via a 27-gauge needle. Previously, the spleen was carefully 

exposed after small cutaneous incision in the left flank (carried down through the peritoneal wall). 

A visible “paling” and slight swelling of the spleen were the parameters to establish a successful 

inoculation (as previously reported 617). After 2 min, splenectomy was performed (necessary time to 

allow injected cells pass from the spleen to portal circulation and then enter the liver) as previously 

reported618. Finally, the abdominal wall and the skin were closed with sutures. Liver tumor formation 

was followed by luminescence imaging for 3-4 weeks. Mice’s livers were evaluated ex vivo by 

bioluminescence imaging, and then metastatic lesions were isolated under sterile conditions. 

Lesions were minced and mechanically disaggregated in RPMI 1640 medium with piston syringe and 

1. SEED CELLS 

Plate cells (100µl/well, 

60.000 cells/well) and 

allow to adhere overnight 

Wound confluent cell 

monolayer using a 96-

well Wound Maker. 

Add treatments and stimulis 

(100µl/well) and image in 

the IncuCyte® system. 

2. CREATE WOUND AREA 3. ADD TREATMENT 
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70um Nylon Cell strainer (Falcon) to isolate SW620 GFP+/Luc+. Then cells were centrifuged and 

seeding with RPMI medium and 1 mg/ml of Neomycin (G 418 (sigma)) antibiotic for 1 week. 

 

                                   Figure 17 Intrasplenic injection scheme. 

Orthotopic injections were done as previously described619. The mice cecums were exteriorizing by 

laparotomy, then 2x106 SW620-L cells suspended in 50µl of RPMI 1640 medium and placed into a 

sterile micropipette were slowly injected with an approximate 30º angle. Micropipette tip were 

introduced 5mm into the cecal wall. Subsequently, a slight pressure with a cotton stick was applied 

at 2 mm from the injection point in the pipette axis direction. After pulled the pipette out, the area 

around the injection was cleaned with saline solution to avoid growing of undesired refluxed tumor 

cells into the abdominal cavity. The small diameter, and flexible tip of the pipette, and the angular 

and slow rate of administration diminish resistance to the injection, limiting tissue damage and 

bleeding and ensuring the absence of cell reflux. Finally, the gut was returned to the abdominal 

cavity, and the abdominal wall and the skin were closed with metal wound clips. Animals were 

treated with buprenorphine (Buprex® 0.3mg/ml (0.1mg/Kg)) by subcutaneous route for pain, and 

enroploxacino (Enrovet 100mg/ml (1.5 ml/250ml water)) were used by drinking water to avoid 

infections, both for 3 days. Four days after cecum inoculation of SW620-L cells, mice were daily 

treated with vehicle (0.5% methylcellulose and % DMSO in PBS), KRH-3599, a CXCR4R antagonist 

(10mg/kg intraperitoneal injection), JTE907 (Tocris) a CB2R antagonist (10mg/kg oral administration) 

or both, for five and a half weeks. Animals were monitored until death because of their neoplastic 

process or until the end of the experiment (40 days). 

Tumor development were followed weekly (or once a week) by bioluminescence imaging (BLI) using 

a Aequoria Luxiflux device equipped with an ORCA-ER camera (Hamamatsu). For tumor and 

metastasis tracking ventral images were quantified. Color maps generated with Matlab and BLI 
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signal was quantified using Wasabi software and Image J software. On orthotopic studies, at the 

experiment end point, on necropsy, ex vivo liver and lung bioluminescence images were done to 

confirm the development of metastasis. 

 

12 Statistical analysis 

The Fisher's exact test was used for statistical analysis of the distribution of CXCR4 and CB2 

expression in the different samples contained in TMAs. The Pearson’s chi-squared test was used for 

correlation analysis between high expression of CXCR4 and CB2. Kaplan-Meier disease free survival 

curves were statistically compared by the Gehan-Breslow-Wilcoxon test. Unpaired and paired T-

tests were used to assess differences between two groups for the rest of the analyses. All statistical 

analyses were done using GraphPad Prism software 7.0. Data are expressed as mean ± SD. 
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STUDY 1: Idelalisib Interferes with the Crosstalk 

of Follicular Lymphoma and its Immune 

Microenvironment and Potentiates the Activity 
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1. Idelalisib modulates key signaling pathways in the germinal center 

To examine the molecular effect of idelalisib in a relevant in vitro FL model we established primary 

FL co-cultures with FDC as previously described264,620 to mimic the germinal center (GC) 

microenvironment. GEP was performed in B cells isolated from these co-cultures that were treated 

in the presence or absence of idelalisib (500nM, 48h). GSEA revealed that gene sets related to the 

GC program, including CD40L signaling and targets of the transcriptional repressor BLIMP were 

downregulated by Idelalisib treatment (Table 19, Figure 18A).  

 

Table 19. Common gene sets regulated by idelalisib in monoculture and in FDC-FL co-culture 

GSEA analysis CONTROL vs IDELA FDC vs FDC IDELA 

Gene sets NES FDR, q-value NES FDR, q-value 

BLIMP1 targets 2.51 <0.0001 2.21 <0.0001 

CD40 signaling during GC 
development 

2.37 <0.0001 2.20 <0.0001 

GC B CELL 2.24 <0.0001 2.46 <0.0001 

mTORC1 pathway 2.26 <0.0001 2.30 <0.0001 
Gene sets regulated by IDELA were identified by Gene Set Enrichment Analysis (GSEA) using custom genes set 
(http://lymphochip.nih.gov/signaturedb/index.html). NES: Normalized Enriched Score; FDR: False Discovery Rate. 
Threshold FDR<0.05 and NES>1.5 

 

Likewise, the genes pertaining to MTORC1 signature were also diminished by idelalisib. Of note, 

these gene sets were similarly downmodulated in the presence or absence of FDCs. We then 

validated this data at protein and functional levels. We first demonstrated the complete blockade 

of PI3K/AKT pathway by western blot showing a reduction of the activating phosphorylation of 

Ser473-AKT (Figure 18B). Likewise, idelalisib was able to downregulate the expression of several 

genes related to CD40L signaling, Blimp targets and GC program in larger patient cohort (n=26). 

These genes included the anti-apoptotic protein BCL2A1 (A1/BFL-1) (p<0.001) and the chemokine 

CCL22 (p<0.001) responsible to induce the migration of different immune cell type regulated by 

BLIMP-1 (Figure 18C). CD40/CD40L interaction between B and T cells is essential for germinal center 

response to the point that abrogation of CD40L signaling in established GCs causes their fast 

dissolution. Genes downregulated by Idelalisib included some proteins directly involved in the B-T 

immunological synapse, such as co-stimulatory protein CD80 (p=0.011), Signaling Lymphocytic 
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Activation Molecule SLAMF1 (p=0.006) or the intercellular adhesion molecule ICAM1 (p=0.027) 

(Figure 18D-E)  

Taken together these results indicate that idelalisib is interfering with B-T cell interaction in the GC 

together with a putative arrest release related to the regulation of Blimp genes. 
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Figure 18. Idelalisib inhibits gene sets elated to GC program and CD40 signaling. (A) FL cells (n=5) were cultured for 48h 

with idelalisib (500nM), and B cells were purified and subjected to GEP. Gene sets regulated by IDELA in the presence or 

absence of FDC coculture were identified by Gene Set Enrichment Analysis (GSEA) using custom genes set 

(http://lymphochip.nih.gov/signaturedb/index.html). Heatmaps of the corresponding leading edge of selected gene sets 

are shown including the relative gene expression of FL cells cultured w/wo IDELA. (B) Primary follicular lymphoma cells 

were treated for 3 hours with Idelalisib (500nM) and phosphorylation of Akt1, mTOR were assessed by Peggy Sue simple 

western and quantified by densitometry (n=3). (C) BCL2A1 and CCL22, gene expression was measured by real-time PCR in 

primary samples of FL patients (n=26). (D) Primary follicular lymphoma cells in monoculture or FDC co-culture were 

treated for 48 hours w/wo Idelalisib (500nM) and expression of were measured using flow cytometry (n=8), (E) 

representative histograms of SLAMF1, CD80 and ICAM1 expression. 

 

2. Idelalisib shapes the FL immune microenvironment 

Macrophages and many tumor types including FL secrete the immunosuppressive chemokine 

CCL22621-623. CCL22 and CCL17 are the ligands for CCR4 receptor, predominantly expressed by 

circulating memory lymphocytes, especially T regulatory (Treg) cells and T helper2 (Th2)624.To gain 

insights into the effect of CCL22 downregulation by Idelalisib, we first validated the GEP results at 

protein level. Analysis of CCL22 by ELISA in supernatants from FL-FDC co-cultures treated w/wo 

idelalisib (500nM, 48h), demonstrated that CCL22 is secreted in the FL-FDC niche and idelalisib 

induced a significant reduction of this chemokine (Figure 19A, p=0.003). Then we checked if FL co-

culture supernatants were effectively able to recruit Treg cells from blood. To this aim PBMC from 
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healthy donors, enriched in the T cell fraction, were challenged to migrate towards those FL+FDC 

supernatants (w/wo idelalisib), where CCL22 was determined previously, and counted by flow 

cytometry (CD4+/CD25+/FOXP3+). FL-FDC supernatant favored Treg recruitment and idelalisib 

reduced this event (Figure 19B, p=0.0094).  

Infiltrating macrophages that contribute to CCL22 secretion also composes FL microenvironment, 

showing in fact higher expression that FL cells (Figure 19C, p=0.022). Thus, we sought to determine 

the repercussion of idelalisib in FL-M2 crosstalk. As displayed in Figure 19D, FL-M2 co-culture 

increased the expression of CCL22 in M2 macrophages and idelalisib treatment was able to decrease 

(Figure 19D, p=0.0364). Moreover, idelalisib reduced the secretion of the immunosuppressive 

cytokine IL-10 identified in FL-M2 co-cultures (Figure 19E, p=0.0156). 

Another T cell subpopulation fundamental for FL survival are T follicular helper cells (TFH). Using 

PBMC from fresh tonsils enriched in the T cell fraction we quantify the effect of idelalisib on TFH cells 

(CD4+CXCR5+CD25-) migration. As shown in figure 19F, FL-FDC supernatants recruited TFH and 

idelalisib diminished this migration. However, Idelalisib did not affect the recruitment of T follicular 

regulatory cells (TFR) (CD4+CXCR5+FOXP3+) (Figure 19G). 

In summary, idelalisib shapes the immune FL microenvironment by decreasing the levels of the 

immunosuppressive cytokines CCL22 and IL10, and by hampering the recruitment and function of 

supportive TFH to the FL niche. 
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Figure 19. Idelalisib shapes FL immune microenvironment. FL-FDC co-culture supernatants (n=26) w/wo idelalisib were 

used to determine: (A) CCL22 expression assessed by ELISA (B) Migration of Treg cells (CD4+ CD25+ FOXP3+) obtained from 

PBMCs of healthy donors (n=16) versus supernatants obtained from FL-FDC co-cultures w/wo idelalisib. (C) Basal 

expression of CCL22 was assessed using RT-PCR in FL cells (n=27), and peripheral blood derived macrophages (n=7). (D) 

M2-macrophages derived from PBMCs were co-cultured for 24h with FL cells (n=5) w/wo idelalisib (500nM) and CCL22 

expression was determined by real-time PCR (E) IL-10 expression assessed by ELISA and (F) Migration of specific TFH (CD4+ 

CXCR5
+
CD25

-
) (n=15) obtained from tonsils (n=15). (G)Migration of specific TFR (CD4

+
 CXCR5

+
 FOXP3

+
) (n=9) obtained from 

tonsil. 

 
 

 
3. Idelalisib modulates FDC-induced gene sets in selected FL patients 

 
We then sought to determine the impact of idelalisib on the genes specifically induced by FDC co- 

culture. FDC significantly changed FL transcriptome, a LIMA analysis identified 306 genes 

significantly upregulated (p<0.05 and fold change >2) in patients FL1-FL4, while FL5 was not 

responsive to FDC co-culture (Figure 20). GSEA analysis of the whole expression data set uncovered 

an enrichment of genes related to extracellular matrix formation, cell migration, transendothelial 

migration and cell-cell/cell-matrix adhesion among others, in accordance with previous results620 

(Table 20, Figure 21A). ). 
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Table 20 Gene sets regulated by IDELA treatment in FL-FDC co-cultures in sensitive patients 
 

Gene sets # of enriched 
gene sets 

NES FDR, 
q-value 

Custom gene sets 

Human angiogenesis 1 2.63 <0.0001 

IRF4 pathway 1 1.98 0.0045 

Cell cycle regulation 2 1.97 0.0039 

Integrin pathway 1 1.92 0.0067 

Serum response 1 1.84 0.0075 

Canonical Pathways (C2CP) 

Focal adhesion-Integrins 12 2.80 <0.0001 

Extracellular matrix formation 7 2.76 <0.0001 

Angiogenesis (VEGF/PDGF pathways) 6 2.29 <0.0001 

Transendothelial cell migration 3 2.30 <0.0001 
Cell adherent junctions –ECadherin 5 2.08 0.0009 

Cell cycle G1-M 8 2.01 0.0027 

Motif gene sets (C3 TFT) 

SRF 6 2.31 <0.0001 

IRF 2 1.85 0.0080 
NFAT 1 1.73 0.021 

NFκB 1 1.64 0.041 

Hallmark genesets (H) 

Epithelial mesenchymal transition 1 3.25 <0.0001 

Angiogenesis 1 2.26 <0.0001 

mTOR 1 1.95 0.0002 

Interferon  and _responses 2 1.6 0.015 

GO genesets (C5) 

Extracellullar matrix organization 8 2.9 <0.0001 

Adhesion-intergrins 9 2.56 <0.0001 

Vasculature-angiogenesis-EC growth 15 2.49 <0.0001 

Cell cycle G1-S and G2-M 5 2.09 0.0007 
Gene sets regulated by IDELA were identified by Gene Set Enrichment Analysis (GSEA) using custom genes set 

experimentally derived (http://lymphochip.nih.gov/signaturedb/index.html) C2 canonical pathways, C3 motif gene sets, 

Hallmark and C5-GO signatures obtained from the Molecular Signature Database (v2.5). NES: Normalized Enriched Score; 

FDR: False Discovery Rate. Threshold FDR<0.05 and NES>1.5. The number of enriched gene sets and the best FDR and NES 

scores are indicated for each biological process 

http://lymphochip.nih.gov/signaturedb/index.html)
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Figure 20. Idelalisib modulates FDC-induced gene sets in selected FL cases. FL primary cells were isolated from 

monocultures or FL-FDC co-cultures w/wo idelalisib (500nM, 48h) and subjected to GEP. Lima Analysis from GEP results. 

FL cells (n=5) Heatmaps of the corresponding leading edge of selected gene sets are shown including the relative gene 

expression of FL cells cultured w/wo Idelalisib. 

 
 
 
 
 

In vitro treatment with idelalisib uncovered differential gene regulation among patients leading to 

two different patterns of response (Figure 21B and C), being FL1 and FL4 sensitive to idelalisib while 

FL2 and FL3 appeared resistant to the inhibitor. 
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Figure 21. Idelalisib uncovered differential gene regulation among patients leading to two different patterns of 

response. FL primary cells were isolated from monocultures or FL-FDC co-cultures w/wo idelalisib (500nM, 48h) and 

subjected to GEP. Gene sets regulated by idelalisib were identified by GSEA using custom genes sets, C2 canonical 

pathways, C3 motifs, Hallmark and C5-GO signatures. Enrichment plots (A) and heatmaps (B) of the corresponding leading 

edges of selected gene sets are shown. (C) Scatter plot comparison of gene expression regulation by idela in FL cells from 

FL-FDC co-cultures of FL1 and FL4 (responsive) vs FL2 and FL3 (unresponsive) 

 
 
 

In order to validate these results in a larger patient cohort, 39 genes were selected following the 

criteria of upregulation by FDC co-culture (fold change >2, p<0.05) and differential regulation by 

idelalisib (fold change <0.5 in sensitive vs no change in resistant patients). The effect of idelalisib in 

this custom gene signature was analyzed in 26 FL-FDC primary co-cultures. Figure 22A illustrates the 

power of this gene signature to discriminate between idelalisib sensitive and resistant FL-FDC 



RESULTS STUDY 1     115  
 

primary cultures. We then were able to reduce this signature to 18 genes maintaining the same 

predictive power (Figure 22B), providing an easy and manageable fingerprint of idelalisib sensitivity. 

 

 
 

Figure 22. Fluidigm analysis showed a putative gene signature for Idelalisib responsiveness. FL primary cells were 

isolated from monocultures or FL-FDC co-cultures w/wo idelalisib (500nM, 48h) and subjected to GEP. RNA from 26 

different FL samples co-cultured with FDC w/wo idelalisib were used for this analysis. Rows were clustered by Euclidean 

distance. (A)Heatmap displays expression fold change of 39 selected genes, in response to Idelalisib. Genes were chosen 

according to microarray data from a total of 152 genes, all them upregulated by FDC co-culture (fold change >2) but 

differently modulated by idelalisib (fold change <0.5 in sensitive patients versus no change in resistant). (B) Heatmap 

displays expression fold change of a 18–genes signature in response to Idelalisib in FL-FDC co-cultures showing differential 

regulation in sensitive and resistant FL samples. 
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4. Idelalisib reduces FDC-induced angiogenesis and transendothelial migration in sensitive 

patients 

We then sought to determine the functional consequences of this differential gene regulation of 

idelalisib between sensitive and resistant patients. 

It is well documented that PI3K/AKT plays a key role in angiogenesis, both through regulation of 

VEGF-A expression, and as a transducer of VEGF-A–VEGFR downstream signaling. Analysis of VEGF- 

A and VEGF-C secretion by ELISA on supernatants from FL-FDC co-cultures w/wo idelalisib, 

uncovered a selective and significant (p=0.0062 and p=0.0072, respectively) downregulation of both 

proangiogenic factors only in idelalisib sensitive patients (Figure 23A) in accordance with GEP results 

(Figure 21B). We then used these supernatants in a tube formation assay. HUVEC endothelial cells 

were cultured with supernatants recovered as described above. Supernatants from FL-FDC co- 

cultures significantly increased the number of nodes and junctions compared to those from FL 

monocultures (p=0.0056). Importantly, the presence of idelalisib diminished the proangiogenic 

potential of those supernatants, exclusively in idelalisib sensitive patients (p=0.0138), in accordance 

with the results obtained for VEGF-A and VEGF-C (Figure 23B). 
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Figure 23. Idelalisib reduces FDC-induced angiogenesis in sensitive patients. FL-FDC co-culture supernatants w/wo 

idelalisib (500nM, 48h) were used to determine: (A) VEGF-A and VEGF-C protein secretion by ELISA in sensitive (n=7) and 

resistant (n=6) patients and (B) Tube formation assay of endothelial HUVEC cells cultured for 24h with their own media 

plus the corresponding supernatants (ratio1:1). 5 Representative images of each condition were captured using a phase- 

contrast microscope and analyzed by IMAGE J software (Angiogenesis analyzer plug-in). Node and junction numbers from 

sensitive (n=5) and resistant (n=5) are shown. 

 
 

 
As described in Figure 20 and 21B, FDC co-culture significantly modulated the expression of some 

adhesion-related molecules with a differential regulation by idelalisib between sensitive and 

resistant patients as displayed in Figure 24A. The main integrins upregulated by the co-cultured 

were ITGA2, ITGA6, ITGB1 and ITGBL1, while the main corresponding ligands were the Extracellular 

Matrix Components (ECM) collagens (COL1A2, COL3A1, COL6A3 and COL1A1), fibronectin (FN1), 

laminin (LAMB1, LAMA4, LAMB2), tenascin (TNC) and CYR61; and the glycoprotein THBS1, which is 

involve in angiogenesis, cell-to cell interaction and cell to matrix interaction. We then validated the 
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functional consequences of this gene regulation. FL cells from FL-FDC co-cultures w/wo idelalisib 

were challenged to cell adhesion experiments to HUVEC cells and idelalisib reduced this even just in 

sensitive patients (Figure 24B, p=0.004).  

Adhesion represents a precedent step for cell migration onset. The simultaneous reduction 

observed in both integrins and their ligands in sensitive patients may indicate a decrease in the 

migratory capacity of these cells inside the lymph node and through the blood vessel wall. To 

demonstrate that hypothesis, we carried out a trans-endothelial migration (TEM) assay. FL cells 

were challenged to migrate through trans-wells coated with HUVEC and Matrigel towards 

supernatants from FL- FDC co-cultures w/wo Idelalisib. In the line with the adhesion assay results, 

idelalisib reduce TEM in sensitive patients (p=0.043) while did not affect this phenomenon in 

resistant ones (Figure 24C).  

 

Figure 24. Idelalisib reduces FDC-induced trans endothelial migration in sensitive patients. (A) Heatmap displaying the 

regulation induced by idelalisib in the expression of integrins and their ligands in FL cells from FL-FDC co-cultures of 

sensitive (FL1 and FL4) and resistant patient samples (FL2 and FL3) (B) FL cells from FL-FDC co-cultures w/wo idelalisib 

(500nM, 48h) of sensitive (n=3) and resistant (n=5) patients were stained with calcein and allow to adhere for 3h to HUVEC 

cells. After extensive washing the cells that remain attached were lysed and fluorescence measured in Synergy HT 

microplate reader. (C) FL cells from FL-FDC co-cultures w/wo idelalisib (500nM, 48h) where challenged to migrate for 6 h 

in a gradient of FBS through trans-wells coated with HUVEC cells seeded on gelatin 0.1% coated + TNF-α (10ng/ml). CD20+ 

cells crossing HUVEC barrier were counted by flow cytometry. Sensitive patients (n=7) and resistant patients(n=6). 
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5. Mutational load does not predict sensitivity to idelalisib and mutated RRAGC correlates 

with resistance to idelalisib 

In order to further characterize possible patterns of clinical responses to idelalisib we analyzed the 

mutational load of commonly recurrent mutations in a set of FL patients with characterized 

molecular responses to idelalisib. These genes included CREBBP, KTM2D, TNRFS14, EP300, EZH2, 

MEF2B, EZH2, TNFAIP3, TP53 and RRAGC. The frequency of these mutations in our patient series 

was in accordance with published results in larger patient cohorts (Figure 25 and Supplemental 

Table 1)). 

Although we did not observe any correlation between molecular responses to idelalisib and 

mutational load, the presence of activating RRAGC mutations (FL9 and FL16) did correlate with 

idelalisib resistance. Mutations of RRAGC on the nucleotide binding domain impairs the exchange 

of nucleotides, causing continuous mTORC1 activation, independently of PI3K/Akt1 pathway119. 

 

 

Figure 25. Recurrent somatic mutation present in FL patients. A total number of 25 patients were analyzed by NGS. Found 

mutations are represented in the figure. Genes mutations rates correlated with the literature. R (resistant to idelalisib); S 

(sensitive to idelalisib).  
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6. Idelalisib bypasses microenvironment derived resistance to ABT-199  

As we have described, FL microenvironment is a prominent source of pro-survival and cell 

dissemination signaling. As a result, FDC-FL and M2-FL co-cultures (p=0.0002 and p<0.0001, 

respectively), significantly increased the viability of FL cells (Figure 26). Idelalisib induced moderate 

direct cytotoxicity on tumor cells that was maintained in theses co-cultures.  

 

Figure 26. Idelalisib induced moderate direct cytotoxicity on tumor cells.  Cell viability (AnnexinV-/7AAD-) was assessed 

in FL cells from monocultures, FL-FDC and FL-M2 w/wo idelalisib (500nM, 72 h). 

 

Antiapoptotic BCL-2 family of proteins tightly control cell viability and may be well regulated in these 

co-cultures. We have found that FDC-FL co-cultures augmented the expression of BCL-XL and MCL-

1, while M2-FL co-cultures increased BFL-1 on tumor cells (Figure 27A). We then characterize the 

dependence of FL cell on antiapoptotic BCL2 proteins by BH3 profiling625. In the absence of co-

culture we found that FL cells showed mainly patterns of either BCL-2 (n=6) or BCL-XL dependence 

(n=6), while only one FL case manifested dependence on MCL-1 (Figure 27B). Interestingly, we 

identified that FDC co-cultures increased the sensitivity to HRK (p=0.031) and NOXA (p=0.042) 

peptides, indicating a higher dependence on BCL-XL and MCL-1 targets respectively, whereas M2 

sensitized FL cells to a synthetic peptide specific for BFL-1 (FS2) (p=0.047), indicating a higher 

dependence on this antiapoptotic protein (Figure 27C). In summary, microenvironment renders FL 

more dependent on apoptotic proteins different from BCL-2, reducing their priming for apoptosis626.  
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Figure 27. Microenvironment renders FL more dependent on apoptotic proteins different from BCL-2, reducing their 

priming for apoptosis. (A) BCL2 protein expression regulation in FL cells form FL-FDC and FL-M2 co-cultures (24h) (B) 

Examples of BH3 profiles from 3 individual FL patients showing pattern of relative dependence on BCL-2 (n=6), BCL-XL 

(n=6) and MCL-1 (n=1). (C) BCL2 protein family dependence was assessed by BH3 profiling using HRK (BCL-XL dependence), 

NOXA (MCL-1 dependence) or FS2 (BFL-1 dependence) peptides. 

 

This fact may lay at the basis of the reduced clinical benefit observed with ABT-199 / Venetoclax in 

FL patients275. Likewise, when we evaluated the priming (by Cytocrome C release, as described in 

material and methods) induced by ABT-199 in FL cells alone or from FDC-FL and M2-FL co-cultures, 

we observed a marked reduction of this priming in the co-culture set up. Noteworthy, idelalisib 

counteracted the tumor microenvironment induced resistance to ABT-199 by restoring BCL-2 

dependence and increasing apoptosis priming (Figure 28A). Moreover, idelalisib induced the 

expression of BH3-only protein HRK and reduce BAD phosphorylation, probably facilitating 

apoptosis induction by ABT-199 (Figure 28B).  
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Figure 28. Idelalisib counteracted the tumor microenvironment induced resistance to ABT-199 by restoring BCL-2 

dependence and increasing apoptosis priming. (A) FL cells from monocultures, FL-FDC and FL-M2 w/wo idelalisib (500nM, 

24h) were permeabilized, incubated for 1 h with ABT 10μM, fixed and stained for intracellular cytochrome C. The 

percentage of induced apoptosis was evaluated by flow cytometry, measuring the release of cytochrome C. (B) .BAD 

phosphorylation in Ser112 and Ser136; HRK expression, a pro-apoptotic protein that target specifically BCL-XL 

 

The therapeutic cooperation of idelalisib with ABT-199 on apoptosis induction was further assessed 

by flow cytometry measuring the percentage of viable cells after 3-day co-culture with each agent 

alone or in combination, using two doses of ABT-199 (10 and 50nM). We concluded that the 

treatment of FL cells with ABT-199 and idelalisib resulted in a synergistic reduction of cell viability 

compare to ABT-199 10nM alone in FDC-FL co-cultures(p=0.0135). Besides, the combinatorial 

treatment of both drugs in M2-FL co-cultures showed also a synergistic reduction of cell viability at 

both doses of ABT-199 (p=0.0006; 10nM and p=0.016; 50nM) (Figure 29). 
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Figure 29. Idelalisib bypasses microenvironment derived resistance to ABT-199.  Cell viability (AnnexinV-/7AAD-) was 

assessed in FL cells from FL-FDC and FL-M2 w/wo idelalisib (500nM) and w/wo ABT-199 (10 or 50nM) after 72h of 

treatment. 
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1. CB2 and CXCR4 are simultaneously overexpressed in primary colon tumors. 

Different tissue microarrays were used to characterize the expression of CB2 and CXCR4receptors in 

a cohort of (n=74 CB2, n=73 CXCR4) prospective primary stage II (pT1-2N0) colon cancers with their 

associated matched normal mucosa (n=61 CB2, n=48 CXCR4), invasive fronts, and paired metastasis, 

when available (n=19) (Figure 30A and B).  

 

 

Figure 30. CB2 and CXCR4 expression characterization in primary colon tumor cells and normal mucosa. (A) 

Representative images of CB2 immunostaining representing the different scores established according to the intensity 

staining in tumors and normal mucosa in tissue microarrays sample (TMA). (B) Representative images of CXCR4 

immunostaining of the same TMA samples. Scores: 0 and 1 correspond to low intensity, 2 and 3 correspond to high 

intensity. Zoom x200. 

 

We observed that the expression levels of both receptors were higher in primary colon tumor 

samples and their associated metastasis compared to normal mucosa epithelial cells (p<0.0001). 

However, differences in the expression of CB2 and CXCR4 in primary tumor cells compared to their 

paired metastatic lesion were not significant (Figure 31A and B). Furthermore, we identified a 

significant correlation between expression levels of CB2 and CXCR4 (P=0.031) (Figure 31C). When 

we compared the relapsed -free survival between patients with high levels of both receptors and 
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patients with low levels of them, we observed a tendency showing that patients with high levels of 

both receptors showed worse prognosis (Figure 31D). Nevertheless, this trend was absent when 

either the expression of each receptor was considered individually or their expression values were 

not in the same directionality (Supplemental Figure 1). 

 

 

Figure 31. CB2 and CXCR4 were simultaneously overexpressed in primary colon tumors. (A) CB2 expression distribution 

in the three different types of samples: normal mucosa, primary tumor and metastasis. Black bar represents high 

expression, and grey bar represent low expression. The results show the percentage of patients of each group (low or 

high) in total patients. (B) CXCR4 expression distribution analyzed in the same way than CB2 expression distribution. (C) 

Representation of percentage of patients in all the possible combination of expression of both receptors, shows the 

correlation between high expression of CXCR4 and CB2. (D) Data plotted in Kaplan-Meier curves for relapsed free survival 

show differences between patients with high expression levels of both receptors and patients with low expression levels 

of both, those patients with high expression of CXCR4 and CB2 receptors has worst prognosis 
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2. Prognostic value of CXCR4 – CB2 heterodimerization. 

Next, we sought to identify whether co-expressed CXCR4 and CB2 receptors were physically nearby 

using the proximity ligation assay, in which two antibody-DNA probes are able to hybridize if the 

two receptors are close enough, thus considered they are forming heterodimers. By performing this 

methodology to our cohort of primary stage II colon cancers on TMAs, we detected different 

amounts of heterodimer formation between CXCR4 and CB2. First, analyzing epithelial cells forming 

the intestinal glands, we detected a greater presence of CXCR4-CB2 heterodimers in primary tumor 

samples than matched normal mucosa (p<0.0001) (Figure 32A and D). Second, when we divided the 

primary tumors according to the presence of disease relapse, our analysis showed that tumors from 

patients with relapse presented a higher amount of heterodimers compared to those from patients 

which did not show relapse (p=0.0089) (Figure 32B, C and E), thus suggesting that the formation of 

CXCR4-CB2 heterodimers might be indicative of worse prognosis. However, differences in the 

heterodimers formation in primary tumor cells compared to their paired metastatic lesion were not 

significant. 
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Figure 32. Prognostic value of CXCR4-CB2 heterodimerization. (A-C). Representative images of PLA signal in normal 

mucosa samples, primary tumor non-relapsed, and primary tumor relapsed, respectively, from TMA. (D) Dotted plot 

represent the number of PLA signals per area of sample for each patient. Significant differences were observed between 

normal mucosa and primary tumor, tumor samples shown higher number of heterodimers. (E) Tumor relapsed samples 

shown higher number of heterodimers compare to tumor non relapsed. 

 

 

 

3. Heterogeneous formation of CXCR4 and CB2 heterodimers in in vitro models. 

In order to functionally asses the role of CXCR4-CB2 heterodimers in cancer cells, we then 

investigated the cell membrane expression levels and the total cellular expression levels of 

individual CXCR4 and CB2 in a total of six CRC cell lines (SW480, SW620, Colo320, HT-29, DLD-1 and 

HCT116) by flow cytometry (Figure 33A and B). While SW480 (MFIR= 5.01; p=0.0001 SW480 vs 

others (excluding Colo320)) and Colo320 (MFIR= 5.36; p<0.0001 vs others (excluding SW480)) 

showed the highest expression levels of CXCR4 at the cell membrane, only Colo320 showed a 

significantly greater amount of total CXCR4 expression (MFIR= 13.18; p=0.0095) (Figure 33A). In 

contrast, only slight difference among cell lines were detected for both cell membrane and total 

levels of CB2expression (Figure 33B). In addition, our analysis showed that the overall levels of CB2 

expression, including cell membrane and total, were significantly lower than CXCR4 (Table 21). 
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Figure 33. CRC cell lines showed different CXCR4 and CB2 expression levels. (A) CXCR4 MFIR of membrane expression, or 

total expression of SW480, SW620, Colo320, HT29, DLD1 and HCT116 cells were represented. (B) CB2 MFIR of membrane 

expression, or total expression of SW480, SW620, Colo320, HT29, DLD1 and HCT116 cells were represented. 

 

Table 21 Summary of CXCR4 and CB2 obtained by flow cytometry in six different CRC cell lines 

  Membrane expression Total expression 

  MFIR MFIR 
SW480 

CXCR4 5.01 5.78 
CB

2
 1.75 1.23 

SW620  
CXCR4 1.32 4.16 

CB
2
 1.37 1.30 

Colo320 
CXCR4 5.36 13.18 

CB
2
 1.95 1.27 

HT29 
CXCR4 1.67 4.47 

CB
2
 1.33 1.27 

DLD1 
CXCR4 2.01 6.23 

CB
2
 1.69 1.43 

HCT116 
CXCR4 1.88 5.28 

CB
2
 1.95 1.40 

 

Since heterodimer formation was a distinctive feature in primary colon tumors, we also performed 

PLA in the panel of six cell lines. Our results indicated that SW480 cell line showed the highest 

amount of heterodimer formation compared to the others cell lines (p<0.0001). In contrast, HT-29 

and HCT116 presented the lowest level of heterodimer formation. Intermediate levels were 

detected for SW620, Colo320 and DLD-1 cells (Figure 34A and B). Taken together, CRC cell lines 
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showed different CXCR4 and CB2 expression levels and distinctive amounts of heterodimers. 

Subsequent analyses for this study were performed using SW480 and SW620, providing their 

differences in heterodimer formation and highly invasive capacity 

 

 

Figure 34. Heterogeneous formation of CXCR4 and CB2 heterodimers in in vitro models. (A) PLA signal images of the 

different cells lines (SW480, SW620, Colo320, HT29, DLD1 and HCT116 cells). (D) PLA signals quantification using Image J 

software.  

 

4. CXCR4-CB2 heterodimers crosstalk. 

Next, we sought to determine whether the formation of heterodimers affected the signaling 

pathway properties of each individual receptor. To test this, we assessed phosphorylation of ERK-

1/2 compared to total ERK-1/2 as a surrogate marker of both CXCR4 and CB2 signaling pathways 

(Figure 35A). After 20 minutes exposure in SW480 cells, the CXCR4 agonist, CXCL12, produced an 

increment in the pERK-1/2/ERK-1/2 ratio. Likewise, CB2-selective inverse agonist, JWH133, 

produced a robust increment in pERK-1/2 over ERK-1/2 after the same exposure time. Nevertheless, 

co-activation of both receptors resulted in a slight reduction of ERK-1/2 phosphorylation compared 

to CXCL12 and JWH133 induction alone. Unsurprisingly, CXCL12 signaling induction was blocked by 

the CXCR4 antagonist, AMD3100. Intriguingly, AMD3100 was also able to block the signal induced 

by the CB2 inverse agonist, JWH133. Similarly, the JWH133 induced signal was blocked by the CB2 

antagonist, JTE907; nevertheless, the signal induced by CXCL12 was also blocked by the CB2 
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antagonist JTE907. These results were further confirmed in SW620 (metastatic cells isolated from 

the liver of intrasplenic mouse model (SW620-L)) (Figure 35B). Thus, our results suggest a 

bidirectional cross-antagonism through the formation of heterodimers, by which one receptor can 

be targeted using its partner receptor antagonist, and vice-versa 

 

 

Figure 35. CXCR4-CB2 heterodimers show crosstalk. (A) Confluent SW480 cell lines were stimulated after ON deprivation 

and 3h of CXCR4 inhibitor or CB2 inhibitor treatment. Cells were stimulated for 20 minutes with CXCR4 or CB2 ligands. 

Changes in pERK were used as a read-out of pathway inhibition. Bar graph represent the mean of 4 independent assays. 

(B) SW620 derived from mouse liver after intraspleenic injection (SW620-L), were used to confirm the results observed in 

SW480 assays. The experiment was performed using the same experimental conditions. 
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5. Inhibition of CXCR4 and CB2 compromises phospho-ERK mediated cell migration. 

The activation of ERK1 and ERK2 signaling pathway by CXCL12 has been shown to be associated with 

cell migration456. Hence, we analyzed whether the bidirectional cross-antagonism between CXCR4 

and CB2 affected cell migration induced by the CXCR4 agonist, CXCL12. For these propose, wound 

healing assays were performed using 200 ng/ml of CXCL12 together with CXCR4 antagonists, 

(AMD3100 and KRH-3955), CB2 antagonist JTE907, and the combination of the last two to stimulate 

the wound closure by cell migration. Our results showed that after 42 hours stimulation of SW480 

cells with CXCL12, cell migration was significantly induced (p=0.0045) (Figure 36A-B). However, 

treatment of cells with CXCR4 antagonists significantly reduced the amount of wound closure (p= 

0.0958 and p=0.0005, for AMD3100 and KRH-3955 respectively). In fact, CXCR4 antagonist KRH3955 

was more effective in reducing the migration capabilities of these cells than AMD3100 (p=0.0004). 

Interestingly, CB2 receptor antagonist, JTE907, also blocked the migration induced by CXCR4 agonist 

CXCL12 (P<0.0001), suggesting dysfunctional consequences of CXCR4 and CB2 heterodimer crosstalk 

(Figure 36B). The combination of CXCR4 and CB2 antagonists, however, did not provide an additional 

reduction of migratory capability. 
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Figure 36. Crosstalk between CXCR4 and CB2R affects cell migration. SW480 confluent cells were seeded in 96 well plates. 

Before the beginning of wound healing assay, cells were treated with mytomicin for 1h to inhibit the proliferation for 48h. 

The assay was performed using complete medium complemented with CXCL12 (CXCR4 ligands), which stimulate cell 

migration, for 42h. Every 2h images were taken. (A) Representative images of wound healing assay, comparing the cells 

at time 0 and after 42h of stimulation. (B) Quantification of percentage of wound closure in the different conditions. A 

total of 7 replicates were assed to each condition. 

 

 

6. Targeting the crosstalk between CXCR4 and CB2 showed anti-metastatic and anti-

proliferative effects in vivo. 

To investigate whether the heterodimer formation was involved in the formation of liver and lung 

metastasis in CRC, we first infected SW620 cells with an expression vector for GFP and luciferase 

(SW620-GFP-luc) to monitor the kinetics of growth and colonization ability of these cells by 

quantitative bioluminescence imaging. Subsequently, SW620-GFP-luc cells were inoculated into the 

spleen of SCID mice followed by splenectomy, and cells that colonize the liver of the animals and 

thus showing a more aggressive phenotype were isolated. These isolated metastatic cells from the 

liver with increased liver metastatic activity, SW620-L-GFP-luc, were expanded in culture and 

subsequently used in orthotopic injections using NOD-scid gamma (NSG) mice. SW620-L cells 
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showed more metastatic capacity than SW620 in vitro. (Figure 37 A). Moreover, SW620-L cells 

showed a less local aggressive phenotype in ortothopic mouse model (p=0.0042), which were able 

to slowly grow in the cecum of the mice to provide sufficient time to allow the cells to migrate to 

distant organs (Figure 37B). 

 

Figure 37. SW620-L cells showed high metastatic capacity. SW620-L isolated from liver after intrasplenic injection was 

compared to it parental cell line. (A) SW620 and SW620-L cell lines in vitro migration towards CXCL12 gradient. (B) Mice 

survival after ortothopic injection. 

 

At day 4 after injection of SW620-L-GFP-luc cells in the mouse cecum, mice were intraperitoneal or 

orally treated in a daily basis with the CXCR4 antagonist, KRH-3955, with the CB2 antagonist, JTE907, 

or with both antagonists for 40 days. We used KRH-3955 instead of AMD3100 due to its higher 

efficiency in reducing cell migration in vitro. At the experiment endpoint, we detected a significant 

decrease in primary tumor size in animals treated with a combination of CXCR4 antagonist, KRH3955 

and CB2 antagonist JTE907 (p=0.027). Animals treated with either only KRH-3955 (p=0.110) or only 

JTE907 (p=0.291) barely suffered a non-significant decrease in primary tumor size compared with 

untreated animals, (Figure 38A-C). Despite a reduction in the mitotic index in tumors from mice 

treated with either KRH-3955 or combination of KRH-3955 and JTE907, differences were not 

statistically significant when compared to tumors from non-treated mice (Figure 38D). IHC against 

Caspase 3 did not show differences between samples from different treatment groups. (Figure 38E). 
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Figure 38. CXCR4 antagonist and CB2 antagonist show anti-proliferative effect in a orthotopic mouse model of CRC. Four 

different group of 6 animals each one were used to assay the potential of CXCR4 and CB2 inhibitors. (A) Primary tumor 

sizes monitoring using Hamamtsu Bioluminiscence device weekly. (B) After 40 days of treatment, animals were 

euthanized, and the sized of cecum tumors were evaluated at the end point. (C) Representative bioluminescent images of 

primary tumors. (D) Mitosis number in primary tumors was evaluated counting 10 different fields of 3 samples for each 

group. (E) Caspase 3 representative images.  
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Finally, we assessed the capacity of orthotopic injected SW620-L-GFP-luc cells to colonize the liver 

and the lungs (Supplemental Figure 2) upon treatment. Of note, while no differences were observed 

in regards to the number of metastatic nodes, the size of liver metastases were diminished in mice 

treated with the combination of KRH-3955 and JTE907 (p=0.0320), but not when mice were treated 

with either only CXCR4 or only CB2 antagonists (p=0.2272 and p=0.2049 for KRH-3955 and JTE907 

treatment, respectively) (Figure 39A and B). Further histological analysis of Ki67 staining in the 

metastatic lesions confirmed the results detected by bioluminescence. Smaller liver metastases 

were detected in animals treated with both antagonists, suggesting the biological orchestrated role 

of CXCR4 and CB2 receptors to promote cell migration and metastasis in vivo (Figure 39C). 

 

 

Figure 39. Targeting the crosstalk between CXCR4 and CB2 showed anti-metastatic effect in a orthotopic mouse model 

of CRC. Four different group of 6 animals each one were used to assay the anti-metastatic potential of CXCR4 and CB2 

inhibitors. (A) Ex-vivo evaluation of mice livers was done. The combination of both inhibitors decreased the signal (tumors 

cells) in livers. (B) Representative images of bioluminescence in mouse livers. (C) Ki67 immunostaining was performed to 

confirm the reduction of liver metastasis volume in animals treated compared to control animals 
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The tumor microenvironment is a crucial player in tumor development and progression. Targeting 

specifically tumor crosstalk is a promising approach to overcome drug resistances or cancer relapses 

in those patients that present unsuccessful response to standard therapies.   

In this thesis, we propose two new combinatorial therapies based on the disruption of crosstalk 

between tumor cells and their tumor microenvironment in two different cancer types. In Follicular 

lymphoma we explored the use of the well described and clinically used PI3K δ inhibitor (Idelalisib) 

and the BCL2 inhibitor Venetoclax (ABT-199). On the other hand, in colorectal cancer we examined 

the innovative combinational therapy of the chemokine receptor (CXCR4) inhibitor and the 

cannabinoid receptor inhibitor (CB2), both receptors implicated in cancer progression. 

Combinatorial therapy of Idelalib and Venetoclax in R/R FL 

The microenvironment of human follicular lymphoma (FL), an incurable B cell non-Hodgkin’s 

lymphoma, is thought to play a major role in its pathogenesis and course. Thus, in the recent years 

therapies targeting FL-microenvironment crosstalk have reached the clinic. Idelalisib has been the 

first-in-class PI3Kδ inhibitor approved for the treatment of Relapsed/Refractory (R/R) FL244,627. 

Despite its introduction in the clinic, a precise characterization of the interference of Idelalisib with 

the crosstalk of FL and its microenvironment remains ills defined. Moreover, it is highly possible that 

the described side effects are consequence of the same immunoregulation responsible for its 

therapeutic activity628-630. 

In the present study, to determine the molecular effect of idelalisib in vitro, we selected GEP to 

identify/characterize the pathways regulated by idelalisib in B cells isolated from FL samples with or 

without FDCs co-cultures. We demonstrated that idelalisib may modulate germinal center 

pathways, including CD40L signaling and targets of transcriptional repressor BLIMP, as well as, the 

downregulation of genes pertaining to MTORC1 signature, regardless of the presence of FDCs.  

Using a meaningful in vitro co-culture system of FL primary cells and supportive FDCs, we have 

uncovered that idelalisib modulates CD40/CD40L interaction between B and T cells, essential for 

germinal center reaction. Idelalisib also downregulated the expression of several membrane 

proteins critical for B-T cell synapses such as the costimulatory molecule CD80, the activation 

receptor SLAMF1, required for IL-4 secretion by TFH 631 and the adhesion molecule ICAM1. From the 

specific genes regulated by CD40L-CD40 system stood out CCL22, a chemokine fundamental for the 
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migration of diverse T cell subpopulations624. This decrease in CCL22 by idelalisib had consequences 

in the composition of FL microenvironment. By means of in vitro migration assays, we have been 

able to demonstrate a significant decrease in the recruitment of Treg and TFH when these cells were 

challenge to migrate towards supernatants from FL-FDC co-cultures treated with idelalisib. 

PI3Kδ is fundamental for the generation of TFH 632 and the presence of these supportive TFH has been 

associated with poor prognosis in a number of hematologic malignancies633. Intra-tumoral TFH 

induce production of CCL22 by FL tumor cells and facilitate active recruitment of Treg and IL-4-

producing T cells, which, in turn, may stimulate more chemokine production in a feed-forward cycle. 

In this regard, based on previous studies631, the decrease in the activation receptor SLAMF-1 we 

observed in our system may reduce IL-4 production by TFH.  

More importantly, the crosstalk between FL-TFH contributes to FL pathogenesis and promotes 

immune evasion in FL microenvironment623. Thus, the coordinated decrease in TFH and Treg 

recruitment may allow the host to mount superior immune responses against the tumor, and 

control the disease. To this end may also contribute the decrease induced by idelalisib in CCL22 and 

the immune suppressive cytokine IL-10634 both secreted by pro-tumoral M2-macrophages, 

contributing to ameliorate the immune suppressive FL microenvironment. 

It is important to note that despite Treg have long been associated to immune evasion mechanisms 

employed by solid tumors, in FL the presence of high numbers of FOXP3+ Treg , mostly located in 

the intrafollicular areas, has been associated to improved overall survival182,183. This apparent 

contradiction has been clarified by the recent discovery of a new subpopulation of FOXP3+ cells in 

the germinal center which co-expresses CXCR5, that may be those FOXP3+ T cells referred by 

Carreras and cols182. These cells, known as follicular regulatory T cells (TFR) specifically inhibit B cell 

responses, controlling both GC cell number and TFH function, thus justifying its correlation with good 

prognosis635. Our results indicate that idelalisib impaired Treg recruitment from peripheral blood 

although it did not change TFR cells migration, that may be explained by the lack of expression of 

CCR4, precluding their response to CCL22636. 

Another key observation of our study is that idelalisib interferes with specific genes induced by the 

supportive FDCs just in a subset of FL primary samples. These genes were implicated in processes 

related to angiogenesis, extracellular matrix formation, cell migration, trans-endothelial migration, 

and cell-cell/cell-matrix adhesion, allowing us to define a gene signature to discriminate between 
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idelalisib sensitive and resistant FL primary cultures in an expanded cohort of patients. Ideally, the 

predictive value of this signature should be further validated in pre-treatment samples from FL 

patients enrolled in Idelalisib clinical trials, in order to correlate in vivo responses with this in vitro 

predictor. 

Regarding angiogenesis, as we have previously reported FL-FDC interactions promote the 

generation of an “angiogenic niche”620 which is of key importance in FL, as vascularization predicts 

overall survival and risk of transformation148. Just in those patients defined as sensitive based on the 

signature described above, idelalisib reduced the secretion of the pro-angiogenic factors VEGF-A 

and VEGF-C. In consequence these supernatants were significantly less efficient in the generation 

of endothelial HUVEC cells microtubules, used a read-out of their pro-angiogenic potential. 

However, it is important to note that idelalisib anti-angiogenic effect was moderate compared to 

previous results obtain using the pan-PI3K inhibitor BKM-120620. This may be explained by the 

prominent role of PI3Kα in angiogenesis253 not targeted by idelalisib. 

FL patients usually present with disseminated disease at diagnosis indicating the high mobility 

properties of these tumor cells. To enter lymphoid organs, B cells must adhere to endothelium and 

transmigrate across the endothelial barrier. Thus, chemokines and adhesion molecules are 

important in the homing of normal and malignant B cells and in lymphoma dissemination. Both firm 

adhesion and transmigration of the tumor cells are mediated through selectin ligands, integrins or 

CD44637. Importantly, in several models of lymphoma, including FL, the expression of several β-

integrins has been associated with disease dissemination and patient prognosis638. Thus the 

regulation of this process is of paramount importance to control the disease and idelalisib has shown 

significant activity in sensitive patients. In this regard, studies of the interference of idelalisib with 

the process of adhesion have been used as a read-out of antitumor activity639. 

In an attempt to associate a specific mutational profile with idelalisib responses, we characterized 

the presence of somatic mutations in genes described as recurrently mutated in FL110 (CREBBP, 

KTM2D, TNRFS14, EP300, EZH2, MEF2B, EZH2, TNFAIP3, TP53 and RRAGC). We found that mutations 

in RRAGC correlated with idelalisib resistance, as mutations of this adaptor cause continuous 

mTORC1 activation, independently of PI3K/Akt1 pathway119. This mutation is present in 10-15% of 

FL patients110, and our results are the first to support this observation that may be considered on 

treatment decisions. 
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Otherwise, BCL-2 overexpression induced by the reciprocal translocation t(14;18)(q32;q21) is the 

genetic hallmark of FL, which is present in 85-90% of cases67 68,69, and is one of the first events in FL 

pathogenesis. Therefore, this fact would lead to hypothesized that inhibition of BCL-2 could be a 

really useful approach to treat FL patients, and obtain good responses to the treatment. But the first 

clinical trial with venetoclax (BCL-2 inhibitor) were not satisfactory, the ORR was 38%, and the PFS 

11 months . It was proposed that the reduced activity of venetoclax in FL may be the result of a 

complex interplay among other anti-apoptotic proteins regulated by microenvironment, such as and 

BLF-1 and MCL-1, and BH3-family members266, 640. In this regard, we have uncovered that FL-FDC co-

cultures augmented the levels of BCL-XL and MCL-1 on FL cells, while BFL-1 was increased in FL-M2 

co-cultures. These events were validated using BH3 profiling625, a technique that using peptides 

specific for certain anti-poptotic proteins, evaluate the degree of dependence on those proteins. 

BH3 profiling demonstrated that FL cells co-cultured with FDC increased their dependence on MCL-

1 and BCL-XL, while FL cells co-cultured with M2 rely on BFL-1. The consequence of these 

microenvironment-derived changes was a decrease activity of the BCL-2 inhibitor venetoclax in FL-

FDC or FL-M2 co-cultures compared to FL mono-cultures. In summary, microenvironment renders 

FL more dependent on apoptotic proteins different from BCL-2, reducing their priming for apoptosis. 

These results are in agreement with those reported by several groups in CLL and MCL641-644 and may 

well lay at the basis of the reduced clinical benefit observed in FL patients treated with venetoclax275. 

Noteworthy, idelalisib counteracted the tumor microenvironment induced resistance to ABT-199 by 

restoring BCL-2 dependence and increasing apoptosis priming, and induced the expression of BH3-

only protein HRK and reduce BAD phosphorylation, probably helping apoptosis induced by 

Venetoclax, supporting the use of this combinatorial regimen in FL patients.  

Lastly, we concluded that the treatment of FL cells with venetoclax + idelalisib regimen resulted in 

synergistic reduction of cell viability compare to the treatment of venetoclax alone in FDC co-

cultures. Besides, the combinatorial treatment of both drugs in M2 co-cultures showed also a 

synergistic reduction of cell viability.  

In summary, idelalisib constitutes a valuable therapeutic tool in R/R patients, and the introduction 

of venetoclax in the combined therapy adds more chance of success in resistant patients. Profitably, 

a phase II trial of this combination will be initiated in the hematology department of Hospital Clinic 

based on these results. 
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Combinatorial therapy of KRH-3955 and JTE907 in CRC 

The standard clinical procedure in advanced colon cancer treatment is the surgical resection of 

primary tumors and the subsequent adjuvant treatment with chemotherapy. However, a substantial 

number of patients show metastasis after the treatment. This highlights the need to find targeted 

therapies to target those tumor cell populations that acquired a more aggressive phenotype.  

A large number of studies demonstrated the importance of the CXCR4/CXCL12 axis in metastatic 

disease, including CRC cancer. This fact has brought about the increasing number of studies related 

to gain insights into the biological effects of the overexpression of both CXCR4 and CXCL12 in some 

cancer types, and the druggable possibilities of CXCR4/CXCL12 axis to prevent the migration of these 

tumoral cells to secondary distant sites.  

The correlation between CXCR4 expression and CRC has been extensively studied in the recent 

years. It has been shown that its expression might vary by anatomic location and by tumor stage, 

rectal cancer samples and stage III and IV colon cancer present a strong CXCR4 expression447. 

Different studies have demonstrated a positive correlation between the expression of CXCR4 in 

tumor cells overall survival479, liver metastasis645, and with LN metastasis646. In fact, a recent report 

showed results from 12 studies and performed meta-analysis with 1.913 CRC patients in order to 

determine the prognosis and pathological value of CXCR4 expression. The authors conclude that 

high CXCR4 expression was associated with poor prognosis, but with some important limitations 

regarding the data analysis, which included the small size of the cohort647. We observed the same 

limitation our samples set. The expression of CXCR4 is significantly higher in primary tumor and 

metastatic samples compare to normal mucosa, but when we assessed the correlation with 

prognosis, we did not observe significantly differences, likely due to the small set of patients, and 

also because our cohort exclusively included stage II colon cancer patients. When we studied the 

location of CXCR4 in cell, nearly all samples showed citoplasmatic staining, contradicting the results 

publish in the studies of Speetjens and Wang, where they demonstrated that a high expression of 

nuclear CXCR4 in tumor cells is a predictor for poor survival for CRC patients648,649, as it is suggested 

to happen in other cancer types650. A potential explanation for these differences might be the use 

of a different antibody, after unsuccessful attempts to use the same antibody previously reported 

in our samples set, we observed nuclear staining in all samples, including normal mucosa, leading 

us to sort out that antibody and look for another one with higher specificity for our IHC experiments. 
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Taken together, our data suggest that CXCR4 expression may be a useful biomarker in CRC, but 

extended studies, unifying methodologies and conditions, are necessary to draw a solid conclusion. 

 

Lately, another GPCR from cannabinoids family (CB2 R) has been described as an interesting target 

in CRC due to its up-regulation in tumor cells544. These results were based on mRNA levels analysis, 

and concluding than the overexpression of the receptor is a poor prognostic factor for patients in 

advanced stages (lymph node positives or tumors with vascular invasion). In addition, these patients 

were submitted to adjuvant treatment. This led them the authors to suggest that CB2 could be a 

marker for treatment resistance. 

Focused on the prognostic value of CB2 expression in CRC is not very extensive, therefore no major 

comparisons with our results could be accomplished. Nevertheless, our data confirm previous 

published results. In fact, we observed that CB2 is overexpressed in tumor epithelial cells compared 

with their normal counterpart. Likewise, epithelial cells from metastasis shown higher CB2 

expression compare to normal epithelial cells. Unfortunately, we did not observe any prognostic 

value in our cohort. Compared to the aforementioned study, our results were based on IHC assays, 

and we only evaluated the expression of CB2 in tumor cells (excluding the expression in cells from 

the tumor microenvironment), and at protein level in early stages patients (stage II). Therefore, we 

conclude that there are differences at the CB2 levels expression between tumor cells and normal 

epithelial cells, but CB2 expression is not associated with poor prognosis in stage II CRC patients. In 

fact, CB2 should be considered as a possible specific therapeutic target against colon cancer cells. 

Furthermore, the fact that cannabinoid system is currently used in clinical practical as palliative 

treatment, since them capability to lessen chemotherapy sides-effects could contribute to use this 

kind of treatments in a specific set of patients.  

 

A growing amount of evidence is emphasizing in the important and innovative notion of GPCRs 

heterodimerization. In fact, the heterodimerization of CXCR4 and CB2,has been shown to have an 

impact in cancer cell invasion in breast cancer651. Another study in prostate cancer cell, along with 

breast cancer, supports the finding of CXCR4 and CB2 heterodimers, and its implication in tumor 

progression556.  
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In this thesis project, we observed that the high expression of both receptors at protein level in the 

same sample showed a tendency to worse prognosis compared to those patients that has low 

expression levels for both receptors. Our results did not exhibit significant differences between both 

groups, most likely due to the limited number of patients in our cohort.  

Nonetheless, to our knowledge, the results presented in our study are the first ones to provide a 

strong evidence that the CXCR4-CB2 heterodimer formation causes a more aggressive phenotype in 

CRC patients. By proximity ligation assay, we demonstrated that patients with distant metastasis 

within the next 5-years after detection of the primary tumor, showed a higher amount of 

heterodimers formation compared to those patients who did not relapse. Similarly, we reported 

significantly higher amount of heterodimers formation in primary samples compared to normal 

mucosa, suggesting a role of the CXCR4-CB2 formation in the colon tumorigenesis. 

In order to better understand the function of CXCR4-CB2 heterodimers, we sought to use an in vitro 

model to elucidate the biological function of CXCR4 and CB2 heterodimers. Among an array of 

different CRC cell lines, we chose SW480 cells because of their high expression levels of both 

receptors, and because it was the cell line that showed higher number of heterodimers. We found 

that endogenously-expressed CXCR4 and CB2 in these cells were forming heterodimers. Based on 

previous studies that already explored the function of different GPCR receptors heterodimers, such 

as the cannabinoids receptors CB1 and CB2
458, or CB2 and GPR55557, we performed several assays to 

demonstrate the crosstalk between CXCR4 and CB2 in CRC. Few studies have already attempted to 

address the functional role of CXCR4-CB2 heterodimers in cancer, which suggested the role of 

heterodimers in the effects of CXCR4-induced migration in cancer cells556,652. Interestingly, another 

study demonstrated similar functional modulation in T lymphocytes653. Thus both receptors have 

been associated with proliferative and migration in cancer cells. However, the cross-talk between 

the two receptors remains still rather unknown. In our study, we observed that the inhibition of CB2 

showed a more potent effect in blocking the CXCR4 downstream signaling, than the activation of 

CB2 receptor. Thus, our data suggest that CXCR4 and CB2 display a cross-talk and bidirectional cross-

antagonism at the functional level (i.e., inhibition of the p-ERK-1/2 pathway). Indeed, for a subset 

of CRC cells, in which CXCR4 and CB2 receptors form heterodimers, the blockade of one receptor 

and the stimulation of the other reduces the activation of the corresponding downstream signaling 

pathway, and vice-versa. To our surprise, exposing cells to JTE907 (CB2 antagonist) appeared to 

function as an antagonist for CXCR4, reducing the cell signaling levels and compromising the 
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migratory function. As mentioned above, previous reports have been suggested the same effect 

using the CB2 agonist, but the authors did not provide any result of CB2 inhibition556,652. Furthermore, 

this cross-antagonism mechanism showed an intriguing effect in cell migration. Our results 

demonstrated that CB2 inhibition was capable of reducing CXCL12-induced cell migration.  

Proposed model for CXCR4-CB2 cross-talk: 

 

 

To further demonstration of CXCR4-CB2 heterodimer functionally in vivo, we assessed the benefits 

of CXCR4 treatment (antagonist), CB2 treatment (antagonist), and combinatorial therapy by 

inhibiting both receptors using an orthotopic mouse model. For this purpose, we generated a 

metastatic cell line, which was able to slowly growth in the cecum of the mice to provide sufficient 

time to allow cells migrate to distant organs. Based on previous study618, we establish a derivate of 

the SW620 cell lines obtained from liver colonization after intrasplenic injection. This derivate 

SW620 cell line showed intermediate features between SW480 (cell lines chosen for in vitro 

experiments and able to migrate slowly to liver or lung in mouse model), and SW620 (lymph node 

metastasis cell line derived from SW480 same patient, which grew quickly in mouse cecum causing 

an intestinal obstruction producing mouse death before cells started to migrate). In a 40 day 

experiment, treating daily mice from day 4 on with CXCR4 antagonist, CB2 antagonist, or 

combinatorial therapy by inhibiting both receptors, we observed effects at different levels. First. we 

detected a decrease in primary tumor growth in all treated groups compare to control animals. The 

group treated with the CXCR4 inhibitor, KRH-3955, showed a non-significant reduction in tumor size 

compare to the control. Within this group, we observed differences in the response to the treatment 

among different animals. Some animals responded well to the treatment, but others did non. 

Subsequently, we demonstrated the reduction of tumor sizes by KRH-3955 was partially due to a 

reduction on cell proliferation (i.e., decrease in mitoses). Similarly, the group treated with the CB2 
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inhibitor, JTE907, also showed a non-significant reduction in the tumor size compared to control. 

These animals were treated orally (animals from KRH-3955 group were treated intraperitoneal), and 

also showed different responses within the group. In contrast to the animals from the previous 

group, these tumors now revealed a higher number of mitotic cells compare to control samples. 

Therefore, the increase in mitosis, accompanied by the reduction on tumor size, led us to 

hypothesize that JTE907 treatment induced mitotic catastrophe in tumor cells, as was described by 

Santoro and colleagues654. These authors demonstrated that rimonabant (selective CB1 receptor 

antagonist) inhibits human colon cancer cell growth, induces cell death, alters cell cycle distribution 

(G2/M phase arrest) without inducing apoptosis, and reduces the formation of precancerous lesions 

in the mouse colon. These results suggest that CB1 antagonist, rimonabant, is able to inhibit cell 

growth at different stages of the colon cancer pathogenesis by inducing mitotic catastrophe. Finally, 

animals treated with both inhibitors simultaneously, KRH-3955 and JTE907, showed a better 

response compare to the individually treated groups. Additionally, tumor sizes were also 

significantly reduced compared to the untreated animals. Furthermore, all animals from the 

combinatorial group showed similar response to the treatment, suggesting a higher consistency in 

the effect. Second, we detected a reduction in liver metastasis in mice treated with CXCR4 and CB2 

inhibitors compare to untreated animals. These results confirm previous findings in in vivo models 

of osteosarcoma and melanoma cancer using a small peptide CXCR4 antagonist to inhibit lung 

metastasis655. Surprisingly, animals treated with both inhibitors simultaneously showed a significant 

reduction on biolumiscence signal. Moreover, these results were confirmed by Ki67 IHC, showing a 

small focus of tumor cells in liver samples. In summary, our results revealed a significant reduction 

of tumor size and liver metastases after simultaneous treatment with CXCR4 and CB2 inhibitors in 

ortothopically-injected mice with highly metastatic CRC cells. 

 

Taken together, our findings that CXCR4-CB2 complexes have a particular signaling and function 

properties, and are critically involved in the response of cancer cells to KRH-3955 and JTE907 in vitro 

and in vivo, suggest the potential usage of both inhibitors for patients that present high amounts of 

heterodimers, thus a more aggressive phenotype. In addition, our results shed light on the 

development of compounds targeting these heterodimers. Whereas a single antagonist would 

inhibit CXCR4 function in a wide spectrum of cell types, including immune cells or hematopoietic 

stem cells, a combination of CXCR4 and CB2 antagonists intended to promote inhibition via 
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heterodimerization could provide a higher specificity on tumor cells due to the increased expression 

levels of both receptors. Thus, targeted therapy against CXCR4-CB2 heterodimers could be an 

innovative alternative approach to treat metastatic CRC patient granted that metastasis is not 

resectable and the associated poor overall survival rate. 
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The main conclusions derived from this thesis are: 

 

First study: Idelalisib Interferes with the Crosstalk of Follicular Lymphoma and its Immune 

Microenvironment and Potentiates the Activity of ABT-199 

1. Idelalisib modulates key pathways in the germinal center and downregulates the FDC-

induced pathways in a selected group of patients. 

 

2. Idelalisib shapes the FL immune microenvironment by decreasing the recruitment of TFH 

and Treg to the tumor site leading to less immunesuppresive phenotype 

 

3. Idelalisib induces a moderate cytotoxic effect on FL cells that is maintained in FL- FDC and 

FL-M2 co-cultures. 

 

4. FDC and M2 decrease FL dependence on BCL-2 and consequently, venetoclax cytotoxicity. 

Idelalisib sensitizes FL-FDC and FL-M2 co-cultures to venetoclax 

 

 

Second study: GPCRs heterodimers as a new therapeutic target in colorectal cancer 

5. CXCR4 and CB2 expression is increased in primary colon tumor cells and in metastasis cells 

compared to normal epithelial cells from colon mucosa.  

 

6. CXCR4 and CB2 form heterodimers in colon tumoral cells and are associated with more 

aggressive phenotypes. 

 

 

7. A bidirectional cross-antagonism crosstalk is established between these receptors. 

 

 

8. CXCR4 and CB2 heterodimers regulate in vitro CXCL12-induced migration. 

 

 

9. In vivo, simultaneous CXCR4 and CB2 inhibition shows superior anti-tumoral and anti-

metastatic activities than the single agent inhibition. 
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Supplemental Table 1 Recurrent somatic mutations in FL 
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Supplemental Figure 1  

 

Figure S1. Prognostic value of CXCR4 and CB2. (A-D) Data plotted in Kaplan-Meier curves for disease free survival 

combining both receptors expression levels. (E-H) Data plotted in Kaplan-Meier curves for overall survival combining both 

receptors expression levels. 
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Supplemental Figure 2  

 

Figure S2. Targeting the crosstalk between CXCR4 and CB2 showed anti-lung metastatic effect. Ex-vivo evaluation of mice 

lungs. At the experiment endpoint, a significant decrease in lungs metastases in animals treated with the CXCR4 

antagonist, KRH3955 (P=0.0055) was observed. Additionally, even a more pronounced decrease was detected in animals 

treated with a combination of CXCR4 antagonist, KRH3955 and CB2 antagonist, JTE907, (P=0.0026). 
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