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Abstract

In this work, we perform a quantum chromodynamics (qcd) analysis on hadronic

τ decays. We make use of the aleph data to fit the strong coupling and higher

order operator product expansion (ope) contributions. Our approach is based on

the qcd sum rules (qcdsr), especially the framework of fixed-order perturbation

theory (fopt), which we apply for the vector + axial-vector (v+a) channel of the

inclusive Cabibbo-allowed hadronic τ decay data. We perform fits using a new

set of analytic weight functions to shed light on the discussion of the impor-

tance of duality violation (dv). Since the inclusion of a model to parametrise

contributions of dv by Boito et al. [12] there has been an ongoing discussion,

especially with the group around Pich [68], which disfavours the usage of the

dv model. Within this work, we want to give a third opinion arguing that dv

are not present in double pinched weights. Even for single pinched weights,

we find that dv are sufficiently suppressed for high precision measurements

of the strong coupling. Another unsolved topic is the discussion of fopt vs

contour-improved perturbation theory (cipt). Beneke et al. [8] have found that

cipt cannot reproduce the Borel summation (bs), while the creators of cipt [70,

58] are in favour of the framework. To investigate the validity of fopt we

apply the bs. The parameters we obtain from both frameworks are in high

agreement. Performing fits in the framework of cipt lead to different results.

Consequently, in the discussion of fopt vs cipt we argue for fopt being the

favoured framework. For our final result of the strong coupling we perform

fits for ten different weights. For each weight, we further fit 20 different mo-

ments by varying the energy limit s0. We select the best fit of each weight in a



final comparison. The fits are in high agreement and the average of the param-

eters we obtain yields a value of αs(m
2
τ) = 0.3261(51) for the strong coupling,

ρ(6) = −0.68(20) for the dimension six ope contribution and ρ(8) = −0.80(38) for

the dimension eight ope contribution.
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Notation and Conventions

Citations are hyperlinked to the bibliography at the end of this work. They are

numerated in squared brackets.

Abbreviations are given in small caps. E.g sm instead of SM.

New terminology will be written cursive in its first appearance.

Every abbreviation is indexed at the end of this thesis.

Important formulas are emphasised by a grey background.

We make use of the abbreviations eq. and fig. for referencing equations and

figures.

The four dimensional metric we use is defined as gµν = diag(1,−1,−1,−1).

Closed contour integrals are denoted by
∮

and executed counter clockwise.

log x represents the natural logarithm of x.





Chapter 1
Introduction

In particle physics, we are concerned about small objects and their interactions.

The smallest of these objects are referred to as elemental particles. Their dynam-

ics are governed by the laws of nature. These laws are organised through

symmetries, which are currently best described by the Standard Model (sm).

The sm classifies all known elementary particles and describes three of the

four fundamental forces: the electromagnetic, the weak and the strong force.

The particles representing matter are contained in two groups of fermionic,

spin-1/2 particles. The former group, the leptons consist of: the electron (e),

the muon (µ), the tau (τ) and their corresponding neutrinos νe, νµ and ντ.

The latter group, the quarks contain u, d (up and down, the so-called light

quarks), s (strange), c (charm), b (bottom or beauty) and t (top or truth). The

three fundamental forces, the sm differentiates, are described through their

carrier particles, the so-called bosons: the photon (γ) for the electromagnetic,

the Z or W boson for the weak and the gluon (g) for the strong interaction.

The Leptons solely interact through the electromagnetic and the weak force

(also referred to as electroweak interaction), whereas the quarks additionally

interact through the strong force. A short summary of the taxonomy of the sm

can be seen in fig. 1.1

From a more mathematical point of view, the sm is a gauge quantum field the-

ory (qft), which is a combination of classical field theory, special relativity and

quantum mechanics. Its fundamental objects are ruled through its gauge group

1



Chapter 1. Introduction

Particles
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Figure 1.1.: Taxonomy of the Standard Model.

SU(3)× SU(2)×U(1). Each of its subgroups introduces a global and a local

gauge symmetry. The global symmetry introduces the charges, which the

fields are carrying. The local symmetry introduces the gauge fields, which

represent the previously mentioned force carriers. Naively every subgroup1

of the gauge group of the standard model is responsible for one of the three

forces:

U(1) the abelian gauge group governs the representation of quantum electrody-

namics (qed), which is commonly known as the electric force. Its global

and local symmetry introduces the electric charge and the photon field.

SU(2) Is the non-abelian symmetry group responsible for the weak interac-

tion. It introduces the W+,W− and Z bosons and the weak charge. The

gauge group U(1) has been merged with SU(2) to form the electroweak

interaction.

SU(3) The SU(3) group is also non-abelian and governs the strong interac-

tions, which are summarised in the theory of qcd. The group yields the

three colour charges and due to its eight-dimensional adjoint represen-

1Actually U(1) and SU(2) have to be regarded as a combined group to be mapped to the

electromagnetic-and weak-force in form of the electroweak interaction.
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Chapter 1. Introduction

tation, eight different gluons.

Unfortunately, we are still not able to include gravity, the last of the four forces,

into the sm. There have been attempts to describe gravity through qft with the

graviton, a spin-2 boson mediator, but there are unsolved problems with the

renormalisation of general relativity (gr). Until now gr and quantum mechanics

(qm) remain incompatible.

Apart from gravity not being included, the sm has a variety of flaws. One

of them is being dependent on many parameters, which have to be measured

accurately to perform high-precision physics. In total, the Lagrangian of the sm

contains 19 parameters. These parameters are represented by ten masses, four

ckm-matrix parameters, the qcd-vacuum angle, the Higgs-vacuum expectation

value and three gauge coupling constants. Highly accurate values with low

errors are crucial for theoretical calculated predictions. One of the major error

inputs of every theoretical output are uncertainties in these parameters. In this

work, we will focus on one of the parameters, namely the strong coupling αs.

Figure 1.2.: The six different subfields

and their results for measuring the

strong coupling αs [82].

The strong coupling is currently measured

in six different ways: through τ decays, qcd

lattice computations, deep inelastic collider

results and electroweak precision fits [82].

We have displayed the values of each of the

methods in fig. 1.2. In this work we will

focus on the subfield of τ decays to mea-

sure the value of the strong coupling αs(m
2
τ)

at the m2
τ scale. We will see that in qcd

the value of the coupling “constant” depends

upon the scale. The τ is an elementary par-

ticle with negative electric charge and a spin

of 1/2. Together with the lighter electron and

muon it forms the group of charged leptons2.

Even though it is an elementary particle it

decays via the weak interaction with a life-

time of ττ = 2.9× 10−13 s and has a mass of

2Leptons do not interact via the strong force.

3
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Figure 1.3.: Feynman diagram of common decay of a τ lepton into pairs of

lepton-antineutrino or quark-antiquark by the emission of a W bo-

son.

1776.86(12)MeV[82]. It is furthermore the only lepton massive enough to de-

cay into hadrons, thus of interest for our qcd analysis. The final states of a

decay are limited by conservation laws. In case of the τ decay, they must con-

serve the electric charge (qe = −1) and invariant mass of the system. Thus, we

can see from the corresponding Feynman diagram fig. 1.33, that the τ decays by

the emission of a W boson and a tau-neutrino ντ into pairs of (e−, ν̄e), (µ−, ν̄µ)

or (q, q̄). We are foremost interested in the hadronic decay channels, meaning

τ decays that have quarks in their final states. Quarks have never been mea-

sured isolated. Due to the τ mass of mτ ≈ 1.8GeV the τ particle decays into

light mesons (pions (π), kaons (K), and eta (η), see table 1.1), which can be ex-

perimentally detected. The hadronic τ decay provides one of the most precise

ways to determine the strong coupling [68] and is theoretically accessible to

high precision within the framework of qcd.

The theory describing strong interactions is qcd. As the name suggest4
qcd

is characterised by the colour charge and is a non-abelian gauge theory with

symmetry group SU(3). Consequently, every quark has next to its type one

of the three colours blue, red or green. The colour force is mediated through

eight gluons, which each being bi-coloured5, interact with quarks and each

3The τ particle can also decay into strange quarks or charm quarks, but these decays are

rather uncommon due to the heavy masses of s and c.
4Chromo is the Greek word for colour.
5Each gluon carries colour and anti-colour.

4



Chapter 1. Introduction

Name Symbol Quark content Rest mass (MeV)

Pion π− ūd 139.570 61(24)MeV

Pion π0 (uū− dd̄)/
√
2 134.9770(5)MeV

Kaon K− ūs 493.677(16)MeV

Kaon K0 ds̄ 497.611(13)MeV

Eta η (uū+ dd̄− 2ss̄)/
√
6 547.862(17)MeV

Table 1.1.: List of mesons produced by a τ decay. Rare final states with branch-

ing ratios smaller than 0.1 have been omitted. The list is taken from

[34] with corresponding rest masses taken from [82].

other. The strength of the strong force is given by the coupling constant αs,

which depends on the renormalisation scale µ. We often choose the renormal-

isation scale in a way that the coupling constant αs(q
2) depends on the energy

q2. Thus the coupling varies with energy. It increases for low and decreases

for high energies6. This behaviour has two main implications. The first one

states, that for low energies the coupling is too strong for isolated quarks to

exist. Until now we have not been able to observe an isolated quark and all

experiments can only measure quark compositions. These bound states are

called hadrons and consist of two or three quarks7, which are referred to as

mesons8 or baryons9 respectively. This phenomenon, of quarks sticking to-

gether as hadrons, is referred to as confinement. As the fundamental degrees of

freedom of qcd are given by quarks and gluons, but the observed particles are

hadrons we need to introduce the assumption of quark-hadron duality to match

the theory to the experiment. This means that a physical quantity should be

similarly describable in the hadronic or quark-gluon picture and that both de-

scriptions are equivalent. Quark-hadron duality is in general violated. These

so-called dv have an impact on our strong coupling determinations and can

be dealt with either suppression or the inclusion of a model [25]. Throughout

this work, we will favour the former approach. The second implication, of the

6In contrast to the electromagnetic force, where α(q2) decreases!
7There exist also so-called exotic hadrons, which have more than three valence quarks.
8Composite of a quark and an antiquark.
9Composite of three quarks or three antiquarks.
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Chapter 1. Introduction

running of αs, concerns perturbation theory (pt). The lower the energies we deal

with, the higher the value of the strong coupling and the contributions of non-

perturbative (np) effects. Currently, there are three solutions to deal with np

effects:

• Chiral Perturbation Theory (chpt): Introduced by Weinberg [86] in the

late seventies. chpt is an effective field theory constructed with a La-

grangian symmetric under a chiral transformation in the limit of mass-

less quarks. Its limitations are based on chiral symmetry, which is only

a good approximation for the light quarks u, d and in some cases s.

• Lattice QCD (lqcd): Is the numerical approach to the strong force. Based

on the Wilson Loops [88] we treat qcd on a finite lattice instead of work-

ing with continuous fields. lqcd has already many applications but is

limited due to its computational expensive calculations.

• QCD Sum Rules (qcdsr): Were also introduced in the late seventies by

Shifman, Vainstein and Zakharov [78, 77]. They relates the observed

hadronic picture to quark-gluon parameters through a dispersion rela-

tion and the use of the ope, which treats np effect through the definition

of vacuum expectation values, the so-called qcd condensates. They are

a precise method for extracting the strong coupling αs at low energies,

although limited to the unknown higher order contributions of the ope.

In this work, we focus on the determination of the strong coupling αs within

the framework of qcdsr for τ decays which has been exploited at the beginning

of the nineties by Braaten, Narison and Pich [19]. Within this setup, we can

measure αs(m
2
τ) at the m2

τ scale. As the strong coupling gets smaller at higher

energies, so do the errors. Thus if we obtain the strong coupling at a low scale

we will obtain high precision values at the scale of the Z boson mass mZ, which

is the standard scale to compare αs values.

The qcdsr for the determination of αs, from low energies, contains three major

issues.

1. There are two different approaches to treat perturbative and non-per-

turbative contributions. In particular, there is a significant difference

between results obtained using fopt or cipt, such that analyses based

6



Chapter 1. Introduction

on cipt generally arrive at about 7% larger values of αs(mτ2) than those

based on fopt [82]. There have been a variety of analyses on the topic

been performed [66, 23, 48] and we will favour the fopt approach.

2. There are several prescriptions to deal with the np contributions of higher

order ope condensates. Typically terms of higher dimension have been

neglected, even if they knowingly contribute. In this work, we will in-

clude every necessary ope term.

3. Finally, there are known dv leading to an ongoing discussion of the im-

portance of contributions from dv. Currently, there are two main ap-

proaches: Either we neglect dv, arguing that they are sufficiently sup-

pressed due to pinched weights [68] or model dv with a sinusoidal ex-

ponentially suppressed function [25, 12, 16] introducing extra fitting pa-

rameters. We will argue for the former method, implementing pinched

weights that sufficiently suppress dv contributions such that dv have

only a negligible effect on our analysis.

In the following chapter, we want to summarise the necessary theoretical back-

ground for working with the qcdsr. Starting with the basics of qcd we want

to motivate the renormalisation group equation (rge), which is responsible for the

running of the strong coupling. We then continue with the two-point function

and its usage in the dispersion relation, which connects the hadronic picture

with the quark-gluon picture. Then we introduce the ope to treat the np part of

qcd before we combine everything to formulate the qcdsr. In the third chap-

ter, we will apply the theory, gathered in the second chapter to τ decays. In the

fourth chapter, we will state and interpret our fitting results before concluding

in the last chapter.

7





Chapter 2
QCD Sum Rules

The theory of qcd was formulated to find one single framework that describes

the many hadrons that exist. Unfortunately making use of perturbative qcd

(pqcd) is limited. qcd predicts a large coupling constant for low energies. As a

consequence, we can only ever observe hadrons, but our theoretical foundation

is ruled by the dof of quarks and gluons. To extract qcd parameters (the six

quark masses and the strong coupling) from hadrons we need to connect the

quark-gluon picture with the hadron picture. To do so we will introduce the

framework of qcdsr.

We will start by setting up the foundations of strong interactions with intro-

ducing the qcd Lagrangian. The qcd Lagrangian is ruled by the abelian gauge

group SU(3). The group implies an energy dependence of the coupling and

thus limits the applicability of pt for low energies, where the coupling is large.

Next, we will focus on the two-point function, which plays a major role in the

framework of qcdsr. The two-point function is defined as vacuum-expectation

values of the time ordered product of two local fields

Πµν(q
2) =

∫
d4 q

(2π)4
eiqx〈Ω|T {Jµ(x)Jν(0)}|Ω〉, (2.0.1)

where Jµ is the Noether current. We can use it to theoretically describe pro-

cesses, as τ decays into hadrons, by matching the quantum numbers of the

fields, we choose in specifying the two-point function, to the outgoing hadrons.

We will see, that the two-point function Π(q2) is related to hadronic states, by

poles for q2 > 0. Here np effects become important and we need to introduce

9



Chapter 2. QCD Sum Rules

the ope, which handles np parts through the qcd condensates. The conden-

sates form part of the full physical vacuum and would not exist regarding the

perturbative vacuum solely. Consequently, the condensates are not accessible

trough pt methods and have to be fitted from experiment or calculated with

the help of np tools, like lqcd. Finally, we will combine a dispersion relation

and Cauchy’s theorem to finalise the discussion on the qcdsr with develop-

ing the finite energy sum rules (fesr), which we will apply to extract the strong

coupling from τ decays into hadrons.

2.1. Quantum Chromodynamics

Since the formulation of qed at the end of the forties, it had been attempted

to construct a qft of the strong nuclear force, which has been achieved in the

seventies as qcd [41, 40, 43, 71, 85]. The fundamental fields of qcd are given

by Dirac spinors of spin 1/2, the so-called quarks, with a fractional electric

charge of ±1/3 or ±2/3. The theory furthermore contains gauge fields of spin

1. These gauge fields are called gluons, do not carry an electric charge and

are massless. They are the force mediators, which interact with quarks and

themselves, because they carry colour charge, in contrast to photons of qed,

which interact only with fermions.

The corresponding gauge group of qcd is the non-abelian group SU(3). Each of

the quark flavours u,d, c, s, t and b belongs to the fundamental representation

of SU(3) and contains a triplet of fields Ψ.

Ψ =


Ψ1

Ψ2

Ψ3

 (2.1.1)

The labels of the triplet are the colours red, green and blue, which play the role

of colour charge, similar to the electric charge of qed. The gluons belong to the

adjoint representation of SU(3), contain an octet of fields and can be expressed

using the Gell-Mann matrices λa

Bµ = Ba
µλa a = 1, 2, . . . 8 (2.1.2)

10
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Flavour Mass

u 2.50(17)MeV

d 4.88(20)MeV

s 93.44(68)MeV

c 1.280(13)GeV

b 4.198(12)GeV

t 173.0(40)GeV

Table 2.1.: List of quarks and their masses. The

masses of the up, down and strange quark

are quoted in the four-flavour theory (Nf =

2 + 1 + 1) at the scale µ = 2GeV in the MS

scheme. The charm and bottom quark are also

taken in the four-flavour theory and in the MS

scheme, but at the scales µ = mc and µ = mb

correspondingly. All quarks except for the top

quark are taken from the Flavour Lattice Av-

eraging Group (FLAG) [4]. The mass of the

top quark is not discussed in [4] and has been

taken from direct observations of top events

[82].

The classical Lagrange density of qcd is given by [90, 63]:

LQCD(x) = −
1

4
Ga

µν(x)G
µνa(x) +

∑
A

[
i

2
q̄A(x)γµ←→D µq

A(x) −mAq̄
A(x)aA(x)

]
,

(2.1.3)

with qA(x) representing the quark fields and Ga
µν being the gluon field strength

tensor given by:

Ga
µν(x) ≡ ∂µB

a
ν(x) − ∂νB

a
µ(x) + gfabcBb

µ(x)B
c
ν(x), (2.1.4)

with fabc as structure constants of the gauge group SU(3) and
←→
D µ as covari-

ant derivative acting to the left and to the right. Furthermore we have used

A,B, . . . = 0, . . . 5 as flavour indices, a,b, . . . = 0, . . . , 8 as colour indices and

11



Chapter 2. QCD Sum Rules

µ,ν, . . . = 0, . . . 3 as Lorentz indices. Explicitly the Lagrangian writes:

L0(x) = −
1

4

[
∂µG

a
ν(x) − ∂vG

a
µ(x)

] [
∂µGν

a(x) − ∂νGµ
a(x)

]
+

i

2
qA

α (x)γ
µ∂µq

A
α (x) −

i

2

[
∂µq

A
α (x)

]
γµqA

α (x) −mAq
A
α (x)q

A
α (x)

+
gs

2
qA

α (x)λ
a
αβγµq

A
β (x)G

µ
a(x)

−
gs

2
fabc

[
∂µG

a
ν(x) − ∂νG

a
µ(x)

]
G

µ
b(x)G

ν
c (x)

−
g2s
4
fabcfadeG

b
µ(x)G

c
ν(x)G

µ
d(x)G

ν
e (x)

(2.1.5)

The first term is the kinetic term for the massless gluons. The next three terms

are the kinetic terms for the quark field with different masses for each flavour.

The rest of the terms are the interaction terms. The fifth term represents the

interaction between quarks and gluons and the last two terms the self-interac-

tions of gluon fields.

The corresponding Feynman rules have been displayed in fig. 2.1. The rules

are based on pt, but can be enhanced with the qcd condensates, as we will see

in the discussion of the ope in section 2.3

Having derived the Lagrangian leaves us with its quantisation. The Dirac-

spinors can be quantised as in qed without any problems. The Ψ(x) quantum

field can be written as:

Ψ(x) =

∫
d3 p

(2π)32E(~p)

∑
λ

[
u(~p, λ)a(~p, λ)e−ipx + v(~p, λ)b†(~p, λ)eipx

]
, (2.1.6)

where the integration ranges over the positive sheet of the mass hyperboloid

Ω+(m) = {p|p2 = m2,p0 > 0}. The four spinors u(~p, λ) and v(~p, λ) are solutions

to the Dirac equations in momentum space

[/p−m]u(~p, λ) = 0

[/p+m]v(~p, λ) = 0,
(2.1.7)

with λ representing the helicity state of the spinors.

The quantisation of the gauge fields is more cumbersome. One is forced

to introduce supplementary non-physical fields, the so-called Faddeev-Popov

ghosts ca(x) [39], to cancel unphysical helicity degrees of freedom of the gluon

fields.

12
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Figure 2.1.: QCD Feynman rules.
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The free propagators for the quark, the gluon and the ghost fields are then

given by

iS
(0)AB
αβ (x− y) ≡ qA

α (x)q
B
β(y) ≡ 〈0|T {qA

α (x)q
B
β}|0〉 = δABδαβiS

(0)(x− y)

= iδABδαβ

∫
d4 p

(2π)4
/p+m

(p2 −m2 + iε)

iD
(0)µν
ab (x− y) ≡ Bµ

a(x)B
ν
b(y) ≡ 〈0|T {Bµ

a(x)B
ν
b(y)}|0〉 ≡ δabi

∫
d4 k

(2π)4
D(0)µν(k)e−ik(x−y)

= iδab

∫
d4 k

(2π)4
1

k2 + iε

[
−gµν + (1− a)

kµkν

k2 + iε

]
e−ik(x−y)

iD̃
(0)
ab(x− y) ≡ φa(x)φ b(y) ≡ 〈0|T {φa(x)φ b(y)}|0〉 = iδab

∫
d4 q

(2π)4
−1

q2 + iε
e−q(x−y)

≡ iδab

∫
d4 q

(2π)4
D̃(0)(q)e−iq(x−y),

(2.1.8)

The previously introduced Feynman rules and propagators all make use of

the perturbative vacuum |0〉 and thus count as tools of pt. Consequently, they

need a small coupling to approximate excitations of full qcd vacuum. We will

see in the following section, that the strong coupling runs with energy and is

large for small energy scales.

2.1.1. Renormalisation Group

Computing observables with the qcd Lagrangian (eq. 2.1.3) lead to divergen-

cies, which have to be renormalised. To render these divergent quantities finite

we have to introduce a suitable parameter such that the “original divergent

theory” corresponds to a certain value of that parameter. This procedure is

referred to as regularisation and there are various approaches:

• Cut-off regularisation: In cut-off regularisation, we limit the divergent

momentum integrals by a cut-off |~p| < Λ. Here Λ has the dimension of

mass. The cut-off regularisation breaks translational invariance, which

can be guarded by making use of other regularisation methods.

• Pauli-Villars (P-V) regularisation: [64] In P-V regularisation the prop-

agator is forced to decrease faster than the divergence to appear. It re-
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places the nominator by

(~p2 +m2)−1 → (~p2 +m2)−1 − (~p2 +M2)−1, (2.1.9)

where M acts similar to the previously presented cut-off, but conserves

translational invariance.

• Dimensional regularisation: [17, 2, 1] Dimensional regularisation has

been introduced at the beginning of the seventies to regularise non-

abelian gauge theories (like qcd), where Λ- and P-V-regularisation failed.

In dimensional regularisation we expand the four space-time dimensions

to arbitrary D dimensions. To compensate for the additional dimensions

we introduce an additional scale µD−4. A typical Feynman integral then

has the following appearance:∫
d4 p

(2π)4
1

~p2 +m2
→ µ2ε

∫
dD p

(2π)D
1

~p2 +m2
. (2.1.10)

Dimensional regularisation preserves all symmetries and allows easy

identification of divergences and naturally leads to the minimal subtrac-

tion scheme (ms) [1, 84].

In all of the three regularisation schemes, we introduced an arbitrary param-

eter to regularise the divergence. This parameter causes scale dependence of

the strong coupling and the quark masses. As we are mainly concerned with

the non-abelian gauge theory qcd we will focus on dimensional regularisation,

which introduced the parameter µ.

Measurable observables (physical quantities) cannot depend on the renormali-

sation scale µ. Therefore the derivative by µ of a general physical quantity has

to yield zero. A physical quantity R(q,as,m), that depends on the external mo-

mentum q, the renormalised coupling as ≡ αs/π and the renormalised quark

mass m can then be expressed as

µ
d

dµ
R(q,as,m) =

[
µ ∂
∂µ + µdas

dµ
∂

∂as
+ µdm

dµ
∂
∂m

]
R(q,as,m) = 0. (2.1.11)

Equation 2.1.11 is referred to as a renormalisation group equation (rge) and is the

basis for defining the two renormalisation group functions:

β(as) ≡ −µdas
dµ = β1a

2
s +β2a

3
s + . . . β-function (2.1.12)

γ(as) ≡ −
µ

m
dm
dµ = γ1as + γ2a

2
s + . . . anomalous mass dimension. (2.1.13)
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The β-function dictates the running of the strong coupling, whereas the anoma-

lous mass dimension describes the running of the quark masses. We have a

special interest in the running of the strong coupling, but will also shortly sum

up the running of the quark masses.

Running Gauge Coupling

Regarding the β-function, we notice, that as(µ) is not a constant, but that it

runs by varying its scale µ. To better understand the running of the strong

coupling we integrate the β-function∫as(µ2)

as(µ1)

das

β(as)
= −

∫µ2

µ1

dµ
µ

= log
µ1

µ2
. (2.1.14)

We analytically evaluate the above integral by approximating the β-function to

first order, with the known coefficient

β1 =
1

6
(11Nc − 2Nf), (2.1.15)

which yields

as(µ2) =
as(µ1)(

1− as(µ1)β1 log µ1
µ2

) . (2.1.16)

Equation 2.1.16 has some important implications for the strong coupling:

• The coupling at a scale µ2 depends on as(µ1). Thus we have to take care

of the scale µ while comparing different values of αs. In the literature

(e.g. [82]) αs is commonly compared at the Z boson scale of around

91GeV . As we are extracting the strong coupling at the mass of the

τ lepton, around 1.776GeV we need to run the strong coupling up to

the desired scale. While running the coupling, we have to take care of

the quark thresholds. Each quark gets active at a certain energy scale,

which leads to running of αs as shown in fig. 2.2. Typically one runs the

coupling with the aid of software packages like RunDec [29, 44], which

has also been ported to support C (CRunDec, [74]) and Python [80].

• As we have three colours (Nc = 3) and six flavours (Nf = 6) the β1 co-

efficient 2.1.12 is positive. Thus for the two scales µ2 < µ1 the strong
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Figure 2.2.: Running of the strong coupling αs(Q
2) at first order. The blue

line represents the uncorrected coupling constant, with an Λnf=5

chosen to match an experimental value of the coupling at Q2 =

M2
Z. The quark-thresholds are shown by the black line and the

corrected running is given by the red line. We additionally marked

the breakdown of pt with a grey background for Q2 < 1. The image

is taken from a recent review of the strong coupling [36].
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coupling as(µ2) increases logarithmically and at a scale of µ2 = 1GeV

reaches a value of

αs(1GeV) ≈ 0.5, (2.1.17)

which questions the applicability of pt for energies lower than 1GeV (as

seen from the grey zone in fig. 2.2).

• A large coupling for small scales implies confinement. We are not able

to separate quarks in a meson or baryon. No quark has been detected

as single particle yet. This is qualitatively explained with the gluon field

carrying colour charge. These gluons form so-called flux-tubes between

quarks, which cause a constant strong force between particles regardless

of their separation. Consequently, the energy needed to separate quarks

is proportional to the distance between them and at some point, there

is enough energy to favour the creation of a new quark pair. Thus be-

fore separating two quarks, we create a quark-antiquark pair. We will

probably never be able to observe an isolated quark. This phenomenon

is referred to as colour confinement or simply confinement.

• With the first β coefficient being positive we notice that for increas-

ing scales (µ2 > µ1) the coupling decreases logarithmically. This leads

to asymptotic freedom, which states, that for high energies (small dis-

tances), the strong coupling becomes diminishing small and quarks and

gluons do not interact. Thus in isolated baryons and mesons, the quarks

are separated by small distances, move freely and do not interact.

From the rge, we have seen, that not only the coupling but also the masses

carry an energy dependency.

Running Quark Mass

The mass dependence on energy is governed by the anomalous mass dimension

γ(as). Its properties of the running quark mass can be derived similarly to

the gauge coupling. Starting from integrating the anomalous mass dimension

eq. 2.1.13

log
m(µ2)

m(µ1)
=

∫as(µ2)

as(µ1)
das

γ(as)

β(as)
(2.1.18)
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we can solve the integral analytically by approximating the anomalous mass

dimension to first order

m(µ2) = m(µ1)

(
a(µ2)

a(µ1)

)γ1
β1 (

1+O(β2,γ2)
)

. (2.1.19)

As β1 and γ1 (see B.2) are positive the quark mass decreases with increasing

µ. The general relation between different scales is given by

m(µ2) = m(µ1) exp

(∫as(µ2)

as(µ1)
das

γ(as)

β(as)

)
(2.1.20)

and can be solved numerically to run the quark mass to the needed scale µ2.

Both, the β-function and the anomalous mass dimension are currently known

up to the 5
th order and listed in the appendix B.1.

We will make use of the anomalous dimension while running the quark masses

for np contributions, which include the quark masses at different energy scales.

qcd, in general, has a precision problem caused by uncertainties and largeness

of the strong coupling constant αs. The fine-structure constant (the coupling

of qed) is known to eleven digits, whereas the strong coupling is only known

to about four. Furthermore, for low energies, the strong coupling constant is

much larger than the fine-structure constant. E.g. at the Z mass, the standard

mass to compare the strong coupling, we have an αs of 0.11, whereas the fine

structure constant would be around 0.007. Consequently to use pt we have to

calculate our results to higher orders, including tens of thousands of Feynman

diagrams, in qcd to achieve a precision equal to qed. For even lower energies,

around 1GeV , the strong coupling reaches a critical value of around 0.5 leading

to a break down of pt.

In this work, we try to achieve higher precision in the value of αs. The frame-

work we use to measure the strong coupling constant is the qcdsr. A central

object needed to describe hadronic states with the help of qcd is the two-point

function for which we will devote the following section.
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2.2. Two-Point Function

In analogy to the Green’s function for elemental fields we can define a propa-

gator for composite currents referred to as two-point function

Π(x) = 〈Ω|T {J(x)J(y)}|Ω〉, (2.2.1)

where T {· · · } is the time-ordered product and |Ω〉 is the ground state/vacuum

of the interacting theory. Note that the fields are in general given in the Heisen-

berg picture, which implies translational invariance.

〈Ω|φ(x)φ(y)|Ω〉 = 〈Ω|φ(x)eiP̂ye−iP̂yφ(y)eiP̂ye−iP̂y|Ω〉

= 〈Ω|φ(x− y)φ(0)|Ω〉,
(2.2.2)

where we made use of the translation operator T̂(x) = e−iP̂x.

In this work, we are especially concerned about the vacuum expectation value

of the Fourier transform of two time-ordered qcd quark Noether currents

ΠΓ (p
2) ≡

∫
d4 x

(2π)4
eipx〈Ω|T

{
JΓ (x)JΓ (0)

}
|Ω〉, (2.2.3)

where the Noether current is given by

JΓ (x) = q (x)Γq(x). (2.2.4)

Here, Γ can be any of the following Dirac matrices Γ ∈ {1, iγ5,γµ,γµγ5}, spec-

ifying the quantum number of the current (scalar (s), pseudo-scalar (p), vector

(v) and axial-vector (a), respectively). By choosing the right quantum numbers

we can theoretically represent the processes we want to study, which will be

important when we want to describe the hadrons produced in τ decays.

qq

τ ν τ

τ ντ

Figure 2.3.: ττ -annihila-

tion with a quark-anti-

quark pair.

From a Feynman diagram point of view, we can illus-

trate the two-point function as quark-antiquark pair,

which is produced by an external source, e.g. the vir-

tual W boson of ττ annihilation as seen in fig. 2.3. Here

the quarks are propagating at short distances, which im-

plies that we can make use of pt, thus avoiding long-
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distance/npt effects, that would appear if the initial and final states where

given by hadrons [30]. It is interesting to note, that the same process with

the help of the optical theorem can be used to derive the total decay width of

hadronic tau decays.

2.2.1. Short Distances vs. Long Distances

If we want to calculate the two-point function in qcd we have to differentiate

short and long distances (large or small momenta). In general when we talk

about small distances we refer to large momenta. Large momenta imply a

small strong coupling. Consequently, we can use pt for short distances with-

out problems. On the contrary, long distances involve small momenta, which

implies a large coupling constant. Thus for long distances, the np effects be-

come important and have to be dealt with. To apply pt to the case of the ττ

annihilation we need the quark-antiquark pair of fig. 2.3 to be highly virtual1.

To roughly separate long distances from short distances using a length scale,

we can say that the length scale should be smaller than the radius of a hadron.

2.2.2. Relating the Two-Point Function to Hadrons

The two-point function can be interpreted physically as the amplitude of prop-

agating single- or multi-particle states and their excitations. The possible

states, in our case, the hadrons we describe through the correlator, are fixed

by the quantum numbers of the current, we define for the vacuum expectation

value. For example, the neutral ρ meson is a spin-1 vector meson with a quark

content of (uu − dd )/
√
2. Consequently by choosing a current

Jµ(x) =
1

2
(u (x)γµu(x) − d (x)γµd(x)) (2.2.5)

the two-point function contains the same quantum numbers as the ρ meson

and is said to materialise to it. A list of some ground-state mesons for combi-

nations of the light quarks u,d and s is given in table 2.2.

1Which is the same as saying, that the quark-antiquark pair needs a high external momentum

q.
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Symbol Quark content Isospin J Current

π+ ud 1 0 : uγµγ5d :

π0 uu−dd
2 1 0 : uγµγ5u+ dγµγ5d :

η uu+dd−2ss√
6

0 0 : uγµγ5u+ dγµγ5d− 2s γµγ5s :

η′ uu+dd+ss√
3

0 0 : uγµγ5u+ dγµγ5d+ s γµγ5s :

ρ0 uu−dd√
2

1 1 : uγµu− dγµd :

ω uu+dd√
2

0 1 : uγµu+ dγµd :

φ ss 0 1 : s γµγ5s:

K+ us 1
2 0 : uγµγ5s :

K0 ds 1
2 0 : dγµγ5s :

Table 2.2.: Ground-state vector and pseudoscalar mesons for the light quarks

u,d and s with their corresponding currents in the two-point func-

tion. Note that we use γµ for vector and γµγ5 for the pseudoscalar

mesons.

The correlator is materialising into a spectrum of hadrons. Thus if we insert a

complete set of states of hadrons we can make use of the unitary relation

〈Ω|Jµ(x)Jν(0)|Ω〉 =
∑
X

〈Ω|Jµ(x)|X〉〈X|Jν(0)|Ω〉 (2.2.6)

to represent the two-point correlator via a spectral function ρ(t)

Π(p2) =

∫∞
0

ds
ρ(s)

s− p2 − iε
. (2.2.7)

The above relation is referred to as Källén-Lehmann spectral representation [53, 59]

or dispersion relation. It relates the two-point function to the spectral function

ρ, which can be represented as a sum over all possible hadronic states

ρ(s) = (2π)3
∑
X

∫
dΠX

∣∣〈Ω|Jµ(0)|X〉
∣∣2 δ4(s− pX). (2.2.8)

Note that the analytic properties of the two-point function are in one-to-one

correspondence with the newly introduced spectral function and thus deter-

mined by the possible hadrons states, which only form on the positive real axis.

A full derivation of the Källén-Lehmann spectral representation can be found in
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complex q2-plane

isolated pole
“continous 

discontinuity”

Im(q2)

Re(q2)

complex q2-planeIm(q2)

Re(q2)

Figure 2.4.: Analytic structure in the complex q2-plane of the Fourier transform

of the two-point function. The hadronic final states are responsible

for poles appearing on the real-axis. The single-particle states con-

tribute as an isolated pole and the multi-particle states contribute

as bound states poles or a continues “discontinuity cut” [65, 92].

[72]. The spectral function is interesting to us for two reasons. First, it is ex-

perimentally measurable and second it carries a “branch cut”, which we want

to discuss now.

2.2.3. Analytic Structure of the Two-Point Function

The general two-point function ρ(s) has some interesting analytic properties.

It has poles for single-particle states and a continuous branch cut for multi-

particle states. The single-and multi-particle states, for a general correlator,

can mathematically be separated by

ρ(s) = Zδ(s−m2) + θ(s− s0)σ(s), (2.2.9)

where the second term is the contribution from multi-particle states. σ(s) is

zero until we reach the threshold, where we have sufficient energy to form

multi-particle states. The analytic structure is depicted by fig. 2.4 and we

can see that the spectral function has δ spikes for single-particle states and a

continuous contribution for s > 4m resulting from multi-particle states. These

lead to poles and a continuous branch cut of the two-point function.
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2.2.4. Decompositions

Apart from the spectral decomposition we can also Lorentz decompose the

two-point function or write it in terms of v, a, s and p contributions.

Lorentz decomposition

Due to the Lorentz invariance of the two-point function, and by assuming

the conservation of the Noether current, we can apply the Ward identity to

decompose the correlator Πµν into its scalar contribution Π.

There exist only two possible terms that can guard the structure of the second

order tensor: qµqν and q2gµν. The sum of both multiplied with two arbitrary

functions A(q2) and B(q2) yields

Πµν(q
2) = qµqνA(q2) + q2gµνB(q

2). (2.2.10)

By assuming that we deal with equal quark flavours and that the vector current

is conserved, i.e. ∂µjµ(x) = 0, we can make use of the Ward identity

qµΠµν = 0 (2.2.11)

to demonstrate, that the two arbitrary functions are related

qµqνΠµν = q4A(q2) + q4B(q2) = 0

=⇒ A(q2) = −B(q2).
(2.2.12)

Thus redefining A(q2) ≡ Π(q2) we expressed the correlator as a scalar function

of spin 1

Πµν(q
2) = (qµqν − q2gµν)Π

(1)(q2). (2.2.13)

In case of a current of different quark flavours, the current will not be con-

served and we cannot apply the Ward identity. Consequently, the standard

Lorentz decomposition into transversal and longitudinal components reads

Πµν(q2) = (qµqν − gµνq2)Π(1)(q2) + qµqνΠ(0)(q2). (2.2.14)
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Transversal and Longitudinal Relations

By comparing the standard Lorentz decomposition (eq. 2.2.14) with the decom-

position into v/a and s/p parts we can identify the longitudinal components

of the correlator as being purely scalar. The latter decomposition can be writ-

ten as [20, 52]

q2Πµν(q2) = (qµqν − q2gµν)ΠV ,A(q2) + gµν(mi ∓mj)Π
S,P(q2)

+ gµν(mi ∓mj)
[
〈Ω|q iqi|Ω〉 ∓ 〈Ω|q jqj|Ω〉

]
,

(2.2.15)

where the third term is a correction arising due to the physical vacuum |Ω〉.
By multiplying eq. 2.2.15 by two four-momenta and making use of the Ward

identity eq. 2.2.11 we can write

qµqνΠ
µν(q2) = (mi ∓mj)

2ΠS,P(q2) + (mi ∓mj)[〈q iqi〉 ∓ 〈q jqj〉], (2.2.16)

which then can be related to the longitudinal component of eq. 2.2.14 by com-

parison with

qµqνΠ
µν(q2) = q4Π(0)(q2) = s2Π(0)(s) with s ≡ q2, (2.2.17)

leading to

s2Π(0)(s) = (mi ∓mj)
2Π(S,P)(s) + (mi ∓mj)[〈q iqi〉 ∓ 〈q jqj〉]. (2.2.18)

Note that all appearing mass terms are related to the longitudinal component.

As the τ decays, with the limiting factor of the tau mass, can only decay into

light quarks we will often neglect the quark masses and work in the so-called

chiral limit (mq → 0), in which the longitudinal component is going to vanish.

By defining a combination of the transversal and longitudinal correlator

Π(1+0)(s) ≡ Π(1)(s) +Π(0)(s) (2.2.19)

we can additionally relate the transversal and vectorial components via

Πµν(s) = (qµqν − gµνq2)Π(1)(s) + (qµqν − gµνq2)Π(1)(s)︸ ︷︷ ︸
=(qµqν−gµνq2)Π(1+0)(s)

+
gµνs2

q2
Π(0)(s), (2.2.20)
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such that

Π(V ,A)(s) = Π(1)(s) +Π(0)(s) = Π(1+0)(s), (2.2.21)

where the vector/axial-vector component of the correlator is now related to

the newly defined transversal and longitudinal combination of the correlator.

Having dealt exclusively with the perturbative part of the theory, we have

to discuss np contributions. These arise due to non-negligible long distance-

effects. Thus to complete the needed ingredients for the qcdsr we need a final

ingredient the ope, which treats the np contributions of our theory.

2.3. Operator Product Expansion

The ope was introduced by Wilson in 1969 [89] as an alternative to the in this

time commonly used current algebra. The expansion states that products of

operators at different space-time points can be rewritten into a sum of com-

posite local operators and their corresponding coefficients:

lim
x→y

A(x)B(y) =
∑
n

Cn(x− y)On(x), (2.3.1)

where Cn(x− y) are the so-called Wilson coefficients and A,B and On are opera-

tors.

The ope lets us separate short distances from long distances. In pure pt, we

can only amount for short distances, which are equal to high energies, where

the strong coupling αs is small. The ope on the other hand accounts for long-

distance effects with higher dimensional operators. Applying the ope to the

two-point function we get a sum over the vacuum expectation values

ΠOPE(q
2) = −

1

3q2

∑
n

〈Ω|On(0)|Ω〉
∫

d4 xeiqxCn(x). (2.3.2)

The form of the composite operators is dictated by gauge and Lorentz symme-

try. For the two-point function in eq. 2.3.2 we only have to consider operators

On of dimension

d (On) 6 (D− 4) + 2N. (2.3.3)
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The scalar operators up to dimension six are then given by [63]

Dimension 0: 1

Dimension 4: : miqq :

: Gµν
a (x)Ga

µν(x) :

Dimension 6: : q Γqq Γq :

: q Γ λa

2 qβ(x)q Γ λa

2 q :

: miq
λa

2 σµνqG
µν
a :

: fabcG
µν
a Gνδ

b G
δµ
c :,

(2.3.4)

where Γ stands for one of the possible Dirac matrices (as seen eq. 2.2.4). Note,

that the D = 2 operator violates gauge symmetry and is consequently excluded

from our list. Within pt only the unit operator would exist, as the higher di-

mensional operators would appear as normal ordered products of fields and

vanish by being sandwiched into the perturbative vacuum. On the contrary, in

np qcd, they appear as condensates. Condensates are the vacuum expectation

values of non-vanishing, normal ordered, fields by applying the full qcd vac-

uum, which contribute to all strong processes. For example, the condensates

of dimension four are the quark-condensate mi〈qq〉 and the gluon-condensate

〈GG〉.

As long as working with dimensionless functions (e.g. the correlator Π in

eq. 2.3.2), the right-hand side (rhs) of eq. 2.3.1 has to be dimensionless. As a

result, the Wilson coefficients have to cancel the dimension of the operator with

their inverse mass dimension. To account for the dimensions we can make the

inverse momenta explicit

ΠOPE
V/A (s) =

∑
D=0,2,4...

C(D)〈Ω|O(D)(x)|Ω〉
(−q2)D/2

, (2.3.5)

where we used c(D) = C(D)/(−s)D/2 with D being the dimension. Thus the ope

should converge with increasing dimension for sufficiently large momenta s.

2.3.1. A practical example

Let us show how the ope contributions are calculated with a standard exam-

ple [78, 63]. We will compute the perturbative and quark condensate Wilson
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q q

p

q-p
q q

p

(a) (b)

Figure 2.5.: Feynman diagrams of the perturbative (a) and the quark-

condensate (b) contribution. The upper part of the right diagram

is not Wick contracted and responsible for the condensate.

coefficients for the ρ meson. To do so we have to evaluate Feynman diagrams

using standard pt.

The ρ meson is a vector meson of isospin one composed of u and d quarks. As

a result (see. table 2.2) we can match its quantum numbers with the current

Jµ(x) =
1

2

(
: [uγµu](x) − [dγµd](x) :

)
. (2.3.6)

Pictorial the dimension zero contribution is given by the quark-antiquark loop

Feynman diagram in fig. 2.5. The higher dimension contributions are given

by the same Feynman diagram, but with non-contracted fields. These non-

contracted fields contain the condensates. Thus not contracting the quark-

antiquark field (see. fig. 2.5 b) will give us access to the Wilson coefficient of

the dimension four-quark condensate mi〈qq〉.

The perturbative part (the Wilson coefficient of dimension zero) can then be

taken from the mathematical expression for the scalar correlator

Π(q2) = −
i

4q2(D− 1)

∫
dD xeiqx〈Ω|T {: u (x)γµu(x) − d (x)γµd(x) :

× : u (0γµu(0) − d (0)γµd(0) :}〉.
(2.3.7)

To extract the dimension zero Wilson coefficient we apply Wick’s theorem to

contract all of the fields, which represents the lowest order of the perturbative

contribution. The calculation is solely using standard pt and we will restrict
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ourselves in displaying the result and omitting the calculation2

Π(q2) =
i

4q2(D− 1)
(γµ)ij(γµ)kl

∫
dD xeiqx

×
[
ujα(x)u kβ(0) · ulβ(0)u iα(x) + (u→ d)

]

=
3

8π2

5
3
− log

(
−
q2

ν2

) .

(2.3.8)

To calculate the higher dimensional contributions of the ope we use the same

techniques as before. We apply Wick’s theorem, but in this case, due to the np

vacuum, we have non-vanishing vacuum expectation value of normal ordered

products of fields. Thus some of the fields are left uncontracted, as can be

graphically seen in fig. 2.5. For leaving the quark field uncontracted in eq. 2.3.7

we get

Π(q2) =
i

4q2(D− 1)
(γµ)ij(γµ)kl

∫
dD xeiqx

[
+ ujα(x)u kβ(0) · 〈Ω| : u iα(x)ulβ(0) : |Ω〉

+ulβ(0)u iα(x) · 〈Ω| : u kβ(0)ujα(x) : |Ω〉+ (u→ d)

]
,

(2.3.9)

where (u → d) is representing the previous expressions with u and d inter-

changed. Here we can observe the condensates as non-vanishing vacuum val-

ues of the normal ordered product of fields:

〈ΩQCD| : q (x)q(0) : |ΩQCD〉 6= 0. (2.3.10)

We emphasised the qcd vacuum ΩQCD, which is responsible for vacuum ex-

pectation values different than zero. E.g. for a vacuum of qed this contribu-

tions would vanish by definition. Pictorial the condensates take the form of

unconnected propagators, sometimes marked with an ×, as seen in fig. 2.5.

To make the non-contracted fields local, we can expanded them in x

〈Ω| : q (x)q(0) : |Ω〉 = 〈Ω| : q (0)q(0) : |Ω〉

+ 〈Ω| :
[
∂µq (0)

]
q(0) : |Ω〉xµ + . . . ,

(2.3.11)

2The interested reader can follow [63] for a detailed calculation.
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where terms with derivatives lead to higher dimensional operators, which can

be seen by applying the equation of motions. We then can focus on the first

term and introduce a standard notation for the localised condensate

〈qq〉 ≡ 〈Ω| : q (0)q(0) : |Ω〉. (2.3.12)

Finally, the contribution to the ρ scalar correlator is then given by the following

expression

Π(ρ)(q
2) =

1

2

1

(Q)2

[
mu〈uu〉+md〈dd〉

]
, (2.3.13)

where we defined Q ≡ −q2. Here we can clearly see that for dimension four

we get a factor of 1/(Q)2, which is responsible for the suppression of the se-

ries. The condensates 〈uu〉 and 〈dd〉 are numbers, that have to be derived by

phenomenological fits or computed from lqcd. Fortunately once found, the

value of the condensate can be used for any process.

In summary, we note that the usage of the ope and its validity is far from

obvious. Until today there is no analytic proof of the ope. Furthermore, we

are deriving the ope from matching the Wilson coefficients to Feynman graph

analyses. These Feynman graphs are calculated perturbatively but the coeffi-

cients with dimension D > 0 correspond to np condensates! The condensates

by themselves have to be gathered from external, np methods.

Now that we have a tool to deal with the qcd vacuum and npt effects we are

left with two problems. First, we still do not know how to deal with hadronic

states in the quark-gluon picture. This will be tackled by duality. Secondly,

we have seen that we can access the two-point function theoretically on the

physical sheet except for the positive real axis, due to its analytic properties.

Unfortunately, the experimental measurable spectral function is solely be de-

fined on this positive real axis, which is theoretically not accessible. To match

the theory with the experiment we will have to apply Cauchy’s theorem. In

the final section of this chapter, we will combine the two-point function, the

ope, duality and Cauchy’s theorem to formulate the qcdsr.
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2.4. Sum Rules

The qcdsr are a method to connect the degrees of freedom (dof) of qcd, the

quarks and gluon fields, to the dof of the vacuum spectrum of hadrons,

thereby allowing for the determination of the strong coupling. To do so we

have to treat the in section 2.2 introduced two-point function np with the help

of the ope

Π(s)→ ΠOPE(s). (2.4.1)

qcdsr furthermore introduce an ad hoc assumption, namely quark-hadron du-

ality, stating that the observable hadron picture can be equally described by

the qcd quark-gluon picture and that both pictures are equally valid. As the

experimentally measured hadronic states are represented in poles and cuts on

the positive real axis of the two-point function, which we have encountered in

the analytic properties of its spectral decomposition, we will follow the pre-

scription of qcdsr to apply Cauchy’s theorem and weight functions to take care

of perturbative complications close to the positive real axis.

2.4.1. The Dispersion Relation

We have already seen the Källén-Lehmann spectral representation in eq. 2.4.2.

The general dispersion relation is defined to have an additional polynomial

function P(s)

Π(s) =

∫∞
0

ρ(s′)

s′ − s− iε
+ P(s), (2.4.2)

which accounts for the fact, that the two-point function increases for large s,

but the integral on the rhs cannot reproduce this behaviour. For example the

vector correlator carries only a constant and the scalar correlator a linear poly-

nom. The two-point function is, in general, an unphysical quantity, whereas

the spectral function ρ(s) is a physical quantity. As a result, the polynomial

accounts for the unphysical scale dependency of the two-point function.
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2.4.2. Duality

qcd treats quarks and gluon as its fundamental dof, but due to confinement,

we are only ever able to observe hadrons. The mechanism that connects the

two worlds is the quark-hadron duality (or simply duality), which implies that

physical quantities can be described equally good in the hadronic as in the

quark-gluon picture. Thus we can connect experimental detected values with

theoretically calculated values from the two-point function in the dispersion

relation eq. 2.4.2 as

Πth(s) =

∫∞
0

ρ(s′)exp
s′ − s− iε

+ P(s), (2.4.3)

where we connected the theoretical correlator Πth with the experimental mea-

surable spectral function ρexp. We can represent duality as, substituting the

two-point function [24]

Π(s)→ ΠOPE(s). (2.4.4)

If this approximation carries no error, we would say that the experimental

spectral function is dual to the ope. On the contrary, if the substitution is not

exact we are missing contributions, which are represented by so-called dv.

Duality Violations

There exist situations where we cannot make use of duality as an assumption.

These situations are referred to as dv and belong to the np part of the theory.

It is often assumed that by applying the ope to all orders we account for all

np effects, including dv. Unfortunately, this assumption is only partly right.

Even if we could compute the ope to all orders, we would still experience

discrepancies to our theoretical results. In general, it is said, that if we have

deviations beyond the natural uncertainty of the ope we call them dv [76]. E.g.

if we compute Π(s) to orders of α2 and 1
Q4 , while we cutoff higher orders (α3

and 1
Q6 ) we get a natural error because we have not calculated the full series.

Values of the hadronic spectral density, out of range of the natural error, are

then referred to as dv.

A detailed discussion of duality has been given by the Shifman in [76].
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Figure 2.6.: Visualisation of the usage of Cauchy’s theorem to transform

eq. 2.4.2 into a closed contour integral over a circle of radius s0.

2.4.3. Finite Energy Sum Rules

To theoretically calculate the two-point function we have to integrate the exper-

imental data ρexp(s) from zero to infinity. No experiment will ever take data for

an infinite momentum s. For τ decays we are limited to energies around the τ

mass of 1.776GeV . To deal with the upper integration limit several approaches

have been made. One of them, the Borel transform, is to exponentially suppress

higher energy contributions (see [87, 72]). The technique we are focusing on

is called finite energy sum rules (fesr) and introduces an energy cut-off. We

thus integrate the experimental data ρ(s) only to a certain energy s0. Further-

more, we have to theoretically evaluate the integral over the spectral function

of the dispersion relation (eq. 2.4.2), which includes singularities caused by the

hadronic spectrum. As a result, we have to apply Cauchy’s theorem∮
C

f(z) = 0, (2.4.5)

which states that any integral over an analytic function f(z) on a closed contour

C has to be zero. Thus we can construct a contour to avoid the positive prob-

lematic real axis. Pictorial the contour is drawn in fig. 2.6 and mathematically

we can express it as∮
Π(s) =

∫ s0
0

Π(s+ iε) −Π(s− iε)ds+
∫2π−α(ε)

0+α(ε)
Π(s0e

iθ)dθ+
∫π/2
3π/2

Π(εeiθ)dθ.

(2.4.6)
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If we make to use of Schwartz reflection principle:

f(z) = f(z), (2.4.7)

which can be applied if f(z) is analytic and maps only to real values on the

positive real axis, we can express the integrand of the first integral of eq. 2.4.6

as the imaginary part of the two-point function

Π(s+ iε) −Π(s− iε) = Π(s+ iε) −Π∗(s+ iε) = 2i ImΠ(s+ iε), (2.4.8)

which is by definition equal to the spectral function

ρ(s) ≡ ImΠ(s)

π
. (2.4.9)

After taking the limit of small ε we can relate the line integral with the lower

limit zero and the upper limit s0 and the experimental spectral function as

integrand to a theoretical accessible circular contour integral of radius s0∫ s0
0

ρ(s) =
−1

2πi

∮
|s|=s0

Π(s)ds, where we applied ε→ 0. (2.4.10)

Note that the unphysical contribution of the polynomial in eq. 2.4.2 cancel in

the contour integral.

We are free to multiply the upper equation with an analytic function ω(s),

which completes the fesr∫ s0
0

ω(s)ρ(s) =
−1

2πi

∮
|s|=s0

ω(s)ΠOPE(s)ds (2.4.11)

where the left-hand side (lhs) can be taken from the experiment and the rhs

by the theoretically evaluated correlator ΠOPE(s). The analytic function ω(s)

plays the role of a weight. It can be used to further suppress the non-pertur-

bative contributions coming from dv and also enhance or suppress different

contributions of the ope as we will see.

2.4.4. Weighting OPE dimensions

We have seen that the perturbative part of the two-point function carries a

discontinuity on the positive real axis. Consequently, we applied Cauchy’s
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theorem to avoid the non-analytic part of the two-point function. This left us

with non-closed contour integral for the perturbative part of the ope, which

will always contribute. On the other hand, the strength of the higher dimen-

sion contributions of the ope can be modified. We can use different weights to

control the dimensions of the ope that contribute. The weights we are using

have to be analytic so that we can make use of Cauchy’s theorem. Thus they

can be represented as polynomials

ω(x) =
∑
i

aix
i, (2.4.12)

every contributing monomial is responsible for a dimension of the ope. Di-

mensions that are not represented in the weight polynomial do not contribute

at all or are very suppressed as we will demonstrate now.

The residue of a monomial xk is only different from zero if its power k = −1:

∮
C
xk dx = i

∫2π
0

(
eiθ
)k+1

dθ =

2πi if k = −1,

0 otherwise
. (2.4.13)

We will see in discussing the total τ decay ratio, that the integrand of the

closed-contour integral in eq. 2.4.11 for the different ope contributions is the

weight function divided by a term proportional to xD/2, where D is the di-

mension of the contributing ope operator. If we regard solely a monomial as

weight and neglect all terms of no interest to us we can write

R′(x)
∣∣
D=0,2,4... =

∮
|x|=1

dx
xk

x
D
2

CD

=

∮
|x|=1

dx xk−D/2CD,
(2.4.14)

where CD are the D dimensional Wilson coefficients. We can make use of

eq. 2.4.14 as we neglect the logarithmic corrections of dimension four ope con-

tributions and use a simple ansatz for the higher order ope dimension, which

treats the Wilson coefficients as a constant. Thus combining eq. 2.4.13 with

eq. 2.4.14 we see that only dimensions which fulfil

k−D/2 = −1 =⇒ D = 2(k+ 1) (2.4.15)

contribute to the ope. For example, the polynomial of the kinematic weight

ωτ(s) ≡
(
1−

s

m2
τ

)(
1+ 2

s

m2
τ

)
(2.4.16)
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monomial: x0 x1 x2 x3 x5 x6 x7

dimension: D(2) D(4) D(6) D(8) D(10) D(12) D(14)

Table 2.3.: List of monomial and their corresponding “active” dimensions in

the ope. Note that the perturbative contributions of the ope are

always present.

, which will appear naturally in the context of the total τ decay ratio, is given

by

(1− x)2(1+ 2x) = 1︸︷︷︸
D=2

−3 x2︸︷︷︸
D=6

+2 x3︸︷︷︸
D=8

, (2.4.17)

where the underbraced monomials express the active dimensions. A list of

monomials and their corresponding dimensions up to dimension 14 can be

found in table 2.3. This behaviour enables us to bring out different dimensions

of the ope and suppress contributions of higher order (D > 10) for which less

is known.

For the interested reader, we gathered several introduction texts to the qcdsr,

which were of great use to us [61, 72, 30, 38].
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The τ lepton is an elementary particle with spin 1/2 and a mass of 1.776 86GeV

[82]. It is the only lepton heavy enough to decay into hadrons but also light

enough for performing a low-energy qcd analysis. Its inclusive hadronic1

decay ratio is given by

Rτ =
Γ(τ→ ντ + hadrons)

Γ(τ→ ντe−ν e)
(3.0.1)

and sensible to the strong coupling, due to its rather large value, at the m2
τ

scale, of approximately 0.33. On the other hand αs(m
2
τ) is small enough to

apply the ope. The np ope contributions to the decay ratio are suppressed.

The dimension two contributions of the ope are proportional to the quark

masses and have only a tiny contribution for light quarks. The dimension four

contributions can be suppressed by applying weight functions, that do not

have a monomial term x. E.g. the kinematic weight ωτ = (1− x)2(1+ 2x) = 1−

3x2 + 2x3 is not sensitive to ope corrections of dimension four. The dimension

six contributions of the ope are suppressed by a factor of 1/s3. They are further

suppressed in the v+a channel, as the vector and axial-vector contributions

have opposite signs and partly cancel themselves. Higher dimensional ope

contributions are suppressed by terms of 1/s2n with n > 4. As a result, the

perturbative contributions are dominant. They are known up to order O(α4
s)

with a total contribution of 20% to Rτ [69], which enables us to perform precise

calculations of the inclusive τ decay ratio. Extracting αs at low energies leads

1Meaning all decay channels with a hadron in its final state.
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to low errors for αs at high energies. The strong coupling and their errors run

and get smaller with increasing energy. We compare the strong coupling at

the Z-boson scale of around 91GeV . Consequently the strong coupling at m2
Z

from inclusive tau decays has especially low errors.

Hadronic τ decays permit one of the most precise determinations of the strong

coupling αs. Building on the previously presented qcdsr we will now elabo-

rate the needed theory to extract αs from the process of hadronic τ decays.

3.1. The Inclusive τ Decay Ratio

The theoretical expression of the inclusive hadronic τ decay ratio (eq. 3.0.1) is

given by

Rτ(s) = 12π

∫mτ

0

ds
m2

τ

(
1−

s

m2
τ

)[(
1+ 2

s

m2
τ

)
ImΠ(1)(s) + ImΠ(0)(s)

]
, (3.1.1)

where we omitted the electroweak correction (SEW) and Cabibbo-Kobayashi-

Maskawa (ckm) matrix element squared (|Vud|
2). For brevity the two factors

will be implicitly included. Equation 3.1.1 was first derived in [83], using cur-

rent algebra, a more recent derivation making use of the optical theorem can be

taken from [75]. Notice that we used the standard Lorentz decomposition into

transversal (J = 1) and longitudinal (J = 0) components of eq. 2.2.14 to display

the hadronic decay ratio (eq. 3.1.1).

Applying Cauchy’s theorem, as seen in eq. 2.4.11, to the eq. 3.1.1 we can rewrite

the line integral into a closed contour integral

Rτ = 6πi

∮
s=mτ

ds
m2

τ

(
1−

s

m2
τ

)[(
1+ 2

s

m2
τ

)
Π(1)(s) +Π(0)(s)

]
. (3.1.2)

It is convenient to work with a slightly different combination of transversal and

longitudinal components Π(1+0), which has been defined in eq. 2.2.19 and is

free of kinematic singularities. As a result, we can further rewrite the hadronic

τ decay ratio into

Rτ = 6πi

∮
|s|=mτ

ds
m2

τ

(
1−

s

m2
τ

)2
[(

1+ 2
s

m2
τ

)
Π(1+0)(s) −

(
2s

m2
τ

)
Π(0)(s)

]
. (3.1.3)
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In the case of τ decays we only have to consider vector and axial-vector contri-

butions of decays into up, down and strange quarks.

With eq. 3.1.3 we have a suitable physical quantity that can be theoretically

calculated as well as experimentally measured. By using the qcdsr we apply

a closed contour integral of radius s0. As a result, we successfully avoid low

energies at which the application of pt would be questionable. For example,

by choosing a radius with the size of the τ mass mτ ≈ 1.78MeV the strong

coupling has a perturbatively safe value of αs(m
2
τ) ≈ 0.33 [68]. Obviously, we

would benefit even more from a contour integral over a bigger circumference,

but τ decays are kinematically limited by their mass. Nevertheless, there are

promising e+e− annihilation data, which yield inclusive decay ratio values up

to 2GeV [14][54].

3.1.1. Renormalisation Group Invariance

We have seen in section 2.2, that the two-point function is not a physical quan-

tity, due to the dispersion relation (eq. 2.4.2) containing an unphysical poly-

nom. Luckily for the vector correlator, appearing in hadronic τ decays, the

polynom is just a constant. Consequently, we can take the derivative with

respect to the momentum s to derive a physical quantity from the two-point

function:

D(s) ≡ −s
d
ds

Π(s). (3.1.4)

D(s) is called the Adler function and fulfils, as all physical quantities, the rge

(eq. 2.1.11). The Adler function commonly has separate definitions for the

longitudinal plus transversal and the solely longitudinal contributions:

D(1+0)(s) ≡ −s
d
ds

Π(1+0)(s), D(0)(s) ≡ s

m2
τ

d
ds

(sΠ(0)(s)). (3.1.5)

The two-point functions in eq. 3.1.3 can now be replaced with the help of

partial integration∫b
a
u(x)V(x)dx =

[
U(x)V(x)

]b
a
−

∫b
a
U(x)v(x)dx. (3.1.6)
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We will perform two separate computations for the (1+ 0) and (0) case. Start-

ing by the transversal plus longitudinal contribution we get:

R
(1)
τ =

6πi

m2
τ

∮
|s|=m2

τ

(
1−

s

m2
τ

)2(
1+ 2

s

m2
τ

)
︸ ︷︷ ︸

=u(x)

Π(1+0)(s)︸ ︷︷ ︸
=V(x)

=
6πi

m2
τ


[
−
m2

τ

2

(
1−

s

m2
τ

)3(
1+

s

m2
τ

)
Π(1+0)(s)

]
|s|=m2

τ

+

∮
|s|=m2

τ

−
m2

τ

2

(
1−

s

m2
τ

)3(
1+

s

m2
τ

)
︸ ︷︷ ︸

=U(x)

d
dsΠ

(1+0)(s)︸ ︷︷ ︸
=v(x)


= −3πi

∮
|s|=m2

τs

ds
s

(
1−

s

m2
τ

)3(
1+

s

m2
τ

)
d
dsD

(1+0)(s),

(3.1.7)

where we fixed the integration constant to c = −
m2

τ
2 in the second line and

left the antiderivatives contained in the squared brackets untouched. If we

parametrise the integral appearing in the expression in the squared brackets

we can see that it vanishes:[
−
m2

τ

2

(
1− e−iφ

)3 (
1+ e−iφ

)
Π(L+T)(m2

τe
−iφ)

]2π
0

= 0, (3.1.8)

where s → m2
τe

−iφ and (1− e−i·0) = (1− e−i·2π) = 0. Repeating the same calcu-

lation for the longitudinal part yields

R
(0)
τ =

∮
|s|=m2

τ

ds
(
1−

s

m2
τ

)2(
−

2s

m2
τ

)
Π(0)(s)

= −4πi

∮
ds
s

(
1−

s

m2
τ

)3

D(0)(s).

(3.1.9)

Consequently combining the transversal with the longitudinal contribution re-

sults in

Rτ = −πi

∮
|s|=m2

τ

ds
s

(
1−

s

m2
τ

)3
[
3

(
1+

s

m2
τ

D(1+0)(s) + 4D(0)(s)

)]
. (3.1.10)

It is convenient to define x = s/m2
τ such that we can rewrite the inclusive ratio

into

Rτ = −πi

∮
|s|=m2

τ

dx
x
(1− x)3

[
3(1+ x)D(1+0)(m2

τx) + 4D(0)(m2
τx)
]

, (3.1.11)

40



Chapter 3. Tau Decays into Hadrons

which will be the final expression used to express the inclusive τ decay ratio.

3.2. Theoretical Computation of Rτ

The previously derived expression for the τ decay ratio is at first approxima-

tion equal to the number of colours [65]

Rτ ≈ Nc. (3.2.1)

If we take the perturbative δpt and non-perturbative δnpt contributions into

account we can organise the vector and axial-vector inclusive decay ratio as

Rω
τ,V/A =

Nc

2

(
1+ δωpt + δωnpt

)
. (3.2.2)

Note that the factor 1/2 comes from the fact, that in the chiral limit the vec-

tor and axial-vector contributions are equal. The dependence on the chosen

weight function ω is reflected in the upper indices.

For the kinematic weight (eq. 2.4.16), which appears naturally in the τ decay

ratio, we have a dominant perturbative contribution of δpt ≈ 20% to Rτ [66] and

a minor, but non-negligible, np contribution of δNP
V+A . 1% [51] for the V +A-

channel.

In the following, we want to derive the theoretical expressions needed to cal-

culate both of the corrections to eq. 3.2.2 starting with the perturbative one.

3.2.1. The Perturbative Contribution

The perturbative contribution δpt to the inclusive τ decay ratio corresponds

to the first term of the ope. Currently, the perturbative expansion has been

calculated to fourth order O(α4
s). Due to their role as dominant corrections,

their uncertainties from unknown higher-order corrections dictate the final

error of the determination of the strong coupling [68].

We will treat the correlator in the chiral limit, in which the scalar and pseudo-

scalar contributions of the two-point function vanish and the axial and vecto-

rial contributions are equal. As a result, we can focus on the vector correlator
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(a) (b) (c)

Figure 3.1.: Feynman loop diagrams to calculate the cn,k coefficients of the ex-

panded correlator Π
(1+0)
V . The internal red lines represent gluons.

Diagram a) represents the parton model and diagrams b) and c)

represent higher order corrections.

ΠV(s), which can be expanded as a sum over different orders of α [8]:

Π
(1+0)
V (s) = −

Nc

12π2

∞∑
n=0

an
µ

n+1∑
k=0

cn,kL
k with L ≡ ln

−s

µ2
, (3.2.3)

where we defined aµ ≡ α(µ)/π. The coefficient cn,k up to two-loop order can

be obtained by Feynman diagram calculations. With the diagrams of fig. 3.1

we can calculate the one-loop result of the correlator [50]

ΠB(q2)
∣∣∣1−loop

=
Nc

12π2

(
1

ε̂
− log

(−q2 − i0)

µ2
+

5

3
+O(ε)

)
, (3.2.4)

where ΠB
µν(q

2) is the bare two-point function2. This result can then be used to

extract the first two coefficients of the correlator expansion given in eq. 3.2.4

c0,0 = −
5

3
and c0,1 = 1. (3.2.5)

The second loop can also be calculated by diagram techniques resulting in [10]

Π
(1+0)
V (s)

∣∣∣2−loop
= −

Nc

12π2
aµ log(

−s

µ2
) + · · · . (3.2.6)

From the above equation we can then extract the Adler coefficient c1,1 = 1.

Beginning from three loop diagrams the algebra becomes exhausting and one

has to use dedicated algorithms to compute the higher loops. The third loop

calculations have been done in the late seventies [28, 37, 27]. The four loop

evaluation has been completed a little more than ten years later [42, 81]. The

2The term 1/ε̂, which is of order zero in αs, is not present in the Adler function or the

imaginary part of the correlator.
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highest calculated loop, that amounts to α4
s, was published in 2008 [5] almost

20 years later.

By fixing the number of colours to Nc = 3, we can write the missing coefficients

up to order four in αs:

c2,1 =
365

24
− 11ζ3 −

(
11

12
−

2

3
ζ3

)
Nf

c3,1 =
87029

288
−

1103

4
ζ3 +

275

6
ζ5

−

(
7847

216
−

262

9
ζ3 +

25

9
ζ5

)
Nf +

(
151

162
−

19

27
ζ3

)
N2

f

c4,1 =
78631453

20736
−

1704247

432
ζ3 +

4185

8
ζ23 +

34165

96
ζ5 −

1995

16
ζ7,

(3.2.7)

where we used the flavour number Nf = 3 for the last line.

The six loop calculation has until today not been computed, but Beneke and

Jamin [8] made an educated guess to estimate the coefficient

c5,1 ≈ 283± 283. (3.2.8)

We often see c5,1 applied to estimate the perturbative errors related to missing

higher order contributions.

In stating the coefficients cn,k of the correlator expansion we have restricted

ourselves to k indices equal to one. This is due to the rge, which relates coeffi-

cients with k different than one to coefficients with k equal to one (cn,1). Con-

sequently, the vector correlator Π1+0
V (s) needs to be transformed into a physical

quantity, which can be achieved by applying the derivative with respect to s,

yielding the previously defined Adler function (eq. 3.1.5). The correct expres-

sion for the correlator expansion in eq. 3.2.4 is then given by

D
(1+0)
V = −s

dΠ(1+0)
V (s)

ds
=

Nc

12π2

∞∑
n=0

an
µ

n+1∑
k=1

kcn,kL
k−1, (3.2.9)

where we used dLk/ds = k ln(−s/µ2)k−1(−1/µ2). Applying the rge (eq. 2.1.11)

to the scale-invariant Adler function yields

− µ
d

dµ
D

(1+0)
V = −µ

d
dµ

(
∂
∂L dL+ ∂

∂as
das

)
D

(1+0)
V =

(
2 ∂
∂L +β ∂

∂as

)
D

(1+0)
V = 0,

(3.2.10)
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where we made use of the β-function, which is defined in eq. 2.1.12, and of

the expression dL/dµ = −2/µ.

The relation between the correlator expansion coefficients can then be taken

by calculating the Adler function for a desired order and plugging it into the

rge. For example, the Adler function to the second order in αs is expressed as

D(s) =
Nc

12π2

[
c01 + aµ(c11 + 2c12L) + a2

µ(c21 + 2c22L+ 3c23L
2)
]

. (3.2.11)

Inserting the newly obtained Adler function into eq. 3.2.11 yields

4aµc12 + 2a2
µ(2c22 + 6c23L) +β1a

2
µ(c11 + 2c12L) +O(a3

µ) = 0. (3.2.12)

From this equation, we can compare the coefficients order by order in αs to

constrain the Adler function coefficients. At order αµ only the c12 term is

present and has to be zero. For O(a2
µL) solely c23 exists as c12 = 0 and has to

vanish. Finally for O(a) we can relate c22 with c11 resulting in

c12 = 0, c22 =
β1c11
4

and c23 = 0. (3.2.13)

Implementing the newly obtained Adler coefficients we can write out the

Adler function to the first order:

D(s) =
Nc

12π2

[
c01 + c11aµ

(
c21 −

1

2
β1c11L

)
a2
µ

]
+O(a3

µ). (3.2.14)

We have used the rge to relate Adler function coefficients and thus only need

to know the coefficients of type cn,1. Unfortunately, as we will see in the follow-

ing section, the rge gives us two different choices to compute the perturbative

contribution to the inclusive τ decay ratio.

Renormalisation Group Summation

By making use of the rge we have to decide about the order of mathematical

operations we perform. As the all order perturbative contribution δpt is inde-

pendent on the scale µ we are confronted with two choices, namely fopt and

cipt. Each of them yields a different result, which is the main source of error

in extracting the strong coupling from τ decays.

44



Chapter 3. Tau Decays into Hadrons

Working in the chiral limit additionally permits us to neglect the longitudi-

nal contribution D(0), in eq. 3.1.11 of the perturbative contribution δpt of Rτ

(eq. 3.2.2). Thus inserting the expansion of D
(1+0)
V into the hadronic τ decay

width eq. 3.1.11 yields

δpt =

∞∑
n=1

an
µ

n∑
k=1

kcn,k
1

2πi

∮
|x|=1

dx
x
(1− x)3(1+ x) log

(
−m2

τx

µ2

)k−1

, (3.2.15)

where the contributions from the vector and axial-vector correlator are identi-

cal in the massless case.

To continue evaluating the perturbative part we can now either follow the

description of fopt or cipt.

In fopt, we fix the renormalisation scale at the τ mass (µ2 = m2
τ), which leaves

us with the integration over the logarithm, as can be seen in

δ
(0)
FOPT =

∞∑
n=1

a(m2
τ)

n
n∑

k=1

kcn,kJk−1, (3.2.16)

where the contour integrals Jl are defined by

Jl ≡
1

2πi

∮
|x|=1

dx
x
(1− x)3(1+ x) logl(−x). (3.2.17)

The integrals Jl up to order α4
s are given by [8]:

J0 = 1, J1 = −
19

12
J2 =

265

72
−

1

3
π2, J3 = −

3355

288
+

19

12
π2. (3.2.18)

Using fopt the strong coupling a(µ) is fixed at the τ mass scale a(m2
τ) and can

be taken out of the closed-contour integral. Thus we solely have to integrate

over the logarithms log(x).

Using cipt, on the contrary, we can sum the logarithms by setting the scale to

µ2 = −m2
τx in eq. 3.2.16, resulting in:

δ
(0)
CI =

∞∑
n=1

cn,1J
a
n(m

2
τ), (3.2.19)

where the contour integrals Jan are defined by

Jan(m
2
τ) ≡

1

2πi

∮
|x|=1

dx
x
(1− x)3(1+ x)an(−m2

τx). (3.2.20)
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Note that all logarithms vanish, except the ones with index k = 1:

log(1)k−1 =

1 if k = 1,

0 k 6= 1
(3.2.21)

which selects the Adler function coefficients cn,1. Handling the logarithms

left us with the integration of the strong coupling αs(−m2
τx) over the closed-

contour
∮
|x|=1, which now depends on the integration variable x.

In general, we have to decide if we want to perform a contour integration with

a constant strong coupling parameter and variable logarithms (fopt) or “con-

stant logarithms” and a running coupling (cipt). To emphasise the differences

in both approaches we can calculate the perturbative contribution δ(0) to Rτ for

the two different prescriptions yielding [8]

α2
s α2

s α3
s α4

s α5
s

δ
(0)
FOPT = 0.1082+ 0.0609+ 0.0334+ 0.0174(+0.0088) = 0.2200(0.2288) (3.2.22)

δ
(0)
CIPT = 0.1479+ 0.0297+ 0.0122+ 0.0086(+0.0038) = 0.1984(0.2021). (3.2.23)

The series indicate, that cipt converges faster and that both series approach

a different value. fopt has larger contributions than cipt, which leads to a

smaller strong coupling if using fopt. The discrepancy, between fopt and

cipt, represents currently the biggest theoretical uncertainty for extracting the

strong coupling.

As today fopt or cipt are equally valid approaches to calculate the perturba-

tive contributions, even though it has been stated by Beneke et al. [8] to favour

the former. Within this work, we will further elaborate on the consistency of

fopt and do not state our results in cipt.

3.2.2. The Non-Perturbative OPE Contributions

The perturbative contributions to the sum rule are the dominant one, but np

have to be taken into account. The contributions of the np part can be quoted

as [51]

δNP
V+A,FOPT = −0.086(80), (3.2.24)
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which are small, but not negligible. The np ope contributions are commonly

categorised by even, increasing dimensions. Contributions of dimension larger

than eight are normally neglected, due to the increasing suppression by factors

of 1/sD, where D stands for the corresponding dimension.

The dimension two contributions are proportional to the quark masses and

vanish while working in the chiral limit. Consequently, we will neglect them

and start by stating the D = 4 contributions.

3.2.3. Dimension Four Corrections

The next apparent ope contributions are of dimension four. Here we have to

take the terms with masses to the fourth power (m4) into account, the quark

condensate multiplied by a mass (m〈qq〉) and the gluon condensate (〈GG〉).
The resulting expression can be taken from the appendix of [67], yielding:

D
(1+0)
ij (s)

∣∣∣
D=4

=
1

s2

∑
n

Ω(1+0)(s/µ2)an, (3.2.25)

where the Ω(1+0)(s/µ2) is given by

Ω
(1+0)
n (s/µ2) =

1

6
〈aGG〉p(1+0)

n (s/µ2) +
∑
k

mk〈q kqk〉r
(1+0)
n (s/µ2)

+ 2〈miq iqi +mjq jqj〉q
(1+0)
n (s/µ2)± 8

3
〈mjq iqi +miq jqj〉t

(1+0)
n

−
3

π2
(m4

i +m4
j )h

(1+0)
n (s/µ2)∓ 5

π2
mimj(m

2
i +m2

j )k
(1+0)
n (s/µ2)

+
3

π2
m2

im
2
jg

(1+0)
n (s/µ2) +

∑
k

m4
kj

(1+0)
n (s/µ2) + 2

∑
k6=l

m2
km

2
lu

(1+0)
n (s/µ2).

(3.2.26)

The perturbative expansion coefficients are known to second order O(a2) for

the condensate contributions,

p
(1+0)
0 = 0, p

(1+0)
1 = 1, p

(1+0)
2 = 7

6 ,

r
(1+0)
0 = 0, r

(1+0)
1 = 0, r

(1+0)
2 = −5

3 +
8
3ζ3 −

2
3 log(s/µ2),

q
(1+0)
0 = 1, q

(1+0)
1 = −1, q

(1+0)
2 = −131

24 + 9
4 log(s/µ2)

t
(1+0)
0 = 0 t

(1+0)
1 = 1, t

(1+0)
2 = 17

2 + 9
2 log(s/µ2).

(3.2.27)
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while the m4 terms have been only computed to first order O(a)

h
(1+0)
0 = 1− 1/2 log(s/µ2), h

(1+0)
1 = 25

4 − 2ζ3 −
25
6 log(s/µ2) − 2 log(s/µ2)2,

k
(1+0)
0 = 0, k

(1+0)
1 = 1− 2

5 log(s/µ2),

g
(1+0)
0 = 1, g

(1+0)
1 = 94

9 − 4
3ζ3 − 4 log(s/µ2),

j
(1+0)
0 = 0, j

(1+0)
1 = 0,

u
(1+0)
0 = 0, u

(1+0)
1 = 0.

(3.2.28)

The gluon and quark condensates depend on the scale µ2, but we can ex-

press them in the form of the scale-invariant gluon- and quark-condensate

[79], which are combinations of the minimally subtracted operators

β1〈aG2〉I ≡ β(s)〈Gµν
(a)

G
(a)
µν 〉+ 4γ(a)

∑
i=u,d

〈miq iqi〉

−
3

4π2

∑
i,j=u,d

m2
im

2
jγ

ij
0 (a) (3.2.29)

〈miq jqj〉I ≡ 〈miq jqj〉+
3mim

3
j

7π2a

{
1−

53

24
a+O(a2)

}
, (3.2.30)

where γ
ij
0 (a) = −2− 8/3a. During this work, we will insert the known invariant

quark condensates (see table A.1) as constants and state our results for the

invariant gluon condensate.

3.2.4. Dimension Six and Eight Corrections

Our application of dimension six contributions is founded in [19]. They have

previously been calculated beyond leading order by [55]. The operators ap-

pearing are the masses to the power six (m6), the four-quark condensates

(〈qqqq〉), the three-gluon condensates (〈g3G3〉) and lower dimensional con-

densates multiplied by the corresponding masses, such that in total the mass

dimension of the operators will be six. The largest contributions come from the

4-quark operators. The three-gluon condensate does not contribute at leading

order [45] and is neglected. Operators proportional to the light quark masses

will also be neglected. The resulting contributions of dimension six operators

have been calculated in [55] and lead to many operators, which until today

cannot be accurately determined by phenomenology methods. To reduce the
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number of operators we can make use of the vacuum saturation approximation

(vsa) [8, 19, 78]. The vsa is used to express the four-quark condensates as

squares of quark-antiquark condensates (〈q iqj〉2. If we apply the vsa to first

order in αs, we can write out the dimension six ope contributions

D1+0
ij,V/A(s)

∣∣∣
D=6

=
32π2

3
a(µ)

〈q iqi(µ)〉〈q jqj〉
s3

−
32

7
π2aµ

〈q iqi〉2〈q jqj〉2

s3
. (3.2.31)

Unfortunately, the scaling properties of the dimension six contributions are

inconsistent with the scaling properties of the 4-quark operators [62, 47] and

terms of order α2
s are usually ignored. In addition to the scaling problematic,

the vsa is known to underestimate the dimension six contribution [56].

In our work we, take the simplest approach possible. We introduce an effective

dimension six coefficient ρ(6)
V/A

divided by the appropriate power in s

D
(1+0)
ij,V/A(s)

∣∣∣
D=6

= 3
ρ
(6)
V/A

s3
. (3.2.32)

Here we also neglected the scale dependence of the dimension six operators,

which is determined by the anomalous dimension. We have calculated the

leading-order anomalous dimension matrices corresponding to the dimension

six four-quark operators of flavour non-diagonal, as well as flavour diagonal,

mesonic vector and axial-vector currents in [11].

For higher dimensional contributions the situation is not better than the di-

mension six one. Up to dimension twelve we will keep the simplest approach

of introducing a parameter for every ope dimension leading to

D
(1+0)
ij,V/A

∣∣∣
D=8

= 4
ρ
(8)
V/A

s4
, D

(1+0)
ij,V/A

∣∣∣
D=10

= 5
ρ
(10)
V/A

s5

and D
(1+0)
ij,V/A

∣∣∣
D=12

= 6
ρ
(12)
V/A

s6
.

(3.2.33)

The np contribution of dimension twelve is the highest order that we are going

to implement. Higher orders will be neglected. Next, to the np treatment of

the ope, we have to discuss possible dv.
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3.3. Duality Violations

As seen in section 2.4.2 we have to assume quark-hadron duality for the qcdsr

to work. Unfortunately, duality is always to some extent broken through so-

called dv, which are well known [25, 26]. Experimental data show an oscillat-

ing behaviour that cannot be reproduced by the ope. Moreover, in the large

Nc limit, it can be shown that dv have an exponential decreasing, sinusoidal

appearance [24]. Consequently, for the cases with apparent dv, we have to

include the corrections coming from dv and adapt eq. 3.2.2, leading to

Rω
τ,V/A =

Nc

2
SEW |Vud|

2
(
1+ δωpt + δωnpt + δωdv

)
, (3.3.1)

where we extracted δdv from δnpt, even though dv are np. The dv corrections

have been modelled with the following ansatz [26]

ρDV
V/A(s) = e−(δV/A+γV/As) sin(αV/A +βV/As), (3.3.2)

which contains four parameters for the vector and another four parameters

for the axial-vector contribution. Note that for fitting the kinematic weight in

the V-channel, which is known to be sensible for dv at lower energies [12], we

would have seven parameters instead of only three. By including the model,

we append the dv as an additional term in the inclusive τ decay ratio

Rτ,V/A = −πi

∮
|s|=m2

τ

dx
x
(1− x)3

[
3(1+ x)D(1+0)(m2

τx) + 4D(0)(m2
τx)
]
+DV/A(m

2
τ),

(3.3.3)

where the dv contributions would be given as

Dω(m
2
τ) = −12π2

∫∞
m2

τ

ds
m2

τ

ω(s)ρV/A. (3.3.4)

3.3.1. Pinched Weights to avoid DVs

The general qcdsr (eq. 2.4.11) contain a weight function ω, which is not only

used to suppress higher order dimensions, but also dv. The weights that sup-

press dv are so-called pinched weights of the form

ω(s) =

(
1−

s

m2
τ

)k

, (3.3.5)
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Figure 3.2.: Pinched weights (1− s/m2
τ)

k for degrees one to four. We can see

that weights of higher pinching decrease faster, which comes in

handy if we want to suppress dv.

where k is the degree of the pinched weight. The higher the degree of the

pinching, the lower the contribution of the critical region close to the real axis

(see. fig. 3.2). Thus for higher pinchings, we are better protected from dv

effects. For the transversal component of the inclusive τ decay ratio (eq. 3.1.2)

a pinching of second degree appears quite naturally as the kinematic weight

(see eq. 2.4.16). In general, it is said that a double pinched weight is sufficient

to neglect effects caused by dv. In our analysis, we show that double pinched

weights indeed sufficiently suppress dv and that even single pinched weights

lead to acceptable results. Next, to applying pinched weights, we focus on

combinations of vector and axial-vector contributions, which as we will see,

regarding the aleph data have visibly suppressed dv.

3.4. Borel Summation

The Adler function of eq. 3.1.5 is given by a divergent asymptotic series. We

only know the needed Adler function coefficients cn,m up to fifth order. To get
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the best possible sum for such a series we can apply the Borel summation (bs).

The bs is a long known summation method for divergent series introduced by

Émile Borel [18].

Regarding the sum

A =

∞∑
n=0

ak (3.4.1)

we can introduce the faculty of n, which can be rewritten in its integral form

A =

∞∑
n=0

n!
n!

ak =

∞∑
n=0

ak

n!

∫∞
0

e−ttn dt. (3.4.2)

Interchanging the integral and the sum is referred to as the Borel integral

A ≡
∫∞
0

dte−t
∞∑
n=0

ak

n!
tn, (3.4.3)

which contains the Borel transform

B[A](t) =

∞∑
n=0

ak

n!
tn. (3.4.4)

The Borel integral is only valid for Borel transforms with no singularities for

real positive t. In the cases of a valid Borel integral, the bs can now be used

to get exact answers of divergent series, by first applying the Borel transform

and then integrating over it, with the help of the Borel integral.

In our case, we want to calculate the bs of the Adler function given in eq. 3.1.5

to argue if fopt or cipt gives the better approximation to the τ decay ratio. For

convenience, the Adler function is redefined by

12π2

Nc
D1+0

V (s) ≡ 1+ D̂(s) ≡ 1+

∞∑
n=0

rnαs(
√

(s))n+1. (3.4.5)

Following the bs prescription, we apply the Borel transformation to D̃

B[D̂](t) ≡
∞∑
n=0

rn
tn

n!
with t ∈ C. (3.4.6)

As t is a complex number we can study the Borel transform in the so-called

Borel plane. The Borel plane for the Adler function is visualised in fig. 3.3. For

real t the Borel transform of the Adler function has poles. Poles of the Borel
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Figure 3.3.: Singularities in the Borel plane of the Adler function, taken

from[6].

transform are referred to as renormalons [Beneke1999, 91]. We have to distin-

guish between ultraviolet (uv) and infrared (ir) renormalons. uv renormalons

are located at t = m/β0 with positive integer m = 1, 2, . . . and ir renormalons

are located at t = −mβ0 with positive integer m = 2, 3, . . .. The Borel integral

of the redefined Adler function is given by

D̂(α) ≡
∫∞
0

dte−t/αB[D̂](t). (3.4.7)

It is not well defined, due to poles of the positive real axis. Consequently, to

have a valid Borel integral we have to move the contour above or below the

singularities.

The ansatz we use to express the Adler function in terms of the bs was intro-

duced by Beneke et al. [8]. They have built a physical model for the Adler

function series

B[D̂](u) = B[D̂UV
1 ](u) +B[D̂IR

2 ](u) +B[D̂IR
3 ](u) + dPO

0 + dPO
1 u, (3.4.8)

where B[D̂
UV/IR
p ](u) are ansätze for the ultraviolet and infrared appearing renor-

53



Chapter 3. Tau Decays into Hadrons

malon poles

B[D̂IR
p ](u) ≡

dIR
p

(p− u)1+γ̃

[
1+ b̃1(p− u) + b̃2(p− u)2 + . . .

]
(3.4.9)

B[D̂UV
p ](u) ≡

dUV
p

(p+ u)1+γ̄

[
1+ b̄1(p+ u) + b̄2(p+ u)2

]
, (3.4.10)

which have been defined in section five of [8]. As the large order behaviour

of the Adler function is governed by a sign-alternating uv renormalon diver-

gence and the lower-orders are not, only the leading uv singularity has been

included. Furthermore, the intermediate orders are governed by ir renor-

malons. Thus the first two (m = 2 and m = 3) have been included into the

model. The five parameters dUV
1 ,dIR

2 ,dIR
3 ,dPO

0 and dPO
1 have then to be matched

to the known perturbative expansion of the Adler function. They are found to

be [8]

dUV
1 = −0.0156, dIR

2 = 3.16, dIR
3 = −13.5,

dPO
0 = 0.781 and dPO

1 = 0.00766.
(3.4.11)

We will apply the Borel integral of this model to perform fits as an alternative

to fopt.

3.5. Experiment

The τ decay data we use to perform our qcd analysis is from the aleph ex-

periment. The aleph experiment was located at the large-electron-positron (lep)

collider at European Organisation for Nuclear Research (cern) in Geneva. lep

started producing particles in 1989 and was replaced in the late 90s by the

large-hadron-collider (lhc), which makes use of the same tunnel of 27 km cir-

cumference. The data produced within the experiment is still maintained by

former aleph group members led by M. Davier, which have performed reg-

ular updates on the data-sets [35, 32, 73]. The last update was motivated by

Boito et al. [9], who discovered irregularities in the covariances by comparing

data from a Monte Carlo generator with the aleph.

The measured spectral functions for the aleph data are defined in [33] and are
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given for the transverse and longitudinal components separately

ρ
(1)
V/A

(s) =
m2

τ

12|Vud|
2 SEW

B(τ− → V−/A−ντ)

B(τ− → e−ν eντ)

×
dNV/A

NV/A ds

[(
1−

s

m2
τ

)2(
1+

2s

m2
τ

)]−1

ρ
(0)
A (s) =

m2
τ

12|Vud|
2 SEW

B(τ− → π−(K−)ντ)

B(τ− → e−ν eντ)
× dNA

NA ds

(
1−

s

m2
τ

)−2

.

(3.5.1)

The data relies on a separation into vector and axial-vector channels. In the

case of the π this can be achieved via counting. The vector channel is charac-

terised by a negative G-parity, whereas the axial-vector channel has positive G-

parity. A single π carries negative G-parity, thus an even number of π carries

positive G-parity and an odd number of π carry negative G-parity:

n× π =

vector if n is even,

axial-vector otherwise.
(3.5.2)

The separation into vector and axial-vector channel of mesons including strange

quarks, like KK pairs, is more difficult because these are not in general eigen-

states of G-parity and contribute to both V and A channels.

The contributions to the spectral function for the vector, axial-vector and v+a

channels can be seen in fig. 3.4. The dominant modes in the vector case are

decays into two (τ− → π−π0ντ) or four (τ− → π−π−π+π0ντ) pions [34]. The

first of these is produced by an intermediate ρ(770) meson, which in contrary

to the pions carries angular momentum of one and is clearly visible as peak

around 770GeV in fig. 3.4a. The dominant modes in the axial-vector case are

decays into one (τ− → π−ντ) or three (τ− → π−π0π0ντ and τ− → π−π−π+ντ)

pions. Here the three pion final states stem from the a−
1 -meson, which can be

seen as a peak in fig. 3.4b.

We furthermore added the perturbative contribution for a fixed αs(mτ) = 0.329

using fopt in fig. 3.4c. We can see, that the perturbative contribution (the blue

line) is an almost straight line and cannot reproduce the oscillating behaviour,

given by the aleph data. This is especially the case for the not combined v

and a channel and is seen as an indicator for dv. Even including np, higher
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Figure 3.4.: Visualisation of the vector, axial-vector and V+A spectral function

given by the aleph data [35] in red with errors. We also plotted

the FOPT theoretical calculation up to third order in αs, for a fixed

αs(m
2
τ) = 0.329 in blue. Note that the perturbative contributions

cannot fully represent the experimental data. They do not repro-

duce the sinusoidal form.
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dimensions of the ope is not reproducing the wavy structure. In the case of

v+a channel, we have a higher agreement between our perturbative graph

and the data. In general, we believe that dv are sufficiently suppressed if

we limit ourselves to data from the v+a channel. We will argue in favour

of this statement in the following chapter. This is only the case for energies

larger than 1.5GeV , as the ρ resonance of the v channel is impossible to be

represented by perturbative tools. For lower energies dv become too important

to be neglected.

3.5.1. Total τ Decay Ratio from Experimental Data

The data has been last revised in 2014 [35] and is publicly available [31]. It con-

sists of the mass squared bin centre (sbin), the bin size (dsbin), the normalised

invariant mass squared distribution (sfm2), the total errors (derr) and their cor-

relations (corerr). To make the data comparable to our theoretical calculations

we have to give the normalised invariant mass squared distribution (sfm2) in

the form of the total decay ratio Rτ. The data is given as the normalised invari-

ant mass squared distribution (dNi/ds)/Ni scaled by a factor 100 and further

normalised to the corresponding branching ratio i ∈ {V,A,V+A}. Thus we can

connect the branching ratio of the ith channel to sfm2 as follows

BV/A ≡
∫ sτ
0

ds
sfm2V/A(s)

100
≡

∫ sτ
0

dsBV/A

(
dNV/A

NV/A ds

)
, (3.5.3)

where we used sτ ≡ m2
τ. The total decay ratio Rτ is defined as the ratio τ de-

caying into hadrons and τ decaying into electrons. It and can be expressed via

the corresponding branching ratios, which can be connected to the invariant

mass squared distribution sfm2

Rτ,V/A =
BV/A

Be
=

∫ sτ
0

ds
sfm2V/A(s)

100Be
. (3.5.4)

Theoretically, the decay ratio is given in eq. 3.0.1. If we neglect the longitudinal

contribution ImΠ(0)(s) and remember the definition of the spectral function

(eq. 2.4.9) and the kinematic weight (eq. 2.4.16), we can write the decay ratio

as

Rτ,i =

∫ sτ
0

ds
sτ

ωτ(s)ρ(s) (3.5.5)
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and thus relate the spectral function to the experimental data

ρ(s) =
sτ

12π2100Be

sfm2

ωτ
. (3.5.6)

To fit the experimental data we define a so-called spectral function moment (or

moment)

I
exp,ω
i ≡

∫ s0
0

ds
s0

ω

(
s

s0

)
ρ(s), (3.5.7)

which will be used in our χ2 fits, explained in the upcoming section. The data

is given for discrete bins so we have to express the integral of the spectral

function moment as a sum over those bins. The final expression we use to fit

parameters to the experimental data is then given by

Iωexp,V/A(s0) =
sτ

100Bes0

N(s0)∑
i=1

ω
(
si
s0

)
ωτ

(
si
sτ

) sfm2V/A(si). (3.5.8)

3.6. The Method of Least Squares

We apply the method of least squares (ls) to fit the parameters ~α from the exper-

imental data. Our χ2-function can be expressed as

χ2 =
(
I
exp
i − Ithi (~α)

)
C
exp
ij

−1
(
I
exp
j − Ithj (~α)

)
, (3.6.1)

where Iexp/Ith is a vector of experimental moments/theoretical moments with

the same weight, but different energy cutoffs s0, labelled by the indeces i and

j. Cexp is the covariance matrix describing the correlation of the different ex-

perimental moments C
exp
ij = cov[Iexpi I

exp
j ], which can be computed by the given

correlation matrix of the aleph data.

We aim to minimise the value of χ2, which will fix the parameter vector ~α. The

properties of the χ2-function are well known and the best fits are characterised

through χ2/dof ≈ 1, where the dof of the fit can be calculated through

dof = experimental moments − parameters. (3.6.2)

E.g. if we want to fit αs and the dimension four Wilson coefficient C4 we get

7− 2 = 5 dof.
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The values we obtain for χ2/dof for stable fits are smaller than one. We explain

this behaviour with missing correlations in the aleph data. Consequently we

will declare chi2/dof < 1 as good, if the chi2/dof is not close to zero.

For our purposes, we use the numerical minimisation computer program mi-

nuit, which was originally written in fortran by Fred James in the seventies

[46]. Today in its second version the program has been ported to C++ by the

root [21] project at cern.

The parameter vector ~α includes the strong coupling αs, and higher dimen-

sional ope contributions. We should have at least as many, if not more mo-

ments as the parameters count. We are limited to fit a set of only a few param-

eters, because moments of similar weights are highly correlated.

It is possible to increase the number of moments used by applying multiple

weights ω. Unfortunately using different weights leads to even higher corre-

lated moments, which cause numerical complications in inverting the covari-

ance matrix in eq. 3.6.1. To handle the high correlations we have to redefine

our fit quality.

3.6.1. Block Diagonal “Fit-Quality”

For fits including multiple weights, which we do not perform in this work, we

can redefine ls [16] to

Q2 =
∑
ω

∑
si0,sj0

(
Iexpω (si0) − Ithω (si0, ~α)

)
C̃−1
ij,ω

(
Iexpω (sj0) − Ithω (sj0, ~α)

)
, (3.6.3)

where the covariance matrix C̃ is now a diagonal of the experimental covari-

ance matrices C
exp
ω for each weight

C̃ =


C
exp
ω=1 0 . . . 0

0 C
exp
ω=2

. . . ...
... . . . . . . 0

0 . . . 0 C
exp
ω=n

 . (3.6.4)

As a result, we are still able to invert the newly defined covariance matrix

C̃, but minimisation routines like CERN minuit are not able to calculate the
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proper errors for the parameters we want to extract. We have to perform our

own error propagation to obtain meaningful errors for the parameters. The

error propagation has been derived in [12, 10] and is given as

〈δαkαl〉 = A−1
kmA−1

ln

∂Ithi (~α)

∂αm

∂Ithr (~α)

∂αn

C̃−1
ij C̃

−1
ij 〈δI

exp
k δI

exp
l 〉, (3.6.5)

where

Akl =
∂Ith(~α)

∂αk

C−1
ij

Ithj (~α)

αl
. (3.6.6)
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Table 4.1.: Timeline

1991 • [19]: Systematic description,

including np corrections to

extract αs from Rτ.

1992 • [57]: Introducing weights

and fit methodology.

1993 • [22] aleph measures the

strong coupling constant αs.

1998 • [3] opal measures the strong

coupling constant αs.

2005 • [73] aleph improves their

data.

2011 • [12, 9]: Include dv. Discover

inconsistencies in aleph

data.

2014 • [35] aleph updates their

data.

The strong coupling has been mea-

sured for many years from hadronic τ

decays. An overview of the recently,

but different, αs values can be seen in

fig. 4.1. Until today qcdsr applied to

τ decays are based on the methodol-

ogy developed in the early nineties by

Braaten, Pich and Narison [19]. They

gathered at this time available pertur-

bative and np contributions to extract

the strong coupling from comparing

their theoretical results to the known

inclusive hadronic τ decay ratio. Pich

together with Le Diberder then formu-

lated the fitting strategy of applying

multiple moments of different weights

to extract αs parallel to Wilson coeffi-

cients of the ope [57], which later has

been applied as standard in the aleph [22] as well as the opal [3] detectors.

For the next ten years, the methodology of extracting the strong coupling did

not experience any major changes until 2011 when Boito, Cata, Golterman,

Jamin, Osborn and Peris [12] applied a duality model to include known dv
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0.29 0.30 0.31 0.32 0.33 0.34
2008 - Beneke et al.

2014 - Davier et al.

2016 - Pich et al.

2016 - Boito et al.

2018 - PDG mean
αs(m2

τ)

Figure 4.1.: Recent values for αs(m
2
τ) from hadronic τ decays. The dashed line

represents the mean value of 0.3212. The values are taken from [82,

15, 68, 35, 8], from top to bottom.

effects to the qcd analysis of τ decays. The groups around Boito and Pich have

different opinions on the importance of the newly introduced duality model

[68, 15] and consequently, we want to deliver a third, opinion on the subject,

favouring fits without the duality model.

4.1. Fit Strategy

In this work we want to extract αs, argue about the validity of fopt and probe

the importance of dv. Furthermore, we want to measure higher order ope

contributions.

For performing the fits restrict ourselves to the following approximations

• We used the pt expansion of the Adler function up to fifth order, includ-

ing the educated guess of c5,1.

• We ignore the dimension two ope contributions as they are proportional

to the quark masses and we work in the chiral limit.

• We neglect the logarithmic contributions of the dimension four ope cor-
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rections.

• We parametrise contributions of dimension six and higher with a con-

stant divided by the corresponding power in s

D
(1+0)
V/A

∣∣∣
D=d
≡ ρ(d)

sd/2
. (4.1.1)

Our fitting strategy will be in choosing weights of a lower and higher pinch-

ing. Lower pinched weights should be affected by dv, while higher pinched

weights should be protected from dv. As a result in comparing different fits

of lower and higher pinched weights, it should be possible to argue about the

strength of the dv that are (or are not) present.

Our hypothesis is that dv are small enough for fits of the combined v+a chan-

nel in combination with pinched weights. Consequently, we should be able to

extract parameters, like the strong coupling αs from τ decays to high precision

without a dv model.

We will perform our analysis of the dv in the framework of fopt for weights

without a monomial term x. For weights including a monomial term x, we will

apply the bs. To define a fit we have to choose a weight ω and a momentum

s0. The only restriction from choosing a weight is, that, it has to be analytic,

leaving us with a variety of choices. For our strategy, we have chosen three

categories of weights, each of them containing fits with three or four different

ω. A table with an overview of all used weights is given in table 4.2. To test

the stability of the fitted values and have enough dof to fit the higher ope

contributions we furthermore fit every weight for various momenta s0.

To probe the validity of fopt we apply the bs for weights without a mono-

mial term x. If fopt is valid the parameters obtained from both approaches,

the Borel model and fopt, should be similar. cipt leads to different values

compared to fopt, it should be less valid than fopt.

4.2. Fits

In the following, we will show the results of each of the three previously men-

tioned fit categories.
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Symbol Term Expansion ope Contributions

Pi
nc

he
d ωτ (1− x)2(1+ 2x) 1− 3x2 + 2x3 D6,D8

ωcube (1− x)3(1+ 3x) 1− 6x2 + 8x3 − 3x4 D6,D8,D10

ωquartic (1− x)4(1+ 3x) 1− 10x2 + 20x3 − 15x4 + 4x5 D6,D8,D10,D12

M
on

om
ia

l

ωM2 1− x2 1− x2 D6

ωM3 1− x3 1− x3 D8

ωM4 1− x4 1− x4 D10

Pi
nc

he
d
+
x ω1,0 (1− x) 1− x D4

ω2,0 (1− x)2 1− 2x+ x2 D4,D6

ω3,0 (1− x)3 1− 3x+ 3x2 − x3 D4,D6,D8

ω4,0 (1− x)4 1− 4x+ 6x2 − 4x3 + x4 D4,D6,D8,D10

Table 4.2.: Displaying three categories of fits, each containing three to four

weights with their corresponding mathematical expression and the

ope contributions the fitted integral momentum will be sensitive to.

The first category contains the pinched weights without a monomial term x. The

chosen weights are double (ωτ), triple (ωcube) and quadruple (ωquartic) pinched

and do not contain a monomial term x. An x term would make the fits sen-

sitive to the D = 4 ope contribution, which causes an unreliable perturbative

expansion [7]. The higher the pinching, the higher the suppression of dv. Con-

sequently, if we obtain stable values for αs from the different pinched fits we

should expect the dv to have no influence on the value of the strong coupling.

The different weights imply an increasing number of active ope contributions

D6,D8,D10 and D12, which can be used to probe the stability of higher order

ope contributions and to test for the convergence of the ope.

The second category contains the single pinched monomial weights. In this case,

all of the weights are only single pinched and, as in the first category, do not

carry a monomial term x. Consequently, if dv affect the fits we should notice

different fitting results in comparison to the fits of the first category. Fur-

thermore, the single pinched moments only carry two parameters, the strong

coupling and an ope Wilson coefficient. Thus we can further compare the

ρ(6), ρ(8) and ρ(10) Wilson coefficients and argue about the stability of the fits.
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The third and last category contains a similar pinching as the first category, but

this time contains a monomial term in x. Consequently, these fits are unreliable

in the framework of fopt and we have to apply the bs. Following the logic of

the second and first category, we then can compare the result to analyse the

role of dv and compare the ope contributions.

4.2.1. Pinched Weights without a Monomial term x

Kinematic Weight: ωτ(x) ≡ (1− x)2(1+ 2x)

We previously encountered the kinematic weight in eq. 2.4.16. It is a poly-

nomial weight function, defined as ωτ(x) = (1− x)2(1+ 2x), double pinched,

contains the unity and does not contain a term proportional to x. Conse-

quently, it is an optimal weight [7]. As a doubled pinched weight it should

have good suppression of dv contributions and its polynomial contains terms

proportional to x2 and x3, which makes it sensitive to the dimension six and

eight ope contributions. The fits have been performed within the framework of

fopt for different numbers of s0. The momentum sets are characterised by its

lowest energy smin. We fitted values down to 1.5GeV . Going to lower energies

is questionable due to the coupling constant becoming large, which implies a

breakdown of pt. Furthermore, it bears the risk to be affected by the ρ(770)

and a1 peaks in the vector and axial-vector spectral function, which we cannot

model within the framework of the ope. For the three fitting parameters αs, ρ(6)

and ρ(8) we have given the results in table 4.3 and graphically in fig. 4.2.

We only display the fits for smin larger than 2.1GeV . We note a jump of the

χ2/dof from 0.19 to 1.3 between fits of smin = 2.1GeV and smin = 2.2GeV

. We consequently discard fits with a smin < 2.2GeV , as fits with a lower

smin behave more stable1. The values with fewer momenta are preferred by

us due to two reasons. First, below energies of 2.2GeV , we have to face the

problematic influence of increasing resonances. Second, we will see, that the

values obtained from the lower moment fits are more compatible with our

other fit series. We further discarded the fit with four s0s momenta, which has

1As will be seen by comparing the kinematic weight with the cubic and quartic weight
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smin #s0s αs(m
2
τ) ρ(6) ρ(8) χ2/dof

b
s

2.200 7 0.3274(42) -0.82(21) -1.08(40) 0.21

f
o

p
t

2.100 8 0.3256(38) -0.43(15) -0.25(28) 1.30

2.200 7 0.3308(44) -0.72(20) -0.85(38) 0.19

2.300 6 0.3304(52) -0.69(25) -0.80(50) 0.25

2.400 5 0.3339(70) -0.91(39) -1.29(83) 0.10

2.600 4 0.3398(15) -1.3(1.0) -2.3(2.5) 0.01

Table 4.3.: Table of our fitting values of αs(m
2
τ), ρ(6) and ρ(8) for the kinematic

weight ω(x) = (1−x)2(1+ 2x) using fopt ordered by increasing smin.

The errors are given in parenthesis after the observed value.
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Figure 4.2.: Fitting values of αs(m
2
τ), ρ(6) and ρ(8) for the kinematic weight

ω(x) = (1− x)2(1+ 2x) using fopt for different smin. The left graph

plots αs(m
2
τ) for different numbers of used s0s. The right plot con-

tains dimension six and eight contributions to the ope. Both plots

have in grey the χ2 per dof.
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very small χ2/dof = 0.01. Having four s0s momenta to fit three parameters,

leaves us with too few dof.

The selected fits with five to eight momenta have a good χ2 per dof. The χ2/dof

of almost all our fits is smaller than one, which to our opinion is caused by

missing correlations. Thus we will take χ2/dof < 1 as good, if their value is not

too close to zero. The fitted parameters, αs, ρ(6) and ρ(8) are in good agreement

with each other. The ope shows good convergence. For later comparisons, we

will focus on the fit right below the χ2/dof threshold. For the kinematic weight

we obtain for the strong coupling, D = 6 and D = 8 contributions:

αs(m
2
τ) = 0.3308(44), ρ(6) = −0.72(20) and ρ(8) = −0.85(38). (4.2.1)

We further tested the stability of dimension six and eight contributions to the

ope within the same fit series but for a fixed value of the strong coupling

αs(m
2
τ) = 0.3179. The values for ρ(6) and ρ(8) are larger than the values given

in our final results from table 4.3. This is explained with a smaller contribu-

tion from the strong coupling, which has to be compensated by larger ope

contributions.

Additionally, we applied the bs for the fit below the χ2 threshold containing

seven s0s. Even though we used a different framework than fopt the results are

compatible. This further underlines the good results of the kinematic weight

fits and can be seen as an indicator for fopt being the superior framework as

compared to cipt, which has been argued in [8].

Cubic Weight: ωcube(x) ≡ (1− x)3(1+ 3x)

To further consolidate the results from the kinematic weight, we tested a

weight of higher pinching, which should suppress dv more than a double

pinched weight. If we obtain similar results to our previous fits we could ex-

clude dv effects for the kinematic weight. On the other hand, any differences

to the previous fit would indicate present dv for the kinematic weight. Our

cubic weight will be triple pinched and optimal, as it does not contain a mono-

mial term x. It is due to its polynomial structure sensitive to the dimensions

six, eight and ten contributions of the ope, which yields one more parameter
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smin #s0s αs(m
2
τ) ρ(6) ρ(8) ρ(10) χ2/dof

2.000 9 0.3228(26) -0.196(27) 0.075(28) 0.420(56) 1.96

2.100 8 0.3302(40) -0.52(11) -0.58(22) -1.00(45) 0.43

2.200 7 0.3312(43) -0.56(12) -0.68(23) -1.23(50) 0.55

2.300 6 0.336(11) -0.78(47) -1.17(98) -2.38(22) 0.29

2.400 5 0.3330(96) -0.63(47) -0.82(10) -1.51(26) 0.48

Table 4.4.: Table of our fitting values of αs(m
2
τ), ρ(6), ρ(8) and ρ(10) for the cubic

weight ω(x) = (1−x)3(1+ 3x) using fopt ordered by increasing smin.

The errors are given in parenthesis after the observed value.
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Figure 4.3.: Graphic representation of the fitting values of αs(m
2
τ) in the left

and ρ(6), ρ(8) and ρ(10) in the right plot for the cubic weight ω(x) =

(1− x)3(1+ 3x). The fits have been performed in the fopt scheme

and the data points are given with error bars and are ordered by

increasing smin. The grey line displays the χ2 function.

to fit than with the kinematic weight ωτ. The fitting results can be seen in

table 4.4 and graphically in fig. 4.3.

We performed fits for s0 6 1.5GeV , but could only reach convergence for fits

with energies larger or equal than 1.8GeV . As before the χ2 jumps at s0 =

2.1GeV to values per dof of almost 2. Consequently, we exclude theses fits

and focused on fits from five to eight s0s momenta.

The selected fits have a good χ2/dof and the fitted parameters, αs, ρ(6), ρ(8) and

ρ(10) are in agreement with each other, except for the fit with six momenta.

The fit with a smin = 2.3GeV has the lowest χ2 = 0.29. It furthermore has an
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abnormally low error and different ope values, which could indicate problems

with the fit. The fit right below the χ2/dof threshold yields

αs(m
2
τ) = 0.3302(40), ρ(6) = −0.52(11), ρ(8) = −0.58(22)

and ρ(10) = −1.00(45)
(4.2.2)

for the strong coupling, D = 6 and D = 8 contributions. We furthermore found

that the ope is converging, but not as fast as for the kinematic weight. The

value of
∣∣∣δ(8)∣∣∣ is only half as large as

∣∣∣δ(6)∣∣∣. The values of the lower momentum

count are in high agreement with the ones obtained from the kinematic weight.

The conclusions we take from the cubic weight are, that the kinematic weight,

with its double pinching, should sufficiently suppress any contributions from

DVs. If DV would have an effect on the kinematic weight, we should have seen

an improvement of the fits with the cubic weight, due to its triple pinching,

which is not the case.

Quartic Weight: ω(x) ≡ (1− x)4(1+ 4x)

The last fits of the pinched weights without a monomial term in x uses the

quartic weight defined as ω(x) ≡ (1− x)4(1+ 4x). It contains five fitting param-

eters (αs, ρ(6), ρ(8), ρ(10), ρ(12)) and did only converge for smin = 2GeV (nine s0s

momenta). The results for the quartic weight with a χ2 per dof of 0.67 are

given by:

αs(m
2
τ) = 0.3290(11), ρ(6) = −0.3030(46), ρ(8) = −0.1874(28),

ρ(10) = 0.3678(45) and ρ(12) = −0.4071(77).
(4.2.3)

Due to the problematic of the fitting routing, which is caused by too many

ope contributions fitted simultaneously, we discard the fitting results for the

quartic weight.

4.2.2. Single Pinched Monomial Weights

To further argue in favour of our hypothesis we want to probe some weights

with a single pinching. If dv play a role then we should note deviating results

to fits with higher pinchings. The advantage of these weights is that they only
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smin #s0s αs(m
2
τ) ρ(6) χ2/dof

2.100 8 0.3179(47) -0.42(17) 1.62

2.200 7 0.3248(52) -0.77(22) 0.38

2.300 6 0.3260(60) -0.85(28) 0.43

Table 4.5.: Table of our fitting values of αs(m
2
τ), and ρ(6) for the single pinched

double power monomial weight ωM2(x) = 1− x2 using fopt ordered

by increasing smin. The errors are given in parenthesis after the

observed value.

let one ope dimension contribute, thus leaving us with only two parameters

per fit.

Second Power Monomial: ωM2(x) ≡ 1− x2

The first weight is defined as ωM2(x) ≡ 1 − x2. We only have to fit two pa-

rameters, the strong coupling αs and the dimension six ope contributions. The

results can be seen in table 4.5. For this fit, we only obtained two fits without

converging problems for a smin 6 2.2GeV . Like in the ωτ and ωcubic we obtain

stable fits for smin 6 2.2GeV , but the χ2/dof jumps to values of χ2/dof > 1.6

for smaller smin. The values obtained for fitting six and seven s0s moments

are in good agreement with each other and furthermore carry a good χ2 per

dof. The best fit, chosen to be closest to the χ2/dof threshold, then yields the

following parameter values

αs(m
2
τ) = 0.3248(52) and ρ(6) = −0.77(22). (4.2.4)

We note that the strong coupling obtained from the single pinched weight is

similar to one of the previous fits (≈ 3.33) which indicates, that even single

pinched weights have sufficiently suppressed dv.

Third Power Monomial: ωM3(x) ≡ 1− x3

The second weight is defined as ωM3(x) ≡ 1− x3 and contains a single third

power monomial. Consequently, it is sensitive to dimension eight contribu-
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smin #s0s αs(m
2
τ) ρ(8) χ2/dof

2.100 8 0.3147(44) -0.27(29) 1.71

2.200 7 0.3214(49) -1.01(39) 0.41

2.300 6 0.3227(57) -1.18(54) 0.46

2.400 5 0.3257(67) -1.58(74) 0.39

2.600 4 0.325(10) -1.54(1.53) 0.58

2.800 3 0.326(21) -1.69(4.03) 1.17

Table 4.6.: Table of our fitting values of αs(m
2
τ), and ρ(8) for the single pinched

third power monomial weight ωM3(x) = 1− x3 using fopt ordered

by increasing smin. The errors are given in parenthesis after the

observed value.

tions of the ope. Our fitting results can be taken from table 4.6. We note a

good χ2/dof except for the last row. The last row, at smin = 2.8GeV has only

one dof and consequently high errors. The fit closest to the χ2/dof threshold

then yields the following parameter values

α(m2
τ) = 0.3214(49) and ρ(8) = −1.01(39). (4.2.5)

Fourth Power Monomial: ωM4(x) ≡ 1− x4

We already analysed the cubic and quartic weights, which depend on the di-

mension ten ope contributions, in section 4.2.1 and section 4.2.1. Regarding the

weight ωM4 ≡ 1− x4, we can study the dimension ten ope contribution. The

results of the fits are given in table 4.7. The fitting behaviour is very similar to

the third power monomial (table 4.6) and we will directly cite the fits closest

to the χ2/dof threshold:

αs(m
2
τ) = 0.3203(48) and ρ(10) = −1.64(77). (4.2.6)

The values for the strong coupling are a little bit lower than the ones obtained

by the kinematic and cubic weight fits. Furthermore, the error on the tenth di-

mension contribution of the ope is large. Even with only one fitting parameter,

we cannot take conclusions for the dimension ten ope contribution. All in all
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smin #s0s αs(m
2
τ) ρ(10) χ2/dof

2.100 8 0.3136(43) -0.07(54) 1.75

2.200 7 0.3203(48) -1.64(77) 0.42

2.300 6 0.3216(56) -2.01(1.13) 0.47

2.400 5 0.3247(66) -2.98(1.62) 0.39

2.600 4 0.324(10) -2.86(3.69) 0.58

2.800 3 0.325(20) -3.43(10.74) 1.17

Table 4.7.: Table of our fitting values of αs(m
2
τ) and ρ(10) for the single pinched

fourth power monomial weight ωM4(x) = 1− x4 using fopt ordered

by increasing smin. The errors are given in parenthesis after the

observed value.

the usage of the single pinched fourth power monomial weight is questionable

and does not deliver any additional insights.

4.2.3. Pinched Weights with a Monomial Term x

Next, to the previously mentioned optimal weights from Beneke et al. [7], which

are weights without a monomial term in x, there exists another type of optimal’

weights2 introduced by Pich [57]

ω(n,m)(x) = (1− x)n
m∑
k=0

(k+ 1)xk. (4.2.7)

Combinations of these optimal moments have been widely used by the aleph

collaboration to perform qcd analysis on the lep data. To keep our study as

simple as possible we will only use weights without the sum and set m = 0.

The resulting weights ωn,0 are n-pinched but do not contain higher dimen-

sional ope contributions. The moments fitted in this section include the for

fopt problematic proportional term in x. Thus we will perform additional fits

using the bs.

2Pich has a different definition of “optimal” moments than Beneke, Boito and Jamin. To

differentiate the two definitions we marked Pich’s optimal’ moments with an apostrophe.
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smin #s0s αs(m
2
τ) 〈aGG〉I χ2/dof

b
s

2.100 8 0.3176(47) -0.0134(48) 1.62

2.200 7 0.3246(52) -0.2262(59) 0.38

2.300 6 0.3260(60) -0.2453(73) 0.43

f
o

p
t

2.100 8 0.357(12) -0.072(23) 0.95

2.200 7 0.3593(97) -0.079(19) 0.2

2.300 6 0.3589(99) -0.078(20) 0.24

Table 4.8.: Table of our fitting values of αs(m
2
τ) and 〈aGG〉I for the single

pinched optimal weight ω1,0(x) = (1− x) using the fopt and bs or-

dered by increasing smin. The errors are given in parenthesis after

the observed value.

ω1,0 ≡ (1− x)

The first weight is single pinched with only two fitting parameters: αs and

〈aGG〉I. The results for bs and fopt fits have been displayed in table 4.8. We

note that the αs values of the two frameworks differ, which is due to the prob-

lematic of the monomial term x, of the weight function. The bs produces simi-

lar values for the parameters as the previous fits. The values obtained from the

fopt framework differ from the previous fits. In general, we trust the results

of the bs more than those of the fopt for weights containing a monomial term

x. This is further underlined while regarding the higher χ2/dof values of the

fopt fits. Moreover, the values of the bs fits agree, within the different used s0s

moments for this particular weight, whereas the fits of the fopt yield inconsis-

tent values. Regarding explicitly the fits from the bs we note that the fits have

good χ2/dof values, although they jump from 0.2 to 0.95 between the first two

fitted moments. Note that we had to fit the invariant gluon condensate for the

first time. In the literature 〈aGG〉I should be around 2.1, but here we obtain a

smaller, negative value, which could be connected to problems in the fit.
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smin #s0s αs(m
2
τ) 〈aGG〉I ρ(6) χ2/dof

b
s

2.100 8 0.3207(48) -0.0170(50) -0.45(17) 1.90

2.200 7 0.3270(54) -0.0254(61) -0.77(21) 0.74

2.300 6 0.3253(63) -0.0232(75) -0.69(27) 0.9

f
o

p
t

2.100 8 0.3331(54) -0.0108(45) 0.361(76) 1.9

2.200 7 0.3401(57) -0.0185(52) 0.220(88) 0.73

2.300 6 0.3383(68) -0.0165(67) 0.26(12) 0.89

Table 4.9.: Table of our fitting values of αs(m
2
τ), 〈aGG〉I and ρ(6) for the double

pinched optimal weight ω2,0(x) = (1− x)2 using the bs or fopt or-

dered by increasing smin. The errors are given in parenthesis after

the observed value.

ω2,0 ≡ (1− x)2

The next weight is double pinched. Additional to the strong coupling and the

invariant gluon-condensate we also had to fit the dimension six ope contribu-

tion. Our fits can be seen in table 4.9. If we compare the bs with the fopt fits we

note, next to the before mentioned incompatibilities, a sign difference for the

D = 6 contributions. From now we will skip the fopt discussion for weights

containing a monomial term x term, and trust in the bs fits. In comparison to

the previous fit with the single pinched weight we have higher χ2/dof values,

a lower αs value and a 〈aGG〉I numeric value similar to the value from the

literature around 0.21, but with opposite sign. We observe a high agreement

between the double pinched and single pinched weight containing a monomial

term x by applying the bs, which further stresses the even for single pinched

weights dv are sufficiently suppressed.

ω3,0 ≡ (1− x)3 and ω4,0 ≡ (1− x)4

The fits with a triple and quadruple pinched weight do not give any further

insights. We give the results in table 4.10 and table 4.11. Both of the weights

include similar values to the double pinched weights, which affirms the va-

lidity of the fits and the sufficiently suppressed dv. The quadruple pinched
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smin #s0s αs(m
2
τ) 〈aGG〉I ρ(6) ρ(8) χ2/dof

b
s

2.000 9 0.3169(20) -0.0123(34) -0.29(12) -0.05(24) 2.0

2.100 8 0.3239(40) -0.0212(42) -0.63(15) -0.74(29) 0.46

2.200 7 0.3251(17) -0.02283(56) -0.689(12) -0.879(33) 0.56

f
o

p
t

2.000 9 0.33985(81) -0.01124(43) 0.002(10) -0.242(26) 1.59

2.100 8 0.3480(47) -0.0201(36) -0.264(89) -1.03(28) 0.31

2.200 7 0.3483(23) -0.0204(41) -0.27(15) -1.05(40) 0.41

Table 4.10.: Table of our fitting values of αs(m
2
τ), 〈aGG〉I, ρ(6) and ρ(8) for the

optimal weight ω3,0(x) = (1− x)3 using the bs or fopt ordered by

increasing smin. The errors are given in parenthesis after the ob-

served value.

weight contains five fitting parameters and as a result has notable convergence

problems.

4.3. Comparison

To create an overview of our previous results we have gathered the most com-

patible rows by hand. The fits have been selected by regarding the χ2/dof

threshold. For every weight, which has not been excluded by being problem-

atic, we have chosen a fit closest, but below the χ2/dof threshold. They are

shown in table 4.12, which is composed of two parts. The upper four rows

are fits using fopt and the lower two rows are fits using bs. For the weights

with a monomial term x we only included fits, which make use of the bs. Fits

applying the fopt result in deviating parameter values in comparison with fit

results from weights without a monomial term x. This behaviour has already

been illustrated in [7] and is further supported by this work. Consequently, for

fits including weights without a monomial term x, we can apply fopt, but for

fits including weights with a monomial term in x the bs is needed.

The fits of the comparison table 4.12 are in great agreement with each other.

The strong coupling as the ope contributions up to dimension eight are com-
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smin #s0s αs(m
2
τ) aGGInv ρ(6) ρ(8) ρ(10) χ2/dof

b
s

1.950 10 0.31711(67) -0.012432(24) -0.30013(73) -0.06785(16) 0.26104(50) 1.09

2.000 9 0.3206(24) -0.0167(14) -0.455(38) -0.373(67) -0.36(14) 0.83

2.100 8 0.3248(21) -0.02230(47) -0.6724(63) -0.834(14) -1.352(28) 0.23

f
o

p
t 1.950 10 0.3416(14) -0.01306(83) -0.050(22) -0.390(59) -0.50(19) 1.71

2.100 8 0.3480(25) -0.0201(27) -0.264(91) -1.02(23) -339.00(20) 0.41

Table 4.11.: Table of our fitting values of αs(m
2
τ), 〈aGG〉I, ρ(6), ρ(8) and ρ(10) for

the optimal weight ω4,0(x) = (1− x)4 using the bs or fopt ordered

by increasing smin. The errors are given in parenthesis after the

observed value.

weight smin αs(m
2
τ) 〈aGG〉I ρ(6) ρ(8) ρ(10) χ2/dof

f
o

p
t

ωτ 2.2 0.3308(44) - -0.72(20) -0.85(38) - 0.19

ωcube 2.1 0.3302(40) - -0.52(11) -0.58(22) -1.00(45) 0.43

ωM2 2.2 0.3248(52) - -0.77(22) - - 0.38

ωM3 2.2 0.3214(49) - - -1.01(39) - 0.41

b
s

ω1,0 2.2 0.3246(52) -0.2262(59) - - - 0.38

ω2,0 2.2 0.3270(54) -0.0254(61) -0.77(21) - - 0.74

ω3,0 2.1 0.3239(40) -0.0212(42) -0.63(15) -0.74(29) - 0.46

Table 4.12.: Table of the best fits. The fits have been selected as being closest

to the previously discussed χ2/dof jump. Each weight includes

the strong coupling αs(m
2
τ) as a fitting variable. The first four fits

have been performed using fopt and the last two have been per-

formed using bs. They are visually distinguished in the table by a

horizontal line.
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Figure 4.4.: Visual comparison of the fitted parameters αs(m
2
τ), ρ(6) and ρ(8)

for the results of table 4.12. The values of the different fits and

models values are very comparable to each other. For the weights

including a monomial term in x display the results obtained from

the bs as can be seen from the upper index of ωBS
n,0.

patible within small error ranges. To underline their agreement we have visu-

alised the different values and errors in fig. 4.4. The fits furthermore all have a

good χ2/dof.

The high agreement between all fits shows that no dv have to be taken into

account while implementing fits in the v+a channel and the corresponding

framework, fopt or bs depending if the weight does not or does include a

monomial term in x, for at least single pinched weights. At least single and not

double pinched, because the weights ωM2 and ωM3 are only single pinched,

but still in high agreement with the other higher pinched weights! We conse-

quently do not see any need to include dv terms in an analysis of αs from τ

decay data.

77



Chapter 4. Measuring the Strong Coupling

c5,1 = 0 c5,1 = 283 c5,1 = 566 ∆

αs(m
2
τ) 0.3333 0.3308 0.3285 0.0025

ρ(6) −0.74 −0.72 −0.69 0.03

ρ(8) −0.87 −0.85 0.82 0.03

Table 4.13.: Values of αs, ρ(6) and ρ(8) for varying c5,1 and the corresponding,

symmetric error ∆ for each parameter to the central value of c5,1 =

283.

4.4. Final Results

Here we will state our final results for the strong coupling and the dimensions

six and eight ope contributions. We have decided to average over all values of

the selected fits seen in table 4.12, but focus on the error given by the fopt fit of

the kinematic weight. We did not want to use the value for the strong coupling

of the kinematic weight solely, because it is representing a rather large value in

comparison to the other selected fits. We further did not want to average over

the errors of all compared fits, as we do not know their correlations. Averaging

over all errors would most probably lead to an underestimated error.

4.4.1. Theoretical Error

The values have a statistical error given by the fitting routine minuit and a the-

oretical error. The main contribution from the theoretical error comes from the

fifth Adler function coefficient c5,1, which has not been calculated yet. Though

estimated in [8] with a value of c5,1 = 283 we will assume a relative error of

100% to its value. Consequently, we performed two additional fits with c5,1 = 0

and c5,1 = 566 and via comparison extracted the error to the central value of

the corresponding parameter. We have further decided instead of stating the

resulting asymmetric errors the larger value of the upper and lower error as a

symmetric error. The results of the additional fits with varying the fifth Adler

function coefficient can be seen in table 4.13. The symmetrical theoretical er-

rors are then given by 0.0025, 0.03 and 0.03 for αs, ρ(6) and ρ(8) correspondingly.
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4.4.2. Parameter Values

We will average over the values of table 4.12 leading to

αs(m
2
τ) = 0.3261± (0.0044)MINUIT ± (0.0025)c5,1 = 0.3261± 0.0051 (4.4.1)

for the strong coupling at the τ2 scale. The dimension six and eight ope con-

tributions are very stable in the fits we compared. Consequently we will state

their averaged numerical values

ρ(6) = −0.68± (0.2)MINUIT ± (0.03)c5,1 = −0.68± 0.20 (4.4.2)

ρ(8) = −0.80± (0.38)MINUIT ± (0.03)c5,1 = −0.80± 0.38. (4.4.3)

Note that the ρ(6) values from the cubic weight are slightly different. The cubic

weight includes contributions from a fourth fitting parameter, which need to

be compensated by the other parameters.

The value of higher dimension ope parameters are still compatible but have a

higher variation than the previous two parameters. Beginning from the D = 10

contributions we do not have enough good fits to evaluate their contribution.

Consequently, we do not state a single value for ope parameters of dimension

eight and higher.
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Conclusions

We have performed a qcd analysis on hadronic τ decays to determine a value

of αs at the m2
τ scale without including dv. We have excluded dv to contrast

the previous analysis of Boito et al. [12, 13, 16], which stated the necessity

of incorporating a model describing dv. To argue, we employed a new set of

analytic weights to probe the suppression of dv.

We compared seven selected fits of different weights with single, double and

triple pinching. All fits gave similar values for the strong coupling and dimen-

sion six and eight ope contributions. The conclusion we take is that dv are

sufficiently suppressed in the framework of fopt in the v+a channel, even for

single pinched weights. To extract precise values of the strong coupling from

hadronic τ decay data no additional model is needed.

For the kinematic weight and the weights carrying a monomial term x, we

performed fits using both, the bs and the fopt approach. The fitted parameters

of both frameworks show great compatibility. The fact that both frameworks

yield similar results argues in favour of fopt, as cipt would give different

values for the fitting parameters. Consequently, we discourage the usage of

cipt and favour the usage fopt and further underline the opinion of Beneke et

al. [8] in the debate of fopt vs cipt.

The final value for the strong coupling we obtained at the m2
τ scale is given by

αs(m
2
τ) = 0.3261(50). (5.0.1)
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Running this value to the mZ scale yields

αs(m
2
Z) = 0.11940(60), (5.0.2)

which is comparable to the world average value of αs(M
2
Z) = 0.1181(11) taken

from the [82]. For dimension six and eight ope contributions we extracted

values of

ρ(6) = −0.68± 0.20 (5.0.3)

ρ(8) = −0.80± 0.38. (5.0.4)
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Appendix A
Constants

In table A.1 we collect all used constants that we have used in performing our

fits.

Quantity Value Reference

Vud 0.9742± 0.00021 [82]

SEW 1.0198± 0.0006 [60]

Be 17.818± 0.023 [32]

mτ 1.776 86(12000)MeV [82]

〈aGG〉I 0.012GeV2 [77]

〈q u/dqu/d〉(mτ) −272(15)MeV [49]

s s/〈qq〉 0.8 ±0.3 [49]

Table A.1.: Numerical values of used constants in our fitting routine.
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Appendix B
Coefficients

B.1. β function

There are several conventions for defining the β coefficients, depending on a

minus sign and/or a factor of two (if one substitues µ→ µ2) in the β-function

2.1.12. We follow the convention from Pascual and Tarrach (except for the

minus sign) and have taken the values from [10]

β1 =
1

6
(11Nc − 2Nf), (B.1.1)

β2 =
1

12
(17N2

c − 5NcNf − 3CfNf), (B.1.2)

β3 =
1

32

(
2857

54
N3

c −
1415

54
N2

cNf +
79

54
NcN

2
f −

205

18
NcCfNf +

11

9
CfN

2
f +C2

fNf

)
,

(B.1.3)

β4 =
140599

2304
+

445

16
ζ3, (B.1.4)

where we used Nf = 3 and Nc = 3 for β4.
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B.2. Anomalous mass dimension

γ1 =
3

2
Cf, (B.2.1)

γ2 =
Cf

48
(97Nc + 9Cf − 10Nf), (B.2.2)

γ3 =
Cf

32

[
11413

108
N2

c −
129

4
NcCf −

(
278

27
+ 24ζ3

)
NcNf +

129

2
C2
f − (23− 24ζ3)CfNf −

35

27
N2

f

]
,

(B.2.3)

γ4 =
2977517

20736
−

9295

216
ζ3 +

135

8
ζ4 −

125

6
ζ5, (B.2.4)

where Nc is the number of colours, Nf the number of flavours and Cf = (N2
c −

1)/2Nc. We fixed furthermore fixed Nf = 3 and Nc = 3 for γ4.

B.3. Adler function

The the derivative of the two-point function can be expressed as the Adler

function, which can be written in terms of the Adler function coefficients

D
(1+0)
V =

Nc

12π2

∞∑
n=0

an
µ

n+1∑
k=1

kcn,kL
k−1. (B.3.1)

The coefficients are partly dependent on each other via the rge

− µ
d

dµ
D

(1+0)
V =

(
2 ∂
∂L +β ∂

∂as

)
D

(1+0)
V = 0, (B.3.2)

which implies, that for every order, there exists only one coefficient we have

to know to describe the Adler function. For completeness we will mention the

necessary coefficients up to order n = 5 here once again

c1,1 = 1

c2,1 =
365

24
− 11ζ3 −

(
11

12
−

2

3
ζ3

)
Nf

c3,1 =
87029

288
−

1103

4
ζ3 +

275

6
ζ5

−

(
7847

216
−

262

9
ζ3 +

25

9
ζ5

)
Nf +

(
151

162
−

19

27
ζ3

)
N2

f

c4,1 =
78631453

20736
−

1704247

432
ζ3 +

4185

8
ζ23 +

34165

96
ζ5 −

1995

16
ζ7.

(B.3.3)
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The rest of the coefficients are given by

c2,2 = −
1

4
β1c1,1

c3,2 = (−β2c1,1 − 2β1c2,1), c3,3 =
1

12
β2
1c1,1

c4,2 =
1

4
(−β3c1,1 − 2β2c2,1 − 3β1c3,1),

c4,3 =
1

24
(6c2,1β

2
1 + 5β2β1c1,1), c4,4 = −

1

32
β3
1c1,1

c5,2 =
1

4
(−β4c1,1 − 2β3c2,1 − 3β2c3,1 − 4β1c4,1),

c5,3 =
1

24
(12c3,1β

2
1 + 6β1β3c1,1 + 14β2β1c2,1 + 3β2

2c1,1),

c5,4 =
1

96
(−12β3

1c2,1 − 13β2β
2
1c1,1), c5,5 =

1

80
β4
1c1,1

(B.3.4)

and all related to the previous stated Adler function coefficients cn,1.
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List of Abbreviations

a axial-vector

bs Borel summation

cern European Organisation for Nuclear Research

ckm Cabibbo-Kobayashi-Maskawa

dof degrees of freedom

fesr finite energy sum rules

fesr finite energy sum rules

FLAG Flavour Lattice Averaging Group

gr general relativity

ir infrared

lep large-electron-positron

lhc large-hadron-collider

lhs left-hand side

ls method of least squares

ms minimal subtraction scheme

np non-perturbative
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List of Abbreviations

P-V Pauli-Villars

pqcd perturbative qcd

pt perturbation theory

p pseudo-scalar

qft quantum field theory

rge renormalisation group equation

rge renormalisation group equation

rhs right-hand side

sm Standard Model

s scalar

uv ultraviolet

vsa vacuum saturation approach

v vector

chpt Chiral Perturbation Theory

lqcd Lattice Quantum Chromodynamics

qcdsr Quantum Chromodynamics Sum Rules
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