
Generalizations of assignment games and information 
market games 

Saadia El Obadi

 http://hdl.handle.net/10803/667893 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 

http://hdl.handle.net/10803/667893


“tesi-2” — 2019/9/11 — 19:50 — page 1 — #1

TESI DOCTORAL

Generalizations of assignment games and information
market games

Saadia El Obadi

Memòria presentada per optar al grau de Doctor per la Universitat
de Lleida

Programa de Doctorat en Enginyeria i Tecnologies de la Informació

Director/a
Silvia Miquel Fernández

Tutor/a
Silvia Miquel Fernández

2019



“tesi-2” — 2019/9/11 — 19:50 — page 2 — #2



“tesi-2” — 2019/9/11 — 19:50 — page 3 — #3

I dedicate this thesis with love and gratitude to Aicha and Montse.

I had never imagined that it was possible to have a better mother

and a better freind.



“tesi-2” — 2019/9/11 — 19:50 — page 4 — #4



“tesi-2” — 2019/9/11 — 19:50 — page i — #5

Acknowledgements

The first of many thanks go to my supervisor: Silvia Miquel. I would

like to thank her for all her help, motivation and enthusiasm during

my PhD years. I learnt alot from her expertise and experience in

both research and teaching.

Besides, I would like to thank the members of my committe, Jose

Maria Izquierdo, Ata Atay, Josep Conde , Agnieszka Rusinowska and

Adela Pagés. Moreover I would like to thank Ata Atay and Zeyneb

Gök Alparslan for their reports. Thank you for taking the time to

read this thesis and giving valuable comments.

My special thanks go to Marina Núñez for all comments and en-
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Chapter 1

Introduction and

Preliminaries

1.1 Introduction

1.1.1 Cooperative game theory

Game theory is the field that studies situations of strategic interaction

between rational decision makers. Von Neumann and Morgenstern

(1944) distinguish between non-cooperative games and cooperative

games.

The objective in non-cooperative games is to predict the best

strategy for each agent, whereas in cooperative games, also known

as coalitional games, the agents are allowed to write binding agree-

1
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ments with each other. The sinificant issue here is to predict which

coalitions will form and the sharing of the value they obtain when

they cooperate.

A classical model studied from the cooperative game theory is the

bankruptcy situation (Auman and Mashler, 1985). Following is an

example of a bankruptcy problem.

Example 1.1.1. A company got bankrupt and left an estate E =

10000 euro. There are 4 creditors who claim, respectively, d1 = 3000

euro, d2 = 2000 euro, d3 = 5000 euro and d4 = 8000 euro. We

define the cooperative game (N, v) where the players are the creditors

N = {1, 2, 3, 4} and the worth of the grand coalition, N, is v(N) =

E = 10000.

Every coalition S in N can receive the estate if it pays the debt

claimed by the creditors out of the coalition. The value of a coalition

S in N is what remains from the estate E after paying the debt to the

creditors in N \ S .

For instance, if S = {1, 4}, then, v({1, 4}) = max{0, E − d2 −

d3} = max{0, 10000 − 2000 − 5000} = 3000. Further, if S = {2, 3},

then, v({2, 3}) = max{0, E − d1 − d4} = max{0, 10000 − 3000 −

8000} = 0.

This way we define the game (N, v) as follows:
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v({1}) = 0, v({1, 2}) = 0, v({1, 2, 3}) = 2000

v({2}) = 0, v({1, 3}) = 0, v({1, 2, 4}) = 5000

v({3}) = 0, v({2, 3}) = 0, v({1, 3, 4}) = 8000

v({4}) = 0, v({1, 4}) = 3000, v({2, 3, 4}) = 7000

v({2, 4}) = 2000

v({3, 4}) = 5000, v(N) = 10000

We also distinguish between two classes of cooperative games.

They are transferable utility games with side payments and non-

transferable utility games.

A cooperative game is said to be a transferable utility game if

there is some medium, for instance money, of exchange between

the agents, and the agents utilities are linear in money. In non-

transferable utility games, such medium is not present or, if it is, the

agents utilities are not linear in it.

In this dissertation, we focus on cooperative games with transfer-

able utility.

In this games, the grand coalition N will form and the challenge

will be to suggest a way of allocating the worth of the grand coaltion

among agents.

Different solution concepts have been defined in the literature.

Gillies (1959) defines the core of coalitional games which is a set-

solution concept. According to the definition, the player of any coali-

tion receives at least as much as the joint revenues that they obtain
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by the cooperation.

Further, Shapley (1953) introduces the Shapley value which is a

point-solution concept and assigns to each cooperative game, an effi-

cient weighted average of all possible marginal contribution vectors.

Furthermore, other point solutions, the τ−value introduced by Tijs

(1981) and the Nucleolus introduced by Shmeidler (1969), are dis-

cussed. In the next sections, all definitions of these solution concepts

are introduced.

In this dissertation we focus on some models of cooperative games.

Throughout the next four chapters, the different models are studied.

1.1.2 Information market games

In the second chapter we focus on some cooperative games defined

from information markets. They are a generalization of information

market games. Many papers appeared dealing with the issue of in-

tentional sharing of information assuming perfect patent protection,

we can find Gallini (1984) and Kamien et al. (1985), they exam-

ined licensing in oligopolistic markets. Muto et al.(1989) define the

information market game. They analyse the cooperative behaviour

of economic agents (firms), faced with the introduction of new tech-

nology, indispensable for the manufacturing of a new product. They

consider that the market is divided into submarkets. For each sub-

market one knows the maximum profit achieved by producing and
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selling the new product in that submarket. They study the core

and some point-solutions as the Shapley value and the τ -value. In

this thesis we wonder what happens when we have more than one

informed player (we can say they form a clan of patent holders).

Similar to Muto et al. (1989), the aim of this chapter is to analyze

the cooperative behaviour of firms, faced again with the introduction

of some new technologies owned by different patent holders, which

are essential for manufacturing a new product. This situation, where

more than one informed player is needed to produce the good, is

considered. We name it clan information market.

In this new situation, the information is divided into several parts

(or technologies) and each patent holder initially possess just one of

the parts. As we assume perfect patent protection and also that

the production of the new commodity needs all those patents, no

single informed player has the technology required to produce the

new commodity.

Each firm or group of firms has the possibility to manufacture

the new product if they have all the technological information. They

can obtain the maximum profit in the submarket they have access to

only if they know the new technologies. By sharing these technologies

with other firms (licensing), the clan may access and make a profit

indirectly in other submarkets where the clan has no access by itself.

Therefore, faced with this situation, cooperation is beneficial.
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The corresponding cooperative game with side payments is de-

fined in Chapter 2. It is named clan information market game (CIG).

Muto et al. (1989) showed that the class of information market games

is generalized by the class of big boss games, where the presence of

the big boss is necessary for a coalition to attain any profit. When

more than one agent is indispensable, Potters et al. (1989) intro-

duced the class of clan games. In a short note, Tijs (1990) introduced

clan information market games as an example of clan games with no

further development of the model. Clearly, every clan information

market game is a clan game, although the opposite is no longer true.

The existence of population monotonic allocation schemes (PMAS) is

studied. We show that the τ -value of a clan information market game

also has some population monotonicity property: it yields a bi-mas.

Finally, the final section characterizes the class of clan information

market games and provides conditions on the market, under which

the Shapley value belongs to the core.

1.1.3 Information interval games

In the third chapter we focus on other generalization of information

market games. This time we consider that the profit attainable in

each submarket is uncertain, it is given by an interval of real numbers.

This way, we get a class of interval games. In interval games, the

characteristic function assings a closed and bounded interval to each
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coalition.

Cooperative interval games are introduced by Branzei et al. (2003)

to handle banckruptcy situations where the estate is known with cer-

tainty while the claims are given by bounded intervals of real num-

bers.

Carpente et al. (2005) propose a method to associate a coalitional

interval game with each strategic game. Later, Alparslan Gök et al.

(2009) consider selections of cooperative interval games which are

classical cooperative games.

If we consider an OR problem with interval data, the correspond-

ing cooperative game can be an interval game. For instance, this is

the case of some connection problems (Moretti et al., 2008), lot siz-

ing problems with uncertain demands (Drechsel and Kimms, 2008)

or sequencing problems (Alparslan-Gök et al., 2008). A survey on

cooperative interval games can be found in Branzei et al. (2010).

In Chapter 3 we study information interval games corresponding

to information markets where the profit attainable in each submarket

is uncertain. The aim of this chapter consists of providing interval

solutions. Such a solution yields an interval of individual payoffs to

each player such that the interval profit the gran coalition can obtain

by cooperation, is allocated among the players.



“tesi-2” — 2019/9/11 — 19:50 — page 8 — #18

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.1.4 Assignment games

In the second part of the thesis, Chapters 4 and 5, we consider another

kind of markets, the assignment markets.

Shapley and Shubik (1972) defined assignment games as a model

for two-sided markets where an indivisible product (houses, cars, etc.)

is exchanged for money, and where sellers and buyers supply or de-

mand exactly one unit respectively. The unit needs to be similar,

and the same unit may have different values for differents partici-

pants. Each buyer has a value for every house and each seller has

a reservation value. A valuation matrix represents the joint profit

obtained by each mixed pair.

In Chapter 4 we study a class of assignment game where there is

an agent who has a double role as a seller and as a buyer and who

is needed for any exchange in the market, it is named the central

player. We define a market where there is also a set of buyers N1

and a set of sellers N2, however these two sets are not disjoint but

have one agent, the central player, in common, who can act both as

a buyer and as a seller. As in Shapley and Shubik assignment game,

each buyer wants to buy at most one unit and each seller has one unit

on sale. A matrix A = (aij) i∈N1

j∈N2
summarizes the profit that players i

and j get when the transaction between both players takes place.

However, an additional feature of our model is that no trade is
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possible if the central player does not participate in it. We can assume

that this player, denoted by h, allows the trade between buyers and

sellers. Therefore, the profit matrix is such that aij = 0 if h /∈ {i, j}.

We can think of a social bank of flats where customers can sell

and buy houses with reasonable prices under the supervision of the

bank that can also buy and sell.

In Chapter 4 we define assignment games with a central player.

We study its core and we analyze if it is a stable set. We give two

point solutions, the τ -value and the nucleolus and we study when the

first one lies in the core. Finally, we generalize the model allowing

the central player to sell and buy more than one item and we study

the competitive equilibria.

A different generalization of assignment games is introduced in

Chapter 5.

We consider there that there is more than one player with a double

role as a seller and as a buyer. In fact, these are middelmen who

neither produce any good nor consume it. They buy the goods to

the sellers and sell them to the buyers. Without any middelman, the

trade is not possible. We assume that buyers and sellers cannot meet

on their own. Further, each middelman may trade more than one

unit. So,we assume that there is a third side in the market formed by

a finite set of middlemen (disjoint with the set of buyers and sellers).

This situation may represent a real estate market in which value is
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generated by the matching of a buyer and a seller but typically real

estate agencies act as intermediaries. Moreover, the same house can

be advertised in the website of several agencies, and each buyer can

also search in several of these sites.

This situation resembles the firm-supplier-buyer in Stuart (1997),

but there the value of a triplet is the sum of the value generated

by firm and supplier and the value generated by supplier and buyer.

In our case the middleman does not modify the value of the buyer-

seller pair, that is, the profit generated by the trade of a buyer and

a seller does not depend on who is the intermediary that connects

them. Stuart’s model is a particular instance of three-sided assign-

ment game. Because the value of a firm-supplier-buyer triplet is

defined additively, it can be guaranteed that the core of the asso-

ciated three-sided assignment game is non-empty. It is also known,

see Kaneko and Wooders (1982), that three-sided assignment games

where values of triplets are defined arbitrarily may have an empty

core.

In contrast to our model, each supplier in Stuart’s model has uni-

tary capacity, that is, each supplier can only connect one firm-buyer

pair. The assignment markets with middlemen that we consider, are

three-sided assignment markets with multiple partnership (on the

side of middlemen). Two-sided assignment markets with multiple

partnership have been studied for instance in Kaneko (1983), Thomp-
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son (1980), Sotomayor (1992, 2002) and Sánchez-Soriano (2001).

When both sides of the market allow for multiple-partnership these

games are sometimes called transportation games.

Transportation games have a non-empty core and this core con-

tains the set of competitive equilibrium payoff vectors but, different

to the one-to-one assignment game, this inclusion may be strict, that

is, not all core allocations are supported by competitive prices. It is

shown in Sotomayor (2002) that most of the properties of the core

of the one-to-one assignment game, such as the lattice structure and

the opposition of interests between the two sides of the market, are

lost when we allow for multiple partnership.

In Chapter 5, after defining assignment games with middlemen,

we provide some sufficient conditions for the non-emptyness of the

core. The set of competitive equilibrium payoff vectors coincides with

the solutions of the dual linear program corresponding to the linear

program that is solved to obtain the worth of the grand coalition.

1.2 Preliminaries and solution concepts

This section deals with the preliminaires we need in order to explain

the findings and contributions of this dissertation. In this section we

recall some concepts related to cooperative games and assignment

games. Further, some necessary notation about interval games is
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also included.

Besides these preliminaries, since each chapter in this thesis cor-

responds to a potential paper, each of them is self-contained. This

means that the preliminaries needed in each chapter are also kept in

the corresponding chapter, as well as the references corresponding to

each chapter.

1.2.1 Cooperative games

This section is devoted to introduce some basic definitions from clas-

sical cooperative game theory. We will use these concepts throughout

the thesis.

A cooperative game (with side payments) with player set N is a

map v : 2N → R such that v(∅) = 0. Here, v(S) is the maximal profit

obtainable by the coalition S ⊆ N , without the help of any player

outside coalition S.

A cooperative game v is called monotonic if v(S) ≤ v(T ) for any

two coalitions S, T ⊆ N with S ⊆ T . It is called superadditive if

v(S) + v(T ) ≤ v(S ∪ T ) for any disjoint pair of coalitions S and T .

Shapley (1971) introduced the notion of convexity. A game (N, v)

is convex if its characteristic function, v : 2N → R, satisfies any of

the following two equivalent conditions:

(i) v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N .
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(ii) v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for all i ∈ N and all

S, T ⊆ N such that S ⊆ T ⊆ N\{i}.

So, from condition (ii), we can say that a game is convex if it satisfies

the property of non-decreasing marginal returns when coalitions grow

larger. A game (N, v) is concave if the oppossite equation holds, i.e.

v(S ∪ {i})− v(S) ≥ v(T ∪ {i})− v(T ) for all i ∈ N and all S, T ⊆ N

such that S ⊆ T ⊆ N\{i}.

A game (N, v) is simple if v(S) ∈ {0, 1} for all S ⊆ N and v(N) =

1.

We denote v = uS1,S2,...,Sk the monotonic simple game with mini-

mal winning coalitions S1, S2, . . . , Sk, i.e. uS1,S2,...,Sk(S) = 1 if Si ⊆ S

for some Si ∈ {S1, S2, . . . , Sk}, and uS1,S2,...,Sk(S) = 0 otherwise. If

the nonempty coalition T ⊆ N is the only minimal winning coalition,

the game (N, uT ) is called the unanimity game. The dual of a game

(N, v) is denoted by (N, v∗) and is defined by v∗(S) = v(N)−v(N\S)

for all S ⊆ N .

The theory of cooperative games offers some solution concepts.

The set of imputations is the set of efficient and individually ra-

tional allocations, i.e. I(v) = {x ∈ RN |
∑
i∈N

xi = v(N) and xi ≥

v({i}) for all i ∈ N}. Further, Gillies (1959) added the coalitional

rationality and defined the core of a game (N, v) as the set C(v) =

{x ∈ RN |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊆ N}. Note
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that if a core allocation x is proposed, then no coalition S has an

incentive to split off from the grand coalition N .

The core is said to be stable if for any imputation y /∈ C(v), there

is a core allocation x ∈ C(v) and a nonempty coalition S ⊆ N such

that xi > yi for all i ∈ S and x(S) ≤ v(S), where x(S) =
∑

i∈S xi.

A game (N, v) is said to be balanced if it has a nonempty core,

while it is said to be totally balanced if the core of every subgame

is nonempty, where the subgame corresponding to some coalition

T ⊆ N , T 6= ∅, is the game (T, vT ) with vT (S) = v(S) for all S ⊆ T .

Sprumont (1990) introduced population monotonic allocation schemes.

Such schemes provide an allocation vector for any coalition. Given a

game (N, v), the table X = (xS,i)S∈2N\{∅},i∈S is said to be a popula-

tion monotonic allocation scheme (PMAS for short) if the following

two conditions hold:

(i) efficiency: for all S ∈ 2N\{∅}, we have
∑

i∈S xS,i = v(S);

(ii) monotonicity: for all S, T ∈ 2N\{∅} with S ⊆ T , and for all

i ∈ S, we have xS,i ≤ xT,i.

Note that a PMAS provides a core element for every coalition in the

corresponding subgame in a monotonic way.

Finally, we recall three point solution concepts: the τ -value, the

nucleolus and the Shapley value.
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The τ -value (Tijs, 1981) of a game is essentially a compromise

value between an upper bound payoff vector and a lower bound payoff

vector. Let (N, v) be a game and let the vector M(v) ∈ RN be such

that its coordinates are the marginal contribution of each player to

the grand coalition, i.e. Mi(v) = v(N) − v(N\{i}), for all i ∈ N .

The vector M(v) is called the utopia vector and each Mi(v) can be

regarded as a maximal payoff (not always attainable) that player i

can expect to obtain in the core of the cooperative game.

By using the utopia vector, we can now compute what remains for

player i ∈ N when coalition S forms, i ∈ S, and all players in S\{i}

are paid their utopia payoff. The remainder for player i, Rv(S, i) is

defined by Rv(S, i) = v(S)−
∑

j∈S\{i}Mj(v).

Now, the vectorm(v) ∈ RN is defined bymi(v) = maxS:i∈S{Rv(S, i)}

for all i ∈ N . The vector m(v) is called the minimal rights vector.

Note that player i ∈ N can be guaranteed the payoff mi(v) by offer-

ing the members of a suitable coalition (the one where the maximum

is achieved) their utopia payoffs.

Let us now consider a coalitional game (N, v) such that m(v) 6=

M(v),
∑

i∈N mi(v) ≤ v(N) ≤
∑

i∈N Mi(v) and mi(v) ≤ Mi(v) for

all i ∈ N . Then, the τ -value of that game is the unique efficient

payoff vector on the line segment between m(v) and M(v). Formally,

τ(v) = λm(v) + (1 − λ)M(v), where λ ∈ [0, 1] is unique satisfying∑
i∈N τi(v) = v(N).
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The nucleolus was introduced by Schmeidler (1969). This solution

concept is based on the excess of a coalition S at x ∈ RN in the game

v. For any x ∈ RN and S ⊆ N the excess of the coalition S is

e(x, S) = v(S) − x(S). It measures the gain or loss of the coalition

S if its members depart from the allocation x in order to form their

own coalition. Further, for any imputation x, let us define the vector

θ(x) ∈ R2n−2 of excesses of all non-trivial coalitions at x, arranged

in non-increasing order. That is to say, for all k ∈ {1, 2, . . . , 2n − 2},

θ(x)k = e(Sk, x), where {S1, S2, . . . , Sk, . . . , S2n−2} is the set of all

nonempty coalitions in N different from N , and e(Sk, x) ≥ e(Sk+1, x).

Then the nucleolus of the game (N, v) is the imputation µ(v)

which minimizes θ(x) with regard to the lexicographic order over the

set of imputations: θ(µ(v)) ≤L θ(x), for all x ∈ I(v).

The last point solution considered in this section is the Shapley

value (Shapley, 1953). According to the Shapley value φ(v) of the

game (N, v), the value of player i ∈ N is

Φi(w) =
1

n!

∑
σ∈Π(N)

(w(P σ(i) ∪ i)− w(P σ(i)))

where n = |N |, π(N) is the set of all permutations σ : N → N and

P σ(i) is the set of players that precede player i, i.e. P σ(i) = {r ∈

N such thatσ−1(r) < σ−1(i)} where σ−1 denote the entrance number

of player i. In other words, the Shapley value of player i ∈ N is

φi(v) =
∑

S⊆N\{i} α(S)(v(S ∪ {i}) − v(S)) where α(S) = s!(n−s−1)!
n!

,



“tesi-2” — 2019/9/11 — 19:50 — page 17 — #27

1.2 Preliminaries and solution concepts 17

s = |S| and n = |N |. Some properties of the Shapley value are

efficiency, i.e.
∑

i∈N φi(v) = v(N), and linearity, i.e. φ(v + w) =

φ(v) + φ(w) and φ(av) = aφ(v). The Shapley value may lie outside

the core of the game, but if the game is convex, then the Shapley

value is a core allocation.

If we consider an unanimity game uT and its dual u∗T , the Shapley

value can be easily calculated as follows

φ(uT ) = φ(u∗T ) =

 1
|T | if i ∈ T

0 otherwise

1.2.2 Assigment games

Since Chapters 4 and 5 deal with assignment markets, we include

here some notation related to these markets and the corresponding

games.

Given a two-sided market, the assignment problem is defined by

the triple (M1,M2, A) where A = (aij) i∈M1
j∈M2

is a non-negative real

matrix. To solve the problem we must look for an optimal matching

in A. A matching between M1 and M2 is a subset µ of M1 × M2

such that each k ∈M1 ∪M2 belongs at most to one pair in µ. When

(i, j) ∈ µ we also denote with some abuse of notation j = µ(i) and

i = µ(j). We will denote by M(M1,M2) the set of matchings. We

say a matching µ is optimal for the problem (M1,M2, A), in short µ is

optimal for A, if for all µ′ ∈ M(M1,M2),
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij.
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The set of optimal matchings of the problem (M1,M2, A) is denoted

byMA(M1,M2). Given S ⊆M1 and T ⊆M2, we denote byM(S, T )

and MA(S, T ) the set of matchings and optimal matchings of the

submarket (S, T,AS×T ) defined by the subset S of buyers, the subset

T of sellers and the restriction of A to S×T . If S = ∅ or T = ∅, then

the only possible matching is µ = ∅ and, by convention,
∑

(i,j)∈∅ aij =

0.

Given an assignment problem (M1,M2, A), Shapley Shubik (1972)

define a related coalitional game with transferable utility, the assign-

ment game (M1 ∪M2, wA), as follows. The profits of the mixed-pair

coalitions, {i, j} where i ∈ M1 and j ∈ M2, are given by the non-

negative matrix A,

wA({i, j}) = aij ≥ 0,

and this matrix also determines the worth of any other coalition S∪T

, where S ⊆ M1 and T ⊆ M2, wA(S ∪ T ), in the following way

wA(S ∪ T ) = max{
∑

(i,j)∈µ aij |µ ∈M(S, T )}.

1.2.3 Interval games

Let us name I(R+) the set of all closed intervals in R+. If we consider

the interval R = [r, r], we say that r is the lower bound and r is the

upper bound. In order to operate with cooperative interval games we

first need to recall basic interval notation and calculus. The lenght of
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an interval R = [r, r] is defined by |R| = r − r. Let R1 = [r1, r1] and

R2 = [r2, r2] be two intervals, R1, R2 ∈ I(R+), and let be α ∈ R+.

Then, R1 + R2 = [r1 + r2, r1 + r2] and αR1 = R1α = [αr1, αr1]. Let

R1, R2, . . . Rn be a finite set of intervals, we denote by
∑n

i=1 Ri the

sum of those n intervals, i.e.
∑n

i=1Ri = [
∑n

i=1 ri,
∑n

i=1 ri]. Before

defining the substraction of intervals, we need a preference relation.

We say that R1 is weakly preferred to R2 (R1 < R2) if and only if

r1 ≥ r2 and r1 ≥ r2. Notice that it is only defined for not nested

intervals. The substraction of two intervals R1 and R2, with R1 <

R2, is defined by R1 − R2 = [r1 − r2, r1 − r2] only if |R1| ≥ |R2|

(Alparslan et al., 2009). This last condition guarantees that the lower

bound of the substraction interval is smaller or equal than its upper

bound. Let R1, R2, . . . Rn be a finite set of not nested intervals, the

maximum interval is defined by maxi∈{1,2,...,n}{Ri} = {Ri∗ |Ri∗ < Ri

for all i ∈ {1, 2, . . . , n}}.

A cooperative interval game is an ordered pair (N,w) where N =

{1, . . . , n} is the set of players and w : 2N → I(R) is the characteristic

function such that w(∅) = [0, 0]. Then, w(S) = [w(S), w(S)] where

w(S) is the lower bound and w(S) is the upper bound of w(S). We

can associate three coalitional games to an interval game. Two of

them are the border games (N,w) and (N,w) and the third one is

the lenght game (N, |w|) where |w|(S) = |w(S)| for each S ⊆ N . Note

that if all the worth intervals are degenerate intervals, w(S) = w(S)
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for all S ⊆ N , then the interval game (N,w) corresponds to the

coalitional game (N, v) with v(S) = w(S) for all S ⊆ N .

The interval imputation set I(w) of the interval game (N,w) is

defined by

I(w) = {(I1, ..., In) ∈ I(R)|
∑
i∈N

Ii = w(N) and Ii < w({i}) for all i ∈ N}

and its interval core C(w) is defined by

C(w) = {(I1, ..., In) ∈ I(w)|
∑
i∈S

Ii < w(S) for all S ⊆ N}.

An interval game (N,w) is called size-monotonic if (N, |w|) is

monotonic, i.e. |w|(S) ≤ |w|(T ) for all S ⊂ T ⊆ N . Let us name

SMIGN the class of size monotonic interval games with player set

N . For each w ∈ SMIGN and each i ∈ N , the interval marginal

contribution of player i to the grand coalition in the game w is defined

by Mi(N,w) = w(N)− w(N \ {i}).

The interval Shapley value Φ : SMIGN → I(RN) is defined by

Alparslan-Gök et al. (2009) as follows,

Φ(w) =
1

n!

∑
σ∈Π(N)

mσ(w), for each w ∈ SMIGN

where Π(N) is the set of all permutations σ : N → N . The interval

marginal operator mσ : SMIGN → I(R) corresponding to σ, asso-

ciates with each w ∈ SMIGN the interval marginal vector mσ(w)
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defined by w(P σ(i) ∪ {i}) − w(P σ(i)) for each i ∈ N . So, in other

words, the interval Shapley value is given by

Φi(w) =
1

n!

∑
σ∈Π(N)

(w(P σ(i) ∪ {i})− w(P σ(i)))

for any player i ∈ N .
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Chapter 2

Clan information market

games

2.1 Introduction

This Chapter is based on El Obadi and Miquel (2017).

Muto et al. (1989) introduced information market games. They

modelled the trading of information between one informed firm and

some other initially non-informed firms. Later, Potters and Tijs

(1990) allowed more than one initially informed firm to exist.

In both cases, in information market games with one informed

player (Muto et al., 1989) and with more than one informed player

(Potters and Tijs, 1990), the information is unique. In the first case,

only one firm has the information, and in the second, more than one

29
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player has that same information.

Like Potters and Tijs (1990), we consider that more than one

player has information. However, the information that each player

has is not the same, but complementary.

Similarly to Muto et al. (1989), the aim of this chapter is to ana-

lyze the cooperative behaviour of firms, faced with the introduction

of some new technology, which is essential for manufacturing a new

product. However, now we ask what happens if the new product

needs more than one new technology to manufacture it. In this chap-

ter, this situation, which implies that more than one informed player

is needed to produce the good, is considered.

Let us consider a simple example 1 : the production of waterproof

books. Two technologies are needed to produce these: one for the

paper and another for the suitable ink. Thus, we need two players,

two patent holders, in order to be informed and be able to develop

the new product.

Furthermore, we assume that the market for waterproof books is

the whole of Europe, which is divided into submarkets (each corre-

sponding, for instance, to a set of European regions). The firms or

1A recent example (Source: South China Morning Post, 2014/05/17): “Apple

and Google have declared a ceasefire in their intellectual property wars. The

two Silicon Valley technology giants said they are dropping lawsuits against one

another and will work together to reform patent law.”
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group of firms have the right and possibility to enter one or another

submarket. For each submarket, the maximal profit which can be

achieved by producing and selling waterproof books is known.

In this new situation, the information is divided into several parts

(or technologies) and each patent holder initially possesses just one

of the parts. Let us call clan the finite set of patent holders. As we

assume perfect patent protection and also that the production of the

new commodity needs all those patents, all the members in the clan

together may monopolize every submarket the clan has access to.

Nevertheless, no single informed player, has the technology required

to produce the new commodity.

Each firm or group of firms has the possibility to manufacture the

new product if they have all the technological information. They can

obtain maximum benefit in the submarket they have access to only

if they know the new technologies. By sharing these technologies

with other firms (licensing), the clan may access and make a profit

indirectly in other submarkets where the clan has no access by itself.

Therefore, faced with this situation, cooperation is beneficial.

Formally, such an information market where complementary pieces

of information are distributed among more than one player, is defined

by

γ = (N,C, (rT )T⊆N,T 6=∅),

where N = {1, 2, . . . , n} is the set of firms, and C ⊆ N is the clan, i.e.
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Figure 2.1: Market partition (example with N = {1, 2, 3, 4}). For

each submarket in the partition, only agents of a given coalition T ⊆

N have access to and rT ∈ R+ stands for the maximal attainable

profit in that submarket.

the set of patent holders. Further, Figure 2.12 shows the partition of

the consumers market into submarkets. For each submarket, there

is a set of firms T ⊆ N who are the only ones able to access this

submarket. Muto et al. (1989) named MT the submarket where

only firms in T ⊆ N have access to it. Since this notation becomes

superfluous here, we don’t use it. The maximal profit obtainable

in a submarket controlled by T ⊆ N (whenever the information is

available) is rT ∈ R+.

It seems clear the convenience of cooperation among firms. The

question is to which firms the informed players will sell their license

2For simplicity of notation, we write ri1i2...ik instead of r{i1,i2,...,ik}.
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rights and at what price.

Cooperation among players in information markets was also stud-

ied by Slikker et al. (2003) and Brânzei et al. (2001). They followed

Aumann (1999) in assuming that players do not have perfect informa-

tion on the true state of the world. They consider that the outcome

of the decision that any player makes depends on the true state of the

world. In the first case, different players have to make decisions and

sharing their information might increase joint profits. In the second

case, only one action taker can improve its action choices by gather-

ing information from some players who are more informed about the

situation.

This chapter is organized as follows. The next section presents

concepts on cooperative game theory that will be referred to through-

out the chapter. In section 2.3, the cooperation in information mar-

kets with more than one player owning part of the information is

considered. The corresponding cooperative game with side payments

is defined. It is named clan information market game (CIG). Muto

et al. (1988) showed that the class of information market games is

generalized by the class of big boss games, where the presence of the

big boss is necessary for a coalition to attain any profit. When more

than one agent is indispensable, Potters et al. (1989) introduced

the class of clan games. In a short note, Tijs (1990) introduced

clan information market games as an example of clan games with no
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further development of the model. Clearly, every clan information

market game is a clan game, although the opposite is no longer true.

The existence of population monotonic allocation schemes (PMAS)

is studied in section 2.4. Section 2.5 shows that the τ -value of a

clan information market game also has some population monotonic-

ity property: it yields a bi-mas. Finally, section 2.6 characterizes the

class of clan information market games and provides conditions on

the market, under which the Shapley value belongs to the core.

2.2 Preliminaries

This section is devoted to introducing some basic definitions from

classical cooperative game theory. We will use these conceps through-

out the chapter.

A cooperative game (with side payments) with player set N is a

map v : 2N → R such that v(∅) = 0. Here, v(S) is the maximal profit

obtainable by the coalition S ⊆ N , without the help of any player

outside coalition S.

A cooperative game v is called monotonic if v(S) ≤ v(T ) for any

two coalitions S, T ⊆ N with S ⊆ T . And v is called superadditive if

v(S) + v(T ) ≤ v(S ∪ T ) for any disjoint pair of coalitions S and T .

Shapley (1971) introduced the notion of convexity. A game (N, v)

is convex if its characteristic function, v : 2N → R, satisfies any of
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the following two equivalent conditions:

(i) v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N .

(ii) v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ) for all i ∈ N and all

S, T ⊆ N such that S ⊆ T ⊆ N\{i}.

So, from condition (ii), we can say that a game is convex if it satisfies

the property of non-decreasing marginal returns when coalitions grow

larger. A game (N, v) is concave if the oppossite equation holds, i.e.

v(S ∪ {i})− v(S) ≥ v(T ∪ {i})− v(T ) for all i ∈ N and all S, T ⊆ N

such that S ⊆ T ⊆ N\{i}.

A game (N, v) is simple if v(S) ∈ {0, 1} for all S ⊆ N and v(N) =

1. A simple game (N, v) is proper if, and only if, v(S) + v(N\S) ≤ 1

for all S ⊆ N . We denote v = uS1,S2,...,Sk the simple game with mini-

mal winning coalitions S1, S2, . . . , Sk, i.e. uS1,S2,...,Sk(S) = 1 if Si ⊆ S

for some Si ∈ {S1, S2, . . . , Sk}, and uS1,S2,...,Sk(S) = 0 otherwise. If

the nonempty coalition T ⊆ N is the only minimal winning coalition,

the game (N, uT ) is called the unanimity game. The dual of a game

(N, v) is denoted by (N, v∗) and is defined by v∗(S) = v(N)−v(N\S)

for all S ⊆ N .

The theory of cooperative games offers some solution concepts.

The set of imputations is the set of efficient and individually ra-

tional allocations, i.e. I(v) = {x ∈ RN |
∑
i∈N

xi = v(N) and xi ≥

v({i}) for all i ∈ N}. Further, Gillies (1959) added the coalitional
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rationality and defined the core of a game (N, v) as the set C(v) =

{x ∈ RN |
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊆ N}. Note

that if a core allocation x is proposed, then no coalition S has an

incentive to split off from the grand coalition N .

The core is said to be stable if for any imputation y /∈ C(v), there

is a core allocation x ∈ C(v) and a nonempty coalition S ⊆ N such

that xi > yi for all i ∈ S and x(S) ≤ v(S), where x(S) =
∑

i∈S xi.

A game (N, v) is said to be balanced if it has a nonempty core,

while it is said to be totally balanced if the core of every subgame

is nonempty, where the subgame corresponding to some coalition

T ⊆ N , T 6= ∅, is the game (T, vT ) with vT (S) = v(S) for all S ⊆ T .

Sprumont (1990) introduced population monotonic allocation schemes.

Such schemes provide an allocation vector for any coalition. Given a

game (N, v), the table X = (xS,i)S∈2N\{∅},i∈S is said to be a popula-

tion monotonic allocation scheme (PMAS for short) if the following

two conditions hold:

(i) efficiency: for all S ∈ 2N\{∅}, we have
∑

i∈S xS,i = v(S);

(ii) monotonicity: for all S, T ∈ 2N\{∅} with S ⊆ T , and for all

i ∈ S, we have xS,i ≤ xT,i.

Note that a PMAS provides a core element for every coalition in the

corresponding subgame in a monotonic way.
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Finally, we recall three point solution concepts: the τ -value, the

nucleolus and the Shapley value.

The τ -value (Tijs, 1981) of a game is essentially a compromise

value between an upper bound payoff vector and a lower bound payoff

vector. Let (N, v) be a game and let the vector M(v) ∈ RN be such

that its coordinates are the marginal contribution of each player to

the grand coalition, i.e. Mi(v) = v(N) − v(N\{i}), for all i ∈ N .

The vector M(v) is called the utopia vector and each Mi(v) can be

regarded as a maximal payoff (not always attainable) that player i

can expect to obtain in the core of the cooperative game.

By using the utopia vector, we can now compute what remains for

player i ∈ N when coalition S forms, i ∈ S, and all players in S\{i}

are paid their utopia payoff. The remainder for player i, Rv(S, i) is

defined by Rv(S, i) = v(S)−
∑

j∈S\{i}Mj(v).

Now, the vectorm(v) ∈ RN is defined bymi(v) = maxS:i∈S{Rv(S, i)}

for all i ∈ N . The vector m(v) is called the minimal rights vector.

Note that player i ∈ N can be guaranteed the payoff mi(v) by offer-

ing the members of a suitable coalition (the one where the maximum

is achieved) their utopia payoffs.

Let us now consider a coalitional game (N, v) such that m(v) 6=

M(v),
∑

i∈N mi(v) ≤ v(N) ≤
∑

i∈N Mi(v) and mi(v) ≤ Mi(v) for

all i ∈ N . Then, the τ -value of that game is the unique efficient

payoff vector on the line segment between m(v) and M(v). Formally,
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τ(v) = λm(v) + (1 − λ)M(v), where λ ∈ [0, 1] is unique satisfying∑
i∈N τi(v) = v(N).

The nucleolus was introduced by Schmeidler (1969). This solution

concept is based on the excess of a coalition S at x ∈ RN in the game

v. For any x ∈ RN and S ⊆ N the excess of the coalition S is

e(x, S) = v(S) − x(S). It measures the gain or loss of the coalition

S if its members depart from the allocation x in order to form their

own coalition. Further, for any imputation x, let us define the vector

θ(x) ∈ R2n−2 of excesses of all non-trivial coalitions at x, arranged

in non-increasing order. That is to say, for all k ∈ {1, 2, . . . , 2n − 2},

θ(x)k = e(Sk, x), where {S1, S2, . . . , Sk, . . . , S2n−2} is the set of all

nonempty coalitions in N different from N , and e(Sk, x) ≥ e(Sk+1, x).

Then the nucleolus of the game (N, v) is the imputation µ(v)

which minimizes θ(x) with regard to the lexicographic order over the

set of imputations: θ(µ(v)) ≤L θ(x), for all x ∈ I(v).

The last point solution considered in this section is the Shapley

value (Shapley, 1953). According to the Shapley value φ(v) of the

game (N, v), the value of player i ∈ N is φi(v) =
∑

S⊆N\{i} α(S)(v(S∪

{i}) − v(S)) where α(S) = s!(n−s−1)!
n!

, s = |S| and n = |N |. Some

properties of the Shapley value are efficiency, i.e.
∑

i∈N φi(v) = v(N),

and linearity, i.e. φ(v + w) = φ(v) + φ(w) and φ(av) = aφ(v). The

Shapley value may lie outside the core of the game, but if the game

is convex, then the Shapley value is a core allocation.
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If we consider a unanimity game uT and its dual u∗T , the Shapley

value can be easily calculated as follows

φ(uT ) = φ(u∗T ) =

 1
|T | if i ∈ T

0 otherwise

2.3 Clan information market games

A clan information market, that is an information market with more

than one player owning a part of the information, consists of

γ = (N,C, (rT )T⊆N,T 6=∅)

where N = {1, 2, ..., n} is the set of players and C = {1, 2, ..., c} ⊆ N

is the set of players in the clan, with 0 < c ≤ n.

For each T ∈ 2N\{∅}, rT ≥ 0 (see Figure 2.1) is the maximal

profit obtainable from the submarket, which only the firms of T have

access to.

From such an information market, we define a cooperative game

with side payments in the same way as Muto et al. (1989) did for

information market games.

Now, when considering our information market, for each coalition

S not containing the fully informed clan C, i.e. C * S, the value is

v(S) = 0.

If the clan C, with the whole information, belongs to the coalition

S, then the firms in S can produce and sell to each submarket to
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which at least one of the firms of S has access. Then, they can

earn the profit from all these submarkets. That is to say, v(S) =∑
T∩S 6=∅ rT if C ⊆ S.

So, we can define the corresponding cooperative game associated

with a given clan information market as follows.

Definition 2.3.1. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market. Then the corresponding clan information market game

(N, vγ), vγ : 2N → R, is given by

vγ(S) =


∑
T∩S 6=∅

rT if C ⊆ S

0 otherwise

Firstly, we show below that the above-defined game is monotonic

and superadditive.

Proposition 2.3.2. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market. Then, vγ is monotonic and superadditive.

Proof. First we show vγ is monotonic. Let R ⊆ S ⊆ N with C ⊆ S.

Then,

vγ(S) =
∑
T∩S 6=∅

rT =
∑

T∩R 6=∅

rT +
∑
T∩S 6=∅
T∩R=∅

rT ≥ vγ(R),

since rT ≥ 0 for all T ⊆ N . Note that vγ(S) = vγ(R) = 0 if C * S.
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Now we show vγ is superadditive. Let S,R ⊆ N with S ∩ R = ∅

and C ⊆ S ∪R. Then,

vγ (S ∪R) =
∑

T∩(S∪R)6=∅
rT =

∑
(T∩S)∪(T∩R)6=∅

rT ≥

max{0,
∑

T∩S 6=∅
rT ,

∑
T∩R 6=∅

rT}

On the other hand, since S ∩R = ∅ and C ⊆ S ∪R, we just consider

the following three cases:

i) if C ⊆ S, then C * R and we have vγ(S) + vγ(R) =
∑

T∩S 6=∅
rT

ii) if C ⊆ R, then C * S and we have vγ(S) + vγ(R) =
∑

T∩R 6=∅
rT

iii) if C * S and C * R, then vγ(S) + vγ(R) = 0.

In all cases we obtain vγ (S ∪R) ≥ vγ(S) + vγ(R)

A cooperative game v : 2N → R is called a clan game (Potters et

al., 1989) if the following holds:

(1) v ≥ 0 and Mi(v) = v(N)− v(N\{i}) ≥ 0 for all i ∈ N , and

(2) there is a nonempty coalition C ⊆ N such that

(a) v(S) = 0 if C * S (clan property) and

(b) v(N)− v(S) ≥
∑

i∈N\SMi(v) if C ⊆ S (union property)

Next, we show that every clan information market game is a clan

game, although the opposite inclusion does not hold.
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Proposition 2.3.3. Every clan information market game is a clan

game.

Proof. Let vγ be a clan information market game. Now we check that

vγ fits the clan game definition.

(1) vγ ≥ 0 since rT ≥ 0 for all T ⊆ N . Moreover, Mi(v
γ) =

vγ(N) − vγ(N\{i}) = ri ≥ 0 for all i ∈ N\C, and Mi(v
γ) =

vγ(N)− vγ(N\{i}) = vγ(N) ≥ 0 for all i ∈ C.

(2) There is a nonempty coalition C ⊆ N , the one formed by the

informed players, such that

(a) vγ(S) = 0 if C * S (by definition).

(b) Let S ⊆ N such that C ⊆ S. Then,

vγ(N)− vγ(S) =
∑

T⊆N\S

rT ≥
∑
i∈N\S

ri =
∑
i∈N\S

Mi(v
γ)

Remark 2.3.4. A clan game is not necessarily a clan information

market game since it is not necessarily monotonic.

After this remark, a question arises. Does the class of clan in-

formation market games coincide with the class of monotonic clan

games? The answer is negative as the following counterexample

shows.
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Example 2.3.5. Let (N, v) be the following monotonic game with

N = {1, 2, 3, 4},

v({1, 2}) = 4 v({1, 2, 3}) = 8

v({1}) = 1 v({1, 3}) = 4 v({1, 2, 4}) = 7 v(N) = 10

v({1, 4}) = 3 v({1, 3, 4}) = 7

and v(S) = 0 for all S ⊆ N\{1}.

It can be checked that v is a clan game with clan C = {1} ⊆ N =

{1, 2, 3, 4}.

However, it is not a clan information market game. If v were a

clan information market game, then r2 = M2(v) = 3, r3 = M3(v) = 3

and r4 = M4(v) = 2. Furthermore,

(i) From v(N)−v({1, 4}) = 7 and v(N)−v({1, 4}) = r2 +r3 +r23,

we have r23 = 1.

(ii) From v(N)−v({1, 3}) = 6 and v(N)−v({1, 3}) = r2 +r4 +r24,

we have r24 = 1.

(iii) From v(N)−v({1, 2}) = 6 and v(N)−v({1, 2}) = r3 +r4 +r34,

we have r34 = 1.

Finally, since 9 = v(N)− v({1}) = r2 + r3 + r4 + r23 + r24 + r34 + r234

and r234 should be non-negative, we conclude that v is not a clan

information market game.
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As a consequence of Proposition 2.3.3, many of the results given

by Potters et al. (1989) allow us to provide results in terms of the

market data for clan information market games. Specifically, it al-

lows us to describe the core of the game, and determine under which

conditions it is stable and the game is convex. It also allows us to

determine the nucleolus from the market data.

Certainly, the core of a clan information market game is nonempty.

Moreover, it can be easily described as the following corollary of

Proposition 2.3.3 shows.

Corollary 2.3.6. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan information

market. The core of vγ is

C(vγ) =
{
x ∈ Rn+ : x(N) = vγ(N) and 0 ≤ xi ≤ ri for all i ∈ N\C

}
Proof. With Proposition 2.3.3 and Potters et al. (1989), taking into

account that Mi(v
γ) = ri for all i ∈ N\C.

Note that the set
{
x ∈ Rn+ : x(N) = vγ(N) and 0 ≤ xi ≤ ri

for all i ∈ N\C} is not empty since ri ≥ 0 for all i ∈ N and vγ(N) ≥∑
i∈N\C ri.

Corollary 2.3.7. Clan information market games are balanced games.

Corollary 5.3.1 provides a nice expression of the core of a clan in-

formation market game. The bargaining set is another well-known set
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solution concept for cooperative games (see Aumann and Maschler,

1964).

Potters et al. (1988) proved that any cooperative game (N, v)

with the properties: (i) there is a player i0 ∈ N such that v(S) = 0 if

i0 /∈ S, and (ii) for all coalitions S ⊆ N we have 0 ≤ v(S) ≤ v(N); is

such that the bargaining set M(v) equals the core C(v). Since clan

information market games satisfy both conditions, the bargaining set

and the core coincide for this class of games. So, the bargaining set

of a clan information market game is

M(v) = C(v)

=
{
x ∈ Rn+ |x(N) = v(N) and 0 ≤ xi ≤ ri for all i ∈ N\C

}
.

The core of any convex game is nonempty. However, the opposite

does not hold. In general, a clan information market game is not

convex as the following example shows.

Example 2.3.8. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan information

market with N = {1, 2, 3, 4}, clan C = {1, 2} and r1 = r2 = r3 =

r4 = r34 = 1 and otherwise rT = 0. Let (N, vγ) be the corresponding

game.

Since vγ({1, 2, 4}) − vγ({1, 2}) = r4 + r34 = 2 and vγ(N) −

vγ({1, 2, 3}) = r4 = 1, the marginal return of player i = 4 decreases

when coalition grows larger. Therefore, vγ is not convex.

The next proposition characterizes convexity for clan information
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market games in terms of the data of the market.

Proposition 2.3.9. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market.

Then, the following statements are equivalent:

(i) vγ is convex

(ii) rT = 0 for all coalitions T ⊆ N\C with |T | ≥ 2

(iii) the core C(vγ) is stable

The reader will easily check that it follows from Theorem 5.1 in

Potters et al. (1989) once its statement (2) is proved to be equivalent

to our statement (ii) for clan information market games.

Note that, from Proposition 2.3.9, the condition under which clan

information market games are convex, is quite restrictive. However,

clan information market games always satisfy some concavity condi-

tions.

Remark 2.3.10. Notice that the concavity condition v(P ∪ {i}) −

v(P ) ≥ v(Q ∪ {i})− v(Q) for P ⊆ Q is satisfied whenever C ⊆ P .

In fact, v(P ∪{i})−v(P ) =
∑
T :i∈T

T\{i}⊆N\P

rT ≥
∑
T :i∈T

T\{i}⊆N\Q

rT = v(Q∪

{i})− v(Q) since N\Q ⊆ N\P .

Until now, we have analized several properties of the class of clan

information market games and obtained a simple description of the
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most relevant set solution concepts for these games: the core and the

bargaining set. What remains of the chapter deals with the study

of point solution concepts and their monotonicity properties when

coalitions grow larger.

2.4 A population monotonic allocation

scheme

The previous section shows that the core of a clan information market

game is not empty. In other words, clan information market games

are balanced games. Now we ask whether balancedness also holds for

all the subgames.

Proposition 2.4.1. Any subgame of a clan information market game

is again a clan information market game.

Proof. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan information market and

(N, vγ) its associated clan information market game. Take R ⊆ N

and vγR the corresponding subgame. That is to say, (R, vγR) is defined

by vγR(S) = vγ(S) for all S ⊆ R.

(i) If C * R, then vγR(S) = vγ(S) = 0 for all S ⊆ R, which means

that vγR is the zero-game. It is the clan information market

game corresponding to the market γ′ = (R,C ′, (r′T )T⊆R,T 6=∅)

with C ′ = R and r′T = 0 for all T ⊆ R.
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(ii) If C ⊆ R, we will prove that (R, vγR) is the clan information mar-

ket game corresponding to the market γ′ = (R,C ′, (r′T )T⊆R,T 6=∅)

with C ′ = C and, for all T ⊆ R, T 6= ∅,

r′T =



∑
A⊆N\C

rT∪A if T ⊆ C∑
B⊆N\R

rT∪B if T ∩ C = ∅

0 otherwise

(2.1)

Take any S ⊆ R. If C * S, vγR(S) = vγ
′
(S) = 0. If C ⊆ S,

vγR(S) = vγ(S) =
∑
Q⊆N
Q∩S 6=∅

rQ =
∑
Q⊆N
Q∩S 6=∅
Q∩C 6=∅

rQ +
∑
Q⊆N
Q∩S 6=∅
Q∩C=∅

rQ

=
∑

T⊆C⊆R
T∩S 6=∅
A⊆N\C

rT∪A +
∑
T⊆R
T∩S 6=∅
T∩C=∅
B⊆N\R

rT∪B

=
∑

T⊆C⊆R
T∩S 6=∅

∑
A⊆N\C

rT∪A +
∑
T⊆R
T∩S 6=∅
T∩C=∅

∑
B⊆N\R

rT∪B + 0

=
∑
T∩S 6=∅
T⊆C

r′T +
∑
T∩S 6=∅
T∩C=∅

r′T +
∑
T∩S 6=∅
T∩C 6=∅
T*C

r′T

=
∑
T∩S 6=∅

r′T = vγ
′
(S)

where the fourth equality follows by taking T = Q∩C and A = Q\C

in the first summation, which implies that T ∩ S 6= ∅ since C ⊆ S

and that A ⊆ N\C since Q ⊆ N . On the other hand, the second
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summation follows by taking T = Q∩R and B = Q\R, which implies

that T ∩S 6= ∅ since S ⊆ R and S ∩Q 6= ∅, and that T ∩C = ∅ since

Q ∩ C = ∅, and also that B ⊆ N\R since Q ⊆ N .

Since any subgame of a clan information market game is again a

clan information market game, every such subgame is balanced and

the next corollary follows.

Corollary 2.4.2. Clan information market games are totally bal-

anced games.

We already know that the core of a clan information market game

is nonempty. Moreover, each subgame has a nonempty core. The

question now is whether there is a PMAS for any clan information

market game.

Voorneveld et al. (2002) proved the existence of a PMAS for

total clan games. A game (N, v) is a total clan game, with clan

C ∈ 2N\{∅, N}, if (S, vS) is a clan game (with clan C) for every

coalition S ⊆ N such that C ⊆ S.

Notice that a clan information market game is a total clan game.

Indeed, by the proof of Proposition 2.4.1, part (ii), if C ⊆ S, any

subgame vγS is again a clan information market game and it is a clan

game by Proposition 2.3.3. Thus, clan information market games

with C 6= N are total clan games and, by Voorneveld et al. (2002),

the existence of a PMAS is guaranteed. Moreover, a clan information
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market game with C = N trivially has PMAS since all subgames are

zero games.

Furthermore, our aim is to show a particular PMAS that is de-

scribed in terms of the data of the market. In this particular PMAS,

the non-clan members get nothing while the clan members share

equally the profit corresponding to the submarket they have access

to.

Proposition 2.4.3. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market and let X = (xR,i)R∈2N ,i∈R be a table such that

(i) if C * R, xR,i = 0 for all i ∈ R,

(ii) if C ⊆ R,

xR,i =


∑
T⊆C
i∈T

∑
A⊆N\C

rT∪A
|T |

+
∑

T⊆R\C
T 6=∅

∑
B⊆N\R

rT∪B
|C|

if i ∈ C

0 if i ∈ R\C

Then, X is a PMAS of vγ.

Proof. First we show the efficiency for each R ⊆ N . When C * R,

easily we have that xR,i = 0 for all i ∈ R is an efficient allocation.

Let us now consider R ⊆ N such that C ⊆ R, and show the
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efficiency of (xR,i)i∈R. Cleary, if C ⊆ R, we have

x(R) =
∑
i∈R

xR,i =
∑
i∈C

xR,i

=
∑
i∈C

∑
T⊆C
i∈T

∑
A⊆N\C

rT∪A
|T |

+
∑
i∈C

∑
T⊆R\C
T 6=∅

∑
B⊆N\R

rT∪B
|C|

=
∑

T⊆C⊆R
T 6=∅

∑
A⊆N\C

|T |rT∪A
|T |

+
∑

T⊆R\C
T 6=∅

∑
B⊆N\R

|C|rT∪B
|C|

=
∑

Q∩C 6=∅
Q⊆N

rQ +
∑

Q∩C=∅
Q∩R 6=∅
Q⊆N

rQ

=
∑

Q∩R 6=∅
Q⊆N

rQ = vγ(R) = vγR(R)

Secondly we show the monotonicity of the scheme. Note that xR,i ≥ 0

for all R ∈ 2N and for all i ∈ R, since rT ≥ 0 for all T ⊆ N . Let

P,Q ∈ 2N with P ⊆ Q. We show that xP,i ≤ xQ,i for all i ∈ P . Let

us consider three cases:

(i) C * Q. In this case we have that C * P and xP,i = xQ,i = 0

for all i ∈ P .

(ii) C ⊆ Q and C * P . In this case we have that xP,i = 0 ≤ xQ,i

for all i ∈ P .
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(iii) C ⊆ P . If i ∈ P\C, then xP,i = 0 ≤ xQ,i. If i ∈ C, then

xQ,i =
∑

T⊆C⊆Q
i∈T

∑
A⊆N\C

rT∪A
|T |

+
∑

T⊆Q\C
T 6=∅

∑
B⊆N\Q

rT∪B
|C|

=
∑

T⊆C⊆P
i∈T

∑
A⊆N\C

rT∪A
|T |

+
∑

T⊆P\C
T 6=∅

∑
B⊆N\P

rT∪B
|C|

+
∑

T⊆Q\P
T 6=∅

∑
B⊆N\Q

rT∪B
|C|

= xP,i +
∑

T⊆Q\P
T 6=∅

∑
B⊆N\Q

rT∪B
|C|

≥ xP,i

Note that the PMAS given above is such that the payoff of all

non-clan agents is zero. Below, we will consider another notion of

population monotonicity, the bi-monotonic allocation scheme, which

allows for positive payoffs to non-clan agents.

2.5 A bi-monotonic allocation scheme

In this section we focus on the τ -value and we will see it always

belongs to the core of the clan information market game.

The expression of the τ -value of a clan information market game

with |C| = 1 follows from Muto et al. (1989). Let us see what

happens when more than one player belongs to the clan.

Proposition 2.5.1. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market with |C| ≥ 2. Then, the τ -value of the associated game
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vγ is

τi(v
γ) =


vγ(N)

|C|vγ(N)+
∑
j /∈C rj

vγ(N) if i ∈ C

vγ(N)
|C|vγ(N)+

∑
j /∈C rj

ri if i /∈ C

Moreover, τ(vγ) ∈ C(vγ).

Proof. If (N, vγ) is a clan information market game with clan C ⊆ N ,

then Mi(v
γ) = vγ(N) if i ∈ C and Mi(v

γ) = ri if i /∈ C.

Secondly, we compute mi(v
γ). Let us first consider a player i /∈ C.

Then, if C ∩ S 6= ∅, since vγ(S) ≤ vγ(N) and Mk(v
γ) = vγ(N) for

each k ∈ C, vγ(S) −
∑

j∈S\{i}Mj(v
γ) ≤ 0. If C ∩ S = ∅, since

vγ(S) = 0, vγ(S)−
∑

j∈S\{i}Mj(v
γ) ≤ 0. This implies mi(v

γ) = 0 for

all i /∈ C.

Next we consider a player i ∈ C. If C ⊆ S, since Mk(v
γ) = vγ(N)

for each k ∈ C and |C| ≥ 2, vγ(S)−
∑

j∈S\{i}Mj(v
γ) ≤ 0. If C * S,

since vγ(S) = 0, vγ(S)−
∑

j∈S\{i}Mj(v
γ) ≤ 0.

Finally, if S consists of only one player, then vγ(S)−
∑

j∈S\{i}Mj(v
γ) =

vγ({i}) = 0. Thus, mi(v
γ) = 0 for any i ∈ N .

Therefore, the τ -value is proportional to the marginal contribu-

tions. Since the sum of all marginal contributions is
∑

i∈N Mi(v
γ) =

|C|vγ(N) +
∑

j /∈C rj and the τ -value is efficient,

τi(v
γ) =


vγ(N)

|C|vγ(N)+
∑
j /∈C rj

vγ(N) if i ∈ C

vγ(N)
|C|vγ(N)+

∑
j /∈C rj

ri if i /∈ C
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Moreover, with Corollary 5.3.1, τ(vγ) ∈ C(vγ). Clearly, τ(vγ) is

efficient and τi(v
γ) ≤ ri for all i /∈ C since 0 ≤ vγ(N)

|C|vγ(N)+
∑
j /∈C rj

≤ 1.

This proposition can be extended to arbitrary clan games (Potters

et al., 1989) simply by replacing ri with the marginal contribution

Mi(v) for all i /∈ C.

There is another point solution concept, the nucleolus, which al-

ways exists and it belongs to the core whenever the core is nonempty.

Potters et al. (1989) provided a way for finding the nucleolus of a

clan game. Their expression in terms of the market data of a clan

information market game, which is a subclass of the class of clan

games, would be the following:

µi =

 t if i ∈ C

min{t, 1
2
ri} if i /∈ C

where t ≥ 0 is the only real number that guarantees efficiency.

Voorneveld et al. (2002) introduced the notion of bi-monotonic

allocation scheme. Let (N, v) be a monotonic clan game with clan

C ∈ 2N\{∅, N}. A bi-monotonic allocation scheme (bi-mas for short)

for the game is a table X = (xS,i)S∈2N\{∅},i∈S of real numbers such

that

(i)
∑

i∈S xS,i = v(S) for each S ∈ 2N\{∅},
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(ii) xS,i ≤ xT,i if S, T ∈ 2N\{∅}, S ⊆ T and i ∈ S ∩ C,

(iii) xS,i ≥ xT,i if S, T ∈ 2N\{∅}, S ⊆ T and i ∈ S\C,

(iv) (xS,i)i∈S is a core element of the subgame (S, v) for each coali-

tion S ∈ 2N\{∅}.

Furthermore, they showed that the nucleolus applied to a mono-

tonic clan game and its subgames does not necessarily yield a bi-mas.

The following example shows that this is also the case for the τ -value

applied to a CIG and its subgames.

Example 2.5.2. Let (N, vγ) be a clan information market game with

set of players N = {1, 2, 3, 4, 5} and clan C = {1, 2} such that

r3 = r45 = 1 and rT = 0 otherwise. Then vγ(N) = 2 and the

τ -value is τ(vγ) = (2
5
2, 2

5
2, 2

5
1, 0, 0). Now, for the subgame vγS with

S = {1, 2, 3}, vγS(S) = 1 and τ(vγS) = (1
3
1, 1

3
1, 1

3
1). We can eas-

ily check that τ3(vγ) > τ3(vγS) and hence the τ -value applied to all

subgames is not a bi-mas.

However, if we just consider convex CIGs, then the τ -value applied

to the game and its subgames yields a bi-mas.

Proposition 2.5.3. Let γ = (N,C, (rT )T⊆N,T 6=∅) be a clan informa-

tion market with |C| ≥ 2 and rT = 0 for all coalitions T ⊆ N\C

with |T | ≥ 2. Let (N, vγ) be the corresponding convex CIG. Then the

τ -value applied to the game vγ and its subgames yields a bi-mas.
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Proof. For all S ⊆ N with C ⊆ S and for all j ∈ S\C, by Proposition

2.5.1,

τj(v
γ) =

vγ(N)

|C|vγ(N) +
∑
i∈N\C

ri
rj and τj(v

γ
S) =

vγ(S)

|C|vγ(S) +
∑
i∈S\C

r′i
r′j,

where vγS is the subgame with player set S and corresponding clan

information market γ′ = (S,C, (r′T )T⊆S,T 6=∅). Next we show that

τj(v
γ) ≤ τj(v

γ
S). Since rT = 0 for all coalitions T ⊆ N\C with

|T | ≥ 2, from (2.1), r′i = ri for all i ∈ N\C. Thus, we show

that
vγ(N)

|C|vγ(N) +
∑
i∈N\C

ri
≤ vγ(S)

|C|vγ(S) +
∑
i∈S\C

ri
, which is equivalent

to proving that vγ(N)
∑
i∈S\C

ri ≤ vγ(S)
∑
i∈N\C

ri.

Indeed, as a consequence of Proposition 2.3.9, if the CIG is convex,

then vγ(N) = vγ(S) +
∑

i∈N\S ri for all S ⊆ N with C ⊆ S , so

vγ(N)
∑
i∈S\C

ri ≤ vγ(S)
∑
i∈N\C

ri

⇐⇒
∑
i∈N\S

ri ·
∑
i∈S\C

ri ≤ vγ(S)
( ∑
i∈N\C

ri −
∑
i∈S\C

ri

)
⇐⇒

∑
i∈N\S

ri ·
∑
i∈S\C

ri ≤ vγ(S)
∑
i∈N\S

ri

Either
∑

i∈N\S ri = 0 and then the last inequality holds, or
∑

i∈N\S ri >

0 and we obtain
∑

i∈S\C ri ≤ vγ(S) which also always holds.

Voorneveld et al. (2002), in their Example 1, provided a convex

game whose nucleolus applied to the game and its subgames does not
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yield a bi-mas. This game can be seen as a convex CIG (N, vγ) with

N = {1, 2, 3, 4}, clan C = {1, 2} and where the maximal profit rT is

r123 = 6, r124 = 99, r1234 = 5 and rT = 0 otherwise. Thus, even in

a convex CIG, the nucleolus applied to the game and its subgames

may not yield a bi-mas.

2.6 The Shapley value

This section is devoted to the Shapley value of a clan information

market game. In general, it is not a core allocation. Therefore, it does

not yield a PMAS neither a bi-mas. However, after a characterization

of the class of clan information market games, we obtain an expression

of the Shapley value in terms of the market data.

The class of clan information market games with player set N and

clan C = {1, . . . , c} ⊆ N (CIGN,C) can be characterized in terms of

some simple games and their dual games, similarly to what Muto et

al. (1989) did for information market games.

In particular, we consider the simple game (N, uT,{i}i∈C ) where,

for all S ⊆ N ,

uT,{i}i∈C (S) =

 1 if T ⊆ S or i ∈ S for some i ∈ C

0 otherwise

and its dual (N, u∗T,{i}i∈C ), with

u∗T,{i}i∈C (S) = uT,{i}i∈C (N)− uT,{i}i∈C (N\S).
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Proposition 2.6.1. CIGN,C is the cone generated over R+ by uC

and {u∗T,{i}i∈C |T ⊆ N\C, T 6= ∅}. Specifically, for any γ ∈ CIGN,C:

vγ = r uC +
∑

T⊆N\C rT u
∗
T,{i}i∈C where r =

∑
T∩C 6=∅ rT .

Proof. Let be γ ∈ CIGN,C and r =
∑

T∩C 6=∅ rT . We show that

vγ = r uC +
∑

T⊆N\C rT u
∗
T,{i}i∈C .

(i) If C * S, then uC(S) = 0 and C ∩ (N\S) 6= ∅ which implies

that uT,{i}i∈C (N\S) = 1 for every T ⊆ N\C, T 6= ∅. There-

fore, for every T ⊆ N\C, T 6= ∅, u∗T,{i}i∈C (S) = uT,{i}i∈C (N) −

uT,{i}i∈C (N\S) = 0. Thus, (r uC +
∑

T⊆N\C rT u
∗
T,{i}i∈C )(S) =

0 = vγ(S).

(ii) If C ⊆ S, then uC(S) = 1 and C ∩ (N\S) = ∅. Let us consider

T ⊆ N\C, T 6= ∅. Then, uT,{i}i∈C (N\S) = 0 if, and only if, T *

N\S, which is equivalent to T ∩ S 6= ∅. So, u∗T,{i}i∈C (S) = 1 if,

and only if, T ∩S 6= ∅. Thus, (r uC+
∑

T⊆N\C rT u
∗
T,{i}i∈C )(S) =

r +
∑

T∩S 6=∅
T⊆N\C

rT =
∑

T∩S 6=∅ rT = vγ(S).

Secondly, we show that v = r uC +
∑

T⊆N\C rT u
∗
T,{i}i∈C is a clan

information market game. Let v = λuC +
∑

T⊆N\C λT u
∗
T,{i}i∈C with

λ, λT ≥ 0 for all T ⊆ N\C, T 6= ∅. Then v is the clan information

market game with the following market data rT = λT if T ⊆ N\C

and
∑

T :C∩T 6=∅ rT = λ.
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Next, we provide the Shapley value of a clan information market

game in terms of the market data.

With Proposition 2.6.1, clan information market games can be

expressed as vγ = r uC +
∑

T⊆N\C rT u
∗
T,{i}i∈C . On the other hand,

like any game, the monotonic simple game uT,{i}i∈C may be linearly

decomposed into unanimity games in a unique way. Lange and Kóczy

(2013) were interested in voting games which are monotonic and

proper simple games. They proved that the decomposition of a vot-

ing game (N, v) with set of minimal winning coalitions {S1, . . . , Sm}

is given by v =
∑

A⊆{S1,...,Sm}:A 6=∅(−1)|A|−1uÂ, where Â =
m⋃
i=1

Ai for

any family of coalitions A = {A1, . . . , Am}. It is not difficult to check

that their proof also holds for any monotonic simple game, with a

nonempty set of minimal winning coalitions, with no need to require

properness. Therefore, for any T ⊆ N\C,

uT,{i}i∈C =
∑

A⊆MT,C

A 6=∅

(−1)|A|−1uÂ, (2.2)

whereMT,C = {T, {i}i∈C} and Â =
m⋃
i=1

Ai for anyA = {A1, . . . , Am} ⊆

MT,C .



“tesi-2” — 2019/9/11 — 19:50 — page 60 — #70

60 CHAPTER 2. CLAN INFORMATION MARKET GAMES

Then,

φ(vγ) = r φ(uC) +
∑

T⊆N\C

rT φ(u∗T,{i}i∈C )

= r φ(uC) +
∑

T⊆N\C

rT φ(uT,{i}i∈C )

= r φ(uC) +
∑

T⊆N\C

rT φ

( ∑
A⊆MT,C

A 6=∅

(−1)|A|−1uÂ

)

= r φ(uC) +
∑

T⊆N\C

rT

( ∑
A⊆MT,C

A 6=∅

(−1)|A|−1φ(uÂ)

)

= r
|C|1C +

∑
T⊆N\C

rT

( ∑
A⊆MT,C

A 6=∅

(−1)|A|−1 1

|Â|
1Â)

)

Note that the first and the fourth equalities follow from the lin-

earity of the Shapley value, the second one because a game and its

dual game have the same Shapley value (Funaki, 1995), the third one

by (2.2) and the last one since φ(uT ) = 1
|T |1T (Shapley, 1953).

Example 2.6.2. Let (N, vγ) be a clan information market game

with set of players N = {1, 2, 3, 4} and clan C = {1, 2}. Let r =∑
T∩{1,2}6=∅

rT .

Then, the Shapley value is

φ(vγ) = r
2
1{1,2}+

r3(1{3} + 1{1} + 1{2} − 1
2
1{1,3} − 1

2
1{2,3} − 1

2
1{1,2} + 1

3
1{1,2,3})+

r4(1{4} + 1{1} + 1{2} − 1
2
1{1,4} − 1

2
1{2,4} − 1

2
1{1,2} + 1

3
1{1,2,4})+

r34(1
2
1{3,4} + 1{1} + 1{2} − 1

3
1{1,3,4} − 1

3
1{2,3,4} − 1

2
1{1,2} + 1

4
1{1,2,3,4})
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Furthermore, after the above vectorial operations,

φ(vγ) = (1
2
r+ 1

3
r3+ 1

3
r4+ 5

12
r34,

1
2
r+ 1

3
r3+ 1

3
r4+ 5

12
r34,

1
3
r3+ 1

12
r34,

1
3
r4+

1
12
r34).

Remark 2.6.3. When a clan information market γ is such that rT =

0 for all T ⊆ N\C with |T | ≥ 2, the Shapley value is

φi(v
γ) =


1
|C|r +

∑
j∈N\C

1
|C|+1

rj if i ∈ C

1
|C|+1

ri if i /∈ C

Thus, since 1
|C|+1

ri < ri, it belongs to the core, which we already knew

because of the convexity of this game.

Remark 2.6.4. In case rT = 0 for all T with |T | ≥ 2 (the game is

convex) and N = C ∪ {i} such that vγ(N) = ri, we have φ(vγ) =

τ(vγ) = µ(vγ).
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Chapter 3

Information interval games

3.1 Introduction

Muto et al. (1989) define a class of cooperative games intended to

model the trading of information between one informed firm and

other initially not informed firms. The information needed to pro-

duce a new commodity is initially only possessed by one firm, the

patent holder. The market is divided into several submarkets ac-

cording to the group of firms which have the possibility to enter this

market. The maximum profit attainable in each submarket by pro-

ducing and selling the new commodity is obtained by the set of firms

that control that submarket provided the informed firm has entrance

to the submarket. By sharing the information with other firms, the

patent holder can also gain profit from submarkets he has no access

67
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to. The corresponding cooperative game to this situation is named

information market game.

Coalitional games have been extended to coalitional interval games.

Branzei et at.(2003) introduce coalitional interval games to handle

bankruptcy situations with uncertainty on the claims. These claims

are, then, depicted by known bounded intervals of real numbers.

They study these situations by using tools of interval analysis (Moore,

1979). Alparslan-Gök et.al (2009) consider selections of cooperative

interval games which are classical cooperative games.

The model of information market games was extended by El

Obadi and Miquel (2017) by considering that the initial owner of

the information is not only one agent but it is a set of agents. In

this chapter we consider a different extension of information market

games. It is natural to think that the profit attainable in each sub-

market of an information market may not be known with certainty

and this is what we assume in this chapter. So, the class of informa-

tion market games is extended to information market interval games.

The aim of this chapter consists on providing solutions for sharing

the profits obtained in the market where a patent holder is needed

for the production of a new commodity with the particularity that

the profit attainable in each submarket is uncertain. Such solutions

provide an interval of individual payoffs to each player such that the

interval profit that the grand coalition could obtain by cooperation,
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is distributed among the players.

The chapter is organized as follows. After the premilinaries sec-

tion, in Section 3.3 we define information interval games and we give

some properties. Next sections are devoted to different solutions. In

Section 3.4 the interval core of the game is considered. Section 3.5

provides the interval Shapley value in terms of the market data and

Section 3.6 shows how to find the interval T -value of an information

interval game.

3.2 Preliminaries

We start this section with definitions related to the model of infor-

mation market games of Muto et al. (1989). After that, we add

some basic concepts of coalitional games and, in particular, simple

games. Later, we recall basic interval calculus (Moore, 1979) and de-

fine cooperative interval games. Some solutions for cooperative game

theory under interval uncertainty are also considered in this section.

In fact, our model generalizes the one introduced by Muto et al.

(1989). They defined an information market as the tuple (N, {1},

(rT )T⊂N,T 6=∅), where N is the set of players and rT ∈ R+ is the max-

imum profit obtainable from the submarket to which the firms of T

have access to and no other firms.

Given such a market, the corresponding information market game
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(N, v) is defined by v(S) =
∑

T∩S 6=∅ rT if {1} ⊆ S and v(S) = 0 if

{1} 6⊆ S. This is a model of cooperative games.

A cooperative (coalitional) game with player set N , (N, v), is a

map v : 2N → R such that v(∅) = 0. The subgame of (N, v) restricted

to a coalition T ⊆ N , (T, vT ), is the map vT : 2T → R defined by

vT (S) = v(S) for all S ⊆ T . A game (N, v) is monotonic if S ⊆ T

implies v(S) ≤ v(T ).

The class of big boss games is another model of cooperative games.

The cooperative game (N, v) is a big boss game if there is one player,

denoted by i∗, satisfying the following conditions

(i) v(S) = 0 if i∗ /∈ S

(ii) v(N)− v(S) ≥
∑

i∈N\S(v(N)− v(N \ {i})) if i∗ ∈ S

A big boss game is a total big boss game if it is monotonic and any

subgame containing player i∗ is a big boss game again.

Indeed, any information market game is a big boss game (Muto

et al., 1988).

A game (N, v) is simple if v(S) ∈ {0, 1} for all S ⊆ N and v(N) =

1. Given a monotonic simple game (N, v), the coalition S is a winning

coalition if v(S) = 1. We denote v = uS1,S2,...,Sk the simple game

with minimal winning coalitions S1, S2, . . . , Sk, i.e. uS1,S2,...,Sk(S) = 1

if Si ⊆ S for some Si ∈ {S1, S2, . . . , Sk}, and uS1,S2,...,Sk(S) = 0

otherwise. If the nonempty coalition T ⊆ N is the only minimal
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winning coalition, the game (N, uT ) is called the unanimity game.

The dual of a game (N, v) is denoted by (N, v∗) and is defined by

v∗(S) = v(N)− v(N\S) for all S ⊆ N .

According to the Shapley value φ(v) of the cooperative game

(N, v), the value of player i ∈ N is φi(v) = 1
n!

∑
σ∈Π(N)(v(P σ(i) ∪

{i}) − v(P σ(i)) where n = |N | and Π(N) is the set of all permuta-

tions σ : N → N . Given a permutation σ, the set of players that

precede player i is the set P σ(i) = {r ∈ N such that σ−1(r) < σ−1(i)}

where σ−1(i) denotes the entrance number of player i. Some prop-

erties of the Shapley value are efficiency, i.e.
∑

i∈N φi(v) = v(N),

and linearity, i.e. φ(v + w) = φ(v) + φ(w) and φ(av) = aφ(v). The

Shapley value of the unanimity game uT and its dual game u∗T is

φ(uT ) = φ(u∗T ) =

 1
|T | if i ∈ T

0 otherwise

The Shapley value of uT,1 and its dual u∗T,1 are equal and can be found

by linearity of φ. Since uT,1 = uT + u1 − uT∪{1}, φ(u∗T,1) = φ(uT,1) =

φ(uT ) + φ(u1)− φ(uT∪{1}) = 1
t
1T + 11− 1

t+1
1T∪{1}

1 , where t = |T |.

Let us name I(R+) the set of all closed intervals in R. In order to

operate with cooperative interval games we first need to recall basic

interval notation and calculus. The lenght of an interval R = [r, r]

is defined by |R| = r − r. Let R1 = [r1, r1] and R2 = [r2, r2] be two

intervals, R1, R2 ∈ I(R+), and let be α ∈ R+. Then, R1 + R2 =

1(1T)i = 1 if i ∈ T and (1T)i = 0 if i /∈ T
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[r1 + r2, r1 + r2] and αR1 = R1α = [αr1, αr1]. Let R1, R2, . . . Rn

be a finite set of intervals, we denote by
∑n

i=1Ri the sum of those

n intervals, i.e.
∑n

i=1Ri = [
∑n

i=1 ri,
∑n

i=1 ri]. Before defining the

substraction of intervals, we need a preference relation. We say that

R1 is weakly preferred to R2 (R1 < R2) if and only if r1 ≥ r2 and

r1 ≥ r2. Notice that it is only defined for not nested intervals. The

substraction of two intervals R1 and R2, with R1 < R2, is defined

by R1 − R2 = [r1 − r2, r1 − r2] only if |R1| ≥ |R2| (Alparslan et al.,

2009). This last condition guarantees that the lower bound of the

substraction interval is smaller or equal than its upper bound. Let

R1, R2, . . . Rn be a finite set of not nested intervals, the maximum

interval is defined by maxi∈{1,2,...,n}{Ri} = {Ri∗ ∈ {Ri} such that

Ri∗ < Ri for all i ∈ {1, 2, . . . , n}}.

A cooperative interval game is an ordered pair (N,w) where N =

{1, . . . , n} is the set of players and w : 2N → I(R) is the characteristic

function such that w(∅) = [0, 0]. Then, w(S) = [w(S), w(S)] where

w(S) is the lower bound and w(S) is the upper bound of w(S). Note

that if all the interval worths are degenerate intervals, i.e. w(S) =

w(S) for all S ⊆ N , then the interval game (N,w) corresponds to

the coalitional game (N, v) with v(S) = w(S) for all S ⊆ N . We can

associate three coalitional games to a given interval game (N,w).

Two of them are the border games (N,w) and (N,w), where w(S) =

w(S) and w(S) = w(S) respectively, and the third one is the lenght
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game (N, |w|) where |w|(S) = |w(S)| for all S ⊆ N .

The interval imputation set I(w) of the interval game (N,w) is

defined by

I(w) = {(X1, ..., Xn) ∈ IN(R)|∑
i∈N Xi = w(N) and Xi < w({i}) for all i ∈ N}

and its interval core C(w) is defined by

C(w) = {(X1, ..., Xn) ∈ I(w)|
∑
i∈S

Xi < w(S) for all S ⊆ N}.

An interval game (N,w) is called size-monotonic if (N, |w|) is

monotonic, i.e. |w|(S) ≤ |w|(T ) for all S ⊂ T ⊆ N . Let us name

SMIGN the class of size monotonic interval games with player set

N . For each w ∈ SMIGN and each i ∈ N , the interval marginal

contribution of player i to the grand coalition in the game w is defined

by Mi(w) = w(N)− w(N \ {i}).

The interval Shapley value Φ : SMIGN → IN(RN) is defined by

Alparslan-Gök et al. (2010) as follows,

Φ(w) =
1

n!

∑
σ∈Π(N)

mσ(w), for each w ∈ SMIGN

where Π(N) is the set of all permutations σ : N → N . The interval

marginal operator mσ : SMIGN → IN(R) corresponding to σ, as-

sociates with each w ∈ SMIGN the interval marginal vector mσ(w)

defined by w(P σ(i) ∪ {i}) − w(P σ(i)) for each i ∈ N . So, in other
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words, the interval Shapley value is given by

Φi(w) =
1

n!

∑
σ∈Π(N)

(w(P σ(i) ∪ {i})− w(P σ(i)))

for any player i ∈ N .

An interval game (N,w) is said to be a big boss interval game

if its border game (N,w) and its lenght game (N, |w|) are total big

boss games.

3.3 Information market interval games

In this chapter we study information markets where the maximum

profit obtainable in each submarket is uncertain. We address the

uncertainty by considering the profit attainable in a submarket con-

trolled by T ⊆ N is given by the interval RT = [rT , rT ]. In this

section, first of all, we introduce information markets with interval

uncertainty and, later, the corresponding coalitional interval games.

We also show some properties that these games satisfy.

Definition 3.3.1. An information market with interval uncertainty

is defined by the tuple (N, {1}, (RT )T⊆N,T 6=∅) where N = {1, . . . , n}

is the set of firms and 1 ∈ N is the patent holder who owns the infor-

mation. RT = [rT , rT ] is the interval of profits potentially attainable

in the submarket to which the firms of T have access to.
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For instance, an information market under uncertainty is the fol-

lowing one.

Example 3.3.2. We can consider (N, {1}, (RT )T⊆N,T 6=∅), an infor-

mation market under uncertainty, with three firms N = {1, 2, 3},

where firm 1 is the patent holder, and with profits attainable in each

submarket given as follows.

R{1} = [3, 5] R{2} = [5, 6] R{3} = [2, 3]

R{1,2} = [2, 4] R{1,3} = [0, 0] R{2,3} = [2, 6]

R{1,2,3} = [1, 6]

Definition 3.3.3. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information mar-

ket with interval uncertainty. The corresponding information (mar-

ket) interval game is defined by (N,w) where

w(S) =
∑
T∩S 6=∅

RT

if 1 ∈ S, and w(S) = [0, 0] otherwise.

We name IIGN the set of all information interval games with

player set N .

Notice that the class of the classical information market games is

a particular case of the class of information interval games. When an

information interval game is such that, for each submarket controlled

by T ⊆ N , the lower bound and the upper bound of the interval profit
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RT = [rT , rT ] coincide, rT = rT , then we have a classical information

market game with same player set and the profit attainable in the

submarket controlled by T ⊆ N given by rT = rT = rT .

Next, we show the information interval game corresponding to

the market given in Example 3.3.2

Example 3.3.4. Let us consider the information market under un-

certainty in Example 3.3.2. From this market, we can define the

information interval game (N,w), with characteristic funcion w(S) :

2N → I(R), as follows.

w({1}) = R{1} +R{1,2} +R{1,3} +R{1,4} +R{1,2,3} = [6, 15]

w({1, 2}) = w(1) +R{2} +R{2,3} = [13, 27]

w({1, 3}) = w(1) +R{3} +R{2,3} = [10, 24]

w({1, 2, 3}) = w(1, 2) +R{3} = [15, 30]

and w(S) = [0, 0] otherwise.

Notice that

w(S) =
∑

T∩S 6=∅RT =
∑

T∩S 6=∅[rT , rT ]

= [
∑

T∩S 6=∅ rT ,
∑

T∩S 6=∅ rT ] = [w(S), w(S)].

In fact, the border games (N,w) and (N,w) are the classical informa-

tion market games obtained from the information markets (N, {1},

(rT )T⊆N,T 6=∅) and (N, {1}, (rT )T⊆N,T 6=∅), respectively.

Proposition 3.3.5. Let us consider an information market with in-

terval uncertainty (N, {1}, (RT )T⊆N,T 6=∅).
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Then, the length game (N, |w|) is the classical information market

game corresponding to the information market (N, {1} , (|RT |)T⊆N,T 6=∅)

Proof. The length game is defined by |w| = w(S)−w(S). So, for any

coalition S ⊆ N with 1 ∈ S, |w| (S) =
∑

T∩S 6=∅ rT −
∑

T∩S 6=∅ rT =∑
T∩S 6=∅(rT − rT ) =

∑
T∩S 6=∅ |RT |. While for any coalition S ⊆ N \

{1}, |w| (S) = 0− 0 = 0

Thus, the corresponding information market is (N, {1},

(|RT |)T⊆N,T 6=∅).

As a consequence of the above proposition, information interval

games are size monotonic interval games (SMIG) since the corre-

sponding length game is an information market game and, therefore,

a monotonic game.

Further, by Muto et al. (1988), any information market game

is a big boss game. Besides, they are total big boss games because

they are also monotonic games. If we take into account that the

border games, (N,w) and (N,w), and the lenght game (N, |w|) are

information market games and, therefore, they are total big boss

games, by Alparslan et al. (2011), information interval games are big

boss interval games 2.

In fact, the border game (N,w) can be obtained as the sum of

2An interval game (N,w) is a big boss interval game if its border game (N,w)

and lenght game (N, |w|) are total big boss games.
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the border game (N,w) and the lenght game (N, |w|). That is to say,

w = w + |w|.

A nice property, which is satisfied by all big boss interval games in

general, is satisfied by information interval games in particular. This

property is called 1-concavity and states that the interval marginal

contribution of a player i ∈ N \ {1} to a coalition containing the

informed player does not increase with the size of that coalition.

That is, w(S ∪ {i}) − w(S) < w(T ∪ {i}) − w(T ) for all S, T ∈ 2N

with 1 ∈ S ⊆ T ⊆ N \ {i}. It can easily be proved for information

interval games.

Proposition 3.3.6. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information

market with interval uncertainty and let (N,w) be the correspond-

ing information interval game. Then, (N,w) satisfies the 1-concavity

property.

Proof. Let be i ∈ N \ {1} and let S, T ∈ 2N be two coalitions with

1 ∈ S ⊆ T ⊆ N \ {i}. Then,

w(S ∪ {i})− w(S) =
∑

Q∩(S∪{i})6=∅

RQ −
∑

Q∩S 6=∅

RQ

=
∑
i∈Q

Q\{i}⊆N\S

RQ

<
∑
i∈Q

Q\{i}⊆N\T

RQ

= w(T ∪ {i})− w(T )
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where the third step follows since N \ T ⊆ N \ S.

3.4 The core of information interval games

Alparslan et al. (2011) show that the interval core of a big boss

interval game (N, u) is equal to the set C(u) = {(X1, . . . , Xn) ∈

IN(R) :
∑

i∈N Xi = w(N), [0, 0] ≤ Xi ≤Mi(u) for all i ∈ N \ {1}}.

Let us recall that any information interval game is a big boss

interval game. Then, we can easily determine the interval core of an

information interval game in terms of the market data. We just need

to find the marginal contribution of any player i ∈ N \ {1} to the

grand coalition.

Corollary 3.4.1. Let (N,w) be an information interval game asso-

ciated to the market (N, {1}, (RT )T⊆N,T 6=∅). Then,

C(w) = {(X1, . . . , Xn) ∈ IN(R) :
∑

i∈N Xi = w(N),

[0, 0] 4 Xi 4 [ri, ri] for all i ∈ N \ {1}}.

Proof. Let (N,w) be an information market interval game. Since it is

also a big boss interval game, by Alparslan et al. (2011), the interval

core payoff of a player i ∈ N \ {1} is in between [0, 0] and its interval

marginal contribution to the grand coalition Mi(w). Further, this

interval marginal contribution Mi(w) is

Mi(w) = w(N)−w(N\{i}) =
∑

T∩N 6=∅

RT−
∑

T∩(N\{i}) 6=∅

RT = R{i} = [ri, ri].
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Since the class of information interval games is a subclass of the

class of big boss interval games, the condition [0, 0] 4 Xi 4 [ri, ri]

∀i ∈ N \ {1} together with the efficiency contition,
∑
i∈N

Xi = w(N),

define the interval core of the game w.

Let us recall the information interval game (N,w) in Example

3.3.4, where N = {1, 2, 3}. By Corollary 3.4.1, its core is the interval

set C(w) = {(X1, X2, X3) ∈ I3(R) : X1 + X2 + X3 = [15, 30], [0, 0] 4

X2 4 [5, 6] and [0, 0] 4 X3 4 [2, 3]}. Notice that the interval al-

locations ([15, 30], [0, 0], [0, 0]) and ([8, 21], [5, 6], [2, 3]) belong to the

interval core of this example. In the first one, the informed player

benefits the most while, in the second one, the other players are the

biggest winners.

Indeed, an immediate consequence of the interval core structure

is that it always contain these two extreme interval allocations,

(i) X1 = w(N) and Xi = [0, 0] for all i ∈ N \ {1}, and

(ii) X1 = w(N)−
∑

i∈N\{1}[ri, ri] and Xi = [ri, ri] for all i ∈ N\{1}.

Following the notation of Alparslan et al. (2011), we can name the

first one as the big boss interval point, B(w), and the second one as

the union interval point, U(w).

Once we know what is the interval core of the game, we wonder

how stable is this solution. The definition of a stable set for an inter-

val game is given by Alparslan et al. (2008). They, first, define the
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domination between two interval allocations. Let X = (X1, . . . , Xn)

and Y = (Y1, . . . , Yn) be two interval imputations and let be S ∈

2N \ {∅}. It is said that X dominates Y via coalition S, which is

denoted by X domS Y , if

(i) Xi < Yi for all i ∈ S,

(ii)
∑

i∈S Xi 4 w(S).

For an interval game (N,w) a subset A of the interval imputation set

is a stable set if the following conditions hold:

(i) (Internal stability) There does not exist X, Y ∈ A such that

X domY .

(ii) (External stability) For each X /∈ A there exists Y ∈ A such

that Y domX.

We show that the interval core of an interval information market

game is not always a stable set. However, certain conditions on the

market prove to be enough to guarantee the stability of the core.

Proposition 3.4.2. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information

market with interval uncertainty, let (N,w) be the corresponding game

and let C(w) be its interval core. Then, C(w) is a stable set if and

only if RT = [0, 0] for all T ⊆ N \ {1} with |T | ≥ 2.
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Proof. In order to show that the interval core is a stable set, we

should check that it holds both, the internal stability and the external

stability. However, the internal stability is always satisfied by an

interval core of an interval game (Alparslan et al., 2008). So, we only

need to show that the external stability is satisfied.

First, we prove the “if part”. Let us consider an interval infor-

mation market with RT = [0, 0] for all T ⊆ N \ {1} with |T | ≥ 2.

Then, the corresponding interval information market game is such

that w(S) = w({1}) +
∑

i∈S\{1}R{i} for all S ⊆ N with 1 ∈ S and

w(S) = 0 otherwise. In particular, for S = N , w(N) = w({1}) +∑
i∈N\{1}R{i}.

Hence, any interval imputation X ∈ I(w) is such that Xi < [0, 0]

and
∑

i∈N Xi = w({1}) +
∑

i∈N\{1}R{i}. Now, by Corollary 3.4.1, if

X ∈ I(w)\C(w), there exists a player i ∈ N\{1} such that Xi � R{i}.

Let be A = {i ∈ N \ {1} such that Xi � R{i}}. Further, take

Y ∈ I(w) such that Yi = R{i} for all i ∈ A, Y1 = X1+
∑

i∈A(Yi−R{i}),

and Yj = Xj for all j ∈ (N \ {1}) \ A. Notice that, by Corollary

3.4.1, Y ∈ C(w). Moreover, notice that Yk < Xk for all k ∈ N \ A

and
∑

k∈N\A Yk = (w({1}) +
∑

i∈N\{1}R{i})−
∑

i∈AR{i} 4 w(N \A),

where the first equality holds by efficiency. So, if we take S = N \A,

we have Y domS X.

Secondly we prove the “only if part”. Actually, we show that if

there exists T ⊆ N \ { 1} with |T | ≥ 2 and RT 6= [0, 0], then C(w)



“tesi-2” — 2019/9/11 — 19:50 — page 83 — #93

3.5 Shapley value 83

is not a stable set. Let be T ⊆ N \ { 1} with |T | ≥ 2 such that

RT � [0, 0]. Then, take the imputation X ∈ I(w) \ C(w) such that

Xi = R{i} + 1
n
RT for all i ∈ N \ {1} and X1 = w({1}) + 1

n
RT .

Next we look for an interval Y ∈ C(w) that dominates X. Since

for all i ∈ N \ {1}, Yi 4 R{i} by Proposition 3.4.1 and, further,

R{i} ≺ Xi, no Y ∈ C(w) can dominate X via a coalition containing

players in N \ {1}. So, X can only be dominated by Y via coalition

{1}. However, any Y ∈ C(w) with Y1 < X1 = w({1})+ 1
n
RT does not

satisfy Y1 4 w({1}). Hence, no Y ∈ C(w) dominatesX ∈ I(w)\C(w).

So, C(w) is not a stable set.

Together with Muto et al. (1989), a consequence of Proposition

3.4.2 is that the core of an information interval game is a stable set

if and only if the core is stable for its border games w and w.

3.5 Shapley value

Some characterizations of the interval Shapley value are given by Al-

parslan et al. (2010) and Palanci et al. (2015) for interval cooperative

games. In the first reference, the characterization is given on those

games generated by the additive cone K = {ISuS|S ∈ 2N \ {∅}, IS ∈

I(R)} (KIGN) and, in the second one, on size monotonic interval

games (SMIGN). Next, we recall some properties of the interval

Shapley value on size monotonic interval games, Φ : SMIGN →
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IN(R).

Efficiency: For every w ∈ SMIGN , it holds that
∑

i∈N Φi(w) =

w(N).

Null Player Property: If i ∈ N is a null player in an interval

game w ∈ SMIGN , i.e. w(S∪{i}) = w(S) for each S ∈ 2N\{i},

then Φi(w) = [0, 0].

Fairness: If i, j ∈ N are symmetric players in w ∈ SMIGN ,

i.e. w(S ∪ {j}) − w(S) = w(S ∪ {i}) − w(S) for each S with

i, j /∈ S, then Φi(w
′ + w) − Φi(w

′) = Φj(w
′ + w) − Φj(w

′) for

all w′ ∈ SMIGN .

Since information interval games are size monotonic interval games,

by Palanci et al. (2015), its interval Shapley value is Φ : SMIGN →

IN(R) defined by Φi(w) = 1
n!

∑
σ∈Π(N)(w(P σ(i)∪{i})−w(P σ(i))) and

it is characterized by efficiency, the null player property and fairness.

In this section we find an expression for the interval Shapley value

in terms of the data of the information market under uncertainty. To

this end, we first provide a definition of information interval games

equivalent to the one given in Definition 3.3.3.

Proposition 3.5.1. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information

market with interval uncertainty. Then (N,w) is the corresponding
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information interval game if and only if w = Ru1 +
∑

T⊆N\{1}

RTu
∗
T,1,

where R =
∑
T :1∈T

RT .

Proof. Firstly we show the “only if” part. If 1 /∈ S, then w(S) =

[0, 0], u1(S) = 0 and u∗T,1(S) = uT,1(N) − uT,1(N \ S) = 1 − 1 = 0.

Further, if 1 ∈ S, then u1(S) = 1 and u∗T,1(S) = 1 if T ∩ S 6= ∅

while u∗T,1(S) = 0 otherwise. So, (Ru1 +
∑

T⊆N\{1}

RTu
∗
T,1)(S) = R +∑

T :T∩S 6=∅
T⊆N\{1}

RT =
∑

T :T∩S 6=∅

RT = w(S).

Next, we show the “if” part. Let w = Au1 +
∑

T⊆N\{1}

ATu
∗
T,1 with

A,AT ∈ I(R+) for all T ⊆ N \ {1}, T 6= ∅.

Then, this game is generated by the information market under

uncertainty with RT = AT if T ⊆ N \ {1} and
∑

T :1∈T RT = A.

After defining information interval games in terms of some simple

games, we focus now on some properties of the interval Shapley value

on the set of information interval games.

Lemma 3.5.2. Let be α, β ∈ R+ and let (N,w1) and (N,w2) be the

two size-monotonic information interval games. Then,

Φ(αw1 + β w2) = αΦ(w1) + β Φ(w2).

Proof. Notice that for all S ⊆ N with 1 ∈ S, w(S) − w(S \ {1}) =

w(S). Meanwhile, w(S)− w(S \ {i}) =
∑
i∈T

T\{i}⊆N\S

RT for any i ∈ S ⊆
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N \ {1}. On the other hand, if 1 /∈ S ⊆ N , then w(S)−w(S \ {i}) =

[0, 0] for any i ∈ N . Then,

Φi(αw1 + β w2)

= 1
n!

∑
σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

αR1T + β R2T

= 1
n!

∑
σ∈Π(N)

 ∑
i∈T

T\{i}⊆N\Pσ(i)

αR1T +
∑
i∈T

T\{i}⊆N\Pσ(i)

β R2T


= 1

n!

α ∑
σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

R1T + β
∑

σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

R2T


= α 1

n!

∑
σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

R1T + β
1

n!

∑
σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

R2T

= αΦi(w1) + β Φi(w2)

If we consider an interval, say A = [a, a], multiplied by a coopera-

tive game (N, v), then we get an interval game, w = Av. Its interval

Shapley value can be found by means of the Shapley value of the

cooperative game as the following lemma shows.

Lemma 3.5.3. Let (N,w) be an interval cooperative game with w =

Av where A = [a, a] ∈ I(R) and (N, v) is a cooperative game. Then,

Φ(w) = Aφ(v).

Proof. Notice that w is size-monotinic since |w(S)| = 0 for all S ⊆ N .

So we can calculate the interval Shapley value of w. For each player
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i ∈ N ,

Φi(w) = 1
n!

∑
σ∈Π(N)

(w(P σ(i) ∪ {i})− w(P σ(i)))

= 1
n!

∑
σ∈Π(N)

(Av(P σ(i) ∪ {i})− Av(P σ(i)))

= A 1
n!

∑
σ∈Π(N)

(v(P σ(i) ∪ {i})− v(P σ(i)))

= Aφi(v)

Next, we discuss one more property of the interval Shapley value.

The interval Shapley value of an information interval game and the

interval Shapley value of its dual coincide. Actually, as can be seen

above, this property holds for the Shapley value of cooperative games.

Lemma 3.5.4. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information market

under uncertainty and let (N,w) be the corresponding information

interval game. Then, Φ(w) = Φ(w∗).

Proof. The dual game w∗ of the information interval game w is

w∗(S) = w(N)−w(N \S) =
∑

T⊆N RT−
∑

T∩(N\S) 6=∅RT =
∑

T⊆S RT

for all S ⊆ N .
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Then, since w and w∗ are size-monotonic interval games,

Φi(w
∗) = 1

n!

∑
σ∈Π(N)

(w∗(P σ(i) ∪ {i})− (w∗(P σ(i)))

= 1
n!

∑
σ∈Π(N)

 ∑
T⊆Pσ(i)∪{i}

RT −
∑

T⊆Pσ(i)

RT


= 1

n!

∑
σ∈Π(N)

∑
i∈T

T\{i}⊆N\Pσ(i)

RT

= Φi(w)

The two Lemmas 3.5.2 and 3.5.3 allow us to find the interval

Shapley value of an information interval game following the steps

given in Muto et al. (1989) for information market games. Once

information interval games have been defined in terms of some simple

games (Proposition 3.5.1), we find their interval Shapley value taking

into account some properties of simple games and their corresponding

Shapley value.

Proposition 3.5.5. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information

market under uncertainty and let (N,w) be the corresponding in-

formation interval game. Then, its interval Shapley value Φ(w) :

IIGN → I(R)N is

Φ(w) = R · 11 +
∑

T:T⊆N\{1}
T 6=∅

RT

(
|T|
|T|+ 1

11 +
1

|T|(|T|+ 1)
1T

)
.
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Proof. Since w = Ru1 +
∑

T⊆N\{1}

RTu
∗
T,1 by Proposition 3.5.1 its Shap-

ley value can be obtained as follows.

Φ(w) = Rφ(u1) +
∑

T⊆N\{1}

RTφ(u∗T,1)

= R · 11 +
∑

T:T⊆N\{1}
T6=∅

RT

(
1

|T|
1T + 11 +

1

|T|+ 1
1T∪{1}

)

= R · 11 +
∑

T:T⊆N\{1}
T6=∅

RT

(
|T|
|T|+ 1

11 +
1

|T|(|T|+ 1)
1T

)

where the first equality holds by Lemma 3.5.2 and Lemma 3.5.3.

Then, the interval Shapley value of the information interval game

of Example 3.3.4 can be obtained as follows: first we find R = [3, 5]+

[2, 4] + [0, 0] + [1, 6] = [6, 15] and then, Φ1(w) = [6, 15] + 1
1+1

[5, 6] +

1
1+1

[2, 3] + 2
2+1

[2, 6] = [65
6
, 47

2
], Φ2(w) = 1

1·2 [5, 6] + 1
2·3 [2, 6] = [17

6
, 4] and

Φ3 = 1
1·2 [2, 3] + 1

2·3 [2, 6] = [4
3
, 5

2
]. So,

Φ(w) =

([
65

6
,
47

2

]
,

[
17

6
, 4

]
,

[
4

3
,
5

2

])
which belongs to the interval core. This can be easily checked by

Corollary 3.4.1.

Corollary 3.5.6. Let (N, {1}, (RT )T⊆N,T 6=∅) be an information mar-

ket under uncertainty and let (N,w) be the corresponding information

interval game. Let (N,w) and (N,w) be the corresponding border

games. Then, Φ(w) = [φ(w), φ(w)].



“tesi-2” — 2019/9/11 — 19:50 — page 90 — #100

90 CHAPTER 3. INFORMATION INTERVAL GAMES

Although the interval Shapley value of a size-monotonic interval

game satisfies good properties as efficiency, null player property and

fairness, it may lie outside the interval core. We just need to consider

the information market with interval uncertainty in Example 3.3.2

with R{2,3} = [2, 10] instead of R{2,3} = [2, 6] and the corresponding

information interval game ({1, 2, 3}, w′). Then, Φ3(w′) = [4
3
, 19

6
] �

[2, 3] = R{3} and therefore Φ does not belong to the interval core of

w′ (by Corollary 3.4.1).

Actually, Corollary 3.5.6 also shows that the interval Shapley

value may not belong to the interval core since the upper bound

of Φ(w) is the Shapley value of the information market game w, that

is φ(w), and it may not belong to the core of w beacuse there may

exist a player i ∈ N \ {1} with φi(w) > ri (cf. Muto et al., 1989).

3.6 Interval core allocations with mono-

tonicity

The interval Shapley value studied in the previous section is an inter-

val solution for information interval games which can easily be found

from the market data. However it may lie outside the interval core.

This section is devoted to an interval solution that belongs to the

interval core.
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Before defining this interval solution, we need to introduce a prop-

erty that interval games migth meet. Further, we will show that it is

satisfied by any information interval game.

Definition 3.6.1. Let (N,w) be an interval game. We say that w

satisfies the size iτ -condition if for any coalition S ⊆ N and any

T ⊂ S with |T | = |S| − 1,

|w(S)|+
∑
i∈T

|w(N \ {i})| ≥ |T | · |w(N)| (3.1)

Notice that this property is neither implied by size-monotonicity

nor implies it, as next examples show.

First, we consider an interval game which is size-monotonic but

does not satisfy the size iτ -condition.

Example 3.6.2. Let us consider the interval game (N,w) with N =

{1, 2, 3} and

w({1}) = w({2}) = w({3}) = [0, 0]

w({1, 2}) = w({1, 3}) = w({2, 3}) = [3, 3]

and w({1, 2, 3}) = [5, 6]

It is size-monotonic since |w|(S) = |w(S)| = 0 for any S ⊆ N

with |S| < 3 and |w|(N) = |w(N)| = 1. So, |w| is a monotonic

game. On the other hand, if we consider S = {1, 2} and T = {1} in

expression (3.1), we can check that size iτ -condition is not satisfied.

Indeed, |w({1, 2})|+ |w(N \ {1})| = 0 � (2− 1)|w(N)| = 1.
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Now, we show an interval game which satisfies equation (3.1) but

is not size-monotonic.

Example 3.6.3. Let us consider the interval game (N,w) with N =

{1, 2, 3} and

w({1}) = w({2}) = w({3}) = [0, 0]

w({1, 2}) = w({1, 3}) = w({2, 3}) = [1, 2]

and w({1, 2, 3}) = [5, 5]

We can check condition (3.1) for S = {1, 2, 3} and any T =

{i, j} ⊂ N , |w({1, 2, 3})| + |w(N \ {i})| + |w(N \ {j})| = 2 ≥ (3 −

1)|w(N)| = 0, and for any S with |S| = 2 and i ∈ S, |w(S)|+ |w(N \

{i})| = 1 ≥ (2− 1)|w(N)| = 0.

However w is not size-monotonic since, for instance |w|({1, 2}) =

1 � 0 = |w|(N).

If we consider the class of information interval games, both prop-

erties are satified. Any information interval game is size-monotonic

by Proposition 3.3.5. Further, next proposition shows that also the

size iτ -condition is satisfied.

Proposition 3.6.4. Let (N,w) be an information interval game.

Then w satisfies the size iτ -condition.

Proof. An interval game satisfies the size iτ -condition if for any coali-

tion S ⊆ N and any T ⊂ S with |T | = |S| − 1, |w(S)|+
∑

i∈T |w(N \

{i})| ≥ |T | · |w(N)|.



“tesi-2” — 2019/9/11 — 19:50 — page 93 — #103

3.6 Interval core allocations with monotonicity 93

If we consider information interval games, for any coalition S ⊆ N

and any T ⊂ S with |T | = |S| − 1,

|w(S)|+
∑
i∈T

|w(N \ {i})| = |w(S) +
∑
i∈T

w(N \ {i})|

= |w(S) +
∑
i∈T

(w(N)−R{i})|

= |T | · |w(N)|+ |w(S)−
∑
i∈T

R{i}|

≥ |T | · |w(N)|

Indeed, |w(S) −
∑
i∈T

R{i}| is non-negative since w(S) −
∑
i∈T

R{i} =

R{j} +
∑
Q∩S
|T |≥2

RQ where {j} = S \ T and the sum of intervals is an

interval. Therefore, its lower bound is smaller or equal than its upper

bound and its length is not negative.

The interval T -value

We generalize here the τ -value defined for coalitional games by

Tijs (1981) to the class of interval cooperative games.

Definition 3.6.5. Let (N,w) be an interval game that satisfies size-

monotonicity and size iτ -condition. The interval T -value of w is

the interval allocation λM(w) + (1 − λ)m(w), with 0 ≤ λ ≤ 1, that

satisfies interval efficiency, i.e.
∑

i∈N λMi(w)+
∑

i∈N(1−λ)mi(w) =

w(N), where Mi(w) = w(N)−w(N\{i}) and mi(w) = maxS:i∈S{w(S)−∑
j∈S\{i}Mj(w)} for each i ∈ N .
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Notice Mi(w) is well defined by the size monotonicity of w. Fur-

ther, mi(w) is well defined by the size iτ -condition. Both properties

are satisfied by information interval games.

Furthermore, it is not difficult to find the interval T -value of

an information interval game in terms of the market data. Indeed,

Mi(w) = w(N) − w(N \ {i}) = R{i} for all i ∈ N \ {1}. Further,

M1(w) = w(N)− w(N \ {1}) = w(N).

With respect to m(w), notice that for all S ⊆ N with 1 ∈ S,

w(S)−
∑

j∈S\{1}R{j} =
∑

T∩S 6=∅RT −
∑

j∈S\{1}R{j} =
∑

T∩S 6=∅
|T |≥2

RT +

R{1}. So, m1(w) = w(N)−
∑

j∈N\{1}R{j} since w(N)−
∑

j∈N\{1}Mj(w) =∑
T⊆N
|T |≥2

RT + R{1} <
∑

T∩S 6=∅
|T |≥2

RT + R{1} = Rw(S, 1) for any S ⊆ N

with 1 ∈ S. Next, for any i ∈ N \ {1},

(i) If 1 ∈ S, w(S) −
∑

j∈S\{i}Mj(w) = w(S) −
∑

j∈S\{i}
j 6=1

R{j} −

w(N) 4 [0, 0].

(ii) If 1 /∈ S and |S| ≥ 2, w(S) −
∑

j∈S\{i}Mj(w) = [0, 0] −∑
j∈S\{i}Mj(w) 4 [0, 0].

(iii) If 1 /∈ S and |S| = 1, w(S)−
∑

j∈S\{i}Mj(w) = w({i}) = [0, 0].

So, mi(w) = [0, 0] for all i ∈ N \ {1}. Thus,

M(w) = (w(N), R{2}, R{3}, . . . , R{n}), and

m(w) = (w(N)−
∑

j∈N\{1}R{j}, [0, 0], [0, 0], . . . , [0, 0]).
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Now, in order to find the interval T -value, we first calculate λ in

the equation λw(N)+λ
∑

j∈N\{1}R{j}+(1−λ)(w(N)−
∑

j∈N\{1}R{j})) =

w(N). From this equation, we get (2λ−1)
∑

j∈N\{1}R{j} = [0, 0]. So,

either λ = 1
2

or R{j} = [0, 0] for all j ∈ N \ {1}.

If R{j} = [0, 0] for all j ∈ N \ {1}, then

T = M(w) = m(w) = (w(N), [0, 0], [0, 0], . . . , [0, 0]).

On the other hand, if λ = 1
2
, then

T = (w(N)− 1

2

∑
j∈N\{1}

R{j},
1

2
R{2},

1

2
R{3}, . . . ,

1

2
R{n}).

This corresponds to the definition given by Alparslan et al. (2011)

for the interval T -value of a big boss interval game, where the interval

T -value is defined by T (w) = 1
2
U(w) + 1

2
B(w).

For any interval game w, we can consider the set of coalitions

containing the informed player P1 = {S ⊆ N | 1 ∈ S}. The scheme

I = (IiS) i∈S
S⊆P1

is an interval allocation scheme for w if (IiS)i∈S belongs

to the interval core of the subgame (S,wS) for each coalition S ∈ P1.

Such allocation scheme I is called a bi-monotonic interval allocation

scheme (bi-mas) for w if, for all S, T ∈ P1 with S ⊆ T , we have

Iis 4 IiT for all i ∈ S \ {1}, and I1s < I1T . That is to say, the

informed player is weakly better off in large coalitions while the other

players are weakly worse off.

Since information interval games are big boss interval games, by

Alparslan-Gök et al. (2008), any allocation in the interval core of an
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information interval game is bi-mas extendable. In particular, the

interval T -value of an information interval game yields a bi-mas.
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Chapter 4

Assignment game with a

central player

4.1 Introduction

A class of assignment markets is analyzed in Shapley Shubik (1972)

by using the theory of cooperative games. In these markets, the set

of agents is divided into two sectors (let us say sellers and buyers),

and the model assumes that the objects of trade are indivisible, in

such a way that each seller has a supply of exactly one item and

each buyer desires exactly one item. In our market there is also a set

of buyers N1 and a set of sellers N2, however the two sets are not

disjoint, but have one agent in common, who can act both as a buyer

and as a seller. We call it the central player, and it is denoted by

99
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h. As in Shapley and Shubik assignment market, each buyer wants

to buy at most one unit and each seller has one unit for sale. A

matrix A = (aij) i∈N1

j∈N2
summarizes the profits from trades, where aij

represents the amount that player i and j jointly obtain when the

transaction between them takes place.

An additional feature of our model is that a trade is possible only

if the central player participates in that trade. Therefore, the profit

matrix is such that aij = 0 if h /∈ {i, j}.

We may extend this model allowing the central player to trade

several units. We can think then of a social bank of flats which acts as

a referee in the housing market to ensure reasonable prices. The aim

of establishing a social bank is to avoid a real estate bubble. Thus,

the owners of flats in this market can only sell them to the social

bank and buyers can only buy a flat from the social bank. However,

the social bank may keep its flats as its own property and rent them

(hence the bank may obtain some profit, ahh ≥ 0, by renting them),

or it may sell them to the buyers.

Another model of a rental housing market can be found in Kaneko

(1983). The market in our model is different due to the reservation

value of the central player, and also different from other markets

with middlemen, Oishi Sakaue (2014), Stuart (1997), Kaneko and

Wooders (1982) and Johri and Leach (2002), where their competitive

equilibria are studied.
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The total value created in the market should be divided among the

agents and this is the aim of this chapter. First we consider that the

central player can sell and buy just one unit and we show how to find

the core of the game. Any core allocation ensures that no coalition of

players has an incentive to split off from the market. The nucleolus

and the τ -value are single-point solutions, and can be found from the

market data. Later, we consider that the central player may trade

any finite number of units and show that any competitive equilibrium

provides a core allocation.

We organize the chapter as follows. After Section 4.2, where no-

tation and game theory definitions are provided, in Section 4.3, we

define assignment games with a central agent. In Section 4.4 we ana-

lyze what the core looks like and some related set-solutions. Section

4.5 is devoted to point-solution concepts: the nucleolus and the τ -

value. Finally, we generalize the model allowing the central player to

buy and sell more than one item in Section 4.6.

4.2 Preliminaries

Given a two-sided market, the assignment problem is defined by the

triple (M1,M2, A) where M1 is the set of buyers, M2 is the set of

sellers, and A = (aij) i∈M1
j∈M2

is a non-negative real matrix. To solve

the problem we must look for an optimal matching in A. A matching



“tesi-2” — 2019/9/11 — 19:50 — page 102 — #112

102
CHAPTER 4. ASSIGNMENT GAME WITH A CENTRAL

PLAYER

between M1 and M2 is a subset µ of M1×M2 such that each k ∈M1∪

M2 belongs at most to one pair in µ. When (i, j) ∈ µ we also denote

with some abuse of notation j = µ(i) and i = µ(j). We will denote by

M(M1,M2) the set of matchings. We say a matching µ is optimal for

the problem (M1,M2, A); in short µ is optimal for A and it is denoted

by µA, if for all µ′ ∈ M(M1,M2),
∑

(i,j)∈µA aij ≥
∑

(i,j)∈µ′ aij. The

set of optimal matchings of the problem (M1,M2, A) is denoted by

MA(M1,M2). Given S ⊆ M1 and T ⊆ M2, we denote by M(S, T )

and MA(S, T ) the set of matchings and optimal matchings of the

submarket (S, T,AS×T ) defined by the subset S of buyers, the subset

T of sellers and the restriction of A to S×T . If S = ∅ or T = ∅, then

the only possible matching is µ = ∅ and, by convention,
∑

(i,j)∈∅ aij =

0.

A transferable utility coalitional game (a game) is an ordered pair

(N, v) where N = {1, 2, . . . , n} is the set of players, and v : 2N → R is

a real-valued function on the set 2N of all subsets of N , with v(∅) = 0.

If no confusion regarding the set of players arises, we denote the game

(N, v) only by v. The size of the set of players N is denoted by n.

Given an assignment problem (M1,M2, A), Shapley and Shubik

(1972) defines a related coalitional game with transferable utility,

the assignment game (M1 ∪M2, wA), as follows. The profits of the

mixed-pair coalitions, {i, j} where i ∈ M1 and j ∈ M2, are given by

the non-negative matrix A, wA({i, j}) = aij ≥ 0, and this matrix
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also determines the value of any other coalition S ∪ T , wA(S ∪ T ) =

max{
∑

(i,j)∈µ aij |µ ∈M(S, T )}, where S ⊆M1 and T ⊆M2.

A game is monotonic if v(S) ≤ v(T ) for all S ⊆ T ⊆ N . It is

convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ⊆ N , or

equivalently, v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆

N \ {i} and for all i ∈ N .

A payoff vector is x ∈ Rn, where, for all i ∈ N , xi represents

the payoff to player i. We denote x(S) =
∑

i∈S xi. The set of payoff

vectors that are efficient, x(N) = v(N), and individually rational,

xi ≥ v(i) for all i ∈ N , is the set of imputations I(v).

The core of a game, C(v), is the set of payoff vectors x ∈ Rn

which, besides being efficient, meet the coalitional rationality princi-

ple, that is x(S) ≥ v(S) for all S ⊂ N . A game (N, v) is said to be

balanced if it has a non-empty core. It is said to be totally balanced

if the core of every subgame is non-empty, where the subgame corre-

sponding to some coalition T ⊆ N , T 6= ∅, is the game (T, vT ) with

vT (S) = v(S) for all S ⊆ T .

The marginal contribution of a player i ∈ N to the grand coalition,

N , is defined by bi = v(N) − v(N\{i}). A marginal worth vector

mσ(v) is a payoff vector defined for each ordering of the set of players

σ : N → {1, . . . , n} as mσ
i (v) = v({j ∈ N |σ(j) ≤ σ(i)}) − v({j ∈

N |σ(j) < σ(i)}) for all i ∈ N .

A balanced game (N, v) satisfies the CoMa-property if and only
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if C(v) = conv{mσ(v)|mσ(v) ∈ C(v)}, that is to say, the extreme

points of its core are marginal worth vectors.

Let be x ∈ I(v). The excess of a coalition S ∈ 2N \ {∅, N}

at x is the real number ε(S, x) = v(S) − x(S). At any x, denote

by θ(x) ∈ R2n−2 the respective excesses arranged in non-increasing

order, i.e. θl(x) ≥ θl′(x) whenever l < l′. The nucleolus ν(v) is the

unique imputation that lexicographically minimizes the vector θ(x).

The nucleolus belongs to the core whenever it is non-empty.

The utopia vector M(v) ∈ RN is defined by Mi(v) = bi for all

i ∈ N . Mi(v) can be regarded as a maximum payoff (not always

attainable) that player i can expect to obtain in the core of the game.

The minimal rights vector m(v) ∈ RN is computed by using M(v).

For all i ∈ N , mi(v) = maxS:i∈S{Rv(i, S)}, where Rv(i, S) is what

remains for player i ∈ N when coalition S forms, i ∈ S, and all

players in S \ {i} are paid their utopia payoff, Rv(i, S) = v(S) −∑
j∈S\{i}Mj(v). Then, the τ -value of that game is the unique efficient

payoff vector on the line segment between m(v) and M(v) whenever∑
i∈N mi(v) ≤ v(N) ≤

∑
i∈N Mi(v) and mi(v) ≤Mi(v) for all i ∈ N .

4.3 Assignment games with a central player

Let us consider an assignment market where there is one player, say

player h, who is necessary for any trading among agents. So, h has
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veto power. Moreover, this player has a double role as a seller and

as a buyer. Thus, player h has a central position in the market

structure. Such a market is an assignment market with a central

player, ({h}, N1, N2, A), where N = {h} ∪ N1 ∪ N2 is the set of

players: N1 6= ∅ is the set of sellers, N2 6= ∅ is the set of buyers

and h is the central player. Since h is necessary for any trade among

agents, matrix A with aij ∈ R+ is such that aij = 0 if h /∈ {i, j}. The

profits of the mixed-pair coalitions {h, i} where i ∈ N1 and {h, j}

where j ∈ N2, can be obtained from the non-negative matrix A.

They are aih and ahj respectively. Finally, the matrix entry ahh is a

reservation value and may represent the profit obtained by the central

player while keeping its ownership. For instance, this ownership can

be rented to provide some profit.

Definition 4.3.1. Let ({h}, N1, N2, A) be an assignment market with

a central player. Then, the corresponding assignment game with a

central player (N, vA) is defined by vA(S) = max i∈S∩N1
j∈S∩N2

{ahh, ahj+aih}

if h ∈ S, and vA(S) = 0 otherwise.

The deal between players in a coalition S is only possible if h ∈ S.

Each coalition S ⊆ N , with h ∈ S and at least one seller i ∈ N1 and

one buyer j ∈ N2, maximizes among ahh and ahj+aih with h, i, j ∈ S.

In case S ∩N1 = ∅ (or S ∩N2 = ∅), coalition S maximizes between

ahh and ahj (or aih).
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Example 4.3.2. Let ({h}, {1, 2}, {1′, 2′}, A) be an assignment mar-

ket with a central player, where

h 1′ 2′

h

A = 1

2


2 3 4

5 0 0

5 0 0

 ,

where the rows correspond to sellers and the columns to buyers. No-

tice that the first column and the first row correspond to player h

who has a double role as a seller and a buyer. Since the transaction

among players in a coalition S ⊆ N is only possible if player h ∈ S,

the characteristic function is given by the following table. 1

S {h} {h1} {h2} {h1′} {h2′}

vA(S) 2 5 5 3 4

S {h12} {h11′} {h12′} {h21′} {h22′} {h1′2′}

vA(S) 5 8 9 8 9 4

S {h121′} {h122′} {h11′2′} {h21′2′} N

vA(S) 8 9 9 9 9

and vA(S) = 0 for any other S ⊆ N .

Notice that assignment games with a central player are not as-

signment games since vA({h}) may be greater than 0.

1We write {i . . . j} instead of {i, . . . , j} for simplicity throughout the text. It

is unlikely to lead to confusion.
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Although assignment games are hardly ever convex games, we

wonder if assignment games with a central player are convex. The

answer is negative as shown by Example 4.3.2. Since vA({h121′2′})−

vA({h121′}) = 9−8 = 1 and vA({h122′})−vA({h12}) = 9−5 = 4, we

have that vA({h121′2′}) − vA({h121′}) � vA({h122′}) − vA({h12}).

This means that the game is not convex.

Without loss of generality, henceforth, we will assume that buyers

and sellers are respectively ordered by their non-increasing gains. So,

matrix A is such that aih ≥ ai′h for all i, i′ ∈ N1 with i < i′ and

ahj ≥ ahj′ for all j, j′ ∈ N2 with j < j′. Hence, 1 = argmaxi∈N1{aih}

and 1′ = argmaxj∈N2{ahj}.

Observe that vA(N) = ahh means that ahh ≥ a1h + ah1 and, by

the assumption above, ahh ≥ aih + ahj for all i ∈ N1 and j ∈ N2. In

this case we say that the assignment game with a central player, vA,

is trivial. The central player would rather keep its ownership than

be involved in any trade. The opposite situation is named intrinsic.

Lemma 4.3.3. Let (N, vA) be a trivial assignment game with a cen-

tral player. Then, vA = ahh · u{h}, where u{h} denotes the unanimity

game 2 for {h}.

Proof. Notice that if ahh ≥ a1h+ah1, then vA(S) = ahh for all S ⊆ N

2The unanimity game uT , where T ⊆ N , is defined by uT (S) = 1 if T ⊆ S

and uT (S) = 0 otherwise.
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with h ∈ S, and vA(S) = 0 otherwise. On the other hand, u{h}(S) = 1

for all S ⊆ N with h ∈ S, and v{h}(S) = 0 otherwise.

When vA is a trivial assignment game with a central player, it is a

convex game and there is only one core allocation. Indeed, C(vA) =

{(ahh, 0, . . . , 0)}3. Actually, since vA(N) = ahh and vA(N \{i}) = ahh

for all i ∈ N \ {h}, bi = 0. Being trivial is sufficient to guarantee

the convexity of assignment games with a central agent but it is not

necessary, as we will see later on in the chapter.

4.4 The core

We have seen above what the core of a trivial assignment game with

a central player is like. This section is devoted to studying the core

of any assignment game with a central player.

On first consideration, the balancedness of any assignment game

with a central player is guaranteed by Bahel (2016) where veto games

are introduced. Actually, (N, v) is a veto game if there exists a coali-

tion T ∈ 2N \ {N, ∅} satisfying v(S) = 0 for any S ∈ 2N such that

S ∩ T 6= ∅. Therefore, any assignment game with a central player is

a veto game with T = {h}. An algorithm for finding extreme core

3The order of the components of an allocation x ∈ Rn is

(xh, x1, x1′ , x2, x2′ , . . . ).
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allocations of any veto game is provided by Bahel (2016). Moreover,

by Bahel (2016) the core and the bargaining set4 coincide.

Furthermore, assignment games with a central player are matrix-

based pairing situations as defined by Tejada, Borm and Lohman

(2014). Actually, we only need to consider a matrix-based pairing

situation (N1, N2, A) with N1 = {h}∪N1, N2 = {h}∪N2 and notice

that matrix A is such that aij = 0 if h /∈ {i, j}.

Following Tejada, Borm and Lohman (2014), we consider the as-

signment game (M1∪M2, wA) corresponding to an assignment game

with a central player ({h}∪N1 ∪N2, vA) just by splitting the central

player h into two players: player h1 acting as seller and player h2 act-

ing as buyer, such thatM1 = h1∪N1 andM2 = h2∪N2. Then, for any

core allocation of the assignment game, (u, v) ∈ C(wA)5 the merger

m((u, v)) = (uh1 + vh2 , u1, u2, . . . , u|N1|, v1, v2, . . . , v|N2|) is a core allo-

cation of the assignment game with a central player ({h}∪N1∪N2, vA)

4The bargaining set of a game is the set of all imputations at which no player

i has an objection (against some j) that is not met by a counter-objection (of j).

Let x ∈ I(v). An objection of i against j to x is a pair (S, y), i ∈ S ⊆ N \{j} and

y ∈ Rs, with y(S) = v(S) such that yk > xk for all k ∈ S. A counterobjection of

j to (S, y) is a pair (T, z), j ∈ T ⊆ N \ {i} and z ∈ Rt, with z(T ) = v(T ) such

that zk ≥ yk for all k ∈ T ∩ S and zk ≥ xk for all k ∈ T \ S.
5A non-negative payoff vector (u, v) ∈ Rm1 ×Rm2 belongs to the core of an

assignment game (M1 ∪ M2, wA) if and only if for any optimal matching µA,

ui + vj = aij for all (i, j) ∈ µA, ui + vj ≥ aij for all (i, j) /∈ µA, and ui = 0 and

vj = 0 if i ∈M1 and j ∈M2 are unmatched by µA.
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since

C(vA) = m(C(wA)). (4.1)

The next proposition shows that the set of extreme core allo-

cations of the assignment game with a central player vA coincides

with the merger of the extreme core allocations of the associated as-

signment game wA. This result does not hold in the more general

matrix-based pairing situations where several agents have the double

role of buyers and sellers.

Lemma 4.4.1. Let (N, vA) be an assignment game with a central

player and let be x ∈ C(vA). Then xi = 0 for all i ∈ N \ {h, 1, 1′}.

Proof. Let us take i ∈ N \ {h, 1, 1′}. Then, vA(N) = vA(N \ {i}).

So, bi = 0. Therefore, xi ≤ 0 in any core allocation. Moreover, xi ≥

vA({i}) = 0 for these players in any core allocation. Consequently,

for any x ∈ C(vA), xi = 0 for all i ∈ N \ {h, 1, 1′}.

As a consequence of Lemma 4.4.1 the core of an assignment game

with a central player can always be described only by the payoffs of

the three players h, 1 and 1′.

Proposition 4.4.2. Let ({h} ∪N1 ∪N2, vA) be an assignment game

with a central player and let (M1 ∪ M2, wA) be the corresponding

assignment game. Then, ext(C(vA)) = m(ext(C(wA))).
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Proof. Let us first consider a trivial vA, where vA({h} ∪N1 ∪N2) =

ahh. So, wA(M1 ∪M2) = ah1h2 . Notice that ahh = ah1h2 .

In this case, by Shapley and Shubik (1972), the core is a line

segment with two extreme core allocations. When uh1 = ah1h2 we get

one of them and when vh2 = ah1h2 we get the other one. By merging,

both of them collapse to the only core allocation of the assignment

game with a central player vA. Thus, in this case, (ahh, 0, . . . , 0) =

ext(C(vA)) = m(ext(C(wA))).

Next, we consider an intrinsic vA, where vA({h} ∪ N1 ∪ N2) =

wA(M1 ∪M2) > ahh. In this case, µA(h1) = 1′ ∈ N2 and µA(h2) =

1 ∈ N1. Hence, by Shapley and Shubik (1972), uh1 + v1 = ah1

and u1 + vh2 = a1h for any (u, v) ∈ C(wA). For this case, first we

show that for any two allocations (u, v), (u′, v′) ∈ C(wA), if u1 = u′1

and v1 = v′1, then (u, v) = (u′, v′). Indeed, v1 = v′1 implies that

uh1 = ah1 − v1 = ah1 − v′1 = u′h1 , and u1 = u′1 implies that vh2 =

a1h− u1 = a1h− u′1 = v′h2 . Therefore, if two allocations in C(wA) are

not equal, then the corresponding mergers are not either. Finally, we

show that if (u, v) ∈ ext(C(wA)), then x = m((u, v)) ∈ ext(C(vA)).

Let us consider an allocation x /∈ ext(C(vA)). Then, there are two

allocations x′, x′′ ∈ C(vA) such that x = 1
2
x′ + 1

2
x′′. Since x′, x′′ ∈

C(vA), by Tejada Borm Lohman (2014), there exist (u′, v′), (u′′, v′′) ∈

C(wA) such that x′ = m((u′, v′)) and x′′ = m((u′′, v′′)). Now, u1 =

x1 = 1
2
x′1 + 1

2
x′′1 = 1

2
u′1 + 1

2
u′′1 and similarly v1 = 1

2
v′1 + 1

2
v′′1 . Further,
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uh1 = ah1−v1 = ah1−(1
2
v′1 + 1

2
v′′1) = 1

2
(ah1−v′1)+ 1

2
(ah1−v′′1) = 1

2
u′h1 +

1
2
u′′h1 , and similarly vh2 = 1

2
v′h2+ 1

2
v′′h2 . Therefore, (u, v) /∈ ext(C(wA)).

Notice that when vA(N) is intrinsic, there are as many extreme

core allocations in vA as extreme core allocations in wA. Both sets

are homeomorphic.

We must remark at this point that there are simple algorithms

to compute the extreme core points of an assignment game Izquierdo

Núñez and Rafels (2007). Hence, the above proposition guarantees

that these algorithms also provide all the extreme core points of our

assignment game with a central player.

In fact, we can easily find a core element. It constists in giving

the value of the grand coalition, vA(N), to player h.

Proposition 4.4.3. Let (N, vA) be an assignment game with a cen-

tral player where N = {h} ∪ N1 ∪ N2. Let x ∈ Rn be an allocation

with xh = vA(N) and xi = 0 for all i ∈ N \ {h}. Then, x ∈ C(vA)

Proof. Notice that x(S) = 0 ≥ vA(S) for all S ⊆ N \ {h}, and

x(S) = vA(N) ≥ vA(S) for all S ⊆ N with h ∈ S. Besides, vA(N) =

xh = x(N).

Since the game is balanced, one might wonder whether its sub-

games are also balanced.
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Proposition 4.4.4. Every subgame of an assignment game with a

central player is again an assignment game with a central player.

Proof. Let us consider T ⊆ N with h ∈ T . The subgame vAT , where

vAT (S) = vA(S) for all S ⊆ T , is an assignment game with a central

player and corresponding matrix AT such that the rows correspond to

players in T ∩N1 and columns to players in T ∩N2. If T ⊆ N\{h},

then we have the zero-game which is an assignment game with a

central player, say player 1, with A = (0).

As an immediate consequence of the two results above, assignment

games with a central player are totally balanced.

Corollary 4.4.5. The assignment game with a central player is to-

tally balanced.

Next, we show which is the structure of the core of an assignment

game with a central player.

Proposition 4.4.6. let (N, vA) be an assignment game with a central
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player with N = {h} ∪N1 ∪N2. Then,

C(vA) = {x ∈ Rn such that x({h, 1, 1′}) = vA(N)

xi = 0 for all i ∈ N\{h, 1, 1′}

0 ≤ x1 ≤ b1

0 ≤ x1′ ≤ b1′

and xh ≥ ahh}
(4.2)

Proof. If the game is trivial, then by Lemma 4.3.3, the only core

allocation is x ∈ CA(v) with xh = ahh and xi = 0 for all i ∈ N \ {h}.

Further, b1 = b1′ = 0.

Let us now consider an intrinsic vA. First, xi = 0 for all i ∈

N\{h, 1, 1′} by Lemma 4.4.1. Further, we can consider a classical

assignment game wA with set of sellers M1 = {h1} ∪ N1 and set of

buyers M2 = {h2}∪N2 as considered in (4.1). Let be (u, v) ∈ C(wA).

Then, by Shapley and Shubik (1972),

(i) u1 + vh2 = a1h, (iv) uh1 ≥ ah2,

(ii) uh1 + v1 = ah1, (v) vh2 ≥ a2h,

(iii) uh1 + vh2 ≥ ahh, (vi) ui ≥ 0 for all i ∈M1 and

(vii) vj ≥ 0 for all j ∈M2

Next, the core of vA can be obtained by (4.1). Actually, all x ∈

C(vA) are obtained by merging the allocations (u, v) ∈ C(wA). That
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is to say, xh = uh1 + vh2 , xi = ui for all i ∈ N1 and xi′ = vi for all

i ∈ N2. Therefore, by (iii), we get xh ≥ ahh; by (i) and (ii), we get

xh+x1+x1′ = a1h+ah1 = vA(N); by (vi), (i) and (v), we get 0 ≤ x1 ≤

a1h−a2h; and by (vii), (ii) and (iv), we get 0 ≤ x1′ ≤ ah1−ah2. Finally,

since x1 +x1′ = a1h +ah1−xh ≤ a1h +ah1−ahh and x1′ ≥ 0, we have

that x1 ≤ a1h + ah1 − ahh. Further, since the marginal contribution

of the first seller to N is b1 = min{a1h + ah1− ahh, a1h− a2h}, we can

write 0 ≤ x1 ≤ b1. Similarly, we get 0 ≤ x1′ ≤ b1′ .

In fact, if we consider a three-player (N, vA), all extreme core

allocations can be simply obtained as the following corollary shows.

Corollary 4.4.7. let (N, vA) be an assignment game with a cen-

tral player with N = {h, 1, 1′}. Then, C(vA) = conv{(vA(N) −

b1, b1, 0), (vA(N)−b1′ , 0, b1′), (ahh, b1, vA(N)−ahh−b1), (ahh, vA(N)−

ahh − b1′ , b1′), (vA(N), 0, 0)}.

Proof. When the game is trivial, all five vectors coincide. The core

is a unique point, C(vA) = {(ahh, 0, 0)}. On the other hand, when

the game is intrinsic, by (4.2), the core is the set of efficient vectors

such that 0 ≤ x1 ≤ b1, 0 ≤ x1′ ≤ b1′ and ahh ≤ xh ≤ vA(N).

Since b1 +ahh = a1h+ah1−max{ahh, ah1}+ahh ≤ vA(N), all lower

and upper bounds are attainable in the core. Hence, we can obtain

all five extreme core allocations by just combining the lower bound
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of a player with the upper bound of another player and determining

the payoff of the third player by efficiency. Notice that some of them

may coincide.

Since all extreme core points are marginal worth vectors, the

three-player game ({h, 1, 1′}, vA) has the CoMa-property. Moreover

it is easy to check that each marginal worth vector coincides with one

of these extreme points and hence the game is convex.

Remark 4.4.8. If we consider more than three players, the core given

by those five vectors in Corollary 4.4.7 no longer determines the core.

Example 4.3.2 is a counterexample: vA(N) = 9, b1 = 0 and, therefore,

the vector x ∈ R5 where xh = ahh = 2 and x1 = b1 = 0 does not belong

to the core of the game since x({h, 1}) = 2 � vA({h, 1}) = 5.

Notice that from any matrix A, we may consider another matrix

A′ where a′hh = vA(N\{1, 1′}) and a′ij = aij otherwise. Then, the

assignment games with a central player vA and vA′ have the same

core, C(vA) = C(vA′), and the set of vectors (xh, x1, x1′) such that

x ∈ C(vA) coincide with the core of the subgame (T, vA′T ) with T =

{h, 1, 1′} whose extreme points are given in Corollary 4.4.7.

When matrices A and A′ are equal, i.e. ahh ≥ a2h + ah2, the

extreme core points are marginal worth vectors where the order θ is
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such that the first three positions are occupied by players in {h, 1, 1′}.

So, when ahh ≥ a2h + ah2, vA satisfies the CoMa-property.

Once the structure of the core of the game is analyzed, let us

study whether this core has additional stability properties.

Definition 4.4.9. Let (N, v) be a coalitional game and let C(v) be

its core. The core C(v) is a stable set if for each y ∈ I(v)\C(v) there

exist x ∈ C(v) and a nonempty coalition S such that (i) xi > yi for

all i ∈ S and (ii) x(S) ≤ v(S). Then, we say that x dominates y.

By definition, core elements are not dominated by any imputation,

while an allocation outside the core is always dominated by some

imputation. However this may not be a strong enough argument

to discard an out-of-the-core allocation since the imputation that

dominates it may also be outside the core. On the contrary, when

the core is a stable set, each imputation outside the core is dominated

by some core imputation.

First we consider assignment games with a central player with

only three players, i.e N = {h, 1, 1′}. From the proof of Corollary

4.4.7, the core of this three-player game is the convex hull of the

marginal worth vectors. Thus, the game is convex and its core is a

stable set Shapley (1971). However, the question still remains open

for more than three players. Let us regard Example 4.3.2 where we

exchange the two last columns so that ah1 = 4 > ah2 = 3. It allows
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us to show that a non stable core of an assignment game with a

central player can be found. Indeed, any x ∈ C(vA) is such that

xh + x1 + x1′ = 9, x2 = x2′ = x1 = 0 and 0 ≤ x1′ ≤ 1. Let us take

y = (7.5, 0, 1.5, 0, 0) ∈ I(v) \ C(vA). Next we show that there is no

core allocation x ∈ C(vA) that dominates y. If x domS y, then h ∈ S

and {2, 2′, 1} /∈ S. So, it must be S = {h, 1′}, but then, x1′ > 1.5

which contradicts the core condition 0 ≤ x1′ ≤ 1.

Although, in general, the core is not a stable set, we look for

matrices such that the corresponding game vA has a stable core.

Proposition 4.4.10. Let (N, vA) be an assignment game with a cen-

tral player.

(i) In case ah2 = a2h = 0, then C(vA) is a stable set.

(ii) In case a2h > 0 (ah2 > 0), then C(vA) is a stable set if and only

if ahh ≥ a2h + ah1 (ahh ≥ a1h + ah2).

Proof. (i) Notice that whenever ah2 = a2h = 0, the game is equivalent

to an assignment game with a central player with N = {h, 1, 1′} and

we have already seen that its core is a stable set.

(ii) In this case we first prove the “if” part. Let us consider the

trivial vA. The core then becomes a unique point {(vA(N), 0, . . . , 0)}

which dominates any other imputation via coalition S = {h}.

Next, we consider the intrinsic vA. Since ahh ≥ a1h + ah2 and

ahh ≥ a2h + ah1, then b1 = b1′ = vA(N) − ahh. Further, since any
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imputation y ∈ I(vA) is such that yh ≥ ahh and y(N) = vA(N),

then y1 ≤ vA(N) − ahh = b1 and, similarly y1′ ≤ b1′ . So, y satisfies

these core conditions in (4.2). The only core condition in (4.2) that

y may break is yi = 0 for all i ∈ N \ {h, 1, 1′}. So, we can consider

without loss of generality that y2 > 0. In this case, y is dominated via

coalition {h, 1, 1′}. Indeed, since y2 > 0, yh < vA(N) and y1 < b1 =

vA(N) − ahh (similarly y1′ < b1′). So, we can define the allocation

x ∈ C(vA) such that xh = yh + α ≤ vA(N), x1 = y1 + β ≤ b1,

x1′ = y1′ + γ ≤ b1′ and α, β, γ ∈ R+, with α + β + γ = y2. It holds

that x({h, 1, 1′}) ≤ vA({h, 1, 1′}) = vA(N) and xh > yh, x1 > y1 and

x1′ > y1′ . So, x dom{h,1,1′} y. Thus, the core is stable.

Secondly, we prove the “only if” part. Let us suppose that a2h > 0

and ahh < a2h + ah1. We show that the core is not stable in this case

by providing an imputation y ∈ I(vA) \ C(vA) such that there is no

core allocation x ∈ C(vA) which dominates y. Take the imputation

y = (a2h + ah1 − ε, a1h − a2h + ε, 0, . . . , 0). Since ahh < a2h + ah1,

vA(N \{1}) = a2h+ah1. So, b1 = a1h−a2h and y1 = a1h−a2h+ε > b1.

Therefore, y /∈ C(vA). If there exists a coalition S ⊆ N and a core

allocation x ∈ C(vA) such that x domSy, then 1 /∈ S, since x1 > b1,

and any i ∈ N \ {h, 1, 1′} cannot belong to S either, since xi = 0

for these players in the core. So, it must be S = {h, 1′}. However,

x({h, 1′}) > y({h, 1′}) = a2h+ah1− ε ≥ max{ahh, ah1} = vA({h, 1′}).

Notice that the last inequality follows since a2h+ah1−ε ≥ ahh because
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ahh < a2h + ah1, and a2h + ah1− ε ≥ ah1 because a2h > 0. So, there is

no S, such that a core allocation x ∈ C(vA) can dominate the above

imputation y.

We would proceed in a similar way when ah2 > 0 to prove that

ahh ≥ a1h + ah2 is necessary for the core to be a stable set.

Thus, core stability is achieved when the reservation value of the

central player is above certain bounds. When the core is not stable

it remains open whether stable sets exist for this model as they exist

for the classical Shapley and Shubik assignment game Núñez and

Rafels(2013).

4.5 The nucleolus and the τ-value

We already know how to find the core of an assignment game with

a central player which, moreover, coincides with the bargaining set.

However, it is a set-solution. In this section we present how to select

just one allocation of the profit obtained by N . Well known point-

solution concepts are the nucleolus, ν(v), and the τ -value.

Note that for trivial assignment games with a central player, the

core consists of a unique allocation. This coincides with the nucleolus

since it always belongs to the core whenever it is nonempty, it also

coincides with the τ -value. Indeed, since bh = vA(N) and bi = 0
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for all i ∈ N \ {h}, Mh = mh = vA(N) and Mi = mi = 0 for all

i ∈ N \ {h}. So, the τ -value is τ(v) = (vA(N), 0, . . . , 0).

The remainder of the section is devoted to intrinsic assignment

games with a central player.

Since any assignment game with a central player is a veto game,

its nucleolus can be calculated as shown by Bahel (2018). Then,

ν(vA) = x∗(vA) 6 if and only if

ε(S, x∗(vA)) ≤ −max

{
b1

2
,
b1′

2

}
for all S ∈ N∗(vA), (4.3)

where N∗(vA) = {S 3 h such that ε(S, x∗(v)) > ε(N \ S, x∗(v))}.

Lemma 4.5.1. Let vA be an intrinsic assignment game with a central

player. Then, x∗(vA) = (vA(N)− b1
2
− b1′

2
, b1

2
,
b1′
2
, 0 . . . , 0).

Proof. We show that the upper bounds x∗1(vA) = b1
2

, x∗1′(vA) =
b1′
2

and x∗i (vA) = 0 for all i ∈ N \ {h, 1, 1′} are attainable and then

x∗h(vA) = vA(N)− b1
2
− b1′

2
since x∗h(vA) ≥ b1

2
and x∗h(vA) ≥ b1′

2
.

The first of these two inequalities is equivalent to 2vA(N)− b1′ ≥

2b1, which in turn is equivalent to vA(N \ {1′}) + 2vA(N \ {1}) ≥

vA(N). Likewise, the second inequality is equivalent to vA(N \{1})+

2vA(N \ {1′}) ≥ vA(N). Both inequalities are always satisfied since

vA(N \ {1′}) ≥ a1h + ah2 and vA(N \ {1}) ≥ a2h + ah1.

6When there is only one veto player h, x∗(v) =
∑

i∈N\{h}min{tv, bi2 }e
i + tveh

where tv is the unique t > 0 such that v(N) = t+
∑

i∈N\{h}min{t, bi2 }
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Notice that x∗(vA) is a core allocation.

Lemma 4.5.2. Let vA be an intrinsic assignment game with a central

player. Then, N∗(vA) = {h} ∪ {T}T⊆N\{h,1,1′} if a1h > a2h, ah1 > ah2

and ahh > a2h + ah2, and N∗(vA) = ∅ otherwise.

Proof. First we show that players 1 and 1′ do not belong to any coali-

tion in N∗(vA). Let us consider S ⊇ {h, 1, 1′}, then ε(S, x∗(vA)) ≤

ε(N \ S, x∗(vA))} = 0 since x∗(vA) ∈ C(vA). So, S /∈ N∗(vA). Let

us now consider {h, 1} ⊆ S ⊆ N \ {1′}, then ε(S, x∗(vA)) = vA(S)−

vA(N) +
b1′
2
≤ − b1′

2
= ε(N \ S, x∗(vA))} since vA(N \ {1′}) ≥ vA(S).

Again, S /∈ N∗(vA). Similarly, it is shown for a coalition S containing

1′ but not 1.

Next we show that, for all S = {h}∪{T}T⊆N\{h,1,1′}, ε(S, x∗(vA)) >

ε(N \ S, x∗(vA)) if a1h > a2h, ah1 > ah2 and ahh > a2h + ah2. Ac-

tually, for all S = {h} ∪ {T}T⊆N\{h,1,1′}, ε(S, x∗(vA)) = ahh − x∗h =

ahh− vA(N) + b1
2

+
b1′
2
> − b1

2
− b1′

2
= ε(N \S, x∗(vA)). Indeed, the in-

equality b1+b1′ = 2vA(N)−max{2ahh, a1h+ah1+a2h+ah2, ahh+a1h+

ah2, ahh+ah1+a2h} > vA(N)−ahh holds since vA(N) > ahh > a2h+ah2

implies vA(N) − ahh > 0 and vA(N) − (a2h + ah2) > vA(N) − ahh.

Furthermore, since the game is intrinsic and a1h > a2h and ah1 > ah2

, we obtain vA(N)− (a1h + ah2) > 0 and vA(N)− (a2h + ah1) > 0.

On the other hand, if a1h = a2h, then b1 = 0. Therefore, for all

S = {h} ∪ {T}T⊆N\{h,1,1′}, ε(S, x∗(vA)) ≤ ahh − x∗h = ahh − vA(N) +
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b1′
2
≤ − b1′

2
= ε(N \ S, x∗(vA)), where the last equality holds since

b1′ = min{vA(N)− ahh, vA(N)− a1h − ah2} which implies that b1′ ≤

vA(N)−ahh. So, N∗(vA) = ∅. Similarly, it can be shown for ah1 = ah2.

Finally, if ahh ≤ a2h + ah2, then ahh ≤ a1h + ah2 and ahh ≤

a2h + ah1. Therefore, b1 = a1h − a2h and b1′ = ah1 − ah2. So, for any

S = {h} ∪ {T}T⊆N\{h,1,1′}, we have ε(S, x∗(vA)) ≤ a2h + ah2 − x∗h =

a2h + ah2 − (a1h + ah1) + b1
2

+
b1′
2

= − b1′
2
− b1

2
= ε(N \ S, x∗(vA)). In

this case, N∗(vA) is also an empty set.

Next, we find out what intrinsic vA with ν(vA) = x∗(vA) look like.

Lemma 4.5.3. Let vA be an intrinsic assignment game with a central

player. Then vA is a big boss game7 if and only if N∗(vA) = ∅.

Proof. By Lemma 4.5.2, N∗(vA) = ∅ if and only if a1h = a2h or

ah1 = ah2 or ahh ≤ a2h + ah2. Let us consider a coalition S 3 h.

If 1, 1′ ∈ S, then vA(N) − vA(S) = 0 =
∑

i∈N\S bi. If 1 ∈ S but

1′ /∈ S, the required condition for big boss games also holds since

vA(N)− vA(S) ≥ vA(N)− vA(N \{1′}) =
∑

i∈N\S bi by monotonicity

of vA. Likewise, the condition holds if 1′ ∈ S but 1 /∈ S.

7The monotonic game (N, v) is called a big boss game if there is one player

i∗ ∈ N satisfying the two conditions: (i) v(S) = 0 if i∗ /∈ S, and (ii) v(N)−v(S) ≥∑
i∈N\S v(N)− v(N \ {i}) if i∗ ∈ S
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However, when 1, 1′ /∈ S, then vA(N) − vA(S) ≥ b1 + b1′ =∑
i∈N\S bi if and only if a1h = a2h or ah1 = ah2 or ahh ≤ a2h + ah2.

Let us start with the “if” part. Indeed, vA(N) − vA(S) = vA(N) −

max i∈S∩N1\{1}
j∈S∩N2\{1′}

{ahh, aih + ahj}. If a1h = a2h, since b1 = 0, we obtain

vA(N) − vA(S) ≥ vA(N) − maxj∈S∩N2\{1′}{ahh, a1h + ahj} = b1′ =∑
i∈N\S bi. Similarly, it can be shown for ah1 = ah2. Further, if

ahh ≤ a2h + ah2, then ahh ≤ a1h + ah2 and ahh ≤ a2h + ah1. So, we

get b1 = a1h − a2h and b1′ = ah1 − ah2. Thus, vA(N) − vA(S) ≥

a1h + ah1 −max{ahh, a2h + ah2} = b1 + b1′ =
∑

i∈N\S bi.

Next, we show the “only if” part. If a1h > a2h, ah1 > ah2 and

ahh > a2h + ah2, then vA(N) − vA({h}) = vA(N) − ahh < vA(N) −

vA(N \{1})+vA(N)−vA(N \{1′}) < b1 +b1′ . Actually, vA(N \{1})+

vA(N \{1′})−ahh = max{ahh, a1h+ah2, a2h+ah1, vA(N)+a2h+ah2−

ahh} < a1h + ah1 = vA(N), where the last inequality holds because

the game is intrinsic, ah1 > ah2, a1h > a2h and ahh > a2h + ah2,

respectively. Therefore, vA is not a big boss game.

Proposition 4.5.4. Let vA be an intrinsic assignment game with a

central player.

(i) If vA is a big boss game, then ν(vA) = x∗(vA).

(ii) If ν(vA) = x∗(vA), then either vA is a big boss game or A is

such that ahh ≤ a1h + ah2 and ahh ≤ a2h + ah1 when vA is not a
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big boss game.

Proof. (i) Let us recall that ν(vA) = x∗(vA) if and only if (4.3) holds.

Obviously, if vA is a big boss game, since by Lemma 4.5.3, N∗(vA) =

∅, then, (4.3) is satisfied and, therefore, ν(vA) = x∗(vA).

(ii) We now show that if vA is not a big boss game and ahh >

a1h + ah2 or ahh > a2h + ah1, then condition (4.3) does not hold.

Let us first consider that ahh > a1h + ah2 while ahh ≤ a2h + ah1,

so b1 = vA(N)− (a2h + ah1) and b1′ = vA(N)− ahh. Take S = {h}.

ε({h}, x∗(vA)) = ahh − (vA(N)− vA(N)−a2h−ah1
2

− vA(N)−ahh
2

)

= ahh
2
− a2h+ah1

2

> −vA(N)−ahh
2

= − b1′
2

≥ −maxi∈N\{h}
bi
2

where the first inequality holds since, by Lemma 4.5.3, a1h > a2h

which implies vA(N) > a2h + ah1. Likewise it can be proved if we

consider ahh > a2h + ah1 while ahh ≤ a1h + ah2.

On the other hand, if ahh > a1h + ah2 and ahh > a2h + ah1,

then b1 = b1′ = vA(N) − ahh > 0 since the game is intrinsic. So,

ε({h}, x∗(vA)) = ahh − (vA(N)− 2vA(N)−ahh
2

) = 0 ≥ −maxi∈N\{h}
bi
2

.

The opposite implication of statement (ii) in Proposition 4.5.4

does not hold true as shown by the next counterexample.
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Example 4.5.5. Let vA be an intrinsic assignment game with a cen-

tral player where N = {h} ∪ {1, 2} ∪ {1′, 2′} and let A be such that

ahh = 7, ah1 = 6, ah2 = 3, a1h = 5 and a2h = 2. Notice it is not a

big boss game and ahh ≤ a1h + ah2 and ahh ≤ a2h + ah1. However,

condition (4.3) does not hold since b1 = b1′ = 3, so x∗h(vA) = 8 and

therefore ε({h}, x∗(vA)) = −1 > −3
2

= −x∗1(vA) = −x∗1′(vA).

Although the nucleolus in Example 4.5.5 is not x∗(vA), it can

be obtained by taking into account the set of players that maximize

x∗i (vA) with i ∈ N \ {h} is U∗(vA) = {1, 1′}, and it does not contain

players in any set of N∗(vA). Its size is u∗ = 2. Now, following

Bahel (2018), since
ε({h},x∗(vA))+maxi∈N\{h} x

∗
i (vA)

1+u∗
= 1

6
, the nucleolus is

ν(vA) = (yh, y1, y1′ , 0, . . . , 0) with y1(vA) = x∗1(vA) − 1
6

= 3
2
− 1

6
,

y1′(vA) = x∗1′(vA)− 1
6

= 3
2
− 1

6
and yh(vA) = x∗h + 21

6
= 8 + 2

6
.

In general, for any intrinsic vA with matrix A such that ahh >

a1h + ah2 or ahh > a2h + ah1 while a1h > a2h and ah1 > ah2, the

nucleolus can be found in a maximum of two steps following Bahel

(2018). Another algorithm is provided by Arin and Feltkamp (1997).

Until now we have found out how to obtain the nucleolus. A

different point-solution is the τ -value wich can be easily found for

the classical assignment game. Indeed, the τ -value of an assignment

game wA is the middle point between the two bounds M(wA) and

m(wA) (see Núñez and Rafels (2003). We have shown above that
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this is also the case of trivial assignment games with a central player,

where the core is a unique point which coincides with M(wA) and

m(wA). However, when the game is not trivial but intrinsic, this

only happens if the matrix entry for the central player is low enough

as the next proposition shows.

Proposition 4.5.6. Let (N, vA) be an intrinsic assignment game

with a central player, where N = {h} ∪N1 ∪N2. The τ -value is

τ(vA) =

 1
2
M(vA) + 1

2
m(vA) if ahh < a2h + ah2

1
3
M(vA) + 2

3
m(vA) otherwise

Proof. Let us firstly find the upper boundM(vA). For all i ∈ N\{h, 1, 1′},

bi = 0 since vA(N\{i}) = vA(N). Further, bh = vA(N). Finally,

b1 = vA(N) − ahh if ahh > a2h + ah1 and b1 = a1h − a2h otherwise.

Similarly, b1′ = vA(N) − ahh if ahh > a1h + ah2 and b1′ = ah1 − ah2

otherwise.

Next, we find the lower bound for each player. Clearly, for all

i ∈ N\{h}, mi = 0 since vA(S) = 0 if h /∈ S and vA(S) − bh =

vA(S)−vA(N) ≤ 0 by monotonicity. Further, if ahh < a2h+ah2, then

R(h,N) = R(h,N\{1}) = R(h,N\{1′}) = vA(N\{1})+vA(N\{1′})−

vA(N) = a2h + ah2 = vA(N\{1, 1′}) = R(h,N\{1, 1′}). Therefore,

mh = a2h + ah2 if ahh < a2h + ah2. Otherwise, mh = ahh since

R(h,N) = R(h,N\{1}) = R(h,N\{1′}) = vA(N\{1})+vA(N\{1′})−

vA(N) = max{2ahh−vA(N), ahh− (ah1−ah2), ahh− (a1h−a2h), a2h+
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ah2} ≤ ahh = vA(N\{1, 1′}) = R(h,N\{1, 1′}). So, mh = ahh if

ahh ≥ a2h + ah2.

Let us consider the following two situations.

i) If ahh < a2h + ah2, then ahh < a1h + ah2 and ahh < a2h +

ah1. Thus, M = (Mh,M1,M1′ ,M2,M2′ , . . . ) = (vA(N), a1h −

a2h, ah1 − ah2, 0, . . . , 0), and m = (mh,m1,m1′ ,m2,m2′ , . . . ) =

(a2h + ah2, 0, . . . , 0)). Therefore, τ(vA) = 1
2
M + 1

2
m.

ii) If ahh ≥ a2h + ah2, then M = (Mh,M1,M1′ ,M2,M2′ , . . . ) =

(vA(N), vA(N)− ahh, vA(N)− ahh, 0, . . . , 0), and m = (mh,m1,

m1′ ,m2,m2′ , . . . ) = (ahh, 0, . . . , 0)). Thus, τ(vA) = 1
3
M + 2

3
m.

In fact, we can provide the τ -value in terms of the matrix entries

from the above proposition.

τ(vA)h,1,1′ =

 (a1h+ah1+a2h+ah2
2

, a1h−a2h
2

, ah1−ah2
2

) if ahh < ah2 + a2h

(a1h+ah1
3

+ 2ahh
3
, a1h+ah1−ahh

3
, a1h+ah1−ahh

3
) otherwise

and τi(vA) = 0 for all i ∈ N\{h, 1, 1′}.

Although the nucleolus always lies in the core since it is nonempty,

this is no longer true for the τ -value. We just need to consider the

game in Example 4.5.5 with ah1 = 20. Then, τ(vA) = (13, 6, 6, 0, 0) /∈

C(vA). However, τ(vA) ∈ C(vA) when the τ -value is the middle point

between the two bounds, i.e. τ(vA) = 1
2
M + 1

2
m, as the following

proposition shows.
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Proposition 4.5.7. Let vA be an intrinsic assignment game with a

central player where matrix A is such that ahh < a2h + ah2. Then,

τ(vA) ∈ C(vA).

Proof. If the τ -value is a core allocation, then τh(vA) ≥ ahh, τ1(vA) <

b1, τ1′(vA) < b1′ . We already have τi(vA) = 0 for all i ∈ N \ {h, 1, 1′}

and the efficiency is already guaranteed by the definition of the τ -

value.

Let us consider that ahh < ah2 +a2h. We first check that τh(vA) ≥

ahh. Indeed, if ahh < ah2 + a2h, τh(vA) = 1
2
(a1h + ah1 + a2h + ah2) ≥

a2h + ah2 > ahh.

Finally, since ahh < ah2 + a2h, τ1(vA) = 1
2
(a1h − a2h) = 1

2
b1 ≤ b1

and τ1′(vA) = 1
2
(ah1 − ah2) = 1

2
b1′ ≤ b1′ . Thus, it is a core allocation.

4.6 A central agent with multiple part-

nership

In this section we allow the central player to sell and buy more than

one item. Let us think that the social bank has capacity to manage

r flats. Thus, player h may sell and buy r items. This situation is

given by the tuple (h,N1, N2, r, A) where h is the central player, the

sellers are denoted by i ∈ N1, and the buyers by j ∈ N2. So, the set
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of agents is N = {h}∪N1 ∪N2. Matrix A with aij ∈ R+ is such that

aij = 0 if h /∈ {i, j}.

This situation is similar to the transportation situation defined

by Sànchez Soriano (2001). Nevertheless, since there is one player

that has a double role as a seller and a buyer, we will refer to this

situation as an assignment market with a central player with multiple

partnership.

Given an assignment market with a central player with multiple

partnership, (h,N1, N2, r, A) and a coalition S ⊆ N with h ∈ S, we

can consider the optimization problem T (S),

T (S) : max
∑

i∈S∩N1

∑
j∈S∩N2

aijxij

s.t.
∑

j∈S∩N2

xhj ≤ r∑
i∈S∩N1

xih ≤ r∑
j∈S∩N2

xij ≤ 1, i ∈ S ∩N1∑
i∈S∩N1

xij ≤ 1, j ∈ S ∩N2

xij ≥ 0, (i, j) ∈ S ∩N1 × S ∩N2,

where N1 = N1 ∪ {h} and N2 = N2 ∪ {h}.

Notice that we can work with the LP relaxation of the integer

problem because of the total unimodularity of the coeficients of the

matrix defining the feasible set. In this way, the solutions will be



“tesi-2” — 2019/9/11 — 19:50 — page 131 — #141

4.6 A central agent with multiple partnership 131

integer numbers. On the other hand, since the feasible set is bounded,

we can guarantee the existence of an optimal solution.

Definition 4.6.1. Let (h,N1, N2, r, A) be an assignment market with

a central player with multiple partnership, where the set of agents is

N = {h} ∪N1 ∪N2. Then, the corresponding assignment game with

a central player with multiple partnership (N, vA) is defined by

(i) vA(S) equals the optimal solution of T (S) if h ∈ S, and

(ii) vA(S) = 0 otherwise.

Since buying and selling flats is only possible if h ∈ S, assignment

games with a central player with multiple partnership are veto games

and, therefore, its core is nonempty. In order to study this core

we may consider the dual problem associated to the optimization

problem that defines the characteristic function of the game (as is

done in Sànchez Soriano et.al (2001) for transportation games).

If we consider the optimization problem that defines the assign-

ment game with a central player with multiple partnership T (S), the
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associated dual minimization problem is given by

TD(S) : min r(uh + vh) +
∑

i∈S∩N1

ui +
∑

j∈S∩N2

vj

s.t. uh + vh ≥ ahh

uh + vj ≥ ahj j ∈ S ∩N2

ui + vh ≥ aih i ∈ S ∩N1

ui, vj ≥ 0.

Notice that we have removed the constraints ui + vj ≥ aij for all

i ∈ N1 and j ∈ N2 from the set of constraints that determine the

feasible set of the dual problem because they are superfluous since

aij = 0 when h /∈ {i, j}. Actually, we already have ui, vj ≥ 0 which

implies ui + vj ≥ 0.

Proposition 4.6.2. Let (h,N1, N2, r, A) be an assignment market

with a central player with multiple partnership and let (N, vA) be the

corresponding game. Let (u∗, v∗) ∈ R2+|N1|+|N2| be an optimal solution

of TD(N). Then

(r(u∗h + v∗h);u
∗
1, . . . , u

∗
|N1|; v

∗
1, . . . , v

∗
|N2|) ∈ C(vA).

Proof. Take an optimal solution of TD(N), (u∗, v∗). By the duality

theorem, r(u∗h + v∗h) +
∑
i∈N1

u∗i +
∑
j∈N2

v∗j coincides with the maximum

T (N) and, by definition, it is vA(N). Therefore, the payoff vector

(r(u∗h + v∗h);u
∗
1, . . . , u

∗
|N1|; v

∗
1, . . . , v

∗
|N2|) is efficient.
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For any coalition such that h ∈ S, vA(S) is equal to the optimal

value of TD(S) by the duality theorem. For all S ⊆ N , let us name

S∩N1 = {i1, . . . , it, . . . , inS} and S∩N2 = {j1, . . . , jt, . . . , jmS} where

we assume without loss of generality that nS < mS and 1 ≤ t ≤ nS

is such that aith + ahjt > ahh > at+1h + aht+1. Then, for all S 3 h,

vA(S) =
∑t

l=1 ailh +
∑t

l=1 ahjl + (r − t)ahh. Further,

r(u∗h + v∗h) +

nS∑
l=1

u∗il +

mS∑
l=1

v∗jl

=
t∑
l=1

(u∗il + v∗jl) +

nS∑
l=t+1

u∗il +

mS∑
l=t+1

v∗jl + r(u∗h + v∗h)

=
t∑
l=1

(u∗il + v∗h) +
t∑
l=1

(u∗h + v∗jl) +

nS∑
l=t+1

u∗il +

mS∑
l=t+1

v∗jl + (r − t)(u∗h + v∗h)

≥
t∑
l=1

ailh +
t∑
l=1

ahjl + (r − t)ahh = vA(S)

where the last inequality follows because u∗il+v
∗
h ≥ ailh, u

∗
h+v∗jl ≥ ahjl

and u∗h+v∗h ≥ ahh since (u∗h, v
∗
h;u

∗
1, . . . , u

∗
|N1|; v

∗
1, . . . , v

∗
|N2|) is a solution

of TD(N).

So, (r(u∗h + v∗h);u
∗
1, . . . , u|N1|; v

∗
1, . . . , v

∗
|N2|) satisfies coalitional ra-

tionality whenever h ∈ S and individual rationality for h.

Finally, the coalitional rationality when h /∈ S and the individual

rationality for any player in N1 ∪ N2 also hold by the constraints

ui, vj ≥ 0 and the fact that vA(S) = 0 if h /∈ S.

The opposite inclusion no longer holds as the following counterex-
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ample shows.

Example 4.6.3. Let us consider an assignment market with a central

player and multiple partnership with set of sellers N1 = {1}, set of

buyers N2 = {1′} and r = 2 items that player h may sell and buy.

So, N = {h, 1, 1′}. The unitary profit is given by the following matrix

A,

h 1′

h

1

 4 7

2 0

 .

The core of vA is the convex hull of the following four vectors, (13, 0, 0),

(8, 0, 5), (8, 2, 3) and (11, 2, 0). Let us take the extreme core alloca-

tion (13, 0, 0), the corresponding solution of the dual problem TD(N)

should have u1 = v1 = 0. Then, uh+vh = 13
2

. Therefore, uh+v1 ≤ 13
2

,

which contradicts that any feasible solution of the dual problem should

hold uh + v1 ≥ 7.

Besides that, not all core allocations of our assignment games

with a central player and multiple partnership are supported by

competitive prices. To show that, let us split h into h1 and h2 fol-

lowing Tejada, Borm and Lohman (2014) and, further, split h1 and

h2 each of them into r copies of itself, {h1
1, h

1
2, . . . , h

1
n1
} = H1 and

{h2
1, h

2
2, . . . , h

2
n2
} = H2 respectively. We then have a one-to-one as-

signment market where each h1
i has one object on sale and each h2

j
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wants to buy one object, such that ah1i h2j = ahh for all i ∈ {1, . . . , r}

and j ∈ {1, . . . , r}, ah1i k = ahk for all k ∈ N2 and i ∈ {1, . . . , r}, and

akh2j = akh for all k ∈ N1 and j ∈ {1, . . . , r}.

Let (p11, p12, . . . , p1r, p1, . . . , pn1) be a vector of non-negative prices,

one for each object on sale. We add a null object, 0, the price of which

is always p0 = 0 and is valued at 0 by any buyer, a0h2j
= a0k = 0 for

all j ∈ {1, . . . , r} and k ∈ {1, . . . , n2}. Then, a pair (p, µ) where p is

a vector of prices and µ a matching between H1 ∪N1 and H2 ∪N2 is

a competitive equilibrium if (i) pl = 0 for all l ∈ H1 ∪N1 unassigned

by µ, and (ii) for all k ∈ H2 ∪N2, µ(k) ∈ Dk(p) = {l ∈ H1 ∪N1 such

that alk − pl = maxt∈H1∪N1∪{0}{atk − pt}}.

It is well known Gale (1960) that in one-to-one assignment mar-

kets, all core allocations come from competitive equilibria. This is

not necessary the case in many-to-many markets like transportation

games. Also, in our particular case, not all core allocations are sup-

ported by competitive prices. Take Example 4.6.3 where we know

(13, 0, 0) ∈ C(vA). However, this allocation does not come from any

competitive equilibrium of the related one-to-one market with corre-

sponding matrix

h2
1 h2

2 1′

h1
1

h1
2

1


4 4 7

4 4 7

2 2 0

 .
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Assume (p11, p12, p1) are competitive prices and take any optimal

matching, for instance µ = {(h1
1, 1
′), (h1

2, h
2
2), (1, h2

1)}. Moreover,

(13, 0, 0) = (uh11 + uh12 + vh21 + vh22 , u1, v1). Then, u1 = 0 implies

p1 = 0, and v1 = 0 implies 7− p11 = 0, so p11 = 7 = uh11 . For the vec-

tor (uh11 , uh12 , u1; vh21 , vh22 , v1) = (7, uh12 , 0; vh21 , vh22 , 0) to be in the core

of the related one-to-one assignment game, uh12 +v1 ≥ 7. So, uh12 ≥ 7,

which contradicts uh12+vh22 = 4. Then, the core element (13, 0, 0) does

not come from any core element (or any competitive equilibrium) of

the related one-to-one assignment game.

Notice that in the case where r = 1, which indeed is the class of

assignment games with a central player, by equality (4.1) the core

is the solution of the dual problem TD(N). Moreover, when it is

intrinsic, the correspondence is one to one, as is shown in the the

following proposition.

Proposition 4.6.4. Let (h,N1, N2, A) be an assignment situation

with a central player and let be N = {h} ∪ N1 ∪ N2. Let (N, vA) be

the corresponding game with vA(N) = a1h + ah1. Then, there exists

a unique solution to the dual problem TD(N) corresponding to each

core allocation.

Proof. Let (N, vA) be an intrinsic assignment game with a central

player. Let be x ∈ C(vA). We may define a solution of the dual

problem TD(N), (u, v) ∈ R2+|N1|+|N2|, such that ui = xi for all i ∈ N1
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and vi′ = xi′ for all i′ ∈ N2. Then uh + vh = vA(N) − x1 − x1′ = xh

since xi = xi′ = 0 for all i ∈ N1\{1} and i′ ∈ N2\{1′} by Proposition

5.3.1.

Further, since (u, v) is a solution of the dual problem TD(N),

uh+v1′ ≥ ah1 and u1 +vh ≥ a1h. So, uh+x1′ ≥ ah1 and x1 +vh ≥ a1h.

In other words, uh ≥ ah1 − x1′ and vh ≥ a1h − x1. Let us sum

the two inequalities, uh + vh ≥ ah1 − x1′ + a1h − x1. Next, since

vA(N) = a1h+ah1, xh = uh+vh ≥ vA(N)−x1′−x1 = xh. Therefore,

the two inequalities are in fact equalities. So, uh = ah1 − x1′ and

vh = a1h − x1 are uniquely determined.

Finally we check that the inequality of the dual problem uh+vh ≥

ahh is satisfied. Indeed, since x ∈ C(vA), uh + vh = xh ≥ vA({h}) =

ahh.

On the other hand, inequalities uh + vi′ ≥ ahi for all i′ ∈ N2 \ {1′}

and ui + vh ≥ aih for all i ∈ N1 \ {1} are also satisfied. Let us take

the first ones, uh + vi′ = ah1 − x1′ + xi′ = ah1 − x1′ ≥ ahi for all

i′ ∈ N2 \ {1′}. Since x ∈ C(vA), we know that x1′ ≤ b1′ = min{a1h +

ah1 − ahh, ah1 − ah2} ≤ ah1 − ah2 ≤ ah1 − ahi. So, ahi ≤ ah1 − x1′ . In

a similar way we obtain that ui + vh ≥ aih for all i ∈ N1 \ {1}.

As a consequence, when r = 1, by Shapley and Shubik (1972)

and Gale (1960), all core allocations are suppoted by competitve

equilibria.
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4.7 Concluding comments

The main feature of assignment games with a central player with

multiple partnership is the possibility for a player to buy objects and

simultaneously be the owner of objects to be sold. This double role

and the existence of a reservation value for the central player make

it difficult to consider competitive prices unless we consider his seller

and buyer dimension separately. Further, we split the central player

in as many sellers as objects on sale he has and as many buyers as

objects he wants to buy. Hence we allow different prices for different

objects owned by the central player to be closer to reality where a

first object may be sold at a higher price than the next one. In this

way we get the related one-to-one assignment game. Although in

general not all core allocations are supported by competitive prices,

when the central player has a capacity of just one unit they are.

Actually, in this case, the total profit should be allocated such

that the central player obtained more than his reservation value and

the other players less than their marginal contribution to the whole

set of agents. Otherwise, some players may have incentives to leave

the market. Further, when the allocation is such that xi = bi
2

for all

i ∈ N \{h} and the central player receives the remainder, it coincides

with the nucleolus if the reservation value of h is greater than a2h+ah2

and it is the τ -value if it is smaller.
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We may say that assignment markets with a central player with

multiple ownership are three sided markets with the singularity that

one side has just one player and besides this player has a double role

as a seller and as a buyer. It is left for further research to consider

more than one player in the third side of the market allowing them to

play as sellers and buyers of more than one unit. This would gener-

alize assignment games with a central player with multiple ownersip

besides the markets in Oishi and Sakaue (2014), Stuart (1997) and

Kaneko and Wooders (1982).
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Chapter 5

Assignment games with

middlemen

5.1 Introduction

In a two-sided market there are two disjoint finite sets of buyers and

sellers that want to trade indivisible units of some good. Each buyer

wants to buy one unit and each seller has only one unit on sale. Each

buyer may place different values on the units of different sellers and a

valuation matrix gathers the values of all possible buyer-seller pairs.

This is the setting of the assignment game introduced by Shapley and

Shubik (1972). The worth of a coalition of agents is the maximum

value that can be obtained by matching buyers and sellers in the

coalitions. Utiliy is fully transferable by means of the price a buyer

145
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pays for the assigned object and then the core consists of the set of

payoff vectors (one payoff to each agent) such that no coalition blocks

since it obtains at least its worth. Shapley and Shubik prove that the

core of the assignment game is non-empty and each core allocation

is supported by competitive prices. The core not only coincides with

the set of competitive equilibrium payoff vectors but also with the

set of solutions of the dual assignment problem.

In the present chapter we assume buyers and sellers cannot meet

on their own. Some middleman is needed to connect them, and this

middleman may connect several buyer-seller pairs. We assume then

that there is a third side in the market formed by a finite set of

middlemen (disjoint with the set of buyers and sellers). This situation

may represent a real state market in which value is generated by the

matching of a buyer and a seller but typically real state agencies act

as intermediaries. Moreover, a same house can be advertised in the

website of several agencies, and each buyer also searches in several of

these sites.

This situation resembles the firm-supplier-buyer in Stuart (1997),

but there the value of a triplet is the sum of the value generated

by firm and supplier and the value generated by supplier and buyer.

In our case the middleman does not modify the value of the buyer-

seller pair, that is, the profit generated by the trade of a buyer and

a seller does not depend on who is the intermediary that connects
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them. Stuart’s model is a particular instance of three-sided assign-

ment game. Because the value of a firm-supplier-buyer triplet is

defined additively, it can be guaranteed that the core of the asso-

ciated three-sided assignment game is non-empty. It is also known,

see Kaneko and Wooders (1982), that three-sided assignment games

where values of triplets are defined arbitrarily may have an empty

core.

Different to our model, each supplier in Stuart’s model has unitary

capacity, that is, each supplier can only connect one firm-buyer pair.

Hence, the assignment markets with middlemen we consider here are

three-sided assignment markets with multiple partnership (on the

side of middlemen). Two-sided assignment markets with multiple

partnership have been studied for instance in Kaneko (1976), Thomp-

son (1980), Sotomayor (1992, 2002) and Sánchez-Soriano (2001).

When both sides of the market allow for multiple-partnership these

games are sometimes called transportation games.

Transportation games have a non-empty core and this core con-

tains the set of competitive equilibrium payoff vectors but, different

to the one-to-one assignment game, this inclusion may be strict, that

is, not all core allocations are supported by competitive prices. Also,

the set of competitive payoff vectors (strictly) includes the set of so-

lutions of the dual assignment problem. It is shown in Sotomayor

(2002) that most of the properties of the core of the one-to-one as-



“tesi-2” — 2019/9/11 — 19:50 — page 148 — #158

148 CHAPTER 5. ASSIGNMENT GAMES WITH MIDDLEMEN

signment game, such as the lattice structure and the opposition of

interest between the two sides of the market, are lost when we allow

for multiple partnership.

Middlemen are introduced in the Shapley and Shubik assignment

game in Oishi and Sakaue (2014). There, each middleman can take

part in at most one partnership and buyers and sellers can decide

whether to trade directly or indirectly through a middleman. Their

analysis focuses in competitive equilibria.

The chapter is organized as follows. After defining our model of

assignment games with middlemen in Section 5.2, in Section 5.3 we

show that assignment games with middlemen, where the profit of a

buyer-seller pair does not depend on who is the middleman that con-

nects them, have a non-empty core when the number of middlemen

in the market is enough to connect the maximum possible number

of buyer-seller pairs. Further, we provide a sufficient condition to

guarantee the non-emptiness of the core when this is not the case.

Obviously, if the profit of a buyer-seller pair does depend on who

is the middleman that connects them, then the assignment game with

middlemen contain the three-sided assignment game of Kaneko and

Wooders (1982) and hence the core may be empty.

After the analysis of the core, in Section 5.4 we define competi-

tive prices and competitive equilibrium payoff vectors and we study

the relationship between this set and the core. We show that when-
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ever the core is non-empty, the set of competitive equilibrium payoff

vectors coincides with the set of solutions of the dual assignment

problem.

5.2 Assignment games with middlemen

Let us consider a finite set of buyers B, a finite set of sellers S and

a finite set of middlemen M. Each seller k ∈ S has one object to

sell and a reservation value ck ≥ 0. Each buyer i ∈ B wants to buy

one object and values in hik ≥ 0 the object owned by seller k ∈ S.

But the transaction can only be made by means of some middleman

j ∈ M . We assume that the profit derived from a transaction does

not depend on who is the middleman that takes part. Hence, for

each triplet (i, j, k) ∈ B ×M × S, the profit that can be attained is

aik = max{hik − ck, 0}. An assignment situation with middlemen is

defined by the tuple (B,M, S,A) where A = (aik) i∈B
k∈S

is a nonegative

real matrix. It happens that each middleman j ∈ M can take part

in at most rj partnerships.

Given a subset B′ of buyers, a subset S ′ of sellers and a subset

M ′ of middlemen, a matching µ is a set of triplets (i, j, k) ∈ B′ ×

M ′×S ′ such that each buyer and seller can appear in only one triplet

while each middleman j ∈ M can appear in at most rj. The set of

matchings isM(B′,M ′, S ′). A matching µ is optimal for the market
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(B,M, S,A) if and only if
∑

(i,j,k)∈µ aik ≥
∑

(i,j,k)∈µ′ aik for all µ′ ∈

M(B,M, S).

An assignment matrix for that market situation is a 3-dimensional

matrix X = (xijk) i∈B
j∈M
k∈S

with xijk ∈ {0, 1} for all i ∈ B, j ∈M,k ∈ S.

Since buyers and sellers can be assigned at most once, while mid-

dlemen may take part in several transactions, we define a feasible

assignment matrix as follows.

Definition 5.2.1. We say that an assignment matrix X is feasible

for the market γ = (B,M, S,A) if it satisfies

i) Demand feasibility: for all i ∈ B,
∑

j,k xijk ≤ 1

ii) Supply feasibility: for all k ∈ S,
∑

i,j xijk ≤ 1

iii) Mediation feasibility: for all j ∈M ,
∑

i,k xijk ≤ rj

Notice that there is a one-to-one correspondence between match-

ings inM(B,M, S) and feasible assignment matrices. Each matching

µ ∈ M(B,M, S) has one corresponding feasible assignment matrix

X defined by xijk = 1 if and only if (i, j, k) ∈ µ and xijk = 0 other-

wise. We denote by Xµ the assignment matrix corresponding to the

matching µ. Likewise, we denote by µX the matching corresponding

to the assignment matrix X.

Definition 5.2.2. A feasible assignment matrix X∗ is optimal for
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the market γ = (B,M, S,A) if

∑
i∈B

∑
j∈M

∑
k∈S

aikx
∗
ijk ≥

∑
i∈B

∑
j∈M

∑
k∈S

aikxijk

for every other feasible asignment matrix X.

Given a market (B,M, S,A), an optimal assignment matrix X is

a solution of the following integer linear program, that we call the

assignment problem,

P (N) = max
∑
i∈B

∑
j∈M

∑
k∈S

aikxijk

such that
∑
k∈S

∑
j∈M

xijk ≤ 1 ∀i ∈ B∑
i∈B

∑
j∈M

xijk ≤ 1 ∀k ∈ S∑
i∈B

∑
k∈S

xijk ≤ rj ∀j ∈M

xijk ∈ {0, 1}.

(5.1)

We then say that the total profit from the market γ is P (N) and it

is reached at X.

Given an assignment market with middlemen, we can define a

coalitional game with set of players N = B ∪M ∪ S as follows.

Definition 5.2.3. Let us consider an assignment market with mid-

dlemen γ = (B,M, S,A). We define the assignment game with mid-

dlemen as (B∪M∪S,wA), where, for all T ⊆ B∪M∪S, if B∩T 6= ∅,
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M ∩ T 6= ∅ and S ∩ T 6= ∅, then

wA(T ) = max
µ∈M(B∩T,M∩T,S∩T )

∑
(i,j,k)∈µ

aik;

and wA(T ) = 0 otherwise.

Notice that, if B ∩ T 6= ∅, M ∩ T 6= ∅ and S ∩ T 6= ∅, then

wA(T ) = P (T ), where P (T ) is the optimal value of the integer linear

problem:

P (T ) = max
∑
i∈B∩T

∑
j∈M∩T

∑
k∈T∩S

aikxijk

such that
∑
k∈S∩T

∑
j∈M∩T

xijk ≤ 1 ∀i ∈ B ∩ T∑
i∈B∩T

∑
j∈M∩T

xijk ≤ 1 ∀k ∈ S ∩ T∑
i∈B∩T

∑
k∈S∩T

xijk ≤ rj ∀j ∈M ∩ T

xijk ∈ {0, 1}

(5.2)

Given a matching µ ∈M(B,M, S) and all j ∈M , we denote

µB(j) = {i ∈ B such that there exists k ∈ S and (i, j, k) ∈ µ},

µS(j) = {k ∈ S such that there exists i ∈ B and (i, j, k) ∈ µ}.

We say that i ∈ B is unassigned by µ if i /∈
⋃
j∈M

µB(j), k ∈ S is

unassigned by µ if k /∈
⋃
j∈M

µS(j) and j ∈ M is unassigned by µ if

µB(j) = ∅ (or equivalently µS(j) = ∅).
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We will say that the set of assigned middlemen is Mµ = {j ∈

M such that µB(j) 6= ∅}, the set of assigned buyers by µ is Bµ =⋃
j∈M µB(j) and the set of assigned sellers is Sµ =

⋃
j∈M µS(j).

Definition 5.2.4. The vector (u, v, w) ∈ RB+ × RM+ × RS+ is called a

feasible payoff vector for (B,M, S,A) if there is a feasible assignment

matrix X such that∑
i∈B

ui +
∑
j∈M

vj +
∑
k∈S

wk =
∑
i∈B
j∈M
k∈S

aikxijk.

Definition 5.2.5. A feasible outcome ((u, v, w);X) is stable if

(i) ui ≥ 0, vj ≥ 0 and wk ≥ 0

(ii)
∑
i∈B′

ui + vj +
∑
k∈S′

wk ≥ wA(B′∪{j}∪S ′) for all j ∈M , B′ ⊆ B

and S ′ ⊆ S with |B′| = |S ′| ≤ rj

Condition (i) reflects that a player always has the option of re-

maining unmatched and condition (ii) requires that the outcome is

not blocked by any coalition B′∪{j}∪S ′ formed by a single middle-

man and same number of sellers than buyers.

Proposition 5.2.6. Let ((u, v, w);X) be a stable outcome for (B,M, S,A)

and let µX be the matching corresponding to the assignment matrix

X. Then

(i)
∑

i∈µXB (j)

ui+vj +
∑

k∈µXS (j)

wk =
∑

(i,j,k)∈µX
aik for all j assigned by µX
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(ii) ui = 0 if i /∈ BµX , vj = 0 if j /∈MµX and wk = 0 if k /∈ SµX

Proof. From feasibility and stability of ((u, v, w);x), we have∑
i∈B
j∈M
k∈S

aikxijk =
∑
i∈B

ui +
∑
j∈M

vj +
∑
k∈S

wk

=
∑

j∈M
µX

 ∑
i∈µXB (j)

ui + vj +
∑

k∈µXS (j)

wk

+
∑
i/∈B

µX

ui +
∑

j /∈M
µX

vj +
∑
k/∈S

µX

wk

≥
∑

j∈M
µX

wA(µXB (j) ∪ {j} ∪ µXS (j))

≥
∑

j∈M
µX

∑
(i,j,k)∈µX

aik =
∑
i∈B
j∈M
k∈S

aikxijk

Hence, none of the inequalities above can be strict. In fact, they

must be equalities. Therefore, since for all stable outcome, the payoff

of each player is nonnegative, we get that ui = vj = wk = 0 when

i /∈ BµX , j /∈MµX and k /∈ SµX respectively. Moreover,
∑

i∈µXB (j) ui+

vj +
∑

k∈µXS (j) wk =
∑

(i,j,k)∈µX aik for all j ∈MµX .

5.3 The core

Our first aim is to determine whether the core of the assignment game

with middlemen is always non-empty, as it is the case of two-sided

markets with multiple partnership or may be empty in some cases,

as it is the case of three-sided assignment games. To this end, we

first explore if we need to consider all core constrains or if there is
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a smaller subset of constraints that are enough to characterize the

core.

Proposition 5.3.1. Let γ = (B,M, S,A) be an assignment market

with middlemen and let (B ∪ M ∪ S,wA) be the corresponding as-

signment game with middlemen. Let µ be an optimal matching for

γ.

The core of this game coincides with the set of stable payoff vectors

that are compatible with µ.

Proof. Let µ be an optimal matching for γ and let us name G the

set of stable payoff vectors compatible with µ. Then, by Definitions

5.2.4 and 5.2.5 and Proposition 5.2.6, G is the following set.

G =



(u, v, w) ∈ RB+ × RM+ × RS+ such that

(1) ui = 0 if i unassigned by µ

vj = 0 if j unassigned by µ

wk = 0 if k unassigned by µ

(2) for all j ∈M,∑
i∈µB(j)

ui + vj +
∑

k∈µS(j)

wk =
∑

(i,j,k)∈µ

aik

(3) for all B′ ⊆ B, S ′ ⊆ S with |B′| = |S ′| ≤ rj,∑
i∈B′

ui + vj +
∑
k∈S′

wk ≥ wA(B′ ∪ {j} ∪ S ′)}


So, we want to prove that C(wA) = G.
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First we show that C(wA) ⊆ G. Let (u, v, w) ∈ C(wA). Then,

for B′ ⊆ B, S ′ ⊆ S and j ∈ M with |B′| = |S ′| ≤ rj, we have that∑
i∈B′ ui+vj+

∑
k∈S′ wk ≥ wA(B′∪{j}∪S ′) by coalitional rationality.

Furthermore, by efficiency of core allocations,
∑

i∈B ui+
∑

j∈M vj+∑
k∈S wk = wA(B ∪ M ∪ S). Then, Proposition 5.2.6 guarantees

ui = vj = wk = 0 when i /∈ Bµ, j /∈Mµ and k /∈ Sµ; and
∑

i∈µB(j) ui+

vj +
∑

k∈µS(j) wk =
∑

(i,j,k)∈µ aik = wA(µB(j) ∪ {j} ∪ µS(j)) for all

j ∈M .

Next we show that G ⊆ C(wA).

Let be (u, v, w) ∈ G. First, we show its efficiency. We just need to

sum, for all j ∈M , the equalities
∑

i∈µB(j)

ui+vj+
∑

k∈µS(j)

wk =
∑

(i,j,k)∈µ

aik

with µ optimal for the market γ = (B,M, S,A). Indeed,∑
i∈B

ui +
∑
j∈M

vj +
∑
k∈S

wk =

=
∑
j∈Mµ

(
∑

i∈µB(j)

ui + vj +
∑

k∈µS(j)

wk) +
∑
i/∈Bµ

ui +
∑
j /∈Mµ

vj +
∑
k/∈Sµ

wk

=
∑
j∈Mµ

∑
(i,j,k)∈µ

aik

= wA(B ∪M ∪ S).

where the second equality follows from (1) and (2) in G.

Next we show that all (u, v, w) ∈ RB+ × RM+ × RS+ in G are also

coalitionally rational. Let us consider a coalition B′ ∪M ′ ∪ S ′ with

B′ ⊆ B, M ′ ⊆ M and S ′ ⊆ S, and let µ′ be an optimal matching

for the submarket (B′,M ′, S ′, AB′×S′) where AB′×S′ is the submatrix
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of A formed by rows corresponding to buyers in B′ and columns to

sellers in S ′. Then,∑
i∈B′

ui +
∑
j∈M ′

vj +
∑
k∈S′

wk =

=
∑
j∈M ′

µ′

(
∑

i∈µ′
B′ (j)

ui + vj +
∑

k∈µ′
S′ (j)

wk) +
∑
i/∈B′

µ′

ui +
∑
j /∈M ′

µ′

vj +
∑
k/∈S′

µ′

wk

≥
∑
j∈M ′

µ′

wA(µ′B′(j) ∪ {j} ∪ µ′S′(j))

=
∑
j∈M ′

µ′

∑
(i,j,k)∈µ′

aik

= wA(B′µ′ ∪M ′
µ′ ∪ S ′µ′) = wA(B′ ∪M ′ ∪ S ′).

where the inequality follows from (3) in G and the fact that all payoffs

in G are nonnegative.

The above proposition gives a characterization of the core of the

assignment game with middlemen, but we still do not know if this

core is always non-empty. With this aim, we first consider a particular

market γ = (B,M, S,A) where the set of middlemen is enough to

satisfy all demands of buyers and supplies of sellers. That is to say,∑
j∈M rj ≥ min{b, s}.

Proposition 5.3.2. Let γ = (B,M, S,A) be an assignment market

with middlemen where
∑

j∈M rj ≥ min{b, s} and let (B∪M∪S,wA) be

the corresponding assignment game with middlemen. Then, C(wA) 6=

∅.
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Proof. In case that
∑

j∈M rj ≥ min{b, s}, if (xijk)(i,j,k)∈B×M×S is op-

timal for the market (B,M, S,A), then (xik)(i,k)∈B×S is also optimal

for the two-sided assignment market (B, S,A).

Also, if µ̃ is an optimal matching for the two-sided assignment

market (B, S,A), then we can always define an optimal matching

µ for the market (B,M, S,A) in such a way that for all (i, k) ∈ µ̃

and some j ∈ M , with j matched in at most rj pairs (i, k), then

(i, j, k) ∈ µ.

This implies that the ILP in (5.2) has the same solution as its

LP-relaxation. Then the dual of the LP relaxation of (5.2), when

T = N , is

PD(N) = min
∑

i∈B ui +
∑

j∈M rjvj +
∑

k∈S wk

such that ui + vj + wk ≥ aik for all (i, j, k) ∈ B ×M × S

ui ≥ 0, vj ≥ 0, wk ≥ 0,

(5.3)

where (u, v, w) ∈ Rb × Rm × Rs.

Take (u, v, w) a solution of PD(N). Let us see that (u′, v′, w′) ∈

C(wA), where u′i = ui, for all i ∈ B, v′j = rjvj for all j ∈ M and

w′k = wk for all k ∈ S. By the duality theorem,
∑
i∈B

ui +
∑
j∈M

rjvj +∑
k∈S

wk = wA(B ∪M ∪ S).

Let T = Bj ∪ {j} ∪ Sj where j ∈ M , Bj ⊆ B and Sj ⊆ S
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with |Bj| = |Sj| ≤ rj. Let µT be an optimal matching for T , then∑
i∈Bj

ui+rjvj+
∑
k∈S

wk ≥
∑

(i,j,k)∈µT

(ui+vj+wk) ≥
∑

(i,j,k)∈µT

aik = wA(T ).

So, all core conditions are satisfied. Therefore, that allocation

(u′, v′, w′) belongs to the core and hence C(wA) is nonempty.

Although under the assumptions of the above proposition each

solution of the dual LP provides a core point of the game, not all

core allocations can be obtained from solutions of the dual LP as the

following example shows.

Example 5.3.3. Let us consider an assignment game with middle-

men where B = {1, 2}, M = {1′} with r = 2, and S = {1′′, 2′′}. The

profit matrix is the following one

A =

 3 2

2 4


Notice that an optimal matching is µ = {(1, 1′, 1′′), (2, 1′, 2′′)} and

(u1, u2; v1;w1, w2) = (3, 3; 1; 0, 0) is a core element. If this allocation

came from a solution (u1, u2; v′1;w1, w2) = (3, 3; v′1; 0, 0) of the dual

LP, then u1 + u2 + 2v′1 +w1 +w2 = 7, which means v′1 = 1
2
. But then

u2 + v′1 + w2 = 3.5 < 4 and hence it does not satisfy the constraint

u2 + v′1 + w2 ≥ 4.

We have proved that when no more middlemen are needed to

increase the number of trades, the core of the corresponding game is
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nonempty. Nevertheless, when the set of middlemen is not enough, we

don’t know if the core is non-empty. We haven’t found any counter-

example yet.

Although under the scarcity of middlemen, we cannot guarantee

the core is nonempty. However, when there is only one middleman,

the core is always non-empty since we can define an allocation which

always belongs to the core. This allocation consists of vj = wA(N)

for the only middleman j ∈ M and ui = wk = 0 for all i ∈ B and

k ∈ S. Next proposition provides a further suficient condition for the

nonemptyness of the core of an assignment game with middlemen

when
∑

j∈M rj < min{b, s}.

To this end, we need to introduce some additional notation. Given

a real number d ∈ R and a matrix A = (aik) i∈B
k∈S

, we define Ad =

(adik) i∈B
k∈S

, where adik = max{0, aik − d}. Hence, we have a two-sided

market (with no middlemen) (B, S,Ad) and its corresponding assign-

ment game (B∪S, vAd), where as usual vd(R) = maxµ∈M(B,S)

∑
(i,k)∈µ a

d
ik,

for any R ⊆ B ∪ S containing at least a buyer and a seller, and

vd(R) = 0 otherwise.

Proposition 5.3.4. Let (B,M, S,A) be an assignment market with

middlemen and let (B ∪M ∪ S,wA) be the corresponding assignment

game with middlemen.
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If there exists d > 0 such that

wA(B ∪M ∪ S) = vAd(B ∪ S) +

(∑
j∈M

rj

)
d, (5.4)

then C(wA) 6= ∅.

Proof. Take (u′, w′) ∈ C(vAd). Notice that such a core element exists

since two-sided assignment games have a non-empty core. Define the

payoff vector (u, v, w) ∈ RB+ × RM+ × RS+ by

ui = u′i for all i ∈ B,

wk = w′k for all k ∈ S,

vj = rjd for all j ∈M.

Notice first that (u, v, w) is a feasible payoff vector,

∑
i∈B ui +

∑
j∈M vj +

∑
k∈S wk

=
∑

i∈B u
′
i +
∑

k∈S w
′
k +

(∑
j∈M rj

)
d

= vAd(B ∪ S) +
(∑

j∈M rj

)
d

= wA(B ∪M ∪ S),

where the last equality follows from (5.4). Moreover (u, v, w) is a

stable payoff vector. Indeed, take j ∈ M and B′ ⊆ B and S ′ ⊆ S

such that |B′| = |S ′| ≤ rj. Let µ′ be an optimal matching for the

submarket (B′, {j}, S ′, A|B′×S′) and µ′−j = {(i, k) ∈ B′×S ′ | (i, j, k) ∈
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µ′}. Then,

∑
i∈B′ ui +

∑
k∈S′ wk ≥ vAd(B

′ ∪ S ′) ≥
∑

(i,k)∈µ′−j
adik

=
∑

(i,k)∈µ′−j
max{0, aik − d}

≥
∑

(i,k)∈µ′−j
(aik − d)

=
∑

(i,k)∈µ′−j
aik − |B′|d

≥
∑

(i,k)∈µ′−j
aik − rjd

= wA(B′ ∪ {j} ∪ S ′)− rjd,

and hence

∑
i∈B′

ui + vj +
∑
k∈S′

wk ≥ wA(B′ ∪ {j} ∪ S ′).

By Proposition 5.3.1, feasibility and stability guarantee that (u, v, w) ∈

C(wA).

Notice that when
∑

j∈M rj ≥ min{b, s}, equality (5.4) holds with

d = 0. Hence, as we already know, the core is non-empty in this case.

Then, the minimum core payoff of any middlemen is zero.

Given a matching for the assignment game with middlemen, µ ∈

M(B,M, S), we define as µ−M = {(i, k) ∈ B×S such that (i, j, k) ∈

µ} the corresponding matching restricted to the sets of buyers and

sellers.

Notice that, under the assumption (5.4) of Proposition 5.3.4, µ is

optimal for (B,M, S,A) if and only if µ−M is optimal for (B, S,Ad).
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Indeed, if µ′ ∈M(B, S) satisfies
∑

(i,k)∈µ′ a
d
ik >

∑
(i,k)∈µ−M a

d
ik, then

∑
(i,k)∈µ′

adik >
∑

(i,k)∈µ−M

adik ≥
∑

(i,k)∈µ−M

aik −

(∑
j∈M

rj

)
d,

which implies vAd(B∪S)+
(∑

j∈M rj

)
d > wA(B∪M ∪S), in contra-

diction with (5.4). The converse implication is also straightforward.

In the next example, we show that there exists d > 0 such that

condition (5.4) is satisfied. Moreover, for different values of d, differ-

ent core allocations can be obtained.

Example 5.3.5. Let γ = (B,M, S,A) be an assignment market with

middlemen where B = {1, 2, 3}, M = {1′, 2′} with rj = 1 for all

j ∈M , S = {1′′, 2′′, 3′′} and

A =


0 7 4

7 10 14

4 8 10

 .

This is a situation where
∑

j∈M rj = 2 while min{b, s} = 3.

Let (N,wA) with N = B∪M ∪S be the corresponding assignment

game with middlemen. Notice that wA(N) = 22 since the sum of

the capacities of the middlemen is 2 and, therefore, each optimal

matching is formed by only two triplets. An optimal matching is

µ = {(2, 1′, 3′′), (3, 2′, 2′′)}.

Instead, if we consider matrix A and the corresponding classi-

cal assignment game (B ∪ S, vA), the worth of the grand coalition is
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vA(N) = 25 which can be obtained by considering the optimal match-

ing µ′ = {(1, 2′′), (2, 3′′), (3, 1′′)}.

Notice that µ−M = {(2, 3′′), (3, 2′′)} is not included in µ′.

However, if we consider d = 3, then

Ad =


0 4 1

4 7 11

1 5 7

 .

If we consider the corresponding assignment game with middle-

men (B∪M∪S,wAd) and the corresponding classical assigment game

(B ∪ S, vAd), the worth of the grand coalition coincides, wAd(N) =

vAd(N) = 16. Actually, the optimal matching in the market (B,M, S,Ad),

µ = {(2, 1′, 3′′), (3, 2′, 2′′)}, restricted to the set of buyers and sell-

ers, i.e. µ−M = {(2, 3′′), (3, 2′′)}, is now also an optimal matching

in the market (B, S,Ad). When we consider the market (B, S,Ad),

the two following matchings are optimal: the previous one µ′ =

{(1, 2′′), (2, 3′′), (3, 1′′)} and a new one, µ−M .

Then, if we consider a core allocation of the classical assignment

game vAd, (u1, u2, u3;w1, w2, w3) ∈ C(vAd), then we can build a core

allocation of the original assignment game with middlemen by adding

a payoff of d for each of the two middlemen, (u1, u2, u3; d, d;w1, w2, w3) ∈

C(wA). For instance, with d = 3, (0, 4, 1; 0, 4, 7) ∈ C(vAd) and, there-

fore, (0, 4, 1; 3, 3; 0, 4, 7) ∈ C(wA).

Furthermore, let us consider d equal to the marginal contribution
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of a middleman to the grand coalition, i.e. d = wA(N) − wA(N \

{j}) = 22− 14 = 8 with j ∈M . Then,

Ad =


0 0 0

0 2 6

0 0 2

 .

Again, µ−M = {(2, 3′′), (3, 2′′)} is an optimal matching in the market

(B, S,Ad) and condition (5.4) is satisfied. So, for instance,

(0, 2, 0; 8, 8; 0, 0, 4) ∈ C(wA) since (0, 2, 0; 0, 0, 4) ∈ C(vAd).

When we look for a value of d such that equality (5.4) holds, some

information about lower bounds of the middlemen payoffs in the core

may be useful.

Proposition 5.3.6. Let γ = (B,M, S,A) be an assignment market

with middlemen and let (B ∪M ∪ S,wA) be the corresponding game.

Let µ be an optimal matching for γ. If (u, v, w) ∈ C(wA), then for

all j ∈M ,

vj ≥ max
i∈B\Bµ
k∈S\Sµ

{aik}. (5.5)

Proof. Take any j ∈ M and (i′, k′) ∈ (B \ Bµ) × (S \ Sµ) such that

ai′k′ = max i∈B\Bµ
k∈S\Sµ

{aik}. Since ui′ = wk′ = 0, the core constraint

ui′ + vj + wk′ ≥ ai′k′ implies vj ≥ ai′k′ .

The next result follows from Proposition 5.3.4.
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Corollary 5.3.7. Let γ = (B,M, S,A) be an assignment market with

middlemen such that
∑

j∈M rj < min{b, s}. Let µ ∈ M(B,M, S) be

an optimal matching for γ and d = max i∈B\Bµ
k∈S\Sµ

{aik}.

If µ−M is optimal for (B, S,Ad), then C(wA) 6= ∅.

Proof. Since
∑

j∈M rj < min{b, s}, and given an optimal matching

µ ∈M(B,M, S), each middlemen j ∈M is matched by µ to exactly

rj buyers and rj sellers. Moreover, adik = aik − d for all (i, j, k) ∈ µ.

Indeed, if there exists (i0, k0) ∈ Bµ × Sµ such that ai0k0 < d, because

of the definition of d, there exists (i1, k1) ∈ (B \Bµ)× (S \ Sµ) such

that ai1k1 = d > ai0k0 and then µ1 = (µ \ {(i0, k0)}) ∪ {(i1, k1)}

contradicts the optimality of µ.

Then,

wA(B ∪M ∪ S)−

(∑
j∈M

rj

)
d =

∑
(i,k)∈µ−M

adik ≤ vAd(B ∪ S)

always holds and the equality follows from the assumption that µ−M

is optimal for (B, S,Ad). Now, Proposition 5.3.4 guarantees that

C(wA) 6= ∅.

The core allocations built in the proof of proposition 5.3.4 have

the particularity that each middlemen receives the same payoff d from

each buyer-seller pair this middlemen connects. However, this needs

not be the case in each core allocation.
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Nevertheless, when the number of transactions where a middle-

man can be involved is equal for all j ∈ M , all middlemen get the

same payoff in each core allocation

Corollary 5.3.8. Let (B ∪M ∪ S,wA) be an assignment game with

middlemen such that rj = r for all j ∈ M and let C(wA) be its

core. Then, in a core allocation (u, v, w), all middlemen get the same

payoff: vj = vj′ for all j, j′ ∈M .

Proof. We prove that for each (u, v, w) ∈ C(wA), vj = vj′ for all

j, j′ ∈M .

Indeed, wA(B′ ∪{j}∪S ′) = wA(B′ ∪{j′}∪S ′) for any j, j′ in M .

Therefore, if there is an optimal assignment for the grand coalition,

µ, where j ∈ M is assigned to the set of buyers µB(j) = B∗ and the

set of sellers µS(j) = S∗, then there is also an optimal assignment µ′

where j′ ∈ M , j′ 6= j, is assigned to such set of buyers µ′B(j′) = B∗

and sellers µ′S(j′) = S∗. So, the only difference between µ and µ′ is

the middlemen who is assigned to each subset of buyers and sellers.

Thus, since for all j ∈M we have that
∑

i∈µB(j)

ui+vj +
∑

k∈µS(j)

wk =∑
(i,j,k)∈µ

aik in each core allocation, then, for that core allocation, it also

holds that
∑

i∈µB(j)

ui+vj′+
∑

k∈µS(j)

wk =
∑

(i,j,k)∈µ

aik for any other j′ ∈M .

So, vj = vj′ .
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5.4 Competitive equilibrium

In this section we investigate the existence of competitive equilibria

for assignment markets with middlemen and its relation with the

core. In two-sided assignment games, competitive equilibria exist

and the set of competitive equilibrium is equivalent to the core and

to the set of solutions of the dual of the linear assignment problem

(Shapley and Shubik, 1972). When each buyer has capacity one but

each seller can take part in several partnerships, then it is proved in

Kaneko (1976) that competitive equilibria exist, they coincide with

the set of solutions of the dual linear assignment problem, but not

all core element is supported by competitive prices.

For three-sided assignment markets, as introduced in Kaneko and

Wooders (1982), the set of competitive equilibria is equivalent to the

core (see Tejada, 2010), and hence it may be empty.

Our market has three sides, one of them with multiple partner-

ship, but also has some reminiscence of a two-sided market, since the

valuation of a triplet only depends on the buyer and the seller, not

on the middleman that connects them. Let us introduce competitive

prices for this assignment market with middlemen.

Define a price vector as p ∈ RM+ × RS+ where pj is the price of

the service provided by middleman j ∈ M and pk is the price of the

object of seller k ∈ S. Now, agents are price takers. Given a price
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vector p ∈ RM+ ×RS+, middlemen and sellers supply units of services or

goods (up to their capacity) to maximize revenues at p, and buyers

demand any combination of middleman and seller that maximizes

his/her valuation at p.

Hence, the supply of middleman j ∈M at price pj ≥ 0 is

sj(pj) =

 rj if pj > 0,

{0, 1, 2, . . . , rj} if pj = 0.

The supply of seller k ∈ S at price pk ≥ 0 is

sk(pk) =

 1 if pk > 0,

{0, 1} if pk = 0.

The demand of buyer i ∈ B at price vector p ∈ RM+ × RS+ is

Di(p) = {(j, k) ∈M×S | aik−pj−pk ≥ aik′−pj′−pk′ for all (j′, k′) ∈M×S}.

At this point it is convenient to introduce a dummy middleman j0 and

a dummy seller k0 such that aik0 = 0 for all i ∈ B, and pj0 = pk0 = 0

at any price vector. Notice that, if the prices are high enough, a

buyer i ∈ B will demand the pair (j0, k0) and in this way we can

guarantee that his/her demand is always non-empty.

Given any matching µ ∈ M(B,M, S), if (i, j, k) ∈ µ we will

write (j, k) = µ(i). Whenever buyer i ∈ B is not matched by µ, we

understand that µ(i) = (j0, k0).

We can now introduce the notion of competitive equilibrium.
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Definition 5.4.1. A competitive equilibrium for a market (B,M, S,A)

is a pair (p, µ), where p ∈ RM+ × RS+ is a price vector and µ ∈

M(B,M, S) a matching, such that:

1. For each i ∈ B, µ(i) ∈ Di(p);

2. For each j ∈M , if |µB(j)| = |µS(j)| < rj, then pj = 0;

3. For each k ∈ S, if k is unassigned by µ, then pk = 0.

If (p, µ) is a competitive equilibrium of a market (B,M, S,A),

then we say p is a vector of competitive prices and µ is a compatible

matching.

The first question is whether each core allocation (u, v, w) of an

assignment market with middlemen (B,M, S,A) comes from a com-

petitive equilibrium (p, µ). This would imply that wk = pk for all

k ∈ S; vj = rjpj for all j ∈ M and ui = aik − pj − pk for all i ∈ B

such that (i, j, k) ∈ µ. Example 5.3.3 shows that the answer is in the

negative. Notice that if the core element (3, 3; 1; 0, 0) were supported

by a competitive equilibrium (p, µ), then p1′′ = p2′′ = 0 and p1′ = 1
2
.

But then, u1 = 3− 1
2
− 0 = 2.5 6= 3.

Hence, whenever the core is non-empty, core and competitive equi-

librium payoff vectors may not coincide. In the above example, the

core allocation (3, 3; 1; 0, 0) would be supported by different prices of

the middleman for the different connections he/she guarentees. That
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is price 0 to connect buyer 1 and seller 1′′ and price 1 to connect

buyer 2 and seller 2′′.

Like in two-sided assignment markets, the matching in a com-

petitive equilibrium of an assignment market with middlemen is an

optimal matching. And moreover, any optimal matching is compati-

ble with a vector of competitive prices.

Lemma 5.4.2. Let (B,M, S,A) be an assignment market with mid-

dlemen and (p, µ) a competitive equilibrium for this matching. Then,

1. µ is an optimal matching for this market and

2. given any other optimal matching µ′, the pair (p, µ′) is also a

competitive equilibrium.

Proof. Assume that (p, µ) is a competitive equilibrium but µ is not

optimal. Then, there exists µ′ ∈M(B,M, S) such that

∑
(i,j,k)∈µ′

aik >
∑

(i,j,k)∈µ

aik
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and ∑
(i,j,k)∈µ′

(aik − pj − pk) ≥
∑

(i,j,k)∈µ′
aik −

∑
j∈M

rjpj −
∑
k∈S

pk

>
∑

(i,j,k)∈µ

aik −
∑
j∈M

rjpj −
∑
k∈S

pk

=
∑

(i,j,k)∈µ

(aik − pj − pk)

−
∑
j∈M

(rj − rj(µ))pj −
∑

k∈S\Sµ

pk

=
∑

(i,j,k)∈µ

(aik − pj − pk)

where the first inequality follows from the fact that prices are non-

negative and the last equality follows from the fact that (p, µ) is a

competitive equilibrium. Then,
∑

(i,j,k)∈µ′(aik−pj−pk) >
∑

(i,j,k)∈µ(aik−

pj − pk) implies that there exists i ∈ B such that (i, j1, k1) ∈ µ′,

(i, j2, k2) ∈ µ and

aik1 − pj1 − pk1 > aik2 − pj2 − pk2

which contradicts that (p, µ) is a competitive equilibrium.

As for the second statement in the lemma, since both µ and µ′

are optimal matchings,
∑

(i,j,k)∈µ aik =
∑

(i,j,k)∈µ′ aik, we have

∑
(i,j,k)∈µ

aik−
∑
j∈M

rjpj −
∑
k∈S

pk =
∑

(i,j,k)∈µ′
aik−

∑
j∈M

rjpj −
∑
k∈S

pk. (5.6)
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On the other hand,∑
(i,j,k)∈µ

aik −
∑
j∈M

rjpj −
∑
k∈S

pk

=
∑

(i,j,k)∈µ

(aik − pj − pk)−
∑
j∈M

(rj − rj(µ))pj −
∑

k∈S\Sµ

pk

≥
∑

(i,j,k)∈µ′
(aik − pj − pk)

≥
∑

(i,j,k)∈µ′
(aik − pj − pk)−

∑
j∈M

(rj − rj(µ′))pj −
∑

k∈S\Sµ′

pk

=
∑

(i,j,k)∈µ′
aik −

∑
j∈M

rjpj −
∑
k∈S

pk,

where the first inequality follows because (p, µ) is a competitive equi-

librium and the second one from the fact that prices are non-negative.

Now, equality (5.6) implies that the inequalities above cannot be

strict and as a consequence

(i) if there exists j ∈M such that rj − rj(µ′) > 0, then pj = 0,

(ii) pk = 0 for all k ∈ S \ Sµ′ and

(iii) for all i ∈ B, if (i, j1, k1) ∈ µ and (i, j2, k2) ∈ µ′, then aik1 −

pj1 − pk1 = aik2 − pj2 − pk2 and hence µ′(i) ∈ Di(p).

This guarantees that (p, µ′) is also a competitive equilibrium.

If we go now to the second question, that is, whether competitive

equilibria always exist for assignment markets with middlemen. We

can only give a partial answer.
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We show that whenever an assignment market with middlemen

has a non-empty core, then the set of competitive equilibria coincides

with the set of solutions of the dual assignment problem. We know

from Quint (1991), that an assignment market with middlemen has a

non-empty core if and only if the solution of the assignment problem

(5.1) coincides with that of its relaxation where the variables xijk, for

(i, j, k) ∈ B ×M × S, are not constrained to have values in {0, 1}

but just xijk ≥ 0. In this case, the optimal value of the assignment

problem coincides with the optimal value of its dual linear program.

Proposition 5.4.3. Let (B,M, S,A) be an assignment market with

middlemen such that C(wA) 6= ∅. Then, the set of competitive equi-

librium payoff vectors coincides with the solutions of the dual linear

program (5.3).

Proof. Let (u, v, w) be a solution of the dual LP in (5.3). Define

the price vector p ∈ RM+ × RS+ such that pj = vj for all j ∈ M

and pk = wk for all k ∈ S; and take µ ∈ M(B,M, S) any optimal

matching in the market (B,M, S,A). Let us see that (p, µ) is a

competitive equilibrium.

Since C(wA) 6= ∅, from the duality theory and the fact that

(u, v, w) is a solution of the dual LP,
∑

i∈B ui+
∑

j∈M rjvj+
∑

k∈S wk =
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∑
(i,j,k)∈µ aik. Then,∑

(i,j,k)∈µ

aik =
∑
i∈B

ui +
∑
j∈M

rjvj +
∑
k∈S

wk

=
∑

(i,j,k)∈µ

(ui + vj + wk) +
∑
j∈M

(rj − rj(µ))vj −
∑

k∈S\Sµ

wk

≥
∑

(i,j,k)∈µ

aik,

where the inequality follows since (u, v, w) satisfies all the constraints

of the dual LP. As a consequence, if rj − rj(µ) > 0, then pj = vj = 0

and for all k ∈ S \ Sµ, pk = wk = 0. Moreover, if (i, j, k) ∈ µ, then

aik − pj − pk = aik − vj − wk = ui ≥ ail − vl − wt = ail − pl − pt,

for all l ∈M and t ∈ S, and this completes the proof that (p, µ) is a

competitive equilibrium and its payoff vector is (u, v, w).

Conversely, if (p, µ) is a competitive equilibrium, consider its re-

lated payoff vector (u, v, w) ∈ RB+ × RM+ × RS+, that is,

v′j = pj ≥ 0 for all j ∈M,

w′k = pk ≥ 0 for all k ∈ S,

u′i = aik − pj − pk for all i ∈ B such that (i, j, k) ∈ µ.

Recall that when some i ∈ B is unassigned we assume he/she is

assigned to the dummy middleman j0 and seller k0 and by the con-

vention pj0 = pk0 = aik0 = 0 the above equality also holds. Moreover,

u′i ≥ 0 for all i ∈ B.
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Now, since (p, µ) is a competitive equilibrium,∑
i∈B

u′i +
∑
j∈M

rjv
′
j +
∑
k∈S

w′k =
∑

(i,j,k)∈µ

(u′i + v′j + w′k)

+
∑
j∈M

(rj − rj(µ))pj +
∑

k∈S\Sµ

pk

=
∑

(i,j,k)∈µ

(u′i + v′j + w′k) =
∑

(i,j,k)∈µ

aik,

where, by duality theory,
∑

(i,j,k)∈µ aik is the optimal value of the dual

linear program, whenever C(wA) 6= ∅.

Moreover, for all (i, l, t) ∈ B ×M × S, if (i, j, k) ∈ µ,

u′i = aik − pj − pk ≥ ait − pl − pt = ait − v′l − w′t,

which concludes that (u′, v′, w′) is a solution of the dual linear pro-

gram (5.3).

The above result resembles that in Kaneko (1976) for two-sided

markets where buyers have unitary capacity while sellers can estab-

lish multiple partnerships. In our three-sided assignment market with

middlemen, where also buyers have capacity one, the set of compet-

itive equilibria also coincides with the set of solutions of the dual as-

signment problem, provided the core of the assignment market game

is non-empty.
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Conclusions

In this dissertation we focus on the study of some models of coali-

tional games with the particularity of the existence of some special

players who possess some essential information and therefore they

accumulate power.

The power agregation is currently a widespread phenomenon.

Company mergers, takeovers of companies or agreements between

companies in order to avoid competition are more and more frequent.

We study how to allocate a joint profit among all the agents involved

in an economic activity taking into account that only some of these

agents accumulate most of the power.

Indeed, we consider two kinds of markets, information markets

and assignment markets. In the first case, the special players are

patent holders and their knowledge is necessary to produce a new

commodity which will be sold on a market. This market is divided

into submarkets and each of them might be controlled by agents dif-

ferent from those patent holders. On the other hand, we consider

179
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assignment markets where, besides buyers and sellers, some other

players are necessary to make any trade possible. They are the mid-

dlemen who have a double role as buyers and as sellers.

Chapters 2 and 3 are devoted to information markets while Chap-

ters 4 and 5 are devoted to assignment markets.

Actually, in Chapters 2 and 3, two different generalizations of

information market games (Muto et al., 1989) are studied. Firstly (in

Chapter 2), the necessary information to produce a new commodity

is divided into several parts (different technologies) and each patent

holder possesses just one part. Therefore, instead of the existence of

one informed player (as it is in Muto et al., 1989), there might be more

than one informed player. The clan is the set of all informed players.

Thus, the corresponding market is named clan information market.

In the corresponding game, the clan information market game, all the

players in the clan should belong to a coalition to enable the coalition

to produce the new commodity and sell it on those markets controlled

by the players in the coalition. This means that no single informed

player has the technology required to produce the new commodity.

However, all clan members together may share their technologies,

even with other firms (licencing), and they all may access and make

profit in submarkets where the clan formerly had no access.

The second generalization of information market games is related
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to the market data in the problem, that is to say, the profit attainable

in each submarket. Unlike information market games (Muto et al.,

1989), the profit attainable in each submarket is no longer known

with certainty. Actually, we represent the uncertainty by intervals,

so that the profit attainable in each submarket is given by an interval

of real numbers. Thus, we know a lower bound and an upper bound

of profits for each submarket.

A well known solution concept for coalitional games is the core.

A generalized solution to interval games is the interval core. We can

observe in both generalizations of information market games that the

most a non-patent-holder can reach in the core is the profit attainable

in the submarket where this agent is the only one who has access to.

This means that in clan information market games, the core payoff

of each player not belonging to the clan, i ∈ N \C, is no greater than

r{i}, while in information interval games, the interval core payoff of

any player but the informed one is an interval [xi, xi] 4 [r{i}, r{i}].

Further, the core payoff for an informed player might be the worth of

the grand coalition. Moreover, in both generalizations we can impose

conditions on the market data to the core (and the interval core) to

be a stable set.

The point solution concept firstly studied for these games is the

Shapley value. We show how to obtain it in terms of the market data

for clan information market games and, in a similar way, we find
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the interval Shapley value of information interval games in terms

of the interval market data. Although the Shapley value satisfies

desirable properties as efficiency, additivity or null player property

among others, this solution does not always belong to the core of the

clan information market game. Further we have the same problem

with the interval Shapley value of an information interval game.

Therefore, we study another point solution. This is the τ -value,

which, in clan information market games, is always a core allocation.

Moreover, it yields a bi-mas. For information interval games, it was

not so simple. Indeed, we couldn’t find the definition of the interval

τ -value in the literature. Hence, we first define the interval τ -value of

an interval game and, afterwards, we study how to obtain this interval

τ -value of an information interval game in terms of the market data.

Although the interval τ -value can only be well defined for a subclass

of interval games, the point is that information interval games belong

to this subclass and therefore we are able to find the interval τ -value

of information interval games in terms of the market data and even

show that it is bi-mas extendable.

Chapters 4 and 5 are devoted to assignment markets. Indeed, the

model of assignment games with middlemen studied in Chapter 5

considers the existence of one or more middlemen while the model of

assignment games with a central player studied in Chapter 4 considers
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the existence of only one middleman. A particularity of this model

is that the middleman may have a resarvation value. this is not the

case of the middlemen in Chapter 5.

The assumptions in the classical assignment game of Shapley and

Shubik (1972) are slightly modified in Chapter 4. We consider that

there is a central player who has a double role as a buyer and as a

seller. Moreover, the central player is necessary for any trade. This

means that if a coalition does not contain the central player, then the

worth of this coalition is equal to zero. We can think that this player

is a kind of middleman in this market.

The other players are either buyers or sellers and, as in the clas-

sical assignment game, each buyer desires exactly one item and each

seller has a supply of exactly one item. Further, in the first part of

the chapter, we consider that the central player can only buy and sell

one item, whereas after, this condition is relaxed. Then, we allow the

central player to buy and sell more than one item. Furthermore, in

Chapter 5, we consider the possibility that there were more than one

middlemen who have the double role as buyers and as sellers and,

in addition, they may trade more than one item. This assumptions

bring us closer and closer to real situations.

Some results about assignment games with a central player are

discussed in Chapter 4. Actually, its core is always non-empty. We

first show how to obtain the extreme core allocations of an assignment
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game with a central player by means of a related assignment game.

Later, we provide the core as a set of allocations that meet certain

conditions. We also show what is the market data like in order to

guarantee the core to be a stable set. Point solution concepts as the

nucleolus and the τ -value have been provided in terms of the market

data.

When we allow the central player to sell and buy more than one

item, we say the central player has multiple partnership. The core of

the corresponding game is also non-empty and strictly contains the

optimal solution of the dual problem to the optimization problem

solved to find the worth of the grand coalition.

Further, in Chapter 5, we still assume that buyers and sellers

connot meet on their own. Now, however, there is more than one

middleman and each of them can connect several buyer-seller pairs.

With this generalization we are able to show that the correspond-

ing assignment game with middlemen has a non-empty core if the

number of middlemen is enough to connect the maximum possible

number of buyer-seller pairs. Moreover, some sufficient conditions

guarentee the non-emptyness of the core although the capacity of all

middlemen is smaller than the maximum possible number of buyer-

seller pairs. When the core is non-empty, it is characterized and the

set of competitive equilibrium payoff vectors coincides with the set

of solutions of the dual assignment problem.
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With these concluding remarks, we have reached the end of the

PhD Thesis and new questions arise. It would be interesting to study

clan information games under uncertainty and obtain a new class of

interval games. Moreover, we could check if the interval τ -value is well

defined in this new class of interval games. Define and discuss about

an interval nucleolus would also be very interesting. Finally, deeper

discussions within assignment games with middlemen, would allow us

to know the problem much better and to be able to prove if its core

is always non-empty or it is not. Adressing these further problems

might keep us, and possible readers, busy some more months.
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Resum

Aquesta tesi consta de quatre caṕıtols principals. El primer caṕıtol

analitza el comportament cooperatiu de les empreses i considera la

introducció de noves tecnologies essencials per fabricar un nou pro-

ducte. Proporcionem algunes solucions puntuals en termes de les

dades del mercat per al joc cooperatiu que es deriva d’aquest mercat

d’informació en el que interves més d’un titular de patent.

En el segon caṕıtol, considerem que el benefici que es pot obtenir

en cada submercat en que es divideix el mercat d’informació és incert.

Només es coneixen les fites superior i inferior. L’objectiu del caṕıtol

consisteix a proporcionar solucions d’interval per al joc definit per

intervals que es deriva d’aquell mercat.

En el tercer caṕıtol, estudiem una clase de jocs d’assignació on

hi ha un jugador central amb doble paper com a comprador i vende-

dor, necessari per a qualsevol intercavi comercial. Estudiem el nucli

d’aquest joc i analitzem si és un conjunt estable. Proporcionem al-

gunes solucions puntuals en termes de les dades del mercat. Final-
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ment, generalitzem el model permetent al jugador central vendre i

comprar més dun article.

En el darrer caṕıtol, considerem el cas on hi ha més d’un jugador

amb un doble paper com vendedor i comprador. De fet, aquests són

intermediaris que compren els productes dels vendedors i els venen

als compradors. De forma que, sense intermediaris, l’activitat com-

ercial no és possible. A més, cada intermediari pot intercanviar més

d’una unitat. Proporcionem condicions suficients perquè el nucli del

joc cooperatiu corresponent no sigui buit i estudiem els equilibris

competitius.
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Resumen

Esta tesis consta de cuatro caṕıtulos principales. El primer caṕıtulo

analiza el comportamiento cooperativo de les empresas cuando se de-

sea introducir cierta tecnoloǵıa que es esencial para la fabricación de

un nuevo producto. En el modelo consideramos más de un jugador

con parte de la tecnoloǵıa necesaria para producir el bien. Estudi-

amos la existencia de PMAS y mostramos que el el valor τ de este

juego tiene propiedades de monotonicidad. También proporcionamos

condiciones sobre el mercado, bajo las cuales el valor de Shapley

pertenece a núcleo.

En el segundo caṕıtulo, consideramos incertidumbre sobre el ben-

eficio que se puede obtener en cada submercado. Éste no se conoce

con certeza aunque si se conoce entre qué valores puede estar. De esta

forma consideramos un modelo de juegos definidos por intervalos. El

objetivo del caṕıtulo consiste en proporcionar soluciones dadas por

intervalos para el modelo bajo incertidumbre.

En el tercero caṕıtulo, estudiamos una clase de juegos de asig-
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nación donde hay un jugador central, necesario para cualquier inter-

cambio que tenga lugar. Estudiamos el núcleo de este juego, anal-

izamos si es un conjunto estable. Proporcionamos algunas soluciones

puntuales en términos de los datos del mercado. También general-

izamos el modelo permitiendo al jugador especial de vender y comprar

más de un art́ıculo.

Finalmente, consideramos el caso donde hay más de un interme-

diario que no produce bienes, ni tampoco consume. Compra los pro-

ductos de los vendedores y los vende a los compradores de forma que

sin estos intermediarios, el comercio no es posible. Además, cada in-

termediario puede intercambiar más de una unidad. Proporcionamos

condiciones suficientes para que el núcleo del juego cooperativo cor-

respondiente no sea vaćıo y estudiamos los equilibrios competitivos.
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Summary

This tesis consists of four main chapters, the first chapter, entitled

Clan information market games, analyzes the cooperative behaviour

of firms, faced with the introduction of some technology with its

ownership divided among several patent holders. All of them are

necessary for manufacturing a new product. We study the existence

of PMAS of the corresponding cooperative game and show that the τ

value of this game has some monotonicity properties. We also provide

conditions on the market under which the Shapley value belongs to

the core.

In the second chapter, we consider uncertainty on the profit ob-

tainable in each submarket into which the information market is di-

vided. We only know the lower and the upper bounds of that profits.

The aim of the chapter consists in providing interval solutions for the

associated interval game.

In the third chapter, we study a class of assignment games where

there is a central player, with a double role as buyer and as a seller,
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such that the trade is not possible without him. We provide some

point solutions in term of the merket data. Further, we generalize

the model allowing the special player to sell and buy more than one

item.

Finally, we consider the case where there is more than one player

with a double role as a seller and as a buyer. They buy the goods

from the sellers and they sell them to the buyers. So, without any

middleman, the trade is not possible. However, they don’t add value

to the trade. We provide sufficient conditions for the non-emptyness

of the core of the corresponding cooperative game and we study the

competitive equilibrium.
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