
Ubiquitous supercomputing
Design and development of enabling technologies for

multi-robot systems
Rethinking Supercomputing

LEONARDO CAMARGO FORERO
Systems Engineer

Master of science in ubiquitous computing and networking

Advisors
DR. XAVIER PRATS I MENÉNDEZ

DR. PABLO ROYO CHIC

Doctorate program in Aerospace Science and Technology
Technical School of Castelldefels

Technical University of Catalonia

Programa de doctorado en Ciencia y Tecnologia Aeroespacial
Escola Politécnica Superior de Castelldefels (EPSC)

Universitat Politécnica de Catalunya (UPC)

A dissertation submitted for the degree of
Doctor of Philosophy

September 2019

Ubiquitous supercomputing
Design and development of enabling technologies for
multi-robot systems
Rethinking Supercomputing

Author
Leonardo Camargo Forero

Advisors
Dr. Xavier Prats i Menéndez
Dr. Pablo Royo Chic

Thesis committee
Dr. Eduard Ayguade Parra
Dr. Lino Marques
Dr. Joan Vila

Doctorate program in Aerospace Science and Technology
Technical University of Catalonia
September 2019

This dissertation is available on-line at the Theses and Dissertations On-line (TDX) repository, which is managed by
the Consortium of University Libraries of Catalonia (CBUC) and the Supercomputing Centre of Catalonia (CESCA),
and sponsored by the Generalitat (government) of Catalonia. The TDX repository is a member of the Networked
Digital Library of Theses and Dissertations (NDLTD) which is an international organisation dedicated to promoting the
adoption, creation, use, dissemination and preservation of electronic analogues to the traditional paper-based theses
and dissertations
http://www.tdx.cat

This is an electronic version of the original document and has been re-edited in order to fit an A4 paper.

PhD. Thesis made in:
Technical School of Castelldefels
Esteve Terradas, 5.
08860 Castelldefels
Catalonia (Spain)

This work is licensed under the Creative Commons Attribution-Non-commercial-No Derivative

Work 3.0 Spain License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nc-nd/3.0/es/deed.en_GB or send a letter to Creative Commons, 171 Second

Street, Suite 300, San Francisco, California, 94105, USA.

http://www.tdx.cat
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB

A mi familia,
con quien está mi corazón.

Contents

List of Figures . vii
List of Tables . ix
List of publications . xi
Agradecimientos . xiii
Resumen . xv
Abstract . xvii
List of acronyms . xix

CHAPTER I Introduction . 1
I.1 Motivation . 2
I.2 Objectives . 7
I.3 Scope and limitations . 7
I.4 Outline . 8

CHAPTER II State of the art . 9
II.1 HPC in robotics . 10
II.2 Ubiquitous robotics . 16
II.3 Discussion . 20

CHAPTER III Ubiquitous supercomputing . 23
III.1 High Performance Robotic Computing . 25
III.2 Ontology . 34
III.3 General-purpose computing mission . 36
III.4 Ubiquitous supercomputing language . 38
III.5 Hierarchy . 39
III.6 Stability . 43

v

III.7 Automation . 45
III.8 Summary and discussion . 50

CHAPTER IV The ARCHADE . 51
IV.1 Application Programming Interface . 54
IV.2 Framework . 56
IV.3 Middleware . 59
IV.4 Simulation platform . 61
IV.5 PLUS . 63
IV.6 Summary and discussion . 64

CHAPTER V Experiments and Applications . 67
V.1 Performance . 70
V.2 Swarming . 74
V.3 HPRC cluster of aircraft . 79
V.4 Tigers vs. Hunters . 92
V.5 Complete missions . 98

CHAPTER VI Concluding remarks . 115
VI.1 Summary of contributions . 116
VI.2 Future research . 119

vi

List of Figures

I-1 What supercomputing actually is . 2
I-2 HPC software layers . 4

II-1 HPC software layers functioning . 10
II-2 Ubiquitous supercomputing for robotics is different from ubiquitous robotics . . . 16

III-1 Ubiquitous Supercomputing . 24
III-2 Traditional High Performance Computing cluster VS. High Performance Robotic

computing cluster . 25
III-3 HPC software layers in the world of robotics . 28
III-4 HPC-ROS package . 31
III-5 Ubiquitous supercomputing ontology . 34
III-6 General-purpose computing mission . 37
III-7 Ubiquitous supercomputing language (UbiSL . 38
III-8 Ubiquitous supercomputing systems default hierarchy 40
III-9 Efficiency and GRC after entity removal attacks . 44
III-10 Piloted-complete mode . 46
III-11 Automatic with human system operator mode . 47
III-12 Automatic full mode . 48
III-13 Automation modes and stability . 49

IV-1 The ARCHADE . 52
IV-2 The ARCHADE Application Programming Interface (API) 55
IV-3 The ARCHADE framework . 56
IV-4 The ARCHADE middleware . 59
IV-5 The ARCHADE simulation platform . 62
IV-6 The ARCHADE PLUS . 63

V-1 RPI-HPRC cluster . 68
V-2 HPRC-HPC cluster . 68
V-3 HPRC-Rovers cluster . 69
V-4 Hackrover1 architecture . 70

vii

V-5 HPL using Ethernet and Wi-Fi . 71
V-6 HPL over the HPRC-Rovers cluster VS RPI-HPRC cluster using Wi-Fi 73
V-7 Parallel UAV motion software Architecture . 74
V-8 parallelMotion algorithm based on MPI . 76
V-9 Parallel UAV motion - Simple model . 77
V-10 Parallel UAV motion - Vicsek model . 78
V-11 Parallel UAV motion software Architecture . 80
V-12 HPRC Cluster fuel test . 82
V-13 SimPlat hprccoopflying general workflow . 83
V-14 Occurring HPRC clusters in all test cases . 85
V-15 Clustered aircraft in all test cases . 86
V-16 HPRC clusters at the same time in all test cases . 86
V-17 HPRC clusters size in all test cases . 87
V-18 HPRC clustering communications cost in all test cases 88
V-19 HPRC fuel savings in all test cases . 89
V-20 HPRC fuel savings per aircraft in all test cases . 89
V-21 Fuel savings VS. Aircraft Network Hierarchy . 90
V-22 Aircraft Network Global Reaching Centrality . 90
V-23 HPRC cluster of aircraft simulator performance . 91
V-24 Tigers vs. Hunters mission network . 93
V-25 Tigers vs. Hunters matched tasks . 94
V-26 Tigers vs. Hunters mission workflow . 95
V-27 Tigers vs. Hunters simulator . 97
V-28 HPRC-Rovers cluster . 98
V-29 Cooperative area splitting missions . 99
V-30 Follow me mission . 100
V-31 wpaCrackingRPI software . 101
V-32 Missions’ time duration . 104
V-33 Orders delay SIM VS REAL mode . 105
V-34 Data synchronization per mission, SIM VS REAL mode 107
V-35 Scalability tests - orders delays . 111
V-36 WPA cracking software performance . 112

viii

List of Tables

II-1 Flynn’s taxonomy . 11
II-2 Computing infrastructures for Unmanned Vehicles 13
II-3 Common features in current ubiquitous robotics frameworks 19

III-1 HPC VS HPRC Cluster . 26
III-2 Supercomputing features in multi-robot systems . 33

IV-1 Guidelines for current and future ubiquitous robotics frameworks 53
IV-2 The ARCHADE design and development principles 54
IV-3 TAC software templates . 57
IV-4 UbiSL: TAC templates . 57
IV-5 TAC middleware services . 60
IV-6 The ARCHADE and the ubiquitous supercomputing features 65

V-1 Performance decay with node disconnection over Wi-Fi communications 72
V-2 HPL test cases comparison . 73
V-3 SimPlat hprccoopflying benchmark setup . 84
V-4 SimPlat hprccoopflying test cases . 85
V-5 Tigers vs. Hunters system entities information . 93
V-6 Average orders delay difference in seconds between SIM and REAL mode, for all

missions . 106
V-7 Mission time VS. Synchronization time . 108
V-8 Entities’ computing features . 109
V-9 System controller and mobile entities total average CPU load and average RAM

usage . 109
V-10 System controller and mobile entities average Wi-Fi signal strength and latency . . 110
V-11 Scalability tests: CPU load and RAM usage . 111

ix

List of publications

The list of publications resulting from this PhD. work is given in inverse chronological order as
follows:

Journal papers

• CAMARGO-FORERO, LEONARDO, ROYO, PABLO & PRATS, XAVIER. The ARCHADE: Ubiq-
uitous Supercomputing for robotics. Part II: Experiments. Robotics and Autonomous Systems.
Under revision after a first peer-review.

• CAMARGO-FORERO, LEONARDO, ROYO, PABLO & PRATS, XAVIER. 2019 (Apr). The AR-
CHADE: Ubiquitous Supercomputing for robotics. Part I: Philosophy. Robotics and Au-
tonomous Systems. Vol 114. pp. 187-198. DOI: https://doi.org/10.1016/j.robot.
2019.01.006.

• CAMARGO-FORERO, LEONARDO, ROYO, PABLO & PRATS, XAVIER. 2018 (Sep). Towards
High Performance Robotic Computing. Robotics and Autonomous Systems,Vol 107. pp. 167-
181. DOI: https://doi.org/10.1016/j.robot.2018.05.011.

• ZAMANI, MARYAM, CAMARGO-FORERO, LEONARDO, & VICSEK, TAMAS. 2018 (Feb).
Stability of glassy hierarchical networks. New Journal of Physics, Vol. 20. DOI: https:
//doi.org/10.1088/1367-2630/aaa8ca.

Conference proceedings

• CAMARGO-FORERO, LEONARDO, ROYO, PABLO & PRATS, XAVIER. 2018 (Sep). High Perfor-
mance Robotic Computing as an enabler for cooperative flights. In: Proceedings of the 37th
IEEE/AIAA Digital Avionics Systems (DASC) Conference. London (UK). Best paper in track
award.

xi

https://doi.org/10.1016/j.robot.2019.01.006
https://doi.org/10.1016/j.robot.2019.01.006
https://doi.org/10.1016/j.robot.2018.05.011
https://doi.org/10.1088/1367-2630/aaa8ca
https://doi.org/10.1088/1367-2630/aaa8ca

Book chapters

• CAMARGO-FORERO, LEONARDO, ROYO, PABLO & PRATS, XAVIER. 2017. On-board high-
performance computing for multi-robot aerial systems. Aerial Robots - Aerodynamics, Control
and Applications, Chap 7, P. 1-19. IntechOpen. Lopez-Mejia, Omar Dario & Escobar-Gomez,
Jaime Alberto (eds). ISBN: 978-953-51-5357-3.

xii

Agradecimientos

Cuando era un niño, me la pasaba usando armatodos, ası́ los llamamos en Colombia, mundial-
mente conocidos como Legos, aunque de una diferente marca, para armar naves espaciales y
robots. Mi madre Adriana escuchaba todas mis historias, mis fantası́as de crear nuevas tec-
nologı́as, juguetes y todo tipo de inventos, la mayorı́a sin un propósito especı́fico más que el
simple placer de crear cosas nuevas.

Mientras crecı́a me interesé en múltiples campos de la ciencia, de la metafı́sica, la espiri-
tualidad, fascinado por cuanta similitud puede observarse entre la arquitectura de un sistema
multi-planetario y un simple átomo, como todo pareciera conectado de alguna manera, aún im-
perceptible para la humanidad y sobre todo como entidades independientes cooperan entre sı́ y
parecen actuar como si fueran una sola. Quizás por lo que estoy más agradecido, es con el hecho
de que mi tesis doctoral mezcla de alguna manera muchos de mis sueños desde que era un niño.

Sin embargo, por años no tuve la oportunidad de trabajar con robots o vehı́culos inteligentes,
de hecho me enfoqué en supercomputación, por lo cual estoy muy agradecido también, porque
me permitió trabajar en diferentes campos, óptica, matemáticas, bioinformática, etc., pero gracias
a Colciencias, el Departamento Administrativo de Ciencia, Tecnologı́a e Innovación del gobierno
Colombiano y la beca que me otorgaron para mis estudios de doctorado, pude mezclar mis pa-
siones en una sola cosa, The ARCHADE, una tecnologı́a para crear sistemas en los que super-
computación y robótica se integran para ejecutar todo tipo de misiones. De hecho, la beca que
se me otorgó para mi doctorado se basó en una entrevista en la que expuse mi idea de unir la
supercomputación con sistemas multi-vehı́culo, multi-robot.

No fue fácil estar lejos de mi familia por mucho tiempo, de mi familia por la cual late mi
corazón, pero las palabras de mi padre Gerardo, de mi madre y la increı́ble capacidad de mi her-
mano Nicolás de sonreı́r, no importando en qué situación se encuentre, me dieron la fuerza para
continuar siguiendo mis sueños y mucho más importante, mi deseo de contribuir al desarrollo de
quizás uno de los más hermosos lugares del mundo, Colombia.

Esta tesis es para mi familia, para mi papá con su mente poderosa y su auto disciplina, su
bondad, su amor por todos nosotros, para mi mamá, la persona más noble que he conocido en
toda mi vida, la más hermosa, para mi hermano Nicolás, mi mejor amigo en todo el planeta,
la persona más fuerte y mi aliado más inteligente con un gran corazón, para mi hermano Juan
Diego, con quien espero compartir toda la vida, para mi paı́s, para el amarillo, al azul y el rojo en
todos lados y con la esperanza de que The ARCHADE facilite la creación de todo tipo de nuevas

xiii

aplicaciones que contribuyan a un mejor mundo. También agradezco a mi cotutor Xavier Prats
por su apoyo, su conocimiento y la elegancia que demuestra al vivir lo que debe ser un doctor de
la filosofı́a y por supuesto a mi cotutor Pablo Royo, quien, con su conocimiento técnico y práctico,
la paz que inspira y su gran corazón me han enseñado tanto y para todas las personas, amigos,
amores, conocidos, compañeros, colegas, que he tenido el privilegio de conocer en toda mi vida y
por aquellos que aún no conozco. También agradezco al Dr. Eduard Ayguade Parra, al Dr. Lino
Marques y al Dr. Joan Vila por aceptar ser parte de mi presentación final y compartir su vasta
experiencia y conocimiento. Finalmente, me queda sola una persona a quien agradecer, un solo
ser, con muchos nombres, muchos dogmas, muchas perspectivas, Dios, muchas gracias por todo.

xiv

Resumen

La supercomputación, también conocida como Computación de Alto Rendimiento (HPC por sus
siglas en inglés) puede encontrarse en casi cualquier lugar (ubicua), desde el pequeño widget en
tu teléfono diciéndote que hoy será un dı́a lluvioso o uno soleado, hasta la mayorı́a de medicinas
anunciadas en los medios de comunicación o vendidas en la farmacia local, pasando por el diseño
de los vehı́culos que te llevan rápidamente de un paı́s a otro y que eventualmente te llevarán a
otros planetas e incluyendo la siguiente gran contribución al entendimiento de los orı́genes del
universo, de nuestra genética y aquella de todas las especies, de la naturaleza de la realidad,
incluso la de nuestra propia conciencia. La lista TOP 500 de supercomputadores en el mundo y
los incontables ejemplos fuera de la lista, evidencian el largo alcance de la supercomputación y su
utilización en prácticamente todo aspecto de nuestra vida.

Sin embargo, hay un campo en el que la supercomputación ha sido apenas explorada - la
robótica. Además de algunos intentos de optimizar tareas robóticas complejas, las dos fuerzas
carecen de una alineación efectiva y de un contrato a largo plazo. Dado los avances en minia-
turización, comunicaciones y la aparición de potentes computadores embebidos, optimizados en
peso y energı́a, la siguiente transición lógica corresponde a la creación de un cluster de robots, un
conjunto de entidades robóticas que juntas se comporten de manera similar a como lo hace un
supercomputador. No obstante, hay un aspecto clave, con respecto a nuestra comprensión actual
de lo que significa o para qué es útil la supercomputación, que este trabajo pretende redefinir.
Durante décadas, la supercomputación ha sido entendida únicamente como un mecanismo de
eficiencia computacional, es decir para reducir el tiempo de computación de ciertos problemas,
que sin la supercomputación no se podrı́an resolver en un tiempo razonable. Si bien esta lı́nea
de pensamiento ha conducido a innumerables hallazgos, la supercomputación es más que eso,
porque para proporcionar una infraestructura con la capacidad de resolver todo tipo de proble-
mas rápidamente, se debe proporcionar otro conjunto completo de caracterı́sticas (caracterı́sticas de
la supercomputación) que también pueden ser explotadas en contextos como la robótica. Propósito
general, escalabilidad, heterogeneidad, transparencia de usuario, cooperación, etc., conjunta-
mente conduciendo a la cohesión, es decir, un conjunto de entidades independientes que actúan
como si fueran una sola.

Esta tesis doctoral pretende repensar lo que realmente significa la supercomputación y
diseñar estrategias para establecer de manera efectiva su inclusión dentro del mundo de la
robótica, contribuyendo ası́ a la ubicuidad de la supercomputación, el principal ideal de este tra-
bajo. Con esto en mente, se presentará un estado del arte relacionado con intentos anteriores de

xv

mezclar robótica y HPC, seguido de la propuesta de Computación Robótica de Alto Rendimiento
(HPRC, por sus siglas en inglés), un nuevo concepto, potencialmente campo de las ciencias com-
putacionales, que mapea la supercomputación a los matices especı́ficos de sistemas multi-robot.
HPRC puede pensarse como una supercomputación en el borde y si bien este enfoque proporcionará
todo tipo de ventajas, para ciertas aplicaciones podrı́a no ser suficiente, en ciertas aplicaciones se
requerirá o deseará una interacción con infraestructuras externas. Para facilitar dicha interacción,
esta tesis propone el concepto de supercomputación ubicua como la unión de HPC, HPRC y dos
tipos más de entidades, dispositivos sin computación embebida (por ejemplo, redes de sensores,
etc.) y seres humanos.

Para pasar de la filosofı́a a la realidad, los resultados de esta tesis incluyen una ontologı́a,
es decir un conjunto de conceptos interrelacionados que describen el alcance completo de la su-
percomputación ubicua y una tecnologı́a llamada The ARCHADE (TAC). La tecnologı́a consta
de cinco componentes principales y sirve como middleware entre una misión y una infraestruc-
tura de supercomputación (HPC, HPRC, etc.) y como un framework para facilitar la ejecución
de cualquier tipo de misión, por ejemplo, agricultura de precisión, entretenimiento, inspección y
monitoreo, topografı́a y cartografı́a, ingenierı́a civil, etc. Además, las ideas detrás de la supercom-
putación ubicua y The ARCHADE se usaron para diferentes experimentos y aplicaciones tales
como simulaciones de enjambres de pájaros, cluster HPRC de aeronaves, un demo llamado Tigres
versus Cazadores y en una serie de misiones reales llevadas a cabo con dos rovers.

Al integrar la supercomputación y la robótica, un segundo ideal de esta tesis se presenta,
robótica ubicua, es decir el uso de robots en todo tipo de aplicaciones. Correspondientemente, una
revisión de frameworks existentes relacionados con robótica ubicua será discutida. El diseño y
desarrollo de The ARCHADE ha seguido las pautas y sugerencias encontradas en dicha revisión.
Además, The ARCHADE se basa en una supercomputación repensada donde la eficiencia com-
putacional no es la única caracterı́stica proporcionada a sistemas basados en la tecnologı́a. Sin
embargo, se analizarán indicadores de eficiencia computacional, junto con otros indicadores rela-
cionados con las demás caracterı́sticas de la supercomputación.

La supercomputación ha sido un excelente aliado para la exploración cientı́fica y no hace mu-
cho tiempo, también para múltiples actividades comerciales, conduciendo a todo tipo de mejoras
en nuestras vidas, en nuestra sociedad y en nuestro futuro. Con los resultados de esta tesis, la
unión de dos campos, dos fuerzas previamente desconectadas debido a sus enfoques filosóficos y
sus antecedentes divergentes, tiene un enorme potencial para abrir nuestra imaginación para todo
tipo de aplicaciones nuevas y para un mundo donde la robótica y la supercomputación estén en
todos lados.

xvi

Abstract

Supercomputing, also known as High Performance Computing (HPC), is almost everywhere
(ubiquitous), from the small widget in your phone telling you that today will be a rainy or a
sunny day, up to most medicines advertised in the media or being sold in the local pharmacy,
passing by the design of the vehicles that take you fast from one country to another and that will
eventually take you to other planets and the next great contribution to the understanding of the
origins of the universe, of our genetics and that of every species, of the nature of reality, even
that of our consciousness. The TOP 500 supercomputers in the world and the countless examples
out of the prominent list, evidence supercomputing’s large scope and its utilization in practically
every aspect of our modern lives.

However, there is a field where supercomputing has been only slightly explored - robotics.
Other than attempts to optimize complex robotics tasks, the two forces lack an effective alignment
and a purposeful long-term contract. With advancements in miniaturization, communications
and the appearance of powerful, energy and weight optimized embedded computing boards, a
next logical transition corresponds to the creation of clusters of robots, a set of robotic entities that
can behave similarly as a supercomputer does. Yet, there is key aspect regarding our current un-
derstanding of what supercomputing means, or is useful for, that this work aims to redefine. For
decades, supercomputing has been solely intended as a computing efficiency/performance mech-
anism i.e. decreasing the computing time for a task, that without supercomputing, could not be
succeeded in reasonable time. While such train of thought have led to countless findings, super-
computing is more than just that, because in order to provide an infrastructure with the capacity of
solving most problems quickly, another complete set of features must be provided, a set of features
(supercomputing features) that also can be exploited in contexts such as robotics. General-purpose,
scalability, heterogeneity, user-transparency, cooperation, etc., all together leading to cohesion, i.e.
a set of independent entities acting as if they were one.

This Ph.D thesis aims at rethinking what supercomputing actually means and to devise
strategies to effectively set its inclusion within the robotics realm, contributing therefore to the
ubiquity of supercomputing, the first main ideal of this work. With this in mind, a state of the art
concerning previous attempts to mix robotics and HPC will be outlined, followed by the proposal
of High Performance Robotic Computing (HPRC), a new concept, potentially computer science
field, mapping supercomputing to the nuances of multi-robot systems. HPRC can be thought
as supercomputing in the edge and while this approach will provide all kind of advantages, in

xvii

certain applications it might not be enough, in certain applications interaction with external in-
frastructures will be required or desired. To facilitate such interaction, this thesis proposes the
concept of ubiquitous supercomputing as the union of HPC, HPRC and two more type of entities,
computing-less devices (e.g. sensor networks, etc.) and humans.

To go from philosophy into reality, the results of this thesis include an ontology i.e. a set of
interacting concepts describing the complete scope of ubiquitous supercomputing and an enabling
technology depicted as The ARCHADE (TAC). The technology consists of five main components
and it serves as a middleware between a mission and a supercomputing infrastructure (HPC,
HPRC, etc.) and as a framework to facilitate the execution of any type of mission, i.e. precision
agriculture, entertainment, inspection and monitoring, surveying and mapping, civil engineering,
etc. Furthermore, the ideas behind ubiquitous supercomputing and The ARCHADE have been
used for a set of experiments and applications, such as the simulation of birds’ swarming, HPRC
cluster of aircraft, a demo called Tigers vs. Hunters and a set of real missions carried out with two
rovers.

By integrating supercomputing and robotics, a second ideal is targeted, ubiquitous robotics,
i.e. the use of robots in all kind of applications. Correspondingly, a review of existing ubiqui-
tous robotics frameworks is presented and based upon its conclusions, The ARCHADE’s design
and development have followed the guidelines for current and future solutions. Furthermore,
The ARCHADE is based on a rethought supercomputing where performance is not the only fea-
ture to be provided by TAC-enabled ubiquitous supercomputing systems. However, performance
indicators will be discussed, along with those related to the remaining supercomputing features.

Supercomputing has been an excellent ally for scientific exploration and not so long ago for
commercial activities, leading to all kind of improvements in our lives, in our society and in our
future. With the results of this thesis, the joining of two fields, two forces previously disconnected
because of their philosophical approaches and their divergent backgrounds, holds enormous po-
tential to open up our imagination for all kind of new applications and for a world where robotics
and supercomputing are everywhere.

xviii

List of acronyms

AC ArduCopter
AES Advanced Encryption Standard
AI Artificial Intelligence
AIXM Aeronautical Information Exchange
ALU Arithmetic Logic Unit
ANH Aircraft Network Hierarchy
ANSP Air Navigation Service Provider
API Application Programming Interface
APV ArduPilot Vehicle
A&R Agents & Roles
AR2 APMrover2
ATC Air Traffic Controller
ATFCM Air Traffic Flow and Capacity Management
ATM Air Traffic Management
BADA Base of Aircraft Data
BDT Business Development Trajectory
BVLOS Beyond Visual Line of Sight
CAGR Compound Annual Growth Rate
CDR Conflict Detection and Resolution
CLD Computing-less devices
CONOPS Concept of Operations
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DDR2 Demand Data Repository 2
DKD dkdrone class
DKR dkrover class
DSP Digital Signal Processors
DTN Delay Tolerant Network
E Entity
EB Exabytes
ECAC European Civil Aviation Conference
FABEC Functional Airspace Block Europe Central

xix

FL Flight Levels
FLOPS Floating Point Operations Per Second
FPGA Field-Programmable Gate Array
FPS Frames Per second
FR Free Route
GB Gigabytes
GFLOPS Giga FLOPS
GPCM General-Purpose Computing Mission
GPGPU General Purpose Computing on GPUs
GPS Global Positioning System
GPU Graphics Processing Unit
GRC Global Reaching Centrality
H Human Entity
HARC High Availability Robotic Cluster
HDFS Hadoop Distributed File System
HITL Hardware In The Loop
HN Hierarchy Network
HPC High Performance Computing
HPCC High Performance Computing Cluster
HPL High-Performance Linpack
HPRC High Performance Robotic Computing
IoT Internet of Things
INT Interface
ITU International Telecommunications Union
KPA Key Performance Area
KPI Key Performance Indicator
LDAP Lightweight Directory Access Protocol
LRC Local Reaching Centrality
LTE Long-Term Evolution
MIC Message Integrity Code
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data
MN Master node
MPI Message Passing Interface
NextGen The Next Generation Air Transportation System
NFS Network File System
NM Nautical Mile
NOP Network Operations Plan
OD Orders delay
OOP Object-Oriented Programming
OpenCL Open Computing Language
OpenCV Open Computer Vision
OpenRAVE The Open Robotics and Animation Virtual Environment
Orocos Open robot control software
P2P Peer-to-Peer
PM Physical Machine
PR Proximity Radius
PRCN Parallel Robotic Computing Node
RBT Reference Business Trajectory
REAL Real mode
RM Real Mode

xx

ROS Robot Operating System
RPI3B Raspberry Pi 3 model B
RTOS Real-Time Operating System
SAR Search And Rescue
SBT Shared Business Trajectory
SimPlat The ARCHADE simulation platform
SIM Simulated mode
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SITL Software In The Loop
SLA Service Level Agreement
SLAM Simultaneous Localization and Mapping
SC System Controller
SC-E System Controller entity
SESAR Single European Sky ATM Research
SH System Hierarchy
SO System Operator
SoC System on a Chip
SN Slave Node
SWIM System Wide Information Management
TAC The ARCHADE
TB Terabytes
TBO Trajectory-Based Operations
TOD Top Of Descent
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
UbiSL Ubiquitous Supercomputing Language
UGV Unmanned Ground Vehicle
UN United Nations
UV Unmanned Vehicle
VM Virtual Machine
WEB Wired Equivalent Privacy
WAN Wide Area Network
WPA Wi-Fi Protected Access
YOLO You Only Look Once
ZB Zettabytes

xxi

Ahora, si por algún motivo pudiera escuchar mi voz luego de

pasar una vida entera sin conocerla, diría para mi mismo, es una

carga innecesaria? , o un regalo, o caería irremediablemente en

una revelación?, al notar que mi voz es tan diferente de mis pen-

samientos así como las palabras son tan diferentes de la verdad

— Leonardo CF

I
Introduction

A robot should be more than a specific-purpose machine, used only for a particular task, designed
and developed with specific hardware and software and consequently difficult to integrate with
other robots or reuse for a different purpose.

If a robot were to become a general-purpose computing unit, no significantly different from a
computer or a cellphone, it could be reused for different missions and multi-robot integration
would become transparent. The advantages of rethinking what a robot is, are endless. In fact, the
robotics community, at research and industrial level, is transitioning from an era, where robots
were made with single-purpose, exclusive hardware and software, towards a new one where
scalability and integration are of the upmost importance. Perhaps, the greatest evidence of such
transition is the appearance of embedded computing cards (companion computers), optimized in
terms of cost, size, weight, energy, etc., which facilitates easy integration empowered by the use
of traditional operating systems.

Since a robot’s companion computer is installed with an operating system, all kind of soft-
ware can be adapted in order to enhance the capabilities of the robot and integration between
multiple robots becomes a straightforward endeavor via mainstream protocols such as TCP/IP.
Consequently, a set of connected robots has the potential of becoming a supercomputing infrastruc-
ture.

Supercomputing, formally known as High Performance Computing (HPC), is a powerful tool
devised to optimize, in terms of efficiency i.e. computing time, the execution of complex soft-
ware. Software applications used to predict the weather, understand the origins of the universe,
create incredibly realistic Sci-Fi movies, manufacture new pharmaceutical drugs and vaccines, ex-
tract information from our genetics and that of any species, model aircraft wings, simulate new

1

2 Chapter I - Introduction

Figure I-1: What supercomputing actually is. The small circles represent potential supercom-
puting features, not discussed in this thesis

propulsion techniques, oil and gas exploration, space research, send personalized advertisement
to millions of users worldwide and much much more are all examples of the supercomputing’s
long reach. Applications that without supercomputing, cannot find applicable results in reason-
able time.

While supercomputing was conceived and it has been used with the sole intent of decreasing
computing time for complex tasks, in this thesis, the main core idea requires a change of mind,
one in which supercomputing means much more than only computing-efficiency as portrayed in
Figure I-1. In fact, the term super, from its Latin roots, means above or beyond, which does not
necessarily imply only strength or performance, or more precisely, it could mean much more.

With this in mind, this thesis aims at redefining what supercomputing is, general-purpose,
standardization, scalability, heterogeneity, user-transparency, cooperation, resilience, hierarchy,
performance, etc., all together leading to cohesion i.e. a tool to create systems made up of independent
entities that behave as a single unit.

I.1 Motivation

The scope upon which supercomputing is utilized is large, almost everywhere. In fact, nowadays
it is difficult to find an economic or social activity in which supercomputing does not have a rele-
vant impact. A main driver can be identified for such ubiquity, Massive amount of data. According
to CISCO (2018):

• Annual global data center IP traffic will reach 20.6 Zettabytes (ZB) (1.7 ZB per month) by the
end of 2021, up from 6.8 ZB per year (568 exabytes [EB] per month) in 2016.

• Global data center IP traffic will grow 3-fold over the next 5 years. Overall, data center IP
traffic will grow at a Compound Annual Growth Rate (CAGR) of 25 percent from 2016 to
2021.

I.1 Motivation 3

• By 2021, data center storage installed capacity will grow to 2.6 ZB, up from 663 Exabytes
(EB) in 2016, nearly a 4-fold growth.

• Globally, the data stored in data centers will nearly quintuple by 2021 to reach 1.3 ZB by
2021, up 4.6-fold (a CAGR of 36%) from 286 EB in 2016.

• Big data will reach 403 EB by 2021, up almost 8-fold from 25 EB in 2016. Big data alone will
represent 30 percent of data stored in data centers by 2021, up from 18 percent in 2016.

• The amount of data stored on devices will be 4.5 times higher than data stored in data cen-
ters, at 5.9 ZB by 2021.

• Driven by the Internet of Things (IoT), the total amount of data created (and not necessarily
stored) by any device will reach 847 ZB per year by 2021, up from 218 ZB per year in 2016.
Data created is two orders of magnitude higher than data stored. However, approximately
10 percent of such data will be actually useful.

• Useful data exceeds data center traffic (21 ZB per year) by a factor of four. Edge or Fog
computing might help bridge this gap

Based on Cisco indicators, it is important to conclude that local storing and computing (i.e. at
the edge) is the clearest alternative to solve the gap between the amount of generated data and the
storage capacity. Even, in cases where data still needs to be transferred externally, preprocessing
and filtering, i.e. selecting only useful data, could play an important role to be done at the edge.

A particular type of IoT device, of importance for this thesis are robots, specifically Un-
manned Vehicles (UV), whose range of possible applications is vast, from simple aerial photogra-
phy and video to highly complex missions in fields such as precision agriculture, inspection and
monitoring, surveying and mapping, civil engineering, military missions, etc. Specifically, Un-
manned Aerial Vehicles (UAVs) missions generate enormous quantities of data e.g. 200 Gigabytes
(GB) of digital imagery per day with fixed-wing UAVs (Krest, 2017) or around 70 Terabytes (TB)
of data in a 14-hour mission carried out by a Gorgon Stare drone (Abhishek, 2014) or 150 TB of
data per day with a small UAV fleet (Logist, 2017).

Furthermore, the UAV applications industry is expected to generate 100 billion USD between
2016 and 2020 (Castellano, n.d.) and to grow at a CAGR of 53.9% during 2018-2023 (Reportlinker,
2018). These previous indicators lead to an important conclusion, data processing is a necessity.
Two approaches can be taken into consideration when processing data, specifically IoT produced
data as within the context of this thesis, local and remote approach. The former advocates to exploit
locally-available computing resources and storage in order to optimize response-time, reliability,
decrease bandwidth consumption, avoid high latencies (e.g. caused by Wide Area communi-
cations - WAN, see Satyanarayanan (2010)), as proposed by Edge computing (Shi et al. , 2016).
Contrary, the latter advocates the use of external computing and storage resources e.g. cloud com-
puting or other remote infrastructures, given that local resources do not have sufficient power for
specific applications or missions requiring it. Several works in robotics have contemplated the
use of cloud computing resources. For example in Benavidez et al. (2015), the authors proposed
a cloud mechanism for aiding a robot in visual SLAM (Simultaneous Localization and Mapping).
Even, a Robot as a Service platform has been proposed (Chen et al. , 2010).

It is worth clarifying that the Edge computing paradigm does not exclude the utilization of
external computing resources. In fact, both approaches are valid, depending on the application’s
particular requirements. This leads to the conclusion that it is important to define mechanisms and
strategies for computing-load distribution, either at the edge or in external computing resources,
or both, if required. For example, Hu et al. (2012) proposed machine-to-cloud and machine-to-
machine strategies to facilitate computing loading over the cloud and the edge correspondingly.

4 Chapter I - Introduction

Therefore, the foundation bricks for hybrid approaches have been laid out, which gives confidence
into going further by including supercomputing in the equation.

I.1.1 What supercomputing is thought to be

HPC on-demand services over the cloud are a reality nowadays, e.g. Amazon (n.d.) and works
such as Khan et al. (2018) and Trancoso & Efstathiou (2017) have studied the use of supercomput-
ing over the edge, in terms of energy and cost, i.e. using low-cost low-energy computing devices,
such as SoCs (System on a Chip), for supercomputing.

With constant improvements in computing power, energy consumption, etc., SoCs, such
as cellphone processors, Raspberry Pi (Raspberry-Pi-Foundation, n.d.), NVIDIA Jetson Series
(NVIDIA, n.d.a), etc., are a very attractive platform for supercomputing. Real or pseudo real-time,
latency-sensitive, information-sensitive or remote-locations-with-no-Internet-access applications
are suitable candidates for the use of HPC with SoCs. Moreover, complete HPC clusters based on
SoCs have been deployed (Cox et al. , 2014) and results suggests that SoCs are good candidates for
traditional HPC (Rajovic et al. , 2013), even using OS-level HPC-supported virtualization (Beserra
et al. , 2017).

On the robotics side, many works, to be referenced in chapter II section II.1, have imple-
mented traditional supercomputing in robotics settings, mostly with single robots. Furthermore,
standard HPC technologies, such as Message Passing Interface (MPI) (Walker & Dongarra, 1996)
or Compute Unified Device Architecture (CUDA) (Garland et al. , 2008) have been used to opti-
mized the execution of complex robotic tasks.

Traditional supercomputing, i.e. aiming at computing-efficiency, with SoCs, has been ex-
plored in the past. However, other supercomputing features, that could potentially lead to all
kind of new applications, have been left behind. Moreover, regarding robotics, previous works
have exploited strategies belonging mostly to the applications layer, while a supercomputing in-
frastructure (e.g. a HPC cluster of computers) is composed of more layers, the HPC software layers, as
it can be observed in Figure I-2, devised with the objective of providing features such as scalability,
user-transparency, etc.

Figure I-2: HPC software layers. A HPC cluster of computers is the most common supercom-
puting infrastructure. Nodes in a HPC cluster are classified as master and slaves

I.1 Motivation 5

I.1.2 What supercomputing actually is

This thesis aims at rethinking what supercomputing actually is (Figure I-1), beyond only perfor-
mance or computing-efficiency, and to set strategies to apply its features in the context of multi-
robot systems, bringing truly everywhere i.e. Ubiquitous supercomputing. In this sense, while per-
formance measurements will be discussed, it is important to emphasize that the approach in here,
differs from all previous attempts of using supercomputing in robotics or IoT settings.

Consider for example scalability. A supercomputing infrastructure is scalable in two fronts.
First, adding or removal of computing nodes (slaves) is fairly transparent. Second, software exe-
cuting over a supercomputing infrastructure, provided that it is written with standard technolo-
gies (e.g. MPI), can run in parallel, over any quantity of computing cores, distributed across mul-
tiple nodes. Correspondingly, scalability in multi-robot systems can be exploited in two fronts.
First, transparent adding and removal of robotic entities, e.g. for optimizing area recognition,
energy consumption, low cost, etc. Second, parallel software running over any quantity of com-
puting cores, distributed across multiple companion computers, robotic nodes. However, such
software is not necessarily expensive in terms of computing power but it still can benefit from the
scalability feature.

Generally speaking, supercomputing was designed with the objective of targeting certain
problems, with the idea of increasing the assigned computing power and therefore reduce its
computational time. And it basically worked, we can now solve, in reasonable time, problems
that could take millennia to be solved without supercomputing. In fact, countless activities in our
daily lives make use of supercomputing on a regular basis Chabowski (2016), NVIDIA (n.d.h) .

However, in order to provide a tool that could effectively speed up any problem (general-
purpose), another set of features had to be implemented. Such features, the supercomputing features
are:

• General-purpose: Supercomputing can be used for anything, the TOP500 supercomputers in
the world (Dongarra et al. , n.d.) are evidence of it. The applications layer in a HPC cluster of
computers, sets the infrastructure’s purpose, i.e. the software installed on such layer can be
used for all kind of user cases. Such software must make use of a HPC software technology,
e.g. MPI, in order to be able to run over multiple computing units that are distributed across
different nodes. Software written without such technologies will only run on single nodes.
Furthermore, the other HPC software layers are common in any HPC cluster. If a single robot
or a multi-robot system is thought as a general-purpose computing unit, its applications are
endless.

• Standardization: Supercomputing makes uses of standard technologies in all the HPC soft-
ware layers. Several operating systems, mostly Linux-based, can be set upon nodes be-
longing to a HPC cluster, e.g. CentOS, RedHat, SUSE, Debian, Ubuntu, Scientific Linux,
etc. Examples of standard technologies used in supercomputing are: Network File System
(NFS) (Shepler et al. , 2003) for the File System layer, Open Lightweight Directory Access Pro-
tocol (Open LDAP), an implementation of the LDAP standard (Zeilenga, 2006), for the User
System layer, Torque (Adaptive-Computing, n.d.b) for the Batch System layer, etc. Further-
more, MPI is the most used HPC software technology but other technologies exist as well,
for example OpenMP (Dagum & Menon, 1998), OmpSs (Duran et al. , 2011) or CUDA for
general-purpose computing on Graphics Processing Units (GPUs), in the applications layer.
If a single robot or a multi-robot system is embedded with standard software technologies,
integration among robots, even those carrying different purposes, becomes straightforward.
For example, a set of robots, each one embedded with its own Linux-based computing board
can be used to execute MPI parallel software, exploiting the total distributed computing
units.

6 Chapter I - Introduction

• Scalability: Supercomputing allows transparent integration of nodes. In a HPC cluster, nodes
are classified as Master and Slaves. The master node implements the server-side of each soft-
ware solution in the HPC software layers. Correspondingly, the slaves implement the client-
side. Integration of new slaves can be done by installing the corresponding HPC software
layers (client-side) and connect them to the master node. A scalable multi-robot system can
find many uses, i.e. by simply splitting a mission area or the mission’s tasks and even scal-
ing inwards, by including more nodes, configured as a HPC cluster inside single robots in
order to increase their local computing power.

• Heterogeneity: Supercomputing allows integration of different vendors, operating systems,
computing-resources (e.g. quantity and type of CPUS, GPUs, other coprocessors, etc.), into
the same infrastructure. However, for simplicity and error-avoidance, it is advisable to set
the same operating system in all the nodes belonging to a supercomputing infrastructure.
In the robotics world, heterogeneous systems can be used depending of their individual or
group peculiarities. For example, ground and air vehicles can cooperate with each other
by sharing information only accessible in their own medium. Moreover, different kind of
equipment and devices can be embedded in robotics entities.

• User-transparency: The master node, is also the front-end machine, to which the users interact
with. Among several responsibilities, the master node masquerades the distributed nodes
as if they were a single computing unit i.e. the user does not need to know the underlying
complexity in the supercomputing infrastructure. Moreover, a supercomputing infrastruc-
ture provides a multi-user/multi-purpose environment. Commonly, data is stored locally
only in the master node, whilst the slaves access it via the file system. Similar approaches
can be applied with software in the applications layer, i.e. existing locally only in the master
node. This facilitates managing procedures, licenses control, etc. Furthermore, user replica-
tion is managed with the user system. A single pilot controlling several unmanned vehicles
or multi-user multi-robot systems, where each robot is piloted by a different user but yet
under the control of a single person, opens the spectrum of robotics applications.

• Cooperation: Cooperation is achieved in the applications layer, where software, running in
distributed computing units, cooperates into solving specific problems. Such cooperation
must be explicitly program in the applications layer’s software. Multi-robot systems cooper-
ating with human entities and other type of elements, can result into all kind of applications.
For example, a set of robots can split an area, individually assess health in a particular crops
plantation by running locally parallel software, while together estimating the total health of
the area, information that yet can be improved by human interpretation, extra sensors, etc.

• Resilience: A distributed infrastructure is prone to errors, possibly occurring in different en-
tities. Different approaches are taken into consideration to guarantee resilience in super-
computing infrastructures. For example, a second master node (shadow master) is set upon
the infrastructure, commonly in active-passive or active-active, with load-balancing config-
urations. Furthermore, software checkpointing can be implemented as well e.g. Ansel et al.
(2009). Upon individual robotics failures, a supercomputing multi-robot system can still

accomplish its mission, by redistributing its specific tasks or to guarantee the mission’s con-
sistency, up to such point of failure, by constantly synchronizing data with a master entity.

• Hierarchy: A supercomputing infrastructure holds different hierarchy schemes. From a plat-
form point of view, hierarchy is as follows: user, master, shadow master and slaves. Fur-
thermore, the batch system can be configured to prioritize certain users or groups when
requesting computing resources. With the rise of artificial intelligence, it is very important
to maintain hierarchy, one where humans are still the apex entities.

I.2 Objectives 7

• Performance/Computing-efficiency: Finally, it is valid to consider performance as an emergent
property of the previous supercomputing features.

The previous features are a direct result of the implementation of the HPC software layers and
they represent what supercomputing actually is. With this in mind, this thesis aims at revising the
idea that supercomputing is all about performance, as massively observed in the literature, and to
adapt concepts, strategies and features from a rethought supercomputing, into the world of multi-
robot systems, in order to transform a set of distributed entities into a single cohesive unit, exposing
all the previous mentioned features.

I.2 Objectives

With the objective of adapting traditional supercomputing in the context of multi-robot systems,
this thesis proposes a new concept called High Performance Robotic Computing - HPRC. The term
performance in HPRC is kept in order to simplify its adoption. However, HPRC inherits the same
frame of mind, where its scope is beyond solely computing-efficiency. However, in order to sup-
port all kind of missions, even beyond current computing limitations with companion computers,
HPRC does not deny the use of external computing resources, i.e. traditional HPC infrastructures
or cloud services. Therefore, Ubiquitous supercomputing, under the scope of this thesis is defined as
the union of traditional HPC (performance-oriented), HPRC, computing-less devices (CLD), i.e.
those not embedding computing boards and Humans (H).

Furthermore, with the objective of bringing ubiquitous supercomputing everywhere (ubiqui-
tous), a framework and middleware called The ARCHADE (TAC) will be designed, developed and
tested during the execution of this thesis.

To sum up, the objectives of this PhD thesis can be outlined as follows:

• Give a thorough review of the state of the art in the use of traditional High Performance
Computing in robotics settings.

• Formally define the new concept of High Performance Robotic Computing.

• Formally define ubiquitous supercomputing through the creation of an ontology and a set
corresponding concepts.

• Design and develop a ubiquitous supercomputing framework and middleware

• Test the ubiquitous supercomputing framework and middleware with a set of simulated and
real missions.

I.3 Scope and limitations

Supercomputing, as defined by this thesis, can indeed provide computing-efficiency, despite that
it is not its main objective. Thus, a deep computing-efficiency analysis is out of the scope of this
work. Nevertheless, some basic metrics will be calculated and discussed.

Deployed TAC systems will be composed of seven entities in simulation mode and four en-
tities in real mode. Moreover, a ubiquitous supercomputing system composed of 256 entities, in
simulated mode, will be presented. However, systems with higher quantities of entities in real
mode will not be evaluated given hardware availability limitations.

8 Chapter I - Introduction

Furthermore, only UGVs (Unmanned Ground Vehicles) will be used. Unfortunately, there
was no UAVs (Unmanned Aerial Vehicles) availability during the period of the real tests. How-
ever, the tested autopilot firmware is fairly transparent disregarding the type of unmanned vehi-
cle, as confirmed by simulation experiments.

High Performance Robotic Computing clusters, just as traditional HPC clusters, rely on net-
work communications. Current advancements in communications technologies e.g. 5G (ITU, n.d.)
have a strong potential to provide the necessary features for applications requiring performance
and constant message exchange. Therefore, issues related to connectivity and network communi-
cations are out of the scope of this thesis. However, Wi-Fi latency and signal strength, with HPRC
clusters while in motion, will be discussed.

I.4 Outline

The material in this document is organized in six Chapters, which are summarized as follows:

• Chapter II presents the state of the art of traditional HPC in robotics, coupled with relevant
background (section II.1). In addition, this chapter includes a literature review related to
ubiquitous robotics frameworks and middleware (section II.2). Furthermore, a discussion is
portrayed in section II.3.

• Chapter III starts with the definition of HPRC and all the necessary adaptations for tradi-
tional HPC towards multi-robot systems (section III.1). Afterwards, Ubiquitous supercom-
puting is described in its whole extent, including its ontology and main concepts (section
III.2). Following, the ideas behind general-purpose computing missions (section III.3), the
ubiquitous supercomputing language (section III.4), hierarchy (section III.5), stability (sec-
tion III.6) and automation (section III.7) are discussed.

• Chapter IV introduces and discusses The ARCHADE and all its capacities and components.
Specifically, The ARCHADE’s API (section IV.1), its framework component (section IV.2), its
middleware component (section IV.3), The ARCHADE’s simulation platform (section IV.4)
and the PLUS component (section IV.5).

• Chapter V presents and discusses the results of a set of experiments and missions carried
out under the scope of ubiquitous supercomputing. Specifically, performance (section V.1),
swarming (section V.2), HPRC cluster of aircraft (section V.3), Tigers vs. Hunters (section V.4)
and complete missions (section V.5), where the latter includes a benchmark composed of anal-
ysis for CPU load, RAM usage, latency, etc.

• Chapter VI summarizes the contributions of this thesis, discuss concluding remarks (section
VI.1) and points out future work (section VI.2).

Cuando aquellos vidrios rotos cayeron al suelo, la pequeña ave

sintió el dolor de saberse sola en medio de la nada, en la oscuri-

dad, así que cerró los ojos, abrió las alas y esta vez voló con

el viento a su favor sin detenerse, hasta que al pasar la ultima

nube, comprendió que debía tener los ojos cerrados para no verse

a sí misma y poder ver la luz del sol

— Leonardo CF

II
State of the art

Robotics are following a path towards ubiquity, one filled with many promises and even more
potential, inspired by advancements in embedded computing cards, artificial intelligence (AI),
the IoT era and all kind of new applications, fields, business models, etc. Specially, unmanned
vehicles are a promising research and industrial field as it was introduced in section I.

In this chapter, a state of the art, regarding the use of High Performance Computing
(computing-efficiency oriented) - HPC, in the context of robotics is presented. Traditionally, HPC
and robotics have not been common companions. The reason of such separation can be under-
stood in two fronts. First, classic robots did not have on-board computers as the ones available
nowadays, i.e. such computers were not installed with a mainstream operating system and they
were very limited in terms of computing power (e.g. CPU speed, RAM, etc.) and more impor-
tantly they were single-purpose, i.e. devised for a specific unchangeable solution. Second, HPC in-
frastructures are composed of either commodity computers or state-of-the-art servers, often with
multi-core CPUs or even many-core computing cards such as GPUs. Moreover, HPC infrastruc-
tures are by default multi-purpose/multi-user and ultimately research backgrounds in robotics
and HPC significantly differ.

However, attempts to join the two forces have been made and section II.1 will explore it with
a corresponding HPC background. Furthermore, this chapter discusses the ideas of ubiquitous
robotics and existing software solutions. It is important to clarify the differences between ubiqui-
tous computing, ubiquitous robotics and ubiquitous supercomputing for robotics, as described in this the-
sis. However, while ubiquitous supercomputing differs from the concepts of ubiquitous robotics
and ubiquitous computing, as it will be discussed in section II.2, its objectives can be effectively
aligned. Furthermore, a comparison between existing ubiquitous robotics frameworks and The
ARCHADE is given in the same section.

9

10 Chapter II - State of the art

II.1 HPC in robotics

High Performance Computing (HPC) can be defined as a tool for speeding up the computation
of complex tasks or to be able to analyze large data sets in reasonable time, a feat that would
not be possible in common computing infrastructures such as personal computers, neither with
sequential, i.e. non-parallel, software.

Figure II-1: HPC software layers functioning. A. the file system is used to share data, locally
stored in the master node. B. The user system is used to export the master’s local users. C. The
batch system monitors resources such as CPU load, RAM, etc in all the nodes, including itself.
D. The batch system implements efficient scheduling policies for computing-power sharing in a

multi-user environment

The most common supercomputing infrastructure is known as a HPC cluster of computers.
A HPC cluster of computers consists of a set of computers (nodes), classified as master and slaves,
connected via a Local Area Network (LAN), in which a set of software layers (recall the HPC soft-
ware layers shown in Figure I-2) are installed and configured in each of its nodes. Such software
layers provide or have the potential of providing the features described in section I.1.2. The HPC
software layers, from bottom to top, are: the operating system (OS), the file system, the user system,
the batch system and the applications layer. HPC clusters differentiate from each other by the ap-
plications layer i.e. the rest of the layers are similar in all clusters. Furthermore, HPC nodes are
typically connected via high-speed low-latency technologies such as Gigabit Ethernet, Infiniband,
etc. Figure II-1 provides a general overview of the HPC software layers and a detailed explanation

II.1 HPC in robotics 11

is provided as follows:

• Operating system: Looking to ease administration tasks, it is advisable to implement the same
operating system, in all the machines within a HPC cluster of computers. However, hetero-
geneous installations are possible nonetheless. Historically, Linux-based operating systems,
have been the most used in HPC infrastructures. However, Microsoft provides HPC solu-
tions as well (MICROSOFT, n.d.).

• File system: The file system is used for data replication among the computing nodes and for
the creation of single-image systems, i.e. data is accessible from every point in the infrastruc-
ture. In almost all cases, data will be ultimately in the master node or in a Network Attached
System (NAS) connected to it. However, technologies such as GlusterFS (GLUSTERFS, n.d.),
Hadoop Distributed File System (HDFS), (Borthakur, 2008) etc., provide distributed file sys-
tems.

• User system: HPC infrastructures are commonly used by many users, which compete for
the available resources, for different type of purposes (multi-purpose/multi-user). Moreover,
parallel software requires user accounts to be replicated in the entire infrastructure. User
replication is therefore handled by the user system. The most common HPC file system is
Open LDAP (Zeilenga, 2006). It provides a complete grouping and other features scheme,
very useful in a multi-user environment.

• Batch system: (Resource Manager/Job scheduler): In a multi-user environment, it is impor-
tant to control access to resources. If multiple users execute software over the same com-
puting resources, at the same time, performance will be negatively impacted. To manage
exclusivity, the batch systems assigns reservations. A reservation is the response to a user-
requested job i.e. a request for a set of computing resources (CPU cores, RAM, etc) during a
time window (walltime). This process is specifically handled by the job scheduler, one of the
two components of the batch system. Moreover, a complete hierarchy and prioritization
scheme can be configured in order to maximize the computing resources utilization and
their corresponding accessibility, while satisfying user demands. Furthermore, the other
component of the batch system, the resource manager is in charge of monitoring indicators
such as CPU load, RAM usage, user-access, network communications, etc. Multiple batch
systems solutions are available, both open source such as Open Grid Scheduler (OGS, n.d.),
PBS Torque (Adaptive-Computing, n.d.b), Simple Linux Utility for Resource Management
(SLURM) (SchedMD, n.d.) or proprietary such as MOAB (Adaptive-Computing, n.d.a), etc.).
The batch system is the HPC cluster middleware.

• Applications: Depending on the HPC cluster’s purpose e.g. Oil & Gas exploration (TOTAL,
n.d.), genetics research (ORNL, n.d.), etc., software in the applications layer may vary.

Table II-1: Flynn’s taxonomy. Parallel software: SIMD, MISD, MIMD

Acronym Classification Description

SISD Single Instruction Single Data Sequential software i.e. it can only be executed by one
single computing unit

SIMD Single Instruction Multiple Data Data parallelism e.g. GPGPU, CUDA
MISD Multiple Instruction Single Data Redundant software i.e. to guarantee results correctness
MIMD Multiple Instruction Multiple Data Distributed software e.g. MPI. Most general case

12 Chapter II - State of the art

The uppermost layer, consists mostly on software to be executed upon the HPC cluster and
extra libraries required to do so. Moreover, software is classified, according to Flynn’s taxonomy
(Flynn, 1972) as portrayed in Table II-1 and detailed as follows:

• Single Instruction Single Data (SISD): Sequential software is such that is executed only upon
one computing unit (i.e. core). However, nowadays most applications implement some level
of parallelism given that mainstream CPUs already embedded multiple cores.

• Single Instruction Multiple Data (SIMD) or Data parallelism consists of applying the same in-
struction or set of instructions to different pieces of data. A basic example will be the sum of
two vectors, with the sum itself as the single instruction and the different vectors positions,
the multiple data. The common feature of this classification is that data-independence exists,
i.e. individual instructions, over different data, do not depend on each other. Moreover,
SIMD does not consider message exchange between parallel processes, which can lead to
better performance indicators than software requiring inter-process communication, almost
approaching Amdahl’s law (Amdahl, 1967) i.e. having N computing cores and t the time
required to solve the problem in one single computing unit (sequential time), the parallel time
will be t/N . Furthermore, General Purpose Computing on GPUs (GPGPU) is a powerful exam-
ple of data parallelism. While a GPU was originally conceived for graphics processing ex-
clusively, the large amount of embedded ALUs (Arithmetic Logic Unit), in comparison with
standard CPUs, and technologies such as CUDA (Garland et al. , 2008) have transformed
the GPU in a general-purpose HPC device, used in all kind of applications (NVIDIA, n.d.h),
where fine-grain parallelism (massive parallelism) results advantageous.

• Multiple Instruction Single Data (MISD): Certain applications require to guarantee that their
results are correct, for example in critical or sensitive missions. To do so, MISD propose to
use multiple computing units to process the same data. If results remained the same in all
cases, its correctness can be assumed. Examples of MISD can be found in aeronautics, space
missions and even in projects such as SETI@HOME (Anderson et al. , 2002), the Search for
Extraterrestrial Intelligence.

• Multiple Instruction Multiple Data (MIMD): Also known as Distributed Computing, corre-
sponds to the most general case of parallelism and therefore the remaining classifications
can be understood as MIMD specializations. It consists of applying multiple instructions to
multiple data and it is generally based on message exchange between parallel processes.

For more information and technical details regarding High Performance Computing, please
refer to the books Hager & Wellein (2010) and Sterling et al. (2017).

Motivated by the desired of speeding-up complex robotic tasks, such as Simultaneous Lo-
calization and Mapping (SLAM), detection and tracking, visual-based landing, etc., and advance-
ments in embedded computing cards, robotics researchers have lightly flirted with HPC. For ex-
ample, Salamı́ San Juan et al. (2015) showed results of the implementation of two parallel software,
hot spot and jellyfish detection on board of a Unmanned Aerial Vehicle (UAV), aiming at fast re-
sponsiveness.

By processing raw data on board, instead of downloading it for post-processing, it is possible
to send GPS coordinates and level of emergency to firefighters in order to prevent the occurrence
of new fires after an initial fire. Also, by quickly detecting jellyfish location, it is possible to asses a
fast response, instead of downloading the data, which after processing might be irrelevant, since
the animals are in constant motion. The authors compared the execution of the software on dif-
ferent computing processors (EPIA N700-15 VIA C7-1.5, Pandaboard with OMAP 4430 integrated
CPU, Intel T7500 on GENE-9655 motherboard and TilenCore-Gx board with TILE-Gx36), evaluat-
ing parallelization techniques and mainstream OS support.

II.1 HPC in robotics 13

Multiple companies provide multi-core computing boards for UAV integration. To mention
a few, Raspberry Pi Foundation, NVIDIA, Intel, ASUS, etc. A set of examples is given in Table II-2

Table II-2: Computing infrastructures for Unmanned Vehicles. Updated list: January 2019

Computing board CPU/GPU Memory [GB] Storage [GB] Reference

Raspberry Pi 3 B+ 1.4 GHz Quad-Core ARM CPU 1 N/A1 RPiFound (n.d.a)

NVIDIA Tegra K1 2.3 GHz Quad-Core ARM CPU 2 16 NVIDIA (n.d.i)
192-core Kepler GPU

NVIDIA Jetson TK12 2.3 GHz Quad-Core ARM CPU 2 16 NVIDIA (n.d.e)
192-core Kepler GPU

NVIDIA Jetson TX1 1.73 GHz Quad-Core ARM CPU 4 16 NVIDIA (n.d.d)
256-core Maxwell GPU

NVIDIA Jetson TX2 2 GHz Quad-Core ARM CPU 8 32 NVIDIA (n.d.d)
2 GHz Dual-core Denver2 CPU
256-core Pascal GPU

NVIDIA Jetson 2.26 GHz 28-core ARM CPU 16 32 NVIDIA (n.d.c)
AGX Xavier 512-core Volta GPU

Intel Aero compute 2.56 GHz Quad-Core ATOM 4 32 INTEL (n.d.a)

Odroid H2 2.5 GHz Quad-Core Intel 32 N/A ODROID (n.d.)
Intel UHD Graphics 600 700Mhz

ASUS Tinker 1.8 GHz Quad-Core Rockchip 2 N/A ASUS (n.d.)
Mali T760 GPU, 2GB RAM

Rock64 Media 1.5GHz Quad-Core Rockchip A53 1-4 N/A Pine64 (n.d.)
Mali-450 MP2 GPU

PocketBeagle 1GHz Octavo OSD3358 ARM 0.5 N/A PocketBeagle (n.d.)

Huawei HiKey 960 2.3/1.8 GHz 4+4-core ARM 3 32 Huawei (n.d.)
Mali G71 MP8 GPU

Even though the previous Table II-2 is not a comprehensive list, including all existing UV
embedded computing boards, it shows the market’s direction towards smart autonomous vehi-
cles. Moreover, the existence of multi-core and many-core (e.g. NVIDIA Jetson series) computing
boards motivates the use of HPC. In fact, all the portrayed solutions support a Linux flavor, mostly
Debian-based operating systems, including Ubuntu. Furthermore, throughout this thesis, it will

1It depends on micro SD card capacity
2The TK1 includes a Tegra K1, ISP (Image Signal Processor) and periferics such as USB ports, etc

14 Chapter II - State of the art

be demonstrated that all the required software for each of the HPC software layers can be installed
in Raspbian, Ubuntu and Kali Linux ARM versions.

The Raspberry Pi is an inexpensive (around 30 USD) computing board used in all kind of
applications (RPiFound, n.d.b), including unmanned vehicles missions. For example, Kizar &
Satyanarayana (2016), used MATLAB in a Raspberry Pi in order to perform on-board object detec-
tion and location estimation. Choi et al. (2016) developed a 99% accuracy Raspberry Pi on-board
OpenCV (Open Computer Vision) (Bradski & Kaehler, 2000) algorithm, that allowed real-time
flight plan changes, when objects of interest were detected. Moreover, the authors integrated
the Raspberry Pi with an autopilot, specifically the Pixhawk 1 (ARDUPILOT, n.d.c), in order to
automatically fly towards detected targets. More interestingly, Daryanavard & Harifi (2018) im-
plemented a face detection algorithm running in a Raspberry Pi which achieved 98 %, 93 %, 86
% and 80 % success rate with a camera-to-target distance of 1.5, 3, 4 and 5 meters, respectively.
Furthermore, Royo et al. (2018) embedded an UAV with a Raspberry Pi for radioactive sources
detection.

While the Raspberry Pi is a very useful solution, its computing performance might not be
sufficient for certain applications as demonstrated by Vega et al. (2015). The authors analyzed
data-transfer rates between an on-board camera, controlled by a Raspberry Pi and a laptop acting
as a ground station via Wi-Fi connectivity, aiming at real-time, defined as 30 frames per second
(FPS) in the experiment setting. The results showed that the combination of the on-board and the
ground computers outperformed significantly two baselines, computation only in the ground sta-
tion and computation only in the UAV computer. Moreover, their results suggest that integration
between different computing infrastructures, with different computing capacities, is a very pow-
erful approach that must include a load balancing mechanism. However, the Raspberry Pi/laptop
approach did not achieve the desired 30 FPS for real-time video transfer. Consequently, the au-
thors replaced the Raspberry Pi for an NVIDIA Jetson TK1, obtaining therefore a peak data-rate
of 42.6 FPS, using only the TK1 embedded CPU.

The NVIDIA Jetson series boards, e.g. TK1, TX1, TX2, AGX Xavier (see Table II-2), etc., embed
a CPU and a many-core CUDA-enabled GPU, a very interesting solution for smart UVs. CUDA,
which stands for Compute Unified Device Architecture, is a technology that allows to use a GPU
as a general-purpose computing (GPGPU) co-processor, where the CPU processor (host) uses the
GPU (device) for highly demanding computing tasks. Cocchioni et al. (2016) showed the imple-
mentation of visual-Based landing for an Unmanned Quadrotor using the TK1. Moreover, Jeon
et al. (2016) presented a CUDA real-time UAV vision-guided control algorithm (detection and
tracking), showing the potential of the TK1 192-cores embedded GPU, that under certain condi-
tions, outperformed an X86 Intel i5 processor, a common desktop computer’s CPU and obtained
around five times speedup in comparison with the ARM quad-core Cortex-A15 CPU embedded
in the TK1.

While the Jetson TK1 has been discontinued since April 2018 (NVIDIA, n.d.e), the CPU/GPU
Tegra K1, embedded in the TK1 toolkit, will still be available until January 2024 (NVIDIA, n.d.i).
Nonetheless, the TX1, TX2 and the new Jetson series AGX xavier provide much more computing
power than the available in the TK1 series. For example, the TX1 has been used for UAV path
planning in military applications, achieving a 33X speedup versus ARM architectures and with a
10 Watt energy requirement (Roberge & Tarbouchi, 2017). Zhang et al. (2016) compared the use
of the embedded TX1 versus the NVIDIA Titan X (NVIDIA, n.d.g), a desktop GPU, for real-time
object detection in surveillance video. Their results showed a speed rate of 46 FPS at 45.8 Watts
in the TX1 versus 40 FPS at 90 watts in the desktop GPU, a positive feat for embedded boards in
terms of energy consumption, i.e. same performance at half the energy consumption. In fact, the
TX1 and TX2 have a typical power consumption of 10 and 7.5 Watts respectively (NVIDIA, n.d.f)
and can be used as companion computers interacting with ArduPilot (ARDUPILOT, n.d.). For
more information about connecting the TX1 and TX2 with ArduPilot see ARDUPILOT (n.d.a) and

II.1 HPC in robotics 15

ARDUPILOT (n.d.b).

Furthermore, applications requiring Artificial Intelligence (AI), e.g deep learning, for un-
manned vehicles applications, can find necessary computing resources in GPUs such as the TX2.
Tijtgat et al. (2017) presented the results of a very interesting alert system for SAR applications,
which integrates a UAV, performing GPU (TX2) object detection based on the YOLO (You Only
Look Once) algorithm (Redmon et al. , 2016) and a decision support component running in a
ground station. The decision support component alerts ground human troops of imminent dis-
tance to dangerous objects, i.e. high-pressure gas pipes, etc., based on the results of the embedded
GPU object detection algorithm. This system is a good example of the importance of heteroge-
neous systems composed of mobile entities, ground stations and humans for real-world applica-
tions.

Although embedding a multi-core or many-core board is an approach towards HPC, it only
considers strategies belonging to the applications layer, leaving behind the potential offered by
the remaining HPC software layers. In fact, it is possible to embed a complete HPC cluster in a
single robot, as demonstrated by Ribeiro et al. (2015). The authors implemented a robotic flying
crane, with an embedded cluster of computers composed of five ODROID boards, Ubuntu and
Sun Grid Engine (SGE) (Gentzsch, 2001) as batch system. However, a single robot can only embed
a limited amount of computing boards. Such limitation has been addressed by allowing robots to
interact with cloud computing services. Benavidez et al. (2015) proposed a ROS (Robot Operating
System) (Quigley et al. , 2009) cloud-based HPC infrastructure to aid a robot in visual SLAM. By
using provisioning mechanisms, the HPC cloud can scale to include any quantity of computing
nodes if required. Notwithstanding, a second approach can be considered to allow scalability
while reducing latencies that might occur when uploading and downloading data from the cloud
i.e. a HPC cluster of robots.

Holland et al. (2005), proposed the UltraSwarm system, an interesting combination of bioin-
spired UAV flocking and wireless HPC. While many studies focused on extracting algorithms for
motion coordination and collision avoidance based on the behavior of biological entities, e.g star-
lings flocks, etc., the authors devised the UltraSwarm system, with the objective of providing a
UAV swarm with a single controlling intelligence based on HPC. However, the authors did not
implement any of the HPC software layers, except a Linux operating system. The authors did
however, showed the possibility of establishing cluster communications using Bluetooth, with the
limitations in 2005, when their work was published. Nowadays, communications technologies
have improved remarkably in comparison with 2005, a strong advantage for the setting of a full
wireless HPC cluster of computers nowadays.

For example, Marjovi et al. (2012) proposed the concept of robotic cluster representing a group
of robots able to share their computing resources among the group with the objective of quickly
solve computationally hard problems. However, the authors did not deploy the user system nor
the file system layer. In addition, the authors described MPI as the middleware in a HPC cluster.
While MPI provides middleware services, such as scalability (any quantity of parallel processes),
the batch system is the actual middleware in a HPC cluster of computers, because it abstracts a
distributed set of nodes as a single image system.

An important aspect, when dealing with HPC in the context of mobile robots such as un-
manned vehicles, is the underlying communications technology. Sudden disconnection or poor
network quality can affect negatively the performance of a HPC cluster of robots. In fact, attempts
to devise mobile HPC and solve communications issues have been done in the past. For exam-
ple, Cheng et al. (2000), under DARPA funding, proposed a Java-based framework for hybrid
(i.e. stationary and mobile computing elements) cluster computing, called HFC (Hybrid Flexible
Cluster). By using mobile IP and wireless awareness (Cheng & Marsic, 2000), a mobile node can
access HPC resources distributed across the Internet. However, advancements in communication
technologies are currently on the verge of providing full mobile HPC. Qualcomm Technologies, at

16 Chapter II - State of the art

the beginning of 2017 released a communications performance study (QUALCOMM, n.d.) of Un-
manned Aircraft Systems (UAS) using 4G LTE (Long Term Evolution) networks. The experiments
were carried out with UAS operating beyond visual line of sight up to 400 ft above ground level.
The results were very positive and suggested that full Internet connectivity can be granted to UAS
with current communications technologies. Moreover, according to the International Telecommu-
nications Union (ITU) (ITU, n.d.), some of the requirements for a technology to be classified as 5G
are:

• Downlink peak data rate: 20 Gbit/s

• Uplink peak data rate: 10 Gbit/s

• User latency: 4 ms for eMBB (Enhanced Mobile BroadBand) and 1 ms for URLLC (Ultra-
Reliable Low Latency Cellular Networks)

Such features outperform 10 Gigabit Ethernet, a wired technology commonly used in HPC
settings. While having full Internet connectivity in a UAV does not guarantee high performance
computing, when comparing with traditional wired technologies (specially when dealing with
MIMD software), current and future technology improvements are very promising.

Steps towards HPC in the context of single and multi-robot systems have been proposed in
the past, even at industry level. For example, the UAV Chinese manufacturer DJI has developed
the Manifold (DJI, n.d.b) embedded computer, based on the NVIDIA Kepler architecture. How-
ever, HPC is more than performance, as it has been solely targeted in all previous works and there
is still a lack of a formal definition of HPC in the context of robotics. With this in mind, chapter
III section III.1 will introduce such definition and discuss relevant concepts related to the union of
HPC and robotics.

Next section II.2 discusses a literature review regarding ubiquitous computing and ubiquitous
robotics, aiming at establishing the differences between both concepts and that of ubiquitous super-
computing, as proposed in this Ph.D thesis and presented in chapter III.

II.2 Ubiquitous robotics

While it is not entirely accurate to say that computing is everywhere, it is fair stating that the bases
and mechanisms for Ubiquitous Computing, i.e. computing everywhere, have been proposed and
implemented, e.g. Weiser (1993a), Weiser (1993b), Hightower & Borriello (2001), Krumm (2016),
Varshavsky & Patel (2016), Bardram & Friday (2016). Starting from the Internet and up to all kind
of existing protocols for the integration of different-purpose applications, computing is part of our
lives, all the time. Within the computing realm, a particular type of systems, which are of interest
for this Ph.D thesis, are those that exhibit supercomputing features.

Figure II-2: Ubiquitous supercomputing for robotics is different from ubiquitous robotics

Despite that supercomputing can be found in all kind of applications, from scientific endeav-
ors towards commercial activities, devices in the edge are still mostly absent of its utilization,
beyond the simple integration of HPC-enabled computing boards or the offloading of computing
tasks towards cloud infrastructures. This Ph.D thesis aims at proposing strategies to bring su-
percomputing towards the edge, specifically to robotics, therefore contributing to is ubiquity, i.e.
ubiquitous supercomputing (Figure II-2).

II.2 Ubiquitous robotics 17

Attempts to establish ubiquitous supercomputing have been done in the past. For example
Foster & Tuecke (1996) defined ubiquitous supercomputing as the capacity of a software appli-
cation, running locally (whether on a low-end PC or high-end workstation) of exploiting remote
supercomputing resources and introduced a Java technology to do so. While the authors pub-
lished their results in 1996, nowadays such approach can be effectively achieved via cloud ser-
vices e.g. Amazon (n.d.). In a more recent work, Chu & Hsiao (2010), the authors introduced
OpenCL (Open Computing Language), a framework for writing software to be executed across
heterogeneous platforms such as CPUs, GPUs, DSPs (Digital Signal Processors), FPGAs (Field-
Programmable Gate Arrays), etc., aiming at reducing the inherit complexity of software writing,
specially for accelerators (e.g. GPUs) and contributing to the ubiquity of supercomputing and
robotics as well (Palossi et al. , 2016).

In this sense, robotics is moving towards ubiquity, e.g. service robots (Carbone et al. , 2018),
healthcare and lifecare robots (Pee et al. , 2018), industrial robots (Çürüklü et al. , 2010), medi-
cal/rehabilitation robotics (Colombo & Sanguineti, 2018), human-robot interaction (Varrasi et al. ,
2019), space robotics (Cheng et al. , 2006), (Yoshida, 2009), (Flores-Abad et al. , 2014), (Domı́nguez
et al. , 2018), (NASA-JPL, n.d.) teleoperation (Yang et al. , 2017), humanoid robots (Spenko et al.
, 2018), field robots (Martins et al. , 2015), biorobotics (Ijspeert, 2014), nanorobotics (Ummat et al.
, 2016), unmanned vehicles (Valavanis & Vachtsevanos, 2015), (Usach et al. , 2018), artificial in-
telligence (Russell & Norvig, 2016), etc, all contributing at ubiquitous robotics. In fact, the IEEE
Xplore library lists more than 150, 000 papers related to autonomous robots and more than 30, 000
papers devoted to autonomous vehicles, all part of the fourth industrial revolution (IEEE, n.d.).
Moreover, all kind of robots are quickly becoming mainstream or expected to arrive in the future,
for example toy robots, household robots, cloud robots, flying robots (air balloons, helicopters,
quadcopters, hexacopters, etc.), autonomous driving vehicles, modular self-reconfiguring robots
and ubiquitous robots, those capable of networking, transparent user interfaces and accessible at
anytime and anywhere (Kopacek, 2016).

In Kim et al. (2004), the authors referred to the concept of Ubiquitous robot - Ubibot, incorpo-
rating three forms of robots, software robot - Sobot, embedded robot - Embot and mobile robot - Mobot
(Kim, 2003) and discussed about three generations in robotics, industrial robotics, personal robotics
and ubiquitous robotics, multiple networked robots used in all kind of applications as previously
mentioned, somehow a specialization of the IoT era. This was a 2004 work, discussing in a very
abstract way, the concept of ubiquitous robotics. In a following work Kim et al. (2007), the authors
presented a proof of concept of their ideas using tree experiments, Sobot interaction and trans-
fer, Sobot-user interaction through Embots and Sobot-user interaction through Mobot. Moreover,
Broxvall et al. (2007) discussed the importance of integrating robots with smart environments and
developed an ubiquitous robotics middleware designed for low-computing-power devices.

While previous works such as Ando et al. (2005) or Do et al. (2007) contributed to the birth of
ubiquitous robotics, Quigley et al. (2009) introduced Robot Operating System (ROS), a technology
used in all kind of applications. While ROS stands for an operating system, it is in fact a robotics
framework, installed over a traditional operating system, e.g. Ubuntu, running on a companion
computer (see Table II-2) or common computers.

Under the scope of ubiquitous supercomputing, ROS is a technology belonging to the appli-
cations layer of a ubiquitous supercomputing infrastructure. A discussion of this will be given
in section II.3. Moreover, ROS does share similar features as those of ubiquitous supercomput-
ing, e.g. scalability and easiness for the deployment of large robotics systems, general-purpose,
standardization, etc., same as HPC technologies such as MPI, CUDA, etc, all belonging to the ap-
plications layer. However, ROS is not a supercomputing technology. For example, while ROS does
provide a form of a file system, called the parameter server, it is not designed for high performance
(ROS.org, n.d.f). Moreover, there is no integration between ROS and HPC, other that abandoned
attempts such as the ROS MPI package ROS.org (n.d.e) and the HPC-ROS package. The HPC-ROS

18 Chapter II - State of the art

package (as result of this Ph.D thesis), which will be discussed in section III.1, provides automatic
installation and configuration of a HPC cluster.

ROS is an open-source framework for peer-to-peer robotics applications, where distributed
loosely-coupled processes (nodes) interact with each other via ROS communications services.
While ROS is not a traditional operating system, OS-like services, such as hardware abstraction,
low-level device control, implementation of commonly-used functionalities, message-passing be-
tween processes and package management (ROS.org, n.d.b) are provided. ROS’ main goal is to
facilitate code reuse and collaboration. It this sense, the following goals were devised:

• Thin: ROS is designed as thin as possible in order to facilitate integration with other robotics
frameworks. Current integrated frameworks are OpenRAVE (the Open Robotics and Ani-
mation Virtual Environment) (Diankov & Kuffner, 2008), Orocos (Open robot control soft-
ware) (Bruyninckx, 2001), and Player (Gerkey et al. , 2003)

• Agnostic libraries: Nodes written in different languages, e.g. Python, C++, etc., can commu-
nicate transparently with each other

• Language independence: Current support for Python, C++, LISP and experimental libraries in
Java and Lua.

• Easy testing: Builtin unit/integration test framework (rostest)

• Scalability: Support for multi-robot systems

Several research works, powered by ROS, can be found in the literature, 15, 938 research
works in the IEEE Xplore library and 70, 540 in ScienceDirect in February of 2019. For example, in
Chang et al. (2018), ROS was applied in an object identification mission, running on a embedded
Raspberry Pi, demonstrating the support of ROS in inexpensive companion computers. More-
over, the authors in Zhongyuan et al. (2018) developed Alliance-ROS, a ROS-based framework
for cooperative mobile robots. Even for the real time operating system Nuttx (Nutt, 2014) , ROS
has been proposed as a feasible solution e.g. (Wei et al. , 2014) or (Wei et al. , 2016). Furthermore,
regarding unmanned vehicles, works such as Grabe et al. (2013), Weaver et al. (2013) Lee et al.
(2017), Yu et al. (2017), Hu et al. (2017), Sagitov & Gerasimov (2017), Jiang et al. (2018), Hayakawa
et al. (2018) evidence the use of ROS. As it can be observed, ROS is strongly contributing to ubiqui-
tous robotics. Furthermore, there are many other robotics frameworks, other than ROS. For more
information, please visit PLAYER (n.d.), YARP (n.d.), OROCOS (n.d.), CARMEN (n.d.), ORCA
(n.d.), MOOS (n.d.b), MOOS (n.d.a).

Chibani et al. (2013) reviewed challenges and future trends in ubiquitous robotics, describing
an ubiquitous robot as a networked entity, limited not only to physical mobile robots bur rather
to any software agent running on daily living objects such as smartphones, TVs, beds, etc. The
authors described two important features for current and future trends in ubiquitous robotics, in-
creased level of autonomy, even in multi-robot/multi-agent systems and human-cooperation, e.g.
assisting dependent people in carrying out daily tasks, safety guards, rubbish collectors, industrial
smart coworkers, clinician assistants/coworkers, etc, all connected to the Internet and capable of
networking and accessing cloud services. Additionally, the authors in Jiménez-González et al.
(2013), drew on the following conclusions regarding existing ubiquitous robotics frameworks:

II.2 Ubiquitous robotics 19

Table II-3: Common features in current ubiquitous robotics frameworks

Conclusion Remarks

Significant number of non-integrated
frameworks and few highly-integrated
frameworks

There exist several frameworks for multi-robot systems
but integration between systems, developed with different
frameworks, is scarce

Multi-robot frameworks tendency to be
ad-hoc

The majority of frameworks use ad-hoc approaches, i.e. de-
signed for specific purpose, compromising integration and
scalability

Lack of remote access frameworks Most frameworks do not provide default remote access for
robotics entities

Multi-agent coordination The most common approach with multi-robot frameworks
Heterogeneity Tendency to create higher integration and heterogeneity
Increasing adoption of reusable software e.g. ROS, Roboearth (Waibel et al. , 2011), etc.

In the previous work, the authors also identified a set of guidelines for current and future
ubiquitous robotics frameworks and testbeds. Such are: General purpose, modular and flexible archi-
tectures, openness, APIs, reusable code and standardized interfaces, availability of suitable usability tools,
remote execution and experiments to real applications. Such features will be discussed in chapter IV.
Regarding unmanned vehicles, the authors in Sanchez-Lopez et al. (2016) introduced Aerostack,
an open-source multi-purpose framework for autonomous multi-UAS operation. While Aerostack
is very active Sanchez-Lopez et al. (2017), Molina et al. (2017) and it is a very interesting frame-
work for UAS, it differs from the ideas of this Ph.D thesis because it does not consider supercom-
puting in its core foundation.

An important feature to evaluate is that ubiquitous robotics frameworks must provide easy
mechanisms to guarantee a transparent transition from simulation to real-world missions. Re-
garding unmanned vehicles, simulation is essential considering deployment costs in terms of time
and resources (e.g. personnel, money, etc.), potential failures, maintenance, mission criticality, etc.
Koenig & Howard (2004) introduced Gazebo, a robotics simulator providing rapid algorithms test-
ing, AI system training, physics engine, etc. Gazebo and ROS are maintained by Open Robotics
(OpenRobotics, n.d.). Furthermore, several robotics simulation platforms can be found commer-
cially, e.g. V-REP (Rohmer et al. , 2013), ARGoS (Pinciroli et al. , 2011), Webots (Michel, 2004),
Virtual Robotics Toolkit (VirtualRoboticsToolkit, n.d.), X-Plane (Laminar Research, n.d.). A good
review of commercial robotics simulation platforms can be found in SmashingRobotics (n.d.). Cor-
respondingly, at research level, extensive robotics simulation platforms have been developed e.g.
Shah et al. (2018), Gonzalez et al. (2015), Degrave et al. (2019), Ma’sum et al. (2013), Araiza-Illan
& Eder (2019), even with HPC cluster support (DeMarco et al. , 2019) via OGS (OGS, n.d.) or
simulation platforms for verification and validation of commercial space vehicles (Rubin, 2019),
etc.

Moreover, Pitonakova et al. (2018) compared Gazebo, V-REP and ARGoS concluding that
Gazebo and V-REP are close in their provided features but Gazebo’s interface and default robot
models are much simpler and resemble those found in ARGoS. However, Gazebo still have sev-
eral aspects to work on, usability, edition for 3D meshes, etc. Furthermore, for large systems, i.e.
composed of several robots, Gazebo and other mainstream simulation platforms require strong
computing capabilities and technical knowledge, according to Schmittle et al. (2018). The au-
thors developed OpenUAV, a cloud-enabled testbed for UAVs based on ROS, including MAVROS
(ROS.org, n.d.a), a ROS package for communication with the PX4 autopilot (Dronecode, n.d.c),
Gazebo, Gazebo Web version Gzweb (Gazebo, n.d.), Docker (Docker, n.d.) and Ansible (RedHat,
n.d.). OpenUAV is a multirotor UAV simulator aiming at speeding up research tasks by lowering

20 Chapter II - State of the art

the technical complexity found in other robotics simulation platforms. This work is very inter-
esting specifically because of the use of containers, via Docker, over cloud services, facilitating
scalability and simplifying deployment complexities.

In addition, Garcia & Barnes (2009) developed a multi-UAV simulator relying on a small set
of computers (7 nodes), which the authors called cluster, but without clarifying if the HPC soft-
ware layers were deployed. In their work, each node represents an UAV. This is, each machine
(vehicle) simulate its own dynamics and kinematics, a very interesting approach since it can pro-
vide transparent transition from simulation to reality. This work and the more recent OpenUAV
(Schmittle et al. , 2018) considered a different approach towards simulation platforms, in which in-
dependent machines or containers (Docker) are used. Such approach could result advantageous
to facilitate Software In The Loop (SITL) or Hardware In The Loop (HITL) simulations, making
use of cloud services or traditional HPC infrastructures.

II.3 Discussion

High Performance Computing is a powerful ally in all kind of scientific endeavors and com-
mercial activities. With constant improvements in embedded computing boards, see Table II-2,
lightweight, energy-efficient CPUs, GPUs with hundreds of computing cores and several research
works, etc., as it was presented in this chapter section II.1, HPC in robotics is a reality , when dealing
when single robots. However, multi-robot systems are mostly absent of supercomputing in its full
extent. In fact, only light flirting has been done in the past e.g. Holland et al. (2005) or Marjovi
et al. (2012).

Consequently, the next step towards bringing supercomputing in the edge, specifically to
robots, is to adapt the utilization of all the HPC software layers (not only the applications layer)
to the peculiarities of multi-robot systems, therefore truly creating a HPC cluster of robots and
contributing strongly to the ubiquity of supercomputing. In addition, while previous works have
suggested the use of HPC within robotics scenarios, there is still a lack of a formal definition and
successful strategies to adapt traditional HPC into robotic systems. Moreover, keeping in mind
that supercomputing is not only about performance, next chapter, section III.1 will introduce the
novel concept of High Performance Robotic Computing - HPRC.

If the same software architecture, deployed upon common HPC clusters including the
TOP500 supercomputers in the world (Dongarra et al. , n.d.), is adapted in the context of multi-
robot systems, integration amongst HPRC and traditional HPC infrastructures becomes straight-
forward. In this sense, ubiquitous supercomputing, as it will be discussed in the following chapter
III, is defined as the union of HPC, HPRC and two more type of entities, Computing-Less Devices
(CLD), those that do not embed a computing board and ultimately humans.

This definition differs from those found in Foster & Tuecke (1996) and Chu & Hsiao (2010),
where the general idea is the capacity of using remote supercomputing infrastructures or trans-
parently exploit accelerators, GPUs, FPGAs, etc., respectively, again only within the applications
layer realm and without actually having a local or Edge supercomputing infrastructure. There-
fore, simply put, under the scope of this Ph.D thesis:

If an Edge device can embed a companion computer, it has the potential of becoming part of a ubiq-
uitous supercomputing system, if it does not, it can use or produce data from and for an ubiquitous
supercomputing system. Finally human presence is always suggested.

In order to deepen in the ideas of ubiquitous supercomputing, as portrayed by this Ph.D

II.3 Discussion 21

thesis, it is necessary to formally define concepts, strategies, etc., all together described as the
Ubiquitous supercomputing ontology, which will be presented in section III.2, followed by the con-
cept of general-purpose computing missions in section III.3 and the ubiquitous supercomputing language
(UbiSL) in section III.4.

Despite the fact that autonomy is one of the most desired features for robotics, as presented
in this state of the art, this Ph.D thesis considers that the role of a human in increasingly intelligent
robots, is of the uppermost importance. Autonomy is not left behind within ubiquitous supercom-
puting, but it must be controlled in a hierarchical way. Section III.5 will discuss the ideas behind
hierarchy, its impact towards stability in section III.6 and autonomy in section III.7.

In the same train of thought, solutions such as ROS aim at fully distributed systems, while
traditional HPC, can be understood as centralized, given the existence of a master node. However,
this Ph.D thesis considers that the best approach is an elegant combination between centralization
and distribution as it will be discussed throughout next chapter.

By combining HPC (set up on static or Cloud-based infrastructures), HPRC, CLD and hu-
mans into single systems, supercomputing becomes omnipresent and pervasive. However, in
order to facilitate the creation and operation of ubiquitous supercomputing systems, this Ph.D
thesis includes the development of a ubiquitous supercomputing framework and middleware
technology called The ARCHADE - TAC, which will be detailed in chapter IV. In simple terms, to
be further discussed in such chapter, a framework is a software providing generic functionalities
that can be selectively modified or enhanced with the objective of creating specific applications.
Correspondingly, a middleware is a software layer separating two commonly disconnected soft-
ware layers, in this case an underlying supercomputing infrastructure and the software required
to carry on a General-Purpose Computing Mission. The ARCHADE also includes an Application
Programming Interface (API) and a set of extra libraries collectively called PLUS, which aim at
contributing to the development of general-purpose computing missions.

While all the ubiquitous robotics frameworks previously introduced, provide all kind of fea-
tures and have a strong potential for general-purpose robotic missions, under the scope of this
Ph.D thesis, they all are suitable candidates for the applications layer of a ubiquitous supercom-
puting system. For example, ROS is an excellent prospect for integration with TAC given its both
flexible architectures and general-purpose goal. However, TAC targets all the layers in a ubiq-
uitous supercomputing infrastructure, not only the applications layer, as is the case of ROS and
other technologies, e.g. OpenCL, etc. Furthermore, in order to control entirely all design and pro-
gramming aspects, The ARCHADE was designed and developed from scratch, rather than using
technologies such as ROS for its creation. Nevertheless, The ARCHADE coupled with all kind of
applications layer’s technologies can effectively contribute to ubiquitous robotics.

The ARCHADE is also a simulation platform in itself, because each of the entities in a ubiqui-
tous supercomputing system, is in fact an independent machine, physical or virtual and in the near
future a container as well, therefore SITL is at the core of The ARCHADE, facilitating a transparent
transition from simulated to real mode. Finally, chapter V will introduce a set of applications, i.e.
missions, based on The ARCHADE.

The greatest deception in life is the belief that everything is in-

dividual and disconnected. But it looks like that, does it not?,

same with Newton and Quantum physics. They both apply to

us, though they are significantly different. Where is the error?

Are mathematics wrong? Is human logic wrong? Incomplete?

Does not one plus one equals two?. Maybe one plus one is not

two, maybe one plus one is one. All is one and one is All

— Leonardo CF

III
Ubiquitous supercomputing

In the previous chapter, attempts to bring High Performance Computing (HPC) towards the edge
were discussed. However, as it was seen, a general conclusion can be drawn from the current
state of the art. Supercomputing is seen only under the computing-efficiency light, leaving
therefore behind all the other supercomputing features (see section I.1.2). With the objective
of bringing supercomputing in its whole extent everywhere, especially to multi-robot systems,
where each individual robot is embedded with a companion computer, this chapter presents the
ideas behind ubiquitous supercomputing, its ontology, its approach towards hierarchy, stability,
automation, general-purpose computing missions, the Ubiquitous supercomputing Language - UbiSL,
etc. Furthermore, it introduces the novel concept of High Performance Robotic Computing - HPRC,
an adaptation of traditional HPC in the context of multi-robot systems. Under the scope of this
Ph.D thesis, ubiquitous supercomputing is defined as:

Ubiquitous supercomputing

Definition 1 (Ubiquitous supercomputing). Ubiquitous supercomputing, is the union of tra-
ditional High Performance Computing (HPC), High Performance Robotic Computing (HPRC),
Computing-Less devices (CLD) and humans with the objective of creating systems composed of dis-
tributed entities but acting as a single cohesive unit capable of executing any type of mission. (See
Figure III-1)

In a ubiquitous supercomputing system, a human plays an important role, as the entity with
the highest hierarchy. In addition, computing-less devices are those that do not exercise com-
puting but rather produce or consume data. While a robot could embed this type of devices,

23

24 Chapter III - Ubiquitous supercomputing

e.g. sensors or actuators, in that case, such devices are considered part of the HPRC entity. CLD
refers therefore to independent computing-less devices, e.g. sensor networks, vehicle networks,
etc. However, for a broader scope, CLD devices could be coupled with computing devices, an
approach valid within ubiquitous supercomputing.

Figure III-1: Ubiquitous Supercomputing is the joining of traditional High Performance Com-
puting, High Performance Robotic Computing, computing-less devices such as sensor networks

and humans such as end-users, operators, managers, etc.

Simply put, ubiquitous supercomputing aims at serve as a mechanism to do anything imag-
inable, i.e. precision agriculture, remote sensing, entertainment, whatever, by using a ubiquitous
supercomputing infrastructure.

Ubiquitous supercomputing infrastructure

Definition 2 (Ubiquitous supercomputing infrastructure). An Ubiquitous supercomputing in-
frastructure consists of a set of entities altogether set as a single unit capable of supercomputing, e.g.
a HPC cluster, a HPRC cluster, etc.

Remark. A HPC cluster or a HPRC cluster by themselves are ubiquitous supercomputing infras-
tructures. However, a set of CLD alone is not a ubiquitous supercomputing infrastructure, unless it
is capable of local computing.

Though nowadays, given current communications technologies, it is potentially straightfor-
ward to implement a HPC cluster of robots, among their companion computers, by simply in-
stalling and configuring the HPC software layers, exactly as it is done in any HPC cluster, adap-
tations have to be made given the mobile nature of robotic entities and other considerations. Fur-
thermore, to rethink what supercomputing means, beyond performance, requires new definitions
and concepts to be encompassed in a single concept, HPRC, introduced in the next section.

III.1 High Performance Robotic Computing 25

III.1 High Performance Robotic Computing

In this section, the ideas behind High Performance Robotic Computing (HPRC) are introduced. While
traditional HPC is commonly seen as a speeding-up tool for complex computing tasks, HPRC
goes beyond simply speeding up complex robotic tasks and actually serve as the bedrock for
setting up powerful scalable multi-robot systems able to perform all kind of missions. Therefore,
High Performance Robotic Computing is defined as:

High Performance Robotic Computing

Definition 3. High Performance Robotic Computing (HPRC) consists of a set of strategies that
allow the deployment of robotic systems that behave and act as a single cohesive unit, able to ex-
ploit supercomputing features such as standardization, scalability, heterogeneity, user-transparency,
cooperation, resilience, hierarchy, performance, etc., with the objective of creating general-purpose
robotic infrastructures.

Remark. HPRC includes and extends the traditional HPC’s approach towards solely computing-
efficiency/performance i.e. works such as those discussed in section II.1 HPC in robotics, fall within
HPRC’s classification.

Figure III-2 introduces the HPRC core infrastructure defined as HPRC cluster or HPC cluster
of robots and presents a comparison with a traditional HPC cluster.

Figure III-2: Traditional High Performance Computing cluster (A) VS. High Performance
Robotic computing cluster (B)

A traditional HPC cluster (Figure III-2-A) provides general-purpose computing and nodes
communicate via wired technologies. Conversely, a HPRC cluster (Figure III-2-B) allows the exe-
cution of general-purpose computing missions and nodes communicate via wireless technologies.
While HPRC clusters might require the ground station acting as the master node with the objec-
tive of protecting the server side of the HPC software layers, other schemes are possible e.g. a
robot acting as master or as master and slave simultaneously. More details are given in Table III-1

Remark. A node in a HPRC cluster is in fact a robot’s companion computer. Moreover, a robot can embed
any quantity of nodes.

26 Chapter III - Ubiquitous supercomputing

Table III-1: HPC VS HPRC Cluster

Feature HPC Cluster HPRC Cluster

Nodes Commodity computers
or state of the art servers
with multiple CPUs e.g
Intel Xeon (INTEL, n.d.b)),
GPUs (NVIDIA, n.d.b),
etc., commonly installed
with a Linux distribution
such as Red Hat, CentOS,
Debian, Scientific Linux,
etc.

Companion computers in robots such as UAVs,
UGVs, etc. Generally any kind of companion com-
puter (see Table II-2), installed with a Linux distribu-
tion such as Ubuntu, Raspbian, Kali Linux, etc., and
software for robotic interaction and automation, for
example DroneKit (3DR, n.d.b) for autopilot control
in the case of UVs.

Communications Wired communications
supporting TCP/IP (e.g.
Gigabit Ethernet, Infini-
band, etc.).

Wireless communications supporting TCP/IP (e.g.
Wi-Fi, 4G, 5G, etc.). 5G is expected to outperform Gi-
gabit Ethernet (ITU, n.d.).

Applications
layer

General-purpose comput-
ing: Any kind of software
supporting parallel com-
puting, e.g. MPI, CUDA,
OpenMP, OpenCL, etc.

General-purpose computing mission: A graph of
tasks, where each task is equivalent to a HPC job.
More information about this will be given in section
III.3.

Master node HPC cluster frontend
implementing the server
side of each of the HPC
software layers. A HPC
cluster is a centralized
architecture, where all
data and users reside
locally in the master node.
However shadow mas-
ters can be configured in
active-passive or active-
active with load balancing
configurations.

HPRC cluster frontend implementing the server side
of each of the HPC software layers adapted to the con-
text of multi-robot systems. A HPRC cluster is a cen-
tralized and distributed architecture (details through-
out this section). Several approaches can be ap-
plied. The most basic considers the master node as
the ground station controlling the multi-robot system.
However, a mobile robot can act as master node or
master and slave simultaneously. Furthermore, all
robots and the ground station can be configured in
a P2P mode, where every entity is a shadow master
and slave. The advantages of a P2P approach will
be that of resilience, however it will increase required
computing power. Mixed modes are also permitted,
i.e. master and shadow master in active-passive or
active-active with load balancing configurations.

Software layers Operating system, user
system, file system and
batch system.

Same software layers but adapted to HPRC context.
To be discussed throughout the section.

Users Users in a HPC cluster
are all of the same type
i.e. computing-resources
demanding.

In a HPRC cluster, on top of computing-resources de-
manding users, there is also pilots, etc. More details
in the entire chapter.

Since a node (companion computer) can be installed with any kind of software, including
parallel computing libraries such as MPI, CUDA, etc., a node in a HPRC cluster is defined as a
Parallel Robotic Computing Node (PRCN).

III.1 High Performance Robotic Computing 27

Parallel Robotic Computing Node

Definition 4. A Parallel Robotic Computing Node (PRCN) is a robot’s companion computer capable
of performing parallel computing, either locally or within a HPRC cluster, e.g. via MPI, CUDA, etc.
The node is also to be installed with software for robotic interaction, e.g. low-level drivers, autopilot
control, sensors and actuators controllers, etc.

Moreover, given HPRC approach towards general-purpose computing (similar as in tradi-
tional HPC), a robot is in fact a General-purpose computing robot.

General-purpose computing robot

Definition 5. A robot embedded with any quantity of PRCNs capable of general-purpose comput-
ing. A robot can be used for different missions by simply replacing the software associated to it i.e. a
robot is a general-purpose computing unit that temporarily becomes specific-purpose.

General-purpose computing nature in both HPC and HPRC is given by a simple fact: Nodes
are installed with a mainstream operating system, i.e. a robot embedded with a companion computer
can be used for anything. However, the robot’s purpose, i.e. its mission is of a more specific nature.
This differs from robotic settings where no standard operating system is installed and the robot
is used for single-purposes, e.g. industrial robots, complicating interaction and integration with
other robots or reutilization. All these issues are solved by setting a robot as a general-purpose
computing unit (definition 5). It is the desire and recommendation of this Ph.D thesis that every
future robot embeds at least one companion computer running a mainstream operating system.

Other supercomputing features, different from general-purpose computing, such as scalabil-
ity, heterogeneity, etc., are provided by the HPC software layers as discussed in chapter I section
I.1.2 and chapter II section II.1. While traditional HPC infrastructures use Linux server operating
systems, robotics community using companion computers is gravitating towards Debian-based
Linux distributions, e.g. Ubuntu. For example, ROS officially supports Ubuntu, including ARM
architectures, e.g. Raspberry Pi, etc. However, experimental releases can be installed on Windows,
Raspbian, OpenSUSE, Android, etc (ROS.org, n.d.c). Moreover, software packages required for
each of the HPC software layers are available for most Linux Distributions and can be installed
in ARM architectures, such as Raspberry Pi, etc, for Ubuntu, Raspbian and Kali Linux, as demon-
strated by this thesis. More information about this will be given in section III.1.1. The reasons
for choosing Debian-based operating systems, specially Ubuntu, as the common solution in the
HPRC operating system layer are:

• Debian-based distributions (including Ubuntu) are lightweight and very easy to interact
with (user-friendly)

• The clear support of the robotics community

• The existence of all kind of robotics frameworks, libraries, e.g. DroneKit (3DR, n.d.b),
ArduPilot SITL (ArduPilot, n.d.), etc., all supported by Debian-based distributions, etc

• The AI and data-science community gravitation towards Ubuntu, with supported technolo-
gies such as TensorFlow (TensorFlow, n.d.), Keras (Keras, n.d.), etc.

• The close interaction between Ubuntu and Python, the programming language quickly be-
coming the robotics programming language, even overthrowing C and C++, given its ver-
satility, fast prototyping, easy syntax, thousands of available libraries and performance con-
stant improvements. A good discussion comparing Python and C/C++ for embedded sys-
tems can be found in Radcliffe (n.d.).

28 Chapter III - Ubiquitous supercomputing

Figure III-3: HPC software layers in the world of robotics. A. User space should not be exported.
B. The same users should exist locally in the master and the slaves rather than remotely in the
master node. C. HPRC resources include batteries, sensors, etc. D. A HPRC task is equivalent to

a HPC job

While the same HPC software layers are installed in a HPRC cluster, its configuration and
general functioning differs from traditional HPC as it can be observed in Figure III-3 versus Fig-
ure II-1 in chapter II. The differences among such configuration are caused by the mobile nature of
robotic entities, which could potentially compromised the HPRC infrastructure, leading to errors
in software execution or access to data, users, etc. Given these reasons is important to have the
following considerations:

• Robots and generally mobile entities must be able to work autonomously without depend-
ing on constant connectivity with the master node, the ground station and other robots.

• The utilization of MIMD software, i.e. requiring constant message exchange between com-
panion computers distributed in different robots, is discouraged when a task is critical in
nature or when sudden constant disconnections are foreseen. For example, BVLOS (Be-
yond Visual Line of Sight) missions should not use MIMD software for motion coordination
amongst robots, if constant connectivity can not be guaranteed. However, 5G and other
technologies can eventually provide constant connectivity, even in remote areas.

III.1 High Performance Robotic Computing 29

• While the robots must be able to operate autonomously, it is important to devise strategies
that allow the consistency of a single-image system, i.e. data shall be available in the entire
infrastructure, a process that can be done when connectivity is granted. Chapter IV will in-
troduce synchronization mechanisms. However, approaches such as DTNs (Delay Tolerant
Networks) are out of the scope of this work and are considered part of the future work (see
section VI.2).

• Task redistribution is important when dealing with multi-robot systems subject to possible
failures and disconnections, however the mechanism for such purpose in The ARCHADE is
currently in development, therefore results will not be introduced in this Ph.D thesis.

Following, the differences between HPC and HPRC clusters functioning (i.e HPC software
layers), will be discussed:

• Master node: In a HPRC cluster, the most common approach is to set the master node and the
ground station in the same machine. This default behavior is suggested in order to protect
the server side of each of the HPC software layers from potential failures occurring in mobile
entities. However, this is not the only available approach. A robot could act as master node,
as shadow master node, as master and slave at the same time or as ground station for other
robots. Even each robot could embed its own ground station. All these approaches are
valid within the scope of HPRC. In fact, when distance amongst robots is important, given
mission’s requirements, setting up a mobile robot as a master or multiple robots as shadow
masters, is advisable. Not necessarily the ground station needs to be set as the master node,
however it should be set at least as a shadow master node. Moreover, by default, a master
or shadow master node is a slave node as well, contrary to traditional HPC. This is done to
exploit all available computing resources in a HPRC cluster.

• Data and user sharing: In a HPC cluster, the master node commonly stores data locally or
in a storage-attached unit. Correspondingly, data is exported via the file system to the slave
nodes. In addition, the results of a particular simulation or software execution (output data),
computed in the slave nodes, are stored in such exported folders, locally at the master node.
Traditionally, the most common exported folder is the one containing users’ space, e.g. /home
in a Linux distribution. This implies that all the users exist in all the nodes, usually locally
in the master and exported to the slaves via the user system. Consequently, the slaves usu-
ally do not store any data or user locally. Contrary, in a HPRC cluster, the users should
rather exist locally in the PRCNs (Figure III-3 - B) because in case of disconnection from the
master node, during the execution of a mission, the robot should be autonomous enough
to continue operating. Accordingly, the user’s space (/home) should not be exported from
the master node (Figure III-3 -A), but rather exist locally in each PRCN. With this approach,
the PRCNs actually store data locally. However, aiming at maintaining a single-image sys-
tem, such data (e.g. imagery, etc.) must be copied in a shared location (folder locally in the
master node) and accessible to all entities and users accordingly to a necessity and privi-
leges scheme. Therefore, in case of failure, the master holds a centralized image of all data
acquired by the multi-robot system/HPRC cluster. Data copying can be done constantly or
in proximity with Wi-Fi repeaters or antennas, etc. Intelligent approaches can be taken into
consideration by monitoring communications status. Other approaches for data sharing can
be applied. For example, distributed file systems, in which the local storage available in each
node is combined as a single storage. However, this relies on network connectivity and it
should be avoided until communications technologies improve sufficiently to guarantee un-
interrupted connectivity. Finally, regarding user sharing, Open LDAP can be set to operate
in a HPRC cluster. However, it is still a centralized approach that must be handled carefully.
Since a HPRC cluster is not necessarily an infrastructure managing hundreds of users like a
traditional HPC cluster, local user replication represents the least risky approach.

30 Chapter III - Ubiquitous supercomputing

• Availability: A HPRC cluster is not by default an all-the-time available infrastructure, as an
HPC cluster should be. Energy limitations, specially with current existing batteries, prevent
a HPRC cluster to operate beyond common individual autonomy times, e.g. 60 minutes.
However, depending of the power-supply technology available in the robotic entities, an
HPRC cluster could be available all the time, for example for remote sensing missions.

High Availability Robotic Cluster

Definition 6. A High Availability Robotic Cluster (HARC) is a specific type of HPRC cluster
that is not used for any particular mission, but rather allows users to connect and execute all
kind of tasks online (Figure III-3 - D).

Remark. A HARC is similar to a common HPC cluster but it is mostly used for tasks that are
dependent on location. For example, a UAV or balloons HARC could be used to take pictures
of a designated area, during long periods of time. In addition, users connect to the cluster
to perform computing tasks over the collected images, competing for the available computing
resources via the batch system. In the future, this could apply to satellites or spacecraft.

• Dynamicity: A HPRC cluster is a dynamic infrastructure. While it can be used for anything
(general-purpose), during the execution of a mission, a HPRC cluster is a specific-purpose
infrastructure. This means that data, users, etc., are potentially not the same in all missions
to which a HPRC cluster is targeted. Consequently, data and user sharing shall be adapted
to each mission’s requirements. This differs from an HPC cluster, in which all data and users
are available even if different simulations, software, etc., are being executed.

• Batch system: Regarding the batch system, HPRC extends HPC with two features. First,
resources in a HPRC cluster are not only CPUs, GPUs, RAM, etc., but sensors, actuators,
cameras, battery, LIDAR, etc (Figure III-3 - C). By default, no batch system monitors such
type of resources but it is rather easy to adapt open source solutions such as PBS Torque
(Adaptive-Computing, n.d.b) or SLURM (SchedMD, n.d.) to do so. Such adaptation is out
of the scope of this thesis but certain features have been developed for the monitoring service
of The ARCHADE (see chapter IV section IV.3). Second, the concept of HPC job is replaced
for HPRC task (Figure III-3 - D). Though both concepts are ultimately equivalent, job is part
of HPC terminology while task is consistently used in robotics literature.

Same as with a HPC job, A HPRC task consists of a software requiring a set of resources
(e.g. a camera, a thermal camera, X computing cores, etc.) during a walltime. Furthermore, under
HPRC’s scope, every robotic task is by default associated with a software. HPRC tasks are classified as:

• None: While a HPRC task is by default linked with a software, None tasks are those that are
not linked with any software.

• Exclusive: An exclusive HPRC task is such that is carried out by a single entity. For example,
consider a scenario where only one robot has certain type of camera and such camera is a
requirement for a particular task. This task is only performed by such robot.

• Parallel: A parallel HPRC task is such that is carried out by multiple PRCNs at the same time.
For example, given a geographic area, each of the robots is given the task of monitoring a
sub area. This process is done in parallel. Furthermore, tasks linked with SIMD and MISD
software are classified as parallel.

• Distributed: A distributed HPRC task is such that is carried out by multiple PRCNs but not
necessarily at the same time. Furthermore, tasks linked with MIMD software (e.g. MPI) are
classified as distributed. For example cooperative SLAM optimized by MPI.

III.1 High Performance Robotic Computing 31

The classification resembles the ideas given by Flynn’s Taxonomy (Flynn, 1972). Moreover,
a General-Purpose Computing Mission is a directed graph of tasks. This concept will be formally in-
troduced in section III.3. Deployment of HPC and HPRC infrastructures requires intimate knowl-
edge of Linux operating systems. In order to simplify installation and configuration of the HPC
software layers, a ROS package depicted as the HPC-ROS package is presented in next section.

III.1.1 The HPC-ROS package

The HPC-ROS package, a result of this Ph.D thesis, is an ubiquitous supercomputing enabler, that
can be used to automatically install and configure all the HPC software layers in Debian-based
companion computers or common computers.

Figure III-4: HPC-ROS package. Automatic installation and configuration of HPC software
layers

32 Chapter III - Ubiquitous supercomputing

The HPC-ROS package implements two ROS nodes (ROS, n.d.), i.e. commander and de-
ployer to allow:

• Automatic deployment (installation and configuration) of the HPC software layers: Setting up a
HPC/HPRC cluster, specifically the HPC software layers, is a complex process requiring
deep knowledge of Linux operating systems and HPC in general. Facilitating its deployment
allows the robotics community to focus only on the mission software (applications layer).
The HPC-ROS package can be selectively used for setting up a master or a slave node.

• The use of standard HPC software applications for each layer: By using standard HPC software
applications, an HPRC cluster can interact with standard HPC clusters, for example, for mis-
sions requiring computing power not available in the robots. Furthermore, a mixed HPRC
cluster composed of companion computers and normal computers can be set with the HPC-
ROS package.

Specifically, the HPC-ROS package deploys and configures the following HPC technologies
for each layer over an Ubuntu operating system:

• File system: Network File System - NFS (Shepler et al. , 2003).

• User system: Local user replication or Open LDAP (Zeilenga, 2006).

• Batch system: PBS Torque (Adaptive-Computing, n.d.b).

• Applications layer: Open MPI (Gabriel et al. , 2004).

Among several software options for each layer (see section II.1), the selected solutions were
used as a proof of concept and because of their simplicity in comparison with other solutions.
However, the package’s roadmap includes the support for other software solutions, even the de-
ployment of similar supercomputing architectures such as those related to Big Data, etc.

The setMaster and setSlave options (see Figure III-4) install and configure each of the previous
software in either a master or slave node correspondingly. In addition, the testCluster option auto-
matically executes MPI software to test deployment success. Furthermore a default user, default
shared folder and default batch system queue are set during the configuration process.

While the package is based on ROS, HPC deployment libraries can be decoupled from ROS
easily if ROS is not available in the targeted infrastructure. The functionalities of the HPC-ROS
package have been implemented in The ARCHADE (see chapter IV section IV.2) and the package
is currently being adapted to the current ROS version (ROS.org, n.d.d).

The new version will be renamed as the HPRC-ROS package and it will take fully into con-
sideration all the guidelines proposed by High Performance Robotic Computing as currently done
by The ARCHADE. Moreover, the HPRC-ROS package will be part of The ARCHADE and will
include strategies for multi-master and P2P approaches. Ultimately, this is part of a strategy to
support ROS via The ARCHADE.

III.1 High Performance Robotic Computing 33

III.1.2 Features and advantages

The features/advantages of adopting HPRC in multi-robot systems are summarized in Table III-2

Table III-2: Supercomputing features in multi-robot systems

Feature High Performance Robotic Computing

Centralization
and distribution

In a multi-robot setting, each robot using its own resources can perform its assigned
tasks (distribution). Moreover, the master and ground station, acting as user frontend,
can control the entire robots (centralization)

Cooperation
SIMD, MISD, MIMD software, area distribution, etc.

Cost
Using multiple robots could be less expensive that setting a monolithic robot with
the same amount of computing power. For example, this ZDNet blog (Nichols, n.d.)
shows how to build an UAV with a Raspberry Pi for 200 USD. This low cost per robot
allows building inexpensive multi-robot HPRC settings

General-purpose
computing

A HPRC cluster can be used for different purposes, different missions, etc., transform-
ing a robot into a general purpose computing infrastructure and facilitating reutiliza-
tion and integration with other robots, other multi-robot systems, etc.

Hierarchy
Hierarchy, as defined by this Ph.D thesis describes the capacity of an entity of com-
manding orders over other entities. As the complexity of a system increases, hierarchy
is more relevant. More details about this in section III.5

Heterogeneity
All types of robots (UAVs, UGVs, etc.) with different types of sensors, actuators, Linux
Operating Systems, etc., can be integrated into an HPRC cluster.

Multi-purpose
A HPRC cluster could be used for several missions at the same time, e.g. HARC
(definition 6). For example, a subset of the total computing cores in the HPRC cluster
could be dedicated to process imagery, while the remaining computing cores could be
used to provide Internet connectivity, content download, etc.

Multi-user
Multiple users could use the resources of a HPRC cluster. For example, a pilot user,
a camera user, etc. Moreover, multiple users could be logged in at the same time
performing different tasks within a mission or different missions, etc.

OS based robots
and standardiza-
tion

With operating system based robots, a robot becomes a complete Internet of Things’
device, as a mobile phone. With traditional and stable operating systems, all kind of
software packages, standard libraries, etc., can be installed on a robot’s companion
computer, even during the execution of a mission (i.e. on-fly installation). The possibil-
ities are endless.

Performance
While the main objective of traditional HPC is to provide high computing power, a
HPRC cluster does not necessarily needs this. However, it is a good plus

Resilience and
failure tolerance

Task redistribution in case of robot failures, creating resilient multi-robot systems.
This is not provided by any of the HPC software layers, therefore it would require
extra software and it is out of the scope of this Ph.D thesis.

Scalability
Simple integration of new robots at the beginning or during real-time missions. Mis-
sion area redistribution, failure tolerance improvements, etc. Furthermore, the same
software and strategies can be applied to any number and type of robots providing
flexibility as well.

Security
Communications with robots are usually done via insecure and not scalable radio
signals. If TCP/IP communications are implemented, the complete secure Internet
scheme can be set up among robots communications.

User-
transparency

Single image / Centralization and Distribution. The user (e.g. the pilot) could control
the entire multi-robot system from a single interface (e.g. the master node). How-
ever, each robot could be given sufficient autonomy creating a fully centralized and
distributed system.

34 Chapter III - Ubiquitous supercomputing

III.2 Ontology

The ubiquitous supercomputing ontology represents the high-level philosophy of this Ph.D thesis
and defines systems that fall under the ubiquitous supercomputing classification (Figure III-5).

Figure III-5: Ubiquitous supercomputing ontology. (A) A system is a network of entities and links.
A System is an Entity. A system is composed of entities where each entity can be a system as well.
Consequently, a system is an entity. (B) A system of type multi, interacting with an environment
via interfaces (blue thick dotted lines). Systems 0 and 1 communicate using interfaces as well. In
addition, each system can have a different environment to which it interacts with. Sx = System

X, Ex = Entity X, Gx = Group X

Consequently, ubiquitous supercomputing systems, or systems for the remaining of this Ph.D
thesis, are described accordingly to the following lemma:

Ubiquitous supercomputing systems lemma

”A System is a network of entities and links
A System is an Entity”

Remark. Ubiquitous supercomputing systems are designed targeting at concepts such as scale-free
networks Barabási & Bonabeau (2003) and self-similarity, exhibiting fractal-like behavior. Scale-free
networks have been found to described computer networks, including the Internet and self-similarity
can be found in all kind of natural entities, e.g. trees, geography lines, the human brain, galaxies,
etc.

III.2 Ontology 35

Entities are the bricks of a system and correspond to elements interacting with each other.
Examples of entities are robots, servers, people, sensors, etc. An entity is by default a computing-
element, i.e. it embeds one up to any quantity of nodes, however entities that do not exercise
computing, e.g. a sensor, are defined as dummies in the ontology.

Furthermore, entities can be grouped as desired. The group concept represents that idea. For
example, consider a mission carried out by a set of UAVs and a set of UGVs. The UAVs can be
grouped as an air-group, while the UGVs as a ground-group. In addition, a HPC cluster is a group
of servers. Entities hold specific roles within the groups they belong to and such roles can be of
any type or represent any classification.

An user, designing a system, can choose to assign any desired role to the entities, but the
ontology specifies a set of default group roles:

• Operators: Human entities operating individual entities, (e.g. pilots) or the entire system i.e.
the system operator. Operators can exercise control over entities as well.

• Controllers: Software agent controlling an entity i.e. entity controller or the entire system i.e.
system controller

A particular important role is the system controller. This role represents the system frontend
and the highest hierarchy controller, only below the system operator. For example, in a multi-
robot system, the system controller role can be assigned to the ground station controlling the
robots. Correspondingly, all entities are assigned with an entity controller, therefore the system
controller entity can be assigned with mission tasks as well. Roles can change dynamically, e.g.
during the execution of a mission and furthermore an entity can hold different roles within the
same group or between different groups.

A link represents the connection between entities i.e. the ability of an entity to communicate
with another entity. More specifically, a link represents the communications technology between a
pair of entities. The nature of the systems proposed in here is by default dynamic e.g. the links in
the network could appear or disappear during the execution of a mission. While a traditional HPC
cluster is a wired-based infrastructure, which usually is not subjected to sudden disconnection, an
HPRC setting could experience entities’ disconnections given its moving essence and wireless
connectivity inherit issues, which leads to a dynamic network topology. However, a system, in its
most optimal state, is represented by a full graph.

The first statement, ”A system is a network of entities and links”, uses terminology from the field
of network science (e.g. link). However, the term node from network science is replaced for entity
in the ontology. This way, HPC terminology is preserved. The term node refers to a computing
unit, e.g. a single computer, an embedded computing board, etc. Entities can have as many nodes
as desired. Even an entity could embed a full HPC cluster. Same as with the entities, nodes hold
roles. For example, a master node and the slave nodes. The advantages of understanding a system
as a network are many, for example:

• If a system is represented as a network, mathematical and conceptual approaches from
graph theory and network science can be applied to the system’s modeling, understanding
and improvement.

• A network is scalable because it allows the adding of new entities and new links, maintain-
ing the autonomy of each of the entities.

• A network can be robust and resilient depending of its specific topology.

36 Chapter III - Ubiquitous supercomputing

The second statement, ”A System is an Entity”, allows the creation of systems of systems, as
portrayed by Figure III-5-A. Furthermore, the ontology describes systems equipped with the fol-
lowing features:

• Cohesion: From a computer science point of view, user-transparency relates to the capacity
of a system of being perceived, from the user’s perspective, as a single element, rather than
a set of interconnected elements. User-transparency is a default supercomputing feature.
However, going further, cohesion emerges from all supercomputing features. Entities remain
independent but behave as a single unit (system).

• Centralization/distribution: The system concept represents a set of entities, but all enti-
ties/systems are independent from each other i.e. ubiquitous supercomputing systems have
a hybrid control mechanism. For example, a multi-robot system is distributed because each
of its robots can be given sufficient autonomy to execute a particular mission and it is cen-
tralized because a single ground station can control all the robots.

• Scalability: Understanding a system as an entity and an entity as a system, where each el-
ement is independent, allows easy inclusion and removal of systems, entities, nodes, etc.,
leading to scalable systems.

Systems are classified as single or multi. In a multi-system setting (system of type multi),
systems communicate with each other via an interface. An interface is a communication strategy,
which can involve a subset of the entities within two systems. It is defined by a communications
technology (link idem), a specific IP / Port tuple or any other approach. Moreover, a system
interacts with an environment while performing a mission. The environment is a system as well,
according to the ontology here presented, as shown in Figure III-5-B.

Systems can contain as many systems, entities, nodes and groups as desired but a single
system should be cohesive, i.e. all entities should focus in a particular mission or a related group
of tasks within a mission, during a specific time. Afterwards, the system can be reused for a
different mission (idem as a HPRC cluster).

III.3 General-purpose computing mission

A General-Purpose Computing Mission (GPCM), or mission for the remaining of this Ph.D thesis is
defined as follows.

General-purpose computing mission

Definition 7. A General-Purpose Computing Mission, being carried out by a system, consists of a
set of interconnected tasks or a directed network as shown by Figure III-6. The direction of the links
indicates the task execution order.

Remark. Tasks concept is exactly as in within HPRC.

Remark. Tasks loops are supported

A task is defined as a software that requires a set of resources for its execution (idem HPRC
tasks). Nodes, computing cores, robotics sensors and actuators, software licenses, etc., are all type
of resources within the scope of ubiquitous supercomputing.

Tasks are assigned to entities, holding the task’s required resources. Moreover, tasks can be
assigned to a subset of the system’s entities. For example, a task could consist of a MPI software

III.3 General-purpose computing mission 37

Figure III-6: General-purpose computing mission. A Mission is a directed network of tasks
where each task (T1, T2 ... TN) is a software that requires a set of resources (e.g. computing

cores, cameras, sensors, actuators, etc.) in order to be executed

requiring a set of CPUs not available in a single entity’s nodes, therefore the software will be exe-
cuted in different CPUs that are distributed among different entities. Tasks are classified according
to the types:

• Blocking: Tasks’ blocking types are go and lock. A task is of type go if the entity executing the
task, can proceed with its tasks’ children. A task if of type lock, if the entity executing the
task, cannot proceed until the task’s parents are completed.

• Execution: Tasks’ execution types are none, exclusive, parallel and distributed, exactly as in
within HPRC. Parallel (SIMD, MISD) and distributed (MIMD) tasks can be used for compu-
tationally demanding problems. This way, ubiquitous supercomputing systems offer com-
puting efficiency.

• Necessity: Tasks’ necessity types are mandatory and optional.

• Topology: Tasks’ topology types are begin, path and end

• Priority: Tasks’ priority types are low, medium and high.

Missions should be divided in independent tasks, where each task is linked to a different
software. Non-beginning tasks (i.e. path and end) are triggered by events which are potentially
coupled by actions.

Events and actions

Definition 8. An Event, is the default output of a task software, used to trigger children tasks.

Definition 9. An Action, is an optional command, coupled with an event, to be performed by a
following children task.

Remark. A task software can provide any quantity and type of outputs but events are mandatory
if the task has children i.e. a children task will not be triggered if parents’ events are not triggered,
except in type go tasks. Furthermore, actions are considered orders, therefore executed only if the
entity triggering the event has a higher hierarchy that the entities performing children tasks. See
hierarchy section III.5.

38 Chapter III - Ubiquitous supercomputing

III.4 Ubiquitous supercomputing language

The ubiquitous supercomputing language - UbiSL aims at facilitating the practical implementation of
the ubiquitous supercomputing ontology and all concepts exposed in this chapter.

Figure III-7: Ubiquitous supercomputing language (UbiSL). HN = Hierarchy Network

Ubiquitous supercomputing language

Definition 10. The ubiquitous supercomputing language - UbiSL is a high-level language that
allows describing all concepts related to ubiquitous supercomputing.

Remark. The UbiSL consists of a set of XML templates for the description of systems, entities,
nodes, links, groups, tasks, missions, etc. More information in chapter IV section IV.2, Table IV-
4. Furthermore, the hierarchy network (HN) (Definition 14) can be changed for a specific mission,
otherwise the default hierarchy (Figure III-8) will be maintained.

In order to facilitate reutilization and separation between the system and the mission(s)
carried by it, the concept of system description is defined as follows.

III.5 Hierarchy 39

System description

Definition 11. All the templates combined, except the mission-related templates, are called the
System description.

Remark. The system description is dynamic, it can be modified to remove or add entities, i.e. to
change the system size, groups, etc. Furthermore, in order to reuse a system for a different purpose,
the mission template can be simply modified.

This mechanism (separation between the system and the mission) provides flexibility, scal-
ability and ultimately general-purpose. To manage such separation, a middleware is required
(chapter IV section IV.3). Furthermore, entities, systems, etc., are classified according to a set
of framework classes (chapter IV section IV.2) that can be adapted, reused or modified, providing
therefore a strong mechanism for heterogeneity, scalability, etc.

Hierarchy networks provide all kind of flexible configurations, where any entity could be
allowed to command orders over a subset of the entities, provided that the system operator and
the system controller’s hierarchy is maintained. For example, a pilot entity (human) can command
orders over its piloted robot. Therefore. UbiSL allows to specify if a mobile entity, e.g. a robot,
is to be automatic or piloted. Mixed configurations can be set as well, where a subset of robots
behaves automatically and another subset is to be piloted. More information about this will be
given in section III.7. Next section deeps upon hierarchy within ubiquitous supercomputing.

III.5 Hierarchy

In traditional supercomputing, hierarchy is mostly related with specific configurations in the job
scheduling mechanism (batch system). For example, a certain user or group could be given a
higher priority for job execution, even preempting running jobs if necessary. Moreover, resources
(nodes, computing cores, etc.) access can be dependent on specific users. In this sense, hierarchy
in the context of traditional supercomputing is user-dependent.

Based on such approach, under the ubiquitous supercomputing philosophy exposed in this
Ph.D thesis, hierarchy is entity-dependent, i.e. all type of entities, including robots, etc., can have
higher hierarchies than other entities. However, in contrast with traditional supercomputing,
hierarchy in here describes the capacity an entity holds to command orders over other entities,
going beyond solely job/task execution.

Orders

Definition 12. An order is an instruction to be executed by a subset of the system’s entities.

Remark. Default orders, e.g. execute mission, return home, etc., will be discussed in chapter IV
middleware section IV.3.

Nevertheless, the default order execute mission relates with task (job) execution, therefore
ubiquitous supercomputing hierarchy includes the approach in traditional supercomputing and
extend it by proposing orders such as return home, etc., aiming at increased control and security.

Deepening upon the definition of ubiquitous supercomputing systems, introduced in the
lemma III.2, a system is a hierarchical network, whose default graph is displayed in Figure III-8.

40 Chapter III - Ubiquitous supercomputing

Figure III-8: Ubiquitous supercomputing systems default hierarchy. Sx,y,z,w = Systemx,y,z,w,
H = Human system operator, SC = System Controller, SC − E = System Controller Entity,

E = Entity. The circles represent systems

While all kind of possible configurations are supported by the ontology, hierarchy’s default
approach is presented in definition 13. By default, only the human system operator and the
system controller (SC), in automatic modes (see section III.7), can command orders over all
entities as portrayed by figure III-8 (default hierarchy).

Ubiquitous supercomputing systems default hierarchy and system operator

Definition 13. A ubiquitous supercomputing system is a hierarchical network, where a human
entity, depicted as the system operator (SO), holds the highest hierarchy, followed by the system
controller SC (non-human entity). Other entities, including the SC-E have no capacity for order
commanding, in default mode.

Remark. Individual entities hierarchies can be set using the ubiquitous supercomputing language
(section III.4). Moreover, the system controller (SC) is an entity as well (SC-E), as described by the
ubiquitous supercomputing systems lemma III.2. More details about this will be given in chapter
IV.

An entity’s hierarchy represents the level of authority that such entity exercises over other
entities i.e. its capacity to command orders. This way, the hierarchy of a system can be represented
as a directed network, the hierarchy network.

III.5 Hierarchy 41

Hierarchy network

Definition 14. A system’s directed hierarchy network is an abstract representation of an ordering
scheme i.e. the direction of an edge specifies the order sender and the order receiver.

Remark. The system’s hierarchy network is not static i.e. it can be modified depending on the
mission carried out by the system, by using the UbiSL.

Hierarchy and ordering schemes are designed for two main objectives, control and security. In
an increasing intelligent robotics world, it is important to maintain human authority and control.
In addition, to prevent network attacks, i.e. hacking, all entities are aware of the hierarchy network
and will not accept orders coming from entities that are not allowed to, even from inside the
system itself. The individual hierarchy of an entity is calculated accordingly to the Local Reaching
Centrality (LRC) concept (Mones et al. , 2012), which represents the proportion of entities that are
reachable, i.e. entities accepting orders (e ∈ E), from the specific entity (i), where E is a set
containing all entities, as defined in equation III.1.

LRCi =
e

|E| − 1
(III.1)

Where |E| is the total quantity of entities in the system. Furthermore, the hierarchy of the system
itself is calculated with the concept of Global Reaching Centrality (GRC) (Mones et al. , 2012), as
portrayed in equation III.2:

GRC =

∑
i∈E(LRCmax − LRCi)

|E| − 1
(III.2)

Where LRCmax corresponds to that of the entity with the highest hierarchy (human system op-
erator) and GRC ∈ [0, 1]. Individual hierarchies can be modified via the UbiSL. However, the
following considerations are strict within ubiquitous supercomputing systems:

• In the hierarchy network, the system controller is represented with two nodes, the system
controller (SC) and the system controller entity (SC-E), i.e. the entity controller. More infor-
mation about the two nodes will be given in chapter IV.

• The system controller (SC) is the non-human entity with the highest hierarchy.

• If the system includes human entities (desired), such entities are classified as the system
operator (H), i.e. the person with the highest hierarchy in the system and operators, human
entities controlling a set of entities, e.g. a pilot.

Therefore, for the default hierarchy (see Figure III-8), the following equations apply. Having
H = system operator, SC = system controller, SC − E = system controller entity and E = other
entities.

Theorem 1 (System operator LRC). All entities are reachable from the system operator.

LRCH = 1 (III.3)

Theorem 2 (System controller LRC). All entities, except the system operator, are reachable from the
system controller.

LRCSC =
|E| − 2

|E| − 1
(III.4)

42 Chapter III - Ubiquitous supercomputing

Theorem 3 (System controller entity LRC). No entity is reachable from the system controller entity.

LRCSC−E = 0 (III.5)

Theorem 4 (Other entities LRC). Entities, different from previous entities H and SC, cannot reach other
entities.

LRCE = 0 (III.6)

Therefore, the GRC for a ubiquitous supercomputing system with default hierarchy network,
is calculated as portrayed by the following theorem.

Theorem 5 (Other entities LRC). Having |E| ∈ [3,∞) and |E| − 2 entities with LRC = 0, the GRC of
a ubiquitous supercomputing system, with the default hierarchy network is:

GRC =
|E|2 − 3|E|+ 3

(|E| − 1)2
(III.7)

Given the mobile nature of a ubiquitous supercomputing system, individual LRCs and
consequently GRC are subject to variation during the execution of a mission. Therefore the system
hierarchy (SH) is defined as the average GRC during the execution of a mission.

SH = GRC (III.8)

That is, GRC is to be computed at all time steps during the execution of a mission and av-
eraged over the times it has been computed. Moreover, two aspects need to be considered when
discussing hierarchy and ordering schemes.

• Order acknowledgment time, i.e. the delay between the commanding of an order and its ac-
knowledgment, order delay (D[O]), represents an emergent result of the communications sta-
tus (latency, bandwidth, etc) at the time the order was sent.

• Order commanding depends of the nature of an entity, i.e. non mobile entities will not be
given motion-related orders but all entities will receive an order related to mission execution.

With this in mind, consider a set eo, of entities entitled for the order o, the average delay for
such order (D), i.e. the average order delay is defined as:

D =

∑
i∈eo D(i)

|eo|
, with eo ⊆ E (III.9)

Consequently, having a set O, composed of all orders, the average orders delay OD, i.e. for all
orders is defined as :

OD =

∑
j∈O D(j)

|O|
(III.10)

Since a mission (section III.3), consists of a set of interconnected tasks, carried out by inde-
pendent entities, SH and OD can give an estimation of the capacity of the system to perform a
specific mission, in conditions where communications among entities can potentially be affected
by disconnections or performance lack.

III.6 Stability 43

III.6 Stability

Analyzing how stable is a system, represented as a network, can be done via the evaluation of
resistance and resilience. A system is resistant if it can endure external perturbations for a long
time or if a higher perturbation needs to be performed to deviate the system from an optimal
state. Moreover, a system is resilient if it can recover quickly from a perturbation and return to an
optimal state.

The basic optimal state of a ubiquitous supercomputing system is such where at least the
hierarchy network is maintained during times when orders are commanded. In other moments,
each entity has sufficient autonomy to continue with its assigned tasks. However, other possible
optimal states are desired. As mentioned in section III.3, non-beginning tasks are triggered by
events. If connectivity among entities requiring such events is nonexistent, the mission can be
compromised. Since the creation of an event depends on the duration of the software linked to a
task, which can occur at any time, the most optimal state is such of a full graph.

Multiple optimal states can occur, when dealing with ubiquitous supercomputing systems.
In Zamani & Vicsek (2017), it was found that complex hierarchical networks, such as a ubiquitous
supercomputing system when performing a mission, can maintain several or many metastable
states, depending on their initial configuration (at the beginning of a mission, where a full connec-
tivity graph is in place) and the perturbations they are subject, which is known as glassy behavior,
where the efficiency function associated to the performance of the network resembles the phe-
nomena of the spin glass model (Mézard et al. , 1987), (Mezard & Montanari, 2009) and (Newman
& Stein, 2013). While efficiency and what it actually means regarding ubiquitous supercomputing
systems is out of the scope of this Ph.D thesis, its relationship with stability is discussed as follows.
In fact, maximizing efficiency leads to hierarchical organizations, as found by Zamani & Vicsek
(2017) and efficiency is typically considered as a stability measurement criteria (Jackson & Watts,
2002), (König et al. , 2012). Moreover, connectivity in a networked system is crucial to measure
stability as found in Albert et al. (2000).

Consider, a ubiquitous supercomputing system with |E| entities and links representing con-
nectivity among entities. The nature of such links is intermittent during the execution of a real
world mission and moreover technical features such as latency, etc., vary in time. Furthermore,
entities, specially mobile ones, might result into battery draining or any sort of failure, affecting
the network topology, i.e. entities can disappear from the network.

In order to observe the effect on stability when entities are lost or removed, the following
numerical experiments (attacks) were performed. An attack consist on the removal of Q entities,
Q = [1, 2, 3, 4, ..|E|], i.e. attack Q consists of removing Q entities at once. After an attack, GRC
as a connectivity indicator and efficiency (Zamani & Vicsek, 2017) are measured. Two approaches
were applied:

• Entities with high LRC and their corresponding links are removed one by one, and this
process is continued with low LRC entities (downward approach).

• Entity removal starts from those with low LRC, and continues up to those with high LRC
(upward approach)

GRC and efficiency, of the resulting network, are measured after each attack. With the
objective of analyzing the stability of networks with low GRC (lower than 0.5) and high GRC
(higher than 0.5), under perturbations by entity removal, Q attacks, with Q = [1, 2, ..., 128] were
performed in 32 networks (18 with high GRC and 14 with low GRC), each one with 16 local
optimal states. Each attack Q was carried out according to the two approaches. Figure III-9-A
shows that when entities, in networks with high GRC, are removed with downward approach,
efficiency decreases faster than when entities are removed with upward approach. This is

44 Chapter III - Ubiquitous supercomputing

Figure III-9: Efficiency and GRC after entity removal attacks with high (A and C) and low (B
and D) GRC. High GRC: GRC ∈ [0.5, 1.0] and low GRC: GRC ∈ [0.0, 0.5). For Q = E entities
removed (x-axis), the y-axis represents efficiency and GRC. The fluctuation-like behavior of the
plots (especially in C and D) is likely due to the finite (relatively small) size of the networks with

only a discrete set of LRCs.

expected, according to the model presented in Zamani & Vicsek (2017), where entities with high
LRC contribute to the efficiency of the network to a greater extent that those with low LRC. A
similar behavior appears for networks with low GRC, as depicted in Figure III-9-B. However,
with upward approach, only after removing more than 80, out of 128 entities, efficiency drops
significantly for high GRC networks, whilst the removal of more than 40 entities causes the
efficiency to drop significantly for low GRC networks. These results suggest that networks with

III.7 Automation 45

high GRC (more hierarchical) are stable and efficient, even when losing large quantities of entities,
in comparison with low GRC networks. Therefore, the following finding is a result of this Ph.D
thesis.

Finding: Stable hierarchical directed networks

Finding 1. Hierarchical directed networks with a GRC higher than 0.5 are more stable that networks
with a lower GRC.

Moreover, these conclusions suggest that entities prone to perturbations, such as those with
a mobile nature, should not be given a high LRC, as devised in the default hierarchy network (see
Figure III-8 and definition 13).

Regarding GRC, two conclusions can be drawn from Figure III-9-C. First, in both approaches,
GRC decays as expected until around 80 entities are removed, faster again with the downward
approach, even considering the slight GRC raise in the same approach. Second, a significant GRC
raise occurs in upward approach. Potentially certain optimal states could actually result in GRC
increases after being perturbed, an indication of resilience.

Concerning low GRC networks, Figure III-9-D shows fluctuating behavior with attacks ac-
cording to upward approach. These fluctuations demonstrate that networks with low GRC are
not stable against external perturbations, such as entity removal. Again, there is no relevant GRC
increase in downward approach, followed by a rapid decay towards GRC equals zero.

Therefore, both efficiency and connectivity, as represented by GRC, lead to the conclusion
that a network with a GRC higher than 0.5 is more stable than those with a lower GRC. While
the numerical experiments performed in here, targeted networks whose efficiency function cor-
responds to that in the model presented in Zamani & Vicsek (2017), GRC is calculated according
to the general model presented in Mones et al. (2012), which suggest that these results are ap-
plicable to general hierarchical directed networks, such as ubiquitous supercomputing systems.
Nevertheless, this mathematical approach to stability needs further research to reach deeper con-
clusions and ultimately real experimentation with increasing quantity of entities, but this is out of
the scope of this Ph.D thesis.

In regard to resilience, another interpretation for an optimal state, is such in which orders,
events and data resulting from the mission tasks (e.g. pictures, etc.) are correctly distributed
among the entities, i.e. a single-image system. Given that potential disconnections cannot be fully
avoided in real-world missions, it is important to provide synchronization mechanisms when
connectivity is granted and when restored after a perturbation, as it will be discussed in chapter
IV section IV.3. Once connectivity is restored, a synchronization strategy facilitates an optimal
state, i.e. resilience.

III.7 Automation

As discussed in chapter II section II.2, an increasing automation level, is a desired feature for ubiq-
uitous robotics systems. However, in an open letter to the United Nations (UN) (Musk, 2016), 116
experts in AI and robotics, requested a ban over the use of the so-called killer robots. The au-
thors requested UN to find ways to protect humanity from a third revolution in warfare powered
by autonomous weapons. In this sense, while fully automatic systems can find all kind of uses,
human presence, at least in supervision quality, is very important under the scope of ubiquitous
supercomputing.

46 Chapter III - Ubiquitous supercomputing

Three automation modes are provided by default, within ubiquitous supercomputing:

1. piloted-complete mode

2. automatic with human system operator and

3. automatic full

The three modes are increasingly automatic (1-3), with mode 2 representing the default hi-
erarchy network. Having |E|, the quantity of entities in the system and applying equations III.1
(LRC) and III.2 (GRC), from Mones et al. (2012), to the three hierarchy networks in the automation
modes, the following details are introduced.

III.7.1 Piloted-complete mode

Figure III-10: Piloted-complete mode. H = Human system operator, SC = System controller,
SC − E: System controller Entity, E = Entity, P = Pilot Entity

A. Piloted-complete mode

Definition 15 (Piloted-complete mode). Each mobile entity has a pilot which controls the specific
entity. However, software agents, i.e. system controller, entity controllers and the human operator
are part of the system as portrayed by Figure III-10, thus min|E| = 5.

LRCH =
|E|+ 1

2(|E| − 1)
(III.11)

LRCSC =
1

2
(III.12)

LRCSC−E = 0 (III.13)

LRCE = 0 (III.14)

LRCP =
1

|E| − 1
(III.15)

III.7 Automation 47

correspondingly, the GRC for the piloted-complete mode is:

GRC =
|E|2 − 2|E|+ 3

2(|E| − 1)2
(III.16)

III.7.2 Automatic with human system operator mode

Figure III-11: Automatic with human system operator mode. H = Human system operator, SC
= System controller, SC − E: System controller Entity, E = Entity

B. Automatic with human system operator mode

Definition 16 (Automatic with human system operator mode). A single human entity controls
the entire system (system operator) and each mobile entity is controlled by an agent as portrayed by
Figure III-11. No pilots included. This is the default hierarchy mode. Moreover, min|E| = 3.

Remark. Multiple system operators can be put in place. This is manageable via the user system
and other mechanisms to be described in chapter IV section IV.3.

Remark. Following equations III.17 to III.21 are the same that those introduced in section III.5,
default hierarchy mode. They are presented in here for textual consistency.

LRCH = 1 (III.17)

LRCSC =
|E| − 2

|E| − 1
(III.18)

LRCSC−E = 0 (III.19)

LRCE = 0 (III.20)

correspondingly, the GRC for the automatic with human system operator mode is:

GRC =
|E|2 − 3|E|+ 3

(|E| − 1)2
(III.21)

48 Chapter III - Ubiquitous supercomputing

III.7.3 Automatic full mode

Figure III-12: Automatic full mode. H = Human system operator, SC = System controller,
SC − E: System controller Entity, E = Entity

C. Automatic full mode

Definition 17 (Automatic full mode). The system is fully automatic, i.e. no human entities, as
portrayed by Figure III-12. This mode is discouraged. However, if the system operator does not
intervene, mode 2 (subsection III.7.2) will result into the current mode with supervision. Thus,
min|E| = 2.

Remark. The ARCHADE supports this mode but the user can regain control by launching the
middleware hydra service (chapter IV section IV.3).

LRCSC = 1 (III.22)

LRCSC−E = 0 (III.23)

LRCE = 0 (III.24)

correspondingly, the GRC for the automatic full mode is:

GRC = 1 (III.25)

III.7.4 Stability and automation modes

As it can be observed in Figure III-13, all default automation modes lead to stable systems. In
the case of the piloted-complete mode (Figure III-13-A) and with increasing quantity of entities, GRC
decreases asymptotically to 0.5. Regarding case B, automatic with human system operator, GRC in-
creases with the quantity of nodes, approaching asymptotically to one as portrayed by Figure III-
13-B. Finally, in case C, automatic full, (Figure III-13-C) GRC is equal to one for any quantity of
entities. Therefore, the automation modes provide stable scalability.

III.7 Automation 49

Figure III-13: Automation modes and stability. All default automation modes lead to stable
systems, i.e. GRC is never less than 0.5

The three cases are devised on purpose to facilitate the creation of stable and scalable systems
using the conclusions in section III.6. However, while the three automation modes are provided by
default, other approaches can be used by setting hierarchy networks using the UbiSL. Examples
of such hierarchy networks include those with lowest hierarchy entities capable of commanding
orders (e.g. mobile entities with LRC > 0), one pilot controlling several mobile entities, mixed
modes i.e. mobile entities with pilot and mobile entities without pilot, etc. Nevertheless, the strict
considerations introduced in section III.5 must be maintained and it must be beard in mind that
different strategies from the three default cases might result in unstable systems.

The automation modes offer user-transparency in addition to stability and scalability. In the
case of the automatic with human system operator mode, a single user (system operator) can control
the entire system, i.e. the user perceives the distributed system as a single cohesive unit. Moreover,
the piloted complete mode offers user-transparency given that there is a human system operator,
but it also provides extra control by having a pilot per mobile entity. Finally, the automatic full
mode does not integrate users in the system, beyond the initial launch of the mission, therefore
user-transparency does not pertain in here. However, human presence can always be granted
using the hydra service to be discussed in chapter IV section IV.3.

50 Chapter III - Ubiquitous supercomputing

III.8 Summary and discussion

While supercomputing can be found in practically everything nowadays, robotics has been mostly
absent of its utilization when dealing with multiple entities. However, current technological ad-
vancements in embedded computing, networking and other relevant aspects such as increasingly
complex missions and a whole new spectrum of applications, facilitate and inspire the union be-
tween multi-robot systems and supercomputing. Exploiting such ideas, this thesis has proposed
High Performance Robotic Computing (see section III.1), as an adaptation of traditional supercom-
puting to the nuances of robotic entities, contributing therefore to the ubiquity of supercomputing.

Yet, supercomputing within a new frame of mind, in which all of its capacities, not only
computing efficiency, are used to create systems of systems, such that can scale inwards and out-
wards, act as a single cohesive unit despite being composed of independent distributed units and
be capable of execute any type of mission. The goal of bringing supercomputing truly everywhere
requires a translation from philosophy to reality, accomplished via the ubiquitous supercomput-
ing ontology introduced in section III.2. With the ontology, multi-robot HPRC settings, traditional
supercomputing, computing-less devices and humans are integrated into single systems used for
general-purpose computing missions (section III.3). To go further in the translation from phi-
losophy to reality, the ubiquitous supercomputing language has been presented in section III.4.
Moreover, throughout the chapter, several aspects related to a rethought supercomputing have
been introduced, hierarchy (section III.5), stability (section III.6) and automation (section III.7).

However, to ultimately bring philosophy into reality, next chapter introduces The AR-
CHADE, a ubiquitous supercomputing framework and middleware.

Un café, a las orillas de algún mítico ró, o cerca al mar, o en

una plaza tan antigua como algunas de las civilizaciones que

maravillaron la historia de nuestra humanidad. Un café para

así poder preguntarte todas las cosas que nunca he entendido,

que con locura deseo comprender. Un café para darme cuenta que

con solo verte, al final, ninguna respuesta importa para nada

— Leonardo CF

IV
The ARCHADE

In the previous chapter, the ideas behind the philosophy of ubiquitous supercomputing were in-
troduced, including a discussion about High Performance Robotic Computing (HPRC) and its
hierarchical union with traditional supercomputing and humans. To bring ubiquitous supercom-
puting into reality, this chapter introduces The ARCHADE.

The ARCHADE (TAC) is a loosely-coupled component-based, fully general-purpose ubiqui-
tous supercomputing framework and middleware, written in Python1, designed for the deploy-
ment, implementation and operation of ubiquitous supercomputing systems. It consists of:

• A set of classes, e.g. thing, robot, drone, etc.

• A set of templates to describe systems, entities, hierarchy networks, missions and to write
general-purpose computing missions software, i.e. the Ubiquitous supercomputing language
(UbiSL) (see chapter III section III.4).

• A set of services to be used for the building and operation of systems described according to
the ubiquitous supercomputing ontology (see chapter III section III.2).

Furthermore, The ARCHADE is a hierarchical multi-agent technology whose main objective
is to facilitate the execution of any type of mission over any ubiquitous supercomputing infras-
tructure. To do so, it provides five main functionalities/components, as detailed by Figure IV-1:
Application Programming Interface (API), Framework, Middleware, SimPlat and PLUS.

1TAC is originally written in Python 2.7 but it is currently upgraded to Python 3

51

52 Chapter IV - The ARCHADE

Figure IV-1: The ARCHADE, general-purpose ubiquitous supercomputing framework and
middleware. HPC = High Performance Computing, HPRC = High Performance Robotic com-
puting, CLD = Computing-less devices, H = Humans. SITL = Software In The Loop, HITL=

Hardware In The Loop, UbiSL = Ubiquitous Supercomputing Language.

53

The ARCHADE targets the guidelines for ubiquitous robotics frameworks, suggested by
Jiménez-González et al. (2013), discussed in chapter II section II.2, as portrayed by Table IV-1.

Table IV-1: Guidelines for current and future ubiquitous robotics frameworks from Jiménez-
González et al. (2013)

Guideline TAC’s approach

General purpose Standard technologies used in all the HPC software lay-
ers. Multipurpose and multi-user HPC and HPRC infras-
tructures. Framework (section IV.2), middleware (section
IV.3), API (section IV.1), general purpose computing mis-
sions (see chapter III section III.3), etc.

Modular and flexible architectures The ARCHADE framework inheritable classes. Indepen-
dent and modular middleware and framework services,
TCP / IP communications

Openness The ARCHADE is not open-source but cooperation is en-
couraged.

APIs, reusable code and standardized inter-
faces

The ARCHADE’s API. In addition, agents (live service
section IV.3) can be modified to add extra functionalities.
Moreover, communications mechanisms can be integrated
with other technologies such as ROS, Data Distribution
Services (DDS) (Pardo-Castellote, 2005) i.e. for real time
systems, etc. Furthermore, FLEX templates (section IV.2)
can be used to build mission software, new classes, etc.

Availability of suitable usability tools Future work
Remote execution All communications are based on TCP / IP. Moreover com-

panion computers can be accessed via SSH or other proto-
cols as supported by any mainstream operating system

Experiments to real applications The ARCHADE facilitates transition from experimentation
to real-world applications. It transparently allows connec-
tion with simulated or real autopilots. More information in
section IV.5

While The ARCHADE is not a ubiquitous robotics framework, ubiquitous supercomputing
does contribute to the ubiquity of robotics by facilitating the implementation of smarter multi-
robot systems based on supercomputing strategies. Moreover, currently The ARCHADE is re-
stricted to unmanned vehicles but its flexibility can be used to include all kind of robots into a
TAC-based system.

In addition, The ARCHADE has followed a set of designing and development principles to
be presented in Table IV-2.

54 Chapter IV - The ARCHADE

Table IV-2: The ARCHADE design and development principles

Design and development principles TAC’s approach

Object-Oriented Programming (OOP) The ARCHADE followed the OOP paradigm in all its core
functionalities to guarantee reusability and flexibility.

Component-based As mentioned before, The ARCHADE is currently made of
five main components. Moreover, each component is made
of multiple subcomponents representing specific services.

Loose coupling Each component is self-contained and interaction between
components at execution level is managed via the middle-
ware services.

From scratch The ARCHADE was designed and developed from scratch.
The utilization of existing base technologies, e.g. ROS, was
discouraged in order to attain maximum control. However,
flexibility strategies can be used to facilitate future interac-
tion with such base technologies.

Simplicity Related functionalities have been packed into specific li-
braries without co-dependency. With this approach, each
feature is kept as simple as possible.

Security Communications and interactions between agents and ser-
vices are managed via secured approaches to be described
in section IV.3. This is specially important with the usage
of embedded companion computers running standard op-
erating systems subject to network and hacking attacks.

Implementation details are kept hidden on purpose. Following sections describe the five
components of The ARCHADE.

IV.1 Application Programming Interface

The ARCHADE’s Application Programming Interface (API) can be used to build mission tasks
software and it has been used to create the remaining four components. It currently includes five
groups of libraries2, as it can be observed in Figure IV-2 and its main objectives are:

• To be used to write new TAC features.

• To be used in the development of mission tasks software.

• To be used to interact with existing services.

Moreover, this section describes the base API. However, the framework, middleware, SimPlat
and PLUS components include their own API that can be used as well for the three previous
objectives.

2The API currently includes more than 30 libraries. More are currently being developed

IV.1 Application Programming Interface 55

Figure IV-2: The ARCHADE Application Programming Interface (API). Five groups, for a total
of more than 30 libraries: TAC, infrastructure, operating system, hierarchy and others

The mentioned five groups are described in the following:

• TAC related: Libraries used for TAC specific purposes such as error handling (error), object
serialization (serialization), time management (time), etc.

• Infrastructure: Libraries for interaction with the supercomputing infrastructure e.g. individ-
ual nodes (node), complete HPC or HPRC clusters (cluster), network (network), etc.

• Operating system: Libraries for file, folders, users, etc., manipulation e.g. telemetry manage-
ment, user creation, etc.

• Hierarchy: Libraries for system analysis, from network science approach (graph) and hierar-
chy management.

• Others: Libraries for internet accessing and automatic software installation, even during the
execution of a mission.

The tacimg and tacvideo libraries are particularly important as they are being used for the
development of the vision-based navigation service, part of the middleware component. The
tacimg library currently provides more that 20 image transformations using OpenCV, that can be
used by the tacvideo library to process live feeds. Moreover, such processed images will be used
by the AI component, currently in development as well.

The framework, middleware, SimPlat and PLUS components were written using the API
libraries. For example, operating system interaction is done via the commands library and cluster-
level interaction is managed via the cluster library, for instance SSH connectivity towards a subset
of the nodes, etc. Moreover, users developing mission software can import the libraries into their
own software. In fact, the other components, e.g. framework, middleware, etc., include their own
API libraries (not portrayed in Figure IV-2). For example, the middleware API can be used to
allow mission software to manage vehicles motion, create events, actions, etc.

56 Chapter IV - The ARCHADE

IV.2 Framework

The ARCHADE framework’s objective is to serve as the bedrock for the development of appli-
cations in fields such as precision agriculture, search & rescue, construction, insurance claims,
oil & gas, real state, e-sports and every field where ubiquitous supercomputing systems result
advantageous.

Figure IV-3: The ARCHADE framework. The framework consists of a set of classes, templates
and services for the creation of ubiquitous supercomputing systems. GPCM = General-Purpose

Computing Mission, UbiSL = Ubiquitous supercomputing language

Figure IV-3 introduces The ARCHADE framework, which consists of a set of classes layers
(gray boxes), templates (black boxes) and services (hexagonal blue boxes), allowing the creation
of systems that can be described according to the ontology.

The FLEX mechanism is intended to extend TAC’s functionalities e.g. to write new TAC li-
braries (for the API, the framework, etc.) or new classes to augment TAC’s heterogeneity. For
example, the dkrobot class, using DroneKit, was created by inheriting from the class robot, part of
the robotics classes layer, therefore new classes can be created by inheriting from such class, e.g.
to support MAVROS, etc. In addition, the GPCM (chapter III section III.3) mechanism provides
templates for mission software development. Both the FLEX and the GPCM mechanisms are de-
scribed in Table IV-3. Furthermore, Table IV-4 describes the ubiquitous supercomputing language
(chapter III section III.4) templates.

The UbiSL templates account for the UbiSL implementation and are used to set the system
description (definition 11), which can be modified to allow the inclusion of new entities, new
groups, new nodes per entity, etc. (inward and outward scalability). Moreover, by replacing the
mission template, the system can be reutilized (multi-purpose).

IV.2 Framework 57

Table IV-3: TAC software templates

Software template Description

TAC library and TAC
class

Aiming at flexibility (FLEX), The ARCHADE includes templates to create new
TAC libraries and classes to be included in any of the components or to facilitate
the creation of new services, components, etc.

Task software In order to facilitate mission software development, The ARCHADE provides
the task software template. This template includes coded functions for events
and actions creation, etc. Moreover, existing software can be wrapped within
this template.

MPI task software Similar to the task software template, but using MPI (i.e. distributed software)
to be executed by multiple entities in parallel.

Table IV-4: UbiSL: TAC templates

UbiSL template Description

Entity The entity template is used to set its name, class (e.g. drone, rover, etc.), role(s),
nodes (hostnames, IPs, network interfaces, allowed users, roles, etc), embedded
CLD e.g. sensors, cameras, devices, GPUs, etc. In addition, UbiSL supports two
general modes, simulation and real i.e. changing the value of the field mode in
this template, transparently enable the entity to proceed from experimentation
to real-world missions. Even a subset of the entities can be set in simulation
mode while another in real mode, allowing increasing testing levels – mandatory
template.

Group The group template is used to define a group of entities and specify the roles of
each entity within the group. Multiple groups can be set.

System The system template is used for high-level description, i.e. entities names,
groups names, etc. Moreover, this template can be used to set multi-system in-
terfaces, i.e. the system type is to be set as multi (see chapter III section III.2
Figure III-5) – mandatory template.

Mission The mission template is used to describe the General-Purpose Computing Mis-
sion (GPCM) as a tasks’ tree (parents-children), where each task is specified by
the software used to carry it, software parameters, its type (blocking, execution,
necessity, etc.), requirements (e.g. cameras, sensors), triggering events, etc. Fur-
thermore, the template is used to set the mission area, i.e. longitude, latitude,
length, shape, etc. The template can be used to describe task-less missions as
well. – mandatory template.

Environment Similar to the system template. However, non-system entities can be described,
i.e. mission targets, etc. This template is currently being modified and enhanced.
This is an optional template.

Hierarchy network The HN template is used to set the system’s hierarchy network. This is an op-
tional template. If not set, the default hierarchy network is maintained (defini-
tion 13).

With simplicity in mind, it is recommended to link each task with a single-purpose software
instead of multi-purpose software, which could result difficult to distribute or coupled with out-
put events. Nevertheless, existing software can be linked to a task by wrapping it within the task
or MPI task software templates, specifying its output events and consequently avoiding software
rewriting.

58 Chapter IV - The ARCHADE

Framework classes are designed to ease new classes creation in each layer or even complete
new layers by inheriting from the main layer, the TAC class. While ubiquitous supercomputing
differs from the general ideas behind the Internet of Things, given that systems are fundamentally
supercomputing-based, the layer class thing opens up the spectrum of possibilities, i.e. supercom-
puting at the edge. For example, sensors or actuators (CLD) classes can be created by inheriting
from such class. In addition, as previously stated the robotics layer has been used to create the dk
classes, a set of classes, i.e dkrobot, dkdrone, dkplane and dkrover, using TAC’s services and DroneKit
(3DR, n.d.b), a Python library used for autopilot interaction. Finally, the framework includes the
following services:

• Constructor: The constructor service is used to build workspaces for new missions, carried
out by a ubiquitous supercomputing system or for mission test cases. A workspace consists of
a set of folders organized for the execution of a mission test case, i.e. a single occurrence of a
mission carried out by the ubiquitous supercomputing system. The constructor service uses
a set of workspace templates. Furthermore, the constructor service adapts the HPC software
layers, e.g. users, etc., to the specific mission test case.

• Deployer: The deployer service provides automatic deployment of ubiquitous supercomput-
ing infrastructures, i.e. the automatic installation and configuration of the HPC software
layers, currently in computing units using Debian-based operating systems e.g. Ubuntu,
Raspbian or Kali Linux. This service embeds the HPC-ROS package (chapter III section
III.1.1). The package has been tested on Raspberry Pi computing boards and common desk-
top computers, including virtual machines. Furthermore, deployment of new types of HPC
clusters, Cloud provisioning mechanisms, Docker, etc., are being designed to be included in
this service.

• Testing: The testing service is used for applications layer testing, i.e. MPI, in order to guaran-
tee the correct deployment of a ubiquitous supercomputing infrastructure and estimate the
available computing power. The high-level testing guarantees the correctness of all the HPC
software layers implementation.

Each service includes an API related with its specific scope. For example, the deployer service
provides an API for HPC software layers installation and configuration. This API is being used
to provide The ARCHADE with live installation and configuration capacities to be used by the
middleware, during the execution of a mission, i.e. to automatically integrate a new entity into a
system executing a mission.

By using the framework, system developers need to focus solely on developing mission soft-
ware, i.e. the software associated to each task. Moreover, FLEX templates can aid in such en-
deavor, smoothing integration with TAC, specially with the middleware services introduced in
the following section.

The ARCHADE’s framework most important contribution and objective is to facilitate the
use of supercomputing in existing and new applications, e.g. precision agriculture, entertainment,
etc., and therefore contributing to the ubiquity of supercomputing. Furthermore, every class,
service and template is self-contained with the objective of providing simplicity and flexibility.
In this sense, each system is self-contained as well so in order to interact with other systems,
interfaces are to be defined in the UbiSL system template. With this approach, every system, part
of a multi-system configuration, can focus on its specific current mission while still interacting
with other systems.

In plain terms, the framework is all about creating ubiquitous supercomputing systems and
mission software while the middleware, to be described in the next section, is about operating
such system during the execution of a mission.

IV.3 Middleware 59

IV.3 Middleware

The ARCHADE middleware’s objectives are:

• Transform a set of independent entities into a single cohesive unit. This is the main idea
behind a rethought supercomputing, as proposed by this Ph.D thesis.

• Separate and connect the ubiquitous supercomputing infrastructure, i.e. the complete set of
entities configured as a supercomputer, from the mission carried by it. By doing so, the same
infrastructure can be used for different purposes (multi-purpose).

Figure IV-4: The ARCHADE middleware. The middleware includes the services: communica-
tions, initialization, live, matching, monitoring, statistics and synchronization.

To achieve such objectives, the middleware is currently composed of the services: communi-
cations, initialization, live, matching, monitoring, statistics and synchronization as portrayed by Fig-
ure IV-4 and described in Table IV-5.

In a HPC cluster of computers, the batch system acts as the middleware, providing user-
transparency, resources monitoring, job scheduling, etc. In the context of ubiquitous supercom-
puting infrastructures, The ARCHADE sits on top of the batch system, in the applications layer,
and augments the middleware capacities.

60 Chapter IV - The ARCHADE

Table IV-5: TAC middleware services

Service Description

Communications The communications service implements the TAC communications protocol, purposely
unpublished. The service consists of a set of classes, API libraries and sub services
for secure message exchange between live agents (see Live item). The service includes
two sub services, Server and Hydra. During the execution of a mission, every entity
runs a Server service, intended to listen for orders and events. Correspondingly, the
Hydra service can be used by the system operator, operators or live agents to com-
mand orders over a subset of the entities (see automation modes in chapter III sec-
tion III.7) respecting the established hierarchy network. The hydra service establishes
bidirectional communication channels with Server services running in distributed en-
tities during the execution of a mission and it can be used to overthrown autonomous
behavior. Furthermore, the service’s API provides methods for events and orders ex-
change. Such methods are used in the task and MPI task software templates described
in Table IV-3.

Initialization The initialization service reads the system description, i.e. the framework templates
(UbiSL) in order to create entities, groups, systems, etc., objects in execution time.
Furthermore, it performs initial mission area distribution between mobile entities.

Live The live service is used during the execution of a mission and its main objective is to
provide autonomy. Each entity executes a live service agent, which controls the entity.
The agents provide autonomous behavior by implementing methods for autopilot
control (takeoff, move, return home, etc), mission execution (autonomous tasks soft-
ware launching, selectively yet not necessarily interacting with the batch system), etc.
Autonomous features such as moving the vehicle can be disable by setting an entity as
piloted in the entity template. With this approach, all other autonomous behavior, e.g.
mission execution, can be maintained while allowing pilot presence or writing mis-
sion software coordinating vehicle’s motion such as the followMe software (see section
IV.5).

Matching The matching service compares the tasks’ requirements in the mission template, with
the available resources in the ubiquitous supercomputing infrastructure, assigning
tasks to those entities satisfying the requirements. This process is automatically exe-
cuted at mission initialization, based on the entities and mission templates. The ser-
vice takes into consideration tasks classification, e.g. parallel, distributed, etc., in the
assigning process.

Monitoring The monitoring service checks tasks status and updates a global image of the mission.
Moreover, the service monitors nodes status (RAM, CPU, etc), network status (con-
nectivity, latency, signal strength, etc), GRC, vehicles telemetry, etc. This service can
selectively interact wit the batch system but it can operate on its own as well.

Statistics The statistics service computes output data from all the services providing a mission
test case summary. Currently, it is executed at the end of a mission but it is being
upgraded to provide live statistics.

Synchronization The synchronization service provides user-transparency and centralization/distribution
by synchronizing data (e.g. images, etc.), events, orders, etc., between all entities
requiring it i.e. from the system controller to the entities and vice versa creating a
single-image system. The service is a background process, synchronizing at all times,
only extra data, based on a previous image. It also provides resilience by attempting
synchronization when connectivity is available. Live agents cooperate to construct a
centralized image of the entire distributed system, including all data collected during
the mission. Finally, all data is synchronized in the system controller and or ground
station.

The live service is in charge of order execution, i.e. reacting to orders received via the com-
munications service. The default orders are: connect to autopilot, start vehicle, take off, execute mission,

IV.4 Simulation platform 61

return home, etc. While the list is not comprehensive, the live service can be easily configured to
allow new orders and its associated methods can be written using the live service API. Moreover,
order exchange is based on a secure method using cryptography approaches, whose details are
purposely unpublished. In this way, orders will not be executed if coming from an unauthorized
source nor if the source does not have sufficient hierarchy to command such order.

Furthermore, the service provides two types of agents, the system controller agent (highest
hierarchy underneath the system operator) and the entity agent i.e. entity controller. The system
controller agent performs tasks distribution (using the matching system), global monitoring, au-
tomatic order commanding, etc. Correspondingly, the entity agent controls its entity, e.g. order
acknowledgment and execution, task software deployment, autopilot interaction including mo-
tion, in case of a mobile entity, etc. The system controller entity runs the two agents at the same
time, therefore it can be used for mission tasks execution as well and moreover facilitates multiple
configurations, i.e. a mobile entity as the system controller, the HPRC master node as the system
controller, etc.

All the middleware services require the underlying presence of an ubiquitous supercomput-
ing infrastructure. This way, supercomputing is pushed towards ubiquity. Given the complexity
encountered when dealing with distributed software, especially those running over potentially
expensive and subject to damages hardware, next section introduces the TAC’s simulation plat-
form component.

IV.4 Simulation platform

The Simulation platform (SimPlat) aims at facilitating transparent transition between simulated and
real systems and algorithm testing as portrayed by Figure IV-5, A and B correspondingly. Regard-
ing case A, if at least one entity template is set in simulated mode, i.e. setting the tag real to false
in the entity template (Table IV-4), the SimPlat services are triggered. Currently, SimPlat supports
interaction with the ArduPilot Software In The Loop (SITL) (ArduPilot, n.d.). Such interaction
currently consist of:

• Automatic launching and termination of the SITL software.

• Vehicle type selection (e.g. ArduCopter, APMrover2, etc).

• Geographic area setting based on distributed area per entity from the initialization service
(Table IV-5).

• Output and input sockets opening for vehicle control and monitoring.

The ArduPilot SITL, allows to test autopilot functionalities for a complete range of vehicles
including multi-rotor aircraft, fixed-wing aircraft, ground vehicles, underwater vehicles, etc, with-
out the actual autopilot hardware. Multiple ubiquitous robotics solutions such as Gazebo, X-Plane
10, etc. can be coupled with the SITL software.

TAC’s SimPlat API libraries are called from objects instantiated from the framework classes,
e.g. dkrobot (section IV.2)) in order to automatically interact with the ArduPilot SITL or via
DroneKit-SITL (3DR, n.d.c). In the case of setting the tag real to true in the entity template, the
SimPlat services will not be triggered. As portrayed by Figure IV-5-A, a system can be simulated
having combinations of virtual machines (VM) and real machines (RM), each one installed with
either Dronekit-SITL or ArduPilot SITL and in addition simulated and real entities (e.g. robots
embedded with a companion computer, the autopilot hardware, etc.) providing increasing testing

62 Chapter IV - The ARCHADE

Figure IV-5: The ARCHADE simulation platform. VM = Virtual machine, RM = Real machine

levels. It is worth mentioning that DroneKit-SITL does not currently support ARM architectures
such as the Raspberry Pi. However, ArduPilot SITL does support such architecture.

The simulation platform has been tested in common computers, virtual machines and Rasp-
berry PIs 3 model B, see chapter V section V.4 for a complete example. Currently, the SimPlat is
being coupled with an interface towards Amazon Web Services (AWS) and Docker integration,
managed by the deployer service (TAC’s framework, section IV.2). This is done in order to facili-
tate large-scale simulations composed of hundreds or thousands of entities, i.e. VMs or containers,
each one installed with a SITL autopilot.

Moreover, another feature is provided by the SimPlat, a general-purpose simulator template,
based on MPI, to be used as a mechanism to create TAC-enabled simulators (Figure IV-5-B), e.g.
for algorithm testing, for example, swarming. Every simulator, based on the template, can be
executed upon a HPC cluster of computers by default. In such simulators, each MPI process
represents an entity, therefore two approaches are envisioned and supported:

1. Instead of using VMs or RMs, MPI processes can be mapped to the cores in a HPC cluster
and be used to simulate cooperative motion algorithms, mission software, etc., without the
need of independent VMs or RMs each one with a SITL autopilot.

2. Having a set of VMs or RMs, configured as a HPC cluster, each one installed with a SITL au-
topilot, each MPI process (one per machine) can interact with its corresponding autopilot us-

IV.5 PLUS 63

ing the SimPlat’s API. This differs from the ideas behind Figure IV-5-A or TAC’s middleware
for real systems, given that TAC does not use MPI for services such as live, synchronization,
etc.

Chapter V section V.3 will introduce a simulator for aircraft cooperative flights (multi-system),
under approach one, which was tested with up to 256 entities at the same time, using a small HPC
cluster composed of 4 nodes and 16 CPU cores. The simulator template fundamentelly differs
from traditional HPC i.e. it does not use MPI to speed-up a complex computing task, but rather to
set any quantity of parallel processes representing individual TAC entities. However, the template
can be used for computing-efficiency as well, exploiting all MPI’s features. Next section introduces
the fifth and last TAC component, the PLUS component.

IV.5 PLUS

The ARCHADE PLUS consists of a General-Purpose Computing Mission (GPCM) API and complete
software (using MPI) developed to be used by different type of missions. Currently, it includes
two modules, Motion and Security as portrayed in Figure IV-6.

Figure IV-6: The ARCHADE PLUS.

• Motion: The motion module currently includes swarming software for motion coordination
based on the Vicsek model (Vicsek et al. , 1995) and a leader/follower software, i.e. followMe.
Details about their usage will be presented in chapter V section V.2 and section V.5 respec-
tively. The software in this module can be used as tasks software for a mission. To do so,

64 Chapter IV - The ARCHADE

entities must be set in piloted mode, i.e. out of the control of the live service in the middle-
ware component (section IV.3)

• Security: The security module is in fact a set of API libraries for ethical hacking and it aims at
enabling an ubiquitous robotics system to perform hacking attacks and to protect itself from
the same type of threats. Details about its usage will be presented in chapter V section V.5.

TAC’s PLUS shares the ideals of projects such as RoboEarth (Waibel et al. , 2011), by setting a
set of libraries and software that can be used in all kind of applications. This component is fully
dedicated to the applications layer but it is integrated with the rest of the components, providing
therefore user-transparency and easing GPCM software development.

IV.6 Summary and discussion

In this chapter, The ARCHADE’s scope, functionalities and components were described. The
technology is composed of multiple libraries organized into five self-contained components, each
with a clear purpose and specific objectives. Its development has followed the guidelines for
current and future ubiquitous robotics frameworks proposed by Jiménez-González et al. (2013)
and design principles such as simplicity, loose coupling, etc., as presented in Table IV-2.

In addition, The ARCHADE was conceived as the vehicle for the ubiquitous supercomputing
philosophy (chapter III) into reality and ultimately to serve to the highest ideal of this research,
to bring supercomputing everywhere. Therefore, its software components were designed to provide
systems with all the ubiquitous supercomputing features, i.e. see What supercomputing actually is
in the introduction chapter section I.1.2 and the features and advantages of HPRC in the ubiquitous
supercomputing chapter section III.1.2.

Following Table IV-6 maps each of the ubiquitous supercomputing features with The AR-
CHADE’s specific component and or functionality. Furthermore, more details will be given in the
conclusions chapter VI. Consequently, next chapter will introduce a set of experiments and appli-
cations carried out under the scope of ubiquitous supercomputing and or using The ARCHADE.

IV.6 Summary and discussion 65

Table IV-6: The ARCHADE and the ubiquitous supercomputing features

Feature The ARCHADE’s approach

General-purpose The framework classes (Figure IV-3) can be used to describe different kind of entities
(e.g. robots, IoT, etc), aiming to facilitate any kind of mission/application. Further-
more, the API (section IV.1), the API per component and the PLUS component (section
IV.5) can be used to build mission tasks software, eased by the utilization of the task
and MPI task software templates (Table IV-3).

OS based robots
and standardiza-
tion

The framework deployer service (Table IV-5) and the HPC-ROS package (chapter III
section III.1.1) create ubiquitous supercomputing infrastructures using standard soft-
ware in each of the HPC software layers. This facilitates integration with other su-
percomputing infrastructures. In addition, the MPI task software template and the
Motion module in the PLUS component, make use of MPI, the most standard HPC
technology for software parallelization. Furthermore, OS-based robots open the spec-
trum of possibilities for all kind of new applications.

Scalability In the next chapter, scalability tests (e.g. sections V.3 and V.5.2.5) will be discussed to
demonstrate The ARCHADE’s capacity to scale with simulated and real systems.

Heterogeneity Traditional supercomputing entities (e.g. servers, etc.), robots (UAVs, UGVs), CLD,
humans, etc., evidence The ARCHADE’s approach towards heterogeneity.

User-
transparency

The system and entity controllers agents (live service in Table IV-5), the automation
modes (chapter III section III.7) and the hierarchy ideas (chapter III section III.5) pro-
vide user-transparency.

Cooperation The ARCHADE provides entity cooperation via task distribution with the middle-
ware matching service (Table IV-5), the philosophy behind General-Purpose Comput-
ing Missions (chapter III section III.3), area distribution with the middleware initial-
ization service and MPI software in the PLUS component.

Resilience and
failure tolerance

While this feature is out of the scope of this Ph.D thesis, the middleware synchroniza-
tion service (Table IV-5) provides resilience by constantly attempting the creation of a
single-image system.

Hierarchy See hierarchy section (chapter III section III.5) and the UbiSL hierarchy network tem-
plate (Table IV-4).

Computing-
efficiency

MPI usage for performance analysis will be discussed in next chapter section V.1.

Centralization
and distribution

The middleware synchronization service provides centralization and distribution by
guaranteeing data to be distributed to entities requiring it but maintaining a complete
copy in the system controller. Furthermore, by using the live service agents, each
entity has the capacity of operating autonomously (distribution) but under hierarchical
control (centralization)

Multi-purpose
and multi-user

By default all supercomputing infrastructures are multi-purpose and multi-user as
discussed throughout this thesis. In addition, see the concept of High Availability
Robotic Cluster (definition 6)

Security Order commanding via the middleware communications service (Table IV-5) is man-
aged using a secure approach based on cryptography keys. Moreover, the framework
deployer service is being enhanced to perform firewall configuration to defend enti-
ties from hacking attempts and network attacks.

How nice will it be to have a conversation with you, a real one.

I can’t claim all those we had before, were not real, but I am

adapted to this world, I mostly see with my eyes, mostly hear

with my ears, mostly feel with my hands. It doesn’t have to

be a long conversation, maybe I can convince you to join me

for a coffee, upon that place I used to sit back in Barcelona, or

Toulouse, or Budapest, Saint Petersburg, maybe in Pasadena, or

a beer in Bucaramanga, same as I do often with my brother, do

you remember?

— Leonardo CF

V
Experiments and Applications

The previous chapter IV introduced The ARCHADE, the materialization of the ideas behind the
ubiquitous supercomputing philosophy described in chapter III. The ARCHADE’s general ob-
jective is twofold, first to provide systems with all the ubiquitous supercomputing features (see
chapter IV Table IV-6) and to bring supercomputing everywhere, even in multi-robot systems.
In this chapter, a set of experiments and ubiquitous supercomputing applications are introduced
and discussed. All the experiments and applications were carried out using the following four
ubiquitous supercomputing infrastructures:

• HPC cluster: HPC cluster composed of 4 nodes with a total of 16 CPU cores. Figure not
portrayed.

• RPI-HPRC cluster: HPRC cluster composed of 4 Raspberry Pi 3 model B and a total of 16
CPU cores. (Figure V-1).

• HPRC-HPC cluster: HPRC cluster composed of 1 laptop computer, 3 virtual machines, 1
Raspberry Pi 3 model B and a 7-node HPC cluster. The infrastructure is composed of 34
physical CPU cores and 6 virtual CPU cores. (Figure V-2).

• HPRC-Rovers cluster: HPRC cluster composed of 1 laptop computer and 2 Unmanned
Ground Vehicles (rovers), each one embedded with a Raspberry Pi 3 model B, with a to-
tal of 12 CPU cores. (Figure V-3).

67

68 Chapter V - Experiments and Applications

Figure V-1: RPI-HPRC cluster

Figure V-2: HPRC-HPC cluster. The HPC cluster is not displayed in the picture

69

Figure V-3: HPRC-Rovers cluster. A. Hackrover1, B. Hackrover2. C. Hackrovers. The laptop is
not portrayed in here, but it can be observed in Figure V-2

The two rovers were named as hackrover1 and hackrover2 to designate their capacity for ethical
hacking. Figure V-4 shows the architecture of hackrover1, which uses the Pixhawk 2.1 a.k.a. the
cube (Dronecode, n.d.b). Conversely, hackrover2, Figure V-3-B, embeds the Pixhawk 1 (ARDUPI-
LOT, n.d.c). However, both flight controllers run ArduPilot version 3.4.2 for the missions pre-
sented in here. Moreover, the cars are Traxxas Slash 1/10 2W (Traxxas, n.d.).

70 Chapter V - Experiments and Applications

Figure V-4: Hackrover1 architecture. A. Hackrover1, B. Hackrover2. C. Hackrovers. The laptop
is not portrayed in here

The Raspberry Pi 3 model B boards, used in the ubiquitous supercomputing infrastructures,
come with a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM. Following section
discusses a set of performance, i.e. traditional HPC, indicators.

V.1 Performance

In this section, the standard official High Performance Computing test High Performance Linpack1

(HPL) (Petitet et al. , n.d.) is performed upon two of the ubiquitous supercomputing infrastruc-
tures, the RPI-HPRC cluster (Figure V-1) and HPRC-Rovers cluster (Figure V-3).

The HPL test measures the amount of FLOPS (Floating Point Operations Per Second) that
can be obtained from a computing infrastructure, when solving a linear system using MPI. From
its web site (Petitet et al. , n.d.): HPL is a software package that solves a (random) dense linear system in
double precision (64 bits) arithmetic on distributed-memory computers. Depending on the quantity of
CPU cores in a HPC or HPRC cluster, the type of technology and status of the underlying network
communications, etc., the test will output the maximum amount of FLOPS and the time required
to solve the linear system.

The 4-node RPI-HPRC cluster, with a total of 16 CPU cores, consists of one master and four
slave nodes, i.e. the master is configured as slave as well, deployed with the HPC-ROS package

1HPL is used to estimate the computing power of the TOP500 supercomputers (Dongarra et al. , n.d.) –
https://www.top500.org/project/linpack/

V.1 Performance 71

(chapter III section III.1.1). Commonly, it takes a fair amount of tuning to obtain the maximum
possible FLOPS available in a HPC cluster. However, such tuning is outside the scope of this
Ph.D thesis, because the objective of the test, in here, is not to estimate the maximum available
computing power, but rather to show the feasibility of HPC with embedded computing boards,
i.e. in HPRC environments. Nevertheless, three HPL variables are important to set. Those are:

• N = 3600 (Linear system size i.e. matrix order)

• P = 1

• Q = 16 and

• Block sizes, NB = {32, 64, 128, 256}

P and Q specify the parallel processes mapping and P ·Q should be equal to the maximum
amount of cores in the HPC setting, in this case sixteen. The choices, for each of the variables, were
based on information provided by the official HPL documentation (Dongarra, n.d.a). Figure V-5
shows a performance comparison using HPL over Ethernet versus Wi-Fi.

Figure V-5: HPL using Ethernet and Wi-Fi. The test was performed over a 16-core setting made
up of four Raspberry Pi 3 model B. Ethernet and Wi-Fi performance are very similar

The max amount of 1.013 Giga FLOPS (GFLOPS), is obtained with a NB of 32 over Ethernet.
As it can be observed in Figure V-5, performance is quite similar when using Ethernet and Wi-Fi.
However, the Wi-Fi router, used for the test, is in proximity to the Raspberry Pi boards, within
around 1 to 2 meters and it is not used for heavy internet search or communications-consuming
activities.

In average, Wi-Fi has a 1.742% less performance that Ethernet, which suggests that traditional
HPC is valid over wireless communication channels. In a closed space, i.e. a Wi-Fi area, a HPRC
cluster could operate at seemly the same performance as a wired traditional HPC cluster. On
the contrary, in open space, e.g. a Long-Term Evolution (LTE) area, HPC software such as HPL

72 Chapter V - Experiments and Applications

(Multiple Instruction Multiple Data -MIMD), which relies on network message exchange, might
not operate efficiently.

In order to resemble a LTE scenario, where connectivity among nodes might not be constant,
a experiment consisting on node disconnection and reconnection, was performed. Purposely, one,
two and three nodes were disconnected during the execution of the HPL test with a time window
of 30, 60, 90 and 120 seconds. Following, the nodes are reconnected.

Node disconnection is a highly possible scenario, when using wireless communications, es-
pecially with robots such as UAVs, in BVLOS (Beyond Visual Line of Sight) missions, which can
disconnect from each other when entering areas without network coverage, e.g. when using 4G
or 5G. However, in line of sight it is a rare occurrence to have long-term disconnections, like those
evaluated in here, e.g. 30 seconds.

Table V-1: Performance decay with node disconnection over Wi-Fi communications

Disconnection/Time window 30 s 60 s 90 s 120 s

One-node 63.802 % 81.377 % 81.248 % 87.914 %
Two-node 68.543 % 81.307 % 81.357 % 87.465 %
Three-node 68.29 % 81.447 % 81.707 % 86.756 %

The maximum Wi-Fi performance (1.002 GFLOPS), with a duration of 31.06 seconds, is used
as the baseline value for benchmarking without node disconnection. Table V-1 shows the per-
centage of performance decay for the three cases (one, two and three nodes disconnection) during
the selected time windows (60, 90 and 120 seconds). As it can be observed, HPC performance
significantly drops with node disconnection. However, HPL does not crash. This is an advantage
of the MPI implementation (OpenMPI (Gabriel et al. , 2004)), where messages, to be shared among
processes, are queued until the communications channel is available. Such queuing however is
not endless. It actually depends on the network channel being used, the MPI implementation, etc.
In addition, during node disconnection, distributed processes can still perform its assigned com-
putation. This is the reason why the performance decrease is not linear and it is similar between
the studied cases. This behavior relates to HPL algorithm (Dongarra, n.d.b).

The results suggest that fully distributed software (MIMD), relying heavily on message ex-
change, might not achieve high performance with HPRC clusters nowadays. Limitations when
using MIMD, especially with heavy (large-data) and constant message exchange, should be kept
in mind when designing robotic missions using HPRC settings. Nowadays, focus should be given
to SIMD especially, or lite data message exchange. In addition, the programmer should guarantee
that distributed tasks are able to complete even in network failing conditions. However, using the
scalability feature of HPRC, software has the potential of adapting to underlying network tech-
nologies, therefore in a nearby future, when communications have achieved expected features, we
could have powerful traditional HPC carried out with HPRC clusters.

Nevertheless, for missions in line of sight, traditional HPC is still possible as demonstrated
by the following experiment. The HPRC-Rovers cluster (Figure V-3), acting as a High Availability
Robotic Cluster (HARC) (definition 6), was tested with HPL and Wi-Fi, while in motion, i.e. fol-
lowing a set of waypoints in a square area (see more information about such area in section V.5).
The companion computers connect to the Wi-Fi router via a USB onboard antenna, as portrayed
in Figure V-4.

V.1 Performance 73

HPL was executed manually via SSH (HARC), with 6 and 8 MPI processes, distributed over
the two embedded Raspberry PIs, each with four CPU cores. Figure V-6 shows the three HPL test
cases. The first two (6 and 8 MPI processes) executed over the 2-UGVs (HPRC-Rovers cluster) and
the third case (16 MPI processes) running over the four static Raspberry Pi 3 model B (RPI-HPRC
cluster)

Figure V-6: HPL over the HPRC-Rovers cluster VS RPI-HPRC cluster using Wi-Fi. The higher
the computing power (FLOPS), the faster the test will finish.

As it can be observed in Figure V-6-A, performance increases with the quantity of MPI pro-
cesses. Consistently, the duration of the test decreases with larger quantities of MPI processes
(Figure V-6-B). However, as displayed in Table V-2, there is a considerable higher performance in-
crease when using 16 over 8 MPI processes (2X) than when using 8 over 6 MPI processes (1.33X).

Table V-2: HPL test cases comparison

Test cases comparison performance increase (%) Test duration decrease (%)

6 to 8 MPI Processes 19.03 15.97

8 to 16 MPI processes 237.94 70.42

These results suggest that performance is negatively impacted by mobility, as it might be
intuitively assumed. However, further tests will be needed to confirm such hypothesis and quan-
tifying it but this is out of the scope of this Ph.D thesis. Nevertheless, there is an observable
performance growth when increasing the quantity of parallel processes and consequently a com-
puting time reduction, i.e. HPC computing efficiency, even when using mobile robots (19.03%).
This demonstrates HPRC support of traditional HPC. Furthermore, scalability is demonstrated as
well, i.e. the same software (HPL), can be used with increasing quantities of nodes, distributed
across ubiquitous supercomputing entities.

While HPRC and ubiquitous supercomputing’s main objective is not to offer high computing-
efficiency, they do have the potential of providing it. Regarding BVLOS missions, many applica-
tions might consist on splitting a given area, where each entity will perform a set of tasks. Since
each entity can focus on its corresponding area, message exchange is minimum, contrary to fully
MIMD software, e.g HPL. This is an approach for the application of ubiquitous supercomputing,

74 Chapter V - Experiments and Applications

in conditions where disconnections might occur. Moreover, next sections V.2 and V.3 show how
MIMD can be used for non-computationally expensive tasks, whilst still providing scalability.

V.2 Swarming

Previous attempts in robotics research have used HPC as a speeding up tool for complex com-
puting tasks such as vision-based navigation, etc. However, as far as it was found in the state of
the art, HPC software has never been used to actually control the motion of a multi-robot system,
which is not inherently a task requiring traditional HPC.

Given the mobile nature of robotics entities, in this section, a software called parallelMotion,
part of the TAC PLUS Motion module (chapter IV section IV.5), able to perform the coordinated
motion of any number of robots using two approaches / models: SIMD and MIMD is presented.
In the first approach (SIMD), which stands for Single Instruction Multiple Data, there is no com-
munication between the moving robots, in this case UAVs. In the second approach, the UAVs
constantly exchange messages in order to fly resembling a birds’ swarm according to a simplifica-
tion of the renowned Vicsek model (Vicsek et al. , 1995).

For both approaches, the RPI-HPRC cluster (Figure V-1) is used, coupled by a laptop com-
puter acting as a master node. In each of the Raspberry Pi, the ArduPilot SITL software (ArduPilot,
n.d.) and DroneKit (3DR, n.d.b) are installed. This mission is carried out in simulated mode given
its complexity and current Spanish legislation where it is necessary to have one pilot per UAV.

DroneKit consists of a set of python functions to interact via MAVLink (Micro Air Vehicle
Communication Protocol) (MAVLINK, n.d.) with an automatic pilot. It supports different types
of vehicles such as copters, rovers and planes and it can be installed in different companion com-
puters (3DR, n.d.a), including the Raspberry Pi. Furthermore, DroneKit allows interaction also
with simulated autopilots such as the ArduPilot SITL.

Figure V-7: Parallel UAV motion software Architecture. TAC PLUS Motion software, such as
parallelMotion belongs to the applications layer of the ubiquitous supercomputing infrastruc-

ture. The setting also implements the remaining HPC software layers

Figure V-7 shows the software architecture for the parallel multi-robot motion software (par-
allelMotion), where the laptop computer acts as ground station/master node and it is installed
with The ARCHADE (TAC). Correspondingly, the slave nodes (Raspberry PIs) are installed with

V.2 Swarming 75

TAC, DroneKit and the ArduPilot SITL. The five nodes code names are gs (laptop) and Atlas, Era,
Helios and Kronos.

TAC PLUS Motion uses mpi4py (Dalcin, n.d.), a Python library for the development of par-
allel MPI software. The library requires an existing installation of an MPI implementation, in this
case Open MPI. While traditionally, MPI software is written mostly with C or Fortran, the deci-
sion of using Python, lies with the fact that Python is quickly becoming very strong in the world
of embedded computing (Radcliffe, n.d.).

MPI software is executed by a set of parallel processes, uniquely identified by a rank (0, 1...R
having R + 1 parallel processes). Depending of the particular rank that a process has, it will be
its purpose. For example, a process with rank 0 might execute different computing functions that
another process having rank 1. The processes are distributed to one or multiple computers, and
are managed and orchestrated by the MPI implementation (Open MPI), which provides features
such as scalability, resilience, etc. MPI provides scalability by allowing the user to request any
amount of processes, subjected to a set of rules:

1. Given a set of P processes and a set of C computing cores (distributed in one or several
computers), Open MPI splits the processes among the computing cores trying to match one
process per core. If P < C, some of the C cores will not be assigned a process. Conversely if
P > C, some cores will be assigned more than one process. In this case, the actual amount of
processes that are running in parallel, depends on the internal operating system scheduling
mechanism, but normally there will not be P processes running in parallel.

2. If the ratio between P and C is larger than one (P > C), there is a maximum amount of
processes that the MPI implementation (e.g. Open MPI) can handle.

3. It is generally recommended to have a ratio between P and C of one (P = C). This way,
there are in fact P parallel processes.

Furthermore, the MPI middleware provides resilience by queuing messages to be exchanged
between processes, until the intended recipient is available as demonstrated by the node discon-
nection experiments showed in section V.1. Finally, MPI handles the communications between
parallel processes but it is possible for the user to request a mapping between the processes and
the nodes’ cores by using a rank file. For example, rank 0 can be bound to a specific core in a
specific node, etc.

Figure V-8 shows parallelMotion software algorithm. Five processes, each one representing
an entity, with one node, in the ubiquitous supercomputing system, are launched using a specific
mapping. This mapping is carried out with a rank file (rankfile) which requests the execution of
one MPI process in each of the nodes. The rank file also guarantees that the process with rank 0 is
executed in the laptop computer (master / ground station). The command to launch the software
is:

mpirun -np 5 –rankfile rankfile python parallelMotion

Where the rank file (rankfile) includes the following lines:

rank 0=gs slot=0

rank 1=atlas slot=0

rank 2=era slot=0

rank 3=helios slot=0

rank 4=kronos slot=0

76 Chapter V - Experiments and Applications

Figure V-8: parallelMotion algorithm based on MPI. The software provides fully autonomous
motion for the multi-robot setting with two modes of operation, SIMD and MIMD

V.2 Swarming 77

Since, each of the Raspberry Pi comes with four computing cores, only one is used for the
motion of the robot while the remaining three can be used for other tasks, e.g. image processing,
etc. In addition, using the batch system, each core can be securely used for the requested purpose,
without being shared by other processes. The pilot user can start the autonomous motion of the
entire multi-robot system simply by executing the previous mpirun command, forgetting about
the underlying complexity, i.e. user-transparency. Using MPI software is advantageous from
a software development point of view as well, because a single software, executed by different
parallel processes, can be written in a single module, rather than have different modules for each
of the distributed nodes

In this experiment, the mission consists of one task and it overwrites the live service motion’s
functionalities (live agents). To do so, the entities must be set as piloted in the corresponding
entity template in order to disable the middleware’s control over motion. Therefore, this flexibility
allows the user to set its own motion algorithms, in this case parallelMotion from the TAC PLUS
motion module. The piloted mode can be also set to allow a real pilot controlling the vehicle.

The software is launched from the master / ground station entity but each process executes
its corresponding functions according to its specific rank as it can be observed in Figure V-8 i.e.
the ground station (process with rank 0) functions and the functions of the ranks 1 to 4 (UAVs).
This can be observed in the first conditional (triangular shape rank = 0).

The explanation is as follows, all processes start the execution of the software and once they
have reached the first conditional, the ground station process will proceed with the right part of
the algorithm, while the remaining ranks (UAVs) will proceed with the left part. Following, de-
pending on the selected model, i.e. simple (SIMD) and Vicsek (MIMD), each of the process will
continue with its specific part. The ground station process is the one in charge of sending a mes-
sage specifying the model to follow (model MPI Msg instruction in Figure V-8).

Figure V-9: Parallel UAV motion - Simple model. The simple model is a SIMD approach where
there is no message exchange between the parallel processes representing the UAVs while mov-

ing

In the first approach, depicted as simple model, the ground station requests the UAVs to
fly to a specific target. This request is done via the target coordinates MPI Msg instruction. The
simple model is a SIMD approach because the UAVs are performing the same functions (flying

78 Chapter V - Experiments and Applications

to the specific target) but over different locations (data), i.e. each UAV fly from a different home
location. Furthermore, the UAVs do not exchange messages. This means that the UAVs are fully
independent of each other. Figure V-9 shows the motion of the four UAVs using the simple model.

For certain type of missions, the fact that the UAVs are independent from each other (SIMD
simple model), results advantageous. Consider a mission in which a set of UAVs are used to
monitor a hostile area (target). If some of the UAVs were to be compromised, the remaining
UAVs, by being independent, could continue with the mission. Moreover, communications cost
is minimum with this approach, given that the only exchanged messages are those related with
an initial coordination, for example target coordinates, sent from the ground station to the UAVs
but no inter-robot message is necessary. For the second approach, the Vicsek model (Vicsek et al. ,
1995) is based on two ideas:

1. Each entity (e.g. bird, UAV) flies with constant speed and direction (heading) equal to the
average of the directions of its neighbors. An entity i is neighbor of entity j if at time t, i and
j are at a distant less or equal than a selected radius.

2. The noise in the system. Two types of noise are considered: extrinsic and intrinsic. Extrinsic
noise refers to the one caused by the environment. In biological systems, it could relate to
the entities (e.g. birds) not able to see properly if another entity is a neighbor. In artificial
systems, extrinsic noise might relate to GPS precision issues. Conversely, intrinsic noise
refers to the entities’ decision to move in certain direction even if they fully understand
the direction of its neighbors. In artificial systems, this could relate to computing errors at
execution time.

For the purpose of this experiment, parallelMotion does not implement the noise feature of
the Vicsek model, because the parallel motion software is used to show the ideas behind HPRC.
Therefore, parallelMotion would require further development if it is to be used on real flights.
Figure 10 shows the motion of the four UAVs using the Vicsek model (MIMD).

Figure V-10: Parallel UAV motion - Vicsek model. The Vicsek model is a MIMD approach where
there is constant message exchange between the parallel processes representing the UAVs while

moving

V.3 HPRC cluster of aircraft 79

As it can be observed in Figure V-10, the UAVs, moving from different home positions, ap-
proach each other until they resemble a birds’ flock. The Vicsek model, provided by parallelMo-
tion is based on a MIMD approach, where not all the UAVs perform the same actions, given than
during execution time, some UAV might have neighbors or not. If an UAV were to have neigh-
bors, it will change its heading according to the Vicsek model feature one. Furthermore, with
this approach there is constant messages exchange (lat, lon, alt, heading MPI Msg instruction in Fig-
ure V-8). These messages inform the UAVs with the location and heading of other UAVs, in order
to calculate the quantity of neighbors each rank has. The overlapping between UAVs observed
in Figure V-10 is because parallelMotion does not implement a collision avoidance mechanism.
However, this basic algorithm depicts the powerful environment provided by parallel software.

The use of MIMD software is subjected to more possible errors than SIMD, especially when
facing wireless communications. Nevertheless, the scalability feature provided by MPI could lead
in a no-distant future to have thousands of UAVs flying very similar to a spectacular birds flock.

The maximum amount of parallel processes that can be handled by the MPI implementa-
tion depends on the quantity of computing cores, the quality of the subjacent communications
technology (e.g. LTE, Wi-Fi, etc.) and the quantity, size and frequency of exchanged messages. If
these conditions are met and optimized, it is possible to build very interesting multi-robot systems
carrying out all types of missions.

MPI is a worldwide renowned HPC standard technology maintained by a large community
of developers. Newer versions are constantly released and its use is well documented in several
fields of science. Moreover, MPI allows using the same software with any number of processes,
i.e. moving robots, by simply modifying the mpirun command and the rankfile, providing therefore
scalability.

Moreover, parallelMotion behaves in a centralized / distributed approach. The master pro-
cess (ground station, rank 0) acts as a single interface for a pilot to control the multi-robot system
(centralization), while each UAV (ranks different from zero) have sufficient autonomy to keep mov-
ing or performing its mission’s tasks (distribution). Furthermore, since the software is launched
from the master node, the user does not need to be aware of the subjacent complexity of the
HPRC system (user-transparency). Finally, parallelMotion by means of using TAC’s framework
classes and DroneKit can be used to control the motion of different type of vehicles, e.g. copters,
planes and rovers. Even some of the entities could be UAVs, others UGVs, etc., i.e. heterogeneity.

The parallelMotion software is fully autonomous, i.e. the user (pilot) only needs to launch
the software using the mpirun command and afterwards the vehicles will move autonomously.
However, future work will include a hybrid controlled / autonomous scheme allowing the pilot
to be involved during autonomous motion if desired.

The motion of a multi-robot system is not a computationally expensive task that would re-
quire HPC as a speeding up tool, except in vision-based motion. However, as proposed by HPRC,
a multi-robot system motion can be carried out with traditional HPC technologies, such as MPI,
providing therefore scalability, centralization / distribution and user-transparency. However, in
order to evaluate scalability, with hundreds of entities, the following section deepens upon the
Vicsek model by using the SimPlat.

V.3 HPRC cluster of aircraft

Ubiquitous supercomputing can target any kind of entity, that can embed a computing board, i.e.
any type of vehicle, cars, aircraft, etc. In this section, the concept of HPRC cluster of aircraft is
introduced.

80 Chapter V - Experiments and Applications

Figure V-11: HPRC cluster of aircraft. Joined aircraft will dynamically implement the HPRC
software layers (file system, user system, etc). Furthermore, in the applications layer, a MPI

software for cooperative flying is executed

HPRC cluster of aircraft

Definition 18. A HPRC cluster of aircraft consist of a set of aircraft, which use embedded com-
puting boards and wireless communications technologies, in order to integrate into a single cohesive
unit, capable of sharing data, local users and computing resources.

Remark. A HPRC cluster of aircraft is a dynamic scalable infrastructure that can accommodate
any quantity and type of aircraft that are found within a proximity radius.

The applications of a HPRC cluster of aircraft are many. For example, Air Traffic Flow and
Capacity Management (ATFCM), i.e. in order to decrease air traffic controllers workload, a coop-
erative set of aircraft could keep themselves safely separated. Moreover, a set of aircraft could co-
operatively fly to safe fuel. Several examples are evidence of the advantages of cooperating while
moving. In nature, flocks of birds, school of fish, countless examples of insects, etc., show that

V.3 HPRC cluster of aircraft 81

swarming behavior is an outstanding and efficient phenomenon. Even at human level, cyclists
cooperate while on route to save energy and at military level, aircraft perform flying formation
with the objective of saving fuel.

In Durango et al. (2016), it was found that around 3.5 % savings in fuel can be achieved using
flying formation schemes in civilian air traffic. Moreover in Bower et al. (2009) the findings were
even better at around 16.5%. In addition, cooperative flights have the potential of being more
efficient, i.e. saving fuel, correspondingly decreasing CO2 emissions and furthermore creating a
stable hierarchical network of aircraft. HPRC can be used as the vehicle to bring cooperative flights
into air traffic schemes, by providing strategies for dynamic aircraft joining into the novel concept
of HPRC cluster of aircraft. These ideas apply to Unmanned Aerial Vehicles (UAVs) as well. While
formation flights differ from the Vicsek model, in this section, it is introduced a SimPlat-based sim-
ulator called hprccoopflying, implementing the aforementioned model for large-scale simulations.

At a specific time, an aircraft can be clustered or not. If clustered, aircraft within a HPRC
cluster would execute MPI cooperative flying software, which relies on exchanging telemetry
messages and modifies aircraft original trajectories. Non-clustered aircraft will continue with its
original trajectory.

The procedure for aircraft joining and separation, composed of a set of steps to be performed
by each aircraft, at each moment while in cruise phase, is as follows:

1. Aircraft, within a specific proximity radius and in cruise phase, are considered as potential
candidates to join.

2. If the next position of its original trajectory corresponds to its Top Of Descent1 (TOD), the
aircraft will not join or it will separate from the HPRC cluster. Each aircraft will inform its
potential candidates of its decision using an MPI message. The TOD in the original trajectory
is kept for practicality reasons but clustering could occur in descent phase as well. However,
this approach is not considered in this Ph.D thesis.

3. Aircraft performing TOD in their next position of their original trajectory will be removed
from the list of potential candidates to join.

4. The cluster size and remaining entities will be updated.

5. If the cluster size is one, the aircraft will continue performing its original trajectory

6. If the cluster size is at least two, aircraft will execute the Vicsek software.

7. Clustering approaching phase: Once the aircraft are at a selected distance from each other, they
will estimate if there will be fuel savings (fuel test) while staying in the cluster. Otherwise,
they will separate. Each aircraft will inform the rest of the members of the cluster its decision
to continue or not via an MPI message.

8. The cluster members and size will be updated.

Clustered aircraft hold an LRC different than zero, given that all the nodes in their cluster are
reachable via MPI messages. Correspondingly, non-clustered aircraft hold a LRC equal to zero as
portrayed by Figure V-11

An aircraft can be part of only one cluster at the same time but during its trajectory, it can
be part of different clusters. In fact, given aircraft separation because of TOD and fuel tests, the
size of a cluster may vary. In addition, an aircraft can join an already existent cluster. The cluster
dynamic updating is possible given HPRC scalability feature. Furthermore, several HPRC clusters

1Planned coordinates of the location representing the transition from the cruise phase of a flight to the descent phase

82 Chapter V - Experiments and Applications

of aircraft can occur at the same time in a scenario composed of hundreds or thousands of flying
aircraft, i.e. this is an example of a multi-system, while multiple HPRC clusters can dynamically
accept other aircraft via interfaces.

A fuel test consists of checking which option is more profitable regarding fuel, either to re-
mained clustered or to return to the original trajectory. Figure V-12 displays the ideas of the fuel
test.

Figure V-12: HPRC Cluster fuel test. Aircraft perform the fuel test at each step of its trajectory
while clustered.

Fuel (F) types 1, 2, and 3 are defined accordingly to the following equation, D being the
traversed distance, in Nautical Miles (NM), during the corresponding segment.

Fi = Kc ·D ·Kf , i ∈ {1, 2, 3} [Kg] (V.1)

where,

Kc =
Fc

Dc
[Kg/NM] (V.2)

Kf = 1 , for non-cooperative flying (V.3)

Kf < 1 , for cooperative flying (V.4)

V.3 HPRC cluster of aircraft 83

Figure V-13: SimPlat hprccoopflying general workflow

In equation V.1, it is assumed that fuel is a function of the traversed distance D in a particular
segment of the trajectory. The constant Kc is calculated as the total fuel consumed during cruise
phase (Fc) divided by the total distance traverse while on it (Dc), in the original trajectory. This
constant is applied to segments both in cooperative and non-cooperative flying. Correspondingly,
Kf is a dimensionless quantity used for the assumption that cooperative flights are more efficient
in terms of fuel that non-cooperative flights (flying solo) as described in the literature.

If cooperative flights were to be implemented in air traffic operations, a hierarchical aircraft
network will emerge, where aircraft within HPRC clusters will hold higher hierarchies (LRCs)
than those flying solo. Moreover, LRCs and GRC will vary during the time window of air traffic
operations, given the HPRC clusters’ dynamic nature, where clusters size may vary and new
clusters could appear or disappear. Therefore, a novel performance indicator, depicted as Aircraft
Network Hierarchy (ANH), based on the System Hierarchy (SH) indicator (equation III.8) is defined
as:

ANH = SH · Q

|E|
(V.5)

where Q = Quantity of clustered aircraft and |E|, the total aircraft in an air traffic scenario. With
the objective of evaluating the ideas of HPRC cooperative flying in realistic air traffic scenarios com-
posed of hundreds or thousands of aircraft, hprccoopflying is introduced. The software is a tactical
quasi-real time simulation environment, in which each aircraft is represented by an independent
parallel MPI process that follows an inputted original trajectory based on an extended version
of a So6 file (Eurocontrol, n.d.), which includes fuel consumption per segment and it is sampled
with a 10-second time step. Figure V-13 presents the platform general workflow. An extra MPI
process represents the network manager, which at each step of the simulation, computes and in-
form each aircraft, in cruise phase, with its potential clustering candidates (clustering green box
in Figure V-13), i.e. those aircraft found within a proximity radius or an empty list in the opposite
case. Upon received clustering candidates, each aircraft decides to join or not its potential cluster.

84 Chapter V - Experiments and Applications

The simulator, based on the SimPlat (see Figure IV-5 - B) implements the procedure for aircraft
joining and separation previously described and provides the following features:

• It can be used to simulate any quantity of flights by mapping MPI parallel processes to com-
puting cores distributed upon a traditional HPC cluster using Ubuntu, NFS, Open LDAP
and PBS torque for the HPC software layers from bottom to top.

• Simulated HPRC clusters are created by means of MPI message exchange between clustered
aircraft (clustered MPI processes).

• Its component-based design allows for the introduction of new algorithms for cooperative
flying, e.g. formation flying or clustering schemes. This is powered by the SimPlat.

• It is highly configurable and provides libraries for benchmark automation, including filter-
ing aircraft by departure and destination airports.

• The simulator computes several indicators related to existing clusters, fuel consumption,
Global Reaching Centrality (GRC), ANH, computing time and other computing and com-
munications performance indicators.

V.3.1 Benchmark setup

The simulator was used to perform a benchmark described in the following. The benchmark, com-
posed of 20 test cases, consists of aircraft flying to the Paris Charles de Gaulle Airport (LFPG) using
free route (FR) and flight levels (FL) Concept of Operations (CONOPS). Original trajectories were
calculated and optimized by using an in-house software solution (Dalmau & Prats, 2015) over
real air traffic from the 28 of July of 2016 on Functional Airspace Block Europe Central (FABEC)
airspace. Table V-3 describes the benchmark setup. The decision of using the value of 0.9 for Kc,
when flying cooperatively is based on the average of the findings in Durango et al. (2016), which
suggested 3.5 % fuel savings and the findings in Bower et al. (2009) which suggested 16.5 % fuel
savings. While the two mentioned references focused on flying formation rather than on the Vic-
sek model, the objective of this experiment is not to find the optimal configurations necessary to
provide fuel-efficient cooperative flights but rather to present results of the simulator. Neverthe-
less, hprccoopflying is highly configurable and can be used to study all kind of scenarios in order
to find such optimal configurations. Moreover, the test cases are described in Table V-4.

Table V-3: SimPlat hprccoopflying benchmark setup

Benchmark setup

Testcases 20

Original trajectories CONOPS FR + FL
Origin airport Indifferent
Destination airport LFPG
Difference in tracks for joining [deg] 15

Cooperative flying model Vicsek
Kf for non-cooperative flights 1

Kf for cooperative flights 0.9

HPC infrastructure 4 nodes / 16 CPU cores

V.3 HPRC cluster of aircraft 85

Table V-4: SimPlat hprccoopflying test cases. PR = Proximity radius, NM = Nautical Miles

Test cases

ID PR [NM] Aircraft ID PR [NM] Aircraft
1

5

16 11

15

16
2 32 12 32
3 64 13 64
4 128 14 128
5 256 15 256
6

10

16 16

20

16
7 32 17 32
8 64 18 64
9 128 19 128

10 256 20 256

Ideally, it will be preferable to assign one MPI parallel process, representing one aircraft to
one core. However, for scenarios composed of hundreds or thousands of aircraft, it results difficult
to do so unless having access to a large HPC infrastructure. Nevertheless, hprccoopflying by using
MPI, can adapt to its underlying computing resources, up to some extent i.e. in the available
16 CPU cores, each core could be assigned with maximum 16 - 171 MPI processes (256 aircraft
test cases). This is possible given that the simulator is very lite, but for larger scenarios, more
computing resources will be necessary.

V.3.2 Benchmark results

Figure V-14: Occurring HPRC clusters in all test cases

As expected, the quantity of HPRC clusters increases as the proximity radius and the number

1the network manager extra process

86 Chapter V - Experiments and Applications

of aircraft increases as portrayed by Figure V-14. Same conclusion is found with clustered flights
as displayed in Figure V-15.

Figure V-15: Clustered aircraft in all test cases

Figure V-16 shows the average, maximum and minimum quantity of HPRC clusters occur-
ring at the same time, in each test case. Up to seven clusters at the same time occurred in case 20,
PR = 20 NM / aircraft quantity = 256.

Figure V-16: HPRC clusters at the same time in all test cases

V.3 HPRC cluster of aircraft 87

Furthermore, cluster size, i.e. the quantity of aircraft within a cluster, varies across the exe-
cution of an air traffic scenario, i.e. dynamic adding and removal of entities in a HPRC cluster of
aircraft, which demonstrates scalability, as portrayed by Figure V-17.

Figure V-17: HPRC clusters size in all test cases

In order to fly cooperatively, aircraft within a HPRC cluster exchange telemetry MPI mes-
sages, composed of their individual track and ground speed, which are used to compute Vicsek
model, i.e. their next position in their local HPRC trajectory. If HPRC clusters were to be imple-
mented in real life, its communications cost would be very low as evidenced by the simulation
results, with a maximum of approximately 0.0001 MB (Figure V-18-A) of total exchanged data
(location coordinates, heading, etc) with 0.008 seconds (Figure V-18-B) of total exchanging time
for around 9000 messages exchanged in total (Figure V-18-C) for all emergent HPRC clusters.

It is worth mentioning that the nodes in the HPC infrastructure, used for the execution of
the simulation, are using Gigabit Ethernet as communications technology. Nevertheless, with ex-
pected advancements in communication technologies, i.e. 5G (ITU, n.d.), HPRC cluster of aircraft
or UAVs have a good potential to become a reality.

88 Chapter V - Experiments and Applications

Figure V-18: HPRC clustering communications cost in all test cases. A. Average MB sent and
received within HPRC clusters, B. MPI messages average sending and receiving time within

HPRC clusters. C. Number of sent and received MPI messages within HPRC clusters

Regarding fuel consumption, Figure V-19 shows total fuel savings (all aircraft) with a mini-
mum of 1, 996.02 kg in test case 4 (PR=5 NM / Aircraft = 128), up to a maximum of 14, 789.10 kg
in test case 20 (PR=20 NM / Aircraft = 256), saved in comparison with the original trajectories.
Furthermore, an average of 6, 854.65 kg is saved amongst all test cases. However, at individual
level, not all aircraft trajectories result into fuel savings. In fact, amongst all test cases, an average
of 69.48 % of flights achieved fuel savings. The remaining 30.52 % of trajectories incurred into fuel
increases, in comparison with their original trajectories as observable in Figure V-20. This occurs
because in the approaching phase, i.e. when flights are clustered, there are not fuel tests.

V.3 HPRC cluster of aircraft 89

Figure V-19: HPRC fuel savings in all test cases

These results suggest that the proximity radius (PR) for clustering should be smaller than
the ones used for the simulation. However, with smaller PRs, clusters did not emerge for the
contemplated test cases. For future work, simulations considering larger quantities of aircraft,
not specifically flying to the same airport, will be evaluated. Moreover, similar fuel tests will be
included in clustering approaching phase.

Figure V-20: HPRC fuel savings per aircraft in all test cases

Figure V-21 shows a comparison between fuel savings and ANH. As expected, the higher
the ANH, the higher the total fuel savings. These results are promising and suggest that having
strategical, rather than tactical HPRC clustered flights could lead to enormous fuel savings.

90 Chapter V - Experiments and Applications

Figure V-21: Fuel savings VS. Aircraft Network Hierarchy

Furthermore, if HPRC clusters were to be implemented at strategic level, GRC could increase
which will lead to a more stable aircraft network (see chapter III stability section III.6).

Figure V-22: Aircraft Network Global Reaching Centrality

The simulation results suggest that with current CONOPS, a maximum of 0.19 GRC occurs
for the selected date over FABEC airspace, an unstable hierarchical network as observed in Fig-

V.3 HPRC cluster of aircraft 91

ure V-22. However, only aircraft flying to LFPG were analyzed. Finally, as the quantity of aircraft
increases so does the computing time (clock time) of the simulation, up to approximately 13 hours
with 256 aircraft test cases as displayed in Figure V-23. In fact, the computing cost is caused by
the clustering algorithm performed by the network manager process. However, the use of several
less computing cores than parallel processes certainly impacts negatively the performance results.

Figure V-23: HPRC cluster of aircraft simulator performance

The philosophy behind HPRC and ubiquitous supercomputing can be applied to all kind of
vehicles, even those in manned mode, i.e. aircraft. With advancements in embedded computing
cards and communications technologies, the implementation of HPRC clusters is a logical next
transition that can bring all supercomputing features into the context of multi-vehicle systems.

The ideas behind HPRC cooperative flying can be used to produce significant savings in total
fuel consumption, scalability and stability as proposed by the Aircraft Network Hierarchy perfor-
mance indicator. However, extensive tests, considering larger quantity of aircraft and multiple
airports scenarios need to be done to have a better estimation of the impact of using HPRC clus-
ters. In fact, perhaps the most accurate results are those given by the test cases with a proximity
radius of five nautical miles, because in the other test cases, the clustering approaching phase can
cause an increasing individual fuel consumption. Nevertheless, the experiments in here are not
intended to actually find the proper proximity radius, nor the most suitable clustering or cooper-
atively flying algorithms, etc., that would lead to more fuel efficient air traffic scenarios but rather
to introduce novel ideas that have the potential of doing so.

Furthermore, the simulator is a very useful tool that can be exploited in order to find such
optimal configurations. In addition, its component-based approach, based on the SimPlat (chapter
IV section IV.4) and TAC philosophy, allows easy inclusion of new algorithms e.g. flying forma-
tion or different clustering schemes and moreover its use of parallel software libraries, allows its
execution to properly scale over its underlying HPC infrastructure.

In future work, substantial simulations to better understand the use of HPRC clusters in
real air traffic scenarios and the behavior of the ANH performance indicator will be carried out.
Furthermore, clustering algorithms will be optimized to decrease simulation-computing times. If
the results of such simulations are as positive as the ones found with the presented benchmark,
implementing HPRC clusters at strategic level hold an enormous potential in fuel savings and cor-

92 Chapter V - Experiments and Applications

respondingly environmental impact, especially with the expected increases in air traffic demand
for the upcoming years. However, another air traffic indicator would need to be addressed, i.e.
safety.

The use of HPRC could also lead to lower air traffic controllers (ATC) workload, because clus-
tered aircraft would have information that can be used locally to avoid conflicts. Moreover, even
non-clustered aircraft could exchange telemetry information to distributively coordinate safer air
traffic scenarios. Many different schemes can be designed, even a ubiquitous supercomputing
system made up of all aircraft, both flying and on-ground, all airports and all ATC ground sta-
tions could be set, creating therefore a very powerful hierarchical network exploiting intelligently
supercomputing features.

In the previous sections V.1 and V.2, it was demonstrated that HPRC clusters are imple-
mentable nowadays with embedded computing boards such as the Raspberry Pi and interacting
with simulated autopilots, in order to perform cooperative motion. These results extend to air-
craft, which could easily embed similar computing boards, keeping the main avionics system and
the pilot as the main actors but exploiting the extra knowledge and features given by the HPRC
cluster of aircraft.

V.4 Tigers vs. Hunters

In order to discuss a full example of The ARCHADE, this section introduces the Tigers vs. Hunters
system. The system uses specific classes and mission software developed for it and it consists of
one human operator, a set of simulated robots (two UAVs and two UGVs), a ground station and a
HPC cluster of computers, used for a mission described as:

• Localization of a group of hunters and a group of tigers distributed on a geographic area

• The protection of the tigers from the hunters and

• The identification of the hunters.

The ARCHADE framework allows the creation of new classes by inheriting from the three
main framework classes layers: core, things and robotics (chapter IV section IV.2). For the system
example, the TAC and DroneKit classes dkdrone and dkrover were used. Objects, instantiated from
the two classes, can interact with the ArduPilot SITL and directly with MAVProxy (ArduPilot,
n.d.) for real entities, facilitating easy transition from experimentation to real mode. The system
is in fact a SITL simulator, because in each of the robot entities, the ArduPilot SITL has been
deployed. The ubiquitous supercomputing infrastructure used for this application is the HPRC-
HPC cluster, depicted in Figure V-2. Specific details about the infrastructure and the system’s
entites are described in Table V-5, where:

• Pack 1: Camera, thermal camera, GPU, LIDAR

• Pack 2: Camera, thermal camera, weaponry, LIDAR

The devices, i.e. packs, in each entity are not actually real for the simulation but they are used
by the matching service for task assignment.

V.4 Tigers vs. Hunters 93

Table V-5: Tigers vs. Hunters system entities information. Agents & Roles = A&R, Notations:
SC = System Controller, MN = Master Node, SN = Slave Node, INT = Interface, PM = Physical
Machine, VM = Virtual Machine, L = Laptop, HPCC = HPC cluster, RPI3B = Raspberry Pi 3
Model B, APV = ArduPilot Vehicle AC = ArduCopter, AR2 = APMrover2, DKD = dkdrone, DKR

= dkrover

Entity nodes OS Type A&R CPU
cores

RAM
[GB]

APV Devices

Demo 1 Ubuntu
14.04

PM - L SC, MN,
SN

4 24 None None

drone1 1 Ubuntu
16.04

VM E, SN 2 2 AC
DKD

Pack 1

drone2 1 Ubuntu
16.04

VM E, SN 2 2 AC
DKD

Pack 1

rover1 1 Ubuntu
16.04

VM E, SN 2 2 AR2
DKR

Pack 2

rover2 1 Raspbian
Stretch

PM -
RPI3B

E, SN 4 1 AR2
DKR

Pack 2

HPC
cluster

7 Ubuntu
16.04

HPCC INT 26 NA None None

Moreover, Figure V-24 presents the mission tasks’ network. Links between tasks represent
event and action dependencies.

Figure V-24: Tigers vs. Hunters mission network. Events and actions triggering forward tasks
are contained within curved brackets

After using the matching service, which is automatically called by the system controller
agent, tasks are assigned as shown in Figure V-25.

94 Chapter V - Experiments and Applications

Figure V-25: Tigers vs. Hunters matched tasks. Matched tasks after using the matching service.
Map image taken from google maps.

The matching service checks the available resources (specified in the entities’ templates. See
chapter IV Table IV-4) and assign the tasks, requiring such resources, to the corresponding entities
taking into consideration the tasks’ classification (e.g. blocking, execution, etc.). Furthermore, the
robotic entities are grouped as air group (UAVs) and ground group (UGVs). The environment area is
equally distributed within the groups i.e. each of the UAVs, in the air group and each of the UGVs,
in the ground group are assigned half of the area. For the simulation, a Colombian area known as
Caño Cristales was chosen. It is colloquially known as El rı́o de siete colores, the seven-color river.
While there are not actual tigers in such location, the location was chosen to inspire the reader to
visit the place and experience its beauty.

The process of defining a mission consists simply on filling up the mission template and
once the agents are running, the mission execution is automatic. However, the mission software,
i.e. the software for each task should make use of live service API to create events and actions.
Consequently, the framework and the middleware allow the creation of automatic ubiquitous
supercomputing systems for multi-purpose missions that only require from the user creating the
system, to write the software for each of its designated tasks.

Since the system is a simulator, the tasks’ software does not actually do what would be nec-
essary if the system were to be used for the real mission. However, since the mission software
does use the live service API methods for events and actions creation, the entire mission is in
fact simulated and it serves well as a proof of concept of The ARCHADE and the ubiquitous
supercomputing ontology. Figure V-26 shows the complete mission workflow, including orders
commanding and events/actions occurrence.

V.4 Tigers vs. Hunters 95

Figure V-26: Tigers vs. Hunters mission workflow. There is corresponding software for each
task. Events should be named in the same way that are inputted in the mission template. Cor-
respondingly, the agents running in each entity constantly polls the shared file system to detect
in-events in order to continue with its assigned tasks. The area is distributed equally between
entities within a group. Consequently, events and actions are exchanged between entities in the
same sub area in the case of protectTigers software. IdentifyHunters is a MPI parallel software.

96 Chapter V - Experiments and Applications

As mentioned in chapter III section III.3, each task in a mission network is to be linked with a
independent software. Therefore, for the Tigers vs. Hunters system, the following tasks software
were developed:

• findTigers: The software findTigers simulates image processing for tiger detection over the
designated area. It uses the live service API to create a tigerFound event in an entities’ shared
folder using the file system layer. In a real software, i.e. use for the actual finding of tigers,
the event can be coupled with the tigers’ location data, which can be used by the next task
(monitorTigers) to set its initial monitoring coordinates. For the purpose of the simulator,
such locations are randomly fabricated.

• findHunters: The software findHunters simulates image processing for hunter detection over
the designated area. It uses the live service API to create a hunterFound event in an entities’
shared folder using the file system layer.

• monitorTigers: The software monitorTigers simulates the use of a LIDAR for the monitoring
of the tigers found by the findTigers software. It uses the live service API to create a tiger-
Location event coupled with a newLocation action in an entities’ shared folder using the file
system layer.

• monitorHunters: The software monitorHunters simulates the use of a LIDAR for the monitor-
ing of the hunters found by the findHunters software. It uses the live service API to create
a hunterLocation event coupled with a newLocation action in an entities’ shared folder using
the file system layer

• protectTigers: The software protectTigers reads events and actions from the software monitor-
Tigers and monitorHunters, commands the motion of the rovers towards the tigers location
(newLocation action) and calculates the distance to the hunters. If the calculated distance is
below a predefined tolerance value, the rovers are authorized to scare the hunters by using
gas bombs. This is a simulated process and the protectTigers software is only triggered if the
hunters and the tigers are found.

• identifyHunters: The software identifyHunters is executed by the ground station, which in-
terfaces (INT) with the HPC cluster of computers, by executing MPI parallel software, which
simulates the identification of the hunters.

Finally, Figure V-27 shows a set of pictures of the implemented simulator. This section shows
a proof of concept of The ARCHADE which is used to stimulate the reader to imagine the potential
applications of ubiquitous supercomputing. Furthermore, next section will introduce a set of real
missions carried out with The ARCHADE.

V.4 Tigers vs. Hunters 97

Figure V-27: Tigers vs. Hunters simulator. (A) HPC/HPRC system platform with agents run-
ning in each entity (black boxes xterm in the left corner of the screen). The cluster is not shown
in the picture (B) Running simulator. (C) Simulated drone. (D) Simulated rover. (E) Raspberry
Pi 3 model B used for simulated rover. (F) Simulated drone carrying out tasks findTigers and
findHunters. (G) Simulated drone finishing findTigers and findHunters tasks and starting tasks
monitorTigers and monitorHunters tasks. (H) Ground station finalizing task identifyHunters,
the displayed pictures show the two coadvisors of this Ph.D thesis. For clarification, they are not

tigers’ hunters in real life.

98 Chapter V - Experiments and Applications

V.5 Complete missions

In this section, a set of general-purpose computing missions (GPCMs) carried out with The AR-
CHADE are discussed. All missions were executed with the HPRC-Rovers cluster (Figure V-28)
ubiquitous supercomputing infrastructure. Each of the UGVs in the HPRC-Rovers cluster is com-
posed of:

• Traxxas Slash 1/10 2W (Traxxas, n.d.) chassis (1/10 ratio aspect and back wheels traction).
The RC car is commonly used in competitions.

• Raspberry Pi 3 model B installed with Kali Linux 2018.3 RPI3 and The ARCHADE

• Pixhawk 2.1 (Dronecode, n.d.b) for hackrover1 and Pixhawk 1 (ARDUPILOT, n.d.c) for
hackrover2

• Two Alfa AWUS036NEH Wi-Fi antennas (ALFA, n.d.), capable of monitoring mode and
packet injection. One of the antennas is used to connect to a network used for TAC commu-
nications (TAC network), while the other is used for mission purposes to be described in the
following.

• GPS module

Figure V-28: HPRC-Rovers cluster. A. Hackrover1, B. Hackrover2. C. Hackrovers. The laptop
is not portrayed in here, but it can be observed in Figure V-2

Furthermore, the ground station (the system controller) was installed with Ubuntu 18.04 and
was set as the HPRC master node in a HPRC cluster composed of 3 nodes, the ground station and
the two Raspberry Pi, embedded in the hackrovers.

V.5 Complete missions 99

V.5.1 The missions

The three General-Purpose Computing Missions are: simple motion, follow me and WPA cracking.
The missions’ selection differs from common approaches found in the literature, especially those
benefiting from supercomputing in its traditional approach, i.e. as a speeding up tool, such as
Marjovi et al. (2012). This decision follows two objectives:

• To demonstrate that supercomputing does not necessarily need to focus solely on comput-
ing efficiency / performance. However, supercomputing in its traditional approach will be
discussed with the WPA cracking mission.

• To show that The ARCHADE can be used for all kind of missions, even those not commonly
found in robotics research.

The mission simple motion does not execute any computing task and consists on automat-
ically following a set of waypoints, a process carried out by TAC’s live service. For the other
missions, each one consisting on a single computing task, software was written using TAC’s API
or specific components’ API. Moreover, mobile entities in the follow me mission are configured
as piloted, i.e. their motion is controlled at mission software level, rather than using TAC’s live
service.

Figure V-29: Cooperative area splitting missions. The two rovers are assigned with half of the
mission area. Missions with area splitting are: Simple motion and WPA cracking. Image created

with Google Earth Google (n.d.) and TAC’s mission data

100 Chapter V - Experiments and Applications

The missions demonstrate different cooperative approaches, for example the simple motion
and WPA cracking missions are area-cooperative, i.e. the given area is splitted between the mobile
entities (hackrovers) as shown in Figure V-29. Moreover, the follow me and WPA cracking mis-
sions are software-cooperative (distributed task - chapter III section III.3) i.e. both use MPI software,
executed in both the Raspberry Pi nodes in parallel. In the case of the follow me mission, one
rover follows the other as shown in Figure V-30.

Figure V-30: Follow me mission. Hackrover2 follows hackrover1 using MPI collaborative soft-
ware. Image created with Google Earth Google (n.d.) and TAC’s mission data.

The followMe software, used for the follow me mission, is part of the TAC PLUS (chapter IV
section IV.5) Motion module and it allows a master/leader to command any quantity of slaves to
follow it by broadcasting its current and next position, via non computationally-expensive MPI
software, a good example of the potential of HPRC to go beyond computing efficiency. Con-
trary, the WPA cracking mission software is computationally expensive because it consists on a
dictionary-based brute-force attack. A dictionary is a list of potential passwords, that is used to
attempt to crack a Wi-Fi network password.

The WPA cracking software, developed for these tests, is a Multiple Instruction Multiple Data
(MIMD) application (according to the Flynn’s taxonomy (Flynn, 1972)), written to automatically,
i.e. without user supervision, crack WPA security passwords. The software was written with
the API libraries in the TAC’s PLUS security module, specifically the crack library and MPI, which
allows it to be executed by any quantity of parallel processes, where each process performs a brute
force attack, using a subset of the passwords in the dictionary (data parallelism).

V.5 Complete missions 101

However, before attempting individual brute-force attacks, a set of steps (black boxes in Fig-
ure V-31) carried out by only one of the parallel processes (the master process), are necessary. The
complete software, depicted as wpaCrackingRPI is portrayed in Figure V-31.

Figure V-31: wpaCrackingRPI software. While the complete software is classified as MIMD, the
brute force attack is classified as SIMD.

While the software can be executed by any quantity of MPI processes, only one parallel pro-
cess per rover was used (two MPI processes in total) in order to provide sufficient computing
power to The ARCHADE services. This is because of the limited computing power available in
the Raspberry Pi 3 model B (4-core CPU and 1 GB of RAM).

The steps carried out by the master rover, attempt to capture a 4-way handshake package, which
includes data that can be used to find the WPA/WPA2 (Wi-Fi Protected Access) password. A
4-way handshake package allows an access point (router) and a client/supplicant to prove inde-
pendently that both know the PSK/PMK (Pre-Shared Key/Pairwise Master Key) without sharing
the actual password (IEEE, 2004). This strategy was part of IEEE approach to solve WEB (Wired
Equivalent Privacy) security vulnerabilities.

In parallel, the master MPI process (rank 0) performs a sniff attack (sniff attack black box) and
identifies connected clients to the target network (client selection black box). The sniffing attack
collects packages sent and received at the Wi-Fi router. To do so, the airodump-ng command, from

102 Chapter V - Experiments and Applications

the aircrack-ng suite (Aircrack-ng, n.d.) is used as follows:

airodump-ng --bssid APMAC --channel APChannel --write packetsFile NDMON

Where APMAC is the router’s MAC address, APChannel the router’s broadcasting channel,
packetsFile the file where collected packets will be outputted and NDMON the network interface,
in monitoring mode, used to collect packages (second antenna). Randomly, one client, connected
to the Wi-Fi router, is selected. These two tasks (sniffing and client selection) are done in parallel
via Python multprocessing library (Single-node parallel region 1). Once a client has been selected,
a second parallel region is initiated. Handshake packages are only exchanged, between a router
and a client, upon its first connection, therefore, coupled with the sniff attack, a deauthentication
attack is performed (Single-node parallel region 2). To do so, the aireplay-ng command, from the
aircrack-ng suite is used as follows:

aireplay-ng --deauth PCKGS -a APMAC -c CientMAC NDMON

Where PCKGS is the quantity of deauthentication packets to be sent to both the router and
the client and CientMAC is the client’s MAC address. Via the deauthentication packets, both the
router and the client are told that the other has disconnected. Therefore, a reconnection attempt
is done, in which a 4-way handshake package is recorded by the sniff attack in the packetsFile. At
this point, the master and slave processes split an existing dictionary among each other.

The dictionary was created previously to the execution of the mission with Kali’s crunch tool.
A secure password must include small and capital letters, numbers and symbols. Such guidelines
plus the quantity of characters in the password can make a brute-force attack very slow, even
potentially unachievable. In order to guarantee the success of this mission and given that the
target router and both of its networks are known, the dictionary was created using a pattern, i.e. a
set of known and a set of unknown characters for the creation of the potential passwords, resulting
into two dictionaries, one composed of 512 and the other of 4096 potential passwords. This is done
to reduce the computing time, given energy limitations in the UGVs, with a maximum autonomy
of around 30 minutes.

To further decrease mission computing time, the original dictionary is splitted among the
parallel processes during the execution of the mission. The splitting process is done at mission
time in order to provide scalability, i.e. wpaCrackingRPI can be used by any quantity of parallel
processes, not known until the execution of the mpirun directive. Following, each parallel process
will attempt to find the password by combining data in the packetsFile with each of the potential
passwords to generate a Message Integrity Code (MIC), also collected in the packetsFile. If one of
the passwords computes to the same MIC in the packetsFile, the password has been found, WPA
cracking blue box. Handshake packets in the packetsFile are encrypted using AES (Advanced
Encryption Standard) (Rijmen & Daemen, 2001). The WPA cracking process is done using the
aircrack-ng command from the aircrack-ng suite as follows:

aircrack-ng packetsFile -w splitDict

Where splitDict is the split dictionary that each MPI process has. If one of the potential pass-
words at each of the parallel process results to compute the correct MIC, other parallel processes
will stop its cracking attempt (Cracking monitoring blue box). WPA cracking is a very expensive
computational problem that can be speed up using GPUs or using crunch and aircrack-ng at the
same time, i.e. a dictionary file can be very big, which can slow I/O, specially when splitted dic-
tionaries are shared via network protocols. However this optimization techniques are outside the
scope of this Ph.D thesis.

V.5 Complete missions 103

The complete wpaCrackingRPI is a MIMD software, because parallel processes do not exe-
cute the same tasks over the same data, but it does include a SIMD region, i.e. the actual WPA
cracking. Furthermore, the TAC PLUS security libraries, dict, sniff, deauth and crack were used
within wpaCrackingRPI. Commonly, all of these attacks require user supervision, therefore the
libraries were developed to provide hacking automation. The motivation to present such mission
is twofold. First, to expose The ARCHADE’s potential, by going beyond common missions found
in the literature, such as SLAM, vision-based navigation, etc. Second, missions such as this, could
have potential in military applications where it might be necessary being in proximity to a specific
target, before attempting a hacking attack. However, this type of mission also represents a risk in
civilian contexts. Once the password of a Wi-Fi network is cracked, the mobile robot could con-
nect to the target network and perform all kind of attacks over the network clients. This lead to
emphasize the necessity of devising strategies to guarantee user’s privacy and security with the
rise of the mobile robotics era.

In order to evaluate TAC’s performance, the following section introduces a complete bench-
mark with the three missions discussed in here, in both simulated and real mode.

V.5.2 Benchmark

In this section, the results of executing the three proposed missions, simple motion, follow me and
WPA cracking are discussed. All the missions were carried out in the modes:

• Simulated (SIM), i.e. using the SimPlat (chapter IV section IV.4) with ArduPilot SITL for the
mobile entities.

• Real (REAL), i.e. using the two hackrovers shown in Figure V-28.

In both modes, the laptop shown in Figure V-2 was set as the system controller entity, ground
station and HPRC master node. The missions were executed in both modes to observe TAC’s
transparency to transcend from experimentation to real-world missions, which from the user’s
point of view, is done solely by setting the tag real to false in each of the corresponding entity
templates (chapter IV Table IV-4).

SIM mode was performed using the same Raspberry PIs, used as companion nodes in real
mode, but running the SITL version of the ArduPilot software. Furthermore, the same Wi-Fi
antennas and Wi-Fi router were used in both SIM and REAL mode.

The following results consider one test case per mission, i.e. each mission was executed once
and individual mission results are compared and averaged to observe TAC’s indicators disregard-
ing the specific mission to be carried out by the same ubiquitous supercomputing system.

Figure V-32 displays the missions’ total time duration, including the two test cases for the
WPA cracking mission (512 and 4096 words dictionaries). The follow me mission has a longer
duration than the other missions because it was set to carry multiple following rounds.

As it can be observed, the missions’ duration is fairly similar when in SIM versus REAL
mode. However, the slight differences between the two modes are potentially caused by operat-
ing system loads, network conditions, different performances between the ArduPilot SITL and its
hardware implementation, etc., out of the control of The ARCHADE. Such differences were not in-
vestigated in detail given that do not compromise TAC’s capacity to transcend from SIM to REAL
mode. Moreover, an average between the four test cases of 21.85 seconds and a standard devia-
tion of 13.12 seconds do not suggest specific reasons for the differences in mission time duration
between SIM and REAL mode, other than unexpected occurrences as those mentioned before, e.g.
different performances between the ArduPilot SITL and its hardware implementation.

104 Chapter V - Experiments and Applications

Figure V-32: Missions’ time duration

The benchmark in this section is composed of the following tests:

• Orders acknowledgment and hierarchy: This test was done to discuss order acknowledgment
and delays, with the objective of giving an estimation of TAC’s control and hierarchy ap-
proaches.

• Data synchronization: In order to provide a single-image system, where data is collected in
independent entities but ultimately synchronized to the system controller (ground station)
and entities requiring it, these tests aimed at measuring synchronization data size and time.

• CPU load and RAM usage: To evaluate TAC’s scalability features, average CPU load and RAM
usage, both in the system controller and in the mobile entities, were measured.

• Wi-Fi signal strength and latency: These tests were carried out to measure the conditions of
a HPRC cluster while in motion, an important aspect when dealing with supercomputing
infrastructures, especially when considering MIMD software (Flynn, 1972), i.e. such that is
based on message exchange.

The four items aimed at demonstrating TAC’s features and ultimately to observe its capacity
to transform a set of independent entities in a supercomputing infrastructure. Furthermore, two
extra tests will be discussed, scalability, carried out in SIM mode and WPA cracking software per-
formance. The WPA cracking mission is the only one in which supercomputing is done with the
traditional frame of mind, i.e. performance. The results presented in here show that supercom-
puting, as it has been rethought in this Ph.D thesis, can still be used in its traditional approach.

V.5 Complete missions 105

V.5.2.1 Orders acknowledgment and hierarchy

During the execution of a mission, a set of default orders, as mentioned before, are commanded
by the system controller and executed by all the entities depending of its nature, i.e. static, such
as the ground station or mobile, like the UGVs. Such default orders, in its default sequence, are:
connect to autopilot, start vehicle, execute mission and return home. Non-mobile entities will not be
commanded orders related to the autopilot, the vehicle, etc. Figure V-33 shows average order
delay D (equation III.9) in SIM (A) and REAL (B) mode for the three missions, four test cases.
Moreover, average orders delay OD (equation III.10) in SIM and REAL mode are displayed in
Figure V-33-C.

Figure V-33: Orders delay SIM VS REAL mode

106 Chapter V - Experiments and Applications

As it can be observed, the maximum delay in SIM mode, is of 2.38 seconds, for the return home
order. Correspondingly, the maximum delay in REAL mode, is of 2.03 seconds, again for the
return home order. This order is the slowest to be acknowledged because of a set of processes,
related to the execute mission order, that are finalized before proceeding with the acknowledgment.
In addition, the total average orders delay, including all the mission cases, is smaller in REAL
mode (1.09 s) that in SIM mode (1.18 s), as depicted in figure Figure V-33-C. While the difference is
almost neglectable, this is a good indication that mobility has not negatively affected the missions.
Moreover, Table V-6 shows the average orders delay difference in seconds between SIM and REAL
mode, for all missions.

Table V-6: Average orders delay difference in seconds between SIM and REAL mode, for all
missions

Simple motion Follow me WPA Crack-512W WPA Crack-4096W

0.59 0.45 0.42 0.25

With a total average of 0.43 seconds, these results confirm TAC’s transparent transition be-
tween simulation and real mode. The system presented in this work, composed of the human
operator, the system controller (SC and SC-E) and the 2 UGVs (|E| = 5) falls under the automatic
with human system operator automation mode (chapter III Figure III-11), whose GRC is calculated
accordingly to Equation III.21. Therefore, the optimal GRC, i.e. without disconnection, for the
studied system is 0.8125. Given that there were no disconnections, during the execution of all the
missions, SH (Equation III.8) remain as the optimal GRC in all cases. This is because of the small
size (≈ 30 m) of the area mission.

However, with a larger area-size, disconnections are quite possible, which will impact SH
negatively. Nevertheless, for missions requiring large areas, mobile communications technolo-
gies, e.g. 4G, could provide sufficient performance to maintain constant connectivity between the
entities of a system. Moreover, with the appearance of 5G and its powerful requirements (ITU,
n.d.), ubiquitous supercomputing with little or non-disconnections is a true possibility with real-
world missions.

V.5.2.2 Data synchronization

In order to achieve a single image system, at all times, during the execution of a mission, the TAC’s
synchronization service automatically performs data synchronization between the entities and the
system controller and vice versa. The TAC’s synchronization service guarantees that:

• The system controller, e.g. the ground station, holds a local copy of all mission-related data.
Such data includes the telemetry of each of the mobile entities, e.g. their position, velocity,
attitude, GPS status, etc., mission-generated data, e.g. files, images, video, etc., and TAC
data e.g. orders, events, logs, tasks, etc.

• Each entity receives orders and events data (from the system controller and other entities),
holds telemetry data (of all mobile entities) and shared data, e.g. data required for mission
execution or TAC purposes.

• If necessary, the entities are aware of the mission status and corresponding tasks.

Data synchronization is affected by two factors. First, the duration of the mission i.e. the
longer the mission, more data to be synchronized. For example, telemetry data is synchronized

V.5 Complete missions 107

Figure V-34: Data synchronization per mission, SIM VS REAL mode

each second during the execution of the mission. Second, the specific network conditions in a
synchronization iteration, which can affect data synchronization time. When in SIM mode, the
SITL Raspberry PIs are not actually moving, therefore communications are not potentially affected
such as in REAL mode. However, it is possible that better network conditions occur during REAL
mode vs SIM mode at specific moments during the execution of a mission, for example when a
vehicle is in direct line of sight with the ground station or other vehicle.

Figure V-34 shows statistics from the synchronization service. The average total data, consid-
ering the three missions, amounts to 1.69 MB in REAL mode and 1.58 MB in SIM mode (Figure V-
34-A). This includes all the aforementioned data, e.g. telemetry, etc. The data size, in both SIM
and REAL mode, is minimal given the fact that these missions do not include heavy data acquisi-

108 Chapter V - Experiments and Applications

tion, like imagery, video, etc. In the case of the follow me mission, its execution takes longer time
than the other three cases as it can be observed in Figure V-32, therefore more data needed to be
synchronized, e.g. logs (TAC and mission-related) and telemetry data. Moreover, the minimal dif-
ferences in data size between SIM and REAL mode are caused by minor differences in telemetry
files (e.g. variations between real and simulated GPS coordinates), logs, shared data, etc.

Regarding Figure V-34-B, the average of 190.52 seconds (REAL mode) and 201.77 seconds
represent synchronization service time, i.e. the total average time, in the four test cases, that the
synchronization service performed a synchronization task. Moreover, Table V-7 shows a compar-
ison between mission time (MT) and synchronization time (TM).

Table V-7: Mission time VS. Synchronization time. MT = Mission Time, ST = Synchronization
Time

SIM REAL
Mission

MT ST
ST/MT

[%]
MT ST

ST/MT
[%]

Simple motion 196.83 152.60 77.53 229.82 154.26 67.12

Follow me 417.51 416.60 99.78 398.87 364.58 91.40

WPA Crack-512w 165.79 125.19 75.51 196.91 122.17 62.04

WPA Crack-4096w 168.27 112.68 66.97 163.63 121.06 73.98

Average ST/MT SIM 79.95 REAL 73.64

As it can be observed in Table V-7, the average ST/MT is 6.31% higher in SIM mode that in
REAL mode, i.e. for almost the same data, synchronization in REAL mode is faster. In fact, for
all the test cases, except the WPA cracking with 4096 words dictionary, synchronization is faster
in REAL mode. This is a positive result that suggests that communications can be better when
having mobile entities. In the case of the follow me mission, synchronization over mission time
ratio (ST/MT) is considerably higher than in the other missions. This is because, the follow me
mission generates data more often than the other missions, in order to coordinate the cooperative
motion of the two vehicles.

In a multi-robot system, where entities could result into all sort of failures, data synchroniza-
tion mechanisms are very important in order to generate a single-image system, for example to
facilitate task reassignment. The results in here show that very little data, less than 2 MB average
is sufficient to coordinate a small ubiquitous supercomputing system, that does not generate high
amounts of data, e.g. imagery, etc., i.e. this is mostly TAC data, including as well the two vehicles
complete telemetry information. Ignoring data synchronized from the system controller towards
the mobile entities, which is mostly related with orders, it is possible to assume that less than 1 MB
is synchronized per mobile entity, therefore for N mobile entities, around N MB will have to be
synchronized. This is a very positive result that shows that a ubiquitous supercomputing system
does not need large quantities of data to fully operate and can scale properly. Furthermore, while
the missions duration is fairly small, data is synchronized as it is created, therefore, a single-image
system can be maintained at all times provided that communications are maintained correctly as
it can be observed in Wi-Fi covered areas (see section V.5.2.4). Nevertheless, further testing with
missions collecting heavy data and using communications technologies different from Wi-Fi need
to be addressed to evaluate performance in such conditions, this is part of this Ph.D thesis future
work.

V.5 Complete missions 109

V.5.2.3 CPU load and RAM usage

CPU load and RAM usage for the system controller (ground station) and the mobile entities (hack-
rovers/Raspberry PIs) are analyzed independently. This is because the computing features of the
ground station and the Raspberry PIs are considerably different as presented in Table V-8.

Table V-8: Entities’ computing features

Entity Type CPU speed [MHz] CPU cores RAM [GB]

System controller (ground station) 3200 4 24

Mobile entities (Raspberry Pi) 900 4 1

Following Table V-9 shows total average CPU load and RAM usage, i.e. including operating
system tasks and TAC’s services, for the system controller and the mobile entities, considering the
three missions and the four test cases, in SIM and REAL mode.

Table V-9: System controller and mobile entities total average CPU load and average RAM
usage

Entity type
Average CPU load (%) Average RAM usage (GB)

SIM mode REAL mode SIM mode REAL mode

System controller 46.48 56.42 1.58 1.95

Mobile entities 68.44 59.91 0.17 0.16

The system controller’s average CPU load, in both modes, accounts to around half of the total
CPU computing power. This is because the system controller executes multiple TAC services plus
it acts as the master HPRC node. Regarding the mobile entities, the average CPU load of 68.44%
in SIM mode and 59.91% in REAL mode are very promising when dealing with embedded com-
puting boards, such as the Raspberry Pi, which provides limited computing power as depicted
in Table V-8. Moreover, minimal average RAM was used in both the system controller and the
mobile entities during the execution of all studied missions.

Regarding the mobile entities, the differences in CPU load between SIM and REAL mode
relate with the ArduPilot SITL software. The difference of 0.01 GB in RAM usage is neglectable.
In the case of the system controller, both CPU load and RAM usage are higher in REAL mode. This
needs further testing and analysis and it is left for future work given that the system controller,
set as the ground station, is not simulated in both modes.

As previously mentioned, TAC’s monitoring service current version computes total perfor-
mance, which includes operating system tasks. Such approach is taken to evaluate complete CPU
load and RAM usage, rather than only TAC-related indicators and observe the feasibility of a
ubiquitous supercomputing infrastructure composed of embedded computing boards. However,
future work will include specific TAC’s CPU and RAM indicators. Nevertheless, these results
show TAC’s light weight, especially important when dealing with computing boards such as the
Raspberry Pi or similar options. Furthermore, the ground station can be set upon an inexpensive
computer with as much as 2 GB of RAM as evidenced in Table V-9. Even a mobile entity, embed-
ded with a slightly more powerful board than the Raspberry Pi, could be set as master/system
controller, if only RAM were to be considered.

For systems composed of larger quantities of entities, further tests need to be carried out
in order to evaluate the system controller’s performance. Nevertheless, in the scalability section

110 Chapter V - Experiments and Applications

V.5.2.5, results of using three mobile entities, including an UAV, in SIM mode will be discussed.

V.5.2.4 Wi-Fi signal strength and latency

In this section, results regarding Wi-Fi signal strength and latency for the system controller and the
mobile entities during the execution of the three missions, in SIM and REAL mode are discussed as
portrayed in Table V-10. Wi-Fi signal strength is monitored periodically (monitoring service) via
the operating system control over the network interface. Correspondingly, latency is computed
periodically from each entity towards the rest of the entities in the system.

Table V-10: System controller and mobile entities average Wi-Fi signal strength and latency

Entity type
Average Wi-Fi signal strength (%) Average latency (ms)
SIM mode REAL mode SIM mode REAL mode

System controller 100 100 8.67 6.44

Mobile entities 100 91.17 20.81 14.75

The system’s controller Wi-Fi signal strength, remained in optimal conditions (100 %), during
the execution of all the missions, given that in both modes, SIM and REAL, the ground station is a
non-mobile entity, located at a minimal distance from the Wi-Fi router. Same results occurred for
the mobile entities in SIM mode. However, in REAL mode as expected, mobile entities average
Wi-Fi signal strength was slightly less than optimal, 91.17 %.

Regarding latency, results are very promising. The system controller latency is of the up-
permost importance given that it is the non-human entity with the highest hierarchy in charge
of commanding default orders. With this in mind, the 8.67 ms and 6.44 ms average latencies in
SIM and REAL mode respectively, are very good considering the mobile nature of the two UGVs.
Moreover, mobile entities’ average latency is important especially with missions implementing
MIMD software, such as the follow me mission, where there is constant MPI messages exchange
for motion coordination. Again latency is better in REAL mode than in SIM mode.

These results suggest that HPRC in its whole extent, even including MIMD software, is fully
achievable in missions within line of sight, at small distances from a Wi-Fi router. For future work,
Beyond Visual Line of Sight (BVLOS) missions will be studied, including 4G communications in
order to observe performance indicators, but current communications technology advancements
offer great promises for a future filled with general-purpose ubiquitous supercomputing systems.

V.5.2.5 Scalability

In this section, it is discussed the results of executing the WPA cracking mission with the
512-words dictionary, in SIM mode with the following ubiquitous supercomputing infrastruc-
tures/cases:

1. System controller and 1 UGV

2. System controller and 2 UGVs

3. System controller, 2 UGVs and 1 UAV (hackdrone1)

The scalability tests were performed using the same Raspberry PIs that in real mode, with an
extra Raspberry Pi, all running TAC and ArduPilot SITL, specifically the APMrover2 (UGVs) and
ArduCopter (UAV) firmware and the two Wi-Fi antennas per Raspberry Pi. Figure V-35 shows
average orders delay.

V.5 Complete missions 111

Figure V-35: Scalability tests - orders delays

TAC’s scalability, regarding orders acknowledgment, is demonstrated as it can be observed
with the slight time increasing of 0.04 seconds between case 2 (SC+2 UGVs) and 3 (SC+2 UGVs+1
UAV). Furthermore, the total average of 0.82 seconds falls within the same time frame as the
averages of 1.09 seconds in REAL mode and 1.18 seconds in SIM mode for the three missions, as
presented in section V.5.2.1.

Table V-11: Scalability tests: CPU load and RAM usage

Entity Type Average CPU load [%] Average RAM usage [GB]

System controller 42.92 2.03

Mobile entities 66.90 0.17

Moreover, as it can be observed in Table V-11, TAC’s scalability is demonstrated in terms of
CPU load and RAM usage when increasing the quantity of entities, i.e. no major spikes when
increasing the system’s size. In fact, the system controller CPU load is lower (42.92%) than the
46.48% and 56.42% in SIM and REAL mode respectively, as discussed in section V.5.2.3. This
needs further testing for confirmation but results are very positive. However, the average 2.03 GB
of RAM usage is higher than the 1.58 GB and 1.95 GB in SIM and REAL mode respectively. Again,
this needs further study and it is left for future work, although the system controller’s hardware
features are not an issue, provided that it is set in a non-robotic entity, since nowadays it would
be quite achievable to use a rather inexpensive computer with high computing power.

Regarding the mobile entities, the average CPU load of 66.90% is close with the average
68.44%, as found in the SIM mode tests (section V.5.2.3). In addition, the average 0.17 GB of RAM
usage is exactly the same as the previous results in the same section. These findings are positive
given current limited hardware features with companion computers and considering the fact that
non system controller entities’ CPU load and RAM usage are not affected by the system’s size.
Furthermore, computing boards such as the NVIDIA Jetson AGX Xavier (NVIDIA, n.d.c) would
not have any issue with The ARCHADE, even potentially acting as the system controller entity
and the master HPRC node.

112 Chapter V - Experiments and Applications

Scalability is an important feature when discussing supercomputing systems and while un-
fortunately, during the development of this Ph.D thesis, was not possible to have access to larger
quantities of entities, the results presented in here are promising.

V.5.2.6 WPA cracking software performance

WPA cracking is a complex computational task that benefits from the use of supercomputing in its
traditional approach, i.e. as a performance tool. However, for the studied mission, its complexity
has been decreased by the use of patterns, accounting for a known password and correspondingly,
computing times are very small in total. This is done taken into account energy considerations,
i.e. for a long complicated password, WPA cracking could take hours, beyond the robots’ energy
capacity. The wpaCrackingRPI software is composed of the steps/attacks: 1. Sniffing attack, 2.
Client deauthentication attack and 3. WPA cracking attack (SIMD) (see Figure V-31), where attacks
1− 3 individual computing times amount to the complete attack time.

Figure V-36: WPA cracking software performance

V.5 Complete missions 113

Figure V-36 shows computing times for the following test cases:

1. WPA cracking with 512-words dictionary in SIM mode with the three scalability cases (sec-
tion V.5.2.5). As mentioned before, one MPI process was executed per mobile entity, i.e.
having three mobile entities, three MPI processes were executed - Figure V-36 A and B.

2. WPA cracking with 4096-words dictionary in SIM mode with 1 and 2 MPI processes - Fig-
ure V-36 C and D.

3. WPA cracking with 512 and 4096-words dictionaries in REAL mode with the 2 UGVs - Fig-
ure V-36 E and F.

While the difference in WPA cracking times (attack 3), for the tree scalability cases, is very
small (≈ 2 s), as shown in Figure V-36-A, the time increase, as the MPI processes quantity in-
creases, might evidence the communications cost impacting negatively the software performance.
However, there is a time reduction (9 s) for the complete attack time when using 3 over 2 MPI pro-
cesses (Figure V-36-B). Nevertheless, attacks 1 and 2 are executed only by a single MPI process,
which suggests simply better network conditions at the specific execution time of the 3 MPI pro-
cesses attack. This is a rather common occurrence in traditional supercomputing, where having
small data sets, (512 words) does not benefit from parallelism.

Regarding the second test case (Figure V-36 C and D), the WPA cracking time and the com-
plete attack time decrease as the quantity of MPI processes increase, satisfying traditional su-
percomputing’s main objective, computing efficiency. Furthermore, the test case number 3 results
(Figure V-36 E and F), show that for a data ratio of 8 (4096/512), WPA cracking time increases
with a ratio of 1.34 (5.12/3.82) and the complete attack time with a ratio of 1.13 (79/70), a good
indication of computing efficiency and scalability.

These results demonstrate that ubiquitous supercomputing, as rethought by this Ph.D thesis,
can provide in fact its traditional approach. Next chapter discusses conclusions and future work.

Life, as we carelessly conceive it, is nothing but an emergent

property, something that does not belong to our heart nor to

our brain, or to any individual classification. Aren’t we alive

because all of us are alive? Has the universe found itself trapped

into a fractal? Or did I wish it to be like that? Supercomputing

is more than performance, performance is just another emergent

property

— Leonardo CF

VI
Concluding remarks

Supercomputing has been found very useful in the last decades. We can do all kind of things
nowadays, things that were impossible just fifty years ago. Imagine Einstein connecting to the
Barcelona Supercomputing Center and requesting some nodes to prove its gravitational waves
theory or Tesla fighting Edison yet again to run their ”current” simulations. Would Newton or da
Vinci be even greater? Imagine the genius with millions of computing cores at his/her fingertips.

Supercomputing is everywhere, from the little widget telling you that today will be a sunny
day, up to that new medicine annihilating that old disease and passing by those discoveries reach-
ing the depths of the universe, our history, our still being told story and that of the universe itself.
Only one can compete its scope, if it manages to find stability. Quantum computing, but yet again
human curiosity will eventually require Quantum Supercomputing.

This Ph.D thesis aimed at taming the monster, to find a way to bring its armor to the small
places, those not yet capable of 4.1 GHz or 2, 397, 824 computing cores, those not requiring
9, 783.00 kW (TOP500, n.d.), those at the Edge, those left behind, those previously thought for
a simple task, a single purpose. Yet, not only about bringing power to the little ones, not only its
armor, but its sword, the one elegantly hidden behind its impressive cavalry.

115

116 Chapter VI - Concluding remarks

VI.1 Summary of contributions

Supercomputing has been lightly flirted with by roboticists, as section II.1 has shown. Previous
works have suggested the use of parallel software libraries, such as CUDA or MPI for computa-
tionally demanding robotic tasks. In such works, supercomputing has always been understood as
a set of tools and infrastructures for speeding up tasks that are too slow when running on single
computing units.

However, supercomputing is more than that, more that simply placing a larger set of com-
puting units together and consequently solving complex problems faster. As a first attempt to re-
think what supercomputing actually means, the concept, potentially new computer science field
of High Performance Robotic Computing (HPRC) was introduced by this Ph.D thesis, in which a set
of robots, still capable of higher performance that the one found in a single one, can scale, be used
for different purposes and even execute tasks based on MPI, the most standard High Performance
Computing (HPC) technology, but for purposes not necessarily requiring high computing power,
e.g. applications such as V.2, V.3 in chapter V.

Moreover, for certain applications, the amount of total computing power that can be em-
bedded nowadays in a multi-robot system might not be enough, therefore integration between
traditional HPC and HPRC results advantageous. However, in order to control advancements re-
garding AI and automation, human hierarchy shall be maintained. In addition, hierarchy amongst
the entities belonging to a single system, must be distributed accordingly in order to provide scal-
ability, stability, resilience, etc. With this in mind, this Ph.D thesis defined ubiquitous supercom-
puting as the hierarchical joining of HPC, HPRC, other devices that can be included in single
systems, i.e. CLD, and ultimately humans, all with a twofold objective. First, to create systems,
made of independent entities and capable to act as a single cohesive unit and second to contribute
to the ubiquity of supercomputing and robotics. The following list summarizes the contributions
of this Ph.D thesis:

• A comprehensive review of previous attempts to join supercomputing and robotics was presented
in chapter II section II.1. Most contributions, found in the literature, targeted single-robot
systems, by augmenting its computing power via embedded computers running traditional
operating systems and standard HPC technologies such as MPI and CUDA, or via interfaces
with remote computing facilities (e.g. cloud, etc). In addition, few works proposed the idea
of transforming a set of robots into a HPC cluster. However, a lack of a formal definition
integrating HPC and robotics and more importantly, detailed strategies to adapt it within
multi-robot systems were still missing. Furthermore, previous research endeavors focused
solely upon the performance feature of supercomputing infrastructures, something that in
fact can be useful in robotic settings but that is not always necessary. Therefore, in order to
exploit supercomputing in its full extent, High Performance Robotic Computing was pro-
posed by this Ph.D thesis.

• High Performance Robotic Computing (chapter III section III.1) aims at transforming a set of in-
dependent robots into a supercomputing infrastructure capable of doing anything and not
requiring external computing power. In this sense, HPRC can be thought as HPC Edge or
Fog computing, as long its objective is understood beyond solely computing performance.
This Ph.D thesis provided strategies to adapt each of the HPC software layers utilization
to multi-robot systems, taken into consideration the nuances of mobile entities and current
limitations. Two types of multi-user/multi-purpose clusters: HPRC cluster (Figure III-2) and
HARC (Definition 6) were defined and to facilitate their installation and configuration, the
HPC-ROS package (section III.1.1) was developed. In addition, to demonstrate that stan-
dard HPC software can be used for non-demanding computing tasks and still provide scal-
ability, user-transparency, etc., swarming motion MPI software based on the Vicsek model

VI.1 Summary of contributions 117

(Vicsek et al. , 1995) was developed and tested in simulation mode (chapter V sections V.2
and V.3).

• Ubiquitous supercomputing defined as the union of HPC, HPRC, CLD and humans with the
objective of creating systems composed of distributed entities but acting as a single cohesive
unit capable of executing any type of mission (chapter III definition 1). For practicality, an
ontology describing concepts such as systems, entities, roles, nodes, groups, links, interfaces,
etc, was proposed in the same chapter. Furthermore, the concept of General-Purpose Comput-
ing Mission GPCM was described in section III.3, including the ideas behind tasks, events,
actions, etc. All of these novel concepts were defined with the objective of facilitating the
creation of any type of mission executed with ubiquitous supercomputing systems.

• The ubiquitous supercomputing language UbiSL (chapter III section III.4) was proposed to serve
as a practical implementation of the ubiquitous supercomputing ontology and general-
purpose computing missions, including all its relevant concepts (chapter III). The UbiSL
provides flexibility for the creation of systems composed of any quantity and type of enti-
ties embedded with any quantity of nodes, forming any quantity and types of groups and
being used for any type of mission, where each task is linked with an individual software,
therefore effectively separating the ubiquitous supercomputing system from the missions
carried out by it. In practical terms, the UbiSL is a set of templates that can be used to build
ubiquitous supercomputing systems and general-purpose computing missions.

• Hierarchy and ubiquitous supercomputing. Hierarchical systems have often been found in na-
ture and all kind of human activities. A ubiquitous supercomputing system is a hierarchical
network, representing the capacity that entities hold to command orders over other enti-
ties, as defined by this Ph.D thesis. Based on the ideas of hierarchy, three automation modes
were proposed. In addition, it was found that networks with a Global Reaching Centrality
(hierarchy) higher than 0.5 are more stable than those less hierarchical. The three automa-
tion modes were designed to scale towards any quantity of entities, while still maintaining
stability.

• A literature review regarding ubiquitous robotics was presented in chapter II, section II.2. It was
found that Robot Operating System (ROS) is quickly becoming a standard robotics tech-
nology, one that can be gracefully integrated in ubiquitous supercomputing infrastructures
at their uppermost layer, the applications layer, similar as many other technologies such
as OpenCV, OpenCL, MPI, CUDA, etc. Additionally, the guidelines for new ubiquitous
robotics frameworks in Jiménez-González et al. (2013) were used to design a ubiquitous
supercomputing framework and middleware.

• The ARCHADE - TAC (chapter IV), a loosely-coupled component-based, fully general-
purpose ubiquitous supercomputing framework and middleware, written in Python, de-
signed for the deployment, implementation and operation of ubiquitous supercomputing
systems. The ARCHADE has been tested with simulated and real systems as discussed in
chapter V sub section V.5.2. TAC has obtained very good performance indicators, i.e. orders
delay, CPU load, RAM usage, etc., and it can be concluded that it can effectively transform a
set of independent entities into a scalable, computing-efficient, centralized/distributed, etc.,
supercomputing infrastructure. TAC is composed of 5 components: Application Programming
Interface (API), Framework, Middleware, SimPlat and PLUS, to be listed as individual contribu-
tions.

• The ARCHADE API (chapter IV section IV.1) was used to developed the other TAC’s four
components and it includes libraries for ubiquitous supercomputing infrastructures man-
agement and control, operating system directives, hierarchy, etc. Furthermore, the most

118 Chapter VI - Concluding remarks

important contribution of the TAC API is that it can be used to build new services, com-
ponents, mission software, etc. Moreover, each of the other components is packed with a
corresponding API.

• The ARCHADE Framework (chapter IV section IV.2), which consists of a set of classes and
templates that allow the description and implementation of a ubiquitous supercomputing
system. Moreover, the framework provides services for deployment of HPC or HPRC set-
tings e.g. the HPC-ROS package providing standardization, testing, etc. The single most
important feature of the framework is to provide a mechanism to create all kind of classes
representing vehicles, robots, things that can be integrated transparently into ubiquitous su-
percomputing systems, providing scalability, heterogeneity, flexibility, etc. Furthermore, TAC
framework implements the UbiSL and provides extra templates for mission software. Such
templates make use of the API and in some cases MPI to create all kind of general-purpose
computing software easily integrated with The ARCHADE. Moreover, these templates pro-
vide computing efficiency/performance, i.e. by facilitating MPI utilization.

• The ARCHADE Middleware (chapter IV section IV.3) separates the ubiquitous supercomput-
ing infrastructure from the mission carried by it and provides a set of services between the
two layers such as communications, initialization, live, matching, monitoring, statistics and syn-
chronization. All services are component-based. Each service is portrayed as a separated
contribution.

– The ARCHADE Middleware communications service most important function is to provide
a mechanism for orders (hierarchy) and events exchange amongst entities to facilitate
the automatic execution of a mission. Orders are shared accordingly to the automation
modes, therefore this service also includes the hydra sub service, which can be used
by the system operator to control the entire system. In addition, orders are encrypted
and only accepted from higher hierarchy entities and via pre-shared keys. This service
ultimate goal is to provide hierarchy and security.

– The ARCHADE Middleware initialization service most important function is to interpret
UbiSL templates to create the ubiquitous supercomputing system in execution time and
to effectively mapped it to the ubiquitous supercomputing infrastructure.

– The ARCHADE Middleware live service most important function is to automatically con-
trol the ubiquitous supercomputing system and the execution of the mission, including
the automatic control of the vehicles. Two main agents are part of this service, the sys-
tem controller and the entity controller. The agents hold different hierarchies, but both
control its corresponding system and entity. See ubiquitous supercomputing lemma
III.2. This service provides automation, cooperation and user-transparency.

– The ARCHADE Middleware matching service most important feature is to assign mission
tasks to entities by using the UbiSL templates. In this sense, the service replaces and
enhances the scheduling feature of the batch system.

– The ARCHADE Middleware monitoring service holds different important functions, such
as mission monitoring, individual nodes indicators, e.g CPU load, RAM usage, net-
work conditions, etc, replacing and enhancing the resources monitoring feature in the
batch system.

– The ARCHADE Middleware statistics service main function is to compute mission and
system’s statistics such as hierarchy, CPU load, etc. The service interacts with the mon-
itoring service results to compute said statistics.

– The ARCHADE Middleware synchronization service holds a very important feature, to
maintain a single-image system, i.e. to synchronize TAC and mission data among the
entire system depending of its necessity. Furthermore, it provides resilience by acting

VI.2 Future research 119

from the background at all times. Even in periods of disconnection, the service is active
and will synchronize all data once reconnection occurs. This service provides central-
ization/distribution and user-transparency.

• The ARCHADE SimPlat (chapter IV section IV.4) provides two main mechanisms. Easy tran-
sition from experimentation to real-world missions and a general-purpose simulator template.

– hprccoopflying (chapter V section V.3), a TAC-based simulator implementing the con-
cept of HPRC cluster of aircraft, which currently includes swarming motion but can be
enhanced to include other algorithms.

• The ARCHADE PLUS (chapter IV section IV.5) is a GPCM (General-Purpose Computing
missions) API, i.e. it can be used to build mission task software. It currently includes two
modules, to be listed as individual contributions.

– The ARCHADE PLUS Motion module includes swarm and follow me motion software as
portrayed in chapter V sections V.2, V.3 and V.5. To use such software, entities must be
put in piloted mode in order to overthrown mobility control at TAC’s middleware live
service.

– The ARCHADE PLUS Security module includes several libraries for ethical hacking, as
discussed in chapter V section V.5.

The single most important contribution of this Ph.D thesis has been to provide a philosophy
and a technology (The ARCHADE) that can transform a set of independent entities, e.g. servers,
supercomputers, robots, computing-less devices, people, etc., into an enhanced supercomputer, a
collective centralized and distributed intelligence, capable of doing anything by exploiting all super-
computing features.

VI.2 Future research

Several research fronts spawn from the results and contributions of this Ph.D thesis, as it was dis-
cussed throughout all the chapters, especially chapter III. However, the following main research
lines are considered:

• Cloud computing: The ARCHADE currently supports the use of interfaces for interaction with
external computing resources, as it was demonstrated in the proof of concept, the Tigers vs.
Hunters system (chapter V section V.4). However, in order to provide the simulation platform
with the capacity of testing simulated systems made up of hundreds of entities, the creation
of a Cloud computing interface is in TAC’s roadmap. Such interface will allow the transpar-
ent deployment and provisioning of TAC-enabled virtual machines and or containers via
Docker (Docker, n.d.). The interface is currently in design phase.

• Scalability: The benchmark carried out in real mode was done with a maximum of three
entities (chapter V Figure V-3), the HPRC-Rovers cluster. While the results of the benchmark
were very positive, future work will include further testing with larger quantities of entities,
in order to evaluate TAC’s performance indicators. Such testing will be done when the cloud
computing interface is finished and tested. In addition, a deeper analysis of the differences
between SIM and REAL mode is foreseen in TAC’s roadmap.

• Adaptability: In order to provide dynamic system reconfiguration, future work includes the
development of a Service Level Agreement (SLA) service, part of the next version of TAC’s

120 Chapter VI - Concluding remarks

middleware. The SLA service will allow dynamic integration of entities, i.e. during mission
execution and furthermore live mission changing.

• Resilience: TAC currently supports resilience via the middleware synchronization service
(chapter IV section IV.3). However, to further provide resilience mechanisms, TAC’s
roadmap includes the development of a live redistribution tasks mechanism.

• Automation: The three automation modes (chapter III section III.7) provide mathematical
stability that requires further testing including tens and hundreds of entities, first in simu-
lation mode and following with real entities. Furthermore, mixed automation modes, e.g. a
single pilot controlling a group of entities, multiple master entities, multiple system oper-
ators, low-LRC entities capable of commanding orders over groups of entities, (modified
hierarchy networks), etc., testing is part of the future work.

• Real-time systems: In order to support real-time and sensitive missions, TAC’s roadmap in-
cludes the integration of the Data Distributed Service (DDS) (Pardo-Castellote, 2005) within
the TAC’s middleware communications service. Furthermore, testing with RTOS (Real-Time
Operating Systems) such as Nutt (2014), e.g. deployment of HPC software layers is part of
the future work.

• Heterogeneity: Based on the framework core layers, TAC’s roadmap includes support for
Dronecode (Dronecode, n.d.a), DJI (DJI, n.d.a), ROS, etc.

The main goals of this Ph.D thesis and its future work is to serve as the foundation layer for
the creation of a new computer science field High Performance Robotic Computing, the rise of ubiq-
uitous supercomputing as defined in here and The ARCHADE as a standard ubiquitous robotics
technology that can successfully being used in all kind of applications, related to the Internet of
Things, robotics, etc., and therefore truly bringing supercomputing everywhere.

Bibliography

3DR. DroneKit companion computers. http://python.dronekit.io/develop/
companion-computers.html. [Online; accessed February-2019]. 74

3DR. DroneKit. Developer tools for drones. http://dronekit.io/. [Online; accessed February-2019]. 26,
27, 58, 74

3DR. DroneKit-SITL. https://github.com/dronekit/dronekit-sitl. [Online; accessed
September-2019]. 61

ABHISHEK, SHARMA. 2014. Drone Data Adds a New Horizon for Big Data Analytics. http://www.infoq.
com/news/2014/09/drone-data-big-data-analytics. [Online; published September-2014, ac-
cessed January-2019]. 3

ADAPTIVE-COMPUTING. Adaptive Computing Moab. http://www.adaptivecomputing.com/
moab-hpc-basic-edition/. [Online; accessed January-2019]. 11

ADAPTIVE-COMPUTING. TORQUE Resource Manager. http://www.adaptivecomputing.com/
products/torque/. [Online; accessed January-2019]. 5, 11, 30, 32

AIRCRACK-NG. Aircrack-ng suite. https://www.aircrack-ng.org/. [Online; accessed February-2019].
102

ALBERT, RÉKA, JEONG, HAWOONG, & BARABÁSI, ALBERT-LÁSZLÓ. 2000. Error and attack tolerance of
complex networks. nature, 406(6794), 378. 43

ALFA. Alfa AWUS036NEH Wi-Fi antenna. https://www.alfa.net.my/products/
Alfa-AWUS036NEH-802.11n-WIRELESS-N-USB-Wi-Fi---Antenna/11. [Online; accessed
February-2019]. 98

AMAZON. AWS High Performance Computing (HPC). https://aws.amazon.com/hpc/. [Online; accessed
February-2016]. 4, 17

AMDAHL, GENE M. 1967. Validity of the single processor approach to achieving large scale computing
capabilities. Pages 483–485 of: Proceedings of the april 18-20, 1967, spring joint computer conference. ACM. 12

ANDERSON, DAVID P, COBB, JEFF, KORPELA, ERIC, LEBOFSKY, MATT, & WERTHIMER, DAN. 2002. SETI@
home: an experiment in public-resource computing. Communications of the ACM, 45(11), 56–61. 12

ANDO, NORIAKI, SUEHIRO, TAKASHI, KITAGAKI, KOSEI, KOTOKU, TETSUO, & YOON, WOO-KEUN. 2005.
RT-middleware: distributed component middleware for RT (robot technology). Pages 3933–3938 of:
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 17

121

http://python.dronekit.io/develop/companion-computers.html
http://python.dronekit.io/develop/companion-computers.html
http://dronekit.io/
https://github.com/dronekit/dronekit-sitl
http://www.infoq.com/news/2014/09/drone-data-big-data-analytics
http://www.infoq.com/news/2014/09/drone-data-big-data-analytics
http://www.adaptivecomputing.com/moab-hpc-basic-edition/
http://www.adaptivecomputing.com/moab-hpc-basic-edition/
http://www.adaptivecomputing.com/products/torque/
http://www.adaptivecomputing.com/products/torque/
https://www.aircrack-ng.org/
https://www.alfa.net.my/products/Alfa-AWUS036NEH-802.11n-WIRELESS-N-USB-Wi-Fi---Antenna/11
https://www.alfa.net.my/products/Alfa-AWUS036NEH-802.11n-WIRELESS-N-USB-Wi-Fi---Antenna/11
https://aws.amazon.com/hpc/

122 BIBLIOGRAPHY

ANSEL, JASON, ARYA, KAPIL, & COOPERMAN, GENE. 2009. DMTCP: Transparent checkpointing for cluster
computations and the desktop. Pages 1–12 of: International Symposium on Parallel & Distributed Processing.
IEEE. 6

ARAIZA-ILLAN, DEJANIRA, & EDER, KERSTIN. 2019. Safe and Trustworthy Human-Robot Interaction.
Humanoid Robotics: A Reference, 2397–2419. 19

ARDUPILOT. ArduPilot. http://ardupilot.org/. [Online; accessed January-2019]. 14

ARDUPILOT. MAVProxy. http://ardupilot.github.io/MAVProxy/html/index.html. [Online;
accessed February-2019]. 92

ARDUPILOT. NVidia TX1 as a Companion Computer. http://ardupilot.org/dev/docs/
companion-computer-nvidia-tx1.html. [Online; accessed January-2019]. 14

ARDUPILOT. NVidia TX2 as a Companion Computer. http://ardupilot.org/dev/docs/
companion-computer-nvidia-tx2.html. [Online; accessed January-2019]. 15

ARDUPILOT. Pixhawk 1. http://ardupilot.org/copter/docs/common-pixhawk-overview.
html. [Online; accessed January-2019]. 14, 69, 98

ARDUPILOT. SITL Simulator (Software in the Loop). http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html. [Online; accessed February-2019]. 27, 61, 74

ASUS. ASUS Tinker board. https://www.asus.com/us/Single-Board-Computer/
Tinker-Board/. [Online; accessed January-2019]. 13

BARABÁSI, ALBERT-LÁSZLÓ, & BONABEAU, ERIC. 2003. Scale-free networks. Scientific american, 288(5),
60–69. 34

BARDRAM, JAKOB, & FRIDAY, ADRIAN. 2016. Ubiquitous computing systems. Pages 51–108 of: Ubiquitous
computing fundamentals. Chapman and Hall/CRC. 16

BENAVIDEZ, PATRICK, MUPPIDI, MOHAN, RAD, PAUL, PREVOST, JOHN J, JAMSHIDI, MO, & BROWN,
LUTCHER. 2015. Cloud-based realtime robotic visual SLAM. Pages 773–777 of: Proceedings of the annual
systems conference (SysCon). IEEE. 3, 15

BESERRA, DAVID, PINHEIRO, MANUELE KIRSCH, SOUVEYET, CARINE, STEFFENEL, LUIZ ANGELO, &
MORENO, EDWARD DAVID. 2017. Performance evaluation of OS-level virtualization solutions for HPC
purposes on SOC-based systems. Pages 363–370 of: 31st international conference on advanced information
networking and applications (AINA). IEEE. 4

BORTHAKUR, DHRUBA. 2008. HDFS architecture guide. Hadoop apache project, 53, 1–13. 11

BOWER, GEOFFREY, FLANZER, TRISTAN, & KROO, ILAN. 2009. Formation geometries and route optimiza-
tion for commercial formation flight. Page 3615 of: 27th AIAA Applied Aerodynamics Conference. 81, 84

BRADSKI, GARY, & KAEHLER, ADRIAN. 2000. OpenCV. Dr. dobb’s journal of software tools, 3. 14

BROXVALL, MATHIAS, SEO, BEOM-SU, & KWON, WOOYOUNG. 2007. The peis kernel: A middleware for
ubiquitous robotics. Pages 212–218 of: IROS-07 Workshop on Ubiquitous Robotic Space Design and Applica-
tions. 17

BRUYNINCKX, HERMAN. 2001. Open robot control software: the OROCOS project. Pages 2523–2528 of:
Proceedings of the international conference on robotics and automation (ICRA), vol. 3. IEEE. 18

CARBONE, GIUSEPPE, CECCARELLI, MARCO, & PISLA, DOINA. 2018. New Trends in Medical and Service
Robotics: Advances in Theory and Practice. Vol. 65. Springer. 17

CARMEN. Carmen. Robot navigation toolkit. http://carmen.sourceforge.net/. [Online; accessed
February-2019]. 18

http://ardupilot.org/
http://ardupilot.github.io/MAVProxy/html/index.html
http://ardupilot.org/dev/docs/companion-computer-nvidia-tx1.html
http://ardupilot.org/dev/docs/companion-computer-nvidia-tx1.html
http://ardupilot.org/dev/docs/companion-computer-nvidia-tx2.html
http://ardupilot.org/dev/docs/companion-computer-nvidia-tx2.html
http://ardupilot.org/copter/docs/common-pixhawk-overview.html
http://ardupilot.org/copter/docs/common-pixhawk-overview.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://www.asus.com/us/Single-Board-Computer/Tinker-Board/
https://www.asus.com/us/Single-Board-Computer/Tinker-Board/
http://carmen.sourceforge.net/

BIBLIOGRAPHY 123

CASTELLANO, FRANCESCO. Commercial Drones Are Revolutionizing Business Operations. https://www.
toptal.com/finance/market-research-analysts/drone-market. [Online; accessed January-
2019]. 3

CHABOWSKI, MEIKE. 2016. How HPC Impacts Our Lives I: Space, Weather, and More. https://www.suse.
com/c/hpc-impacts-lives/. [Online; published May-2016, accessed January-2019]. 5

CHANG, YEONG-HWA, CHUNG, PING-LUN, & LIN, HUNG-WEI. 2018. Deep learning for object identifi-
cation in ROS-based mobile robots. Pages 66–69 of: International Conference on Applied System Invention
(ICASI). IEEE. 18

CHEN, YINONG, DU, ZHIHUI, & GARCÍA-ACOSTA, MARCOS. 2010. Robot as a service in cloud computing.
Pages 151–158 of: Fifth International Symposium on Service Oriented System Engineering (SOSE). IEEE. 3

CHENG, LIANG, & MARSIC, IVAN. 2000. Wireless awareness for multimedia applications. Pages 1376–1382
of: Proceedings of the 2000 International Conference on Communication Technology WCC-ICCT, vol. 2. IEEE.
15

CHENG, LIANG, WANCHOO, AJAY, & MARSIC, IVAN. 2000. Hybrid cluster computing with mobile objects.
Pages 909–914 of: Proceedings of the Fourth International Conference/Exhibition on High Performance Computing
in the Asia-Pacific Region, vol. 2. IEEE. 15

CHENG, YANG, MAIMONE, MARK W, & MATTHIES, LARRY. 2006. Visual odometry on the Mars explo-
ration rovers. IEEE Robotics and Automation magazine, 13(2), 54. 17

CHIBANI, ABDELGHANI, AMIRAT, YACINE, MOHAMMED, SAMER, MATSON, ERIC, HAGITA, NORIHIRO,
& BARRETO, MARCOS. 2013. Ubiquitous robotics: Recent challenges and future trends. Robotics and
Autonomous Systems, 61(11), 1162–1172. 18

CHOI, HYUNWOONG, GEEVES, MITCHELL, ALSALAM, BILAL, & GONZALEZ, FELIPE. 2016. Open source
computer-vision based guidance system for UAVs on-board decision making. Pages 1–5 of: IEEE aerospace
conference. IEEE. 14

CHU, SLO-LI, & HSIAO, CHIH-CHIEH. 2010. OpenCL: Make ubiquitous supercomputing possible. Pages
556–561 of: 2010 12th International Conference on High Performance Computing and Communications (HPCC).
IEEE. 17, 20

CISCO. 2018. Cisco Global Cloud Index: Forecast and Methodology, 2016 - 2021 White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/white-paper-c11-738085.html. [Online; accessed January-2019].
2

COCCHIONI, FRANCESCO, FRONTONI, EMANUELE, IPPOLITI, GIANLUCA, LONGHI, SAURO, MANCINI,
ADRIANO, & ZINGARETTI, PRIMO. 2016. Visual based landing for an unmanned quadrotor. Journal of
intelligent & robotic systems, 84(1-4), 511–528. 14

COLOMBO, ROBERTO, & SANGUINETI, VITTORIO. 2018. Rehabilitation Robotics: Technology and Application.
Academic Press. 17

COX, SIMON J., COX, JAMES T., BOARDMAN, RICHARD P., JOHNSTON, STEVEN J., SCOTT, MARK, &
O’BRIEN, NEIL S. 2014. Iridis-pi: a low-cost, compact demonstration cluster. Cluster computing, 17(2),
349–358. 4

ÇÜRÜKLÜ, BARAN, DODIG-CRNKOVIC, GORDANA, & AKAN, BATU. 2010. Towards industrial robots with
human-like moral responsibilities. Pages 85–86 of: 5th International Conference on Human-Robot Interaction
(HRI). ACM/IEEE. 17

DAGUM, LEONARDO, & MENON, RAMESH. 1998. OpenMP: an industry standard API for shared-memory
programming. IEEE computational science and engineering, 5(1), 46–55. 5

DALCIN, LISANDRO. MPI for Python. https://mpi4py.readthedocs.io/en/stable/. [Online; ac-
cessed February-2019]. 75

https://www.toptal.com/finance/market-research-analysts/drone-market
https://www.toptal.com/finance/market-research-analysts/drone-market
https://www.suse.com/c/hpc-impacts-lives/
https://www.suse.com/c/hpc-impacts-lives/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://mpi4py.readthedocs.io/en/stable/

124 BIBLIOGRAPHY

DALMAU, RAMON, & PRATS, XAVIER. 2015. Fuel and time savings by flying continuous cruise climbs:
Estimating the benefit pools for maximum range operations. Transportation Research Part D: Transport and
Environment, 35, 62–71. 84

DARYANAVARD, H, & HARIFI, A. 2018. Implementing face detection system on UAV using Raspberry Pi
platform. Pages 1720–1723 of: Iranian Conference on Electrical Engineering (ICEE). IEEE. 14

DEGRAVE, JONAS, HERMANS, MICHIEL, DAMBRE, JONI, et al. . 2019. A differentiable physics engine for
deep learning in robotics. Frontiers in neurorobotics, 13. 19

DEMARCO, KEVIN, SQUIRES, ERIC, DAY, MICHAEL, & PIPPIN, CHARLES. 2019. Simulating collabora-
tive robots in a massive multi-agent game environment (SCRIMMAGE). Pages 283–297 of: Distributed
Autonomous Robotic Systems. Springer. 19

DIANKOV, ROSEN, & KUFFNER, JAMES. 2008. OpenRAVE: A planning architecture for autonomous
robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 79. 18

DJI. DJI developer. https://developer.dji.com/. [Online; accessed February-2019]. 120

DJI. DJI Manifold. https://www.dji.com/manifold. [Online; accessed January-2019]. 16

DO, HYUN MIN, KIM, BONG KEUN, KIM, YONG-SHIK, LEE, JAE HOON, OHARA, KENICHI, SUGAWARA,
TAKAYUKI, TOMIZAWA, TETSUO, LIANG, XUEFENG, TANIKAWA, TAMIO, & OHBA, KOHTARO. 2007.
Development of simulation framework for ubiquitous robots using RT-middleware. Pages 2483–2486 of:
International Conference on Control, Automation and Systems ICCAS. IEEE. 17

DOCKER. Docker. https://www.docker.com/. [Online; accessed February-2019]. 19, 119

DOMÍNGUEZ, RAÙL, GOVINDARAJ, SHASHANK, GANCET, JEREMI, POST, MARK, MICHALEC, ROMAIN,
OUMER, NASSIR, WEHBE, BILAL, BIANCO, ALESSANDRO, FABISCH, ALEXANDER, LACROIX, SIMON,
et al. . 2018. A common data fusion framework for space robotics: architecture and data fusion methods.
In: International Symposium on Artificial Intelligence, Robotics and Automation in Space Symposia. 17

DONGARRA, JACK. Frequently Asked Questions on the Linpack Benchmark and Top500. http://www.netlib.
org/utk/people/JackDongarra/faq-linpack.html. [Online; accessed February-2019]. 71

DONGARRA, JACK. HPL Algorithm. http://www.netlib.org/benchmark/hpl/algorithm.html.
[Online; accessed February-2019]. 72

DONGARRA, JACK, STROHMAIER, ERICH, & SIMON, HORST. Supercomputers Top 500. http://www.
top500.org/. [Online; accessed February-2016]. 5, 20, 70

DRONECODE. Dronecode SDK Python. https://github.com/Dronecode/DronecodeSDK-Python.
[Online; accessed February-2019]. 120

DRONECODE. Pixhawk 2.1. The cube. https://docs.px4.io/en/flight_controller/pixhawk-2.
html. [Online; accessed February-2019]. 69, 98

DRONECODE. PX4 autopilot. https://px4.io/. [Online; accessed February-2019]. 19

DURAN, ALEJANDRO, AYGUADÉ, EDUARD, BADIA, ROSA M, LABARTA, JESÚS, MARTINELL, LUIS, MAR-
TORELL, XAVIER, & PLANAS, JUDIT. 2011. OmpSs: a proposal for programming heterogeneous multi-
core architectures. Parallel processing letters, 21(02), 173–193. 5

DURANGO, GJ, LAWSON, C, & SHAHNEH, ABOLGHASEM ZARE. 2016. Formation flight investigation for
highly efficient future civil transport aircraft. The Aeronautical Journal, 120(1229), 1081–1100. 81, 84

EUROCONTROL. DDR2 quick reference guide. https://www.eurocontrol.int/sites/
default/files/content/documents/nm/airspace/DDR2_Quick%20Reference%20Guide_
%2020141205.pdf. [Online; accessed February-2019]. 83

FLORES-ABAD, ANGEL, MA, OU, PHAM, KHANH, & ULRICH, STEVE. 2014. A review of space robotics
technologies for on-orbit servicing. Progress in Aerospace Sciences, 68, 1–26. 17

https://developer.dji.com/
https://www.dji.com/manifold
https://www.docker.com/
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://www.netlib.org/utk/people/JackDongarra/faq-linpack.html
http://www.netlib.org/benchmark/hpl/algorithm.html
http://www.top500.org/
http://www.top500.org/
https://github.com/Dronecode/DronecodeSDK-Python
https://docs.px4.io/en/flight_controller/pixhawk-2.html
https://docs.px4.io/en/flight_controller/pixhawk-2.html
https://px4.io/
https://www.eurocontrol.int/sites/default/files/content/documents/nm/airspace/DDR2_Quick%20Reference%20Guide_%2020141205.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/nm/airspace/DDR2_Quick%20Reference%20Guide_%2020141205.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/nm/airspace/DDR2_Quick%20Reference%20Guide_%2020141205.pdf

BIBLIOGRAPHY 125

FLYNN, M. 1972. Some computer organizations and their effectiveness. IEEE transactions on computers,
C-21(9), 948–960. 12, 31, 100, 104

FOSTER, IAN, & TUECKE, STEVEN. 1996. Enabling technologies for web-based ubiquitous supercomputing.
Pages 112–119 of: Proceedings of 5th International Symposium on High Performance Distributed Computing.
IEEE. 17, 20

GABRIEL, EDGAR, FAGG, GRAHAM E, BOSILCA, GEORGE, ANGSKUN, THARA, DONGARRA, JACK J,
SQUYRES, JEFFREY M, SAHAY, VISHAL, KAMBADUR, PRABHANJAN, BARRETT, BRIAN, LUMSDAINE,
ANDREW, et al. . 2004. Open MPI: Goals, concept, and design of a next generation MPI implementation.
Pages 97–104 of: European parallel virtual machine/message passing interface users’ group meeting. Springer.
32, 72

GARCIA, RICHARD, & BARNES, LAURA. 2009. Multi-UAV simulator utilizing X-Plane. Pages 393–406 of:
Selected papers from the 2nd International Symposium on UAVs. Springer. 20

GARLAND, MICHAEL, LE GRAND, SCOTT, NICKOLLS, JOHN, ANDERSON, JOSHUA, HARDWICK, JIM,
MORTON, SCOTT, PHILLIPS, EVERETT, ZHANG, YAO, & VOLKOV, VASILY. 2008. Parallel computing
experiences with CUDA. IEEE micro, 13–27. 4, 12

GAZEBO. Gzweb Web client for Gazebo. http://gazebosim.org/gzweb.html. [Online; accessed
February-2019]. 19

GENTZSCH, WOLFGANG. 2001. Sun grid engine: Towards creating a compute power grid. Pages 35–36 of:
Proceedings of the First International Symposium on Cluster Computing and the Grid. IEEE/ACM. 15

GERKEY, BRIAN, VAUGHAN, RICHARD T, & HOWARD, ANDREW. 2003. The player/stage project: Tools for
multi-robot and distributed sensor systems. Pages 317–323 of: Proceedings of the 11th international conference
on advanced robotics, vol. 1. 18

GLUSTERFS. Glusterfs. https://docs.gluster.org/en/latest/. [Online; accessed January-2019].
11

GONZALEZ, RAMON, MAHULEA, CRISTIAN, & KLOETZER, MARIUS. 2015. A Matlab-based interactive sim-
ulator for mobile robotics. Pages 310–315 of: International Conference on Automation Science and Engineering
(CASE). IEEE. 19

GOOGLE. Google Earth. https://www.google.com/earth/. [Online; accessed February-2019]. 99, 100

GRABE, VOKER, RIEDEL, MARTIN, BÜLTHOFF, HEINRICH H, GIORDANO, PAOLO ROBUFFO, & FRANCHI,
ANTONIO. 2013. The TeleKyb framework for a modular and extendible ROS-based quadrotor control.
In: European Conference on Mobile Robots (ECMR). 18

HAGER, GEORG, & WELLEIN, GERHARD. 2010. Introduction to High Performance Computing for Scientists and
Engineers. CRC Press. 12

HAYAKAWA, HIROKI, AZUMI, TAKUYA, SAKAGUCHI, AKINORI, & USHIO, TOSHIMITSU. 2018. ROS-based
support system for supervision of multiple UAVs by a single operator. Pages 341–342 of: Proceedings of
the 9th International Conference on Cyber-Physical Systems. ACM/IEEE. 18

HIGHTOWER, JEFFREY, & BORRIELLO, GAETANO. 2001. Location systems for ubiquitous computing. Com-
puter, 34(8), 57–66. 16

HOLLAND, OWEN, WOODS, JOHN, DE NARDI, RENZO, & CLARK, ADRIAN. 2005. Beyond swarm intelli-
gence: the UltraSwarm. Pages 217–224 of: Proceedings of the Swarm Intelligence Symposium SIS. IEEE. 15,
20

HU, GUOQIANG, TAY, WEE PENG, & WEN, YONGGANG. 2012. Cloud robotics: architecture, challenges
and applications. IEEE network, 26(3). 3

HU, JIA, NIU, YIFENG, & WANG, ZHICHAO. 2017. Obstacle avoidance methods for rotor UAVs using
RealSense camera. Pages 7151–7155 of: Chinese Automation Congress (CAC). IEEE. 18

http://gazebosim.org/gzweb.html
https://docs.gluster.org/en/latest/
https://www.google.com/earth/

126 BIBLIOGRAPHY

HUAWEI. Huawei HiKey 960. https://www.96boards.org/product/hikey960/. [Online; accessed
January-2019]. 13

IEEE. IEEE is Fueling the Fourth Industrial Revolution. https://innovate.ieee.org/
innovation-spotlight-ieee-fueling-fourth-industrial-revolution/. [Online; ac-
cessed February-2019]. 17

IEEE. 2004. IEEE Standard for information technology-Telecommunications and information exchange
between systems-Local and metropolitan area networks-Specific requirements-Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6: Medium Access
Control (MAC) Security Enhancements. IEEE Std 802.11i-2004, July, 1–190. 101

IJSPEERT, AUKE J. 2014. Biorobotics: Using robots to emulate and investigate agile locomotion. Science,
346(6206), 196–203. 17

INTEL. INTEL AERO COMPUTE BOARD. https://software.intel.com/en-us/aero/
compute-board. [Online; accessed January-2019]. 13

INTEL. Intel XEON processors. https://www.intel.com/content/www/us/en/products/
processors/xeon.html. [Online; accessed February-2019]. 26

ITU. International Telecommunications Union (ITU). Minimum requirements related to technical performance for
IMT-2020 radio interface(s). https://www.itu.int/md/R15-SG05-C-0040/en. [Online; accessed
-2019]. 8, 16, 26, 87, 106

JACKSON, MATTHEW O, & WATTS, ALISON. 2002. The evolution of social and economic networks. Journal
of economic theory, 106(2), 265–295. 43

JEON, DONGWOON, KIM, DOO-HYUN, HA, YOUNG-GUK, & TYAN, VLADIMIR. 2016. Image processing
acceleration for intelligent unmanned aerial vehicle on mobile GPU. Soft computing, 20(5), 1713–1720. 14

JIANG, JINGQI, ZHANG, XUETAO, YUAN, JING, TANG, KAITAO, & ZHANG, XUEBO. 2018. Extendable
Flight System for Commercial UAVs on ROS. Pages 1–5 of: 37th Chinese Control Conference (CCC). IEEE.
18

JIMÉNEZ-GONZÁLEZ, ADRIÁN, MARTINEZ-DE DIOS, JOSE RAMIRO, & OLLERO, ANIBAL. 2013. Testbeds
for ubiquitous robotics: A survey. Robotics and Autonomous Systems, 61(12), 1487–1501. 18, 53, 64, 117

KERAS. Keras: The Python Deep Learning library. https://keras.io/. [Online; accessed February-2019].
27

KHAN, AMIN M, UMAR, IBRAHIM, & HA, PHUONG HOAI. 2018. Efficient compute at the edge: Optimizing
energy aware data structures for emerging edge hardware. Pages 314–321 of: International Conference on
High Performance Computing & Simulation (HPCS). IEEE. 4

KIM, JONG-HWAN. 2003. IT-based UbiBot. The Korea Electronic Times. 17

KIM, JONG-HWAN, KIM, YONG-DUK, & LEE, KANG-HEE. 2004. The third generation of robotics: Ubiqui-
tous robot. In: Proceedings of the 2nd International Conference on Autonomous Robots and Agents. 17

KIM, JONG-HWAN, LEE, KANG-HEE, KIM, YONG-DUK, KUPPUSWAMY, NAVEEN SURESH, & JO, JUN. 2007.
Ubiquitous robot: A new paradigm for integrated services. Pages 2853–2858 of: International Conference
on Robotics and Automation. IEEE. 17

KIZAR, SK NOOR, & SATYANARAYANA, GSR. 2016. Object detection and location estimation using SVS
for UAVs. Pages 920–924 of: International conference on automatic control and dynamic optimization techniques
(ICACDOT). IEEE. 14

KOENIG, NATHAN P, & HOWARD, ANDREW. 2004. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. Pages 2149–2154 of: IROS, vol. 4. Citeseer. 19

KÖNIG, MICHAEL D, BATTISTON, STEFANO, NAPOLETANO, MAURO, & SCHWEITZER, FRANK. 2012. The
efficiency and stability of r&d networks. Games and economic behavior, 75(2), 694–713. 43

https://www.96boards.org/product/hikey960/
https://innovate.ieee.org/innovation-spotlight-ieee-fueling-fourth-industrial-revolution/
https://innovate.ieee.org/innovation-spotlight-ieee-fueling-fourth-industrial-revolution/
https://software.intel.com/en-us/aero/compute-board
https://software.intel.com/en-us/aero/compute-board
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.itu.int/md/R15-SG05-C-0040/en
https://keras.io/

BIBLIOGRAPHY 127

KOPACEK, P. 2016. Development Trends in Robotics. IFAC-PapersOnLine, 49(29), 36 – 41. 17

KREST, SHAWN. 2017. Drones: Flying Data Machines Digitizing the World from Above. https://iq.intel.
com/drones-flying-data-machines-digitizing-the-world-from-above/. [Online; pub-
lished September-2017, accessed January-2019]. 3

KRUMM, JOHN. 2016. Ubiquitous computing fundamentals. Chapman and Hall/CRC. 16

LAMINAR RESEARCH. XPlane11. https://www.x-plane.com/. [Online; accessed February-2019]. 19

LEE, BRAD HYEONG-YUN, MORRISON, JAMES R, & SHARMA, RAJNIKANT. 2017. Multi-UAV control
testbed for persistent UAV presence: ROS GPS waypoint tracking package and centralized task alloca-
tion capability. Pages 1742–1750 of: International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
18

LOGIST, KEVIN. 2017. Drones generate a lot of data. https://www.dronecommunity.biz/
drones-data/. [Online; published May-2017, accessed January-2019]. 3

MARJOVI, ALI, CHOOBDAR, SARVENAZ, & MARQUES, LINO. 2012. Robotic clusters: Multi-robot systems
as computer clusters: A topological map merging demonstration. Robotics and Autonomous Systems, 60(9),
1191–1204. 15, 20, 99

MARTINS, HENRIQUE, OAKLEY, IAN, & VENTURA, RODRIGO. 2015. Design and evaluation of a head-
mounted display for immersive 3D teleoperation of field robots. Robotica, 33(10), 2166–2185. 17

MA’SUM, M ANWAR, ARROFI, M KHOLID, JATI, GRAFIKA, ARIFIN, FUTUHAL, KURNIAWAN, M NANDA,
MURSANTO, PETRUS, & JATMIKO, WISNU. 2013. Simulation of intelligent unmanned aerial vehicle
(UAV) for military surveillance. Pages 161–166 of: International Conference on Advanced Computer Science
and Information Systems (ICACSIS). IEEE. 19

MAVLINK. Micro Air Vehicle Communication Protocol MAVLink. https://mavlink.io/en/. [Online;
accessed February-2019]. 74

MEZARD, MARC, & MONTANARI, ANDREA. 2009. Information, physics, and computation. Oxford University
Press. 43

MÉZARD, MARC, PARISI, GIORGIO, & VIRASORO, MIGUEL. 1987. Spin glass theory and beyond: An Introduc-
tion to the Replica Method and Its Applications. Vol. 9. World Scientific Publishing Company. 43

MICHEL, OLIVIER. 2004. Cyberbotics Ltd. Webots TM: professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1), 5. 19

MICROSOFT. Microsoft HPC pack. https://docs.microsoft.com/en-us/powershell/
high-performance-computing/overview?view=hpc16-ps. [Online; accessed January-2019]. 11

MOLINA, MARTIN, SUAREZ-FERNANDEZ, RAMON A, SAMPEDRO, CARLOS, SANCHEZ-LOPEZ, JOSE LUIS,
& CAMPOY, PASCUAL. 2017. TML: A language to specify aerial robotic missions for the framework
Aerostack. International Journal of Intelligent Computing and Cybernetics, 10(4), 491–512. 19

MONES, ENYS, VICSEK, LILLA, & VICSEK, TAMÁS. 2012. Hierarchy measure for complex networks. PloS
one, 7(3), e33799. 41, 45, 46

MOOS. Microsoft Robotics Developer Studio 4. https://www.microsoft.com/en-us/download/
details.aspx?id=29081. [Online; accessed February-2019]. 18

MOOS. The MOOS. Cross Platform Software for Robotics Research. http://www.robots.ox.ac.uk/

˜mobile/MOOS/wiki/pmwiki.php. [Online; accessed February-2019]. 18

MUSK, ELON, SULEYMAN MUSTAFA ET AL. 2016. An Open Letter to the United Nations Convention
on Certain Conventional Weapons. https://www.dropbox.com/s/g4ijcaqq6ivq19d/2017%
20Open%20Letter%20to%20the%20United%20Nations%20Convention%20on%20Certain%
20Conventional%20Weapons.pdf?dl=0. [Online; published August-2017, accessed February-2019].
45

https://iq.intel.com/drones-flying-data-machines-digitizing-the-world-from-above/
https://iq.intel.com/drones-flying-data-machines-digitizing-the-world-from-above/
https://www.x-plane.com/
https://www.dronecommunity.biz/drones-data/
https://www.dronecommunity.biz/drones-data/
https://mavlink.io/en/
https://docs.microsoft.com/en-us/powershell/high-performance-computing/overview?view=hpc16-ps
https://docs.microsoft.com/en-us/powershell/high-performance-computing/overview?view=hpc16-ps
https://www.microsoft.com/en-us/download/details.aspx?id=29081
https://www.microsoft.com/en-us/download/details.aspx?id=29081
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
https://www.dropbox.com/s/g4ijcaqq6ivq19d/2017%20Open%20Letter%20to%20the%20United%20Nations%20Convention%20on%20Certain%20Conventional%20Weapons.pdf?dl=0
https://www.dropbox.com/s/g4ijcaqq6ivq19d/2017%20Open%20Letter%20to%20the%20United%20Nations%20Convention%20on%20Certain%20Conventional%20Weapons.pdf?dl=0
https://www.dropbox.com/s/g4ijcaqq6ivq19d/2017%20Open%20Letter%20to%20the%20United%20Nations%20Convention%20on%20Certain%20Conventional%20Weapons.pdf?dl=0

128 BIBLIOGRAPHY

NASA-JPL. Helicopter Could Be Ścoutf́or Mars Rovers. https://www.jpl.nasa.gov/news/news.php?
feature=4457. [Online; accessed February-2019]. 17

NEWMAN, CH, & STEIN, D. 2013. Spin glasses and complexity. 43

NICHOLS, GREG. ZDNet How to build a $200 smart drone with the Pi Zero. https://www.zdnet.
com/article/how-to-build-a-200-smart-drone-with-the-pi-zero/. [Online; published
February-2016, accessed February-2019]. 33

NUTT, GREGORY. 2014. Nutt X operating system user’s manual. http://wwww.nuttx.org/doku.php?
id=documentation. 18, 120

NVIDIA. Embedded Systems for Next-Generation Autonomous Machines. NVIDIA Jetson: The AI plat-
form for autonomous everything. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/. [Online; accessed February-2019]. 4

NVIDIA. High Performance Computing. A Supercharged Law. https://www.nvidia.com/en-us/
high-performance-computing/. [Online; accessed February-2019]. 26

NVIDIA. Jetson AGX Xavier Developer Kit . https://developer.nvidia.com/embedded/buy/
jetson-agx-xavier-devkit. [Online; accessed January-2019]. 13, 111

NVIDIA. NVIDIA Jetson systems TX1/TX2. https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems-dev-kits-modules/. [Online; accessed January-
2019]. 13

NVIDIA. NVIDIA Jetson TK1. http://www.nvidia.com/object/
jetson-tk1-embedded-dev-kit.html. [Online; accessed January-2019]. 13, 14

NVIDIA. NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge. https://devblogs.nvidia.
com/jetson-tx2-delivers-twice-intelligence-edge/. [Online; accessed January-2019]. 14

NVIDIA. NVIDIA TITAN X. https://www.nvidia.com/en-us/geforce/products/10series/
titan-x-pascal/. [Online; accessed January-2019]. 14

NVIDIA. Social impact of the GPU. http://www.nvidia.com/object/social-impact-gpu.html.
[Online; accessed July-2019]. 5, 12

NVIDIA. Tegra K1 Chips. https://developer.nvidia.com/embedded/tegra-k1. [Online; accessed
January-2019]. 13, 14

ODROID. ODROID-H2. https://www.hardkernel.com/shop/odroid-h2/. [Online; accessed
January-2019]. 13

OGS. Open Grid Scheduler. http://gridscheduler.sourceforge.net/. [Online; accessed January-
2019]. 11, 19

OPENROBOTICS. Open Robotics. https://www.openrobotics.org/. [Online; accessed February-2019].
19

ORCA. Orca: Components for Roboticst. http://orca-robotics.sourceforge.net/. [Online; ac-
cessed February-2019]. 18

ORNL. Oak Ridge National Laboratory Summit supercomputer. https://www.olcf.ornl.gov/summit/.
[Online; accessed April-2019]. 11

OROCOS. The Orocos Project. Smarter control in robotics and automation. http://www.orocos.org/.
[Online; accessed February-2019]. 18

PALOSSI, DANIELE, FURCI, MICHELE, NALDI, ROBERTO, MARONGIU, ANDREA, MARCONI, LORENZO,
& BENINI, LUCA. 2016. An energy-efficient parallel algorithm for real-time near-optimal UAV path
planning. Pages 392–397 of: Proceedings of the ACM International Conference on Computing Frontiers. ACM.
17

https://www.jpl.nasa.gov/news/news.php?feature=4457
https://www.jpl.nasa.gov/news/news.php?feature=4457
https://www.zdnet.com/article/how-to-build-a-200-smart-drone-with-the-pi-zero/
https://www.zdnet.com/article/how-to-build-a-200-smart-drone-with-the-pi-zero/
http://wwww.nuttx.org/doku.php?id=documentation
http://wwww.nuttx.org/doku.php?id=documentation
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/high-performance-computing/
https://www.nvidia.com/en-us/high-performance-computing/
https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit
https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
http://www.nvidia.com/object/social-impact-gpu.html
https://developer.nvidia.com/embedded/tegra-k1
https://www.hardkernel.com/shop/odroid-h2/
http://gridscheduler.sourceforge.net/
https://www.openrobotics.org/
http://orca-robotics.sourceforge.net/
https://www.olcf.ornl.gov/summit/
http://www.orocos.org/

BIBLIOGRAPHY 129

PARDO-CASTELLOTE, GERARDO. 2005. OMG Data Distribution Service: Real-Time Publish/Subscribe Be-
comes a Standard. Rtc magazine, 14. 53, 120

PEE, LG, PAN, SHAN L, & CUI, LILI. 2018. Artificial intelligence in healthcare robots: A social informatics
study of knowledge embodiment. Journal of the Association for Information Science and Technology. 17

PETITET, ANTOINE, WHALEY, CLINT, DONGARRA, JACK, & CLEARY, ANDY. HPL - A Portable Implementa-
tion of the High-Performance Linpack Benchmark for Distributed-Memory Computers. http://www.netlib.
org/benchmark/hpl/. [Online; accessed February-2019]. 70

PINCIROLI, CARLO, TRIANNI, VITO, O’GRADY, REHAN, PINI, GIOVANNI, BRUTSCHY, ARNE, BRAMBILLA,
MANUELE, MATHEWS, NITHIN, FERRANTE, ELISEO, DI CARO, GIANNI, DUCATELLE, FREDERICK, et al.
. 2011. ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Pages 5027–5034
of: International Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ. 19

PINE64. Rock64 Media board. https://www.pine64.org/?product=
rock64-media-board-computer. [Online; accessed January-2019]. 13

PITONAKOVA, LENKA, GIULIANI, MANUEL, PIPE, ANTHONY, & WINFIELD, ALAN. 2018. Feature and Per-
formance Comparison of the V-REP, Gazebo and ARGoS Robot Simulators. Pages 357–368 of: GIULIANI,
MANUEL, ASSAF, TAREQ, & GIANNACCINI, MARIA ELENA (eds), Towards Autonomous Robotic Systems.
Cham: Springer International Publishing. 19

PLAYER. The Player Project. Free Software tools for robot and sensor applications. http://playerstage.
sourceforge.net/index.php?src=index. [Online; accessed February-2019]. 18

POCKETBEAGLE. PocketBeagle board. https://beagleboard.org/pocket. [Online; accessed January-
2019]. 13

QUALCOMM. Qualcomm Technologies releases LTE drone trial results. https://www.qualcomm.com/
news/onq/2017/05/03/qualcomm-technologies-releases-lte-drone-trial-results.
[Online; accessed January-2019]. 16

QUIGLEY, MORGAN, CONLEY, KEN, GERKEY, BRIAN, FAUST, JOSH, FOOTE, TULLY, LEIBS, JEREMY,
WHEELER, ROB, & NG, ANDREW Y. 2009. ROS: an open-source Robot Operating System. Page 5 of:
ICRA workshop on open source software, vol. 3. Kobe, Japan. 15, 17

RADCLIFFE, TOM. Python vs. C/C++ in Embedded Systems. https://www.activestate.com/blog/
python-vs-cc-embedded-systems/. [Online; published August-2016, accessed February-2019]. 27,
75

RAJOVIC, NIKOLA, CARPENTER, PAUL M, GELADO, ISAAC, PUZOVIC, NIKOLA, RAMIREZ, ALEX, &
VALERO, MATEO. 2013. Supercomputing with commodity CPUs: Are mobile SoCs ready for HPC?
Page 40 of: Proceedings of the international conference on high performance computing, networking, storage and
analysis. ACM. 4

RASPBERRY-PI-FOUNDATION. Raspberry Pi. https://www.raspberrypi.org/. [Online; accessed
February-2019]. 4

REDHAT. Red Hat Ansible. https://www.ansible.com/. [Online; accessed February-2019]. 19

REDMON, JOSEPH, DIVVALA, SANTOSH, GIRSHICK, ROSS, & FARHADI, ALI. 2016. You only look once:
Unified, real-time object detection. Pages 779–788 of: Proceedings of the conference on computer vision and
pattern recognition. IEEE. 15

REPORTLINKER. 2018. Global drone data services and analytics market generated $3,054.9 million in 2017,
and the market is estimated to grow at a CAGR of 53.9% during 2018-2023 . http://www.infoq.com/
news/2014/09/drone-data-big-data-analytics. [Online; published September-2018, accessed
January-2019]. 3

RIBEIRO, CONSTANTINO GONCALVES, DUTRA, MAX SUEL, RABELO, ALINE, OLIVEIRA, FILIPE, BARBOSA,
ALLAN, FRINHANI, LUCIANO, PORTO, DOUGLAS, & MILANEZ, RAYANNE. 2015. A Robotic Flying Crane
Controlled by an Embedded Computer Cluster. Pages 91–96 of: 12th Latin American Robotics Symposium
and 3rd Brazilian Symposium on Robotics (LARS-SBR). IEEE. 15

http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
https://www.pine64.org/?product=rock64-media-board-computer
https://www.pine64.org/?product=rock64-media-board-computer
http://playerstage.sourceforge.net/index.php?src=index
http://playerstage.sourceforge.net/index.php?src=index
https://beagleboard.org/pocket
https://www.qualcomm.com/news/onq/2017/05/03/qualcomm-technologies-releases-lte-drone-trial-results
https://www.qualcomm.com/news/onq/2017/05/03/qualcomm-technologies-releases-lte-drone-trial-results
https://www.activestate.com/blog/python-vs-cc-embedded-systems/
https://www.activestate.com/blog/python-vs-cc-embedded-systems/
https://www.raspberrypi.org/
https://www.ansible.com/
http://www.infoq.com/news/2014/09/drone-data-big-data-analytics
http://www.infoq.com/news/2014/09/drone-data-big-data-analytics

130 BIBLIOGRAPHY

RIJMEN, VINCENT, & DAEMEN, JOAN. 2001. Advanced encryption standard. Proceedings of federal informa-
tion processing standards publications, national institute of standards and technology, 19–22. 102

ROBERGE, VINCENT, & TARBOUCHI, MOHAMMED. 2017. Fast path planning for unmanned aerial vehicle
using embedded gpu system. Pages 145–150 of: 14th international multi-conference on systems, signals &
devices (SSD). IEEE. 14

ROHMER, ERIC, SINGH, SURYA PN, & FREESE, MARC. 2013. V-REP: A versatile and scalable robot sim-
ulation framework. Pages 1321–1326 of: International Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ. 19

ROS. Robot Operating System nodes. http://wiki.ros.org/Nodes. [Online; accessed May-2019]. 32

ROS.ORG. MAVROS. http://wiki.ros.org/mavros. [Online; accessed February-2019]. 19

ROS.ORG. ROS documentation. Introduction. http://wiki.ros.org/ROS/Introduction. [Online;
accessed February-2019]. 18

ROS.ORG. ROS Installation. http://wiki.ros.org/Installation. [Online; accessed February-2019].
27

ROS.ORG. ROS Melodic Morenia. http://wiki.ros.org/melodic. [Online; accessed February-2019].
32

ROS.ORG. ROS mpi package. http://wiki.ros.org/mpi. [Online; accessed February-2019]. 17

ROS.ORG. ROS Parameter Server. http://wiki.ros.org/Parameter%20Server. [Online; accessed
February-2019]. 17

ROYO, PABLO, PASTOR, ENRIC, MACIAS, MIQUEL, CUADRADO, RAUL, BARRADO, CRISTINA, & VARGAS,
ARTURO. 2018. An unmanned aircraft system to detect a radiological point source using RIMA software
architecture. Remote sensing, 10(11), 1712. 14

RPIFOUND. Raspberry Pi 3 Model B+. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus/. [Online; accessed January-2019]. 13

RPIFOUND. Raspberry Pi Blog. https://www.raspberrypi.org/blog/. [Online; accessed January-
2019]. 14

RUBIN, MICHAEL. 2019. The role of software simulators in the independent verification and validation of
commercial space vehicles. Page 1708 of: AIAA Scitech Forum. 19

RUSSELL, STUART J, & NORVIG, PETER. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited,. 17

SAGITOV, ARTUR, & GERASIMOV, YURI. 2017. Towards DJI Phantom 4 Realistic Simulation with Gim-
bal and RC Controller in ROS/Gazebo Environment. Pages 262–266 of: 10th International Conference on
Developments in eSystems Engineering (DeSE). IEEE. 18

SALAMÍ SAN JUAN, ESTHER, SOLER, JOSÉ ALBERTO, CUADRADO SANTOLARIA, RAÚL, BARRADO MUXÍ,
CRISTINA, & PASTOR LLORENS, ENRIC. 2015. Virtualizing super-computation on-board UAS. The inter-
national archives of the photogrammetry, remote sensing and spatial information sciences, 40, 1291–1298. 12

SANCHEZ-LOPEZ, JOSE LUIS, FERNÁNDEZ, RAMÓN A SUÁREZ, BAVLE, HRIDAY, SAMPEDRO, CARLOS,
MOLINA, MARTIN, PESTANA, JESUS, & CAMPOY, PASCUAL. 2016. Aerostack: An architecture and open-
source software framework for aerial robotics. Pages 332–341 of: International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE. 19

SANCHEZ-LOPEZ, JOSE LUIS, MOLINA, MARTIN, BAVLE, HRIDAY, SAMPEDRO, CARLOS, FERNÁNDEZ,
RAMÓN A SUÁREZ, & CAMPOY, PASCUAL. 2017. A Multi-Layered Component-Based Approach for
the Development of Aerial Robotic Systems: The Aerostack Framework. Journal of Intelligent & Robotic
Systems, 88(2-4), 683–709. 19

http://wiki.ros.org/Nodes
http://wiki.ros.org/mavros
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Installation
http://wiki.ros.org/melodic
http://wiki.ros.org/mpi
http://wiki.ros.org/Parameter%20Server
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/blog/

BIBLIOGRAPHY 131

SATYANARAYANAN, MAHADEV. 2010. Mobile computing: the next decade. Page 5 of: Proceedings of the 1st
workshop on mobile cloud computing & services: social networks and beyond. ACM. 3

SCHEDMD. Simple Linux Utility for Resource Management. https://slurm.schedmd.com/. [Online;
accessed January-2019]. 11, 30

SCHMITTLE, MATT, LUKINA, ANNA, VACEK, LUKAS, DAS, JNANESHWAR, BUSKIRK, CHRISTOPHER P,
REES, STEPHEN, SZTIPANOVITS, JANOS, GROSU, RADU, & KUMAR, VIJAY. 2018. OpenUAV: a UAV
testbed for the CPS and robotics community. Pages 130–139 of: Proceedings of the 9th International Confer-
ence on Cyber-Physical Systems. ACM/IEEE. 19, 20

SHAH, SHITAL, DEY, DEBADEEPTA, LOVETT, CHRIS, & KAPOOR, ASHISH. 2018. AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles. Pages 621–635 of: Field and service robotics.
Springer. 19

SHEPLER, SPENCER, CALLAGHAN, BRENT, ROBINSON, DAVID, THURLOW, ROBERT, BEAME, CARL,
EISLER, MIKE, & NOVECK, DAVE. 2003. Network file system (NFS) version 4 protocol. Tech. rept. 5, 32

SHI, WEISONG, CAO, JIE, ZHANG, QUAN, LI, YOUHUIZI, & XU, LANYU. 2016. Edge computing: Vision
and challenges. IEEE internet of things journal, 3(5), 637–646. 3

SMASHINGROBOTICS. Most Advanced Robotics Simulation Software Overview. http://www.
smashingrobotics.com/most-advanced-and-used-robotics-simulation-software/.
[Online; accessed February-2019]. 19

SPENKO, MATTHEW, BUERGER, STEPHEN, & IAGNEMMA, KARL. 2018. The DARPA Robotics Challenge Finals:
Humanoid Robots To The Rescue. Vol. 121. Springer. 17

STERLING, THOMAS, ANDERSON, MATTHEW, & BRODOWICZ, MACIEJ. 2017. High Performance Computing:
Modern Systems and Practices. Morgan Kaufmann. 12

TENSORFLOW. TensorFlow. An open source machine learning framework for everyone. https://www.
tensorflow.org/. [Online; accessed February-2019]. 27

TIJTGAT, NIELS, VAN RANST, WIEBE, VOLCKAERT, BRUNO, GOEDEMÉ, TOON, & DE TURCK, FILIP. 2017.
Embedded real-time object detection for a UAV warning system. Pages 2110–2118 of: The International
Conference on Computer Vision (ICCV2017). 15

TOP500. Summit supercomputer. https://www.top500.org/system/179397. [Online; accessed
February-2019]. 115

TOTAL. TOTAL’s Pangea supercomputer: among the global top Ten in
terms of computing power. https://www.total.com/en/media/video/
totals-pangea-supercomputer-among-global-top-ten-terms-computing-power. [On-
line; accessed April-2019]. 11

TRANCOSO, PEDRO, & EFSTATHIOU, MICHALIS. 2017. Low-Cost Sub-5W Processors for Edge HPC. Pages
529–532 of: Euromicro conference on digital system design (DSD). IEEE. 4

TRAXXAS. Traxxas Slash 1/10 2W. https://traxxas.com/products/models/electric/
58034-2slash. [Online; accessed February-2019]. 69, 98

UMMAT, AJAY, SHARMA, GAURAV, MAVROIDIS, C, & DUBEY, A. 2016. Bio-nanorobotics: State of the art
and future challenges. Pages 309–354 of: Tissue Engineering and Artificial Organs. CRC Press. 17

USACH, HECTOR, VILA, JUAN A, TORENS, CHRISTOPH, & ADOLF, FLORIAN. 2018. Architectural design
of a Safe Mission Manager for Unmanned Aircraft Systems. Journal of systems architecture, 90, 94–108. 17

VALAVANIS, KIMON P, & VACHTSEVANOS, GEORGE J. 2015. Future of unmanned aviation. Pages 2993–3009
of: Handbook of unmanned aerial vehicles. Springer. 17

VARRASI, SIMONE, LUCAS, ALEXANDER, SORANZO, ALESSANDRO, MCNAMARA, JOHN, & DI NUOVO,
ALESSANDRO. 2019. IBM Cloud Services enhance automatic cognitive assessment via human-robot in-
teraction. Pages 169–176 of: New Trends in Medical and Service Robotics. Springer. 17

https://slurm.schedmd.com/
http://www.smashingrobotics.com/most-advanced-and-used-robotics-simulation-software/
http://www.smashingrobotics.com/most-advanced-and-used-robotics-simulation-software/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.top500.org/system/179397
https://www.total.com/en/media/video/totals-pangea-supercomputer-among-global-top-ten-terms-computing-power
https://www.total.com/en/media/video/totals-pangea-supercomputer-among-global-top-ten-terms-computing-power
https://traxxas.com/products/models/electric/58034-2slash
https://traxxas.com/products/models/electric/58034-2slash

132 BIBLIOGRAPHY

VARSHAVSKY, ALEXANDER, & PATEL, SHWETAK. 2016. Location in ubiquitous computing. Pages 299–334
of: Ubiquitous computing fundamentals. Chapman and Hall/CRC. 16

VEGA, AUGUSTO, LIN, CHUNG-CHING, SWAMINATHAN, KARTHIK, BUYUKTOSUNOGLU, ALPER,
PANKANTI, SHARATHCHANDRA, & BOSE, PRADIP. 2015. Resilient UAV-embedded real-time computing.
Pages 736–739 of: 33rd international conference on computer design (ICCD). IEEE. 14

VICSEK, TAMÁS, CZIRÓK, ANDRÁS, BEN-JACOB, ESHEL, COHEN, INON, & SHOCHET, OFER. 1995. Novel
type of phase transition in a system of self-driven particles. Physical review letters, 75(6), 1226. 63, 74, 78,
117

VIRTUALROBOTICSTOOLKIT. Virtual Robotics Toolkit. https://www.virtualroboticstoolkit.com/.
[Online; accessed February-2019]. 19

WAIBEL, MARKUS, BEETZ, MICHAEL, CIVERA, JAVIER, D’ANDREA, RAFFAELLO, ELFRING, JOS, GALVEZ-
LOPEZ, DORIAN, HÄUSSERMANN, KAI, JANSSEN, ROB, MONTIEL, JMM, PERZYLO, ALEXANDER, et al.
. 2011. Roboearth. IEEE Robotics & Automation Magazine, 18(2), 69–82. 19, 64

WALKER, DAVID W, & DONGARRA, JACK J. 1996. MPI: A standard message passing interface. Supercom-
puter, 12, 56–68. 4

WEAVER, JOSHUA N, FRANK, DANIEL Z, SCHWARTZ, ERIC M, & ARROYO, A ANTONIO. 2013. UAV
performing autonomous landing on USV utilizing the robot operating system. In: ASME Early Career
Technical Symposium. Citeseer. 18

WEI, HONGXING, HUANG, ZHEN, YU, QIANG, LIU, MIAO, GUAN, YONG, & TAN, JINDONG. 2014. RGMP-
ROS: a Real-time ROS Architecture of Hybrid RTOS and GPOS on Multi-core Processor. Pages 2482–2487
of: International Conference on Robotics and Automation (ICRA). IEEE. 18

WEI, HONGXING, SHAO, ZHENZHOU, HUANG, ZHEN, CHEN, RENHAI, GUAN, YONG, TAN, JINDONG,
& SHAO, ZILI. 2016. RT-ROS: A real-time ROS architecture on multi-core processors. Future Generation
Computer Systems, 56, 171–178. 18

WEISER, MARK. 1993a. Hot topics-ubiquitous computing. Computer, 26(10), 71–72. 16

WEISER, MARK. 1993b. Some computer science issues in ubiquitous computing. Communications of the
ACM, 36(7), 75–84. 16

YANG, CHENGUANG, WANG, XINGJIAN, LI, ZHIJUN, LI, YANAN, & SU, CHUN-YI. 2017. Teleoperation
control based on combination of wave variable and neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, 47(8), 2125–2136. 17

YARP. YARP: Yet Another Robot Platform. https://www.yarp.it/. [Online; accessed February-2019]. 18

YOSHIDA, KAZUYA. 2009. Achievements in space robotics. IEEE Robotics & Automation Magazine, 16(4). 17

YU, YANGGUANG, WANG, XIANGKE, ZHONG, ZHIWEI, & ZHANG, YONGWEI. 2017. ROS-based UAV
control using hand gesture recognition. Pages 6795–6799 of: 29th Chinese Control And Decision Conference
(CCDC). IEEE. 18

ZAMANI, MARYAM, & VICSEK, TAMAS. 2017. Glassy nature of hierarchical organizations. Scientific Reports,
7(1), 1382. 43, 44, 45

ZEILENGA, KURT. 2006 (6). Lightweight Directory Access Protocol (LDAP): Technical Specification Road Map.
The Internet Society. Network Working Group. 5, 11, 32

ZHANG, WEISHAN, ZHAO, DEHAI, XU, LIANG, LI, ZHONGWEI, GONG, WENJUAN, & ZHOU, JIEHAN.
2016. Distributed embedded deep learning based real-time video processing. Pages 001945–001950 of:
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE. 14

ZHONGYUAN, GUO, WENJING, YANG, MINGLONG, LI, XIAODONG, YI, ZHONGXUAN, CAI, &
YANZHEN, WANG. 2018. ALLIANCE-ROS: A software framework on ROS for fault-tolerant and co-
operative mobile robots. Chinese Journal of Electronics, 27(3), 467–475. 18

https://www.virtualroboticstoolkit.com/
https://www.yarp.it/

	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Preface
	List of publications
	Agradecimientos
	Resumen
	Abstract
	List of acronyms

	Introduction
	Motivation
	Objectives
	Scope and limitations
	Outline

	State of the art
	HPC in robotics
	Ubiquitous robotics
	Discussion

	Ubiquitous supercomputing
	High Performance Robotic Computing
	Ontology
	General-purpose computing mission
	Ubiquitous supercomputing language
	Hierarchy
	Stability
	Automation
	Summary and discussion

	The ARCHADE
	Application Programming Interface
	Framework
	Middleware
	Simulation platform
	PLUS
	Summary and discussion

	Experiments and Applications
	Performance
	Swarming
	HPRC cluster of aircraft
	Tigers vs. Hunters
	Complete missions

	Concluding remarks
	Summary of contributions
	Future research

