Chapter 6

Schur complement method

6.1 Introduction

Schur complement (or Dual Schur Decomposition) [190, 191, 192] is a direct parallel method, based
on the use of non-overlapping subdomains with implicit treatment of interface conditions. Its main
feature is that each processor has to solve only twice its own subdomain plus an interface problem
to obtain the exact solution of the subdomain, with just one global communication operation.
Compared with multigrid or Krylov subspace solvers, it has received less attention. However, it
seems a very promising technique. A description of the algorithm is given and our implementation
is benchmarked.

In the approach used for our implementation, the two main considerations are: (i) The role of
Schur complement method is not to be used as a solver for the global domain but as an auxiliary
procedure for a smaller level of a MG algorithm and (i) Many right-hand-side terms are to be
solved with the same matrix A (as for instance, for the pressure-correction equations of constant
physical properties CFD problems, as discussed in section 1.2, so it is worth investing effort in a
pre-processing stage of the algorithm, that depends only on A. Even more, the data generated in
the preprocessing stage can be saved to be reused in other executions with the same mesh. These
ideas are fully exploited in our implementation.

6.2 Algorithm

6.2.1 Reordering

The linear equation system to be solved is denoted as:

Az =b (6.1)

The unknowns in vector = are partitioned into a family of P subsets, one per processor, plus one
interface, labeled s. The interface s is defined so that for any pair of subsets p;, p2, no unknown of
p1 is directly coupled with any unknown of ps, but only to its own unknowns and to s:

ifi € 2y, and j € xp, then A; ; =0 (6.2)
According to this decomposition, unknowns in vector x are reordered as :
x:[wo,wh---’xp_l,ms]t (6.3)

Inside each subset, the usual ordering of the unknowns (from bottom left to right) is preserved.
Unlike in Jacobi or MG algorithms, here each subset z, contains only the inner unknowns of its

subdomain, but not the interface unknowns, contained in zs. Let Np be the number of inner

142

Schur complement method

unknowns of subset p and N, the number of unknowns of the interface s. The symbol Np is used
instead of N, that is reserved for the total number of unknowns (inner plus interface) of processor

p.

According to the new ordination, the system can be expressed in terms of block matrices as:

A070 0

0 A171

0 - Ap_i1pa
As,O As,l

The sizes and structures of the submatrices in equation 6.4 are:

AP—I s
Ass

)

)

rp—1

Ts

bo
by

bp_1
bs

1. Ago---Ap_1 p_1 are sparse matrices (penta or heptadiagonal if a structured mesh is used)
with NV, rows and columns, that express the coupling of the inner unknowns of processor p.

2. Ay s---Ap_1,5 are sparse matrices with Np rows and Ny columns that express the coupling of

inner unknowns of processor p with the interface unknowns.

3. Ago--Ag p_1 are sparse matrices with N, rows and Np columns that express the coupling

of interface unknowns with inner unknowns of processor p.

4. A, s is a sparse matrix with Ny rows and columns that expresses the coupling of the interface

unknowns.

In a parallel implementation, a conventional domain decomposition is done and then the interface
nodes are treated separately. Each processor has an inner domain plus a part of the interface.

Example. To clarify the decomposition, consider the following situation. It is a domain with 6
nodes in z axis and 4 nodes in y axis, to be solved with P = 3 processors. A standard ordering of
the unknowns in # vector can be as indicated in Fig. 6.1. The areas of the processors are filled in

different colors.

p=0 p=1 p=2
4 119120(21|22|23|24
3 |13/13|15|16|17,18
2 71 8] 9110|1112
1 1| 2| 3| 4] 5| 6
i 1 2 3 4 5 6

i

Figure 6.1: Schur decomposition. Domain before reordering.

p=0 p=1 p=2
4 4123 8|24|15| 16
3 3121 7221314
2 2119 6|20/11|12
1 1117 5|/18| 9|10
i 1 2 3 4 9 10

i

Figure 6.2: Schur decomposition. Domain after reordering.

6.2 Algorithm 143

In the example, we use a one-dimensional decomposition for z axis. Columns xz = 1,2 are
assigned to processor p = 0, z = 3,4 to p = 1 and columns =z = 5,6 to p = 2. The domain after
the reordering has been represented in Fig. 6.2. The interface s is formed by two columns of nodes,
indicated with italic boldface. Interface unknowns can be arbitrarily located at the east or at the
west of the area of each processor. In our implementation, they are at the west (and at the north for
two-dimensional domains). Nodes are now ordered first by subset and then, inside each subset, from
bottom left to top right. The interface unknowns are numbered globally after the last subdomain
p = P —1, from bottom left to top right. For instance, for p = 1 inner nodes are 5 - - - 8 and interface
nodes 18,20,22,24. In the example, a diffusion equation with a equally spaced mesh is considered.
Dirichlet boundary conditions are used, with a trivial equation z, = b, for the boundary nodes.
Under these conditions, the submatrices of A needed by processor p = 1 after the reordering are as
follows:

)

A = 6.5
11 0 (6.5)

00 0 0 0 0 00
00 -1 =1 0 0 00
Ay, = (6.6)
00 0 0 -1 -1 00
00 0 0 0 0 00
[0 0 0 0]
00 0 0
0 -1 0 0
0 -1 0 0
Ay = (6.7)
0 0 -10
0 0 —-10
00 0 0
(0 0 0 0]
(1 0 0 0 0 0 0 0]
0o 1 0 0 0 0 0 O
-1 0 4 0 -1 0 0 0
0 -1 0 4 0 -1 0 O
Ay = (6.8)
0O 0 -1 0 4 0 -1 0
0O 0 0 -1 0 4 0 -1
o 0 0 0 0 0 1 0
0o 0 0 0 0 0 0 1 |

To avoid confusions, it is important to note that this example is an exception. In general,
t
APth # (APZypl) .

144 Schur complement method

6.2.2 Solution of the reordered system

Gaussian elimination, treating each matrix as a scalar (this is, block Gaussian elimination), is used
to transform the last block equation of system (6.4) from its original form,

[As,Oa As,la Ty AS,S] : [370, T1, ", TP-1, xs]t = bS (69)
to:
[07 07) 07 AS,S] ! [Q?O, L1, ", TP—1, xs]t = BS (610)
this is,
A, ory =Dy (6.11)
where
3 P—1
Ao =4 =Y ApAL AL, (6.12)
p=0
and
} P—1
by =bs— > AspA, by (6.13)
p:

Thus, equation (6.11) can be used to solve for the interface unknowns s before the interior values.
Once z, is known, each of the z;, can be determinated solving its original equation, extracted from
equation (6.4):

Apptp =bs — Ap s (6.14)

After the difficulties associated with Block Jacobi algorithms, section 4.5.1, to be able to solve
the interface before the inner nodes, seems magical ! ... but its just reordering of the unknowns and
linear algebra. However, as we will see, the implementation of the technique is not that easy.

6.2.3 Ewvaluation of fls,s and l;s

The first problem to implement the algorithm is how to evaluate b, and AS,S, as both involve A ;, and
its explicit computation is not possible except for very small problems. Assume that matrices A, p,
Ap s and A, s are made available to processor p. If each of the processors only has the coefficients
of its part of the problem, communications are needed to reach this stage.

First, we will consider the evaluation of As,s. We rewrite equation (6.12) as
P—1
Ago= A5 =D AL, (6.15)
p=0
here each of the terms:

Ag,s = AS,pA;,;)Ap,s (6.16)

is the contribution from processor p to As,s. It can be evaluated column by column, without

explicitly needing A %), proceeding as follows:

For column ¢ from 1 to N, solve for auxiliary vector ¢ in equation:

Appt = [Aps]. (6.17)

6.2 Algorithm 145

where [is column ¢ of a matrix. A lot of effort can be saved as many of the [A4,, ;] are null. Then,
[d,] =4t (6.18)

When the contribution of each processor is available, they are added and the result subtracted
from A, s, to obtain As,s. In our implementation, all the processors need the matrix As,s, SO
MPI_ Allreduce [155] is used to evaluate and propagate it. As /1373 depends only on A, it can be
reused for different b vectors, like a LU decomposition. Note that although A, ; is a sparse matrix,

this is not the case of /1373.
The same approach is used for l~)s, but here only one system has to be solved. Equation (6.13) is
expressed as:

P—-1

by =bs— »_ B? (6.19)

p=0
where
b = A, A7 by (6.20)
Each processor evaluates its contribution b? as:
Ap pt =bp
bP = At (6.21)

6.2.4 Implementation. First approach

The algorithm is divided into two stages: (i) Preprocessing (Alg. 6.1) to be used just once per
matrix and (i7) Solution (Alg. 6.2) of x for a given b, to be used once per b vector. Exact band
LU decompositions has been used for A, , and AS,S. The conventional approach, however, is to use
iterative solvers to do so (i.e., GMRES is used in [192]). The symbol []" is used to denote the row
r of a matrix.

Step P.3 involves communication as processor p does not have the coefficients that relate the
inner nodes of neighbouring processors with its interface nodes. In our example, this is the case,
for instance, of nodes 9,11,13,15, owned by p = 2 but coupled with interface nodes 18,20, 22,24,
owned by p = 1.

In the solution stage, each processor has to solve two local problems (steps S1 and S3) plus the
interface problem S2, using the respective LU decompositions. There is only one communication
operation per right hand side term to be solved.

In the implementation proposed in Alg. 6.2, all the processors solve simultaneously for the same
interface values (step S.2). Doing so, communications are minimized but an important fraction
of sequential work is introduced and a lot of memory is wasted due to data replication. Other
alternatives are: (i) Solve the interface with a single processor and (ii) use a parallel solver for
dense matrices. Both techniques were compared in [191] on a SP2, concluding that although the
parallel interface solver is communication dominant, it is more efficient than the serial interface
solver for large size problems. A better option (for the class of problems considered in this work) is
presented in section 6.2.5.

6.2.5 Implementation. Distributed evaluation and storage of fl;;

Initial benchmarks of previous algorithm showed that, even using a full-matrix LU decomposition

to solve for = in step S.2, as A, s is a dense matrix, the cost of this operation can be high compared

146 Schur complement method

Preprocessing of A {
P.1-form A, s matrix :
r=1-— Ng{
if owner(r) = me
form [A;,]"
}
send my rows of A ; to the other processors
g=1->P—1]
if ¢ # me
receive rows of A, ; owned by ¢
}
P.2-form A, ; matrix
P.3-form A,), matrix
P.4-form A, , matrix and evaluate its LU decomposition
P.5-evaluate /1373
c=1- N, {
if [A,.], # 0 {
evaluate [figs] using (6.17, 6.18)

}

evaluate T+ ZP ! Ap (all-reduce operation)
As,S — A, =T
P.6-evaluate and store the LU decomposition of A, g

}

Algorithm 6.1: Schur complement algorithm. Preprocessing (first approach).

Solution of Az =0 {
S.1-evaluate by = b, — Zf:_ol by
S.1.1-solve A, pt = b,
using the pre-evaluated LU dec. of 4, , (step P.4)
S.1.2-evaluate b2 « A, t
S.1.3-evaluate by Y27~ b2 (MPI_ Allreduce)
S.1.4-evaluate bs < bs — bs
S.2-solve the interface nodes z4 from As,sxs = b,
using the pre-evaluated LU dec. of A; 5 (step P.6)
S.3-solve the inner nodes z, from A, ,z, = b, — Ap sz,
S.3.1-evaluate t = b; — Ap s
S.3.2-solve A, px, =t
using the pre-evaluated LU dec. of 4, , (step P.4)

}

Algorithm 6.2: Schur complement algorithm. Solution (first approach).

with the band LU solution of the local problems. This leads to relatively poor performance of the
previous algorithm.

On the other hand, processor p does not need all the z, values to solve for its =, subset. However,
the LU algorithm (step S2) requires the evaluation of all the values.

The previous considerations suggested the following enhanced (for our application) version of
the algorithm. The first idea was to evaluate and store A . However, it is too large and we do not
need all the matrix. If it was available we would use it to do the followmg matrix vector product:

6.2 Algorithm 147

sbs (6.22)

However, we do not need all the components of z,, but only the values of z,, directly coupled
with our inner area. For instance, in our example p = 1 only needs z, in nodes 17,19,21,23 (in
p =0 area) and 18,20, 22,24 (in its own area). Thus, we only need the rows of A;i associated with
the required values of ;. To evaluate them we use the expression:

Q"' =" (6.23)

where () is any non-singular square matrix. The rows of AS,S are evaluated as columns of its
transpose. The modified algorithms are Algs. 6.3 (only the modified steps are shown) and 6.4.

Preprocessing of A {
P.6-evaluate and store the LU decomposition of A;s
P.7-evaluate the required subset of the rows of A}
At 0
fore=1— Ng{
if I need component ¢ of x5 {
solve for t in Al t = e, using A, |

[A;i} et (store ¢ as the ¢ row of A7!)

Algorithm 6.3: Schur complement algorithm. Preprocessing (second approach).

After step P.7, LU decomposition of A’ , is not needed anymore, so it can be deallocated. As

s,8
actually only the rows of As’; in use are stored by each processor, while the full LU decomposition
was needed, so the modification of the algorithm not only saves CPU time but also memory.

Each interface node is needed by processors at both sides of the interface. Currently both
evaluate the corresponding row of the matrix. An additional enhancement can be to parallelize
step P.7, saving CPU time in the preprocessing stage. However, depending on the ratio F//B of
the computer (section 4.2.1), this may not be convenient. Additionally, depending on N, it might
be better to solve for ¢ in step P.7 using another method rather than LU decomposition of AS,S.
However, as our main interest is not the preprocessing stage, these possible enhancements have not
been implemented.

When the algorithm is used with a single processor, P = 1, a conventional (sequential) LU
decomposition is used (section 2.7.2). Thus, each processor has to solve just once all the domain.

6.2.6 Sparse matrix storage

A lot of memory and CPU time can be saved storing matrices A, ,, A, s and A;i as sparse. It
is worth doing it even to solve small problems. The sparse matrix storage technique used in our
implementation has been choosen considering that in the solution stage, the matrices are only needed
to evaluate matrix-vector products. For each row, the non-null columns and its indices are stored
using a double and a integer vector. For instance, in our example, A; ; is stored as:

148 Schur complement method

Solution of Az =b {
S.1-evaluate b, = b, — 25:_01 by
S.1.1-solve A, ,t = by
using the pre-evaluated LU dec. of 4, , (step P.4)
S.1.2-evaluate b? + A, t
S.1.3-evaluate by + Zf:_gl b2 (MPI_ Allreduce)
S.1.4-evaluate bs < b — b
S.2-solve the interface nodes x, from fls,sms =b,
S.2.1-evaluate z; = A7 b, where needed
using the required subset of rows (pre-evaluated in P.7)
S.3-solve the inner nodes z, from A, ,z, = b, — Ap s
S.3.1-evaluate t = b, — A, sz
S.3.2-solve A, px, =t
using the pre-evaluated LU dec. of 4, , (step P.4)

}

Algorithm 6.4: Schur complement algorithm. Solution (second approach).

Als={
1->NULL
2->[2,3,4] , [-1.,-1.]
3->[2,5,6] , [-1.,-1.]

4->NULL

Where the symbol NULL is used to denote an empty row. For non-null rows, the first vector
contains the number of non-null elements and its position and the second, the floating point numbers.
Incidentally, this solution is similar to the procedure adopted in the code Matlab [193], except that
Matlab uses an additional integer vector to indicate the position of the non-null rows, instead of a
NULL pointer. As for our application the time spent in step S2 is already low, the performance of
both systems would probably be similar.

An object-oriented approach has been used to implement the sparse-matrix subroutines. The
data structures are opaque to the external user, who can access the matrices through a set of
functions such as add-row or matrix-vector. The same approach has been used to implement the
Schur complement solver and the DDACM solver (section 7).

6.3 Benchmark

The problem model (section 2.7.1) was solved for different values of P and N in the JFF cluster.
Solution times, summarized in Table 6.1, are excellent. Times are low and speed-ups, represented
in Fig. 6.3, are very good'. The biggest problem that our version of the algorithm can solve with
256Mytes RAM per node (without swapping) is about N = 350% = 122.500. If swapping is allowed
only during the preprocessing stage, larger problems can be solved. The majority of CPU time is
spent solving band LU decompositions. This is done with the function proposed in [105] (as in
section 2.7.2).

For P = 2, each processor has to solve twice a domain with N/2 equations. With a distributed
evaluation and storage of A;; approach, the time to solve the interface equation is low. Thus, for
large problems, as expected, the CPU times with P = 1 and P = 2 are similar. For more processors,
one would expect, at best, to have S = P/2. Surprisingly, for large meshes, the results are much

better: even a super-linear speed up is obtained in some cases. For P = 16 we have S ~ 21, while

INote that these are solution times and not pre-processing times. Pre-processing times are much higher so this
approach can not be directly applied to non-constant matrices such as momentum or energy discrete equations.

6.3 Benchmark 149
N P=1 P=2 P=4 P=9 P =16
400 466x10 1] 1.40x10° | 226x10 2 | 2.81x10 3 | 3.80x 10 *
1600 | 6.87x10°2 [7.25x10 ° | 3.23x10 % | 3.66x10 ° | 5.20x 107
3600 | 2.30x1072 | 240x1072 | 7.90x1072 | 5.51x1073 | 6.23x 1073
6400 | 5.42x1072 | 5.48%x 1072 [1.68x10°2 | 8.83x 1073 | 8.22x 10~ °
10000 | 1.05x 1071 [1.05x 10T [3.02x 1072 | 1.40x10~2 | 1.10 x 102
22500 | 3.53x10° T [3.49x10 T [9.36x10 2 | 3.83x10 2 | 2.37x 102
40000 | 8.35x107 T [826x 10T | 2.15x 1071 | 7.52x 1072 | 5.28 x 102
62500 | 1.62 x 10° | 1.60 x 10° | 4.15x 1071 | 1.39x 107! | 8.48x 102
90000 | 2.81 x 10° [2.80 x 10° | 7.11x 1071 [2.39x 10~ | 1.29x 10~ T

Table 6.1: Execution times of Dual Schur solver.

the “theoretical” optimal would be S = 8. This is remarkable, specially on a loosely coupled parallel

computer.

25

20

15

T

S=p
N=1600 —+—
N=6400 ——
N=10000 —*—

Number of processors

3 /
3
Q
Q
o
n
10
_/—l
/’ /,k/—
. ~ %
//,/ —
0 1
2 4 6 8 10 12 14 16

Figure 6.3: Speed-ups of the Schur algorithm in the JFF cluster.

To see the reason of this good behavior, we analyse the fraction of time spent in each of the
solution steps. More than 95% of the time is spent in the following operations:

e Solution of the two band LU systems, steps S.1.1 and S.3.2.

e MPI Allreduce operation, step S.1.3,

e Solution of the interface problem, step S.2.1.

For P = 16, these times have been represented versus the problem size in Fig. 6.4. As a reference,
the CPU time obtained with P = 1 has also been represented.

Except for small problems, time due to communications and solution of interface problem is
relatively low and grows less than LU solution time.

However, the reason for the super-linear speed up is the non-linear cost of the LU operations.

For instance, for the case with NV = 90.000, each processor only has to solve two problems with
N = 5.625. As can be seen in Fig. 2.3, where CPU time of sequential LU solution is represented
versus N, this is a huge difference.

150 Schur complement method

0.2 T

Total tilme with P=16 —+—
S.1.3:MPI_Allreduce —¢—
S.2.1:Solution of interface —%—

Sequential time —— /
0.15

0.1

Computing time (s)

7

L
%
e—
L
0 20000 40000 60000 80000 100000 120000

Number of unknwons

Figure 6.4: Breakdown of the processing time of the Shur solver, with P = 16 for different problem
sizes.

It can be argued that using a better solver for each subset of z (Steps S.1.1 and S.3.2), the time
for the sequential LU solution would be lower and thus the speed-up smaller. This claim is totally
correct. However note that the first local problem (Step S.1.1) has to be solved accurately to avoid
loosing precision. It should be investigated which could be the best option to do so. A nested
Schur complement decomposition seems an interesting option. However, as our goal here are not
the sequential algorithms, only used to measure of the speed-up, this has not been done here.

As the communications cost is low, the reduction of the processing time due to the use of better
networks would be relatively small. For instance, assuming a zero cost of the MPI _Allreduce

operation, total processing time with N = 90000 and P = 16 would be about 1.06 x 10~! and
S~ 26.4.

6.4 Final remarks

In its area of application (situations where a relatively small and constant matrix has to be used
to solve for many right-hand-side vectors) the Shur complement method is a remarkably efficient
algorithm, if a fast method is used to solve the interface problem.

This holds specially for low cost parallel computers. As the data to be exchanged grows with the
interface size, it is tolerant to low bandwidth networks. It is also tolerant to high latency as there
is a single communication episode in all the solution process. In Chapter 7 it is used as an auxiliary
component of the DDACM algorithm.

6.5 Nomenclature

151

6.5 Nomenclature

A matrix
b right hand side
App coupling matrix of
inner unknowns of processor p
Ap s coupling matrix of

inner unknowns of processor p
with the interface

As, coupling matrix of
the interface with the inner
unknowns of processor p

As s coupling matrix of
interface unknowns

fis’s matrix of interface
equation
b right hand side of interface equation
N total number of unknwons
Np number of inner unknowns

of processor p

N, number of unknowns
of processor p
number of unknowns of
the interface
processor

number of processors
generic vector
generic matrix
interface

speed-up

unknown vector

=

B o g~ g

Subindices
p referent to processor p
S referent, to the interface

152 Schur complement method

