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A learning experience is one of those things that says:
“You know that thing you just did? Don’t do that.”

–DOUGLAS ADAMS

Real stupidity beats artificial intelligence every time.

—TERRY PRATCHETT - Hogfather (Discworld # 20, 1996)

Sometimes it seems as though each new step towards
artificial intelligence, rather than producing something
which everyone agrees is real intelligence, merely reveals
what real intelligence is not.

–DOUGLAS HOFSTADTER - Gödel, Escher, Bach: An
Eternal Golden Braid (1979)
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Abstract
Deep learning approaches have become increasingly popular in the last
years thanks to their state-of-the-art performance in fields such as com-
puter vision and natural language understanding. The first goal of this
thesis was to adapt such approaches, and particularly those used in image
recognition, to the domains of structural biology and chemoinformatics.
We do so by the development of a novel three-dimensional biomolecular
representation that can be used in conjunction with 3D-convolutional neu-
ral networks for a variety of tasks. We test the applicability of such meth-
ods in several relevant problems in the early drug discovery pipeline, such
as protein binding site prediction, protein-ligand binding affinity predic-
tion, drug selectivity elucidation and molecular generative models. The
second goal of this thesis was to facilitate the use and accessibility of
such tools by their implementation and deployment in an easy-to-use web
application.

Resum
Els mètodes d’aprenentatge profund han guanyat molta popularitat en els
últims anys gràcies al seu rendiment en camps com la visió per ordinador
o l’aprenentatge del llenguatge natural. El primer objectiu de la tesi va ser
adaptar aquests mètodes, particularment els utilitzats en el reconeixement
d’imatges, als camps de la biologia estructural i la quimioinformàtica.
L’adaptació s’ha fet mitjançant el desenvolupament d’una representació
biomolecular tridimensional que pot ser utilitzada en conjunt amb xarxes
neuronals convolucionals tridimensionals en diverses tasques. Hem tes-
tat l’aplicabilitat d’aquests mètodes en varis problemes rellevants per als
primers estadis de desenvolupament de drogues, com la predicció de la
zona d’unió de proteı̈nes, l’afinitat d’unió entre proteı̈na i lligand, la elu-
cidació de selectivitat de drogues i models generatius de molècules. El
segon objectiu de la tesi ha sigut el facilitar la utilització i l’accessibilitat
d’aquestes eines mitjançant la seva implementació i desplegament en una
aplicació web de fàcil ús.
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Preface

Research on deep learning approaches such as convolutional and re-
current neural networks drew a lot of attention in the early 2010s, and
such is not undeserved: they provided a significant performance leap in
areas such as in computer vision, natural language understanding or the
development of the self-driving car.

Back in 2016 when I first started my PhD studies, I remember being
astonished by these advances, and by how fast these were being deployed
and affecting our everyday lives. Moreover, my supervisor and I worryingly
suspected that it would be only a matter of time until these modern machine-
learning approaches were used in other research fields, therefore ope-
ning a lot of opportunities, but only for those able to seize them quickly
enough. Overall, time has proven that we were certainly not wrong: the
past five years have experienced an explosion of deep-learning applicati-
ons in most of the related areas to bioinformatics and chemoinformatics.

Given that both my background in statistics and the timing were fit-
ting, we decided that it was a good idea to go with the flow: in the research
presented here I tried my best to bridge the gap between deep-learning
models and several problems relevant in drug discovery, such as protein
binding site prediction, protein-ligand affinity prediction, compound se-
lectivity elucidation and generative models of drugs. Most of the research
carried out during these studies has involved a lot of frustration and fai-
lures, but also a good deal of very lucky successes. Only the latter are
presented here, while the former I have certainly learned from.
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Chapter 1

INTRODUCTION

1.1 The machine learning context

We are generating data at an unprecedented rate in human history. For
instance, more than 300 hours of video are uploaded to YouTube every
minute 1, Amazon handles more than 400 orders per second in holiday
season 2 or more than 100k whole human genomes have been fully se-
quenced 3. This vast amount of information therefore called for the de-
velopment of machine learning models: their use nowadays ubiquitous in
modern society as we enter an era of big data.

Machine learning is the field occupied with the development of general-
purpose approaches that directly learn patterns from data without explicit
functional pre-specification and their use in future prediction and smart
decision making [1]. Arguably, these methodologies can be classified
into several paradigms. In supervised learning we are interested in fit-

1http://www.everysecond.io/youtube
2https://www.theverge.com/2013/12/26/5245008/amazon-

sees-prime-spike-in-2013-holiday-season
3https://www.broadinstitute.org/news/broad-institute-

sequences-its-100000th-whole-human-genome-national-dna-
day

1
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ting a function f : X → Y using n training data points from a set
D = {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y . Typical applications
include regression and classification tasks. In unsupervised learning,
our data consists of only inputs D = {xi}ni=1, and our goal is to find
some notion of internal structure. Clustering, anomaly detection and di-
mensionality reduction techniques fall into this category. Reinforcement
learning, on the other hand, deals with the task of an finding optimal pol-
icy for an agent on a environment, given some notion of reward.

For the work presented in this thesis we mostly are concerned with the
supervised and unsupervised paradigms: particularly on deep-learning-
based models and their application at several stages of the drug discovery
pipeline. The thesis is structured as follows: first we provide motivation
for deep learning methods, to then explain their potential use in relevant
drug-discovery problems. Finally we discuss in detail all the particular
challenges studied and corresponding machine-learning applications de-
veloped throughout this thesis.

1.1.1 A brief history of artificial neural networks

Among the plethora of machine-learning approaches, deep learning meth-
ods, those based on artificial neural networks (ANNs) [2–4], have become
increasingly popular over the last few years. The impact these models are
having in the present world is unquantifiable: they have become de-facto
a common tool in many scientific fields, such as computer vision [5–9],
natural language understanding [10–15], speech recognition [16–19], rec-
ommender systems [20, 21] and the development of self-driving vehi-
cles [22, 23], in many cases surpassing human levels of performance.

One may think that the aforementioned approaches are novel, but in
fact, the earliest artificial neural network, the perceptron, was developed
by Rosenblatt back in the 1950s [24]. Moreover, early drafts of back-
propagation, a very popular technique through which neural networks
are trained, were derived in the context of control theory in the early
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Figure 1.1: A comparison between biological (left) and artificial (right)
neural networks. Neurons transmit information via dendrites, and if ac-
tivated will further transmit its non-linear transformation to other neigh-
boring neurons.

1960s [25], although their significance was not properly recognised un-
til the works of Hinton in the 1980s [26, 27]. It would not be until the
early 2010s, however, when the potential of artificial neural networks was
finally unhindered.

1.1.2 Deep learning and representations
Anatomy of an ANN

An artificial neural network is a machine learning model that takes inspi-
ration from their biological counterpart (Figure 1.1, taken from Stanford’s
CS231 notes 4). A neuron φ receives a linear combination of learnable
weights w and bias b and the output of preceding neurons xi and applies
a (typically non-linear) activation function f . This result is then passed to
subsequent neurons:

φ = f

(∑

i

wixi + b

)
. (1.1)

4http://cs231n.github.io/neural-networks-1/
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In regular feed-forward neural networks, neurons are sequentially or-
ganized in layers, information passed from the previous to the next until
an output of a desired dimensionality is obtained. Layers that are either
not the input or the output ones are named hidden, and a neural network
with more than a single hidden layer is said to be deep. A loss function
L is used at the output of the network and compared with the real tar-
gets y so as to quantify how close these are to each other. In order to
adjust the learnable parameters at each layer, we use a gradient-descent-
based approach named backprogatation [28, 29], that iteratively updates
parameters through the chain rule. As a motivating example, assume a
regression setup with a single layer for examples {(xi, yi)}ni=1, learnable
parameters w and the mean squared error as loss function L:

L (xi,w) =
1

2
‖N(xi,w)− yi‖2 , (1.2)

where L (xi,w) is the loss for example i between the output of the net-
work N(xi,w) = f (xt

iw) and its corresponding targets. The expression
can be averaged over a batch of examples:

L(w) =
1

n

n∑

i=1

L (xi,w) . (1.3)

We are interested in finding the partial derivative of the loss w.r.t.
learnable parameters, so that they can be updated using standard gradi-
ent descent:

wnew = w − η∂L(w)

∂w
, (1.4)

where η ∈ (0, 1) is the learning rate. Furthermore, for the gradient to
be computable, it is necessary that the loss and activation functions in
the network are differentiable. Up to recently, the gradients needed to be
symbolically derived and then coded for each particular neural network
model, but thanks to the advent to automatic differentiation packages [30,
31] such as Tensorflow or PyTorch [32, 33] this is no longer necessary,
tremendously facilitating the design of complex architectures.
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Raw data Feature
engineering Trained model

Automatic feature
extraction

Figure 1.2: Contrary to other machine learning approaches, which require
users to engineer their own sets of features, deep learning procedures are
able to extract valuable features from a closer representation to the raw
data itself.

Automatic feature extraction: going deep

There were several reasons why artificial neural networks fell out of favour
against other popular supervised machine or statistical learning algorithms,
such as random forests [34] or support vector machines [35,36] in the last
50 years. Mostly these come from the inability to train deep models, those
that feature more than a single hidden layer, which was partially caused by
what is known as the exploding or vanishing gradient problem [37]: when
backpropating errors in deep architectures, partial derivatives have a ten-
dency to be numerically unstable, rendering training impossible. This is-
sue is nowadays partially solved by modern activation functions, such as
ReLU (i.e. r(x) = max(0, x)), and architectures such as ResNet [38].
The other reason is computational efficiency: training deep models is
very expensive compared to other well-performing yet simpler alterna-
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tives, and it would not be until the advent of graphical processing units
(GPUs) that this issue would be mitigated.

The training of neural networks was confined to shallow models up
to recently, but there is good reason why one would be interested in deep
architectures. The main reason why that deep learning approaches have
revolutionized many research fields is because of their ability to perform
automatic feature extraction [39–41] (Figure 1.2). A typical machine-
learning workflow involved the computation of handcrafted descriptors
on which a model is trained later, their choice being completely problem-
specific, and the performance of such model heavily depending on such
representation. Deep learning models however, learn features hierarchi-
cally from a closer representation of data itself, higher layers representing
more abstract concepts. For instance, in the case of computer vision, con-
volutional neural networks [6] work directly at the pixel level of data,
extracting the most relevant features in each picture so as to maximize
predictive performance, with earlier layers serving the purpose of edge
detectors, and the higher representing more complex concepts (such as
the nose of a dog). Alternatively, in the case of natural language pro-
cessing, recurrent neural networks [42, 43] can work directly with text
data to predict, for instance, which is the most probable word to follow
an incomplete sentence. This ability to work with a closer representation
of the real modelled data, instead of requiring the practitioner to manu-
ally extract its own set of features, resulted in deep learning approaches
achieving state-of-the-art performance in many problems.

1.2 The promise of deep learning in drug dis-
covery

1.2.1 A mentality shift

Machine learning (ML) is barely a newcomer to the related subfields of
drug discovery, such as chemoinformatics or structural biology. A long
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tradition stems from the early quantitative structure activity relationship
models first reported in the early 1960s [44], which became common-
place in a computational chemist’s toolbox [45–49]. Traditionally, ma-
chine learning and classical statistical approaches have never been an easy
subject in the aforementioned fields, as they involve the description of
complex entities, such as molecules, through a one-dimensional vector
that can later be used for modeling [50]. In fact, hundreds of descrip-
tors have been developed in the context of molecular property prediction
alone [51–58].

Given the success of early deep learning approaches in other fields,
researchers did not wait to explore their applicability in all the stages of
drug discovery, and in fact, such is the case in the thesis presented here.
While machine learning models can be deployed at all stages of the drug
discovery pipeline (Figure 1.3), a lot of effort is currently being spent in
the earlier stages, those dedicated to target identification as well as molec-
ular generation and property prediction.

The success of ML-based models in the field has gained momentum
in the last years, encouraged by several early promising results. In 2013,
deep neural networks models were the top performing ones in the Merck
molecular activity challenge [59] and in 2015 similar results were ob-
tained in the Tox21 toxicity data challenge [60]. Furthermore, deep learn-
ing approaches implied that models were no longer restricted to tradi-
tional data types, such as compound fingerprints, but could also extend to
the structure of proteins, images or transcriptomics. Driven by these suc-
cesses, many of the major pharmaceutical companies already have began
to explore machine learning initiatives 5, in some cases with the collabo-
ration of IT giants such as Google 6.

5https://emerj.com/ai-sector-overviews/ai-in-pharma-
and-biomedicine/

6https://www.slashgear.com/google-and-pharma-company-
sanofi-team-up-for-big-data-processing-18580858/



8

Figure 1.3: Drug discovery pipelines and corresponding machine learning
applications at each of the stages. Taken and adapted from Vamathevan
et al. [65]

1.2.2 A modern deep-learning representation for biomolec-
ular complexes

Moving beyond feature engineering

Traditional descriptor sets for structural biology have traditionally fallen
into the feature engineering mindset. That means that researchers tried
to come up with one-dimensional descriptions or representations of what
in reality is a three-dimensional physical object. Examples of such de-
scriptions include, among many others, atom type or aminoacid counts
at different distance thresholds [61, 62], protein-ligand interaction finger-
prints [63] or pharmacophoric descriptors [64].

Naturally, these representations represent a simplification of the prob-
lem in order to accomodate the standard supervised learning framework
of predicting a scalar variable using a vector of features [66]. While
these strategies were certainly useful, and many researchers developed
creative solutions to adapt features to said paradigm, the modeling of
three-dimensional structures, such in the case of proteins remained far
from ideal. Drawing parallels with the computer vision field, it was
also common practice to engineer features to the standard machine learn-
ing paradigm, using descriptors such the scale-invariant feature trans-
form [67], speeded up robust features [68] or the histogram of oriented
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Figure 1.4: Example of descriptor computation output for the hydropho-
bic and aromatic channels, respectively for PDB Id 4NIE. Taken from
Pub. 1 [77]

gradients [69]. With the popularization of convolutional neural networks
and their clear victory in the well-known image classification challenge
ImageNet [7], their usage became common both in academia and indus-
try. Furthermore, the flexibility of these gradient-based approaches al-
lowed the training of models that go beyond simple image classification,
but also segmentation [70, 71], colorization [72], stereo conversion [73]
and high-dimensional generative modeling [74–76], among many others.

Drawing inspiration from these advances in computer vision, we started
adapting similar models for biomolecular complexes. On one hand, im-
ages are typically represented as three two-dimensional matrices (or chan-
nels), each of them representing the color intensity at each pixel location
(i.e. RGB color space). Proteins on the other hand are represented by a
collection of atoms and their coordinates in three-dimensional space, so
the first question became how to adapt current computer vision know-how
in this context

A natural idea is to first discretize the space into equally spaced kÅ3
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voxels. Then, a compendium of properties (the aforementioned chan-
nels) can be computed for each of these voxels, predefined by a simple
atom typing. For most the work presented in this thesis we have used
pharmacophoric-like features (hydrophobic, aromatic, hydrogen-bond donor
or acceptor, positive or negatible ionizable and metals). Direcly translat-
ing atoms into volumetric space results in a very sparse representation, so
an atomic influence to each voxel location is computed following a pair
correlation function which depends on their euclidean distance r:

n(r) = 1− exp

(
−
(rvdw

r

)12)
, (1.5)

where rvdw is the Van der Waals radius of the atom in question. This
description can also be seen as a distance-based interpolation. A simple
atomic occupancy channel, is also typically included to account for ex-
plicit geometric information of the complex. In terms of the choice of
atom typing it is been common in the literature to see the use of those
provided by either the AutoDock 4 [78] or Smina [79] software packages.
Other authors have chosen a different distance-based functional forms for
the interpolation function [80]. An example of the proposed representa-
tion for a protein can be checked in Figure 1.4. The latter is general for
biomolecular complexes and therefore is able to describe other entities
such as small compounds, a fact that can be exploited to model, for in-
stance, protein-ligand interactions. An example of the voxelization of an
interaction between a small compound and a protein pocket can be seen
in Figure 1.5.

3D-convolutional neural networks

Once a representation similar to the one images has been developed, the
deep-learning techniques commonly used in computer vision, such as
three dimensional convolutional neural networks become readily appli-
cable. These are specifically designed to work with spatial inputs (i.e.
voxels), by trying to emulate the response of an individual neuron to vi-
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(a) (b)

Figure 1.5: (a) PDB Id 2HMU pocket and bound ligand ATP. (b) Voxel
representation of the hydrophobic channel for both protein (blue) and lig-
and (yellow). Taken from Pub. 2 [81]

sual stimuli [82]. This fact allows us to encode certain properties into the
architecture that cannot be assumed in regular, fully connected networks.
Concretely, the layers of a three-dimensional neural network are arranged
in 4 dimensions: height, width, depth and number of channels, with each
neuron only locally connected to a localized region of the preceding layer.
In the case of voxels, the output of a neuron, a feature map φ, is a three
dimensional tensor, obtained through discrete convolution of a filter Wi

over an input feature map zi(x, y, z):

φ = f

(∑

i

Wi ∗ zi(x, y, z) + b

)
, (1.6)

where ∗ represents a three-dimensional discrete convolution operation
[83]:

w ∗ f(x, y) =
a∑

s=−a

b∑

t=−b

c∑

l=−c

w(s, t, l)f(x− s, y − t, z − l). (1.7)

In Figure 1.6 we show an example of the the multiplication of a
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Figure 1.6: Example of a single convolution operation over an input fea-
ture map z, which is element-wise multiplied by a learnable filter W to
obtain an output of arbitrary size.

single filter with an image patch7. The connectivity of a feature map is
controlled by a parameter named kernel or filter size, and such is only
defined across the spatial dimensions, while full connectivity is applied
to all feature channels. Parameters in a convolutional neural network
are also typically shared in the channel dimension: if one feature is
useful for a particular position in the image, it should also be for a
different one. This simplification results in a significant reduction of
learnable parameters, which in turn makes current implementations more
computationally approachable at a scale.

Apart from convolution, other layers are commonly used in the
development of this type of neural networks. For instance, pooling layers
apply a non-learnable transformation to an input, typically reducing its
size in order to simplify further calculations and reduce the number of
parameters in the network, operating independently on each channel.
Normalization layers, such as batch normalization [84], ensure the weight
distribution remains similar across batches, while dropout layers [85]
randomly drop neuron connections with the intent of avoiding overfitting.

7Taken from https://stanford.edu/˜shervine/teaching/cs-230/
cheatsheet-convolutional-neural-networks
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The size of the three-dimensional filters and the output of the network
can be freely modified depending on the task. In typical classification
or regression problems, for instance, the size of the feature maps is
reduced enough so that it can be flattened out to a vector, and regular
fully connected layers are then applied to ensure an output of size one.

Limitations

The voxelization of proteins represent a natural representation of their
three dimensional structure in space, but it suffers from several issues.
In particular, three dimensional arrays take significantly more space in
memory than images in computer vision applications. Furthermore,
voxelizing only a part of the protein, such as a binding site, entails
choosing a window [81, 86, 87], since the shape of the arrays needs to
be fixed for their use in CNN architectures, while protein pockets and
ligands can significantly differ in size [88,89]. Finally, the representation
is neither rotationally nor translationally invariant [90, 91], properties
which are desirable when modelling biomolecular complexes with
standard convolutional neural networks.

1.3 Applications studied

In this section I summarize the areas I have studied during my PhD,
mostly with a focus towards deep learning techniques and their applica-
tion in well-known problems of the drug-discovery pipeline, comparing
them with other current state-of-the-art approaches whenever possible.
In particular, I have focused on protein binding site prediction, protein-
ligand binding affinity prediction, compound selectivity elucidation via
their association with pathways and ligand generation.
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1.3.1 Protein binding site prediction
Proteins produce the building blocks of cells, performing functions that
are critical for life. They do not perform such actions alone, but by
interacting with other molecules [92], and such are mediated by only a
few aminoacids. Therefore, identifying a protein’s binding sites a priori
can substantially clarify and help understand their underlying mecha-
nisms of function. Furthermore, in structure-based virtual screening
applications [93, 94], where one is interested in ranking a set of ligands
in terms of activity against a particular target, an accurate identification
of the binding pocket is crucial.

Classical approaches for predicting protein binding sites roughly fall
into two categories. The first one include sequence-based approaches,
which mostly rely on the conservation information extracted from
multiple sequence alignments [95]. The success of these approaches
has been known to greatly depend with the type of functional residue
sought [96]. The second type encompass structure-based approaches,
which seek to identify regions on the protein surface which are likely
to bind to a ligand, by using geometric information and other types of
descriptors [97–100].

In Pub. 1 [77] we provide, to the best of our knowledge, the first
fully machine-learning-based approach towards the identification of pro-
tein ligand binding sites. The algorithm is completely learned from exam-
ples, and is based on the previously described 3D-convolutional-neural-
network paradigm. Furthermore, we test its performance to find it is com-
parable to that of the state-of-the-art methods for pocket detection.

1.3.2 Protein-ligand binding affinity prediction
Drug discovery is inherently a multiobjective optimization problem [101]
as several variables need to be taken into account when considering
a compound, e.g. solubility [102], toxicity [103], selectivity [104] or
kinetics [105, 106]. Among these, perhaps the most important is potency,



15

which measures how strongly a small molecule binds to its protein target
to produce a desired effect or inhibition. Chemists typically study this
variable through experimental affinity measurements (e.g. Ki, Kd, IC50)
in different types of assays in the laboratory, such as phenotypic or
cell-based ones.

Experimentally determining binding affinities is a long and costly
process, approaches to predict these quantities in silico were conse-
quently developed in order to prioritize testing of compounds. In fact,
quantitative structure activity relationship (QSAR) approaches, based
on simple linear or empirical models of molecules have found their
way into a computational chemist’s toolbox in the last 30 years. With
the advent of increasing available affinity data coming from compound
databases such as ChEMBL [107] and protein-ligand ones, such as
PDBbind [108] and cheaper computational resources [109], opportunities
to explore more data hungry machine learning approaches have become
prevalent in the last decade. In the case of structure-based approaches,
these typically allowed more flexibility by not requiring an explicit
mathematical relationship of the protein-ligand complex [110] and their
affinity, which in practice resulted in greatly improved performances
compared to classical QSAR approaches.

Scoring functions can arguably be classified into three different
categories depending on the nature of their modelling [111]: potential-,
simulation- and data-based. The first type model binding affinities as the
sum of statistical potentials between protein and ligand atoms [112–116].
Simulation-based methods make use of available force fields such as
AMBER or CHARMM [117, 118] to model protein-ligand interactions,
resulting in approaches like free energy perturbation methods [119–121].
The last category uses experimental data to fit statistical or machine-
learning regression models to predict potency [45, 49, 61].

In Pub. 2 [81] we developed a scoring function based on 3D-
convolutional neural networks, named KDEEP and extensively tested it in
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several public datasets. We found that its performance is state-of-the-art
in most benchmarks. In fact, the performance of KDEEP was validated by
several industrial partners and in the 4th D3R Grand Challenge [122,123],
where it came out first place in two affinity subchallenges.

The congeneric series case

KDEEP was developed using the v.2016 iteration of the PDBbind database,
which is composed of a diverse set of protein-ligand complexes, with the
intent of it being as general as possible. After its development we started
testing its performance in the lead optimization scenario, that is, in the
congeneric series case, which are sets of closely related molecules that
are typically modified by medicinal chemists with the intent of improving
several molecular properties (Figure 1.7). Early tests suggested the
generalization capabilities of our model, trained on PDBbind, were
limited when predicting the small differences expected in congeneric
series.

Given the lack of publicly available congeneric series data, most of it
available in the BindingDB database [125], we contacted several indus-
trial partners (Janssen, Pfizer, Biogen) to collaborate in both the training
and testing of machine learning models, again based on 3D-convolutional
neural networks, on several congeneric series related to different targets
and diseases. This resulted in Pub. 3, where we retrospectively show that
such models can achieve superior performance even to the most sophis-
ticated simulation-based free energy perturbation methods with very few
training ligands. Furthermore, these avoid most of the issues related with
simulation-based approaches, such as the treatment of waters or ligand
parameterization [126], at a fraction of the computational cost.

1.3.3 Molecular pathway association

Drug discovery is a very expensive process than can easily span more
than ten years since the inception of a project until the release of a
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Figure 1.7: A set of ligands belonging to the same congeneric series that
bind to thrombin, commonly used as benchmark in free energy perturba-
tion studies. Taken from Wang et al. [124]

compound to the market [127]. In particular, it suffers from a heavy
attrition problem [128]: drugs initially deemed as promising candi-
dates can later show ineffectiveness, toxicity, or promiscuity due to an
unclear mechanism of action. In the context of high-throughput and
phenotypic screening, compounds marked active against a target are
obscure by a large number of molecules that act through unknown or
undesired mechanisms of action. Therefore, early attention in lead dis-
covery is crucial to minimize costs caused by these reasons at later stages.

A computational tool that predicts all pathways a particular drug
intervenes in could allow: (i) a fast depriorization of compounds with
unwanted mechanisms of action, (ii) the identification of chemicals that
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target disease-relevant biological pathways, and (iii) the identification of
compounds that with yet-to-be known mechanisms of action. The latter
compounds were named by researchers as dark chemical matter [129],
and evidence suggests that these molecules could have a unique activity
profile against new proteins, and correspondingly have a better chance of
a safer activity profile.

In Pub. 4 [130] we developed a model based on self-normalizing
neural networks that given a particular compound, is capable of predict-
ing which pathways it interferes with. We used several large pathway
databases such as KEGG [131], Reactome [132]. Ligands were extracted
from one of the latest versions of ChEMBL, and associated with their
corresponding pathways through Uniprot [133]. To the best of our knowl-
edge, this is the most extensive study on molecular pathway association
reported so far, both in terms of the amount of data processed and abil-
ity to deal with multifunction compounds. Furthermore, we validated our
models using both publicly available and industrial data, thanks to a col-
laboration with Novartis.

1.3.4 Generative modeling for drug design

The main step in a typical drug discovery campaign for the formulation
of new hypothesis is a well-motivated lead compound [134], which some-
times is extracted from vast synthetically feasible libraries. Medicinal
chemists modify these lead compounds, their design hypothesis typically
biased towards preferred chemistry [135]. Since drug-like molecule
space was estimated to range between 1030 and 1060 compounds, and to
avoid such prohibitive sampling, the process of automating the de-novo
design of compounds with a desired set of properties has become an
active field of research in the last 15 years [136, 137].

While QSAR-like models have been extensively used in the last 40
years, with the arrival of novel generative machine learning models, such
as variational autoencoders [139], generative adversarial networks [140],
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Figure 1.8: Example schemes of different deep learning architectures
used in drug design, with SMILES as input representation. A recurrent
neural network architecture (top left), a variational autoencoder architec-
ture that can either use 1d-convolution or recurrent layers (bottom left),
and a generative adversarial network approach (right). Figure taken from
Elton et al. [138]

recurrent neural networks [42] and adversarial autoencoders [141],
significant attention has been drawn towards its inverse problem (i.e.
predicting structures given a set of properties). Early approaches have
shown promising results [142, 143], and in fact, this has become a very
popular topic of research, with over 45 papers published only in the last
two years [138]. Sadly, validation of these methods has lacked standard-
ization up until recently [144], severely limiting their benchmarking and
reproducibility.

Different approaches towards this problem use different input rep-
resentations, the most common being the conjunction of SMILES with
recurrent neural network architectures, although recent approaches have
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seemed to adapt a graph-like representation of molecules [145,146]. One
limitation of such models is that their generated structures are biased
towards small chemical modifications of a provided seed molecule [147].
On the other hand, shape-based tools [148] allow the exploration of much
larger chemical space.

Concurrently in computer vision, research in image captioning mod-
els (i.e. those that are trained to predict a written description of a given
picture) were also gathering significant attention due to their impressive
results [149, 150]. Given that we had developed a 3D representation that
could be used in conjunction with such deep learning approaches, in Pub.
5 we explored shape-based generative models in drug design and com-
pared them against other ligand-based methods.

1.4 Deployment of models
A main focus of my PhD was to develop machine-learning applications
that could help accelerate and provide better decision making in the early
phases of the drug discovery pipeline. As a result of my research, a lot
of code was produced. It was clear for us from the beginning that in
order to obtain higher visibility and ease the job of computational and
medicinal chemists as much as possible that these tools needed to be
freely available in some form.

A typical problem of professionals working in the bio and chemoin-
formatics fields is ensuring their software works under the most general
conditions as possible. It is very common to find the implementation
of particular publication in the version of a language that is no longer
supported, with unmet dependencies, using non-existing web resources,
or simply not developed with a software maintainability mindset. In or-
der for us to achieve this, all of our models are fully containerized using
Singularity 8 and uploaded to the PlayMolecule.org repository of applica-

8https://www.sylabs.io/singularity/
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Table 1.1: Applications developed and deployed in the PlayMolecule.org
repository of applications in the duration of the thesis

Application name Number of jobs a Publication date

DeepSite 8621 31/May/2017
KDeep 6567 8/Jan/2018
DeltaDelta 21 (submitted)
PathwayMap 231 26/Dic/2018
LigDream 289 14/Feb/2019

aAs of 21st June 2019.

tions, where users can freely submit their own jobs.





Chapter 2

OBJECTIVES

The objectives of the thesis presented here were threefold: the first was
the exploration of modern representations for biomolecular complexes to-
wards their use in modern deep learning architectures, such as in the case
of voxelization and convolutional neural networks. The second was to
apply such models in projects relevant in drug discovery pipelines, com-
paring their performance to existing approaches whenever possible. Fi-
nally, the last goal was to deploy such models in the PlayMolecule.org
repository of applications so as to facilitate and promote their use to com-
putational and medicinal chemists.

2.1 Development of a novel deep-learning rep-
resentation for biomolecular complexes

One of the main advantages of modern deep learning approaches such
as convolutional or recurrent neural networks is their ability to work di-
rectly (or closely) on input data itself, whether it is images for the former
or text corpora for the latter. In this thesis we introduced a density rep-
resentation for biomolecular complexes, which uses a distance-based in-
terpolation of atoms and their corresponding user-defined properties and
provides the possibility to use it in conjunction with 3D-convolutional
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neural networks, the de-facto state-of-the-art model in computer vision
applications.

2.2 Deep learning in drug discovery applica-
tions

Deep-learning-based approaches have atracted a considerable amount of
attention in the past years, and consequently their exploration in struc-
tural biology and chemoinformatics was only a matter of time. Most of
the work presented in this thesis therefore responds to this goal: the ap-
plication and benchmarking of deep learning approaches in relevant drug
discovery problems. Among the applications explored in this thesis we
can find:

• DeepSite: A protein binding site prediction tool that uses 3D-
convolutional neural networks.

• KDEEP: A 3D-convolutional neural network scoring function for
protein-ligand binding affinity prediction.

• PathwayMap: Selectivity elucidation of compounds via their asso-
ciation with pathways using self-normalizing neural networks.

• LigDream: Shape-based generative modeling of compounds via
conditional variational autoencoders and captioning networks.



Chapter 3

PUBLICATIONS

3.1 Journal articles

3.1.1 DeepSite: protein-binding site predictor using 3D-
convolutional neural networks

Jiménez, J., Doerr, S., Martı́nez-Rosell, G., Rose, A. S., & De Fabritiis,
G. (2017). Bioinformatics, 33(19), 3036-3042.
https://doi.org/10.1093/bioinformatics/btx350

Summary
In this paper we presented DeepSite, a protein binding site predictor
based on 3D-convolutional neural networks and the novel biomolecu-
lar representation of compounds presented in this thesis. Contrary to
other structure-based approaches, that used algorithmic approaches via
the clever exploitation of geometric, evolutionary or chemical features
to detect druggable protein cavities, our approach is entirely data-based.
We used the scPDB (v.2013) database, and more than 7000 proteins in
order to train and validate our approach, showing state-of-the-art perfor-
mance when comparing with other geometric-based approaches such as
fPocket [99] and Concavity [151].
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Jiménez J, Doerr S, Martínez-Rosell G, Rose AS, De Fabritiis 
G. DeepSite: protein-binding site predictor using 3D-
convolutional neural networks. Bioinformatics. 2017 Oct 
1;33(19):3036–42. DOI: 10.1093/bioinformatics/btx350

https://academic.oup.com/bioinformatics/article/33/19/3036/3859178
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3.1.2 KDEEP: Protein-Ligand Absolute Binding Affinity
Prediction via 3D-Convolutional Neural Networks

Jiménez, J., Skalic, M., Martinez-Rosell, G., & De Fabritiis, G. (2018).
Journal of Chemical Information and Modeling, 58(2), 287-296.
https://doi.org/10.1021/acs.jcim.7b00650

Summary
We continued exploring our 3D dimensional representation of biomolec-
ular complexes for a different task: the prediction of protein-ligand
binding affinities. The development of machine-learning-based scoring
functions is a well-studied field, with high-quality curated databases
such as PDBbind available. In this paper we developed KDEEP, our
own approach based on 3D-convolutional networks and compared its
performance to other existing machine-learning and empirical scoring
functions, to find its performance at least competitive with the current
state of the art. Furthermore, we investigate the utility of the developed
approach in the lead optimization scenario, to find that results greatly
vary depending on the congeneric series studied.

Note: The supplementary information of this publication has been
modified in the thesis presented here due to space restrictions.



Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. 
KDEEP: Protein-Ligand Absolute Binding Affinity 
Prediction via 3D-Convolutional Neural Networks. J Chem 
Inf Model. 2018 Feb 26;58(2):287–96. DOI: 10.1021/
acs.jcim.7b00650

https://pubs.acs.org/doi/10.1021/acs.jcim.7b00650


67

3.1.3 DeltaDelta Neural Networks for Lead Optimiza-
tion of Small Molecule Potency

Jiménez, J., Pérez-Benito, L., Martı́nez-Rosell, G., Sciabola, S., Torella,
R., Tresadern G. & De Fabritiis, G. (submitted)

Summary
Given the limitations of the previous presented method KDEEP at rank-
ing close compounds, such as the ones found in a congeneric series, in
this paper we developed similar approaches in the lead optimization sce-
nario. We trained and tested our models in public databases such as the
BindingDB protein-ligand validation and Schrödinger free energy pertur-
bation benchmark sets. However, given the very little freely available
data, in order to further validate our method we collaborated with sev-
eral pharmaceutical companies to blindly train and validate our models.
We found that 3D-convolutional neural network models are competitive
to other docking and simulation-based approaches, such as Glide and free
energy perturbation, respectively, with very few training ligands. We also
provided a retrospective simulation scenario where the model is tasked
with choosing the best available compound out of a pool, to find that in
most cases the model is able to find it before the recorded experimental
order.



Jiménez-Luna J, Pérez-Benito L, Martínez-Rosell G, Sciabola S, 
Torella R, Tresadern G, et al. DeltaDelta neural networks for 
lead optimization of small molecule potency. Chem Sci. 2019. 
DOI: 10.1039/C9SC04606B

https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc04606b
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3.1.4 PathwayMap: Molecular Pathway Association
with Self-Normalizing Neural Networks

Jiménez, J., Sabbadin, D., Cuzzolin, A., Martı́nez-Rosell, G., Gora,
J., Manchester, J., Duca, J., & De Fabritiis G.. Journal of Chemical
Information and Modeling 2019 59 (3), 1172-1181
https://doi.org/10.1021/acs.jcim.8b00711

Summary
Attrition is a serious problem in drug discovery: compounds initially
deemed as promising might act through obscure or unknown mechanisms
of action, or hit unwanted targets (i.e. the selectivity problem). In
this paper we propose a model, based on multi-label self-normalizing
neural networks, that is able to associate compounds and the pathways it
intervenes in. We used public compound databases such as ChEMBL and
pathway databases such as KEGG and Reactome and associated both via
Uniprot. The models and evaluation provided here are (to the best of our
knowledge) the most extensive provided up to date for this task and can
naturally tackle multifunction compounds. In the paper, an applicability
scenario is exemplified by the identification of dark chemical matter (i.e.
those identified not to bind to more than a predefined number of assays
in another study).

Note: The supplementary information of this publication has been
modified in the thesis presented here due to space restrictions.



Jiménez J, Sabbadin D, Cuzzolin A, Martínez-Rosell G, Gora 
J, Manchester J, et al. PathwayMap: Molecular Pathway 
Association with Self-Normalizing Neural Networks. J 
Chem Inf Model. 2019 Mar 25;59(3):1172–81. DOI: 
10.1021/acs.jcim.8b00711

https://pubs.acs.org/doi/10.1021/acs.jcim.8b00711
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3.1.5 Shape-Based Generative Modeling for de Novo
Drug Design

Skalic, M., Jiménez, J., Sabbadin, D., & De Fabritiis, G.. Journal of
Chemical Information and Modeling 2019 59 (3), 1205-1214
https://doi.org/10.1021/acs.jcim.8b00706

Summary

The past few years have witnessed an explosion of generative-based
approaches in de-novo drug design. Common to most of these is way
ligands are featurized, most models opting for a SMILES or a graph rep-
resentation of compounds, that allow for small modifications from a seed
compound. In this work we focus on such models but through the use of
the 3D-dimensional representation presented in our previous works. Our
approach also takes great inspiration from other computer vision tasks,
such as image captioning: given a 3D-representation of a ligand, we are
able to generate SMILES of arbitrarily similar compounds through a con-
ditional variational autoencoder and a captioning network.



Skalic M, Jiménez J, Sabbadin D, De Fabritiis G. Shape-Based 
Generative Modeling for de Novo Drug Design. J Chem Inf 
Model. 2019 Mar 25;59(3):1205–14. DOI: 10.1021/
acs.jcim.8b00706

https://pubs.acs.org/doi/10.1021/acs.jcim.8b00706
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3.2 Book contributions

3.2.1 Predicting protein-ligand binding affinities
Jiménez, J. & De Fabritiis, G. Part of the Royal Society of Chemistry’s
upcoming book Artificial Intelligence in Drug Discovery, edited by Dr.
Nathan Brown.

Summary

In this chapter we were tasked with summarizing the current state-of-
the-art approaches for binding affinity prediction from a structure-based
viewpoint. We first overviewed other classical methods, ranging from
those that are empirical or simulation-based to later explain in detail
the advances in structure-based machine learning models: namely 3D-
convolutional and graph-based neural networks. Particular attention is
given to relevant topics such as model interpretability, benchmarking and
available databases for development.



4 | Predicting Protein-Ligand Bind-
ing Affinities

José Jiménez-Luna and Gianni De Fabritiis
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Abstract

Accurate in silico protein-ligand binding affinity prediction can substantially accelerate drug
discovery pipelines by prioritizing compounds for experimental testing, a typically lengthy and
costly process. Given the success of machine-learning and artificial intelligence approaches in
areas such as computer vision and natural language processing in the last few years, there have
been significant developments towards their application in structure-based potency prediction.
In this chapter we summarize recent progress in this field, and we provide readers with a thorough
introduction of the basic aspects to take into account when developing such models.
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4.1 Introduction

Drug discovery is inherently a multiobjective optimization problem [1,2] as several variables need
to be taken into account, e.g. solubility [3], toxicity [4,5], selectivity [6,7] or kinetics [8,9]. Among
these, perhaps the most important is potency, which measures how strongly a small molecule
binds to its protein target to produce a desired effect or inhibition. Chemists typically study
this variable through experimental affinity measurements (e.g. Ki, Kd, IC50) in different types
of assays in the laboratory, such as phenotypic or cell-based ones.

Experimentally determining binding affinities is a costly process, and therefore computational
approaches to predict these quantities in silico were consequently developed in order to prioritize
testing of compounds. In fact, quantitative structure activity relationship (QSAR) approaches,
based on fitted linear or empirical models of molecules have been common among those in a
computational chemist’s toolbox for the last 30 years. With the advent of increasing available
affinity data coming from compound databases such as ChEMBL [10] and protein-ligand ones,
such as PDBbind [11] and cheaper computational resources [12], opportunities to explore more
data hungry machine learning approaches have become prevalent in the last decade. In the case
of structure-based approaches, these typically allowed more flexibility by not requiring an explicit
mathematical relationship of the protein-ligand complex [13] and their affinity, which in practice
resulted in greatly improved performances compared to classical QSAR approaches.

In this chapter we provide readers with an introduction to the field of structure-based potency
prediction via machine learning. Though the work here does not intend to be an exhaustive review
of proposed approaches, which at the time of writing continues to grow at a fast pace, we believe
a disciplined introduction on the basics regarding this area, namely classification and scope
of models, descriptor generation and evaluation standards to be beneficial for the community.
Finally an overview of the most important techniques in the last few years, to the best of our
knowledge, is provided.

4.2 A brief background on classical methodologies

A scoring function f : X → R maps a ligand, or a protein-ligand complex x ∈ X , to a quantity
which is either its binding affinity or a proportional proxy. Over the years, many types have been
proposed, most claiming advantage of some form over already existing approaches. They can
arguably be classified into three different categories depending on the nature of their modelling
[14], potential-, simulation- and data-based. In this section we provide a small background on
previous work focusing on the subject of binding affinity prediction, based on such classification,
before describing the more recent machine-learning approaches.

4.2.1 Potential-based
Methods in this category model binding affinities as the sum of statistical potentials between
protein and ligand atoms:

∆G =
∑

i∈Al

∑

j∈Ap

ωij(r), (4.1)
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where At and Ap are the sets of atoms in the ligand and protein respectively and

ωij(r) = −kBT log

(
ρij(r)

ρ∗ij

)
, (4.2)

where ρij(r) is the number density of atom pair ij at distance r, ρ∗ij is the same quantity at
a reference state with no interatomic interactions, kB is the Boltzmann constant and T a tem-
perature. The reasoning behind this approach is probabilistic: if a certain interatomic contact
appears more frequently than expected of its reference state, it is energetically favorable and
viceversa. Potential-based approaches have been widely used mainly thanks to the simplicity in
their construction. Some popular implementations of these approaches are SMoG [15], Muegge’s
PMF [16], DrugScore [17], IT-Score [18] and KECSA [19], among many others [20–24].

4.2.2 Simulation-based
Molecular mechanics force fields such as AMBER [25] or CHARMM [26] are regularly used for
predicting protein-ligand interactions [27–33]. Often, approximate solutions such as the Poisson-
Boltzmann or Poisson Generalized Born models are used, where van der Waals, electrostatic,
and desolvation terms are taken into account:

∆G = ∆Evdw + ∆Eelectrostatic + ∆EH−Bond + ∆Gdesolvation. (4.3)

Full simulation based approaches such as free energy perturbation (FEP) [34–40], or ther-
modynamic integration (TI) [41, 42] have shown to provide excellent performance despite being
computationally demanding. These methods can also take advantage of the advances of modern
force fields, quantum mechanic methods and solvation models. However, recent evaluations [43]
have shown that their performance is very sensitive to starting parameters such as force-field
selection or treatment of waters, limiting their applicability in prospective scenarios. Other
related approaches, such as linear interaction energy (LIE) [44], linear response approximation
(LRA) [45] and MM-PBSA/GBSA [46] methods have shown alternate successes and failures [47].
These are typically named end-point approximation methods as they only consider both protein
and ligand in their bound and unbound states.

4.2.3 Data-based
In this category we find classical scoring functions that use statistical methods such as linear
regression or partial least squares (PLS) [48] to adjust the contribution of several physico-chemical
terms (or other descriptors) towards an affinity prediction. Therefore a set of known protein-
ligand complexes with affinity data is needed to find the aforementioned coefficients for an optimal
fit. For instance, X-Score [49] adopts the following functional form:

∆Gbind = β0 + β1∆Gvdw + β2∆GH-bond + β3∆Gdeformation + β4∆Ghydrophobic + ε, ε ∼ N (0, σ2)
(4.4)

where ∆Gvdw accounts for the van der Waals interaction between the protein and ligand,
∆GH-bond for hydrogen bonding , ∆Gdeformation for the deformation effect and ∆Ghydrophobic

for hydrophobic interactions. An estimate of these coefficients β̂ is determined through a least
squares fit. Many other empirical scoring functions have been developed over the years, such as
cyScore [50], ChemScore [51], GlideScore-SP [52], LudiScore [53], among many others [54,55].
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At first glance, one may be right to think that modern machine-learning scoring functions
belong to this category, as they use a training set and several fit parameters to perform predic-
tions. The main difference is that classical empirical scoring functions assume a fixed, pre-defined
mathematical relationship among handcrafted features to model the target affinity. Such is not
the case for modern machine-learning scoring functions, which automatically extract the most
important features from a closer representation from the real data, in practice allowing them to
be considerably more flexible and consequently provide better performance. Recent advances in
modern machine-learning scoring functions are summarized in the subsequent section.

4.3 Modern machine-learning scoring functions

Research on machine-learning based scoring functions is currently a very active field, with dozens
of proposed approaches only in the last ten years. In this section, we first describe the domain
applicability of the proposed models, depending on the nature of their training data. We then
make a thorough summary on the types of features (or predictors) used for the training of models
in the literature, to later discuss recent developments on specific structure-based machine-learning
algorithms. Finally we describe several approaches towards model interpretability and discuss
about the availability of the proposed algorithms at the time of writing.

4.3.1 Domain applicability
It is common in the development of scoring functions to distinguish between two scenarios, de-
pending on the nature of the data at hand. If the goal itself is to predict binding affinity or a
proportional proxy, one needs continuous binding constants, and typically tackles the problem as
a regression task. Other scenarios may feature binary data (i.e. active/inactive), which is better
suited for a more classical virtual screening scenario, where the goal is to select as many active
molecules (also called binders), from a considerably big database, against a target as possible.
Since only two classes are considered in this scenario, binary classification models are commonly
used to tackle this problem instead. Note that any regression-based scoring function can be used
as a binary classification one given an appropriate threshold.

It is also worth mentioning that in this chapter we focus on the structure-based case, that is,
we are interested in a model that generalizes not only in chemical space, but also across different
targets, which is common at earlier phases of drug discovery, such as target identification. If the
study at hand only takes into account a single protein target, ligand-based models are significantly
more popular, the archetypal application in this case being lead optimization.

4.3.2 Descriptors
In this section we describe different sets of descriptors studies used in the development of machine-
learning models for the prediction of both continuous and binary binding affinity estimates. It
was the norm until recently for researchers not only to design their own set of features, but to
perform descriptor selection as well. This process of handcrafted feature creation and filtering
was subsequently abandoned, when it was shown that modern deep learning architectures could
perform automatic feature extraction from a closer representation of the original data. This
allowed models to design a more diverse, non-linear, latent set of features that in practice obtains
better performance when enough data is available. Because of the mentioned mentality swift that
deep-learning architectures brought to feature space, we make the distinction when describing
them here as well.
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Handcrafted features

Since the inception of the (arguably) first structure-based machine-learning-based scoring func-
tions in 2004, researchers have used an increasing number of feature sets in order to find out the
better performing ones. Although we do not provide an exhaustive list, among the most popular
we can find:

• Occurrences of each protein-ligand atom pair at different distance thresholds [56–60]

• Electronegativities of ligand and protein atom types [61]

• Atom and group interactions such as van der Waals, electrostatics, hydrogen-bonding, π-
system, aromatic and metals [62,63].

• Energy terms representing desolvation and entropic losses [62].

• Geometrical description of the binding, such as shape and surface property matching [62].

• Property-encoded shape distributions [64].

• Protein-ligand interaction fingerprints [65–67]

• Intermolecular interaction terms extracted from AutoDock Vina [68] and BINANA [69,70].

• Distance-based fuzzy membership functions accounting for attraction and repulsion terms
between atoms [71]

• Knowledge-based potentials combining SYBYL atom types [72].

• Other structural features regarding β-contacts, crystallographic-normalized B factors and
polar and hydrophobic contact surfaces [73].

• Multiscale weighted labeled algebraic subgraphs [74]

Interestingly, it was found that a more detailed description of the protein-ligand interaction
landscape did not necessarily result in better performance in the standard PDBbind benchmark
[75], despite of some studies considering more than 100 feature subsets.

Automatic feature extraction

One of the reasons for the success of deep learning [76] architectures in fields like computer
vision [77] and natural language processing [78, 79] was the fact that modern neural networks
perform automatic feature extraction. Among the first structure-based approaches that adopt
this strategy we acknowledge the one taken by DeepVS [80]. In particular, in this approach,
the local context of an atom in a protein-ligand complex is embedded into several learned fixed
sized vectors using several basic features such as atom types, partial charges and distances to the
closest ligand neighbours and aminoacids. The definition of the atom context, however, is user
dependent, since a number of neighboring ligand and protein atoms needs to be pre-specified.
For each type of basic feature, a column lookup operation is performed in a predefined learnable
embedding matrixWt for each possible discretized value of a feature. The embedding of an atom
zi is then constructed by the concatenation of the column vectors:

zi = {zatom, zdistance, zcharge, zaminoacid} (4.5)
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Since the number of atoms varies with the particular system, this representation needs then
to be summarized in a single latent vector v, representing an embedding for the entire complex,
which we describe in the next section. This set of descriptors suffer mainly from two problems:
the first being the pre-specification of context, and the second the need to discretize continuous
atom features into bins to extract its corresponding learned latent space from Wt

Other approaches have more closely followed computer vision architectures. Using the exam-
ple of image classification, a convolutional neural network (CNN) learns which picture patches
are the most informative in order to arrive to a correct classification, only using pixel information.
A similar argument can be made for proteins and small chemical compounds: they are structures
in three-dimensional space with different physiochemical values as properties. Identically to a
two-dimensional image, which can be represented using three different two-dimensional arrays,
or channels, representing its colors (i.e. RGB color space), a protein or a ligand could potentially
also be represented with k three-dimensional arrays, and modern computer vision architectures
would be readily applicable. In fact, this is a promising direction that several researchers have
taken in the last few years: the same way that a pixel in an image holds three values for its
colors, a voxel in a three dimensional image (in our case, a protein or ligand) can feature dif-
ferent values representing different molecular properties. Directly translating atomic positions
into volumetric space can result in a very sparse representation, and therefore most works use
a distance-based interpolation over pre-defined atom types. For instance, Ragoza et al. [81] use
the following functional:

A1(d, r) =





exp

(
−2d2

r2

)
if 0 ≤ d < r

4d2

e2r2
− 12d

e2r
+

9

e2
if r ≤ d < 3r

2

0 if d ≥ 3r

2

, (4.6)

where d is the distance of each atom to a particular voxel, and r is the atom’s van der Waals
radius. Jiménez et al. [82], on the other hand, use the following functional in the KDEEP protein-
ligand affinity predictor:

A2(d, r) = 1− exp

(
−
( r
d

)12)
(4.7)

In terms of channel selection, the vast majority of approaches use some predefined notion
of atom typing available in other applications, such as the ones defined in smina [83] or in
the AutoDock PDBQT format (hydrophobic, aromatic, hydrogen-bond acceptor/donor, posi-
tive/negative ionizable and metals) [84]. A general occupancy channel is also typically included
to include explicit geometrical information of the molecular object (Figure 4.1 1). This particu-
lar representation of biomolecular complexes has not only been used for protein-ligand binding
affinity prediction, but for protein binding site prediction [85], pharmacophore elucidation [86]
and de-novo generation of molecules [87], with varying success.

These sets of descriptors represent the three dimensional structure of proteins in space, but
they also suffer from several issues. In particular, three dimensional arrays take significantly
more space in memory than images in computer vision applications. Furthermore, voxelizing

1Reprinted with permission from Journal of Chemical Information and Modeling, 58 (2), Jiménez et al.,
KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks, 287-296.
Copyright (2018) American Chemical Society.
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(a)
(b)

Figure 4.1: (a) PDB Id 2HMU pocket and bound ligand ATP. (b) Voxel representation of the
hydrophobic channel for both protein (blue) and ligand (yellow).

the binding site entails choosing a window, since the shape of the arrays needs to be fixed for
their use in CNN architectures, while protein pockets and ligands can significantly differ in size.
Finally, the representation is neither rotationally nor translationally invariant, properties which
are desirable when modelling biomolecular complexes with the aforementioned models.

Given the success of graph convolution architectures in ligand-based approaches [88], some
attention has been given into adapting the same framework for structure-based approaches.
In particular, PotentialNet [89] uses the concept of adjacency from an atomic distance matrix
R ∈ RN×N , where N is the number of atoms in a predefined environment of the binding site
of the system. While ligand-based graph-convolution architectures use the notion of bonds to
represent adjacency, in a co-crystal it can encompass a wider range of chemical interactions
among neighbors, such as π-π stacking, hydrogen bonds or hydrophobic contact. In fact, a
simple distance-based threshold may serve to construct an adjacency matrix AN×N×c, where
c represents the number of edge types. Ordering the rows of the adjacency matrix by the
membership of each atom to their corresponding protein or ligand complex, A can be seen as
a block matrix, where the diagonal blocks are interactions inside the same complex, while the
off-block elements represent interactions between the protein and ligand atoms:

A =




A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN


 =

[
AL:L AL:P

AP :L AP :P

]
, (4.8)

where Aij = 1 for an occurring interaction and 0 in any other case. We will explain how this
input is used in a graph-based convolutional neural network in the next subsection.

4.3.3 Models
In this section we will discuss recent advances in the modelling of protein-ligand binding affinities
with modern structure-based machine-learning architectures. Mostly we focus here on those
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models that perform automatic feature extraction (see previous section) out of a representation
closer to its source. In particular, we briefly describe custom embedding approaches, discuss
three-dimensional convolutional neural networks whose corresponding input is the atom-type
voxelization, and finally graph-convolution neural networks, which in turn use a distance-based
representation between atoms and their features in a system.

Custom embedding approaches

Here we describe the approach of DeepVS [80]. Once atom feature vectors zi have been computed,
they are mapped to:

ui = tanh(W ezi + be), (4.9)

where W e, be are a set of learnable weights and biases, respectively, which are shared for all
embeddings zi. A maximum-over-columns operation is then applied to obtain a fixed-size vector
representation for the entire complex, which is used by subsequent fully connected layers to
obtain the desired scalar output.

3D-convolutional neural networks

The output φ of a neuron in a regular fully connected layer is obtained by multiplying an input
x with some learnable weights w, adding a bias b and applying a non-linearity f :

φ = f

(∑

i

wixi + b

)
. (4.10)

Convolutional neural networks are specifically designed to work with spatial inputs, such as
images (or voxels, in our case), trying to emulate the response of an individual neuron to visual
stimuli. This fact allows us to encode certain properties into the architecture that cannot be
assumed in fully connected ones. Concretely, the layers of a three-dimensional neural network are
arranged in 4 dimensions: height, width, depth and number of channels, with each neuron only
locally connected to a localized region of the preceding layer, since it is impractical to connect to
all of the previous neurons [90]. In the case of voxels, the output of a neuron is called a feature
map φ, which is a three dimensional tensor, obtained through discrete convolution of a filter Wi

over an input feature map zi(x, y, z):

φ = f

(∑

i

Wi ∗ zi(x, y, z) + b

)
, (4.11)

where ∗ represents a three-dimensional discrete convolution operation (i.e w ∗ f(x, y, z) =∑a
s=−a

∑b
t=−b

∑c
l=−c w(s, t, l)f(x − s, y − t, z − l)) [91]. The connectivity of a neuron is

controlled by a parameter named kernel or filter size, and its locality is only defined across
the spatial dimensions, while full connectivity is applied to all feature channels. Parameters
in a convolutional neural network are also typically shared in the channel dimension: if one
feature is useful for a particular position in the image, it should also be for a different one. This
simplification results in a significant reduction of learnable parameters, which in turn makes
current implementations more computationally approachable at a scale.

Apart from convolution, other layers are commonly used in the development of this type of
neural networks. For instance, pooling layers apply a non-learnable transformation to an input,
typically reducing its size in order to simplify further calculations and reduce the number of
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parameters in the network, operating independently on each channel. Normalization layers, such
as batch normalization [92], ensure the input distribution remains similar across batches, while
dropout layers randomly drop neuron connections with the hope of avoiding overfitting. Once
the size of the three-dimensional filters has been reduced enough, these are typically flattened
out to a vector, so that regular fully connected layers can be applied afterwards to ensure a
one-dimensional output corresponding to the predicted binding affinity.

Approaches based on three-dimensional CNNs, such as KDEEP [82] have been shown to work
particularly well in practice, scoring first in several targets of the D3R Grand Challenge 4 [93].
Other approaches to tackle lead optimization of congeneric series, such as DeltaDelta [94], have
been recently developed.

Graph-based models

In a regular convolutional neural network layer, the output of each layer is composed by the
convolution of the previous one by the use of linear kernels and non-linearities, effectively gath-
ering information from neighbouring pixels. Similarly, a graph has an inherent structure that
can be efficiently exploited: each node (or atom) vi can have a vector of features xi, and a set
of neighbors based on an adjacency matrix A, as described in the previous section. Each node
also features a latent representation hi, which is iteratively updated by several functions (Figure
4.2):

h
(t+1)
i = U


h(t)i ,

∑

vj∈N(vi)

m(t)
(
h
(t)
j

)

 , (4.12)

where:

• U is a differentiable update function that updates the latent representation of a node
depending on the one from its neighbors.

• m is a differentiable message function sending a transformation of the hidden states from
nodes vj to vi.

• N(vi) is the set of neighbours of node vi.

In order to obtain a single representation for the entire graph, a node-order invariant readout
function R (also known as graph gather) is typically applied. In general, update, message and
readout functions can be fully parameterized by neural networks, and such is the case in most
applications [95–101]. While this is the general scheme [88] for most architectures, we here focus
on gated graph neural networks (GGNNs) [102], which uses a gated recurrent unit (GRU) [103]
module as its update function and independent linear message functions for each edge type:

h
(t+1)
i = GRU

(
h
(t)
i ,
∑

e

W (e)A(e)h(t)

)
, (4.13)

where A(e) andW (e) are the adjacency and learnable weight matrices for edge type e, respectively.
A simple readout function which sums over the final node embeddings is applied to obtain the
desired output size:

h(0) =
N∑

r=1

(
σ
(
i
(
h(K), x

)
� j

(
h(K)

)))
r
, (4.14)
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Figure 4.2: In graph convolution, the hidden state h of each node v is iteratively updated with
its neighboring ones via a differentiable message function m.

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, i, j are arbitrary learnable functions
and � is the element-wise multiplication. Once a single vector of the desired size is obtained
per graph, standard fully connected layers can be used for classification or regression tasks.
A structure-based generalization of this approach is the one proposed by PotentialNet, which
introduces nonlinearity in the message function:

h
(t)
i = GRU


h(t−1)i ,

Net∑

e

∑

j∈N(e)(vi)

NN(e)
(
h
(t−1)
j

)

 , (4.15)

where NN(e) represents a standard feed-forward neural network for edge type e and N (e)(vi) are
the neighbours for node i with edge type e. Two different stages are defined in the PotentialNet
architecture, depending on where message functions are applied. In stage 1, named covalent
propagation, only graph convolutions over ligand bonds are applied, similarly to the ligand-based
counterpart. In stage 2 both bond-based and spatial-based graph convolutions are implemented,
effectively propagating information between ligand and protein atoms. This stage is known as
dual non-covalent and covalent propagation. Finally in stage 3, a ligand-based readout function
is applied in order to obtain a fixed-size feature vector. (Figure 4.3 2).

4.3.4 Interpretability
The ability to interpret predictions is one of the most important features when it comes to
convince computational and medicinal chemists of the usefulness of a particular model. When
we speak about interpretability we refer to that of its parameters, that is, the influence of
each input towards its predicted affinity value. When simpler data-based scoring functions
are considered, such as those using a linear model, interpretation is straightforward since each
corresponding coefficient βi is interpreted as the individual contribution of each of the input
variables towards the prediction.

2Reprinted with permission from ACS Central Science, 4(11), Feinberg et al.., Potential-
Net for Molecular Property Prediction, 1520-1530. Copyright (2018) American Chemical Society.
(https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507)
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Figure 4.3: Depiction of the several stages defined by the PotentialNet approach. Stage 1 only
takes into account updates over ligand bonds, while stage 2 also considers updates over neigh-
bouring protein atoms, based on a distance threshold.

When it comes to modelling data, two different and opposing approaches arose in the statistics
literature [104]. The first one assumes that the relationship between a target variable and a
certain set of predictors follows a particular, but known, functional form f , which typically
depends on certain parameters θ fit using available data. On the other hand, modern machine-
learning approaches do not assume a particular functional form f , and instead choose non-linear
algorithmic approaches that approximate the target variable as well as possible. In practice, the
latter kind of approaches have been shown to provide superior predictive performance. Earlier
data-driven approaches are direct descendants of the first category, while more modern scoring
functions are closer in nature to the second. A negative consequence of this is the fact is that
the latter do not satisfactorily address model interpretability. In this sense, there has been some
recent effort in the community to satisfy the need for interpretable machine-learning models
[105,106]. In this section we summarize several presented approaches towards that end.

Masking

Masking is a popular yet simple approach applied in computer vision to find out which parts of
the input a trained convolutional neural network finds important in its corresponding prediction.
In masking, parts of the input, in this case the ligand or the protein are sequentially removed
and re-scored, the difference between the non-altered image and the altered one representing
the importance of that particular part. For the ligand, one can remove either individual atoms,
or choose to remove entire molecular subgraphs (fragments). Similarly, for proteins, individual
residues can be removed to find their individual contribution. Masking, however, is computa-
tionally demanding due to the number of evaluations needed, as they grow polynomially with
ligand subgraph generation.

Atomic gradient

When training 3D-based convolutional neural network based models, one typically minimizes
a loss function by optimizing a set of learnable parameters. This process requires numerically
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computing the gradients of the loss with respect to them, which can then be naturally extended
to computing the corresponding gradient with respect to the input representation. The negative
of the aforementioned gradient can be interpreted as the directions in three-dimensional space
which maximize the network’s predicted binding affinity. The functions mapping a particular
atom with a type to a voxel density are differentiable with respect to distance d and the gradient
of the neural network scoring function f with respect to atom coordinates a is found via the
chain rule and aggregating all grid points Ga overlapping each atom with a particular type:

∂f

∂a
=
∑

A∈Ga

∂f

∂A

∂A

∂d

∂d

∂a
(4.16)

Layer-wise relevance propagation

Layer-wise relevance propagation [107] defines a measure Rd over the voxels xd of a volumetric
input which decomposes the output of a neural network binary classifier into a sum of relevances:

f(x) ≈
V∑

d=1

Rd, (4.17)

with the qualitative interpretation that Rd < 0 contributes negative evidence for a classification,
and Rd contributes positively. The goal is to find a separate relevance per layer of the classifier,
with the constraint that their sums are as close as possible:

f(x) = · · · =
∑

d∈l+1

R
(l+1)
d =

∑

d∈l
R

(l)
d = · · · =

∑

d

R
(l)
d . (4.18)

Iterating Eq. 4.18 from the last classification layer to the first one yields the desired heatmap
over voxels defined by Eq. 4.17. However, a decomposition satisfying said constraint is not
unique, and one popular alternative is to propagate relevances according to their corresponding
neuron activations zij = xiwij . The relevance of node i at layer l is defined as the sum of the
ones from of its following nodes j, weighted by zij :

R
(l)
i =

∑

j

zij∑
ij zij

R
(l+1)
j . (4.19)

Layer-wise relevance propagation distributes the output value of the network as an explana-
tion for the reason a particular input generated it. Similarly to the atomic gradient approach, this
method only requires a single backwards pass through the network to obtain the desired results.
However, there are issues with this proposed methodology, especially when propagating through
nodes whose activation is zero. Several solutions to this problematic have been proposed in the
literature, such as the alpha-beta decomposition or the conserved layer-wise relevance propaga-
tion [108]. Examples of the previously mentioned interpretability techniques can be checked in
Figure 4.4 3.

Class activation maps

Class activation maps [109] use the fact that the filters of convolutional neural networks behave as
object detectors without explicit supervision in classification tasks (such as in virtual screening).
A technique named global average pooling [110] is used to output the spatial average of the

3Reprinted from Journal of Molecular Graphics and Modelling, 84, Hochuli et al., Visualizing convolutional
neural network protein-ligand scoring, 96-108, (2018), with permission from Elsevier
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Figure 4.4: Masking, atomic gradient and layer-wise relevance propagation interpretability tech-
niques for PDB. Id. 1o0h. For both masking and layer-wise relevance propagation approaches
green and red represent a positive and negative contribution to binding, respectively, while for
the atomic gradient technique its norm is represented in a purple scale.

feature map of each unit at the last convolutional layer, whose weighted sum is used to generate
the final output. In a similar way, a weighted sum of the feature maps of the last convolutional
layer is used to obtain class activation maps. Formally, let fk(x, y, z) represent the activation
of unit k in the last convolutional layer at location (x, y, z). Then the result of applying global
average pooling for unit k is Fk =

∑
x,y,z fk(x, y, z), and therefore for a given class c, the input

of the softmax classification layer is Sc =
∑

k w
c
kFk =

∑
x,y,z

∑
k w

c
kfk(x, y, z), where wc

k is the
weight that corresponds to class c for unit k. The class activation map Mc at location (x, y, z)
is then defined by:

Mc(x, y, z) =
∑

k

wc
kfk(x, y, z). (4.20)

Therefore Sc =
∑

x,y,zMc(x, y, z), and thus Mc indicates activation importance at (x, y, z).
Upsampling is performed in order to map these features to the original input size, motivated by
the fact that each unit is activated by some visual pattern in its receptive field [110] (Figure 4.5).

More modern techniques, such as gradient class activation maps [112] remove the restriction of
a particular model architecture for producing activation maps by letting the gradient information
flow into the last available convolutional layer. That is, in order to obtain the localization map
Lc

Grad-CAM ∈ Ru×v×o of width u, height v and depth o, we compute the gradient of the score for
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Figure 4.5: Class activation map representation taken from a public example submission to
Bindscope [111], available through the PlayMolecule.org repository of applications. Influence
over a positive prediction is depicted on a blue to red scale.

class c, yc with respect to Ak, the feature maps of the convolutional layer, (i.e.
∂yc

∂Ak
). These

then are average-pooled in order to obtain neuron importance weights ack:

ack ∝
∑

i,j,l

∂yc

∂Ak
ijl

, (4.21)

where ack represents the contribution of feature map k towards c. We then apply these in a
weighted sum of activation maps and use a non-linearity:

Lc
Grad-CAM = g

(∑

k

ackA
k

)
. (4.22)

Typically g is a ReLU activation function since we are interested only in those features
with a positive influence towards a particular classification. A combination of up-sampling with
bi-linear interpolation and guided backpropagation [113] is then used to reshape filters to the
original input size.

4.3.5 Implementation and availability
Reproducibility is a known issue in the machine learning community [114, 115], although most
of the models cited here provide either source code or a web-based service. In particular, in this
chapter we have mainly focused on three approaches: DeepVS [80] provides code implemented
in the R programming language for training and application in virtual screening 4, where no
license of use is specified. Another software that follows the same approach is gnina [81] 5, with
Python code for performing molecular docking and virtual screening available under an Apache
license. KDEEP [82] and Deltadelta [94] are available through the PlayMolecule.org repository of

4https://github.com/Rietaros/deepvs
5https://github.com/gnina/gnina
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applications, where users can freely submit their own protein-ligand complexes, although backend
code is unavailable. Finally, PotentialNet [89] does not provide an online service nor available
code.

4.4 Available data and evaluation

In this section we focus mainly on providing basic guidance towards the training and evaluation
of a new machine-learning-based scoring function. In particular we first detail the most popular
databases with available binding affinity data, to later discuss the most common evaluation
procedures when comparing it to other approaches, both in terms of metrics and cross-validation
procedures.

4.4.1 Scope and databases
In terms of available data to train structure-based models, there are several databases that can
be accessed, depending on the nature of the drug discovery project at hand. In the earlier phases
of a drug discovery project one may be interested in targeting a particular protein or phenotypic
assay and therefore exploring a wide variety of ligands from a library of compounds. In this
sense, one is concerned with training models that explore as wide chemical space as possible,
so as to know which scaffolds interact more strongly with the target of interest. To train these
models several databases of diverse compounds and targets have been developed over the years.
Such an example is PDBbind, which extracts and curates ligand-binding affinities from the
literature for most types of biomolecular complexes deposited in the Protein Data Bank (PDB).
It releases yearly, with the latest (as of the time of writing) being the 2018 release, featuring
19588 manually curated protein-ligand complexes and their corresponding affinities. A refined
set is selected out of all the available compounds, following filters regarding the quality of the
data, excluding complexes with a resolution higher than 2.5 Å, an R-factor higher than 0.25,
ligands bound through covalent bonds, ternary complexes or steric clashes, affinity not reported
either in Kd or Ki, falling out of a desired range (Kd < 1pM) among other criteria. Finally, a
high-quality core set is extracted out of the refined one, with the intent of validating scoring
functions and therefore providing a standard benchmark. It is common in the development of
scoring functions to train models on the difference between the refined and core sets and testing
only on the latter [116–118].

The number of protein-ligand complexes available in the PDBbind database has substantially
grown since its inception in 2002 (Fig. 4.6), although the number of compounds in each set
follow different trends. In particular, the general set size has increased more than ten fold in
this period, while the refined set, having stricter inclusion requirements has grown only five fold
since its birth. The core set, on the other hand, has remained relatively stable for benchmarking,
with sizes ranging from 195 to 290 compounds. Overall, the PDBbind database is one if not
the most extensive collection of quality protein-ligand complexes and affinity data available
today, making it the de facto choice for developing novel structure-based scoring functions.
BindingMOAD is another well known structure-based affinity database [119,120].

When it comes to binary affinity data, resources like the Database of Useful Decoys
DUD [121] and its enhanced version DUD-E, are commonly used. The latest release, as of
the time of writing, features 22886 active compounds drawn from ChEMBL and their binary
activity label against 102 protein targets, an average of 224 compounds per each, as well as 50
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decoys drawn from ZINC [122] per binder with similar physico-chemical properties but different
two-dimensional topologies.

Once a hit, or posteriorly a lead, has been identified we focus on lead optimization. In
this phase of drug discovery, the chemical structure of such lead is typically modified by a
medicinal chemist team with the intent of improving its potency, selectivity, and many other
pharmacokinetic and toxicological parameters. These modifications result in congeneric series,
a set of ligands with few atom changes between them, usually around a unique or small number
of different scaffolds for which there are experimental structures of the complex with the target
protein. The scope of this scenario is completely different from the previous one, since a diverse
set does most likely not contain enough information so as to distinguish similar molecules whose
potency against a target in practice can differ in less than 1 Kcal/mol. In this sense, several
simulation-based approaches (which we introduced in the first section) have been developed
to estimate the relative binding affinity between a pair of analogues, with relative success.
Despite this, these methods suffer from several issues, such as system preparation, treatment of
waters, force-field selection, protein flexibility and computational cost, making their prospective
application difficult in practice. Due to this, machine learning approaches based on convolutional
neural networks have recently been developed for this task [94], showing promising results.

In terms of available databases for congeneric series, the BindingDB [123] protein-ligand
validation sets provide (as of the time of writing) 645 congeneric series, which can serve as a
base for prototyping models. However, it is likely that the congeneric series of the project of
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Figure 4.6: Evolution of the number of protein-ligand complexes available in the PDBbind
database from 2002 to 2018.
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interest has no relation with freely available ones, so that new models have to be built from
scratch to take into account its particularities. In this sense, simulation-based approaches have
an advantage over data-driven alternatives, such as machine learning models, as they not require
prior knowledge of affinity data [124]. However, the latter can always be incrementally trained,
increasing its accuracy when more data is available and taking into account particularities of
the congeneric series of interest without relying on a physical model.

4.4.2 Evaluation
We divide this subsection in two brief parts. In the first one we discuss several commonly used
metrics in the evaluation of scoring functions, while in the second we focus on different data
splitting procedures, which can significantly condition results.

Metrics

Scoring functions are evaluated via several metrics, depending on the setup of the study and its
goals. In the standard regression setup, some of them are such as the root mean squared error
(RMSE), Pearson’s correlation coefficient (R) :

RMSE(y, ŷ) =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2, (4.23)

R (y, ŷ) =

∑n
i=1(yi − y)(ŷi − ŷ)

√∑n
i=1(yi − y)2

√∑n
i=1(ŷi − ŷ)2

, (4.24)

where yi and ŷi represent experimental and predicted affinity i. Spearman’s ρ is also a commonly
used metric, computed as the Pearson correlation coefficient of the ranked experimental and
predicted variables. In a retrospective lead optimization scenario, when one has the chronological
experimental order of the series, a simulation-based approach is also appropriate for data-driven
scoring functions. This evaluation represents a paradigm where the model “chooses” the ligands
to synthesize next, in each iteration increasing its training pool. The evaluation ends when the
model picks the ligand with the highest affinity in the series, and its order is then compared
with the experimental one achieved by medicinal chemists. If the model was able to retrieve the
mentioned compound faster, it taken as an indication that such models are able to accelerate
the lead optimization process.

In terms of binary classification (active/inactive) scoring functions, one is instead interesting
in retrieving as many active compounds as possible from a given library, therefore metrics such
as the enrichment factor (EF) are commonly used:

EFk% =

Na(k%)

N(k%)
Na

N

, (4.25)

where Na(k%) and N(k%) are the number of active and total molecules in the top k% ranked
molecules in the library according to the scoring function, andNa andN are the number of actives
and total number of molecules in the entire library. More classical classification metrics are also
commonly used, such as the area under the receiver operating curve (AUC) or BEDROC [125].
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Splitting procedures

When evaluating scoring functions, if a standard benchmark to compare against is not set be-
forehand it is important to check model performance under different scenarios. In particular,
the most common type of split is some variation of k-fold cross-validation, where we evaluate
our model several times in k different splits, using the remaining ones as training data. How
the splits are performed can significantly vary results: the most common strategy being ran-
domly assigning each protein-ligand pair. It is well known that this type of split can produce
overoptimistic results, particularly in cases when the test set is far (in a statistical distribution
sense) from our the data we have previously used to train our model (e.g. different chemical
spaces). Several authors have then proposed several alternatives to provide more realistic per-
formance measurements and minimize the possibility of bias, such as scaffold-based splits [126].
In situations where a time-stamp is available, such as in lead discovery, a temporal-based split
can also be appropriate [127]. Finally, when developing structure-based approaches, it is also
common to consider the performance of the model both in a intra-target and inter-target sense,
that is, within and between proteins [128], the latter kind of split typically performed via means
of sequence information.

4.5 Discussion

In this chapter our intention was to provide readers with an overview of modern machine-
learning structure-based approaches for the prediction of protein-ligand affinities. The success
and attention of deep learning methods in this task is unquestionable, with modern models
focusing on a representation of the system that is closer to reality, changing the classical feature
handcrafting paradigm. In this sense, the most popular approaches are those focusing on
either a voxelized representation of the protein, to later use readily available computer vision
techniques such as three-dimensional CNNs. The other family of approaches, on the other hand,
is a direct descendent of recent ligand-based models, extending the concept of graph convolution
to include the protein structure.

While deep learning approaches are attractive for their automatic feature extraction capa-
bilities, among other things, their use in structure-based approaches is necessarily limited. It is
a well known fact that deep learning approaches are very data-hungry, and significantly more so
than other simpler models if satisfactory performance is to be achieved. For instance, modern
CNN architectures for computer vision are trained on the ImageNet database of images [129],
which contains more than 14m labeled instances. In contrast, the most extensive structure-based
affinity database, namely PDBbind, only features around 20k protein-ligand pairs. This scarcity
necessarily forces researchers to design more data-efficient models than the current state of the
art.

Interpretability of deep-learning-based models is also one of the topics that has grabbed
significant attention in the last years, as we have explained in the corresponding subsection of
this chapter. While these tend to be significantly more accurate than other alternatives, they
are commonly treated as black boxes, and this comes with two costs: first they are harder to
debug, meaning it would be difficult to identify whether a model is learning an inherent bias
in the data or the real signal. Secondly, all proposed models have a domain of applicability, in
most cases being the prioritization of compound testing. If the decision a model makes is hard to
understand for a team of medicinal or computational chemists, justifying its usefulness becomes
as difficult.
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Chapter 4

DISCUSSION

The last few years have witnessed an explosion of machine learning
applications in many scientific fields. In line with that current trend
of research, in this thesis we have explored the potential of deep
learning approaches, such as the ones used in computer vision and
natural language processing, in drug discovery. This allowed the
automation of many tasks that were previously tackled with clever
hand-crafted, empirical or algorithmic approaches. Here we discuss
the implications and future prospects of the type of models proposed here.

The development of a three-dimensional representation for biomolec-
ular complexes suitable for use in conjunction with convolutional neural
networks allowed an unprecedented flexibility in the modeling of relevant
drug discovery problems. However, they are not free of limitations, the
first one being merely computational, as deep learning architectures are
significantly more expensive than other algorithmic approaches, their
speed only on par through the use of graphical processing units (GPUs),
which severely limits their applicability in many scenarios. While it is
also true that deep learning models, and particularly convolutional neural
networks, work with a representation closer to the raw data itself, another
of the limitations remains their lack of rotational invariance, and the need
to choose a resolution. Furthermore, except for standard models such as
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ResNets [38] or VGGNets [152], that have been shown to work well in
computer vision applications, architecture and hyperparameter search to
find the optimal neural network model in drug-discovery-related projects
remains an active topic of study.

In our first publication we presented this new paradigm (Pub. 1),
by tackling the prediction of druggable binding sites we showed that
the proposed method had a performance superior or comparable to that
of the state of the art for the task. However, posterior works [153]
showed that such performance was very sensitive when testing in datasets
whose proteins significantly differed (e.g. overall size or number of
pockets) from the ones used for model development (namely the scPDB
database), suggesting the need for further training data or to account for
these cases. Furthermore, the lack of common standardized protocols
and benchmarks for this task to fairly evaluate different methodologies
remains an open problem.

We then explored in our second publication (Pub. 2) the applicability
of such models for the well-known task of predicting protein-ligand
binding affinities, and developed a model that we named KDEEP. While
the model quickly challenged the state-of-art status of other data-driven
approaches, performance remained unequal with respect to the target
and ligands considered. In particular, we show that while KDEEP

and other approaches perform relatively well in the PDBbind binding
affinity benchmark, they can perform very poorly when predicting close
differences, such as in the congeneric series case of lead optimization,
suggesting that the applicability scenarios of the models trained in the
aforementioned database is severely restricted. Towards that end we
started exploring and developing approaches to predict relative binding
affinities in chemically close series (Pub. 3), showing good performance
with only a few training ligands.

In Pub. 4 we explored multitask self-normalizing feed-forward
neural networks for the task of predicting which metabolic or signaling
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pathways a particular molecule can interfere in. Towards that goal we
mined the entire ChEMBL database and analized via Uniprot which
ligands were active in a specific pathway filtering by an activity threshold.
With that in mind, it was only possible to mark compounds as active
only if explicit activity information was available, which implied that
both non-active compounds towards a target and those with no explicit
information towards the same fell in the same ”negative” category. A
better treatment of this subtlety remains a further topic of study.

We explored modern molecular generative approaches such as
variational autoenconders in Pub. 5, to show that our shape-based
representation is competitive with other approaches based on SMILES
or graph representation of compounds. These approaches have gathered
a significant amount of attention in the last years, and can have different
goals: from generating compounds similar to a seed, or models that gen-
erate molecules to satisfy a predefined goal (e.g. solubility). Validation
of these methods has been widely inconsistent, since their usefulness
greatly depends on the set objective at a given stage of the drug-discovery
pipeline. Consequently, and while some recent effort has been put in
standardizing benchmarking protocols [144], there is need for wider
adoption of such procedures.

Overall, interpretability also remains one of the main problems of
deep learning approaches. Compared to other simpler alternatives such
as linear or tree-based models, the mechanism through which a neural
network produces a specific answer remains elusive. Despite neural
networks having been shown to work particularly well in several fields,
they are still considered overparametrized black boxes. There has been
some recent effort in improving the explainability of such models, and
in particular convolutional neural networks (e.g. atomic gradients [154],
class activation maps [155] or layer-wise relevance propagation [156]),
but it is still in very early stages. Further effort in this area would
foster further collaboration in industrial settings and solidify the utility
of machine learning approaches within professionals with a medicinal
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chemistry background.

Last but not least, there is need for better standards of collaboration
within the field if we want deep learning methods to truly succeed. The
latter are notoriously famous for needing a significantly larger amount
of data compared to other simpler machine learning algorithms, yet the
amount of structural data is insignificant (e.g. the PDBbind refined set, at
the time of writing consists of around 4k protein-ligand cocrystals) if we
compare it to the millions of pictures in the ImageNet dataset. Pharma-
ceutical companies have the potential to exploit and share larger amounts
of information with the community to drive innovation in deep-learning
approaches. In that sense, we are hopeful about the future, with some
initial attempts towards the development of a platform for federated and
privacy-preserving machine learning in drug discovery 1 2.

1https://ec.europa.eu/info/funding-tenders/
opportunities/portal/screen/opportunities/topic-details/
imi2-2018-14-03

2https://www.ft.com/content/ef7be832-86d0-11e9-a028-
86cea8523dc2



Chapter 5

CONCLUSIONS

1. Volumetric representations of biomolecular complexes are a novel
and flexible way of modeling shapes and solving different structural
biology and chemoinformatics tasks.

2. Pipelines featuring 3D-convolutional neural networks can outper-
form complex hand-crafted geometric algorithms for the detection
of druggable binding pockets, given enough curated training data.

3. Similar approaches that featurize the binding pocket as well as the
pose of a compound have been shown to be state of the art in
protein-ligand affinity prediction, compared to other scoring func-
tions of diverse nature. However, the performance for ranking
chemically close compounds in lead optimization is not consis-
tent, therefore requiring further training in the congeneric series at
hand. Such models show promise by outperforming simulation and
docking-based approaches with very few examples.

4. Multilabel neural networks are a fast and efficient model that can
be used in the association of compounds to the pathways they in-
tervene in, at an unprecedented scale. An open issue remains the
equal treatment of negative and unknown activity ligands towards a
target.
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5. Generative models such as variational autoencoders and captioning
networks can be used in conjunction with volumetric representa-
tions to generate novel compounds with desirable characteristics
while retaining similarity to a seed molecule.



Chapter 6

LIST OF COMMUNICATIONS

This chapter summarizes talks and posters during my PhD

Talks

• Predicting protein-binding affinities with PyTorch. Bioinformatics
Open Days 2019. Universidade do Minho (PT), Feb. 2019.

Posters

• Jiménez, J. , Skalic, M. & De Fabritiis, G. KDEEP: Protein–Ligand
Absolute Binding Affinity Prediction via 3D-Convolutional Neu-
ral Networks. 1st DCEXS PhD symposium. Barcelona (SP) Nov.
2017.

• Jiménez, J. & De Fabritiis. Relative Protein-ligand Binding Affinity
Prediction with 3D-convolutional Neural Networks. 2018 Work-
shop on Free Energy Methods, Kinetics and Markov State Models
in Drug Design. Boston (MA), May. 2018.

• Jiménez, J. & De Fabritiis. Lead Optimization of Congeneric Se-
ries via Convolutional Neural Networks. 1st RSC AI in Chemistry
Symposium. London (UK), Jun. 2018.
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Chapter 7

APPENDIX: OTHER
PUBLICATIONS

This section includes publications in which I have contributed a minor
part during my PhD.

7.1 LigVoxel: inpainting binding pockets us-
ing 3D-convolutional neural networks

Skalic, M., Varela-Rial, A., Jiménez, J., Martı́nez-Rosell, G. & De
Fabritiis, G. (2018). Bioinformatics, 35(2), 243-250.
https://doi.org/10.1093/bioinformatics/bty583

Abstract

Structure-based drug discovery methods exploit protein structural infor-
mation to design small molecules binding to given protein pockets. This
work proposes a purely data driven, structure-based approach for imag-
ing ligands as spatial fields in target protein pockets. We use an end-
to-end deep learning framework trained on experimental protein–ligand
complexes with the intention of mimicking a chemist’s intuition at manu-
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ally placing atoms when designing a new compound. We show that these
models can generate spatial images of ligand chemical properties like
occupancy, aromaticity and donor-acceptor matching the protein pocket.
The predicted fields considerably overlap with those of unseen ligands
bound to the target pocket. Maximization of the overlap between the pre-
dicted fields and a given ligand on the Astex diverse set recovers the orig-
inal ligand crystal poses in 70 out of 85 cases within a threshold of 2Å
RMSD. We expect that these models can be used for guiding structure-
based drug discovery approaches. LigVoxel is available as part of the
PlayMolecule.org molecular web application suite.

7.2 PlayMolecule BindScope: large scale
CNN-based virtual screening on the web

Skalic, M., Martı́nez-Rosell, G., Jiménez, J. & De Fabritiis, G. (2018).
Bioinformatics, 35(7), 1237–1238
https://doi.org/10.1093/bioinformatics/bty758

Abstract

Virtual screening pipelines are one of the most popular used tools in
structure-based drug discovery, since they can can reduce both time and
cost associated with experimental assays. Recent advances in deep learn-
ing methodologies have shown that these outperform classical scoring
functions at discriminating binder protein-ligand complexes. Here, we
present BindScope, a web application for large-scale active-inactive clas-
sification of compounds based on deep convolutional neural networks.
Performance is on a pair with current state-of-the-art pipelines. Users can
screen on the order of hundreds of compounds at once and interactively
visualize the results.
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