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Group leader                                                                            Scientific Coordinator 

Institute of Chemical Research of Catalonia 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

II 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

III 

Acknowledgements 

Undertaking this PhD has been one of the most exciting and challenging experiences of my 

life. It would not have been possible without the support, encouragement and guidance that 

I have received from the amazing people around me. 

First, I would like to express my utmost and sincere gratitude to my supervisors Prof. Antoni 

Llobet and Dr. Carolina Gimbert-Suriñach for providing me the opportunity to join their 

outstanding research group. I would like to thank them for their endless positive and 

enthusiastic attitude, immense support, encouragement, kind advices and valuable 

suggestions throughout my studies. Without their guidance and constant feedback, this work 

would not have been possible. I would like to thank Ma Jose for all the administrative support 

that I have come across during my stay in Tarragona. 

I thank all the group members during the journey from the beginning Lorenzo, Sam, Serena, 

Roc, Pablo, Sergi, CJ, Abi, Prima, Laura, Navid, Andrew, Ludo, Marcos, JanH, JanO, Yuanyuan, 

Dooshaye, Tingting and Martina. A Special thanks to Nataliia for being a friend inside and 

outside the lab, helping, and encouraging me during the tough time. I thank Marta for 

constant positive support and helping me with some administrative works. Outside the lab I 

would like to thank Jordi Bennet for providing mental support and being so friendly during my 

stay in Tarragona. I thank Lucas, Alicia, Aurelian and Hélène for being friend and spending 

some quality time. A very big thanks to all of you for the enormous support you have given 

me during my difficult situations. The help from the research support area during this study 

are highy acknowledged specially NMR, crystallography, ChromTae, RMN, Chem Reactions, 

Fernando, X-ray, compres, logística and manteniment units. Without these instrumental 

supports, this work would not be possible. 

I would like to acknowledge Prof. Surendranath Yogesh from the Massachusetts Institute of 

Technology (MIT) in USA for giving me the opportunity to work in his esteemed research 

group. I thank all the group people there for helping me in the lab whenever necessary. 

Thanks to Mike for the constant support and nice discussions inside and outside the lab and 

helping me to understand the chemistry occurring in there.  

I love to thank my desi friends in Spain and Europe. My thanks will start with Bala, who help 

me from the beginning and made me feel as my guardian outside my home. I would like to 

thank Suvada, Venkat, Rohit, Tarun, Murali, Tamalda, Sayantanda, Prathap, Roshita, Noufal, 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

IV 

Suvendu, Sukruth, Sachin, Parijat, Pankaj and Deepika. A special thanks to my flatmates 

Rajesh, David, Indrajeet and Anvesh for their support in all aspect. I thank to Raju, Santanu 

and Basudevda for being the compatible friend. A very big thanks to all of you guys for your 

prompt support when I needed. Thanks a lot, to you people for giving the company and not 

making me feel the deficiency of motherland love. 

My sincere thanks to those people, my parents Asraful Hoque and Tajmira Bibi, my sisters and 

brothers, without whom I am nothing. Their constant support helps me to grow up the way I 

am. The last but not the least, I am thankful to my love Sabnam who stands beside me like 

the roof. 

Finally, I would like to thank the funding agencies for the support during the research work.  

“AGAUR” foundation for PhD grant (Ref: 2016 FI_B 01011). A.L. thanks MINECO, FEDER and 

AGAUR for grants CTQ2016-80058-R, CTQ2015-73028-EXP, SEV 2013-0319, ENE2016-82025-

REDT, CTQ2016-81923-REDC, and 2017-SGR-1631. 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

V 

Table of Contents 
Acknowledgements __________________________________________________ III 

Table of Contents ____________________________________________________ V 

Abbreviations _______________________________________________________ IX 

Abstract ___________________________________________________________ XI 

Chapter 1 ___________________________________________________________ 1 

General Introduction __________________________________________________ 1 

1. 1. Photosynthesis: an Inspiration to Sustainable Energy Schemes ________________ 3 

1. 2. General Aspects of Water Oxidation Catalysis ______________________________ 8 

1. 3. Molecular Water Oxidation Catalysis _____________________________________ 9 

1. 4. Molecular Anodes ___________________________________________________ 22 

1. 5. References _________________________________________________________ 33 

Chapter 2 __________________________________________________________ 37 

Objectives __________________________________________________________ 37 

Chapter 3 __________________________________________________________ 43 

3A. Synthesis, Characterization and Water Oxidation Activity of Isomeric Ru-

Complexes _________________________________________________________ 44 

3A. 1. Introduction_______________________________________________________ 46 

3A. 2. Experimental Section _______________________________________________ 48 

3A. 3. Results and Discussion ______________________________________________ 52 

3A. 4. Conclusion ________________________________________________________ 64 

3A. 5. References ________________________________________________________ 65 

3A. 6. Supporting Information _____________________________________________ 67 

3B. Synthesis, Electrochemical Characterization and Water Oxidation Catalysis of 

Ru Complexes Containing the 2,6-Pyridinedicarboxylato Ligand ______________ 91 

3B. 1. Introduction _______________________________________________________ 93 

3B. 2. Experimental Section _______________________________________________ 94 

3B. 3. Results and Discussion ______________________________________________ 98 

3B. 4. Conclusion _______________________________________________________ 112 

3B. 5. References _______________________________________________________ 113 

3B. 6. Supporting Information ____________________________________________ 115 

Chapter 4 _________________________________________________________127 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

VI 

4. Water Oxidation to Dioxygen Catalysis by Mononuclear Ru complexes bearing 

the 2,6-pyridinedicarboxylato Ligand ___________________________________128 

4. 1. Introduction _______________________________________________________ 130 

4. 2. Experimental Section ________________________________________________ 131 

4. 3. Results and Discussion ______________________________________________ 136 

4. 4. Conclusion ________________________________________________________ 146 

4. 5. References ________________________________________________________ 147 

4. 6. Supporting Information ______________________________________________ 149 

Chapter 5 _________________________________________________________171 

5. New Functional Coordination Oligomers Strongly Attached to MWCNT via 

Multiple CH- Interactions as Powerful Molecular Electroanodes for Water 

Oxidation Catalysis _________________________________________________172 

5. 1. Introduction _______________________________________________________ 175 

5. 2. Results and Discussion ______________________________________________ 177 

5. 3. Conclusion ________________________________________________________ 187 

5. 4. Reference _________________________________________________________ 188 

5. 5. Supporting Information ______________________________________________ 190 

Chapter 6 _________________________________________________________233 

6. A Powerful Hybrid Molecular Electroanode for Efficient Water Oxidation Based 

on 2D Ru Coordination Polymer _______________________________________234 

6. 1. Introduction _______________________________________________________ 236 

6. 2. Results and Discussion ______________________________________________ 238 

6. 3. Conclusion ________________________________________________________ 244 

6. 4. References ________________________________________________________ 244 

6. 5. Supporting Information ______________________________________________ 246 

Chapter 7 _________________________________________________________261 

7. Anchoring Strategies for Molecular Water Oxidation Catalysts on Solid Surfaces

 _________________________________________________________________262 

7. 1. Introduction _______________________________________________________ 264 

7. 2. Experimental Section ________________________________________________ 266 

7. 3. Results and Discussion ______________________________________________ 271 

7. 4. Conclusion ________________________________________________________ 302 

7. 5. References ________________________________________________________ 304 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

VII 

7. 6. Supporting Information ______________________________________________ 305 

Chapter 8 _________________________________________________________317 

8. Structural and Spectroscopic Characterization of Reaction Intermediates 

Involved in a Dinuclear Co-Hbpp Water Oxidation Catalyst _________________318 

8. 1. Introduction _______________________________________________________ 320 

8. 2. Results and Discussion ______________________________________________ 322 

8. 3. Conclusion ________________________________________________________ 328 

8. 4. References ________________________________________________________ 329 

8. 5. Supporting Information ______________________________________________ 330 

Chapter 9 _________________________________________________________367 

General Conclusions _________________________________________________367 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

VIII 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

IX 

Abbreviations 

1D  Monodimensional  
2D  Bidimensional  
bpp- 3,5-bis(2-pyridyl)pyrazolate 
bpy  
CAN 

2,2’-bipyridine  
Cerium Ammonium Nitrate 

COSY  Correlation Spectroscopy  
CPE Controlled Potential Electrolysis 
CV  Cyclic Voltammetry  
CH3CN Acetonitrile 
d  doublet  

 Chemical shift  
DCM  Dichloromethane  
DFT  Density Functional Theory  
DMSO  Dimethyl sulfoxide  
DPV  Differential Pulse Voltammetry  
E  Potential 
E½ Half wave potential  
ESI-MS 
FE 
FOWA  

Electrospray Ionization Mass Spectrometry  
Faradaic Efficiency 
Foot of the Wave Analysis 

FTO Fluorine doped Tin Oxide 
GC 
GCC 
H2bda 
hν 

Glassy Carbon 
Graphite Conjugated Catalyst 
[2,2'-bipyridine]-6,6'-dicarboxylic acid 
Light 

H2tda [2,2’:6’,2’’-terpyridine]-6,6'-dicarboxylic acid 
HSQC Heteronuclear Single Quantum Coherence 

spectroscopy 
HMBC Heteronuclear Multiple Bond Correlation 

spectroscopy 
J  Coupling constant  
λ Wavelenght  
M  Molar  
Ι 
ITO 
I2M 
i 
j 

Ionic strength 
Indium doped Tin Oxide 
Bimolecular Interaction Mechanism  
Current 
Current density 

m/z  Mass-to-Charge ratio  
MLCT  Metal to Ligand Charge Transfer  
MS  Mass Spectrometry  
MOF Metal-Organic Framework 
MWCNT Multiwall Carbon Nanotubes 

 Overpotential 
NHE  Normal Hydrogen Electrode  
NMR  Nuclear Magnetic Resonance  
NOESY Nuclear Overhauser Spectroscopy 
OEC  Oxygen Evolving Center  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

X 

PCET 
PEC  
PRC 

Proton Coupled Electron Transfer 
Photoelectrochemical cell  
Proton Reduction Catalyst 

PR Proton Reduction 
PEM  Proton Exchange Membrane  
ppm  Parts per million  
PSI  Photosystem I  
PSII  Photosystem II  
PV Photovoltaic 
py  Pyridine  
RT  
S 

Room Temperature 
Surface of the electrode 

s  Singlet  
SCE  Saturated Calomel Electrode  
t  Triplet  
TBAH  
TEA 

Tetra(N-butyl)ammonium hexafluorophosphate  
Triethylamine 

TOF  Turnover Frequency  
TONs  Turnover Numbers  
TFE Trifluoroethanol 
TiO2 Titanium dioxide 
trpy  2,2’:6’,2’’-terpyridine  
UV-vis  
v 

Ultraviolet-visible Spectroscopy  
Scan rate 

UiO University of Oslo 
vs.  
WNA 

versus  
Water Nucleophilic Attack 

WO  
WOC 

Water Oxidation 
Water Oxidation Catalyst 

WS Water Splitting 
 

 

 

 

 

 

 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



 

XI 

Abstract 

Chapter 1. General Introduction 
 

This chapter includes a brief discussion 

about the natural photosynthesis process 

as an inspiration towards renewable 

energy schemes followed by a description 

of new technologies based on artificial 

photosynthesis. A brief overview on the 

development of molecular water oxidation 
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This chapter includes a brief discussion about the natural photosynthesis process as an 

inspiration towards renewable energy schemes followed by a description of new 

technologies based on artificial photosynthesis. A brief overview on the development of 

molecular water oxidation catalysts during the last years have been documented starting 

with homogeneous catalytic activities all the way to solid surfaces where molecular 

heterogeneous catalysts have been used with the aim of building efficient water splitting 

devices. 
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1. 1. Photosynthesis: an Inspiration to Sustainable Energy Schemes 

1. 1. 1. Natural Photosynthesis 

Natural photosynthesis is a process carried out by green plants, algae or cyanobacteria that 

converts light energy from sun to chemical energy, that is, organic molecules that are the 

building blocks of all living organisms, oil, coal and natural gas. In this process, sunlight 

absorbed by chlorophyll provides energy to oxidize water in photosystem II and produces 

oxygen as a side product together with a set of protons and electrons. Later these protons 

and electrons combine with CO2 in photosystem I through the Calvin cycle, and produce 

carbohydrates where solar energy is being stored as a chemical energy (Figure 1).1,2  

 

Figure 1. Reduction of carbon dioxide (CO2) into carbohydrates (e.g. C6H12O6, glucose) which is 
accompanied by the oxidation of water (H2O) to dioxygen (O2). This photosynthetic process is carried 
out by the action of light. 

 

Photosystem II is the first link in the chain of the photosynthesis process (Figure 2). This is a 

multi-subunit membrane protein complex located in the thylakoid membranes of the plants. 

Initially Chlorophyll P680 in photosystem II absorbs light from sun and one electron is 

promoted to higher energy and transferred to photosystem I through a complex electron 

chain.3,4 Then, the electron deficient chlorophyll abstracts one electron from water mediated 

by tyrosine. This process takes place in the oxygen evolving complex (OEC)5 that after five 

intermediate states produces oxygen from water. A detailed structural and mechanistic study 

reveals that this OEC is a Mn4CaO5 cluster where five oxygen atoms connect all five metals, 

and four water molecules complete their coordination sphere (Figure 3).6,7 
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Figure 2. Representation of the natural photosynthesis process and the role of different units 
involved in it. Figure adapted from the reference paper.8 
 

 

 
 
Figure 3. Structure of the oxygen evolving complex (OEC) Mn4CaO5 present in Photosystem II at 1.95 
Å resolution. All the atoms are properly labelled with the element symbol. W: water molecule. Figure 
adapted from the reference paper.7 
 

The OEC in Figure 3 together with other enzyme cofactors in nature are the inspiration to 

many scientists. The research community aims to find suitable artificial (man-made) catalysts 

for valuable reactions such as the water oxidation to dioxygen, for its fundamental role in new 

sustainable energy schemes. 

1. 1. 2. Artificial Photosynthesis 

It is well known that sun is the ultimate source of renewable energy for the living lives. The 

energy provided by sun on the surface of earth in the form of solar irradiation in one hour is 

more than enough for the global energy demands for one year.9 The enormous energy power 

supply of sun drives the scientific communities to focus on the development of technologies 

that can take the advantage of this energy source (Figure 4). In solar thermal technologies, 

the heat provided by the sun is captured and used for several applications like heating, 
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cooking or any mechanical energy that eventually converts to electricity.10 On the other hand, 

photovoltaics (PV) solar technologies capture the sunlight and directly converts it into 

electricity. Since the discovery of these technologies, they have had significant growth and 

nowadays, they provide nearly 5% of total global energy consumption (Figure 4, right).11 

However, the major drawback of these technologies is that they are unable to store the solar 

energy for further use, where most of the energy consuming sectors run through combustion 

of fuel to get the required energy when and where it is needed. 

In this regard, plants in nature have probably developed the most efficient power supply in 

the world with the complex photosynthesis process in Figure 2. This process shows the most 

successful pathway of energy generation and storage system using the sunlight starting with 

unlimited source of raw materials like water and carbon dioxide (Figure 4, left). Due to very 

intense use of fuels generated by natural photosynthesis by human beings, fuel source is 

getting limited. Thus, scientists are seeking alternative ways to perform this process, that we 

generally call artificial photosynthesis processes (Figure 4, middle).  

 

Figure 4. Solar energy conversion schemes. 
 

Artificial photosynthesis is a very promising technology that can mimic the natural 

photosynthesis process and harvest the solar energy into fuel as chemical bonds. In this case, 

energy taken from the sunlight can be used to split water to oxygen and hydrogen in the 

overall water splitting reaction.12-14 This process involves two half reactions: oxidation of 

water (H2O) to oxygen (O2) (eq. 1) and reduction of protons (H+) to hydrogen (H2) (eq. 2). 

Alternatively, other processes can be designed by using the protons and electrons obtained 

from the above process to reduce carbon dioxide (CO2) or nitrogen (N2) to hydrocarbon 
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(simplified as [CH2O]n) (eq. 3)15 or ammonia (NH3) (eq. 4).16 All these products are known as 

solar fuels where solar energy is stored into them as a chemical energy.  

2𝐻2𝑂 →  𝑂2 + 4𝐻+ + 4𝑒−  (eq. 1) 

4𝐻+ + 4𝑒− → 2𝐻2   (eq. 2) 

𝐶𝑂2 + 4𝐻+ + 4𝑒− → [𝐶𝐻2𝑂] + 𝐻2𝑂 (eq. 3) 

𝑁2 + 6𝐻+ + 6𝑒− → 2𝑁𝐻3  (eq. 4) 

An ideal photosynthetic device should contain three main components: a) Light absorber that 

absorbs light from the sun and transfers the energy to the following steps, b) Catalysts that 

facilitate redox reactions and the breaking/formation of chemical bonds in order to get solar 

fuels as desired products and c) A membrane that separates the anode and cathode in the 

cell that allow to obtained the products separately in order to store them for later use. (see 

for example an example of photoelectrochemical cell (PEC) in Figure 5). Significant efforts 

have been made towards designing these devices during the past decades and they can 

broadly be categorized in three different groups: i) PV/electrolyzer, ii) Integrated 

photoelectrochemical cell (PEC, see example in Figure 5) and mixed colloid devices.17,18 

PV/electrolyzer set-ups consist of two main parts, the photovoltaic cell and an electrolyzer. 

The former absorbs light and transfers the electricity generated to the electrolyzer, which 

consists of an anode and a cathode made by heterogeneous catalysts in an electrolytic 

solution for water splitting. This set-up is now well advanced but high cost of the PV cell 

inhibits it for industrial stage practical application.19,20 On the other hand, mixed colloid 

devices are comparatively simple and low cost technology where light absorber and catalysts 

are in one single particle that performs the overall light induced water splitting and produce 

H2 and O2 in the same compartment. However, the development of such devices is in its 

infancy showing low efficiency and still needs an enormous improvement.17,21 Integrated PEC 

is in intermediate state and represents the compromise between the efficiency of 

PV/electrolyzer and the less complexity of mixed colloid system. An example of PEC cell is 

given in Figure 5. 
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Figure 5. Schematic representation of a photoelectrochemical water splitting device (PEC). WOC: 
water oxidation catalyst; PRC; proton reduction catalyst. 
 

The PEC cell consists of three main components:  

a) Photoanode: an electrode containing a photoactive semiconductor material (n-type) 

and a heterogeneous water oxidation catalyst (WOC) to produce oxygen. 

b) Photocathode: an electrode with photoactive semiconductor material (p-type) and a 

heterogeneous proton reduction catalyst (PRC) for hydrogen production. 

c) Membrane: a junction that separates the cell into two compartments, allow the 

proton movement between them, and avoid products mixture. 

 

In a photoelectrochemical cell (Figure 5), the process starts with the absorption of sunlight by 

photoactive n-type semiconductor material that generates an electron-hole pair. Then the 

hole is filled by an electron from the oxidation of the catalyst that after repeating the process 

up to 4 times, it finally leads to oxidation of water to oxygen on the surface of the photoanode. 

On the other hand, similar phenomena also happen in the photocathode with p-type 

semiconductor yet in this case, the electron is taken by catalyst that once reduced leads to 

the conversion of protons to generate hydrogen. To avoid the charge accumulation, the 

electron flow through an external circuit and the proton flow through a membrane should be 

possible. Importantly the design of the individual components in this artificial photosynthetic 

device can be improved independently bringing performance at highest level. This 

photosynthetic device can be extendable for the generation of other types of solar fuel such 

as NH3 and hydrocarbons. In all these cases, water oxidation is the main counter reaction, 
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which occurs in the anode with simultaneous reduction reactions that take place in the 

cathode. Thus, the development of (photo)anodes where oxidation of water to molecular 

oxygen takes place is a highly pursued goal. 

1. 2. General Aspects of Water Oxidation Catalysis 

The oxidation reaction of water to molecular oxygen involves the breaking of 4 O-H bonds 

from two water molecule to generate a O=O double bond. This process requires the removal 

of four protons and four electrons, thus becoming thermodynamically uphill (E0 = 1.23 V vs. 

NHE, Figure 6). The involvement of breaking and forming of multiple bonds make the process 

highly complex with high kinetic barriers. The additional potential required to overcome this 

kinetic barrier to make the process feasible is known as overpotential (ɳ) (Figure 6, dotted 

orange line).22 

 

 

Figure 6. Schematic representation of the thermodynamics of the water oxidation reaction to give 
molecular oxygen and the high kinetic energy barrier involved (dashed orange line). The kinetic 
barrier is lowered by the action of a water oxidation catalyst (cat, blue solid line). 

 

In order to lower the high energy barrier, it is possible to use suitable catalysts that go through 

lower energy intermediates and transitions states (Figure 6, blue solid line). Nature has 

fulfilled this goal with the oxygen evolving complex present in photosystem II, the Mn5CaO5 

cubane cluster in Figure 3 discussed above.7 It has a capacity to oxidize water to molecular 

oxygen at a mild overpotential of 0.43 V with high turnover frequency in the range of 100-400 

s-1. The remarkable feature of this cluster as an efficient water oxidation catalyst is now 

known, thanks to the well-advanced electrochemical and spectroscopic techniques.23-26 
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Inspired by the performance of this cluster in nature, the scientific community has invested 

their efforts towards designing highly efficient artificial water oxidation catalysts (WOC). They 

are broadly classified in two categories, i) metal oxide based catalysts and ii) molecular 

catalysts. The first artificial water oxidation catalyst was discovered by Glazer and Coehn in 

1902 based on nickel oxide.27 Since then a tremendous progress has been achieved in the field 

of water oxidation based on different metal oxides in terms of current density and 

overpotential by varying the morphology and particles size.28-30 

 

Figure 7. Plot of overpotential required to achieve a current density of 10 mA/cm2 for water 
oxidation with different metal oxides in extreme basic (pH 14) and acidic (pH 0) conditions. Figure 
adapted from the reference paper.31 
 

Recently Jaramillo et al. have reported a benchmark list of water oxidation catalytic 

performance of a bunch of metal oxides based on first row transition and noble metal oxides 

by electrochemical techniques under highly acidic and basic conditions (Figure 7).31 They show 

that most of the metal oxide catalysts are highly active for water oxidation at basic pHs with 

a current density of 10 mA/cm2 with moderate overpotential in the range of 0.35 to 0.5 V. On 

the other hand, in acidic pHs just few catalysts with nobel transition metal based oxides (RuO2 

and IrO2) are capable of performing similar activity. Even though a significant growth on the 

performance of these catalysts has been achieved, they are limited with respect to their low 

turnover frequency, in part due to the lack of knowledge of understanding of their real active 

sites.32 

1. 3. Molecular Water Oxidation Catalysis 

The journey on molecular water oxidation catalysis started by the discovery of the so called 

blue dimer in 1982 by T. J Meyer. This oxo bridged dinuclear ruthenium complex with the 

formula cis,cis-{[RuII(bpy)2(H2O)]2(μ-O)}4+, (1 in Chart 1 (bpy is 2, 2´-bipyridine)) has the 

capacity to oxidized water to molecular oxygen and is the first well-characterized catalyst that 

can carry out the reaction chemically and electrochemically.33 The vast spectroscopic and 
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electrochemical techniques together with Density Functional Theory (DFT) helped for the 

detailed mechanistic understanding together with activity performance.  

Compound 1 has been the source of inspiration to the scientific community for the further 

design of artificial molecular catalysts with the purpose of achieving high efficiency and fast 

reaction kinetics. Since then an enormous progress was achieved with different transition 

metal complexes such as Mn,34 Fe,35,36 Co,37,38 Ni,39 Cu,40-43 Ir44-46 or Ru47-49 as metal centers 

with different ligand scaffolds. In particular, the rich coordination chemistry of ruthenium as 

well as its wide access of formal oxidation states are some of the reasons why this metal has 

been the core of most detailed electrochemical, kinetic, spectroscopic and mechanistic 

studies on water oxidation catalysis over the last 4 decades. From now, onwards the 

discussion will be mainly focused on the most relevant ruthenium complexes for water 

oxidation catalysis together with a brief description of complexes with other transition metals 

when particularly relevant.  

 

Chart 1. Structural representation of dinuclear Ruthenium complexes 1, 2, 3 and 4. 

 

Since the discovery of the blue dimer, 1, scientists proposed that only dinuclear diaquo 

complexes are capable of carrying out water oxidation, because they can remove 2H+ and 2e− 

from each Ru–OH2 group, facilitating the process. Thus, a number of dinuclear complexes with 

a Ru-O-Ru bridge were reported in the literature; however, the unavailability of rational 

synthetic strategies for the preparation of oxo-bridged complexes limited the extension of 

this family of catalysts.50,51 After almost 22 years, in 2004, Llobet et al. realized that the oxo-

bridged is not crucial for the WO activity and reported a dinuclear Ru-complex cis,cis-
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{[RuII(trpy)(H2O)]2(μ-bpp)}3+, 2 in Chart 1, by replacing the oxo bridge with a N-donor bpp- 

ligand (bpp- is bis (2-pyridyl)-3,5-pyrazolate).52 This new bridge shows better electronic 

communication between the two metal centers and helps to rigidly hold the Ru-OH2 groups 

in the proper orientation for further reaction steps in the catalytic cycle. As a result, 2 shows 

better performance than 1 with 70 % efficiency and 3.5 times higher turnover frequency 

(0.014 s-1 for 2 and 0.004 s-1 for 1). Later, the same group redesigned another dinuclear 

complex {[RuII(py-SO3)2(H2O)]2(μ-Mebbp)}–, 3 in Chart 1 by changing the bpp- bridging ligand 

with Mebbp- (Mebbp is 4-methyl bis (2, 2´-bipyridyl)-3,5-pyrazolate)53 and showed 

remarkable performance with 90% efficiency and TOF = 0.07 s-1. The better efficiency of 3 is 

due to the replacement of the CH2-group in the pyrazole ring by a methyl group preventing 

the oxidative degradation at the high water oxidation potential. Other examples of dinuclear 

complexes include complex {[RuII(py-Me)2]2(μ-bcpp)( μ-Cl)}–,4 in Chart 154 by changing the 

bridging ligand backbone with bcpp where bcpp2- is 1,4-bis (6’-COO-pyrid-2’-yl)phthalazine 

with high TOF up to 1.2 s-1.  

A breakthrough came in 2005 with the realization that mononuclear complexes are also 

capable of oxidizing water to dioxygen. Thummel et al. reported for the first time a new 

ruthenium polypyridyl complex [Ru(tnp)(Me-py)2(OH2)]2+ , 5 in Chart 2 (tnp is 2,2'-(4-(tert-

butyl)pyridine-2,6-diyl)bis(1,8-naphthyridine))55 that was a potential candidate for water 

oxidation catalysis. At that time, it was a puzzle to the scientific community because it was 

assumed that a minimum of two Ru-OH2 centers are needed to be able to remove 2H+ and 

2e− from each Ru–OH2 group to generate dioxygen from water. The puzzle was solved a few 

year later, when Meyer et al. reported a detailed mechanistic study of [Ru(trpy)(bpm)(OH2)]2+, 

7 in Chart 2 and showed that single site Ru center is capable of performing water oxidation 

by a series of H+/e− transfers processes.56 Since then a revolution happened in the field of 

water oxidation. The straightforward synthesis and isolation of mononuclear complexes with 

less complexity compared to dinuclear ones allowed the scientific community to broaden the 

field. Since then many research groups put their efforts on studying mononuclear ruthenium 

complexes as WOCs affording the better understanding of the mechanism and the 

performance by changing the ligand scaffolds in the coordination environments. Meyer and 

Llobet groups provided several examples of ruthenium complexes with the general formula 

[Ru(trpy)(BL)(OH2)]2+, by using the different bidentate ligands such as BL = 2,2´-bipyridine, 6; 

2,2´-bipyrimidine, 7; 3,5-bis(2-pyridyl)pyrazole, 856-58 (Chart 2). However, all these 

mononuclear complexes are less efficient than that of the analogous dinuclear complexes. 

Later Sun et al. reported another set of ruthenium complexes with the tridentate ligands 2,2´-
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bipyridine-6-carboxylate, 9 and 2,6-pyridine dicarboxylate, 10 in Chart 2, although the real 

catalytic species of these complexes were not elucidated.59 Incorporation of sigma donating 

carboxylate ligand improves the water oxidation catalytic activity of complexes 9 and 10 

compared to previous mononuclear complexes with neutral N-donor ligands. Table 1 shows 

the summary of the catalytic data of the mononuclear complexes presented in chart 2 and 3. 

 

Chart 2. Structural representation of mononuclear Ruthenium complexes 5, 6, 7, 8, 9 and 10. 

 

The water oxidation field further speeded up by the discovery of the so called Ru-bda 

complexes by Sun et al. They reported complex [Ru(bda)(Me-py)2(O)], 11 (Chart 3) (bda2- is 

[2,2'-bipyridine]-6,6'-dicarboxylate, Me-py is 4-methyl pyridine)60 where tetradentate bda2- 

ligand coordinate with Ru in equatorial position and 4-methyl pyridine in axial position with a 

TOF value of 32 s-1 with only 180 mV overpotenital in pH 1 (Table 1). Together with the 

excellent performance of this catalyst, they also found that it shows some interesting and 

unique properties: i) in absence of any coordinated solvent, it shows a highly distorted 

octahedral geometry with the two carboxylate groups coordinated to the Ru, in contrast, in 

aqueous solvent, water coordinates to Ru leaving one dangling carboxylate; ii) at high 

oxidation states RuIV and RuV, the complex adopts a pentagonal bipyramidal geometry with 

coordination number 7;60 iii) the water oxidation catalysis follows  a second order kinetics 

associated with a bimolecular rate-determining step for the formation of O-O bond and iv) 

the presence of two anionic charges provided by carboxylate group of bda2- ligand help to 

stabilize the high oxidation state of the metal center. Since then Ru-bda family opened a new 

era in the field of molecular water oxidation field. After that, dozens of complexes were 
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reported with the Ru-bda family and they displayed dramatic improvement in the catalytic 

performance by fine-tuning of the axial ligands. For instance complex 12 in Chart 3 shows TOF 

of 310 s-1 which is one order of magnitude higher with respect to the parent complex 11, by 

changing the axial 4-methyl pyridine with -extended hydrophobic isoquinoline, which favors 

the binuclear nature of the mechanism for the O-O bond formation by -interactions between 

two metal complexes.61 

 

Chart 3. Structural representation of mononuclear seven coordinated Ruthenium complexes 11, 12, 
13, 14 and 15. 
 

Another compound of this family of complexes is Ru(tpc)( Me-Py)2(O)], 13, where equatorial 

bda ligand was replaced by tpc ([2,2':6',2''-terpyridine]-6-carboxylic acid) with one less 

carboxylate group.62 They found that this complex undergoes water oxidation catalysis with a 

seven coordination environment by aquo connection to the metal center in aqueous solution. 

However, the activity drastically decreases compared to the Ru-bda family and was proposed 

to proceed through a high-energy pathway for the O-O bond formation mechanism making 

this catalyst slower in kinetics. This result is an indication of the crucial role of a second 

carboxylate group in the equatorial plane. Indeed, this had been previously proven by the 

discovery of Ru-tda complex in 2015 by Llobet et al. They synthesized [Ru(tda)(py)2], (tda2- is 

[2,2′:6′,2′′-terpyridine]-6,6′′-dicarboxylate, py is pyridine) by incorporation of the tda 

pentadentate ligand in the equatorial position of the Ru and pyridine in axial position, which 

was a water oxidation catalyst precursor.63 They were able to prepare electrochemically in 

situ the active catalyst RuIV(tda)(py)2(O)], 14 in Chart 3 with seven coordination environment 

at high oxidation states by incorporation of hydroxo/oxo ligand.  
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Table 1. Catalytic data of mononuclear complexes with different number of anionic ligands (n-), 
geometry of the RuIV=O species and type of mechanism involved. 
 

Complex n-a Geometry 

RuIV=O 

TOF 

(s-1) 

E1(RuV/IV=O) 

(V)d 

Mechanism 

[Ru(trpy)(bpy)(OH2)]2+, 657 0 CN6 0.01b 1.86 WNA 

[Ru(bpc)(bpy)(OH2)]2+, 964 1 CN6 0.16b 1.59 WNA 

[Ru(pdc)(Me-Py)2(OH2)]2+, 1059 2 CN6 0.23b - WNA 

[Ru(bda)(Me-Py)2(O)], 1160 2 CN7 32b 1.12 I2M 

[Ru(bda)(isoq)2(O)], 1261 2 CN7 310b 1.12 I2M 

[Ru(tpc)( Me-Py)2(O)], 1362 1 CN7 0.17b - WNA 

[Ru(tda)(py)2(O)], 1463 1 CN7 8000c 1.45 WNA 

[Ru(mcbp)(py)2(O)], 1565 1 CN7 1500c 1.43 WNA 

 
Abbreviations: (a) n-: number of anionic ligands coordinated to metal complex; (b) Turn over 
frequency (TOF) calculated based on the manometric experiment with CeIV as sacrificial electron 
acceptor at pH = 1; (c) TOF calculated based on Foot of the Wave Analysis (FOWA) from cyclic 
voltammetry experiments; (d) redox potential value of the RuV/IV=O redox couple at pH 7. 
 

Catalyst 14 gives an impressive TOF of 8000 s-1 in pH 7 based on the “Foot of the Wave 

Analysis” (FOWA) technique. This result represents the fastest molecular catalyst for water 

oxidation in terms of TOF reported to date and faster than the oxygen evolving complex in 

natural photosystem II. The high catalytic activity of this catalyst is mainly due to two ruling 

factors: i) the pentadentate tda2- ligand with two anionic carboxylate ligand allows the metal 

center to adopt the seven-coordination environment together with the stabilization of high 

oxidation states of the metal center and ii) the presence of the dangling carboxylate as a 

pendant base, which acts as proton acceptor and has a key role during the O-O bond 

formation step. Having the benefit of the above two ruling parameters, later Åkermark et al. 

reported [Ru(mcbp)(py)2(O)], 15 in Chart 3 (mcbp2- is 2,6-bis (1-methyl-4-

(carboxylate)benzimidazol-2-yl)pyridine) by replacing the equatorial tda2- ligand with mcbp2- 

showing comparable performance but easier access to the active aquo species.65 

So far the enormous improvements in the field of artificial molecular water oxidation catalysis 

have been discussed where the catalytic performance improves up to six orders of magnitude 

since the discovery of the first molecular catalyst in 1982. The extensive studies on this field 

over more than 37 years reveal that there are four main fundamental features of the 

Ruthenium catalysts that allow an exponential increment of their performances; i) Proton 

coupled electron transfer (PCET) process, ii) Mechanism of O-O bond formation, iii) 
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coordination environment and iv) effect of secondary coordination sphere. A brief description 

of all these factors will be discuss hereafter. 

1. 3. 1. Proton Coupled Electron Transfer (PCET) process 

As mentioned earlier, the oxidation of water to molecular oxygen involves the removal of 

multiple protons and electrons from two water molecules. Thus, complexes that can access 

multiple redox states are highly desired to carry out this catalytic process. Proton coupled 

electron transfer (PCET) is a chemical reaction that transfer both a proton and an electron in 

a concerted manner. On the other hand, in electron transfer process, only the electron is 

transferred from one species to the other. When a single electron is removed from the 

complex, a columbic charge is built up on the metal center and the complex reach a higher 

energy. Consequently, it hinders the removal of the subsequent electron from the metal 

center. In the case of PCET, the charge built up by the removal of electron is compensated by 

the removal of one proton. This helps to stabilize high oxidation states of the metal center 

with lower potential.66-69  

 

Figure 8. Pourbaix diagram of complexes 6 and 16. 

 

The effect of PCET can nicely be observed in the Pourbaix diagram of the complexes of 6 and 

16 in Figure 8.57,70 The potential of the RuIII/II and RuIV/III redox couples of complex 16 are 

completely pH independent, as it involves only electron transfer process in different oxidation 

states without any proton transfer. As a result, the difference between these two redox 

couples are as high as 1000 mV. In comparison, complex 6 undergoes PCET process due to the 

presence of Ru-OH2 group in the metal center and the redox couples are pH dependent. The 
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potential difference between these two couples are now only 100 mV, thus achieving high 

oxidation state of the metal center becomes easier. Interestingly this diagram provides 

another interesting feature on the effect of the overall charge of the complex. Complex 16 is 

neutral in its oxidation state II whereas 6 is double positive charged in the pH range from 2 to 

12. Consequently, the potential of the RuIII/II couple of 16 is much lower than that of 6. 

However, at oxidation state IV, both complexes are double positively charged but due to the 

PCET effect, the potential of RuIV/III couple of 6 is lower than the 16. The ability to stabilize the 

high oxidation state of the metal center by PCET process helps to reach the reactive Ru=O 

moiety at low potential and boost up for the formation of O-O bond in water oxidation 

catalysis. 

1. 3. 2. Mechanism of Water Oxidation Reaction 

Thanks to the availability of electrochemical, spectroscopic and analytical techniques as well 

as complementary information provided by computational studies, it has been possible to 

obtain a detailed understanding of the mechanism in the water oxidation catalytic cycle, 

mainly by means of study of Ru based complexes. Various reaction pathways have been 

proposed for the formation of O-O bond, which can be extended to other transition metal 

complexes besides Ruthenium. Two classes of mechanistic pathways have been proposed as 

can be seen in Figure 9: i) water nucleophilic attack (WNA) and ii) interaction of two metal 

oxo units (I2M).  

In the WNA mechanism, a high oxidation state Ru=O species with electrophilic properties is 

formed via several consecutive oxidation steps. Nucleophilic attack by a water molecule on 

the Ru=O occurs, resulting in the formation of a Ru-O-O-H hydroperoxo species. Further PCET 

step generates Ru-O-O- superoxo intermediate, which releases O2 and is converted into the 

initial complex with the incorporation of H2O. The mononuclear complexes 5, 6, 7, 8, 9, 10, 

13, 14 and 15 have been proposed to undergo the WNA mechanism for the water oxidation 

(Figure 9, top).56-58,62-64 The blue dimer, 1 also undergoes WNA mechanism due to the free 

rotation of the Ru-O-Ru bonds.71  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 1 

17 

I 

 

 
Figure 9. Two mechanistic pathways for the formation of O-O bond. Top: Schematic WNA 
mechanism (left) and transition state involved in the O-O formation for complex 14 following WNA 
mechanism (right). Bottom: Schematic I2M mechanism. 
 

In the I2M mechanism,53 the coupling of two high valent Ru-O oxyl radicals affords a Ru-O-O-

Ru peroxo species that releases O2 and returns to the initial complex with incorporation of 

H2O. The dinuclear complex 2, undergoes intramolecular I2M mechanism, where two Ru-OH2 

centers are at close proximity, allowing coupling between them (Figure 9, bottom left).72 The 

mononuclear complexes 11 and 12 are proposed to follow intermolecular I2M mechanism 

where two discrete molecules are involved (Figure 9, bottom right).61 

The difference in mechanism has a great influence in the performance of their catalytic 

activities. For example, bimolecular nature of complex 11 reveals that the catalytic activity 

can be improved when axial Me-Py ligand is replaced by isoquinoline (12) that can favor the 

bimolecular interaction by additional - interaction between the two molecules during the 

catalysis process. This additional - interaction executed by isoquinoline ligand helps to 
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stabilize the Ru-O-O-Ru peroxo intermediate via dimerization process and boosts up the 

activity from 32 s-1 to 310 s-1. Detailed understanding of the mechanism of the reaction is 

crucial when the knowledge of homogeneous catalytic activity is transferred to solid surface 

where catalyst attached to the surface has mobility restrictions.73 

1. 3. 3. Coordination Environments 

Most of the molecular ruthenium water oxidation catalysts have octahedral geometry with 

coordination number 6 (Chart 1 and 2). The crystal field splitting74 of octahedral (Oh) type 

geometry predicts that the d-orbitals of Ru split into two sets of orbitals: i) triply degenerate 

t2g and doubly degenerate eg orbitals as can be seen in Figure 10a (top). In some cases, 

ruthenium complexes with oxidation state IV or more can form seven coordination around 

the metal center with pentagonal bipyramidal geometry (D5h).75,76 In this case d-orbitals split 

into 3 sets of orbitals (e1”, e2´ and a1´) in Figure 10a (bottom). Ru complexes at oxidation state 

IV with Oh geometry are in general paramagnetic but the Ru-complex with D5h geometry are 

diamagnetic in nature if the crystal filed is strong. The judicious choice of the ligands can favor 

either octahedral or pentagonal bipyramidal geometry. Complexes 1-10 with polypyridine 

ligands are in octahedral geometry at oxidation state II-IV. In contrast, complexes 11-15 are 

octahedral in oxidation II-III but at oxidation state IV, all of them are heptacoordinated 

pentagonal bipyramidal geometry.77 Seventh coordination stabilizes the electron deficient 

RuIV/ RuV center by providing the electron density and that is very crucial for the formation of 

an O-O bond. Moreover, this extra coordination stabilizes dxz, dyz orbital by lowering the 

energy of these orbitals as compared to Oh geometry. All the heptacoordinated complexes 

with anionic carboxylate ligands provide additional electron density to the high valent redox 

states. This stabilization is reducing the overall potential of the redox couples and thereby 

facilitates the catalysis. 
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a) b) 

 

 

Figure 10. a) Representation of metal ligand bonds in octahedral (CN6) and pentagonal bipyramidal 
geometry (CN7) (left). Crystal field splitting of d orbitals for CN6 and CN7 complexes (right). b) 
Correlation of redox potential of RuV/IV=O with the number of anionic ligands. 
 

Taking the advantages of all these parameters discussed above, complex 12 is one of the best 

catalysts with only 150 mV overpotenital thanks to the two carboxylates coordinated to the 

metal. In addition, complex 14 also has all these ruling parameters with an additional pyridine 

ring in the equatorial plane, which enables seven coordination environments at RuIV where 3 

pyridine N and 2 carboxylate O are connected. In neutral or basic condition, there is an 

equilibrium in oxidation state IV between one of the carboxylate and OH- ligand present in 

the electrolyte solution. Coordination of OH- group to the metal center makes this the fastest 

catalyst reported to date with impressive TOF of 8000 s-1 in pH 7. Figure 10b shows the 

correlation between the number of anionic ligand (n-) and RuIV/V=O redox couple of the 

complexes with coordination number 6 and coordination number 7. Upon addition of one 

carboxylate ligand in the place of neutral pyridine in the first coordination sphere of the metal, 

the potential of IV/V redox couple is reduced to by approximately 250 mV.78 Moreover, seven 

coordinated complexes reduce the potential around 200 mV as compared to six coordination 

with the same number of anionic ligands,48 clearly highlighting the role of additional seventh 

coordination in the stabilization of high valent metal-oxo with lowering the potential. 

1. 3. 4. Effect of Secondary Coordination Sphere  

In the previous section the crucial role of the primary coordination sphere play on the 

properties of the transition metal complexes has been discussed, where ligands are directly 

connected to the metal. Secondary coordination sphere where ligands are not directly 

connected to the metal center, sometimes also play a subtle but important role on the 

reactivity of the complexes. Theses secondary coordination sphere effects include Hydrogen 
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bonding, supramolecular - interaction, accessible pendant base, steric effect etc. All of 

them can influence on the kinetics and the mechanism of the reaction including substrate 

activation.79-81 In complex 14, the dangling carboxylate present in the equatorial ligand plays 

the most crucial role on the kinetics of the water oxidation. This dangling carboxylate acts as 

a pendant base and is involved in intramolecular H-bonding with the aquo group connected 

to the metal (Figure 9 top, right). This helps to remove the protons from the entering aquo 

group and drastically reduces the activation barrier during the formation of O-O bond via 

WNA mechanism in the catalytic cycle (Figure 9 top).63 This makes the catalyst the fastest 

reported so far in the literature (see TOF values in Table 1). In comparison, complex 13 shows 

similar geometric environment as in 14, but due to the absence of the pendant base, it is a 

worse catalyst with four orders of magnitude lower catalytic activity (compare entries 13 and 

14 of Table 1). 

As already discussed in section 1.3.2, the supramolecular - interactions also play an 

important role in the mechanism of complexes 11 and 12 with axial Me-py or -extended 

isoquinoline ligands, respectively. These complexes undergo intermolecular I2M mechanism, 

where two high valent metal oxo dimerize. -extended axial ligands favor the dimerization 

step and lower the activation barrier in the O-O bond formation steps.82  

Recently Würthner et al. reported a trinuclear macrocyclic complex 17 with the incorporation 

of Ru-bda complex connected through a 1,4-bis (pyrid-3-yl) benzene ligand (Figure 11, 

left).83,84 This complex creates a cavity in the macrocycle and traps a large number of water 

molecules through H-bonding. The presence of this H-bonding interaction with Ru-OH groups 

disfavor the dimerization steps and thus the complex undergoes water nucleophilic attack 

(WNA) with TOF values of more than 100 s-1. Later Reek et al. incorporated the same Ru-bda 

molecule with 3-pyridylsulfonate as axial ligands inside the cavity of a nanosphere made of 

endohedral guanidinium site 18 (Figure 11, right). The self-assemble process of 12 units of 

Pt(II) and 24 units of L-gua+ generates a nanosphere with the internal cavity size 

approximately 4.3-4.9 nm. The sulfonate group present in the Ru-bda complex interacts with 

guanidinium sites through H-bonding interaction and generates a supramolecular structure 

where the ruthenium complex is encapsulated inside the nanosphere.85 The preorganization 

of molecular catalyst in the cavity of the nansphere enhances the water oxidation activity to 

125 s-1. 
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Figure 11. Left, structure of trinuclear macrocycle complex [Ru(bda)(-1,4-bpb)]3, 17. Right, 
nanosphere made of self-assembled Pt and L-gua+ ([Pt12(L-gua)24]). Red balls indicates guanidinium 
group of the L-gua+ ligand where the [RuII(bda)(3-SO3-py)2]2− encapsulates by H-bonding interaction. 
Figures are adapted from the reference papers.83,86 

 

1. 3. 5. First Row Transition Metal Complexes 

In general, first row transition metals such as Mn, Fe, Co, Ni and Cu are more abundant and 

cheap and harmless to the environment. From a practical point of view, designing catalyst 

based on first row transition metals is highly desired. For this reason, the knowledge on the 

performance and mechanism of water oxidation acquired from the ruthenium complexes 

have later been translated to the first row transition metal complexes. Some of the 

representative complexes carrying out water oxidation based on first row transition metal 

complexes are shown in Chart 4. In 1999, Brudvig reported a dinuclear oxo bridged Mn 

complex (19), which is capable of oxidation water to dioxygen with TOF of 0.003 s-1.87 

However, it is important to point out that significant catalysis is only achieved using peroxides 

as sacrificial oxidant. It is thus very difficult to distinguish between peroxide disproportion and 

real water oxidation for this complex. In 2015, Thummel et al. showed that the dinuclear oxo-

bridge Fe complex (20) undergoes water oxidation with TOF of 2.2 s-1.88 However the chemical 

irreversibility of the electroactive species displayed in the CV reported for this complex clearly 

point out that 20 is at most a precursor to a catalyst and that most likely the active species 

are basically not molecular but FeOx. A dinuclear Co complex (21) was also reported to show 

modest catalytic activity reported by Llobet group.38 The same group reported a Cu based 

mononuclear complex (22) and showed that the introduction of electron donating groups in 

the ligand backbone can reduced the overpotential all the way to 540 mV, due to the 

involvement of a ligand oxidation step during the catalytic process.43 
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Chart 4. Representative WOCs based on 1st raw transition metal complexes. 

 

In terms of the performance of the water oxidation reaction, first row transition metal 

complexes are slower in kinetics as compared to the ruthenium complexes. The main 

disadvantage of this family of complexes is the easy substitution of ligand scaffolds with water 

that leads to metal-multi aquo complexes that sometimes end up converting into the 

corresponding metal oxides, which are the real active catalyst as already proven long ago.89 

1. 4. Molecular Anodes 

The study of heterogeneous catalysts based on transition metal based oxides or hydroxides 

in WOC as an anode is dated back to more than a half century ago.27 Such anodes exhibit 

greater stability and can be readily integrated into functional energy conversion devices such 

as photoelectrochemical cell for water splitting in Figure 5. However, the catalytic activity of 

such heterogeneous catalysts is difficult to control as its active site is less amenable to 

systematic modification. In comparison, molecular WOCs can display ligand fine-tuning 

around the metal center, which represent a powerful strategy to optimize the kinetics and/or 

thermodynamics of the water oxidation. In addition, the plethora of various 

analytic/spectroscopic techniques offer direct insights into the catalytic path and reaction 

intermediates. However, this approach often experiences low reaction rates because catalytic 

turnover only occurs when the catalyst is in diffusive contact with the electrodes. Moreover, 

molecular catalysts are still seriously lacking behind heterogeneous in terms of stability and 

robustness. Thus, construction of a molecularly well-defined and tunable heterogeneous 
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WOC (i.e. molecular anode) combining advantages of both systems are highly desirable and 

could open a new field of research successfully transferring the catalytic features of the 

molecular catalyst onto the solid surface. 

1. 4. 1. Design of Molecular Anodes 

A molecular anode can be designed in many different ways depending on how the molecular 

catalyst moiety is deposited/anchored on the conductive support. The most studied 

molecular anodes are based on the incorporation of a specific functional group in the ligand 

scaffold of the molecular catalyst so that the interaction with the anchorage support does not 

change the intrinsic coordination properties of the catalyst. The desired requirements for the 

anchoring support should be conductive and stable under the working condition. The 

anchoring group should also be hydrolytically and oxidatively stable at working pHs in order 

to avoid loss of catalyst. A less explored but the most promising way of designing molecular 

anode is by using polymerization reactions with either well-defined molecular catalyst or 

discrete coordination polymer. 

Metal Oxide as Conductive Supports  

Most of the examples of the molecular anodes reported in the literature are based on the 

immobilization of the molecular catalyst on a variety of metal oxide surfaces90 such as fluorine 

doped tin oxide (FTO), tin doped indium oxide (ITO), nanoparticles of TiO2 or In2O3. The most 

common and widely used anchoring groups are carboxylate, phosphonate, sulphonate, 

silicate, hydroxamate, or silatrane groups that can generate covalent bond with the 

conductive metal oxide (Figure 12 left). Fourier-transform infrared spectroscopy and 

computational studies help to identify the different binding modes of the anchoring group 

and have shown monodentate, bidentate, tridentate, chelating or bridging 

modes/connections through the oxygens depending on the anchoring group and the metal 

oxide surface.91-93 The main disadvantages of these anchoring groups are the relatively poor 

stability in aqueous solution and hydrolysis in different pH ranges. The carboxylate group is 

moderately stable only in low pH (4).94 In comparison, phosphonate groups are more stable 

than carboxylates in pH 7. Hydroxamic acid and silatranes form strong bonds on the surface 

and are stable over a wide pH ranges from acidic, neutral to basic condition. 
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Figure 12. Schematic representation of the strategies for the immobilization of molecular catalysts 
on metal oxide and carbon surfaces. 

 

Carbon Material as Conductive Support 

Anchorage of molecular catalyst on graphitic carbon surface is a very attractive strategy and 

widely used to generate powerful molecular anodes. This carbon material is comparatively 

cheap with good electronic conductivity and has been broadly used in electrochemistry as a 

working electrode. Depending on the arrangement of the carbon atom on the material, it can 

range from flat glassy carbon electrode to nanostructure carbon material. Among them, the 

most widely used carbon materials are multiwall carbon nanotubes due to their high surface 

area, high thermal and chemical stability, excellent electrical conductivity and insolubility in 

most solvents. The scope of anchoring ways for the molecular catalysts on these materials are 

very wide ranging from covalent bonding to non-covalent interaction.  

Generating a covalent bond between a molecular catalyst and a carbon surface can be 

achieved in many different ways (Figure 12 middle). One of the potential ways is by doing the 

dediazonation reaction i.e, the loss of dinitrogen from a diazonium salt with the formation of 

an aryl radical by homolytic cleavage between the aryl group and the nitrogen. Electro-

reduction of diazonium salts on carbon surfaces give a covalent linkage between the surface 

and the appended molecule through C-C bond. This bond is highly stable from a chemical 

point of view in aqueous solution with a wide potential window.95 Although this method has 
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been mainly used on carbon surfaces, there are a few examples that show that it is possible 

to employ this reaction on metal oxide surfaces where they can form C-O covalent bond.96 

A new and simple method of anchoring the molecular catalyst on graphite surfaces is through 

the aromatic pyrazine linkage, which exploits the native surface chemistry of graphite. In this 

case, the ortho-quinone moieties on graphite edge planes can condense site-selectively with 

ortho-phenylenediamines under mild conditions, producing well-defined graphite conjugated 

catalysts (GCCs) (Figure 12, middle-bottom), which are active for both oxygen reduction and 

CO2 reduction.97 This new materials shows very strong electronic coupling between the 

appended molecule and the surface of the electrode. 

Finally, the most extensive studied methods are non-covalent interaction on carbon material 

mainly based on π-π stacking, where the molecular catalyst connected with pyrene groups 

binds strongly with the π-system of a nanostructured carbon material. This strong binding 

does not require any chemical reaction and is as simple as adding the pyrene decorated 

molecular catalyst to this carbon material (Figure 12, right).98 Similarly, in the CH- 

interaction, the C-H proton interacts with the -system of aromatic ring.99 

Polymers Containing Molecular Catalyst on Conductive Substrates 

The use of polymers made of monomers containing the molecular catalyst functionality has 

been used to generate molecular anodes for the water oxidation reactions. This can be 

achieved mainly in two different ways as illustrated in Figure 13: i) photochemically or 

electrochemically polymerization of well-defined molecular catalyst with specific functional 

group on the surface of the electrode using conventional organic polymer chemistry, and ii) 

designing coordination polymers with molecular catalysts and use them as an electrode 

material on the surface or directly growing them on the surface. 

In the first group, we find the polymerization of vinyl pyridine under UV-light that produces 

polyvinyl pyridine films on the electrode’s surface. The dangling pyridines of the resulting 

polymer can react with molecular catalyst precursors and give hybrid electrodes.100 On the 

other hand, the molecular catalyst with N-substituted pyrroles101 or C-substituted thiophenes 

under anodic electropolymerization conditions generate polymeric complexes that directly 

deposit on the electrode surface and behave as a molecular anodes.102 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 1 
 

26 

I 

 

Figure 13. Schematic representation of the strategies for the immobilization of molecular catalysts 
by ligand polymerization on the surface (left) or generating coordination polymers (right). 
 

In the second group, coordination polymers are inorganic or organometallic polymers that 

structurally contain metal centers linked with organic ligands. More formally, a coordination 

polymer is a coordination compound with repeating coordination entities extending in 1, 2 or 

3 dimensions (Figure 13, right).103 Designing a coordination polymer with well-characterized 

molecular water oxidation catalyst using different bridging ligand is nowadays a very hot topic 

in the field.104 In most of the cases, these polymers are insoluble in water and used as a 

heterogeneous materials. Metal-Organic Frameworks (MOFs) are a class of coordination 

polymers with high porosity, crystallinity, highly ordered internal pores and large surface area. 

They can be synthesized separately or can be grown directly on the surface. For their relatively 

simple synthetic tunability and the possibility to incorporate large number of catalytic sites, 

MOFs provide appealing working framework for a wide range of electrocatalytic studies,105,106 

also for water oxidation catalysis.107 With these advantages, they can potentially incorporate 

a large number of accessible catalytic sites for versatile applications and can be synthetically 

tuned to achieve the desired properties.  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 1 

27 

I 

1. 4. 2. Examples of Molecular Anodes 

This part will focus on specific examples of molecular anodes for water oxidation reported in 

the literature that exhibit interesting features and/or best performances. Chart 5 shows the 

molecular catalysts used to generate molecular anodes that are analogous to the 

homogeneous catalysts reported previously in the literature. During the last decade, Llobet’s 

and Meyer’s groups provided several examples of immobilization of ruthenium molecular 

catalysts on oxide surfaces. They have modify the active ruthenium molecular catalysts 23 

108and 24 by introducing the PO3H2 group in the trpy or bpy ligand respectively. The resulting 

phosphonate modified complexes 23 and 24 were then anchored on TiO2 nanoparticles 

coated FTO surface or directly on FTO surface generating 23@TiO2@FTO and 24@FTO 

anodes, respectively. Llobet et al. followed the similar strategy to immobilize complex 25 

through a carboxylate group. Here they replace the methyl group of the Me-bbp ligand by 

phenyl-carboxylate.109 This complex was anchored on meso-ITO nanoparticles coated on an 

ITO electrode to generate the 25@mesoITO@ITO anode. The same group used Ru-bda 

catalyst 26, a well studied and best performing catalyst, on carbon surface via 

electroreduction of diazonium salt forming C-C covalent bond, herein referred as 26@GC 

anode.73 

 

Chart 5. Structure of the molecular catalysts with different anchoring functional groups that have 
been used for the building of molecular anodes. 
 

Parallely, Sun et al. also used carbon materials to anchor the Ru-bda type of catalysts. Initially 

they have replaced the axial Me-Py ligand of complex [Ru(bda)(Me-py)2(O)], 11 by Pyr-py (Pyr-

py is 4‐(pyren‐1‐yl)‐N‐(pyridin‐4‐ylmethyl)butanamide) ligand to generate a hybrid molecular 

anode anchored on multiwall carbon nanotubes (MWCNT). The resulting complex 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 1 
 

28 

I 

[Ru(bda)(Pyr-py)2(O)], 27 was then attached to MWCNT through π-π stacking and dropcasted 

on a ITO electrode denoted as 27@MWCNT@ITO anode for further performing 

electrochemical water oxidation reaction.110 Recently, Llobet group employed the same 

strategy to anchor the best ruthenium molecular catalyst [Ru(tda)(Py)2(O)], 14 by changing 

the axial pyridine ligand with Pyr-py denoted as 28@MWCNT@GC anode.98 Later, they 

incorporated a pyrene group to the tetradentate 1,2-phenylenebis(oxamidate) ligand and 

synthesized complex 29 and immobilize on graphene surface via same π-π staking and 

dropcasted onto carbon electrode, denoted as 29@graphene@GC anode.111 

1. 4. 3. Performance of Molecular Anodes 

Table 2 summarizes the electrochemical data for 23@TiO2, 24@FTO, 25@mesoITO@FTO, 

26@GC, 27@MWCNT@ITO, 28@MWCNT@GC and 29@graphene@GC anodes together with 

the catalytic data for the related homogeneous complexes. The above examples will help the 

reader to better understand and compare the relevant electrochemical features of the best-

performing molecular anodes: the catalyst loading, the turnover frequencies, the current 

density and the overpotential. 

Table 2. Electrochemical data for molecular anodes together with catalytic activity of the analogous 
homogeneous complexes. 

 

  
(nmol/cm2) 

TOF het. 
(TOF hom.) 

s-1 

j /time 

(A/cm2)/ 
(min) 

ɳ 
(mV) 

Ref. het. 
(Ref. 

hom.) 

23@TiO2@FTO 10 0 (0.01)a 0a/-- -- 108 (52) 
24@FTO 0.1 0.36b (0.15)c 5b/480b 680 112 (57) 
25@mesoITO@ITO 0.5 0.45d (0.07)e 140d/-- 520 109 (53) 
26@GC 0.2 1.8f (53) 150f/2f 450 73 (60) 
27@MWCNT@ITO 1.8 0.3g (30)h 220g/420g 580 110 (61) 

28@MWCNT@GC 0.3 8000i (8000)i 700j/150j 630 98 (63) 
29@graphene@GC 0.05 540k (128)k 300l/30l 730 111 (43) 
 
Experimental details: (a) CeIV (100 mM) and 2 (1 mM) at pH 1; (b) Chronoamperometry at E = 1.85 V 
at pH 5; (c) CeIV(100 mM) and complex 5 (1 mM) at pH 1; (d) Chronoamperometry using a Rotating 
Disk Electrode at E = 1.69 V at pH 1; (e) CeIV (100 mM) and 3 (1 mM) at pH 1; (f) Chronoamperometry 

at E = 1.27 V at pH 7; (g) Chronoamperometry at E = 1.4 V at pH 7; (h) CeIV (365 M) at pH 1 and 

complex 9 (62.5 M); (i) Foot of the wave analysis from CV at pH 7; (j) Chronoamperometry at E = 
1.45 V at pH 7; (k) Foot of the wave analysis from CV at pH 12; (l) Chronoamperometry at E = 1.25 V 
at pH 12. 
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One of the important parameters of the efficient molecular anodes is the catalyst loading on 

the surface that directly influences the current density and stability of the anode. Using 

electrodes with high surface area can improve these parameters. In this regard, the use of 

TiO2 or meso-ITO nanoparticles on flat FTO can boost the catalyst loading. For example, 

catalyst loading of 23@TiO2@FTO is two orders of magnitude higher than the catalyst 

24@FTO,108,112 where mesoporous TiO2 increases the surface area significantly. On the other 

hand, using highly porous carbon material such as MWCNT or graphene also increases the 

surface area as compared to flat glassy carbon electrode. This is illustrated in the Table 2 for 

27@MWCNT@ITO, in which catalyst loading is one order of magnitude higher than 

26@GC,73,110 where catalyst is directly anchored on the flat glassy carbon surface. Another 

important parameter in this case is the type of anchoring group of the catalyst that can also 

help to boost the catalyst loading. 

The second crucial parameter of the molecular anode is the specific activity of the catalyst. 

Turnover frequency (TOF) of the catalyst on the solid support gives the information about the 

specific activity of the molecular anode. The performance of these molecular anodes depend 

on the mechanism of O-O bond formation step carried out by the catalyst for water oxidation. 

The catalysts that undergo WNA and intra-I2M mechanisms do not require any translational 

movement and thus anchoring process does not interfere in the O-O bond formation step. 

For this reason, 24@FTO and 25@mesoITO@ITO109 anodes have shown comparable activity 

with their analogous homogeneous counterparts and in some cases working even better due 

to the enhanced contact of the catalyst with the electrode. In sharp contrast, in the case of 

catalysts of the Ru-bda family when anchored on carbon surface by covalent bond (26@GC) 

or π-π stacking (27@MWCNT@ITO), the water oxidation activity goes down drastically with 

respect to their homogeneous counterparts. The main reason for the fast catalysis in 

homogeneous solution is the bimolecular nature of the Ru-bda complexes that follows inter-

I2M mechanism where two Ru-O group dimerize for the formation of O-O bond.61 For 26@GC 

and 27@MWCNT@ITO,73 such mechanism is drastically hindered as they are restricted with 

their translation mobility which results in limited accessibility to the second molecule thus 

increasing difficulties for dimerization during O-O bond formation. As a result, they lose their 

activity or force the catalyst to follow WNA mechanism that follows higher energy pathway 

slowering the kinetics and eventually leading to catalyst degradation to RuO2. With 23@TiO2 

anode, the catalytic activity is completely lost when complex 23 is anchored on metal oxide 

surface. In this case, the position of active Ru-OH2 site is inward towards oxide surface and 
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coordinates on the surface, blocking the catalytic activity. That reveals the importance of the 

anchoring architecture in order to retain the catalytic activity. 

Finally, 28@MWCNT@GC98 anode containing the best molecular water oxidation catalyst 

with Ru-tda family functionalized with pyrene moiety in axial pyridine ligand is the best 

molecular electroanode reported to date. In this case, the catalytic activity in homogeneous 

phase has been completely translated to solid surface with the same reaction kinetics due to 

the unimolecular WNA mechanism. The 29@graphene@GC anode111 is the only reported 

example that shows a drastic increase in activity with respect to its homogeneous 

counterpart. In this case, the anchoring group and the graphene surface are integral part of 

the catalyst and lower the activation energy for O-O bond formation that facilitates oxidation 

of water to molecular oxygen both from thermodynamic and kinetic perspective. 

From the practical point of view, current density (j, mA/cm2) is the most important parameter 

for an oxygen evolving molecular anode. An ideal anode in a photoelectrochemical cell or any 

commercial cell must maintain current density over 10 mA/cm2 for unlimited time with lowest 

over potential. In any molecular anodes, this current density is directly proportional to the 

product of loading of the catalyst ( and the turnover frequency (TOF) of the catalyst. As can 

be seen in Table 2, Ru-bda family of complexes on  solid surfaces experienced an improvement 

on the current density starting with 26@GC (150 A/cm2) to 27@MWCNT/ITO (220 

A/cm2).110 However, here the current density relies on the higher loading of complexes on 

the carbon electrodes (flat glassy carbon vs. MWCNT on ITO) rather than on the higher activity 

of the molecular catalyst. Moreover, stability of the electrode is a big issue in this case. 

Interestingly, 28@MWCNT@GC shows a current density (700 A/cm2) over more than 12 h 

with very low loading of the catalyst and clearly indicates that this current density mainly 

relies on the high activity of the catalyst. The current density of the 28@MWCNT@GC 

electrode could reach the commercially relevant values of 10 mA/cm2 if the catalyst loading 

() can be increased.98  

Another important parameter required for efficient photoelectrochemical water splitting 

devices is the working potential associated with the overpotential of the catalyst on the 

surface of the electrode. Among the reported molecular anodes, 26@GC shows the lowest 

overpotential as compared to others but with limited current density. For practical use, a 

molecular anode with high current density and low overpotential is highly desired. 

Encouraged by this challenge, the development of a molecular anode with fast molecular 

catalyst, high catalyst loading and low overpotential would fill up the important gap; if 
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successful, these systems would represent a significant step forward for more prolific use of 

molecular catalyst in energy conversion device. 

1. 4. 4. Polymers 

Using the concept of polymerization of active sites on the surface (both organic polymers and 

coordination polymers) in order to achieve high catalyst loading on molecular anodes have 

experienced a limited progress in the field of water oxidation. Chart 6 shows some 

representative examples of molecular catalysts that have been used in the polymerization 

reaction strategy. In 2008, Llobet et al. showed that the anodic electropolymerization of N-

substituted pyrroles is a potential way of anchoring molecular catalysts on the conductive 

solid surface. They used N-substituted pyrroles functionalized in the trpy ligand of complex 

30 for anchoring on FTO surface denoted as 30@FTO. The loading of complex in this molecular 

anode was 1 nmol/cm2 and was working much better than its homogeneous analogue using 

CeIV as an oxidant.101 Later Sun et al. have extended their study by using thiophene in complex 

31 for anchoring on carbon surface by the electroanodization technique denoted as 

31@GC.102 This anode showed loadings of 0.9 nmol/cm2 with a current density of 1.5 mA/ cm2 

at 1.3 V in pH 7 for more than 7 h. Recently, Meyer et al. immobilized complex 32 by 

electropolymerization of a vinyl group on metal oxide surfaces and have shown that the 

loading of the catalyst on the surface depends on the number of CV cycles within a selected 

potential windows. They can achieve loadings as high as 50 nmol/cm2 after 250 CV cycles. This 

32@mesoITO@FTO anode performs as an efficient water oxidation catalyst with 0.5 mA/cm2 

current density over 3 h in pH 7.113 This method of anchoring is very promising in terms of 

catalyst loading that can be enormously improved than other covalent anchoring strategies. 

On the other hand, Najafpur reported for the first time the coordination polymer 33 based on 

Ru-polypyridine complexes for water oxidation.114 The hydrophobic linear polymer was 

dropcasted on the carbon surface to generate the molecular anode 33@GC. This molecular 

anode was active for water oxidation but its efficiency was very low. Later Li et al. reported a 

cross-linked coordination polymer based on Ru-bda catalyst, dropcasted on ITO surface with 

nafion binder and used as molecular anode (34@ITO).104 This anode was active for water 

oxidation with 0.4 mA/cm2 current density at 750 mV overpotential and retained their 

molecular nature during catalytic turnovers.  
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Chart 6. Structure of the molecular catalysts with different function group for polymerization, 
coordination polymers and MOFs. 
 

MOFs are another class of coordination polymers with high porosity and large surface area. 

This material is a potential candidate for generating molecular anodes by incorporating well-

defined molecular water oxidation catalyst. Morris and Ott groups incorporated the famous 

Ru-based mononuclear WOC, [Ru(tpy)(bpy)OH2]2+, 6 into the UiO-67 MOF backbone by 

changing the bpy ligand with dcbpy (5,5- dicarboxy-2,2’-bipyridine) as a linker, designated as 

Ru-bpy-MOF, 35.115 This framework shows comparable electrochemical behavior to that of 

the homogeneous solution. Ru-bpy-MOF (35@FTO) exhibits a stable current density for 

electrochemical water oxidation over 1 h with TOF (0.2±0.1) s-1 at 1.71 V in neutral pH.116 Their 

results demonstrate that this is a promising way to immobilize molecular catalyst with high 

loading into a highly robust and porous MOF scaffold. 
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Over the last 4 decades, the field of molecular water oxidation catalysis has witnessed a 

tremendous progress by improving the performance up to six orders of magnitude higher 

than the first reported molecular catalyst. The journey through the most relevant 

achievements in the field has been summarized in the previous chapter. Despite the success, 

there are still several challenges that need to be addressed from a practical application 

standpoint. This thesis will focus on some of these challenges highlighted in the following 

objectives. 

First of all, the catalyst should work very fast with minimum overpotential. In objectives, 1 

and 2 below, the synthesis of new ruthenium water oxidation catalysts with different number 

of coordinated carboxylate groups will be discussed. The anionic ligand is expected to be 

responsible of lowering the working potential, while geometrical and secondary effects of the 

ligands will be explored as a way to enhance catalytic performance.  

Secondly, in order to transfer the high catalytic activity of homogeneous catalysts into solid 

supports with the ultimate goal of building powerful water splitting devices, the design of 

molecular catalysts that are efficient, robust and easily transferable to heterogeneous phase 

is highly desirable. Thus, the third objective of this thesis is focused on the development of 

molecular water oxidation catalysts that can be supported on conductive substrates, starting 

from mononuclear complexes all the way to coordination polymers. In objective 4, the new 

family of materials will be used to understand the ruling factors and mechanistic details of the 

catalysis on surfaces. 

Finally, the last challenge addressed in this thesis is to explore water oxidation catalysts made 

of cheap and abundant first row transition metals. Advances in this line are summarized in 

objective 5 and are based on getting mechanistic insights of the water oxidation catalysis by 

a dinuclear cobalt complex that is active for the water oxidation reaction.  
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Objective 1 

With the aim of lowering the overpotential of the water oxidation catalysis, ruthenium 

complexes with pyridine type of ligands including one anionic ligand, e.g. 8-

quinolinecarboxylate (qc) and 2-picolinate (pic), will be used. Their influence on geometrical 

and electronic effects on the overpotential and kinetics of the process will also be explored. 

 

Objective 2 

Following the same goal as in objective 1 above, pyridyl-2,6-dicarboxylate (pdc) will be use as 

ligand in ruthenium complexes with the objective of not only reducing the overpotential by 

introduction of a second carboxylate group, but also to achieve seven coordinated ruthenium 

intermediates ensuring fast kinetics of the water oxidation catalysis. 

 

Objective 3  

The development of molecular catalysts that can be incorporated into anodes for the water 

oxidation reaction. This objective will be achieved with two main families of complexes: i) 

mononuclear ruthenium complexes with functional groups that allow them to be 

incorporated into conductive substrates and ii) coordination polymers based on the fastest 

ruthenium catalyst reported in the literature ([Ru(tda)(py’)2], where tda = 2,2':6’,2”-

terpyridine-6,6”-dicarboxylate and py’ = functionalized pyridine) as a core unit. Two organic 

linkers will be used as bridging building blocks with different arrays, i.e., 4,4´-bipyridine (4,4’-

bpy) and 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (tpt) to form  1-dimensional or 2-dimentional 

polymers, respectively.  
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Objective 4 

The objective here is to develop hybrid molecular anodes with the ruthenium complex and 

the coordination polymer prepared in objective 3 above in order to generate powerful 

molecular electroanodes for water splitting devices. 
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Objective 5 

The last objective of this thesis is the detailed mechanistic understanding of the water 

oxidation reaction by a dinuclear cobalt complex {[CoIII(trpy)]2(μ-bpp)(μ-OO)}3+, based on the 

trapping and characterization of intermediates involved in the catalytic cycle and isotopic 

labelling experiments. 
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Synthesis, characterization, redox properties, electronic effects and water oxidation activity 

of a series of ruthenium complexes containing pyridine carboxylate ligands are reported in 

this chapter. It is shown that the electronic perturbation to the metal center exerted by 

different orientation and geometry of the ligands together with the electron donating 

properties produce dramatic effects in both redox properties and water oxidation catalytic 

performance of the systems. 
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Contributions 

Md Asmaul Hoque synthesized and characterized all the new compounds and performed 

the electrochemical, spectroscopic analysis together with the catalytic tests and prepared 

the manuscript. 
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Abstract 

We report the synthesis and characterization of the isomeric ruthenium complexes with the 

general formula cis- and trans-[Ru(trpy)(qc)X]n+ (trpy is 2,2’:6’,2”-terpyridine, qc is 8-

quinolinecarboxylate, cis-1 and trans-1, X = Cl, n = 0; cis-2 and trans-2, X = OH2, n = 1) with 

respect to the relative disposition of the carboxylate and X ligands. For comparison purposes, 

another set of Ruthenium complexes with general formula cis- and trans-[Ru(trpy)(pic)(OH2)]+ 

(pic is 2-picolinate (trans-3, cis-3) have been prepared. The complexes with qc ligand show a 

more distorted geometry as compared to the complexes with pic ligand. In all the cases, trans-

isomers show lower redox potential values for all the redox couples relative to the cis-isomers. 

Complexes cis-2 and trans-2 with six-member chelate ring show higher catalytic activity than 

cis-3 and trans-3. Overall, it was shown that the electronic perturbation to the metal center 

exerted by different orientation and geometry of ligands produced dramatic effects both in 

redox properties and in catalytic performance of the systems. 

Graphical Abstract 

 

 

Keywords: Ruthenium, Isomers, Geometry, Redox properties, Water oxidation catalysis 
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3A. 1. Introduction 

The conversion of solar energy to chemical energy is considered a promising option for the 

generation of renewable and clean fuel for transportation.1 One way of achieving this goal is 

by performing light induced water splitting into hydrogen and oxygen as indicated in equation 

1, catalyzed by suitable molecular catalysts,  

2H2O + hν  2H2 + O2,         ΔEo = 1.23 V vs. NHE.2         (1) 

In this process, the water oxidation half reaction is particularly challenging due to the large 

endothermicity and mechanistic complexity of the process that requires the transfer of four 

electrons and the generation of an O-O bond.3 For this reason, the study of new molecular 

water oxidation catalysts (WOC) has become one of the main research areas in the field, 

achieving tremendous progress in the last ten years. Among the most studied catalysts are 

those based on ruthenium, starting from the first well characterized synthetic molecular WOC 

by T. J. Meyer, (cis,cis-[(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+, where bpy is 2,2’-bipyridine)4 to 

the recently reported fastest molecular WOC based on mononuclear complexes as catalyst 

precursors with auxiliary ligands containing carboxylate groups [Ru(bda)(isoq)2],5 

[Ru(tda)(py)2]6, [Ru(pdc)(bpy)2]7 and [Ru(mcbp)(py)2]8 (bda2- is (2,2'-bipyridine)-6,6'-

dicarboxylate, tda2- is 2,2':6’,2”-terpyridine-6,6”-dicarboxylate, pdc2- is pyridine-2,6-

dicarboxylate, mcbp2-is 2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine, isoq is 

Isoquinoline and py is pyridine). Further, these catalyst precursors have also been successfully 

used in water oxidation reactions triggered by light.9-13  

The ability of Ru-OH2 derivatives to undergo facile pH-dependent proton-coupled electron-

transfer (PCET) processes leading to the formation of highly oxidized RuV=O species is a key 

because it can do O-O bond formation via water nucleophilic attack (WNA)14-16 due to the 

electrophilicity of the Ru=O intermediate or dimerization through oxyl radical formation 

(I2M).5,17 This significant information based on spectroscopic, electrochemical and analytical 

techniques together with the valuable complementary information provided by 

computational studies, allow the scientific community to rationally design powerful and 

oxidatively rugged molecular water oxidation catalyst.18-23  

The present report describes the synthesis, structural and spectroscopic characterization as 

well as the water oxidation catalytic activity of single site Ru-aquo isomeric complexes and 

their precursors with general formula cis- and trans-[Ru(trpy)(qc)Cl] (trans-1, cis-1) and cis- 

and trans-[Ru(trpy)(qc)(OH2)]+ (trans-2, cis-2), where trpy is 2,2’:6’,2”-terpyridine and qc is 8-
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quinolinecarboxylate. In addition, two other similar complexes cis- and trans-

[Ru(trpy)(pic)(OH2)]+ where pic is 2-picolinate (trans-3, cis-3 ) have also been studied (Chart 1 

and Scheme 1). The choice of qc and pic ligands are of special interest as they are not only 

introducing a -donating carboxylate moiety in the catalyst that can help to reduce the 

overpotential for the water oxidation reaction but also they can create different isomeric 

compounds (cis and trans in respect to the Ru-OH2 group) along with different geometric 

configuration with different ring size around the metal center (six-membered ring for qc and 

five-membered ring for pic). It has been shown that electronic perturbation to the metal 

center exerted by relative disposition and geometry of the qc or pic ligands with regard to the 

aquo ligand around the metal center produce dramatic effect both in redox properties and 

catalytic performance.  

 

Chart 1. Ruthenium-aquo complexes studied in this work. 
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3A. 2. Experimental Section 

Materials 

The precursor complex [RuCl3(trpy)] (trpy = 2,2’:6’,2”-terpyridine), trans-[RuII(trpy)(pic)Cl], cis-

[RuII(trpy)(pic)Cl], trans-[RuII(trpy)(pic)(OH2)]ClO4 and cis-[RuII(trpy)(pic)(OH2)]ClO4 were 

prepared according to the literature procedures.24,25 The ligand 8-quinolinecarboxylic acid and 

other reagents and chemicals were obtained from Aldrich and used as received. When 

required, solvents were dried by following the standard procedures, distilled under nitrogen 

and used immediately. High purity de-ionized water used for the electrochemistry 

experiments were obtained by passing distilled water through a nanopure Milli-Q water 

purification system. For other spectroscopic and electrochemical studies, HPLC-grade 

solvents were used. 

Instrumentation and Methods 

NMR spectra were recorded on a 500 MHz Bruker Avance Ultrashield NMR spectrometer. 

UV/Vis spectroscopy was performed on a Cary 50 (Varian) UV/Vis spectrophotometer in 1 cm 

quartz cuvettes. ESI-Mass spectra were recorded using micromass Q-TOF mass spectrometer. 

Elemental analyses were carried out on Perkin-Elmer 240C elemental analyzer. Cyclic 

voltammetry (CV), differential pulse voltammetry (DPV) experiments were performed on an 

IJ-Cambria CHI-660 potentiostat using a three-electrode cell. Typical CV experiments were 

carried out at a scan rate of 100 mVs-1. The DPV parameters were E = 4 mV, Amplitude = 50 

mV, Pulse width = 0.05 s, Sampling width = 0.0167 s, Pulse period = 0.5 s. A glassy carbon disk 

(ф = 0.3 cm, S = 0.07 cm2) was used as working electrode(WE), Pt disk as counter electrode 

(CE), and a Hg/Hg2SO4 (K2SO4 saturated) as a reference electrode (RE). All potentials were 

converted to NHE by adding 0.65 V. Glassy carbon electrodes were polished with 0.05 μm 

alumina (Al2O3) and rinsed with water and acetone followed by blow-drying before each 

measurement. CVs and DPVs were iR compensated by the potentiostat in all the 

measurements. In organic solvent, all the complexes were dissolved in CH3CN containing the 

necessary amount of [(n-Bu)4N][PF6] (TBAH) as supporting electrolyte to yield a 0.1 M ionic 

strength solution. In aqueous solution, the electrochemical experiments were carried out in 

0.1 M CF3SO3H (pH 1.0). E1/2 values reported in this work were estimated from CV experiments 

as the average of the oxidative and reductive peak potentials (Ep,a + Ep,c)/2 or taken as E (Imax) 

from DPV measurements. The Pourbaix diagrams were built using the following buffers: 

sodium dihydrogen phosphate/phosphoric acid up to pH = 4 (pKa = 2.12), sodium hydrogen 

phosphate/sodium dihydrogen phosphate up to pH = 9 (pKa = 7.67), sodium hydrogen 
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phosphate/sodium phosphate up to pH = 13 (pKa = 12.12) and also 0.1 M CF3SO3H for pH = 

1.0. The concentration of the species was approximately 1 mM. The pH of the solutions was 

determined by a pHmeter (CRISON, Basic 20+) calibrated before measurements through 

standard solutions at pH 4.01, 7.00 and 9.21. 

Online manometric measurements were performed on a Testo 521 differential pressure 

manometer with an operating range of 0.1-10 kPa and accuracy within 0.5% of the 

measurements. The manometer was coupled to thermostatic reaction vessels for dynamic 

monitoring of the headspace pressure above each reaction solution. The manometer’s 

secondary ports were connected to thermostatic reaction vessels containing the same 

solvents and headspace volumes as the sample vials. Each measurement for a reaction 

solution (2.0 mL) was performed at 298 K. 

Single Crystal X-Ray Structure Determinations 

Crystal Preparation: Single crystals of cis-1, trans-1, trans-2 and cis-[RuII(trpy)(pic)Cl] were 

grown by slow evaporations of 1:1 methanol:dichloromethane, 1:1 

dichloromethane:diethylether, 1:1 dichloromethane: toluene and 1:1 

methanol:dichloromethane, respectively. The crystals used for structure determination were 

selected using a Zeiss stereomicroscope using polarized light and prepared under inert 

conditions immersed in perfluoropolyether as protecting oil for manipulation. 

Data Collection: Crystal structure determination for sample cis-1, trans-1 and cis-

[RuII(trpy)(pic)Cl] were carried out using a Apex DUO Kappa 4-axis goniometer equipped with 

an APPEX 2 4K CCD area detector, a Microfocus Source E025 IuS using MoK radiation, Quazar 

MX multilayer Optics as monochromator and an Oxford Cryosystems low temperature device 

Cryostream 700 plus (T = -173 ˚C). Crystal structure determination for samples Full-sphere 

data collection was used with  and  scans. Programs used: Data collection APEX-2,26 data 

reduction Bruker Saint27 V/.60A and absorption correction SADABS.28 

Crystal structure determination for sample trans-2 was carried out at -123 ˚C using a Xcalibur 

Sapphire3 goniometer using MoK radiation. Programs used: Data collection and reduction 

with CrysAlisPro29 V/.60A and absorption correction with Scale3 Abspack scaling algorithm.30 

Structure Solution and Refinement: Crystal structure solution was achieved using the 

computer program SHELXT.31 Visualization was performed with the program SHELXle.32 

Missing atoms were subsequently located from difference Fourier synthesis and added to the 
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atom list. Least-squares refinement on F2 using all measured intensities was carried out using 

the program SHELXL 2015.33 All non-hydrogen atoms were refined including anisotropic 

displacement parameters. cis-1: The asymmetric unit contains two different compounds of 

the metal complex sharing its position (ratio 90:10) and one and half water molecules 

disordered in four positions (ratio: 0.50:0.50:0.25:0.25). The metal complex is coordinated 

with 90 % ratio to a chloro anion and with 10 % to a methanolate. trans-2: The asymmetric 

unit contains one molecule of the metalorganic complex coordinated to a water molecule, 

one additional water molecule and one PF6
- anion. The PF6

- anion is disordered in two 

orientations (ratio 91:9). cis-[RuII(trpy)(pic)Cl]: The asymmetric unit contains one molecule of 

the metal complex and 0.75 molecules of dichloromethane. The dichloromethane molecules 

are highly disordered in four orientations/positions. 

Synthesis of Isomeric [RuII(trpy)(qc)Cl] (trans-1 and cis-1). In a 100 mL two neck round 

bottom flask, [RuCl3(trpy)] (100 mg, 0.23 mmol), 8-quinolinecarboxylic acid (Hqc) (55 mg, 0.32 

mmol) and NEt3 (0.2 mL, 1.5 mmol) were dissolved in 20 mL of degassed ethanol. The mixture 

was heated to reflux for 6 h under nitrogen atmosphere. The mixture was then evaporated to 

dryness and the resulting dark solid was dissolved in the minimum volume of CH2Cl2 and 

purified by chromatography using a neutral alumina column. The blue-violet solution 

corresponding to the major isomer trans-1 was eluted first with CH2Cl2:CH3OH (20:1) followed 

by the red-violet solution of the minor isomer cis-1 with CH2Cl2:CH3OH (10:1) mixture. On 

removal of the solvent under reduced pressure the pure isomeric complexes trans-1 and cis-

1 were obtained in the solid state.  

trans-1: Yield, 85 mg (0.16 mmol, 70%). Anal. Calcd. for (C25H17N4ClO2Ru): C, 55.35%; H, 3.16%; 

N, 10.33%. Found: C, 55.57%; H, 2.96%; N, 10.51%.  [nm]([M1cm1]) in dicholoromethane: 

578(11760), 420(10590), 328(38760), 315(34350), 281(38920), 233(74070). ESI+-MS (m/z): 

543.30 ([trans-1+H]+, Calcd. 543.01), 507.30 ([trans-1-Cl]+, Calcd. 507.03). 1H NMR (500 MHz 

[d6]- DMSO) δ: 10.43 (H7, d, J= 4.86 Hz, 1H), 8.81 (H9, d, J= 8.01 Hz, 1H), 8.63 (H4&5, dd, J= 7.7 

Hz and J=2.83 Hz, 4H), 8.51 (H12, d, J= 7.45Hz, 1H), 8.40 (H10, d, J= 7.82, 1H), 8.0 (H1, d, J= 5.47 

Hz, 2H), 7.92 (H3,6&8, m, 4H), 7.77 (H11, t, J= 7.7 Hz, 1H), 7.41 (H2, t, J= 6.5 Hz, 2H). 13C-NMR 

(125 MHz, [d6]- DMSO) δ: 169.1, 160.6, 160.4, 158.5, 152.2, 147.8, 138.2, 136.7, 136.2, 133.7, 

131.3, 130.6, 130.5, 127.2, 127.0, 123.2, 121.9 and 121.5.  

cis-1: Yield, 6 mg (0.01 mmol, 4%). Anal. Calcd. for (C25H17N4ClO2Ru): C, 55.35%; H, 3.16%; N, 

10.33%. Found: C, 55.27%; H, 3.10%; N, 10.58%.  [nm]([M1cm1]) in acetonitrile: 

545(11360), 483(sh), 372(11300), 317(46680), 279(42080), 235(79690). ESI+-MS (m/z): 543.19 
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([cis-1+H]+, Calcd. 543.01), 507.10 ([cis-1-Cl]+, Calcd. 507.03). 1H NMR (500MHz [d6]-DMSO) δ: 

9.0 (H7, dd, J= 4.86 Hz, and J= 1.7 Hz, 1H), 8.62 (H1,4&5, m, 6H), 8.06 (H10 dd, J= 8.31 Hz and J= 

1.31 Hz, 1H), 7.95 (H2&9, m, 3H), 7.82 (H6, t, J=7.98, 1H), 7.73 (H8, t, J= 7.74 Hz, 1H), 7.56 (H3, 

dt, J= 5.65 Hz and J= 1.14 Hz, 2H), 7.05 (H12, dd, J= 5.41 and Hz J= 1.43 Hz, 1H), 6.82 (H11, dd, 

J= 8.16 Hz and J= 5.45 Hz, 1H). 13C-NMR (125MHz, [d6]-DMSO) δ: 169.1, 161.4, 159.7, 153.7, 

151.5, 148.2, 137.4, 136.7, 136.4, 133.3, 131.6, 129.3, 129.1, 127.6, 127.1, 123.4, 122.5 and 

121.3. 

Synthesis of trans-[RuII(trpy)(qc)(H2O)](PF6) (trans-2). In a 50 mL two neck round bottom 

flask, trans-1 (100 mg, 0.18 mmol) was dissolved in 20 mL of acetone: water mixture (3:1, v/v) 

and TlNO3 (60 mg, 0.23 mmol) was added to the solution and stirred for 1 h at reflux. The 

initial blue-violet color of the solution was changed to red-violet with the precipitation of TlCl. 

The cooled solution was filtered over Celite® to remove TlCl. The filtrate was then 

concentrated to approx. 2 mL in vacuum and 3 mL saturated solution of NH4PF6 was added. 

The resulting solution was allowed to stand at 0˚C for complete precipitation. It was then 

filtered and the residue washed with ice-cold water for several times and dried in vacuum 

over P4O10. Yield: 110 mg (0.16 mmol, 88%). Anal. Calcd. for (C25H19N4O3RuPF6): C, 44.78%; H, 

2.86%; N, 8.36%. Found: C, 44.98%; H, 2.95%; N, 8.62%. ESI+-MS (m/z): 507.10 ({trans-2-PF6-

OH2}+, Calcd. 507.03). 1H NMR (500MHz, [d2]-D2O) δ: 9.59 (H7, d, J= 5.52 Hz, 1H), 8.73 (H9, d, 

J= 8.41 Hz, 1H), 8.39 (H4,5,10&12, m, 6H), 8.08 (H1, d, J= 5.60Hz, 2H), 7.89 (H3,8&11, m, 4H), 7.77 

(H6, t, J= 7.65 Hz, 1H), 7.31 (H2, t, J= 6.93 Hz, 2H). 13C- NMR ( 125MHz, [d2]-D2O) δ: 175.2, 160.7, 

160.3, 155.3, 153.2, 147.6, 138.8, 137.5, 137.2, 135.4, 134.0, 130.7, 127.1, 127.0, 123.4, 123.2, 

122.1 and 121.8. 

Synthesis of cis-[RuII(trpy)(qc)(H2O)]+ (cis-2). In a 25 mL two neck round bottom flask, cis-1 (5 

mg, 0.01 mmol) was dissolved and TlNO3 (5 mg, 0.02 mmol) was suspended in 4 mL of 

acetone:water mixture (3:1, v/v) and stirred for 1 h at reflux. The initial red-violet color of the 

solution was changed to red with the precipitation of TlCl. The cooled solution was filtered to 

remove TlCl. The filtrate was dried in vacuum over P4O10 and dissolved in D2O for NMR and 

pH 1 for electrochemistry. 1H NMR (500MHz, [d2]-D2O) δ: 8.97 (H7, d, J= 7.63 Hz, 1H), 8.56 (H1, 

d, J= 5.48 Hz, 2H), 8.37 (H5, d, J= 8.25 Hz, 2H), 8.31 (H4, d, J= 8.11 Hz, 2H), 7.98 (H9, d, J= 8.09 

Hz, 1H), 7.88 (H3,6&10, m, 4H), 7.72 (H8, t, J= 7.96 Hz, 1H), 7.40 (H2, t, J= 6.65 Hz, 2H), 7.30 (H12, 

d, J= 5.37 Hz, 1H), 6.62 (H11, dd, J= 7.95 Hz and J= 5.93 Hz, 1H). 
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3A. 3. Results and Discussion 

3A. 3. 1. Synthesis, Spectroscopic and Structural Characterization  

The synthetic strategy used for the preparation of the complexes described in this work is 

outlined in Scheme 1. The reaction of 8-quinolinecarboxylic acid with the ruthenium precursor 

complex [RuCl3(trpy)] in the presence of NEt3 in EtOH results in a 15:1 mixture of isomeric 

complexes of trans- and cis-[RuII(trpy)(qc)Cl] (trans-1 and cis-1) respectively. The cis and trans 

assignment refers to the relative disposition of the chlorido and carboxylato ligands. Both 

isomers can be separated by column chromatography and are stable in the solid state and in 

solution. The corresponding trans and cis isomeric aquo complexes [Ru(trpy)(qc)(OH2)]+ 

(trans-2 and cis-2) have been synthesized via substitution of the chlorido ligand by an H2O 

using TlNO3 in acetone:H2O (3:1) as the solvent mixture and formation of insoluble TlCl. 

Complexes trans-1, cis-1, trans-2 and cis-2 have been thoroughly characterized by means of 

analytical, spectroscopic and electrochemical techniques.  

 
Scheme 1.  Synthetic strategy and labelling scheme used for the ligands and complexes described in 
this work. 
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Single crystals of the complexes trans-1, cis-1 and trans-2 together with the related picolinate 

derivative cis-[Ru(trpy)(pic)Cl] were obtained and their ORTEP structures are shown in Figure 

1. All the complexes display the typical slightly distorted octahedral geometry around the 

ruthenium, as expected for low-spin d6 RuII.34,35 The bidentate ligand 8-quinolinecarboxylate 

occupies both axial and equatorial positions and is bonded to the ruthenium metal via the 

anionic oxygen atom O1 (carboxylate) and neutral nitrogen atom N1 (quinoline) (See Figure 1 

for labeling key) donors forming a six-membered chelate ring. The meridional configuration 

of trpy introduces expected geometrical constraint as has been reflected in smaller trans 

angle involving the trpy ligand, N2-Ru-N4 of 159.6(5)° and 159.26(13) in trans-1 and trans-2, 

respectively. The central Ru-N3(trpy) bond length of 1.924(11) Å or 1.942(4) Å in trans-1 and 

trans-2, respectively, is significantly shorter than the corresponding distances involving the 

terminal pyridine rings of trpy, Ru-N2(trpy), 2.082(11)/2.064(4) Å and Ru-N4(trpy), 

2.060(10)/2.058(3) Å in trans-1/trans-2, respectively, while the Ru-N1(qc) in trans to the Ru-

N3(trpy) bonds are slightly longer, 2.083(10) Å/2.085(3) Å.36 The Ru-O1(qc) bond length of 

1.966(7) Å in the aquo derivative trans-2 is appreciably shorter than that in trans-1 (2.050(3) 

Å). The Ru-O3(H2O) bond distance of 2.094(3) Å in trans-2 agrees well with the reported 

analogous ruthenium-aquo species.37  

a) b) 

 
 

c) d) 

  
Figure 1. ORTEP diagrams of (a) trans-[Ru(trpy)(qc)Cl] (trans-1), (b) trans-[Ru(trpy)(qc)(OH2)]+ (trans-
2), (c) cis-[Ru(trpy)(qc)Cl] (cis-1) and (d) cis-[Ru(trpy)(pic)Cl]. Thermal ellipsoids are drawn at 50% 
probability. The solvents of crystallization and hydrogen atoms are omitted for clarity, except for the 
OH2 ligand. 
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The Ru-Cl bond distances in trans-1 (2.311(3) Å) is 0.08 Å shorter than that in cis-1 (2.393(12) 

Å).38 We attribute this difference to the electronegativity of the Cl ligand and due to the 

presence of strong donating negatively charge Oof qc trans to Clintrans-1 as compared 

to cis-1, where the neutral N of the qc is trans to ClThis in turn makes the Ru-O bond shorter 

in trans-1 (1.966(7) Å) relative to cis-1 (2.085(3) Å). On the other hand, the Ru-N(qc) distance 

in cis-1 (2.061(3) Å) is shorter than that in trans-1 (2.083(10) Å), mainly due to the enhanced 

RuIIquinoline back-bonding via involvement of σ- and π-donating chlorido ligand trans to 

N1(qc) in cis-1. They also show appreciable differences in the trans angle involving qc-Ru-Cl: 

O1-Ru-Cl at 176.12(5)˚ in trans-1 vs N1-Ru-Cl at 172.93(10)˚ in cis-1; the bulkier quinoline ring 

trans to Ru-Cl in cis-1 makes it relatively bent (Figure S12 and Tables S2-S3). Interestingly, the 

dihedral angles between the planes of qc and trpy in cis-1, qc-Ru-trpy, is 76.2˚ and for the 

analog complex having the picolinate ligand cis-[Ru(trpy)(pic)Cl], the angle pic-Ru-trpy is 87.6˚ 

(Figure S13). This difference clearly indicates the presence of more distortion in the complex 

containing the qc ligand as compared to that of the complex containing the pic ligand. 
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Figure 2. 1H NMR spectra in ([d6]-DMSO (500 MHz, 298 K) and assignment for complexes (top) cis-

1 and (bottom) trans-1. Asterisk is unidentified species. 

The 1H NMR spectra of trans-1 and cis-1 are quite distinct, as expected (Figure 2). In both 

cases, the symmetric nature of the complexes observed in the solid state is maintained in 

solution as indicated by a single set of signals for the trpy ligand. A characteristic feature of 

trans-1 is the typical signal at low field δ = 10.4 ppm39 for a proton in ortho to the quinoline 

nitrogen of the bidentate ligand (proton H7) de-shielded due to the diamagnetic anisotropy 

generated by the chlorido ligand,40,41 allowing us to fully assign all the signals. A further clue 

in this direction is given by the NOE signal between H7 and H1 (with a distance of 2.72 Å in the 

solid state structure, see Figure S1-S3). None of these features are present in the spectrum of 

cis-1, so its assignment is based on intensities of the integrals with the help of 2-dimensional 

experiments also shows that the structures remain similar in solution to those described in 

the solid state (Figure S4-S6). The NMR analysis of complexes trans-2 and cis-2 were 

performed in deuterated water to avoid ligand exchange with coordinating ligands such as 

DMSO. Compound trans-2 also shows the typical downfield signal of H7 due to anisotropic 

effects with the aquo ligand (δ = 9.6 ppm, Figure S7 and S11). 
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3A. 3. 2-Electrochemical Characterization 

The redox properties of all the complexes were analyzed by cyclic voltammetry (CV) and 

differential pulse voltammetry (DPV) in acetonitrile (CH3CN) containing 0.1 M of [(n-

Bu)4N][PF6] (TBAH) for complexes trans-1 and cis-1 and 0.1 M ionic strength buffered aqueous 

solutions at different pHs for complexes trans-2 and cis-2. All redox potentials reported in this 

work were meausured with Hg/Hg2SO4 reference electrode and referred to the NHE 

electrode.  

In acetonitrile solution, both trans-1 and cis-1 isomers show a chemically reversible and 

electrochemically quasi-reversible one-electron oxidation wave at E1/2 = 0.58 V (ΔE = 60 mV) 

and E1/2
 = 0.67 V (ΔE = 63 mV) respectively, assigned to the RuIII/II redox couple (Figure S14). 

The slight cathodic shift of the RuIII/II couple observed for trans-1 as compared to cis-1 is 

attributed to the higher electron-density on the ruthenium provided by the chlorido and 

carboxylato moieties when they are in trans relative position. This trend is in agreement with 

the shorter Ru-O and Ru-Cl distances observed in the solid state structure of trans-1 as 

compared to cis-1 and highlights the strong influence of the relative position (trans vs. cis) of 

the ligands. 

The redox chemistry of the aquo complexes trans-2 and cis-2 were studied in pH 1 (0.1 M 

triflic acid) solution and the appropriate phosphate buffer for measurement at pH > 1 (Figure 

S16). Both isomers exhibit two successive pH dependent redox couples associated with 

proton coupled electron-transfer (PCET) processes with the formation of the RuIII and RuIV 

species with different level of protonation of the aquo group, hydroxo or aquo depending on 

the pH (Equations 2 and 3). Further scanning to more positive potentials shows a third pH 

independent oxidation leading to the [RuV=O] (Equation 4) which is followed by a large anodic 

current attributed to the electrocatalytic oxidation of water to produce oxygen gas (Figure 

3a). 

[RuII(trpy)(qc)(H2O)]+  → [RuIII(trpy)(qc)(HO)]+  + H+ + e−   (2)  

 [RuIII(trpy)(qc)(HO)]+ → [RuIV(trpy)(qc)(O)]+ + H+ + e−   (3) 

 [RuIV(trpy)(qc)(O)]+ → [RuV(trpy)(qc)(O)]2+ + e−   (4) 

Interestingly, the [RuIII-OH2]2+/[RuII-OH2]+ redox couple for trans-2 in pH 1 (0.67 V), is 150 mV 

lower as compare to cis-2 (0.82 V), and this is due to the trans influence of the carboxylate 
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group to the aquo ligand making the metal center electronically richer, hence easy to oxidize. 

On the other hand [RuV-O]2+/[RuIV-O]+ redox couple is only 90 mV lower (Table 1).  

a) b) 

  

Figure 3. a) CVs of trans-2 (black) and cis-2 (red), b) CVs of trans-3 (black) and cis-3 (red) in 0.1 M 
triflic acid (pH 1). Working electrode: glassy carbon disk; counter electrode: platinum disk; reference 
electrode: Hg/Hg2SO4.  

 

The Pourbaix diagrams for trans-2 and cis-2 (Figure 4) reveal that the [RuIII-OH]+/[RuII-OH2]+ 

and [RuIV-O]+/[RuIII-OH]+ redox processes each change by approximately 59 mV per pH decade 

over a large pH range (10 > pH > 2) for trans-2 and (10 > pH > 3) for cis-2 (Figure 4) respectively. 

The RuIII/II redox processes of trans-2 (at pH < 2) and cis-2 (at pH < 3) are not associated with 

the loss of a proton based on the pH-independent behavior of the [RuIII-OH2]2+/[RuII-OH2]+ 

redox couple. Consequently, the higher oxidation step is accompanied with the loss of two 

protons (i.e. [RuIV-O]+/[RuIII-OH2]2+) in strongly acidic medium. This assignment is corroborated 

by the slope of -120 mV/pH below pH 2.0 for trans-2 and -121 mV/pH below pH 3.0 for cis-2. 

At pH >10, the potentials for the RuIV/III couple continue to vary linearly with pH, with a slope 

near to -59 mV/pH unit, while the potentials for the RuIII/II couple become pH independent as 

a consequence of no loss of proton from [RuII-OH] with pKa ≈ 10.6. The [RuV-O]2+/[RuIV-O]+ 

redox couple remains relatively constant at ∼1.62 V and ∼1.71 V vs NHE for trans-2 and cis-2 

respectively, over the whole pH 1-13 range. 

It is worth mentioning that cis-2 over time in aqueous solution slowly converts to trans-2 as 

can be seen in Figure S16b and Figure S18. This is in good agreement with lower isolated yield 
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of the cis-1 compared to the trans-1 indicating that the latter is thermodynamically more 

stable. 

a) 

 
b) 

 
Figure 4. Pourbaix diagram of a) trans-[(trpy)(qc)RuII(OH2)]+, trans-2 and b) cis-[(trpy)(qc)RuII(OH2)]+, 
cis-2. The black solid lines indicate the redox potentials for the different redox couples, whereas the 
dashed vertical lines indicate the pKa. The zone of stability of the different species are indicated only 
with the Ru symbol, its oxidation state, and the degree of protonation of the aquo ligand. For 
instance, “RuV-O” is used to indicate the zone of stability of trans-[(trpy)(qc)RuV(O)]2+ for the trans-
1 (left) and cis-[(trpy)(qc)RuV(O)]2+ for the cis-2 (right). Blue dotted line correspond to the imaginary 
line and extended of the corresponding redox potential. 

 
 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 3A 
 

59 

III 

In order to get more insights into the trans vs. cis influence on the redox potentials and 

catalytic activity, we have extended our study to two similar mononuclear Ru-trpy-OH2 

complexes containing the 2-picolinate (pic) bidentate ligand, namely, trans-3 and cis-3 in 

Chart 1. These two complexes are of interest because they form a five-membered chelate ring 

around the metal center as opposed to the 8-quinolinecarboxylate (qc) that makes six-

membered chelate rings, allowing to further study geometric effects. Complexes trans-3 and 

cis-3 have been synthesized and characterized according to the literature procedure.25 Here 

we have extensively studied their electrochemical and water oxidation properties. 

As shown in the CVs in Figure 3b and the Pourbaix diagrams in Figure S17, complexes trans-3 

and cis-3 also show two successive pH dependent redox couples associated with PCET 

processes and a third pH independent oxidation couple related to electrochemical oxidation 

of water to dioxygen. The redox potentials for the four Ru-aquo complexes in Chart 1 are 

summarized in Table 1 together with other relevant Ru-aquo complexes previously described 

in the literature.  

An interesting feature arising from the comparison of the potentials is that at pH 1.0 the RuIII/II 

redox couple for trans-2 is around 90 mV lower compared to the related trans-Ru(trpy)(pic) 

complex, trans-3. Considering that both complexes have a similar trans influence of the 

carboxylate group, we attribute this phenomenon to the higher distortion of the dihedral 

plane between the quinolinate and trpy ligands in trans-2 as compared to that of the 

picolinate and trpy ligands in trans-3 (e.g. Figure S13). As a consequence, we expect that the 

hydrogen bonding between the aquo/hydroxido group and the C-H group in the ortho 

position of the pyridine of the qc ligand is less pronounced in trans-2 than in trans-3 (Figure 

S20 and Scheme 2). Such hydrogen bond lowers the electron density of the metal center, thus 

increasing the oxidation potential for the RuIII/II couple. On the other hand, for cis-2 the RuIII/II 

redox couple is only 40 mV lower than cis-3, because of the absence of H-bonding and 

therefore this small difference is associated solely to slight changes in the geometry between 

the two complexes. Indeed, as shown in Figures S13, dihedral angles between the qc-trpy and 

pic-trpy planes in cis-1 and cis-[RuII(trpy)(pic)Cl] are significantly different (76.2° and 87.6°, 

respectively). 

In contrast, the third oxidation [RuV=O]2+/[RuIV=O]+ for trans-2 is around 20 mV higher 

compared to the related trans-3 and the same trend is observed for cis-2, which shows an 

anodic shift of 40 mV higher compared to cis-3, indicative of no influence of the hydrogen 

bond at higher oxidation states.  
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The cis-isomers always show pKa values higher than the corresponding trans-isomers 

(compare entry 2 with 3 and entry 4 with 5 in Table 1 and Figure 4). We attribute this trend 

once more to the H-bonding present in the trans-isomers, which picks up part of the electron 

density of the metal center and thus makes it more acidic than the cis-isomers. On the other 

hand, the pKa
III value for the [RuIII-OH] with singly negatively charged carboxylate ligand of all 

these complexes are higher as compared to other Ru-aquo complexes with neutral ligand such 

as [Ru(trpy)(bpy)(OH2)]2+ as expected (Table 1). 

Density Functional Theory (DFT) was used in collaboration with Dr. M. Z. Ertem to calculate 

potentials for the RuIII/II, RuIV/III and RuV/IV couples and they agree reasonably well with 

experimental values at M06 level of theory (see Table S1). Although the difference between 

the two isomers is rather low, it follows the same trend observed in the experiments in Figure 

5. 

 
Scheme 2. H-bonding interaction present in trans-2 and trans-3, that is expected to be more 
pronounced for the latter due to less distortion of the molecule. 

 

 

Scheme 3. Proposed reaction intermediates involved in the water oxidation catalytic cycle with 
trans-3. 
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3A. 3. 3 Water Oxidation Catalysis: Performance and Mechanism 

The kinetics of the water oxidation catalysis by the Ru-aquo complexes in Chart 1 where 

assessed electrochemically, by using the “foot of the wave analysis” (FOWA), which allows us 

to calculate the apparent kinetic constant (kobs) from cyclic voltammetry experiments.42-44 This 

method uses the relationship in equation 5 for a first order kinetics, 

i

ip
=

4*2.24*√
RTkobs

Fv

1+exp (

F(EP
Q⁄

0 -E)

RT

                           (5) 

where i is the current intensity in the presence of substrate, ip is the current intensity in the 

absence of substrate (we approximate this current to the current associated with the RuIII/II 

couple), E0
P/Q is the standard potential for the redox couple that starts the catalysis (1.62 V for 

trans-2, 1.71 V for cis-2, 1.60 V trans-3 and 1.67 for cis-3 extracted from the DPVs in Figure 

S15), F is the faraday constant, v is the scan rate, and R is 8.314 J mol−1 K−1. Kobs or TOFmax can 

be extracted from the plot of i/ip versus 1/{1 + exp[(F/RT)(EP/Q − E)]} as shown in Figure S19.  

From these calculations we get TOFmax of 4.2 s−1 for trans-2, 6.88 s−1 for cis-2, 1.16 s−1 for trans-

3 and 0.28 s−1 for cis-3. When this TOF values are plotted against the E1/2(RuV/IV) potentials 

(Figure 5b) we see the expected trend according to Marcus theory that predicts higher rates 

for higher driving force in outer sphere electron transfer processes.  

The water oxidation to dioxygen catalytic properties of complexes trans-2, trans-3 and cis-3 

were also tested using a sacrificial oxidant, i.e., (NH4)2[Ce(NO3)6] and the observed catalytic 

rates follow exactly the same trend as observed in the electrocatalysis, that is, TOFi (trans-2) 

> TOFi (trans-3) > TOFi (cis-3) (Figure 5a and Table 1). Although trans-2 is still the fastest with 

TOFi of 0.68 s-1 it is less robust than compound trans-3 with a TOFi of 0.24 s-1 (TON = 14.90, 

60% efficiency and TON = 19.87, 80% efficiency, respectively). Complex cis-3 produces 8.4 

TON (42% efficiency) with a TOFi of 0.11 s-1 under the same conditions.  

The fact that the rates of oxygen generation, both chemical and electrochemical, increase 

with the redox potential clearly indicate that the rds is the O-O bond formation step proposed 

in Scheme 3. The origin of the slow catalytic activity of cis-3 with a relatively high RuV/IV redox 

potential is not clearly understood but it might be related to the lack of H-bonding reducing 

the TS energy as indicated in Scheme 3 for trans-3. DFT calculations are currently underway 

to further shed some light at this effect. Preliminary results of a water nucleophilic attack 
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(WNA) mechanism for the quinoline complexes are given in Scheme S1 and Table S1 in the 

supporting information. 

a) b) 

  
Figure 5. a) Oxygen evolution profile obtained for trans-2 (blue), trans-3 (black) and cis-3 (red). 
Experimental conditions: 1 mM of complex and 100 mM of CeIV in 0.1 M triflic acid (2 mL total 
volume) at 25 ˚C. TONmax = 25. Inset: same profile for first 2 min. b) Plot of TOFmax vs. Eo (RuV/IV) for 
all four complexes obtained from FOWA. 
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Table 1. Thermodynamic and catalytic data for Ru-aqua caborxylate and related complexes described in the literature at pH 1. 

 

  E1/2 (V) vs. NHE  pKa    

Entry Complexesa V/IV IV/III III/II bE (mV) RuII-OH2 RuIII-OH2 TONc TOFd TOFmax
e 

145 [Ru(trpy)(bpy)(H2O)]2+ 1.92 1.22 1.06 110 9.7 1.7 18.3 0.01 - 

           

2f cis-2 1.71(1.41) 1.36(1.14) 0.82(0.59) 540(550) 10.6 3.8 -  6.8 

3f trans-2 1.62(1.50) 1.20(1.00) 0.67(0.44) 530(560) 10.6 2.7 14.9 0.68 4.2 

           

425,f cis-3 1.67 1.31 0.86 450 10.1 3.7 8.6 0.11 0.3 

525,f trans-3 1.60 1.09 0.76 330 10.1 2.0 19.7 0.24 1.2 

           

6 [Ru(pdc)(bpy)(H2O)]+ 1.41 0.73 0.25 480 11 4 -   

746 [Ru(bpc)(bpy)(H2O)]+ 1.57 1.29 0.81 480 10.6 2.6 - 0.16 - 

aLigand abbreviations: trpy = 2,2’:6’,2”-terpyridine, bpy = 2,2’-bipyridine, pic = 2-picolinate, qc = 8-quinolinecarboxylate, bpc = 2,2′-bipyridine-6-carboxylate, pdc 

= 2,6-pyridinedicarboxylate. bE= E1/2(IV/III)-E1/2(III/II); cTON stands for Turn Over Numbers; dTOF stands for initial Turn Over Frequency in s-1; These values are 

extracted for the catalytic reactions involving 1.0 mM Cat/100 mM CeIV in a 0.1 M triflic acid solution with a total volume of 2 mL; eTOFmax stands for Maximum 
Turn Over Frequency reported in s-1; values extracted from Foot of the Wave Analysis of CV and DPV experiment in pH 1 (entry 2-5); f this work; Redox potential 
values in parenthesis are calculated from DFT (M06). 
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3A. 4. Conclusion 

In summary, we have synthesized and characterized a series of ruthenium complexes with 

bidentate ligands containing carboxylate groups with different isomeric forms. In all the 

complexes, trans-isomers show lower potential of their redox couple as compared to cis-

isomers due to the different extend of trans influence of the carboxylate group in the 

quinolinato or picolinato ligands. Complexes cis-2 and trans-2 with 6-member chelate ring 

around the Ruthenium are faster water oxidation catalysts as compare to cis-3 and trans-3 (5-

member chelate ring around the Ruthenium). We conclude that the higher the driving force 

in outer sphere electron transfer processes, better is the rate. The pKa value for RuIII-OH of 

cis-isomers are always higher than those of the corresponding trans-isomers due to the 

presence of an H-bonding interaction in the trans-isomer, making this more acidic in nature.  
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(21) Neudeck, S.; Maji, S.; López, I.; Meyer, S.; Meyer, F.; Llobet, A. J. Am. Chem. Soc. 2013, 
136, 24. 
(22) Schulze, M.; Kunz, V.; Frischmann, P. D.; Würthner, F. Nat. Chem. 2016, 8, 576. 
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a) 
 

b) 
 

Figure S1. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex trans-1. a) COSY and b) NOESY. 
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a) 

 
b) 

 
Figure S2. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex trans-1. a) HSQC and b) HMBC. 
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Figure S3. 13C NMR spectra (125 MHz, 298 K, [d6]-DMSO) for complex trans-1. 
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a) 

 
b) 

 
Figure S4. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex cis-1. a) COSY and b) NOESY. 
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a) 

 
b) 

 
Figure S5. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex cis-1. a) HSQC and b) HMBC. 
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Figure S6. 13C NMR spectra (125 MHz, 298 K, [d6]-DMSO) for complex cis-1. 
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a) 

 
b) 

 
Figure S7. NMR spectra (500 MHz, 298 K, [d2]-D2O) for complex trans-2. a) 1H NMR and b) COSY. 
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a) 

 
b) 

 
Figure S8. NMR spectra (500 MHz, 298 K, [d2]-D2O) for complex trans-2 a) NOESY and b) HSQC. 
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a) 

 
b) 

 
Figure S9. NMR spectra (500 MHz, 298 K, [d2]-D2O) for complex trans-2. a) HMBC and b) 13C NMR 
(125 MHz, 298 K, [d2]-D2O). 
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a) 

 
b) 

 
Figure S10. NMR spectra (500 MHz, 298 K, [d2]-D2O) for complex cis-2 a) 1H NMR, and b) COSY. 
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Figure S11. NMR spectra (500 MHz, 298 K, [d2]-D2O) for complex cis-2. NOESY. 
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Figure S12. View of the trans angles for complexes, cis-1, cis-[Ru(trpy)(pic)Cl], trans-1 and trans-2. 
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trans-2  

 

 

cis-1  

 

 

cis-[Ru(trpy)(pic)Cl]  

 

 

Figure S13. View of the distortion of the angle between trpy and qc planes in trans-2 (top) and cis-1 
(middle) (57.1˚ and 76.2˚, respectively) and for the trpy and pic planes in cis-[Ru(trpy)(pic)Cl] (87.6˚, 
bottom). It is clear that the picolinate ligand shows less distortion from the ideal 90˚ as compared to 
the quinolinate ligand. 
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Figure S14. Cyclic Voltammograms of 1 mM of trans-1 and cis-1 in CH3CN (0.1 M TBAH). 

 

 

 
Figure S15. DPVs of trans-2 (black), cis-2 (red), trans-3 (blue) and cis-3 (green) at pH 1.0. 
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a) b) 

  
 
Figure S16. DPVs of a) trans-2 and b) cis-2 at different pHs.Asterisk in the Figure b indicates the redox 
waves of trans-2. This indicates that cis-2 slowly converts to trans-2. 
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Figure S17. Pourbaix diagram derived from electrochemical measurements on complexes. (A) trans-
[ RuII(trpy)(pic)(OH2)]+ and (B) cis-[RuII(trpy)(pic)(OH2)]+. The pH-potential regions of stability for the 
various oxidation states and their dominant proton composition are indicated by using abbreviations 
such as RuIIOH2, for example, for trans-[Ru(trpy)(pic)(OH2)]+. The pKa values are shown by the 
vertical line in the various E-pH regions. Redox potential value reported in this plot is vs SSCE (A. 
Llobet, P. Doppelt, T. J. Meyer, Inorg. Chem. 1988, 27, 514.) 

 

 
 
Figure S18. DPVs of trans-2 (light blue), cis-2 (red) at pH10.5 phosphate buffer. The conversion of 
cis-2 to trans-2 over 1 h in aqueous solution. 
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a) b) 

  
c) d) 

  
Figure S19. Grey solid line shows a CV of a) trans-2 (top, left), b) cis-2 (top, right), c) trans-3 (bottom, 
left) and d) cis-3 (bottom, right) at pH 1.0. The black solid line indicates the data points used for the 
FOWA. (Inset) i/ip vs. 1/{1+e [(E0-E)(F/RT)]} plot assuming a WNA mechanism and the used equation. 
The fitting points for the extraction of rate constants at the foot of the waves are represented as a 
black solid line in all graphs. 
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Figure S20. ORTEP views of trans-2 to highlight the H-bond between the C-H group in ortho position 
of the pyridine ring of qc ligand and the aquo ligand coordinated to the RuII center. 

 

 
Figure S21. Plot of TOFi vs. time obtained from Manometry experiment trans-2 (blue), trans-3 (black) 
and cis-3 (red). The experimental condition: 1 mM of complexes and 100 mM of Ce(IV) in 0.1 M triflic 
acid (2 mL total volume) at 25˚C. 
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Figure S22. On-line mass spectrometry experiments of a catalysis experiment by trans-2. 
Experimental conditions: 1 mM of complex and 100 mM of CeIV in 0.1 M triflic acid (2 mL total 
volume) at 25˚C. 

 

 
 
Scheme S1. Mechanism pathway studied with Density Functional Theory of complexes trans-2 and 
cis-2. See Table S1. 
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Table S1. Summary of redox potentials and free energy calculated for the mechanistic scheme in 

Scheme S1. 

G in kcal/mol, E in V vs 

NHE at pH 0 

M06-L M06 

cis-2 Trans-2 cis-2 Trans-2 

1st PCET 

E1 0.31 0.37 0.40 0.40 

G2 5.6 1.8 4.3 1.1 

G1 16.1 14.5 15.5 14.5 

E2 –0.14 –0.19 –0.08 –0.19 

E3 0.56 0.44 0.59 0.44 

2nd PCET 

E4 1.17 1.26 1.48 1.57 

G4 –5.8 –11.0 –7.7 –13.0 

G3 29.3 28.9 33.2 33.5 

E5 –0.35 –0.47 –0.30 –0.45 

E6 0.92 0.78 1.14 1.00 

RuIV=O to RuV=O E7 1.04 1.17 1.41 1.50 

O - O Bond 

Formation 

G‡
1 underway underway underway underway 

G5 25.4 22.8 15.8 14.9 

3rd PCET 

E8 1.09 1.02 1.45 1.36 

G7 –8.0 –0.8 –11.7 –2.5 

G6 13.2 16.6 14.5 18.2 

E9 0.17 0.27 0.31 0.46 

E10 0.75 0.99 0.94 1.25 

O2 evolution G8 –1.2 –1.3 –1.4 –3.1 
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Table S2. Selected crystallographic prameters for trans-1, cis-1, trans-2 and cis-[RuII(trpy)(pic)Cl]. 

 trans-1 cis-1 trans-2 cis-[RuII(trpy)(pic)Cl] 

emperical formula C29 H17 Cl N4 O4.50 Ru C25.10 H20.40 Cl0.90 

N4 O3.60 Ru 

C25 H21 F6 N4 O4 P Ru C21.75 H16.50 Cl2.50 N4 

O2 Ru 

formula weight 629.99 568.63 687.50 555.58 

crystal system Monoclinic Monoclinic 

 

Monoclinic Monoclinic 

space group P 21/c C2/c P 21/c P2(1)/c 

a (Å) 7.5129(14) 17.9064(5) 13.1911(6) 16.0801(16) 

b (Å) 14.076(6) 25.1767(7) 14.2906(5) 18.0650(18) 

c (Å) 23.225(6) 13.8906(4) 14.5378(6) 7.8128(8) 

α (deg) 90 90° 90 90 

β (deg) 93.58(2) 127.8524(6) 108.703(5) 100.736(2) 

γ (deg) 90 90 90 90 

V (Å³) 2451.4(13) 4944.6(2)  2595.79(18) 2229.8(4)  

Z 4 8 4 4 

μ (mm1) 0.797 0.768  0.750 1.029 
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T(K) 120(2) 100(2) 293(2) 100(2) 

Dcalcd(g cm³) 1.707 1.528  1.759 1.655 

F(000) 1264 2297 1376 1110 

θ range(deg) 3.25 to 25.00 1.701 to 30.562 3.28 to 25.00 1.712 to 30.584°. 

data/restraints/parameters 4293 / 0 / 359 7414/ 1829/ 639 4558 / 0 / 386 6669/ 225/ 363 

R1, wR2 [I>2σ(I)] 0.0770, 0.1540 0.0539, 0.1517 0.0407, 0.0742 = 0.0444, 0.1188 

R1, wR2(all data) 0.2122, 0.1960 R1 = 0.0769, wR2 = 

0.1696 

0.0857, 0.0805 0.0517, 0.1239 

GOF 0.822 1.035 0.816 1.074 

largest diff. peak/hole, 

(e Å³) 

1.048 and -0.782 1.652 and -0.847  0.614 and -0.428 1.508 and -1.254  
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Table S3. Selected structural parameters for trans-1, cis-1, and trans-2. 

bond length (Å)/  

bond angle (deg) 

trans-1 cis-1 trans-2 

X-ray X-ray X-ray 

Ru-N1 2.083(10) 2.061(3) 2.085(3) 

Ru-N2 2.082(11) 2.053(4) 2.064(4) 

Ru-N3 1.924(11) 1.926(3) 1.942(4) 

Ru-N4 2.060(10) 2.079(3) 2.058(3) 

Ru-O1 1.966(7) 2.085(3) 2.050(3) 

Ru-Cl 2.311(3) 2.3934(12) - 

Ru-O3 - - 2.094(3) 

O1-C1 1.287(13) 1.233(6) 1.278(5) 

C1-O2 1.237(13) 1.270(6) 1.233(5) 

O1-Ru-N3 88.0(3) 174.91 (5) 91.37(14) 

N1-Ru-Cl 176.12(5) 172.93(10) 178.58(15) 

N2-Ru-N4 159.6(5) 159.42(15) 159.26(13) 
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Abstract 

The tridentate meridional ligand pyridyl-2,6-dicarboxylato (pdc) has been used to prepare 

complexes RuII(pdc-ҡ3-N1O2)(DMSO)2Cl], 1II RuII(pdc-ҡ3-N1O2)(bpy)(DMSO)], 2II and {[RuIII(pdc-

ҡ3-N1O2)(bpy)]2(-O)}, 5III,III where bpy: 2,2’-bipyridine. All complexes have been fully 

characterized through spectroscopic, electrochemical and single crystal X-ray diffraction 

techniques. Compounds 1II and 2II show SO linkage isomerization of the DMSO ligand upon 

oxidation from RuII to RuIII and thermodynamic and kinetic data have been obtained from 

cyclic voltammetry experiments. Dimeric complex 5III,III is a precursor of the monomeric 

complex [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)], 4II which is a water oxidation catalyst. The 

electrochemistry and catalytic activity of 4II has been ascertained for the first time and 

compared with related Ru-aquo complexes that are also active for the water oxidation 

reaction. It shows a TOFmax = 0.23 s-1 and overpotential of 240 mV in pH 1. The overpotential 

shown by 4II is one of the lowest reported in the literature and is associated to the role of the 

two carboxylato groups of the pdc ligand, providing high electron density to the ruthenium 

complex.  

Graphical Abstract 

 

 

Keywords: Ruthenium, DMSO linkage isomerization, Oxo-bridge, Redox chemistry, Water 

oxidation 
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3B. 1. Introduction 

Homogeneous molecular water oxidation catalysts based on transition metal complexes (Mn, 

Ru, Ir, Co, Cu, Fe etc)1-6 have demonstrated that properties of ancillary ligands including 

electronic parameters, flexibility and orientation can influence the catalytic activity and 

robustness of catalysts. With the help of spectroscopic, electrochemical and analytical 

techniques together with the valuable complementary information provided by 

computational studies it is possible to have a detailed understanding of their mode of action 

and mechanism.7-12 For all these reasons significant developments have been carried out 

based on these type of complexes in terms of their catalytic performance and stability. 

However, many challenges still remain, including high speed catalysis, robustness and 

reduced overpotential in order to see molecular catalysts in water splitting devices to 

generate solar fuels such as hydrogen. 

The most extensively studied homogeneous water oxidation catalysts are based on 

mononuclear ruthenium complexes containing flexible, adaptative, multidentate and 

equatorial (FAME) ligands containing carboxylate groups that are the fastest water oxidation 

catalyst reported in the literature13-18 with a TOFmax in the range of 102 to 104 s-1 which exceed 

by 1-2 orders of magnitude that of the oxygen evolving complex in the natural Photosystem 

II.19 Ruthenium complexes are of special interest due to their crucial understanding of the 

mechanistic pathways responsible for O=O bond formation7,20 and the electronic perturbation 

created by ligand environment can influence this pathways. 

In the present work we report the synthesis, structural, spectroscopic and electrochemical 

characterization of ruthenium complexes containing the 2,6 pyridinedicarboxylato ligand 

(pdc2-); [RuII(pdc-ҡ3-N1O2)(bpy)(DMSO)], 2II and {[RuIII(pdc-ҡ3-N1O2)(bpy)]2(-O)}, 5III,III, where 

bpy= 2,2’-bipyridine (Scheme 1), which are derivatives of the water oxidation catalyst 

[RuIII(pdc-ҡ3-N1O2)(bpy)(H2O)]+, 4III. The catalytic activity of 4III is studied and put in context of 

the best WOCs reported to date.  
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3B. 2. Experimental Section 

Materials 

RuCl3·×H2O was purchased from Alfa-Aesar. The precursor complex [RuII(DMSO)4Cl2] was 

prepared according to the literature procedure.21 The ligand precursor 2,6-

pyridinedicarboxylic acid (H2pdc) and other reagents and chemicals were obtained from 

Aldrich and used as received. When required, solvents were dried by following the standard 

procedures, distilled under nitrogen and used immediately. High purity de-ionized water used 

for the electrochemistry experiments was obtained by passing distilled water through a 

nanopure Milli-Q water purification system. For other spectroscopic and electrochemical 

studies, HPLC-grade solvents were used. 

Instrumentation and Methods 

A Bruker Avance 500 MHz was used to carry out NMR spectroscopy. ESI-Mass spectra were 

recorded using micromass Q-TOF mass spectrometer. Elemental analyses were carried out on 

Perkin-Elmer 240C elemental analyzer. The pH of the solutions was determined by a pHmeter 

(CRISON, Basic 20+) calibrated before measurements through a standard solutions at pH 4.01, 

7.00 and 9.21. All electrochemical experiments were performed with an IJ-Cambria CHI-660 

potentiostat using a three-electrode cell for cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV) or two compartment cell for bulk electrolysis. E1/2 values reported in this 

work were estimated from CV experiments as the average of the oxidative and reductive peak 

potentials (𝐸𝑝,a + 𝐸p,𝑐)/2 or from DPV. The Reference Electrode (RE) was Hg/Hg2SO4 (K2SO4 

saturated) unless indicated and potentials were converted to NHE by adding 0.65 V. 

Glassy carbon disk (ф = 0.3 cm, S = 0.07 cm2), Pt disk and Hg/Hg2SO4 (K2SO4 saturated) were 

used as Working Electrode (WE), Counter Electrode (CE) and Reference Electrode (RE) 

respectively, unless explicitly mentioned. Glassy carbon electrodes were polished with 0.05 

μm alumina (Al2O3) and rinsed with water. CVs and DPVs were iR compensated by the 

potentiostat in all the measurements unless indicated. Cyclic Voltammograms (CV) were 

recorded at 100 mV·s−1 scan rate, unless explicitly expressed. The DPV parameters were E= 

4 mV, Amplitude = 50 mV, Pulse width = 0.05 s, Sampling width = 0.0167 s, Pulse period = 0.5 

s. The complexes were dissolved in dichloromethane (DCM) containing the necessary amount 

of [(n-Bu)4N][PF6] (TBAH) as supporting electrolyte to yield a 0.1 M ionic strength (I) solution. 

In aqueous solution the electrochemical experiments were carried out in 0.1 M triflic acid 

solution for pH 1 and I = 0.1 M phosphate buffer solutions with desired the pH. For 
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construction of the Pourbaix diagrams, the following buffers were used: dihydrogen 

phosphate/phosphoric acid up to pH = 4 (pKa = 2.12), hydrogen phosphate/dihydrogen 

phosphate up to pH = 9 (pKa = 7.67), hydrogen phosphate/sodium phosphate up to pH = 13 

(pKa = 12.12) and also 0.1 M CF3SO3H for pH = 1.0. For routine bulk electrolysis experiments, 

a Pt grid was used as a WE, another Pt grid as a CE and a Hg/Hg2SO4 (K2SO4 saturated) as a RE. 

Online manometric measurements were performed on a Testo 521 differential pressure 

manometer with an operating range of 0.1-10 kPa and accuracy within 0.5% of the 

measurements. The manometer was coupled to thermostatic reaction vessels for dynamic 

monitoring of the headspace pressure above each reaction solution. The manometer’s 

secondary ports were connected to thermostatic reaction vessels containing the same 

solvents and headspace volumes as the sample vials. Each measurement for a reaction 

solution (2.0 mL) was performed at 298 K. For manometric experiment, Control potential 

electrolysis was carried out for 10 min with 1 mM complex of 5III,III in pH 1. It was assumed 

that upon breaking of dimeric complex 5III,III, it produced 2 equivalent of monomeric complex 

4II, that means concentration of 4II becomes 2 mM. This complex was diluted to half with 

additional pH 1 solution to get 1 mM of 4II. 

Single Crystal X-Ray Structure Determinations 

Crystal Preparation: Crystals of [Et3NH][RuII(pdc-ҡ3-N1O2)(DMSO)2Cl], 1II [RuII(pdc-ҡ3-

N1O2)(bpy)(DMSO)], 2II and {[RuIII(pdc-ҡ3-N2O1)(bpy)]2(-O)}, 5III,III were grown by slow 

evaporation of 1:1 methanol : benzene, 1:1 methanol : diethylether and 1:1 dichloromethane: 

hexane respectively. The crystals used for structure determination were selected using a Zeiss 

stereomicroscope using polarized light and prepared under inert conditions immersed in 

perfluoropolyether as protecting oil for manipulation. 

Data Collection: Crystal structure determination for compounds 1II, 2II and 5III,III were carried 

out using a Apex DUO Kappa 4-axis goniometer equipped with an APPEX 2 4K CCD area 

detector, a Microfocus Source E025 IuS using MoK radiation, Quazar MX multilayer Optics as 

monochromator and an Oxford Cryosystems low temperature device Cryostream 700 plus (T 

= -173 °C). Crystal structure determination for samples Full-sphere data collection was used 

with  and  scans. Programs used: Data collection APEX-222, data reduction Bruker Saint23 

V/.60A and absorption correction SADABS.24 

Structure Solution and Refinement: Crystal structure solution was achieved using the 

computer program SHELXT.25 Visualization was performed with the program SHELXle.26 

Missing atoms were subsequently located from difference Fourier synthesis and added to the 
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atom list. Least-squares refinement on F2 using all measured intensities was carried out using 

the program SHELXL 2015.27 All non-hydrogen atoms were refined including anisotropic 

displacement parameters. 

Comments to the Structures: [Et3NH][RuII(pdc-ҡ3-N1O2)(DMSO)2Cl], 1II: The asymmetric unit 

contains two molecules of the metal complex (each coordinated to two DMSO molecules), 

two triethylamonium cations, two water molecules and two benzene molecules. The benzene 

molecules are disordered in two orientations. [RuII(pdc-ҡ3-N2O1)(bpy)(DMSO)], 2II: The 

asymmetric unit contains one molecule of the metal complex (coordinated to a DMSO 

molecule) and two molecules of water. {[RuIII(pdc-ҡ3-N2O1)(bpy)]2(-O)}, 5III,III: The asymmetric 

unit contains two independent molecules of the metal complex and 5.1 molecules of 

dichloromethane. The dichloromethane molecules are disordered in 11 positions with a ratio: 

1.00:0.75:0.60:0.40:0.55:0.45:0.70:0.20:0.25:0.10:0.10. 

Synthesis of [Et3NH][RuII(pdc-ҡ3-N1O2)(DMSO)2Cl]·H2O, 1II. In a 100 mL two neck round 

bottom flask, [RuII(DMSO)4Cl2] (450 mg, 0.93 mmol), 2,6-pyridine dicarboxylic acid (155 mg, 

0.93 mmol) and triethylamine (0.2 mL) were dissolved in 30 mL of degassed methanol and 

were reflux for 5 h under N2 atmosphare. The resulting solution was filtered and the volume 

was reduced to 5 mL. Then 30 mL of diethyl ether was added to obtain an orange precipitate. 

The solid was filtered and washed with diethyl ether (3x20 mL) and dried under vacuum. Yield: 

460 mg (0.82 mmol, 88%). The characterization data matches with reported complex.28 

Synthesis of [RuII(pdc-ҡ3-N1O2)(bpy)(DMSO)]·1.5H2O, 2II. In a 100 mL two neck round bottom 

flask, [Et3NH][RuII(pdc-ҡ3-N1O2)(DMSO)2Cl], 1II (560 mg, 1 mmol) and 2,2´-bipyridine (156 mg, 

1 mmol) were dissolved in 40 mL degassed methanol solvent and refluxed for 4 hours under 

N2 atmosphere. The mixture was then evaporated to dryness and the resulting solid dissolved 

in CH2Cl2 and purified over neutral alumina using a mixture of CH2Cl2/MeOH (100:2) as eluent. 

The first orange-red fraction was collected an identified with complex 2II. Yield: 60 mg (0.12 

mmol, 12%). Anal. Calc. for (C19H17N3O5RuS∙1.5H2O): C, 43.26%; H, 3.82%; N, 7.94%; S, 6.08%. 

Found: C, 43.35%; H, 3.15%; N, 7.85%; S, 6.18%. 1H-NMR (500 MHz, [d2]-DCM) δ: 10.61 (d, 

J=5.7 Hz, 1H), 8.29 (d, J= 8.4 Hz, 2H), 8.24 (d, J=7.7 Hz, 2H), 8.14 (t, J=7.8 Hz, 1H), 7.89 (tt, J=3.5 

and 7.8Hz, 2H), 7.61 (t, J=7.3 Hz, 1H), 7.29 (t, J=6.6 Hz, 1H), 6.96 (d, J=5.6 Hz, 1H), 2.65 (s, 6H). 

13C-NMR (125 MHz, [d2]-DCM) δ: 172.6, 158.3, 158.1, 157.4, 154.3, 148.7, 138.4, 137.2, 136.6, 

128.9, 127.1, 123.5, 123.1, 51.2 and 42.6. (ESI-HRMS; MeOH) m/z: calc. for [M+Na]+ : 

523.9857, found m/z: 523.9830. 
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Synthesis of {[RuIII(pdc-ҡ3-N1O2)(bpy)]2(-O)}·2H2O, 5III,III. In a 100 mL two neck round-bottom 

flask, [RuIII(pdc-ҡ3-N1O2)(bpy)Cl]15 (100 mg, 0.22 mmol) was dissolved in 40 mL of 

acetone/water (3:1) followed by addition of triethylamine (0.20 mL) and stirred for 5 minutes 

under N2. Then silver perchlorate (120 mg, 0.58 mmol) was added to the reaction mixture and 

stirred for 30 minutes at 50°C. The precipitated AgCl was filtered through Celite®. The mixture 

was then evaporated to dryness and the resulting solid was dissolved in CH2Cl2 and purified 

by chromatography with neutral alumina using a mixture of CH2Cl2/MeOH (100:4) as eluent. 

The blue colour fraction was collected and evaporated to drynes to give complex 5III,III. Yield 

37 mg (0.043 mmol, 20%). Anal. Calc. for (C34H22N6O9Ru2∙2H2O): C, 45.54%; H, 2.92%; N, 

9.37%. Found: C, 45.31%; H, 2.50%; N, 9.26%. 1H-NMR (500 MHz, [d6]-DMSO) δ: 8.75 (d, J= 8.1 

Hz, 1H), 8.68 (d, J= 8.2 Hz, 1H), 8.07 (dd, J=7.6 Hz and 1.4 Hz, 1H), 7.98 (t, J=7.6 Hz, 1H), 7.87 

(td, J= 8.95 Hz and 1.3 Hz, 1H), 7.72 (t, J= 7.75 Hz, 1H), 7.33 (t, J= 7.0 Hz, 1H), 7.29 (t, J-= 7.15 

Hz, 1H), 6.89 (dd, J= 7.75 Hz and 1.4 Hz, 1H), 6.59 (d, J= 4.9 Hz, 1H), 6.54 (d, J= 5.3 Hz, 1H). 13C-

NMR (125 MHz, [d6]-DMSO ) δ: 173.2, 169.6, 164.6, 159.5, 158.6, 153.9, 152.3, 150.4, 140.9, 

140.1, 139.9, 127.4, 125.4, 125.3, 124.8, 123.5 and 123.3. (ESI-HRMS; MeOH) m/z: calc. for 

[MNa]+ : 884.9492, found m/z: 884.9441. 
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3B. 3. Results and Discussion 

3B. 3. 1. Synthesis and Characterization of Complexes 1-5 

The reaction of 2,6-pyridinedicarboxylic acid (H2pdc) with the ruthenium precursor complex 

[Ru(DMSO)4Cl2] in the presence of Et3N as a base in MeOH under reflux gives complex 1II, 

which upon treatment with 1 equivalent of bpy gives complex 2II in 12% isolated yield (Scheme 

1, top).  

 

Scheme 1. Synthetic strategy and labelling scheme used for the ligands and complexes described in 
this work. 

On the other hand, when RuCl3 is used as ruthenium source, the analogous complex [RuIII(pdc-

ҡ3-N1O2)(bpy)Cl], 3III with a chlorido ligand instead of DMSO ligand is obtained as we recently 

reported.15 The addition of AgClO4 to a solution of 3III generates an ustable species identified 

as complex [RuIII(pdc-ҡ3-N1O2)(bpy)(OH2)], 4III that slowly converts to an oxo bridged dimer 

5III,III (Scheme 1, bottom). This complex was purified by column chromatography and isolated 

as a blue solid in 20% yield. 

Complexes 2II and 5III,III were structurally characterized in the solid state by single crystal X-ray 

diffraction analysis and in solution by NMR spectroscopy. The ORTEP plots of complex 2II in 

Figure 1b displays highly distorted octahedral geometry around the ruthenium metal due to 

the strain imposed by the pdc2- meridional ligand with O-Ru-O angle of 158.1(5)˚ as opposed 

to the 180˚ expected for an ideal octahedron. Bond distances and angles are very similar to 

those of 3III and other related complexes reported in the literature.15,28,29 The bpy ligand 

occupies both axial and equatorial positions assuming the ҡ-N1O2-pdc2- ligand binds in the 

equatorial plane. 
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The crystal structure of dimeric complex 5III,III shows that both metal centers exhibit a 

distorted octahedral geometry (Figure 1c). The Ru-Ooxo bond distances are 1.869 (4) Å and 

1.885 (4) Å, which are in the range of reported RuIII-O-RuIII type of complexes.30-33 

a) b) c) 

 
 

 

Figure 1. ORTEP plots at 50% probability for a) [RuII(pdc-ҡ3-N1O2)(DMSO)2Cl]-, 1II; b) [RuII(pdc-ҡ3-

N1O2)(bpy)(DMSO)], 2II and c) {[RuIII(pdc-ҡ3-N1O2)(bpy)]2(-O)}, 5III,III. 

 

The angle defined by Ru-O-Ru in complex 5III,III is significantly bent with a value of 125.9(2)˚. 

As reported before, this angle has a strong influence in the electronic configuration of the 

molecule, which will be affected by the overlapping of the orbitals of the oxo ligand with those 

of the Ruthenium centers (see molecular orbital scheme in Figure 2, where the Ru-O bond is 

taken as z axis). For bent structures such as in 5III,III a high-energy gap between π1* and π2* 

orbitals is expected resulting in the following diamagnetic electronic configuration; (π1
b)2 

(π2
b)2 (π1

nb)2 (π2
nb)2 (π1*)2 (π2*)0.34,35 In contrast, dinuclear oxo-bridged RuIII complexes with 

Ru-O-Ru angles close to 180° display a paramagnetic behavior because their π1* and π2* 

orbitals are either degenerate or very close in energy.30 The diamagnetic and symmetric 

nature of 5III,III is clear from its 1H NMR spectrum in [d6]-DMSO solution, which shows two 

single set of resonances for the pdc2- and the bpy ligands, respectively (Figure 2).  

Although bidimensional NMR experiments allowed as to unequivocally assign all the 

resonances to the respective ligands, it was not possible to distinguish between the two 

pyridine rings of the bpy ligand, which have been arbitrary labeled as a diamond () and 

square (◼ ) symbols in the 1H NMR spectrum in Figure 2 ( see also Figure S4-S6). 

The 1H NMR spectrum of complex 2II in [d2]-DCM shows a characteristic signal at low field (δ 

= 10.61 ppm) for a proton deshielded by the through space interaction with the closest DMSO 

ligand (Figure S1-S3).36 Protons of the two methyl groups of the DMSO ligand are clearly visible 

at high field (δ = 2.65 ppm) as expected. 
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Figure 2. 1H NMR spectrum of complex {[RuIII(pdc-ҡ3-N1O2)(bpy)]2(-O)}, 5III,III in [d6]-DMSO (500 
MHz, 298 K). Squares and symbols indicate the signals of the two independent pyridine rings in the 
bipyridine ligand. Asterisks indicate unidentified signal. 

 

The optical properties of complexes 2II and 5III,III were investigated by UV−vis spectroscopy in 

DCM (Figure 3). Both compounds show π−π* transitions due to the aromatic ligands below 

350 nm and weaker metal to ligand charge transfer (MLCT) d−π* bands showing between 350 

and 500 nm. In addition, complex 5III,III has a prominent band at 617 nm that is typical of RuIII-

O-RuIII type of complexes.30,37 

 

Figure 3. UV−vis spectra of 0.2 mM of complexes 2II (black) and 5III,III (red) in DCM. 
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3B. 3. 2. Electrochemistry in Organic Solvent 

The redox properties of complexes 1, 2 and 5 were analysed by means of cyclic voltammetry 

(CV) in DCM containing 0.1 M [(n-Bu4N)]PF6 (TBAH) as supporting electrolyte. All redox 

potentials reported in this work are referred to the NHE electrode, and all CV were run at a 

scan rate of 100 mV/s unless explicitly mention. Glassy carbon disk was used as working 

electrode, platinum disk as auxiliary electrode and Hg/Hg2SO4 as reference electrode. 

3B. 3. 2. 1. DMSO Linkage Isomerization of Complexes 1II and 2II 

Complexes 1II and 2II are two new examples that show SO DMSO linkage isomerization by 

changing oxidation state of the Ru metal center from II to III (Scheme 2). As shown in Figure 

4 and Figure S8 complex 1II shows an irreversible wave with E1
p,a = 1.05 V and E1

p,c = 0.87 V 

associated with the RuIII/II-S redox couple. After the anodic scan a new wave appears at E2
p,c = 

0.19 V and E2
p,a = 0.32 V assigned to the RuIII/II-O couple. This significant anodic shift in 

potential due to the distinct coordination mode of the DMSO ligand has been observed before 

and is attributed to the lower π-accepting properties of the S-bonded ligand as compared to 

the O-bonded DMSO ligand.36 The peak intensity ratios [ip,c]/[ip,a] depend strongly on the scan 

rate for both redox couples as a result of the different kinetics of the isomerization processes 

described in Scheme 2. In addition, the relative intensity of the two redox couples change 

significantly if a quick controlled potential electrolysis (CPE) is carried out at -0.2 V or at 1.4 V 

(Figure 4 and Figure S8).  

The equilibrium constant KIII
O→S for the RuIII−O/RuIII−S reaction of the square mechanism 

shown in Scheme 2 can be obtained from the CVs in Figure 4 (bottom), plotting the ratio 

[ip,c1]/[ip,c2] versus the inverse of the scan rate (v−1) and extrapolating for v → ∞, where the 

intensities of the waves correspond to the concentrations at the equilibrium.38 This 

mathematical treatment results in KIII O→S = 0.60 (Figure S8). 

 

Scheme 2. Square mechanism associated with the SO DMSO linkage isomerization by changing 
oxidation state of the Ru metal center. 
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Figure 4. CVs of 1 mM of 1II in DCM containing 0.1 M TBAH starting at the open circuit potential (top) 
and after leaving the potential at 1.4 V for 2 minutes before the scan. Arrows indicate initial scan 
direction, color code denote scan rate (mV/s): Black: 50 mV/s, red: 70 mV/s, green: 100 mV/ s, blue: 
200 mV/s, turquoise: 300 mV/s, pink: 400 mV/s, yellow: 500 mV/s, dark green: 600 mV/s, dark blue: 
700 mV/s, purple: 800 mV/s and marron: 1000 mV/s. 

 

In addition, the kinetic constants for the isomerization in the RuIII oxidation state can be 

calculated using the working curves for a chemical reaction preceding an electron transfer 

proposed by Shain and co-workers39 that uses the ratio ik/id where ik is the measured peak 

current ip,c1, of the CV starting at 1.4 V after a CPE of 2 min (Figure 4), and id is the 

corresponding diffusion current in the absence of a chemical reaction. As an estimated value 

of id, we used ip,a1 of the CV starting at -0.2 V after a CPE of 2 min (Figure S8). The values thus 

obtained are kIII O→S = 5.5210-6 s-1 and kIII S→O = 9.2110-6 s-1. 

Assuming E0 = E1/2 and knowing the value of KIII O→S, the thermodynamic cycle in Scheme 2 can 

be derived and used to calculate KII
S→O = 5.89 × 10+11. 
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The kinetic isomerization constant kII
O→S in the RuII state was calculated from the dependency 

of ln(ia2/v1/2) versus time38 and gives a value of 9.39× 10−2 s−1 (Figure S8). The whole cycle is 

completed by calculating the remaining constant kII
S→O with a value of 1.59 × 10−13 s−1 

(equation 1). 

 

 

Analogously to complex 1II, complex 2II also shows two electrochemically quasi-reversible 

redox waves at E1
1/2

III/II = 1.06 V (ΔE = 96 mV) and E2
1/2

III/II = 0.54 V (ΔE = 60 mV) corresponding 

to RuIII/II-S and RuIII/II-O redox couples respectively (Figure S9 and S10). Following the same 

mathematical methodology, we calculated all the equilibrium and rate constants associated 

with the square mechanism of Scheme 2 for 2II. All these data are summarized in Table 1 

together with the results of 1II and other relevant compound reported in the literature. 

Complexes 1II and 2II have the lowest RuIII/II oxidation potentials in Table 1 as a result of the 

high sigma-donation of the carboxylate groups in the pdc ligand (compare entries 1 and 2 with 

entries 3-7). Interestingly the complexes having only one DMSO, such as 2II, show slower KII
O

→S rate as compared to the complexes having two DMSO ligands such as 1II with the exception 

of complex cis, trans-[Ru(HPhpp)(DMSO)2Cl2] in entry 5 (where HPpp is 2-(5-phenyl-1H-

pyrazol-3-yl)pyridine). Although it is not trivial to compare thermodynamic and kinetic values 

of complexes with distinct coordination sphere and different relative disposition of chlorido 

and DMSO ligands, a general trend is observed for all the complexes in Table 1; the values of 

the linkage isomerization constants KII
O→S are very high, in the order of 108-1012, indicating 

that RuII-O species are much less stable and convert  to the RuII-S at low oxidation state. On 

the other hand, the tendency to isomerize for RuIII-S to the corresponding RuIII-O is less 

favored for all complexes with equilibrium constants in the range of 0.13-1.7.  
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Table 1. Thermodynamics and kinetics data for the SO linkage isomerization process of complexes 1II and 2II and related compounds reported in the 
literature. 

 

 
Entr

y 
Complex E1/2(Ru-S)a E1/2(Ru-O)a 

KIII
(O 

S) 
kIII

OS[s─1] kIII
S O[s─1] KII

(O S) kII
O S[s─1] kII

S O[s─1] 

1b [Ru(pdc)(DMSO)2Cl]-, 1II 0.96 0.26 0.59 4.7 × 10−1 
7.9 × 

10−1 

5.9 × 

10+11 

9.4 × 

10−2 
1.6 × 10−13 

2b [Ru(pdc)(bpy)(DMSO)], 2II 1.06 0.54 0.91 8.9 × 10−1 
9.8 × 

10−1 
8.0× 10+8 

6.9 × 

10−2 
1.2 × 10−10 

340 
out- 

[Ru(HPpp)(trpy)(DMSO)]+,c 
1.22 0.65 0.13 7.7 × 10−2 

6.0 × 

10−1 
5.5 × 10+8 

2.5 × 

10−1 
4.6 × 10−10 

441 
cis(in), cis(out)- 

[Ru(HPpp)(DMSO)2Cl2]c 1.27 0.70 1.7 2.8 × 10−1 
1.7 × 

10−1 

5.2 × 

10+11 

4.9 × 

10−1 
9.3 × 10−14 

541 
cis, trans- 

[Ru(HPpp)(DMSO)2Cl2]c 1.22 0.63 0.20 5.7 × 10−2 
2.2 × 

10−1 
5.3 × 10+8 

8.7 × 

10−2 
1.6 × 10−10 

636 
cis(in),cis(out)- 

[Ru(Hppc)(DMSO)2Cl2]d 1.37 0.69 0.41 2.0 × 10−1 
4.9 × 

10−1 

2.1 × 

10+11 

9.3 × 

10−2 
4.5 × 10−13 

738 
cis, cis, cis- 

[Ru(tbpy)2(DMSO)2Cl2]e 1.51 0.79 0.63 1.2 1.9 
2.1 × 

10+12 

1.0 × 

10−2 
5.0 × 10−14 

 
aPotentials are given in volts versus the NHE electrode. CV experiments were performed in CH2Cl2 /TBAH (0.1 M) solvent for all complexes except for 
[Ru(tbpy)2(DMSO)2Cl2] in entry 7 that was analyzed in CH3CN/TEAP (0.1 M) where TEAP is tetraethylammonium perchlorate. bThis work. cHPpp: 2-(5-phenyl-
1H-pyrazol-3-yl)pyridine. dHppc: ethyl 3-(pyridin-2-yl)-1H-pyrazole-5-carboxylate. etbpy: 4-(tert-butyl)pyridine.  
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3B. 3. 2. 2. Redox Behavior of Dimeric Compound 5III,III 

The oxo bridged dinuclear complex 5III,III shows two one-electron reversible waves at 

EIII,III/IV,III
1/2 = 0.86 V (ΔE = 84 mV) and EIV,III/IV,IV

1/2 = 1.75 V (ΔE = 105 mV) in trifluoroethanol 

solvent containing 0.1 M TBAH (Figure 5). The high reversibility of both redox processes 

highlight the stability of the dimeric structure of 5, that doesn’t rearrange or react upon 

oxidation in organic solvents. 
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Figure 5. CV of 0.5 mM of 5III,III in trifluoroethanol containing 0.1 M TBAH. 
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3B. 3. 3. Electrochemistry of 5III,III in Aqueous Solution 

3B. 3. 3. 1. Conversion of 5III,III into 4II 

The redox properties of the oxo-bridged dimer 5III,III in aqueous solution were analysed in pH 

1 triflic acid solution (Figure 6). It shows a one-electron oxidation wave at E1/2 = 0.85 V (ΔE = 

67 mV) associated with the RuIV-O-RuIII/RuIII-O-RuIII redox couple, that is consistent with that 

observed in organic solvents in Figure 5. A subsequent cathodic scan all the way down to 0.05 

V shows a chemically irreversible wave at Ep,c = 0.30 V, that we attribute to a 2e−/1H+ transfer 

as reported for similar complexes that also contain a dinuclear oxo-bridged motive, which is 

prone to protonation upon reduction.30 This proton couple electron transfer (PCET) process 

is followed by the breaking of the resulting Ru-OH-Ru bridge and the formation of the 

corresponding mononuclear complex [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)], 4II as shown in Scheme 1 

and indicated in equations 2-4. Upon repetitive CV cycles in the potential range from 0.05 V 

to 0.95 V, a new redox wave appears at EIII/II
1/2 = 0.52 V with concomitant disappearance of 

the redox couples associated with 5III,III (Figure 6, top). This can be further prove by a quick 

control potential electrolysis. It was carried out at Eapp = 0.05 V for 10 min. As can be seen 

from Figure 6 (bottom) all the starting complex 5III,III completely converts to the new complex 

4II. 

RuIII − O − RuIII    −  1e− → RuIII − O − RuIV     𝐸1
2

= 0.85V             (2) 

RuIII − O − RuIII(𝟓𝐈𝐈𝐈,𝐈𝐈𝐈)   +  1e− + 1H+ → RuII − (OH) − RuII     𝐸1
2

= 0.3V             (3) 

RuII − (OH) − RuII   +  H2O + 1H+ → 2RuII − OH2(𝟒𝐈𝐈)                 (4) 
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Figure 6. Top) Repetitive CV experiments of 1 mM of 5III,III in pH 1.0 triflic acid solution showing the 
generation of the new complex 4II after breaking the oxo-bridge (see equations 2-4 in main text); 1st 
cycle (black), 2nd to 49th cycles (grey) and 50th cycle (red), vertical black arrows indicate 
disappearance of the waves associated with 5III,III and red vertical arrow indicates appearance of the 
redox waves with 4II. Bottom) CV of complex 5III,III before (black) and after (red) a CPE at Eapp = 0.05 
V, showing clean conversion to complex 4II. 

 

3B. 3. 3.2. Electrochemistry of 4II and Water Oxidation Catalysis 

Complex 4II is a mononuclear Ru-OH2 type of complex that has been previously proposed to 

act as a water oxidation catalyst but it has never been prepared in pure form due to the low 

stability upon work up procedures from the reaction starting with the chlorido precursor 3III 

(Scheme 1).15 Thus, the in situ generation of 4II from the dimeric complex 5III,III is a useful, 

alternative methodology to isolate this complex in solution and to fully analyze its 
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electrochemical behavior as well as the kinetic data associated with their capacity to oxidize 

water.  

As shown in Figure 7, compound 4II shows two one-electron waves at E1/2 = 0.52 V (ΔE = 130 

mV) and Ep,a = 1.19 V corresponding to the III/II and IV/III redox couples respectively. Both 

waves are pH dependent as expected for a Ru-aquo type of complex that is involved in PCET 

(Figure S11). The RuIV/III wave is not reversible because it is partially overlapping with a third 

irreversible wave that is pH independent and that we attribute to the RuV/IV couple followed 

by electrocatalytic oxidation of water. A manometry experiment using a 1 mM solution of 4II 

and 100 mM of (NH4)2[Ce(NO3)6] as sacrificial electron acceptor in pH 1 shows the evolution 

of gas with a calculated turnover number of TON = 1.2 (Figure S12). The poor catalytic activity 

observed under this chemical oxidation is consistent with the limited catalytic current 

observed in the CV of Figure 7, which hardly exceeds the current intensity equivalent to one-

electron transfer.  

The Pourbaix diagram of complex 4II in Figure 7 is fully consistent with reported data15 and 

reveals that the [RuIII-OH]/[RuII-OH2] and [RuIV-O]/[RuIII-OH] redox processes each changes by 

approximately 59 mV per pH decade over a large pH range (11 > pH > 4). The oxidation of 4II 

at pH < 4 is not associated with the loss of a proton based on the pH-independent behavior 

of the [RuIII-OH2]/[RuII-OH2] redox couple. Consequently, the higher oxidation step is 

accompanied with the loss of two protons (i.e. [RuIV-O]/[RuIII-OH2]) in strongly acidic medium. 

This assignment is corroborated by the slope of -118 mV/pH below pH 4.0 for 4II. At pH > 11, 

the potentials for the RuIII/II become pH independent as a consequence of a loss of a proton 

from [RuII-OH2] with pKa ≈ 11. The [RuV-O]+/[RuIV-O] redox couple remains relatively constant 

at ∼1.41 V over the whole pH 0-13 range. The pKa
III value for the [RuIII-OH] derived from 4II is 

higher as compared to other Ru-aquo complexes with neutral ligand such as 

[Ru(trpy)(bpy)(OH2)]2+ (pKa
III = 4 and 1.7 respectively),42 mainly due to the presence of two 

negatively charged carboxylate groups around the ruthenium center, that makes the complex 

more basic in nature as expected.  
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Figure 7. Electrochemical characterization of 4II in pH 1 generated in situ from 5III,III after a CPE at 
Eapp = 0.05 V for 10 min. Top) CV and foot of the wave analysis (FOWA) of 4II. Asterisks indicate 
unidentified species. Bottom) Pourbaix diagram of 4II; black solid lines indicate the redox potentials 
for the different redox couples at varying pH, whereas the dashed vertical lines indicate pKa values. 
The zone of stability of the different species are indicated only with the Ru symbol, its oxidation 
state, and the degree of protonation of the aquo ligand. For instance, [RuIV-O] is used to indicate the 
zone of stability of complex 4IV [RuIV(O)(pdc-κ3-N1O2)(bpy)]. 

 

A “foot of the wave analysis” (FOWA) of the CV in Figure 7 allowed us to calculate the 

apparent rate constant for the water oxidation catalytic process. Assuming a unimolecular 

mechanism, this method developed by Sáveant and coworker43,44 consists of using the 

relationship in equation 5,  
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𝑖

𝑖𝑝
=

4∗2.24∗√
RT𝑘obs

F𝑣

1+exp (

F(𝐸P
Q⁄

0 −𝐸)

RT
)

                           (5) 

Where kobs is the unimolecular apparent rate constant or maximum turnover frequency 

(TOFmax), i is the current intensity in the presence of substrate, ip is the current intensity in the 

absence of substrate (we approximate this current to the current associated with the RuIII/II 

couple), E0
P/Q is the standard potential for the redox couple where the catalysis starts (1.41 V 

for 4II extracted from the DPVs in Figure S11), F is the faraday constant, v is the scan rate, and 

R is 8.314 J mol−1 K−1.  

From the plot of i/ip versus 1/{1 + exp[(F/RT)(EP/Q − E)]} shown in Figure 7 a TOFmax = 0.23 s−1 

is obtained. This value is comparable to the catalytic rates of relevant ruthenium-aquo 

complexes reported in the literature, that are believed to follow a mechanistic pathway where 

the O-O bond formation through a nucleophilic attack of a water molecule to the RuV=O 

species is the rate determining step of the reaction (Table 2, entries 1-6). Importantly, the 

overpotential of the catalytic reaction at pH 1, dictated by the E1/2 (RuV/IV), is only 240 mV, 

being one of the lowest ever reported in the literature. This is a consequence of the two 

carboxylate groups in the pdc ligand that provide high electron density to the ruthenium 

center, allowing to reach higher oxidation states within a narrow potential range. This record 

value of overpotential is only overcome by complex [RuIV(bda)(4-Pic)2(O)] in Table 1 and its 

derivatives (compare entries 8 and 9, where bda is [2,2'-bipyridine]-6,6'-dicarboxylato and 4-

Pic is 4-picoline), that also contain two carboxylate groups in the bda ligand framework, but 

also the possibility to reach seven coordination intermediate species that give extra-

stabilization of the high valent ruthenium intermediates involved in the catalysis.17 In 

contrast, catalyst 4II undergoes a catalytic pathway where only six coordinated species are 

involved, as suggested in a previous reported work.15  
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Table 2. Electrochemical and water oxidation catalytic data of 4II and selected complexes reported in the literature at pH 1.  

 

Entry Complex Na 
E1/2 (RuIII/II) 

(V) 

E1/2 (RuIV/III) 

(V) 

E1/2 (RuV/IV)  

(V) 

TOFb 

(s-1) 

TOFmax
c 

(s-1) 

142 [RuII(trpy)(bpy)(H2O)]2+ 0 1.06 1.22 1.92 0.01 d 

245 [RuII(bpc)(bpy)(H2O)]+ 1 0.81 1.29 1.57 0.16 d 

346 cis-[RuII(trpy)(qc)(H2O)]+ 1 0.82 1.36 1.71 d 6.8 

446 trans-[RuII(trpy)(qc)(H2O)]+ 1 0.67 1.20 1.62 0.68 4.2 

546 cis-[RuII(trpy)(2-pic)(H2O)]+ 1 0.86 1.31 1.67 0.11 0.3 

646 trans-[RuII(trpy)(2-pic)(H2O)]+ 1 0.76 1.09 1.60 0.24 1.2 

710 [RuIV(bda)(4-Pic)2(O)] 2 0.61 1.1 1.35 33e 11e 

8f [RuII(pdc)(bpy)(H2O)]+, 4II 2 0.52 1.19 1.41 0.01 0.23 

 

Na: number of carboxylate groups in the ligand framework, that are coordinated to the ruthenium center. bTOF: stands for initial Turn Over Frequency in s-1. These 
values are extracted for the catalytic reactions involving 1 mM Cat/100 mM CeIV in a 0.1 M triflic acid solution with a total volume of 2 mL. cTOFmax: stands for 
Maximum Turn Over Frequency reported in s-1; values extracted from Foot of the Wave Analysis of CV and DPV experiment in pH 1, dNot available. eA bimolecular 
mechanism involving two seven coordinated Ru=O species is ruling the water oxidation catalysis by [RuIV(bda)(4-Pic)2(O)]. fThis work.
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3B. 4. Conclusion 

In this work, the synthesis of two ruthenium complexes containing the meridional 2,6-

pyridinedicarboxylato (pdc) ligand [RuII(pdc-ҡ3-N1O2)(bpy)(DMSO)], 2II and {[RuIII(pdc-ҡ3-

N1O2)(bpy)]2(-O)}, 5III,III has been described. Both complexes have been fully characterized by 

spectroscopic, single crystal x-ray diffraction and electrochemical techniques.  

Complex 2II and its precursor [RuII(pdc-ҡ3-N1O2)(DMSO)2Cl]-, 1II show Ru-DMSO linkage 

isomerization process (Ru-S/Ru-O) upon oxidation. Cyclic voltammetry experiments allowed 

us to quantitatively describe all the thermodynamic and kinetic constants involved in this 

process for both compound and the values have been compared with related Ru-DMSO 

complexes reported in the literature. A general trend observed from this comparison is that 

the linkage isomerization constants at oxidation state RuII (KII
O→S) are all very high, in the order 

of 108-1012, indicating that RuII-O species was unstable and immediately isomerizes to the RuII-

S. 

The dimeric complex 5III,III is characterized by a bridging oxo group, whose Ru-O-Ru angle of 

126° determines a diamagnetic electronic configuration (π1
b)2(π2

b)2(π1
nb)2(π2

nb)2(π1*)(π2*)0, 

allowing to analyze this complex with NMR techniques. Upon reduction in pH 1 aqueous 

solution, compound 5III,III converts to the monomeric derivative 4II [RuII(pdc-ҡ3-

N1O2)(bpy)(OH2)], a Ru-aquo complex that is active for the water oxidation catalysis with an 

overpotential of only 240 mV in acidic pH due to the presence of two carboxylates groups 

connected to the ruthenium with TOFmax = 0.23 s-1.  
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3B. 6. Supporting Information 

 

Table of Contents 

NMR Spectroscopy and Mass Spectrometry 

 Figure S1-S3. NMR spectra of 2II  

 Figure S4-S6. NMR spectra of 5III,III  

 Figure S7. ESI-MS of complexes 2II and 5III,III   

Electrochemistry 

 Figure S8. Electrochemical data of 1II for linkage isomerization  

 Figure S9-S10. Electrochemical data of 2II for linkage isomerisation  

 Figure S11. DPV of [RuIII(pdc-ҡ3-N1O2)(bpy)OH2], 4II in different pHs  

 Figure S12. Manometry data for complex 4II  

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 3B 
 

116 

III 

a) 

 
b) 
 

Figure S1. NMR spectra (500 MHz, 298 K, [d2]-DCM) for complex 2II. a) 1H NMR and b) COSY. 
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a) 
 

b) 
 

Figure S2. NMR spectra (500 MHz, 298 K, [d2]-DCM) for complex 2II; a) NOESY and b) HSQC. 
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a) 
 

b) 
 

Figure S3. NMR spectra (500 MHz, 298 K, [d2]-DCM) for complex 2II; a) HMBC and b) 13C NMR (125 
MHz, 298 K, [d2]-DCM). 
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a) 
 

b) 

 
Figure S4. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex 5III,III; a) 1H NMR and b) COSY. 
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a) 
 

b) 
 

Figure S5. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex 5III,III; a) NOESY and b) HSQC. 
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a) 
 

b) 
 

Figure S6. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex 5III,III; a) HMBC and b) 13C NMR 
(125 MHz, 298 K, [d6]-DMSO). 
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a) b) 

 

 

c) d) 
  

Figure S7. (Left) Experimental ESI-MS of complexes a) 2II and c) 5III,III (Right) Simulated ESI-MS of 
complexes b) 2II and d) 5III,III.  
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Figure S8. CV experiments of 1 mM of 1II in DCM containing 0.1 M TBAH [n-Bu4NPF6] and plots for 

the calculation of kIII
O S and kIII S O. Top) Scan rate dependence of the CV after leaving the potential 

at -0.2 V for 2 minutes before the scan. Black: 50 mV/s, red: 70 mV/s, green: 100 mV/ s, blue: 200 
mV/s, turquoise: 300 mV/s, pink: 400 mV/s, yellow: 500 mV/s, dark green: 600 mV/s, dark blue: 700 
mV/s, purple: 800 mV/s and marron: 1000 mV/s. Middle) Anodic and cathodic CV scans after leaving 
the potential at 1.4 V (red) and -0.2 V (black) for 2 minutes at a scan rate of 200 mV/s used to 

calculate kIII
O S and kIII S O. Arrows indicate the initial scan direction. Bottom) Plot of ip,c1/ip,c2 vs. ν-

1, plus its linear fitting extrapolating ν to obtain KIII
(O S) for complex 1II (left) and Plot of ln(ia2/ν1/2) 

vs. ΔE/ν (with ΔE = 1 V) to obtain kf of KII
(O S) for complex 1II (right). 
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Figure S9. CV experiments of 1 mM of 2II in DCM containing 0.1 M TBAH [n-Bu4NPF6]. Top) left, CV 
at 100 mV scan rate. Right, CVs at different scan rates after leaving the potential at 0.14 V for 2 
minutes before the scan. Arrows indicate initial scan direction. Colour code denote scan rate (mV/s). 
Black: 50 mV/s, red: 70 mV/s, green: 100 mV/ s, blue: 200 mV/s, turquoise: 300 mV/s, pink: 400 
mV/s, yellow: 500 mV/s, dark green: 600 mV/s, dark blue: 700 mV/s, purple: 800 mV/s, marron: 900 
mV/s: and grassy green: 1000 mV/s. Bottom) CVs at different scan rates after leaving the potential 
at 1.44 V for 2 minutes before each scan. Black: 50 mV/s, red: 70 mV/s, green: 100 mV/ s, blue: 200 
mV/s, turquoise: 300 mV/s, pink: 400 mV/s, yellow: 500 mV/s, dark green: 600 mV/s, dark blue: 700 
mV/s, purple: 800 mV/s, marron: 900 mV/s: and grassy green: 1000 mV/s. Asterisks indicate side 
products formed after applying anodic potential (1.44 V), that do not appear when applying 
reductive potential (0.14 V). 
 

 

  

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-8

-4

0

4

8

 

 

i 
(

A
)

E (V) vs NHE

RuIII/II-O

RuIII/II-S

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-60

-40

-20

0

20

40

60

80

 

 

i 
(

A
)

E (V) vs NHE

50 mV/s

1000 mV/s

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-40

-20

0

20

40

*

 

 

 E (V) vs NHE

i 
(

A
)

ip,c2

ip,c1

ip,a2

ip,a1

*

50 mV/s

1000 mV/s

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 3B  
 

125 

III 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-20

-10

0

10

20

30

40

*  

 

i 
(

A
)

E (V) vs NHE

id= ia1

ik= ic1

*

 
  

0 4 8 12 16 20
0.8

1.2

1.6

2.0

2.4
y = 0.0672x + 0.9091

       R2 = 0.9495

1(V1s)

i p
,c

(S
)/

i p
,c

(O
)

 

0 4 8 12 16 20
-5.6

-5.2

-4.8

-4.4

-4.0

-3.6
ln

(i
a

2
/

1
/2

)

E/(s)  (E = 1V)

y = -0.0689x - 3.9257

       R2 = 0.9268

 

Figure S10. CV experiments of 1 mM of 2II in DCM containing 0.1 M TBAH [n-Bu4NPF6] and plots for 

the calculation of kIII
O S and kIII S O. Top) Anodic and cathodic CV scans after leaving the potential 

at 1.44 V (red) and 0.14 V (black) for 2 minutes at a scan rate of 200 mV/s used to calculate kIII
O S 

and kIII S O. Arrows indicate the initial scan direction. Bottom) Plot of ip,c1/ip,c2 vs. ν-1, plus its linear 

fitting extrapolating ν to obtain KIII
(O S) for complex 2II (left) and plot of ln(ia2/ν1/2) vs. ΔE/ν (with 

ΔE = 1 V) to obtain kf of KII
(O S) for complex 2II (right). 
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Figure S11. DPV of [RuIII(pdc-ҡ3-N1O2)(bpy)OH2], 4II with initial concentration 2 mM in pH 1. Asterisks 
indicate unidentified species. 

 

 

Figure S12. Gas evolution profile obtained for a water oxidation catalytic mixture containing 4II and 
CeIV as sacrificial electron acceptor. Experimental conditions: 1 mM of 4II and 100 mM of CeIV 
ammonium nitrate in 0.1 M triflic acid (2 mL total volume) at 25˚C. 
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We report the synthesis, characterization and water oxidation activity of Ru complexes 

containing the pyridine dicarboxylate ligand. Under high anodic potentials, they evolve 

towards the formation of Ru-aquo complexes that are powerful and rugged water oxidation 

catalysts. These complexes operate water oxidation catalysis with active species that 

involve six coordination and seven coordination for the Ru centers. The present work 

uncovers and highlights the complexity involved in water oxidation catalytic processes when 

transition metal complexes are exposed to high oxidation potentials needed for the 

catalysis. 
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Abstract 

The synthesis, purification and isolation of mononuclear Ru complexes containing the 

tridentate dianionic meridional ligand pyridyl-2,6-dicarboxylato (pdc2-) of general formula 

[RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III and [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II (bpy is 2,2’-bipyridne) are 

reported. These two complexes and their derivatives have been thoroughly characterized 

based on spectroscopic (UV-vis, NMR), electrochemical (CV, DPV and Coulometry) and three 

of them by single crystal X-ray diffraction techniques. Under a high anodic applied potential 

both complexes evolve towards the formation of Ru-aquo derivative species namely, 

[RuIII(pdc-ҡ3-N1O2)(bpy)(OH2)]+, 1-O and [RuIV(O)(pdc-ҡ2-N1O1)(bpy)2], 2-O. These two 

complexes are active catalysts for the oxidation of water to dioxygen reaction and their 

catalytic activity is analyzed based on electrochemical techniques. A TOFmax = 2.4-3.4 x103 s-1, 

has been calculated for 2-O. 

Graphical Abstract 

 

Keywords: Water oxidation, Redox properties, Transition metal complexes, Ru complexes, 

Redox catalysis 
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4. 1. Introduction 

Water oxidation (WO) catalysis is one of the key process involved in the light induced water 

splitting (WS) reaction. This process generates hydrogen as a clean fuel from an inexhaustible 

source of energy, sunlight.1 The overall reaction is depicted in Eq. 1, that can be split in the 

respective two half reactions in Eq. 2 (WO) and Eq. 3 for proton reduction (PR).2 Given the 

beneficial impact of such a sustainable process on our society, the development of efficient 

catalysts to perform the WO reaction has experienced increasing interest.3-5 Among the most 

efficient catalysts described to date, ruthenium coordination complexes containing flexible, 

adaptative, multidentate and equatorial (FAME) ligands have shown to perform remarkably 

well.3,6 Another key feature of the best performing WO catalysts is the presence of 

carboxylate groups in the coordination sphere of the metal center, providing stability to the 

metal high oxidation states and lowering the overpotential of the reaction.7-14 In addition, the 

presence of dangling carboxylate group, strategically situated so that it can intramolecularly 

accept a proton at the water nucleophilic attack stage, significantly reduces the energy of 

activation at this step and thus greatly increases reaction rate.3,7,15 

2H2O + 4h  2H2 + O2            (1) 

2H2O +  O2 + 4H+ + 4e-                (2) 

4H+ + 4e-   2H2                  (3)  

Ruthenium complexes have also been crucial to understand the mechanistic pathways 

responsible for the O-O16-18 bond formation and how the coordination sphere around the 

metal center influence these pathways. Other factors such as the pKa of ruthenium aquo (Ru-

OH2) intermediate species have also been shown to strongly impact the performance of the 

water oxidation catalysts.19,20 All these insights are of paramount importance because they 

have allowed the rational design of catalysts that nowadays can perform as fast as 7,900 s-1 

at neutral pH.15 

In this work, we explore the water oxidation catalytic activity of Ru complexes containing the 

meridional tridentate dianionic ligand 2,6-pyridinedicarboxylato (pdc2-), which can show 

different coordination modes.21 For instance, it can coordinate in a tridentate ҡ-N1O2 

meridional fashion and provide a strong sigma donation to the metal center21-23 but also it can 

bind in a bidentate ҡ-N1O1 mode leaving a pendant carboxylate.21 We report the preparation, 

purification and isolation of two new Ru complexes [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III and 

[RuII(pdc-ҡ2-N1O1)(bpy)2], 2II shown in Scheme 1, that in addition to the pdc2- ligand also 

contain one or two neutral bidentate 2,2’-bipyridne (bpy) ligands respectively. We have 

studied the spectroscopic, redox and structural properties of these two complexes and we 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 4 

131 

IV 

have also shown that they are precursors to Ru complexes capable of catalytically oxidize 

water to dioxygen. The activity of the catalysts are evaluated based on electrochemical 

techniques. 

4. 2. Experimental Section 

Materials 

RuCl3·×H2O was purchased from Alfa-Aesar. The precursor complex [Ru(DMSO)4Cl2] was 

prepared according to a reported procedure.24 2,6-pyridindicarboxylic acid (H2pdc) and other 

chemicals were obtained from Aldrich and used as received. Solvents were dried with a SPS® 

system and degassed by bubbling nitrogen before starting the reactions. High purity de-

ionized water used for the electrochemistry experiments was obtained by passing distilled 

water through a nanopure Mili-Q water purification system. For other spectroscopic and 

electrochemical studies, HPLC-grade solvents were used. 

Instrumentation and Methods 

A Bruker Avance 500 MHz were used to carry out NMR spectroscopy. ESI-Mass spectra were 

recorded using micromass Q-TOF mass spectrometer. Elemental analyses were carried out on 

Perkin-Elmer 240C elemental analyzer. The EPR experiments were carried out at 4 K on frozen 

solutions by using a X-band spectrometer (Bruker ELEXYS E580). The pH of the solutions was 

determined by a pHmeter (CRISON, Basic 20+) calibrated before measurements through 

standard solutions at pH 4.01, 7.00 and 9.21. Oxygen evolution was analyzed with a gas phase 

Clark type oxygen electrode (Unisense Ox-N needle microsensor) and calibrated by the 

addition of small quantities of oxygen (99%) at the end of the experiment. All electrochemical 

experiments were performed in an IJ-Cambria CHI-660 potentiostat using a three-electrode 

one compartment cell for cyclic voltammetry (CV) and differential pulse voltammetry (DPV) 

or two compartment cell for bulk electrolysis. E1/2 values reported in this work were estimated 

from CV experiments as the average of the oxidative and reductive peak potentials (Ep,a + 

Ep,c)/2 or from DPV. The Reference Electrode (RE) was Hg/Hg2SO4 (K2SO4 saturated) and 

potentials were converted to NHE by adding 0.65 V. Glassy carbon disk (ф = 0.3 cm, S = 0.07 

cm2), Pt disk and Hg/Hg2SO4 (K2SO4 saturated) were used as Working Electrode (WE), Counter 

Electrode (CE) and Reference Electrode (RE) respectively, unless explicitly mentioned. Glassy 

carbon electrodes were polished with 0.05 μm alumina (Al2O3) and rinsed with water. CVs and 

DPVs were iR compensated by the potentiostat in all the measurements. CVs were recorded 

at 100 mV·s−1 scan rate. DPV parameters were ΔE = 4 mV, Amplitude = 50 mV, Pulse width = 
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0.05 s, Sampling width = 0.0167 s, Pulse period = 0.5 s. The complexes were dissolved in 

dichloromethane or acetone containing [(n-Bu)4N][PF6] (0.1 M) as supporting electrolyte. In 

aqueous solution the electrochemical experiments were carried out in I = 0.1 M phosphate 

buffer solutions with desired pH. The Pourbaix diagrams were built using the following 

buffers: sodium dihydrogen phosphate/phosphoric acid up to pH = 4 (pKa = 2.12), sodium 

hydrogen phosphate/ sodium dihydrogen phosphate up to pH = 9 (pKa = 7.67), sodium 

hydrogen phosphate/sodium phosphate up to pH = 13 (pKa = 12.12) and also 0.1 M CF3SO3H 

for pH=1.0. For routine bulk electrolysis experiments in figure 4C, a Pt grid was used as a WE, 

another Pt grid as a CE and a Hg/Hg2SO4 (K2SO4 saturated) as a RE. For the bulk electrolysis 

experiment for oxygen detection, a glassy carbon rod (S = 8.2 cm2) was used as a working 

electrode and Ag/AgCl (sat. KCl) as a RE.  

For Figure S11, to generate [RuIII(pdc-ҡ3-N1O2)(bpy)(OH2)]+, 1-O complex from 1 mM of 

[RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III bulk electrolysis experiment was carried out in three-electrode 

one compartment cell  for 5 min at Eapp = 1.6 V without stirring. A glassy carbon disk was used 

as a WE, Pt disk as a CE and a Hg/Hg2SO4 (K2SO4 saturated) as a RE. For Figure S15, to see the 

coordination of DMSO, [RuII(pdc-ҡ2-N1O1)(bpy)(dmso)Cl], to the complex [RuIII(pdc-ҡ3-

N1O2)(bpy)Cl], 1III bulk electrolysis experiment was carried out in three-electrode one 

compartment cell for 2 min at Eapp = 0 V without stirring. A glassy carbon disk was used as a 

WE, Pt disk as a CE and a Hg/Hg2SO4 (K2SO4 saturated) as a RE. iR compensation by the 

potentiostat was not applied in this technique. 

Single Crystal X-Ray Structure Determinations 

Crystal Preparation: Crystals of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III, was obtained from reaction in 

methanol solvent. [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II and [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]2+,  2III were 

grown by slow evaporation of methanol:hexane and water:acetonitrile respectively. The 

measured crystals were prepared under inert conditions immersed in perfluoropolyether as 

protecting oil for manipulation. 

Data Collection: Crystal structure determination for compounds 1III, 2II and 2III were carried 

out using a Rigaku diffractometer equipped with a Pilatus 200K area detector, a Rigaku 

MicroMax-007HF microfocus rotating anode with MoK radiation, Confocal Max Flux optics 

and an Oxford Cryosystems low temperature device Cryostream 700 plus (T = -173 °C). Full-

sphere data collection was used with  and  scans. Programs used: Data collection and 
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reduction with CrysAlisPro25 V/.60A and absorption correction with Scale3 Abspack scaling 

algorithm.26 

Structure Solution and Refinement: Crystal structure solution was achieved using the 

computer program SHELXT.27 Visualization was performed with the program SHELXle.28 

Missing atoms were subsequently located from difference Fourier synthesis and added to the 

atom list. Least-squares refinement on F2 using all measured intensities was carried out using 

the program SHELXL 2015.29 All non-hydrogen atoms were refined including anisotropic 

displacement parameters. 

Comments to the Structures: [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III: The asymmetric unit contains 

one molecule of the metal complex and one methanol molecule.  [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II 

: The asymmetric unit contains one molecule of the metal complex and two molecules of 

water. [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]2+,  2III: The asymmetric unit contains one molecule of the 

metal complex, 1 ½ PF6-anions, 1.75 molecules of acetonitrile and 0.25 molecules of 

dichloromethane. In this metal complex one of the carboxylates is protonated with 0.5 

occupancy (although hydrogen atoms can only be localized with difficulties, the distances 

indicate unambiguously that one of the oxygen atoms is protonated). In one of the solvent 

position, an acetonitrile and a dichloromethane molecule are sharing its position by disorder 

with a ratio of respectively 75:25. 

Synthesis of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III. In a 100 mL two neck round-bottom flask, 

RuCl3.xH2O (262 mg, ca. 1 mmol) and LiCl (42 mg, 1mmol) were dissolved in 20 mL of degassed 

methanol. Then, a 10 mL degassed aqueous solution of 2,6-pyridine dicarboxylic acid (167 mg, 

1 mmol) and sodium carbonate (106 mg, 1mmol) were added slowly to the reaction mixture. 

After 20 minutes of stirring at room temperature, 10 mL of a degassed methanol solution of 

2,2´-bipyridine (156 mg, 1 mmol) was added slowly and refluxed for 4 h under N2 atmosphere. 

The resulting orange-red crystalline solid was filtered and washed with methanol and diethyl 

ether (320 mg, 0.70 mmol, Yield: 70 %). Single crystals were selected from this batch to 

perform single crystal X-ray diffraction analysis. Anal. Calc. for (C17H11ClN3O4Ru∙CH3OH): C, 

44.13%; H, 3.09%; N, 8.58%; S. Found: C, 43.95%; H, 2.76%; N, 8.58%. ESI+-HRMS (MeOH) m/z 

calc. for [M+Na]+ : 480.9406, found m/z: 480.9376.  

Synthesis of [RuII(pdc-ҡ2-N1O1)(bpy)(DMSO)Cl] in situ. In a NMR tube or in a UV-Vis 

spectroscopy cell, 20 L of triethylamine were added to a solution of 0.5 mL [RuIII(ҡ3-

pdc)(bpy)Cl] in [d6]-DMSO for the NMR and DMSO for the UV-vis. 1H-NMR (500 MHz, [d6]-

DMSO + triethylamine) δ: 9.31 (d, J = 4.9 Hz, 1H), 8.48 (d, J = 5.05 Hz, 1H), 8.29 (t, J = 8.35 Hz, 
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2H), 7.88 (t, J = 7.55 Hz, 1H), 7.81 (m, 3H), 7.38 (dd, J = 12.2 Hz and 5.05 Hz, 2H), 7.05 (dd, J = 

7.1 Hz and 2.1 Hz, 1H). 13C-NMR (125 MHz, [d6]-DMSO + triethylamine) δ: 172.3, 167.8, 164.3, 

161.4, 161.2, 155.4, 152.9, 150.3, 137.2, 134.9, 134.7, 124.5, 123.8, 123.7, 122.9, 121.9 and 

121.4. 

Synthesis of [RuIII(pdc-ҡ3-N1O2)(bpy)(OH2)] in situ, 1-O. In a 100 mL two neck round-bottom 

flask, [RuIII(pdc-ҡ3-N1O2)(bpy)Cl] (100 mg, 0.21 mmol) and AgClO4 (50 mg, 0.24 mmol) in 40 

mL of a mixture of acetone: water (75:25) were heated at reflux under N2 atmosphere for 3 

h. The color of the solution changed from orange red to green. A CV analysis of the reaction 

crude mixture shows almost complete conversion of the starting material to a new species 

with a RuIII/II couple consistent with the corresponding Ru-OH2 complex (Figure S14 in the 

supporting information). After several attempts to purify this compound, it was not possible 

to isolate it in a pure form due to the formation of higher nuclearity oxo-bridged species as 

suggested by UV-Vis spectroscopy, which showed typical absorptions in the range of 650-800 

nm. 

Synthesis of [RuII((pdc-ҡ2-N1O1)(bpy)2]·3H2O, 2II. In a 100 mL two neck round bottom flask 

[RuII(pdc-ҡ3-N1O2)(Cl)(DMSO)2]21 (560 mg, 1 mmol) and 2,2´-bipyridine (312 mg, 2 mmol) were 

dissolved in degassed methanol (40 mL) and refluxed for 4 h. The mixture was then 

evaporated to dryness and the resulting solid dissolved in CH2Cl2 and purified by column 

chromatography with neutral alumina using a mixture of CH2Cl2/MeOH (100:5, v/v) as eluent. 

A red color fraction was collected giving a solid identified as the product (350 mg, 0.60 mmol, 

Yield: 60 %). Single crystals were grown by slow evaporation of the complex in a 1:1 mixture 

of methanol:hexane. Anal. Calc. for (C27H19N5O4Ru ∙3H2O): C, 51.31%; H, 3.63%; N, 11.02%. 

Found: C, 51.26%; H, 3.98%; N, 11.07%. 1H-NMR (500 MHz, [d4]-MeOD) δ: 8.67 (d, J = 5.7 Hz, 

1H), 8.60 (d, J = 5.6 Hz, 1H), 8.58 (d, J = 8.1 Hz, 1H), 8.56 (d, J = 8.2 Hz, 1H), 8.48 (d, J = 8.1 Hz, 

1H), 8.33 (d, J = 8 Hz, 1H), 8.09-8.06 (m, 3H), 7.97 (t, J = 7.7 Hz, 1H). 7.85 (td, J = 1.4 and 7.9 

Hz, 1H), 7.75-7.70 (m, 2H ), 7.62 (t, J = 6.5 Hz, 1H ), 7.56 (t, J = 6.4 Hz, 1H), 7.39 (d, J = 5.1 Hz, 

1H), 7.34 (dd, J = 1.5 and 7.7 Hz, 1H), 7.21 (t, J = 6.6 Hz, 1H), 7.06 (t, J = 6.7 Hz, 1H). 13C-NMR 

(125 MHz, [d4]-MeOD) δ: 175.6, 170.7, 165.8, 160.9, 160.4, 160.0, 159.4, 155.5, 154.8, 152.9, 

152.5, 150.6, 139.2, 137.8, 137.7, 137.5, 136.3, 127.9, 127.4, 127.4, 126.6, 126.4, 126.4, 124.5, 

124.3, 124.3 and 123.8. (ESI+-HRMS; MeOH) m/z calc. for [M]+: 580.0585, found m/z: 

580.0563. 

Synthesis of [RuIII(Hpdc-ҡ2-N1O1)(bpy)2](PF6)2, 2III. In a 25 mL round bottom flask, a solution 

of cerium(IV) ammonium nitrate (21 mM, 1.05 eq, 1 mL in pH 1) was added dropwise to a 
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solution of [RuII(pdc-ҡ2-N1O1)(bpy)2] in water (2.0 mM, 10 mL) and the mixture was stirred at 

room temperature for 15 minutes. A green color precipitate was obtained when a saturated 

aqueous solution of KPF6 was added. The solid was filtered and washed with water, methanol 

and diethyl ether (10 mg, 0.0135 mmol, Yield: 65%). Single crystals were obtained from slow 

evaporation of a solution in a mixture of water and acetonitrile. 

Synthesis of [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV. Inside a NMR tube, a solution of cerium(IV) 

ammonium nitrate (42 mM, 2.1 eq, 0.1 mL in pD 1) was added dropwise to a solution of 

[RuII(pdc-ҡ2-N1O1)(bpy)2] in deuterated water (2 mM, 1.0 mL) and the mixture was stirred for 

5 minutes. 1H-NMR (500 MHz, [d2]-D2O) δ: 8.85 (t, J = 7.7 Hz, 1H), 8.77 (d, J = 8.1 Hz, 2H), 8.72 

(d, J = 8.2 Hz, 2H), 8.59 (d, J = 7.7 Hz, 2H), 8.52 (t, J = 7.9 Hz, 2H), 8.31 (t, J = 7.9 Hz, 2H), 7.87-

7.83 (m, 4H), 7.64 (t, J = 6.8 Hz, 2H). 7.58 (t, J = 6.7 Hz, 2H). 13C-NMR (125 MHz, [d2]-D2O) δ: 

168.1, 155.1, 151.5, 149.9, 148.9, 147.7, 147.1, 144.8, 142.9, 133.9, 129.9, 128.5, 127.2 and 

126.6.  
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4. 3. Results and Discussion 

4. 3. 1. Synthesis, Spectroscopic and Structural Characterization 

The complex 1III was synthesized by slow addition of an aqueous solution of sodium 2,6-

pyridindicarboxylate to a MeOH solution of the ruthenium precursor RuCl3·×H2O followed by 

addition of 1 equivalent of bpy also in MeOH as indicated in Scheme 1. The final solution was 

refluxed for 4 h and on cooling an orange-red crystalline solid of the desired complex 

precipitates with 70% yield. Crystals suitable for single crystal x-ray diffraction studies were 

obtained and its molecular structure is shown in Figure 1 A.  

 

Scheme 1. Synthetic scheme and labelling. 

It has a highly distorted octahedral geometry due to the strain imposed by the pdc2- 

meridional ligand with O-Ru-O angle of 157o as opposed to the 180o expected for an ideal 

octahedron. It shows similar bond distances and angles to those reported for related 

complexes.21-23 

Reduction of 1III in DMSO with NEt3, generates a new complex, [RuII(pdc-ҡ2-

N1O1)(bpy)(DMSO)Cl]-, where the pdc2- changes its coordination mode from tridentate ҡ-N1O2 

to bidentate ҡ-N1O1 as evidenced by NMR spectroscopy and Cyclic Voltammetry (CV) 

experiments (Figures S1 and S15 in the SI). As a consequence of the DMSO coordination the 

complex loses its Cs symmetry and thus all pdc2- proton resonances are different. 
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On the other hand, complex 2II was prepared in 60% yield by reacting the ruthenium precursor 

[RuII(ҡ3-N1O2)(Cl)(DMSO)2]-21 dissolved in MeOH with 2 equivalents of bpy ligand under reflux. 

The 1H NMR spectrum of the product shows the non-symmetric nature of the complex with 

two sets of resonances for the bpy ligands as well as the corresponding non symmetric 

resonances for the pdc2- protons, in agreement with the bidentate ҡ-N1O1 coordination mode 

of the latter (Figure 2 and Figures S3-S4 in the SI). Upon oxidation with 1 equivalent of 

cerium(IV) ammonium nitrate (CeIV), the corresponding RuIII derivative, [RuIII(Hpdc-ҡ2-

N1O1)(bpy)2]2+, 2III was isolated. 

Single crystals of both the RuII and RuIII species were obtained and their ORTEP structures are 

shown in Figures 1B and 1C, respectively. Complex 2II displays the typical slightly distorted 

octahedral geometry around the ruthenium, as expected for low-spin d6 RuII ion.30-32 The bpy 

ligands occupy both axial and equatorial positions assuming the ҡ-N1O1-pdc2- ligands binds in 

the equatorial plane, with a dangling carboxylate not bonded to Ru. 

A) B) C) 

 

 
 

Figure 1. ORTEP plots at 50% probability for [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III (A), [RuII(pdc-ҡ2-
N1O1)(bpy)2], 2II (B) and [RuII(Hpdc-ҡ2-N1O1)(bpy)2]2+ , 2III (C). 

 

The one electron oxidized RuIII, 2III shows a very similar structure with the Hpdc- ligand also 

coordinating in a bidentate ҡ -N1O1 mode but with the nonbonding carboxylate protonated. 

The Ru-O bond distance of the RuIII compound is slightly shorter than that of its parent RuII 

complex, average 2.00 (1) Å vs. 2.08 (1) Å, respectively, as expected. 

The addition of two equivalents of CeIV to a solution of 2II generates the RuIV derivative, 

[RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV which slowly converts to the RuIII compound over time as 

monitored by NMR spectroscopy (see Figures S7 in the SI), hindering the formation of high 

quality crystals suitable for single crystal X-ray diffraction. However, it was possible to fully 

characterize the RuIV species by NMR and UV-Vis spectroscopy (Figure 2, Figures S6 and S9 in 

the SI). All the analysis are consistent with a diamagnetic compound, corresponding to a low-
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spin d4 RuIV center with a (dxz ,dyz)4 electronic configuration and pentagonal bipyramidal 

geometry.15,22 [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+ shows less number of resonances in the 1H NMR 

spectrum compared to its RuII derivative [RuII(pdc-ҡ2-N1O1)(bpy)2] in agreement to the 

symmetry increase (Figure 2). In addition, they are shifted to lower field in accordance with 

the higher oxidation state of the Ru center. 

 

Figure 2. 1H NMR (500 MHz, 298 K, [d2]-D2O) of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II (black, bottom) and 
[RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV (magenta, top). The Crystal Field Splitting of d-orbitals and electronic 
configuration under 6-coordination-octahedral (Oh) or 7-coordinated pentagonal bipyramidal (D5h) 
geometries are indicated next to each spectrum. 

 

Complex 2III is low spin d5 with an unpaired electron. As a consequence, all resonances in the 

1H NMR spectrum are broadened and highly shifted with regard to the RuII analogue (Figure 

S5a in the SI). On the other hand, it exhibits typical EPR features of unsymmetrical RuIII 

complexes with gx = 2.69, gy = 2.42, gz = 2.04 (Figure S5c in the SI). The large g anisotropy and 

the deviation of the average g factor from the free electron value of 2.0023 point to significant 

contributions from the heavy metal with its high spin−orbit coupling constant to the spin 

distribution.33,34 The RuIII chlorido complex 1III also shows a characteristic signal of the 

corresponding unpaired electron, but with a broader signature (Figure S5e in the SI).31 Both 

RuII and RuIV derivatives, 2II and 2IV, are EPR-silent as expected for complexes with no unpaired 

electrons.  

The UV−vis spectra of complexes 2II, 2III and 2IV were recorded in 0.1 M triflic acid aqueous 

solutions (pH 1.0) (Figure S9 in the supporting information). Typical Ru−bpy metal to ligand 

charge transfer (MLCT) bands are observed in the 380−550 nm range for the RuII compound, 
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where as a single transition at 360 nm is observed in that range of the spectrum for RuIII, which 

is essentially featureless for RuIV. Analogous spectra could be obtained by spectrophotometric 

redox titration of 2II with CeIV, exhibiting isosbestic points as displayed in the Figure S10 in the 

SI. 

4. 3. 2. Electrochemical Characterization and Catalysis 

The electrochemical behavior of complexes 1III and 2II were analyzed by cyclic voltammetry 

(CV), differential pulse voltammetry (DPV) and bulk electrolysis experiments in 

dichloromethane (DCM) containing 0.1 M of [(n-Bu)4N][PF6] (TBAH) and 0.1 M ionic strength 

buffered aqueous solutions at different pHs. All redox potentials reported in this work are 

referred to the NHE electrode. 

In DCM complex 1III shows a reversible redox wave at E1/2 = 0.31 V (ΔE = 75 mV) attributed to 

the RuIII/II couple (Figure 3, left). On the other hand, complex 2II shows two chemically 

reversible and electrochemically quasi-reversible waves at E1/2 = 1.05 V (ΔE = 62 mV) and E1/2 

= 1.32 V (ΔE = 120 mV) attributed to the RuIII/II and RuIV/III couples respectively (Figure 3, 

right).35 The relatively easy access to the IV/III redox potential at only 270 mV above the III/II 

is a clear indication of the 7 coordinated nature of the oxidized compound, as already been 

proven by NMR spectroscopy (Figure 2). 

  

Figure 3. Cyclic voltammetry experiments in dichloromethane-0.1 M [(n-Bu)4N][PF6] of a 1 mM 
solution  for [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III (left) and [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II (right). WE: glassy 
carbon disk; CE: platinum disk; RE: Hg/Hg2SO4. Scan rate = 100 mV/s. 
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The chlorido complex 1III in aqueous solution at a pH 7 phosphate buffer (phbf), shows a RuIII/II 

redox wave at E1/2 = 0.44 V (ΔE = 65 mV) (Figure S11 in the SI) and a second wave at 1.45 V 

which is chemically irreversible. It thus indicates that RuIV-Cl complex is not stable and 

undergoes oxidative Ru-Cl degradation to form most likely Cl2 (g) as has been proposed for 

related complexes. This produces the in situ generation of the Ru-OH2 complex, [RuII(pdc-ҡ3-

N1O2)(bpy)(H2O)] that can act as a water oxidation catalyst. Indeed, a bulk electrolysis 

experiments of 1III at 1.6 V for 5 minutes at pH 7 involved a charge of 7.2 mC, which implies 

0.05 mols of electrons per mol of 1III. The shape of the current vs. time is in agreement with 

the in situ generation of a water oxidation catalyst (Figure S11a in the SI). A CV and DPV 

analysis of the solution after the bulk electrolysis experiment reveals the generation of three 

new waves at E = 0.27 V, E = 0.80 V and E = 1.41 V that can be tentatively assigned to the III/II, 

IV/III and V/IV couples of [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)] respectively (Figures S11b and 11c in 

the SI). The latter one being responsible for the catalytic phenomenon. 

On the other hand, the CV of complex 2II at pH 7 shows two pH independent redox waves at 

E1/2 = 0.89 V (ΔE = 90 mV) and 1.23 V (ΔE = 70 mV) associated with the III/II and IV/III couples 

as can be observed in Figure 4A. Figure 4B shows the effect of carrying out 100 repetitive CV 

within the potential range 0-1.6 V at the same pH. As can be observed in the inset as the 

number of cycles increases new small waves appear that are indicated with blue arrows 

together with the presence of a large electrocatalytic wave at 1.4-1.6 V. 

In order to get more insights into the new species formed upon cycling, bulk electrolysis 

experiments at Eapp = 1.45 V for 2 h were conducted (Figure 4C) which involved a charge of 

7.93 C and 4.8 mols of electrons per mol of initial RuII clearly indicating the presence of an 

electrocalytic process. The solution generated under these conditions was analyzed by DPV 

experiments that are shown in Figure 4D. The DPV shows that the waves associated with the 

initial complex have drastically decreased and a set of new waves appear at E = 0.25 V, E = 

0.46 V, E = 0.73 V and E = 1.03 V. Further as shown by DPV at different pH all these waves are 

pH dependent and therefore involving proton coupled electron transfer (PCET) processes that 

in turn indicate the presence of Ru-OH2 groups in the new species generated (Figure S13 in 

the SI). Finally, a very large and intense wave can be observed at approximately 1.35 V 

attributed to the catalytic oxidation of water to dioxygen. 
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A) B) 

  

C) D) 

  

 

Figure 4. A, CV of a pH 7 phbf solution of 1 mM of 2II. B, 100 consecutive CV cycles. Inset, enlargement 
of the 0-0.8 V range. The blue arrows indicate small new waves growing. C, bulk electrolysis of a pH 
8 phbf solution of 2 mM of 2II at Eapp = 1.45 V for 2 h. D, DPV of a pH 7 phbf solution of 2 mM of 2II 
(black) and of the solution obtained after the bulk electrolysis in C adjusted to pH 7 (red). 

 

It is important to note that waves at 0.25 and 0.73 V assigned to [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)], 

1-O, species generated from the coulometry of 1III coincide with those generated by the 

coulometry of 2II, meaning that one of the transformation processes involves bpy ligand loss 

as indicated in path A of Scheme 2. Further by checking the potential as a function of pH we 

were able to generate a Pourbaix diagram that is presented in the Figure 5A. The pKa 

calculated from the slope changes are 4 for RuII and 11 for RuIII and are gathered in Table 1 

together with similar data for related complexes previously described in the literature. 

The strong sigma donating effect of the pyridyldicarboxylato ligand can be clearly observed 

on the increase of pKa’s (10  11 (II); 2  4 (III)) and reduction of the V/IV redox couples 

when comparing for instance with [Ru(trpy)(bpy)(H2O)]2+ (entry 1).36   
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A) 

 

B) 

 

Figure 5. Pourbaix diagrams of [Ru-OH2] species derived from bulk electrolysis of 2II. A) 1-O and B) 
2-O. The black solid lines indicate the redox potentials for the different redox couples, whereas the 
dashed vertical lines indicate the pKa. The zone of stability of the different species is indicated only 
with the Ru symbol, its oxidation state, and its degree of protonation of the aquo ligand. For 
instance, “RuV-O” is used to indicate the zone of stability of [RuV(O)(pdc-κ3-N1O2)(bpy)]+ for the 1-O 
derived species (A) and [RuV(O)(pdc-ҡ2-N1O1)(bpy)2]+ for the 2-O derived species (B). 
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On the other hand, the waves at 0.46 and 1.03 V are assigned to a new species where one of 

the carboxylate arms of pdc2- is substituted by an oxo group generating the seven coordinated 

species [RuIV(O)(pdc-ҡ2-N1O1)(bpy)2], 2-O (Scheme 2, path B). 

The Pourbaix diagram obtained for this complex is presented in Figure 5B. Here the III/II redox 

potential is significantly higher than for [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)], 1-O, since in the 

present complex the pdc2- ligand acts in a -N1O1 mode and thus only one of the two anionic 

charges is directly felt by the Ru center. In sharp contrast the V/IV redox potentials are similar 

which is due to the cancelling effect of CN7 vs. CN6 1 vs. 2 anionic charges, a phenomenon 

that has been previously described for related Ru-aquo complexes.19,37,38 

 

Scheme 2. Generation of water oxidation catalytically active species from 2II. 

The water oxidation catalytic cycles proposed for 1-O and 2-O are presented in Scheme 2. The 

main differentiating feature for the two cycles is that for 2-O the high oxidation state species 

are CN7 and a dangling carboxylate is ready for an intramolecular proton transfer at the O-O 

bond formation step that is generally the rds, and thus radically decreases the energy of 

activation at this step as has been previously shown for related complexes. 
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Figure 6. CV of a mixture of 0.92 mM of [RuII(pdc-ҡ3-N1O2)(bpy)(H2O)], 1-O and 1.08 mM of 
[RuIV(O)(pdc-ҡ2-N1O1)(bpy)2], 2-O at pH 7.0 phbf. Inset: FOWA plot of the catalytic current. The gray 
line represents the experimental data used for the FOWA analysis, and the black solid line shows the 
experimental data used for the extraction of TOFmax. 

 

Indeed, a FOWA analysis 39-41 of the catalytic current (see Figure 6) for the mixture of 1-O and 

2-O gives a TOFmax  value for the catalytic process of 2.4-3.4 x 103 s-1, for 2-O assuming that 

the initial current at the foot is solely due to the fastest WOC. 

Finally, an analysis of the gas phase of a bulk electrolysis experiments of 1 mM of 2II at an 

applied potential of 1.45 V for 1.2 h (4.25 C; 15 mols of electrons/mols of 2II; 3.5 turnover 

numbers) confirms the evolution of O2 gas with a Faradaic efficiency of 90%. (see Figure S16 

in the SI). 
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Table1. Thermodynamic and catalytic data for Ru-pdc and for related Ru complexes described in the literature at pH = 7.0. 

  E1/2 (V) vs NHE  pKa  

Entry Complexesa V/IV IV/III III/II bE RuII-OH2 RuIII-OH2 RuIV-OH TOFc,d 

136 [Ru(trpy)(bpy)(H2O)]2+ 1.86 0.83 0.72 110 9.8 1.7 - 1.5× 101 

242 cis-[Ru(trpy)(pic)(H2O)]1+ - 0.80 0.62 180 10.0 3.7 - - 

342 trans-[Ru(trpy)(pic)(H2O)]1+ - 0.69 0.45 240 10 2.0 - - 

443 out-[Ru(Hbpp)(trpy)(H2O)]2+ - 0.85 0.52 370 11.1 2.8 - - 

544 [Ru(bpc)(bpy)(H2O)]1+ - - 0.56 - 10.6 2.6 - 1.6× 102 

6e [Ru(pdc)(bpy)(H2O)]1+ 1.41 0.73 0.25 480 11 4 -  

745 Ru(bda)(isq)2(H2O)] 1.11 0.88 0.55 330 5.5 12.9 - 3.0× 102 

815 [Ru(tda)(py)2OH] 1.43 0.87 0.70 170 - - RuIV (5.5) 8.0× 103 

9e [Ru(pdc)(bpy)2OH] 1.47 1.03 0.46 570 - - RuIV (5.0) 3.4× 103 

 

aLigand abbreviations: trpy = 2,2’:6’,2”-terpyridine, bpy = 2,2’-bipyridine, pic = 2-picolinate, Hbpp = 3,5-bis(2-pyridyl)pyrazole, bpc = 2,2′-bipyridine-6-

carboxylate, pdc = 2,6-pyridinedicarboxylate, bda = 2,2’-bipyridine-6,6’-dicarboxylate, tda = 2,2′:6′,2″-terpyridine-6,6″-dicarboxylate, py = pyridine.  bE= 
E(IV/III)-E(III/II). cTOF stands for initial Turn Over Frequencies in cycles per second. These values are extracted for the catalytic reactions involving 1.0 mM 
Cat/100 mM CeIV in a 0.1 M triflic acid solution with a total volume of 2 mL (entry 1, 5 and 7). dTOF stands for Maximum Turn Over Frequencies per second. This 
value has been extracted from Foot of the Wave Analysis of CV and DPV experiment in pH7 (entry 8 and 9). e this work. 
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4. 4. Conclusion 

In conclusion, two new Ru complexes [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III, [RuII(pdc-ҡ2-N1O1)(bpy)2], 

2II and their reduced and oxidized species are reported. Under high anodic potentials they 

evolve towards the formation of Ru-aquo complexes [RuIII(pdc-ҡ3-N1O2)(bpy)(OH2)]+, 1-O and 

[RuIV(O)(pdc-ҡ2-N1O1)(bpy)2], 2-O that are powerful and rugged water oxidation catalysts. 

These two complexes operate water oxidation catalysis with active species that involve six 

coordination for the Ru center in 1-O and seven coordination in 2-O. The present work 

uncovers and highlights the complexity involved in water oxidation catalytic processes when 

transition metal complexes are exposed to high oxidation potentials needed for water 

oxidation catalysis. 
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4. 6. Supporting Information 

Table of Contents 

NMR, UV-Vis and EPR spectroscopy  

 Figure S1-S2. NMR spectra of [RuII(pdc-ҡ2-N1O1)(bpy)(DMSO)Cl]-  

 Figure S3-S4. NMR spectra [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II  

 Figure S5. 1H NMR and EPR spectra of [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]2+, 2III  

 Figure S6. NMR spectra of [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV  

 Figure S7. NMR spectra of [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV at different time   

 Figure S8. UV-Vis spectra of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III and [RuII(pdc-ҡ2-

N1O1)(bpy)(DMSO)Cl]- 

 

 Figure S9. UV-Vis spectra of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II; [RuIII(Hpdc-ҡ2-

N1O1)(bpy)2]+, 2III ; and [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+,2IV 

 

 Figure S10. Redox titration of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II  

 

Electrochemistry and electrocatalysis 

 

 Figure S11. Bulk electrolysis, CV and DPV of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III in 

pH 7 phosphate buffer 

 

 Figure S12. DPV of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III and active species 

generated from [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II in pH 7 phosphate buffer 

 

 Figure S13. DPVs of the active species generated from [RuII(pdc-ҡ2-

N1O1)(bpy)2], 2II in different pH 

 

 Figure S14. CV of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III and [RuIII(pdc-ҡ3-

N1O2)(bpy)(OH2)]+ in acetone 

 

 Figure S15. CV of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III in dichloromethane and 

dimethyl sulfoxide solvent mixture 

 

 Figure S16. Oxygen evolution profile  
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c) 

 
Figure S1. a) 1H NMR spectra (500 MHz, 298 K, [d6]-DMSO) of [RuII(pdc-ҡ2-N1O1)(bpy)(DMSO)Cl]- , 1III  
by in situ reduction with excess of triethylamine; b) COSY and c) NOESY.  
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c)  

 
Figure S2. a) 13C NMR spectra (125 MHz, 298 K, [d6]-DMSO) of [RuII(pdc-ҡ2-N1O1)(bpy)(DMSO)Cl]- , 1III  
by in situ reduction with excess of triethylamine; b) HSQC and c) HMBC (500 MHz, 298 K, [d6]-DMSO). 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 4 
 

154 

IV 

a) 

 
 
b)  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 4  
 

155 

IV 

c)  

 
Figure S3. a) 1H NMR spectrum (500 MHz, 298 K, [d4]-MeOD) of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II; b) COSY 
and c) NOESY. Triangles and stars indicate set of bpy ligands.  
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c)  

 
Figure S4. a) 13C NMR spectra (125 MHz, 298 K, [d4]-MeOD) of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II; b) HSQC 
and c) HMBC (500 MHz, 298 K, [d4]-MeOD).  
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Figure S5. a) 1H NMR spectrum (500 MHz, 298 K, [d2]-D2O) of [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]+, 2III; b and 
c) ChemDraw structure and EPR spectrum of [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]+, 2III measured at 4 K. The 
compound was prepared in situ by adding one equivalent of CeIV to a solution of [RuII(pdc-ҡ2-
N1O1)(bpy)2], 2II in water. d) and e) ChemDraw structure and EPR spectrum of [RuIII(pdc-ҡ3-
N1O2)(bpy)Cl], 1III in DMSO solvent measured at 4 K. 
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Figure S6. NMR data collected with a 500 MHz spectrometer at 298 K in [d2]-D2O of complex 
[RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV, prepared by adding 2 equivalents of Ce(IV) in pD 1 to a solution of 
[RuII(pdc-ҡ2-N1O1)(bpy)2], 2II in [d2]-D2O: a) COSY; b) NOESY; c) HSQC; d) HMBC and e) 13C NMR (125 
MHz, 298 K, [d2]-D2O).  

 
 

 
 
Figure S7. 1H NMR spectra (500 MHz, 298 K, [d2]-D2O) of [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+,2IV prepared 
by adding 2 equivalents of CeIV in pD 1 to a solution of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2III in [d2]-D2O. As 
prepared (black), after 30 min (red) and after 60 min (blue). 
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Figure S8. UV−vis spectra of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III (blue) and [RuII(pdc-ҡ2-
N1O1)(bpy)(DMSO)Cl]- (black) in dimethyl sulfoxide. [RuII(pdc-ҡ2-N1O1)(bpy)(DMSO)Cl]- was prepared 
from [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III by in situ reduction with excess of triethylamine. 

 

Figure S9. UV−vis spectra of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II  (black), [RuIII(pdc-ҡ2-N1O1)(bpy)2]+, 2III (red), 
and [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV (blue), in a 0.1 M triflic acid aqueous solution. [RuIII(Hpdc-ҡ2-
N1O1)(bpy)2]2+, 2III and [RuIV(pdc-ҡ3-N1O2)(bpy)2]2+, 2IV were prepared in situ by adding 1 or 2 
equivalents of CeIV to a 0.2 mM solution of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II respectively. 
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Figure S10: Spectrophotometric redox titration of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II at pH = 1.0 by adding 

cerium(IV) ammonium nitrate (10 L, 6 mM). a): UV-vis spectra of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II (solid 
black line) and successive additions of 0.1 eq of CeIV (grey solid lines). b): UV-vis spectra of one-
electron oxidized derivative [RuIII(Hpdc-ҡ2-N1O1)(bpy)2]2+, 2IV (red solid line), and successive 
additions of 0.1 eq. of CeIV (grey solid lines). Plot of absorbance versus equivalents of CeIV added at 
selected wavelengths: c) 290 nm, d) 310 nm and e) 420 nm. 
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Figure S11. a) Bulk electrolysis of 2 mL of a pH 7 phosphate buffer solution of 1 mM of [RuIII(pdc-ҡ3-
N1O2)(bpy)Cl], 1III at Eapp = 1.6 V for 5 min (7.2 mC; 0.037 mols of e-/mol of 1III).  
 
b) CV of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III, in pH 7 phosphate buffer: fresh complex solution (black) and 
after 5 min bulk at 1.6 V, mixture of Ru-Cl and Ru-OH2 (blue). 
 
c) DPV in pH 7 phosphate buffer: fresh complex solution (black) and after 5 min bulk electrolysis at 
1.6 V, mixture of Ru-Cl and Ru-OH2 (blue). For both CV and Bulk electrolysis experiment, WE: Glassy 
carbon disk, CE: Pt disk, RE: Hg/Hg2SO4 * Unidentified species. 
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Figure S12. Differential pulse voltammetry of [RuII(pdc-ҡ2-N1O1)(bpy)2] in pH 7 after  bulk electrolysis 
experiment at Eapp = 1.45 V for 2 h (red) and differential pulse voltammetry of [Ru III(pdc-ҡ3-
N1O2)bpy(Cl)] in pH 7 after bulk electrolysis experiment at Eapp = 1.6 V for 5 min (blue). 
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Figure S13. DPVs after bulk electrolysis experiments of a solution of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II in 
different pH phosphate buffers solution; pH 2.04 (purple) pH 4.5 (magenta), pH 5.4 (red), pH 7.0 
(black), pH 9.0 (blue), pH 10.2 (dark yellow) and pH 11.2 (green). Redox potential values for pourbaix 
diagram of species A were shown with black arrows and species B with blue arrows. * starting 
material and unidentified species. 
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Figure S14. CV in acetone-0.1 M [(n-Bu)4N][PF6] of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl] (black) and [RuIII(pdc-
ҡ3-N1O2)(bpy)(OH2)]+ (red). 
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FigureS15: Cyclic voltammetry experiments of a 1 mM solution of [RuIII(pdc-ҡ3-N1O2)(bpy)Cl], 1III in 
dichloromethane-0.1 M [(n-Bu)4N][PF6]; pure DCM (black), DCM/DMSO(10:1) mixture (red), c) 
DCM/DMSO(10:1) mixture after bulk electrolysis at Eapp = 0 V for 2 min (blue). WE: glassy carbon 
disk, CE: Pt disk, RE: Hg/Hg2SO4. 
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Figure S16: Bulk electrolysis of a 3 mL solution of [RuII(pdc-ҡ2-N1O1)(bpy)2], 2II (1 mM) at pH = 7.0 
phbf at Eapp = 1.45 V vs. NHE (4.25 C; 15 mols of e-/mol of 2II). A glassy carbon rod was used as 
working electrode, a Pt grid as counter electrode and Ag/AgCl (sat KCl) as a reference electrode. 
Top, I and Q vs. t plot. Bottom, oxygen evolution vs. time monitored with a Clark electrode (black 
line) and the theoretical amount of oxygen obtained assuming 100 % Faradaic efficiency from the 
measured current density (red solid line). The Eapp was stopped at 1.2 h, but oxygen evolution 
continued till approx. 2.3 h due to large number of bubbles trapped in the working electrode. The 
Faradaic efficiency turned out to be 90%. 
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Linear coordination polymers with general formula {[Ru(tda)(4,4-bpy)]n(4,4-bpy)} using 

4,4’-bypridine as bridging ligand are synthesized and characterized. These materials show 

a unique anchoring strategy on multiwall carbon nanotubes via several CH- interactions. 

The molecular hybrid materials are very active and rugged electroanodes for water 

oxidation reaching extremely high current densities up to 240 mA/cm2 at 1.45 V in pH 7 and 

are comparable to commercial electrolyzers with much less catalyst loading. 
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Contributions 

Md Asmaul Hoque synthesized and characterized all the complexes and performed the 

electrochemical, spectroscopic analysis together with the catalytic tests and prepared the 

manuscript. 
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Abstract 

Linear coordination polymers with different chain length based on the repetitive unit 

[Ru(tda)(4,4’-bpy)] have been developed where tda2- is the pentadentate equatorial ligand 

[2,2':6',2''-terpyridine]-6,6''-dicarboxylato and 4,4’-bpy is the linear bridging ligand 4,4’-

bipyridine. These coordination polymers of general formula {[Ru(tda)(4,4’-bpy)]n(4,4’-bpy} (n 

= 1-15; n) have been characterized by NMR spectroscopy, electrochemical and electron 

microscopy techniques, and further complemented with DFT calculations. These new 

coordination polymers have a strong affinity for graphitic surfaces in general and are readily 

adsorbed into multiwall carbon nanotubes (MWCNT) in particular, generating very stable 

hybrid molecular materials labeled as n@CNT that are subsequently deposited onto glassy 

carbon electrodes, n@CNT@GC. The strong affinity displayed by n to graphitic surfaces is 

associated with the formation of multiple concerted aromatic C-H (tda)- interactions (4 per 

each repetitive unit) with the graphitic surface that provide for an increased stabilization as 

the number of units increase due largely to the entropic factor. They also provide for an 

additional stabilization factor due to the reversible formation and cleavage of CH- 

interactions that for a monomer [Ru(tda)(4,4’-bpy)2], 1 would represent a complete lose of 

material from the surface. In basic solutions under an applied potential of 1.25 V vs. NHE, an 

aquo ligand can access the first coordination sphere of the Ru center generating n-

H2O@CNT@GC. The Ru-aquo derivatives behave as electroanodes that catalyze the water 

oxidation to dioxygen reaction at pH 7, reaching unprecedented current densities in the range 

of 0.3 A/cm2 at 1.45 V vs. NHE. Further bulk electrolysis experiments sustain current densities 

of 30 mA/cm2 for 12 h, which implies more than 199121 turnovers (TONs) without loss of 

activity and with Faradic efficiencies close to 100%. 
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Graphical Abstract 

 

 

Keywords: Ruthenium, Linear coordination polymer, CH- interaction, Electroanode, Water 

oxidation 
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5. 1. Introduction 

Molecular water oxidation catalysts (WOCs) have experienced a large development over the 

last decades1-4 even beating nature in terms of turnover frequency (TOF).5,6 Thanks to the 

capacity to tailor not only the first coordination sphere of the metal center but also the second 

coordination via supramolecular effects or intramolecular H-bonding and acid-base 

properties. From device objective perspective, the generation of molecular solid 

electroanodes and electrocathodes based on molecular complexes anchored into solid 

surfaces has received much less attention. However, a few examples exist that show all sorts 

of behaviors when compared to their homogeneous counterparts.7-16  

Among the key parameters to predict and understand the performance of a molecular 

catalyst anchored on a conductive surface are the mechanism of O-O17 bond formation and 

the functionality that links the catalyst to the surface.18 One of the most successful examples 

in terms of turnover numbers (TONs) and robustness is based on the mononuclear complexes 

[Ru(O)(tda)(pyp)2], (1-O-pyp) or [Ru(O)(tda)(pypA)2], (1-O-pypA) that are capable of achieving 

more than a million TONs without apparent deactivation reactions associated (tda = 

[2,2':6',2''-terpyridine]-6,6''-dicarboxylato and pyp is 4-(pyren-1-yl)pyridine and pypA is 4-

(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide).19 With molecular anodes however modest 

current densities have been achieved in the range of 10 mA/cm2 at pH 7 with an overpotential 

of about 400 mV at the foot of the catalytic wave.19 The limiting factor to improve absolute 

current densities is the small amount of catalyst that can be deposited at the surface of the 

electrode.  

On the other hand, water oxidation electroanodes based on oxides as WOCs can achieve 

current densities in the range of 0.2-1 A/cm2,20-25 that is the typical range of current densities 

operating in commercial electrolyzers.26,27 This large current density is achieved by depositing 

a large amount of the catalyst oxide on top of electrode surface although only around 1-0.1% 

of the oxide deposited ends up being active, depending on the deposition methodology.28,29 

Furthermore, only a limited number of oxides are capable of performing decently at pH 7 and 

the TOF are in general lower than those obtained with molecular catalysts.30,31 Thus giving the 

benefits of the molecular catalysts with regard to oxides in terms of not only synthetic 

versatility but also in terms of TOF we seek to discover molecular catalysts that could be vastly 

attached to electrode surfaces in a robust manner and that could potentially deliver large 

current densities. 
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Here on we report a new functional coordination polymer that strongly and massively adsorbs 

into graphitic surfaces such as multiwall carbon nanotubes (MWCNT), via aromatic catalyst-

surface CH- interactions. This type of anchoring has never been described previously for 

molecular catalyst. The resulting molecular material behaves as a rugged and powerful 

electroanode for the water oxidation reaction achieving unprecedented current densities in 

the range of 0.3 A/cm2. 
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5. 2. Results and Discussion 

5. 2. 1. Synthesis of Coordination Polymers Based on the Ru-tda Core 

Reaction of 1 eq. of [Ru(tda)(DMSO)(H2O)], with 1.5 eq. of the bridging ligand 4,4’-bypridine 

(4,4’-bpy) in MeOH:Water (1:1) generates a range of neutral oligomers of general formula 

{[Ru(tda)(4,4-bpy)]n(4,4-bpy} ranging from n = 1-4, as indicated in Scheme 1. From now on we 

will use the n value as the label for the corresponding oligomer/polymer. The oligomer with 

n=4, 4, is not soluble in the reaction conditions and precipitates out of the solution. The 

oligomers 1-3 are soluble and are separated via column chromatography, which allows to 

obtain pure samples of 1 and 2. We could not obtain pure samples of complex 3 possibly due 

to the low amount of this complex generated under the present reaction conditions. The 1:1.5 

reaction of [Ru(tda)(DMSO)(H2O)] and 4,4’-bpy in TFE at reflux for 3 days generates the 

oligomer 5 whereas the 1:1 reaction of [Ru(tda)(DMSO)(H2O)] and 4,4’-bpy in TFE generates 

a 1D linear polymer 15, with 15 units. 

 

Scheme 1. Synthetic strategy for the preparation of {[Ru(tda)(4,4’-bpy)]n(4,4’-bpy)} oligomers. 

The characterization of these oligomers and the 1D polymer were carried out by elemental 

analysis, (Experimental section) mass spectrometry (Figure S10-S11) UV-vis spectroscopy 

(Figure S12), powder XRD (Figure S13) and NMR (Figure S2-S7). 1H-NMR spectroscopy is 

especially useful because it not only allows to assign all resonances that appear in the spectra 

but in addition, the relative integration of key protons, allows to obtain the number of 

repeating units [Ru(tda)(4,4-bpy)]n, as can be observed in Figure 1. Furthermore, DOSY 

experiments reflect the increasing volume of the polymer as the number of units grow (see SI 

Figure S8-S9). However, it does not display a linear relationship because the available 

equations for these experiments assume a spherical shape of the molecule while the Ru 

polymers described here possess a cylindrical shape. 
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Figure 1. Left, 1H NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for {[Ru(tda)(4,4’-bpy)]n(4,4’-bpy)} oligomers. Right, drawing of the oligomers. The 

color shades relate to the assignment of key protons and their resonances. * indicates free 4,4’-bpy resonances and  indicates polymer that terminates with 
the DMSO ligand. 
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5. 2. 2. Anchoring on Graphitic Surfaces via Aromatic CH- Interaction  

One of the most striking properties of this new family of coordination complexes is their 

capacity to strongly attach to graphitic surfaces in sharp contrast with their monomeric 

counterpart, 1 that does not adsorb. 

The addition of a concentrated solution of coordination polymers, 5 (See SI and Figure S1) or 

15 dissolved in TFE to a solution of THF containing dispersed MWCNT, results in the 

immediate discoloration of the final mixture, indicating the adsorption of 5 or 15, onto the 

MWCNT. These materials are labeled 5@CNT and 15@CNT respectively. Kinetics of polymer 

desorption (See Figure S14) from the electrode clearly indicate a stronger affinity for polymer 

containing a larger number of units. This together with the absence of affinity of the 

monomer, 1-py, or [Ru(tda)(py)2],32 (py represents the monodentate pyridine ligand) suggests 

a synergic effect of the strength of the interaction of the polymers and MWCNT as the number 

of repeating units increases that can be associate with an entropic effect that will be discussed 

later on.  

The interaction of MWCNT and the polymers were further studied by scanning tunneling 

microscopy (STM) in collaboration with Prof. Hans Elemans. Figure 2 shows the image 

obtained in which the white spots are associated with the Ru-tda fragment of the polymer. 

Each of these fragments is separated by 10.9 Å which is exactly the distance between two Ru 

centers linked by the 4,4’-bpy bridging ligands. The latter is not observed in the microscopy 

image because the electron density associated with it, is relatively small. It is also interesting 

to notice that the oligomers align parallel to one another and the distance between each 

polymer is about 12 Å, see Figure 2 (right). All these data points out that the site of interaction 

of the polymers with the surface is the tda ligand that will be situated perpendicular to the 

graphitic surface. Thus the bonding interaction will occur with the H atoms of the aromatic 

central pyridyl ring of tda that will interact with the -system of the MWCNT in a CH- type 

of interaction.33,34 

To further understand these hybrid materials, Density Functional Theory/Molecular 

Mechanics (DFT/MM) calculations at the ONIOM (B97D:MM3:UFF) level were carried out in 

collaboration with Prof. F. Maseras  to analyze the interaction of the oligomer with the 

graphitic surface (see Computational Details/Supporting Information for partition and further 

details). A 10-unit [Ru(tda)(4,4-bpy)]10 oligomer was placed on a monolayer graphite shield 

composed of multiple carbon atoms, and the structure was optimized in vacuum. The overall 
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arrangement, shown in Figure 3 is in good agreement with the microscopy image, the Ru 

centers being in a mostly linear arrangement, and is separated by 11.4 Å (experiment 11.1 Å). 

  

Figure 2. Scanning tunneling microscopic image (STM) of 15 on pyrolytic graphite (HOPG) surface, 
left) image full range, right) zoom.  

The DFT/MM model in Figure 3 and Figure S27 demonstrates that the binding between 

oligomer and surface consists of aromatic CH- interactions. Four CH groups in each Ru core 

interact with the surface, the shortest H...C distances being between 2.74 and 3.03 Å, and are 

within the expected range for C-H- interaction.33,34 The computed energetics are especially 

informative. The Gibbs energy of binding between oligomer and surface is 160 kcal/mol, 

which can be decomposed into a binding enthalpy of 180 kcal/mol and an entropic penalty of 

20 kcal/mol. Binding enthalpy is in principle additive, thus we can assign a value of ca 18 

kcal/mol per Ru unit. The entropic penalty is mostly associated with bringing two fragments 

(surface plus oligomer) together, and has only a minor dependence on the size of the 

oligomer. It follows that the interaction free energy of a monomeric complex with the surface 

would be approximately +2 kcal/mol (-18 plus 20 kcal/mol), thus non-binding. It is the large 

number of small binding interactions that makes feasible the strong attachment of the 

polymer onto the surface. We can estimate a relatively modest value of 4.5 kcal/mol per C-H 

 interaction, but there are 40 of them in our model. We admit that our calculations were 

carried out in vacuum, and the specific numbers would be modified if we carried much more 

demanding calculations in solvent, but we are convinced that the general observations would 

hold.  
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Side view 

 

Top view 

 
 

Front view Side view 

 
 
 
 

 

 

 

Figure 3. General view of the interaction of polymer 10 with a graphitic surface from different 
sides in DFT/MM model. 
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The access to a second pair of CH tda groups with the surface gives rise to a rocking type of 

polymeric movement that is synchronized with its immediate neighbor polymeric molecules 

via a carboxylato interactions as can be inferred from closeness of the polymeric units (12 Å) 

displayed in the microscopy image shown in Figure 2. 

It is worth mentioning here that the high affinity of 15 for graphitic surfaces also allows to 

obtained large surface coverage as compared to other anchoring strategies. For instance, the 

surface coverage of 15@CNT in terms of Ru centers per surfaces area, is about 2-5 times larger 

than in the cases of mononuclear Ru-tda complexes using pyrene as an anchoring 

functionality, such as [Ru(O)(tda)(pyp)2], (1-O-pyp) or [Ru(O)(tda)(pypA)2], (1-O-pypA), 

because of a better surface coverage efficiency achieved by the polymeric complexes (Figure 

S23 and Table S2).19 Further, when comparing to other mononuclear complexes using a 

phosphonate type of functionality attached to oxide surfaces, the new Ru polymers generate 

surface coverages that are about 10-100 times higher35 depending on the oxides surface and 

thus manifest the convenience and effectiveness of the CH-strategy described here (Table 

S2). 
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5. 2. 3. Electrochemical Properties and Catalysis 

The [Ru(O)(tda)(py)2], 1-O complex is at present the best water oxidation catalyst in terms of 

TOF32 in homogeneous phase and is actually about two orders of magnitude better than OEC-

PSII (OEC-PSII stands for oxygen evolving complex in photosystem II). In addition, it follows at 

water nucleophilic attack (WNA) O-O bond formation mechanism and for these two reasons, 

it constitutes one of the best options for anchoring into surfaces to generate highly efficient 

electro- and photo-anodes. Indeed, the anchoring of 1-O-pypA in MWCNT generates highly 

efficient electroanodes, 1-O-pypA@CNT, for the water oxidation reaction as has been 

recently described.19 Here the anchoring has been achieved via pyrene functionalization and 

even though it results in a very stable WO electroanode, the current densities obtained are in 

the 5-10 mA/cm2 range and thus still far from the ones operating in commercial electrolyzers 

which are in the range of 0.2-1.0 A/cm2. 

The present polymers n@CNT thanks to its high affinity for graphitic surfaces are expected to 

generate unprecedented powerful electroanodes due to both, the enhancement of surface 

coverages and the enormously improved stability provided by the nature of the new 

anchoring interactions. 

The electrochemical properties of the n@CNT were evaluated based on cyclic voltammetry 

(CV) and bulk electrolysis techniques. Figure 4 shows the CV of the 15@CNT deposited at the 

surface of glassy carbon electrode via drop casting that is labelled as 15@CNT@GC. See the 

supporting information for the protocols used here and for related electrochemical properties 

displayed by 5@CNT@GC (Figure S15-S18). As can be seen in the Figure 4 two one electron 

redox process are observed at E1/2 = 0.65 V (ΔE = 45 mV) and E1/2 = 1.10 V (ΔE = 70 mV) due to 

the RuIII/II and RuIV/III couples, respectively. The redox potentials obtained here are very similar 

to those obtained for the monomer 1 in homogenous solution at the same pH, and thus 

suggests that each individual Ru center of the polymer acts in a similar manner as in the 

discrete mononuclear complex. This is a consequence of the anchoring nature of the polymer 

at MWCNT, where each metal center has the same access to the surface and thus facilitates 

a synchronized transfer process to the electrode. 

The n@CNT hybrid materials are used as precursors to generate the corresponding Ru-OH2 

complexes, that are labeled as n-H2O@CNT, and that are actually the species that behaves as 

water oxidation catalysts. 
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To generate 15-H2O@CNT@GC, the precursor complex 15@CNT@CG is exposed to 1.25 V 

applied potential for 1000 s in a pH = 12 solution. Afterwards, the hybrid electrode is rinsed 

with water and placed again in pH 7 solution (additional details of this protocol are described 

in the SI). Figure 4 shows the CV of 15-H2O@CNT@GC, where two new waves due the RuIII/II 

and RuIV/III electron transfers at 0.60 and 0.90 V are observed. The initial waves due the 

precursor complex have totally disappeared and thus indicates a complete conversion from 

the precursor complex to the corresponding Ru-OH2 species. This is in sharp contrast to the 

1-O-pypA@CNT homologue where the ratio of precursor vs. activated complex is at 

approximately 2:1.19 The ratio of activated vs. precursor reflects the equilibrium that operates 

between the capacity of the dangling carboxylate to coordinate back to the metal center and 

ejection of the coordinated aquo group from the first coordination sphere of the metal center. 

This equilibrium is thus affected by the packing organization of the anchored polymers and 

the proximity of the Ru-aquo active site to the surface of the electrode. 

 

Figure 4. CV of 15@CNT@GC (black line) and 15-H2O@CNT@GC (red line) with a surface coverage 
of 17.7 nmol·cm-2 in 1.0 M phosphate buffer (pH 7) at scan rate of 100 mV/s. Inset, enlargement of 
the non-catalytic redox waves. 

 

The supramolecular interaction among neighboring polymer units through hydrogen bonding 

with water molecules can also influence the relative strength of interactions between the 

intramolecular carboxylate coordination and the Ru-aquo formation, and thus can also be 

responsible for the activity of 15-H2O@CNT@GC over the whole pH range 0-14 (Figure S24). 
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In sharp contrast its monomeric counterpart in homogeneous phase that is only active above 

pH 5.5.32 

At high anodic potentials, a huge anodic current is observed that is due to the electrocatalytic 

oxidation of water to dioxygen whose onset is at 1.20 V and that reaches unprecedented 

current densities in the range of 240 mA/cm2 at 1.45 V (Figure 4) for molecularly based 

electroanodes. The current density obtained here is about 20 times larger than the highest 

current densities reported for 1-O-pyp@CNT and about two orders of magnitude larger than 

any other molecular catalyst anchored on an electrode surfaces (see Table S2). 

Bulk electrolysis experiments at 1.45 V were carried out for 15-H2O@CNT@GC, with this 

electrode that sustained current densities of 32 mA/cm2 for 12 hours with practically no decay 

(Figure S21) giving Faradaic efficiencies in the range of 99% (Figure S25) and thus highlighting 

the superb performance of these new hybrid anodes (Figure S19-S22). Similar experiments 

were carried with 5@CNT drop casted into glassy carbon disk (GCd), 5-H2O@CNT@GCp 

showing comparable electrochemical behavior and stability as evidenced by CVs (Figure S15-

S18). 

5. 2. 4. Structural Characterization 

Finally, X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine 

structure (EXAFS) of the polymers and materials were performed in collaboration with Dr. D. 

Moonshiram at ALBA synchrotron and Advanced Photon Source (APS) to further 

spectroscopically characterize them both as a powder for 15 and attached to the surface of 

glassy carbon plate, 15@CNT@GCp. The trip to the synchrotron resulted in a mixture of 96% 

RuIII and 4% RuII as was the case of 1-pypA@CNT base on half-edge energies obtained from 

XANES.19 The stability of the catalyst was also evaluated after a bulk electrolysis catalytic 

experiments generating 15-O@CNT@GCp at 1.45 V, that based on half-edge energies 

obtained from XANES turned out to be 59% RuIV=O and 41% RuIII-OH. 
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Figure 5. Left, normalized Ru K-edge XANES for 15 (black), 15@CNT@GCp (red), [RuIII(tda)(py)2]+ 
(green), 15-O@CNT@GCp obtained after catalysis (blue; SEE SI for details), and RuO2 (magenta). 
Inset, plot of half peak k-edge energy vs. oxidation state including Ru0. Right, Fourier transforms of 
k2-weighted Ru EXAFS. Inset, Back Fourier transformed experimental (solid lines) and fitted (dashed 
lines) Re[χ (k)] for Ru complexes together with RuO2. Experimental spectra were calculated for k 
values of 2-11 Å-1. Same color code as in left. 

The parameters obtained by EXAFS (Figure 5 and Figure S26, Table S3-S5). The simulated 

EXAFS spectra for the complexes deposited in the GCp before and after catalysis gave very 

good fits similar to that of the reference [Ru(tda)(pypA)2]+, (1-pypA) complex reported 

earlier.19 It is worth mentioning the increase in amplitude of the first coordination sphere 

shown in Figure 4B associated with an increase in the Ru-N/O coordination number of the 

complexes after deposition and catalysis where oxidation state III and IV are reached and 

coordination number increase from the regular 6 at oxidation state II up to 6.5 and 7 for 

oxidation state III and IV respectively.36  

Lastly, XAS spectroscopy unambiguously showed the absence of any traces of RuO2 after 

catalysis as can be seen in the SI further supporting the molecular nature of the whole 

catalytic process. 
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5. 3. Conclusion 

In conclusion, we have introduced for the first time functional coordination polymers with all 

catalytically active repetitive units. The judicious choice of solvent and relative ratios of 

complex and bridging ligand together with column chromatography allows obtaining pure 

samples of the polymer with the desired number of repetitive units, up to 15. They have 

shown a new and unique anchoring strategy using simultaneous and concurrent aromatic-CH-

 interactions, extremely robust easy and convenient allowing higher surface coverage as 

compared to pyrene or phosphonates type of linkages. These new materials give extremely 

active electroanodes with giant current densities in the range of commercial electrolyzers but 

with two orders of magnitude less catalysts mass needed. Another interesting features of the 

material is that, the packing organization of the anchored polymers produces a carboxylate-

craboxylate interaction with neighboring polymers that changes the relative K values of the 

reaction [Ru(OCarbox)-OH2] -> [Ru-Ocarbox] + H2O. As a consequence of this, now the Ru-tda 

type of polymer can be activated 100% to generate Ru-OH2, as opposed to the initial 

monomer. Further, the polymer is now active at pH lower than 5.5, where the initial complex 

was not active. It thus constitutes an example of how the anchoring on the surface can 

strongly improve the homogeneous phase catalyst. 

On the other hand, metal oxides as catalysts have also experienced a large improvement this 

time based on improvement of particle size and morphology.37-41 Here we use a rational 

bottom up molecular approach for improvement. Transferring these concepts into first raw 

transition metals will be highly valuable for a practical point of view. 
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Experimental Section 

Materials 

All the chemicals used in this work were provided by Sigma Aldrich and they have been used 

without further purification unless explicitly indicated. RuCl3·×H2O was purchased from Alfa-

Aesar, 6,6'-Dicarboxylic acid-[2,2':6’,2”-terpyridyl] (H2tda), the precursor complexes 

{RuCl2(DMSO)4} and Ru(tda)(DMSO)(OH2) were prepared according to a reported procedure.1 

MultiWall Carbon Nanotubes (MWCNTs) were purchased from HeJi, Inc. (Zengcheng city, 

China) in bulk with >95% purity, >50 nm OD and ~10 µm length. 

Solvents were dried with a SPS® system and degassed by bubbling nitrogen before starting 

the reactions. High purity de-ionized water used for the electrochemistry experiments was 

obtained by passing distilled water through a nanopure Mili-Q water purification system. For 

other spectroscopic and electrochemical studies, HPLC-grade solvents were used. GC plate 

electrodes (GCp) were purchased from HTW, Germany, and are made of glassy carbon 

SIGRADUR® with the dimensions 20x10x0.18 mm. 

Instrumentation and Methods 

Bruker Avance 400 MHz and/or 500 MHz were used to carry out NMR spectroscopy. All the 

measurements were carried out at room temperature in the corresponding deuterated 

solvent using residual protons as internal reference.  

ESI-Mass spectra were recorded using micromass Q-TOF mass spectrometer.  

The pH of the solutions was determined by a pH meter (CRISON, Basic 20+) calibrated before 

measurements through standard solutions at pH 4.01, 7.00 and 9.21.  

Powder X-ray diffraction (PXRD) was performed on D8 Advanced Powder Diffractometer 

(Bruker) equipped with a vertical 2theta-theta goniometer in transmission configuration, with 

a Kα1 germanium monochromator for Cu radiation (λ = 1.5406 Å), at a scan step of 0.02° s−1 

from 10° to 80°. 

Elemental Analysis of the samples was carried out in a Thermo Finnigan elemental analyzer 

Flash 1112 model. 

UV-vis spectrometry was performed ot using a Cary 50 (Varian) UV-vis spectrophotometer. 

Electrochemical Methods 

All the electrochemical experiments were performed in an IJ-Cambria CHI-660 potentiostat. 

Either a glassy carbon disk (GCd, ф = 0.3 cm, S = 0.07 cm2) or a glassy carbon plate (GCp, 20 

mm x 10 mm x 0.18 mm) were used as working electrode (WE). In the case of GCp the surface 
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dipped in the electrochemical solution was 1 cm2. A Pt disk (ф = 0.2 cm, S = 0.03 cm2) was 

used as counter electrode (CE) and a Hg/Hg2SO4 (K2SO4 sat.) electrode was used as a reference 

electrode (RE), except for the oxygen monitored bulk electrolysis that a Ag/AgCl (KCl sat.) was 

used as RE and a Pt mesh as a CE. Electrochemical experiments in organic solvent were carried 

out in trifluoroethanol (TFE) containing 0.1 M of [(n-Bu)4N][PF6] (TBAPF6) as supporting 

electrolyte. 

Preparation of different pH phosphate buffers: 

 pH 2, Ionic strength 0.1 M: H3PO4 (0.104 mol, 10.19 g) and NaH2PO4 (0.0955 mol, 11.45 

g) in 1 L of Mili-Q water. 

 pH 7, Ionic strength 1 M: NaH2PO4 (0.153 mol, 18.31 g) and Na2HPO4 (0.282 mol, 40.07 

g) in 1 L of Mili-Q water. 

 pH 7, Ionic strength 0.1 M: NaH2PO4 (0.019 mol, 2.32 g) and Na2HPO4 (0.027 mol, 3.78 

g) in 1 L of Mili-Q. 

 pH 12, Ionic strength 0.1 M: Na2HPO4 (0.0073 mol, 1.04 g) and Na3PO4 (0.013 mol, 

2.07 g) in 1 L of Mili-Q. 

Note: During pH dependent experiments the solutions were basified or acidified by addition 

of the corresponding amount of 1 M NaOH or 0.1 M CF3SO3H aqueous solutions, respectively. 

Cyclic Voltammetry (CV): In a typical CV experiment, a 20 mL vial was used as an 

electrochemical cell. A home-made teflon cap with holes for the three electrodes was used 

as a lid to ensure a reproducible distance between the electrodes. The scan rate was 100 

mV·s−1 unless otherwise stated. iR compensation was applied at 90% when the current density 

was above 10 mA·cm-2. 

Differential Pulse Voltammetry (DPV): In a typical DPV experiment, a 20 mL vial was used as 

an electrochemical cell. A home-made teflon cap with holes for the three electrodes was used 

as a lid to ensure a reproducible distance between the electrodes. The DPV parameters were 

E= 4 mV, Amplitude = 50 mV, Pulse width = 0.05 s, Sampling width = 0.0167 s, Pulse period 

= 0.5 s. iR compensation was applied at 90%. 

Bulk electrolysis: For activation of catalyst, controlled potential electrolysis (CPE) was carried 

out in pH 12 phosphate buffer solution for 1000 s at 1.25 V vs NHE in 20 mL one compartment 

three electrode electrochemical cell with constant stirring. CPE experiment for checking the 

stability was also carried out in 20 mL electrochemical cell containing stirring bar using glassy 

carbon disk as WE, Pt disk as CE and Hg/Hg2SO4 (K2SO4 saturated) as RE. 
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Surface Coverage (Γ) Calculation 

The surface coverage of the complexes on the electrode was calculated following the formula: 

𝛤 (𝑚𝑜𝑙 ∙ 𝑐𝑚−1) =  
𝑄𝑎𝑣

𝑛∙𝑆∙𝐹
                                                           (S1) 

𝑄𝑎𝑣 =  
𝑄

𝑎𝑝,𝑅𝑢𝐼𝐼𝐼/𝐼𝐼+𝑄
𝑐𝑝,𝑅𝑢𝐼𝐼𝐼/𝐼𝐼+𝑄

𝑎𝑝,𝑅𝑢𝐼𝑉/𝐼𝐼𝐼+𝑄
𝑐𝑝,𝑅𝑢𝐼𝑉/𝐼𝐼𝐼

4
  (S2) 

Where Qav is average of the charge under anodic (Qap) and cathodic (Qcp) peaks for RuIII/II and 

RuIV/III electron transfer processes, obtained by integration in the CV. n is the number of 

electrons involved in each oxidation process, which is 1 for both complexes. S is the geometric 

surface area of the electrode (GCd, S= 0.07 cm2 and GCp, S = 1 cm2) and F is Faradaic constant. 

The average coverage of the catalyst was estimated from 5 independent experiments and an 

error between the sample was considered as standard deviation. Moreover, the surface 

coverage of each electrode used for different analyses was calculated and indicated in the 

caption. 

O2 Evolution Experiments 

For Oxygen monitored bulk electrolysis experiments, a 10 mL two-compartment cell with a 

separation membrane between the two compartments was used. Both compartments were 

filled with 5 mL of 1 M phosphate buffer solution (pH = 7) and were equipped with a stirring 

bar. A functionalized GCp was used as WE, a Pt grid as CE and a Ag/AgCl (KCl sat.) as a RE. 

Oxygen evolution was analyzed with a gas phase Clark type oxygen electrode (Unisense Ox-N 

needle microsensor) and calibrated by the addition of small quantities of oxygen (99%) at the 

end of the experiment. The CE was placed in one compartment and the other was provided 

with WE, RE and Clark electrode.  

X-ray Absorption Spectroscopy (XAS) Methods 

X-ray absorption spectra were collected at the CLAESS beamline at ALBA synchrotron light 

source and the Advanced Photon Source (APS) at Argonne National Laboratory on bending 

magnet beamline 20 at electron energy 23 KeV and average current of 100 mA. The radiation 

was monochromatized using a pair of Si (111) crystals at ALBA and by a Si (110) crystal 

monochromator at APS. The intensity of the X-rays were monitored by three ion chambers 

(I0, I1 and I2) filled with 70% nitrogen and 30% argon and placed before the sample (I0) and 

after the sample (I1 and I2 ). Ru metal was placed between ion chambers I1 and I2 and its 

absorption was recorded with each scan for energy calibration. At APS, the samples were kept 

at 20 K in a He atmosphere at ambient pressure. Hybrid materials on glassy carbon surfaces 
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were thereby recorded as fluorescence excitation spectra using a 13-element energy-

resolving detector. Solid reference sample {[RuII(tda)(4,4’-bpy)]15(4,4’-bpy} and RuO2 were 

diluted with Boron Nitride pressed between 3 µm polypropylene film and mylar tape and 

measured in the continuous helium flow cryostat in transmission mode. On the other hand, 

fluorescence absorption measurements at ALBA were carried out with an Amptek silicon drift 

solid state detector (XR-100 SDD)2 placed at 90 degrees to the incoming beam. The silicon 

drift detector was placed on a motorized stage allowing the sample-detector distance to be 

easily changed between 30-110 mm2. Around 25 XAS spectra of each sample were collected. 

Care was to measure at several sample positions on each sample and no more than 5 scans 

were taken at each sample position. In order to reduce the risk of sample damage by X-ray 

radiation, 80% flux was used in the defocused mode (beam size 5500 µm (horizontal) x 600 

µm (vertical)) and no damage was observed after scan to any samples. All samples were also 

protected from the X-ray beam during spectrometer movements by a shutter synchronized 

with the scan program. Ru XAS energy was calibrated by the first maxima in the second 

derivative of the ruthenium metal X-ray Absorption Near Edge Structure (XANES) spectrum. 

Extended X-ray Absorption Fine Structure (EXAFS) Analysis 

Athena software3 was used for data processing. The energy scale for each scan was 

normalized using Ruthenium metal standard. Data in energy space were pre-edge corrected, 

normalized, deglitched (if necessary), and background corrected. The processed data were 

next converted to the photoelectron wave vector (k) space and weighted by k3. The electron 

wave number is defined as , E0 is the energy origin or the threshold 

energy. K-space data were truncated near the zero crossings k =2 to 11 Å-1 for the hybrid 

complexes on FTO and glassy carbon surfaces, in Ru EXAFS before Fourier transformation. The 

k-space data were transferred into the Artemis Software for curve fitting.  In order to fit the 

data, the Fourier peaks were isolated separately, grouped together, or the entire (unfiltered) 

spectrum was used. The individual Fourier peaks were isolated by applying a Hanning window 

to the first and last 15% of the chosen range, leaving the middle 70% untouched. Curve fitting 

was performed using ab initio-calculated phases and amplitudes from the FEFF84 program 

from the University of Washington. Ab initio-calculated phases and amplitudes were used in 

the EXAFS equation 

𝜒(𝑘) = 𝑆0
2 ∑

𝑁𝑗

𝑘𝑅𝑗
2 𝑓𝑒𝑓𝑓𝑗

(𝜋, 𝑘, 𝑅𝑗)𝑒−2𝜎𝑗
2𝑘2

𝑒

−2𝑅𝑗

𝜆𝑗(𝑘)sin(2𝑘𝑅𝑗 + 𝜙𝑖𝑗(𝑘))𝑗  (S3) 

2
1

2

0 ]/)(2[ EEmk 
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where Nj is the number of atoms in the jth shell; Rj the mean distance between the absorbing 

atom and the atoms in the jth shell;  (,k, Rj ) is the ab initio amplitude function for shell 

j, and the Debye-Waller term accounts for damping due to static and thermal disorder 

in absorber-backscatterer distances. The mean free path term  reflects losses due to 

inelastic scattering, where λj(k), is the electron mean free path. The oscillations in the EXAFS 

spectrum are reflected in the sinusoidal term , where is the ab initio 

phase function for shell j. This sinusoidal term shows the direct relation between the 

frequency of the EXAFS oscillations in k-space and the absorber-backscatterer distance. S0
2 is 

an amplitude reduction factor.  

The EXAFS equation5 (Eq. S3) was used to fit the experimental Fourier isolated data (q-space) 

as well as unfiltered data (k-space) and Fourier transformed data (R-space) using N, S0
2, E0, R, 

and 2 as variable parameters (Table S4, S5). N refers to the number of coordination atoms 

surrounding Ru for each shell. The quality of fit was evaluated by R-factor and the reduced 

Chi2 value. The deviation in E0 ought to be less than or equal to 10 eV. R-factor less than 2% 

denotes that the fit is good enough5 whereas R-factor between 2 and 5% denotes that the fit 

is correct within a consistently broad model. The reduced Chi2 value is used to compare fits 

as more absorber-backscatter shells are included to fit the data.  A smaller reduced Chi2 value 

implies a better fit. Similar results were obtained from fits done in k, q, and R-spaces.  

  

jefff

222 kje

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2

k

R

j

j

e



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Synthesis of {[Ru(tda)(4,4-bpy)]n(4,4-bpy}, (n= 1-15) 

Synthesis of {[Ru(tda)(4,4-bpy)]n(4,4-bpy}, (n= 1-4), 1,2 and 4: In 100 mL two neck round 

bottom flask, [Ru(tda)(DMSO)(OH2)] (100 mg, 0.2 mmol) and 4,4'-bipyridine (47 mg, 0.3 

mmol) were dissolved in 20 mL of degassed MeOH/H2O (3:2) and refluxed for 3 days under N2 

atmosphere. Afterwards, the reaction mixture was cooled down to room temperature 

affording a black-red precipitate, which was filtered through, washed with MeOH, H2O, 

acetone and Et2O and dried under vacuum yielding complex {[RuII(tda)(4,4´-bpy)]4(4,4´-bpy)} 

(4) as a brown-red solid. The red deep filtrate collected during the first filtration was 

evaporated to dryness. The resulting brown-red solid was dissolved in DCM/MeOH (10:1) and 

purified by column chromatography (Silica). The first brown red color fraction obtained using 

DCM/MeOH (1:1) as eluent corresponds to monomeric complex {[RuII(tda)(4,4´-bpy)](4,4´-

bpy)} (1). The second deep red fraction was collected by changing the polarity of the eluent 

to DCM/MeOH (1:4) yielding the dimeric complex {[RuII(tda)(4,4´-bpy)]2(4,4´-bpy)} (2). 

Synthesis of {[RuII(tda)(4,4´-bpy)]5(4,4´-bpy)}, 5: In 100 mL two neck round bottom flask, 

[Ru(tda)(DMSO)(OH2)] (100 mg, 0.2 mmol) and 4,4'-bipyridine (47 mg, 0.3 mmol) were 

dissolved in 20 mL of degassed TFE and refluxed for 3 days under N2 atmosphere. Afterwards, 

the reaction mixture was evaporated to dryness and to this resulting solid, methanol was 

added and a nice black red precipitate was observed along with deep red color solution. The 

precipitate was filtered through frit and washed with MeOH, H2O, acetone and Et2O and dried 

under vacuum yielding the pentamer complex {[RuII(tda)(4,4´-bpy)]5(4,4´-bpy)} (5). 

Synthesis of {[RuII(tda)(4,4´-bpy)]15(4,4´-bpy)}, 15 : In 100 mL two neck round bottom flask, 

[Ru(tda)(DMSO)(OH2)] (100 mg, 0.2 mmol) and 4,4'-bipyridine (31.0 mg, 0.2 mmol) were 

dissolved in 20 mL of degassed TFE and refluxed for 3 days under N2 atmosphere. Afterwards, 

the reaction mixture was evaporated to dryness and to this resulting solid, methanol was 

added and a nice black red precipitate was observed along with deep red color solution. The 

precipitate was filtered through frit and washed with MeOH, H2O, acetone and Et2O and dried 

under vacuum yielding the oligomeric complex {[RuII(tda)(4,4´-bpy)]15(4,4´-bpy)} (15). 

{[RuII(tda)(4,4´-bpy)](4,4´-bpy)}, 1: 

Yield: 30 mg, 0.04 mmol (20 %). 1H-NMR (500 MHz, [d4]-MeOD) δ: 8.71 (d, J = 8.05 Hz, 2H), 

8.60 (dd, J=4.87 and 1.59 Hz, 4H), 8.56 (d, J=7.92 Hz, 2H), 8.32 (dd, J=5.52 and 1.45 Hz, 4H), 

8.16 (t, J = 8.25 Hz, 1H), 8.10 (d, J=7.64 Hz, 2H), 8.06 (t, J=7.72 Hz, 2H), 7.64 (dd, J=4.92 and 

1.59 Hz, 4H), 7.52 (dd, J=5.55 and 1.44Hz, 4H). 13C-NMR (125 MHz, [d4]-MeOD) δ: 170.8, 161.9, 
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158.1, 157.0, 153.2, 149.7, 145.5, 144.5, 136.8, 132.7, 126.5, 124.0, 123.9, 122.2 and 121.5. 

(+)-HRMS-ESI  (MeOH). Calcd for [M+H]+, (C37H26N7O4Ru) : 734.1012, found 734.1117. 

Elemental analysis (% found): C, 49.61%; H, 4.01%; N, 9.82%. Calcd for C37H25N7O4Ru·1.8 

C2H2OF3·4 H2O: C, 49.51%; H, 3.93%; N, 9.96%. 

{[RuII(tda)(4,4´-bpy)]2(4,4´-bpy)}, 2: 

Yield: 15 mg, 0.01 mmol (6 %). 1H-NMR (500 MHz, [d4]-MeOD) δ: 8.71 (d, J = 7.97 Hz, 4H), 8.65 

(dd, J=4.71 and 1.65 Hz, 4H), 8.56 (d, J=7.67 Hz, 4H), 8.34 (dd, J=5.53 and 1.35 Hz, 4H), 8.29 

(dd, J = 5.68 and 1.47 Hz, 4H), 8.17 (t, J=8.09 Hz, 2H), 8.13 (m, 4H), 8.08 (t, J=7.82 Hz, 4H), 7.67 

(dd, J=4.84 and 1.64 Hz, 4H), 7.54 (dd, J=5.50 and 1.52 Hz, 4H), 7.31 (dd, J=5.54 and 1.49 Hz, 

4H). 13C-NMR (125 MHz, [d4]-MeOD) δ: 170.9, 162.0, 160.0, 157.9, 157.4, 153.2, 153.0, 149.7, 

145.5, 144.4, 143.9, 136.8, 132.8, 126.6, 123.9, 123.8, 122.2 and 121.5. (+)-HRMS-ESI (MeOH). 

[M/2+Na+], (C32H21N6O4Ru+Na+): 678.0668, found 678.0588. Elemental analysis (% found): C, 

43.98%; H, 3.59%; N, 8.52%. Calcd for C64H42N12O8Ru2·7 C2H2OF3·6 H2O: C, 44.24%; H, 3.57%; 

N, 7.98%. 

{[RuII(tda)(4,4´-bpy)]4(4,4´-bpy)}, 4: 

Yield: 45 mg, 0.02 mmol (37 %). 1H-NMR (500 MHz, [d2]-DCM/[d3]-TFE(4:1)) δ: 8.54 (d, J = 5.68 

Hz, 4H), 8.34 (m, 8H), 8.20 (d, J=8.87 Hz, 4H), 8.17 (d, J=6.61, 8H), 8.11-7.98 (m, 24H), 7.92 (t, 

J=7.10 Hz, 4H), 7.87 (t, J=7.24 Hz 4H), 7.44 (d, J=5.06 Hz, 4H), 7.29 (d, J=6.18, 4H), 7.08 (m, 

8H), 7.05 (m, 4H. 

{[RuII(tda)(4,4´-bpy)]5(4,4´-bpy)}, 5: 

Yield: 60 mg, 0.02 mmol (49 %). 1H-NMR (500 MHz, [d2]-DCM/[d3]-TFE (4:1)) δ: 8.52 (d, J = 

4.53 Hz, 4H), 8.37-8.28 (m, 10H), 8.21 (d, J=7.98 Hz, 5H), 8.18-8.12 (3, 9H), 8.08 (d, J=4.98 Hz, 

8H), 8.05-7.96 (m, 23H), , 7.93 (t, J=7.71 Hz 5H), 7.88 (t, J=7.51 Hz 5H), 7.45 (d, J=4.64 Hz, 4H), 

7.27 (d, J=5.31, 4H), 7.06 (m, 8H), 7.03 (m, 8H). 

{[RuII(tda)(4,4´-bpy)]15(4,4´-bpy)}, 15: 

Yield: 100 mg, 0.011 mmol (85 %). 1H-NMR (500 MHz, [d2]-DCM/[d3]-TFE (4:1)) δ: 8.48 (d, J = 

5.4 Hz, 4H), 8.32-8.222 (m, 28H), 8.18-8.07 (m, 36H), 8.04 (d, J=7.06 Hz, 16H), 8.02-7.92 (m, 

79H), 7.89 (t, J=7.75 Hz, 8H), 7.87-7.79 (m, 28H), 7.41 (d, J=5.76 Hz 4H), 7.23 (d, J=6.22 Hz, 

4H), 7.06-6.91 (m, 56H. Elemental analysis (% found): C, 46.51%; H, 3.18%; N, 9.71%. Calcd for 

C415H263N77O60Ru15·26 C2H2OF3·27 H2O: C, 46.79%; H, 3.34%; N, 8.92%. 
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Preparation and Activation of 5@CNT@GC and 15@CNT@GC Electrodes 

Preparation of 5@CNT and 15@CNT 

Figure S1 shows a schematic drawing of the procedure employed for preparation of 5@CNT 

and 15@CNT. Solution A was prepared by disolving 1 mg of the corresponding oligomer (5 or 

15) in 1 mL of TFE. Suspension B was prepared parallely by sonication of 5 mg of MWCNTs 

(HeJi, Inc., China) in 5 mL of THF during 60 minutes. Afterwards, 0.1 mL of Solution A was 

added to 1 mL of Suspension B. Upon addition, the red color disappeared immediately from 

the solution indicating that oligomeric species are quickly anchored on MWCNT yielding 

suspension C, which contains 5@CNT or 15@CNT. 

 

Figure S1. Schematic diagram for preparation of 5@CNT@GC and 15@CNT@GC. 

Preparation of 5@CNT@GCd and 15@CNT@GCd 

Solution C was dropcasted (4 x 20 L) onto GCd electrodes. Each drop was placed after the 

last drop is totally dried. Electrode was then ready for electrochemical measurements. 
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Preparation of 5-H2O@CNT@GCd and 15-H2O@CNT@GCd 

The electrodes prepared above (5@CNT@GC and 15@CNT@GC) were immersed in 0.1 M 

phosphate buffer solution (pH 12) and CPE was performed at 1.25 V vs NHE for 1000 s under 

constant stirring to generate 5-H2O@CNT@GC or 15-H2O@CNT@GC. Afterwards, the 

activated electrodes were rinsed with distillated water and dried at room temperature.  

Note: Preparation of electrodes on glassy carbon plates (GCp) were carried out using a similar 

methodology but some differences were introduced. Suspension C was dropcasted (4 x 30 L) 

onto GCp electrodes. Each drop was placed after the last drop is totally dried. The coating was 

applied only to one side of the plates and a tape was used to limit this coating to 1 cm2. 

For XAS analysis, 15@CNT@GCp as deposited and 15-H2O@CNT@GCp after 12 h bulk 

electrolysis at 1.45 V were wrapped in thin 3 µm mylar film separately and analyzed. The 

samples were then kept under ambient conditions until the XAS measurement (approx. a 

week). See the XAS methods section for further details about the XAS analysis. 

Surface coverage (Γ) Calculation 

The modified electrodes (both GCd and GCp) were immersed in 1 M phosphate buffer solution 

(pH 7) and cyclic voltammetry was performed (Ei = 0.25 V, Ec = 1.45 V, Ef = 0.25 V, total scans 

= 6, where Ei is initial potential, Ec is the change potential and Ef is the final potential), (CE = Pt 

disk, RE = Hg/Hg2SO4) to estimate the coverage of the electrodes. The surface coverage (𝛤) of 

the complexes on the electrodes was estimated by applying the formula 𝛤 (mol·cm-2) = Q / 

(n*S*F). 

Table S1. Summary of calculated surface coverage (Γ, nmol·cm-2) for the prepared electrodes. 

 5@CNT@GCd 5-H2O@CNT@GCd 15@CNT@GCd 15-H2O@CNT@GCd 

Γ, (nmol·cm-2) 14±1 10.1±1 21±2 16±1.5 
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Spectroscopic Characterization  

NMR Spectroscopy 

a) 

 

b) 
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c) 

 

d) 
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e) 

 

f) 

 

Figure S2. NMR spectra (500 MHz, 298 K, [d4]-MeOD) for 1 a) 1H-NMR, b) COSY, c) NOESY, d) HSQC, e) 
HMBC and f) 13C NMR (125 MHz). 
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a) 

 

b) 
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c) 

 

d) 
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e) 

 

f) 

 

Figure S3. NMR spectra (500 MHz, 298 K, [d4]-MeOD) for 2 a) 1H-NMR, b) COSY, c) NOESY, d) HSQC, e) 
HMBC and f) 13C NMR (125 MHz). 
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a) 

 

b) 
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c) 

 

Figure S4. NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for 4. a) 1H-NMR, b) COSY and c) 
NOESY. 
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a) 

 

b) 
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c) 

 

Figure S5. NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for 5. a) 1H-NMR, b) COSY and c) 
NOESY. 
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a) 

 

b) 
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c) 

 

Figure S6. NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for 15. a) 1H-NMR, b) COSY and c) 
NOESY. 
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Figure S7. 1H NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for 15. The spectra shows a 

mixture of 15 with 4,4’-bpy (X) and DMSO ending (), 97% and 3% respectively.  

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 5 

213 

V 

a) 

 

b) 
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c) 

 

d) 
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e) 

 

 

Figure S8. DOSY NMR spectra (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for complexes a) 1, b) 2, c) 4, 
d) 5 and e) 15. 
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f) 

 

Figure S9. Correlation between logarithm of the diffusion coefficient calculated by DOSY NMR 
experiments (500 MHz, 298 K, [d2]-DCM/[d3]-TFE (4:1)) for 1, 2, 4, 5 and 15 and logarithm of the 
molecular weight (log M). 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 5 

217 

V 

Mass Spectrometry 

 

Figure S10. a) HRMS-ESI for 1. Calcd for [M+H+], (C37H25N7O4Ru + H+) : 734.1012, found 734.1117. b) 
Simulated isotopic pattern for (C37H25N7O4Ru + H+) 

 

Figure S11. a) HRMS-ESI for 2. Calcd for [M/2+Na+], (C32H21N6O4Ru+Na+): 678.0668, found 678.0588. b) 
Simulated isotopic pattern for (C32H21N6O4Ru+Na+).  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 5 
 

218 

V 

UV-Vis Spectroscopy 

 

Figure S12. UV-Vis absorption spectrum of 1 (red line), 2 (blue line), 4 (yellow line), 5 (green line) and 
15 (black line). Conditions: 5-20 µM of complexes in TFE.  

 

Figure S13. Powder x-ray diffraction pattern of 15. 
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Electrochemical Characterization 

 

Figure S14. a) CV evolution of the 5@CNT@GC (a) and 15@CNT@GC (b) in 0.1 M solution of TBAPF6 

in TFE during 1.5 h at 25 ˚C. CV cycles show the detachment of the oligomers from the MWCNTs and 
ulterior solubilization in TFE. c) Plot of I/Ip (%) vs. t for 5@CNT@GC (black line) and 15@CNT@GC 
(red line); Note: Current of the anodic peak (I) has been normalized by dividing the intensity of the 
anodic peak in the initial cycle (Ip). d) Plot of I/Ip (%) vs. t at the potential of the anodic peak (0.77 for 
5@CNT@GC and 0.73 for 15@CNT@GC) showing a clear difference in the detachment kinetics 
between 5 and 15, which is much more stabilized due to the multiple CH-π interactions with the 
graphitic surface. 
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Figure S15. CV of 5@CNT@GC (black line) and the blank (green line) in 1 M phosphate buffer (pH 7) at 
a scan rate of 100 mV/s. Conditions: Γ5= 14.2 nmol·cm-2. 

 

Figure S16. CV of 5@CNT@GC (black line) and 5-H2O@CNT@GC (red line) in 1M phosphate buffer (pH 
7) at scan rate of 100 mV/s. Inset: enlargement of the non-catalytic redox waves. Conditions: Γ5-H2O = 
9.7 nmol·cm-2. 
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Figure S17. Controlled potential electrolysis (CPE) of 5-H2O@CNT@GC at 1.45 V vs NHE in 1 M 

phosphate buffer (pH 7) during 12 h. Conditions: Γ5-H2O = 9.5 nmol·cm-2. Charge passed in 12 h is 52.6 C 

and TONs is 0.2×106. 

 

Figure S18. CV of 5-H2O@CNT@GC before (red line) and after (blue line) CPE experiment at 1.45 V vs 
NHE for 12 h in a freshly prepared 1M phosphate buffer solution (pH 7) at a scan rate of 100 mV/s. 
Inset: enlargement of the non-catalytic redox waves. Conditions: Γ5-H2O = 9.5 nmol·cm-2. 
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Figure S19. CV of 15@CNT@GC (black line) and the blank (green line) in 1M phosphate buffer (pH 7) at 
a scan rate of 100 mV/s. Conditions: Γ15 = 21.2 nmol·cm-2. 

 

Figure S20. CV evolution of 15-H2O@CNT@GC during 1000 repetitive CV cycles in 1 M phosphate buffer 
(pH 7), red line corresponds to the first cycle, grey line is 2nd– 999th cycles and blue line is the 1000th 
cycle at a scan rate of 100 mV/s. Inset: enlargement of the non-catalytic redox waves. Conditions: Γ15-

H2O = 17.3 nmol·cm-2. 
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Figure S21. Controlled potential electrolysis (CPE) of 15-H2O@CNT@GC at 1.45 V vs NHE in 1 M 

phosphate buffer (pH 7) during 12 h. Conditions: Γ15-H2O = 17.5 nmol·cm-2. Charge passed in 12 h is 94.1 

C and TONs is 0.2×106. 

 

 

Figure S22. CV of 15-H2O@CNT@GC before (red line) and after (blue line) CPE experiment at 1.45 V vs 
NHE for 12 h in a freshly prepared 1 M phosphate buffer solution (pH 7) at a scan rate of 100 mV/s. 
Inset: enlargement of the non-catalytic redox waves. Conditions: Γ15-H2O = 17.5 nmol·cm-2. 
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a) 

 
b) 

 
 

Figure S23. a) CV of 15@CNT@GC (black line), 1-pyp@CNT@GC (blue line) and 1-pypA@CNT@GC (red 
line) in 1 M phosphate buffer (pH 7) at a scan rate of 100 mV/s; b) CV of 15-H2O@CNT@GC (red line), 
1-O-pyp@CNT@GC (black line) and 1-O-pypA@CNT@GC (blue line) in 1 M phosphate buffer (pH 7) at 
a scan rate of 100 mV/s. Inset: enlargement of the non-catalytic redox waves. 
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Figure S24. CV of 15-H2O@CNT@GC at different pH values in 0.1 M phosphate buffer solutions (pH 4.5-
7), 1 M NaOH solution (pH 14), 1 M and 0.1 M CF3SO3H solution (pH 0 and 1, respectively) at a scan rate 
of 100 mV/s. Conditions: Γ15-H2O = 15±1.5 nmol·cm-2. 
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Table S2. Catalytic performance of related molecular anodes described previously in the literature. 

 

Abbreviations: (a) tw refers to the catalysts reported in this work (b) CNT is MultiWall Carbon Nanotubes; pyp is 4-(pyren-1-yl)pyridine; pypA is 4-(pyren-1-yl)-N-
(pyridin-4-ylmethyl)butanamide; bpy-CH2PO3H2 is ([2,2'-bipyridine]-4,4'-diylbis(methylene))bis(phosphonic acid); bpm is 2,2’-bipyrimidine; Mebimpy is 2,6-bis(1-
methylbenzimidazol-2-yl)pyridine; tpy is 2,2’:6’,2’’-terpyridine; 4-Mebpy-4’-bimpy is 4-(methylbipyridin-4’-yl)-N-(benzimid)-N’-pyridine); bda is 2,2’-bipyridine–6,6’–
dicarboxylate; I-py is 4-iodopyridine; F-Isoq is 6-fluroisoquinoline. (c) Calculated from UV-vis measurements using the expression Γ=A(λ)/[103ε(λ)], where A(λ) and 
ε(λ) are the absorbance and molar absorptivity at wavelength λ.(d) Calculated from CV or CPE experiments at the indicated potential (E). 

Entry Catalyst 
Γ 

(nmol cm-2) 
pH 

J 
(mA cm-2)d 

E vs NHE 
(V) 

Anchoring Support 

1tw 5@CNT 14 7 - - CH-π GC 

2tw 15@CNT 21 7 - - CH-π GC 

3tw 1-pyp@CNT 5 7 - - π-π GC 

4tw 1-pypA@CNT 9 7 - - π-π GC 

5tw 5-H2O@CNT 9.5 7 190 1.45 CH-π GC 

6tw 15-H2O @CNT 17.5 7 240 1.45 CH-π GC 

7tw 1-O-pyp@CNT 0.4 7 20 1.45 π-π GC 

8tw 1-O-pypA@CNT 0.9 7 39 1.45 π-π GC 

96 1-pyp@CNT 0.2 7 - - π-π GC 

106 1-pypA@CNT 6.3 7 - - π-π GC 

116 1-O-pyp@CNT 0.03 7 2.2 1.45 π-π GC 

126 1-O-pypA@CNT 0.55 7 10.5 1.45 π-π GC 

137 [(bpy-CH2PO3H2)Ru(Mebimpy)(OH2)]2+ 0.12c 5 0.015 1.85 [R-PO3H-]-M ITO/FTO 

148 
[(bpy-CH2PO3H2)2Ru(bpm)Ru(tpy)(OH2)]4+ 

85c 1 0.083 1.8 [R-PO3H-]-M TiO2/FTO 

158 0.7c 1 0.007 1.8 [R-PO3H-]-M ITO 

168 [(bpy-CH2PO3H2)2Ru(bpm)Ru(Mebimpy)(OH2)]4+ 0.57c 1 0.002 1.5 [R-PO3H-]-M ITO 

179 [(bpy-PO3H2)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ 5.5 1 0.27 1.55 [R-PO3H-]-M nanoITO/GC 

1810 [Ru(bda)(I-py)(py-Thiophene)] 0.96 7.2 5 1.3 P-thiophene GC 

1910 [Ru(bda)(F-Isoq)(py-Thiophene)] 0.96 7.2 4 1.3 P-thiophene GC 
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O2 Evolution experiments 

 

Figure S25. Oxygen evolution vs. time (min) for 15-H2O@CNT@GC (Γ15-H2O
 = 14.5 nmol·cm-2) using a 

Clark probe electrode during a CPE at 1.45 V vs NHE in 1 M phosphate buffer (pH 7). Black line 

corresponds to the O2 measured in the gas phase by a Clark electrode during CPE experiment, Red line 

corresponds to the theoretical amount of oxygen generated based on the charge passed during the 

CPE assuming 100% Faradaic efficiency. A Faradaic efficiency value of 99.1% was calculated at 70 min. 

Note: The applied potential was stopped at 60 min, but the O2 evolution continued until 70 min due to 

the O2 bubbles trapped at the working electrode.   
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XANES & EXAFS 

 

Figure S26. a) Normalized XANES spectra of 15@CNT@GC on GC surface after deposition (red line) and 
15-H2O@CNT@GC after catalysis (blue line). b) Difference normalized XANES spectra for: 
15@CNT@GC (RuIII) on GC surface after deposition (black line), 15-H2O@CNT@GC (RuIV) on GC surface 
after catalysis (light blue line), and RuO2 (RuIV) (blue line). 
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Table S3: Comparison of XANES energies for all Ru complexes on GC plates. 

 

Table S4. Summary of EXAFS Fits parameters 

Sample Shell,N R, Å 

15 Ru-N/O,5 
Ru-N, 1 
 

2.02 
2.49 

15-O@CNT@GCp Ru-N/O,6 
Ru-O, 0.6 
Ru-O, 0.4 

1.99 
1.64 
2.56 

 

 

  

Sample Energy at 
Normalized 
Fluorescence 0.5 
(eV) 

Percentage Presence of 
Ru(II),Ru(III) and Ru(IV) 

REF 

Ru0 22121.74 --  

15 22125.71 100 % Ru(II)  
 

tw 

15@CNT@GCp 22127.70 6 % Ru(II) + 94 % Ru(III) 
 

tw 

1-pyp@CNT@GCp  22127.83 100 % Ru(III) 
 

Ref6 

15-O@CNT@GCp 22128.68 41 % Ru(III) + 59 % Ru(IV) 
 

tw 

RuO2 22129.18 100 % Ru(IV) 
 

tw 
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Table S5. EXAFS Fits parameters 

 

 

  

Sample Fit Peak Shell,N R, Å E0 ss.2  
(10-3) 

R-
factor 

Reduced  
Chi-
square 

15-@CNT@GC 1 1 Ru-N/O, 6 2.04 -7.5 22.1 0.0131 43 

 2 I Ru-N/O,5 
Ru-N,1 

2.05 
2.30 

-5.1 18.4 0.0131 43 

 3 All Ru-N/O,5 
Ru-N, 1 
Ru-C,8 
Ru-C,5 
Ru-C,8 
Ru-C,5 

2.02 
2.49 
2.96 
3.36 
3.63 
4.01 

-9.6 20.3 
20.3 
18.4 
12.7 
59.3 
3.5 

0.0299 43 

GC as deposited 14 I Ru-N/O, 7 2.032.49 -12.9 13.1 0.1694 480 

 15 I Ru-N/O,6 
Ru-O,1 

2.04 
2.34 

-9.5 10.0 
10.0 

0.1130 424 

 16 All Ru-N/O,6 
Ru-O, 1 
Ru-C,8 
Ru-C,5 
Ru-C,8 
Ru-C,5 

2.03 
2.35 
2.87 
3.43 
3.83 
3.97 

-12.9 10.1 
10.1 
37.1 
8.1 
22.5 
2.2 

0.1016 136 

GC after catalysis 17 I Ru-N/O, 7 2.03 -8.5 14.7 0.0353 198 

 18 I Ru-N/O,6 
Ru-O, 1 

2.05 
2.36 

-5.2 11.6 
11.6 

0.0160 76 

 19 All Ru-N/O, 6 
Ru-O, 1 
Ru-C, 8 
Ru-C, 5 
Ru-C, 8 
Ru-C, 5 

2.04 
2.51 
3.03 
3.35 
3.55 
3.99 

-7.1 12.9 
12.9 
13.8 
2.2 
7.5 
1.6 

0.0340 105 

 20 All Ru-N/O,6 
Ru-O, 0.4 
Ru-O,0.6 
Ru-C,8 
Ru-C,5 
Ru-C,8 
Ru-C,5 

1.99 
2.56 
1.65 
3.05 
3.34 
3.54 
3.97 

-8.7 14.7 
14.7 
1.4 
12.5 
0.5 
6.1 
1.9 

0.0165 66 
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Scanning Tunneling Microscopy 

STM image was taken after immobilizing the complex 15 on the solid surface electrode. In this 

case a solution of 15 in TFE/ethylene glycol/1-phenyloctane was dropcasted onto an 

atomically flat surface of highly oriented pyrolytic graphite (HOPG). 

 

Density Functional Theory 

 

Top view 
 

 
Side view 
 

 
 
Figure S27. General view of the interaction of polymer 10 with a graphitic surface from different 
sides in DFT/MM model. 
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A functional coordination polymer with 2 dimensional framework with a ruthenium catalyst 

as a core unit and 2,4,6-tris(4-pyridyl)-1,3,5-triazine as a linker is reported. This material 

shows solid state interactions between different layers and changes its properties from 

solution to solid state. It strongly and massively anchores on the surface of multiwall carbon 

nanotubes. This new hybrid material is a precursor of extremely active and robust water 

oxidation catalyst that shows impressive catalytic current densities in the range of 0.1-0.2 

A/cm2 with over 1 million Turnover number in 6 h. 
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Contributions 

Md Asmaul Hoque synthesized and characterized all the materials and performed the 

electrochemical, spectroscopic analysis together with the catalytic tests and prepared the 

manuscript. 
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Abstract 

We report a functional coordination polymer based on ruthenium within a 2 dimensional 

framework with general formula [{Ru(tda)}(tpt)3]n where tda is the pentadentate equatorial 

ligand [2,2':6',2''-terpyridine]-6,6''-dicarboxylato and tpt is the bridging ligand 2,4,6-tris(4-

pyridyl)-1,3,5-triazine. This polymer shows the existence of solid state interactions among 2D 

sheets within the packing structure upon changing from solution to the solid state. They are 

strongly and massively anchored on multiwall carbon nanotube (MWCNT) surfaces through 

supramolecular interactions. This new hybrid material is a precursor of extremely active and 

robust water oxidation anode that shows impressive catalytic current densities in the range 

of 0.1-0.2 A/cm2 with over 1 million turnover number in 6 h. 

Graphical Abstract 

 

 

Keywords: 2D polymer, Solid state properties, Adsorption, Electroanode, Water oxidation 
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6. 1. Introduction 

The energy infrastructure for the future relies on our capacity to develop renewable 

technologies that can be converted into fuels.1,2 Water splitting with sunlight is one of the 

most promising technology that can achieve this goal in the form of H2 fuel.3-6 Oxidation of 

water to molecular oxygen is the half reaction for the water splitting reaction that occurs at 

1.23 V vs NHE at pH 0 and is both thermodynamically and kinetically unfavourable. In nature, 

this reaction is carried out by a Mn4CaO5 cluster of the photosystem II during the 

photosynthesis process.7-10 Inspired by nature, there has been a tremendous progress in the 

field of water oxidation catalysis in the past few years including both molecular catalysts11 

and metal oxide catalysts.12 Among the most efficient molecular water oxidation catalysts 

described so far are ruthenium based complexes due to the detailed understanding of their 

mode of action and the mechanistic details with the help of spectroscopic, electrochemical 

and analytical techniques together with the valuable complementary information provided 

by computational studies.13 

The most extensively studied homogeneous water oxidation catalysts are based on 

mononuclear ruthenium complexes containing flexible, adaptative, multidentate and 

equatorial (FAME) ligands that are the fastest water oxidation catalyst reported in the 

literature14-17 with TOFmax in the range of 102 to 104 s-1 which exceed by 1-2 orders of 

magnitude that of the oxygen evolving cluster in the natural photosystem II. Despite of the 

synthetic challenge to prepare polynuclear complexes, they have important benefits from the 

perspective of water oxidation catalyst (WOC). For example, multiple electronically coupled 

redox active metal centres can cooperate during the four-electron transfer needed for the 

water oxidation reaction. In addition, non-redox active ligand environment can exert the 

electronic perturbation over the redox active centres in the polynuclear system.18-22  

On the other, hand study of heterogeneous catalyst based on transition metal based oxides 

or hydroxides in WOCs dated back to more than a half century ago.22 This heterogeneous 

electrocatalysts exhibit greater stability and could readily be integrated into functional energy 

conversion devices such as fuel cells, electrolyzers and photoelectrochemical cells for water 

splitting.23 The catalytic activity of these heterogeneous inorganic catalysts is still limited to 

harsh conditions that require either very high acidic or basic condition and lose their activity 

over time. Moreover, the catalytic activity with heterogeneous catalysts are difficult to tune 

as they are much less amenable to systematic modification of the active site. Hence, to mimic 
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natural photosynthesis and designing efficient water splitting device in neutral water still 

remains challenging. 

Thus, constructing a molecularly well-defined and tunable heterogeneous catalyst that 

combines the advantages of both molecular homogeneous and metal oxide heterogeneous 

WOC is highly desirable. To achieve this goal, there are numerous ways of anchoring the 

molecular catalyst on the electrode ranging from those that utilize weak physisorption or 

electrostatic interactions24-26 to those that form strong covalent linkages.27,28 On the other 

hand, incorporation of molecular catalysts inside the metal organic frameworks (MOFs)29-31 

has also recently gained a significant attention. In this context, coordination polymers are very 

promising candidates for efficient heterogeneous catalyst for proton reduction32,33 but they 

have been much less explored for the application on the water oxidation field.34,35  

Recently, our group has reported the synthesis of the complex [Ru(tda)(py)2] (where tda is 

[2,2':6',2''-terpyridine]-6,6''-dicarboxylato and py is pyridine),15 a precursor for the most 

powerful water oxidation catalyst described to date in the literature showing impressive 

TOFmax = 8.000 s-1 in neutral pH. Replacing the simple py axial ligand with pyrene substituted 

py, later our group reported the best hybrid molecular electroanode based on Ru-

functionalized multiwall carbon nanotube (MWCNT) with over a million turnover number.24 

However, the absolute current density of this material range within 1-10 mA/cm2 and for 

technological purposes, it is indispensable to reach much higher current densities, in the 

range of A/cm2. 

Here, we report for the first time that the ruthenium based 2-dimensional coordination 

polymer with Ru(tda) as a core and with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) ligand as a 

linker, that can be easily and massively adsorbed on MWCNT. The resulting hybrid material is 

a powerful molecular electroanode for water oxidation to dioxygen with an impressive 

current densities above 0.1 A/ cm2 and remarkable stability at neutral pH. 
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6. 2. Results and Discussion 

6. 2. 1. Synthesis and Characterization 

The 2-dimentional coordination polymer containing Ru-tda unit, 2D polymer (Scheme 1) was 

synthesized by heating [Ru(tda)(OH2)2]PF6
36 with 2,4,6-tris(4-pyridyl)-1,3,5-triazine with 1:1.5 

molar ratio in trifluoroethanol at 78˚C in the presence of triethylamine for 3 days. The 2D 

polymer was isolated through precipitation by adding methanol solvent into the reaction 

mixture at room temperature followed by washing with water, methanol, diethyl ether and 

air dried with almost quantitative yield. A similar product can be obtained using 

[Ru(tda)(DMSO)(OH2)]36 as a starting material. The surprising fact about this 2D polymer is 

that before isolation, it was completely soluble in trifluoroethanol but the isolated solid was 

partially soluble in the same solvent, clearly indicating the existence of solid state interactions 

among 2D sheets within the packing structure. These solid state interactions are further 

manifested by the change in color, from red in solution to violet in the solid state. 

 

Scheme 1. Schematic representation of the synthesis of 2D Polymer.  

Powder X-ray diffraction measurements show that this 2D polymer is semi crystalline in 

nature that might be due to the highly distorted structure of the whole molecule (Figure S1). 

UV-vis spectra of the polymer shows π−π* transitions due to the aromatic ligands below 350 

nm and metal to ligand charge transfer (MLCT) d−π* bands between 350 and 550 nm and are 

similar to those of the mononuclear complex Ru(tda)(4,4’-bpy)2] (Chapter 5), where 4,4’-bpy 

is 4,4’-bypridine) with an additional strong transition at 240 nm. The latter additional 
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transition is due to the presence of the aromatic triazine bridging ligand present in the 2D 

polymer (Figure S2). 

6. 2. 2. Anchoring on Graphitic Surface 

The polymer 2D shows very strong affinity for graphitic surfaces strongly absorbing on them. 

This behavior is similar to the parent 1D polymer described in Chapter 5 and in sharp contrast 

to the mononuclear [Ru(tda)(4,4’-bpy)2] complex that does not adsorb. MWCNT were chosen 

as a solid conductive support due to their high surface area, high thermal and chemical 

stability, excellent electrical conductivity and insolubility in most solvents. The addition of a 

saturated solution of 2D in trifluoroethanol to a suspension of MWCNT dispersed in 

tetrahydrofuran, results in the immediate decoloration of the final mixture, indicating the 

complete adsorption of the 2D polymer onto the MWCNT (Scheme S1 in the supporting 

information). This new hybrid material is represented as 2D@MWCNT.  
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6. 2. 3. Electrochemistry  

6. 2. 3. 1. Redox Properties in Homogeneous Solution 

The electrochemical behavior of 2D was analyzed by cyclic voltammetry (CV) and differential 

pulse voltammetry (DPV) experiments in trifluoroethanol (TFE) containing 0.1 M of [(n-

Bu)4N][PF6] (TBAH). All the redox potentials reported in this work have been measured by 

using Hg/Hg2SO4 (Satuarated solution of K2SO4) reference electrode and have been converted 

to normal hydrogen electrode (NHE) by adding 0.65 V to the measure potential.  

As shown in Figure 1, 2D shows two one electron redox features at E1/2
 = 0.69 V (E = 60 mV) 

and E1/2
 = 1.18V (E = 80 mV) that correspond to the III/II and IV/III redox couples of the 

ruthenium in the 2D polymer respectively in trifluoroethanol and are similar to the analogous 

mononuclear complexes.15 

 

Figure 1. CV of the 2D polymer in 0.1 M solution of TBAH in trifluoroethanol solvent. 

 

6. 2. 3. 2. Redox Properties on Solid Surface and Catalysis 

The 2D polymer is insoluble in water and it is not possible to carry out homogeneous 

electrochemistry in this solvent. However, this polymer can be strongly adsorbed on MWCNT 

and generate the hybrid material denoted as 2D@MWCNT. This hybrid material was then 

dropcasted on graphitic electrode such as glassy carbon disk (GCd) or glassy carbon plates 

(GCp) denoted as 2D@MWCNT@GCd and 2D@MWCNT@GCp respectively and used to 
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analyze it electrochemical properties in aqueous conditions. This hybrid material shows two 

chemically reversible and electrochemically quasi-reversible waves at E1/2 = 0.71 V (E = 50 

mV) and 1.17 V (E = 40 mV) attributed to the RuIII/II and RuIV/III couples respectively (Figure 2 

black line). This CV clearly indicates that the redox potential obtained here are very similar to 

the mononuclear [Ru(tda)(pyp)2]24 complex containing a pyrene group in the axial pyridine 

ligand in solution at the same pH and suggesting each Ru center of the polymer acts in a 

similar manner as the discrete molecule. It also indicate that all the Ru centers of the polymer 

have the same access to the electrode during electron transfer process. The total amount of 

the catalyst precursor anchored on the surface of the electrode turned out to be 2D= 5.1±1 

nmol/cm2 based on electrochemical response (loading was calculated by taking the average 

of both anodic and cathodic charge under both Ru III/II and Ru IV/III waves, see supporting 

information for details). The high affinity of the 2D polymer for graphitic surfaces allows us to 

obtain large surface coverages, as compared to other anchoring strategies. For instance, the 

surface coverage in 2D@MWCNT is about 50 times higher than the typical phosphonates in 

oxides surfaces (Table S1 in the supporting information).37  

 

Figure 2. a) CV of 2D@MWCNT@GC (black line) and 2D-H2O@MWCNT@GC (red line) in 1 M 
phosphate buffer (pH 7) at scan rate of 100 mV/s. Inset: Zoom in the region of the non-catalytic 
redox waves. Surface coverage: Γ2D = 4.8 nmol·cm-2, Γ2D-H2O = 4.2 nmol·cm-2. 

 
To generate the active catalyst at the surface of the electrode, a bulk electrolysis at 1.25 V for 

1000 s was applied under stirring at pH 12. During this process, the initial RuII species oxidizes 

to oxidation state RuIV and the coordination of aquo occurs at the Ru metal center, generating 
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an active hybrid material denoted as 2D-H2O@MWCNT@GC. Once generated, this electrode 

was removed from pH 12, rinsed with water and then introduced to a fresh solution at pH 7. 

This active hybrid material 2D-H2O@MWCNT@GC shows two redox waves at E1/2 = 0.51 V (E 

= 120 mV) and 0.71 V (E = 20 mV) attributed to the RuIII/II and RuIV/III couples respectively 

(Figure 2 red line). As can be seen from this Figure 2, two additional redox waves appear with 

anodic peak at Ep,a = 0.44 V and cathodic peak at Ep,c = 0.55 V that are pH dependent suggesting 

they are involved in proton coupled electron transfer (PCET) processes that point out to the 

presence of Ru-OH species (Figure S4). These additional redox waves might belong to 

different redox couples with overlapping electroactivity, due to slightly different coordinating 

environment around the metal center. Finally, a large electrocatalytic current corresponding 

to the oxidation of water to molecular oxygen associated with the RuV/IV couple occurs with 

onset potential at 1.2 V, manifesting very high activity of this catalytic hybrid material (Figure 

2 red line). Moreover, current densities above 140 mA/cm2 at 1.45 V vs. NHE were achieved 

in neutral pH 7 phosphate buffer solution with molecularly well define hybrid material, that 

is around 15 times higher than the best reported molecular electroanode24 and almost two 

orders of magnitude higher than any other molecular catalyst anchored on the solid surface. 

These results prove the benefits of having a well-defined polynuclear material with a high 

density of catalytic centers.25,37 

The 2D-H2O@MWCNT@GC electrode shows exceptional stability and durability for oxygen 

evolution reaction. The long-term stability of this electrode was evaluated at pH 7 based on 

repetitive CV cycles and bulk electrolysis. After 1000 repetitive CV cycles from 0.25 V to 1.45 

V at pH 7 solution with 100 mV/s scan rate shows deterioration of the catalytic current from 

70 mA/cm2 to 20 mA/cm2 (Figure S3a). The long-term durability of this hybrid material was 

analysed by applying constant potential at 1.45 V at pH 7. The initial current density reaches 

75 mA/cm2 and remain constant for 2 h. After this time, the current density starts to decrease 

and decays to 50 mA/cm2 after 6 h (Figure 3). The decay of the current density might be due 

to the de-attachment of the active catalyst from the MWCNT or the partial de-attachment of 

the 2D-H2O@MWCNT material from the GC electrode or convert to some other species with 

no catalytic activity. The cyclic voltammetry after 6 h control potential electrolysis shows that 

the catalyst is still present on the electrode surface with slightly less catalytic current (Figure 

S3b). Moreover, a small increase of the capacitive current can be attributed to the partial 

oxidation of electrode surface during this long experiment at this high potential. After 6 h of 

control potential electrolysis experiment in pH 7 at 1.45 V gives a remarkable turnover 

number (TONs) of 1.3 million (Figure S8). 
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Figure 3. Controlled potential electrolysis (CPE) of 2D-H2O@MWCNT@GC at 1.45 V vs NHE in 1 M 
phosphate buffer (pH 7) during 6 h. Surface coverage: Γ2D-H2O = 4.1 nmol·cm-2 (TONs was calculated 
up to 6 h and turns out to 1.3 million). 

 
The mass loading of the 2D polymer is four times lower as compare to 1D polymer described 

in Chapter 5 but the relative current density with respect to the mass loading, for the 2D 

polymer is 2.5 times better than that of the 1D polymer (Table S1). The extraordinary activity 

of this 2D-H2O@MWCNT@GC might be due to the presence of some unique supramolecular 

interaction present between the 2D layers of the coordination polymers when they are 

anchored on MWCNT surface. 

Interestingly, the 2D polymer also adsorbed strongly on the glassy carbon electrode in the 

absence of MWCNT to give the hybrid 2D@GC. As can be seen in Figure S5, the cyclic 

voltammetry of the surface functionalized glassy carbon electrode via physisorption was 

carried out in pH 7 phosphate buffer. It shows two one electron redox features at E1/2 = 0.64 

V and E1/2 = 1.13 V, which correspond to the III/II and IV/III redox couples of the Ru-polymer 

respectively, clearly confirming the adsorption of the Ru-polymer on the surface of the GC 

electrode (Figure S5a black line). The activation of 2D@GC was performed following the same 

procedure used for 2D@MWCNT@GC giving the hybrid electrode 2D-H2O@GC, which 

showed significant electrocatalytic current corresponding to oxidation of water to molecular 

oxygen (Figure S5a red line). The catalyst on the electrode shows robustness without any 

deactivation of the catalysis upon 100 repetitive CV cycles (Figure S6).  
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All these results manifest the importance of supramolecular/polynuclear nature of the 2D 

materials prepared in this work for the production of highly active and robust electroanodes 

for water splitting devices, that can perform similar or sometimes better than commercial 

electrolyzer.38 Finally, an analysis of the gas phase of a bulk electrolysis experiment of this 

molecular hybrid anode at an applied potential of 1.45 V for 1.5 h confirms the evolution of 

O2 gas with a faradaic efficiency of 99.5% (Figure S7), showing the robustness of this system. 

6. 3. Conclusion 

In conclusion, we have reported for the first time a functional 2D coordination polymer for 

water oxidation catalysis based on the Ru(tda) core. This material strongly adsorbs on 

MWCNT and can be used to build extremely active and highly robust molecular electroanodes 

for the oxidation of water to molecular oxygen with 1.3 million Turn over number in 6 h and 

is about six times higher than 1D polymer with 0.2 million TON over 12 h under the same 

condition (Chapter 5). Current density achieved by this material is comparable to that of metal 

oxide catalysts in commercial electrolyzers but with two orders of magnitude lower mass 

loading.38 The results show that the judicious design of functional coordination polymer can 

open a new horizon for the generation of molecularly well-defined heterogeneous catalyst 

for energy application devices. 
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Experimental Section 

Materials 

All the chemicals used in this work were provided by Sigma Aldrich and they have been used 

without further purification unless explicitly indicated. RuCl3·×H2O was purchased from Alfa-

Aesar, 6,6'-Dicarboxylic acid-[2,2':6’,2”-terpyridyl] (H2tda), the precursor complexes 

{RuCl2(DMSO)4} and Ru(tda)(DMSO)(OH2) were prepared according to a reported procedure.1 

MultiWall Carbon Nanotubes (MWCNTs) were purchased from HeJi, Inc. (Zengcheng city, 

China) in bulk with >95% purity, >50 nm OD and ~10 µm length. 

Solvents were dried with a SPS® system and degassed by bubbling nitrogen before starting 

the reactions. High purity de-ionized water used for the electrochemistry experiments was 

obtained by passing distilled water through a nanopure Mili-Q water purification system. For 

other spectroscopic and electrochemical studies, HPLC-grade solvents were used. GC plate 

electrodes (GCp) were purchased from HTW, Germany, and are made of glassy carbon 

SIGRADUR® with the dimensions 20x10x0.18 mm. 

Instrumentation and Methods 

The pH of the solutions was determined by a pH meter (CRISON, Basic 20+) calibrated before 

measurements through standard solutions at pH 4.01, 7.00 and 9.21.  

Powder X-ray diffraction (PXRD) was performed on D8 Advanced Powder Diffractometer 

(Bruker) equipped with a vertical 2theta-theta goniometer in transmission configuration, with 

a Kα1 germanium monochromator for Cu radiation (λ = 1.5406 Å), at a scan step of 0.02° s−1 

from 10° to 80°. 

UV-vis spectrometry was performed using a Cary 50 (Varian) UV-vis spectrophotometer. 

Electrochemical Methods 

All the electrochemical experiments were performed in an IJ-Cambria CHI-660 potentiostat. 

Either a glassy carbon disk (GCd, ф = 0.3 cm, S = 0.07 cm2) or a glassy carbon plate (GCp, 20 

mm x 10 mm x 0.18 mm) were used as working electrode (WE). In the case of GCp the surface 

dipped in the electrochemical solution was 1 cm2. A Pt disk (ф = 0.3 cm, S = 0.07 cm2) was 

used as counter electrode (CE) and a Hg/Hg2SO4 (K2SO4 sat.) electrode was used as a reference 

electrode (RE), except for the oxygen monitored bulk electrolysis that a Ag/AgCl (KCl sat.) was 

used as RE and a Pt mesh as a CE. Electrochemical experiments in organic solvent were carried 
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out in trifluoroethanol (TFE) containing 0.1 M of [(n-Bu)4N][PF6] (TBAH) as supporting 

electrolyte. 

Preparation of different pH phosphate buffers: 

 pH 2, Ionic strength 0.1 M: H3PO4 (0.104 mol, 10.19 g) and NaH2PO4 (0.0955 mol, 11.45 

g) in 1 L of Mili-Q water. 

 pH 7, Ionic strength 1 M: NaH2PO4 (0.153 mol, 18.31 g) and Na2HPO4 (0.282 mol, 40.07 

g) in 1 L of Mili-Q water. 

 pH 7, Ionic strength 0.1 M: NaH2PO4 (0.019 mol, 2.32 g) and Na2HPO4 (0.027 mol, 3.78 

g) in 1 L of Mili-Q. 

 pH 12, Ionic strength 0.1 M: Na2HPO4 (0.0073 mol, 1.04 g) and Na3PO4 (0.013 mol, 

2.07 g) in 1 L of Mili-Q. 

Note: During pH dependent experiments the solutions were basified or acidify by addition of 

the corresponding amount of 1 M NaOH or 0.1 M CF3SO3H aqueous solutions, respectively. 

Cyclic Voltammetry (CV): In a typical CV experiment, a 20 mL vial was used as an 

electrochemical cell. A home-made Teflon cap with holes for the three electrodes was used 

as a lid to ensure a reproducible distance between the electrodes. The scan rate was 100 

mV·s−1 unless otherwise stated. IR compensation was applied at 90% when the current density 

was above 10 mA/cm2. 

Differential Pulse Voltammetry (DPV): In a typical DPV experiment, a 20 mL vial was used as 

an electrochemical cell. A home-made Teflon cap with holes for the three electrodes was used 

as a lid to ensure a reproducible distance between the electrodes. The DPV parameters were 

ΔE = 4 mV, Amplitude = 50 mV, Pulse width = 0.05 s, Sampling width = 0.0167 s, Pulse period 

= 0.5 s. iR compensation was applied at 90%. 

Bulk electrolysis: For activation of catalyst, controlled potential electrolysis (CPE) was carried 

out in pH 12 phosphate buffer solution for 1000 s at 1.25 V vs NHE in 20 mL one compartment 

three electrode electrochemical cell with constant stirring. CPE experiment for checking the 

stability  was also carried out in 20 mL electrochemical cell containing stirring bar using glassy 

carbon disk as WE, Pt disk as CE and Hg/Hg2SO4 (K2SO4 saturated) as RE. 

Surface Coverage (Γ) Calculation 

The surface coverage of the complexes on the electrode was calculated following the formula: 
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𝛤 (𝑚𝑜𝑙 ∙ 𝑐𝑚−1) =  
𝑄𝑎𝑣

𝑛∙𝑆∙𝐹
                                                          (S1) 

𝑄𝑎𝑣 =  
𝑄

𝑝𝑎,𝑅𝑢𝐼𝐼𝐼/𝐼𝐼+𝑄
𝑝𝑐,𝑅𝑢𝐼𝐼𝐼/𝐼𝐼+𝑄

𝑝𝑎,𝑅𝑢𝐼𝑉/𝐼𝐼𝐼+𝑄
𝑝𝑐,𝑅𝑢𝐼𝑉/𝐼𝐼𝐼

4
  (S2) 

Where Qav is average of the charge under anodic (Qap) and cathodic (Qcp) peaks for RuIII/II and 

RuIV/III electron transfer processes, obtained by integration in the CV. n is the number of 

electrons involved in each oxidation process, which is 1 for both complexes. S is the geometric 

surface area of the electrode (GCd, S= 0.07 cm2 and GCp, S = 1 cm2) and F is Faradaic constant. 

The average coverage of the catalyst was estimated from 5 independent experiments and an 

error between the sample was considered as standard deviation. Moreover, the surface 

coverage of each electrode used for different analyses was calculated and indicated in the 

caption. 

O2 Evolution Experiments 

For Oxygen monitored bulk electrolysis experiments, a 10 mL two-compartment cell with a 

separation membrane between the two compartments was used. Both compartments were 

filled with 5 mL of 1 M phosphate buffer solution (pH = 7) and were equipped with a stirring 

bar. A functionalized GCp was used as WE, a Pt grid as CE and a Ag/AgCl (KCl sat.) as a RE. 

Oxygen evolution was analyzed with a gas phase Clark type oxygen electrode (Unisense Ox-N 

needle microsensor) and calibrated by the addition of small quantities of oxygen (99%) at the 

end of the experiment. The CE was placed in one compartment and the other was provided 

with WE, RE and Clark electrode.  

Synthesis of [{Ru(tda)}2(tpt)3]n (n= x) 

Synthesis of [{Ru(tda)}2(tpt)3]nDMSO (2D): In 100 mL two neck round bottom flask, 

[Ru(tda)(DMSO)(OH2)] (50 mg, 0.1 mmol) 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) (47 mg, 0.15 

mmol) were dissolved in 20 mL of degassed TFE and refluxed for 3 days under N2 atmosphere. 

Afterwards, the reaction mixture was evaporated to dryness and to this resulting solid, 

methanol was added and a violet precipitate was observed along with red color solution. The 

precipitate was filtered through frit and washed with MeOH, H2O, acetone and Et2O and dried 

under vacuum and gives the 2D polymer [{Ru(tda)}2(tpt)3]nDMSO (2D) with 70 mg as an 

isolated solid. 

Synthesis of [{Ru(tda)}2(tpt)3]nH2O (2D): In 100 mL two neck round bottom flask, 

[Ru(tda)(OH2)2]PF6 (50 mg, 0.09 mmol) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) (42 mg, 

0.13 mmol) were dissolved in 20 mL of degassed TFE and refluxed for 3 days under N2 
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atmosphere. Afterwards, the reaction mixture was evaporated to dryness and to this resulting 

solid, methanol was added and a violet precipitate was observed along with deep red color 

solution. The precipitate was filtered through frit and washed with MeOH, H2O, acetone and 

Et2O and dried under vacuum yielding the 2-D polymer complex [{Ru(tda)}2(tpt)3]nH2O (2D) 

with 60 mg as an isolated yield. 

Preparation and Activation of 2D@MWCNT@GC Electrodes 

Preparation of 2D@MWCNT 

Scheme S1 shows a schematic drawing of the procedure employed for preparation of 

2D@MWCNT. Solution A was prepared by disolving 1 mg of the corresponding 2D polymer in 

1 mL of TFE. Suspension B was prepared parallely by sonication of 5 mg of MWCNTs (HeJi, 

Inc., China) in 5 mL of THF during 60 minutes. Afterwards, 0.1 mL of Solution A was added to 

1 mL of Suspension B. Upon addition, the red color disappeared inmediately from the solution 

indicating that polymeric complexes are quickly anchored on MWCNT yielding suspension C, 

which contains 2D@MWCNT. 

 
 

Scheme S1. Schematic diagram for the preparation of 2D@MWCNT@GC. 

Preparation of 2D@MWCNT@GCd 

Solution C was dropcasted (4 x 20 L) onto GCd electrodes. Each drop was placed after the 

last drop is totally dried. Electrode was then ready for electrochemical measurements. 

Preparation of 2D-H2O@MWCNT@GCd 

The electrodes prepared above (2D@MWCNT@GC) was immersed in 0.1 M phosphate buffer 

solution (pH 12) and CPE was performed at 1.25 V vs NHE for 1000 seconds under constant 
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stirring to generate 2D-H2O@MWCNT@GC. Afterwards, the activated electrodes were rinsed 

with distillated water and dried at room temperature.  

Note: Preparation of electrodes on glassy carbon plates (GCp) was carried out using a similar 

methodology but some differences were introduced. Solution C was dropcasted (4 x 30 L) 

onto GCp electrodes. Each drop was placed after the last drop is totally dried. The coating was 

applied only to one side of the plates and a tape was used to limit this coating to 1 cm2.  

Surface Coverage (Γ) Calculation 

The modified electrodes were immersed in 1 M phosphate buffer solution (pH 7) and cyclic 

voltammetry was performed (Ei = 0.25 V, Ec = 1.45 V, Ef = 0.25 V, total scans = 6, where Ei is 

initial potential, Ec is the change potential and Ef is the final potential), (CE = Pt disk, RE = 

Hg/Hg2SO4) to estimate the coverage of the electrodes. The surface coverage (𝛤) of the 

complexes on the electrodes was estimated by applying the formula 𝛤 (mol·cm-2) = Q / 

(n*S*F). 

Physisorption Method 

1 mg of 2D polymer was dissolved in 1 mL of trifuloroethanol solvent. To this solution glassy 

carbon electrode (GCd) was dipped for 1 min and the electrode was taken out from the 

solution. The electrode was then washed with water and dried. The electrode was then ready 

for the electrochemical experiments. 
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Figure S1. Powder X-ray diffraction of representative 2D polymer. 

 

 
Figure S2. UV-Vis absorption spectrum of representative 2D polymer.  
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a) 

 
b) 

 
Figure S3. a) CV evolution of 2D-H2O@MWCNT@GC during 1000 repetitive CV cycles in 1 M 
phosphate buffer (pH 7), red line corresponds to the 1st cycle, grey line is 2nd– 999th cycles and blue 
line is the 1000th cycle at a scan rate of 100 mV/s. Inset: non catalytic redox waves. Surface coverage: 
Γ2D-H2O = 2.9 nmol·cm-2. 
b) CV of 2D-H2O@MWCNT@GC before (red line) and after (blue line) CPE experiment at 1.45 V vs 
NHE for 6 h in a freshly prepared 1 M phosphate buffer solution (pH 7) at a scan rate of 100 mV/s. 
Inset:, non catalytic redox waves. Surface coverage: Γ2D-H2O = 4.1 nmol·cm-2. 
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a) 

 
b) 

 
Figure S4. CV of 2D-H2O@MWCNT@GC at different pHs. a) acidic pH ranges, b) basic pH ranges. 
Arrow indicates the shift of redox waves upon changing the pHs, asterisk indicates unidentified 
species. (Note: in higher pHs, upon catalysis, local pHs of the solution changes near the electrode 
and cothodic waves are not appearing in the expected zone after catalysis).  
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a) 

 
b) 

 
Figure S5. a) CV of 2D@GC (black line) and 2D-H2O@GC (red line) in 1 M phosphate buffer (pH 7) at 
scan rate of 100 mV/s. Inset: enlargement of non catalytic redox waves. b) DPV of 2D@GC (red) and 
2D-H2O@GC (blue line) in 1 M phosphate buffer (pH 7) at scan rate of 100 mV/s. Inset: enlargement 
of non catalytic redox waves. 
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Figure S6. CV evolution of 2D-H2O@GC during 100 repetitive CV cycles in 1 M phosphate buffer (pH 
7), red line corresponds to the first cycle, grey line is 2nd– 99th cycles and blue line is the 100th cycle 
at a scan rate of 100 mV/s. 
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Figure S7. Oxygen evolution vs time (min) for 2D-H2O@MWCNT@GC Γ2D-H2O

 = 3.1 nmol·cm-2 using a 
Clark probe electrode during a CPE at 1.45 V vs NHE in 1 M phosphate buffer (pH 7). Black line 
corresponds to the O2 measured in the gas phase by a Clark electrode during CPE experiment, Red 
line corresponds to the calculated amount of oxygen generated based on the charge passed during 
the CPE assuming 100% Faradaic efficiency. A Faradaic efficiency value of 99.5% was calculated at 
100 min. Note: The applied potential was stopped at 95 min, but the O2 evolution continued until 
110 min due to the O2 bubbles trapped at the working electrode. (Spike in the black line is due to 
the slight movement of the bulk electrolysis set up at the end of bulk electrolysis experiment to take 
out the oxygen bubble from the working electrode. Slight decrease in the slope of Clark response 
after 80 min of the experiment might be due to the change of the headspace of the bulk electrolysis 
set up due to the generation of the different amount gas in both compartment cell). 
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Figure S8. Plot of TONs vs. time obtained from the bulk electrolysis experiment for 2D-
H2O@MWCNT@GC with Γ2D-H2O

 = 4.1 nmol·cm-2 at pH = 7 at an Eapp = 1.45 V. Charge after 6 h is 143 
C and the total amount of catalyst is 0.287 nmol. 
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Table S1. Catalytic performance of related molecular anodes described previously in the literature. 

 

Abbreviations: 1D refers to 1D polymer in Chapter 6, tw refers to the catalysts reported in this work, CNT and MWCNT is Multi Wall Carbon Nanotubes; pyp is 4-
(pyren-1-yl)pyridine; pypA is 4-(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide; bpy-CH2PO3H2 is ([2,2'-bipyridine]-4,4'-diylbis(methylene))bis(phosphonic acid); 
Mebimpy is 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bda is 2,2’-bipyridine–6,6’–dicarboxylate; F-Isoq is 6-fluroisoquinoline. aCalculated from CV or CPE 
experiments at the indicated potential (E). 

 

Entry Catalyst 
Γ 

(nmol cm-2) 
pH 

J 
(mA cm-2)a 

E vs NHE 
(V)a 

Anchoring Support 

11D 5@CNT 14 7 - - CH-π GC 

2 15@CNT 21 7 - - CH-π GC 

3tw 2D@MWCNT 4.8 7   - GC 

31D 1-pyp@CNT 5 7 - - π-π GC 

41D 1-pypA@CNT 9 7 - - π-π GC 

51D 5-H2O@CNT 9.5 7 190 1.45 CH-π GC 

61D 15-H2O @CNT 17.5 7 240 1.45 CH-π GC 

7tw 2D-H2O @CNT 4.2 7 140 1.45 - GC 

81D 1-O-pyp@CNT 0.4 7 20 1.45 π-π GC 

91D 1-O-pypA@CNT 0.9 7 39 1.45 π-π GC 

102 1-pyp@CNT 0.2 7 - - π-π GC 

112 1-pypA@CNT 6.3 7 - - π-π GC 

122 1-O-pyp@CNT 0.03 7 2.2 1.45 π-π GC 

132 1-O-pypA@CNT 0.55 7 10.5 1.45 π-π GC 

143 [(bpy-CH2PO3H2)Ru(Mebimpy)(OH2)]2+ 0.1 5 0.015 1.85 [R-PO3H-]-M ITO/FTO 

154 [Ru(bda)(F-Isoq)(py-Thiophene)] 0.96 7.2 4 1.3 P-thiophene GC 
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Mononuclear complexes based on the [Ru(tda)(Py’)(py”)] as a catalyst precursor are 

described (where tda = 2,2':6’,2”-terpyridine-6,6”-dicarboxylate, py’ and py” = 

functionalized pyridine). Here the pyridine py’ or py” contain a functional group that allows 

attaching the complex to conductive substrates via covalent bonding. For instance, 

carboxylate and vinyl groups are used to attach the complex onto metal oxides, diazonium 

salts for C-C bonding attachment to graphitic materials or pyrazine linkages to anodized 

graphitic materials. Finally, non-covalent interactions are explored as a means to 

heterogenize mononuclear and coordination polymers on graphitic materials or metal 

oxides. 
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catalytic tests and prepared the manuscript. 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7  

263 

VII 

Abstract 

Mononuclear complexes based on the [Ru(tda)(Py’)(py”)] pre-catalytic center are described 

(where tda = 2,2':6’,2”-terpyridine-6,6”-dicarboxylate, py’ and py” = functionalized pyridine). 

Here the pyridine py’ and py” contain a functional group that allows attaching the complex to 

conductive substrates via covalent bonding. For instance, carboxylate and vinyl groups are 

used to attach the complex onto metal oxides, diazonium salts for C-C bonding attachment to 

graphitic materials or pyrazine linkages to anodized graphitic materials. Finally, non-covalent 

interactions are explored as a means to heterogenize mononuclear and coordination 

polymers on graphitic materials or metal oxides. Covalent linkage of carboxylate groups on 

metal oxide surfaces is unstable under working conditions pH 7 while polyvinyl pyridine films 

show a very robust linkage on the same surface. Covalent linkage of the molecular catalyst on 

graphite surface through C-C bonds are also very stable while pyrazine groups are sensitive to 

high potential. Interestingly, physisorbed polymers on graphite surface are promising 

candidates for water oxidation as opposed to analogous mononuclear derivatives. The high 

activity observed in the former case is not translated to conductive metal oxides due to 

deactivation of the catalyst in contact with this type of surface. 

Graphical abstract 

 

 

Keywords: Anchoring, Carboxylate, Vinyl pyridine, Pyrazine, Diazonium, Water oxidation 
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7. 1. Introduction 

Molecular electrocatalysis consists of using well defined transition metal complexes to carry 

out catalytic transformations by electrochemical means. Although the ease of synthetic 

tuning of homogeneous molecular electrocatalyst represents a powerful strategy to optimize 

the kinetics and/or thermodynamics of the substrate activation,1-3 when a catalyst is used in 

homogeneous phase it often experiences lower reaction rates as compared to heterogeneous 

catalysts because catalytic turnover only occurs when the catalyst is in diffusive contact with 

the electrodes. These limitations can be overcome if the molecular catalyst is anchored onto 

the electrode. Often, heterogeneous electrocatalysts based on metallic surfaces of metal 

oxides exhibit greater stability than molecular analogues. However, the catalytic activity of 

such materials is difficult to control since systematic modification of the active site is generally 

limited to morphology and pore size as opposed to molecular complexes where the first and 

even second coordination spheres can be easily and judiciously tuned. For all these reasons, 

it is of interest to develop methodologies that can allow to anchor molecular catalysts that 

have been previously optimized in homogeneous phase onto conductive surfaces.  

A variety of methods have been developed to immobilized molecules on conductive solid 

surfaces such as thiol based self-assembled monolayers (SAMs),4 click chemistry,5 alkyne 

linkage,6 diazonium grafting7,8 and non-covalent linkage that rely on π−π9 interactions for 

many applications. In the particular field of water oxidation catalysis, the reports on molecular 

catalysts anchored on solid surfaces is limited but it has recently become an attractive 

strategy to generate hybrid material to build up photoelectrochemical cells for water splitting.  

In chapter 5 and 6 of the present thesis the deposition of coordination polymers containing 

water oxidation catalysts (WOC) centers on graphitic surfaces through CH-π-interaction have 

been explored. This chapter focuses on exploring a wide range of anchoring strategies to 

immobilize WOC on solid surfaces via covalent linkage (Figure 1). The first strategy consists of 

using a pyridine dicarboxylate10,11 group that is expected to bind to metal oxide surfaces such 

as nano-ITO particles (where ITO is indium doped tin oxide) forming covalent bonds as 

indicated in the top left of Figure 1. The second approach is based on the polymerization of 

vinyl pyridine induced by UV-light12 that forms stable films on both metal oxide and graphitic 

electrodes (Figure 1, bottom left). Next, a simple and powerful method of linking the WOC on 

graphitic carbon electrode through conjugated aromatic pyrazine linkage13 will be explored. 

This approach requires a pre-treatment of the glassy carbon that ensures that there are 

enough oxidized sites to be able to react with the diaminobenzene group (Figure 1, top right). 

The last method is based on diazonium electrografting,14 which generates stable covalent (C-
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C) bonds on any graphitic surface with the molecular catalyst. In the last part of the chapter, 

a quick note on the supramolecular interaction between monomeric water oxidation catalysts 

and graphitic materials will be explored and the results compared with those obtained for 

coordination polymers described in Chapter 5 and 6. 

 
Figure 1. Strategies to anchor water oxidation catalysts (WOC) on conductive substrates used in this 
work. 
 

The water oxidation catalyst selected to perform this study is the [Ru(tda)(py)2] catalyst 

(where tda is [2,2':6',2''-terpyridine]-6,6''-dicarboxylato and py is pyridine), which is the 

fastest molecular WOC described to date (Figure 2).15 In order to incorporate this catalyst on 

electrode surfaces, the axial pyridines have been modified with appropriate functional 

groups. The family of pyridines used in this work as well as the molecular structure of the 

catalytic center are given in Figure 2.  
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Figure 2. Water oxidation catalyst precursor (left) and functionalized pyridines and aniline (right) 
used in this work and their corresponding labeling . 
 

7. 2. Experimental Section 

Materials 

RuCl3·×H2O was purchased from Alfa-Aesar. The precursor complex [RuCl2(DMSO)4],16 

[Ru(tda)(DMSO)(OH2)]17 and [Ru(tda)(py)(OH2]17 were prepared according to a reported 

procedures. [4,4'-bipyridine]-2,6-dicarboxylic acid, vinyl pyridine, 3,5-pyridine diamine, 4-

(pyridin-4-yl)aniline and other chemicals were obtained from commercial source and used as 

received. Indium doped tin oxide (ITO) electrodes were purchase from SPI supplies/ALPHA 

BIOTECH (R = 8-12 ohms/sq) and fluorine doped tin oxide (FTO) from Xop Glass (FTO TEC-15, 

thickness: 2.2 mm, R=12-15ohms/sq). nano-ITO was purchased by Aldrich and the paste for 

doctor blading were prepared following reported procedures.18,19 Solvents were dried with a 

SPS® system and degassed by bubbling nitrogen before starting the reactions. High purity de-

ionized water used for the electrochemistry experiments was obtained by passing distilled 

water through a nanopure Mili-Q water purification system. For other spectroscopic and 

electrochemical studies, HPLC-grade solvents were used.  

Instrumentation and Methods 

A 400 MHz Bruker Avance II spectrometer and a Bruker Avance 500 MHz were used to carry 

out NMR spectroscopy. ESI-Mass spectra were recorded using micromass Q-TOF mass 

spectrometer. Elemental analyses were carried out on Perkin-Elmer 240C elemental analyzer. 

The pH of the solutions was determined by a pHmeter (CRISON, Basic 20+) calibrated before 
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measurements through a standard solutions at pH 4.01, 7.00 and 9.21. Oxygen evolution was 

analyzed with a gas phase Clark type oxygen electrode (Unisense Ox-N needle microsensor) 

and calibrated by the addition of small quantities of oxygen (99%) at the end of the 

experiment. Spin coater 3000 with WS-650 spin processor from Laurell technology was 

used. All electrochemical experiments were performed in an IJ-Cambria CHI-660 potentiostat 

using a three-electrode one compartment cell for cyclic voltammetry (CV) and differential 

pulse voltammetry (DPV) or two compartment cell for bulk electrolysis. E1/2 values reported 

in this work were estimated from CV experiments as the average of the oxidative and 

reductive peak potentials (Ep,a + Ep,c)/2 or from DPV. The Reference Electrode (RE) was 

Hg/Hg2SO4 (K2SO4 saturated) and potentials were converted to NHE by adding 0.65 V. Either 

a glassy carbon disk (GCd, ф = 0.3 cm, S = 0.07 cm2), a glassy carbon rotatory disk (ф = 0.5 cm, 

S = 0.196 cm2) or ITO/FTO plates (ca. 10 mm x 12 µm) with or without functionalization were 

used as working electrodes (WE). A Pt disk (ф = 0.2 cm, S = 0.03 cm2) was used as counter 

electrode (CE). Glassy carbon electrodes were polished with 0.05 μm alumina (Al2O3) and 

rinsed with water. Before catalyst deposition, ITO-coated glass slides were cleaned using 

consecutive ultrasonic treatment with isopropanol and acetone for 20 min each. The slides 

were then dried under nitrogen flow and used immediately after being cleaned. Before 

catalyst deposition, FTO electrodes we cleaned by an alkaline solution (VHELLANEX : VMilli-Q water 

=100:1, Hellmanex is an alkaline solution purchased from Hellma GmbH & CO. KG), Milli-Q 

water and ethanol. Each cleaning step are under 10 min sonication and then rinsed by the 

corresponding solvents. After all these steps, the FTO/ITO coated glass is dried in the oven at 

100˚C overnight, and then annealed at 300 ˚C for 30 min in the furnace to remove the organic 

contaminations on the surface and ensure a good conductivity. CVs and DPVs were iR 

compensated by the potentiostat in all the measurements. CVs were recorded at 100 mV·s−1 

scan rate. DPV parameters were ΔE = 4 mV, Amplitude = 50 mV, Pulse width = 0.05 s, Sampling 

width = 0.0167 s, Pulse period = 0.5 s. The complexes were dissolved in acetonitrile or 

trifluoroethanol containing [(n-Bu)4N][PF6] (0.1 M) as supporting electrolyte. In aqueous 

solution the electrochemical experiments were carried out in I = 0.1 M phosphate buffer 

solutions with desired pH. For routine bulk electrolysis experiments, a functionalized 

electrode was used as a WE, another Pt grid as a CE and a Hg/Hg2SO4 (K2SO4 saturated) as a 

RE. iR compensation by the potentiostat was not applied in this technique. 

NanoITO@ITO preparation using spin coating: Freshly cleaned ITO-coated glass slides were 

partially covered with scotch tape in order to leave flat surface for electrical connection. The 

uncovered area was filled with ITO nanoparticles via spin coating to have a homogeneous 
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layer on it following the reported procedures.18,19 The coated slides (nanoITO@ITO) were then 

placed on a hot plate (100 °C) for 5 min to dry off excess solvent and followed by annealing 

under the atmospheric pressure in a tube furnace at 350 °C.  

GC Rotating Disk Electrode Preparation 

Glassy carbon rotating disk electrodes, 5 mm diameter, were polished by hand against an 

alumina slurry using a circular motion for 30 seconds following by sonication in Milli-Q water 

for 1 min. This process was repeated in sequence using 1.0 µm, 0.3 µm, and 0.05 µm alumina 

slurries. To further clean the glassy carbon electrode surface and expose a high population of 

quinone moieties the electrodes were briefly anodized via potentiostatic electrolysis at 3.5 V 

vs NHE for 10 seconds in 0.1 M H2SO4. Electrodes were subsequently washed with copious 

amount of water and ethanol prior to electrochemical evaluation or further functionalization. 

Electrode Activation Protocol 

The molecular system [Ru(tda)(py)2] that is used in this work, is not a real water oxidation 

catalyst but a catalyst precursor. An aquo ligand needs to coordinate to the Ruthenium at 

high oxidation states. This process is regarded as activation of the electrode. In order to do 

this activation, the functionalized electrode was submitted to a Controlled Potential 

Electrolysis. Unless otherwise mentioned, the protocol consisted in applying a potential of 

1.25 V vs NHE at the hybrid electrode in a pH 12 phosphate buffer solution for ca. 500 s. 

GC Functionalization with Aromatic Diazonium Salts 

Procedure: The clean glassy carbon electrodes were put in three electrode set up CV cell 

containing 4-(pyridin-4-yl)aniline or 1:1 mixture of 4-(pyridin-4-yl)aniline, 4-amino-

benzenesulfonic acid or the complexes containing aromatic amine with tert-butyl nitrite 

under argon at 4 ̊ C in acetonitrile or trifluoroethanol  solvent containing 0.1 M [(n-Bu)4N][PF6] 

for 10 min. Then 10 CV cycles were carried out starting from 0.9 to -0.35V vs NHE with the 

same solution. The electrodes were removed from the set up and rinsed with acetonitrile, 

water and dried with airflow. Ligand or complex modified electrodes were then ready for 

further experiment.  

Preparation of GC with MWCNT and Functionalization with Aromatic Diazonium Salts 

MWCNT@GC was prepared by dropcasting 20 L dispersed solution of MWCNT on the top of 

glassy carbon electrode and allowed to dry. This electrode was then dipped into 1 mM 
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solution of complex 4 in trifluoroethanol containing tert-butyl nitrite under argon at 4 ˚C for 

10 min and similar procedure as describe above was applied. 

Physisorption Method 

A clean glassy carbon electrode was dipped into a solution that contain 1 mg of complex in 1 

mL of trifluoroethanol solvent for 1 min. The complex functionalized electrode was then 

rinsed with trifluoroethanol and water. It was then dried by airflow and was ready for 

electrochemical experiment. In this process, complexes are adsorbed by physisorption 

method.  

Synthesis of [RuII(tda)(pypdc)2], 1: [Ru(tda)(DMSO)(OH2)] (100 mg, 0.19 mmol) and [4,4'-

bipyridine]-2,6-dicarboxylic acid (pypdc, 100mg, 0.4 mmol) were stirred in 30 mL of a mixture 

methanol/water (3:2) under reflux overnight under argon atmosphere. The volume of the 

solvent was reduced to 5 mL and 1 mL of 1 M H2SO4 was added. The blackish red color 

precipitate was obtained by filtration and cleaned with cold water and dried under vacuum. 

The amount of isolated material was low and the compound was not analytically pure and 

therefore, full characterization of 1 is not given. Nevertheless, the compound is 

electrochemically pure allowing to perform preliminary anchoring tests. Approximate yield: 

18 mg (0.02 mmol, 10 %). The nominal mass of 1, [1-2H + 2Na]+ (C41H21N7Na2O12Ru). 951.0 

(expt); 950.7 (calculated). 

Synthesis of [RuII(tda)(dapy)2], 2: [Ru(tda)(DMSO)(OH2)] (100 mg, 0.19 mmol) and 3,4-

diaminopyridine (dapy, 75 mg, 0.69 mmol) were refluxed in 20 mL of a mixture 

methanol/water (1:1) overnight under argon atmosphere. Solvent was then removed and 5 

mL of methanol were added. To this resulting solution, 10 mL of ether were added to get a 

precipitate. The solid was filtered and washed with a little amount of methanol and diethyl 

ether and dried under vacuum. Yield: 90 mg (0.14 mmol, 70 %). 1H-NMR (500 MHz, [d6]-

DMSO) δ: 8.61 (H4, d, J=8.0 Hz, 2H), 8.47 (H3, dd, J=5.9 Hz and J=2.2 Hz, 2H), 7.88 (H1,2,5, m, 

5H), 7.31 (H6, d, J=6.1 Hz, 2H), 6.54 (H10, s, 2H), 6.06 (H7, d, J=6.15 Hz, 2H), 5.63 (H8, s, 4H),4.31 

(H9, s, 4H). 13C-NMR (125 MHz, [d6]-DMSO) δ: 123.7, 124.0, 124.4, 127.0, 132.7, 136.9, 143.3, 

152.7, 155.8, 158.3, 162.1, 167.7 and 170.3. ESI (-) HRMS m/z: calc. for (C29H18N5O8Ru): 

660.0237, found m/z:  660.0259 (3.3 ppm error). Anal. Calc. for C29H17N5O12Ru (compound + 

4 H2O): C, 47.16 %; H, 3.68 %; N, 9.48 %. Found: C, 47.00 %; H, 3.34 %; N, 9.15 %.  

Synthesis of [RuII(tda)(apy)(OH2)], 3: [Ru(tda)(DMSO)(OH2)] (100 mg, 0.19 mmol) and 4-

(pyridin-4-yl)aniline (apy, 70 mg, 0.41 mmol) were stirred in 40 mL of water overnight at 45˚C 
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under N2 atmosphere. The mixture was then evaporated to dryness and the resulting solid 

dissolved in methanol and purified by column chromatography with neutral alumina using a 

mixture of CH2Cl2/MeOH/Et3N (1:1:0.001, v/v) as eluent. An orange red fraction was collected 

giving the product [RuII(tda)(apy)(DMSO)] (40 mg, 0.06 mmol, Yield: 33 %). This product was 

then heated at 90˚C with 0.2 mL neat triflic acid for 4 h and 2 mL of a saturated aqueous 

solution of KPF6 were added and kept in the fridge overnight. The precipitate was then filtered 

and washed with cold water and dried under vacuum. The amount of isolated material was 

low and the compound was not analytically pure and therefore, full characterization of 3 is 

not given. Nevertheless, the impurities have no electrochemical activity and thus allow to 

perform preliminary anchoring tests. Approximate yield: 15 mg (0.02 mmol, 10 %). 

Synthesis of [RuII(tda)(dmpy)(apy)], 4: [Ru(tda)(DMSO)(OH2)] (100 mg, 0.19 mmol) and 3,5-

lutidine (dmpy, 2 mL, 0.69 mmol) were stirred in 20 mL water for 4h at room temperature. 

This generated a brown solution that was extracted with DCM (3 x 100 mL). A brown solid was 

obtained by removal of the water and was then dissolved in MeOH and 4-(4-pyridinyl) 

benzenamine (apy, 40 mg, 0.23 mmol) were added and the mixture heated to reflux for 2 

days. The mixture was then evaporated to dryness and the resulting solid dissolved in CH2Cl2 

and purified by column chromatography with neutral alumina using a mixture of 

CH2Cl2/MeOH (100:25, v/v) as eluent. A brown red fraction was collected giving a solid 

identified as compound 4, which was not enough to fully characterize the compound. 

Nevertheless, it was possible to assign 1H NMR resonance and perform preliminary anchoring 

tests. Yield; 12 mg (0.02 mmol, 10 %).1H-NMR (500 MHz, [d6]-DMSO) δ: 8.72 (d, J=8.2 Hz, 2H), 

8.54 (dd, J=7.9 Hz and 1.1 Hz, 2H), 8.05 (t, J=8.2 Hz, 1H), 8.0 (d, J=7.3 Hz, 2H), 7.95 ( t, J=8.2 

Hz, 2H), 7.87 (dd, J=7.9 Hz and J=1.0 Hz, 2H), 7.75 (s, 2H), 7.37 (d, J=8.57 Hz, 2H), 7.24 (d, J=6.9 

Hz, 2H), 7.21 (s, 1H), 6.52 (d, J=8.75 Hz, 2H) 5.63 (s, 2H), 1.96 (s, 6H). 13C-NMR (125 MHz, [d6]-

DMSO) δ: 18.1, 114.3, 119.8, 121.7, 123.4, 124.0, 126.2, 128.1, 131.8, 133.7, 136.2, 138.3, 

147.5, 149.9, 151.4, 152.5, 157.7, 160.2, 161.9 and 169.3. 
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7. 3. Results and Discussion 

7. 3. 1. Pyridine Dicarboxylate Linkage to Metal Oxides 

Synthesis and Characterization of Complex 1 

Complex 1 was synthesized by using the precursor [Ru(tda)(DMSO)(OH2)] and two equivalents 

of [4,4'-bipyridine]-2,6-dicarboxylic acid (pypdc) in a mixture of methanol/water (3:2) 

(Scheme 1). The complex has been characterized by mass spectrometry and 1H NMR 

spectroscopy with the expected resonances and integration (Figure S1 in the SI). The amount 

of isolated compound 1 was low but it was possible to perform preliminary electrochemical 

and anchoring experiments described in the next sections. 

 

Scheme 1. Synthesis of complex 1. 

Electrochemistry and surface modification 

The electrochemical properties of complex 1 in homogeneous phase were analyzed in pH 7 

phosphate buffer (I = 0.1 M). All the redox potential here are reported versus the normal 

hydrogen electrode (NHE) unless otherwise explicitly mentioned.  

Cyclic voltammogram of 1 in Figure 3 shows two one-electron redox waves at E1/2 = 0.56 V (ΔE 

= 60 mV) and E1/2
 = 1.07 V (ΔE = 60 mV) corresponding to the RuIII/II and RuIV/III redox couples 

of the complex respectively and are similar to the reported complex [Ru(tda)(py)2],20 

indicating that the electronic effect of the functionalized axial ligand is weak. 

The complex was anchored on nano-ITO supported on conductive FTO plates by dipping the 

electrode inside a 1 mM solution of complex 1 in methanol for 2 h. The electrode was then 

rinsed with methanol and water and dried by airflow. A cyclic voltammetry of this new hybrid 

electrode 1@nanoITO@FTO was carried out in fresh pH 7 phosphate buffer (Figure 3b and 

3c). It shows a one-electron redox wave at E1/2
 = 0.6 V (ΔE = 440 mV) assigned to the RuIII/II 
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redox couple. A second one-electron redox wave also appears at E1/2
 = 1.02 V (ΔE = 260 mV) 

corresponding to the RuIV/III redox couple. Both electron transfer processes are very slow as 

indicated by the broad shape of the waves and the large peak-to-peak separation as 

compared to the homogeneous characterization (compare Figure 3a and 3c, black solid line). 

This is attributed to the lower conductivity of the nanoITO/FTO electrode compared to the 

glassy carbon electrode used to perform the electrochemistry in homogeneous conditions. 

a) 

 

 

b) c) 
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Figure 3. a) CV of complex 1 in homogeneous phase at pH 7 and using glassy carbon disk as working 
electrode; b) A schematic representation of the hybrid electrode 1@nanoITO@FTO; c) Repetitive CV 
cycles using the hybrid electrode 1@nanoITO@FTO as working electrode: first CV cycle (black solid 
line), 2nd to 49th CV cycles (grey solid line), 50th cycle (red dotted line) at pH 7. 

 

To check the stability of the complex anchored on the surface repetitive cyclic voltammetry 

experiments were carried out (Figure 3c, grey lines). After 50 cycles, the electrochemical 

response of the ruthenium complex is completely gone (red dotted line in Figure 3c). In 

addition, it is visually possible to see that the complex has leached to the solution as shown 

in the pictures of Figure 4. A CV of the colored solution after the 50 cycles using a clean glassy 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7  

273 

VII 

carbon electrode shows exactly the same CV as in Figure 3a, indicating no decomposition of 

complex 1 upon anchoring on the surface. 

Similar results were obtained when a flat FTO plate and a nano-TiO2 coated FTO plate were 

used, indicating that the behavior is the same for different type of oxides. In the former case, 

the loading was extremely low and the stability as poor as for the described for 

1@nanoITO@FTO. For the latter, the loading was significant but the electrochemical 

response of the hybrid electrode 1@nanoTiO2@FTO were difficult to characterize in the dark 

and under light, due to the semiconducting properties of the TiO2 materials. 

 

 
Figure 4. Pictorial view of the electrode and the electrolytic solution before and after 50 CV cycles. 
A full decoloration of the electrode is observed indicative of the weak linkage of the pyridine 
dicarboxylate group in pH 7 phosphate buffer solutions. 
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7. 3. 2. Polyvinyl Pyridine Films as Anchoring Platform  

Electrode Preparation and Surface Functionalization  

It is known that 4-vinylpyridine (vpy) polymerizes to polyvinyl pyridine (PVP) under UV light.12 

If this reaction is carried out on top of a flat surface, it results in a homogeneous film with 

controlled thickness depending on several reaction parameters such as amount of vpy or time 

of exposure to UV light. This conductive film contains a high density of dangling pyridine 

groups that are excellent anchoring platforms to attach the ruthenium precursor 

[Ru(tda)(py)(OH2)] to generate a conductive material containing the catalytic site precursor 

[Ru(tda)(py)(py’)] as indicated in the top of Scheme 2.  

Following this strategy, nanoITO coated slides (nanoITO@ITO) were placed inside an oxygen 

free glove box and a few drops of inhibitor-free vpy were added on top of the slides to cover 

the whole surface. In order to keep the liquid vpy, a wall of epoxy resin compatible with the 

reaction conditions was deposited on the edges of the electrode (see Scheme 2, bottom). The 

slides containing the vpy were exposed to 254 nm UV light for 2 h giving a polyvinyl modified 

nanoITO electrodes (PVP@nanoITO@ITO). Then, they were rinsed thoroughly with methanol, 

dried under nitrogen and stored under vacuum.  

The complex functionalization was achieved by dipping the PVP@nanoITO@ITO electrode in 

a solution of [Ru(tda)(py)(OH2)] (1 mM) and triethylamine (1 mM) in methanol under argon. 

The solution was heated up at 50 °C overnight. The resulting modified electrode 

Ru(tda)(py)PVP@nanoITO@ITO was then rinsed with methanol and water and dried with 

airflow. As seen in the bottom of Scheme 2, the colour of the electrode changes significantly 

from transparent to redish/brownish after the functionalization, indicating the successful 

incorporation of the Ruthenium on the surface. 
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Scheme 2. Top) Schematic representation of the preparation of the hybrid electrode 
Ru(tda)(py)PVP@nanoITO@ITO. Bottom) Picture of the real electrodes before (left) and after (right) 
functionalization with the ruthenium catalyst. A clear change of color of the surface due to anchored 
Ruthenium is observed. 

 

Electrochemistry 

Cyclic voltammetry experiments using Ru(tda)(py)PVP@nanoITO@ITO as working electrode 

were recorded in pH 7 phosphate buffer. As shown in Figure 5, two one-electron redox 

process appear at E1/2
 = 0.54 V (ΔE = 80 mV) and E1/2

 = 1.03 V (ΔE = 100 mV) corresponding to 

the RuIII/II and RuIV/III redox couples, respectively. These values are comparable to those 

obtained for homogeneous analog [Ru(tda)(py)2],20 indicative of the negligible electronic 

effect exerted by the polymeric structure connected to the axial pyridine, as expected. The 

absence of any pH dependent wave due to proton couple electron transfer process (PCET) of 

Ru-OH2 groups indicates that there is no adsorbed [Ru(tda)(Py)(OH2)] precursor on the 

surface.  

The stability of the hybrid electrode was carried out by repetitive CV cycles. As shown in Figure 

5, the intensity of the redox waves of the complex on the surface remain constant after 100 

cycles. This results indicate the extremely robustness of the linkage between the metal oxide 

surface and the Ru-modified PVP film over a wide potential window. 
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Figure 5. a) CV of freshly prepared Ru(tda)(py)PVP@nanoITO@ITO as working electrode in pH 7. b) 
Repetitive CV cycles of Ru(tda)(py)PVP@nanoITO@ITO as working electrode: 1st CV cycle (black 
solid line), 2nd to 99th CV cycles (grey solid line), 100th cycle (red dotted line). c) CV of the 
Ru(tda)(py)PVP@nanoITO@ITO before activation (black solid line), after activation as described in 
the main text (red solid line) and blank electrode (PVP@nanoITO@ITO) (blue solid line). All CVs in 
Figure 5a-c are performed in pH 7 buffered solution. 

 

The Ruthenium centers in the Ru(tda)(py)PVP@nanoITO@ITO electrode in Scheme 2 are 

catalyst precursors. In order to generate the active Ru-aquo catalyst on the electrode 

(Ru(OH)(tda)(py)PVP@nanoITO@ITO) a control potential electrolysis was carried out at Eapp = 

1.25 V in basic pH 12 for a few minutes as described in detailed in the experimental section. 

We usually call this process the activation of the catalyst. After prolonged activation of the 

electrode, no changes appeared indicating that the formation of the corresponding Ru-OH2 

complex on the surface did not occurred, as opposed to previous results in homogeneous and 

heterogeneous phase on graphitic surfaces.20,21 These results could be a consequence of two 

effects: i) the lack of effective concentration of hydroxide ion around the first coordination 

sphere of the metal center on the electrode due to the hydrophobicity of the PVP film 
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embedding the ruthenium centers and/or ii) deactivation of the catalyst due to coordination 

of the dangling carboxylate group on the metal oxide surface. Strategies to increase 

hydrophilicity of the PVP film by introducing polar groups in the polymeric backbone such as 

sulfonic or carboxylic acids are currently under way. 

7. 3. 3. Aromatic Pyrazine on Anodized Glassy Carbon  

The strategies discussed in the last two sections 7.3.1 and 7.3.2 are characterized by a 

relatively poor electronic coupling between the appended molecule and the conductive 

electrode surface, due to the organic moiety acting as a link between the two entities. 

Recently Yogesh el al. reported22 a new and simple surface functionalization strategy for 

conjugating molecular units with anodized graphitic surfaces by aromatic pyrazine linkage 

(Figure 1, top right) for CO2 reduction showing very impressive results. They have also shown 

that this anchoring method gives a very strong electronic coupling between the appended 

molecule and the surface electrode and thus the molecular catalytic site behaves like metallic 

heterogeneous surface sites.13  

For this approach the axial pyridine of the Ru-tda type of complex was functionalized with 

two ortho-amino groups (diapy in Figure 2). This diamino group can condense with the 

orthoquinone moiety of the exploited native surface of graphitic electrode and form a 

conjugated aromatic pyrazine linkage (Figure 1, top right). While the synthesis and full 

characterization of the new ruthenium complex was performed at ICIQ, (Figure S2-S4) the 

anchoring and catalytic studies were performed during a three months stay with Prof. Yogesh 

group at the Massachusetts Institute of Technology (MIT). 

Synthesis and Characterization of 2 

The synthetic strategy used to prepare complex 2 is outline in Scheme 3. It consists of reacting 

the ruthenium precursor [Ru(tda)(DMSO)(OH2)] with slight excess of 3,4-pyridinediamine 

(dapy). The solid product is isolated with 70% yield and the compound characterized by 

spectroscopic, electrochemical and analytical techniques. Full assignment of the 1H NMR 

resonances is given in Figure S2-S4 in the supporting information and shows the characteristic 

singlet proton signals for the two distinct amine groups at = 5.63 ppm and 4.31 ppm as 

expected.  
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Scheme 3. Synthesis of complex [RuII(tda)(dapy)2], 2. 

 

Surface Anchorage and Characterization 

In order to perform the condensation reaction between complex 2 and glassy carbon 

electrodes, a pretreatment of the latter is needed to ensure there are enough orthoquinone 

groups to react with the diamino moiety. This pretreatment is done under an inert 

atmosphere and consists in polarizing a polished glassy carbon (GC) electrode +3.5 V vs NHE 

in a 0.1 M H2SO4 solution for 10 s.23 The pretreated electrodes (GCC hereafter) were then 

immersed in a 1 mM solution of of 2 in trifluoroethanol (TFE) and heated up to 60 °C for 12 h 

(Scheme 4). The electrodes were then removed from the reaction medium, rinsed with TFE 

and placed in 5 mL of 0.1 M H2SO4  for 1 h. Finally, it was rinsed with copious amount of water 

and ethanol and dried under vacuum to give the functionalized electrode (2@GCC, Scheme 

4). 

Surface analysis of 2@GCC was carried out by X-ray Photoelectron Spectroscopy (XPS). The 

survey XPS spectrum shows a new peak at 462.5 eV corresponding to Ru 3d (Figure S8) as well 

as increased intensity in the N 1s peak relative to the native N concentration of unmodified 

GC electrode. The peak integration reveals an increase in atomic surface concentration of 0.51 

and 4.32 % for Ru and N respectively and consistent with the expected Ru/N ratio (1:9) based 

on the structure of 2@GCC. High resolution XPS spectra give additional information about the 

surface of this new electrode. The N 1s spectrum of this freshly prepared GCC-Ru shows the 

introduction of three new peaks corresponding to three different nitrogen environment on 

the surface in 2:5:2 ratio at 401.67, 400.17and 398.77 eV (Figure S8) corresponding to 

aromatic amine, pyridine and pyrazine nitrogen, respectively. 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7  

279 

VII 

 

Scheme 4. Preparation of hybrid electrode 2@GCC. 

Electrochemistry  

A cyclic voltammogram of 2@GCC in aqueous electrolyte solution at pH 13 (0.1 M KOH) shows 

two one-electron redox processes at E1/2
 = -0.78V (ΔE = 48 mV) and E1/2

 = -0.42 V (ΔE = 52 mV) 

(Figure 6), that are characteristic of the pyrazine system and are associated with the 

sequential proton coupled electron transfer processes (PCET) indicated in the top of Figure 6. 

The potential values are fully consistent with reported values and with control experiments 

done with an analogous organic molecule,23 which doesn’t contain any metallic center (Figure 

S9 and S10). All these results confirm that the coupling reaction in Scheme 4 was successful.  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7 
 

280 

VII 
 

Figure 6. Top) PCET processes involved for pyrazine groups. Bottom) CV of 2@GCC in 0.1 M KOH 
solution in the lower potential range to see features of the pyrazine group. 
 

Cyclic voltammetry experiments of 2@GCC at pH 7 don’t show the typical features related to 

the RuIII/II and RuIV/III redox couples at E1/2
 ≈ 0.55 V and E1/2

 ≈ 1.00 V, respectively (Figure 7, red 

trace) as expected for a strong electronic coupling between the molecular complex and the 

conductive graphitic surface.13 On the other hand, a large current is observed starting at E1/2
 

≈ 0.95 V, that could be related to an electrocatalytic process of 2@GCC. If this is true for the 

water oxidation reaction with a thermodynamic potential of 0.82 V at pH 7, it would represent 

an overpotential of only 130 mV. However, consecutive CV cycles show that the high current 

decreases significantly after every cycle (Figure 7, grey traces). In addition, the capacitive 

current also decreases, indicating that the electroactive surface of the electrode is lost, i.e., 

the Ru-pyrazine linkage is breaking and coming out from GC electrode upon scanning at high 

potentials. In order to test the stability of the pyrazine linkage, a model electrode containing 

an organic molecule attached to the GCC via a pyrazine group was submitted to a controlled 

potential electrolysis at different applied potentials (Figure S10). We found that while the 

pyrazine linkage is relatively stable at Eapp = 1.1 V, it is almost completely gone after a 10 

minutes electrolysis at Eapp = 1.4 V. Due to the instability of the system, it was not possible to 

further study the electrochemical water oxidation properties of 2@GCC. 
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Figure 7. Repetitive CV cycles of 2@GCC in pH 7 phosphate buffer 0.1 M to explore the water 
oxidation catalytic activity: 1st CV cycle (red solid line), 2nd to 19th CV cycles (grey dashed line), 20th 
cycle (blue solid line).  
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7. 3. 4. Aromatic Diazonium Salt as an Anchoring Group 

A well-known and promising way of anchoring molecular catalysts onto conductive supports 

is the electrochemical grafting by either oxidation or reduction of versatile organic functional 

groups. One example is the dediazonation reaction, i.e, the loss of dinitrogen with the 

formation of an aryl radical upon reduction. This process generates a covalent linkage 

between the surface and the appended molecule through C-C bond.24 In this strategy, 4-

(pyridin-4-yl) aniline ligand (apy in Figure 2) was used to generate the corresponding aromatic 

diazonium salt and further be anchored on the carbon surface. 

Three different approaches have been explored for anchoring the [Ru(tda)(py’)(py’’)] catalyst 

(py’ and py’’ are pyridine with different functional group) precursor following the 

electrografting of aromatic diazonium salts: i) electrografting of the ligand followed by 

complexation, ii) electrografting of a ruthenium precursor containing a ligand with a 

diazonium salt followed by aqua ligand exchange, and iii) electrografting of the final 

[Ru(tda)(py’)(py’’)] catalytic precursor containing at least one ligand (py’ or py’’) with a 

diazonium salt. 

7. 3. 4. 1. Approach 1: Ligand Attachment Followed by Complexation 

In general, surface functionalization of the electrode was carried with electroreduction of in 

situ generated aromatic diazonium salt. In an electrochemical set up cell, 4-(pyridin-4-

yl)aniline (apy) ligand was first treated with tert-butyl nitrite in acetonitrile solvent at 4 ˚C for 

10 min under N2 atmosphere in order to convert the amino group to the corresponding 

diazonium salt. Once generated, a cyclic voltammetry experiment was carried out starting 

from 0.9 V to -0.35 V up to 10 CV cycles (see Scheme 4 top and experimental section for the 

detailed procedure). As shown in Figure 8a, the 1st CV cycle shows a broad irreversible redox 

wave corresponding to the reduction of the diazonium salt with the formation of aryl radical, 

that irreversibly anchors on the carbon surface through C-C covalent bond. Later from the 2nd 

CV to the 10th cycle the wave disappears completely due to the formation of an organic layer 

of aromatic pyridine on the surface that covers the electroactive area during the 1st cycle.25 

The ligand modified electrodes were then put into a solution containing the precursor 

Ru(tda)(py)(OH2) complex in methanol or the 1D polymer, {[Ru(tda)(4,4´bpy)]15(4,4´bpy)}, (see 

Chapter 5, 4,4´bpy is 4, 4´-bipyridine and Scheme 4, bottom) in trifluoroethanol at 50 ˚C 

overnight. The functionalized electrodes were rinsed with the respective solvents to remove 

all the adsorbed complexes for 10 min and with copious amount of water and dried with 
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airflow. With this process, two kind of hybrid electrodes were produced that will be referred 

as Ru(tda)(py)(apy)@GC and Ru1Dpolymer(apy)@GC, respectively. 

 

Scheme 4. General scheme of anchoring ligand on graphite surface followed by complexation.  

 

 

Figure 8. Electrografting process: CV of 4-(pyridin-4-yl) benzenediazonium salt in 0.1 M [(n-
Bu)4N][PF6] acetonitrile. 
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Electrochemistry 

Cyclic voltammetry and differential pulse voltammetry experiments of the electrode 

Ru(tda)(py)(apy)@GC were carried out in pH 7 phosphate buffer solution. As shown in Figure 

9, two weak one-electron redox waves at E1/2
 = 0.59 V (ΔE = 53 mV) and E1/2

 = 1.06 V (ΔE = 60 

mV) are observed. As already discussed in previous sections, these values are within the 

expected range for the the RuIII/II and RuIV/III redox couples, respectively, of a typical 

[Ru(tda)(py’)(py’’)] complex. Therefore, we concluded that the complexation reaction using 

the precursor Ru(tda)(py)(OH2) was successful.  

 

 

Figure 9. CV (black) and DPV (blue) of Ru(tda)(py)(apy)@GC in 0.1 M pH 7 phosphate buffer.  
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In section 7.3.2, we already explained that the [Ru(tda)(py’)(py’’)] type of complexes are 

catalyst precursors and need activation to get the real catalyst for water oxidation catalysis. 

Thus, a control potential electrolysis at Eapp= 1.25 V of the Ru(tda)(py)(apy)@GC electrode in 

basic pH was carried out for a few minutes. As shown in Figure 10, the intensities of the waves 

decrease slightly but most importantly, no new waves appeared after prolonged activation of 

the electrode, indicating no formation of the active Ru(OH)(tda)(py)(apy)@GC electrode. This 

behavior is similar to that of the electrode Ru(tda)(py)PVP@nanoITO@ITO in section 7.3.2 

and suggests that the hydrophobic organic layer on top of the electrode hinders the 

coordination of the hydroxide to the metal.  

 

Figure 10. CV of Ru(tda)(py)(apy)@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) 
activation. 
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The Ru1Dpolymer(apy)@GC electrode shows similar electrochemical behavior as 

Ru(tda)(py)(apy)@GC indicating successful attachment of the polymer on the electrode 

(Scheme 4, bottom). Interestingly, the electrochemical response of this electrode is much 

better, indicating higher catalyst loading on the surface  with values of Ru1Dpolymer(apy)@GC = 0.05 

nmol/cm2 and  Ru(tda)(py)(apy)@GC = 0.001 nmol/cm2 (compare CVs in Figure 10 and 11). However, 

there were no changes in the redox chemistry after prolonged activation in pH 12, once again 

indicating no formation of the active Ru(OH)1Dpolymer(apy)@GC electrode. On the other 

hand, it is worth to mention that there was no loss of catalyst after the activation process, 

indicative for the high robustness of the electrode (Figure 11).  

 

Figure 11 CV of Ru1Dpolymer(apy)@GC in 0.1 M pH 7 phosphate buffer: before (black), after (red) 
activation and blank (apy)@GC (grey dotted line). 
 

One of the possible reason why Ru(tda)(py)(apy)@GC and Ru1Dpolymer(apy)@GC electrodes 

do not activate is the hydrophobic nature of the electrode surface that is covered by organic 

pyridines and the ruthenium centers. In order to tackle this problematic, a co-electrografting 

method using a mixture of apy and 4-amino-benzenesulfonic acid (bSO3) was developed. The 

latter pyridine contains a hydrophilic sulfonate group that should increase the overall 

hydrophilicity of the final electrode surface (Scheme 5, top). As shown in Figure S11, the 

electrografting of a 1:1 molar ratio of the two ligands on a glassy carbon electrode shows the 

electrochemical behavior, suggesting successful anchoring of the ligands.  
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Scheme 5. General scheme of anchoring ligand on graphite surface followed by complexation. 
 

The following complexation reaction of the hybrid electrode (bSO3/apy)@GC with the 1D 

polymer indicated in the bottom of Scheme 5 was successful as indicated in the CV of Figure 

12 (black line). However, the activation of the precursor was not possible as indicated by the 

red trace of Figure 12, only an increase of the capacitive current was achieved in this case. 

These results are preliminary and more experiments are necessary to make definitive 

conclusions about this strategy. A thorough study of electrografting using different ratios of 

the two anilines apy and bSO3 as well as their concentration are currently underway. 
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Figure 12. CV of Ru1Dpolymer(bSO3/apy)@GC in 0.1 M pH 7 phosphate buffer: before (black), after 
(red) activation and blank (bSO3/apy)@GC (grey dotted line). 

 

7. 3. 4. 2. Approach 2: Ru-aqua Complex Attachment Followed by Aqua Ligand Exchange 

Synthesis and Characterization 

In a second approach, a Ruthenium complex containing an aromatic amine group was 

prepared. For this purpose, the complex [RuII(tda)(apy)(OH2)], 3 was prepared following the 

literature precedent.17 It consists of reacting the precursor [Ru(tda)(DMSO)(OH2)] with 4-

(pyridin-4-yl)aniline (apy) at 1:1 molar ratio in water and heating at 50˚C for 4 h. The resulting 

complex [Ru(tda)(apy)(DMSO)] was obtained which upon treatment with neat triflic acid 

produced the desired complex [RuII(tda)(apy)(OH2)], 3. The complex was characterized by 1H 

NMR spectroscopy with the expected resonances and integration (Figure S5). 

Surface Functionalization and Electrochemistry 

The surface functionalization of the glassy carbon electrode was achieved by a similar 

electrografting procedure as described before. In this case, complex 3 is used to generate the 

diazonium derivative in situ in trifluoroethanol solvent (Scheme 6, top and Figure S12).  
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Scheme 6. General scheme for anchoring Ruthenium complexes on graphite surface followed by 
aqua ligand exchange. 

 

An electrochemical analysis of the modified electrode 3@GC confirmed the successful 

attachment of the complex on the graphite surface. The DPV in Figure 13a shows two one 

electron redox couples that are similar to those of the reported homogeneous complex 

[Ru(tda)(py)(OH2)].17 Further, both redox waves are pH dependent confirming the presence 

of a Ru-aqua group on the electrode.  

In the next step, the 3@GC electrode was dipped into a solution of pyridine and heated up to 

40 ˚C overnight. Then, the electrode was rinsed with methanol, water and dried with airflow. 

As shown in the DPV experiments of Figure 13b, the initial redox waves of 3@GC at E1/2 = 0.49 

V and 0.92 V disappeared with the appearance of two new redox couples at E1/2 = 0.54 V and 

1.0 V which are in the expected potential zone for the [Ru(tda)(py’)(py’’)] type of complex, 

confirming the generation of 3py@GC by replacing the aqua group of 3@GC with pyridine. 
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a) b) 

  

Figure 13. a) DPV of 3@GC in different pHs; b) DPV of 3@GC and 3py@GC in pH 7. 

 

The coordination of the 1D polymer on the 3@GC was also achieved by treating this electrode 

with a 1D polymer solution in trifluoroethanol at 50˚C. In this case, a much longer time is 

required to achieve full conversion as illustrated in Figure 14. After 16 h the DPV shows the 

presence of both complexes on the electrode, i.e., 3@GC and 3-1Dpol@GC indicating the 

partial aqua ligand coordination. After 32 h the presence of the 1D polymer increases with 

decreasing of the 3@GC as can be seen in (compare red and blue lines in Figure 14). 
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Figure 14. DPV of 3@GC with 1D polymer in different reaction time. Black arrows indicate the 
disappearance of 3@GC and red arrows indicate the appearance 3-1Dpol@GC. Black trace: 3@GC 
at time = 0 h, red trace: 3@GC + 1D polymer at time = 16 h and blue trace: 3@GC + 1D polymer at 
time = 32 h. All experiments are measured in pH 7. 
 

Both electrodes 3py@GC and 3-1Dpol@GC were place in basic solution and submitted to a 

bulk electrolysis in order to generate the active species on the electrode as explained before. 

As shown in Figure 15, it was not possible to generate the active species on the electrode, a 

behavior that was also observed in the previous approach. This result is not surprising if one 

consider that the final functionalized electrodes obtained using approach 1 and 2 should be 

analogous, despite the different sequence of reactions.  
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a) b) 

  

Figure 15 a) CV of 3py@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) activation. 
b) CV of 3-1Dpol@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) activation. 
 

7. 3. 4. 3. Approach 3: Ru-Catalyst Precursor [Ru(tda)(py’)(py’’)] Attachment 

Synthesis and Characterization 

In order to attach a [Ru(tda)(py’)(py’’)] pre-catalytic center directly on a graphitic surface, the 

non-symmetric complex [RuII(tda)(dmpy)(apy)], 4, was prepared following the synthetic route 

outlined in Scheme 7. It starts with the reaction of [Ru(tda)(DMSO)(OH2)] with 3,5-lutidine 

(dmpy in Figure 2) in water for 4 h at room temperature. This procedure generated a brown 

solution that was extracted with DCM (3 x 100 mL). Upon removal of the aqueous solvent, a 

brown solid identified as the intermediate RuII(tda)(dmpy)(DMSO)] was obtained. This 

product was then dissolved in MeOH and 1 equivalent of 4-(pyridin-4-yl)aniline (apy) was 

added and refluxed for 2 days. Compound [RuII(tda)(dmpy)(apy)], 4 was isolated upon column 

chromatography of the resulting mixture using neutral alumina in a 10 % yield. It was fully 

characterized by 1H and 13C NMR spectroscopy (Figures S6-S7).  

 

Scheme 7. Synthetic scheme for the complex [RuII(tda)(dmpy)(apy)], 4. 
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Surface Functionalization and Electrochemistry 

Surface functionalization of the electrode via diazonium salt was achieved following the same 

procedure described above using a trifluoroethanol solution of complex 4 to give the hybrid 

electrode 4@GC (pathway a) in Scheme 8 and Figure S13). The CV of 4@GC shows the 

successful attachment of the complex on the graphite surface by the presence of two one-

electron redox waves at E1/2
 = 0.56 V (ΔE = 65 mV) and E1/2

 = 1.02 V (ΔE = 60 mV), which are 

similar to those of the homogeneous catalyst and former hybrid electrodes with similar Ru 

centers (Figure 14 black trace). 

 

Scheme 8. General scheme for anchoring complex 4 on graphite surface. Pathway a) 
electroreduction of diazonium salt and b) electrooxidation and electropolymerization of aniline 
group. 
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Figure 14. CV of 4@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) activation. 

 

The 4@GC electrode was then placed in basic solution and submitted to a bulk electrolysis in 

order to generate the active species as described before. Interestingly, 4@GC shows some 

changes in the CV profile after this treatment as opposed to what we had observed using 

approaches 1 and 2 above (compare black and red traces in Figure 14). In particular, an 

increase of the current in the 1.2 to 1.3 V range suggests the presence of electrocatalytic 

activity of the electrode, presumably with the formation of oxygen from water. Additionally, 

a weak redox wave at 0.8 V appears, which matches with that of the corresponding Ru-aqua 

type of complexes, and therefore we assign it to the RuIV/III redox couple of the active electrode 

denoted as 4(OH)@GC. The new redox wave and the catalytic current are in good agreement 

with the formation of the active catalyst and closely resemble the analogous molecular 

anodes reported in the literature.9  

In order to improve the mass loading of the catalyst on the surface, multiwall carbon 

nanotubes (MWCNT) were used as a conductive support on the glassy carbon disk. The 

resulting electrode 4@MWCNT@GC shows two one-electron waves at E1/2 = 0.58 V (ΔE = 60 

mV) and E1/2
 = 1.07 V (ΔE = 60 mV) in pH 7 corresponding to the RuIII/II and RuIV/III redox couples 

(Figure 15 black line inset).9 The electrode was then exposed to the activation procedure to 

generate the 4(OH)@MWCNT@GC electrode, which shows a huge electrocatalytic current 
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with an onset potential at 1.2 V as expected for this kind of catalytic centers (Figure 15 red 

line). 

 

Figure 15 CV of 4@MWCNT@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) 
activation. 

 
All these results are in sharp contrast to those obtained using approaches 1 and 2 described 

earlier and suggest a completely different nature of the electrode surface in 4@GC as 

compared to the others. This could be related to distinct mechanisms operating in the 

anchoring process involving the aniline derivatives. Indeed, aniline groups are known to be 

sensitive to oxidation upon applying a potential, a phenomenon that can lead to either aniline 

polymerization26,27 or electrografting.28 An example of both cases are shown in pathway b in 

Scheme 8 that generates a polyaniline attached to the surfaces and formation of C-N bond on 

the graphite surface. This kind of procedures are strongly dependent on the type of aniline 

involved as well as the solvent used in the electrografting process that could have a big 

influence on the oxidation potential in which the process happens. Although the 

electrografting method to prepare the hybrid electrodes described until now are similar 

(Figure 8 and Figures S11-S13), the process is carried out in different solvents depending on 

the solubility of the precursors. For the first two electrodes Ru(tda)(py)(apy)@GC and 

Ru1D(polymer)(apy)@GC in approach 1, pure acetonitrile is used while pure trifluoroethanol 

is needed for the preparation of 3py@GC or 3-1Dpol@GC in approach 2 and 4@GC and 

4@MWCNT@GC in approach 3.  
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In order to investigate the putative role of pathway b in Scheme 8, a new electrode was 

functionalized using the same conditions as 4@MWCNT@GC in the absence of the tert-butyl 

nitrite to prevent the electrografting via diazonium salt. This new hybrid electrode was 

denoted as 4a@MWCNT@GC. Surprisingly this electrode also shows successful attachment 

of the complex on the surface, as evidenced by the presence of the two typical redox waves 

that characterize this Ru center (Figure 16, black trace). After activation, a huge 

electrocatalytic current associated with the oxidation of water to molecular oxygen together 

with the appearance of two new redox couples at 0.5 and 0.8 V confirmed the successful 

preparation of the active electrode 4(OH)a@MWCNT@GC (Figure 16, red trace). This 

experiment is a clear evidence of a plausible involvement of the amine oxidation grafting 

shown in pathway b in Scheme 8 and the big influence it has in the nature of the final 

electrode surface, particularly increasing its hydrophilicity and facilitating the access of 

hydroxides in order to generate the active Ru-OH centers. Further experiments are currently 

underway to fully confirm this hypothesis.  

 

Figure 16 CV of 4a@MWCNT@GC in 0.1 M pH 7 phosphate buffer: before (black) and after (red) 
activation. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7  

297 

VII 

7. 3. 5. Supramolecular Interaction of [Ru(tda)(py’)(py”)] Complexes on the Surface 

7. 3. 5. 1. Interaction with Graphitic materials 

So far in this chapter, only covalently bound [Ru(tda)(py’)(py”)] type of complexes have been 

considered. Although promising results showing strong and stable attachment of the surface 

were obtained, in most of the cases the activation of the catalyst precursor was not possible. 

In contrast, the 1D polymer discussed in Chapter 5, which binds to graphitic surfaces through 

CH-π interactions and has shown to activate easily giving impressive current densities related 

to the water oxidation to dioxygen reaction.  

In order to get further insights into the role of the π-π and CH-π interactions, two 

mononuclear compounds 5 and 6 in Scheme 9 were prepared and deposited into glassy 

carbon electrode disks as conductive supports and the results compared with those obtained 

for the supramolecularly anchored 1D polymer. Details of the physisorption procedure is 

given in the experimental sections, briefly it consists of dipping the electrode in a solution of 

the complex or polymer in trifluoroethanol, followed by washing with clean solvent.  

 

 

Scheme 9. Mononuclear complexes 5 and 6 and 1D polymer to study supramolecular interactions. 

Electrochemistry 

Cyclic voltammetry experiments of the electrodes resulting from the physisorption method in 

pH 7 phosphate buffer are shown in Figure 17 and evidence the absence of any redox feature 

associated with the Ru centers of complexes 5 and 6.  
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Figure 17. CV of the GC electrodes that were submitted to physisorption of mononuclear complexes 
5 (black) and 6 (red) and a blank (blue) in pH 7. 

In contrast, an analogous electrode prepared from a supramoleculary anchored solution of 

the 1D polymer produced the hybrid electrode 1Dpol@GC with the expected two-one 

electron redox features at E1/2 = 0.61 V and E1/2 = 1.08 V, corresponding to the RuIII/II and RuIV/III 

redox couples as expected for the adsorbed complex on the surface (Chapter 5 and Figure 

18).  

 

Figure 18. CV of the GC electrodes that were submitted to physisorption of mononuclear complexes 
5 (black), 6 (red)and supramoelcuarly anchored 1D polymer (blue)in pH 7 using similar methodology. 

 
The activation of 1Dpol@GC was successful showing electrocatalytic current corresponding 

to the oxidation of water to molecular oxygen with onset potential at 1.2 V in pH 7 (Figure 
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19). These results are fully consistent with the work presented in Chapter 5 and highlight the 

importance of having a multinuclear structure to guarantee an efficient attachment of 

molecular complexes on the surface of graphitic materials through π-π or CH-π interactions. 

 

Figure 19. CV of 1Dpol@GC in pH 7 phosphate buffer before (black) and after (red) activation. The 
inset shows a zoom in the range of the precatalytic waves and the catalyst precursor.  

 
7. 3. 5. 2. Interaction with Metal oxide Surfaces 

In this last section, we explore the adsorption of the 1D polymer catalyst precursor on metal 

oxide surfaces, in particular to nanoITO@ITO for its high surface area. For the 

functionalization, the electrode was dipped into a solution of the 1D polymer in 

trifluoroethanol for 5 min and washed with clean solvent to generate the hybrid electrode 

1Dpol@nanoITO@ITO.  

The CV of 1Dpol@nanoITO@ITO shows two redox waves at E1/2
 = 0.68 V (ΔE = 150 mV) and 

E1/2
 = 1.08 V (ΔE = 70 mV) corresponding to the RuIII/II and RuIV/III redox couples, respectively, 

indicating the successful attachment of the polymer on the metal oxide (Figure 20, black 

trace). Interestingly, the intensity of the two waves is significantly different, a fact that we 

attribute to the lower conductivity of the nanoITO/ITO electrode as compared to the glassy 

carbon electrode. 
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Figure 20. CV of 1Dpol@nanoITO@ITO: before (black), after (red), 1 hour of activation, measured in 
pH 7 phosphate buffer. 

 
The electrode 1Dpol@nanoITO@ITO was submitted to the activation procedure to generate 

the Ru-OH derivative 1Dpol(OH)@nanoITO@ITO. As shown in Figure 20 (red line) the CV of 

the electrode in pH 7 after 1 h activation shows a decrease of the electrochemical response 

and the appearance of a pH dependent broad redox couple at E1
p,c = 0.69 V and E1

p,a = 0.92 V 

(Figure 21). The fact that the new redox wave potential changes with the pH is a clear 

indication of the presence of a Ru-OH/Ru-OH2 group on the electrode, consistent with the 

formulation of the 1Dpol(OH)@nanoITO@ITO electrode. However, 

1Dpol(OH)@nanoITO@ITO electrode did not show any catalytic current related to water 

oxidation as opposed to graphite electrode, only in pH 9 a catalytic current is observed but is 

the same to that obtained with an analogous blank nanoITO@ITO electrode (see Figures 20 

and 21).  
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Figure 21. CV of 1Dpol(OH)@nanoITO@ITO in different pHs. Left, full potential windows. Right, 
enlargement of the non catalytic redox waves (arrows indicates the RuOH/Ru-OH2 waves). 

 

The lack of catalytic activity of 1Dpol(OH)@nanoITO@ITO is attributed to the deactivation of 

the catalyst via binding of the carboxylate group of the equatorial tda ligand to the metal 

oxide. Indeed, the impressive catalytic activity of Ru(tda)(py´)2 type of complexes is due to the 

presence of a dangling carboxylate group that favors intramolecular H-bonding during the 

catalysis process reducing the activation barrier for the O-O bond formation. Thus, we 

conclude that although it was possible to coordinate the hydroxido ligand to the ruthenium 

generating the hybrid electrode 1Dpol(OH)@nanoITO@ITO, it was not possible to observe 

catalysis due to the blocking of carboxylate group that prefers to bind to the conductive 

surface. 
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7. 4. Conclusion 

In summary, the attachment of molecular catalysts on different conductive surfaces via 

different anchoring groups have been studied extensively. For this study four new Ruthenium 

complexes (1, 2, 3 and 4) containing functionalized axial pyridine ligands such as [4,4'-

bipyridine]-2,6-dicarboxylic acid, vinyl pyridine, 3,5-pyridine diamine and 4-(pyridin-4-

yl)aniline have been synthesized and characterized with spectroscopic and electrochemical 

techniques. 

The surface attachment of catalyst 1 containing a pyridine dicarboxylate group on metal oxide 

surface through covalent bonding was achieved successfully. However, upon applying 

potential in the range of 0.2 to 1.6V vs NHE in pH 7 phosphate buffer, this covalent bond 

seems to be unstable and the complex fully de-attached from the electrode surface and did 

not allow us to further study this system.  

The next anchoring strategy was based on the polymerization of vinyl pyridine on metal oxide 

surfaces under UV light giving polyvinyl films decorated with pendant pyridine groups, which 

are readily available for complexation. Subsequent reaction with a Ruthenium precursor 

generated a Ru-functionalized electrode, with a very robust linkage that is stable in aqueous 

solution for prolonged electrolysis times. Unfortunately, the activation of this electrode was 

unsuccessful, most likely due to the hydrophobic organic layer created by the 

polyvinylpyridine films, which did not allow hydroxide coordination to the metal center.  

The 3rd strategy was based on the aromatic pyrazine linkage, resulting from the reaction of a 

diaminobenzene derivative and the orthoquinone groups of an anodized glassy carbon 

electrodes. Although the hybrid electrode containing the Ru molecular moiety was 

successfully prepared, the pyrazine group resulted to be very sensitive to positive applied 

potentials required for the water oxidation reaction and was broken before water oxidation 

catalysis could be tested.  

The most promising anchoring strategy developed in this chapter was the electrografting of 

complexes having aromatic diazonium salt on graphite surface. This C-C covalent linkage is 

very robust over a wide potential range from acidic to basic aqueous solution. It was not 

possible to activate the complex anchored on glassy carbon electrode, mainly due to the 

formation of hydrophobic organic layer during the electrografting procedure that is highly 

hydrophobic; hence, hindering the access of hydroxide ion to the first coordination sphere of 

the metal. This phenomenon was similar to that observed for the polyvinylpyridine film 

approach. An interesting preliminary result was obtained with electrografting via oxidation of 
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the aniline group or electropolymerization of aniline group, particularly in the presence of 

MWCNT, showing a high current for the water oxidation catalysis.  

In the last part of this chapter, we have also shown that the mononuclear complexes are not 

physisorbed on the surface through π-π or CH-π interactions but they can anchor through 

covalent bonds on the same surface. On the other hand, the 1D polymer is supramoleculary 

anchored on the surface and undergoes water oxidation catalysis on graphitic surfaces as 

expected considering the results in Chapter 5. In sharp contrast, when 1D polymer is adsorbed 

on metal oxide surfaces the polymer did not work presumably due to the binding of the 

dangling carboxylate group to the metal oxide surface, deactivating the Ru catalytic site. 
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Figure S1. 1H NMR (500 MHz, 298 K, [d4]-MeOD) spectrum of [RuII(tda)(pypdc)2], 1. Full assignment 
has not been completed yet, but integrals match the expected values.  
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a) 

 
b) 

 
Figure S2. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex [RuII(tda)(dapy)2], 2. a) 1H NMR. 
b) COSY. 
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a) 

 
b) 

 
Figure S3. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex [RuII(tda)(dapy)2], 2; a) NOESY and 
b) HSQC. 
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Figure S4. 13C NMR spectra (125 MHz, 298 K, [d6]-DMSO) for complex [RuII(tda)(dapy)2], 2. 

 

 

 
Figure S5. 1H NMR of the intermediate complex (500 MHz, 298 K, [d6]-DMSO) and 
[RuII(tda)(apy)(OH2)], 3 (500 MHz, 298 K, [d4]-MeOD). 
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a) 

 
b) 

 
Figure S6. NMR spectra (500 MHz, 298 K, [d6]-DMSO) for complex [RuII(tda)(dmpy)(apy)], 4. a) 1H 
NMR and b) COSY. 
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Figure S7. 13C NMR spectra (125 MHz, 298 K, [d6]-DMSO) for complex [RuII(tda)(dmpy)(apy)], 4.  

 

a) 

 
b) c) 
  

Figure S8. XPS characterization of 2@GCC: a) full energy range, b) high resolution XPS of Ru and c) 
high resolution XPS of N. 

  

108.7.AH4-2-RuDiamine1.spe: 7.AH4-2-RuDiamine1.Ru diamine Sigadur Old CMSE

2018 Sep 20  Al mono  48.7 W  200.0 µ  45.0°  187.85 eV 2.5770e+004 max 3.45 min

Su1s/7: Ru diamine Sigadur Old/1 (SG7)

010020030040050060070080090010001100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4
108.7.AH4-2-RuDiamine1.spe

Binding Energy (eV)

c
/s

 -
C

1
s

 -
N

1
s

 -
O

 K
L
L

 -
O

2
s

 -
O

1
s

 -
R

u
4
p

 -
R

u
3
s

 -
R

u
3
p

3 -
R

u
3
p

1

 -
R

u
3
d

5 -
R

u
3
d

3

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7 
 

312 

VII 

 
Figure S9. CV of py@GCC in pH 7 (green) and pH 13 (blue). 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 7  

313 

VII 

 

a) 

 
b) 
 

 
 
Figure S10. CV of OPBAN@GCC in pH 7 after control potential electrolysis (CPE) in different time 
interval, a) Eapp = 1.1 V and b) Eapp = 1.4 V vs. NHE; Color code: CPE time= 0 min (black), time = 5 min 
(red line), time = 10 min (blue). OPBAN stands for tetradentate N1,N1′-(1,2 
phenylene)bis(N2methyloxalamide) ligand. 
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Figure S11. a) CV of 1:1 mixture of 4-(pyridin-4-yl) benzenediazonium salt and 4-diazo-
benzenesulfonate salt in 0.1 M [(n-Bu)4N][PF6] acetonitrile. 

 

 
Figure S12. a) CV of 3 in 0.1 M [(n-Bu)4N][PF6] trifluoroethanol solvent containing tert-butyl nitrite 
under N2 scanning form 0.9 V to -0.35 V up to 10 cycles. The irreversible waves at 0.4 V in the 
reduction waves of the diazonium salt. 
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Figure S13. a) CV of [RuII(tda)(dmpy)(apy)], 4 in 0.1 M [(n-Bu)4N][PF6] trifluoroethanol solvent 
containing tert-butyl nitrite under N2 scanning form 0.9 V to -0.35 V up to 10 cycles. The irreversible 
waves at 0.4 V in the reduction waves of the diazonium salt. 
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Figure S14. CV of complex 4 in pH 7 in homogeneous solution. 
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An end-on superoxido intermediate involved in the water oxidation reaction catalysed by a 

dinuclear Co- complex is characterized by resonance Raman, Electron paramagnetic 

resonance and X-ray absorption spectroscopy and complemented by Density Functional 

Theory. Isotopic labeling experiments under turnover conditions prove that this is a key 

intermediate of the water oxidation reaction. 
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Contributions 

Md Asmaul Hoque design the experimental set up for the electrochemical oxygen evolution 

measurement and perform the experiment for the oxygen evolution with the isotopic labeling 

during the catalysis.  
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Abstract 

An end-on superoxido complex with formula {[CoIII(OH2)(trpy)][CoIII(OO·)(trpy)](-bpp)}c4+, 

34+, (bpp- is bis-2-pyridyl-3,5-pyrazolate; trpy is 2,2’;6’:2”-terpyridine) has been characterized 

by resonance Raman, electron paramagnetic resonance and X-ray absorption spectroscopies. 

These results together with on-line mass spectrometry experiments using 17O and 18O 

isotopically labeled compounds prove that this compound is a key intermediate of the water 

oxidation reaction catalyzed by the peroxido bridging complex {[CoIII(trpy)]2(-bpp)(-OO)}3+, 

13+. Density Functional Theory calculations agree and complement the experimental data, and 

offer a complete description of the transition states and the intermediates involved in the 

catalytic cycles. 

Graphical Abstract 

 

 

Keywords: Cobalt superoxo, Intermediate, rRaman, EPR, Oxygen evolution 
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8. 1. Introduction 

Oxygen activation by first-row transition metal complexes in low oxidation states has been a 

very active field of research for the last two decades.1-4 A plethora of transition metal peroxido 

and superoxido complexes in different coordination modes have been prepared and 

characterized with spectroscopic techniques and even via single-crystal X-ray diffraction in 

selected instances.5,6 The reverse reaction, the oxidation of water to molecular oxygen 

assisted by first row-transition metal complexes is a field that has emerged recently and the 

proper characterization of the potential peroxido and/or superoxido reaction intermediates 

is practically nonexistent.7,8 The characterization of such intermediates is hampered by the 

lability of the metal-ligand bonds that can undergo substitution by water solvent molecules 

and by the relatively low temperature range at which the reaction can be operated. In sharp 

contrast, the inverse reaction i.e. the oxygen activation can be carried out in organic solvents 

and at very low temperatures. Additionally, for the water oxidation reaction, in a number of 

cases, a competing and/or preferential ligand oxidation occurs9-11 which prevents extraction 

of reliable and meaningful information. In previous work, we have reported the synthesis and 

X-ray structure of the dinuclear -peroxido complex {[CoIII(trpy)]2(-bpp)(-OO)}3+, denoted 

as 13+ or [CoIII-OO-CoIII]3+ hereafter, (trpy is 2,2’;6’:2”-terpyridine; bpp- is the bis-2-pyridyl-3,5-

pyrazolate) that behaves as powerful catalyst for the 4e- reduction of dioxygen to water.12 

The key structures are depicted in Scheme 1. Further, we have electrochemically 

characterized the properties of 13+ and have shown by voltammetric and potentiometric 

techniques its capacity to act as a catalyst for the 4e- oxidation of water to dioxygen.13 

In this work, we present the preparation of a dinuclear Co superoxido end-on complex, 

denoted as 34+ or [H2O-CoIIICoIII-OO·]4+, and its thorough characterization based on vibrational, 

X-ray absorption near edge structure (XANES), Extended X-ray absorption fine structure 

(EXAFS), Electron Paramagnetic Resonance (EPR) spectroscopies, and by density functional 

theory, DFT, calculations. In addition, we show for the first time that sequential oxidation of 

the peroxido derivative, 13+, leads to the just mentioned superoxido 34+, and that further 

oxidation of the latter generates dioxygen. These two reactions have been carried out using 

16O, 17O and 18O labeled complexes to monitor them and to properly characterize potential 

intermediates. In addition, a coherent mechanistic description of the catalytic cycle is 

presented based on DFT calculations that agree with the available experimental data. 
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Scheme 1. Simplified Oxygen Reduction (left) and Water Oxidation (right) catalytic cycles based on 
the Co-Hbpp complex. In the center (red shadow) the intermediates shared by the two catalytic 
cycles, [CoIII-OO-CoIII]3+ (13+) and [H2O-CoIIICoIII-OH]4+ (54+). 
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8. 2. Results and Discussion 

The dinuclear Co -peroxido complex 13+ is prepared in good yields following literature 

procedures by reacting {[CoII(OH2)(trpy)]2(-bpp)}3+ or its chlorido bridge derivative with 

molecular dioxygen (Scheme 1).12 Using dioxygen labeled with different isotopes (16O, 17O or 

18O), we have prepared the peroxido complexes 1(32)3+ [CoIII‐16O16O‐CoIII]3+, 1(34)3+ [CoIII‐

17O17O‐CoIII]3+, and 1(36)3+ [CoIII‐18O18O‐CoIII]3+, respectively. Figure 1 (left) shows the resonance 

Raman (rR) spectra obtained for the 13+ set of complexes with the different labeling. A 

prominent vibration appears at 839 cm‐1 for 1(32)3+ associated with the O‐O bond stretching 

mode. This vibrational transition shifts to 814 cm‐1 for 1(34)3+ and to 795 cm‐1 for 1(36)3+ as 

expected for a quantum mechanical harmonic oscillator having such changes in reduced mass. 

For the case of the 1(36)3+, rR spectroscopy shows the presence of two bands at 839 and 795 

cm‐1 of similar intensity that are due to a 1:1 ratio of 1(32)3+ and 1(36)3+ since the dioxygen 

used in the synthesis contained a 1:1 mixture of 36O2:32O2 (See Experimental Section in SI). 

Similarly, the 17O labeling experiment that used a 9:1 mixture 34O2:32O2 of dioxygen shows a 

small shoulder at 839 cm‐1 in the corresponding rR spectrum. 

Chemically, the addition of 1 equivalent of CeIV to the peroxido complexes 13+ at pH=1.0 

generates the corresponding superoxido complexes 24+ or [CoIII-O·O-CoIII]4+ that undergo 

hydrolysis to yield end-on superoxido complexes 34+ or [H2O-CoIIICoIII-OO·]4+ as suggested by 

DFT calculations and in agreement with XAS spectroscopy. DFT calculations using the 

SMD(water)/M11-L/ 6-311G(2f,d) predict that the end-on form 34+ is 19.8 kcal/mol more 

stable than the bridging one 24+ (Scheme 2). Figure 2 shows the optimized DFT structure for 

the end-on superoxido complex together with the singly occupied molecular orbital (SOMO). 

The spin density in this orbital is mainly localized on the superoxido group, which forms a 

hydrogen bond with the neighboring Co-OH2 group supporting the peroxide bridge as the 

main oxidation site. Previous electrochemical experiments showed that the oxidation of the 

peroxido complex 13+ to the superoxido 34+ is chemically and electrochemically reversible and 

occurs at Eo = 1.49 V vs. NHE.13 DFT calculations using again SMD(water)/M11-L/ 6-311G(2f,d) 

predict a value of 1.37 V vs. NHE for this oxidation in good agreement with the experimental 

value and thus suggests that this level of theory will be useful and sufficiently accurate for 

modeling other properties of the system. 
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Figure 1. Normalized rR spectra for peroxido complexes 1(32)3+ (black line), 1(34)3+ (blue line) and 
1(36)3+ (red line) (Left) and superoxido complexes 3(32)4+ (black line), 3(34)4+ (blue line) and 3(36)4+ 
(red line) (Right). λexc = 514 nm. Asterisks: solvent resonances. 

 

Vibrational rR spectroscopy was also carried out for the superoxido complexes with the 

different O2 isotopologues, and the results are shown in Figure 1 (right). The O‐O bond 

vibration for the 3(32)4+ oxidized complex appears at 1121 cm‐1, which is consistent with a 

superoxido group,14‐17 although experimentally the end‐on and side‐on isomers are virtually 

undistinguishable.17‐19 Furthermore, the labeled complexes shift to 1088 cm‐1 and 1055 cm‐1 

for 3(34)4+ and 3(36)4+, respectively, as expected. Here again, the mixture of isomers is clearly 

observed in the spectra since we use the peroxido complexes mentioned earlier as starting 

materials. It is worth noting here that the potential use of mixed labeled oxygen atoms would 

generate one band for the symmetric side‐on complex (Co‐O16O18‐Co) and two for the end‐on 

(CoCo‐O16O18 and CoCo‐O18O16). However the energy difference for the two bands generated 

by the latter complex would be too small to be clearly differentiated in the spectrum (theory 

predicts a shift of 1‐3 cm‐1 for related complexes).19 18 
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Scheme 2. Calculated water oxidation catalytic cycle associated with the Co-Hbpp complex. The arc 
connecting the two Co centers represents the bpp- bridging ligand. The trpy ligands are not 
represented for clarity purposes. Red box: starting material [CoIII-OO-CoIII]3+, 13+. Yellow box: 
hydrated one electron oxidation of the former [H2O-CoIIICoIII-OO·]3+, 34+. Green box: [H2O-CoIIICoIII-
OH]4+, 54+, species formed after oxygen ejection. Potentials are indicated in V vs. the NHE reference 

electrode at pH = 2.0 whereas G are reported in kcal/mol. 

 

The superoxido complexes were also characterized by EPR spectroscopy. For complex 3(32)4+ 

and 3(36)4+ a broad band centered at g = 1.98 is observed in the EPR spectrum, which is due 

to the unpaired electron of the superoxido group. The broadness of the peaks is a 

consequence of the coupling of the superoxido unpaired electron with the nuclear spins of 

59Co (I = 7/2) that are not well resolved (See Figure S1 in the SI). In sharp contrast, the EPR for 

3(34)4+ shows a similar spectrum as for 3(32)4+ but with a fine structure due to the coupling 

to the nuclear spin of 17O (I = 5/2) as can be observed in Figure 2 together with its 

mathematical simulation. 
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Figure 2. Left, experimental (black line) and simulated (red line) EPR spectrum of 3(34)4+. Right, 
SOMO for the optimized end-on superoxido complex 3(32)4+. 

 

XANES analysis of the superoxido complex 34+ reveals a small positive shift of the rising edge 

(0.4 eV) compared to the peroxido 13+ (top left of Figure 3). The shift in energy indicates a 

change in the electron density and local geometry around the Co metal center and is well 

reproduced by theoretical XANES simulations shown in Figure 3 (right) thus supporting a 

peroxido centered oxidation in agreement with rR and EPR results. More interesting is the 

predominant characteristic multiplet feature in the pre-edge region that distinguishes the 

superoxido compound from its parent peroxido derivative (Figure 3, bottom). The presence 

of pre-edge features corresponds to the 1s to 3d quadrupole transitions and dipole excitations 

of the core electrons into the valence 3d levels hybridized with p orbitals. Upon oxidation with 

1 eq. CeIV, local distortions around the Co center and increased hybridization of the valence 

3d states with N/O ligand p-orbitals20-23 results in the clear formation of a second pronounced 

pre-edge feature. As shown by the Gaussian fits in Figure 3 (bottom), the pre-edge region has 

contribution of two main absorptions centered at ca.7709.9 eV and 7712.2 eV for the 

peroxido derivative. Upon oxidation, the peak at 7712.2 eV slightly shifts to higher energy 

(7712.7 eV), and becomes more pronounced giving rise to an apparent doublet feature that 

is not as obvious for the starting peroxido compound (compare black and red traces). 

Theoretical DFT-MO XANES calculations of the superoxido derivatives 24+ and 34+ in Scheme 2 

reproduce well this shift especially for the non-symmetric end-on compound 34+, where the 

doublet feature is more noticeable (Figure 3 and Figure S3). In addition, EXAFS analysis show 

a slightly better fit for 34+ (see supporting information). Previous electrochemical experiments 

revealed that the superoxido complex 34+ can be further oxidized by one electron at 1.80 V 

vs. NHE.13 M11-L/DFT calculations suggest the formation of a diradical hydroxyl-superoxido 

species [HO·-CoIIICoIII-OO·]4+, 44+, obtained from a PCET process occurring at a potential of 1.71 

V vs. NHE (Scheme 2). 
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Figure 3. O2 evolution profile monitored via on-line MS for a mixture containing 1(34)3+ and 4 
equivalents of (NH4)2Ce(NO3)6 in 0.1 M triflic acid (pH=1.0). 

 

This new redox couple (34+/44+) is responsible for a large electrocatalytic wave in the 1.8-2.0 

V vs. NHE potential range associated with catalytic water oxidation to dioxygen.13 In 

agreement with these electrochemical results, further addition of CeIV to the superoxido 

complexes 34+ should generate dioxygen. Indeed, Figure 4 shows the on-line mass 

spectrometry (MS) results of adding 4 equivalents of CeIV to a solution of 1(34)3+ that 

generates a mixture of approximately 10:1 of 34O2:32O2 in very good agreement with the 

expected 9:1 ratio of the starting materials. In a similar manner 3(32)4+ and 3(36)4+ also give 

the expected ratios of labeled dioxygen (Figure S8). 
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Further DFT calculations were undertaken to complete the catalytic cycle (Scheme 2). Oxygen 

ejection from 44+ concomitant with solvent coordination generates a dicobalt aquo-hydroxo 

complex at oxidation state III, [HO-CoIIICoIII-OH2]4+, 54+. Species 54+ is predicted to be further 

oxidized by a two-electron/two-proton single step at a potential of 1.63 V vs. NHE (which is 

slightly lower than that required for the oxidation of 34+ to 44+) to generate the highly reactive 

oxyl-hydroxyl species, [HO·-CoIIICoIII-O·], 74+. The aqueous pKa of 74+ is predicted to be -3, so 

proton loss is expected to be spontaneous to generate the initial peroxo species 13+. Indeed, 

it cannot be ruled out that the oxidation of 54+ may occur as an overall two-electron/three-

proton step, as we have not attempted to model the specific kinetics of these PCET 

transformations. The resulting bis-[cobalt(III)-oxyl] compound, 74+, is not predicted to be 

stationary at the M11/L level, but spontaneously forms an O–O bond leading to the bridged 

peroxido complex 13+, closing the catalytic cycle. Theory indicates that 74+ will have extremely 

short lifetimes, thereby disfavoring O–O bond formation through nucleophilic attack of water 

on the oxyl fragment. It is interesting to note here the fundamental role played by the bpp- 

ligand in maintaining the two metal centers in close proximity. In the O-O bond formation 

step, the ligand pre-organizes the two Co-O moieties in 74+ so that the O-O bond formation is 

entropically favored.  

 

Figure 4. O2 evolution profile monitored via on-line MS for a mixture containing 1(34)3+ and 4 
equivalents of (NH4)2Ce(NO3)6 in 0.1 M triflic acid (pH=1.0). 

 

Further, the last step before oxygen ejection involves the formation of a diradical hydroxyl-

superoxido species 44+, where the Co-O·H and the Co-OO·H moieties are situated in close 

proximity. Electron transfer to the cobalt hydroxyl moiety from the superoxido ligand is then 

ultimately responsible for the oxygen ejection. The need to generate a Co-hydroxyl 

simultaneously with a Co-superoxido cannot occur at a single-site as would be required in a 

mononuclear complex. Notice also that the water oxidation reaction cycle involves oxygen 
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only (not metal-centered) redox processes involving the superoxido and the aquo ligands in 

different protonation states (i.e., oxyl or hydroxyl radicals). The CoIII centers act as scaffolds 

strategically supporting the reactive oxygen radical species but do not undergo metal center 

redox processes. 

Scheme 1 shows the interplay between the oxygen reduction and water oxidation catalytic 

cycles for the Co‐Hbpp complex. The two catalytic cycles share two common reactive 

intermediates, [CoIII‐OO‐CoIII]3+, 13+, and [H2O‐CoIIICoIII‐OH]4+, 54+, (shown in the center of 

Scheme 1, whose X‐ray structures have been described previously).5,6 Oxidation of [CoIII‐OO‐

CoIII]3+ leads to the water oxidation cycle (yellow box in Scheme 1) whereas reduction of [H2O‐

CoIIICoIII‐OH]4+ leads to the oxygen reduction cycle (purple box in Scheme 1). The use of similar 

type of species for O‐O bond formation and O‐O bond cleavage but at different oxidation 

states parallels the chemistry that occurs at the chloride dismutase (Chl‐D)24,25 and Cyt‐

P45026,27 respectively in nature. For Cyt‐P450 cycle the Fe(II) porphyrin active center reacts 

with oxygen to generate an Fe(III)‐superoxido species that eventually leads to O‐O bond 

scission forming an FeIV=O high oxidation state species responsible for organic substrate 

oxidations. On the other hand, the catalytic cycle proposed for Chl‐D, the lowest oxidation 

state proposed for the Fe porphyrin is “III” at which point molecular oxygen is released.  

8. 3. Conclusion 

In conclusion, we report detailed characterization of reaction intermediates involved in the 

catalytic cycle of a first‐row transition‐metal‐based water‐oxidation catalyst. This work is also 

important because it can be taken as a low molecular weight model of Co oxides,8,28‐30 

although it is important to keep in mind that the electronic coupling through the bpp‐ ligand 

can be significantly different from that of oxo‐bridged Co oxides. The latter together with Ni 

oxides are amongst the most active earth abundant water oxidation heterogeneous 

catalysts.31,28,32 For those oxides, thorough structural characterizations and mechanistic 

studies of active species are inherently difficult, given their heterogeneous nature. In addition, 

we also show that the same transition metal complex can be used for both the water oxidation 

and oxygen reduction catalytic reactions. 
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Figure S12 Computational Reactivity and Pourbaix diagram: Energies, pKa’s 
and Redox Potentials. All relevant speciation studied at pH 8. 

 

Figure S13 Labeling scheme of the species and ET, PT and PCET steps involved 
in the Pourbaix diagram. 

 

Figure S14 Labeling scheme of the species and ET, PT, PCET and substitution 
steps involved in the oxygen evolution process. 

 

Table S3 Reduction potentials and G values for the different Electron 
Transfer (ET) steps at the different levels of theory tested. 

 

Table S4 pKa’s and G of proton dissociation values for the different steps 
at the different levels of theory tested. 

 

Table S5 Reduction potentials and G values for the different Proton 
Coupled Electron Transfer (PCET) steps at pH 2 at the different 
levels of theory tested 

 

Table S6 Reduction potentials andG values for the different Proton 
Coupled Electron Transfer (PCET) steps at pH 8 at the different 
levels of theory tested 
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Table S7 G values for the different water insertion reactions at the 
different levels of theory tested. 

 

Table S8 G= activation energy values for the transition states considered 
at the different levels of theory tested. 

 

Table S9 Compilation of the, electronic energy, the as computed Gibbs free 
energy, the Gibbs free energy after removing the contribution of 
the frequencies that are under 50 cm-1 and the Composite Gibbs 
Free energy considering water as a solvent. All calculated with 
M06-L on M06-L optimized geometries. <S2> represents the spin 
operator expectation value. 

 

Table S10 Compilation of the Composite Gibbs Free energies calculated with 
M06-L considering water as a solvent, at the gas phase 
concentration and then 1 Molar concentration. The latter 
corresponds to the standard state for the computation of standard 
potentials and activation energies. 

 

Table S11 Compilation of the, electronic energy, the Gibbs free energy 
corrected by removing the contributions of the frequencies under 
50, the electronic energy at the M11-L level of theory considering 
the solvation with water on the M06-L optimized geometry, the 
resulting composite Gibbs free energy. All calculated with on M06-
L optimized geometries. <S2> represents the spin operator 
expectation value. 

 

Table S12 Compilation of the Composite Gibbs Free energies calculated with 
M11-L, considering water as a solvent, at the gas phase 
concentration and then 1 Molar concentration. The latter 
corresponds to the standard state for the computation of standard 
potentials and activation energies. 
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Experimental, Materials and Methods 

Materials 

Complexes 1(32)3+, 1(34)3+ and 1(36)3+ were synthesized following a modified reported 

procedure.1 Purity of all compounds was verified by 1H-NMR, cyclic voltammetry and/or UV-

Vis spectroscopy. All reagents used for the synthesis of ligands and complexes were obtained 

from Aldrich Chemical Co. and were used without further purification. Labeled oxygen gas 

samples (18O2(97%) and 17O2 (90%)) and (NH4)2Ce(NO3)6 (99.99+% metal basis) were 

purchased from Aldrich Chemical Co and Trifluoromethanesulfonic acid (HOTf) from CYMIT. 

Although the purity of the 18O2 gas sample was as high as 97%, the rRaman characterization 

of the obtained compound confirmed that there was a contamination of the oxygen 

atmosphere during the reaction generating a 1:1 mixture of 1(32)3+ and 1(36)3+. High-purity 

deionized water was obtained by passing distilled water through a nanopure Milli-Q water 

purification system. 

Resonance Raman Spectroscopy 

rR spectra were measured with a Renishaw in Via Reflex RAMAN confocal microscope 

instrument (Gloucestershire, UK), equipped with an Ar ion laser, operating at 514 nm. The 

spectrometer was equipped with a Peltier-cooled CCD detector (-70°C) coupled to a Leica DM-

2500 microscope. Calibration was carried out with respect to Si standard. A temperature 

controlled stage from Linkam Scientific Instruments was used to keep the sample at -150˚C 

during the measurement. Spectra integration time was 20 seconds and spectra shown 

correspond to five accumulations. Laser power used was 50% of the nominal power (25 mW). 

The samples were prepared by mixing a 3 mM solution of 13+ in Milli-Q water (300 μL) and a 

30 mM solution of (NH4)2Ce(NO3)6in 1 M HOTf (pH 0, 30 μL) at room temperature and freezing 

the mixture after 30 seconds. 

Electron Paramagnetic Resonance  

EPR spectra were measured in aEMX Micro EPR spectrometer with an X-band bridge of 9.1-

9.9 GHz at 4K. The samples were prepared by adding one equivalent of (NH4)2Ce(NO3)6 to a 

0.5mM solution of 13+ in 0.1 M HOTf (pH 1)at room temperature and freezing the mixture 

within minutes. Tensor components values of gxx = 1.982850, gyy = 1.982820, and gzz =1.98243 

were used to simulate the EPR spectra of 3(32)4+ and 3(36)4+with good agreement with 

experimental data (Figure S1). Simulations with line width of 1,1 and 0.30 G at gxx, gyy and 

gzzwere used (Figure S1). For the simulation of the 3(34)4+spectrum, a hyperfine splitting of 
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Azz = 0.78 G due to the two 17O (I = 5/2) atoms were well resolved, and could be fitted. 

However the values of Ayy and Azz are uncertain. Simulations were carried out with Azz = 0.78 

G and Ayy varying from 0.10-0.30 Gauss, and with Azz = 0.78 G and Axx varying between 0.10- 

0.30 G. We estimated upper limit for Ayy and Azz as 0.10 G (Figure S2). 

Oxygen Detection Experiments 

A 1 mM solution of 13+ in 0.1 M HOTf (pH 1, 1.5 mL) was connected to a Mass Spectrometer 

OmniStarTM for on-line gas analysis. Four equivalents of (NH4)2Ce(NO3)6 in 0.5 mL of 0.1 M 

HOTf (pH 1) were added quickly and the evolution of 32O2, 34O2 and 36O2 gases were monitored 

simultaneously. 

XAS 

X-ray absorption spectra were collected at the Advanced Photon Source (APS) at Argonne 

National Laboratory on bending magnet beamline 20 at electron energy 7.7 keV and average 

current 100 mA. The radiation was monochromatized by a Si(110) crystal monochromator. 

The intensity of the X-ray was monitored by three ion chambers (I0, I1 and I2 ) filled with 70% 

nitrogen and 30% helium and placed before the sample (I0) and after the sample (I1 and I2 ). A 

Co metal foil was placed between the I1 and I2 and its absorption recorded with each scan for 

energy calibration. Plastic (Lexan) EXAFS sample holders (inner dimensions of 12 mm x 3 mm 

x 3 mm) filled with frozen solutions were inserted into a pre-cooled (20 K) cryostat. The 

samples were kept at 20 K in a He atmosphere at ambient pressure. Data was recorded as 

fluorescence excitation spectra using a 13-element energy-resolving detector. In order to 

reduce the risk of sample damage by X-ray radiation, 80% flux was used in the defocused 

mode (beam size 1 x 10 mm) and no damage was observed to any samples scan after scan. 

The samples were also protected from the X-ray beam during spectrometer movements by a 

shutter synchronized with the scan program. No more than 5 scans were taken at each sample 

position in any condition. The Co XAS energy was calibrated by the first maximum of the 

second derivative of the cobalt metal XANES spectrum. 

EXAFS Data Analysis 

Athena software2 was used for data processing. The energy scale for each scan is normalized 

using the cobalt metal standard. Data in energy space are pre-edge corrected, normalized, 

deglitched (if necessary), and background corrected. The processed data are next converted 

to the photoelectron wave vector (k) space and weighted by k3. The electron wave number is 

defined as ,E0 is the energy origin or the threshold energy. K-space data 2
1

2

0 ]/)(2[ EEmk 
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were truncated near the zero crossings (k = 1.403 to 12.103 Å-1) in Co EXAFS before Fourier 

transformation. The k-space data are transferred into the Artemis Software for curve fitting.  

In order to fit the data, the Fourier peaks are isolated separately, grouped together, or the 

entire (unfiltered) spectrum was used. The individual Fourier peaks were isolated by applying 

a Hanning window to the first and last 15% of the chosen range, leaving the middle 70% 

untouched. Curve fitting is performed using ab initio-calculated phases and amplitudes from 

the FEFF83 program and ab initio-calculated phases and amplitudes are used in the EXAFS 

equation4 

(1) 

where Njis the number of atoms in thejthshell; Rj the mean distance between the absorbing 

atom and the atoms in the jthshell; (,k, Rj) is the ab initio amplitude function for shell j, 

and the Debye-Waller term accounts for damping due to static and thermal disorder in 

absorber-backscatterer distances. The mean free path term  reflects losses due to 

inelastic scattering, where λj(k), is the electron mean free path. The oscillations in the EXAFS 

spectrum are reflected in the sinusoidal term , where  is the ab initio 

phase function for shell j. This sinusoidal term shows the direct relation between the 

frequency of the EXAFS oscillations in k-space and the absorber-back scatterer distance. S0
2 is 

an amplitude reduction factor.  

The EXAFS equation (Eq. 1) is used to fit the experimental Fourier isolated data (in q-space) 

as well as unfiltered data (in k-space) and Fourier transformed data (in R-space) using N, S0
2, 

E0, R, and 2 as variable parameters. N refers to the number of coordination atoms 

surrounding Co for each shell. The quality of fit is evaluated by R-factorand the reduced Chi2 

value. The deviation in E0 was required to be less than or equal to 10 eV. An R-factor less than 

2% denotes that the fit is good enough whereas an R-factor between 2 and 5% denotes that 

the fit is correct within a consistently broad model.4 The reduced Chi2 value is used to compare 

fits as more absorber-backscatter shells are included to fit the data.  A smaller reduced Chi2 

value indicates a better fit. Similar results were obtained from fits done in k, q, and R-spaces.  

DFT Methods for Geometry Optimization and Free Energy Calculations 

All molecular geometries were fully optimized at the M06-L5-7 level of density functional 

theory using the Stuttgart [8s7p6d2f|6s5p3d2f] ECP28MWB contracted pseudopotential 

basis set8 on Co and the 6-31G(d) basis set9 on all other atoms. Non-analytical integral 
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evaluations made use of a pruned grid having 99 radial shells and 590 angular points per shell 

and an automatically generated density-fitting basis set was used within the resolution- of-

the- identity approximation to speed the evaluation of the Coulomb integrals. The nature of 

all stationary points was verified by analytical computation of vibrational frequencies, which 

were also used for the computation of zero-point vibrational energies, molecular partition 

functions (with all frequencies below 50 cm-1 replaced by 50 cm-1 when computing free 

energies), and for determining the reactants and products associated with each transition-

state structure (by following the normal modes associated with imaginary frequencies). 

Partition functions were used in the computation of 298 K thermal contributions to free 

energy employing the usual ideal-gas, rigid-rotator, harmonic oscillator approximation.10 Free 

energy contributions were added to single-point M06-L and M11-L11 electronic energies 

computed with the SDD basis set on cobalt and the 6-311+G(2df,p) basis set on all other atoms 

to arrive at final, composite, aqueous free energies. As M11-L predictions were found to be 

in near quantitative agreement with experiment for key oxidation potentials, we report 

energetics exclusively at that level (M06-L oxidation potentials were generally predicted to be 

200-300 mV lower than those at the M11-L level). 

Solvation effects associated with water as solvent were accounted for using the SMD 

continuum solvation model.12 A 1 M standard state was used for all species in aqueous 

solution except for water itself, for which a 55.6 M standard state was employed. Thus, for all 

molecules but water, the free energy in aqueous solution is computed as the 1 atm gas-phase 

free energy, plus an adjustment for the 1 atm to 1 M standard state concentration change of 

RTln(24.5), or 1.9 kcal mol-1, plus the 1 M to 1 M transfer (solvation) free energy computed 

from the SMD model. In the case of water, the 1 atm gas-phase free energy is adjusted by the 

sum of a 1 atm to 55.6 M standard-state concentration change, or 4.3 kcal mol-1,13-16 and the 

experimental 1 M to 1 M solvation free energy, -6.3 kcal mol-1. The 1 M to 1 M solvation free 

energy of the proton was taken from experiment as -265.9 kcal mol-1. Standard reduction 

potentials were calculated for various possible redox couples to assess the energetic 

accessibility of different intermediates at various oxidation states. For a redox reaction of the 

form:  

 O(aq) + n e–
(g) R(aq) (2) 

where O and R denote the oxidized and reduced states of theredox couple, respectively, and 

n is the number of electronse involved in redox reaction, the reduction potential Eo for the 

O/R couple relative to the standard hydrogen electrode (SHE) was computed as:  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 8 
 

336 

VIII 

)(~)( 1

2

1 sfs

i

f EEEeE    rk
rε

)()1(~)( 1

2

1 sfsf EEEiE   rkrε

 E°O/R = –(G°O/R – G°SHE)/nF (3) 

Where G°O/R is the free energy change associated with Eq. 4 (using Boltzmann statistics for 

the electron),17,18 and G°NHE is the SHE free energy change associated with  

 H+
(aq) + e–

(g) (1/2) H2(g) (4) 

which is -4.28 eV with Boltzmann statistics for the electron, and F is the Faraday constant. The 

298 K difference between the normal hydrogen electrode (NHE; which is what is employed in 

actual measurements) and SHE (which is a formal construct) is –0.006 V.19 

DFT-MO XANES Methods 

The optimized geometries calculated as described above were used to calculate unoccupied 

molecular orbitals which were subsequently used for XANES calculations.The X-ray absorption 

cross section obeys the Fermi golden rule, and the matrix element for the electron transition 

can be written as 

(5) 

where ψ1s is a core−electron wave function, ψf is a wave function for the unoccupied state, ε 

is a photon polarization, k is a photon wavevector. Both dipole and quadrupole terms were 

taken into account: 

(6)  

The averaging was performed for all directions of photon polarization and wave vector with 

a restriction of perpendicularity of these two vectors. Calculation of the wave function for 

unoccupied states is based on a basis set method within the molecular orbital DFT approach 

already described above (DFT-MO in the text). Molecular orbitals of the 1s core level and 

unoccupied levels are used to calculate dipole and quadrupole matrix elements and 

Lorentzian convolution is subsequently applied for comparison with experiment.20 In order to 

represent a final state after the photon absorption process, a core hole is introduced on a 1s 

cobalt level in a self-consistent way subsequently for two inequivalent Co sites. For the DFT-

MO calculations shown in text, we first obtain eigenvalues and corresponding wave functions 

for both spin polarizations for a given Co complex in the presence of a core hole. The matrix 

elements are then evaluated for transitions between 1s core level and unoccupied MOs using 

dipole and quadrupole transition operators. In order to compare with experimental results, a 

convolution of calculated matrix elements was performed with a Lorentzian profile using 

energy dependent linewidth. In the pre-edge region, the width of the Lorentzian profile 
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corresponds to a core hole lifetime broadening for Co. This value is then increased in higher 

energy interval with a smooth arctangent function. The parameters of the matrix elements 

calculations (grid step, size number of unoccupied MOs) and energy convolution are fixed 

once for all complexes. The DFT-MO calculated spectra were subsequently aligned according 

to the energy value of the Co 1s orbital, thus reproducing the chemical shift for different Co 

oxidation states. A constant shift with the identical value was applied for all spectra in order 

to align the energy scale between experimental data and theoretical calculations. 

It is important to note that metal to ligand charge transfer shakedown transitions can cause 

a shift in the energy position21 and intensity22 of the shoulder on the rising edge of the XANES 

spectrum. However, the proper theoretical description of such state requires the use of multi-

reference computational methods which are at present capable of dealing only with the first 

several transitions.23 

In our simulations, we intended to reproduce both pre-edge transitions and main edge 

features which require calculation of energies and wave functions of more than 500 electronic 

states that were possible only within DFT level of theory. Thus, we expect the discrepancies 

between energy position of the shakedown transition observed in the experiment and 

calculated spectra to be in the order of 1eV. However, the effect of the intensity of the peak 

associated with shakedown transitions is much suppressed for complexes with metal-oxygen 

bonds.16 
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Figure S1.Experimental EPR spectrum of 3(32)4+ (black) and 3(36)4+ (cyan) measured at -4 ̊ C together 
with simulated EPR spectrum (dashed line) calculated withgxx = 1.982850, gyy = 1.982820 and gzz = 
1.98243. 

 

 
Figure S2. Experimental EPR spectrum of 3(34)4+ (black) measured at -4 ºC together with simulated 
EPR spectra with different hyperfine splitting parameters: Azz = 0.78 G with addition of Ayy = 0.10-
0.30 G (A) and with addition of Azz = 0.10-0.30 G (B). 
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Simulation Experimental Simulation 

 

 

 

 

Figure S3. DFT-MO XANES spectra simulations for the one-electron oxidized symmetric superoxido-
bridged product (left), the asymmetric superoxido-end-on product (right) compared to the 
experimental spectrum (middle).In the bottom figures, a zoom in of the pre-edge region and 
Gaussian fits of the 2 pre-edge peaks are shown. Note that the doublet pre-edge feature in the 
calculated spectrum of the superoxido-bridged derivative is less pronounced than that observed for 
the simulated superoxido end-on derivative. 
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The near edge fit and pre-edge peak fits were carried out with an error function and 2 gaussian 

functions respectively. The formulas for the error (erf) and Gaussian(gauss) functions are as 

follows: 

Error function: 














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10

w

Ee
erfA  (Eq.1) 

Gaussian function: 






 









)2(

)(
exp

2
2

2

0

w

Ee

w

A


(Eq.2) 

Where A corresponds to the amplitude; w, the width; E0, the centroid of the pre-edge and 

near edge peaks and e, the x-ray energy. 

The parameters E0, A and w used for each sets of functions for the experimental and 

theoretical fits together with their uncertainties are tabulated below. 

 

1(32)3+peroxo experimental 

Function Centroid Amplitude Width 

Erf 7722.45 0.688 6.024 

Gauss 7709.90 0.060 0.850 

Gauss 7712.20 0.070 1.4 

1(32)3+ peroxo simulation 

Function Centroid Amplitude Width 

Erf 7722.1 0.688 6.024 

Gauss 7710.38 0.089 0.665 

Gauss 7711.80 0.110 1.4 

3(32)4+superoxo experimental 

Function Centroid Amplitude Width 

Erf 7722.9 0.688 6.024 

Gauss 7710.04 0.064 0.750 

Gauss 7712.70 0.059 1.05 

3(32)4+superoxo -bridging simulation 

Function Centroid Amplitude Width 

Erf 7722.8 0.688 6.024 

Gauss 7710.91 0.080 0.650 

Gauss 7712.79 0.085 1.1 

3(32)4+superoxo-end on simulation 

Function Centroid Amplitude Width 

Erf 7722.55 0.688 6.024 

Gauss 7710.74 0.112 1.118 

Gauss 7713.20 0.073 0.9 
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Figure S4. Fourier transforms of k3-weighted Co EXAFS of the 1(32)3+ (black) and 3(32)4+(red).  

 

 
 

Figure S5. A) Fourier transforms of k3-weighted Co EXAFS of 1(32)3+. B) EXAFS spectrum simulated 
with FEFF software, coordinates of all atoms were obtained from published XRD structure of 1(32)3+.1 
C) EXAFS spectrum simulated with FEFF software, coordinates of all atoms from DFT calculations 
were used as input. 
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Figure S6. Left) 1(32)3+ EXAFS Fourier transforms and its corresponding fit (fit 5 in Table S2, below). 
Right) 3(32)4+ EXAFS Fourier transforms and its corresponding fit: fit 12 (in Table S2 below) for blue 
dotted line corresponding to a superoxo bridged and fit 14 (in Table S2 below) red dotted line 
corresponding to a superoxo end-on. 

 

 
 

Figure S7. Back fourier experimental and fitted lines q Re[χ(k)]  for 1(32)3+ (black, fit 5, Table 2 below) 
and 3(32)4+ (red). The blue dotted line corresponding to a superoxo bridged (fit 12 in Table S2 below) 
and red dotted line, corresponding to a superoxo end-on (fit 14 in Table S2 below). 
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Figure S8A. O2 evolution profile monitored via on-line MS for a mixture containing pure 1(32)3+ (Left) 
or a mixture of 1(32)3+:1(36)3+ 50:50 (Right) in the presence of 4 equivalents of (NH4)2Ce(NO3)6in 0.1 
M HOTf (pH 1). 

 

 
 

 

Figure S8B. Left, charge vs. time profile of a bulk electrolysis experiment performed in a two 
compartment cell containing an FTO working electrode (4.5 cm2), Ag/AgCl reference electrode and 
a 8.5 mL of a 2.4 mM solution of 1(36)3+ in a pH = 2.0 phosphate buffer solution at an Eapp = 1.80 V 
(vs. Ag/Ag+). The second compartment contained a platinum wire counter electrode in 8.5 mL of a 
pH = 2.0 phosphate buffer solution. The TONs are calculated assuming a Faradaic efficiency of 77% 
(see Ref 6 main ms). Right, oxygen evolution vs. TON profile for the same experiment. 

 

The electrocatalytic experiment for 1(36)3+ shows the initial formation of 32O2 and 36O2, and 

as the catalysis proceeds the gas phase gets enriched with 32O2 as expected. 
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Table S1. Comparison of structural parameters from EXAFS, DFT and XRD data of 1(32)3+ and 3(32)4+. 

 
 

EXAFS Analysis 
Distances (Å) 

DFT Distances (Å) XRD Distances 

1(32)3+ 

peroxido 
Co-N/O,5: 1.93 

Co-N,1: 2.17 
Co-O,1: 2.75 
Co-C,5: 2.89 
Co-C,3: 3.31 

Co-Co,1: 3.82 
O-O distance = 1.005 

 
R-factor = 0.0001 

Reduced Chi2 value: 
40 

(Fit 5 in Table 2) 

Co(1)-O(1): 1.9092 
Co(2)-O(2): 1.9096 
Co(1)-O(2): 2.7501 
Co(2)-O(1): 2.7501 
Co(1)-N(1): 2.1001 
Co(1)-N(2): 1.9067 
Co(1)-N(3): 1.9694 
Co(1)-N(4): 1.8848 
Co(1)-N(5): 1.9980 
Co(2)-N(1): 1.9068 
Co(2)-N(2): 2.1003 
Co(2)-N(3): 1.9698 
Co(2)-N(4): 1.8848 
Co(2)-N(5): 1.9990 
Co(1)-Co(2): 3.8174 
O(1)-O(2): 1.3516 

Co(1)-O(1): 1.882(3) 
Co(2)-O(2): 1.884(2) 
Co(1)-O(2): 2.763(2) 
Co(2)-O(1): 2.757(2) 
Co(1)-N(1): 2.006(3) 
Co(1)-N(2): 1.875(2) 
Co(1)-N(3): 1.952(2) 
Co(1)-N(4): 1.863(2) 

Co(1)-N(5): 1.9939(2) 
Co(2)-N(1): 1.875(3) 
Co(2)-N(2): 1.929(3) 
Co(2)-N(3): 1.862(3) 
Co(2)-N(4): 1.958(3) 
Co(2)-N(5): 2.009(2) 
Co(1)-Co(2): 3.7967 

O(1)-O(2): 1.397 

2(32)4+  

superoxido bridge 
 

Co-N,6: 1.91 
Co-O,1: 2.70 
Co-C,5: 2.89 
Co-C,3: 3.32 

Co-Co,1: 3.78 
O-O distance =  0.963 

R-factor = 0.0008 
Reduced Chi2 value: 

98 
(Fit 12 in Table 2) 

Co(1)-O(1): 1.9446 
Co(1)-O(2): 1.9446 
Co(1)-O(2): 2.7128 
Co(2)-O(1): 2.7130 
Co(1)-N(1): 2.0114 
Co(1)-N(2): 1.9293 
Co(1)-N(3): 1.9968 
Co(1)-N(4):1.9748 
Co(1)-N(5):1.8876 
Co(2)-N(1): 1.9293 
Co(2)-N(2): 2.0114 
Co(2)-N(3): 1.9749 
Co(2)-N(4): 1.8876 
Co(2)-N(5): 1.9976 
Co(1)-Co(2): 3.9587 
O(1)-O(2): 1.3097 

No crystal structure of 
complex 

3(32)4+  

superoxido end-on 
 

Co-N,6: 1.92 
Co-O,0.5: 2.70 
Co-C,5: 2.89 
Co,C,3: 3.29 

Co-Co,1 :3.78 
Co-O,1: 3.95 

R-factor = 0.0001 
Reduced Chi2 value = 

41 
(Fit 14 in Table 2) 

 

Co(2)-O(1):2.7833 
Co(2)-O(2):1.9187 
Co(1)-O(3):1.9873 
Co(1)-N(1): 1.9566 
Co(1)-N(2): 1.9906 
Co(1)-N(3):1.9951 
Co(1)-N(4):1.8833 
Co(1)-N(5):1.9745 
Co(2)-N(1):2.0084 
Co(2)-N(2):2.0215 
Co(2)-N(3):1.9933 
Co(2)-N(4):1.8756 
Co(2)-N(5):1.9818 
Co(1)-Co(2):4.4416 
O(1)-O(2):1.2883 

No crystal structure of 
this complex 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 8 

345 

VIII 

Table S2. EXAFS fits for 1(32)3+ and 3(32)4+ (Superoxo bridging (Fit 12) versus end-on (Fit 14) structure). 
 

Sample Fit Peak Shell, N R, Å E0 2(10-3) R-factor ReducedChi-square 

1(32)3+ 

peroxido 

1 I Co-N,6 1.91 2.3 4.3 0.0021 936 

2 I Co-N/O,5 
Co-N,1 

1.92 
2.21 

5.7 3.2 0.0001 399 

3 I,II Co-N/O,5 
Co-N,1 
Co-C,5 
Co-C,3 

1.92 
2.17 
2.83 
3.33 

6.6 2.8 
4.1 
4.1 
5.2 

0.0003 110 

4 all Co-N/O,5 
Co-N,1 
Co-O,1 
Co-C,5 
Co-C,3 

1.93 
2.17 
2.74 
2.90 
3.32 

7.6 2.9 
4.8 
2.3 
6.4 
7.2 

0.0002 1294 

5 all Co-N/O,5 
Co-N,1 
Co-O,1 
Co-C,5 
Co-C,3 

Co-Co,1 

1.93 
2.17 
2.75 
2.89 
3.31 
3.82 

7.3 3.0 
6.3 
2.0 
9.8 
0.5 
4.6 

0.0001 40 

superoxid

o 

 

6 I Co-N,6 1.90 2.4 3.6 0.0015 482 

7 I Co-N/O,5 
Co-N,1 

1.91 
2.11 

5.5 1.8 
2.1 

0.0005 2634 

8 I,II Co-N,6 
Co-C,5 
Co-C,3 

1.90 
2.78 
3.36 

2.4 3.7 
2.8 

18.4 

0.0029 510 

9 I,II Co-N,6 
Co-O,1 
Co-C,5 
Co-C,3 

1.91 
2.70 
2.90 
3.28 

5.8 4.0 
6.9 
1.5 

14.7 

0.0003 131 

10 
 

I,II Co-N,6 
Co-O,0.5 
Co-C,5 
Co-C,3 

1.91 
2.69 
2.87 
3.32 

5.5 4.0 
9.6 
1.6 

25.1 

0.0002 92 

11 all Co-N,6 
Co-C,5 
Co-C,3 

Co-Co,1 

1.90 
2.79 
3.32 
3.77 

2.7 3.7 
2.8 
6.2 
0.3 

0.0025 
 

272 

12 all Co-N,6 
Co-O,1 
Co-C,5 
Co-C,3 

Co-Co,1 

1.91 
2.70 
2.89 
3.32 
3.78 

5.7 3.9 
6.7 
1.2 

25.4 
2.2 

0.0006 98 

13 all Co-N,6 
Co-O,0.5 
Co-C,5 
Co-C,3 

Co-Co,1 

1.91 
2.69 
2.87 
3.32 
3.78 

5.6 4.0 
9.4 
1.1 

26.1 
2.4 

0.0005 
 

80 

 14 all Co-N,6 
Co-O,0.5 
Co-C,5 
Co-C,3 

Co-Co,1 
Co-O,1 

1.92 
2.70 
2.89 
3.29 
3.78 
3.95 

6.0 4.2 
9.6 
4.4 
9.2 
3.7 

10.6 

0.0001 41 

 *Peak I refers to the region between 1.2-2.05 Å, peak I,II to 1.2-3.0 Å and all to 1.2-3.8 Å 
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DFT M06-L and M11-L Studied Reactions with the Corresponding Energies 

 

Figure S9. Summary Reaction scheme at pH=2. At pH=8 PCETE(M06-L/M11-L)=1.10/1.35, PCETB3(M06-

L/M11-L)=1.61/1.98, PCETC2(M06-L/M11-L)=0.65/0.76. 
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Figure S10. Summary Reaction scheme at pH 8.  
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Figure S11. All relevant speciation studied at pH 2. 
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Figure S12. All relevant speciation studied at pH 8. 
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Compiled Energy Information with Corresponding Labeling Graphs 

 

Figure S13. Labeling scheme of the species and ET, PT and PCET steps involved in the Pourbaix diagram.  

 

Figure S14. Labeling scheme of the species and ET, PT, PCET and substitution steps involved in the 

oxygen evolution process.  
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Table S3. Reduction potentials and G values for the different Electron Transfer (ET) steps at the 

different levels of theory tested. 

 

M06-L M06-L-Gcorra M11-L-Ecorrb 

ET 

Gred 

(kcal/mol) 

Ered vs SHE 

(V) 

Gred 

(kcal/mol) 

Ered vs SHE 

(V) 

Gred 

(kcal/mol) 

Ered vs SHE 

(V) 

ETA -108.85 0.44 -109.21 0.46 -97.96 -0.03 

ETA2 -120.74 0.96 -119.79 0.91 -112.35 0.59 

ETB -97.60 -0.05 -96.53 -0.09 -83.80 -0.65 

ETB2 -107.75 0.39 -107.06 0.36 -94.18 -0.20 

ETB3 -149.80 2.22 -149.50 2.20 -161.88 2.74 

ETC -87.38 -0.49 -90.05 -0.38 -78.87 -0.86 

ETC2 -96.12 -0.11 -95.25 -0.15 -83.76 -0.65 

ETC3 -132.17 1.45 -132.24 1.45 -143.58 1.95 

ETC4 -150.75 2.26 -166.51 2.94 -232.80 5.82 

ETD -116.03 0.75 -115.17 0.71 -98.03 -0.03 

ETD2 -115.00 0.71 -113.08 0.62 -119.32 0.89 

ETE (u) -124.79 1.13 -121.51 0.99 -121.46 0.99 

ETE (r) -87.84 -0.47 -86.62 -0.52 -88.37 -0.45 

ETF -125.66 1.17 -125.15 1.15 -130.27 1.37 

ETG -149.09 2.19 -149.01 2.18 -160.07 2.66 

ETH -139.39 1.76 -139.41 1.77  -148.69  2.17 

ETI -129.00 1.31 -128.87 1.31 -136.72 1.65 

aM06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to single-

point M06-L/6-311+G(2df,p). 

b M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to 

single-point M11-L/6-311+G(2df,p). 
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Table S4.pKa’s and G of proton dissociation values for the different steps at the different levels of 

theory tested. 

 

M06-L M06-L-Gcorra M11-L-Ecorrb 

pKa 

Gdissoc 

(kcal/mol) pKa 

Gdissoc 

(kcal/mol) pKa 

Gdissoc 

(kcal/mol) pKa 

pKaA 12.27 9.00 13.60 9.98 14.46 10.61 

pKaA2 1.01 0.74 0.92 0.68 0.30 0.22 

pKaA3 -11.98 -8.79 -11.80 -8.66 -17.87 -13.11 

pKaB 36.38 26.69 32.79 24.06 27.09 19.88 

pKaB2 26.17 19.20 26.31 19.31 22.16 16.26 

pKaB3 14.55 10.67 14.50 10.64 11.74 8.61 

pKaB4 -3.08 -2.26 -2.76 -2.02 -6.56 -4.81 

pKaC 27.49 20.17 28.47 20.89 53.40 39.18 

pKaC2 11.35 8.33 11.40 8.37 7.86 5.76 

pKaC3 -24.39 -17.90 -42.03 -30.83 -105.63 -77.50 

pKaD 18.16 13.33 19.54 14.34 26.69 19.58 

pKaD2(u) 27.96 20.51 27.97 20.52 28.83 21.15 

pKaD2(r) -8.99 -6.60 -6.92 -5.08 -4.27 -3.13 

pKaE 5.94 4.36 6.18 4.53 4.05 2.97 

pKaF -4.45 -3.26 -4.35 -3.19 -7.92 -5.81 

aM06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to single-

point M06-L/6-311+G(2df,p). 

b M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to 

single-point M11-L/6-311+G(2df,p). 
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Table S5. Reduction potentials and G values for the different Proton Coupled Electron Transfer 

(PCET) steps at pH=2 at the different levels of theory tested 

 

M06-L M06-L-Gcorra M11-L-Ecorrb 

PCET 

(pH=2) 

GPCETred 

(kcal/mol) 

Ered vs SHE 

(V) 

GPCETred 

(kcal/mol) 

Ered vs SHE 

(V) 

GPCETred 

(kcal/mol

) 

Ered vs 

SHE(V) 

PCETA -107.14 0.37 -107.41 0.38 -95.54 -0.14 

PCETA2 -106.04 0.32 -105.26 0.28 -91.76 -0.30 

PCETB -121.05 0.97 -120.12 0.93 -103.24 0.20 

PCETB2 -119.57 0.91 -118.84 0.87 -103.20 0.19 

PCETB3 -144.00 1.96 -144.02 1.97 -152.59 2.14 

PCETB4 -144.95 2.01 -161.03 2.70 -223.52 5.41 

PCETC -140.80 1.83 -140.93 1.83 -148.71 2.17 

PCETC2 -123.64 1.08 -121.76 1.00 -124.46 1.12 

PCETD(u) -140.24 1.80 -138.33 1.72 -145.43 2.03 

PCETD(r) -103.29 0.20 -103.44 0.21 -112.34 0.59 

PCETE -132.22 1.45 -132.33 1.46 -138.05 1.71 

aM06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to single-

point M06-L/6-311+G(2df,p). 

b M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to 

single-point M11-L/6-311+G(2df,p). 
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Table S6. Reduction potentials and G values for the different Proton Coupled Electron Transfer (PCET) 

steps at pH=8 at the different levels of theory tested 

 

M06-L M06-L-Gcorra M11-L-Ecorrb 

PCET 

(pH=8) 

GPCETred 

(kcal/mol) 

Ered vs SHE 

(V) 

GPCETred 

(kcal/mol) 

Ered vs SHE 

(V) 

GPCETred 

(kcal/mol) 

Ered vs SHE 

(V) 

PCETA -98.98 0.01 -99.25 0.02 -87.38 -0.49 

PCETA2 -97.88 -0.04 -97.10 -0.07 -83.60 -0.65 

PCETB -112.89 0.62 -111.96 0.57 -95.08 -0.16 

PCETB2 -111.41 0.55 -110.68 0.52 -95.04 -0.16 

PCETB3 -135.84 1.61 -135.86 1.61 -144.43 1.98 

PCETB4 -136.79 1.65 -152.87 2.35 -215.36 5.06 

PCETC -132.64 1.47 -132.77 1.48 -140.55 1.81 

PCETC2 -115.48 0.73 -113.60 0.65 -116.30 0.76 

PCETD(u) -132.08 1.45 -130.17 1.36 -137.27 1.67 

PCETD(r) -95.13 -0.15 -95.28 -0.15 -104.18 0.24 

PCETE -124.06 1.10 -124.17 1.10 -129.89 1.35 

a M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to single-

point M06-L/6-311+G(2df,p).b M06-L/6-31G(d) free energy contributions (corrected for frequencies 

below 50 cm-1) added to single-point M11-L/6-311+G(2df,p). 
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Table S7.G values for the different water insertion reactions at the different levels of theory tested. 

Substitution 

Reactions 

M06-L M06-L-Gcorra M11-L-Ecorrb 

Gsubs 

(kcal/mol) 

Gsubs 

(kcal/mol) 

Gsubs 

(kcal/mol) 

G1 -27.87 -27.73 -19.85 

G2 -37.57 -37.34 -31.24  

G3 -28.88 -27.95 -8.11 

G4 -55.06 -55.02 -54.40 

G5 -47.52 -47.57 -44.43  

a M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1) added to 

single-point M06-L/6-311+G(2df,p).b M06-L/6-31G(d) free energy contributions (corrected for 

frequencies below 50 cm-1) added to single-point M11-L/6-311+G(2df,p). 

 

Table S8.G= activation energy values for the transition states considered at the different levels of 

theory tested. 

Substitution 

Reactions 

M06-L-Gcorra M11-L-Ecorrb 

Gsubs 

(kcal/mol) 

Gsubs 

(kcal/mol) 

GTSA
c -13.0 -8.4 

GTSB
d -1.1 41.1 

GTSC
e -16.1 46.6 

aM06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1 for all species 

but TS) added to single-point M06-L/6-311+G(2df,p). 

b M06-L/6-31G(d) free energy contributions (corrected for frequencies below 50 cm-1 for all species 

but TS) added to single-point M11-L/6-311+G(2df,p). 

cTSA: IIICo-OO-CoIV + H2O  OO-CoIII-CoIV-OH2 

dTSB: OO-CoIV-CoIV-OH + H2O  H2O-CoIII-CoIII-OH + O2 

eTSC: O-CoIV-CoIII-O CoIV-OO-CoIII 
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M06-L- ENERGIES 

Table S9.Compilation of the, electronic energy, the as computed Gibbs free energy, the Gibbs free 

energy after removing the contribution of the frequencies that are under 50 cm-1 and the Composite 

Gibbs Free energy considering water as a solvent. All calculated with M06-L on M06-L optimized 

geometries. <S2> represents the spin operator expectation value. 

Compo

und 

For

ma

l. 

Ox. 

St. 

spi

n 

<S2

> 

E-gas-

M06-L 

( 

Hartree)  

G-gas-

M06-L 

( 

Hartree)  

G-gas corr-

M06-L 

( Hartree)  

<S2

> 

E-sol-M06-

L 

( Hartree)  

G-sol-

M06-L 

( 

Hartree)  

H2O-

CoCo-

H2O II,II 

sep

tet 

12.

02 

-

2,648.66

02 

-

2,648.03

45 -2,648.0309 

12.

0 

-

2,649.7041 

-

2,649.07

8 

H2O-

CoCo-

H2O 

II,II

I Q 

3.7

6 

-

2,648.18

82 

-

2,647.55

57 -2,647.5515 

3.7

6 

-

2,649.5375 

-

2,648.90

4 

H2O-

CoCo-

H2O 

III,I

II s 0. 

-

2,647.61

08 

-

2,646.96

88 -2,646.9661 0. 

-

2,649.3546 

-

2,648.71

2 

OH-

CoCo-

H2O II,II 

sep

t 

12.

03 

-

2,648.41

08 

-

2,647.79

93 -2,647.7936 

12.

0 

-

2,649.2396 

-

2,648.62

8 

OH-

CoCo-

H2O 

III-

II q 

3.7

6 

-

2,648.05

90 

-

2,647.43

57 -2,647.5515 

3.7

6 

-

2,649.0959 

-

2,648.47

2 

OH-

CoCo-

H2O 

III,I

II s 0. 

-

2,647.58

67 

-

2,646.95

85 -2,646.9555 0. 

-

2,648.9292 

-

2,648.30

0 

OH-

CoCo-

H2O 

III,I

V d 

0.7

5 

-

2,646.96

52 

-

2,646.33

73 -2,646.3348 

0.7

6 

-

2,648.6902 

-

2,648.06

2 

OH-

CoCo-

OH II,II 

sep

t 

12.

08 

-

2,648.01

55 

-

2,647.41

49 -2,647.4114 

12.

0 

-

2,648.7435 

-

2,648.13

9 

OH-

CoCo-

OH 

III,I

I q 

3.7

7 

-

2,647.76

41 

-

2,647.15

54 -2,647.1512 

3.7

7 

-

2,648.6088 

-

2,648.00

0 

OH-

CoCo-

OH 

III,I

II s 0. 

-

2,647.42

36 

-

2,646.80

41 -2,646.8012 0. 

-

2,648.4665 

-

2,647.84

7 
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O-

CoCo- 

OH2 

III,I

II q 

6.0

2 

-

2,647.40

59 

-

2,646.79

41 -2,646.7905 

6.0

2 

-

2,648.4392 

-

2,647.82

7 

OH-

CoCo-

OH 

IV,I

II d 

0.7

6 

-

2,646.91

96 

-

2,646.30

33 -2,646.3004 

0.7

6 

-

2,648.2501 

-

2,647.63

3 

O-

CoCo-

OH2 

IV,I

II d 

0.7

6 

-

2,646.91

77 

-

2,646.29

98 -2,646.2968 

0.7

6 

-

2,648.2543 

-

2,647.63

6 

OH-

CoCo-

OH 

IV,I

V t 

2.0

1 

-

2,646.29

27 

-

2,645.68

01 -2,645.6801   

-

2,648.0087 

-

2,647.39

6 

O-

CoCo- 

OH 

III,I

II 

(II-

OH

/IV

=O

) q 

6.0

3 

-

2,647.13

55 

-

2,646.53

70 -2,646.5326 

6.0

3 

-

2,647.9710 

-

2,647.37

2 

O-

CoCo- 

OH 

IV,I

II d 

0.7

6 

-

2,646.75

77 

-

2,646.15

13 -2,646.1482 

0.7

6 

-

2,647.7940 

-

2,647.18

7 

O-

CoCo- 

OH 

IV,I

V s 0. 

-

2,646.28

09 

-

2,645.66

98 -2,645.6698 0. 

-

2,647.6154 

-

2,647.00

4 

O-

CoCo-

O 

III,I

V d 

1.2

0 

-

2,646.49

55 

-

2,645.90

80 -2,645.9027 

0.8

2 

-

2,647.3154 

-

2,646.72

7 

O-

CoCo-

O 

IV,I

V U  

0.8

7 

-

2,646.08

99 

-

2,645.49

35 -2,645.4935 

0.8

5 

-

2,647.1254 

-

2,646.52

9 

CoCo-

peroxo 

III,I

II s 0. 

-

2,646.15

66 

-

2,645.55

85 -2,645.5553 0. 

-

2,647.1860 

-

2,646.58

7 

CoCo-

peroxo 

IV,I

II d 

0.8

0 

-

2,645.66

26 

-

2,645.06

36 -2,645.0611 

0.8

0 

-

2,646.9867 

-

2,646.38

7 

CoCo-

peroxo 

IV,I

V t 

2.0

6 

-

2,645.03

27 

-

2,644.43

78 -2,644.4355 

2.0

6 

-

2,646.7450 

-

2,646.15

0 
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CoCo-

OO-

OH2 

IV,I

V t 

2.0

4 

-

2,721.47

52 

-

2,720.85

87 -2,720.8560 

2.0

2 

-

2,723.2258 

-

2,722.60

9 

CoCo-

OO-OH 

IV,I

V t 

2.0

2 

-

2,721.44

09 

-

2,720.83

39 -2,645.6545 

2.0

2 

-

2,722.7927 

-

2,722.18

5 

CoCo-

OO-

OH2 

III,I

V d 

0.8

1 

-

2,722.08

99 

-

2,721.46

88 -2,721.4661 

0.7

9 

-

2,723.4525 

-

2,722.83

1 

CoCo-

OO-OH 

III,I

V d 

0.9

3 

-

2,721.93

95 

-

2,721.33

18 -2,646.1482 

0.8

5 

-

2,722.9989 

-

2,722.39

1 

TSC: 

Co2-

O2-

associa

tion 

III,I

V d 

0.7

9 

-

2645.585

13 

-

2644.988

14 

-

2644.98740

8 

0.7

9 

-

2646.9103

08 

-

2646.312

57 

 

III,I

V q 

3.7

5 

-

2645.581

19 

-

2644.988

08 

-

2644.98662

6 

3.7

5 

-

2646.9027

28 

-

2646.308

15 

 

III,I

V 

Sex

t 

8.7

5 

-

2645.569

82 

-

2644.982

07 

-

2644.97935

7 

8.7

5 

-

2646.8865

41 

-

2646.296

07 

TSA: 

Co2-

O2-

1stsub

stitutio

n 

IV,I

II d 

0.7

6 

-

2722.063

983 

-

2721.446

433 

-

2721.44643

3 

0,7

6 

-

2723.4227

2 

-

2722.805

169 

TSB:Co

2-O2-

liberati

on 

IV,I

V s 

0.0

0 

-

2721.389

24 

-

2720.780

20 

-

2720.77899

2 

0.0

0 

-

2722.7552

7 

-

2722.145

02 

 

IV,I

V t 

2.0

0 

-

2721.428

29 

-

2720.821

11 

-

2720.82010

3 

2.0

0 

-

2722.7917

38 

-

2722.183

54 
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Table S10.Compilation of the Composite Gibbs Free energies calculated with M06-L considering water 

as a solvent, at the gas phase concentration and then 1 Molar concentration. The latter corresponds to 

the standard state for the computation of standard potentials and activation energies.  

Compound Formal. Ox. St. spin 

G-sol-M06-

L(Kcal/mol) 

G-sol-M06-L*-1M 

(kcal/mol) 

H2O-CoCo-

H2O II,II sept -1,662,321.7880 -1662319.90 

H2O-CoCo-

H2O II,III q -1,662,212.9370 -1662211.05 

H2O-CoCo-

H2O III,III s -1,662,092.1929 -1662090.30 

OH-CoCo-

H2O II,II sept -1,662,039.2417 -1662037.35 

OH-CoCo-

H2O III-II q -1,661,941.6461 -1661939.76 

OH-CoCo-

H2O III,III s -1,661,833.8974 -1661832.01 

OH-CoCo-

H2O III,IV d -1,661,684.1005 -1661682.21 

OH-CoCo-

OH II,II sept -1,661,732.5779 -1661730.69 

OH-CoCo-

OH III,II q -1,661,645.1940 -1661643.30 

OH-CoCo-

OH III,III s -1,661,549.0716 -1661547.18 

O-CoCo- 

OH2 III,III q -1,661,536.7315 -1661534.84 

OH-CoCo-

OH IV,III d -1,661,415.3123 -1661413.42 

O-CoCo-OH2 IV,III d -1,661,416.9025 -1661415.01 

OH-CoCo-

OH IV,IV t -1,661,266.1511 -1661264.26 

O-CoCo- OH III,III (II-OH/IV=O) q -1,661,251.3029 -1661249.41 

O-CoCo- OH IV,III d -1,661,135.2682 -1661133.38 

O-CoCo- OH IV,IV s -1,661,020.2664 -1661018.38 
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O-CoCo-O III,IV d -1,660,846.8251 -1660844.94 

O-CoCo-O IV,IV U  -1,660,722.0307 -1660720.14 

CoCo-

peroxo III,III s -1,660,758.9803 -1660757.09 

CoCo-

peroxo IV,III d -1,660,633.3167 -1660631.43 

CoCo-

peroxo IV,IV t -1,660,484.2253 -1660482.34 

CoCo-OO-

OH2 IV,IV t -1,708,463.1006 -1708461.21 

CoCo-OO-

OH IV,IV t -1,708,197.2670 -1708195.38 

CoCo-OO-

OH2 III,IV d -1,708,602.4896 -1708600.60 

CoCo-OO-

OH III,IV d -1,708,326.2677 -1708324.38 

TSC: Co2-

O2-

association III,IV d -1660584.96 -1,660,583.07 

 III,IV q -1660582.184 -1,660,580.30 

 III,IV Sext -1660574.605 -1,660,572.72 

TSA: Co2-

O2-

1stsubstituti

on III,IV d -1,708,586.0261 -1708584.14 

TSC:Co2-O2-

liberation IV,IV s -1708170.5 -1,708,168.61 

 IV,IV t -1708194.675 -1,708,192.79 
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Table S11.Compilation of the, electronic energy, the Gibbs free energy corrected by removing the 

contributions of the frequencies under 50, the electronic energy at the M11-L level of theory 

considering the solvation with water on the M06-L optimized geometry, the resulting composite Gibbs 

free energy. All calculated with on M06-L optimized geometries. <S2> represents the spin operator 

expectation value. 

Compou

nd 

Form

al. 

Ox. 

St. 

spin <S2> 

E-gas-

M06-L 

( Hartree) 

G-gas corr-

M06-L 

( Hartree) 

<S2> 

E-sol-M11-

L 

( Hartree) 

G-sol-M11-L 

( Hartree) 

H2O-

CoCo-

H2O II,II 

sep

t 

12.02 
-

2,648.6602 

-

2,648.0309 
12.03 -2649.78 -2,649.1547 

H2O-

CoCo-

H2O II,III q 

3.76 
-

2,648.1882 

-

2,647.5515 
3.76 -2649.64 -2,648.9986 

H2O-

CoCo-

H2O III,III s 

0. 
-

2,647.6108 

-

2,646.9661 
0. -2649.46 -2,648.8195 

OH-

CoCo-

H2O II,II 

sep

t 

12.03 
-

2,648.4108 

-

2,647.7936 
12.03 -2649.32 -2,648.7009 

OH-

CoCo-

H2O III-II q 

3.76 
-

2,648.0590 

-

2,647.5515 
3.76 -2649.19 -2,648.5674 

OH-

CoCo-

H2O III,III s 

0. 
-

2,647.5867 

-

2,646.9555 
0. -2649.05 -2,648.4173 

OH-

CoCo-

H2O III,IV d 

0.75 
-

2,646.9652 

-

2,646.3348 
0.75 -2,648.78 -2,648.1593 

OH-

CoCo-OH II,II 

sep

t 
12.08 

-

2,648.0155 

-

2,647.4114 
12.04 

-

2,648.831 
-2,648.2270 

OH-

CoCo-OH III,II q 
3.77 

-

2,647.7641 

-

2,647.1512 
3.77 -2648.71 -2,648.1013 

OH-

CoCo-OH III,III s 
0. 

-

2,647.4236 

-

2,646.8012 
0. -2648.590 -2,647.9679 

O-CoCo- 

OH2 III,III q 
6.02 

-

2,647.4059 

-

2,646.7905 
6.01 

-

2,648.517 
-2,647.9019 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 8 
 

362 

VIII 

OH-

CoCo-OH IV,III d 
0.76 

-

2,646.9196 

-

2,646.3004 
0.75 

-

2,648.350 
-2,647.7310 

O-CoCo-

OH2 IV,III d 
0.76 

-

2,646.9177 

-

2,646.2968 
0.75 

-

2,648.359 
-2,647.7391 

OH-

CoCo-OH IV,IV t 
2.01 

-

2,646.2927 

-

2,645.6801 
2.01 

-

2,648.008 
-2,647.3930 

O-CoCo- 

OH 

III,III 

(II-

OH/I

V=O) q 

6.03 
-

2,647.1355 

-

2,646.5326 
6.02 

-

2,648.054 
-2,647.4520 

O-CoCo- 

OH IV,III d 
0.76 

-

2,646.7577 

-

2,646.1482 
0.76 

-

2,647.905 
-2,647.2958 

O-CoCo- 

OH IV,IV s 
0. 

-

2,646.2809 

-

2,645.6698 
0. -2647.72 -2,647.1057 

O-CoCo-

O III,IV d 
1.20 

-

2,646.4955 

-

2,645.9027 
0.81 -2647.42 -2,646.8226 

O-CoCo-

O IV,IV U  
0.87 

-

2,646.0899 

-

2,645.4935 
0.85 

-

2,647.225 
-2,646.6290 

CoCo-

peroxo III,III s 
0. 

-

2,646.1566 

-

2,645.5553 
0. -2647.28 -2,646.6818 

CoCo-

peroxo IV,III d 
0.80 

-

2,645.6626 

-

2,645.0611 
0.79 

-

2,647.075 
-2,646.4742 

CoCo-

peroxo IV,IV t 
2.06 

-

2,645.0327 

-

2,644.4355 
2.06 

-

2,646.816 
-2,646.2191 

CoCo-

OO-OH2 IV,IV t 
2.04 

-

2,721.4752 

-

2,720.8560 
2.03 

-

2,723.287 
-2,722.6682 

CoCo-

OO-OH IV,IV t 
2.02 

-

2,721.4409 

-

2,645.6545 
2.02 

-

2,722.860 
-2,722.2501 

CoCo-

OO-OH2 III,IV d 
0.81 

-

2,722.0899 

-

2,721.4661 
0.79 

-

2,723.528 
-2,722.9051 

CoCo-

OO-OH III,IV d 
0.93 

-

2,721.9395 

-

2,646.1482 
0.85 

-

2,723.078 
-2,722.4680 

TS1: 

Co2-O2-

associati

on III,IV d 0.79 

-

2645.5851

3 

-

2644.9874

0 0.79 

-

2646.9103 -2646.31257 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 8 

363 

VIII 

 III,IV q 3.75 

-

2645.5811

9 

-

2644.9866

2 3.75 

-

2646.9027 -2646.30815 

 III,IV 

Sex

t 8.75 

-

2645.5698

2 

-

2644.9793

5 8.75 

-

2646.8865 -2646.29607 

TSA: 

Co2-O2-

1st 

substitut

ion 

IV,II

I d 0.76 

-

2722.0639

83 

-

2721.4464

33 0,76 

-

2723.5044

12 -2722.886862 

TS4:Co2-

O2-

liberatio

n IV,IV s 0.00 

-

2721.3892

4 

-

2720.7789

9 0.00 

-

2722.7552 -2722.14502 

 IV,IV t 2.00 

-

2721.4282

9 

-

2720.8201

0 2.00 

-

2722.7917 -2722.18354 
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Table S12.Compilation of the Composite Gibbs Free energies calculated with M11-L, considering water 

as a solvent, at the gas phase concentration and then 1 Molar concentration. The latter corresponds to 

the standard state for the computation of standard potentials and activation energies. 

Compound Formal. Ox. St. spin 

Gsol-M11-

L(Kcal/mol) 

Gsol-M11-L*-1M 

(kcal/mol) 

H2O-CoCo-

H2O II,II sept -1,662,369.6504 -1662367.76 

H2O-CoCo-

H2O II,III q -1,662,271.6872 -1662269.80 

H2O-CoCo-

H2O III,III s -1,662,159.3341 -1662157.44 

OH-CoCo-

H2O II,II sept -1,662,084.9134 -1662083.02 

OH-CoCo-

H2O III-II q -1,662,001.1088 -1661999.22 

OH-CoCo-

H2O III,III s -1,661,906.9290 -1661905.04 

OH-CoCo-

H2O III,IV d -1,661,745.0530 -1661743.16 

OH-CoCo-OH II,II sept -1,661,787.5409 -1661785.65 

OH-CoCo-OH III,II q -1,661,708.6707 -1661706.78 

OH-CoCo-OH III,III s -1,661,624.9124 -1661623.02 

O-CoCo- OH2 III,III q -1,661,583.5079 -1661581.62 

OH-CoCo-OH IV,III d -1,661,476.2458 -1661474.36 

O-CoCo-OH2 IV,III d -1,661,481.3348 -1661479.44 

OH-CoCo-OH IV,IV t -1,661,264.1898 -1661246.64 

O-CoCo- OH III,III (II-OH/IV=O) q -1,661,301.2281 -1661299.34 

O-CoCo- OH IV,III d -1,661,203.1996 -1661201.31 

O-CoCo- OH IV,IV s -1,661,083.8774 -1661081.99 

O-CoCo-O III,IV d -1,660,906.2304 -1660904.34 

O-CoCo-O IV,IV U  -1,660,784.7697 -1660782.88 

CoCo-peroxo III,III s -1,660,817.8643 -1660815.97 
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CoCo-peroxo IV,III d -1,660,687.5955 -1660685.71 

CoCo-peroxo IV,IV t -1,660,527.5217 -1660525.63 

CoCo-OO-

OH2 IV,IV t -1,708,500.0633 -1708498.17 

CoCo-OO-OH IV,IV t -1,708,237.7022 -1708235.81 

CoCo-OO-

OH2 III,IV d -1,708,648.7484 -1708646.86 

CoCo-OO-OH III,IV d -1,708,374.4199 -1708372.53 

TS1: Co2-O2-

association III,IV d -1660579.668 -1,660,577.78 

 III,IV q -1660576.891 -1,660,575.00 

 III,IV Sext -1660569.312 -1,660,567.42 

TSA: Co2-O2-

1stsubstituti

on III,IV d -1,708,637.2890 -1708635.40 

TS4:Co2-O2-

liberation IV,IV s -1708165.056 -1,708,163.17 

 IV,IV t -1708189.231 -1,708,187.34 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 8 
 

366 

VIII 

References 

(1) Fukuzumi, S.; Mandal, S.; Mase, K.; Ohkubo, K.; Park, H.; Benet-Buchholz, J.; Nam, W.; 
Llobet, A. J. Am. Chem. Soc. 2012, 134, 9906. 
(2) Ravel, B.; Newville, M. J. Synchrotron Radiat. 2005, 12, 537. 
(3) Rehr, J. J.; Albers, R. C. Rev. Mod. Phys. 2000, 72, 621. 
(4) Koningsberger, D.; Prins, R. 1988. 
(5) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. 
(6) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. 
(7) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2008, 4, 1849. 
(8) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 
77, 123. 
(9) Hehre, W.; Radom, L.; Schleyer, P.; Wiley: New York: 1986. 
(10) Cramer, C. J.; John Wiley & Sons Chichester: 2004. 
(11) Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 3, 117. 
(12) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. 
(13) Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. 
D.; Coe, J. V.; Tuttle, T. R. J. Phys. Chem. A 1998, 102, 7787. 
(14) Camaioni, D. M.; Schwerdtfeger, C. A. J. Phys. Chem. A 2005, 109, 10795. 
(15) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066. 
(16) Bryantsev, V. S.; Diallo, M. S.; Goddard Iii, W. A. J. Phys. Chem. B 2008, 112, 9709. 
(17) Cramer, C. J.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 760. 
(18) Winget, P.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 2004, 112, 217. 
(19) Marenich, A. V.; Ho, J.; Coote, M. L.; Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. 
Phys. 2014, 16, 15068. 
(20) Alperovich, I.; Smolentsev, G.; Moonshiram, D.; Jurss, J. W.; Concepcion, J. J.; Meyer, 
T. J.; Soldatov, A.; Pushkar, Y. J. Am. Chem. Soc. 2011, 133, 15786. 
(21) Bair, R. A.; Goddard III, W. A. Phys. Rev. B 1980, 22, 2767. 
(22) Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. J. 
Am. Chem. Soc. 1987, 109, 6433. 
(23) Tomson, N. C.; Williams, K. D.; Dai, X.; Sproules, S.; DeBeer, S.; Warren, T. H.; 
Wieghardt, K. Chem. Sci. 2015, 6, 2474. 
 
 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
A JOURNEY TOWARDS EFFICIENT MOLECULAR WOCS: FROM MONONUCLEAR TO POLYNUCLEAR COMPLEXES 
Md Asmaul Hoque 
 



Chapter 9 

367 

IX 

Chapter 9 

General Conclusions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Herein, I highlight the general conclusions in the direction of the objectives mentioned in 

chapter 2, while the specific conclusions have been discussed in each chapters from 3 to 8. 
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A new family of the ruthenium complexes containing pyridine carboxylate ligands 

for the water oxidation reaction have been prepared and characterized. 

A series of mononuclear ruthenium complexes with one or two anionic carboxylate moieties 

connected to an aromatic pyridine ligands have been prepared and characterized thoroughly. 

The -donating anionic carboxylate ligand reduces the redox potential of the complexes and 

lower the overpotential for the water oxidation catalysis process. It has been shown that each 

carboxylate moiety can reduce the overpotential in the range of 200-300 mV. In addition, the 

different orientation of the ligand arrangement around the metal center gives different 

isomeric complexes with different geometric constrains on the metal center. These 

differences have a strong influence on the redox as well as catalytic properties of the 

complexes.  
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IX 

Seven coordinated ruthenium complex containing the pyridine dicarboxylate ligand 

(pdc) for the fast water oxidation catalysis. 

A new ruthenium complex with tridentate meridional 2,6-pyridine-dicarboxylate (pdc) ligand 

has been prepared and fully characterized. This complex at high oxidation state RuIV generates 

a seven coordination complex (CN7) with pentagonal bipyramidal geometry. It has been 

shown that this complex serves as a precursor for highly active water oxidation catalyst with 

TOF values in the range of 2.4-3.4 × 103 s-1. The extremely fast kinetics of the catalyst is 

attributed to the involvement of intramolecular H-bonding of a dangling carboxylate group 

with the active site of the catalyst. 
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IX 

Functional coordination polymers for the generation of powerful molecular 

electroanodes for water oxidation. 

New functional coordination polymers using the [Ru(tda)(py’)2] (where tda = 2,2':6’,2”-

terpyridine-6,6”-dicarboxylate and py’ = functionalized pyridine) as a core unit and 4,4´-

bipyridine (4,4´-bpy) or 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (tpt) organic linkers have been 

prepared. Different organic linkers allowed us to synthesize polymers with different 

dimensions (1D or 2D). The ratio of the core unit and the organic linker together with the 

solvent nature play a crucial role for the chain length of the polymers. These polymers exhibit 

very strong adsorption on multiWall carbon nanotubes (MWCNT) with a unique CH- 

interaction that allows for the high mass loading of the polymer and stability on the surface 

of electrodes. These hybrid materials are extremely powerful catalyst precursors for the 

water oxidation catalysis giving current densities in the range of 0.1-0.3 A/cm2 and are 

comparable to those of commercial electrolizers. The current density provided by these 

materials are stable over long periods without any deactivation, thus proving the robustness 

of the hybrid materials and making them suitable for water splitting devices. 
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IX 

Anchoring Strategies for Molecular Water Oxidation Catalysts on Solid Surfaces. 

Mononuclear complexes based on the [Ru(tda)(py’)(py”)] catalyst have been prepared (where 

tda = 2,2':6’,2”-terpyridine-6,6”-dicarboxylate and py’and py” = functionalized pyridine). Here 

the pyridine py’ or py” contain a functional group that allows to attach the complex to 

conductive substrates via covalent bonding. For instance, carboxylate and vinyl groups have 

been used to attach the complex onto metal oxides, diazonium salts for C-C bonding 

attachment to graphitic materials or pyrazine linkages to anodized graphitic materials. 

Preliminary tests of the resulting electroanodes have been performed with very distinct 

results depending on the anchoring group and the nature of conductive support. In the case 

of the carboxylate linkage, the stability is very poor, showing full deattachment from the 

surface after few minutes in aqueous conditions. On the other hand, the covalent linkages on 

graphitic materials are very strong but the hydrophobicity nature of the resulting hybrid 

anode hinders the activation of the catalyst precursor. However, the adsorbed molecule on 

metal oxide surface shows the formation of active species with absence of catalytic activity, 

which is attributed to the deactivation of the catalyst by coordinating the dangling carboxylate 

group to the metal oxide surface. 
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IX 

Mechanistic understanding and characterization of reaction intermediate species 

involved in the water oxidation catalytic cycle with a dinuclear cobalt complex. 

Herein, the catalytic cycle of the water oxidation catalysis carried out by {[CoIII(trpy)]2(μ-

bpp)(μ-OO)}3+ (where trpy = 2,2′;6′:2″-terpyridine and bpp− = bis(2-pyridyl)-3,5-pyrazolate) 

has been studied in detail. The first one electron oxidation of the initial CoIII-O-O-CoIII complex 

occurs at the peroxo ligand and generates a side on superoxo intermediate species that 

rearranges to produce an end-on superoxo species in the catalytic cycle. These intermediates 

have been characterized by resonance Raman, electron paramagnetic resonance (EPR) and X-

ray absorption (XAS) spectroscopies and complemented with Density Functional Theory 

(DFT). In addition, O2 labelling experiments have proved that the produced O2 in first turnover 

number is originated from the catalyst and beyond that O2 is resulted from the oxidation of 

the water substrate. 
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