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Large-scale simulation and visualization are essential topics in areas as different
as sociology, physics, urbanism, training, entertainment among others.

This kind of systems requires a vast computational power and memory resources
commonly available in High Performance Computing HPC platforms. Currently,
the most potent clusters have heterogeneous architectures with hundreds of thou-
sands and even millions of cores. The industry trends inferred that exascale clusters
would have thousands of millions.

The technical challenges for simulation and visualization process in the exascale era
are intertwined with difficulties in other areas of research, including storage, com-
munication, programming models and hardware. For this reason, it is necessary
prototyping, testing, and deployment a variety of approaches to address the tech-
nical challenges identified and evaluate the advantages and disadvantages of each
proposed solution.

The focus of this research is interactive large-scale crowd simulation and visualiza-
tion. To exploit to the maximum the capacity of the current HPC infrastructure and
be prepared to take advantage of the next generation. The project develops a new
approach to scale crowd simulation and visualization on heterogeneous computing
cluster using a task-based technique. Its main characteristic is hardware agnostic. It
abstracts the difficulties that imply the use of heterogeneous architectures like mem-
ory management, scheduling, communications, and synchronization — facilitating
development, maintenance, and scalability.

With the goal of flexibility and take advantage of computing resources as best as
possible, the project explores different configurations to connect the simulation with
the visualization engine. The kind of system we are developing has an essential use
in emergencies. Therefore, we create urban scenes as realistic as possible, in this way
users will be ready to face real events.

Path planning for large-scale crowds is a challenge to solve, due to the inherent
dynamism in the scenes and vast space search. A new path-finding algorithm was
developed. It has a hierarchical approach which offers different advantages: it di-
vides the search space reducing the problem complexity, it can obtain a partial path
instead of wait for the complete one, which allows a character to start moving and
compute the rest asynchronously, it can reprocess only a part if necessary with dif-
ferent levels of abstraction.

Within the project, new models of behavior based on data analytics were developed.
It was developed the infrastructure to be able to consult various data sources such
as social networks, government agencies or transport companies such as Uber. Ev-
ery time there is more geolocation data available and better computation resources
which allow performing analysis of greater depth, this lays the foundations to im-
prove the simulation models of current crowds.

Using and supporting simulations and visualization makes it possible to address
real-time dynamic crowd observation and organization. Decision makers can con-
sider the state of the crowd, the way it occupies space and the way individuals form
or leave groups. With new technology, it might be possible to configure and recon-
figure urban areas dynamically to prevent disasters and to help people to behave
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safely in public events.
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Chapter 1

Introduction

1.1 Introduction

Nowadays there are 502 cities with over one million inhabitants, 74 with more than
5 million and 29 megacities with populations above 10 million; in total, there are
around 3.9 billion human beings living in urban areas [1]. As a result, it is crucial to
develop computer models that describe the behavior of populations.

Crowd simulations allow safe application of the scientific method and may aid in
the analysis of certain subsets of the crowd phenomena, such as disease propaga-
tion, building evacuation during emergencies, traffic modeling or social evolution
[2], [3]. Prediction before, during and after daily crowd events may reduce risks and
and avoid catastrophic situations. Figure 1.1 shows the main criteria for possible
applications.

FIGURE 1.1: Possible applications can vary along these three main
criteria. From [4]

Simulating crowded places helps architects to design safe public spaces. How-
ever, everyday human behavior imply complex simulations, particularly walking in
groups, waiting for children or elderly members of the group, or stopping to talk,
or even tying shoelaces. Indeed, humans react to stress and crowding in different
ways depending on their size, age, gender, and other physical characteristics; on
their psychological characteristics; on whether they are alone or in groups such as
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family. Their behavior also changes per culture dependent characteristics such as
proxemics, and even by how people of different cultures understand instructions.
Ignoring these fundamental aspects dehumanizes people.

This kind of systems requires a vast computational power and memory resources
commonly available on High-Performance Computing HPC platforms. According
to the list of the most potent clusters in the world Top500 [5], it is a common practice
the use of heterogeneous architectures combining conventional processors with ac-
celerators. Currently, the most popular accelerators are Intel Xeon Phi and NVIDIA
Graphical Processing Units GPU’s. At this moment, these clusters have hundreds of
thousands and even millions of processors.

Right now, we are in a stage of transition between the petascale and exascale era. The
industry trends inferred that exascale clusters would have thousands of millions of
cores [6]. The technical challenges for the simulation and visualization process in the
exascale are intertwined with difficulties in other areas of research, including stor-
age, communication, programming models and hardware. For this reason, it is im-
portant prototyping, testing, and deployment of a variety of approaches to address
the technical challenges identified and evaluate the advantages and disadvantages
of each proposed solution.

The work done in this thesis is focused on: Large scale crowd simulation and visual-
ization on heterogeneous computing clusters. Represent the most realistic behavior
and scenarios based on crowdsourced data.

1.2 Problem Definition

Interactive simulations of hundreds or thousands of agents are currently common,
but simulations with hundreds of thousands or millions of agents are still an issue to
be resolved [7]. The complexity, realism, and size of the simulation and visualization
systems are proportional to the processing capacity. Therefore, the manufacture of
increasingly powerful computers raises the requirements and characteristics of these
systems.

The project development is focused on:

• Scale crowd simulation and visualization on heterogeneous cluster computing.

• Represent the most realistic behavior and scenarios based on crowdsourced
data.

Below the needs of the project in each of these axes.

1.2.1 Scale crowd simulation and visualization on heterogeneous cluster
computing.

Due to the good results that can be obtained on a single workstation with GPU’s
and since it is relatively new the use of GPU’s on the scene of HPC, have been little
explored the simulation and visualization of crowds on a GPU cluster. However,
since the resources of one machine are inevitably exhausted, the development of a
scalable system is necessary. The GPU cluster gives us three main advantages, ac-
celerates data processing during simulation, allows us to perform machine learning
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algorithms and perform in situ visualization.

The use of a computing cluster has extra inherent processes associated, such as the
distribution of work, memory management, communication, and synchronization,
plus the use of advanced techniques to harness data locality, overlap computation
with communication between others [8]. For this reason, the programming task is
slow and difficult.

Programming models are in constant development with the objective of facilitating
the development, maintenance and application portability, besides exploiting to the
maximum the computing resources. Some of them are CUDA, OpenCL, OpenACC,
OpenMP, OpenMP-Superscalar OmpSs, MPI, and others. It is important to know
their features, test, compare and even combine them to get the best results.

The system architecture is conditioned by the hardware resources available, so it
is important to analyze the advantages that different schemes can provide. For ex-
ample, perform partial offscreen rendering on different nodes where the simulation
is done, or use streaming data with a remote visualization engine. Each system ar-
chitecture has trade-offs. Priority is given to schemes that allow us to couple the
simulation and visualization to allow:

• Coupling the simulation and visualization to allow:

– To interact with the system.

– To explore results during runtime.

– To allow to stop and save partial results.

• To avoid moving data through the memory hierarchy to obtain results more
quickly and save resources.

• To distribute the work and maintain load balancing

Interactivity is an indispensable feature for some applications such as video games
or disaster prediction, and offers the following advantages:

• The simulation can be stopped, if the results are not as expected, saving time
and resources.

• Get results immediately, accelerating the researcher work.

In situ visualization refers to visualize the results on the same machine where the
simulation occurs [9]. Therefore allows us to get the results faster and saves energy
since data movement from the chip out through memory hierarchies to storage has
significant power costs. Besides these advantages, this feature becomes indispens-
able when the data generated by the simulation are so extensive that you can not
store them. For this reason, the visualization must be coupled with simulation to
analyze results and save partial data as the simulation progresses [10].

1.2.2 Represent the most realistic behavior and scenarios based on crowd-
sourced data.

There is extensive work on modeling the behavior of crowds, in Chapter 2 there is
a description of the main simulation models. Most of the algorithms used in these
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models have been developed to run on one machine, with conventional processors.
If we want to take advantage of the processing power of a GPU cluster, these algo-
rithms must be adapted, and in some cases, they need to be redesigned.

Validate simulation models is difficult due to different factors:

• To validate against real data involves collecting information from hundreds or
thousands of people (agents).

• Some scenarios are panic situations that can not be replicated.

• Human behavior is complex and depends on many factors so that the same
person may act differently in similar situations.

The work done in the validation of models is limited [4] [11], even the more re-
cent studies only consider small scenarios, with dozens of people. So far, there has
been no widely accepted conventions for how to present results and evaluation of a
steering algorithm.

For these reasons, it is necessary to study the current models, based on them de-
velop new ones taking their best features. In the development of these new models,
the project considers that they should be highly parallelizable and scalable to be ex-
ecuted on a computing cluster.

Also, the emergence of new platforms [12] [13] [14] to collect data from thousands
of people around the world on their displacement in different scenarios, gives us
the possibility to design and validate new models from these data. In the other
hand projects like OpenStreetMaps OSM allows to know the physical characteris-
tics of practically anyplace in the world. Through the participation of volunteers
the project gathers geografical information, that later is validated for the same users.
This data complemented with other sources like gubernamental institutions allows
to represent realistic scenarios.

1.3 Motivation

In 2008 for the first time in humankind history, the number of people living in urban
areas was higher than in rural areas. Figure 1.2 shows the urban and rural popula-
tion from 1960 onwards. Urban settings are a relatively new phenomenon in human
history. Over the second half of the 20th century, there was a rapid growth in ur-
ban areas. The forecast indicates that the urban population will continue to increase
over the next few years above the rural population, as can be seen in Figure 1.3. Most
countries are expected to be majority urban.

Big cities attract the rural community because they represent a positive influ-
ence on economic activity and culture. The migratory phenomenon added to the
global growth in the population, have resulted in huge chaotic cities, where every
day there are conditions of risk. It is increasingly common to see situations such as
those shown in image 1.4. In cities like Tokyo, Delhi or Mexico City are everyday
situations.
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FIGURE 1.2: Urban vs rural population. From [1]

FIGURE 1.3: Urban and rural population projected to 2050. From [1]

It represents a challenge for urban authorities and planners, who need to use
technological tools that allow them to monitor activities in the city, with the aim of
avoiding risk situations, taking preventive and corrective measures to improve pub-
lic infrastructure.

These technological tools aim to model the behavior of the population under differ-
ent scenarios that would be impossible to prove in real situations. The development
of simulation and visualization systems that integrate these models allow an analy-
sis before, during and after the events, which enables reducing risks and improving
logistics.
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(A) Metro in Mexico City, anyday, anytime. (B) Typical vehicular traffic of a big city.

FIGURE 1.4: Daily crowded events that occur in a city

In this context, data management and visualization techniques can support real-time
observation for understanding the behavior of people and thus help in the develop-
ment of security strategies (e.g., by supporting on-line and post-mortem analytics
for guiding the process of recommendation and decision making in real-time). Large
scale crowd simulation and visualization combine computer graphics, artificial in-
telligence and high-performance computing among other areas.

1.4 Research Questions

The complexity of the current hardware architectures of supercomputing equipment
makes us question whether it is possible to implement large-scale crowd simulation
and visualization on heterogeneous computer architectures and if the simulation can
scale efficiently on multiple nodes and provide valuable insights and discovery in
real life problems from diverse application areas. The project explores If it is pos-
sible to take advantage of the computing resources available in high-performance
computing infrastructure considering these characteristics:

• Capable to use heterogeneous architectures as next-generation technology de-
mands.

• Scalable to a cluster computing.

• Make efficient use of computing resources.

Have coincided the availability of large volumes of data describing the behavior
of people and the technological tools that allow us to process and analyze this data.
Another issue to explore is the use of real data to develop new models of behavior
or improve current ones, also, to verify if these data are useful to give realism to the
scenes.

1.5 Contributions

The main contributions of this thesis consist of: It was developed a new approach to
scale crowd simulation and visualization on heterogeneous computing clusters us-
ing a task-based technique. Its main characteristic is that it is hardware agnostic. It
abstracts the difficulties that imply the use of heterogeneous architectures like mem-
ory management, scheduling, communications, and synchronization — facilitating
development, maintenance, and scalability [15], [16].
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Visualization transforms results in graphical and color representations that can im-
prove human cognition in data or results’ analysis. The selection of a visualization
mechanism depends on the simulation and available HPC infrastructure. With the
goal of flexibility and to take advantage of computing resources as best as possible,
three different configurations were designed to connect the simulation with the vi-
sualization engine: streaming, in-situ, and web [17], [15].

A new hierarchical path-finding algorithm was developed which offers significant
advantages for crowd simulation: it can return a partial path faster which allows to
a character start moving while computing the rest asynchronously, it can reprocess
only a part with different levels of abstraction, which is ideal for dynamic scenes. It
has a low memory consumption, and it is suitable to improve applying parallelism.
We develop new behavior models based on real data applying data analytics and
explore different tools to recreate realistic urban scenarios [18]. We investigate how
anthropometry and cultural diversity may impact in the behavior of crowds in panic
situations [19].

1.6 Organization

The remainder of this document is structured as follows.

Chapter 2 covers the background and state of the art about the main behavior mod-
els and programming models used in HPC.

Chapter 3 presents a case of study to analyze how the use of novel programming
models can facilitate the development of crowd simulation systems on heteroge-
neous architectures. Since industry trends in the coming years imply the availability
of cluster computing with hundreds to thousands of cores per chip and the use of
accelerators, programming presents a challenge due to this heterogeneous architec-
ture.

Chapter 4 presents a task-based approach for crowd simulation using OmpSs, CUDA,
and MPI, which allows taking the full advantage of computational resources avail-
able in heterogeneous clusters and reduce complexity in its development.

Chapter 5 presents three different configurations to connect the simulation with the
visualization engine: streaming, in-situ, and web. We explain the trade-offs associ-
ated with each setup.

Chapter 6 presents a new hierarchical path-finding algorithm that reduces the search
space, identifying the areas of interest in high levels of abstraction, allowing the tree
to be pruned as it is constructed, using a heuristic based on density and distance the
algorithm gives priority to the shortest paths in areas with fewer obstacles.

Chapter 7 presents a methodology that allows us to integrate real data into crowd
simulation and visualization. The project goal is to represent the most realistic sce-
narios in a city. Crowdsourced location data is used to compute spatiotemporal peo-
ple and vehicle flows, while the map and geometric data describe specific real places.
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Chapter 8 proposes an approach to explore the impact of anthropometry and cul-
tural diversity in the behavior of crowds in panic situations. The method includes
techniques for reproducing and simulating the behavior of the crowd to generate
models that can help decision-makers to control such conditions.

Finally Chapter 9 presents the conclusions and future work.
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Chapter 2

Background and State of the Art

This chapter provides the context in the principal axes that integrate the project.

2.1 Scale crowd simulation and visualization on heteroge-
neous cluster computing

A long time ago (2005), our research group led by Dr. Isaac Rudomin, started to ex-
plore moving our crowd simulation from the CPU to the GPU. The reason was that
simulation performance significantly increased in comparison with desktop CPUs.
Allowing to perform larger crowd simulations with high performance at a fraction of
the computing cost of a grid or CPU cluster-based alternatives. Another advantage
was that massive crowds could be visualized in real time as agent data is already
located on the GPU hardware. Our group was one of the first to do that [20], but it
started a trend [21], [22]. By 2012 it was required even larger crowds. By now GPU
computing is part of heterogeneous supercomputing clusters such as Marenostrum,
the supercomputer at Barcelona Supercomputing Center BSC, and the group started
studying how to use this kind of hardware for our research. This trend is even more
evident today with Summit at Oakridge, as well as the plans for future hardware by
supercomputing centers around the world.

The project uses ABM for crowd simulation handling each agent individually and
applying general behavior rules in a single-rule-multiple-agents fashion, which suits
the GPU’s Single Instruction Multiple Data (SIMD) model. Before CUDA and OpenCL
programming models, and while precursor GPGPU languages such as Brook and
Sh were in active development, GPUs were already being used for general purpose
computing (GPGPU). Pioneers in this regard are Rudomin, Millan and Hernandez
[20] that through XML scripting defined Finite State Machines to determine the be-
havior of agents implemented in fragment shaders. This was possible even when
neither the GPU hardware architecture nor the programming language was oriented
to this type of tasks.

The emergence of CUDA in 2007, and OpenCL in 2008, and a new GPU unified hard-
ware architecture, has allowed developers to take advantage of the GPU resources
using a C-like language syntax. Today, there are a vast variety of projects that uses
the computing power of the GPU for the simulation and visualization of crowds
[23]. Despite the widespread use of CUDA and OpenCL, they have the following
drawbacks: they require explicit device selection, data transfers between host and
devices, flow control through queues and events. Besides, there is no an implicit
way to use the CPU and GPU resources concurrently and effectively; Therefore, pro-
grammers need to use OpenMP + CUDA/OpenCL to control each resource within
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a node or a cluster explicitly by using MPI for inter-node communication.

The need for combining these programming models makes evident the program-
ming complexity of heterogeneous HPC systems. In an effort to reduce such com-
plexity, the author uses OpenMP Superscalar - OmpSs [24], a task-based program-
ming model developed by the BSC. It uses a set of directives and library routines
that can be embedded in high-level programming language code to develop con-
current applications. OmpSs’ main goal is to provide a productive environment for
application development in modern HPC systems. OmpSs is built on top of the
Mercurium [25] a source-to-source compiler, which emits calls to the Nanos++ [26]
runtime system. Nanos++ uses the information provided by user annotations to
build a task dependency graph dynamically at runtime, which is used to schedule
tasks in a data-flow way.

An alternative programming model targeted to reduce the programming complexity
of heterogeneous systems is OpenACC. Launched in 2010, OpenACC is a collection
of compiler directives used to specify loops and regions of code which execution is
offloaded to an accelerator in standard C, C++ or FORTRAN. The advantage offered
over OmpSs is the automatic generation of CUDA kernels; however, it still has lim-
ited functionality. There is work in progress to implement similar characteristics in
OmpSs [27]. OmpSs and OpenACC developers are part of the OpenMP Standard
Group; they influence the design of OpenMP. Therefore, the best features of both are
integrated into OpenMP as they evolve.

2.1.1 A brief introduction to OmpSs

OmpSs’s philosophy is to include different types of accelerators such as Nvidia GPU,
Xeon Phi, Mali GPU, etc, and remain open to include future technologies, in this way
is the programming model who meets the new architectures not the applications.
OmpSs offers the following advantages: Automates scheduling, memory manage-
ment, synchronization and communication, simplifies syntax and portability.

It is possible to define tasks inline or outline. Listing 2.4 shows the syntaxis. List-
ing 2.2 shows an example of a task inlined. Listing 2.3 shows an example of a task
outlined.

LISTING 2.1: OmpSs Task definition.

1 #pragma omp task [ input ( . . . ) ] [ output ( . . . ) ] \
2 [ inout ( . . . ) ] [ concurrent ( . . . ) ]
3 { func t ion or code block }

LISTING 2.2: OmpSs Task definition inline.

1 i n t main ( )
2 {
3 i n t X [ 1 0 0 ] ;
4 #pragma omp task
5 f o r ( i n t i =0 ; i < 1 0 0 ; i ++) X[ i ]= i ;
6 . . .
7 }

LISTING 2.3: OmpSs Task definition outline.



2.1. Scale crowd simulation and visualization on heterogeneous cluster computing11

1 #pragma omp task
2 void foo ( i n t Y[ s i z e ] , i n t s i z e ) {
3 i n t j ;
4 f o r ( j =0 ; j < s i z e ; j ++) Y[ j ]= j ;
5 }
6 i n t main ( )
7 {
8 i n t X [ 1 0 0 ] ;
9 foo (X , 100) ;

10 . . .
11 }

The strategy used by the author to translate a sequential algorithm into one task-
based parallel, consist in encapsulating the main steps into functions, changing these
functions into tasks and defining data dependencies between them. Data depen-
dencies definition is necessary to guarantee data locality and automatic scheduling.
OmpSs also allows incremental code parallelization, and thus code testing can be
performed during the migration process.

The target directive allows using an accelerator by example a GPU. Listing 2.4 shows
its syntaxis.

LISTING 2.4: OmpSs syntax to define a task.

1 #pragma omp t a r g e t device ( { smp | cuda | opencl } )
2 { [ ndrange (workDim , gworkSize , lworkSize ) ] }
3 [ implements ( function_name ) ]
4 { copy_deps | [ copy_in ( array_spec , . . . ) ] \\
5 [ copy_out ( . . . ) ] [ copy_inout ( . . . ) ] }
6 { func t ion or code block }

From Listing 2.4 (code line 1), the target directive indicates the device and pro-
gramming model used for the associated task; the ndrange clause, in code line 2,
is used to configure the number of dimensions (workDim), the global size of each
dimension (gworkSize) and the number of work-items for each workgroup (lwork-
Size).

Clause implements (code line 3) allows the definition of multiple task implemen-
tations of the same function, for example, one in the CPU and one in the GPU; the
runtime decides which is better during execution and can even execute both in par-
allel.

Clause copy_deps (code line 4) ensures that the device has a valid and consistent
copy of the data. Therefore, the programmer does not need to do explicit memory
allocations or data transfers between the host and devices. The runtime system is
responsible for doing it.

A synchronization point is defined by using taskwait (see listing 2.5), all data is
copied from the device to the CPU memory. Similarly, taskwait on, synchronize the
execution and transfers specific variables. With the no flush directive synchroniza-
tion occurs, but data is not transferred to CPU memory.

LISTING 2.5: Synchronization point definition.

1 #pragma omp taskwai t [ on ( . . . ) ] [ noflush ]
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Using OmpSs with multiple GPUs offers the following advantages:

• It is not necessary to select the device for each operation.

• There is no need to allocate special memory in the host (pinned memory) or
the device.

• It is not necessary to transfer data between host and devices, OmpSs maintains
memory coherence efficiently and reduces transfers using data regions.

• Programmers do not need to declare streams, OmpSs implements them by
default.

• All available devices (GPUs) are used by default, therefore, the application
scales through all the devices.

OmpSs does all these operations automatically. There are different runtime vari-
ables to control how OmpSs allocates resources:

• NX_SMP_WORKERS sets the number of CPU cores used for computation. All
available CPU cores are used by default.

• NX_GPUS sets the number of GPUs used for computation. All available GPUs
are used by default.

• NX_GPUPREFETCH sets the number of CUDA streams used for computation.
One CUDA stream is used by default.

• NX_GPUOVERLAP overlaps communication with computation when active.
Active by default.

• NX_GPU_CONCURRENT_EXEC executes kernels concurrently when active.
Active by default.

2.2 Represent the most realistic behavior and scenarios based
on crowdsourced data.

Pedestrians have been empirically studied for more than four decades [28], [29]. Ini-
tial methods were based on direct observation, photographs, and time-lapse films to
develop a level-of-service concept [30], design elements of pedestrian facilities [31],
[32], [33], or planning guidelines [34]. Most research about panic was carried out by
social psychologists. It has been of empirical nature (e.g., [35], [36], [37], [38]).

Simulation models have been proposed for addressing crowd dynamics modeling,
route choice behavior of pedestrians, and emergency and evacuation situations. Ex-
perimental efforts have revealed quantitative details of pedestrian interactions, which
have been modeled by mathematical equations. The analysis of crowds using math-
ematical and simulations lead to important conclusions for developing logistics strate-
gies. For example, self-organized patterns of motion demonstrate that “intelligent”
collective dynamics can be based on simple local interactions; under extreme condi-
tions, coordination may break down giving rise to critical crowd condition such as
the so-called “freezing-by-heating” and “faster-is-slower” effects, but also the tran-
sition to “turbulent” crowd dynamics.
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This section describes existing works according to four perspectives. Techniques
used for observing high-density crowds which it is understand as possible data har-
vesting methods 2.2.1. Simulation of crowds that apply mathematical and artificial
intelligence methods for reproducing the way crowds evolve under different condi-
tions 2.2.2. Finally, humanitarian logistics that integrate existing methods into sys-
tems that support decision making 2.2.3.

2.2.1 Observing High-Density Crowds

The computer vision community has started addressing different research problems
related to crowds. Existing approaches focus on crowd detection, and detection and
tracking of individuals in a crowd. These approaches have mainly used videos to
identify the volume, shape, and color of individuals [39], contours [40], trajectories
[41], or to count the number of people in the crowd [29]. However, it is still an open
issue due to the high number of characters, significant occlusion problems and the
combination of motion directions in a scene.

Ali et Al. [42] addresses this problem by modeling moving crowds as aperiodic dy-
namical systems manifested by a time-dependent flow field. A flow field in a general
scene consists of regions with qualitatively different dynamics, reflecting the motion
patterns emerging from the spatiotemporal interactions of the participants between
each other and with the physical world [43].

There are approaches to classify a crowd concerning density. In a scene with a sparse
or moderate crowd, most pedestrians can be fully observed and detected. Persons
are then tracked by combining detections into tracklets and associating the tracklets
into long trajectories [31], [44].

In [45], [46], [47] it is proposed the Data Association based Tracking (DAT) algo-
rithm, which is extended by using shape and appearance models [48], body-part
detectors [49], or a boosting algorithm to train the parameters [50]. However, in a
denser crowd where the pedestrians are heavily occluded by the others, frame-based
detection is highly unstable, and the identification of trajectories is very expensive.

To address this limitation, it is possible to use local feature points to track individ-
ual within a crowd. Brostow [41], Li [47], and Sugimura [51] were among the first
to do this. They assume that the feature points belonging to the same person are
close in space and their motion exhibit high correlation over time. The most impor-
tant limitation of this approach is that targets moving together with the same speed
cannot be identified as separate persons, whereas a local body movement is usually
wrongly estimated as a different target.

Optical flow algorithms have been widely used for tracking pedestrians. Initial ap-
proaches assume that optical flow on the target is uniform, and the target is tracked
by computing the mean flow around the target location [52], [53]. Some approaches
use foreground-background segmentation to get a precise target region. In crowded
scenes, targets are frequently occluded, and their region changes over time. Thus,
the target location does not change linearly. This requires a propagation model that
adaptively changes over time and space with non-linear behaviors like the solutions
proposed by Rodriguez [40] and Kratz [54].
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In extremely dense crowd situations, the most promising tracking algorithms use
motion information in local areas. For example, Ali and Shah [42] assume that
pedestrians in the crowd behave like particles in the flow. This assumption leads to
a solution only able to track pedestrians moving in the same direction as the crowd.
Rodriguez [40] divides the video into short clips, and for each local area in the clip,
flow vectors are quantized into four categories based on the direction where vec-
tors are heading. The quantized clips are trained within the Correlated Topic Model
(CTM), generating a set of topics. For each new frame, a probability distribution
over the topics is measured, and the probability of the motion is then derived. The
new target position is estimated as a combination of the observation and the tracker
prediction.

2.2.2 Simulating Crowds

Crowd simulation can be expressed at two different levels: macroscopic and mi-
croscopic. At the macroscopic level, the crowd is modeled as a whole, i.e., global
interactions with the environment and the crowd itself. On the other hand, crowd
simulation at the microscopic level exposes the interactions of the individuals that
integrate the group. Through the progressive assembly of agents into crowds, expect
them to result in global-scale behaviors.

A first macroscopic modeling approach that seems suited to reproduce spatiotem-
poral patterns of motion was proposed by Henderson [55], and Hughes [56], who
conjectured that pedestrian crowds behave similarly to gases or fluids. Realistic
gas-kinetic or fluid-dynamic theory for pedestrians contain corrections due to their
specific interactions (i.e., avoidance and deceleration maneuvers).

The project approach for crowd simulation is Agent-Based Models (ABM). ABM’s
are computational models that simulate the actions and interactions of autonomous
agents; it handles each agent individually and apply general behavior rules in a
single-rule-multiple-agents fashion.

The “social force model” [57], [58], is maybe the most well-known of these models.
This method operates on crowds composed of basic pedestrians obeying physics-
based laws. The agents’ behavior is based on forces, called social forces. These
forces, applied to a pedestrian, can be attractive acting as their destination, or repul-
sive such as obstacles or strangers. However, it is also possible to introduce other
social interactions just as the presence of friends or storefronts, which are modeled
through attractive forces that fade over time. It is then possible to give the pedestri-
ans some more decision-making abilities.There are also cellular automata for pedes-
trian dynamics models [33], [59], [60] and AI-based models [61], [62]. Below a brief
description of the main behavior models based on AI.

Reynolds [63] proposed one of the first solutions for large groups of entities with
emergent behavior being an extension of particle systems. It is based on three basic
rules: separation, alignment, and cohesion. These rules maintain together, in a di-
rection and free of collisions a group of boids or bird-like objects.

The Predictive/Velocity-based models [64] propose methods where agents compute
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the set of velocities that lead to a collision with an obstacle. To move on routes with-
out collision, agents choose velocities outside this domain. This concept is expanded
by Van den Berg [65], [66], introducing the notions of Velocity Obstacles (VO) and
Reciprocal Velocity Obstacles (RVO) and the notion of Optimal Reciprocal Collision
Avoidance (ORCA).

In the everyday exercise of controlling their locomotion, human beings rely on the vi-
sual information obtained from the perception of the environment to achieve collision-
free navigation. Cognitive science allows extracting relatively succinct information
from perception to reach safe locomotion, e.g., using the distance of obstructions in
candidate lines of sight, pedestrians apply simple heuristics to adapt their walking
speeds and directions. Based on these observations Pettre propose Synthetic Vision
models [67], [68]. These models predict individual trajectories and collective pat-
terns of motion in good quantitative agreement with a large variety of empirical and
experimental data.

When observed, the individuals in a crowd seem to adopt an “automatic behav-
ior” that can be interpreted as the result of a learning process based on trial and
error [69]. For example, pedestrians have a preferred side of walking since an asym-
metrical avoidance behavior turns out to be profitable [50], [69], [58]. Claim that
the formation of a behavioral convention can be described using evolutionary game
theory. Based on quantitative measurements studies have shown that the behav-
ior in conflict situations can be described by a superposition of forces [70]. In this
sense, Lewin [71] proposes a mathematical model based on the idea that behavioral
changes are guided by social fields or social forces [58], [57].

Rudomin et al. [23] describes advanced methods for simulating, generating, animat-
ing and rendering crowds such as encoding neighbor information on world maps,
i.e., in the environment rather than the agents and thereby reduces the problem of
determining neighbor contributions to O(n). It discusses local collision avoidance
methods that use truncated Voronoi diagrams followed by a ray marching technique
over a radius of vision to sense the viewing area in the direction of the agent.

Based on scatter and gather operations, describe the development of two data-parallel
techniques for proximity queries that are suitable for simulating thousands of agents
in real time with accurate collision avoidance. They first perform proximity queries
in the graphics hardware, followed by some method of collision avoidance (Reynolds,
Helbing, RVO, Synthetic Vision or any other heuristics).

The scatter-based method supports the idea that an agent should be able to find its
closest neighbors with only one texture fetch. To accomplish this, each agent paints
in a world map an area where it is visible. Each pixel in the environment map holds
a list with the IDs of neighbor agents. A Layered frame buffer (LFB) is used to gener-
ate the nearest neighbor lists and render the environment map for the scatter-based
technique. Contrary to the scatter-based, in the gather-based, each agent only writes
its ID in the corresponding cell in the world map. To find their neighbors, every
agent scans over an area within the world map. In this way, each agent generates its
neighbor list. Avoiding the need to create an LFB.
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2.2.3 Humanitarian Logistics

Humanitarian logistics specializes in organizing supplies during natural disasters
or complex emergencies to affected areas. During these events, technology is a cru-
cial factor to achieve better results. For instance, by implementing tracking systems,
and humanitarian logistics software, it is possible to provide real-time supply-chain
information. It enhances decision making, increasing the quickness of the relief op-
erations and achieving better coordination.

Existing humanitarian logistics systems are operations research-based decision sup-
port systems (ORDSS) for crowd management, which employ a range of tools from
operations research, analytics, and crowd dynamics [72]. At its core, such systems
implement a scheduling tool and a real-time video tracking system. The video track-
ing system measures and balance infrastructure utilization. The ORDSS provides
extensive real-time reports to support pilgrim flows.

2.3 Current Platforms

Crowd simulation and visualization is a very active research field which has led to
the development of commercial platforms used mostly for the simulation of massive
events, film scenes, video games, among other purposes. They are designed to run
on a single workstation, so the size of the simulation (the number of agents) and its
complexity is limited by the memory and processing capacity. Some examples of
such systems are:

• Legion [73] uses speed, density, and space utilization maps to qualitatively
and quantitatively analyze the use of space over time. Legion oversimplifies
the behavioral representation of individuals by using four parameters and one
decision rule based on the least effort to simulate individual behaviors.

• Massive [74] was originally developed for its use in The Lord Of The Rings
film trilogy. Subsequently, it was adopted as a standard tool for film and TV
productions around the world. It provides crowd-related visual effects and
autonomous character animation.

• Golaem Studios [75] develops character animation software for VFX artists,
animation and game studios that need to populate backgrounds and mid-
grounds for films, TV series, commercials, and games.

The development of a scalable system is necessary to overcome memory and
processing limitations. Below there is a description of projects, some designed to
run on clusters, others are research oriented or provide open source modules and
libraries.

• TRANSIMS (Transportation Analysis SIMulation System) [76] is an activity
and agent-based model. It creates an entire region and simulates the second-
by-second movement of all travelers and vehicles. It has a visualization mod-
ule called TransimsVIS and a GUI TRANSIMS RTE; it is developed by the
Transportation Research and Analysis Computer Center (TRACC) in the USA.

• FLAME (Flexible Large-scale Agent Modelling Environment) [77] is a frame-
work to develop agent-based simulations which automatically produces paral-
lelizable code to execute on different parallel hardware architectures. FLAME-
GPU was developed as an extension of FLAME. FLAME-GPU is designed to
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be executed in a workstation and is used to accelerate the simulation using the
Graphic Processing Unit GPU. Both are developed by Sheffield University.

• Pandora [78] is an open-source framework designed to provide a simulation
environment for social scientists. It includes a C++ and Python environment
that splits the workload of simulation across computer nodes using MPI and
also uses multiple cores relying on OpenMP. It is developed by the BSC.

These projects are designed to run on CPU clusters and do not take advantage
of accelerators. Current research on crowd simulation has shown excellent results
can be obtained on a single workstation with GPUs. For this reason, FLAME and
Pandora frameworks are starting to take advantage of them. However, the use of ac-
celerators in HPC is relatively new, and the simulation and visualization of crowds
on GPU clusters need to be explored further.

Crowd simulation and visualization have also been implemented on cloud com-
puting facilities using techniques such as MapReduce and tools like Hadoop [79].
The number of simulated agents is lower than HPC based crowd simulations due to
restrictions on computing power and communication latency. Nevertheless, it offers
advantages such as resource elasticity and decentralized computation. In the future,
mixed implementations combining HPC and cloud computing facilities should be
considered to ensure system availability.
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Chapter 3

Crowd Simulation on
Heterogeneous Architectures

3.1 Introduction

Industry trends in the coming years imply the availability of cluster computing with
hundreds to thousands of cores per chip and the use of accelerators. Programming
presents a challenge due to this heterogeneous architecture. Therefore, using novel
programming models that facilitate this process is necessary.

In this chapter, it is analyzed and compared the use of two programming models
in a crowd simulation case study: OmpSs and CUDA. OmpSs allows to take advan-
tage of all the resources available per node by combining the use of CPU and GPU
while taking care of memory management, scheduling, communications and syn-
chronization automatically. Experimental results obtained in one node of Minotauro
Cluster at Barcelona Supercomputing Center with Tesla K80 GPUs are presented.

Crowd simulation is usually expressed at macroscopic and microscopic levels [2].
Macroscopic modeling describes global interactions with the environment and the
crowd itself. On the other hand, microscopic level exposes the interactions between
individuals within a group; each agent should be processed individually to simulate
a crowd.

The project focuses in modeling crowds at the microscopic level using Agent-Based
Models (ABM). An ABM simulates the actions and interactions of autonomous agents;
it promotes the progressive assembly of agents into groups resulting in global-scale
behaviors [80].

The rest of the chapter is organized as follows: Section 3.2 presents an overview
of the algorithm, Section 3.3 shows the implementation, Section 3.4 presents the re-
sults obtained from our case study. Finally, Section 3.5 presents the summary of this
chapter.

3.2 Algorithm Overview

Several behaviors can be observed within a crowd, one of them is wandering behav-
ior where agents move randomly in a space avoiding collisions against obstacles or
other agents. The author has chosen this behavior for its simplicity as it allows us to
introduce with ease the reader to crowd simulation using task-based parallelism. A
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naïve implementation of wandering behavior has

O(N2) (3.1)

complexity, i.e., each agent position must be compared with all the remaining posi-
tions to detect collisions. Current techniques reduce the complexity of the algorithm
using geometrical or hierarchical approaches [23], [81]. In this case, the complexity
of the algorithm is reduced by partitioning the navigable space into a grid that cut
down the search space. Additional reduction of the search space is done by defining
a search radius for each agent, thus complexity decreases to:

O(
N
t
∗ r)

Where N is the number of agents, t is the number of tiles in the grid, and r is the
search radius.

The algorithm uses three vectors, the first one stores agent’s position, speed and
direction. The second one contains a unique agent identifier and the tile to which
the agent belongs. The third one stores the navigation space grid, where each cell
has the agent id if it is occupied or zero if it is free.

It is important to emphasize that crowd simulations at microscopic level, interac-
tions between the agents are local, i.e., an agent just perceives and avoids nearby
obstacles, in contrast to n-body gravitational problems, where all interactions be-
tween all entities need to be considered. For our case study, the navigation space is
discretized using a grid. See figure 3.1. Algorithm 1 shows the sequential version.
Initial values for position, direction, and speed for each agent are set up. Before up-
date agents position, are checked the cells around in a radius of 5 cells. Evaluation
starts in the agent’s motion direction and switches every 45 degrees covering a total
of eight directions counterclockwise. See figure 3.2. Then, the agent is moved in the
direction in which there are fewer obstacles.

Algorithm 1: Crowd simulation sequential algorithm

1 Agents_initialization;
2 for i← 0 to Iterations do
3 Update_agent_position;
4 end

Processing these tasks in parallel requires tiling and stencil computations. First,
the navigation space and agents information is divided into tiles. Once the world is
divided into tiles, stencil computations are performed. Then, the tasks performed in
each tile can be executed in parallel by either a CPU or GPU, see figure 3.3.

In this case, the calculation of the agent’s new position requires information about its
surrounding cells. While agents inside each zone have all the necessary information,
agents that are on the borders do not have such information. Therefore it is required
to exchange it with neighboring tiles. The size of the area to exchange between tiles
is defined according to the radius that the agents use to avoid collisions. To min-
imize the exchange of data between tiles, only the information of occupied cells is
transferred. When an agent crosses a border and moves from one tile to another, the
agent’s information is sent to the new tile.
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FIGURE 3.1: Navigation space discretization.

FIGURE 3.2: Search radius for collision avoidance.

FIGURE 3.3: Dividing the domain in tiles

Algorithm 2 indicates the main functions for the parallel version. First, the
buffers to exchange information between tiles are defined (agents information and
world cells status). Since the space navigation is divided, the system manages local
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coords inside each tile besides the global coords. For this reason, it is necessary to
compute an offset for each tile to switch between global and local coords. It is con-
figured a communication topology between the neighbors for each tile. The number
of tiles is variable; we test with 4, 9 and 16 tiles. The neighbors of each tile are as-
signed regarding the total number of tiles. Then equal number of agents in each
tile are initialized. the halos are filled with the data about the ocuppied cells to
exchange navigation space information world_halos with the other tiles. Then, itera-
tively the system exchanges the world_halos with the neighboring tiles, and update
the agent’s position. During this step, the system identifies if an agent goes to a
diferent tile according to his new position. The system fills the agents_halos with
the data about agents which move to another tile. Exchange with the neighbors the
agents_halos, fill the world_halos and repeat.

Algorithm 2: Crowd simulation parallel algorithm

1 Setup_exchanged_data_buffers();
2 Compute_offset();
3 Configure_topology();
4 Agents_initialization();
5 Fill_world_halos();
6 for i← 0 to Iterations do
7 Exchange_world_halos();
8 Update_agent_position();
9 Fill_agents_halos();

10 Exchange_agents_halos();
11 Fill_world_halos();
12 end

The author uses a simple case study because the objective is to explore how to
parallelize and subsequently scale a simulation in a heterogeneous computing clus-
ter. For this reason, it has certain limitations like it does not resolve conflicts when
two agents want to move to the same cell. To solve this issue, there are different
techniques by example use atomic operations on CUDA or alleviate this issue using
the distance to the camera to resolve conflicts just for agents near to her. However
the use of these techniques are out of the scope of our case study.

3.3 Implementation

In this section, it is described the implementation of a crowd simulation using two
programming models CUDA and OmpSs and present a comparison between them.

3.3.1 CPU Version

The following describes how the algorithm shown above is parallelized in the CPU.
As a starting point, the CPU sequential version of the algorithm was used. Translat-
ing the sequential algorithm into one based on tasks consisted in encapsulating the
main steps into functions, turn these functions to tasks and define data dependen-
cies between them. Data dependencies definition is important so the Nanos runtime
system can use data locality for automatic scheduling. Also, OmpSs allows us to
parallelize a sequential code incrementally and preliminary test it on each new task.
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As an example Listing 3.1 illustrates the OmpSs-CPU code to convert updatePo-
sition function to a task. This task will read and update some variables; thus, inout
clause is used. The agent’s vector is read and updated with the new agent position;
the ids vector is read to query the agent id and the current tile it belongs to. Then, the
ids vector is updated with the new tile according to the new agent position. Finally,
the world vector is updated to mark the grid cells as free or busy according to the
agents’ movement. All the tiles are executed in parallel inside the for loop.

LISTING 3.1: Conversion to a task of updatePosition function

1 / / Task d e f i n i t i o n
2 #pragma omp task inout (
3 ( [ a g e n t s _ t o t a l _ b u f f e r ] agents ) [ 0 ; current_agents ] ,
4 ( [ a g e n t s _ t o t a l _ b u f f e r ] ids ) [ 0 ; current_agents ] ,
5 [ wor ld_ce l l s_b lock ] world )
6 void updatePosi t ion (
7 f l o a t 4 ∗agents ,
8 f l o a t 4 ∗ ids ,
9 i n t ∗world ,

10 . . . ) { . . . }
11
12 / / Task e x e c u t i o n
13 bool runSimulation ( )
14 { . . .
15 for ( i n t i = 0 ; i < num_ti les ; i ++)
16 updatePosi t ion ( agents [ i ] , ids [ i ] , world [ i ] , . . . ) ;
17 . . .
18 #pragma omp taskwai t
19 . . .
20 }

Another OmpSs feature is its ability to maintain memory consistency only for a
particular region of data, e.g., the agents’ vector could have 100 elements ( agents_total_buffer
= 100 ), but may operate just on the first 10 ( current_agents = 10 ), then OmpSs
guarantees memory consistency over these 10 elements. This makes memory man-
agement more efficient.

Profiling and analysis of the previous code were done using Extrae [82] and Paraver
[83], respectively; the next traces were generated using these tools. OmpSs allows
to do a flexible use of resources, it is possible to define the number of CPUs to use
in each execution, through a runtime variable. Figure 3.4 shows an example trace of
the simulation using eight threads. Notice from Listing 3.1 only the updatePosition
function was converted into a task. With only one task, it is easier to understand
this trace. On the other hand, Figure 3.5 shows the execution of the simulation using
twelve threads; in this case, all the functions were already converted into tasks and
were scheduled automatically by the runtime system.

3.3.2 CUDA First Version

The first version of the simulation using CUDA (CUDA1GPU-V1) implements the
algorithm described earlier with no domain decomposition and only uses one GPU.
All data is transferred from main memory to the GPU memory at the beginning and
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FIGURE 3.4: Simulation executed with eight threads and only one
task

FIGURE 3.5: Simulation executed with twelve threads and all func-
tions converted into tasks

at the end of the execution. This version is used as a reference to analyze how ad-
ditional steps that involve dividing the domain affect the simulation performance.
Preliminary results showed a speedup of 83x when compared to the sequential ver-
sion of the algorithm. They are good results. However, the number of characters are
constrained to the size of the GPU memory.

3.3.3 CUDA Second Version

The CUDA1GPU-V1 code was updated, so domain decomposition of the simulation
was possible. This new code (CUDA1GPU-V2) supports larger problems even if
data does not fit in GPU memory and allow to use more than one GPU. In this case,
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a simulation step consists in transferring a subset of the data from CPU to GPU, then
the GPU computes new positions and transfers the results back to CPU which sends
a new data subset to the GPU to be computed. These steps are repeated until all
the data is processed. A speedup similar to the CUDA1GPU-V1 code is achieved
by using CUDA streams to process kernels in parallel and overlap communication
with computation. The additional steps performed by CUDA 1GPU-V2 code when
compared to the CUDA 1GPU-V1 code are:

• Create a data structure to manage the data in the GPU.

• Allocate special host memory (pinned memory) to handle more than one CUDA
stream.

• Split the data between the GPUs.

• Create streams to control the flow of operations.

• Select the GPU in each operation.

• Synchronize operations.

3.3.4 OmpSs GPU Version

CUDA 1GPU-V2 code is taken as a basis for the development of the OmpSs-GPU
code. An overall view of the OmpSs-GPU code is illustrated in Listing 3.2. In this
case target directive indicates the updatePosition task will be executed by the GPU
using the CUDA 1GPU-V2 kernel. OmpSs will take care of the memory management
according to directive copy_deps. There is an explicit definition of data dependency
for variables agents, ids and world, which are the input and output variables of the
task. Task execution is done just by calling updatePosition as it was done for the
OmpSs-CPU code.

LISTING 3.2: Converting updatePosition function into a task to be
executed as a CUDA Kernel

1 / / K e r n e l d e f i n i t i o n as a t a s k
2 #pragma omp t a r g e t device ( cuda ) \
3 ndrange ( 2 , ( i n t ) s q r t ( c o u n t _ a g e n t s _ t o t a l ) , \
4 ( i n t ) s q r t ( c o u n t _ a g e n t s _ t o t a l ) , 8 , 8 ) copy_deps
5 #pragma omp task inout ( \
6 ( [ a g e n t s _ t o t a l _ b u f f e r ] agents ) [ 0 ; current_agents ] , \
7 ( [ a g e n t s _ t o t a l _ b u f f e r ] ids ) [ 0 : current_agents ] , \
8 [ wor ld_ce l l s_b lock ] world )
9 extern C globa l void updatePosi t ion

10 f l o a t 4 ∗agents ,
11 f l o a t 4 ∗ ids ,
12 i n t ∗world ,
13 . . . ) ;
14 / / K e r n e l e x e c u t i o n
15 bool runSimulation ( )
16 {
17 . . .
18 for ( i n t i = 0 ; i < num_ti les ; i ++)
19 { . . .
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20 updatePosi t ion ( agents [ i ] , ids [ i ] , world [ i ] , . . . ) ;
21 . . .
22 }
23 #pragma omp taskwai t
24 . . .
25 }

Figure 3.6 shows a trace illustrating how OmpSs manage the hardware resources.
In this case, full node allocation is done using twelve CPU threads where Thread
1.1.2 and 1.1.3 are used to control the GPUs. As mentioned earlier, memory manage-
ment, scheduling, communications and synchronization are done automatically.

FIGURE 3.6: Thread 1.1.2 and 1.1.3 are CPU threads in charge of
one GPU each one. Thread 1.1.13 and 1.1.14 are GPU threads. CPU

Threads and GPU threads are executing tasks in parallel

3.4 Results

The test was performed on one node of the Minotauro Cluster at Barcelona Super-
computing Center. Each node has two processors Intel Xeon E5-2630 with 8 cores
each processor. With 128 of RAM memory. They also have 2 NVIDIA K80 GPU
cards. Running Linux operating system. The software used was: CUDA 7.5, mer-
curium compiler version 2.1.0, and nanos runtime system version 0.14.1. The speed-
up is calculated concerning the sequential version performance. The tests show how
different versions perform with a variable number of agents and tiles in a world dis-
cretized in 27852x27852 cells.

Figure 3.7 show all versions. From this figure, the author highlights general trends.
CUDA version 1 achieves greater speed-up with few agents. Because domain de-
composition implies additional work, that is not compensated with a small number
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of agents. However, it is necessary to divide the navigation space to use more than
one GPU and compute a greater number of agents, not limited to the memory size of
the GPU. From four million the system gets better speed-up with CUDA version 2.
The system gets better speed-up using just CUDA than CUDA and OmpSs, because
there is an overhead involved in creating OmpSs’ tasks. However, the difference in
the speed-up decreases according to the number of agents. The number of blocks
influences performance. Below the author analyzes in-depth every version.

FIGURE 3.7: This graph shows the speed-up for all our experiments.

Figure 3.8 shows the speed-up for CUDA version 2, using one and two GPUs
with three different number of blocks. The performance is similar using one or two
GPUs until 4 million agents, from 16 million using two GPUs get better results. For
one GPU using four blocks is the best configuration until four million agents, for
greater quantities better results are obtained using 16 blocks. Using two GPUs get
similar results indifferent of the number of blocks for a small number of agents.
From four million the system gets better results using 16 blocks. The trend is a
greater number of blocks for a greater number of agents.

Figure 3.9 shows the speed-up for OmpSs-CUDA version using one and two
GPUs. Similar to CUDA there is no advantage of using two GPUs for a small num-
ber of agents. From 16 million it starts to scale, for 67 million is clear two GPUs, and
16 blocks achieve the best results.

Figure 3.10 shows a comparison in a speed-up for OmpSs vs CUDA using one
GPU. As it was mentioned before the use of OmpSs implies an overhead that is not
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FIGURE 3.8: This graph shows a comparison for CUDA version 2
using one and two GPUs.

FIGURE 3.9: This graph shows the speed-up for OmpSs-CUDA ver-
sion using one and two GPUs.

compensated with a small number of agents. However, the difference in perfor-
mance reduces according to the number of agents.

Figure 3.11 shows a comparison in speed-up for OmpSs vs CUDA using two
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FIGURE 3.10: This graph shows a comparison in speed-up for OmpSs
vs CUDA using one GPU.

GPUs. The trend is the same with two GPUs the difference in performance reduce
according to the number of agents. There is a trade-off between speed-up and the
benefits of using OmpSs.

FIGURE 3.11: This graph shows a comparison in speed-up for OmpSs
vs CUDA using two GPUs.
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3.5 Summary

In this chapter, it was described an algorithm for an interactive crowd simulation
using a task-based approach using OmpSs and CUDA. OmpSs allows to parallelize
the algorithm incrementally and perform partial tests of each function being con-
verted into a task. OmpSs takes care of memory management, scheduling, com-
munications, and synchronization automatically. The main changes have been the
subdivision of the domain and the exchange of information between tiles. Although
these techniques incur extra processing, they have allowed taking advantage of the
CPU and GPU resources. There is a trade-off between speed-up and the benefits of
use OmpSs.

Programming with CUDA requires explicit operations like device selection, data
transfers between host and devices, flow control through queues and events, among
others. This kind of operations makes the programming difficult and prone to er-
rors. On the other hand, OmpSs facilitates the use of all available GPUs in one node,
makes flexible use of resources and exploits its full capacity, and scale the system to
multiple CPUs or GPUs without modifying the program.
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Chapter 4

Scaling Crowd Simulations in a
GPU Accelerated Cluster

4.1 Introduction

Heterogeneous clusters provide various levels of parallelism that need to be ex-
ploited successfully to harness their computational power. At node-level, Pthreads,
OpenMP directives, among other libraries, provide access to CPU level parallelism
and OpenACC, CUDA or OpenCL libraries do the same for accelerators. Once node-
level parallelism is achieved, additional scalability is accomplished by allocating
computation in several nodes, using the message passing interface (MPI).

Programmers need to combine these programming models in their code and fully
optimize it for each level of parallelism which turns into a complex task. These two
processes also may suggest programming heterogeneous systems is an ad hoc activ-
ity.

During the last years, the Barcelona Supercomputer Center (BSC-CNS) has led a
task-based approach to simplify code development efforts on these architectures.
As a result, programmers can use OmpSs and MPI to leverage the computational
power of heterogeneous clusters.

Our particular endeavors have been focused on the design, development, and anal-
ysis of crowd simulations in these systems. Our first efforts [17] combined CUDA
and MPI models for in-situ crowd simulation and rendering on GPU clusters; also
OmpSs was adopted [15]. The author proposed a task-based algorithm that allows
the full use of all levels of parallelism available in a heterogeneous node. OmpSs
allowed us to analyze the simulation under different resource allocations.

In this chapter, the author describes new techniques to scale on a heterogenous com-
puting cluster the algorithm introduced in chapter 3. The analysis of the algorithm
and provide scalability performance of the simulation running under different re-
source allocations on the Barcelona Supercomputing Center’s Minotauro Cluster.

The rest of the chapter is organized as follows: Section 4.2 presents an overview
of the algorithm used as a case study. Section 4.3 describes the implementation. Sec-
tion 4.4 shows the results obtained. Finally, Section 4.5 presents the summary of this
Chapter.
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4.2 Algorithm Overview

Following our previous development and analysis efforts using different program-
ming models and parallelism approaches, the author uses the wandering crowd be-
havior algorithm introduced in Chapter 3 where design and complexity details of
the algorithm are discussed in detail. However, for clarity sake, this is the basic
description of the algorithm.

The sequential algorithm is composed of three primary tasks as shown in the fol-
lowing steps:

Step 1: Navigation space is discretized using a grid.
Step 2: Set up the agents’ information (position, direction, and speed) randomly

according to the navigation space size.
Step 3: Update position for each agent: Calculate collision avoidance within a

given radius. Evaluation of the agent’s motion direction switches every 45 degrees
covering a total of eight directions counterclockwise. The agent moves in the direc-
tion with more available cells.

A double level of tiling is applied. The navigation space and agents are divided
into zones. Each zone is assigned to a node which in turn is divided into sub-zones
(Figure 4.1). Then, the tasks performed in each sub-zone are executed in parallel.
Stencil computations are performed on an inter and intra-node basis. Below the de-
scription of the algorithm.

FIGURE 4.1: Dividing the domain in tiles

Buffers to exchange information between zones and sub-zones are defined (agents
information and world cells status). Since it is applied a double level of tiling, the
system manages local coordinates for zone and sub-zone inside each tile besides the
global coordinates. For this reason, it is necessary to compute an offset for each of
them to switch between global and local coordinates. It is configured the topology
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internode and intra-node defining the neighbors for each zone and sub-zone. The
number of zones is variable; the number of zones is matched with the number of
nodes, tests with 4, 9 and 16 nodes were done. The system use 16 sub-zones be-
cause from the experiments in one node, better results with this configuration were
obtained for a large number of agents. The neighbors of each zone are assigned re-
garding the total number of zones. Then it is initialized an equal number of agents
in each sub-zone. The halos to exchange navigation space data with the neighbors
(internode and intra-node) are filled _world_halos with the info about the occupied
cells. Then, iteratively the system exchanges the world_halos with the neighbors,
and update the agent’s position. The system identifies if an agent goes to a different
zone or subzone according to his new position. It fills the agents_halos (internode
and intra-node) with the agents data. The system exchanges with the neighbors the
agents_halos, fills the world_halos and repeat.

Algorithm 3: Crowd simulation algorithm to

1 Setup_exchanged_data_buffers();
2 Compute_zone_offset();
3 Compute_subzones_offset();
4 Configure_internode_topology();
5 Configure_intranode_topology();
6 for j← 0 to subzones do
7 Agents_initialization();
8 Fill_intranode_world_halos();
9 end

10 Fill_internode_world_halos();
11 for i← 0 to Iterations do
12 Exchange_internode_world_halos();
13 for j← 0 to subzones do
14 Exchange_intranode_world_halos();
15 Update_agent_position();
16 Fill_intranode_agents_halos();
17 Fill_internode_agents_halos();
18 Exchange_intranode_agents_halos();
19 end
20 Exchange_internode_agents_halos();
21 for j← 0 to subzones do
22 Fill_intranode_world_halos();
23 end
24 Fill_internode_world_halos();
25 end

4.3 Implementation

OmpSs’ advantages for code development in heterogeneous architectures were noted
in the previous chapter 3. As shown in the algorithm from Section 4.2, a new level
of stencil computation and agents’ information exchange have been introduced to
extend computations to additional nodes. OmpSs flexibility allows us to make MPI
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calls within tasks to implement internode stencils. Thus, incremental code develop-
ment is still possible.

As an example, a code snippet of one function converted to a task is illustrated in
Listing 4.1. In this case, target directive indicates that the GPU will execute the up-
datePosition task. OmpSs will take care of the memory management by using the
directive copy_deps. There is an explicit definition of data dependency for variables
agents, ids and world, which are input and output of the task. Task execution is done
by calling updatePosition as a regular language C function.

As noted in Section 4.2, it is applied a second level of tiling, first dividing the do-
main(agents and the domain search) between the nodes, assigning one tile (called
zone) to each node, and inside each node the zone is divided into subzones. Then
each subzone is processed as a task, and they are distributed between the computing
resources (CPUs and GPUs) for parallel processing. At run-time, this information is
exchanged within the nodes by OmpSs and between the nodes by MPI (code lines
31-38 from listing 4.1).

LISTING 4.1: Converting updatePosition function into a task to be exe-
cuted as a CUDA Kernel.

1
2 // Kernel d e c l a r a t i o n as a task
3 #pragma omp t a r g e t device ( cuda )
4 ndrange ( 2 , ( i n t ) s q r t ( c o u n t _ a g e n t s _ t o t a l ) , \\
5 ( i n t ) s q r t ( c o u n t _ a g e n t s _ t o t a l ) , 16 , 16) copy_deps
6 #pragma omp task inout (
7 ( [ a g e n t s _ t o t a l _ b u f f e r ] agents ) [ 0 ; c o u n t _ a g e n t s _ t o t a l ] ,
8 ( [ a g e n t s _ t o t a l _ b u f f e r ] ids ) [ 0 : c o u n t _ a g e n t s _ t o t a l ] ,
9 [ wor ld_ce l l s_b lock ] world )

10 extern "C" g loba l void updatePosi t ion (
11 f l o a t 4 ∗agents , ∗ ids , i n t ∗subzone , . . . ) ;
12
13 // Kernel execut ion
14 bool runSimulation ( )
15 {
16 . . .
17 f o r ( i n t i = 0 ; i < subzones ; i ++)
18 { . . .
19 updatePosi t ion ( agents [ i ] , ids [ i ] , subzone [ i ] , . . . ) ;
20 . . .
21 }
22
23 #pragma omp taskwai t
24 . . .
25
26 ///////////////////////////////////////////
27 //Internode exchange of agents
28 ///////////////////////////////////////////
29 MPI_Send ( agents_ le f t_out_pos , . . . ) ;
30 MPI_Send ( a g e n t s _ l e f t _ o u t _ i d s , . . ) ;
31 MPI_Send(& count_agents_ le f t_out , . . . ) ;
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32
33 MPI_Recv ( agents_int_pos , . . . ) ;
34 MPI_Recv ( ag en ts _ i n t _ i ds , . . . ) ;
35 MPI_Recv(& count_agents_r ight_ in , . . . ) ;
36 count_agents_ int += count_agents_r ight_ in ;
37
38 }

FIGURE 4.2: Tasks processed in parallel in different nodes

Using run-time variables, it is possible to control the number of CPUs and/or
GPUs to be used. By default, OmpSs uses all the available computing resources. If
more hardware resources are added to one node, for example, more CPUs or GPUs,
the simulation will use them without any code changes. Figure 4.2 shows a schema
of how tasks are processed in parallel inside each node also it shows the four levels
of parallelism, the first one at the node level, the second one at a CPU core level,
third one at GPU level and the fourth one at CUDA thread level.

4.4 Results

Tests were done on the Barcelona Supercomputing Center’s Minotauro Cluster. Each
node has two processors Intel Xeon E5-2630 with 8 cores each processor. With 128 of
RAM memory. Two NVIDIA K80 GPU cards. Running Linux operating system. It
was used CUDA 7.5, mercurium compiler version 2.1.0, and nanos runtime system
version 0.14.1.

Execution time of one-node and multi-node versions were compared, for the multi-
node version were used 4, 9 and 16 nodes. It was simulated up to 126 million of
agents, in a world of 27852x27852 cells. For the one-node version, the world was
partitioned into 16 tiles, i.e., a zone with 16 sub-zones, using two GPUs and 14 CPU
cores. In the multi-node version the world was decomposed into 4, 9 and 16 zones,
according to the number of nodes, then each zone was partitioned into 16 tiles (sub-
zones) for all cases. In each node, both GPUs and 14 CPU cores were used, the
remaining two cores control both GPUs. Figure 4.3 shows the results, comparing
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both versions.

FIGURE 4.3: Execution time one-node vs multi-node

In general, as the number of agents increases, the advantage offered by the use
of several nodes concerning the execution time is more evident.

Applying tiling in one node allowed us to simulate a large number of agents, limited
just by the host memory size. The bottleneck is the data transfer between the host
and the GPUs. Figure 4.4 shows the data transfers in one iteration for both GPUs, for
a simulation of 64 million of agents. Although it was overlapped with other tasks
performed in the CPU, at one point the data calculated by the GPU is indispensable
to continue with the simulation.

For the multi-node version, bottlenecks related to CPU-GPU data transfers are solved
by distributing the data between nodes. Nevertheless, another type of bottleneck ap-
pears as communication overhead between nodes. It was minimized such bottleneck
by compacting data, i.e., when border information exchange occurs, only occupied
cells are transferred, and by overlapping computation with communication.

FIGURE 4.4: Data transfer between the host and the GPUs. The pink
color represents data transfer from the host to the devices, the green

represents transfers from the devices to the host.

Each node of the Minotauro Cluster has a PCI Express 3.0 interface. Summit, the
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current cluster at Oak Ridge National Laboratory [84], provide NVLink technology
that is 3x faster than PCI Express 3.0. Thus, these bottlenecks could be alleviated by
hardware technology improvements. Nevertheless, according to the results the dou-
ble tiling technique allows to take advantage of all the cluster’s computing power.

The achieved speedup for 4, 16, 64 and 126 million agents, using 4, 9 and 16 nodes is
shown in Figure 4.5. In general, the results are satisfactory you get a speed-up in all
cases. With four nodes, a better value is obtained for the smaller amounts of agents
(4M and 16M), the greater the number of nodes the greater the internode communi-
cation, therefore, it is necessary to identify the optimal number of nodes to be used
based on the number of agents. With 9 nodes the best result is obtained with 16
million. Four million no longer compensate the use of 9 nodes, that is, communica-
tions exceed the computing capacity required to process 4 million agents. There is
an increase in speed-up for 67 and 127 million agents. With 16 nodes the best result
is obtained by simulating the largest number of agents 126 million.

FIGURE 4.5: Speed-up in different number of nodes

4.5 Summary

It was presented the development of a task-based scalable crowd simulation and
analyzed how the simulation scales to a different number of nodes. The system
can scale up to several hundred million agents by using multiple nodes, using all
the computing resources available in the cluster. It is possible to define the optimal
number of nodes to be used based on the size of the simulation.

Comparing with our previous work [17], which used MPI and CUDA programming
models, the results were improved. The current version allows to take advantage
of the computing resources effectively (CPUs and GPUs) by using OmpSs. Besides,
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it was identified some bottlenecks and solved them: applying a double tiling tech-
nique that allows distributing the work between the nodes, minimizing the transfer
of data between nodes and exploiting up to four levels of parallelism.
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Chapter 5

GPU Cluster Crowd Visualization

5.1 Introduction

Crowd simulation and visualization at the megacity scale requires significant com-
putational power and memory resources commonly available on High-Performance
Computing platforms (HPC). Current HPC clusters have hundreds of thousands
and even millions of processors. The community is in a transitioning stage between
the petascale and the exascale era.

According to Top500 Supercomputer Sites list [5], the use of heterogeneous archi-
tectures combining multi-core processors and accelerators is becoming a common
practice; accelerators such as the Intel Xeon Phi and the NVIDIA GPU are com-
monly used. For our purposes, the GPU has two advantages: accelerates compute,
and rendering for in-situ visualization.

The vast amount of data produced by this kind of systems requires further pro-
cessing to offer insights about the results. Such information usually is simplified
before analysis; however, simplifications may hide relevant details. On the other
hand, visualization, which transforms these findings into graphical and color repre-
sentations, can enhance human cognition improving analysis.

In-situ visualization consists of visualizing results on the same cluster where sim-
ulation is running [10]. This conveys two advantages: relevant results are stored
before simulation finishes, and data movement from processors through different
memory hierarchies and storage is reduced or avoided.

In addition, in-situ visualization reduces I/O operations [85], [86] by avoiding full
data transfer of results. It also reduces time, allowing the researcher to inspect par-
tial simulation results and perform simulation adaptations as required.

The rest of the chapter is organized as follows: Section 5.2 presents the different
configurations to visualize detailed 3D crowds. Section 5.3 describes the develop-
ment of urban scenarios and its integration with the crowd simulation. Section 5.4
presents the results. Finally, Section 5.5 presents a summary of this chapter.

5.2 Crowd Visualization Engine Modules

The selection of a visualization mechanism depends on the simulation and available
HPC infrastructure; our approach for visualization can render detailed 3D crowds.
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The crowd is rendered using animated characters with different geometrical and vi-
sual appearance.

Figure 5.1 shows the crowd visualization engine’s modules designed to visualize
detailed 3D crowds. The generation of diversity GoD stage runs as a preprocess.
This stage generates and animates 3D characters semi-automatically. In run-time
simulation results are stored in an array of ids and agent positions which are used to
render unique animated characters. Discrete level of detail (LoD) and view frustum
culling (VFC) are implemented in GPU to visualize several hundreds of characters
in real time. As a result, the visualization engine coupled with the simulation engine
generates frames that are processed or transmitted according to different configura-
tions.

FIGURE 5.1: Crowd engine modules.

Three configurations were developed; they are described in the following para-
graphs that are suitable for the particular BSC’s infrastructure.

5.2.1 In Situ

The crowd engine was modified to support MPI communications and off-screen
rendering (Figure 5.2). MPI communications enable the engine to assign simula-
tion/rendering work to each participating node, share simulation results between
nodes, and transmit partial renderings for the final composition.

Off-screen rendering enables each node to capture a visualization frame with color
and depth information encoded in an RGBA array where the depth component is
stored in the alpha channel. Then this information is downloaded to RAM and trans-
ferred to the master node.

Once the master node receives the color plus depth images from each node, it gen-
erates the final composite. This image is generated based on sort last depth com-
positing algorithm [87] implemented in OpenGL Shading Language GLSL. Finally,
the composite image is sent to the client through VirtualGL.
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FIGURE 5.2: In-Situ, simulation and visualization occur in the Cluster.

The In-Situ configuration is suitable for massive simulations. All calculations are
done in the cluster. The client receives an image with the results. Therefore the client
does not require additional rendering resources and it does not restrict the number
of characters in the simulation; however, the end user needs to be connected in the
same local area network LAN to Minotauro cluster.

5.2.2 Streaming

Accessing simulation results for visualization in any computer is one of the system’s
goals. It is desirable to enable researchers to access their results for visualization and
analysis remotely, and such access may occur during or after simulation. A second
goal is to couple the visualization engine to different simulation engines. A case
study with Pandora framework [78] was developed.

However, interactive crowd visualization can be affected by bandwidth, latency and
image transport technology. BSC’s Minotauro cluster has a fast network connection
to BSC’s LAN and default visualization delivery system uses VirtualGL. This allows
rendering crowds at interactive rates. Nevertheless, external connections to Mino-
tauro are restricted resulting in a visualization frame rate drop to 1-2 fps (frames per
second).

To achieve these goals, the streaming configuration transmits simulation data in-
stead of rendered frames from a remote resource to the end user’s workstation or
visualization server (Figure 5.3 ). The current streaming algorithm does not imple-
ment any buffering technique. However, the crowd engine interpolates the received
agents’ positions between steps to avoid artifacts due to possible data loss.

This configuration is suitable when the bandwidth is lower than the required one
for transferring images. However, the size of the simulation is limited by the num-
ber of agents the workstation can render.

5.2.3 Web

A particular requirement of the Streaming configuration is the use of a high-end sys-
tem for visualization. On the other hand, In-situ configuration requires an internal
connection between the user and Minotauro cluster. It was designed the Web config-
uration to fill the gap between streaming and in-situ. This option allows researchers
to access visualization results on any device and away from the desktop.
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FIGURE 5.3: Streaming mode allows to couple different crowd simu-
lation engines, connect to them remotely and visualize the results in

a workstation.

Inspired by cloud gaming technology, this configuration captures the results from vi-
sualization and streams them out to a web browser (Figure 5.4). It follows the clien-
t/server architecture: the server executes the simulation, visualization, and stream-
ing, and the client displays the visualization frames and captures user interaction
events that are sent back to the server.

FIGURE 5.4: The Web system architecture allows to display visualiza-
tion results in web browsers.

5.3 Development and Integration with Urban Scenarios

This kind of systems has an essential use in emergencies. Therefore, urban environ-
ments were created as realistic as possible; in this way, users will be ready to face
real events. Besides, the use of a virtual interface is being evaluated. It could allow
the user to have total immersion in the simulation and interact using devices such
as Oculus Rift and Leapmotion.

To simulate realistic urban scenarios the project gathers data from sources such as
OpenStreetMap OSM and Natural Hearth from them it is possible to generate 3D
geometry of buildings and get data of streets, parks, points of interest, etc. To com-
plement the data of the environment, Open Data were used, these data are published
by the public administration of each city, describing aspects such as the city’s infras-
tructure, pollution, population, among others, however, they are not standardized,
therefore, each city publishes its data with its format and structure.

The combination of different data sources involves a process of cleaning and ex-
tracting data before they can be useful. For this task, tools like Hadoop, Pig, Spark,
among others were used.

Lately, the main focus has been the web configuration since it is the most flexible and
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accessible. WebSockets are used for communication between the server and the web
client. Figure 5.5 shows the system architecture to integrate urban environments.

FIGURE 5.5: System architecture to integrate urban environments.

Client pipeline.

The main objective in this stage is to synchronize the camera with the information
that is displayed and merge it with the simulation, whenever the user applies any
transformation to the camera, (i.e. rotation or translation) the depth buffer (DBF) of
the scene is extracted, also the scale in pixels per meter of the current zoom level, the
2D position relative to the current map, and the RGB of that specific frame. This is
used to reconstruct the scene later and composite it with the crowd. The client life
cycle can be described as:

1. When the user starts the connection with the client, the first communication
will inform the server the current map along with the initial position in latitude
and longitude of the center of the camera.

2. The client render will be captured along with its correspondent DBF, virtual
camera parameters, position, scale, and other necessary data will be encapsu-
lated and sent in a buffer to the simulation server.

3. The client will be waiting and listening for composited rendered frames from
the server.

4. Once a frame has arrive at the client, the result will be shown in a canvas inside
the html client.

5. From the step 2 to 4, the cycle will be repeated infinitely until the client is
closed along with the connection.

5.3.1 Server pipeline.

The server side is the one that performs all the data processing; its cycle can be
depicted as:
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1. The master process starts with the initialization of the simulation and render
parameters.

2. The slave’s processes are initialized.

3. The master process will spawn a server process with the WebSockets protocol
listening for a client.

4. When the client performs a connection with the server, the initial simulation
parameters are processed (world map position the most important).

5. The slave process is taken from the idle state to a simulation state.

6. The relative camera position is loaded from the client frame buffer.

7. The camera position is distributed from the master process to the slave process
cameras.

8. The simulation is rendered from every slave process camera’s point of view to
a texture.

9. The rendered scenes textures are sent to the master process, ant the image com-
position is performed by the master process.

10. The output render is sent to the client by the server process.

11. Steps 6 to will be in an infinite cycle until the client closes the current connec-
tion or a prudent time without a response from the client will be expired.

The server uses a map in 2D, consisting of a top-down orthogonal view of the
scene to identify obstacles. Figure 5.6 shows the composition image of four partial
rendering processes of the crowd characters and the background.

To develop and integrate the urban scene different platforms like CesiumJS, Tan-
gram, Unity3D were tested. Lately, the focus is on Unity3D because it allows de-
velopment and integration with virtual reality devices like oculus rift, htc vive, and
leap motion.

5.4 Results

In-situ configuration was tested in the Minotauro cluster using five nodes. The simu-
lation was decomposed into four tiles, then four nodes simulated and rendered 4096
characters and the remainder performed image composition (Figure 5.7). Figure 5.8
shows a close-up view of the simulation. In this case, frame rates between 15 to 20
fps for a simulation size of 16K characters were obtained.

Two experiments were designed to test the Streaming configuration performance.
The first test consisted of streaming data of a wandering behavior previously simu-
lated in Pandora Framework from a remote simulation server to a workstation. The
simulation size was 4096 agents, and the workstation contains an Nvidia TITAN
GPU. For this case, a consistent frame rate of 60 fps was achieved.
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FIGURE 5.6: Composition of four partial rendering procesess of the
crowd characters and the background.

The second test consisted of executing a simulation in Minotauro cluster and streamed
out results every step to the workstation. The simulation size was 4096 agents as in
the first case. The system was also able to render 4096 characters at 60 fps.

Two experiments were designed to verify the functionality of the Web configu-
ration. The first one consisted of running the system on the workstation using dif-
ferent web browsers to detect compatibility issues (Figure 5.9). The results showed
that Chrome, Firefox, and Opera browsers were able to display the visualization suc-
cessfully. A simple inspection of the interaction did not reveal any lag between user
commands and simulation response.

In the second experiment, two clients were connected to the workstation. The
first client was a Windows 7 system, and the second client was an Android-based
mobile device. The same visualization was displayed successfully on both devices;
however, the lag between user commands and simulation response was noticeable.

Figure 5.10 shows an example of the integration of the crowd simulation with an
urban environment.
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FIGURE 5.7: Far distance view.

5.5 Summary

A configurable crowd engine that supports three configurations was developed:
streaming, in-situ, and web. In-situ configuration allows us to take full advantage
of the cluster computing resources for large-scale simulation and visualization. The
Streaming configuration supports crowd visualization in machines connected out-
side the BSC’s LAN; while the Web configuration allows us to display simulations
on any device.

Streaming and Web configuration offer flexibility and may reduce infrastructure
costs when advanced visualization systems such as the CAVE or Tiled Display Walls
are remotely available. The streaming configuration also avoids the difficulty of
coupling already existing simulation tools, and the Web configuration can be used
to take advantage of sensors available on mobile devices to improve user interaction.
Finally, In-situ configuration offers a testbed to analyze further scalability behavior
of interactive simulations that use the GPU for computing and rendering.

Access to different data sources allows the development of realistic urban environ-
ments, which seems essential in emergency training systems, as it will enable users
to be better prepared to face real events. In this chapter, it was described how to
integrate the urban environments with the crowd simulation.
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FIGURE 5.8: Close-up view.

FIGURE 5.9: Web configuration results. Left: OpenGL/glut window.
Right: Visualization is displayed in Chrome browser.
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FIGURE 5.10: Integration of the crowd simulation with a urban envi-
ronment.
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Chapter 6

Hierarchical Path-Finding

6.1 Introduction

Path planning for large-scale crowds, autonomous driving in real scenarios or video
games [88] is challenging. Due to the dynamism in the scenes and vast search space,
it is often necessary to reprocess the path or make an additional process to return to
the original one after avoiding a collision, making the process computationally ex-
pensive. In this sense, the use of a hierarchical approach offers different advantages:
it divides the search space reducing the problem complexity. It can obtain a partial
path instead of wait for the complete one, which allows a character to start moving
and compute the rest asynchronously. It can reprocess only a part if necessary with
different levels of abstraction.

Typically the approach employed is to construct a graph from an occupancy matrix
and then to traverse the graph using graph-algorithms such as A* [89], Dijkstra [90]
or Breadth-First Search [91]. All of the incumbent methods are very mature. How-
ever, they consume relatively high amounts of memory, are slow due to the num-
ber of pointer manipulations and are not readily amenable to hardware acceleration
for real-time operation. Even enhancements such as visibility graphs do nothing to
change the fundamental nature of the graph algorithms and require significant lev-
els of pre-processing which are not feasible to implement in real-time.

In this chapter, a new approach is proposed which operates directly on the grid
or bitmap rather than first converting it to a graph making the implementation very
hardware friendly. It is domain-independent, and it could be adapted to dynamic
scenes. The method makes use of a hierarchical representation which incrementally
builds the equivalent of a visibility graph without pre-processing. The hierarchical
approach reduces the search space, identifying the areas of interest in high levels of
abstraction, allows the tree to be pruned as it is constructed using a heuristic based
on density and distance. In this way, the algorithm gives priority to the shortest
paths in areas with fewer obstacles.

An analysis of the algorithm is presented in terms of:

• Pre-computation time

• Use of memory

• Speed-up

• and Optimality

The contributions of this chapter are:
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• A detailed description of a new hierarchical path-finding algorithm.

• A comparison with the A* as a benchmark for optimality and runtime.

• Results of tests done in maps from video games and urban environments.

The chapter is composed of the following sections: an overview of the related
work is presented in section 6.2. Section 6.3 describes the pre-processing stage. Sec-
tion 6.4 describes in detail the hierarchical path-finding algorithm. The experiments
and results are presented in section 6.5. Finally, the summary concludes this chapter
in section 6.6.

6.2 Related Work

There is a huge work about path-finding algorithms, A* [89] is one of the most well
known algorithms. It is an informed search algorithm. It uses the next evaluation
function to determine the order it explores the nodes:

f (n) = g(n) + h(n);

Where g(n) is the actual cost of an optimal path from start to node n, and h(n) is
a heuristic estimation of the cost to get from node n to the goal. The heuristic used
to be based on distance, there are different ways to calculate the distance, it could
be Manhattan, Euclidean, Octile, etc. In this way, the algorithm gives priority to the
nodes that bring it closer to the goal.

Two lists are used to control the processing of the nodes. The closed list contains
the nodes already expanded, expanding means to discover its immediate neighbor-
ing nodes and evaluate them. And the open list which includes the nodes to be
expanded. The algorithm chooses the next node to expand based on the minimal
cost of the evaluation function.

From A* many other algorithms are derived like Iterative deepening A* IDA* [92].
IDA* is a depth-limited searching technique, where the limit increases iteratively
in a procedural way until the target point is found. Every iteration is a depth-first
search that uses the heuristic function to choose the nodes that seem most promising
to reach the goal. If any node exceeds the depth-limit for that iteration, the search
stops to go more in-depth to the current path and start with another immediate
neighbor node of the current node. Otherwise, a new search begins with a higher
cost threshold in the next iteration. It doesn’t keep track of visited nodes which can
cause nodes to be evaluated repeatedly, that could make the process slower.

During the research the author found The Grid-Based Path Planning Competition
[93], below we explain some approaches that were part of the competition. This
competition provided us with maps and experiments that make up the comparison
framework for our algorithm.

Jump Point Search JPS [94] is an optimization of A*. It orders paths such that all
diagonal moves are taken first, creating a canonical ordering over all routes. Since
obstacles may block the canonical path, the algorithm introduces jump points. A
Jump point is a location in the map which allows moving around the obstacle. There-
fore the canonical ordering is partially reset. JPS reduces the number of expanded
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nodes, accelerating the search.

JPS+ [95] is an optimization of JPS algorithm. To speed up the path searching it
introduces an offline pre-process stage to identify jump points apriori. JPS+ pre-
calculates the first straight and diagonal jump points in eight possible directions for
every traversable node on the grid map. It enhances the performance of the JPS
algorithm but also increases memory usages significantly. According to the results
reported in [93], it needs up to 3.0Gb of storage and 74 minutes for the pre-processing
stage. This is the time and space required for all the maps used in the competition.

N-Subgoal Graphs [96] place subgoals at the convex corners of obstacles and con-
nect them. It is similar to visibility graphs (a visibility graph is a graph of intervisible
locations, it means there is a direct connection between their nodes without obsta-
cles) but has fewer edges. The subgoals are used to find the shortest path faster. A
hierarchical structure of N-levels of subgoals are created by partitioning the vertices
of a simple sub-goal, in this way sub-goals that are not related to a search are ex-
cluded, reducing the search space, making the algorithm faster and more efficient. It
performs an A* search during the path-planning phase. According to the results re-
ported in [93], it needs up to 293Mb of storage and 2.6 minutes for the pre-processing
stage.

Approaches like JPS, Visibility Graphs and alike are not efficient when the search
space contains a dense collection of small size obstacles. It would result in a large
graph in terms of the number of nodes and edges. Therefore it can not exploit the
idea of extended travel distances in a single step reducing the number of expanded
nodes.

Single Row Compression SRC [97], it is a pre-processing-based algorithm it uses
a Compressed Path Database (CPD), which store the path for any two points in the
searching space. The strategy is to query the CPD for partial paths, and again until it
gets the goal. This approach balances the computational load over time reducing the
lag spike incurred when many agents are moving at the same time. This algorithm
is one of the fastest, however, according to [93] the pre-processing stage could need
up to 52Gb of storage and 12330 minutes, turning it in one of the most expensive in
computing resources and time.

For algorithms alike A*, the computation cost is proportional to the size of the search
space. Hence, path-finding on large maps may result in severe performance bottle-
necks. When the search space is vast, it is convenient to use a hierarchical method to
reduce the complexity dividing the search space. Below are described some of them.

Hierarchical Path-Finding A* - HPA* [98], which is one of the first detailed study of
hierarchical pathfinding. It divides the search space into squared clusters, all clus-
ters have the same number of cells, each one with an entrance. A graph connects
each cluster on an abstract level. The optimal distances for crossing each cluster are
pre-computed and cached. The hierarchy can be extended to N-levels. It searches
the upper level, returning an abstract path and go down until it gets the desired re-
finement of the path. A* is used to look for a path in the abstract level and inside a
cluster.

The concept is similar to ours. Both algorithms create a hierarchical structured
based on fix size clusters. However, our algorithm does not define an entrance for
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each abstract node and create a graph in the abstract level, for this reason, it does
not guarantee to find a path but simplify the abstraction process and save space in
memory.

Partial–Refinement A* - PRA* [99]. PRA* abstracts the search space looking for
cliques and orphans iteratively, with a maximum number of 4-clique. These cliques
are reduced to a single node in the parent abstraction. Therefore, it is guaranteed
that all nodes in abstraction can reach any other state within a single step, except
orphaned nodes. Thus, two nodes are connected, if they ever merge into the same
parent. It can start planning at any level of the hierarchy. It uses A* to guide search
at any level of abstraction. It minimizes the cost of search by expanding only nodes
whose parents are part of the abstract path. It fine-tunes a partial segment at each
step, instead of refining the entire abstract path from beginning to end.

SHPA* [100] is an optimization of HPA*. It decomposes the map into many variable-
sized fully connected clusters based upon a greedy heuristic, rather than decompos-
ing the map into many same-sized clusters as HPA* does.

The heuristic attempts to merge clusters based on two different properties. It
merges clusters that have a large number of abstract nodes relative to their size and
avoids merging clusters that exceed a maximum combined size. By building fully
connected clusters with similar properties, it achieves better spatial decomposition
and improves the search algorithm.

It uses a Euclidean distance heuristic to compute edge weights, and it searches
for low-level paths using A*.

DHPA* [100] is an optimization of HPA* designed to be executed in dynamic scenes.
It creates clusters in the same way as HPA*, but it run Dijkstra once for each abstract
node within a cluster, to compute the optimal path from the low-level node to the
abstract node and a path index pointing to a neighbor node within the same cluster,
creating a separate cache for each abstract node.

The abstract search utilizes the path length, and the low-level search uses the
path index to refine the path. Therefore, unlike HPA* it is not necessary to insert the
start and goal nodes into the abstract graph before each search. Additionally, the use
of A* online is much more expensive than query the cache info.

When the terrain changes within a cluster, the build algorithm recompute the
intra-edges and the inter-edges connected to that cluster. DHPA* is faster than HPA*,
but consumes significantly more memory and produces slightly less optimal paths.

Hierarchical Path-Finding for Navigation Meshes - HNA* [81] creates a hierarchi-
cal tree from the original map by recursively partitioning a lower level graph with a
specific number of nodes, which is defined as a parameter. The objective is to find a
balance with edges, looking for a small number of edges to reduce the path-finding
cost. The partition is performed until the graph of the highest level cannot be fur-
ther subdivided. It uses the multilevel k-way partitioning algorithm (MLkP) [101].
It uses A* to perform searches in the hierarchical representation. The algorithm is
conceptually similar to HPA* but adapted for a hierarchical navigation mesh.

Quadtrees [102] have been proposed as a way of doing hierarchical map decom-
position. This method partitions a map into square blocks with different sizes so
that a block contains either only walkable cells or just blocked cells. The problem
map is initially partitioned into four blocks. If a block includes both obstacle cells
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and walkable cells, then it is further decomposed into four smaller blocks, and so
on. An action in this abstracted framework is to travel between the centers of two
adjacent blocks. Since the agent always goes to the middle of a box, this method
produces sub-optimal solutions [103].

There are many different approaches; each of them provides trade-offs between
memory, pre-processing time, and flexibility. The choice depends on the needs and
priorities of the problem to solve.

6.3 Pre-processing

In this section, the different tasks performed in the pre-processing stage are ex-
plained. For the description, the map brc997d is used. It was taken from the Path-
finding Benchmark [104].

6.3.1 Auxiliary Maps

To reduce the search space, a hierarchical structure is created based on the VOLA for-
mat [105]. The original map is scaled creating auxiliary maps with different levels
of abstraction. The resolution of the map is reduced while maintaining connectivity
and density information in the abstraction. Every level is four times smaller than
the previous one, e.g., if the size of the original map is 256x256, next level is 64x64,
next one 16x16, the map with the smallest resolution is 4x4. Figure 6.1 shows the
abstraction for the different levels. The original map is considered the highest level
in a hierarchical tree. Dots represent available cells, and a different character repre-
sents occupied cells.

Each cell of a certain level (except the last one) represents a block of 16 cells (4x4)
in the next level. The criterion to determine if a block should be considered occu-
pied or free is: if at least one of the 16 cells that comprise it is free, then the whole
block is deemed to be free. Otherwise, it would not be possible to define a path that
would reach that free cell.

The maps are stored in blocks of 4x4, for level one there is only one block, for level 2
there are 16 blocks, for level 3 there are 256 blocks, for level 4 there are 4096 blocks.
This distribution is an essential part of the algorithm because the main idea is to go
from one block to the next one in each level, using as guide the path of the previous
level.

6.3.2 Density

Consider one block available because one of its cells is, this allows us to access these
cells when the paths are computed. However, the characteristics of the original map
are lost. In level one, it is practically unrecognizable since almost all cells are avail-
able.

Density is calculated based on the number of available cells in the original map,
e.g., In level one we have sixteen cells each one represents 4096 cells of the original
map. Therefore its density would be between 0 and 4096. The value is normalized
by dividing by the maximum number, in this way the same scale is used in all levels.
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(A) Map for level 1 (B) Map for level 2

(C) Map for level 3 (D) Original map - level 4

FIGURE 6.1: Map abstraction

Table 6.1 shows the relation between the cells and the maximum number of available
cells for each level.

TABLE 6.1: Density relation between levels

Level Cells Maximum number of available cells
1 16 4096
2 256 256
3 4096 16

Thus, the resolution of the original map is conserved regarding available cells.
Table 6.2 shows the real values in level 1 for the map in figure 6.1. It is not necessary
to calculate density for the last level since every cell only represents itself.

TABLE 6.2: Example of normalize values of density in level one (block
4x4)

0.16 0.29 0.42 0.00
0.40 0.70 0.84 0.13
0.02 0.79 0.76 0.04
0.01 0.81 0.17 0.01

6.3.3 Connectivity

It indicates if two neighboring cells are available. In this case, the neighbors could
be at left, up, right or down, for the time being, the path is calculated only in four
directions. We use one bit for each direction to store the connectivity of a cell. It is
not necessary to compute the connectivity for the original map since we can check
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the cell status directly; however, for the rest of the levels, we need to calculate this
information.

The connectivity is processed top down. It starts on the last level (the level of
the original map). For every block of 4x4 is checked if it has connectivity with its
neighbors. By example to verify connectivity between two blocks, their borders are
reviewed, if any cell in the edge has connectivity with its neighbor then there is con-
nectivity between the blocks, e.g., if cell 3 of block 1 and cell 0 of block 2 are available,
there is connectivity between these two blocks. Table 6.3 shows the neighborhoods
of our example with their borders in gray.

TABLE 6.3: Diagram to show connectivity

Block1 Block2
0 1 2 3 0 1 2 3
4 5 6 7 4 5 6 7
8 9 10 11 8 9 10 11
12 13 14 15 12 13 14 15

To store the connectivity, 64 bits are used for each block, four bits to store the
connectivity of each cell. Bit 1 to check connectivity at left, bit 2 for up, bit 3 for right
and bit 4 for down. Image 6.2 shows the association between bits and directions.

FIGURE 6.2: Use of the bits to store connectivity.

This is a recursive task done top down, from the original map it is possible to
know if there is connectivity between the cells in the next level. Table 6.4 helps to
show an example of how connectivity is used. Free cells are indicated with * and
occupied cells with @. According to the criteria. For this case, there is connectivity
between these two blocks, since there are free cells in the borders.

These connectivity values allow us to find a path from one cell in the right border of
block one to any cell in block two. However, if the start is in one cell of the left edge
of block one there would not be a path, the algorithm exhausts all options trying to
find a path.

If the algorithm does not find a path, it disables the connectivity between these two
blocks temporarily. Then it would look for a different option one level up. Once the
solution is found, the original values of connectivity are restored. It is a permissive
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policy. However, it is necessary since there is no knowledge about which will be
next start and goal coordinates.

TABLE 6.4: Example of connectivity between two blocks

Block1 Block2
* * @ * * * * *
* @ * * * * * *
* @ @ @ * * * *
* * @ * * * * *

The algorithm does not use lists to control which nodes have been already eval-
uated. Instead, it uses connectivity, which is the way to control which paths are not
available for a specific case while the tree is pruned. Connectivity guarantees the
same path is not evaluated two times.

6.3.4 Temporal task: Pre-compute Paths

The algorithm applies a Breadth-First Search BFS to look for the best path in a 4x4
blocks. BFS is used because it can operate directly on the grid or bitmap rather than
first converting it to a graph making the implementation very hardware friendly. In
the next phase of the project, it is planned to implement this function in hardware for
applications in robots or drones and calculate the paths in parallel and asynchronous
way for applications in crowd simulation or video games. In the meantime, to sim-
ulate this result the paths are pre-computed for all levels.

Once the auxiliary maps, density, and connectivity are processed, the paths for all
levels are computed, the best ones are stored according to the heuristic. In this way
when a search is done, the algorithm queries a Lookup table LUT, instead of calcu-
lating it, this gives us faster results in exchange for an initial pre-processing time.
Details about pre-processing and execution time can see in section 6.5.

6.4 Hierarchical Path-finding Algorithm

For the time being our algorithm moves in four directions; therefore, Manhattan
distance is used for the heuristic. To compute the path density and distance between
start and goal are used as heuristic according to this formula:

heuristic = density/distance2

By increasing the distance to the square, it gives priority to finding the shortest
paths, but still, areas with fewer obstacles are considered. The paths with the highest
values for the heuristic are chosen.

A recursive function to process all possible options is used, see listing 6.1.

LISTING 6.1: Path-Finding Algorithm

1 / / Pre−p r o c e s s s t a g e
2 Load_map ( ) ;
3 Load_experiment ( ) ;
4 I d e n t i f y _ a b s t r a c t i o n _ l e v e l ( ) ;
5 Create_auxi l iary_maps ( ) ;
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6 Setup_connec t iv i ty ( ) ;
7 / / S t a r t e x p e r i m e n t
8 Compute_coordinates_al l_ levels ( ) ;
9 Find_global_path ( ) {

10 For ( i = 0 ; i < l e v e l ; i ++){
11 Find_path_by_level ( i ) {
12 . . .
13 i f ( path not found ) {
14 Update_connect ivi ty ( ) ;
15 Find_global_path ( l e v e l −1)
16 }
17 }
18 }
19 }

An example is used to explain how the algorithm works. The start(100,125), and
goal(89,247) coordinates are defined. The algorithm calculates the start and goal for
all levels converting the coordinates to one dimension, table 6.5 shows the values.

TABLE 6.5: Start and Goal in each level

Level Start Goal
1 5 13
2 118 245
3 2009 3926
4 32100 63321

It finds the path in level one which is a block of 4x4 cells. According to our
heuristic, the best solution is 5 9 13. Figure 6.6 shows the path on the grid for level
one. Level one is used as a guide to finding the solution in level two. Level two is a
grid of 16x16 divided into 16 blocks of 4x4.

TABLE 6.6: Grid for level one.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

In level two the algorithm looks for the route to go from block 5 to block 9. It
searches for a path in the same row if the direction is left or right, and in the same
column if it is up or down. If the cell in the border in the same row or column is not
available, it uses look up tables LUT to define the order it checks other cells in the
edge.

It starts in cell 118 in block 5, since it is already in the border with block 9, it could
be the route between these two blocks. But before, it has to satisfy two conditions;
1) its neighbor of interest should be available (cell 134); 2) there should be a path to
go to one of the cells in the border between blocks 9 and 13 (180, 181, 182 or 183). If
it is, it appends 118 to the solution and save 134 as a start for the next search if not
the algorithm tries with the other cells in the border. Our experiments show us that
satisfy condition 2 reduces re-processing, therefore, the time execution.
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Now in block 9, the partial start is cell 134. Cell 182 is the first option as a partial
goal. It would change the partial goal only if it does not satisfy the two conditions
mentioned early. In our example, this was the case. Hence, the new partial goal is
cell 181. The next partial start is cell 197, since it is the last block the real final goal
which is cell 245 is used. Figure 6.3 shows the path for level two over the grid.

FIGURE 6.3: Path example in level two.

Dynamic programming principles are applied. Blocks of 4x4 cells are the Opti-
mal Substructure. The conjunction of the partial paths is the solution to the main
problem. The algorithm also applies Overlapping Subproblems; when the partial
paths are not pre-processed they are saved them as they are computed; in this way,
the paths can be reutilized for next searches. When there is pre-processing the al-
gorithm updates the path in the LUT when is reprocessed, in this way it gets better
results.

Initially, all cells in the border were evaluated to find the best option; however, re-
lax the search process gives a better performance; there is a trade-off between per-
formance and optimality. Figure 6.4 show one example path for different levels of
abstraction in map brc997d.

Sometimes the path found in the first levels does not have a solution in the last
levels. For example, if the algorithm does not find a path in level three, the connec-
tivity is updated, and it looks for a different path in level two, it exhausts all options
in level two if it does not find a solution it looks for a different path in level one.
During the development were identified some cases where the algorithm does not
find the solution, the algorithm can not find a path like this 5-6-5-9, it can not return
to a block evaluated already, in this case, number 5. The author is exploring alterna-
tives related to the way the algorithm creates the hierarchical structure to solve this
issue.

6.5 Experimental Results

Our experiments were performed on a computer with a processor Intel Core i7-
7700HQ with 8 cores and 7.7 Gb RAM. The operative system is Ubuntu 16.04.5 LTS
(Xenial Xerus) 64-bit, The compiler was g++ 5.4.0. To implement A* it was used the
University of Alberta’s pathfinding library [106].
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FIGURE 6.4: Path example in different levels in map brc997d.

Maps from video games and urban scenarios were used. Figure 6.5 show all of
them. They were taken from the Benchmarks for Grid-Based Pathfinding [104]. A
total of 3746 experiments were performed, they were randomly selected from the
benchmarks.

6.5.1 Speed-up Analysis

Table 6.7 shows the values for the execution time. The execution time and path
length average values of A* and our approach (Hierarchical Path-finding based on
Vola) HPV with and without pre-processing paths are presented.

TABLE 6.7: Execution time comparison

Algorithm Avg Execution Time [ms] Speed-up Avg Path Length
A* 6.5 1 225
HPV Pre 1.1 5.9 240
HPV 22.07 0.29 238

If the paths are pre-processed the algorithm gets a speed-up of 5.9, however with-
out pre-processing our algorithm is slower than A*. As was said hardware acceler-
ation would solve it. Otherwise, if there is not available specific hardware for this
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(A) Map from the video game: Bal-
durs Gate II. (B) Map of Milan.

(C) Map from the video game:
Dragon Age: Origins (D) Map of Shanghai.

(E) Map from the video game: Star-
craft. (F) Map of Sydney.

FIGURE 6.5: Maps used for our experiments.

process, but it is available a multicore processor that is common in commodity hard-
ware nowadays, the pre-processing of paths can be performed in parallel. If a GPU
is available this time would be considerably reduced.

Figures 6.6, 6.7, 6.8 shows the execution time versus the path length.
In these charts, it is possible to observe a directly proportional relationship be-

tween path length and execution time for A*. In advance it was known that the
execution time of A * grows proportionally with the search space, however, in our
case, this relationship is not explicitly shown, as we can see in figures 6.7 and 6.8.

An in-depth analysis shows that the execution time of the proposed algorithm in-
creases when a new path is processed. Either because it has not been pre-processed
or it is re-processed because the first option did not work. This is an advantage since
the execution time of our algorithm does not grow linearly concerning the search
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FIGURE 6.6: Time execution vs Path length for A*.

FIGURE 6.7: Time execution vs Path length for HPV with pre-
processing paths.

space. And it gives us the possibility of improving it by identifying the most popu-
lar and successful routes to reduce the number of reprocessed cases.

The number of times a path is re-processed was calculated in relation to its length.
It is possible to see the results in Figures 6.9, 6.10. It is especially clear for HPV pre-
processing paths, that does not show a clear relation between execution time and
path length, but it shows between re-processing times and path length.

6.5.2 Pre-Processing Time Analysis

The pre-processing stage includes: create the auxiliary maps, compute density val-
ues and connectivity. Pre-processing time is reported based on the size of the maps.
Also, it was reported the time for pre-processing all paths. Table 6.8 shows the val-
ues.
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FIGURE 6.8: Time execution vs Path length for HPV without pre-
processing paths.

FIGURE 6.9: Re-processing times vs Path length for HPV with pre-
processing paths.

6.5.3 Use of Memory Analysis

In this subsection is presented the memory space the algorithm uses for auxiliary
structures. Memory space is proportional to the size of the map. A maximum reso-
lution of 1024x1024 was considered because is the highest resolution included in our
tests.

One bit is used for each cell of the auxiliary maps. A float number is used for each
cell to store the density value. Unsigned integers are used to store connectivity. One
unsigned number can store the connectivity of 16 cells. We do not compute connec-
tivity or density for the last level. Table 6.9 shows the size in Kilobytes for each level.
The low consume of memory make the algorithm optimal for using it in embedded
systems.
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FIGURE 6.10: Re-processing times vs Path length for HPV without
pre-processing paths.

TABLE 6.8: Pre-processing time for different map resolution.

Map Size Time [ms] Paths [mins]
64x64 0.29 0.17
256x256 0.96 10.27
1024x1024 12.42 97.65

TABLE 6.9: Storage size of auxiliary structures

Level Resolution Auxiliary maps [kB] Density [kB] Connectivity [kB]
1 4x4 0.002 0.062 0.007
2 16x16 0.032 1 0.125
3 64x64 0.5 16 2
4 256x256 8 256 32
5 1024x1024 131 NA NA

6.5.4 Optimality

To evaluate optimality, the author compares the path length obtained with the algo-
rithm versus the path length obtained with A*. The average path length values are
shown in Table 6.7. The error measures the overhead in percents and is computed
with the following formula:

e =
hpl − apl

apl
× 100

Where hpl is the path length obtained with our algorithm, and apl is the path
length obtained with A*.

Also suboptimality was calculated which is the parameter used in the competition
of path-finding [93] to be able to compare it. To get the value this formula is used:

so =
hpl
apl
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TABLE 6.10: Optimality Percentage Error and Suboptimality

Algorithm Optimality Pct Error Suboptimality
HPV Pre 6.66 1.06
HPV 5.77 1.05

Suboptimality is within the range published in the competition, which minimum
is 1, it means that the path is optimal and the maximum is 2.16, reported by one of
the fastest entry, as there is a trade-off between performance and optimality. The
acceptable degree of optimality would depend on the application.

6.6 Summary

In this chapter the author presents a new hierarchical path-finding algorithm, this
approach offers significant advantages for crowd simulation: it can return a partial
path instead of wait for a complete path, which allows a character to start moving,
while the rest is computed asynchronously. It can reprocess a partial path or a sec-
tion of the map with different levels of abstraction enabling better use of resources.

This approach operates directly on the grid or bitmap rather than first converting
it to a graph. It makes it suitable for hardware acceleration for real-time operation.
It is domain-independent, and it could be adapted to dynamic scenes. It has a low
memory consumption which is preferred in embedded systems with constrained re-
sources for applications involving robots or drones.

By implementing part of the algorithm on hardware or apply parallel programming
techniques, it is possible to eliminate the pre-processing paths stage. It could in-
crement the speed-up orders of magnitude. Even without these factors, our results
show a speed-up near to 6x in comparison with the typical A* approach. Besides the
computation cost does not have a proportional growth concerning the search space.
However during the development were identified some cases where the algorithm
does not find the solution. The author is exploring alternatives to solve this issue.
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Chapter 7

Modelling Crowds in Urban
Spaces

7.1 Introduction

Humankind is in the era of big cities, which is confronted to emergency situations
that require the intervention of qualified personnel to generate an orderly and safe
urban experience (e.g., massive exodus, natural disasters, concerts, sports events,
protests). In this context, data management and visualization techniques can sup-
port real-time observation for understanding the behavior of people and thus help in
the development of security strategies (e.g., by supporting on-line and post-mortem
analytics for guiding the process of recommendation and decision making in real-
time).

The author presents an approach for simulating crowd behavior for supporting con-
trol in public spaces. The objective is to visualize and predict the behavior of individ-
uals and groups moving and evolving within real environments. For this purpose,
geo-located data produced by mobile devices and other sources of information (e.g.,
security cameras, drones) are used to predict individual and crowd behavior and
detect abnormal situations in the presence of specific events. The challenge of com-
bining all these individual’s location with a 3D rendering of the urban environment
is also addressed. The data processing and simulation approach are computationally
expensive and time-critical, the project rely thus on a hybrid Cloud-HPC architec-
ture to produce an efficient solution.

The Chapter is organized as follows. Section 7.2 gives an overview of related work
concerning individuals’ location harvesting and crowd simulation techniques. Sec-
tion 7.3 gives an overview of our approach consisting of two contributions: model-
ing and locating individuals within crowds and simulating crowd behavior in nat-
ural and urban spaces. Section 7.4 gives the general lines of experimentation that
were conducted for following and predicting individual and crowd behavior in ur-
ban areas. Finally, section 7.5 presents the summary of this chapter.

7.2 Related Work

Studying the crowd is in the heart of research in different computer science disci-
plines. This chapter combines results from visualization and database domains that
have tackled the concept in different perspectives.
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7.2.1 Data visualization and Crowd Simulation

It is possible to use a simple visualization of trajectory data to support decision
making. However, combining data analytics with the more complex crowd simula-
tion and visualization techniques that have been used in the entertainment industry,
where one must create populated environments that seem realistic, is a meaningful
way forward.

One of the challenges in crowd simulation is modeling realistic behavior of crowds
within an environment (e.g., an army within the battle camp in a shooter game, fans
moving to attend a concert or a football match). Rendering, visual variety, character
animation, artificial intelligence and motion planning are common problems tackled
in visualizing crowd simulations [7].

Crowd simulation is an important research direction in computer games, movies,
and virtual reality [107], urban planning, education, and security, among others
[108]. Large crowd simulation is in general coupled within the execution of an-
other system, for instance, a video game. Thus, it is often restrained by the limited
processing time available. Therefore, the use of GPUs has been proposed for achiev-
ing real-time crowd simulations. Realistic simulation of crowd movement can be
obtained by observing and mimicking “real crowds”.

7.2.2 Data harvesting and analytics for monitoring crowds

The author is interested in techniques that use crowdsourcing (explicit and implicit)
for collecting data that contain information about the way people evolve in public
and private places. These data collections can be used as input for learning crowd
behavior and simulating it in an accurate and realistic manner. The advance of
location-acquisition technologies like GPS and Wi-Fi has enabled people to record
their location history with a sequence of time-stamped locations, called trajectories.

Some work has been carried out using cellular networks for user tracking, prof-
iting from call delivery that uses transitions between wireless cells as input to a
Markov model [109]. Wolf and others [110] used stopping time to mark the start-
ing and ending points of trips. The comMotion system [111] used the loss of GPS
signals to detect buildings. When the GPS signal was lost and then later reacquired
within a certain radius, comMotion considered this to be indicative of a structure.
This approach avoided the false detection of buildings when passing through ur-
ban canyons or suffering from hardware issues such as battery loss. GeoLife [112]
introduces a social networking service, which aims to understand trajectories, lo-
cations, and users, and mine the correlation between users and places in terms of
user-generated GPS trajectories. GeoLife offers three key applications scenarios: 1)
sharing life experiences based on GPS trajectories; 2) general travel recommenda-
tions, e.g., the top interesting locations, travel sequences among locations and travel
experts in a given region; and 3) personalized friend and location recommendation.

Existing work in robotics and autonomous vehicles applies automatic learning tech-
niques for making them independent while they evolve in open spaces. They often
use collected data for example, for training classifiers to reproduce the behavior of
the crowd in a synthetic environment. One of the challenges in data analytics is to
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predict by deducing behavior models of the observed subject. A model is a collec-
tion of data on some particular aspect of a subject’s behavior that, when associated
with a limited set of contextual clues, yields predictions on what action the subject
will engage in next.

Based on this notion, there is work similar to [113] that use location as a context
to infer other data such as the presence of other people. Predestination [114] is an
approach that leverages an open-world modeling methodology that considers the
likelihood of users visiting previously unobserved locations based on trends in the
data and on the background properties of places. Multiple components of the anal-
ysis are fused via Bayesian inference to produce a probabilistic map of destinations.
The proposed algorithm was trained and tested using a database of GPS driving
data gathered from 169 different subjects who drove 7,335 different trips.

The challenge is integrating computationally expensive data analytics with realistic
character visualization within realistic environments giving the impression of reality
to data analyzers who will be able to make critical decisions.

7.3 Using big data for observing crowds

Figure 7.1 illustrates the general overview of our approach that addresses three main
problems: (i) data harvesting, (ii) crowd simulation and analytics and (iii) visualiza-
tion. Concerning data harvesting, it is possible to use different data sources like so-
cial networks, mobile devices data, and public cameras. Right now, the project uses
existing temporal geo-located observations concerning individuals’ trajectories.

FIGURE 7.1: General overview of the approach.

Building and storing representative data collections about individuals and crowd
behavior in urban spaces can be useful for performing offline analytics to discover
patterns, relations, and identify those members that might not belong to the group
or that might have suspicious behavior. Data and analytics results must be stored
in different supports according to the conditions in which they are shared and ex-
ploited. The project proposes data storage tools that use data sharing, geographi-
cal position, and other context-related strategies to distribute data across different
stores, index to various characteristics (time aspects), and efficiently deliver data to
data analytics processes.
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7.3.1 Identifying and profiling the crowd

Data analytics techniques (temporal and spatial reasoning) are applied for comput-
ing trajectories and for identifying crowds. That is, people grouped in a proximity
that adopt a specific “behaviour” referring to four well known naïve crowd pat-
terns: (i)casual crowd which is loosely organized and emerges spontaneously, peo-
ple forming it have very little interaction at first and usually are not familiar with
each other; (ii)conventional crowd results from more deliberate planning with norms
that are defined and acted upon according to the situation; (iii) expressive crowd
forms around an event that has an emotional appeal; (iv) acting crowd members are
actively and enthusiastically involved in doing something that is directly related to
their goal.

The objective of our analytics study is to identify a triggering “symptom” that can
evolve into the constitution of a crowd. For example, someone showing a banner
in the middle of a plaza, in front of some monument or government office; people
density increasing in some area. In our approach and since for the time being the
project do not use images recognition the project address crowd creation identifica-
tion by measuring people density in specific spatial regions during a time interval.
This requires a continuous analysis of the evolution of the status of urban space to
measure the population density.

Density measuring is done using different data collections: (i) the continuously har-
vested observations of the geographical position of individuals (that accept sharing
their position) along time; (ii) the images stemming from cameras observing specific
“critical” urban areas, like terminals, airports, public places and government offices;
(iii) data produced by social networks and applications like Twitter, Facebook, Waze
and similar. The occupation density of specific urban regions is measured sepa-
rately according to the political organization of the space (quarters, areas) in every
database. Sliding windows to partition continuous data flow with respect to time
intervals are used, and the political division of the urban space is used for filtering,
grouping the data and computing density per urban region. This is a straightfor-
ward yet somehow costly computation not because of the amount of data but be-
cause it should be continuously computed, and both data and density results are
stored for performing other analytics processes.

Having different visions of the density of urban spaces given different data collec-
tions enables to perform other types of data analytics on the n-tuples region-density
and to cluster regions both taking into consideration their density and their geo-
graphic position. Accordingly, it is generated a “crowd heat thermometer” showing
the crowd dynamic distribution view of the urban space that evolves along time.

Having an insight within the crowd. Not all crowds need to be managed within
urban spaces, there are some that happen every day in public transport, and others
need particular attention and must be better profiled. The first challenge is to be
able to discriminate. Using data collections harvested from social networks, some
correlations are computed to identify connected people that were in the same urban
place at some time interval, and that might have been part of a crowded event. Not
all individuals sharing the same spatial region necessarily participate in a crowd.
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Thus, the first operation to solve is given a set of individuals located in the same
geographic region at the same time interval, whether an individual located at the
same space-time belongs to the crowd. A naïve way of evaluating this predicate
belongs-to is knowing whether there is a “social” connection between an individual
and at least one of the crowd members. Using this analytics operation, it is possible
to draw an urban occupation map and propose some connections among individu-
als occupying the same urban region in the same period.

The objective of this classification is to identify possible outsiders, that is, individu-
als that do not belong in the group. Those are the ones in which there is a particular
interest because they could be troublemakers for example.

In a more in-depth study, the project could adopt two complementary strategies
for defining possible networks hidden in a crowd. First, the contacts graphs of in-
dividuals social networks accounts which have been identified in a crowd are re-
trieved. It is possible to establish relations with other contacts using well-known
relations discovery techniques as the one proposed by [115] and filtering strongly
related contacts to verify whether they are themselves present in the crowd. The
process is computationally expensive because graphs intersections of possibly thou-
sands of individuals are computed. It is incremental in the sense that graphs are
stored and they are enriched with new information coming from the observation of
other crowds in other moments. These graphs versions are used for profiling and
predicting crowd behavior.

Profiling and predicting crowd behavior. Once the crowd has been formally identi-
fied and modeled in terms of its participants, it is possible to observe its behavior as
if it was an individual: (i) characterize its elements (find the leaders, the followers
and eventually the outsiders); and (ii) predict the evolution of its behaviour for ex-
ample, probability of conflict, space utilisation and risk maps.

Once it was created a first connection graph describing how people possibly par-
ticipating in the crowd are connected among each other, it is possible to determine
which is the degree of influence of each participant of the crowd. This is done by
computing the influence of the elements of the crowd towards other elements ac-
cording to their contacts network, and that can eventually be participants in the
crowd. The analysis ends up with groups of outsiders that have to be inspected to
understand their presence in the crowd, and their possible role in the event. Again,
since the inclusion of participants in the crowds evolves along time, the contacts’
network represented by graphs and the influence of participants varies too. The
computational cost is significant considering semi-post-mortem computations. Of
course, the ultimate objective is to be able to observe this evolution in real time
which introduces scalability problems that must be addressed with GPU architec-
tures.

The final task is to predict the behavior of the crowd. Therefore, notions of space
occupation and the probability of conflict are used, by searching behavior patterns
in the evolution of the crowd status: it emerges with some individuals, increases its
size, in achieving the maximum of participants and then it fades. This “life cycle”
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happens within a space occupation process that can be controlled by its inherent be-
havior but that can also be determined by external factors, e.g., police, troublemak-
ers. We define the status of the crowds with a set of attributes including, the approx-
imate amount of participants, the main trajectories of the group, the spatiotemporal
region occupied by the group, the possible outgoing directions in which participants
can move within the urban space, triggering and a termination event.

Instead of delivering textual or graphical results of these analytics operations the
project aim to provide 2D and 3D visualizations that can reproduce the observations
and simulate the behavior of the crowd according to real data. The following section
explains how.

7.3.2 Simulating and visualizing large crowds in real time

There are several steps in the process of simulating and visualizing large and varied
crowds in real time for consumer-level computers and graphic cards (GPUs). Ani-
mating varied crowds using a diversity of models and animations (assets) is complex
and costly. It is necessary to use expensive models, take a long time to model, and
consume too much memory and computing resources. The project proposes more
efficient and cheaper methods for simulating, generating, animating and rendering
crowds of varied aspect and diversity of behaviors.

In general, the principle consists in mapping human perception of the space stem-
ming from cameras and expressed in geographical coordinates (latitude, longitude),
for example, into pixels. For instance, as shown in Figure 7.2, “give me the GPS
coordinates of the users evolving in Beijing ordered by time”. Once this query has
been evaluated by the appropriate data processing infrastructure, Pig Latin [116]
was used for this task, results are transformed into the appropriate format. Textures
and maps are retrieved to create the 3D space where individuals’ movements will
be visualized (simulated) according to the observed information. The visualization
of a dynamic situation requires computing capacity to be sure that the rendering is
realistic. Thus, for scalability, the project relies on a simulation cluster devoted to the
execution of this costly task.

FIGURE 7.2: Visualization process of individuals movement within
urban 3D spaces.
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Simulation and visualization are based on the work described in [17], modified
to integrate Geolife data. The simulation algorithms have been modified such that
when given a choice, simulated vehicles and pedestrians will use heatmaps derived
from the dataset to follow the most popular routes. Visualization has also been mod-
ified to include vehicles as well as pedestrians and to be rendered aligned with and
combined with the scenery provided by CesiumJS [117].

The visualization does not only contain the view of the urban space. It also renders
individuals moving in it. The level of detail that a data consumer can see about peo-
ple should depend on her access rights to personal information and on the privacy
laws of the geographic space in which observed people are moving. For example, a
consumer with few access rights would see people as points or avatars (like video
game characters) moving in the street. A consumer with enough access rights should
see the actual person walking in a given street.

7.4 Experimentation

The project aims to exploit data collections about the way people move in public
places to learn about transit and behavior, later it uses this knowledge to simulate
a crowd realistically. For the graphic representation, it combines a 3D view of the
urban space and animated characters moving on the scene.

The GeoLife GPS trajectory dataset [118] with data of 182 users, 17,621 trajectories
of ca. 1.2 million Km. and 48,000+ hours was used. These data are used to compute
spatiotemporal people flows in real crowds to provide data-driven on-line crowd
simulation, enhanced with real places geometric data running on GPU and HPC In-
frastructure. Since the data set for a given place and time is sparse, the project adds
agent-based microsimulation to complement the actual trajectories in the dataset by
using all the trajectories in similar moments that are available in the dataset to derive
the most probable trajectories for the simulated vehicles or pedestrians.

For the visualization CesiumJS [117] was used, it is an open-source JavaScript li-
brary for 3D globes and maps, CesiumJS help us to integrate vehicles and characters
in the urban scene.

7.4.1 Computing trajectories

Big Data cleaning and processing tools were used, particularly the language Pig
Latin for computing such trajectories. The process is done by defining four declara-
tive expressions as shown in Figure 7.3.

• Step 1: Load the observations clean and prepare the data collection concern-
ing the initial meta-data of the observations. For computing trajectories, three
attributes were necessary, the initial and termination times and the transporta-
tion modes. The idea is that a trajectory is defined as a set of locations observed
at a given moment identified by a time stamp. The PigLatin program presented
in the figure implements this process.

• Step 2: Load the GPS logs filtering the latitude, longitude and time stamp ac-
cording to a predefined schema defined for this purpose.
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FIGURE 7.3: Computing trejectories.

• Step 3: Finally, the third query estimates the trajectories as sequences of loca-
tions where the sequence is determined by the time stamps. With these com-
puted trajectories it is possible to perform other analytics operations and re-
constitute the movement of people in the corresponding urban space, in this
case, Beijing.

Even if they seem simple due to the expression power of Pig Latin, the execution
of these queries can be computationally costly given the volume of data processed.
The Pig Latin execution environment was installed in a cluster of 8 machines and
executed in parallel. Thus results are obtained in reasonable execution time. The
computed trajectories were stored in an integrated data collection on top of which
we performed other operations as described in the following lines.

7.4.2 2D tracking of individuals

The objective is to track individuals and crowds in urban spaces. Heat maps are
computed to aggregate the trajectories of users during specific time intervals. The
result, as illustrated in Figure 7.4 shows those itineraries in red or thick lines. This
map shows the most popular trajectories of a person, at the same time could help
us to infer habits or predict trajectories in the future, or cluster persons with simi-
lar routines. These heat maps concern the Beijing trajectories computed using the
Geolife GPS trajectory dataset.
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FIGURE 7.4: Heat maps aggregating the trajectories of one person
during an interval of time.

Heat maps enable tracking individuals within a specific urban space and see how
they move during a particular period of time. The figure shows the simple code for
computing heat maps that again serve as new information on which it is possible to
perform more analytics. These analytics concern, for example, identifying the most
visited regions, observe rush hours in specific areas, and eventually identify crowds.
This information could help to improve services and infrastructure in a city. For the
time being our experimentation is done in the post-mortem.

7.4.3 3D visualization of individual tracks

The visualization problem is state as follows. It is centered on the user that accesses
a 3D virtual space and navigates in it, in our case, for following individuals or the
crowd within the simulated urban space. Every interaction of the user with the 3D
space triggers a process in which data are retrieved from storage support (memory
or disk) to feed the simulation module that will reproduce a realistic behavior of the
3D space. A realistic behavior in our case means that the individual or the crowd
will move and behave smoothly as it is seen in “physical reality” and it will react
to the environment if some event is produced (due to the interaction of the user).
In the case of our experiment for individuals this implies maintaining the position
of the individual on the road, respecting the traffic signals (e.g., semaphores, speed,
direction), and the organization of the urban space (e.g., buildings, bridges, roads,
parks, and other open spaces).

Tests were performed using a workstation with an Intel Core i7-4820K CPU 4-cores
at 3.70 GHz, running Linux operating system with 16 GB of RAM and 10MB of cache
memory. It includes a GeForce Kepler GTX TITAN Black with 2880 cores and 6 GB
of GDDR5 memory.

7.5 Summary

Crowdsourced location data is used to compute spatiotemporal people flows in real
crowds. This chapter presented the general approach for simulating crowd behav-
ior and thereby supporting individuals’ and crowd behavior in public spaces. The
main contribution is combining location-based data collections previously harvested
together with online geo-tagged data for visualizing crowds at different levels of
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precision and detail according to access control and privacy constraints. The project
combines both to provide data-driven on-line crowd simulation, enhanced with re-
alistic urban scenarios. Our data processing and simulation process are computa-
tionally expensive and critical; thus, it relies on hybrid cloud-HPC infrastructures
for producing an efficient solution.
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Chapter 8

Humanitarian Logistics and
Cultural Diversity within Crowd
Simulation

8.1 Introduction

Human stampedes caused by panic and overcrowding frequently occur because of
abnormal events (e.g., a fire or explosion) produced in collective events (e.g., re-
ligious pilgrimages, music concerts, and sportive events). These events provoke
panic, thus people try to escape pushing each other without realizing that others are
being crushed. Since crowds can consist of individuals with diverse physical (i.e.,
anthropometric) and social characteristics determined by cultural diversity, it is dif-
ficult to configure the space in advance and find solutions in real-time to save people
and reduce catastrophe.

Crowd simulations for humanitarian logistics provide a means for studying crowd
behavior under different conditions. After studying video pedestrian patterns, be-
havioral scientists have concentrated on the rules that people are accustomed to
using in their daily lives and transform them into heuristic formulas. They have
focused mainly on four types of danger associated with crowds: (i) trampling and
crushing at religious sites; (ii) trampling, crushing and drowning on ships at sea or
waterways; (iii) crushing in massive concerts or enclosed spaces such as clubs; (iv)
contingency situations of nature, as can be earthquakes, floods, avalanches or land-
slides, that cause destruction to human-made structures.

In his fruitful work, Helbing has proposed a simplified model of pedestrian inter-
actions: the “social force model.” He has addressed crowd dynamics, typically the
formation of large-scale spatiotemporal patterns of motion, when many pedestrians
interact with each other. Helbing et al. [57] found that high-density flows (up to
10 people per square meter), can result in a phenomenon called crowd turbulence
and can trigger the trampling of pedestrians. To prevent such disasters high-density
flows must be avoided, particularly the three conditions that can provoke a disaster:
(i) low infrastructure capacity, (ii) large numbers of pilgrims, and (iii) merging flows,
intersecting flows, or counterflows, especially in reduced spaces. If many pedestri-
ans head toward or pass through a location with low infrastructure capacity in a
short time, this location can become a bottleneck with high densities and a high risk
of crowd turbulence.
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Numerous occurrences of stampedes in the recent past have shown that only co-
ordination between public safety organizations and urban planners cannot solve the
problem of managing large crowds. Prediction of pedestrian-flows in flat areas, and
buildings with an exceptional architecture or in challenging evacuation situations,
have been addressed by simulation models (e.g., queuing models [119], transition
matrix models [120], and stochastic models [121]). Also, there are models for pedes-
trians route choice behavior [32], [122]. Helbing observed that none of these modes
adequately considers the self-organizing effects that appear in a crowd.

Addressing a realistic simulation of human stampedes calls for a combination of
methods. This research focuses on anthropometric and sociocultural aspects iden-
tified in the last stampedes occurred in Mecca, and demonstrate their impact in a
catastrophe simulation (e.g., in the holy places of Islam).

This chapter proposes an approach to explore the impact of anthropometry and cul-
tural diversity in the behavior of crowds in panic situations. Human density makes
people come into physical contact creating behavior that can be understood as an ex-
change of real physical forces. Our approach models crowd using microscopic sim-
ulation using multi-agent systems, where dynamics are coupled with crowd simu-
lation modified by anthropometric and cultural parameters. Our approach includes
techniques for reproducing and simulating the behavior of the crowd to generate
models that can help decision-makers to control such situations. The main contri-
bution of our work is to use computational science, data processing and visualiza-
tion techniques to perform our simulation for eventually supporting critical decision
making.

The remainder of the chapter is organized as follows. Section 8.2 introduces our
agent-based approach for simulating crowds for addressing human logistics. Sec-
tion 8.3 describes the experimental validation that was conducted for simulating a
case of a stampede and discusses our results. Finally, section 8.4 presents a summary
of this chapter.

8.2 A Sociocultural Perspective for Simulating Human Stam-
pedes

Figure 8.1 gives an overview of our approach for simulating stampedes taking into
consideration sociocultural and anthropometric perspective.

Our approach develops a multi-agent system to simulate a crowd of multicul-
tural individuals evolving in an urban space. In this context:

• An urban space is a spatiotemporal region. Its configuration models pedes-
trians’ flows of specific densities moving concerning predefined trajectories,
through geometric shapes and signals. Space design considers an anthropo-
metric model.

• The anthropometric model describes the physical characteristics of people.

• The organization of the space, the signals, and amenities serving to control the
crowd in normal and abnormal situations considering sociocultural aspects.
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FIGURE 8.1: Simulating and studying stampedes from a sociocultural
and anthropometric perspective.

A mathematical model that includes these aspects to predict crowd behavior was
developed. It implements rules and constraints representing anthropometric and
sociocultural characteristics to make the agents interaction as realistic as possible.

8.2.1 Anthropometric and Sociocultural Model

The variability in the dimensions of the people due to their age, gender and ethnic-
ity creates the need to measure the population with the objective to design public
spaces according to their size and phenotypic values considering the standard de-
viation and percentiles. The phenotypic values and anthropometric measurements
are given by existing models that were adopted (see Table 8.1).

TABLE 8.1: Anthropometric measurements considered in our model

Variable Unit Variable Unit
Age years Height cm
Weigth kg Body Mass Index (BMI) (Kg/m2)
Total Arm Length cm Upper Arm Length cm
Lower Arm Length cm Wrist Circunference cm
Upper Arm Circ. (REST) cm Upper Arm Circ. (Contracted) cm
Chest Circunference cm Chest Circunference (Elevated) cm
Hip Circunference cm Thigh Circunference cm
Calf Circunference cm Hand Width cm
Shoulder Width mm Hip Width mm
Bi-Humerus Diameter mm Bi-Femur Diameter mm
Wrist Diameter mm Body Density (BD) (gm/cm)
Pct Body Fat % Total Body Fat (TBF) kg
Lean Body Mass kg Grip Strength (Right Hand) kg
Grip Strength (Left Hand) kg
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Another essential aspect to consider particularly for logistics and organization
reasons, both in normal and abnormal situations, are sociocultural aspects. For ex-
ample, in one of the human stampedes in Mecca, two leading forces were identified
by analyzing videos. Iranians whose average height often exceed 1.89 and greater
muscle mass, and Malians with similar anthropometry but with different languages
and sociocultural references. Analysts observed the lack of information in different
languages, but also a sociocultural aspect of group formation when walking partic-
ularly Iranians and parishioners from Africa.

This behavior is not present in the Saudi Arabian society used to evolve in that en-
vironment. It is necessary to see how different groups react to visual signs, since
in some cultures visual warnings are not used, and inexperienced travelers, both
adults, and children, can get confused and be unable to follow instructions for proper
evacuation. Therefore, these characteristics were included in our model. Since, pil-
grimages with years of tradition are the focus of this chapter, the project has access
to this information: (i) the average distribution of nationalities attending the pil-
grimages; (ii) the average distribution of men, women, and children; (iii) the ethno-
graphic and crowd tracking studies, as well as the cultural aspects that can have
impact on the behavior of the crowd in the presence of an abnormal event (e.g., a
stampede).

These sociocultural aspects are considered in our model: : (i) collective behaviour
in public spaces (civility, awareness of traffic signs, respectfulness of traffic signs),
(ii) automatic behaviour in dynamic crowds that follow a specific direction (whether
people tend to form lines, lineage to the right/left) and (iii) the vital space (the min-
imum and maximum separation space between two people). For individuals’ social
behavior in the presence of an abnormal event, the assumptions of existing work
discussed in Section 2 are adopted, saying that crushing and pushing depends on
the urban facilities and of a kind of irrational behavior of the crowd that depends on
the knowledge that people can have of the space. This knowledge can create or not
confidence and reduce the degree of panic.

The design of the agent system takes into consideration the anthropometric char-
acteristics and sociocultural knowledge that guides the behavior of the agents when
they evolve in the virtual space. Their interaction with the environment and with
other agents is guided by the associated sociocultural constraints. Section 8.3 shows
how these attributes are interpreted into concrete measurements implemented by
agents used for simulating a concrete dynamic crowd.

Figure 8.2 shows the general architecture of the multi-agent system. An agent
is a complex autonomic intelligent system that implements an event-reaction cycle
guided by the internal knowledge it computes thanks to the data it receives and
processes.

The data are produced:

• Continuously: Through the Perception module the agent process the actions
around him and react.

• In batch: concerning the general map of the space. These data include the
objects in the space, the urban facilities. They are stored in the World model
base of the Knowledge module.



8.3. Experimentation 79

FIGURE 8.2: General architecture.multi-agent system.

The agent processes these data guided by the behavior rules coded in the Be-
haviour module. The agent plans goals and executes actions that will have an im-
pact on the environment.

The distributed knowledge is used by the multi-agent system that generates a collec-
tive behavior. This behavior is implemented in the simulation of a dynamic crowd
evolving in a collective event. The agents and environment of our approach have
a projection in a virtual 3D world that visualizes their individual and collective be-
havior.

8.3 Experimentation

Our experiment is related with a religious event in a Muslim world with people from
diverse societies, heterogeneous sociocultural characteristics (e.g., different nation-
alities and have a different understanding of the visual announcements written in
Arab) and anthropometry.

Menge [123], a cross-platform, extensible, modular framework for simulating pedes-
trian movement in a crowd was used. It includes social behaviors models developed
by Helbing, Reynolds, these models were presented in Section 2. These models have
been recognized to be representative of crowd behavior in urban spaces, and there-
fore Menge seemed a well-adapted platform.

Menge’s architecture is inspired by an implicit decomposition of the problem of sim-
ulating crowds into four components: religious masses, mass concerts, shipwreck,
and floods. Different combinations of subproblem solutions yield crowd simulators
with likewise varying properties. Menge creates abstractions for those subproblems
and provides a plug-in architecture so that a novel simulator can be dynamically
configured by connecting built-in and bespoke implementations of solutions to the
various subproblems.
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8.3.1 Use Case: the Hajj

The Hajj, the annual Muslim pilgrimage to Makkah in Saudi Arabia, is one of the
largest pedestrian events in the world. It takes place from the 8th to the 13th day of
Dhu al-Hijjah, the 12th and last month of the Islamic (lunar) calendar. Each year, up
to four million pilgrims approach the holy sites in the region of Makkah to perform
their religious duty for many days. In 1950, fewer than 100,000 pilgrims performed
the Hajj; in 2005, the number of pilgrims performing it exceeded two million for the
first time. Until 2006, several crowd-related disasters led to thousands of casualties.
Thus, the Ministry of Municipal and Rural Affairs of the Kingdom of Saudi Arabia
(MOMRA) launched projects to prevent future crowd-related accidents.

8.3.2 Experiment Design

To simplify the simulation problem, in the Design of the Experiment (DOE) it was
considered that the crowd attending the Hajj is composed of groups belonging to
four kinds of Muslim societies: Iranians, Muslim Africans, Muslims Asians no Arabs
and Arabs. To obtain an accurate model and social behavior of the crowd our sys-
tem maintains data about representative individuals in each group and data related
to the cultural aspects. The latter is done to distribute in an optimal way for each
zone of the mosque associated with a group a specific social behavior.

The main experiment consisted of evaluating individuals from a group of parish-
ioners and performing a simulation on 200 replicas for 100 instances of individuals.
This allowed the generation of the best selection of every social group and its possi-
ble location in the representation of the DOE (see figures 8.3 and 8.4). The position
of each group is obtained by comparing the different cultural and social similarities
of each group and evaluating the proposed multiple matching models.

FIGURE 8.3: Spatial representation of sociocultural behaviour cate-
gories of the four types of participants in the religious Hajj event.

A weight vector is defined for tuning the fitness function used for simulating
people in the crowd:

Wi = [0.6, 0.7, 0.8, 0.5, 0.6, 0.4, 0.9, 0.5, 0.4].

It represents the importance of the attributes associated with a good parishioner
(see table 3): a) emotional control, b) social cohesion, c) intelligence, d) mental agility,
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FIGURE 8.4: Distribution of different groups in the Masjid al-Haram
mosque during the Hajj.

e) inner strength, f) resistance (stoicism), g) social leadership, h) slew rate, i) respon-
siveness. For defining these values, the social behavior models proposed by Bogardo
[124] were used. They have been used in problems with similar characteristics.

Each attribute is represented by a discrete value between zero and five, where zero
represents the null value and five the highest value of the attribute. Besides each at-
tribute is pondered by preference/importance specified by the application context.
For instance, for a given analysis, it might be interesting to observe the behavior of
the crowd focussing on responsiveness.

The DOE selects the color of each group based on the similarity of two racial groups
according to these attributes. A similarity is determined as follows. Given two racial
groups the following fitness function determines their similarity:

n

∑
i

abs[corr(Wi AttributeA
i , Wi AttributeB

i )]

• Wi = vector of weights that represent the importance ponder of attribute i.

• A, B = represent the compared groups

• Attributei = vector of the attribute values from each group.

While the correlation value decreases, the similarity between racial groups is
stronger.

A threshold of 0.05 is established, if the correlation value is less than the thresh-
old, it assumes that there is no relationship between the groups.

The design of the experiment consists in an orthogonal array test, with the inter-
actions between the variables: emotional control, ability to fight, intelligence, agility,
force, resistance, social leadership, and speed. These variables are featuring each
possible response to individual behavior.

Table 8.2 shows some possible scenarios resulting from the combination of the val-
ues of the attributes and specific sociocultural to represent a problem in a religious
place (meaningful representation to participate in the Hajj).
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TABLE 8.2: Orthogonal matrix for characterizing the Hajj population.

a b c d e f g h i
0 1 2 2 3 3 4 5 1
0 1 2 2 3 4 5 5 1
1 1 3 2 4 4 2 1 2
1 1 3 2 5 3 2 1 2

Each column represents a feature (i.e., a. emotional control, b. social cohesion,
c. intelligence, d. mental agility, e. inner strength, f. resistance (stoicism), g. social
leadership, h. slew rate, i. responsiveness). Each row represents a racial group
considered in our experiment (recall that four racial groups are examined as shown
in Figure 8.3).

8.3.3 Simulation Results

The results allow us to analyze the effect of the variables in the color selection of
all possible combinations of values reported in Table 8.2. This is the color code cor-
respondance: Iranians in green, Arabs in Cyan, Blue and Pink respectively Indone-
sians and Malaysians, Africans in red.

Figure 8.3 shows the distribution of agents generated for each group considering
their social cohesion, anthropometric and sociocultural characteristics (axis of the
3D space represented in the Figure). It is possible to obtain the speed of walking by
measuring the time required to reach a percentage (e.g., 40%) of the desired veloc-
ity, starting from rest. This speed is typically in the range of 5 km per hour, but it
depends on the pedestrian’s current state of fitness and stress, fatigue, drunkenness,
inability, group binding, footwear, weight, height, desire to reach a goal, climate,
signals, noise, etc. In this case, the following equation was used:

v(ti) =
E ∗ K(ti) ∗ ∑n

j=1 jλ
n

C
∼= 1

where:

• E: age

• K: represents the degree of care required depending on agent characteristics.
It is given by K = a + b2 where a denotes expected behavior of the agent given
by the degree of disorientation based on the weather; and b denotes the actual
behavior of the agent, i.e., its degree of fatigue

• j: denotes an attribute of an agent (i.e., models an agent behavior)

• i: agent

• t: time

• n: number of social attributes per agent

• λ: inability to find an exit

• C: number of relatives.



8.3. Experimentation 83

Figure 8.5 shows that a representative population (agents) was generated. It will
be used to simulate their behavior during the Hajj event using the characteristics of
the space in which they evolve. Also it is possible to estimate the speed at which
they change in the area.

FIGURE 8.5: Evolution of pilgrimage simulation.

Since, the behavior of pilgrims during the Hajj circuit is simulated, they perform
in the Masjid al-Haram mosque. It is represented a schematic yet realistic distri-
bution plan of the mosque. To understand the distribution, it is necessary to first
explain the way the ritual of the pilgrims is organized in the mosque. The ritual of
Tawaf includes: (1) Walking seven times counter-clockwise around the Kaaba. Dur-
ing this circuit, a pilgrim “stops” in front of the Black Stone or at least reduces her
pace to point it. A pilgrim performs three rounds in a hurried pace and four in a
leisure pace. Tawaf is now also performed on the first floor and roof of the mosque
because of the large crowds. (2) Then, a pilgrim does two Rakaat prayers at the Place
of Abraham a site near the Kaaba inside the mosque. Because of large crowds during
the days of Hajj, they may instead pray anywhere in the mosque. (3) After prayer,
pilgrims drink water from the Zamzam well, made available in coolers throughout
the Mosque. (4) Finally, a pilgrim runs or walks seven times between the hills of Safa
and Marwah, located near the Kaaba.

The place is entirely enclosed by the mosque and can be accessed via air-conditioned
tunnels. Figure 8.4 shows the plan of the mosque (different levels) and zones in
which the ritual is performed. The size of the boxes represents the density in each
group (the number of individuals per square meter). In our simulation, this is rep-
resented by the height of the boxes. Note that in our DOE a high density represents
the situation in which six individuals share one square meter. Depending on the
phase of the ritual the groups are performing, some zones of the mosque are more
crowded than others.
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As shown in Figure 8.4 it was possible to simulate the groups participating in the
Hajj in a realistic manner concerning: (i) the number of individuals in the crowd, (ii)
the distribution of their anthropometric (coded in the colour of the box according to
the colour code explained above) and sociocultural characteristics used to compute
density which is visible in the size of the boxes in 8.4. Note that depending on the
group they belong to, pilgrims pray in different areas of the mosque. For example,
Arabs in cyan are grouped in the second level; Iranians in the first and third levels;
and Indonesians, Malaysians, and Africans mostly share the fourth level.

Then, it was important to model the dynamic aspect of the pilgrimage based on
the predefined ritual performed through the spaces and tunnels of the mosque. In
our current DOE, it was simulated a simplified version of the itinerary for the time
being. The simulation exhibits the “risky” places (e.g., tight tunnels and entrances).
Figure 8.5 shows the simulation results of the crowd trying to cross the different
zones of the mosque. It shows results of the first level which is occupied by Iranians
(green points) and Indonesians (blue points). In the top of Figure 8.5 Iranians are in
a kind of initial state and Indonesians are already moving in the surrounding tunnel
and occupying the main “patio.”

In a second moment, in figure 8.5, it is possible to observe the Iranian crowd (green
points) starts to organize itself to gain one of the two exits and reach the tunnel. Ac-
cording to the direction they can only use the right-side exit. The middle and bottom
of the Figure 8.5 sequence show how they organize to reach and go through the exit.
First, they go to the center of the space then they gather themselves together at some
point of the room while others approach the exit and start walking through the tun-
nel. At the same time, Indonesians (blue points) start moving towards the only exit
in the right side of the square. Some gather themselves in the inner tunnel around
the “patio” and the others in start going through the main tunnel.

Using this kind of sequences in the simulation helps to understand the collective
behavior of different groups. There is particular interest to observe the behavior
when they faced “delicate” facilities, for example, tight entrances, or halls, tunnels
or other essential points where people tend to stop and the flow stalls. These critical
aspects can help to determine the situations and possible logistics problems to face
in emergencies and mainly avoid stampedes and crushes in a group that is larger
than a million Muslim pilgrims.

Figure 8.6 shows the result of the simulation performed to measure the speed in
which pilgrims could run across the tunnels of the mosque in the last part of the
itinerary. To give a simple example, Figure 8.6 illustrates the case of Indonesian pil-
grims. The objective of this simulation was to identify places where there could be
potential crushes or stampedes.

Note that the complex urban distribution of the mosque and the itinerary en-
couraging people to walk at different paces, and looking for spaces to accomplish
all the phases of the ritual, creates potentially risky zones. People doing distinct
stages of the ceremony might find themselves going in opposite directions in tight
tunnels. Other might want to access specific points without considering the density
of the crowd and cause problems. Not respecting (or understanding) instructions,
directions and signs can be fatal in such a complex layout. Helbing has emitted rec-
ommendations with general urban rules based on the behavior models they came
up with. Still, simulations in 3D environments that model both the behavior of each



8.4. Summary 85

FIGURE 8.6: Detailed view of the distribution of pilgrims in the
mosque during the Hajj.

agent including her sociocultural and anthropomorphic features and the dynamic
aspect to the behavior are open issues.

8.4 Summary

This chapter uses an agent-based approach for modeling and simulating dynamic
human crowds. It includes the use of specific anthropometric and sociocultural
aspects that have an impact on individual and group behavior. Different to exist-
ing models that focus on the flow dynamics of individuals in particular spaces and
therefore provide a partial abstraction of individuals, our approach includes anthro-
pometric and sociocultural aspects because: (i) it aims to address human logistics in
which modeling both the urban space and the individuals of the crowds is essential
to predict and prevent catastrophes; (ii) it uses virtual worlds to visualize the sim-
ulations of dynamic crowds in Public Spaces. The challenge is to generate realistic
reactions of the individuals interacting among each other and evolving in the space,
but also of the social groups identified within the dynamic crowd and the dynamic
crowd considered as an indivisible entity.

The relevance of this research is that it derives a behavioral model of the dynam-
ics of the crowds from empirical observation so this simulation will help to prevent
crisis scenarios. Using and supporting simulations and visualization by efficient and
ad-hoc data management makes it possible to address real-time dynamic crowd ob-
servation and organization.

Decision-makers can consider the state of the dynamic crowd, the way it occupies
space and the way individuals form or leave groups. With new technology, it might
be possible to configure and reconfigure urban areas dynamically to prevent disas-
ters and to help people to behave safely in collective events. These issues are part of
our future work.
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Conclusions and Future Work

9.1 Conclusions

9.1.1 Research Questions Answered

At the beginning of the project, the possibility to implement large scale crowd simu-
lation and visualization on heterogeneous computer architectures was raised. Through
applying the right methodology in terms of parallel algorithms development and us-
ing innovative parallel programming models such as OmpSs and CUDA and MPI,
the author provides efficient implementations that proved the efficiency of his ap-
proach and ultimately combined the validity of his hypothesis. In this sense the
following objectives were achieved:

• Within the project was developed a new approach to scale crowd simulation
and visualization on heterogeneous computing cluster using a task-based tech-
nique.

• It abstracts the difficulties that imply the use of heterogeneous architectures
like memory management, scheduling, communications, and synchronization
— facilitating development, maintenance, and scalability.

• It is capable of scaling on multiple nodes

• It makes efficient use of resources by implementing up to four levels of paral-
lelism

Another issue to explore was the use of real data to develop new models of be-
havior or improve current ones, also, to verify if these data are useful to give realism
to the scenes. Within the project, a case study is presented for a crowd simulation in
urban scenarios. Geolocalized data produced by mobile devices are used to predict
individual and public behavior and detect abnormal situations in the presence of
specific events. The challenge of combining the location of all these individuals with
a 3D representation of the urban environment is also addressed. In this sense, the
following objectives were achieved:

• New behavior models were developed based on data analysis.

• it was created the infrastructure to be able to consult various data sources such
as social networks, government agencies or transport companies such as Uber.

• Realistic urban scenes were developed based on crowdsourced data.
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9.1.2 General Conclusions

Large-scale crowd simulation and visualization are essential topics in areas as
different as urbanism, training, entertainment among others. This kind of sys-
tems requires a vast computational power and memory resources commonly
available in High Performance Computing HPC platforms.

Heterogeneous clusters provide various levels of parallelism that need to be
exploited successfully to harness their computational power. At node-level,
Pthreads, OpenMP directives, among other libraries, provide access to CPU
level parallelism and OpenACC, CUDA or OpenCL libraries do the same for
accelerators. Once node-level parallelism is achieved, additional scalability is
accomplished by allocating computation in several nodes, using the message
passing interface (MPI).

Programmers need to combine these programming models in their code and
fully optimize it for each level of parallelism which turns into a complex task.
These two processes also may suggest programming heterogeneous systems
is an ad hoc activity. To exploit to the maximum the capacity of the current
HPC infrastructure and be prepared for the exascale era. The project develops
a new approach to scale crowd simulation and visualization on heterogeneous
computing cluster using a task-based technique.

Its main characteristic is hardware agnostic. OmpSs abstracts the difficul-
ties that the use of accelerators implies, making flexible and efficient use of
resources — facilitating the development of the application. In this way, re-
searchers from different areas can use this kind of infrastructure without being
experts in computing science. The author shows its implementation in one
node and how it scales to a heterogeneous computing cluster.

Visualization transforms results in graphical and color representations can im-
prove human cognition in data or results’ analysis. The selection of a visualiza-
tion mechanism depends on the simulation and available HPC infrastructure.

With the goal of flexibility and take advantage of computing resources as best
as possible, three different configurations to connect the simulation with the vi-
sualization engine were designed: in-situ, streaming, and web. An analysis of
the trade-offs of each one was presented. The In-situ configuration allows per-
forming large-scale simulations. Besides, it offers a testbed to analyze further
scalability behavior of interactive simulations that use the GPU for computing
and rendering.

Streaming and Web configuration offer flexibility and may reduce infrastruc-
ture costs when advanced visualization systems such as the CAVE or Tiled
Display Walls are remotely available. The streaming configuration also allows
to couple with different simulation engines. The Web configuration can be
used to take advantage of sensors available on mobile devices to improve user
interaction.

Path planning for large-scale crowds is a computationally expensive process,
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due to the dynamism in the scenes and vast search space. Our hierarchi-
cal path-finding approach offers significant advantages: it can return a par-
tial path instead of wait for a complete one which allows a character to start
moving while computing the rest asynchronously. If part of the route changes
which is common in dynamic scenes or video games in which the player is
chasing an object or character in motion. It can reprocess only a part of the
route with different levels of abstraction.

It has a low memory consumption, it is domain-independent, and it is suitable
to improve applying parallelism in a task-based approach. It was presented
an analysis of the algorithm in terms of pre-computation time, use of memory,
speed-up, and optimality. Our results show the algorithm speed-up near to 6x
in comparison with the typical A* approach.

A case study for a crowd simulation in urban scenarios was presented. Geo-
located data produced by mobile devices and other sources of information
(e.g., security cameras, drones) to predict individual and crowd behavior and
detect abnormal situations in the presence of specific events were used. Also, it
was addressed the challenge of combining all these individual’s location with
a 3D rendering of the urban environment. Our data processing and simulation
approach are computationally expensive and time-critical; the project relies
thus on a hybrid Cloud-HPC architecture to produce an efficient solution.

During the development of our model of crowds in urban spaces, it was devel-
oped the infrastructure to be able to consult different data sources such as so-
cial networks, government agencies or transport companies such as Uber. Ev-
ery time there is more data available and better computation resources which
allow performing analysis of greater depth, this lays the foundations to im-
prove the current simulation models.

This kind of systems gives decision-makers the opportunity to take measures
in real time to avoid catastrophes or take preventive measures identifying
which is the public infrastructure that should be improved.

Through our case study in chapter 8, it is possible to observe how anthro-
pometric and sociocultural aspects have an impact on individual and group
behavior. Address human logistics in which modeling both the urban space
and the individuals of the crowds is essential to predict and prevent catastro-
phes.

Using and supporting simulations and visualization makes it possible to ad-
dress real-time dynamic crowd observation and organization. Decision mak-
ers can consider the state of the crowd, the way it occupies space and the way
individuals form or leave groups. With new technology, it might be possible
to configure and reconfigure urban areas dynamically to prevent disasters and
to help people to behave safely in public events.
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9.2 Future Work

The author plan to add task-based in-situ analysis and visualization capabili-
ties to the system, i.e., it is expected to take advantage of OmpSs’ automatic
scheduling, memory management, communication and synchronization for
crowd visualization and analysis.

A task-based approach may have advantages over current parallel rendering
techniques. For example, visualization can be easily coupled or decoupled
from the simulation just by adding or removing rendering tasks. This also ap-
plies to crowd analysis. It will help in decomposing communication between
the simulation, visualization, and analysis into tasks while their execution may
take advantage of OmpSs’ synchronization and automatic scheduling. Also,
it will allow us to deploy the visualization system into immersive or large-
scale tiled displays connected to GPU clusters. Finally, OmpSs can be seen as
a bridge connecting data from simulation to visualization and analysis while
maintaining the rendering algorithms intact.

This interaction is expected to be similar to the OmpSs-CUDA programs, where
OmpSs is aware of the CUDA’s context, memory, and GPU availability. Nev-
ertheless, the full interaction between OmpSs-OpenGL is not supported yet.
Additional challenges such as OpenGL thread safety, OpenGL context creation
and registration in OmpSs, OmpSs multi GPU compatibility for graphics or
updating of the OmpSs scheduling system to support graphics load balancing
have to be solved first.

For our hierarchical path-finding algorithm it is used a recursive function to
look for the best path in a 4x4 grid. For applications in crowd simulations or
video games, it will be computed the path asynchronously and in parallel with
a task-based approach. Further work includes the implementation of diagonal
movement to improve the solution and compare with other algorithms. For
applications in embedded systems, it will be implemented in hardware the re-
cursive function, and this will accelerate the process by orders of magnitude.
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Journals

– Benjamin Hernandez, Hugo Perez, Isaac Rudomin, Sergio Ruiz, Oriam
DeGyves, Leonel Toledo. Simulating and Visualizing Real-Time Crowds
on GPU Clusters. Computación y Sistemas, 2014.

– Hugo Pérez, Benjamín Hernández, Isaac Rudomin, Eduard Ayguade. Scal-
ing Crowd Simulations in a GPU Accelerated Cluster. High Performance
Computer Applications: 6th International Conference, Mexico City, Mex-
ico, Revised Selected Papers. Springer 2016.

– Israel Tabarez-Paz, Isaac Rudomin, Hugo Perez. Support Vector Machine
and Spiking Neural Networks for Data Driven Prediction of Crowd Char-
acter Movement. Proceedings of the Artificial Life Conference. The MIT
Press 2016.

– Carlos Alberto Ochoa Zezzatti, Isaac Rudomin, Genoveva Vargas Solar,
Javier A. Espinosa-Oviedo, Hugo Pérez, José-Luis Zechinelli Martini. Hu-
manitarian Logistics and Cultural Diversity within Crowd Simulation.
Computacion y Sistemas, 2017.

– Rudomín, Isaac; Vargas-Solar, Genoveva; Espinosa-Oviedo, Javier A.; Pérez,
Hugo; Zechinelli-Martini, José-Luis; Modelling Crowds in Urban Spaces.
Computación y Sistemas 2017.

Book Chapters

– Hugo Perez, Benjamin Hernandez, Isaac Rudomin, Eduard Ayguade. Task-
based Crowd Simulation for Heterogeneous Architectures. Q. F. Hassan
(Ed.). Innovative Research and Applications in Next-Generation High
Performance Computing. IGI Global 2016.

Conferences

– Hugo Perez, Benjamin Hernandez, Isaac Rudomin. In Situ Crowd Sim-
ulation and Visualization. International Supercomputing Conference in
Mexico ISUM. Mexico 2014.

– Isaac Rudomin, Benjamin Hernandez, Hugo Perez. Generation, Simu-
lation and Rendering of Large Varied Animated Crowds. International
Supercomputing Conference in Mexico ISUM. Mexico 2014.
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– Hugo Perez, Benjamin Hernandez, Isaac Rudomin. OmpSuperscalar: Task-
Parallel Simulation and Visualization of Crowds with Several CPUs and
GPUs. GPU Technology Conference GTC. USA 2015.

– Genoveva Vargas-Solar, Javier A. Espinosa-Oviedo, Hugo Perez, Isaac
Rudomín, José Luis Zechinelli-Martini. Modelling Crowds in Urban Spaces:
From Big Data to Smart Secure Regions. International Supercomputing
Conference in Mexico ISUM. Mexico 2016.

– Hugo Perez, Isaac Rudomin, Eduard Ayguade. In Situ Crowd Simulation
and Visualization BSC International Doctoral Symposium. Spain 2016

– Hugo Perez, Isaac Rudomin, Eduard Ayguade. Crowd Simulation and
Visualization BSC International Doctoral Symposium. Spain 2017
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acter Movement. Proceedings of the Artificial Life Conference. MIT Press
2016.
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Oviedo, Genoveva Vargas-Solar. Simulation of Human Stampedes for
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[67] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-vision
based steering approach for crowd simulation”, ACM Trans. Graph., vol.
29, no. 4, 123:1–123:9, Jul. 2010, ISSN: 0730-0301. DOI: 10.1145/1778765.
1778860. [Online]. Available: http://doi.acm.org/10.1145/1778765.
1778860.

[68] M. Moussaïd, D. Helbing, and G. Theraulaz, “How simple rules deter-
mine pedestrian behavior and crowd disasters”, Proceedings of the Na-
tional Academy of Sciences, vol. 108, no. 17, pp. 6884–6888, 2011, ISSN:
0027-8424. DOI: 10.1073/pnas.1016507108. eprint: https://www.pnas.
org/content/108/17/6884.full.pdf. [Online]. Available: https:
//www.pnas.org/content/108/17/6884.

[69] D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, “Self-organizing pedes-
trian movement”, Environment and Planning B: Planning and Design, vol.
28, no. 3, pp. 361–383, 2001. DOI: 10.1068/b2697.

[70] N E. Miller, “Experimental studies of conflict”, Personality and the Be-
havioural Disorders, vol. 1, Jan. 1944.

[71] K. Lewin, “Field theory of social science: Selected theoretical papers”,
The ANNALS of the American Academy of Political and Social Science, vol.
276, no. 1, pp. 146–147, 1951. DOI: 10.1177/000271625127600135. eprint:
https://doi.org/10.1177/000271625127600135. [Online]. Available:
https://doi.org/10.1177/000271625127600135.

[72] Yang, Gonzalez-Banos, and Guibas, “Counting people in crowds with a
real-time network of simple image sensors”, in Proceedings Ninth IEEE
International Conference on Computer Vision, 2003, 122–129 vol.1. DOI: 10.
1109/ICCV.2003.1238325.

[73] G. K. Still, Crowd dynamics, 2000.

[74] K. M. Thompson, Scale, spectacle and movement: Massive software and dig-
ital special effects in the lord of the rings. 2006.

[75] Golaem crowd, http://www.golaem.com, 2015.

[76] K. Nagel and M. Rickert, “Parallel implementation of the transims micro-
simulation”, Parallel Computing, vol. 27, no. 12, pp. 1611 –1639, 2001,
Applications of parallel computing in transportation, ISSN: 0167-8191.
DOI: https://doi.org/10.1016/S0167-8191(01)00106-5.

[77] M. Kiran, L. S. Chin, P. Richmond, M. Holcombe, D. Worth, and C. Gree-
nough, Flame: Simulating large populations of agents on parallel hardware
architectures.

[78] X. Rubio-campillo, “Pandora: A versatile agent-based modelling plat-
form for social simulation”, in Proceedings of SIMUL 2014, The Sixth In-
ternational Conference on Advances in System Simulation, 2014.

http://dx.doi.org/10.1145/1778765.1778860
http://dx.doi.org/10.1145/1778765.1778860
http://doi.acm.org/10.1145/1778765.1778860
http://doi.acm.org/10.1145/1778765.1778860
http://dx.doi.org/10.1073/pnas.1016507108
https://www.pnas.org/content/108/17/6884.full.pdf
https://www.pnas.org/content/108/17/6884.full.pdf
https://www.pnas.org/content/108/17/6884
https://www.pnas.org/content/108/17/6884
http://dx.doi.org/10.1068/b2697
http://dx.doi.org/10.1177/000271625127600135
https://doi.org/10.1177/000271625127600135
https://doi.org/10.1177/000271625127600135
http://dx.doi.org/10.1109/ICCV.2003.1238325
http://dx.doi.org/10.1109/ICCV.2003.1238325
http://dx.doi.org/https://doi.org/10.1016/S0167-8191(01)00106-5


BIBLIOGRAPHY 99

[79] T. Yu, M. Dou, and M. Zhu, “A data parallel approach to modelling and
simulation of large crowd”, Cluster Computing, vol. 18, no. 3, pp. 1307–
1316, 2015, ISSN: 1573-7543. DOI: 10.1007/s10586-015-0451-y. [On-
line]. Available: https://doi.org/10.1007/s10586-015-0451-y.

[80] E. Bonabeau, “Agent-based modeling: Methods and techniques for sim-
ulating human systems”, Proceedings of the National Academy of Sciences,
vol. 99, no. suppl 3, pp. 7280–7287, 2002, ISSN: 0027-8424. DOI: 10.1073/
pnas.082080899. eprint: https://www.pnas.org/content/99/suppl_
3 / 7280 . full . pdf. [Online]. Available: https : / / www . pnas . org /
content/99/suppl_3/7280.

[81] N. Pelechano, J. M. Allbeck, M. Kapadia, and N. I. Badler, Simulating
heterogeneous crowds with interactive behaviors. Natick, MA, USA: A. K.
Peters, Ltd., 2016, ISBN: 1498730361, 9781498730365.

[82] Extrae, http://www.bsc.es/computer-sciences/extrae, 2015.

[83] Paraver, http://www.bsc.es/computer-sciences/performance-tools/paraver,
2015.

[84] NVIDIA, “Summit and Sierra Supercomputers: An Inside Look at the
U.S. Department of Energy’s New Pre-Exascale Systems ”, NVIDIA,
Tech. Rep., Nov. 2014.

[85] K. Ma, “In situ visualization at extreme scale: Challenges and opportu-
nities”, IEEE Computer Graphics and Applications, vol. 29, pp. 14–19, Nov.
2009, ISSN: 0272-1716. DOI: 10.1109/MCG.2009.120.

[86] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K. Ma, “In situ visualiza-
tion for large-scale combustion simulations”, IEEE Computer Graphics
and Applications, vol. 30, no. 3, pp. 45–57, 2010, ISSN: 0272-1716. DOI:
10.1109/MCG.2010.55.

[87] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification
of parallel rendering”, IEEE Comput. Graph. Appl., vol. 14, no. 4, pp. 23–
32, Jul. 1994, ISSN: 0272-1716. DOI: 10.1109/38.291528. [Online]. Avail-
able: https://doi.org/10.1109/38.291528.

[88] C. Foudil, N. Djedi, C. Sanza, and Y. Duthen, “Path finding and collision
avoidance in crowd simulation”, CIT, vol. 17, pp. 217–228, Jan. 2009.
DOI: 10.2498/cit.1000873.

[89] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths”, IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968, ISSN: 0536-1567.
DOI: 10.1109/TSSC.1968.300136.

[90] E. W. Dijkstra, “A note on two problems in connexion with graphs”,
Numer. Math. 1, pp. 269–271, 1959.

[91] S. Even, Graph algorithms, 2nd. New York, NY, USA: Cambridge Uni-
versity Press, 2011, ISBN: 0521736536, 9780521736534.

[92] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search”, Artif. Intell., vol. 27, pp. 97–109, 1985.

[93] N. R. Sturtevant, J. M. Traish, J. R. Tulip, T. Uras, S. Koenig, B. Strasser,
A. Botea, D. Harabor, and S. Rabin, “The grid-based path planning com-
petition: 2014 entries and results”, in SOCS, 2015.

http://dx.doi.org/10.1007/s10586-015-0451-y
https://doi.org/10.1007/s10586-015-0451-y
http://dx.doi.org/10.1073/pnas.082080899
http://dx.doi.org/10.1073/pnas.082080899
https://www.pnas.org/content/99/suppl_3/7280.full.pdf
https://www.pnas.org/content/99/suppl_3/7280.full.pdf
https://www.pnas.org/content/99/suppl_3/7280
https://www.pnas.org/content/99/suppl_3/7280
http://dx.doi.org/10.1109/MCG.2009.120
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/38.291528
https://doi.org/10.1109/38.291528
http://dx.doi.org/10.2498/cit.1000873
http://dx.doi.org/10.1109/TSSC.1968.300136


100 BIBLIOGRAPHY

[94] D. Harabor and A. Grastien, “Online graph pruning for pathfinding
on grid maps”, in Proceedings of the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, ser. AAAI’11, San Francisco, California: AAAI Press,
2011, pp. 1114–1119. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2900423.2900600.

[95] D. Harabor and Grastien, “Improving jump point search”, in Interna-
tional Conference on Automated Planning and Scheduling, 2014.

[96] T. Uras and S. Koenig, “Identifying hierarchies for fast optimal search”,
2014.

[97] B. Strasser, D. Harabor, and A. Botea, “Fast first-move queries through
run-length encoding”, in SOCS, 2014.

[98] A. Botea, M. Müller, and J. Schaeffer, “Near optimal hierarchical path-
finding”, Journal of Game Development, vol. 1, pp. 7–28, 2004.

[99] N. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement”, in Proceedings of the 20th National Conference on Ar-
tificial Intelligence - Volume 3, ser. AAAI’05, Pittsburgh, Pennsylvania:
AAAI Press, 2005, pp. 1392–1397, ISBN: 1-57735-236-x. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1619499.1619557.

[100] A. Kring, A. J. Champandard, and N. Samarin, “Dhpa* and shpa*: Ef-
ficient hierarchical pathfinding in dynamic and static game worlds”, in
Proceedings of the Sixth AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, ser. AIIDE’10, Stanford, California, USA:
AAAI Press, 2010, pp. 39–44. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3014666.3014675.

[101] G. Karypis and V. Kumar, “Multilevelk-way partitioning scheme for ir-
regular graphs”, Journal of Parallel and Distributed Computing, vol. 48, no.
1, pp. 96 –129, 1998, ISSN: 0743-7315. DOI: https://doi.org/10.1006/
jpdc.1997.1404. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0743731597914040.

[102] H. Samet, “An overview of quadtrees, octrees, and related hierarchi-
cal data structures”, in Theoretical Foundations of Computer Graphics and
CAD, R. A. Earnshaw, Ed., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1988, pp. 51–68, ISBN: 978-3-642-83539-1.

[103] J. Hirt, D. Gauggel, J. Hensler, M. Blaich, and O. Bittel, “Using quadtrees
for realtime pathfinding in indoor environments”, May 2010. DOI: 10.
1007/978-3-642-27272-1_6.

[104] N. Sturtevant, “Benchmarks for grid-based pathfinding”, Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144 –
148, 2012. [Online]. Available: http://web.cs.du.edu/~sturtevant/
papers/benchmarks.pdf.

[105] J. Byrne, S. Caulfield, L. Buckley, X. Xu, D. Pena, G. Baugh, and D.
Moloney, “Applications of the vola format for 3d data knowledge dis-
covery”, International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery. China, vol. 13, 2017.

[106] HOG Path-Finding Library, https://webdocs.cs.ualberta.ca/ nathanst/hog.html,
2019.

http://dl.acm.org/citation.cfm?id=2900423.2900600
http://dl.acm.org/citation.cfm?id=2900423.2900600
http://dl.acm.org/citation.cfm?id=1619499.1619557
http://dl.acm.org/citation.cfm?id=3014666.3014675
http://dl.acm.org/citation.cfm?id=3014666.3014675
http://dx.doi.org/https://doi.org/10.1006/jpdc.1997.1404
http://dx.doi.org/https://doi.org/10.1006/jpdc.1997.1404
http://www.sciencedirect.com/science/article/pii/S0743731597914040
http://www.sciencedirect.com/science/article/pii/S0743731597914040
http://dx.doi.org/10.1007/978-3-642-27272-1_6
http://dx.doi.org/10.1007/978-3-642-27272-1_6
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf


BIBLIOGRAPHY 101

[107] G. Rong, Y. Liu, W. Wang, X. Yin, D. Gu, and X. Guo, “Gpu-assisted
computation of centroidal voronoi tessellation”, IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 3, pp. 345–356, 2011,
ISSN: 1077-2626. DOI: 10.1109/TVCG.2010.53.

[108] O. De Gyves, L. Toledo, and I. Rudomín, “Comportamientos en simu-
lación de multitudes: Revisión del estado del arte”, in Research in Com-
puter Science Special Issue: Avances en Inteligencia Artificial, vol. 62, 2013.

[109] A. Bhattacharya and S. K. Das, “Lezi-update: An information-theoretic
approach to track mobile users in pcs networks”, in Proceedings of the
5th Annual ACM/IEEE International Conference on Mobile Computing and
Networking, ser. MobiCom ’99, Seattle, Washington, USA: ACM, 1999,
pp. 1–12, ISBN: 1-58113-142-9. DOI: 10.1145/313451.313457. [Online].
Available: http://doi.acm.org/10.1145/313451.313457.

[110] J. Wolf, R. Guensler, and W. Bachman, “Elimination of the travel di-
ary: Experiment to derive trip purpose from global positioning system
travel data”, Transportation Research Record: Journal of the Transportation
Research Board, vol. 1768, pp. 125–134, 2001. DOI: 10.3141/1768- 15.
eprint: https : / / doi . org / 10 . 3141 / 1768 - 15. [Online]. Available:
https://doi.org/10.3141/1768-15.

[111] N. Marmasse and C. Schmandt, “Location-aware information delivery
with commotion”, in Proceedings of the 2Nd International Symposium on
Handheld and Ubiquitous Computing, ser. HUC ’00, Bristol, UK: Springer-
Verlag, 2000, pp. 157–171, ISBN: 3-540-41093-7. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=647986.741313.

[112] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social net-
working service among user, location and trajectory”, IEEE Data(base)
Engineering Bulletin, 2010. [Online]. Available: https://www.microsoft.
com / en - us / research / publication / geolife - a - collaborative -
social-networking-service-among-user-location-and-trajectory/.

[113] D. Ashbrook and T. Starner, “Using gps to learn significant locations
and predict movement across multiple users”, Personal and Ubiquitous
Computing, vol. 7, no. 5, pp. 275–286, 2003, ISSN: 1617-4917. DOI: 10.
1007/s00779-003-0240-0. [Online]. Available: https://doi.org/10.
1007/s00779-003-0240-0.

[114] J. Krumm and E. Horvitz, “Predestination: Inferring destinations from
partial trajectories”, in Eighth International Conference on Ubiquitous Com-
puting (UbiComp 2006), Springer, 2006. [Online]. Available: https://
www.microsoft.com/en-us/research/publication/predestination-
inferring-destinations-from-partial-trajectories/.

[115] A.-N.S.T.-G.A.O.-F.L.G.-S.I.B. J. Garcia-Gasulla Dario and J. Vázquez-
Salceda, “Social network data analysis for event detection”, in 21st Eu-
ropean Conference on Artificial Intelligence (ECAI’14), 2014.

[116] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
A not-so-foreign language for data processing”, in Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’08, Vancouver, Canada: ACM, 2008, pp. 1099–1110, ISBN: 978-
1-60558-102-6. DOI: 10 . 1145 / 1376616 . 1376726. [Online]. Available:
http://doi.acm.org/10.1145/1376616.1376726.

http://dx.doi.org/10.1109/TVCG.2010.53
http://dx.doi.org/10.1145/313451.313457
http://doi.acm.org/10.1145/313451.313457
http://dx.doi.org/10.3141/1768-15
https://doi.org/10.3141/1768-15
https://doi.org/10.3141/1768-15
http://dl.acm.org/citation.cfm?id=647986.741313
http://dl.acm.org/citation.cfm?id=647986.741313
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
http://dx.doi.org/10.1007/s00779-003-0240-0
http://dx.doi.org/10.1007/s00779-003-0240-0
https://doi.org/10.1007/s00779-003-0240-0
https://doi.org/10.1007/s00779-003-0240-0
https://www.microsoft.com/en-us/research/publication/predestination-inferring-destinations-from-partial-trajectories/
https://www.microsoft.com/en-us/research/publication/predestination-inferring-destinations-from-partial-trajectories/
https://www.microsoft.com/en-us/research/publication/predestination-inferring-destinations-from-partial-trajectories/
http://dx.doi.org/10.1145/1376616.1376726
http://doi.acm.org/10.1145/1376616.1376726


102 BIBLIOGRAPHY

[117] CesiumJS, https://cesiumjs.org/, 2019.

[118] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife gps trajectory dataset
- user guide, 2011. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/geolife-gps-trajectory-dataset-
user-guide/.

[119] S. J. Yuhaski and J. M. Smith, “Modeling circulation systems in build-
ings using state dependent queueing models”, Queueing Systems, vol.
4, no. 4, pp. 319–338, 1989, ISSN: 1572-9443. DOI: 10.1007/BF01159471.
[Online]. Available: https://doi.org/10.1007/BF01159471.

[120] D Garbrecht, “Describing pedestrian and car trips by transition matri-
ces”, Traffic Quarterly, vol. 27, pp. 89–109, 1973.

[121] O. M. Ashford N. and P. D. McGinity, “Stochastic modelling of passen-
ger and baggage flows through an airport terminal”, Traffic Engineering
& Control, vol. 17, no. 5, pp. 207–210, 1976.

[122] D. Helbing, “A stochastic behavioral model and a ‘microscopic’ foun-
dation of evolutionary game theory”, Theory and Decision, vol. 40, no. 2,
pp. 149–179, 1996, ISSN: 1573-7187. DOI: 10.1007/BF00133171. [Online].
Available: https://doi.org/10.1007/BF00133171.

[123] S. Curtis, A. Best, and D. Manocha, “Menge: A modular framework for
simulating crowd movement”, Collective Dynamics, vol. 1, no. 0, pp. 1–
40, 2016, ISSN: 2366-8539.

[124] E. S. Bogardus, “A social distance scale”, in Sociology and Social Research.
1933, pp. 265–271.

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
http://dx.doi.org/10.1007/BF01159471
https://doi.org/10.1007/BF01159471
http://dx.doi.org/10.1007/BF00133171
https://doi.org/10.1007/BF00133171

	Acknowledgements
	Abstract
	Introduction
	Introduction
	Problem Definition
	Scale crowd simulation and visualization on heterogeneous cluster computing.
	Represent the most realistic behavior and scenarios based on crowdsourced data.

	Motivation
	Research Questions
	Contributions
	Organization

	Background and State of the Art
	Scale crowd simulation and visualization on heterogeneous cluster computing
	A brief introduction to OmpSs

	Represent the most realistic behavior and scenarios based on crowdsourced data.
	Observing High-Density Crowds
	Simulating Crowds
	Humanitarian Logistics

	Current Platforms

	Crowd Simulation on Heterogeneous Architectures
	Introduction
	Algorithm Overview
	Implementation
	CPU Version
	CUDA First Version
	CUDA Second Version
	OmpSs GPU Version

	Results
	Summary

	Scaling Crowd Simulations in a GPU Accelerated Cluster
	Introduction
	Algorithm Overview
	Implementation
	Results
	Summary

	GPU Cluster Crowd Visualization
	Introduction
	Crowd Visualization Engine Modules
	In Situ
	Streaming
	Web

	Development and Integration with Urban Scenarios
	Client pipeline.
	Server pipeline.

	Results
	Summary

	Hierarchical Path-Finding
	Introduction
	Related Work
	Pre-processing
	Auxiliary Maps
	Density
	Connectivity
	Temporal task: Pre-compute Paths

	Hierarchical Path-finding Algorithm
	Experimental Results
	Speed-up Analysis
	Pre-Processing Time Analysis
	Use of Memory Analysis
	Optimality

	Summary

	Modelling Crowds in Urban Spaces
	Introduction
	Related Work
	Data visualization and Crowd Simulation
	Data harvesting and analytics for monitoring crowds

	Using big data for observing crowds
	Identifying and profiling the crowd
	Simulating and visualizing large crowds in real time

	Experimentation
	Computing trajectories
	2D tracking of individuals
	3D visualization of individual tracks

	Summary

	Humanitarian Logistics and Cultural Diversity within Crowd Simulation
	Introduction
	A Sociocultural Perspective for Simulating Human Stampedes
	Anthropometric and Sociocultural Model

	Experimentation
	Use Case: the Hajj
	Experiment Design
	Simulation Results

	Summary

	Conclusions and Future Work
	Conclusions
	Research Questions Answered
	General Conclusions

	Future Work

	Publications
	Bibliography

