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Abstract

Due to the relationship between people’s daily life and specific geographic locations,

the historical trajectory data of a person contains lots of valuable information that

can be used to discover their lifestyle and regularity. The generalisation in the use of

mobile devices with location capabilities has fueled trajectory mining: the research

area that focuses on manipulating, processing and analysing trajectory data to aid

the extraction of higher level knowledge from the trajectory history of a user. Based

on this analysis, even the person’s next probable location can be predicted. These

techniques pave the way for the improvement of current location-based services

and the rise of new business models, based on rich notifications related to the

right prediction of users’ next location. This thesis addresses location prediction

as well as the discovery of significant regions in person’s movement area. It proposes

various models to predict the future state of people movement, based on different

machine learning techniques (such as Markov Chains, Recurrent Neural Networks

and Convolutional Neural Networks) and considering different input representation

methods (embedding learning and one-hot vector). Moreover, the attention

technique is used in the prediction model, aiming at aligning time intervals in

people’s trajectories that are relevant to a specific location. Furthermore, the thesis

proposes a time encoding scheme to capture movement behavior characteristics.

In addition to that, it analyses the impact of Space-Time representation learning

through evaluating different architectural configurations. Finally, trajectory analysis

and location prediction is applied to real-time smartphone-based monitoring system

for seniors.

Keywords: Location Prediction, Deep Learning, Time Encoding Scheme,

Trajectory Analysis, Attention technique, Embedding representations learning,

Regions-of-interest discovering, Wandering, Smart Health, Mild Cognitive

Impairments, Dementia, Monitoring system.
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Resum

A causa de l’estreta relació entre la vida de les persones i determinades ubicacions

geogràfiques, les dades històriques sobre trajectòries d’una persona contenen

informació valuosa que es pot utilitzar per descobrir els seus estils de vida i hàbits.

L’ús generalitzat de dispositius mòbils amb capacitat de localització ha impulsat la

mineria de trajectòries (trajectory mining), la qual se centra en la manipulació,

el processament i l’anàlisi de dades de trajectòries per facilitar l’extracció de

coneixement a partir de l’històric de les trajectòries d’una persona. Basant-nos en

aquesta anàlisi, fins i tot es pot arribar a predir quina serà la probable propera

localització d’una persona. Amb aquestes tècniques, s’obre la porta a la millora

dels actuals serveis basats en la ubicació i a l’aparició de nous models de negoci,

basats en notificacions riques relacionades amb la predicció adequada de les futures

ubicacions dels usuaris. Aquesta tesi tracta sobre la predicció de la ubicació i el

descobriment de regions significatives a les zones de moviment de les persones.

Proposa diversos models de predicció, basant-se en diferents tècniques d’aprenentatge

automàtic (com ara les cadenes de Markov, les xarxes neuronals recurrents i les

xarxes neuronals convolucionals), tot considerant diferents mètodes de representació

d’entrada (embedding learning i one hot vector). A més, el model de predicció

utilitza la attention technique (tècnica d’atenció), que té com a objectiu alinear

els intervals de temps en les trajectòries de les persones que són rellevants per a

una ubicació espećıfica. La tesi també proposa un esquema de codificació temporal

per capturar les caracteŕıstiques del comportament del moviment. Addicionalment,

analitza l’impacte de l’aprenentatge de la representació espacial-temporal mitjançant

l’avaluació de diferents arquitectures. Finalment, l’anàlisi de la trajectòria i la

predicció de localització s’apliquen a la monitorització en temps real per a persones

grans.
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Resumen

Debido a la estrecha relación entre la vida de las personas y determinadas

ubicaciones geográficas, los datos históricos sobre trayectorias de una persona

contienen información valiosa que se puede utilizar para descubrir sus estilos de vida

y hábitos. El uso generalizado de dispositivos móviles con capacidad de localización

ha impulsado la mineŕıa de trayectorias (trajectory mining), la cual se centra en la

manipulación, el procesamiento y el análisis de datos de trayectorias para facilitar la

extracción de conocimiento a partir de el histórico de las trayectorias de una persona.

Basándonos en este análisis, incluso se puede llegar a predecir cuál será la probable

próxima localización de una persona. Con estas técnicas, se abre la puerta a la mejora

de los actuales servicios basados en la ubicación y en la aparición de nuevos modelos

de negocio, basados en notificaciones ricas relacionadas con la predicción adecuada

de las futuras ubicaciones de los usuarios. Esta tesis trata sobre la predicción de la

ubicación y el descubrimiento de regiones significativas en las zonas de movimiento de

las personas. Propone varios modelos de predicción, basándose en diferentes técnicas

de aprendizaje automático (como las cadenas de Markov, las redes neuronales

recurrentes y las redes neuronales convolucionales), considerando diferentes métodos

de representación de entrada (embedding learning y one hot vector). Además, el

modelo de predicción utiliza la attention technique (técnica de atención), que tiene

como objetivo alinear los intervalos de tiempo en las trayectorias de las personas que

son relevantes para una ubicación espećıfica. La tesis también propone un esquema

de codificación temporal para capturar las caracteŕısticas del comportamiento del

movimiento. Adicionalmente, analiza el impacto del aprendizaje de la representación

espacial-temporal mediante la evaluación de diferentes arquitecturas. Finalmente, el

análisis de la trayectoria y la predicción de localización se aplican a la monitorización

en tiempo real para personas mayores.
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and Dr. Agusti Solanas for their useful guidance, insightful comments, and

considerable encouragement to complete this thesis. Special thanks to Mohamed

Jebreel for his cooperation and support.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



vi

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

I Introduction 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Trajectory Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Discovery of Significant Places . . . . . . . . . . . . . . . . . . 17

vii

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



viii Contents

2.2.2 Location Prediction . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Wandering Detection . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Methods for RoI Discovery . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Location Prediction Models . . . . . . . . . . . . . . . . . . . 21

2.3.2.1 Probabilistic Models . . . . . . . . . . . . . . . . . . 21

2.3.2.2 Supervised Learning Models . . . . . . . . . . . . . . 23

2.3.3 Wandering Detection Methods . . . . . . . . . . . . . . . . . . 28

2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Embedding Representations Learning . . . . . . . . . . . . . . 30

2.4.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 31

2.4.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 32

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Evaluation of Location Prediction Models . . . . . . . . . . . 33

2.5.2 Evaluation of RoI Discovery Methods . . . . . . . . . . . . . . 34

2.5.3 Wandering Detection Methods Evaluation . . . . . . . . . . . 34

2.5.4 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Mobility Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Contributions to Deep learning Models for Location

Prediction 39

3 Preliminary Matters 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Location Prediction Model Architecture . . . . . . . . . . . . . . . . 42

3.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 RoI Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Prediction Model Building . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Prediction Model Testing . . . . . . . . . . . . . . . . . . . . . 46

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



Contents ix

4 Recurrent Neural Network for Predicting People’s Next Location 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 STF-RNN: Model Description . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Effects of Parameters . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 The Effect of Different Architectural Configurations in Location

Prediction Model 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Prediction Models Description . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Pooling-based Architecture . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Different Data Inputs . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2.1 Time of Entering RoI Information . . . . . . . . . . 66

5.2.2.2 Weekday Types Information . . . . . . . . . . . . . . 67

5.2.2.3 Time Encoding Scheme Information . . . . . . . . . 68

5.2.3 Different Data Input Representation Techniques . . . . . . . . 69

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Effect of Pooling-based Architecture . . . . . . . . . . . . . . 70

5.3.3 Effect of Different Data Inputs . . . . . . . . . . . . . . . . . . 71

5.3.4 Effect of Different Data Input Representations . . . . . . . . . 73

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 An Attention-based Neural Model for People’s Movement

Prediction 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 MAP: Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 79

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



x Contents

6.2.1 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Attention Model . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Softmax Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.4 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.4 Effects of Parameters . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.5 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Convolutional Neural Network for Predicting People’s Next

Location 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 ST-CNN: Model Description . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 95

7.3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III Contributions to Specific Applications 99

8 RoI Discovering and Predicting in Smartphone Environments 101

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2.1 Discovering RoIs . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.1.1 DCRoI . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1.2 CRoI Clustering . . . . . . . . . . . . . . . . . . . . 110

8.2.2 Next Location Prediction Model Construction . . . . . . . . . 110

8.2.2.1 Generalized Markov Model: GMM . . . . . . . . . . 111

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



Contents xi

8.2.3 Next Location Prediction . . . . . . . . . . . . . . . . . . . . . 117

8.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 118

8.3.2.1 DRoI Method Specifications . . . . . . . . . . . . . . 118

8.3.2.2 Prediction Models Specifications . . . . . . . . . . . 119

8.3.3 Comparison Results: DRoI Methods . . . . . . . . . . . . . . 119

8.3.4 Comparison Results: Location Prediction . . . . . . . . . . . . 120

8.3.4.1 Effect of Different Orders . . . . . . . . . . . . . . . 122

8.3.4.2 Effect of RoI Discovering Methods . . . . . . . . . . 123

8.3.4.3 Effect of DRoI Parameters . . . . . . . . . . . . . . . 124

8.3.4.4 Running Time . . . . . . . . . . . . . . . . . . . . . 125

8.3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Monitoring Seniors with Mild Cognitive Impairments using Deep

Learning and Location Prediction 131

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 SafeMove: System Description . . . . . . . . . . . . . . . . . . . . . . 133

9.2.1 Overview of SafeMove . . . . . . . . . . . . . . . . . . . . . . 134

9.2.2 Patient’s Smartphone Application . . . . . . . . . . . . . . . . 136

9.2.3 RoIs Identification Unit . . . . . . . . . . . . . . . . . . . . . 136

9.2.4 Prediction Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2.5 Monitoring Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.6 Abnormal Detection Unit . . . . . . . . . . . . . . . . . . . . 140

9.2.7 Alert Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2.8 Assistance Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 145

9.3.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 146

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



xii Contents

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

IV Conclusion 151

10 Concluding remarks 153

10.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 153

10.2 Future Research Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 157

References 159

List of Acronyms 175

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



List of Figures

2.1 Trajectory data forms. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Discovery of significant places. . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Location prediction: a big picture. . . . . . . . . . . . . . . . . . . . . 18

2.4 General RNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 General CNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 General location prediction model architecture. . . . . . . . . . . . . 42

3.2 Noise detection and removal . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Removing the points outside our target boundary. . . . . . . . . . . . 44

3.4 LiSPD method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Movement time can be expressed as entering, staying or leaving times. 45

3.6 Next location prediction testing architecture. . . . . . . . . . . . . . . 47

4.1 STF-RNN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Performance of STF-RNN with varying window size w (1, 2 and 3). . 57

4.3 Parameters impact on STF-RNN performance. . . . . . . . . . . . . . 58

5.1 ST-PA architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



xiv List of Figures

5.2 STE-RNN cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Time encoding scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Different data input models comparison using GeoLife dataset. . . . . 74

5.5 Different data input models comparison using Gowalla dataset. . . . . 74

6.1 MAP architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Models performance at users level. . . . . . . . . . . . . . . . . . . . 86

6.3 Attention visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Impact of RoI embedded vector dimensionality parameter dr. . . . . . 88

6.5 Impact of hidden layer embedded vector dimensionality parameter dh. 88

7.1 ST-CNN model architecture. . . . . . . . . . . . . . . . . . . . . . . . 92

8.1 Our proposed next interest region discovering and prediction approach.104

8.2 DCRoI flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.3 The first level: Discovering CRoI. . . . . . . . . . . . . . . . . . . . . 107

8.4 Discovering CRoI in mobility data. . . . . . . . . . . . . . . . . . . . 108

8.5 The second level: CRoI clustering. . . . . . . . . . . . . . . . . . . . . 110

8.6 s-GMM transitions probability graph. . . . . . . . . . . . . . . . . . . 113

8.7 Soundness and completeness of RoI discovery methods. . . . . . . . . 120

8.8 Prediction models with different RoIs discovery methods. . . . . . . . 124

8.9 The effects of DRoIs parameters. . . . . . . . . . . . . . . . . . . . . 125

8.10 Running time of different RoI discovery methods. . . . . . . . . . . . 126

8.11 User movement regularity. . . . . . . . . . . . . . . . . . . . . . . . . 128

9.1 SafeMove system architecture. . . . . . . . . . . . . . . . . . . . . . . 134

9.2 Movement behaviour types. . . . . . . . . . . . . . . . . . . . . . . . 140

9.3 Bearing and directions . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.4 Changes in directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.5 Abnormal behaviour detection model. . . . . . . . . . . . . . . . . . . 143

9.6 Confusion matrix of evaluating ABD model on the datasets. . . . . . 147

9.7 Distance effect on the datasets. . . . . . . . . . . . . . . . . . . . . . 148

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



List of Tables

2.1 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The mathematical expressions of sensitivity, precision, specificity,

accuracy and F1-score . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Datasets description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Model parameters values. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Performance comparison on the datasets evaluated by Recall@N and

Precision@N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Performance comparison on the datasets evaluated by Recall@N and

Precision@N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Performance comparison on the datasets evaluated by Recall@N and

Precision@N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Performance comparison of STF-RNN with different input

representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Models feature demonstration . . . . . . . . . . . . . . . . . . . . . . 84

xv

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



xvi List of Tables

6.2 Performance comparison on the datasets evaluated by Precision@N

and Recall@N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Running time in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Performance comparison on the datasets evaluated by Recall@N and

Precision@N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 s-GMM probability matrix. . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 t-GMM probability matrix. . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 The RoI transition matrix. . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4 The time matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.5 Tran-Time matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.6 dep-st-GMM probability matrix. . . . . . . . . . . . . . . . . . . . . . 115

8.7 Performance comparison on the datasets evaluated by Recall@N. . . . 121

8.8 Performance comparison with different order evaluated by Recall@1. . 123

8.9 Running time in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1 Examples of pattern evaluation. . . . . . . . . . . . . . . . . . . . . . 142

9.2 Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 147

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



List of Tables xvii

List of Symbols

The next list describes several symbols that will be later used within the thesis.

Symbol Description

R@N Recall@N

P@N Precision

U Set of users

u User

Lu Real visited locations by a user u

PLN,u Top N predicted locations

Mi Movement

R Set of RoIs

ri RoI vector

r̂i+1 Predicted RoI

N Number of RoIs

Re RoI embedded matrix

rei RoI embedded vector

dr RoI embedded vector dimensionality

Wr RoI weight matrix

T Set of time intervals

ti Time vector

M Number of different time intervals

Te Time intervals embedded matrix

tei Time embedded vector

dt Time embedded vector dimensionality

Wt Time weight matrix

w Number of visited RoIs taken as inputs to the model

hi Hidden layer vector

dh Hidden embedded vector dimensionality
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CHAPTER1

Introduction

Human behaviour is very complex and diverse. It can consist of a large number

of attributes in which only some of those can be predicted from historical trends.

Breaking human behaviour into different elements such as mobility patterns,

shopping habits, etc., and investigating each element separately aims to reduce the

complexity of the problem into a manageable subset. Mobility, as a component of

human behaviour, is also complex, but its variability is lower and could be studied

with more focused pattern-recognition approaches. In most cases, human mobility is

analysed with the goal of predicting future behaviours. Mobility prediction is defined

as the prediction of people’s next location in the region that they usually move in.

With the proliferation and widespread of mobile devices, such as tablet PCs,

smartphones, smart watches, etc., the availability of these devices to the general

public, together with the rapid enhancement of their data collection technologies

either indoor (Bluetooth, Wi-Fi) or outdoor (Global Positioning System (GPS),

3
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4 Chapter 1. Introduction

Global System for Mobile communications (GSM)) and finally mobile access to the

Internet, a massive amount of mobility data from moving objects (e.g., people and

vehicles) can be obtained at a very low cost. Furthermore, the availability of large

amounts of collected mobility data along with the development of location-based

applications and services in mobile devices, have received considerable interests from

both the industry and the research community towards building efficient methods for

analysing and extracting knowledge from this data to predict user’s next movement

or location (Rashidi and Cook, 2010; Löwe et al., 2012; Lin and Hsu, 2014).

Many companies track users’ daily visited locations and record these large

amount of data for many different applications. Portable devices with localization

systems such as GPS are used to collect mobility data. Users carry smartphones

and wearables most of the time. Literature shows that companies can track such

data from those devices even when location based applications are not enabled.

Additionally, users’ locations might be tracked even when smartphone Wi-Fi and/or

data connections are disabled.

Location-based services (LBSs) can be considered as one of the most stimulating

fields that impact both e-commerce and classical businesses. Users can be offered

services relevant to where they are, right now. LBSs focus on enhancing smartphones’

applications with the ability to know the current and historical locations of phones’

users. LBSs are developed to be part of a smart city architecture to improve people’s

quality of life and also to empower marketing, becoming much more focused and

relevant.

The main requirement to provide LBSs is to continuously be able to determine

where the users are during their daily activities. This can be divided into three parts,

where each part can be relevant to specific marketing strategies:

• Historical locations. Some applications like to know where user has been in

the past, how often, for how long, etc.

• Current Location. Some applications like to know where the user is right

now.

• Future locations. This is the focus of our research. Future locations can be
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1.1. Motivation 5

also divided into: next or the very near future possible location and the future

location in general (e.g., in the next summer vacation, holidays, etc.)

LBSs can be improved by predicting the most probable next location

the user will visit. This prediction is used to make proactive offerings or services

based on those predicted locations.

1.1 Motivation

How much can one know about individuals behaviour just by looking at the way

they move from one place to another? Understanding human mobility at the level

of daily lives is crucial to a broad-domain ubiquitous computing applications such

as healthcare applications (Solanas et al., 2014a), network management (Vranova

and Ondryhal, 2011), personal positioning (Fang et al., 2009), human computer

interaction, public safety assurance, socio-economic modeling for urban planning,

public transportation planning (Gonzalez et al., 2008; Gudmundsson et al., 2012;

Zheng et al., 2014; Xia et al., 2014a), location-based services and advertisements

(Rao and Minakakis, 2003; Kim et al., 2015), ubiquitous advertising (Krumm, 2011),

crime prediction (Gerber, 2014), location recommendation systems (Quercia et al.,

2010; Casino et al., 2015; Yu and Chen, 2015), epidemic prevention (Kleinberg, 2007),

route planning, carpooling, meeting planners, and many others (Asgari et al., 2013).

Next location prediction can be useful in developing the vehicle system

intelligence. For example, next location prediction can enhance the navigation

system performance by providing information related to predicting the habitual

places and routes of the driver. Such valuable information can substantially

contribute to safer and more efficient driving (Wevers et al., 2010), reducing of fuel

consumption and consequently, exhaust emissions (Ericsson et al., 2006; Lee et al.,

2008; Ganti et al., 2010). In addition to that, combining the predicted routes the

driver is going to take with real-time roads information obtained from several sources

by vehicle’s onboard systems, can be used to warn the driver about traffic conditions

and unsafe sections of a route (Wevers et al., 2010).
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6 Chapter 1. Introduction

In the marketing environment, next location prediction can play an important role

in providing mobile users with appropriate services or advertisements related to the

location is going to be visited (Barwise and Strong, 2002; Barnes and Scornavacca,

2004). For example, if the model knows that the user will go for lunch, then it can

recommend a list of restaurants together with useful information like today’s menu,

availabilities, etc. Providing such services ensures that users will not be disturbed at

inappropriate times and thereby not losing their interest in the services. In addition

to that, this could help the advertisers to reduce cost and maximum possible gain

from the service.

Location prediction can play an important role in crime suppression and

rehabilitation where electronic monitoring and parole is needed. Instead of

imprisoning the persons specially who have committed fairly minor crimes,

monitoring them electronically helps reduce costs and ease prison overcrowding in

addition to reduce the risk of corrupting them when imprisoning them with harder

criminals (Perusco and Michael, 2007). Further, a next location model can predict

the location and time where a certain victim and offender may potentially meet

in order to avoid unwanted encounters. The local authorities can increase police

presence at the predicted locations and thus avoid the occurrence of criminal acts.

Disaster relief can also be supported by next location prediction (Gao et al.,

2011a,b; Zook et al., 2010). Currently, incidents and requests are reported during a

disaster by volunteers and victims who have a phone or other communication device.

There are no applications for forecasting future requests. However, in case of limited

communication abilities for example in black-out areas, responders, governmental

and non-governmental organisations face difficulties in deploying aid and rescue

capabilities (Gao et al., 2011a). Scientific data about floods, earthquakes, and other

phenomena together with users data from volunteers, victims and non-governmental

organisations employees can be used to build models to predict the location of future

requests and needs. While data collection from disaster scenes is a challenging task,

timely and accurate data enables government and non-governmental organisations

to respond appropriately.
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1.1. Motivation 7

Location prediction can be used in wireless mobile ad-hoc networks (H. Kaaniche,

2010; Dekar and Kheddouci, 2008). The mobile node in the ad-hoc networks performs

as a host as well as a router and communicates either directly or via other nodes

of the network by establishing routes. However, these routes are prone to frequent

break up due to the mobility of the nodes. If the future location of the mobile can be

predicted, the resources reservation can be made before be asked, which enables the

network to provide a better quality of service. Furthermore, location prediction can

be used to estimate the expiration time of the links connecting the nodes enabling

them to select the most stable paths which improves routing performances.

Location prediction is also crucial in cellular communication network to increase

the efficiency of the network (Yavaş et al., 2005). Using the location prediction

information, the system can effectively allocate resources to the cells that are most

likely a mobile user will move to rather than blindly allocating excessive resources

in all neighbour cells to the current cell (Yavaş et al., 2005; Gohil, 2014; Kumar

et al., 2015). Effective allocation of resources to mobile users would reduce the

latency in accessing the resources and improve resource utilization. In addition to

that, this prediction can be used to automatically update the location information

of the mobile user which reduces the traffic load as a result of location update and

paging in cellular communication networks (Parija et al., 2013c,a,b; Leca et al., 2015;

L. Vintan and Ungerer, 2004; Daoui et al., 2012; Kumar and Venkataram, 2002).

Location prediction can potentially benefit many other areas, such as saving

energy in residential buildings (Mozer, 1998, 2004; Gupta et al., 2009). In the USA,

the residential sector uses 21% of the total U.S. energy consumption, while heating

and cooling are responsible for 46% of the total energy consumed in U.S. residential

buildings (Gupta et al., 2009). The residential energy generally can be saved using

prediction model that learn the behaviour and needs patterns of the inhabitants by

monitoring them over a period of time. Next location prediction model can provide

a better estimation of the time when an inhabitants return home. Different home

comfort systems such as thermostats, lighting can be then simply turned on.

In the field of public transportation network, location prediction can be used to
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8 Chapter 1. Introduction

provide beneficial strategies for passengers and taxi drivers (Yuan et al., 2011; Guang

et al., 2015). The vacant taxis cruising on roads generate additional traffic, increase

the exhaust pollution and waste gas and time of taxi drivers. However, to improve

the utilization of the vacant taxis and reduce the energy consumption effectively,

while enabling people to take a taxi more easily, a recommender system based on

location prediction can be proposed for both passengers and taxi drivers. The system

will suggest the taxi driver with a location which he/she is most likely to pick up

a passenger. The prediction information helps the taxi driver to reduce the time of

cruising without a fare, and thus, saves energy consumption and eases the exhaust

pollution as well as maximizes the profit. In addition to that, people are most likely

to find a taxi within a walking distance.

Users’ location histories can be used to learn extensive knowledge about their

behaviour and preferences. Friend recommendation systems can be developed by

combining multiple users’ social network and their location histories (Ye et al., 2009;

Yang et al., 2017). It allows for detecting the locations for the users sharing the same

interests and activities.

Next location prediction can predict the time when a person is going to be present

at particular locations (Krumm and Brush, 2011). In other words, it can be used

to detect anomalous behaviour such as when a disabled patient or child is expected

to be at a certain location but is not. Further action can be initiated such as an

emergency call. In addition to that, presence prediction could be useful in other

scenarios such as an intelligent postal service.

Due to society ageing, the number of age-related diseases, such as dementia

and Mild Cognitive Impairments (MCI), are gaining increasing importance. People

suffering from this kind of diseases notice a slight deterioration in their cognitive

abilities and they often have difficulties in navigational tasks. Next location

prediction can support real-time assistive services for those people in order to provide

active cognitive aids and improve their quality of life. Different assisted Cognition

systems are developed (Shimizu et al., 2000; Patterson et al., 2002, 2004; Hossain

et al., 2011) that helps to reduce spatial disorientation indoor and outdoor.
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1.2 Contributions

The main contributions of this thesis are the following:

1. We propose a model to predict the future state of people movement. We

use the embedding learning technique to effectively discover adequate internal

representations of data input features enabling the model to capture the

embedded semantic information about the users’s behaviour more effectively.

Meanwhile, Recurrent Neural Networks (RNN) is used in order to keep track of

user movement history which allows to discover more meaningful dependencies.

Furthermore, we propose another location prediction model in which time

encoding scheme is proposed to capture movement behaviour characteristics.

We also explore a set of neural pooling functions in order to extract rich

features. Moreover, we study the impact of using different Space-Time input

data in location prediction model with different architectural configurations.

The results of the previous studies have been published in the following

conferences:

• Abdulrahman Al-Molegi, Mohammed Jabreel, and Baraq Ghaleb,

“STF-RNN: Space-Time Features-based Recurrent Neural Network for

predicting people next location”, in IEEE Symposium Series on

Computational Intelligence (SSCI), IEEE, 1-7, 2016.

• Abdulrahman Al-Molegi, Antoni Mart́ınez-Ballesté, and Mohammed

Jabreel, “Geo-Temporal Recurrent Model for Location Prediction”, in

20th International Conference of the Catalan Association for Artificial

Intelligence, 126-135, 2017.

• Abdulrahman Al-Molegi, Antoni Mart́ınez-Ballesté, “The Effect

of Space-Time Representation Learning in Predicting People’s Next

Location”, in 21st International Conference of the Catalan Association

for Artificial Intelligence, 64-73, 2018.

2. We propose an attention-based neural network model, called Move, Attend and

Predict (MAP), for the problem of predicting people’s next location. We show

that the proposed model is essentially able to learn which time interval in the

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



10 Chapter 1. Introduction

trajectory sequences are relevant regarding a specific location.

The result of the previous study has been published in the following journal:

• Abdulrahman Al-Molegi, Mohammed Jabreel and Antoni

Mart́ınez-Ballesté, “Move, Attend and Predict: An Attention-based

Neural Model for People’s Movement Prediction”, Pattern Recognition

Letters, 112, 34-40, 2018, ISSN: 0167-8655 (1.952, Q2).

3. We propose a new approach to discover and predict people’s next location

based on their mobility patterns, while being computationally efficient. The

first step in the approach proposed is to discover the Regions-of-Interest (RoIs)

in people’s historical trajectories. Then, we propose a model for predicting a

user’s next location based on Markov Chain (MC) to overcome the drawback of

classical MC. Moreover, we use a general transformation function to transform

the n-order MC into first order which helps to make more abstraction on

n-order.

The result of the previous study has been published in the following journal:

• Abdulrahman Al-Molegi, Izzat Alsmadi and Antoni

Mart́ınez-Ballesté, “Regions-of-interest discovering and predicting in

smartphone environments”, Pervasive and Mobile Computing, 47, 31-53,

2018, ISSN 1574-1192, (ISI JCR 2016 2.349, Q2).

4. We address the assessment of wandering detection methods from different

perspectives. First, we review the available datasets in the literature that can

be used for benchmarking wandering detection methods. Moreover, we analyse

the available datasets using a well-known wandering detection technique, so

as to obtain the number of abnormal trajectories with respect to the whole

dataset and each individual. Finally, we discuss the properties that a dataset

for benchmarking should fulfill.

The result of the previous study has been published in the following conference:

• Antoni Mart́ınez-Ballesté, Abdulrahman Al-Molegi, and Edgar

Batista, “On the Detection of Wandering using Trajectories Datasets”,

in the 9th International Conference on Information, Intelligence, Systems
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1.3. Thesis Organisation 11

and Applications IISA, IEEE (2018).

5. We propose a real-time smartphone-based monitoring system, called SafeMove,

to discover and predict elderly people behaviours by analysing outdoor

trajectories. We use Convolutional Neural Network (CNN) in order to keep

track of elder movement history and then, predict the most popular locations

he/she might visit in the next time. Moreover, we develop a model called

Abnormal Behaviour Detection (ABD) using RNN that is able to detect the

different abnormal behaviours scenario in real-time.

The result of the previous study has been submitted to the following journal:

• Abdulrahman Al-Molegi, Antoni Mart́ınez-Ballesté, “SafeMove:

Monitoring Seniors with Mild Cognitive Impairments using Deep Learning

and Location Prediction”, Expert System with Application.

1.3 Thesis Organisation

The thesis is divided into the following four parts:

• Part I: Introduction

– Chapter 1: Introduction

This chapter introduces in general trajectory data analysis. It then

describes the motivation behind the thesis and its contributions to improve

location prediction models.

– Chapter 2: Background

In this chapter, we describe the background to trajectory mining,

prediction models evaluation and mobility datasets.

• Part II: Contributions to deep learning models for location prediction

– Chapter 3: Preliminary Matters

In this chapter, we have described the main location prediction steps. In

the first step, data preprocessing is used to remove possible noise. In the

second step, RoIs located in a user movement region are discovered. The

third step is the process of building a prediction model. In the last step,
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12 Chapter 1. Introduction

the prediction model is evaluated using a testing dataset.

– Chapter 4: Recurrent Neural Network for Predicting People’s Next

Location

In this chapter, STF-RNN model is proposed to predict the future state

of people movement. The embedding learning technique is used to

effectively discover adequate internal representations of space and time

input features. The recurrent structure is incorporated with space and

time interval sequences in order to discover long-term dependencies.

– Chapter 5: The Effect of Different Architectural Configurations in

Location Prediction Model

In this chapter, we study the performance of location prediction model

through evaluating different architectural configurations. First, we study

the impact of using a time encoding scheme that provides the model

with more information related to the movement time. To extract the

features of the context data, we use embedding representation technique.

To obtain rich features, a set of neural pooling functions are explored.

Second, we evaluate the impact of many different data inputs on the

model final prediction performance. Third, we investigate the impact of

input representation techniques on the prediction performance using both

embedding representation learning and one-hot vector representation (i.e.

static vectors).

– Chapter 6: An Attention-based Neural Model for People’s Movement

Prediction

In this chapter, we propose MAP model in which an attention technique

is used to provide the learning model with more information, related

to the movement time. The proposed model essentially learns which

time interval in the trajectory sequences are relevant regarding a specific

location.

– Chapter 7: Convolutional Neural Network for Predicting People’s Next

Location
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1.3. Thesis Organisation 13

In this chapter, we propose a prediction model, called ST-CNN . We use

CNN architecture in order to keep track of a user movement history and

then, predict the most popular locations his/her might visit in the next

time.

• Part III: Contributions to specific applications

– Chapter 8: RoI Discovering and Predicting in Smartphone Environments

This chapter presents an approach to discover RoIs in the users movement

area and then predict their future locations, which play a key role in the

success of advanced location-based services. Based on MC, we propose a

model for predicting a user’s next location. Moreover, we use a general

transformation function for the trajectory to include the space and time

context, which helps make more abstraction on n-order.

– Chapter 9: Monitoring Seniors with Mild Cognitive Impairments using

Deep Learning and Location Prediction

In this chapter, we propose a real-time smartphone-based monitoring

system based on the analysis of elderly people’s trajectories to help them

move independently and safely. Firstly, we analyse the elder’s mobility

data previously collected using CNN in order to keep track of his/her

movement history and then, predict the most popular locations the elder

might visit in the next time from his/her current location. We then

develop a model based on RNN which is able to detect the different

abnormal behaviours scenario in real-time.

• Part VI: Conclusion

– Chapter 10: Concluding remarks.

This chapter presents the conclusions of the thesis and some lines of future

research.
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CHAPTER2

Background

2.1 Introduction

The advances in mobile computation and the self-location capability of devices such

as smart phones and wearables boost the generation of various large-scale trajectory

data which track the traces of moving objects. A trajectory of a moving object is

typically represented by a sequence of timestamped locations.

In the past decade, a variety of trajectory data mining tasks have been proposed,

such as RoI discovery, trajectory pattern mining, location prediction, outlier

detection, movement behaviour analysis and trajectory classification to name a few.

As a result, there exist a broad range of applications that can benefit from trajectory

data mining. Trajectory data mining is application driven that depends on what we

want to reveal from that data.

In this chapter, we present the background concepts that form the basis of the

15
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16 Chapter 2. Background

Radio MCC Net Area Cell Longitude  Latitude  Range Samples Changeable Created Updates Average Signal
UMTS 262 2 801 86355 13.28527 52.521711 37 7 1 1.283E+09 1.3E+09 91
GSM 262  2  801  1795 13.276605 52.525348  5714 9 1 1.283E+09  1.3E+09  87
GSM 262  2  801  1794 13.284916 52.523771  6278 13 1 1.283E+09 1.301E+09  91
UMTS  262  2  801  211250 13.285081 52.521622  33 3 1 1.283E+09 1.299E+09  94
UMTS  262  2  801  86353 13.293471 52.521474  592 2 1 1.283E+09 1.291E+09  103
UMTS  262  2  801  86357 13.289018 52.532541  2466 3 1 1.283E+09 1.299E+09  101

RFID data
WiFi based data

GSM based data

GPS based data

Geosocial network based data

User1 User2 User3

Checkin time Latitude Longitude Location ID
  20100724  13:45:06    53.3648119 2.2723465833 145064

  20100724  13:46:58    53.3648119  2.276369017  1275991

  20100724  13:47:46    53.3648119  2.2754087046  376497

  20100724  13:49:03    53.3648119  2.2700764333  98503

Timestamps Mac Address
03102010  12:21:26 183aafd6df80
03102010  13:01:30  ad219df9d4c2
03102010  13:31:31  183aafd6df80 
03102010  13:01:32  bd0657015997 
03102010  14:22:33  183aafd6df80 
03102010  15:41:34 ad219df9d4c 
03102010  17:01:35 aa94ede3f99b
03102010  07:26:46  183aafd6df80 
03102010  08:06:50  ad219df9d4c 
03102010  08:55:51  183aafd6df80 

Latitude Longitude Altitude Number of days Timestamp
  39.984094     116.319236   492 39744.2450   20081023  05:53:05  
  39.984198     116.319322    492  39744.2452  20081023  05:53:06 
  39.984224    116.319402  492  39744.2452  20081023  05:53:11 
  39.984211    116.319389  492  39744.2453  20081023  05:53:16 

Facility  EPC Date/time Reader
  DC 123     0038010.150853.203    080407     23:15   inbound
DC 123   0038010.150853.203    080907     07:54 conveyor
DC 123 0038010.150853.203  080907     08:23  outbound 

  ST 9871    0038010.150853.203  080907     20:31 inbound
ST 9871  0038010.150853.203  081007     01:12  backroom 
ST 9871  0038010.150853.203  081107     15:01  sales floor 

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 2.1: Trajectory data forms.

trajectory analysis and prediction. We begin with defining the concept of trajectory

data and trajectory mining. Then, we study three different mining tasks that can be

discovered from a trajectory data. The important basic concepts and ideas of deep

learning are introduced in the next section. Finally, the evaluation and datasets used

in our proposals are described.

2.2 Trajectory Data Mining

There are various trajectory data forms which depends on the technology used to

collect, see Figure 2.1. Spinsanti et al. (2013) differentiated GSM, GPS and geo-social

network based trajectory data. Pelekis and Theodoridis (2014) added two other

forms: Wi-Fi based and RFID (radio frequency identification) based data. The

collected trajectory data is categorized into two types based on their representation:

• Continuous, such as GPS coordinates.

• Discrete, such as cellular station IDs and Wi-Fi access points MAC addresses.

Generally, continuous data are converted into discrete positions for the sake of

manageability. GPS based data, also called spatial-temporal trajectory, is a trace
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R1
R2 R3 R4

Sequence of GPS points 

Discovering the RoIs

Figure 2.2: Discovery of significant places.

generated by a GPS-enabled device carried by moving object in geographical spaces.

It is composed of chronologically ordered sequences of geographic coordinates.

Due to the tight relationship between people’s daily life and geographic locations,

the historical trajectory data contains lots of valuable information that can be used to

discover their lifestyle and regularity (Ye et al., 2009). Trajectory mining emerges as

the research area that focuses on manipulating, processing and analysing trajectory

data to aid the extraction of higher level knowledge from the trajectory history of a

user.

2.2.1 Discovery of Significant Places

In the last few years, there has been an explosion of mobility data collected by

various GPS enabled devices, emerging the necessity of efficient techniques to analyse

these data in different application domains. However, useful information may only

be extracted from mobility data when the significant and important places are

discovered. The goal of discovery of significant places is to detect a user’s specific

important locations in his/her movement area. In this thesis, a significant place will

be referred to RoI, (i.e. a region where the user usually goes and waits, slows or

stays for a while in order to complete important activities) such as home, restaurants,

places of work, train stations, shops, etc.

RoI Discovery is the process that takes a sequence of GPS points from user’s

mobility data in order to produce a set of RoIs. Figure 2.2 shows an example of a

trajectory where the discovering method must specify. It can be observed that, in

general, the density of GPS points in any RoI is higher than in other regions because
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Input trajectories

Prediction

Current location

Prediction model
building
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Figure 2.3: Location prediction: a big picture.

people tend either to move slowly or not to move at all. Moreover, the interest places

that are closest to each other can be considered as one RoI, as in R4. Some places

are not considered as interest regions such as the place between R3 and R4. Here,

it should be mentioned that there is a set of conditions such as the distance, spent

time, etc. that any region must meet in order to be considered as a RoI.

2.2.2 Location Prediction

Location prediction is the most common research area based on the location histories

of users. Predicting user’s next location is mainly a proactive function that takes

user current location in addition to other information (such as previous locations

or user daily, weekly or monthly movement times and trends, etc.), and predict the

next location or destination that will be visited, Figure 2.3 1.

Generally, users can be classified into three different types according to the

1Pictures source: http://www.stephenpeart.co.uk/
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2.2. Trajectory Data Mining 19

predictability of their daily routine: predictable users, expected users and random

users (Pollini and Chih-Lin, 1997). Predictable users follow regular routines between

their home place and workplace during their working days. For this type of users, it is

easy to accurately predict their next locations. The last two types are characterized

by highly complex movement and usually a larger number of visited locations.

Therefore, it is difficult to accurately predict their next locations. Hence, a certain

likelihood of being in a predicted location is provided. Towards building efficient

prediction methods for these users, their mobility data must be studied with more

sophisticated approaches.

2.2.3 Wandering Detection

The advances in mobile computation and the self-location capability of devices such

as smart phones and wearables have paved the way for a variety of health and

well-being related mobile apps. Moreover, highly sensorised environments (such as

smart cities and buildings) and the use of advanced artificial intelligence lead towards

cognitive computation. As a result, the concept of smart health will play a key role

in the future society (Solanas et al., 2014b).

One of the areas where computer scientists and engineers are being concentrated

on is the welfare of elderly people, specially those suffering from MCI (Maioli et al.,

2007). Such people, while still being able to cope with their habits, can suffer

temporal episodes of disorientation and, even in some cases, get lost. Hence, tracking

and monitoring systems have emerged as a necessary solution to assist elderly people

during their mobility issues.

Most monitoring/alarm tracking systems only inform about the patient’s location

or when exiting from safe areas (the patient’s neighbourhood, the park next to their

house, etc). However, such systems do not consider the detection of wandering

episodes: abnormal behaviours and erratic routes that can cause a great risk for the

patients (Algase et al., 2007). Indeed, the appearance of wandering and the level of

dementia are closely related (Algase et al., 2001; Lai and Arthur, 2003; Cipriani et al.,

2014). The literature counts with a number of techniques to determine whether the
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20 Chapter 2. Background

elderly people are behaving abnormally with respect to their mobility patterns, and

to identify abnormal or wandering behaviours 2.

2.3 Related Work

Mining trajectory data generated by a mobile user has been the subject of much

research. This section aims to survey the literature on a set of related research that I

considered in trajectory analysis and prediction: discovering RoI methods, location

prediction models and wandering detection methods.

2.3.1 Methods for RoI Discovery

Several research papers and studies discussed the problem of discovering RoIs. The

proposal in Marmasse and Schmandt (2000) represents an early work in this area.

Their method uses the loss and regain of GPS signals within a certain radius to infer

indoor places as buildings. Density-Joinable (DJ) (Gambs et al., 2012) and k -means

(Ashbrook and Starner, 2003; Kang et al., 2004) clustering algorithms were used

to discover RoIs. k -means clustering algorithm is not tailored for geolocated data

where the grouping depends on the mean of all points that belong to the same cluster.

Thus, using k -means to discover RoIs could cause missing some RoIs. Additionally,

some locations that do not carry semantic meaning might be detected as a RoIs.

The time-distance threshold method was used in Huang et al. (2013) to extract

the stay point (a sequence of GPS records in a spatial limited area). An area could

be considered as a stay point if the stay time was greater than or equal to the time

threshold and the distance between that area and the centre point of the GPS records

was smaller than the distance threshold.

In Li et al. (2008); Yuan et al. (2013), the authors proposed a stay points detection

method, called LiSPD in this thesis. The stay points were detected by seeking

the region where the user has spent a period more than a predetermined threshold

providing that the distance between the start and end points of the region is under

2In this thesis, for the sake of brevity, such variety of erratic behaviours will be referred to as
“wandering”.
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a specific threshold. For each detected stay point, the mean coordinate, arrival and

leaving time were computed. Giving two points in the trajectory, if the thresholds

are not satisfied, the whole region between these points was ignored and consequently

some information was lost. In our proposed method, these points are considered as

a path and are associated with the nearest RoI, see Section 8.2.1.

2.3.2 Location Prediction Models

During the recent years, predicting people’s next locations has received a rapid and

increasing attention from the research community and industry. Many studies have

discussed the usage of machine learning techniques in building the prediction model.

We will select a significant subset of those contributions (i.e. seminal papers or

those appearing in relevant journals). The models proposed in the literature can

be classified into two types: (i) probabilistic models, such as Markov model and

(ii) supervised learning models, such as association rules, Support Vector Machine

(SVM) and Neural Networks (NN).

2.3.2.1 Probabilistic Models

A probabilistic model is a statistical analysis tool that provides a distribution of

possible outcomes on the basis of past data. MC model is used in Gambs et al.

(2012); Asahara et al. (2011) and Ashbrook and Starner (2003) to predict people’s

next location. The concept of n-Mobility Markov Chain (n-MMC) is proposed in

Gambs et al. (2012) which depends on the sequence of n previous visited locations.

Three different datasets were used to test the model: Phonetic (Killijian et al.,

2010), GeoLife (Zheng et al., 2010) in addition to a synthetic (simulated) one. The

model started by discovering RoIs using DJ clustering algorithm. Then, n-MMC

was constructed based on the probabilities of transition among the discovered RoIs.

The results showed that the prediction accuracy obtained from GeoLife dataset was

69% and it was achieved when the number of previously visited locations was two

(n = 2).

Using a Mixed Markov-Chain Model (MMM) is proposed in Asahara et al.
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(2011). MMM takes into account the effects of people’s previous status as observable

parameter and the user’s own movement as an unobservable parameter. The

proposed approach was evaluated using simulated and real tracing datasets, the

latter was collected using indoor-GPS devices for 691 participants in a shopping

mall. Pedestrians were classified into groups based on their mobility traces. For

each group, different Markov models were generated. The pedestrian’s next location

approach works by first identifying the group a particular pedestrian belongs to

and then the location most likely to be visited. However, relying solely on the last

location to predict the next one greatly affects the prediction results. In order to

better predict user’s next location in a more precise manner, a model should typically

take into consideration a sequence of the recent locations, and a higher-order Markov

model should be modeled.

The previous models focus on predicting user’s next location using only locations

sequences but did not consider or incorporate information about movements daily,

weekly or monthly time (i.e. when in the day, the week or the month they often

occur).

Hidden Markov Model (HMM) is utilized in Mathew et al. (2012) to propose a

hybrid method for predicting a person’s next location. A real-life mobility dataset

obtained from GeoLife project was used to evaluate the proposed method. Location

characteristics were considered as an unobservable parameter, while an person’s

previous status was considered as an observable parameter. Unlike the previous

models, the collected data were divided according to the associated timestamps into

three clusters: day-time weekday, night-time weekday and weekend. A Hierarchical

Triangular Mesh approach was used to divide earth surface into a set of triangular

regions, where each region was represented by a single numeric ID. The locations in

each cluster were converted into discrete codes associated to specific regions. Each

cluster was used to train one specific HMM. The probabilities of all possible next

locations were calculated and next location with the highest probability was returned.

Gao et al. (2012) proposed a location prediction model that considers the

spatio-temporal contexts of a user’s trajectories. The proposed model was evaluated
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using a mobile dataset provided by Nokia Mobile Data Challenge which contains

80 users over one year of time. The authors divided the temporal context into

hour of a day and day of the week, and estimated their distributions using

Gaussian distributions. The probability of visiting a given location depends on the

distributions of the hour and day in addition to the current visited location. Unlike

our proposed models in this thesis, in their paper, the authors did not consider the

previous visited times and locations, which have strong relationship with the next

location prediction.

Finally, both location and activity transitions of users were taken into account

in Huang et al. (2013). A dataset of 100 users, using GPS devices for two weeks,

was used to test the proposed model. The stay points were extracted from the

collected data using time-distance threshold method. The activities of the users were

considered as unobservable states, while the locations were considered as observable

states. The destination the user will visit is predicted by estimating the next activity

first.

2.3.2.2 Supervised Learning Models

Supervised learning models such as association rules, SVM and NN have been applied

to predict people’s location.

Morzy (2007) used association rules to predict the next location of a moving

object. The Network-based Generator of Moving Objects was used to generate

different instances of synthetic moving objects datasets. The moving objects’

trajectories were obtained by dividing the movement area into a set of rectangular

regions (cells) of fixed sizes. Each cell was assigned a discrete coordinate to identify

the position of the cell in the movement area. Traj-PrefixSpan algorithm (a modified

version of PrefixSpan algorithm (Pei et al., 2001)) was used to discover frequent

trajectories that were used to generate the movement rules. An FrequentPattern-Tree

index structure (Han et al., 2000) was used to speed up the process of looking for

the trajectories discovered by Traj-PrefixSpan algorithm. To determine the next

location, different matching strategies were used between the trajectories of the
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moving object and the generated movement rules. The results showed that the

accuracy was close to 80%.

In Monreale et al. (2009), the authors used the frequent sequential pattern

algorithm (Agrawal and Srikant, 1995) to extract the frequent movement patterns,

called Trajectory-patterns (T-patterns). The T-patterns were ordered in a prefix

tree. Each node in the tree contains the dimensions of the visited region ID, support

and the pointers to another regions appear sequentially in the trajectories. The

best T-pattern path that matches the given moving object trajectory was obtained.

The score for each node in the relative path was calculated based on support value.

Then the children of the best node are selected as next possible locations. A dataset

obtained from GeoPKDD project (Giannotti et al., 2009) was used. The dataset

includes trajectories of 1,700 cars which were equipped with GPS receiver for over a

week.

In Daoui et al. (2013), the authors proposed a technique to predict movement

in mobile network based on association rules mining. The histories of mobile

user’s movement that were recorded in the core base station network were used for

evaluation purposes. These histories contain the dimensions of mobile user id, source

cell, destination cell and travel date. For each mobile user, the movement history

was arranged in a descending order from the newest to the oldest movements. A list

of elements was generated where the first cell was the current location of the mobile

user and the last cell was the first location recorded. Apriori algorithm (Agrawal and

Srikant, 1994) was applied to extract the association rules that satisfy the specified

minimum support and confidence. The best accuracy results were obtained for the

association rules of order three. Thus, the next cells of the mobile user could be

predicted if the two last cells crossed were known. As a result of the prediction, the

network resources were effectively managed. Instead of reversing the resources in the

cells that the mobile user might not cross, the network could reserve the resources

only in the appropriate time when mobile user visits the predicted cells.

Another relevant contribution in this area is Kedia (2012), which proposed

an object tracking approach for wireless sensor network using association rules
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technique. A simulation model was designed to generate an object and a set of

randomly distributed sensors. The sensor nodes were used to record and transmit

the object movement information across the monitoring environment to the sink.

Apriori algorithm was applied to discover association rules from the transaction

database recorded in the sink. The discovered association rules were used to predict

the next location of the object. Kedia proved that the approach could save significant

amount of energy where only the sensor nodes in the predicted location must be active

and the other nodes can stay in sleep mode.

Ryan and Brown (2012) applied the association mining rules to the problem of

occupant location prediction. The proposed method was evaluated using three types

of datasets: simulated, University College Cork (UCC) and Augsburg dataset. In

the association rules combination phase, Apriori algorithm was initialized with all

itemset of attributes size + 1 instead of standard 1-itemsets. In their paper, the

authors assumed that a visited locations sequences always occurs at the same time.

Thus, the existence of shifts in the transitions time were ambiguous for their model.

A major shortcoming of the previous methods was that if no appropriate rule or

route was matched, they failed to predict the next locations.

Location/contact traces (location, stay duration and social contacts) were utilized

in Vu et al. (2014) to build a prediction framework for people’s future contextual

information movement. A scanning system based on Wi-Fi and Bluetooth scanners

was built to collect Wi-Fi access point MAC addresses and Bluetooth MAC addresses,

respectively. The sensing traces dataset was collected for 123 participants for 6

months. University of Illinois Movement (UIM) clustering technique (Vu et al.,

2011) was used to cluster Wi-Fi traces data into locations. A regular location was

considered if the user visits the location at the same time for at least a specific

number of days. The dataset rows that belong to the same period of sensing time

were assigned to the same locations a user visits. These records were used to train

supervised model such as SVM, Naive Bayesian, and k -NN. The experiments showed

an increase in performance.

NN has shown to be useful in location prediction model (Parija et al., 2013c,a,b).
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The authors used NN technique to predict mobile user’s movement in cellular

communication network. The evaluation of the prediction scheme was conducted

on a dataset obtained from the Mobile Host(MH) history of movement pattern. The

dataset contains two mobiles MH1 and MH2 with regular and random movement

patterns, respectively. This prediction was used to automatically update the

location information of the mobile user which reduces the traffic load in cellular

communication network. Unlike their model, where the time factor is not considered,

the models proposed in this thesis have incorporated space and time interval

sequences with the recurrent structure resulting in much more prediction accuracy.

Building local and global predictors to predict a person’s next movement based

on NN is proposed in L. Vintan and Ungerer (2004). Movement histories of four

persons of the research group at the University of Augsburg are used to evaluate

the neural predictor. In their model, they use the simplest multi-layer perceptron

with one hidden layer trained with Backpropagation algorithm. The bit encoding

is used to represent the rooms and the persons. Their evaluations showed that the

local predictor overcomes the global predictor with accuracy of 92.32% and 87.3%

respectively.

Some previous studies are based on RNN which are useful with sequential data

due to the neurons’ internal memories that are used to maintain information about

the previous input. H. Kaaniche (2010) introduced a mobility prediction model in

wireless Ad Hoc networks. Random Waypoint Mobility (RWM) model was used

to generate location time series dataset for evaluating the efficiency of the mobility

predictor. The location prediction could be used to estimate the expiration time of

the links connecting the nodes enabling them to select the most stable paths which

improves routing performances. Unfortunately, the author did not present details on

the results.

Another recent work in which RNN was used is introduced in Liu et al. (2016).

This work proposed a global prediction model called Spatial Temporal Recurrent

Neural Network (ST-RNN) for predicting where users will go next. Two typical

datasets called Global Terrorism Database (GTD) and Gowalla dataset were used
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to evaluate the effectiveness of ST-RNN model. The recurrent structure was utilized

to capture not only the local temporal contexts but also the periodical ones. The

spatial and temporal values were divided into discrete bins in order to produce the

time-specific and distance-specific transition matrices. The corresponding transition

matrix was calculated for each specific temporal value in one time bin and similarly

for each specific spatial value. Unlike ST-RNN, in our proposed models, the space and

time features were fed directly into the network and the network itself is responsible

for learning their internal representation. Apart from prediction accuracy, the

computational complexity of NN and RNN is extremely high. In contrary, some

other models such as MM and Lempel-Ziv (LZ) attracted more attention due to the

low resource consumption and complexity (Song et al., 2006).

Recent research in computer vision has successfully addressed the challenge

of predicting the future locations of objects using RNN. In Alahi et al. (2017),

multiple Long Short-Term Memory (LSTM) were generated for each individual to

learn the movement pattern. Accordingly, a social pooling layer was introduced to

share the information between the individuals’ LSTMs. Lee et al. (2017) proposed

using a single end-to-end trainable neural network model that predicts the future

trajectory of multiple interacting objects. Finally, Vemula et al. (2017) describes

an attention-based trajectory prediction proposal based on a RNN to model both

spatial and temporal aspects of trajectories in human crowds. In this proposal, many

model parameters are used and, hence, the computational complexity increases.

The main drawback in most of these models is that only the space context is

considered, missing other information of trajectories (such as timestamps) which

is important to build accurate prediction models. Additionally, discovering RoIs

in people’s mobility data has not been considered in most of previous mobility

prediction studies. Because of the intensive computations of some techniques to train,

in addition to mobile devices restrictions on resource consumption, some algorithms

may sacrifice prediction accuracy for a higher prediction speed.
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2.3.3 Wandering Detection Methods

In this section, we describe a selection of research publications proposing methods

and systems that detect wandering behaviour and support elderly people during

their outdoor movements. Studies vary in depth between methods and heuristics

focusing on locations and trajectories, assessed using trajectories datasets, whereas

some others address real implementations of prototypes and products.

The earliest works in this field began to exploit the combination of mobile

phones and GPS receivers to track elderly people. Patterson et al. (2004) proposed

Opportunity Knocks (OK), to guide and assist people with MCI when they are

hesitant about their destinations. Smartphones together with physically separated

sensor beacon devices were carried by patients. Firstly, they were asked to specify

where they wanted to go. A Hierarchical Dynamic Bayesian Network model was

used to predict the on-going route using their previous routes.

In Shimizu et al. (2000), a location system to help caregivers find the patient’s

current position on a map was developed. The main difference from the previous

systems is the way to build the trajectory models and the predicting methods.

The iRoute system (Hossain et al., 2011) was proposed to track people with

dementia during their outdoor movements and assist them in case of disorientation.

The system was capable of learning new routes and guide the patients towards learned

routes if they were lost. The system followed a Belief-Desire-Intention agent model

using the preferences and historical records of wanderers.

A simpler solution addressing dementia is OutCare (Wan et al., 2011), which

raised alarms when significant deviations from the daily routines were found. The

system was tested with dozens of participants, but aged under 50 (not from elderly

groups) and the deterioration capabilities were not mentioned. However, the lack of

elderly participants leaves questions regarding the system validation.

The SIMPATIC project (Mart́ınez-Ballesté et al., 2015) focused on the

development of an autonomous system that monitored real-time trajectories from

people with dementia, also counting with an application for the caregivers that

received alarms under certain circumstances. A server that processed the locations
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received, extracted features from the on-going trajectory, and raised alarms to

the caregivers’ application when needed. The system was tested with 16 patients

diagnosed with early or middle stages of dementia from the area of Tarragona

(Catalonia, Spain).

Lin et al. (2012) presented a method to determine if the people with MCI were

wandering by searching sharp changes of directions along with their GPS traces. This

work was based on the assumption that inefficient patterns (e.g., random, pacing and

lapping) have a loop-like locomotion nature, and the direction changes are highly

frequent in this kind of patterns.

In Sposaro et al. (2010), Bayesian theory was used to calculate a wandering

probability. The authors implemented the iWander application, which asked the

wanderer if he/she was disoriented when a possible wandering behaviour was

detected. In case of disorientation, the application guided the patient to a safe

area and then notified caregivers. In contrast to the SIMPATIC solution, iWander

needed the interaction of the wanderer with button prompts, which may pose some

trouble for elderly.

LaCasa (Hoey et al., 2012) used Markov decision process and contextual

information to provide wandering assistance, whereas learned from the trajectories

of the wanderers using Bayesian methods. The authors assumed that the individuals

were at a known location as long as their smartphones were connected to a known

Wi-Fi. This assumption was not always true where individuals might be wandering

even in well-known areas.

Lin et al. (2015) proposed a method called Isolation-Based Disorientation

Detection method to detect abnormal trajectories. Patient’s trajectories previously

collected were modeled as a graph in which the vertices are the frequent visited

locations, and the edges are the routes among those locations. Presence of looping

inside the graph or deviation of a defined route were considered as potential instances

of disorientation.

While tracking elderly people is considered as a violation of privacy rights and

loss of independence, the relatives and caregivers consider such tracking as a solution
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to keep elderly people safe. In this context, researchers proposed balanced solutions

to support and consider the views of all parties (Landau and Werner, 2012; Doyle

et al., 2014).

2.4 Deep Learning

Deep learning is a subfield of machine learning that uses the structures of the human

brain to process data and gain certain types of knowledge. Generally, deep learning

is used to tackle one of the most challenging task related to the automatic learning

of feature representations which can then be readily used for prediction tasks. Deep

learning architectures have achieved great success in many sequence modeling tasks

such as image and speech processing (Krizhevsky et al., 2012; Hinton et al., 2012),

time series prediction (Yümlü et al., 2005; Barbounis and Theocharis, 2006), machine

translation (Luong et al., 2015), sequential click prediction (Zhang et al., 2014) and

natural language processing (Mikolov et al., 2011), to name a few.

In the next subsection, we explain what embedding representations learning is.

Then, two of the most common architectures of deep learning methods are described:

RNN and CNN.

2.4.1 Embedding Representations Learning

Hand-crafted features, designed beforehand by human experts, are time-consuming

task. Features are often incomplete and over-specified. Furthermore, the

hand-crafted features design often involves finding the right trade-off between

computational efficiency and accuracy. If machine learning approaches could learn

features automatically, the entire learning process could be more easily and many

more tasks could be solved. Deep learning provides the ability to learn features

automatically.

Representation learning (Mikolov et al., 2013), also called embedding learning,

is a set of techniques that learn features by transforming raw data input to real

valued vectors that take place in machine learning tasks. By using the features, the
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Figure 2.4: General RNN architecture.

machine learning model can learn a specific task and learn the features themselves as

well. The embedding learning technique is used in this thesis to effectively discover

adequate representations of trajectory data features to capture the embedded

semantic information about the people’s movement.

2.4.2 Recurrent Neural Networks

RNN is a type of advanced artificial neural network which designed to model

sequences due to the ability to remember important things about the received

input in its internal memory. RNN is designed to extract the embedded semantic

information of the sequential data and then the patterns that used to predict the next

likely scenario. In this thesis, the recurrent structure is incorporated with trajectory

data sequences in order to keep track of people’s movement history which allows to

discover more meaningful dependencies (see Chapter 4).

The general architecture of RNN is as follows, see Figure 2.4. A RNN consists

of three main layers: an input, an output and a hidden layers. RNN receives a data

sequence as input and transforms them through a series of hidden layers. Every layer

is made up of a set of neurons that have learnable weights and biases. Each layer is

fully connected to all neurons in the previous layer. Lastly, the last fully connected
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Figure 2.5: General CNN architecture.

layer is the output layer that used to represent the predictions.

2.4.3 Convolutional Neural Networks

CNN, also known as a ConvNet, are a class of deep neural networks which are

especially adapted to various computer vision tasks because of their ability to

abstract representations with local operations. The use of CNN has achieved

significant success in various applications such as computer vision, speech and natural

language processing. Although CNN is originally designed to cope with image data,

it can be used for sequence modeling tasks such as location prediction (Chapter 7).

Figure 7.1 shows the CNN architecture which is a bit different from RNN

architecture. Like other types of artificial neural networks, a CNN has an input,

output and various hidden layers. However, a hidden layer can include multiple

types of layers: convolutional, pooling, fully connected and normalization layers.

Unlike RNN, the layers have neurons organised in three dimensions: height, width

and depth. The neurons in one layer connect to a small region of the next layer

not to all its neurons. Finally, the final output will be reduced to a single vector of

probability scores, organised along the depth dimension.
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2.5 Evaluation

In this section, we address the basics of evaluation, that will be used in our proposals

in this thesis.

2.5.1 Evaluation of Location Prediction Models

The prediction evaluation procedure starts with reading the previously visited

locations (represented by their IDs) in each trajectory sequentially. Then, the next

locations to be visited are predicted based on these readings. Finally, the predicted

locations are mapped into the real data.

Recall and Precision are employed as evaluation metrics in all experiments in

order to assess the efficiency of the prediction models. The larger the value, the

better the performance is. The Recall@N is defined as the ratio between the number

of correct predictions (i.e. locations) over the total number of real visited locations.

The Precision@N is defined as the ratio between the number of correct predictions

over the total number of predictions.

To compute the Precision and Recall scores, first, a ranked list is populated

with all potential next locations arranged in a descending order according to their

probabilities. Then, the percentages of the times in which the real next location was

found in the top-N most probable locations within the ranked list are calculated.

For each user, the model predicts a list of locations N , given his/her last w-visited

location and timestamps as input. In our study, we report N = 1, 2 and 3. We

denote the recall and precision as R@N and P@N, respectively.

Supposing that Lu denotes the set of correspondingly real visited locations by a

user u in the test data, PLN,u denotes the set of top N predicted locations and U is

the set of users, the definitions of R@N and P@N are formulated as below:

R@N =
1

|U |
∑
u∈U

|Lu ∩ PLN,u|
|Lu|

(2.1)

P@N =
1

|U |
∑
u∈U

|Lu ∩ PLN,u|
|PLN,u|

(2.2)
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2.5.2 Evaluation of RoI Discovery Methods

Soundness and completeness properties are used as metrics to evaluate the

effectiveness of the methods used to discover RoIs.

Definition 1 Soundness property. The method to discover RoIs is sound only if

it can find or discover interest regions.

Definition 2 Completeness property. The method to discover RoIs is complete

if it can find all interest regions.

Soundness and completeness are defined in the Equations: 2.3 and 2.4:

completeness =
|correct RoI discovered|

|all real RoIs|
(2.3)

soundness = 1− |incorrect RoI discovered|
|all RoIs discovered|

(2.4)

2.5.3 Wandering Detection Methods Evaluation

When applying wandering detection method given a user movement, it returns a

prediction with two possible outcomes: (i) the movement contains normal behaviour

which is the default situation, or (ii) the movement contains abnormal behaviour.

However, we know in advance whether the trajectory actually contains abnormal

movement or not based on the labels associated with each trajectory. So, we validate

whether the classification is correct, by comparing the prediction of the method and

the trajectory’s label. For this reason, we apply a binary classification. Since the

goal of the method is to detect abnormal movement, we consider that the “positive”

class is “abnormal”, and the “negative” class corresponds to “normal”. In practice,

a classified trajectory falls into one of the four categories (see Table 2.1):

1. True Positive (TP): an abnormal trajectory successfully classified as

abnormal.

2. False Positive (FP): a normal trajectory classified as abnormal.

3. True Negative (TN): a normal trajectory successfully classified as normal.
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Table 2.1: Confusion matrix.

Real value
Abnormal Normal

Prediction value
Abnormal True Positive False Positive
Normal False Negative True Negative

4. False Negative (FN): an abnormal trajectory classified as normal.

From the evaluation perspective, we consider some statistical measures that can

be derived from the confusion matrix (a technique for summarizing the performance

of a classification method) after classifying each trajectory. In our evaluation, we

analyse the following measures:

1. Recall or Sensitivity: Proportion of actual abnormal trajectories that are

predicted as abnormal.

2. Precision: Proportion of abnormal predictions that are actually abnormal.

3. Specificity: Proportion of actual normal trajectories that are predicted as

normal.

4. Accuracy: Proportion of trajectories that are predicted correctly, both

abnormal and normal classes.

5. F1-score: Harmonic mean between recall and precision. This measure is

widespread used as an indicator of the test’s accuracy.

Table 2.2 presents the mathematical expressions of sensitivity, specificity, precision,

accuracy and F1-score.

Table 2.2: The mathematical expressions of sensitivity, precision, specificity, accuracy and
F1-score

Metric Expression
Recall or Sensitivity TP/(TP + FN)
Precision TP/(TP + FP )
Specificity TN/(TN + FP )
Accuracy (TP + TN)/(TP + TN + FP + FN)
F1-score 2TP/(2TP + FP + FN)
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Table 2.3: Datasets description.

Name Number of individuals Acquired locations Trajectories Time span of the collection Sampling rate (s)
GeoLife (Zheng et al., 2010) 182 24,876,978 17,621 April 2007 to August 2012 1-5
Gowalla (Cho et al., 2011) 196,591 6,442,890 N/A February 2009 to October 2010 N/A

SIMPATIC (Smart Health Research Group, 2014) 18 251,708 653 December 2013 to June 2016 180
OpenStreetMap (Open Street Map, 2018) 1,000 2,772,798 5,152 Over one month N/A

2.5.4 Cross Validation

Cross validation has been widely used to evaluate machine learning techniques. It

is used to give an indication of how well the model will predict unseen data. Cross

validation is done by partitioning a dataset and using a subset to train the method

and the remaining data to test it. The common cross validation technique that we

use is called k-fold cross validation. In this technique, the data are divided into

k folds. One of the folds is used for testing and the remaining folds for training the

method. This scenario is repeated k times.

2.6 Mobility Datasets

There are many online publicly available real-world datasets that contain data on

people’s locations. Table 2.3 summarizes the datasets used in this thesis. It shows the

number of contributing individuals of the dataset, the GPS points and trajectories

they contain, they time span of location acquisition and the sampling rate. N/A is

used when this information is not available.

• GeoLife dataset (Zheng et al., 2010) is an open-source large real life GPS

trajectory dataset belongs to GeoLife project (Microsoft Research Asia). The

dataset was collected by 182 users in a period of over five years (from April

2007 to August 2012). It contains 24,876,978 recorded points and 18,670

trajectories with a total duration of 50,176 hours and a total distance of

1,292,951 kilometers. The collected dataset covers different cities located in

China, USA and Europe but the majority of the data was from Chinese cities.

These trajectories were recorded by different GPS-phones and GPS loggers with

high sampling (5 ∼ 10 meters or every 1 ∼ 5 seconds). The GPS trajectories

are represented by a sequence of time-stamped points, each of which contains
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the dimensions of latitude, longitude, altitude and other information. This

dataset is widely used in many research fields, such as mobility pattern mining,

user activity recognition and location privacy, among others. However, as we

have observed, its usage in wandering detection is scarce (Mart́ınez-Ballesté

et al., 2018).

• Gowalla (Cho et al., 2011) is an open-source data which provides a check-in

records contain a location identifier, the corresponding check-in timestamp and

other information. This dataset contains 6,442,890 check-ins over the period

from February 2009 to October 2010.

• SIMPATIC project dataset (Smart Health Research Group, 2014), which

contains the daily trajectories (from end 2013 to mid 2016) of 18 Catalan

individuals suffering from mild cognitive impairments (MCI), gathered during

the course of the SIMPATIC project. The dataset contains around 2000

trajectories with low sampling (3-minute rate), for design reasons (Batista

et al., 2015).

• The OpenStreetMap dataset (Open Street Map, 2018) is a collaborative

project aiming at creating and distributing free geographical data worldwide,

which already contains more than one million trajectories from thousands of

individuals around the world since 2005. Most of the trajectories have high

sampling (1-10 seconds) and, hence, are detailed trajectories. For the sake

of feasibility, for the further analysis, we have randomly selected a subset

of 1,000 individuals from more than one million individuals in the original

OpenStreetMap dataset.

2.7 Summary

In this chapter, we have presented a background on trajectory analysis and prediction

methods, defining the most basic form of deep learning, the evaluation procedures

and mobility datasets. In the next chapters, we present several methods for

predicting people’s trajectories based on deep learning technique.
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Contributions to Deep learning

Models for Location Prediction

39

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



CHAPTER3

Preliminary Matters

3.1 Introduction

Different common machine learning techniques have been used to predict people’s

next location such as MC, LZ family algorithms (LZ, LeZi Update and Active LeZi),

rule-based approaches and NN. One of the significant challenges while predicting

people movements is related to how to adapt machine learning techniques in the

context information of movements. Additionally, building a (one-size for all) accurate

prediction model for all users is hard and sometimes impossible because predicting

next location is a user-specific problem. Even if the visited locations are similar

for many users, a trajectory of one user visiting different locations is most likely

unique. Thus, building one prediction model for each user could be desirable.

Usually, building the model, i.e. discovering the frequent trajectories and locations,

is performed off-line while the prediction itself is performed on-line.

41
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Figure 3.1: General location prediction model architecture.

In this chapter, we describe the main location prediction steps: data

preprocessing, discovering RoIs, building a prediction model and model evaluation.

All these steps, except building the prediction model, are carried out in the same

manner in all the prediction models proposed in this thesis.

3.2 Location Prediction Model Architecture

Figure 3.1 shows our proposed approach which includes four main steps:

• First, the dataset is preprocessed to detect and remove possible noise.

• In the second step, RoIs located in a user movement region are discovered.

• The third step involves several sub-steps: discretization, reduction and

quantization of the training dataset, and then building a prediction model.

• The last step involves evaluating the prediction model using a testing dataset.
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Figure 3.2: Noise detection and removal

Definition 3 GPS Points. A GPS point is a tuple G = (xi, yi, ti) where (xi, yi)

denotes a GPS coordinate, xi is latitude, yi is longitude, and ti is the timestamp

when GPS coordinates were recorded.

3.2.1 Preprocessing

In mobility data preprocessing stage, dataset is converted into a suitable form for

further processing. Noises that may come from different sources are removed. Such

noise can be due to mispositioning software or hardware system, or losing GPS signals

due to indoor usage or mobile device battery drain or problems. Once the dataset is

cleaned, RoIs can be discovered.

In general, mobility data are not accurate and consistent. For example, in a

short period of time, the distance between two adjacent points could be large. The

inconsistencies negatively affect the process of discovering RoIs and consequently the

prediction process as a whole.

One of the mobility dataset we have used in this chapter was collected from

various cities in China, USA, and Europe, but the majority of the data was from

China (its cities are assumed to be our target cities for prediction model). The

preprocessing step on this particular dataset is conducted as it follows:

• Measuring the user travel speed between each two adjacent points based on time

and distance. As shown in Figure 3.2, if the speed is high (e.g., 300km/h), the

point is removed (Zheng, 2015).

• Calculating the distance between every point in the mobility data and the

centre point of China (Figure 3.3), then the points that are located outside the
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Figure 3.3: Removing the points outside our target boundary.

Figure 3.4: LiSPD method.

target boundary are removed.

3.2.2 RoI Discovery

Typically, mobility data should be processed first before it can be used in prediction

models and, thus, each GPS coordinate in a user mobility data should first be

converted into discrete values associated to specific RoI. The RoIs that are used

to describe the movements of a certain user must be identified and eventually can

be used to build a user’s trajectories.

The GPS logs of each user are converted into trajectories (sequence of RoIs) by

firstly detecting the interest region. To detect the interest region, we use the method

proposed by Li et al. (2008); Yuan et al. (2013). The interest region represent

those spatial regions where the user has stayed for more than a pre-determined

time threshold providing that the distance between the start and end points of the

region is under a specific threshold. The obtained region then are clustered into

several geo-spatial regions using Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) (Ester et al., 1996). Each region is given a unique identifier.
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Figure 3.5: Movement time can be expressed as entering, staying or leaving times.

Finally, to formulate the region history of each user, the GPS points located in the

same region are replaced by their identifiers.

Definition 4 Trajectories. We denote the set of users by U = {u1, u2, . . . }, the

set of RoIs by R = {r1, r2, . . . } and the set of time intervals by T = {t1, t2, . . . }.

A user trajectories are represented as a sequence of movements Mu = {M1, . . . ,

Mn}, where u ∈ U and n is the length of the trajectories. Each movement Mi is

represented as a tuple (ri, ti) where ri ∈ R is the RoI identifier associated with its

GPS coordinates (xri , yri) and ti ∈ T is the time interval obtained from the GPS

timestamp.

3.2.3 Prediction Model Building

The third step is to present the process of building the prediction model. Various

sub-steps are involved before building the prediction model: discretization, reduction

and quantization. In the discretization, the GPS points of training dataset are

converted to the RoI identifiers they belong to. In other words, using the RoI list

obtained from the previous step, the continuous values of the GPS training data are

converted from a series of spatial points into discrete values that represent a sequence

of RoIs that the user visits. With the discrete values, many types of calculations are

more easily performed than the continuous one. After GPS points discretization, the

RoI identifiers may possibly be repeated. Thus, the reduction is used to remove the
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similar successive RoIs.

Timestamp can be categorized according to the location into three different types:

entering, staying and leaving times, as shown in Figure 3.5. We assume that the

leaving time has the most impact on predicting the next location. The rationale

behind this assumption is that the next location a user will visit depends on the

current location and the time at which he/she leaves. This assumption is confirmed

by the experiment results in the next chapters. Therefore, in the reduction, the

timestamps associated with GPS points are ignored except the time before the

movement to the next RoI (i.e. the leaving time from the current RoI). The obtained

timestamps are then quantized into a specific time interval such as splitting the day

into different timeslots or the week into weekdays and weekend etc. We used different

time intervals such as the hour, weekday type, month of the year and timeslots in

Chapter 5.

Predicting people’s future location can be viewed as a sequence generation

problem. Given a user u in a RoI ri at time ti, the task is to predict user’s future

RoI r̂i+1 on the basis of his/her historical movement records, which is processed in a

sliding window from Mu
i−w to Mu

i , by modeling:

P (r̂i+1 = rj|Mi,Mi−1, . . . ,Mi−w) (3.1)

where rj is a RoI ∈ Ru and w is the number of visited RoIs taken as inputs to the

model.

3.2.4 Prediction Model Testing

Before predicting the next location, user’s current position (in real-time) or

trajectories previously collected (in testing) are preprocessed. The GPS coordinates

are discretized by converting them into their RoI identifiers using the RoI list, while

the timestamps are quantized into specified time intervals. Then, the trajectory will

be represented as a single or sequence of tuples (ri, ti) where ri is the RoI and ti is

the time interval.
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Figure 3.6: Next location prediction testing architecture.

To make prediction, as the final step, the test data is passed to the location

prediction model. Then, a set of probability values is obtained. The RoI with the

highest probability value is predicted to be the most likely next RoI. Figure 3.6 shows

the overview of location prediction testing part.

3.3 Summary

In this chapter, we have described the main location prediction steps. The first step

is data preprocessing that is used to remove possible noise. In the second step, RoIs

located in a user movement region are discovered. The third step is the process of

building a prediction model. In the last step, the prediction model is evaluated using

a testing dataset.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



48 Chapter 3. Preliminary Matters

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



CHAPTER4

Recurrent Neural Network for Predicting

People’s Next Location

4.1 Introduction

Deep and neural learning methods have achieved remarkable results in many sequence

modeling tasks such as image and speech processing (Krizhevsky et al., 2012; Hinton

et al., 2012), time series prediction (Yümlü et al., 2005; Barbounis and Theocharis,

2006), sequential click prediction (Zhang et al., 2014) and network language modeling

(Mikolov et al., 2011). Moreover, authors have reported that RNN achieve promising

performance in comparison with the traditional counterpart. Due to the ability of

RNN structure to represent the sequences, it is utilized in the proposed model in

order to keep track of user movement history. Representation learning (Mikolov

49
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et al., 2013), also called embedding learning, is a set of techniques that learn a feature

by transforming raw data input to real valued vectors that take place in machine

learning tasks. By using the features, the machine learning model can learn a specific

task and learn the features themselves as well. Embedding learning technique proved

its ability to capture the embedded semantic information in people’s mobility data

in order to improve the performance of next location prediction models (Liu et al.,

2016; Feng et al., 2017).

Some studies have focused on using a set of features to obtain a good prediction

performance. For instance, in Vu et al. (2014); Do and Gatica-Perez (2014), a variety

of hand-crafted features have been used. Such models lack the capability of extracting

the embedded semantic information from people’s mobility data. To overcome this

drawback, a deep learning model has been utilized for automatically learning the

best internal representations of the space and the time features.

The main contributions of this chapter are as follow. First, we use an embedding

learning layer to discover adequate internal representations of the space and time

input features while avoiding man-made representations. The space represents

a specific location that has been visited by the user while the time represents

the location visiting time. Second, we use RNN to model people movement and

successfully incorporate the recurrent structure with space and time features into

enhancing the model efficiency. Third, an extensive set of experiments is conducted

on two large real-life mobility datasets in order to evaluate the efficiency of the

developed model. STF-RNN is implemented using Theano (Team et al., 2016).

4.2 STF-RNN: Model Description

Figure 4.1 shows the graphical illustration of STF-RNN model. The model contains

four layers: input, embedding, recurrent (hidden) and prediction layers as well as

inner weight matrices.

The input layer consists of two vectors.The first one is ri ∈ RN which represents

the identifier of the RoI where N is the number of RoIs. This vector is encoded
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Figure 4.1: STF-RNN architecture.

using 1-of-N (or one-hot encoding) (Harris and Harris, 2012), which means for a

given input data, only one out of the vector values will be 1, and all the others are

0. The second vector represents the leaving time (in hours) from the RoI. We denote

this vector by ti ∈ RM and M is the number of different time intervals. It is encoded

also using 1-of-M encoding technique. The time intervals represent the number of

hours per day in which there are 24 time intervals (i.e. hours). In the one-hot vector

representation, the RoIs (or the leaving times) are equidistant from each other and,

hence, no relationship among them is preserved. To overcome this drawback, each

input vector is passed through an embedding layer to produce a vector with dr and dt

dimensions for RoIs and leaving times, respectively. The embedding layer maps the

input vectors into real value vectors to learn a meaningful representation of the RoIs

and leaving times input features. This representation enables the model to capture

the embedded semantic information about user behaviour and as a consequence

improving the prediction performance. Therefore, the trainable features will be used

as input to further layers in the network rather than using one-hot vectors. More

formally, let Re ∈ RN×dr be the embedded matrix that represents a set of RoIs, where

dr is the dimensionality of the embedded vector of the RoI. The embedded vector
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rei ∈ Rdr is given by multiplying the embedded matrix Re and the input vector ri.

rei = ri ·Re (4.1)

Similarly, the embedded vector tei ∈ Rdt is given by multiplying the embedded

matrix Te ∈ RM×dt and the input vector ti. Here, Te represents a set of leaving time

and dt is the dimensionality of the embedded vector of the leaving time.

tei = ti · Te (4.2)

The recurrent layer hi ∈ Rdh is used to maintain the user movement history where

dh is the dimensionality of the recurrent layer vector. In STF-RNN, vanilla RNN is

used due to the small size of input window size w.

The prediction layer ŷi ∈ RN produces a probability distribution over the RoIs

whose output length is the input vector ri size. The values of the recurrent and the

prediction layer are computed as below:

hi = f

(
rei ·Wr + tei ·Wt + hi−1 ·Whi−1

+ bh

)
(4.3)

ŷ = g(hi ·Wh + bo) (4.4)

In equation 4.3, Wr ∈ Rdr×dh , Wt ∈ Rdt×dh are the weight matrices between the

input and recurrent layers, Whi−1
∈ Rdh×dh is the recurrent connection propagating

sequential signals and bh ∈ Rdh is the hidden layer bias. In equation 4.4, Wh ∈ Rdh×N

represents the weight matrix between the recurrent and prediction layers and bo ∈ RN

is the output layer bias.

Hyperbolic tangent (tanh) is used as the non-linear activation function for the

recurrent layer due to its computational efficiency and effectiveness in literature

(Collobert et al., 2011).

f(x) =
1− e−2x

1 + e−2x
(4.5)

The prediction layer is a Softmax layer which is suitable for this case as its outputs
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can be interpreted as conditional probabilities (Bridle, 1990).

g(ŷi) =
exp(ŷi)∑N
j=1 exp(ŷj)

(4.6)

The current input layer, as well as the previous state of the recurrent layer,

is used to compute the next state of the recurrent layer. Thus, the next RoI

prediction depends on not only the current input RoI, but also the sequential

historical information. This property of RNN structure helps the model keep track

of user movement history and discover meaningful dependencies and as consequence,

enhance the model performance.

4.3 Learning Algorithm

In this section, the learning process of STF-RNN model with the Backpropagation

Through Time (BPTT) algorithm (Rumelhart et al., 1986) is presented. As stated

before, the next state of the recurrent layer is computed based on the current input

layer as well as the previous state of the recurrent layer. The cost function used is

the cross entropy which is defined as:

J = −
n∑
i=1

yi · log(ŷi) (4.7)

where n is the number of training samples, y is the real user’ next RoI, and ŷ is

the predicted next RoI probability. Because we have represented the RoI identifiers

using one-hot vector representation, the cost function can be redefined as:

J = −log(ŷi) (4.8)

ADADELTA update rule (Zeiler, 2012) is employed to estimate the model

parameters. STF-RNN parameters are θ = [Re, Te,Wr,Wt,Whi−1
,Wh, bh, bo, h0],

where h0 is the initial vector for the recurrent layer. This process is repeated

iteratively until reaching the convergence state.
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4.4 Experiments and Results

In this section, large-scale experiments are conducted to validate STF-RNN model’s

effectiveness. The experimental results are reported in detail.

4.4.1 Experimental Settings

We use two publicly available real-world datasets in our experiments, i.e., GeoLife

and Gowalla.

The two datasets GeoLife and Gowalla have several general differences such as:

the size or the number of records, input variables, the distribution of the points

in the movement area, in addition to meta-data related to the collection process.

The most important difference between them is that GeoLife should be processed

in order to discover the RoIs. The RoIs in Gowalla dataset are given different IDs

during collecting the data.

In order to use GeoLife dataset, the interest regions are detected as described in

Section 3.2.2. The two DBSCAN’s parameters were: maximum distance ε between

any two points and the minimum number of points minPts required to form a dense

region. In this study, we set ε = 100 meters and minPts = 3.

Gowalla dataset is preprocessed by removing the users who had the same number

of check-ins and RoIs. Moreover, users with less than 20 check-ins and less than 5

RoIs are removed from the dataset. Finally, the check-in records are organised as

RoIs sequences.

Recall and Precision are employed as evaluation metrics in all experiments. The

model of each user is trained using three-fold cross validation technique where

mobility data is partitioned into three sub-data of equal size. The Recall and

Precision scores of each case from each user is then calculated and the final results

of all users are averaged.

To evaluate the model effectiveness, we compare STF-RNN with three

outstanding proposals found in the literature 1:

1We have implemented all baseline models based on our understanding of the original papers.
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Table 4.1: Model parameters values.

Description Values
Training epochs 100
Hidden layers size 40
RoI vector size 100
Time vector size 10
Window size 2

• MC (Ashbrook and Starner, 2003): It is the basic baseline method, that uses

k -means for extracting RoIs in a user movement region and MC for location

prediction .

• n-MMC (Gambs et al., 2012) is a classical sequential model which exploits

the transition probabilities. n-MMC depends on the sequence of n previous

visited locations.

• HPHD: It is proposed in (Gao et al., 2012) where spatial, hourly and daily

information are used for location prediction.

• AR: It is proposed in (Daoui et al., 2013; Kedia, 2012) to predict next location

of a moving object.

• NN (Parija et al., 2013c; Leca et al., 2015; L. Vintan and Ungerer, 2004) has

been successfully applied in computer vision, speech recognition, etc.

• RNN (H. Kaaniche, 2010) is widely used for time series prediction.

The goal of these comparisons is to show how incorporating the recurrent

structure with the space and time interval sequences in our model has improved

prediction overall performance. For consistency, the common parameters of the

models are given the same values, Table 4.1. For example, the second order MC

is use which achieved better prediction accuracy as shown in Gambs et al. (2012)

and Huang et al. (2013). The grid search method is used to evaluate various model

parameters setting in order to select the optimum set of these parameters. The

evaluated parameters include: the dimensionality of time-and-RoI embedded vector,

the hidden layer size and the width of input window (number of visited RoIs taken

as input to the model).
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Table 4.2: Performance comparison on the datasets evaluated by Recall@N and Precision@N.
Best scores are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

MC 58.46 58.46 66.91 35.78 86.8 27.64
n-MMC 58.9 58.9 78.7 39.3 87 29

HPHD 58.07 58.07 73.23 39.8 87.41 29.7
AR 59.32 59.32 67.43 38.9 86.7 28.78
NN 58.1 58.1 82.1 40.9 91.1 30.3

RNN 67 67 86.5 42.4 92.7 30.8
STF-RNN 73.3 73.3 87.7 44 93.1 31.1

Gowalla

MC 15.3 15.3 21.1 11.04 29.6 9.34
n-MMC 17.1 17.1 23.64 11.82 30.05 10.02

HPHD 22.37 22.37 36.99 19.71 39.82 12.48
AR 21.23 21.23 36.29 18.13 38.65 11.6
NN 34.13 34.13 48.44 24.12 55.33 18.56

RNN 34.32 34.32 48.68 24.34 55.67 18.56
STF-RNN 39.68 39.68 52.34 25.17 60.21 19.4

4.4.2 Results and Analysis

Table 4.2 illustrates the comparison between the prediction models on the two

datasets in terms of R@N and P@N with N = 1, 2 and 3. Since the models’

performances are consistent for different values of N, most of the representative

results are shown when N=1. When N=1, Recall and Precision have the same values

because the total number of real visited RoIs equal to the total number of predictions.

We observe that the models perform better on GeoLife than Gowalla. The reason

lies in that some user in Gowalla dataset has small mobility data size.

It is clear from the table that MC, n-MMC, HPHD, AR and NN models have

achieved approximately similar results on GeoLife dataset when N=1. However, NN

outperforms them when N=2 and 3 on both datasets under all evaluation metrics.

Movement time information is not considered in these models, thus, they can not

perform well.

RNN outperforms the compared ones on GeoLife dataset and slightly improves

the results in comparison with NN on Gowalla dataset. This can be attributed to

incorporating the recurrent structure of RNN which enables the model to get more

accurate results by taking into account the historical dependencies.

In addition, it can be observed form the table that our proposal achieves the best
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Figure 4.2: Performance of STF-RNN with varying window size w (1, 2 and 3).

results among all models under all settings of the evaluation metrics. For instance,

on GeoLife, STF-RNN outperforms HPHD, NN and RNN by up to 26.23%, 26.16%

and 9.4%, respectively, in term of P@1. The superiority of STF-RNN over the models

can be attributed to incorporating the recurrent structure and using the time feature

in the operations which impact positively the efficiency of the model. Moreover, the

embedding learning technique of the input features enables the model to extract

the hidden semantic information about the users’ behaviour more efficiently. In all

experiments, the highest performance is achieved under R@3 which indicate that the

longer ranking list, the best accuracy can be obtained.

4.4.3 Effects of Parameters

In this section, we explore the effects of the parameters on the prediction model

performance. Table 4.2 demonstrates how varying window size may affect the

performance of STF-RNN on GeoLife dataset. The best performance is obtained

with a window size value of 2 under all metrics on the two datasets. This is similar

to the case of second order in MC which achieved the best performance as shown in

Gambs et al. (2012); Huang et al. (2013).

In STF-RNN, the parameters dr, dt and dh are responsible for determining the

dimensionality of the embedded vectors of the RoI, time and hidden layer respectively

so they play an important role in the efficiency of the model. To investigate the

impact of these parameters and to select the best settings of them, we conduct several

experiments to check the performance of STF-RNN with various dimensionalities as
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Figure 4.3: Parameters impact on STF-RNN performance.

shown in Figure 4.3. We only show R@1 on GeoLife dataset for ease of presentation.

We start by varying the value of one parameter while fixing the others and then

studying how the model efficiency is affected. The same procedure is then repeated

for the rest of the parameters.

The impact of dr parameter on R@1 of the model is shown in Figure 4.3a. We

consider various space embedded vector dimensionality: 10, 50, 100, 150, 200, 250

and 300. In this figure, we exclude Gowalla dataset because of the low results in

comparison with GeoLife dataset. We observed that the performance is improved

with the increase of dr and then it decreases slightly in terms of R@1. The best

performance reaches its peak when dr = 100. The smaller the values of dr means

that less RoI information is provided to the model limiting its efficiency in discovering

dependencies and as consequence impairing its performance. When dr value is large

(e.g., greater than 100), more noisy information has to be considered by the model

which leads to poor performance.

The effect of dt and dh parameters on the model performance is depicted in Figure

4.3b and 4.3c respectively. We consider various time embedded vector dimensionality:

1, 3, 5, 10, 15, 20 and 25. In case of recurrent vector dimensionality, 5, 10, 20, 30,

40, 50 and 60 are considered. As shown in the figures, the best performance of

STF-RNN is obtained with dt value of 10 while it reaches its peak under the dh

parameter value of 40. Here, the fact that the model achieves its best performance

with a small dt value gives the impression that only a little time information is needed

in representing the model dependencies in contrast with the RoI features where much

more information is needed. The results confirm that the previous parameters play

an important role in building an accurate RoI prediction model based on RNN.
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4.5 Summary

In this chapter, STF-RNN is proposed to predict the future state of people movement.

An embedding learning layer is used to effectively discover adequate internal

representations of space and time input features enabling the model to capture the

embedded semantic information about the users’s behaviour more effectively. The

recurrent structure is incorporated with space and time interval sequences in order

to discover long-term dependencies which increases the efficiency of the proposed

model. A performance evaluation is conducted on two large real life mobility

datasets (GeoLife and Gowalla) showing that our model has improved the prediction

effectiveness in comparison with the state-of-the-art models.
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CHAPTER5

The Effect of Different Architectural

Configurations in Location Prediction

Model

5.1 Introduction

Models in the literature have achieved satisfactory results, but they lack exploiting of

timestamps-sensitive property while combining it with locations sequences. Whereas

people’s movement behaviours change according to the time (such as going to the

workplace, restaurant or home), the effect of time interval becomes important for

the prediction in such situations. Timestamp in mobility data contains different

information: explicit (such as year, month, week and hour), implicit such as weekday

61
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type (weekday or weekend), and timeslots (morning, afternoon and night etc.) The

main questions are: Which of these information should be considered when building

the prediction model? Should all timestamp information be included to the model

for the purpose of enhancing the model performance? To answer these questions, we

adapt the time indexing scheme (Zhao et al., 2016) where timestamps are encoded

into a particular time identifier.

Other prediction models ignore an important fact that values and representations

of some variables can be much more relevant to the final location prediction than

the rest of variables. Some studies considered only spatial context as the main factor

to predict people’s next location, missing other information of trajectories which

is important to build accurate prediction models. Recently, several studies have

been proposed to enhance the performance of next location prediction models by

considering both spatial and temporal contexts (Al-Molegi et al., 2016; Liu et al.,

2016). Studies showed that using temporal factors can significantly improve the

performance of location prediction models. In Gatmir-Motahari et al. (2013), the

authors demonstrated that time factor can significantly impact randomness, size,

and probability distribution of people’s movements.

As mentioned in the previous chapter, the models that use a variety of

hand-crafted features lack the capability of capturing semantic information from

people’s mobility data. Therefore, embedding representation learning technique has

been utilized for automatically learning the best internal representations of input

data features. Moreover, in order to extract rich features, neural pooling functions

are explored. Neural pooling functions (Collobert et al., 2011) are commonly used

to extract meaningful features automatically from contexts according to each type

of embeddings.

The purpose of this chapter is to study users’ future locations’ prediction

performance by modifying our STF-RNN model described in Chapter 4. We report

the results of a large number of experiments exploring different configurations of

STF-RNN model. The main contributions of this chapter are as follows: First,

we propose a model based on RNN called Space-Time Pooling-based Architecture
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(ST-PA), where embedding representation technique and neural pooling functions

are used to extract rich features of the context data. Second, we study the impact

of using different data as inputs to the model (those include times of entering and

leaving a RoI, day of the week and other timestamps information). We propose

time encoding scheme to provide the model with more information related to the

movement time. Third, we investigate the impact of using different input feature

representation techniques on the prediction performance. Lastly, an extensive set of

experiments is conducted on two large real life mobility datasets in order to evaluate

the efficiency of the developed models.

5.2 Prediction Models Description

The STF-RNN architecture we considered requires specifying: the number and type

of data inputs, input features representation and the dimensionality size of the

hyper-parameters. In this chapter, we conduct a sensitivity analysis of STF-RNN to

explore the effect of modifying the architectural components on model performance.

We investigate the effect of using three factors: (i) pooling-based architecture

(Section 5.2.1), (ii) different data inputs (Section 5.2.2) and (iii) different input

features representation techniques (Section 5.2.3).

5.2.1 Pooling-based Architecture

In this section, we address the description of the ST-PA model for location prediction.

To begin with, we describe the formulation of ST-PA model. Then, we demonstrate

the training procedure.

The task needs to learn a probability function for a given user u to a next location

at time t given his/her previously visited locations.

As mentioned in Chapter 3.2.2, a user trajectories are represented as a sequence

of movements Mu = {M1, . . . , Mn}, where u ∈ U and n is the length of the user’s

trajectories. Figure 5.1 illustrates the neural network architecture. We denote the

vector of RoI identifiers by ri ∈ RN where N is the number of user’s RoI, while
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Figure 5.1: ST-PA architecture.

ti ∈ RM and M is the number of different time intervals.

The embedded layer between the input and the hidden layers is used to learn a

meaningful representation of the RoI and the time identifier features. Let Re ∈ RN×dr

be the embedding matrix that represents a set of RoIs, where dr is the dimensionality

of the embedded vector of the RoI. The embedding matrix Te ∈ RM×dt represents a

set of time identifiers where dt is the dimensionality of the embedded vector of the

time.

At each time step i, RNN takes the input vectors rei ∈ Rdr , tei ∈ Rdt and the

previous hidden state hi−1 ∈ Rdh and outputs the next hidden state hi ∈ Rdh by

applying the following equation:

hi = f

(
rei ·Wr + tei ·Wt + hi−1 ·Whi−1

+ bh

)
(5.1)

where Wr ∈ Rdr×dh , Wt ∈ Rdt×dh , Whi−1
∈ Rdh×dh and bh ∈ Rdh are the parameters

of the RNN model and f is an element-wise non-linearity transformation function.

The embedded vectors rei and tei come from the embedding matrices of the RoI Re

and time identifiers Te, respectively. Hyperbolic tangent is used as the non-linear

activation function for the hidden layer.

The value of the prediction layer is computed as below:

ŷ = g(β ·Wβ + bo) (5.2)

where Wβ ∈ Rp∗dh×N represents the weight matrix between the hidden and output

layers, bo ∈ RN is the output layer bias and β ∈ Rp∗dh is a fixed vector which contains
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a high level features summarized the historical movement where p ∈ {1, 2, 3} is the

number of pooling function. Softmax is used as the non-linear activation function.

To compute the vector β, we use a RNN following by a pooling functions. RNN

has been proved to be very useful in representing such sequential data, while pooling

functions have shown being highly effective in extracting high level features from

dense real-valued vectors.

Given a sequence of historical movements [M1,M2, ...,Mw], where w is the

length of the sequence, the RNN model produces a corresponding sequence of hidden

states [h1, h2, ..., hw]. Then, we pass it through a pooling layer to obtain a fixed vector

that contains high level features. The following equation illustrates this idea:

β =
⋃

pool∈P

pooldhi=1hi (5.3)

where
⋃

denotes the concatenation operation and P ∈ {sum, dot,max}3 is the set of

pooling functions. The pooling function is an element-wise function and it converts

the sequence of vectors into a fixed length vector.

BPTT algorithm is used as a learning process of the model.

ADADELTA update rule is employed to estimate the model parameters,

θ = [Re, Te,Wr,Wt,Whi−1
,Wβ, bh, bo, r0], where r0 is the initial vector for the

recurrent layer. This process is repeated iteratively until reaching the convergence

state.

5.2.2 Different Data Inputs

In this section, we conduct a sensitivity analysis of STF-RNN to explore the effect

of using different data inputs on model performance. Different data inputs are used

such as the time of entering a RoI, weekday types. Moreover, time encoding scheme

is used to provide the model with more information related to the activity time.
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Figure 5.2: STE-RNN cell.

5.2.2.1 Time of Entering RoI Information

In this section, the time of entering a RoI is included as input to STF-RNN. The

purpose is to discover if there is a relation (i.e. dependence) between the leaving time

of the current RoI and the entering time of the next one. The movement trajectory

M is represented as a sequence of tuples (ri, ei, li) where r is the RoI identifier, l

is the leaving time from the RoI and e is the entering time to the RoI. r and l are

the same data inputs of STF-RNN (we change the symbol t into l to indicate that

this is the leaving time). This model is called Space-Time of Entering-RNN model

(STE-RNN).

The cell unit, shown in Figure 5.2, is a slight variant of STF-RNN cell. The

input layer consists of three vectors. The first and second ones are similar to the

input vectors of STF-RNN. The third vector represents the time unit part in hours of

entering a RoI at time i. We denote this vector by ei ∈ RM and M is the number of
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different time intervals. The values of the recurrent layer are computed as it follows:

hi = f

(
rei ·Wr + eei ·We + lei ·Wl + hi−1 ·Whi−1

+ bh

)
(5.4)

where Wr ∈ Rdr×dh , We ∈ Rde×dh , Wl ∈ Rdl×dh , Whi−1
∈ Rdh×dh and bh ∈ Rdh are

the weight matrices. The embedded vector eei ∈ Rde is given by multiplying the

embedded matrix Ee ∈ RM×de and the input vector ei. Ee represents a set of entered

times and de is the dimensionality of the embedded vector of the entered times.

Thus, STF-RNN-II parameters are θ = [Re,Ee, Le,Wr,We,Wl,Whi−1
,Wh, bh, bo, h0].

5.2.2.2 Weekday Types Information

Here, we explore the effect of including weekday types information (i.e. weekday and

weekend) on the model performance. The movement trajectory M is represented

as a sequences of tuples (ri, li, qi) where r and l are the same input features of

STF-RNN and q is the weekday information of the movement. This model is called

Space-Time-Week-RNN model (STW-RNN).

The cell unit of STW-RNN is similar to STE-RNN cell which the input layer

consists of three vectors. The input layer consists of three vectors. The first and

second ones are similar to the input vectors of STF-RNN, while the third vector

represents the weekday type information. We denote this vector by: qi ∈ RJ where

J ∈ {2, 7}, 2 is the two types of weekday (i.e., weekday (WD) and weekend (WE)),

and 7 is the seven days in the week (AllWD).

In STW-RNN, the values of the recurrent layer are computed as it follows:

hi = f

(
rei ·Wr + lei ·Wl + qei ·Wq + hi−1 ·Whi−1

+ bh

)
(5.5)

where Wr ∈ Rdr×dh , Wl ∈ Rdl×dh , Wq ∈ Rdq×dh and Whi−1
∈ Rdh×dh are the

weight matrices and bh ∈ Rdh is the hidden layer bias. The embedded vector

qei ∈ Rdq is given by multiplying the input vector qi and the embedded matrix

Qe ∈ RJ×dq . Qe represents a set of weekday type and dq is the dimensionality
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Figure 5.3: Time encoding scheme.

of the embedded vector of the weekday type. Thus, STF-RNN-III parameters are

θ = [Re, Le,Qe,Wr,Wl,Wq,Whi−1
,Wh, bh, bo, h0].

5.2.2.3 Time Encoding Scheme Information

In order to capture the temporal movement behaviour characteristics, we adapt the

time encoding scheme proposed by Zhao et al. (2016) where timestamps are encoded

into a particular time identifier. First, a timestamp is divided into two bins in

terms of weekday type (weekday and weekend) and day hour slot. Following the

work introduced by Liu (2018), the day hours are discretized into the following five

timeslots: ‘Morning’, ‘Noon’, ‘Afternoon’, ‘Evening’, and ‘Night’. ‘Morning’ is the

time from 6:00 to 10:59, ‘Afternoon’ is from 11:00 to 13:59, ‘Evening’ is from 14:00

to 17:59, ‘Evening’ is from from 18:00 to 21:59 and ‘Night’ is from 22:00 to 5:59. In

addition, 1 bit is used to denote weekday or weekend (0 value for weekend days and 1

otherwise). 3 bits encoding is used for the five different hour slots, 000 for ‘Morning’,

001 for ‘Noon’, 010 for ‘Afternoon’, 011 for ‘Evening’ and 100 for ‘Night’. Finally,

the binary code is converted into a unique decimal digit as the time identifier, where

the identifier is in the range of: 0 to 12. Figure 5.3 demonstrates the procedure of

encoding an exemplary time stamp, “2012-06-18, 19:58:58”. In this scenario, the

time identifiers numbers will be reduced to 13 instead of 95 in the original paper

(Zhao et al., 2016) which means less number of parameters and fast model training.

Different time encoding schemes are evaluated in Section 5.3.3.

The movement trajectoryM is represented as a sequences of tuple (ri, xi) where

r is the RoIs sequences and x ∈ R13 represents the time identifiers vector and 13 is

the number of different time identifiers. This model is called Space-Time Encoding

Scheme-RNN model (STES-RNN). The recurrent cell is similar to STF-RNN cell
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whose input layer consists of two vectors. The values of the recurrent layer are

computed as follows:

hi = f

(
rei ·Wr + xei ·Wx + hi−1 ·Whi−1

+ bh

)
(5.6)

where the embedded vectors rei and xei come from the embedding matrices of

the RoIs Re and time encoding scheme identifiers Xe, respectively. Wr ∈ Rdr×dh ,

Wx ∈ R13×dh , Whi−1
∈ Rdh×dh and bh ∈ Rdh are the model’s parameters. Thus,

STF-RNN-IV parameters are: θ = [Re,Xe,Wr,Wx,Whi−1
,Wh, bh, bo, h0].

5.2.3 Different Data Input Representation Techniques

An important property of location prediction model is to learn a meaningful

representation of mobility data which enables the model to capture the

embedded semantic information about people’s behaviour. Learning input features

representation offers further gains in performance. Therefore, we explore the impact

of STF-RNN with respect to the input representation that is used. Specifically, we

use one-hot encoding for some data input instead of using the embedding learning

representation. For example, we keep fixed representations of space data input

using one-hot vector and learn the embedded representation of time input and vice

versa. Based on the representation learning of space and time inputs, we employ the

following variations:

• Without Representation Learning (Wo-RL): all input features are randomly

initialized and kept static.

• Space Representation Learning (S-RL): all input features are randomly

initialized and then only space input feature is modified during training.

• Time Representation Learning (T-RL): all input features are randomly

initialized and then only time input feature is modified during training.

• Space-Time Representation Learning (ST-RL) is our original model,

STF-RNN, where all input features are randomly initialized and then modified

during the training process.
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Table 5.1: Performance comparison on the datasets evaluated by Recall@N and Precision@N.
Best scores are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

STF-RNN 73.3 73.3 87.7 44 93.1 31.1

ST-PA

sum 71.87 71.87 86.09 43.04 92.07 30.68
dot 72.12 72.12 86.91 43.46 92.43 30.79
max 73.17 73.17 87.47 43.84 92.45 30.8
max + sum 72.51 72.51 87.12 43.55 92.56 30.84
sum + dot 72.48 72.48 86.96 43.48 92.53 30.83
max + dot 72.82 72.82 87.41 43.70 92.63 30.86
max + sum + dot 73.58 73.58 87.82 44.41 93.25 31.45

Gowalla

STF-RNN 39.68 39.68 52.34 25.17 60.21 19.4

ST-PA

sum 39.08 39.08 53.03 26.51 60.03 20.01
dot 39.2 39.2 53.3 26.65 60.25 20.08
max 40.99 40.99 53.38 26.69 60.35 20.12
max + sum 39.14 39.14 53.17 26.59 60.08 20.03
sum + dot 39.09 39.09 53.24 26.62 60.11 20.04
max + dot 39.18 39.18 53.22 26.61 60.1 20.03
max + sum + dot 38.02 38.02 53.24 26.62 60.31 20.1

5.3 Experiments and Results

In this section, large-scale experiments are conducted to explore the effect of

modifying the architectural components on model performance. The settings of the

conducted experiments including the datasets used for the evaluation are described.

Finally, experimental results are reported.

5.3.1 Experimental Settings

We use two publicly available real-world datasets in our experiments: GeoLife (Zheng

et al., 2010) and Gowalla (Cho et al., 2011). Recall and Precision are employed as

our evaluation metrics in all experiments to assess the efficiency of the prediction

models. The model of each user is trained on its own mobility data using three-fold

cross validation technique. The Recall and Precision scores of each case from each

user is then calculated and the final results of all users are averaged.

5.3.2 Effect of Pooling-based Architecture

Table 5.1 shows the R@N and P@N values on the two datasets with different values of

N (i.e. 1, 2 and 3). In terms of the performance metrics, ST-PA model outperforms

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



5.3. Experiments and Results 71

STF-RNN prediction model on the two datasets. On the GeoLife dataset, the

best performance is achieved by using a combined sum, max and dot pooling.

Furthermore, results showed that using max pooling is particularly appropriate to

the separation of features that are very sparse (i.e., have a very low occurrence

probability). This may explain why maximum pooling performs better than other

features.

The advantage of ST-PA can be attributed to the fact that pooling functions

achieve invariance to feature transformations, more compact representations and

better robustness to noise and clutter. ST-PA outperforms STF-RNN by 0.38% in

terms of R@1. Using the combination function (sum+max+dot), the model achieved

better performance with 73.58%.

On the Gowalla dataset, using max pooling alone outperforms other features,

with 40.99% in terms of R@1. ST-PA outperforms STF-RNN by 3.3% in terms

of R@1. By using a combination of the pooling functions, the model shows

approximately similar results.

5.3.3 Effect of Different Data Inputs

In this section, we begin with investigating the effect of including the time of

entering a RoI. We also experiment the effect of adding an information that contains

the activity weekday types (i.e. weekday and weekend). Finally, time encoding

scheme is used to provide the model with more information related to the activity

time. Different time interval types are evaluated as follows: Month Week DayHours

(MWDH), Month Week 5TimeslotsDay (MW5TD), Week DayHours (WDH) and

Week 5TimeslotsDay (W5TD).

The performance comparison on the two datasets in terms of R@N and P@N

is illustrated in Table 5.2. It can be observed form the table that STF-RNN

outperforms STE-RNN. Unlike STE-RNN, STF-RNN uses the features: users’

leaving time information and RoIs sequences. Those two features were the reason

for such improvement. In other words, the next RoI users will visit depends on the

current RoI and the time at which they leave without the need to know the entry
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Table 5.2: Performance comparison on the datasets evaluated by Recall@N and Precision@N.
Best scores are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

STF-RNN 73.3 73.3 87.7 44 93.1 31.1
STE-RNN 73.13 73.13 87.53 43.77 93 31.03
STW-RNN + WD/WE 73.9 73.9 88.51 44.26 93.65 31.21
STW-RNN + AllWD 73.57 73.57 88.43 44.22 93.55 31.17
STES-RNN + MWDH 72.34 72.34 87.87 43.94 93.49 31.15
STES-RNN + MW5TD 72.87 72.87 88.29 44.15 93.62 31.2
STES-RNN + WDH 73.14 73.14 88.46 44.23 93.66 31.21
STES-RNN + W5TD 73.55 73.55 88.6 44.29 93.7 31.23

Gowalla

STF-RNN 39.68 39.68 52.34 25.17 60.21 19.4
STE-RNN 37.92 37.92 52.24 24.86 60.19 17.79
STW-RNN + WD/WE 40.58 40.58 53.79 26.89 60.47 20.16
STW-RNN + AllWD 39.99 39.99 53.61 26.81 60.33 20.11
STES-RNN + MWDH 39.05 39.05 53.4 26.75 60.21 20.07
STES-RNN + MW5TD 40.04 40.04 53.5 26.75 60.26 20.09
STES-RNN + WDH 40.36 40.36 53.54 26.77 60.26 20.09
STES-RNN + W5TD 40.56 40.56 53.7 26.85 60.45 20.15

time. In Gowalla dataset, there is a significant difference between the two models.

We think that the reason for such difference is that the timestamp information in

Gowalla dataset cannot be expressed in terms of the time of entering and leaving a

RoI. Not only STE-RNN did not perform well, but was also less efficient as more

features were included in comparison with STF-RNN. As we mentioned earlier, those

experiments showed also that users’ leaving time of the RoI is more relevant to the

prediction process than their entry time.

Regarding to STW-RNN, in terms of R@1, STW-RNN+WD/WE outperforms

STF-RNN in both evaluated datasets with 0.82% and 2.26%. Using the variable

‘weekday types’ is shown to be very useful and such variable is a significant predictor

of users’ next location. It shows that users follow similar patterns in the weekdays

in comparison to the weekends.

Finally, the results showed that in time encoding scheme, including W5TD is

significantly better than others. This is verifies the effectiveness of using time

encoding scheme and as well as the validity of incorporating various temporal

characteristics. This helps the model to effectively capture new temporal effects
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and, as consequence, impacts positively the efficiency of the model.

Results showed also that with time related features, using small time periods

(e.g., hours of the day) is more predictive features than larger time features such

as the month of the year. One interesting observation from the reported results is

that using the month in the encoding scheme does not show improvement in the

performance. This can be attributed to the similarity of user’s behaviours along the

months which means month information is not discriminative feature. Users may

follow similar behavioural patterns across several months (when excluding vacation

months). However, splitting the day hour into five timeslots shows significant

improvement. This is not surprising as the people’s daily activities usually occur

in slots such as morning, afternoon, etc. For example, users may go to a restaurant

after leaving the workplace at noon, while they may be more likely to go to a gym

when they leave office at night.

All in all, the selected features in each model is what significantly impact each

model overall prediction performance, Figures 5.4 and 5.5. The best prediction

results are obtained when STW-RNN (with WD/WE) is used on GeoLife and

Gowalla datasets in terms of R@1. This validates our strategy of incorporating

time information which exhibits explicit differences of users’ behaviours.

While the addition of some features can improve model prediction performance,

the addition of some other features can worsen some other models. This is the case

with STES-RNN model with MWDH feature. W5TD and time encoding scheme

features improve the performance in most models, best in STES-RNN (using R@2

and 3 performance metrics). STE-RNN achieves the worst performance on both

datasets.

5.3.4 Effect of Different Data Input Representations

The goal of these comparisons is to show how representation learning of data inputs

can affect the prediction performance. We report results achieved using different

space and time representations in Table 5.3.

Results showed that SRL feature is a significant predictor. More specifically,
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Figure 5.4: Different data input models comparison using GeoLife dataset.
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Figure 5.5: Different data input models comparison using Gowalla dataset.
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Table 5.3: Performance comparison of STF-RNN with different input representations. Best scores
are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

STRL (STF-RNN) 73.3 73.3 87.7 44 93.1 31.1
SRL 73.61 73.61 88.23 44.11 93.42 31.13
TRL 72.57 72.57 87.46 43.73 92.86 30.94
WoRL 72.55 72.55 86.96 43.48 92.62 30.86

Gowalla

STRL (STF-RNN) 39.68 39.68 52.34 25.17 60.21 19.4
SRL 41.31 41.31 55.39 25.94 63.4 19.95
TRL 39.16 39.16 52.11 24.79 60.93 18.63
WoRL 39.09 39.09 52.13 24.81 60.76 18.57

in terms of R@1 on GeoLife dataset, SRL outperforms STRL, TRL and WoRL by

up to 0.42%, 1.4% and 1.5% respectively. On Gowalla dataset, SRL outperforms

STRL, TRL and WoRL by up to 4.1%, 5.5% and 5.8% respectively. This means

that significant information needed for building the prediction model is included in

space input data (i.e. RoI sequences) in contrast with time input data where only a

little information is needed in representing the model dependencies. WoRL and TRL

models have achieved approximately similar results in both datasets. The reason is

that models learn from time data input (in case of TRL), without adequate data

of space input. As a result, such features do not capture sufficient discriminative

information for RoI prediction.

5.4 Summary

In this chapter, we have focused on evaluating models to predict the future

location of smartphone users. We described a series of experiments to extend our

previous prediction model (STF-RNN). We proposed time encoding scheme to encode

timestamps into particular time identifiers. A set of neural pooling functions are

explored in order to extract rich features. We evaluated the use of several input

variables and their impact on accurately predicting users’ next locations. Different

input representation methods (i.e. embedding learning and one-hot vector), for those

input variables are investigated. We showed when and where each method can show
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better results. We concluded here by summarising our main findings as follows:

• Multiple pooling functions offers rich sources of feature information, which

leads to an improvement on the prediction performance.

• The number of input features can play an important role in the prediction

performance (given the selection of proper and relevant features). However,

increasing the number of input features will increase the training time of the

model (i.e. overhead, efficiency, etc.). LBSs services are very sensitive to speed

and efficiency and we cannot trade-off those to improve prediction. Ideally, we

want models to achieve the best in both (i.e. prediction accuracy and speed

or efficiency).

• Using the leaving time input variable/feature only performs well in comparison

with using both entering and leaving RoIs (i.e. together).

• Using weekday types information is shown to be such a good input feature in

improving the prediction performance (in all evaluated models).

• Time encoding scheme is useful to provide the prediction model with more

information related to the movement behaviour characteristics. The results

indicate that considering different timestamp information is always beneficial.

However, as we mentioned before, we need to balance this with efficiency.

• Learning input feature representation can have a significant positive impact on

performance, and should be investigated. The best results are obtained when

learning the representation of space data input only.

• Space embedded vector size has a relatively little effect on the model

performance. For the model with space learning, it may be worth using a

large space embedded vector size where more location information is provided

to the model.
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CHAPTER6

An Attention-based Neural Model for

People’s Movement Prediction

6.1 Introduction

Several proposals on predicting people’s next location can be found in the literature,

which are based on well-known techniques, e.g., MC, Association Rules, NN and

RNN. Notwithstanding, the appropriate combination between sequences of locations

(i.e. a specific area that can be geolocalized) and movement times (i.e. morning,

afternoon, from 4 to 6 PM, etc.) is still relatively unexplored. A location represents

those spatial regions where the user has stayed for more than a pre-specified time

threshold (e.g., 30 minutes), providing that the diameter of the region does not

exceed a predefined threshold (e.g., 20 meters).
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In this work, we aim to improve the prediction of a person’s next location through

effectively capturing the temporal effects by learning an attention model over his/her

location history. In other words, we seek to answer the question: Which time interval

do people attend to, while moving from one location to another? Typically, proposals

squash all the input data into a single fixed-length vector. Our hypothesis is that

the movement predictions learned by our model enable to effectively combine the

spatial and temporal information.

The spatial and temporal information have different degrees of importance

when generating the information for location prediction. Specifically, the temporal

information can contribute to add more weights to spatial information. Our proposal,

based on the promising attention technique, learns the importance of temporal

information that should be more involved when computing the prediction outputs.

The attention technique has been applied on RNN to find the relevant part of

the information that helps generate the outputs. The combination of RNN and

attention techniques improves the performance of many challenging tasks such as

machine translation (Luong et al., 2015), generation of image captions (Xu et al.,

2015), video description (Hori et al., 2017) and speech recognition (Chorowski et al.,

2014).

In the area of predicting people’s next location, various models have been

proposed, including LZ algorithm, Markov Model, Bayesian Networks and

Association rules. Another commonly used models for predicting users’ next

movement based on the past or historical mobility is NN (Leca et al., 2015; L. Vintan

and Ungerer, 2004) and RNN (H. Kaaniche, 2010). In addition, a new model

has been proposed in (Lee et al., 2016). The authors introduced the notion of

Spatio-Temporal-Periodic (STP) patterns to represent user’s past visits and then

used the proposed model to extract these patterns for predicting next places. Liu

et al. (2016) proposed a RNN model called ST-RNN, which considered the periodical

context of location and/or time successions. Instead of squashing all the information

into a single fixed-length vector, the model proposed in this chapter is able to weight

the location information by the movement time.
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Figure 6.1: MAP architecture. The target hidden state hi and the context vectors Ω are generated
based on the spatial and temporal data, respectively. The model infers an alignment weight vector
α based on the current target hidden state hi and the context vectors Ω. The attention vector η̄
is then computed using the alignment weight vector α and the context vectors Ω. To predict the
next location, the target hidden state hi is combined with the attention vector η̄.

In this chapter, we propose MAP, a RNN architecture that improves location

prediction by using an attention technique that provides the learning model with

more information, related to the movement time. We conduct detailed experiments

using two large real-life mobility datasets to evaluate the efficiency of the proposed

model.

6.2 MAP: Model Description

In this section, we describe the MAP model, which accepts both RoIs and time

intervals as inputs and predicts user’s next location.

As stated previously, a user’s trajectories are represented as a sequence of

movements Mu = {M1, . . . , Mn}, where u ∈ U and n is the length of the user’s

trajectories.

MAP consists of three major parts (see Algorithm 1): RNN (lines 3 to 8),
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the Attention Model (lines 9 to 16) and Softmax Classifier (lines 17 to 20). The

RNN part reads through the input spatial sequences and generates a high level

representation vector h that describes the historical movement summary, while the

Attention Model reads the temporal sequences and generates an attention vector η̄

to add more relevant information to the model outputs. Then, the attention and

RNN vectors are used to generate the probability distributions for the next RoIs

(i.e. the prediction itself).

hi = RNN(ri, . . . , r1) (6.1)

η̄ = attention(hi, [ti, . . . , t1]) (6.2)

P (r̂i+1 = rj|Mi, . . . ,M1) = softmax(hi, η̄) (6.3)

The overall structure of the MAP model is shown in Figure 9.1. We provide more

details of these three parts in the following subsections.

6.2.1 RNN

The input of RNN part is a sequence of RoIs [ri−w, . . . , ri] which represents the

spatial historical movements where w is the number of visited RoIs taken as input

to the model. Each RoI is represented as a vector ri ∈ RN and N is the number

of RoIs in Ru. This vector is encoded using one-hot encoding (1 − of − N). Each

input vector ri is passed through an embedding layer to produce a real-valued vector

with dr dimensionality in order to learn a meaningful representation of the RoI input

feature.

Specifically, the RNN model takes the corresponding input vector ri, produces a

fixed-length embedded vector rei which used as as input to RNN cell as follows:
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Algorithm 1: MAP Model.

Input : Traj: user’s trajectories represented as a sequence of movements,
each movement contains (r, t), r ∈ R and t ∈ T , w: number of
visited RoIs.

Output: S: set of predicted RoIs.
1 S ← []
2 for x ← 1 to Traj.length− w + 1 do
3 //RNN model
4 initialize h by zero. //target hidden state
5 for i ← x to x+ w do
6 re ← embedding(Traj[i].r, Re)
7 h ← RNN(re, h)

8 end
9 //Attention model

10 Ω ← [] //context vectors
11 for j ← x to x+ w do
12 te ← embedding(Traj[j].t, Te)
13 Ω.append(te)

14 end
15 α = softmax(Ω · h) //alignment weight vector
16 η̄ = α · Ω //attention vector
17 //Classifier
18 ŷ = softmax(α(h, η̄)) //alignment function
19 k ← argmax(ŷ)
20 S.append(R[k])

21 end

rei = ri ·Re (6.4)

hi = tanh

(
rei ·Wr + hi−1 ·Whi−1

+ bh

)
(6.5)

where Re ∈ RN×dr is the embedded matrix that represents a set of RoIs and dr

is the RoI embedded vector dimensionality. hi ∈ Rdh is the hidden state where dh is

the hidden layer vector dimensionality. Wr ∈ Rdr×dh , Whi−1
∈ Rdh×dh and bh ∈ Rdh

are the parameters of the RNN model. Hyperbolic tangent (tanh) is used as the

non-linear activation function.

In this model, the next RoI prediction depends on the current input RoI and on

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO TRAJECTORY ANALYSIS AND PREDICTION: STATISTICAL AND DEEP LEARNING TECHNIQUES 
Abdulrahman Qasem  Al-Molegi 
 



82
Chapter 6. An Attention-based Neural Model for People’s Movement

Prediction

the sequential historical information as well. This property helps the model keep

track of user movement history and discover meaningful dependencies to enhance

the model performance.

6.2.2 Attention Model

The Attention Model part inputs are the RNN output hi and a set of vectors

[ti−w, . . . , ti] that represent the hour part of the leaving time from the RoI. In this

case, the time intervals are the number of hours per day (i.e. 24). Each time vector

is denoted by t ∈ RM and encoded using 1− of−M encoding technique, where M is

the number of different time intervals in T u. Each time vector ti is passed through

an embedding layer to produce a fixed-length embedded vector tei ∈ Rdh as follows:

tei = ti · Te (6.6)

where Te ∈ RM×dh is the embedded matrix and dh is the leaving time embedded

vector dimensionality. Therefore, after reading w temporal inputs, we extract a set

of vectors [tei−w, . . . , tei] which are referred to the context vectors Ω.

Given the target hidden state hi and the context vectors Ω, we employ a neural

network to learn jointly the relationship between the RoI and time information as

follows. The model first infers an alignment weight vector α by multiplying the target

hidden state hi and the context vectors Ω. This inner product finds the similarities

between them. Then, the output is normalized using a Softmax function.

α = softmax(Ω · hi) (6.7)

To generate the attention vector η̄, the alignment weight vector α is multiplied by

the context matrix Ω as follows:

η̄ = α · Ω (6.8)
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6.2.3 Softmax Classifier

The hidden state hi and the attention vector η̄ are used to produce a probability

distribution over the RoIs ŷ.

ŷ = g(C(hi, η̄) ·WC + bo) (6.9)

where WC ∈ Rdh×N and bo ∈ RN are the model parameters. Here, C is referred as a

content-based function for which we consider two different combination alternatives:

C(hi, η̄) =

hi + η̄ sum.

hi|η̄ concat.

(6.10)

The vector ŷ is further normalized using Softmax to obtain the probability

distribution over the RoIs.

The computation path goes from hi → α → η̄ → C then a prediction is made

as detailed in Equations 6.5, 6.7, 6.8 and 6.9. The feature vectors of spatial and

temporal data are different, as they capture different aspects of the trajectories. All

spatial and temporal vectors are trained jointly. Such a joint training is capable of

capturing the dependencies between the different trajectory’s parts, and results in

effectively predictions.

6.2.4 Learning Algorithm

Optimization is performed using ADADELTA update rule and BPTT algorithm.

The RNN and attention models are trained jointly. The cost J to be minimized

by optimizing the model parameters is the cross entropy. MAP parameters are

θ = {Re, Te, h0,Wr,Whi−1
,WC , bh, bo} where h0 is the initial recurrent layer vector.

6.3 Experiments and Results

In this section, we address the performance of MAP by conducting tests using two

real-life datasets.
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Table 6.1: Models feature demonstration

Model Recurrent
Input features Repres. learning

Attention
Space Time Space Time

NN no yes no no no no
RNN yes yes no no no no

noAtten yes yes no yes no no
STF-RNN yes yes yes yes yes no

MAP yes yes yes yes yes yes

6.3.1 Experimental Settings

We use two publicly available datasets that contain data on people’s locations:

GeoLife (Zheng et al., 2010) and Gowalla (Cho et al., 2011).

We use Precision and Recall to assess the efficiency of the prediction models.

Three-fold cross validation technique is used to train the model of each user

in which the mobility data are partitioned into three sub-data of equal size. The

Precision and Recall scores of each case from each user are then calculated and the

final results of all users are averaged.

We examine two alignment functions (sum, concat) as described in Section

6.2.2. To evaluate the model effectiveness, we compare MAP with four outstanding

proposals found in the literature: NN (Leca et al., 2015; L. Vintan and Ungerer,

2004), RNN (H. Kaaniche, 2010), and STF-RNN (Al-Molegi et al., 2016). In

addition, we implemented a RNN that does not consider the attention technique

(noAtten). The goal of these comparisons is to show how including the attention

technique with recurrent structure has improved prediction overall performance.

Models feature demonstration is shown in Table 6.1.

The common parameters of the models are given the same values. For example,

hidden layers in NN, RNN and STF-RNN are set to 24. The number of training

epochs is set to 100. The number of visited RoIs taken as input to the model is

w = 2. The dimensionality of the embedded vector of the RoI dr and the hidden

layer dh are 160 and 24, respectively. All these parameter values are obtained using

the Grid Search.
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Table 6.2: Performance comparison on the datasets evaluated by Precision@N and Recall@N.
Best scores are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

NN 58.1 58.1 82.1 40.9 91.1 30.3
RNN 67 67 86.5 42.4 92.7 30.8
STF-RNN 73.3 73.3 87.7 44 93.1 31.1
no-atten 71.95 71.95 87.37 44.19 92.69 31.28
MAP-sum 73.73 73.73 88.6 44.3 93.89 31.28
MAP-concat 73.8 73.8 88.03 44.02 93.54 31.17

Gowalla

NN 34.13 34.13 48.44 24.12 55.33 18.56
RNN 34.32 34.32 48.68 24.34 55.67 18.56
STF-RNN 39.68 39.68 52.34 25.17 60.21 19.4
no-atten 39.08 39.08 54.73 21.91 61.96 13.39
MAP-sum 41.11 41.11 57.96 24.26 65.13 15.41
MAP-concat 40.77 40.77 56.27 23.41 63.43 14.84

6.3.2 Results and Analysis

Table 6.2 compares the results in terms of P@N and R@N with N = 1, 2 and 3. It

is shown that the models that used a RNN structure perform better than NN. This

indicates that RNN is effective in modeling trajectory sequences, which enables the

models to get more accurate results by taking into account historical dependencies.

RNN improves the results compared to NN, but does not model well the movement

sequences without taking into consideration the movement time. noAtten greatly

improves the performance comparing with RNN due to the fact that the embedding

representation learning of the space input feature enable the model to extract the

embedded semantic information about the users’ behaviour more efficiently.

Another great improvement is achieved by STF-RNN though using the time

feature in the model operations. Concat-MAP and sum-MAP consistently perform

better than STF-RNN, and this demonstrates that the proposed integration of space

and time using the attention technique performs better than using space and time as

features to be input to the model. For instance, MAP-concat outperforms STF-RNN

and noAtten by 0.68% and 2.57%, in terms of R@1 on GeoLife dataset. On Gowalla

dataset, MAP-sum outperforms STF-RNN and noAtten by 3.6% and 5.2%.
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Figure 6.2: Models performance at users level.

All in all, MAP outperforms the other models, which implies that MAP can

effectively learn to align RoIs and the movement time intervals. Our analysis shows

that MAP attention-based model is superior to non-attentional ones in finding the

relation between the two main parts of the mobility dataset (RoI sequences and

movement times). Using the alignment function (MAP-concat), the model achieved

better accuracy with 73.8%.

In spite of the slight differences between the four prediction models architecture

(i.e. MAP-concat, MAP-sum, noAtten and STF-RNN), different prediction

accuracies are exhibited when looking at user’s individual result. The performance of

each model varies greatly, as shown in Figure 6.2 for five selected users. We explain

these variations by the fact that the data input types and the way of exploiting them

have different impact on the prediction performance. Besides that, the different types

of people’s behaviour and few mobility data of some users are the major causes of

such a difference in prediction performance.

6.3.3 Qualitative Analysis

To analyse the learned attention model, we extract the attention weight vector

computed in Equation 6.7 and visualize the attention weights accordingly. Figure

6.3 shows the representation of how the attention model focuses on the temporal

input that influences a given RoI. The gray level indicates the importance degree of
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Figure 6.3: Attention visualization. Higher gray level means higher contribution.

the weight in attention vector, where high gray level means high contribution.

To predict the next RoI rj, the model inputs are the previous and current RoIs

and times where w = 2: (ri−2, ti−2), (ri−1, ti−1)→ rj. We study two cases. The first

case is where the prediction depends on the current RoI and time. This case can be

interpreted as the following rule: if r = ri−1 and t = ti−1 then next RoI is rj. The

second case is where the only important information for the prediction is the current

RoI. This case can be interpreted as the following rule: if r = ri−1 then next RoI is

rj.

Our hypothesis is that the attention model is able to learn the importance of the

time information, this importance is given by the alignment vector in Equation 6.7.

For the first case, the model must give the importance to the input time ti−1 (i.e. its

weight should be 1) and discard the input time ti−2 (i.e. its weight should be 0), see

the ground truth in Figure 6.3a. Regarding the second case, there is no importance

for the times information; thus, the model must give them the same weight (i.e. 0.5)

for both time inputs as shown in the ground truth in Figure 6.3b.

To examine whether the model satisfies this hypothesis, we analyse the
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Figure 6.4: Impact of RoI embedded vector dimensionality parameter dr.
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Figure 6.5: Impact of hidden layer embedded vector dimensionality parameter dh.

transaction matrix of one user and randomly select some examples that satisfy the

two cases mentioned above. Figure 6.3a shows the examples of case 1, the output

of the attention model and their visualization. It is clearly shown that the attention

model gives the highest weight to the time input ti−1 which has high impact on the

next RoI decision. In the fourth example, the model gives same weight for both

ti−2 and ti−1 and this is reasonable as they are identical (i.e. both of them equal

8). Figure 6.3b shows the visualization of the attention weights for some examples

that satisfy the second case. The model gives approximately same weight for both

ti−2 and ti−1 as they have the same impact (i.e. there is no importance for the time

information). Overall, the model successfully learns to highlight the relevant part of

time inputs which helps to improve the prediction performance.

6.3.4 Effects of Parameters

In addition, we study the effects of the dimensionality of both RoI and hidden layer

embedded vectors.

To assess the effect of the dimensionality of RoI embedded vector dr, R@N results

are shown in Figure 6.4. We observe that the models performance gives the best

results as long as we enlarge the value and then it decreases slightly in terms of

R@1. Small dr (e.g., less than 140) means that less RoI information has to be
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Table 6.3: Running time in seconds.

Model Training Predicting Epoch All op.
STF-RNN 0.235±0.0029 0.00029±0.000009 0.262±0.003 153.5±1.43

MAP-concat 0.197±0.0027 0.00025±0.000009 0.22±0.0028 122.14±1.29
MAP-sum 0.183±0.0026 0.00025±0.000008 0.206±0.0027 117.97±0.361
noAtten 0.161±0.0021 0.00022±0.000007 0.181±0.0021 105.21±0.529

considered by the model which limits its efficiency in discovering dependencies and,

hence, impairing its performance.

Regarding the effect of hidden layer embedded vector dimensionality dh on the

model performance, the performance improves with the increase of dh (see Figure

6.5). The best performance reaches its peak with dh = 24 which indicates that the

model learns to divide the movement time into 24 intervals. Small (large) dh means

that few (many) time intervals are provided, which fails to capture the relationships

between the RoIs and times.

6.3.5 Running Time

Finally, we measure the exact running time of MAP and STF-RNN models. We

simply run the models on trajectories of a randomly selected user and measure the

amount of time for four cases, namely training, predicting, one epoch and all the

operations. The experiment is repeated 10 times for each model. The average and

standard deviation are then calculated. All experiments were conducted on iMac

PC with 3.06 GHz Intel Core 2 Due CPU and 4 GB memory. Table 8.9 shows the

models’ exact running time in seconds. It can be noted that MAP models running

times are less than STF-RNN’s. This is due to the small number of MAP parameters

compared to the number of STF-RNN parameters.

6.4 Summary

In this chapter, we have proposed MAP, an attention-based neural network for the

problem of predicting people’s next location. Our proposed model tends to align time

intervals in people’s trajectories that are relevant to a specific location. The proposed
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model learns to weight location inputs according to the movement time intervals

associated in the trajectories. Experiments on GeoLife and Gowalla datasets show

that MAP has improved the prediction effectiveness compared to state-of-the-art

models.
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CHAPTER7

Convolutional Neural Network for

Predicting People’s Next Location

7.1 Introduction

The convolution technique has shown to be quite effective in exploiting the

correlation of various types of data which is considered as the key to the success

of CNN for a variety of tasks (LeCun et al., 2015). A CNN assumes that there

is a very specific structure in the data, where inputs that are close to each other

are related, whereas inputs that are further away are less related. In images, this

makes sense since we normally have patches of similar texture, lighting and colour.

In speech, words that occur close to each other in a sentence or a paragraph are more

likely to share some semantic meaning. In sound, there are similar patterns where
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Figure 7.1: ST-CNN model architecture.

the sound spectra at time steps close to each other tend to be similar and particular

transitions from one phoneme to another are more common than others in a given

language. In people’s mobility modeling, the movement flow pattern of individuals

from one location to another is required to extract. One promising approach is to

adopt the fast, scalable, and end-to-end trainable CNN.

In this chapter, we use CNN architectures in order to build location prediction

model called ST-CNN. We conduct the experiments using two large real-life mobility

datasets to evaluate the efficiency of the proposed model. The use of large-scale

datasets is one of the extremely important issues when using CNN, which have

massive parameter numbers to be updated.

7.2 ST-CNN: Model Description

The overall structure of ST-CNN model is shown in Figure 7.1. The ST-CNN model

(Algorithm 2) is composed of an embedding layer for both RoIs and time (lines

3-6) followed by a convolutional and max pooling layers (lines 7-18), fully connected

network (lines 19-21) and a softmax classification layer (lines 22-26).

The input layer consists of two vectors. The first vector ri ∈ RN is the RoI ID
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Algorithm 2: ST-CNN Model.

Input : Traj: user’s trajectories represented as a sequence of movements,
each movement contains (r, t), r is RoI ∈ R and t is movement time
∈ T , w: number of visited RoIs, kernels, |F |: number of filters.

Output: S: set of predicted RoIs.
1 S ← []
2 for x ← 1 to Traj.length− w + 1 do
3 for i ← x to x+ w do
4 re.append(embedding(Traj[i].r))
5 te.append(embedding(Traj[i].t)

6 end
7 // RoIs conv
8 for k ← 1 to kernels do
9 Rconv ← Conv1D(|F |, k, re)

10 Rconv ← relu(Rconv)
11 Rpool ← MaxPool1D(w − k + 1, Rconv)

12 end
13 // Time conv
14 for k ← 1 to kernels do
15 Tconv ← Conv1D(|F |, k, te)
16 Tconv ← relu(Tconv)
17 Tpool ← MaxPool1D(w − k + 1, Tconv)

18 end
19 RTconcat ← Concat(Rpool, Tpool)
20 fc← Dense(256, RTconcat)
21 fc← relu(fc)
22 //Classifier
23 fc← Dense(|R|, fc)
24 ŷ ← softmax(fc)
25 Indx ← argmax(ŷ)
26 S.append(R[Indx])

27 end
28 return S
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where N is the number of RoIs. The second vector ti ∈ RM represents the leaving

time (in hours) from the RoI (Al-Molegi et al., 2018) and M is the number of hours

per day (i.e. 24 hours). These two vectors are encoded using one-hot encoding

(Harris and Harris, 2012).

The two input vectors are passed through an embedding layer in order to learn

a meaningful representation of the RoIs and the leaving times input features. This

representation enables the model to capture the embedded semantic information

about user behaviour and as a consequence improving the prediction performance.

The embedded matrix Re ∈ RN×dr represents a set of RoIs where N is the number

of RoIs and dr is the dimensionality of the embedded vector. Similarly, Te ∈ RM×dt

is the embedded matrix that represents a set of times and dt is the dimensionality

of the embedded vector. If w is the number of movementsM taken as inputs to the

model, then re ∈ Rw×dr and te ∈ Rw×dt are the RoI and time inputs respectively.

To learn to capture and compose features of movement sequences, the neural

network applies a series of transformations to the RoI and time input matrices using

convolution, nonlinearity, pooling and concatenation operations.

A convolution operation involves a filter Fi ∈ Rk×dr , which is applied to each

window size w comes from Re matrix {re1:k, re2:k+1, . . . rew−k+1:w} where k is the

filter height. This operation results in a vector Rconvi ∈ Rw−k+1 which is computed

as follows:

Rconvi = f(Fi ⊗ rei:i+w−1 + b) (7.1)

where ⊗ is the element-wise multiplication, and f is a non-linear function such as a

Rectified Linear Unit (ReLU) and b is a bias vector.

The previous operation is applied using a single filter. For a richer feature

representation of the input data, we apply a set of filters that work in parallel

generating multiple feature maps. If the number of filters are |F |, then a feature

map matrix Rconv ∈ Rw−k+1×|F | is obtained.

Rconv = [Rconv1 , Rconv2 , . . . Rconv|F | ] (7.2)
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The same procedures are applied to the time input matrix and finally, feature

map matrix Tconv ∈ Rw−k+1×|F | is obtained.

After passing the convolutional layer outputs (Rconv and Tconv) through the

activation function, it is passed to the pooling layer in order to aggregate the

information and reduce the representation. We apply a max pooling operation which

simply returns the maximum value to capture the most important feature Rpool and

Tpool.

The output of the pooling layer RTconcat is passed to a fully connected softmax

layer to obtain the probability distribution over the RoIs.

P (r̂i+1 = rj|Mi, . . . ,Mi−w) = softmax(RTconcat ·W + bo)

=
eRTconcat·Wi+bsi∑N
j=1 e

RTconcat·Wj+bsj

(7.3)

where W and bo are the model parameters to be trained.

Adam optimization algorithm (Kingma and Ba, 2014) is used to train the

network, while BPTT algorithm is used to compute the gradients. The model

parameters are θ = [Re, Te, F,W, b, bo] where Re and Te are the embedding matrices

of the RoIs and time, respectively. F is the set of filters and b is the convolutional

bias. W and bo are the weight and bias of the softmax layers, respectively. The cost

function used is the cross entropy.

7.3 Experimental Evaluation

In this section, we aim at demonstrating the performance of the ST-CNN model, by

conducting tests using real-word GPS dataset of individuals.

7.3.1 Experimental Settings

We use two publicly available datasets: GeoLife (Zheng et al., 2010) and Gowalla

(Cho et al., 2011).
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Table 7.1: Performance comparison on the datasets evaluated by Recall@N and Precision@N.
Best scores are in bold.

Dataset Model
@1 @2 @3

R P R P R P

GeoLife

n-MMC 58.9 58.9 78.7 39.3 87 29
NN 58.1 58.1 82.1 40.9 91.1 30.3
RNN 67 67 86.5 42.4 92.7 30.8
STF-RNN 73.3 73.3 87.7 44 93.1 31.1
GTR 73.6 73.6 88.62 44.31 93.73 31.2
ST-CNN 74.07 74.07 88.62 44.32 94.2 31.2

Gowalla

n-MMC 17.1 17.1 23.64 11.82 30.05 10.02
NN 34.13 34.13 48.44 24.12 55.33 18.56
RNN 34.32 34.32 48.68 24.34 55.67 18.56
STF-RNN 39.68 39.68 52.34 25.17 60.21 19.4
GTR 40.59 40.59 52.69 26.47 60 19.91
ST-CNN 41.28 41.28 53.9 27 60.73 20.20

We compare the prediction model performance with four outstanding proposals

found in the literature: n-MMC (Gambs et al., 2012), NN (Parija et al., 2013c; Leca

et al., 2015; L. Vintan and Ungerer, 2004), RNN (H. Kaaniche, 2010), STF-RNN

(Al-Molegi et al., 2016) and GTR (Al-Molegi et al., 2017) which used embedding

representation and neural pooling function of input data.

The parameters of our model are as follows: the window size w is set to 2. The

dimensionality of the embedded vector of the RoI (dr) and time (dt) are 160, 6

respectively. The height of the convolution filters k is set to 2 and the number of

convolutional feature maps is 175. We use ReLU activation function and a simple

max-pooling function.

Precision and Recall are employed as our evaluation metrics in all experiments

in order to assess the efficiency of the prediction models. The model of each user

is trained on its own mobility data using three-fold cross validation technique. The

Precision and Recall scores of each case from each user is then calculated and the

final results of all users are averaged.
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7.3.2 Results and Analysis

The experiment results on GeoLife and Gowalla datasets in terms of P@N and R@N

are shown in Table 7.1. The worst results are obtained by n-MMC and NN on

GeoLife due to only considering the movement sequences without the time. On

Gowalla dataset, it is clearly shown that NN results in a better prediction accuracy

than n-MMC. This is due to the large training data size which results in a good

model performance. Furthermore, the results demonstrate the models ability that

used a RNN structure to successfully analyse movement sequences by taking into

account historical dependencies which enables the models to get more accurate

results. A great improvement is achieved by STF-RNN though using the internal

representations learning of the space and time features. In addition, it can be

observed form the table that GTR slightly improves the results comparing with

STF-RNN due to using the time encoding scheme in the model operations which

helps the model to effectively capture the temporal effects. We further notice that

our model outperforms STF-RNN, GTR and the other baseline models on both

datasets. For instance, ST-CNN outperforms STF-RNN and GTR by 1.1% and

0.64%, respectively, in terms of P@1 on GeoLife. This is mainly because that CNN

explicitly employs the interactive information, while most other methods only rely

on the global information.

7.3.3 Summary

In this chapter, we have proposed a model for the problem of predicting the future

location of people movement. An embedding learning layer is used to effectively

discover adequate internal representations of space and time input features enabling

the model to capture the embedded semantic information about the users’s behaviour

more effectively. The CNN is used to discover long-term dependencies which increases

the efficiency of the proposed model. Experiments on two datasets (GeoLife and

Gowalla) show that the model has improved the prediction effectiveness compared

to state-of-the-art models.
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CHAPTER8

RoI Discovering and Predicting in

Smartphone Environments

8.1 Introduction

Discovering RoIs (historical locations where smartphone users frequently visit) and

predicting people’s next RoI during their daily life are a key component in the success

of modeling people’s mobility.

Most of the existing studies for discovering RoIs depend on extracting contiguous

GPS points that satisfy threshold conditions (e.g., stay time, distance, etc.). If

contiguous GPS points satisfy the threshold conditions, it can be concluded that

a RoI has been discovered. Moreover, some other studies are based on clustering

algorithms such as DJ (Zhou et al., 2004) and k -means. In general, few studies
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focused on discovering RoIs to predict people’s mobility.

Smartphone devices are used to collect the traces of outdoor environments, thus,

most of the recorded GPS points will be located in a regions that connect significant

locations. This information helps to segment the trajectory into paths and significant

locations. In this chapter, a method to discover RoIs is proposed which can help in

building an accurate location prediction model. The proposed method detects the

paths and associates them with the nearest significant locations.

It is worth mentioning that the accuracy of location prediction models depends

on the completeness or comprehensiveness of the collected data. Integrating space

and time context is not necessarily to improve the prediction performance due to the

different degrees of importance of various contexts when generating the information

for location prediction. Moreover, the appropriate integration between space and

time is still relatively unexplored. The time context must be formulated in a way to

add extra information to the space context. To this end, including time context in a

specific way could help in detecting human movements changes and as consequence,

enhance the prediction model performance.

Any successful location prediction model should target three major goals:

location prediction accuracy, high throughput or fast response and efficiency in

terms of utilizing smartphone resources. Markov model becomes a better choice to

predict people’ next locations due to the high prediction accuracy and low complexity

compared to other models such as NN, LZ, Prediction by Partial Match (PPM) and

Sampled Pattern Matching (SPM) (Song et al., 2006).

This chapter claims three contributions:

• Firstly, a new method to discover RoIs located in people’s trajectories is

proposed, which helps to build an accurate users’ next location prediction

model. The method starts by discovering Candidate RoIs (CRoIs) based

on three types of thresholds: distance, time, and region density. Then, the

DBSCAN algorithm (Ester et al., 1996) is used to cluster the CRoIs into

different RoI groups. Once the RoIs are discovered, the previously collected

GPS points are converted into a sequence of RoIs that represent a series of
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locations visited by a user. Soundness and completeness are used as metrics to

evaluate the performance of the proposed method to discover RoIs.

• Secondly, a prediction model is proposed to predict people’s next location;

a space-time-based Generalized Markov Model (st-GMM). In st-GMM, MC

model is improved to include the time context factor where different space-time

integration methods are employed. To improve st-GMM performance, the

model also applies explicit feedback during the testing phase to automatically

update its transitions content. Due to the high prediction performance and

low complexity of the models, they could be applied to an environment with

limited resources such as services and applications installed in smartphones.

• Thirdly, we use two real-life datasets to evaluate the proposed approach. The

experimental results demonstrate that our approach performs well in terms of

the evaluation metrics, as well as time complexity.

8.2 The Proposed Approach

Figure 8.1 shows our proposed next interest region discovering and prediction

approach which includes four main steps:

• In the first step, the dataset is preprocessed to detect and remove possible

noise.

• In the second step, RoIs located in a user movement region are discovered.

• The third step involves several sub-steps: discretization, reduction,

quantization and transformation of the training dataset, and building a

prediction model.

• The last step involves evaluating the prediction model using a testing dataset.

Next sections cover with details the different steps except the first one (data

preprocessing) which is described in Section 3.2.1.
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Figure 8.1: Our proposed next interest region discovering and prediction approach.

8.2.1 Discovering RoIs

RoIs discovery method has to satisfy the soundness and completeness properties

which are used as metrics to evaluate the effectiveness of the method. More details

are provided in Section 8.3.2.1.

We propose Discovering RoI (DRoI) (see Algorithm 3); a new method that takes

a sequence of GPS points from user’s mobility data in order to produce a set of RoIs

Ru = {r1, r2, . . . , rm}, where m is the number of the obtained RoIs.

DRoI is accomplished in two levels: the first level is called Discovering Candidate

RoI (DCRoI) (lines 1 to 33) and the second one is called Candidate RoI Clustering
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Algorithm 3: Discovering RoI.

Input : G: a sequence of GPS-Point and time, δ: distance threshold, τ : time
threshold, rd: region density threshold.

Output: A set of RoI.
1 CRoI.add(G[1].GPS-Point)
2 CRoIindex ← 1
3 RegionDensity.add(1)
4 for i ← 2 to G.length do
5 isBelongToCRoI ← False
6 mini ← 8

7 for j ← 1 to CRoI.length do
8 dist ← HaversineDistance (G[i].GPS-Point,CRoI[j]) // computing the

distance
9 if dist < δ then

10 isBelongToCRoI ← True
11 RegionDensity[j] ← RegionDensity[j] + 1
12 break

13 else if dist < mini then
14 mini ← dist
15 x ← j //x is the index of the nearest CRoI

16 end

17 end
18 if not isBelongToCRoI then
19 ∆T ← G[i].time - G[CRoIindex].time // computing the overall spent

time
20 if ∆T > τ then
21 if RegionDensity[x] > rd then
22 // region density
23 CRoI.add(G[i].GPS-Point) // new CRoI
24 RegionDensity.add(1)
25 CRoIindex ← i

26 else
27 RegionDensity[x] ← RegionDensity[x] + 1
28 end

29 else
30 RegionDensity[x] ← RegionDensity[x] + 1
31 end

32 end

33 end
34 RoI ← DBSCAN(CRoI)
35 return RoI
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Figure 8.2: DCRoI flowchart.

(CRoIC) (line 34).

• DCRoI: In the first level, mobility data is grouped based on three types of

thresholds: distance (δ), stay time (τ) and region density (rd), where δ, τ and

rd are three tuning parameters.

• CRoIC: Based on DBSCAN algorithm, the second level performs clustering on

the CRoIs to obtain the RoIs.

8.2.1.1 DCRoI

Figure 8.2 shows a flowchart of DCRoI method. The first GPS point is added to

the CRoI list (line 1). It is assumed that participants have started collecting GPS
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(a) After applying distance
threshold.

(b) After applying distance and
time thresholds.

(c) After applying distance,
time and region density
thresholds.

Figure 8.3: The first level: Discovering CRoI.

points from RoIs. The GPS points of each discovered RoI are counted. Then, all

GPS points are compared with the CRoI list, which starts with only one at the

beginning. We begin by examining the first threshold, which is the distance δ (lines

7-17) computed using Haversine Distance, Equation 8.1:

distance = 2r arcsin

(√
sin2(φ2−φ1

2
) + cos(φ1) cos(φ2) sin2(λ2−λ1

2
)

)
(8.1)

where φ is latitude, λ is longitude and r is the radius of the sphere. If the distance

is less than a given threshold, the current GPS point is associated with the nearest

CRoI and its density is increased by one. Otherwise, the second threshold (time

spent in the current CRoI τ) is computed (line 19). If the spent time is less than a

given threshold, the current GPS point is also associated with the nearest CRoI and

one point is counted. Otherwise, the last threshold (the density of the nearest CRoI

to the current point rd) is compared to a given threshold (line 21). The current

GPS point is also associated with the nearest CRoI in case the region density is less

than a given threshold. In other words, if the GPS points satisfy the three threshold

conditions, they are considered as new CRoIs. Otherwise, they will be associated

with the nearest CRoI. The threshold conditions are as the followings:

• The distance between any two CRoIs must be larger than a given threshold,

Figure 8.3a.

• The time spent in a CRoI must be longer than a given threshold, Figure 8.3b.

• The density of the nearest CRoI to the current point must be greater than a
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Figure 8.4: Discovering CRoI in mobility data.

given threshold, Figure 8.3c.

According to Klepeis et al. (2001), it is assumed that people spend 87% of their

time indoors, 8% outdoors and 5% in a vehicle. During outdoors, GPS points are

recorded when users move from one RoI to another. Thus, the paths that connect

the RoIs must be given a higher attention than the RoIs themselves. The GPS points

that don’t satisfy the threshold conditions, will be then associated with the nearest

CRoI, instead of ignoring them, as in LiSPD. Therefore, the RoI will contain the

interest region itself and the relevant paths that lead to a another RoI.

Figure 8.4 illustrates the behaviour of the our proposed method compared to

LiSPD according to some scenarios. To move from one RoI to another, the state of

the user changes from indoor to outdoor and vice versa. Let us consider the user’s

commuting movement. Suppose that the distance between home and workplace

locations is two times greater than the threshold distance. In our method, only two

CRoIs are considered, Figure 8.4a. The first one is the first recorded GPS point

when the user leaves home which represents the identifier of the first region. The

second CRoI is considered at the beginning of the second region after the threshold

conditions are satisfied. In LiSPD method, four CRoIs are considered (Figure 8.4b).

After time and distance thresholds, the first and second points are discovered in

the first and second regions, respectively. For each region, the mean values of all

recorded points are calculated. The same scheme is repeated when the user returns
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home. It can be noticed that the two CRoIs that were discovered by our proposed

method are more accurate than those obtained by the LiSPD method. The four

points discovered by LiSPD are located in insignificant locations such as road. In

addition, discovering many CRoIs in the first level negatively affects the clustering

process of the second level and RoI discovering process.

For more clarification, consider the user moves to a new indoor RoI such as the

workplace (Figure 8.4c). Only one RoI should be discovered for that building. The

last recorded GPS point before the user enters the workplace building is considered

as CRoI, assuming that the threshold conditions are satisfied at this point. Inside the

building, a few GPS points might be recorded. When the user leaves the building,

new GPS points are recorded. Two cases are presented in this situation based on

region density threshold. In the first case where the region density threshold is not

considered, the new recorded GPS point is considered as new CRoI if the distance

between the last CRoI and the new recorded GPS point is larger than δ and the time

span is greater than τ . When region density threshold is considered in the second

case, the region density is not greater than rd. Thus, the new recorded GPS point

is not considered as a new CRoI but referred to the nearest CRoI.

CRoIs list is used to avoid considering more than one CRoI in the same region.

Region density threshold condition is used to address some of the noise cases that

are more likely to occur during GPS points recording process, which could lead to

considering a wrong RoI. If GPS points are recorded every T times and the threshold

time that a user must stay in any region is τ , then any RoI region must contain at

least rd = τ/T points. If GPS signal is lost for any reason, few GPS points may be

recorded in such regions. Thus, these points will be assigned to the nearest CRoI

even if the time and distance thresholds are satisfied. In a normal case, during time

threshold and within a distance threshold, rd points are recorded and CRoIs are

detected.
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Figure 8.5: The second level: CRoI clustering.

8.2.1.2 CRoI Clustering

It can be observed that, in general, the density of GPS points in RoI is higher than

in other regions because people tend either to move slowly or not to move at all.

To obtain a set of RoIs in the movement area, DBSCAN (one of the most common

clustering algorithms) is utilized to cluster CRoIs (Figure 8.5). Different clustering

algorithms can be used in this level. We use DBSCAN because it does not require

specifying the number of clusters a priori as in the case of k -means. It also groups

points together with many nearby neighbours and marks outliers that are too far

from the nearest neighbours.

Time complexity For a dataset with n GPS points and m CRoIs, the DRoI

method has the following time complexity features:

• For every iteration, distances, elapsed time and region density between GPS

points and the list of all CRoIs are calculated (m · n), where m < n.

• Time complexity of DBSCAN algorithm is log m (Ester et al., 1996).

• Therefore, the time complexity is m ·n+log m instead of n2 +log m in LiSPD.

8.2.2 Next Location Prediction Model Construction

This section presents the process of building the prediction model which considers

both RoIs and time intervals as inputs and predicts user’s next RoI. Various
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sub-steps are involved before building the prediction model: discretization, reduction,

quantization and transformation. The first three sub-steps are described in Section

3.2.3. The transformation is described in the next section.

8.2.2.1 Generalized Markov Model: GMM

MC is one of the popular models that are used in people’s movement prediction. A

state in MC (state model) corresponds to the RoI while state transition corresponds

to the movement from one RoI to the next. The procedures of building a first order

MC model are different from second, third, and n-order MC models. In this study,

a general transformation function is used to transform n-order MC model into first

order. Thus, all n-order MC models will be treated as a first order which provides

more abstraction for n-order MC. Here, order indicates the number of visited RoIs

taken as input to the prediction model.

Given a set of observable objects, O = {o1, . . . om} and a sequence S =

{oi, oj, . . . or, . . . ok, op, . . . , ol} where oi, oj, or, ok, op, ol ∈ O, then the n-transformed

sequence, S(n), is defined as the following:

S(n) =


oi, oj, . . .︸ ︷︷ ︸

n

; or

 , . . . ,

ok, op, . . .︸ ︷︷ ︸
n

; ol

 (8.2)

Based on that, the n-order MC model can be defined as the following:

P (on+1|on, . . . , o1) =
N(o1, . . . , on → on+1)∑
ó∈ON(o1, . . . , on → ó)

(8.3)

where N(o1, . . . , on → on+1) is the number of times o1, . . . , on → on+1 occurs in

S(n). In the case of next location prediction, the interest regions represent the set

of observable objects, while trajectories represent the sequence. The probability is

represented using the five most different variables as it follows: P (Nxtr = rj|Curr =

ri, Curt = ti, Prvr = ri−1 : ri−order, Prvt = ti−1 : ti−order) which means: What is the

probability that the next RoI is Nxtr = rj given that the current RoI is Curr = ri,

the current time is Curt = ti, the previous RoIs are: Prvr = ri−1 : ri−order and the
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Table 8.1: s-GMM probability matrix.

r1 r2 r3 r4 r5

r1 - 0.14 - 0.77 0.09
r2 0.1 - 0.27 0.63 -
r3 - 0.73 - - 0.27
r4 0.36 0.48 - - 0.15
r5 0.72 - 0.11 0.17 -

Table 8.2: t-GMM probability matrix.

r1 r2 r3 r4 r5

t0 - - - 1 -
t2 - - 0.81 0.19 -
t3 - - - 0.33 0.66
t8 - 0.37 0.44 - 0.19
t13 0.71 - - - 0.29

...
...

previous times are: Prvt = ti−1 : ti−order. When order equals to 1, the previous RoIs

and times are removed.

Definition 5 Trajectory Transformation. The interest region of the trajectory

is transformed into a pair of values ((ri, ri+1, ..., ri+order−1), ri+order), i = 1 . . . n,

where the first value represents the current interest region preceded by order − 1

visited RoIs and the second one is the next RoI.

Example 1 Given O = {1, 2, 3, 4, 5} and S = {1, 4, 2, 3, 2, 3, 2, 1, 5, 1}.

The transformation of the trajectory to first, second and third orders based on

equation (8.2) will be as the following:

S(1) = {(1→ 4), (4→ 2), (2→ 3), (3→ 2), (2→ 3), (3→ 2), (2→ 1), (1→ 5),

(5→ 1) }.

S(2) = {(1, 4→ 2), (4, 2→ 3), (2, 3→ 2), (3, 2→ 3), (2, 3→ 2), (3, 2→ 1), (2,

1→ 5), (1, 5→ 1) }.

S(3) = {(1, 4, 2→ 3), (4, 2, 3→ 2), (2, 3, 2→ 3), (3, 2, 3→ 2), (2, 3, 2→ 1),

(3, 2, 1→ 5), (2, 1, 5→ 1) }.

Based on the different types of trajectory information, different prediction models

can be built. For the trajectory that involves only the space, a space-based model

(s-GMM) is built, whereas a space-time based model (st-GMM) is built for the

trajectory that has both space and time. Additionally, only the time information

can be used without considering any space information, thus, a time-based prediction

model (t-GMM) is built. Those were our different experimental models that we

developed and set as the benchmark.
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Figure 8.6: s-GMM transitions probability graph.

s-GMM. This model is similar to classical MC and it only considers RoIs (i.e.

sequence of locations visited by a user). Thus, the observable objects-set of this

model is O = {r1, r2, . . . , rm}, where m is the number of discovered RoIs. To build

n-order s-GMM, the RoI transitions matrix is calculated. First, we construct different

prefixes n RoIs based on the trajectories. Then, we compute the frequency of each

distinct RoI that appears after every prefix. The frequency value is set to 0 if there

is no movement from any prefix to any RoI. The frequencies of the RoI transitions

matrix are then normalized to get the probability matrix using equation 8.4 (see

Table 8.1). The rows of the matrix represent the from-RoI(s) (the last n-visited

interest region), while the columns represent the to-RoI (i.e. the next interest region).

Each row of the matrix represents the predicted scores for RoIs of a certain user.

s-GMM probability matrix can be represented as a graph where nodes and arrows

represent the RoIs and the transitions between them, respectively (see Figure 8.6).

P (Nxtr = rj|Curr = ri) =
N(ri → rj)∑

rk∈RN(ri → rk)
(8.4)

The main issue in this model is that, the next RoI of the user in a specific region

will be always the same region that has the high probability value. For example,

based on the probability matrix in Table 8.1, the next RoI for r1 is always r4.
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Table 8.3: The RoI transition matrix.

r1 r2 r3 r4 r5

r1 - 6 - 33 4
r2 5 - 13 30 -
r3 - 11 - - 4
r4 24 32 - - 10
r5 13 - 2 3 -

Table 8.4: The time matrix.

r1 r2 r3 r4 r5

r1 - 8,7 - 0,23,2 3,4,2
r2 17,18 - 8,10 17,15,18 -
r3 - 7,8 - - 9,11,13
r4 18,19,21 8,9 - - 8,14
r5 13,12,11 - 4 1,3,11 -

t-GMM. Typically, human mobility behaviour is strongly influenced by the time

interval information such as movement time, time of the day, day of the week etc.

In other words, humans have trends in what they do in the different times of the

day, week, etc. This model considers the time intervals sequence to predict the next

RoI. This means that the time intervals are used to produce the candidate RoIs

based on their relationships with the current RoI. To build n-order t-GMM, the time

transitions matrix is calculated. We First construct different prefixes n time intervals

based on the trajectories. Then, we compute the frequency of each distinct RoI that

appears after every prefix. The frequencies of the time transitions matrix are then

normalized to get the time probability matrix using equation 8.5 (see Table 8.2).

The rows of the matrix represent the from-time(s) (i.e. the current time when n

equals to 1), while the columns represent the to-RoI (i.e. the next interest region).

P (Nxtr = rj|Curt = ti) =
N(ti, rj)∑

rk∈RN(ti, rk)
(8.5)

st-GMM. This model is similar to previous s-GMM except that it considers

time intervals obtained from the GPS timestamp. The transformation of the

trajectory will be modified to include the time interval t as it follows: ((ri, ri+1,

. . . , (ri+order−1, ti+order−1)), ri+order), where the first part contains the current RoI

and time preceded by: order−1, visited RoIs and the second one is the next RoI.

To model space-time information, we consider three cases. The first case where

the contribution of time information is considered as independent from the space.

The model is referred to as: ind-st-GMM. The second case where the contribution of

time and space information are dependent on each other, and the model is referred

to as: dep-st-GMM. The final case where the contribution of space and time are
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Table 8.5: Tran-Time matrix.

r1 r2 r3 r4 r5

r1,7 - 2 - - -
r1,8 - 4 - - -
r1,0 - - - 19 -
r1,23 - - - 13 -
r1,2 - - - 1 2
r1,3 - - - - 1
r1,4 - - - - 1
r2,17 3 - - 8 -
r2,18 2 - - 13 -
r2,8 - - - 5 -
r2,10 - - - 8 -
r2,15 - - - 9 -
r3,8 - 6 - - -
r3,7 - 5 - - -
r3,9 - 1 - - -
r3,11 - 2 - - -
r3,13 - 1 - - -
r4,18 8 - - - -
r4,19 5 - - - -
r4,21 11 - - - -
r4,8 - 21 - - 8
r4,9 - 11 - - -
r4,14 - - - - 2
r5,12 4 - - - -
r5,13 3 - - - -
r5,11 6 - - 1 -
r5,4 - - 2 - -
r5,1 - - - 1 -
r5,3 - - - 1 -

Table 8.6: dep-st-GMM probability matrix.

r1 r2 r3 r4 r5

r1,7 - 1 - - -
r1,8 - 1 - - -
r1,0 - - - 1 -
r1,23 - - - 1 -
r1,2 - - - 0.33 0.67
r1,3 - - - - 1
r1,4 - - - - 1
r2,17 0.27 - - 0.73 -
r2,18 0.13 - - 0.87 -
r2,8 - - - 1 -
r2,10 - - - 1 -
r2,15 - - - 1 -
r3,8 - 1 - - -
r3,7 - 1 - - -
r3,9 - 1 - - -
r3,11 - 1 - - -
r3,13 - 1 - - -
r4,18 1 - - - -
r4,19 1 - - - -
r4,21 1 - - - -
r4,8 - 0.72 - - 0.28
r4,9 - 1 - - -
r4,14 - - - - 1
r5,12 1 - - - -
r5,13 1 - - - -
r5,11 0.86 - - 0.14 -
r5,4 - - 1 - -
r5,1 - - - 1 -
r5,3 - - - 1 -

adjusted using weight values. This model is refereed to as: w-st-GMM.

In ind-st-GMM model, the space and time matrices are built separately as

explained in the previous models (i.e., s-GMM and t-GMM). Both space and time

information contribute equally in making the decision of next RoI prediction. In

this case, we first find the probability of each type occurring separately, and then

multiply the probabilities. The probability matrix of this model is calculated based

on the equation 8.6.

P (Nxtr = rj|Curr = ri, Curt = ti) = P (rj|ri) · P (rj|ti) (8.6)

Building w-st-GMM model is similar to ind-st-GMM except that the probability

of each type is multiplied by weight value to make more balanced decisions on next
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RoI prediction. Then, the final weighted probability values are summed as shown in

equation 8.7.

P (Nxtr = rj|Curr = ri, Curt = ti) = Wr · P (rj|ri) +Wt · P (rj|ti) (8.7)

where Wr and Wt are the weight variables in which their values belong to the interval

[0,1] and Wr + Wt is equal to 1. When one weight value is equal to zero, it means

that the contribution of specific information is excluded from the prediction decision.

In dep-st-GMM, the space-time information is used by integrating both into one

matrix. dep-st-GMM can be tailored as it follows. Everyday trajectory is first divided

into 24 time intervals, each of which lasts one hour long. Then, for each RoI, a list

of time intervals are extracted. The transitions and time matrices among RoIs are

calculated. Time matrix represents different time intervals among regions (see Table

8.4 for a portion of user mobility data). Finally, transitions and time matrices are

integrated into one matrix called Tran-Time matrix (see Table 8.5). For example,

the number of movements from r1 to r2, r4 and r5 are 6, 33 and 4, respectively. From

user’s trajectories, we observed that the six times of movements from r1 to r2 were

two main times at 7 o’clock and four times at 8 o’clock. The probability matrix of

this model is calculated based on equation 8.8 as shown in Table 8.6.

P (Nxtr = rj|Curr = ri, Curt = ti) =
N(ri → rj|ti)∑

rk∈RN(ri → rk|ti)
+ JN(ri → rj|ti) = 0K ∗ P (rj|ri)

(8.8)

where

J x K→

1, if x is ture.

0, otherwise.

If the N(ri, rj|t) is 0, the model will work according to only the transitions

probability matrix P (rj|ri) computed in equation 8.4. In this case, dep-st-GMM

applies explicit feedback to automatically update the Tran-Time matrix by adding

the new time to the region’s time movements list.
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8.2.3 Next Location Prediction

Before predicting the next location, user’s current position (in real-time) or

trajectories previously collected (in testing) are preprocessed. The GPS coordinates

are converted into their RoI identifiers, while the timestamps are quantized into

specified time intervals. The trajectory will be represented as a sequence of regions

in case of s-GMM, and a sequence of time intervals in case of t-GMM. In case of

st-GMM, the trajectory will be represented as a sequence of tuples (ri, ti) where ri

is the RoI and ti is the time interval.

s-GMM and t-GMM are utilized to predict next RoI based on s-GMM and t-GMM

probability matrix, respectively. Determining the next RoI depends only on the

number of transitions among the RoIs. Specifically, the most frequently visited RoI

is assigned the highest probability.

To make prediction using s-GMM, a set of probability values is obtained based

on the current RoI. The RoI with the highest probability value is predicted to be the

most likely next RoI of a certain user as shown in equation 8.9. Similarly, in t-GMM

probability matrix, the RoI of the column with the highest value for the row that

represents the n previous time interval(s) is retrieved (see equation 8.10).

s−GMM(ri) = arg max
r̂∈R

P (r̂|ri) (8.9)

t−GMM(ri) = arg max
r̂∈R

P (r̂|ti) (8.10)

where r̂ is the predicted RoI and R is the set of discovered RoIs in a user movement

region.

In all st-GMM models, time context is included to improve the prediction model.

Determining the next RoI depends not only on the number of transition but also on

the movement time. The RoI with the highest value is retrieved as the RoI the user

will visit next as shown in equation 8.11.

st−GMM(ri, ti) = arg max
r̂∈R

P (r̂|ri, ti) (8.11)
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8.3 Experiments and Results

Various experiments are conducted to evaluate the performance of the proposed

approach. The settings of the experiment, the datasets used and experimental results

are explained in this section.

8.3.1 Datasets

The proposed models are evaluated using two publicly available real-world datasets,

i.e., GeoLife and Gowalla. In our experiments, GeoLife is preprocessed in order to

discover the RoIs. Different RoIs’ discovery methods are used in the experiments.

The RoIs in Gowalla dataset are given different identifiers during collecting the data.

8.3.2 Experimental Settings

8.3.2.1 DRoI Method Specifications

To select the parameters specifications, a grid search method is implemented on one

user trajectories. For DCRoI, three parameters are considered: the distance (δ), stay

time (τ) and region density (rd). In this study those are: δ = 200 meters, τ = 20

minutes and rd = 400 points. For CRoI clustering using DBSCAN, two parameters

are required: maximum distance ε between any two points and the minimum number

of points minPts required to form a dense region. In this study, those are: ε = 300

meters and minPts = 3. k -means algorithm is used with k = 8.

In order to evaluate the performance of various methods used to discover RoIs,

trajectory dataset must be annotated with meaningful RoIs. The GeoLife dataset

used in this study is not originally annotated. We asked 10 participants to manually

annotate the RoIs into a set of semantically meaningful labels based on the density of

trajectories and the real locations on the maps. Each participant annotated the RoIs

for 20 randomly selected users’ trajectory. These manually annotated outlying RoIs

serve as ground truth in the experiments. Soundness and completeness properties

are used as metrics to evaluate the effectiveness of the methods used to discover

RoIs.
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8.3.2.2 Prediction Models Specifications

In this chapter, first, second, third, fourth and fifth order GMM models are

implemented. The trajectories’ datasets of each user are split into 80% training

and 20% testing set. The partition is repeated 10 times with different randomly

selected trajectory files. The performance score of each case from each user is then

calculated and the final results of all users are averaged. The weight values Wr and

Wt are set to 0.8 and 0.2, respectively. To assess the efficiency of the prediction

model, Recall score is used as a metric in all the experiments, as described in Section

2.5.1.

The proposed models are compared with baseline models in the task of predicting

user’s next location 1: MC (Ashbrook and Starner, 2003), n-MMC (DJ Cluster is

used for discovering RoI), HPHD (Gao et al., 2012), AR (Daoui et al., 2013; Kedia,

2012) and NN (Parija et al., 2013c; Leca et al., 2015; L. Vintan and Ungerer, 2004) .

We selected those models in particular as based on using the same datasets we have

used or based on their usage of MC prediction models.

Additionally, we compare our method of discovering RoIs with LiSPD (Li et al.,

2008; Yuan et al., 2013) and k -means to show the different RoIs discovered by these

methods. The same trajectories and parameters specifications are considered for

these methods. For HPHD, AR and NN, k -means is used as a basic algorithm for

extracting RoIs.

8.3.3 Comparison Results: DRoI Methods

Figure 8.7 illustrates a comparison of RoIs discovery methods in terms of soundness

and completeness. High completeness value means that most of the significant

locations are discovered, while the high soundness value means that most of the

insignificant locations are ignored. The best soundness and completeness values are

achieved by DCRoI+DBSCAN and LiSPD+k -means by 81% and 82%, respectively.

Furthermore, it can be noted that the variance of completeness values is much smaller

than variance of soundness values. Thus, soundness is more appropriate metric to

1We have implemented all baseline models based on our understanding of the original papers.
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Figure 8.7: Soundness and completeness of RoI discovery methods.

evaluate the proposed methods. The highest soundness values are 81% and 80% for

DCRoI+DBSCAN and LiSPD+DBSCAN, respectively. DCRoI is better than LiSPD

when DBSCAN is used as a second level algorithm. Discovering many CRoIs in the

first level using LiSPD negatively affects the clustering process of the second level.

Additionally, it can be observed that using k-means results in high completeness

value because of the large defined number of clusters (k = 8) which might be greater

than the number of the real RoIs of some users. DBSCAN results in better soundness

than k-means. Grouping in DBSCAN depends on the density of points with many

nearby neighbours rather than the mean of all points that belong to the same cluster.

8.3.4 Comparison Results: Location Prediction

Table 8.7 illustrates the performance comparison on the two datasets in terms of

Recall@N with N = 1 and 2. We can find that in the GeoLife dataset, the models

where k -means is used to find the RoIs (i.e. MC, HPHD, AR and NN) do not

perform well. The reason is that k -means clustering algorithm is not tailored for

geolocated data where the grouping process depends on the mean of all points that

belong to the same cluster. MC, HPHD and AR models have achieved approximately

similar results under Recall@1. NN slightly improves the results comparing with

MC, HPHD and AR, but still performs poor in terms of predicting the future RoIs.

n-MMC improves the performance greatly comparing with the other baseline models.

Extracting the RoIs using DJ cluster is better than k -means, where the number of
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Table 8.7: Performance comparison on the datasets evaluated by Recall@N. Best scores are in
bold.

Model
GeoLife Gowalla

Recall@1 Recall@2 Recall@1 Recall@2
MC 58.46 66.91 15.3 21.1
n-MMC 68.6 - - -
HPHD 58.07 73.23 22.37 36.99
AR 59.32 67.43 21.23 36.29
NN 63.01 82.05 34.13 48.44
s-GMM 68.92 84.21 21.38 36.84
t-GMM 47.32 64.53 19.11 32.76
ind-st-GMM 66.93 78 20.42 37.48
dep-st-GMM 70.52 88.4 22.23 39.49
w-st-GMM 69.73 88.25 22.3 41.58

discovered RoIs depends on the people’s mobility traces (Zhou et al., 2004).

The worst results are obtained by t-GMM when only time sequences are used in

building the prediction model. In contrast, a great improvement that is brought

by s-GMM which is considered as the best model among the compared ones.

Using the space information results in higher prediction performance than time

information. Additionally, using only the RoIs sequences (or only time sequences)

are not enough inputs in location prediction as the models can not well capture

the users’ mobility behaviours. Including the time factor in ind-st-GMM did not

cause any performance improvement. Using the probability of time transition matrix

can change the final prediction decision when combining with the probability of

space transition matrix. In other words, using time context as a basic component

either individually as, in t-GMM or with space context, as in both ind-st-GMM

and HPHD is not recommended. This is due to the different degrees of importance

of space and time context when generating the information for location prediction

(i.e., space information is the most important one). Thus, the time context

must be formulated in a way to add more information to the space context as

in w-st-GMM. ind-st-GMM and HPHD models are similar in terms of using time

information as a basic components in building the prediction model. However, they

are different in terms of probability calculation where HPHD model depends on the
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Gaussian distribution and therefore there is no probability that equals to zero as

in ind-st-GMM model. w-st-GMM performs better than ind-st-GMM and HPHD.

This is due to the importance of space information where it is given higher weight

than time information. Moreover, we can observe that, dep-st-GMM outperforms

the compared models on the GeoLife dataset measured by all the metrics. The

superiority of dep-st-GMM can be attributed to using the method of RoIs discovery

and the addition of time context information.

On Gowalla dataset, it is clearly shown that NN results in a better prediction

performance than other models. While NN has the ability to learn non-linear

and complex relationships, probabilistic models in general depend on distributional

assumptions. On the other hand, NN is computationally intensive due to the large

number of parameters that should to be updated numerous times. As a result, using

smartphone devices with limited resources to train NN and make a prediction can

be computationally expensive and time-consuming.

MC and n-MMC models are excluded from the comparison. They are based on

the classical MC but with different clustering algorithms. Gowalla dataset is used

without discovering the interest regions.

8.3.4.1 Effect of Different Orders

In order to explore the impact of different orders, we perform experiments with first,

second, third, fourth and fifth order. Results are shown in Table 8.8. From the

table, we can see that the prediction accuracies of dep-st-GMM and w-st-GMM are

higher than others. On Gowalla dataset, HPHD achieved the best results when the

order equals to 1. However, the prediction performance often decreases when the

order is greater than 2 where more constraints must be applied. The best result on

both datasets is achieved by w-st-GMM. It shows that the impact of RoIs sequences

and time interval information are more significant on modeling user’s behaviour

than using only one of them. When n-order equals to 2, w-st-GMM achieved better

performance with 73.86% and 24.17% on GeoLife and Gowalla datasets, respectively.

In all experiments, second order results in a higher prediction performance than other
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Table 8.8: Performance comparison with different order evaluated by Recall@1. Best scores are
in bold.

Dataset Model
Order

First Second Third Fourth Fifth

GeoLife

MC 58.46 64.65 63.89 63.72 63.67
n-MMC 68.6 69.1 63.2 - -
HPHD 58.07 64.15 65.19 65.01 64.32
s-GMM 68.92 72.53 70.96 69.41 66.45
t-GMM 47.32 50.39 52.01 52.35 52.22
ind-st-GMM 66.93 70.99 70.69 68.5 66.25
dep-st-GMM 70.52 73.44 71.16 69.56 66.58
w-st-GMM 69.73 73.86 71.19 69.92 67.23

Gowalla

MC - - - - -
n-MMC - - - - -
HPHD 22.37 22.4 20.36 17.7 14.89
s-GMM 21.38 22.92 20.48 17.80 14.95
t-GMM 19.11 19.66 14.47 11.21 9.73
ind-st-GMM 20.42 22.47 20.19 18.13 17.53
dep-st-GMM 22.23 24.06 22.41 20.66 17.64
w-st-GMM 22.3 24.17 22.64 20.74 17.65

n-order.

8.3.4.2 Effect of RoI Discovering Methods

Discovering all locations that represent a real RoI to a certain user enables to build a

real trajectory. Then, it helps the model to extract the user’s mobility pattern which

means more accurate prediction models. Therefore, the effect of RoIs discovering

methods is explored.

As stated in section 8.2.1, discovering RoIs takes place in two levels of clustering.

For the first level, DCRoI and LiSPD methods are used, whereas DBSCAN and

k-means are used for the second level. For testing, different methods of discovering

RoIs are considered: DCRoI+DBSCAN, LiSPD+DBSCAN, DCRoI+k-means and

LiSPD+k-means. k-means is used also as one clustering level. The results are

reported in Figure 8.8.

It is shown that when using the method we proposed for discovering RoIs

(DCRoI+DBSCAN), the models perform better. This indicates that DRoI is

effective in discovering the significant RoIs, which enables the models to extract
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Figure 8.8: Prediction models with different RoIs discovery methods.

a user’ mobility behaviour and as a consequence, it can be used to build more

accurate models. DCRoI+DBSCAN method produces highest performance rate of

the prediction model and then LiSPD+DBSCAN. The three other methods (i.e.

DCRoI+k-means, LiSPD+k-means and k-means) have almost the same prediction

performance rate. Using DCRoI in the first level improves the performance of the

prediction models, better than LiSPD. Regarding second level, DBSCAN results in

better performance than k-means.

Adding time factor to a real discovered RoI positively affects the prediction

performance. When k-means is used, some significant RoIs could be missed. Also,

some regions that do not carry semantic meaning (like ‘roads’) might be detected

as a RoI. Thus, including the time to RoIs that represent insignificant locations will

not provide a good prediction performance.

8.3.4.3 Effect of DRoI Parameters

We also study the impact of the five DRoIs parameters on the performance of the

models: δ, τ , rd, ε and minPts. We conduct several experiments with various values

as shown in Figure 8.9. We start by varying the value of one parameter while fixing

the others and then studying how the prediction performance is affected. The same

procedure is then repeated for the rest of the parameters.

In general, we observe that the models performance gives the best results as long

as we increase the parameters values. Small values mean that many RoIs will be

discovered which limits its efficiency in discovering significant regions and, hence,
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Figure 8.9: The effects of DRoIs parameters.

impairing the prediction performance. On the contrary, large values mean that few

RoIs with large areas will be discovered. Thus, it will be easy for the models to

extract the movement pattern and then predict the next location.

8.3.4.4 Running Time

Finally, we measure the exact running time of the RoIs discovery methods and the

prediction models. For the RoI discovery methods, we simply run the methods on

trajectories of different users with different number of GPS points, and then measure

the amount of time. For the prediction models, we run the models on trajectories

of a randomly selected user and measure the amount of time for building the model
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Table 8.9: Running time in seconds.

Model Model building Predicting
AR 0.59±0.11 0.37±0.07
NN 1464.3±23.7 3.07±0.66

HPHD 24.74 ± 2.11 1.63 ± 0.24
s-GMM 0.19±0.03 0.36±0.03
t-GMM 0.17±0.02 0.43±0.12

ind-st-GMM 0.2±0.02 0.42±0.06
dep-st-GMM 0.24±0.01 0.42±0.1
w-st-GMM 24.80±1.90 0.48±0.01

and the predicting. For each model, the experiment is repeated 10 times, and the

average and standard deviation are then calculated. All experiments were conducted

on iMac, equipped with a 3.06 GHz Intel Core 2 Due CPU and 4GB RAM.

Figure 8.10 shows the methods’ running time in seconds. As expected, running

times grow gradually with the dataset size. We observe that our method is faster that

LiSPD due to the less number of iterations. Of course, k-means is still significantly

faster, but it is not tailored for geolocated data.

Table 8.9 shows the prediction models’ exact running time in seconds. It can

be noted that, during model building, our proposed models are less than others.

During the prediction, all st-GMM models’ running times are more than AR’s due

to including an extra factor (the time context). t-GMM is faster that s-GMM during

model building but slower during the prediction phase due to the large number

of time intervals compared to the number of RoIs for some users. However, NN

model has the highest running time. This is not surprising as the NN model has a
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large number of parameters that need to be updated numerous times. It is worth

mentioning that our models are faster than others for any dataset size.

8.3.4.5 Discussion

Overall results show that w-st-GMM outperforms most of the state-of-the-art models

despite the fact that the model is simple. As the training set size increases (for

example, 90% training and 10% testing), the performance is improved since the

model can learn more (w-st-GMM achieved 74.7%).

Regarding the different evaluated orders, the prediction performance improves as

the n order increases but then decreases gradually when n > 2 due to having more

constraints that must be applied to get the next location. For example, the inputs

of a fifth order model are the last five RoIs the user visited which are rarely visited

or occurred in the same RoIs order. In first order Model, only the current RoI is

considered. Thus, more constraints means less performance.

In addition to that, the impact of the time factor becomes little important when

the order is high. For example, with first order, there is an obvious difference between

the prediction performance of space-based and space-time-based models but the gap

between them is narrowing with the increase of the order.

In general, it is possible for a user to change his/her mobility patterns over time.

All the prediction models are unable to deal with new context of movements. In other

words, the models fail to make a prediction for new locations in unknown territories

(i.e. the unseen locations) that did not appear in the user’s history. Applying

explicit feedback to automatically update the transition matrix can be used as a

simple solution to improve the prediction performance.

As indicated in the description of the prediction phase, the model retrieves the

RoI with the highest probability value given the current RoI. In this regard, it is

possible to have the same probability value for more than one RoI. In our model, we

choose to retrieve the first one added to transition matrix.
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Figure 8.11: User movement regularity.

Movement Regularity As shown in Figure 8.11, the movement regularity of a

user can be identified based on the transition matrix (Table 8.3) and time matrix

(Tables 8.4). For example, the number of transitions from r5 to r4 is equal to the

number of movement times between them. This means that a user moves to r4 in

different times. Thus, there is no regularity in the movement between these two

RoIs. Additionally, the RoIs that are visited by the user at a specific time can be

extracted. For example, r2 can be considered as a workplace because the number of

transitions from r4 to r2 is much greater than the number of the different values of

movement times.

8.4 Summary

This chapter presents an approach to discover RoIs in the users movement area

and then predicts their future locations, which play a key role in the success of

advanced location-based services. The RoIs discovery method presented in this

chapter includes two levels. The first level is to group GPS points based on three

threshold conditions: distance, time and region density, which identifies a set of

CRoIs. The second level is to perform clustering using DBSCAN algorithm on

the CRoIs to obtain the RoIs. Soundness and completeness are used as metrics
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to evaluate the proposed RoIs discovery method. We found that our method is

effective compared to other relevant methods in the literature. While the method is

able to find most of the RoIs, the method’s overall execution time is less than other

methods. Based on MC, a model for predicting a user’s next location is proposed.

Moreover, a general transformation function for the trajectory is used to include the

space and time context. Any order MC will be processed as first order, which helps

to make more abstraction on n-order. The latter performs better than space-based

and time-based models, but the gap between the models’ prediction performance is

narrowing with the increase of the order. We evaluated the proposed approach with

real-world datasets: GeoLife and Gowalla. Overall, the approach where DRoI and

second order MC were used, achieved better performance.
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CHAPTER9

Monitoring Seniors with Mild Cognitive

Impairments using Deep Learning and

Location Prediction

9.1 Introduction

The aging of the population is one of the most important challenges for public

healthcare sector in the 21st century. MCI is one of the most prevalent diseases

suffered by the seniors. People suffering from MCI (i.e. patients) may forget their

destination while moving from one area to another. As a result, strange trajectory

patterns are obtained and the so-called wandering episodes occur. Fortunately,

technology allows their movements to be continuously tracked and hence, appropriate
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real-time assisting services to address their difficulties in navigational tasks can be

provided. Otherwise they may get lost, which can cause serious injuries or even their

death.

GPS and navigation applications are key enablers to many services offered by

mobile devices, from state-of-art products to low-cost smartphones. As a result,

tracking and monitoring systems have emerged as a good solution to assist elderly

people during their outdoor mobility issues. In such systems, the patient makes use

of a wearable or a smartphone that is capable of obtaining its location (using GPS

technology). In addition, the system is able to warn patients or to send alarms to

caregivers. Monitoring systems contribute to self-care, and reduce stress on patients’

relatives and caregivers as well. Moreover, cognitive environments and smart cities

pave the way to the deployment of advanced assistance services for seniors in the

smart health and cognitive health paradigms (Solanas et al., 2014a).

Some of the existing tracking and monitoring systems require the patients to

interact with smartphone application in a variety of ways (e.g., checking in to their

destination (Hossain et al., 2011), pushing a panic button (Rodŕıguez et al., 2012)

or selecting the destination area (Wan et al., 2011)). However, monitoring systems

should take into account the inability of some patients to interact with their devices.

Hence, it is essential that monitoring systems nothing is required from the patient

except to carry the smartphone.

It is commonly assumed that elderly people follow regular mobility routines,

i.e. they visit the same locations and walk through the same routes from one

area to another. This fact makes it possible to detect the abnormal movements.

Notwithstanding, most of the proposals are unable to work well unless enough

mobility data are available. For example, to detect the pacing pattern in the wanderer

movement, he/she must move back and forth between two points or more. However,

the abnormal situation should be discovered in its first appearance to prevent the

person from getting lost in advance.

At initial stages of dementia and other cognitive deficits due to age-related

memory loss, the system can be used to provide information related to early disease
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diagnosis by assessing their movement behaviour in case of abnormal movements.

We propose a monitoring system that can assist elderly people during their

outdoor movements. The system contains a model, called ST-CNN, which runs

CNN in a server utilizing the senior’s historical movement data. The model is

responsible for predicting the locations that the elder will visit. Based on that,

the route and the expected time spent to reach that locations are obtained. In our

system, all information related to the movement should have a key role in order to

identify erroneous behaviours. During a movement, the caregivers are warned in

case the patient spends a long time to reach one of the predicted locations or moves

to unpredicted locations by changing the routes or still moves in the same area.

Furthermore, we demonstrate how the abnormal movements can be detected and

how the system assists the elderly people to be safe in real-time movement scenarios.

It is based on a model called ABD that takes advantage of RNN to analyse time

and space related variables. In order to evaluate the system, three different datasets

are used, each one of them with its own descriptors. First, outdoor trajectories

from Catalan patients diagnosed with MCI are used. Second, two additional online

datasets, which contain trajectories from individuals (not necessarily suffering from

mild cognitive impaired) are also used; GeoLife and OpenStreetMap datasets.

The system is autonomous and hence, no explicit input from the user is required.

The system is able to learn about a user’s movement behaviour. With the aim of

minimising patient interventions or interactions with the monitoring system, our

proposal generates the predicted destinations and detects the abnormal behaviour

based on deep learning models. In our system, the monitoring is performed in

real-time and the abnormal behaviour is immediately detected.

9.2 SafeMove: System Description

In this section, first we overview our proposed system and then we describe with

details all system components.
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Figure 9.1: SafeMove system architecture.

9.2.1 Overview of SafeMove

The overall architecture of the system is shown in Figure 9.1. The system contains

seven parts:

1. Patient’s smartphone application: is responsible for sending the data

related to the patient’s positions to a remote server and displaying the outputs

of the system.

2. Monitoring Unit: is the main part in SafeMove which is responsible for

receiving and distributing the data from and to the different system parts.

Moreover, each patient movement is analysed in this unit to determine whether

or not he/she is located in a safe area.

3. Prediction Unit: is the part that is responsible for predicting people’s

mobility.

4. RoIs Identification Unit: detects the significant RoIs in the patient
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movement area and provides mainly the RoI identifier that represents those

regions.

5. Abnormal Detection Unit: is the part that is responsible for detecting the

abnormal movement of the patient.

6. Alert Unit: is responsible for sending notifications to the relatives or

caregivers.

7. Assistance Unit: is responsible for helping elderly people until reaching the

desired and safe destination.

The overall functioning of the system is as follows:

1. Mobility data previously collected is converted from GPS coordinates into

discrete values associated to specific RoIs, in the RoIs Identification Unit.

2. The output is then sent to the Prediction Unit, where each patient has a

different prediction model.

3. The Patient’s Smartphone Application provides the Monitoring Unit with the

current GPS coordinates and the timestamp through the available Internet

connection.

4. After receiving patient current location (GPS coordinates and the timestamp),

the Monitoring Unit sends these information to the RoIs Identification Unit to

provide the RoI identifier, and then to the Prediction Unit to predict the next

RoIs.

5. Next, ‘N ’ RoIs are sent to the Monitoring Unit which in turn finds the routes

and computes the expected time spent to reach that RoIs .

6. The Monitoring Unit forwards back all the system output information to the

Patient’s Smartphone Application for displaying through the user interface

(will be available for reference for the patient).

7. Every time threshold (5 seconds, for instance), the Monitoring Unit

continuously receives the patient current location from Patient’s Smartphone

Application. Then, each patient movement is analysed to detect the abnormal

behaviour using the Abnormal Detection Unit.

8. In case of an abnormal movement behaviour, warning notifications are sent to
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the Alerts Unit.

9. The Alerts Unit will notify the relatives or caregivers by sending alerts.

10. Finally, the Assistance Unit is activated to help the elderly patient to reach a

safe RoI.

Next sections cover with details the individual components. We specially focus

on the Monitoring and Abnormal Behaviour Detection units.

9.2.2 Patient’s Smartphone Application

Due to the widespread usage of smartphones, they have been used as our client

hardware. The system is designed to run on Android-enabled devices with GPS in

mind. Collecting data from the device’s sensors such as GPS location and timestamps

can run as a background service. The system uses the built-in location technologies

of the smartphone for location purposes without any mobile user interaction.

9.2.3 RoIs Identification Unit

This is the part of the system that is responsible for mapping each GPS point into

the matching region, using RoI identifiers. We convert the sequence of GPS points

of each user mobility data into a sequence of RoIs by detecting the significant RoIs.

To detect the significant RoIs, we use the algorithm proposed by Li et al. (2008)

described in Section 3.2.2.

9.2.4 Prediction Unit

This the part is responsible for analysing the elder’s mobility data previously

collected in order to predict the most popular RoIs his/her might visit in the next

time from the current RoI. We use ST-CNN prediction model described in Chapter

7.
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9.2.5 Monitoring Unit

Monitoring unit is the core component that is used to track and monitor movements,

in addition to distributing the data from and to the different system parts. Due to

the necessity to take action as soon as possible, the system must work in real-time.

Therefore, every time the system receives a new GPS location, the monitoring unit

is executed to ensure that the patient behaves normally.

There are four system statuses: no moving, predicting, moving and stop. The

system status is set to no moving to indicate that the patient is indoor such as at

night or inside a building. The patient movement can be detected using the GPS and

accelerometer sensor (Xia et al., 2014b). Therefore, when the patient is moving, the

patient’s smartphone application will send the current position to the system. Then,

the monitoring unit will operate and forward the current position to the prediction

model. Thus, the system status is set to predicting. After user progress to one of the

predicted RoI, the system status is set to moving to indicate that there is no need to

predict and every patient movement will be monitored. After reaching to one of the

predicted RoI, the system status is set to no moving. The status property is set to

stop where the system will stop working in case the patient in a holiday with his/her

relatives, for instance.

During the movement from a region to another, the state of a user generally

changes from indoor to outdoor and vice versa. The abnormal behaviour could

happen in the outdoor environment. In this paper, we use the term “sub-trajectory”

to refer to the movement between two regions. Each sub-trajectory starts from the

first GPS point in the first region until the first GPS point belongs to the next region.

Given a trajectory, we divide it into sub-trajectory and each one is labeled as normal

or abnormal.

Martino-Saltzman et al. (1991) investigated travel patterns of nursing home

residents with dementia. Four different travel patterns were identified: direct,

random, pacing and lapping. In addition to that, we add two different patterns

related to the predicted RoI: indirect and stopping patterns, Figure 9.2.

The movement behaviour of a person is considered as abnormal if one of the
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Algorithm 4: SafeMove system.

Input : Traj: a sequence of GPS coordinate and Time, Dis threshold,
Length threshold.

Output: Normal or abnormal behaviour.
1 FirstGPS ← Traj.GPS[1] // The first GPS coordinate
2 FirstT ime ← Traj.T ime[1] // The first movement time
3 Firstloc ← RoIs identification(FirstGPS) // To get the identifier of the

current RoI
4 PL1, PL2, PL3 ← ST-CNN(Firstloc, FirstT ime)
5 Rot1, Rot2, Rot3 ← getRoute(FirstGPS, PL1, PL2, PL3)
6 Dis1, Dis2, Dis3 ← getDistance(FirstGPS, PL1, PL2, PL3)
7 ET1, ET2, ET3 ← getExpectedTime(Dis1, Dis2, Dis3, 3.1)
8 for i ← 2 to Traj.length do
9 directions← getBearingValue(Traj.GPS[i− 1], Traj.GPS[i])

10 SpentDis← getSpentDis(FirstGPS, Traj.GPS[i])
11 ¯Dis1, ¯Dis2, ¯Dis3 ← getDistance(Traj.GPS[i], PL1, PL2, PL3) // Updated

distances
12 SpentTime← getSpentTime(FirstT ime, Traj.T ime[i])
13 if direction.length = Length threshold then
14 if ABD DetectionModel(directions,Dis threshold) == True then
15 return abnormal
16 end

17 end
18 if SpentDis > Dis1, Dis2, Dis3 then
19 return abnormal
20 end
21 if ¯Dis1 > Dis1 and ¯Dis2 > Dis2 and ¯Dis3 > Dis3 then
22 return abnormal
23 end
24 if SpentTime > ET1, ET2, ET3 then
25 return abnormal
26 end

27 end
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following constraints are satisfied, Figure 9.2:

1. Time spent to reach the predicted RoIs is more than the expected time.

2. Taking the opposite direction for all predicted RoIs.

3. The trajectory is random, pacing and lapping.

Note that the patient tends to forget the location and as a result, the patient

may spend a long time to reach one of the predicted RoIs. The patient may also

change the direction to unpredicted RoI or may wander in the same area.

The main steps of the SafeMove system are described in Algorithm 4 that takes

a sequence of GPS points either from patient’s mobility data previously collected or

in real-time. The RoI identifier of the current location is obtained by calling RoIs

identification unit (line 3). Based on the obtained RoI identifier at a certain time,

the ST-CNN model will predict ‘N ’ RoIs (line 4), three RoIs are specified in the

algorithm. Based on the predicted RoIs, the routes, the distances and the expected

times to reach that RoIs are obtained (line 5 and 7).

After user progress on a route, each user movement is analysed. Three different

values are evaluated during the movement: direction, distance and time. The

direction is computed between the current GPS point and the previous one (line

9). The spent distance is computed between the current and the first GPS points

(line 10), while the updated distances are computed between the current GPS and the

predicted RoIs (line 11). Finlay, the spent time is computed between the current time

and the first GPS point time (line 12). The distance is computed using Haversine

Distance, Equation 8.1.

After that, the obtained spent distance is compared with the distances to the

predicted RoIs (lines 18-20) which can be used to detect the change in the direction. If

the spent distance value is increased, it means that there is a change in the direction.

The updated distances are compared with the distances to the predicted RoIs (lines

21-23) to know exactly the RoI the patient is very close to. However, if the updated

distance still almost similar, it is an evidence of stopping pattern.

The obtained spent time is also compared between the expected time to reach

the predicted RoIs and the time spent from the first movement until the current
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moment (lines 24-26).

Regarding lines 13-17, they are related to the abnormal detection unit which is

described in the next subsection.

Meanwhile, the model updates the next RoI and the route by matching the

current route with all other predicted routes taking into account that the patient

can take different routes to the predicted RoIs. Also, the new position is compared

against the predicted RoIs in order to know exactly the RoI the patient is very close

to. During the movement, the patient is represented in a geographical map, thus,

relatives or caregivers can keep track of the patient’s progress continuously.

9.2.6 Abnormal Detection Unit

This part is responsible for detecting the abnormal behaviour in the elder movements

that can be occurred due to the random, pacing and lapping pattern. For the sake
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Figure 9.4: Changes in directions

of brevity, such variety of travel pattern will be referred to as random.

In order to detect the random pattern, we use the Bearing Angle formula that

used to find the direction between two consecutive GPS locations. Bearing can be

defined as an angle or direction between the north-south line of earth (initial bearing)

and the line connecting two GPS points, see Figure 9.3a. Given two GPS locations:

G1(φ1, λ1) and G2(φ2, λ2), the bearing is computed using Equation 9.1:

Bearing = atan2 (sin ∆λ · cosφ2, cosφ1 · sinφ2 − sinφ1 · cosφ2 · cos ∆λ) (9.1)

where φ is latitude, λ is longitude and ∆λ is the difference in longitude. The output

of this formula is a value between 0 and 360.

As shown in Figure 9.3b, we have four intervals that describe the four directions

a user could move towards: (45-135), (135-225), (225-315) and (315-360 and 0-45).

These intervals are normalized in order to obtain the similar corresponding directions.

We used four values: 1 (45-135), 2 (135-225), 3 (225-315) and 0 (315-360 and 0-45).

If the normalized bearing values belong to the same interval, it means that the points

are located in the same line Figure 9.4a, otherwise, the points are in different lines

Figure 9.4b.

From the above analysis, we can see that the change in the bearing value intervals

can serve as an indicator for random or abnormal behaviour. However, human

behaviour mobility is essentially contains change in direction in the daily life. In

order to distinguish an abnormal from normal behaviour, we add two threshold

variables. The first one refers to the number of GPS readings that the system should

wait before the final decision (i.e. normal or abnormal behaviour). The second one

is length of the trajectory being evaluated (i.e. the distance between the first and
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Table 9.1: Examples of pattern evaluation.

Direction sequence State
1,1,1,2,2,2,1,1,3,3,3,3,2,2,2,0,0,0,0,0 Normal
0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0 Normal
1,0,0,0,0,0,3,3,3,3,3,3,2,2,2,0,0,0,0,0 Normal
1,1,2,2,1,1,2,1,3,0,3,0,3,0,0,2,2,0,0,2 Abnormal
1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0 Abnormal
1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,1,2,1 Abnormal

last GPS points of that trajectory should be greater than a distance threshold). In

this paper, we consider a sequence of 20 GPS points within 100 meters as abnormal

behaviour. Those values can be adjusted to meet individual needs.

If the monitoring system read the patient position every 5 seconds, 20 GPS

points will be read within almost 1.6 minutes. This is means that if we have four

different direction values, then number of different possible sequences are 420 =

1, 099, 511, 627, 776. Therefore, in order to train the abnormal detection model, we

build a dataset which contains that number of records. Then, we manually label

a portion of that records with normal or abnormal behaviour, see an examples in

Table 9.1. Then, we used the labeled dataset to train RNN model in order to label

the remaining unlabeled records. Finally, we used all dataset records to train ABD

model using RNN as follows.

The user directions are represented as a sequence of values S = {s1, . . . , sn},

where si ∈ {0, 1, 2, 3} and n is the length of the user’s directions. Given a user u with

a sequence of directions, the model classifies user’s behaviour as normal or abnormal.

Figure 9.5 shows the graphical illustration of the model. The model contains an

input, embedding, recurrent and classification layers as well as inner weight matrices.

The input layer consists of one vector si ∈ RN which represents the direction

value where N is the number of different direction values. This vector is encoded

using one-hot encoding then passed through an embedding layer to produce a vector

with d dimension. If the number of direction values is N and the dimensionality

of the embedded vector is d, then the dimensionality of the embedded matrix Se is

N × d where Se represents a set of direction values. The embedded vector sei ∈ Rd
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Figure 9.5: Abnormal behaviour detection model.

is given by multiplying the embedded matrix Se and the input vector si.

sei = si · Se (9.2)

The values of the recurrent layer hi ∈ Rdh are computed as below where dh is the

dimensionality of the recurrent layer vector:

hi = f

(
sei ·Ws + hi−1 ·Whi−1

+ bh

)
(9.3)

where Ws ∈ Rd×dh and Whi−1
∈ Rdh×dh are the weight matrices and bh ∈ Rdh is the

hidden layer bias. Hyperbolic tangent is used as the non-linear activation function

for the recurrent layer.

The classification layer ŷi ∈ R produces a scalar value ranges from 0 to 1. The

value more than 0.5 means normal class while less than 0.5 is abnormal class. Its

values are computed as:

ŷ = g(hi ·Wh + bo) (9.4)
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where Wh ∈ Rdh×N represents the weight matrix between the hidden and output

layers and bo ∈ RN is the output layer bias. The classification layer is a Sigmoid

layer which is suitable for this case.

g(ŷ) =
1

1 + e−ŷ
(9.5)

Optimization is performed using Adam update rule and BPTT. The model

parameters are θ = [Se,Ws,Whi−1
,Wh, bh, bo, h0], where h0 is the initial vector for

the recurrent layer. The cost function used is the cross entropy which is defined as:

J = −
n∑
i=1

yi · log(ŷi) (9.6)

where n is the number of training samples, y is the real user behaviour, and ŷ is the

classified one.

9.2.7 Alert Unit

When the system detects patient’s abnormal movement behaviour, it will notify the

relatives and caregivers by sending an alerts accompanied by the patient current

location (GPS coordinates).

9.2.8 Assistance Unit

This unit is responsible of providing the way that keep disoriented patient safe. It

can help by displaying a map on their phone and creating a routes towards the

nearest predicted RoIs or any RoI stored in the patient’s previous history including

the starting RoI of the movement. Then, the patient follow a series of navigation

instructions sounds. The monitoring system will keep track the patient until reaching

the desired destination.

Whilst different assistance means can be used, the most important issue is the

ability of the patient to understand that assistance type, otherwise, it will be useless.

Thus, the assistance type must be added to the system based on what the patient
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wants. This is one aspect that support the idea of customizable system.

9.3 Experiments and Results

In this section, we aim at demonstrating the performance of the deep learning core

of our SafeMove system, by conducting tests using three real-world datasets.

9.3.1 Datasets

There are many online trajectory datasets, but finding datasets containing

trajectories for elderly people with/without abnormal movement behaviour is not

a straightforward task (Mart́ınez-Ballesté et al., 2018). We use three real-world

datasets in our experiments, i.e., SIMPATIC, GeoLife and OpenStreetMap.

Due to the huge number of trajectories that each dataset contains, we evaluate

a small subset of trajectories for each dataset. For SIMPATIC dataset, we select

normal and abnormal trajectory and label them manually. We evaluate 496

trajectories, 417 of them presenting some kind of abnormal behaviour. Additionally,

we can observe that SIMPATIC dataset contains shorter trajectories (elderly does

not use to walk large distances), while GeoLife dataset is longer and with more GPS

locations due to its high sampling rate. For OpenStreetMap datasets, we chose 16

individuals’ GPS traces as our test datasets, while all individuals’ GPS traces of

GeoLife dataset are used. Since the datasets are not of elderly people, they do not

contain abnormal movement patterns. Thus, in order to test the performance of the

monitoring system in detecting abnormal patterns in trajectories, we added several

trajectories with abnormal patterns manually.

9.3.2 Experimental Settings

We compare our detection model performance with an outstanding proposal in the

literature. θ WD (Lin et al., 2012) is method to determine wandering patterns by

searching sharp changes of directions along their GPS traces.
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The most important step is to determine the most suitable parameters of that

model in that dataset. Since detecting abnormal behaviour depends on the dataset,

the threshold depends on it too. The parameters of our model are as follows: the

window size w is set to 20. The dimensionality of the embedded vector of the

direction d and the hidden layer dr are 50 and 20, respectively. Different distance

values are used δ ∈ {10, 50, 100, 150, 200}.

We validate whether the classification is correct, by comparing the prediction of

the system monitoring and the trajectory’s label. For this reason, we apply a binary

classification. Moreover, we consider some statistical measures that can be derived

from the confusion matrix after classifying each trajectory such as: Recall, Precision,

Specificity, F1-score and Accuracy.

9.3.3 Results and Analysis

Figure 9.6 shows the confusion matrix obtained from our model classification

procedure on the three datasets where main diagonal values represent the correct

classifications, whereas off diagonal values are incorrect classifications. It is clear

from the figure that our model is able to detect the abnormal trajectories more than

the normal ones. For instance, the confusion matrix in Figure 9.6a shows that more

than 90% from the abnormal trajectories were classified correctly, while the model

mostly misclassifies normal trajectories as abnormal. This could be because of the

shorter trajectories with low sampling rate.

For GeoLife dataset (9.6b), the biggest confusion happened when the trajectories

are normal but classified as abnormal by the model. Since the GeoLife trajectories

contain a huge number of GPS points, they have been classified as abnormal when

detecting a change in the direction with a small distance value. On the contrary

with the trajectories of OpenStreetMap dataset, our detection model needs more

direction changes within a certain distance value to ensure abnormal behaviour.

The confusion matrix in Figure 9.6c shows that our model does not work correctly

for OpenStreetMap dataset. This is due to that the sampling rate for location

acquisition is not fixed and the distances between the consecutive GPS points are
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(a) SIMPATIC. (b) GeoLife.

(c) OpenStreetMap.

Figure 9.6: Confusion matrix of evaluating ABD model on the datasets. Each entry in column c
and row r represents the percentage of action r that was classified to be action c.

Table 9.2: Performance comparison. Best scores are in bold.

Dataset Model Recall Precision Specificity F1-score Accuracy

SIMPATIC
ABD 0.907 0.918 0.57 0.912 0.853
θ WD 0.605 0.828 0.356 0.699 0.564

GeoLife
ABD 0.947 0.734 0.656 0.827 0.802
θ WD 0.784 0.867 0.879 0.823 0.831

OpenStreetMap
ABD 0.286 0.25 0.6 0.267 0.5
θ WD 0.143 0.2 0.733 0.167 0.545

almost high. When a low location acquisition rate is used together with long distances

values between the consecutive GPS points, a huge number of abnormal trajectories

will be missed. In addition to that, since this dataset is imbalanced, most of the

correct classification are normal behaviour trajectories.

These results could be improved by modifying the values of the model parameters

(i.e., number of GPS readings and distance between the GPS points). Additionally,

training the model with more data would allow for better generalize on its

classifications and then improve the performance. In spite of this, the proposed

detection model achieved good performance.
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Figure 9.7: Distance effect on the datasets.

Table 9.2 illustrates the classification results of our model and θ WD in terms

of Recall, Precision, Specificity, F1-score and Accuracy. Focusing on the recall

attribute, we see that our model detects up to 90% of the abnormal trajectories on

SIMPATIC and GeoLife datasets. However, when the model detects abnormal, it is

true with 73% and 91% of the cases on SIMPATIC and GeoLife datasets, respectively.

Regarding OpenStreetMap, we can clearly see that our model is not appropriate

for this dataset where recall is 28.6% and 25% from all abnormal predictions are

detected. As mentioned before, any individual can upload a personal trace to

the OpenStreetMap public repository. This means that the traces can contain

trajectories using transportation means and sport activities which cannot be used

for abnormal behaviour detection.

Regarding θ WD, it is hard to detect abnormal trajectories but, when it happens,

the trajectory is often abnormal with 82.8% and 86.7% on SIMPATIC and GeoLife

datasets, respectively. We observe that the poor results are on OpenStreetMap

dataset, since it has a low recall value (20%). Moreover, we conclude that this

method performs well when GeoLife is used. Consequently, we could infer that this

method works better when analysing trajectories with high sampling rate.

To investigate the impact of the distance parameter, we conduct several

experiments to check the detection model performance with various distance values as

shown in Figure 9.7. The best performance is obtained when the distance parameter

value is 10 for SIMPATIC. However, the length is increased up to 100 and 150
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in GeoLife and OpenStreetMap, respectively. This is due to the short trajectories

of SIMPATIC compared to the trajectories of other datasets. Since GeoLife and

OpenStreetMap trajectories are more dense (low sampling rate) than SIMPATIC,

they are more likely to contain cycles.

9.4 Summary

We have presented a system called SafeMove which utilizes deep learning techniques

and prediction model to provide cognitive assistance to elderly people. It relies

on the historical mobility data as a basis for predicting likely locations and

detecting abnormal behaviour. The system in the server runs a CNN utilizing an

elder historical movement information in order to learn his/her movements. It is

responsible for predicting the locations that he/she will visit, the route and the

expected time spent to reach that locations. Moreover, three different variables are

evaluated during the movement: distance, direction and time. We then developed

a model called ABD that take advantage of RNN to detect the different abnormal

behaviours scenario in real-time.

The success of the monitoring system depends mainly on the accuracy and

availability of mobile user’s location information. In addition to that, the quality of

the Internet communication between the user’s smartphone and the server is essential

for the continued operation of the monitoring system.

Regarding the amount of data transferred between patient’s smartphone and the

server, it can be noticed that a considerable connections are to be used, which means

more power consumption.

A major drawback of this system is that the used dataset for building the

prediction model must be collected in the period when the patient had no problem

with the movement at all. On the other hand, the question that might be asked

is: How long should movement histories of a patient be stored and used to improve

prediction accuracy? Another drawback can occur when the historical movement

data for the patient is not available. A simple solution to overcome this drawback is
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to manually determine the significant RoIs by the patient’s relatives. Each RoI can

be given a probability to be the next location the patient will visit depending on the

importance of the RoI and the time of movement.
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CHAPTER10

Concluding remarks

10.1 Summary of Contributions

In this thesis, we have analysed trajectory data in the GPS and geo-social network

based forms. Our analysis includes RoI discovery, location prediction and wandering

behaviour detection. The thesis is divided into four parts: introduction (Chapters 1

and 2), contributions to deep learning models for location prediction (Chapters 3, 4,

5, 6 and 7), contributions to specific applications (Chapters 8 and 9) and conclusion

(Chapters 10).

In Chapter 4, we have proposed a novel model, called STF-RNN, for predicting

people’s next movement based on mobility patterns obtained from GPS devices logs.

Two main features are involved in model operations, namely, the space which is

extracted from the collected GPS data and also the time which is extracted from the

associated timestamps. The internal representation of space and time features are
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extracted automatically in the proposed model rather than relying on hand-craft

representation. This enables the model to discover the useful knowledge about

people’s behaviour in more efficient way. Due to the ability of RNN structure to

represent the sequences, it is utilized in the proposed model in order to keep track of

user’s movement history. These tracks helps the model discover more meaningful

dependencies and as consequence, enhance the model performance. For all the

experiments, we have used two large real-life mobility datasets (Geolife and Gowalla).

Evaluation results show that our model improves the prediction effectiveness in

comparison with the state-of-the-art models.

In Chapter 5, we have studied the performance of location prediction model

through evaluating different architectural configurations. We have described a

series of experiments to extend our previous prediction model (i.e. STF-RNN).

We have proposed time encoding scheme to encode timestamps into particular time

identifiers. A set of neural pooling functions are explored in order to extract rich

features. We have evaluated the impact of different data inputs on the model final

prediction performance. Based on that, different prediction models are proposed

that vary in terms of the number and type of input features. Moreover, different

input representation methods (i.e. embedding learning and one-hot vector), are

investigated. We have shown when and where each method can show better results.

We have concluded thorought experiments in all our proposed models on the two

real-life datasets. Our main findings are as follows. First, multiple pooling functions

offers rich sources of feature information, which leads to an improvement on the

prediction performance. Second, the number of input features can play an important

role in the prediction performance (given the selection of proper and relevant

features). However, increasing the number of input features will increase the training

time of the model (i.e. overhead, efficiency, etc.). LBSs services are very sensitive

to speed and efficiency and we cannot trade-off those to improve prediction. Ideally,

we want models to achieve the best in both (i.e. prediction accuracy and speed

or efficiency). Third, using the leaving time input variable/feature only performs

well in comparison with using both entering and leaving RoIs (i.e. together).
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Fourth, using weekday types information is shown to be such a good input feature in

improving the prediction performance (in all evaluated models). Fifth, time encoding

scheme is useful to provide the prediction model with more information related

to the movement behaviour characteristics. The results indicate that considering

different timestamp information is always beneficial. However, as mentioned before,

we need to balance this with efficiency. Sixth, learning input feature representation

can have a significant positive impact on performance, and should be investigated.

The best results are obtained when learning the representation of space data input

only. Finally, space embedded vector size has a relatively little effect on the model

performance. For the model with space learning, it may be worth using a large space

embedded vector size where more location information is provided to the model.

In Chapter 6, we have proposed the model MAP (Move, Attend and Predict) to

predict a person’s future location based on his/her mobility pattern collected by a

mobile device. This is achieved by means of a computationally efficient trainable

deep neural network model. The proposed model learns which time interval in

the trajectory sequences are relevant regarding a specific location. Experimental

results, obtained from tests conducted on the two real-life datasets, demonstrate

that our model outperforms state-of-the-art models in terms of precision and recall

performance metrics.

In Chapter 7, we have proposed another model for the problem of predicting

the future location of people movement, called ST-CNN, where CNN is used to

discover long-term dependencies which increases the efficiency of the proposed model.

Moreover, we have used the embedding learning technique to discover internal

representations of the input data. Experiments on two datasets show that the

proposed model leads to better results than state-of-the-art models.

In Chapter 8, we have proposed a new approach to discover and predict people’s

next location based on their mobility patterns, while being computationally efficient.

The RoIs discovery method includes two levels. The first level is to group GPS

points based on three threshold conditions: distance, time and region density, which

identifies a set of CRoIs. The second level is to perform clustering using DBSCAN
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algorithm on the CRoIs to obtain the RoIs. Soundness and completeness are used

as metrics to evaluate the proposed RoIs discovery method. We found that the

proposed method is effective compared to other relevant methods in the literature.

While the method is able to find most of the RoIs, the method’s overall execution

time is less than other methods. Moreover, a new model based on MC is proposed to

overcome the drawback of classical MC. It considers both space and time contexts.

We have shown how classical MC model can be extended to include movement

times and how time will improve prediction accuracy. One unique finding in our

research is related to the value of integrating users’ mobility location/space with

time context. In particular, time context is formulated in a way to add extra

information to the space context. For better abstraction during building the model,

a general transformation function is used to transform the n-order MC into first

order. The latter performs better than space-based and time-based models, but

the gap between the models’ prediction performance is narrowing with the increase

of the order. We have evaluated the proposed approach with real-world datasets.

Overall, the approach where DRoI and second order MC were used, achieved better

performance.

Finally, in Chapter 9, we have presented a real-time smartphone-based monitoring

system to discover and predict elderly people behaviours by analysing outdoor

trajectories. This is achieved by firstly analysing the elder’s mobility data previously

collected using our proposed model (ST-CNN) in order to predict the most probable

locationshis/her might visit next. Time and spatial-related variables, such as the

distance traversed, the direction of the movements and the time spent, are analysed

in our ABD model that takes advantage of RNN. The effectiveness and the efficiency

of our system for detection of abnormal behaviours are evaluated using different

datasets comprising real-world GPS trajectories. Evaluation results show that the

system is promising with respect to providing effective assistance for elderly people

to reduce the potential risks.
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10.2 Future Research Lines

The work presented in this thesis makes contributions to trajectory analysis and

prediction. Several directions of future work have been identified during this work

as follows:

1. One of our future work is to classify different users’ behaviours/patterns based

on their daily, weekly and monthly movement habits. We then plan to build

different classes of prediction models.

2. Future research will include investigating the prediction model performance on

larger datasets and incorporating different deep learning architectures such as

a Gated Recurrent Unit or a Long Short-Term Memory unit. Moreover, the

prediction model can be extended to include different contextual information

such as human-human interactions, the time spent in a location and the

distance between locations, to improve performance.

3. Since we only focused on mobility, as a component of human behaviour, we

will consider, in future, our approaches to other scenarios of user behaviours’

prediction, for instance, shopping and eating habits.

4. The proposed prediction models are unable to deal with new locations (i.e.

the unseen locations). We call this problem Out-of-Locations which lies in

the complete inability of location prediction models to sensibly assign non-zero

probability to unseen locations previously. We plan to develop a model that

addresses this limitation.

5. Since the theoretical framework corresponding to the deep learning components

of SafeMove system have been tested, our future challenge will be focused on

the complete development of an Internet enabled system and the corresponding

mobile application, so as to build a proof-of-concept and conduct a test with

potential users.
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