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Abstract

Due to delay constraints of modern communication systems, studying re-
liable communication with finite-length codewords is much needed. Er-
ror exponents are one approach to study the finite-length regime from the
information-theoretic point of view. In this thesis, we study the achiev-
able exponent for single-user communication and also multiple-access chan-
nel with both independent and correlated sources. By studying different
coding schemes including independent and identically distributed, indepen-
dent and conditionally distributed, message-dependent, generalized constant-
composition and conditional constant-composition ensembles, we derive a
number of achievable exponents for both single-user and multi-user commu-
nication, and we analyze them.

Resum

A causa de les restriccions de retard dels sistemes de comunicacié moderns,
estudiar la fiabilitat de la comunicaci6 amb paraules de codis de longitud
finita és important. Els exponents d’error sén un metode per estudiar el re-
gim de longitud finita des del punt de vista de la teoria de la informaci6. En
aquesta tesi, ens centrem en assolir I’exponent per a la comunicacié d’un sol
usuari i també per 'accés multiple amb fonts independents i correlacionades.
En estudiar els segiients esquemes de codificacié amb paraules independents
i idénticament distribuides, independents i condicionalment distribuides, de-
penent del missatge, composicié constant generalitzada, i conjunts de com-
posicié constant condicional, obtenim i analitzem diversos exponents d’error
assolibles tant per a la comunicacié d’un sol usuari com per la de multiples
usuaris.



Resumen

Las restricciones cada vez méas fuertes en el retraso de transmision de los
sistemas de comunicacién modernos hacen necesario estudiar la fiabilidad de
la comunicacion con palabras de cédigos de longitud finita. Los exponentes
de error son un método para estudiar el régimen de longitud finita desde el
punto de vista la teoria de la informacion. En esta tesis, nos centramos en
calcular el exponente para la comunicaciéon tanto de un solo usuario como
para el acceso multiple con fuentes independientes y correladas. Estudiando
diferentes familias de codificacién, como son esquemas independientes e idén-
ticamente distribuidos, independientes y condicionalmente distribuidos, que
dependen del mensaje, de composiciéon constante generalizada, y conjuntos
de composicién constante condicional, obtenemos y analizamos varios expo-
nentes alcanzables tanto para la comunicacién de un solo usuario como para
la de multiples usuarios.
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Preface

The assumption of infinite length sequences usually performs the key role
in proving the Shannon coding theorems. However, the delay and the com-
plexity constraints of the modern communication systems demand analysis
of the theoretical limits of communication with finite-length sequences. The
error exponent approach provides a better way of evaluating the exponential
decay of the error probability as a function of the sequence length. Not only
does the error exponent establish the fundamental limits of reliable commu-
nication but it also gives an insight about constructing better codes whose
error probability tends to zero more quickly. Considering the importance
of the error exponent, this thesis studies a number of achievable exponents
under different coding schemes and carries out analyses for both single-user
and multi-user communication systems.
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Chapter 1

Introduction

Shannon in his well known paper [1] answered two fundamental questions of
information theory. He considered the system consisting of one transmitter
and one receiver, and studied the problem of reliable communication over it.
Unlike single-user communication, for multi-user communication containing
multiple senders and receivers, the problem of reliable communication is not
solved in many cases. In this thesis, we focus on point-to-point and multiple-
access channels presented in the following.

1.1 System Setup

Here, we describe the system model of both single-user and multi-user com-
munication systems that will be assumed throughout the thesis (except where
stated otherwise). We follow the notation presented in Section 1.4.

Figure 1.1 shows a point-to-point communication system consisting of
a source, an encoder, a channel and a decoder. A discrete source over a
finite alphabet U is defined as a sequence of n-dimensional random variables
U, where each U takes values in U". The jth element of the sequence U
is denoted by Uj;, where j € {1,..,n}. In this thesis, we only consider
memoryless sources, and we say that the source Py is memoryless if and only
if, the U;s are iid and their distribution is given by FPy. Thus, the discrete
memoryless source Py generates length-n messages u = (ug,...,u,) € U"
according to probability distribution P (u) = [T}—; Pu(u;).

The output of the source is processed by an encoder where each message is
assigned to a codeword with block length n. The encoder maps the message
u € U™ into the length-n codeword x(u) = (x4, ...,x,) € X™ drawn from the
codebook C = {x(u) : u € U"}.

Then, codewords are transmitted over a channel with finite input al-



Source |U™ X" Channel Y™ un»

Py Encoder [— W ——{ Decoder User

Figure 1.1: Transmission of a source over the point-to-point channel.

phabet X’ and finite output alphabet ). A discrete channel is a sequence
of n-dimension transition matrices W", where W"(y|x) is the conditional
probability of y € V" given & € X™. Here, we only consider discrete mem-
oryless channels where the output sequence y = (y1,...,y,) € Y" is ran-
domly generated from the input sequence x € X™ according to W"(y|x) =
[T}—; W (y;|z;). Due to the randomness inherent of the channel, the received
sequence at the output of channel differs from the original one. Hence, a
decoder is used to estimate the transmitted message based on a specific
criterion. Here, we use the maximum a posteriori (MAP) decoder. More
precisely, by receiving the sequence y, the MAP decoder estimates the trans-
mitted message & based on the following criterion

u = ar;gerélgx PL(u)W"(y | x(uw)). (1.1)

An error occurs if the decoded message @ differs from the transmitted w.
The error probability for a given codebook C is given by

'(C) 2 P[U £ UJ. (1.2)

In addition, we say that the source Py is transmissible over the channel, if
there exists a sequence of codebooks C,, such that we have lim,,_,, €"(C,,) = 0.

In this thesis, we also study the transmission over the multiple-access
channel (MAC). Figure 1.2 shows the transmission of two correlated sources
over the MAC. The discrete memoryless sources are characterized by a prob-
ability distribution Py,y, on the alphabet U x U,, where U, and U, are the
respective alphabets of the two sources, and the source messages u; and u,
have length n.

For user v = 1, 2, the source message u,, is mapped onto codeword ., (u, ),
which also has length n and is drawn from the codebook C¥ = {x,(u,);u, €
U!'}. Both terminals send the codewords over a discrete memoryless multiple
access channel with transition probability W (y|z1,x2), input alphabets X}
and X5, and output alphabet ).

Given the received sequence y, the decoder estimates the transmitted
pair messages (u1, uz) based on the maximum a posteriori criterion,

(@, 10) =  argmax  Pp o, (g, un)W" (yls (wr), @2(wa)). (1.3)

(u1,u2)€EUT XUT
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Figure 1.2: Transmission of two correlated sources over the MAC.

An error occurs if the decoded messages (w1, @y) differ from the transmitted
(u1,u2); the error probability for a given pair of codebooks is thus given by

€'(C',C?) 2P (U, Tn) £ (UL, 1) (1.4)

Like single-user communication, the pair of sources (U, Us) is transmis-
sible over the channel if there exists a sequence of codebooks (C},C?) such
that lim,, . €"(CL,C?) = 0.

1.2 Preliminaries

The goal of communication is transmitting a message from a source to a des-
tination, reliably. By reliable transmission, we mean that one can reconstruct
the message at the destination with a very low probability of error.

In [1], Shannon studied the problem of reliable communication in a single
point-to-point connection. He answered two fundamental questions in com-
munication. Firstly, he found the fundamental limits on data compression as
source entropy and showed the impossibility of compressing a source without
information loss, if the average number of bits per source symbol is less than
the source entropy. Secondly, he also proved channel coding theorem stating
that for a given channel, there exists a quantity known as channel capacity
such that reliable communication is only possible at rates below the channel
capacity.

In fact, Shannon by introducing the idea of random coding, and using the
jointly typical decoder, found the fundamental limits of communication. In
this section, we review these fundamental theorems for both point-to-point
and multiple-access channels.

1.2.1 Error Exponent

A large number of information theoretic problems can be modelled as trans-
mitting a message over a noisy channel with very small error probability.
However, having small error probability corresponds to an increasingly large



block length, and large block length n imposes delay on the system. In ad-
dition, due to delay requirements in practical systems, it is needed to use
codewords with finite block length.

Hence, it is important to study error probability in presence of codewords
with finite block length n. By using the maximum likelihood decoder, it has
been shown that for discrete memoryless channel, there exist a coding scheme
which error probability tends to zero exponentially as block length tends to
infinity [2], [3, Theorem 3|, [/, Ch. 9] and [5, Ch. 5].

In fact, by expressing error probability as an exponential function of block
length n, we can not only determine reliable transmission conditions that
under them error probability tends to zero, but we can also construct better
coding schemes leading error probability tends to zero more quickly.

Roughly speaking, we are interested expressing the error probability as
an exponential function of block length n such as e ¥, where the exponent
E shows how quickly the error probability drops as a function of n. Recall-
ing that for point-to-point communication, the error probability is given by
(1.2), we define the error exponent as follows. An exponent E is said to be
achievable if there exists a sequence of codebooks such that

1 n
llggg.}f - log ((—: (Cn)) > E, (1.5)
and the supremum of all achievable exponents is defined as error exponent.

In fact, we can measure the performance of two different coding schemes
by comparing their corresponding achievable exponents. Particularly, the
one that has larger exponent, its error probability tends to zero more quickly.
Throughout this thesis, we propose different coding schemes and by compar-
ing their exponent, we evaluate their performance.

For the multiple-access channel, the error probability given by (1.4). Sim-
ilarly, an exponent FE is achievable if there exists a sequence of codebooks
such that

Sl 1 n(orl 2
lim inf —— log (e (C,,C )) > F, (1.6)

ny»~n
n

and error exponent is defined as the supremum of all achievable exponents
given by (1.6).
1.2.1.1 Source Coding and Channel Coding

As mentioned, the source coding theorem deals with the ultimate limit of
compressing a source sequence. Here, we review it. Consider a discrete



memoryless source Py on the alphabet U, where an encoder compresses all
|U|™ messages into a set with 2" elements, i. e.

U — {1,2,...,2"3}, (1.7)

where the rate R is the average number of bits per source symbol.

In [0, Eq. (5.18)], it is showed that the average error probability of de-
compressing is upper bounded as an exponential function with respect to n,
and its exponent is given by

max pR — Es(p, Py), (1.8)
p=0

where

u

Bl 7o) = (1 p)og (5 P07 ). (1.9

is known as Gallager source function.

Since the error probability is upper bounded by ¢~ (maxp20 PR=Ba(p,Py )>,
it tends to zero if its exponent given by (1.8) is greater than zero. By us-
ing a similar argument to [0, Theorem 5.1], it can be proved that reliable

compression is possible, if we have

R> = H(Py), (1.10)

p=0

aEs(pa PU) ‘
dp

where H(Py) is known as source entropy, and is given by

H(Py) =~ Py(u)log (Py(u)), (1.11)

uel

and conversely, if the rate R is less than the source entropy, the probability
of error tends to one.

Next, to review the channel coding theorem, we consider the Figure
1.3. Message m € {1,2, ...,Q”R} is mapped into the length-n codeword

x(m) drawn from the codebook C = {zc(l),...,a:(Q”R)}. All codewords
are generated independently according to an identical product distribution
Q"(x) = IIj=; Q(z;). The decoder receives the sequence y at the chan-
nel output, and estimates the transmitted message based on the maximum
likelihood criterion,

m = argmax W" (y|lx(m)). (1.12)
me{1,2,...,.2n R}



™ | Encoder X—> Channel Y—> Decoder %

w

Figure 1.3: Communication channel.

An error occurs if the decoded message m differs from the transmitted m.
In [0, Eq. (6.31)], it has been shown that the iid exponent

E(R,W) = max max Ey(p,Q,W) — pR, (1.13)

QEPx pel0,1]

is achievable where

14p
Eo(p, Q, W) logZ (ZQ W (ylz) “f’) : (1.14)

is known as Gallager channel function.
To find the reliable transmission conditions, by setting F(R, W) in (1.13)
positive, and following the approach given by [6, Theorem 6.2], we find that

_ = max [(X;Y) =C, (1.15)
p=0 QGPX

where I(X;Y) is known as mutual information between input and output of

channel W, and C'is the channel capacity. As mention in (1.15), the channel

capacity is the maximum of all 7(X;Y’) which is defined as

=2 Q)W(ylv) OgZQ Wigla) (1.16)

TEX yeY y‘iL’)

Conversely, if the rate of information is higher than the channel capacity,
then the probability of error is bounded away from zero.

Combining (1.10) and (1.15) provides us the possibility of the reliable
transmission of the discrete memoryless source Py over a point-to-point mem-
oryless channel, if its entropy is less than the capacity of the channel, i. e.

H(Py) < C. (1.17)

Similarly, by combining (1.8) and (1.13), we find that by the concatenation
of source and channel codes, the error probability exponentially tends to zero
by the exponent

min {rggg PR — Ey(p, Py), max max Ey(p, QW) — pR} : (1.18)

8



1.2.1.2 Joint Source-Channel Coding

For joint source-channel coding, by considering Figure 1.1, the encoder maps
a length-n source message u to the length-n codeword x(w), where all code-
words generated independently according to an identical input distribution
Q. In [5, Prob. 5.16], Gallager derived the following exponent for an iid
ensemble
max Fy(p, Q, W) — Eq(p, Py), (1.19)
pel0,1]
where E,(-) and Ey(-), respectively are given by (1.9) and (1.14).
Comparing (1.18) and (1.19), we find that joint source-channel coding
leads to larger exponent than the concatenation of source and channel coding,
and hence its performance in terms of error exponent is better than the
separate source-channel coding. In [7, Theorem 3], it was proved that the
error exponent of joint design is may be up to twice that of the separate
design. However, by a similar argument to Gallager [5, Theorem 5.6.3],
we find (1.17) as a reliable transmission condition for joint source-channel
coding.
The rest of this thesis is devoted to joint source-channel coding exponent
for both point-to-point and multiple-access channels when different coding
schemes are applied.

1.2.2 Random Coding

Shannon in [1] used the random coding idea to prove the possibility of reliable
transmission over a noisy channel. We recall that, if there exists a sequence
of codebooks whose error probability tends to zero, reliable communication
is possible.

Consider an iid ensemble, where for a given input distribution @, all
codewords of each codebook are generated independently according to the
identical distribution ). In order to compute the average error probability
over the ensemble of all codebooks, it suffices that for each message, we sum
over all length-n codewords & € X™ when the input distribution @ is applied.
Table 1.1 shows the ensemble of all possible codebooks for two messages m;
and my, when the length of codewords is n = 2 and X = {0, 1}. Each column
of Table 1.1 shows one possible codebook and the probability of occurring
each of them depends on the input distribution (. If the error probability
averaged over an ensemble of codebooks tends to zero, then there exists at
least one sequence of codebooks whose error probability also tends to zero.

In this thesis, we frequently compute the average error probability by
applying random coding technique, and then we find an achievable exponent



Table 1.1: The ensemble of all codes for two messages with block length
n=2,and X = {0, 1}. Each column shows one possible code.

my 00 00 00 00O 01 01 01 01 10 10 10 10 11 11 11 11
me 00 01 10 11 00 01 10 11 00 O1 10 11 00 O1 10 11

for our problems. We usually use two different forms of solution to compute
error exponent. The first way of solution suggested by Csiszar and Kérner [3],
is built based on the method of types properties, and the results are given in
the form of Kullback-Leibler divergence minimization. The final expression
of the exponent is known as the exponent in the primal domain, i. e. as
a multidimensional optimization problem over distributions. In fact, the
exponent in the primal domain gives us a good insight about the characterize
of the error event; however, since it contains a multidimensional optimization
problem, it is difficult to analyze.

On the other hand, for obtaining the error exponent, there is another
way of solution suggested by Gallager [5], where the exponent is derived by
applying Chernoff bound. Results are given in the form of optimization over
an scaler usually shown by p. The final expression of the exponent is known
as the exponent in the dual domain, i. e. a lower dimensional problem over
parameters in terms of Gallager source and channel functions. Comparing to
the exponent in the primal domain, the exponent in the dual domain is easier
to analyze; however, sometimes it is difficult to understand the operational
meanings behind the derivations.

Usually, by applying Lagrange duality theorem on the exponent in the
primal domain, we can get the exponent in the dual domain. In the thesis,
we apply both methods for different problems, and we use Lagrange duality
theorem to have the results both in primal domain and dual domain.

1.2.3 The Multiple-Access Channel

As shown in Figure 1.2, the multiple access channel considers the problem of
transmitting information from two or more sources to one receiver. To answer
the fundamental limits of communication over the MAC, like point-to-point
case, reliable compression and reliable transmission of it were studied. Here,
we study the MAC with two correlated sources. We proceed by formally
presenting the compression of two sources, and then discussing the reliable
transmission over the MAC.

10



1.2.3.1 Distributed Source Coding

Distributed source coding studies the compression of multiple correlated in-
formation sources that do not communicate with each other.

As shown in Figure 1.4, we consider two correlated sources with joint
distribution Py,p,. For v = 1,2, the encoder v compresses all U] messages
into a set with 2"% elements, i. e. for two encoder mapping, we have

uy —{1,2,.,2" 1, (1.20)
up — {1,2,..,2”32}, (1.21)

and the decoder decodes (ﬁf, (72”) as the transmitted messages, i. e. the
decoder mapping is

(L2, 2 {12, 20 ) = up < Uy (1.22)

As pointed in (1.4), an error occurs if (Af, UQTL) # (U, U}). In fact, the

error event U # U can be split into three disjoint types 9f error events,
namely (Uy,U,) # (Uy,Us), (Uy,Us) # (U, Us) and (Uy,Us) # (Uy, Uy).
These events are respectively labelled by 7, with 7 € {{1}, {2}, {1,2}}. The
notation of index 7 is explained in Section 1.4, specifically in (1.43) and
(1.44). In Chapter 4, we present the exponent of the error probability as

min max pR, — FE, . (p, P , 1.23

ref(hh .21} pelon) e Fow,) (1.23)

where for 7 = {1,2}, R, = R; + Ry. Moreover, E;,(-) is the generalized
Gallager’s source functions for error type 7, and is given by

1+p
1
Ey+(p, Prv,) = log ) (Z PUlUg(UhW)””) - (1.24)

Urc \ Ur

Considering source coding theorem for single-user communication, if these
two sources are encoded and decoded separately, the reliable rate for the
first source is Ry > H (Py,), and similarly the reliable rate for the second
source is Ry > H (Py,). Thus, to have a reliable compression, we have
Ry + Ry > H(Py,) + H(Py,). Slepian and Wolf have shown that it is
possible to code these two sources with lower rate as [J]

aEs,T (/37 PU1U2)
>
dp

where as presented in Section 1.4, for 7 = {1, 2}, (1.25) is equal to Ry + Ry >
H(PU1U2)'

R,

= H (Pu,u,.) (1.25)

p=0

11



Correlated Encoder 1
sources Uy by [Decoder (Uln Uy )
Py, v, (u1,u2) Encoder 2

Figure 1.4: Compression of two correlated sources.

Considering Figure 1.5, when two sources are encoded and decoded sepa-
rately, the achievable region is shown by blue; however, by separately encod-
ing and jointly decoding, the achievable region increases to the red region.
Roughly speaking, instead of H (Py,)+ H (Py,), a rate R > H(Py,y,) would
be sufficient to accurately reconstruct both Py, and Py, at the decoder. As
a result, instead of H (Py,) + H (Py,), we only need H (Py,y,) to describe
joint sources error freely.

1.2.3.2 Transmissible Region

Many studies found the reliable transmission conditions for the multiple-
access channel [10], [11], [12]. Separate source-channel coding for the MAC
with independent sources was studied in [10] and [13], where for v = 1,2,
encoder v takes as input a message m, uniformly distributed on the set
{1, 2, ..., 2”R”}, and transmits its corresponding codeword x,(m,) from the

codebook C, = {a:,,(l), ...,a:,,(Q”R”)} over the MAC with transition proba-
bility of W. Considering iid ensemble, for given input distributions @); and
()2, by receiving the output sequence, the decoder estimates the transmitted
messages based on the maximum likelihood decoder,

(1, o) = arg max W" (y| 1, x2) . (1.26)
(m1,ma)mie{1,...,27 " }moe{1,... 27 R2 }

In [13], the exponent of the error probability was derived as

FEy (pa QTJ WQTC) - pRT (127>

min max
Te{{1}.{2}.{1,2}} p€[0,1]

where Fy(+) is given by (1.14), and is the Gallager channel function for chan-
nel W@Q,. and input distribution @), i. e.

EO (p, Q'ra WQTC) =

—log % (z QT@T)W(ym,xMczTc(xTc)H%) . (1.28)

Trc€EX e, y€Y \xr€X,

12



Ry

H (PUI‘UZ) i <PU]) H (PU] Uz)
Figure 1.5: Distributed source coding.

and for types of error 7 = {1} and 7 = {2}, WQ,. denotes as a point-to-
point channel with input and output alphabets given by X, and X, x Y,
respectively, and transition probability W (y|z1, 2)Qre(zc). For 7 = {1, 2},
the input distribution @, = Q1Qs is the product distribution @ (z1)Q2(x2)
over the alphabet X; x Xy, and WQ,.; = W. In [10] and [13], by using the
similar argument to the single-user communication, the reliable transmission
conditions for the MAC was derived as

< aEO (p7 QT7 WQTC>

R,
dp

= [ (XY |X,e). (1.29)

p=0

The transmissible region derived by conditions in (1.29), is shown in Fig-
ure 1.6. Like before, if the decoder decodes the message of each user sepa-
rately, only the blue region in Figure 1.6 is achieved. In fact, the blue region
of Figure 1.6 can be interpreted as the region that obtained by considering
the assumption that each user send its message over its channel. Assuming
no interference between the two users, the channel model can be simplified
as W(y|x1, x2) = W(y|z1)W (y|z2), and hence we only can achieve the blue
region. However, by decoding simultaneously the messages of both users, the
transmissible region increases to the red region.

Combining (1.29) with (1.25), we can say that correlated sources Py,
can be transmitted reliably over the MAC, if

H (Pyu,.) < I(X7 Y] Xre). (1.30)

However, by an example in [12], it was shown that the above strategy is
suboptimal for correlated sources. Suboptimal means one can send pair mes-

13



Ry

Figure 1.6: Transmissible region for iid ensemble.

sages reliably over the MAC without satisfying (1.30). Here, we review the
presented example in [12].

Based on the condition in (1.30), to have a reliable communication, the
rate should satisfies H (Py,p,) < I (X1, X2;Y). Now, assume U; and Us as
two binary random variables with joint probability distribution Py, p, (u1, us),
where uy,us € {0, 1}, and

(1.31)

From (1.31), we find that H (Py,¢,) = 1.58 bits. By considering a MAC
with characterization ¥ = X; + X5, we can verified that for iid ensemble,
the maximum of mutual information I (X;, X3;Y") is 1.5. Consequently,

H(PU1U2) =158>15=1 (leXQQY) , (1.32)

which means that these two correlated sources do not satisfies conditions in
(1.30) and cannot be transmitted reliably over the given channel.

On the other hand, with simple encoding as X; = U; and Xy = U,, we
have

odeeddas it — 0, U, =0,
Y =X+ Xo=U+Uy=1%2d 7 — 1 U,=0 (1.33)
gdeccdedas iy 1 Uy =1,

where obviously, one can decode the messages correctly, and hence the prob-
ability of error is equal to zero. In other words, the above example shows

14



the sub-optimality of (1.30), where the example does not satisfy the reliable
transmission conditions which are derived by considering iid ensemble; how-
ever, with a simple encoding and decoding, the messages are decoded with
zero error probability.

In fact, in [12], MAC with correlated sources was studied, where system
model is the same with the one discussed in Section 1.1. In [12], it was
proved that in presence of correlated sources, codes generated according to
the conditional probability distributions statistically depending on the source
messages, leads to larger transmissible region than that of achieved by iid
ensemble. In fact, the following transmissible region was derived for the MAC
with correlated sources [12]

H (Prv,.) < 1(X5Y|Xpe, Ure). (1.34)

Although, for correlated sources, for error type 7 = {1,2}, we have
I (X1, X5;Y) in both (1.30) and (1.34), the values of I (X3, X5;Y) in (1.30)
and (1.34) are different. More specifically, for the mentioned example in [12]
reviewed above, in (1.30), I (X3, X3;Y) = 1.5 which is derived by considering
the joint distribution

Py, x,v (71, 72, y) = Q1(21)Q2(22) W (y|21, 72), (1.35)

while the mutual information 7 (X, Xo;Y) = 1.58 in (1.34) is derived by
considering the joint distribution

Px, x,v (21, 22,y) = Z Py, (ur, u2) Q1 (1) Q2(2) W (y| 21, 72). (1.36)

ui,u2

Thus, I (X;, X2;Y) for the iid ensemble in (1.30) is different with that of for
icd ensemble in (1.34).

However, the conditions in (1.34) are not still sufficient. An example pre-
sented in [11], shows that one can transmit information through the MAC
reliably, without satisfying (1.34). It means that in contrast to single-user
communication, the problem of reliable transmission of two correlated sources
has not been solved yet and just the sufficient conditions of a reliable trans-
mission has been derived.

1.3 Overview of Thesis

The thesis is structured as follows:
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e In Chapter 2, we study single-user communication under various coding

scheme including iid, icd, md, gcc, cc and ccc ensembles. We re-obtain
a number of achievable random coding exponents for joint source chan-
nel coding in both primal and dual domains. For message-dependent
random-coding exponent, we presented another proof to show that in
terms of error exponent, there is no benefit to generate codewords with
more than two input distributions. We also find that for point-to-point
channel, there is no penalty in the error exponent if the messages are
assumed to be statistically independent of the codewords.

In Chapter 3, we derive an achievable error exponent for the multiple-
access channel with two independent sources. For each user, the source
messages are partitioned into two classes and codebooks are generated
by drawing codewords from an input distribution depending on the
class index of the source message. The partitioning thresholds that
maximize the achievable exponent are given by the solution of a sys-
tem of equations. We also derive both lower and upper bounds for the
achievable exponent in terms of Gallager’s source and channel func-
tions. By using the results obtained by Chapter 4, we can conclude
that considering statistical dependency between messages and code-
words may not improve error exponent for the MAC with independent
sources.

In Chapter 4, after discussing about the Gallager’s source function for
two correlated sources, we study the random-coding exponent of joint
source-channel coding for the multiple-access channel with correlated
sources. For each user, by defining a threshold, the messages of each
source are partitioned into two classes. The achievable exponent for
correlated sources with two message-dependent input distributions for
each user is determined and shown to be larger than that achieved using
only one input distribution for each user. A system of equations is pre-
sented to determine the optimal thresholds maximizing the achievable
exponent. We show that the obtained achievable exponent is ensem-
ble tightness. We also generalize the result to constant-composition
families.

In Chapter 5, we discuss about the future works.

Appendix A provide general Lemmas used frequently throughout this
thesis.

16



1.4 Notation

Throughout this thesis, the following notations are used.

Sets and variables:
Sets are denoted by calligraphic upper case letter, e.g., X, and the n-Cartesian
product set of X' is denoted by X". A scalar random variable is denoted by
a capital letter, e.g., X, lower case letters is used as a particular realisation,
e.g., v € X, capital bold letter denotes the random vector, e.g., X, small
bold letter & € X" is the deterministic vector. The cardinality of a set such
as X, or equivalently the number of elements in X is shown by |X|.

Probability distribution and types:
Except where stated otherwise, the probability distribution of a random vari-
able is denoted by placing the random variable as a subscript, e.g. Py. A
joint distribution of a pair of random variables (Uy, Us) is denoted by Py,
and the conditional distribution is denoted by Py, or Py,u,. The distri-
bution of random vector U with length n is shown by Fp;. The set of all
possible distributions of single letter U is denoted by Py, and the set of all
empirical distributions on a vector in U™ (i.e. types) is denoted by Pj;.

Given PX € P, the type class T7(Py) is the set of all sequences in X
with type Px. If & € T"(Px), for any probability distribution Q"(x) =
[T, Q(z;), we have the following facts [15]

Qn(m) _ enzxe){ Px(x)logQ(:t)’ (137)
m < ’Tn(Px)’ < "X (1.38)

Considering (1.37) and (1.38), we have

PT"(Py)]| = Y Q"x)<enP@xlQ) (1.39)

:I:GT”(P)()

Given Pyy € Py and y € T(Py), the conditional type class E”(PXY) is
defined to be the set of all sequences & € X™ such that (x,y) € T"(Pxy).
It can be proved that [17]

‘ "(Pyy)| = ’Tn(pXY)‘ (1.40)
! T (Py),

Similarly, for given y € ), the set En(p_)ﬂy) is defined to be the set of all
sequences x such that & contains np)qy(x\y) occurrence of letter z € X
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To distinguish between conditional input distribution and input distribu-
tion independent of the source probability, the conditional input distribution
is denoted by bar, i. e. Q, while @) denotes an input distribution statistically
independent of message. More specifically,

Px(2)Py(u) = Q(z) Py (u) (1.41)
Pxy(z,u) = (u)Q(m|u) (1.42)

The MAC notation:

Throughout this thesis, except where stated otherwise, we use the following
notation for the MAC. The symbol v denotes the user 1 or 2, i. e. v € {1, 2},
and v° denotes the complement index of v among set {1,2}. To simplify some
expressions, we use underline to represent a pair of quantities for users 1 and
2, such as u = (u1,u2), u = (w1, u2), Y = Uy X Us, Py(u) = Pryu,(ur, us)
or the transition probability of the MAC as W(y|z) = W(y|zxy,z2). We
also frequently use the symbol 7 € {{1},{2},{1,2}} to denote the error
event type of the error probability (1.4), i. e. 7 = {1} as the error event
(01,U2) 7é (Ul,UQ), T = {2} as the error event (Ul,ﬁQ) % (Ul,U2> and
7 = {1,2} for the error event (Uy,Us) # (Uy,U,). The complement of 7
is denoted by 7¢ among the subsets of {1,2}. For example, 7¢ = {2} for
7={1} and 7¢ = 0 for 7 = {1,2}. In order to simplify some expressions, we
adopt the following notational convention,

0 =0 0 =10
Ju T= {1} _J Qi(x1) T ={1}
R P A T XS S ¢
u T={12} Q1(21)Qa(z2) 7={1,2}
when X; and X5 are independent from each other, and also
0 T=10 0 =10
_ ) Po(un) 7 =A{1} _ U T={1}
PUT (UT) B PU2 <UQ) T = {2} ’ UT B UQ T = {2} ’ <144>
Py(u) 17={1,2} U xUs 1={1,2}

when U; and U, are correlated to each other.
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Chapter 2

Single User Communication

As mentioned in Chapter 1, for point-to-point communication, many studies
show that joint source channel coding might be expected to have a better
error exponent than separate source channel coding [5, 7,8, 16]. To have a
better insight about error exponent for single-user communication, we quickly
review some previous works.

Since finding an exact expression for error probability is very difficult,
many works investigated upper and lower bounds on the average error prob-
ability, or equivalently lower and upper bounds for the error exponent. Us-
ing random-coding technique leads (1.13) as a lower bound of error expo-

nent [0, Ch. 5], [1, Ch. 9]. However, since at low rates, the error probability
of poor codes in the ensemble dominates the average error probability, the
performance of (1.13) at low rate is weak [5, Sec. 5.7]. In [5], through

an expurgation process, a tight exponent at low rates was proposed [5, Eq.
5.7.10].

In fact, both random-coding and expurgating methods gives lower bounds
on the error exponent. On the other hand, sometimes finding an upper
bound for error exponent satisfied by every code is challenging. Generally,
hypothesis-testing method [17] is utilized to derive upper bound for error
exponent. The two well-known upper bounds of error exponent are sphere-
packing exponent [18] and minimum-distance exponent [19].

For the rates greater than critical rate [5, Sec. 5.6], the random-coding
and sphere-packing bounds are coincide to each other, while the expurgate
and minimum-distance bounds are coincide at rate R = 0. In terms of error
exponent, at low rates, an upper bound known as straight-line bound has bet-
ter performance than sphere-packing bound. The straight-line bound is ob-
tained by connecting any two points of sphere-packing and minimum-distance
bounds. Thus, for the rates smaller than critical rate, the error exponent is
greater than random-coding exponent, and is smaller than sphere-packing
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exponent.

As mentioned in Chapter 1, considering joint source-channel coding, the
random-coding exponent is derived as (1.19). However, by partitioning
message sets into source-type classes and assigning constant-composition
codes [20], to map messages within a source type onto sequences within
a channel-input type, the following achievable exponent is derived [¥]

H(U)?Rl%ogmﬂgg{p (0, Pu)} 52[%?1{} man o(p, QW) —p (2.1)

In addition, in [8, Lemma 2|, the sphere-packing bound on the exponent is
obtained as

HU) S R2tog U] igg {pR — E(p, Pu)} + max {mgx Eo(p,Q, W) — pR} . (2.2)

By applying Fenchel’s duality, it was shown that [7]

. R — Ei(p, Py)} + { E,,W_R}
H<U>£“é£log|u|i§%{p (0, o)} e o(p, QW) —p

= max Fy(p, Q, W) — Ey(p, Py), (2.3)
p€[0,1]

where, Ej is the point-wise supremum over all convex combinations of any
two values of the function Ey(p, Q, W), i. e.

E_b(p’ Q7 W) = sup {QEO(plv Q7 W) + (]- - Q)EO(IO% Q7 W)}’ (24>
p1,p2,0€[0,1] :
0p1+(1—0)p2=p
and QO is a set of distributions.

Finally, in [10], it is proved that joint source-channel random coding where
source messages are assigned to different classes and codewords are generated
according to a distribution that depends on the class index of source message,
achieves the following exponent

max EO(ﬂ? Qa W) - Es(p7 PU)7 (25>

p€l0,1]

which coincides with the sphere-packing exponent [3, Lemma 2] whenever it
is tight.

To summarize the results, using codewords with a composition depen-
dent on the source message leads to a better exponent than the case where
codewords are drawn according to a fixed product distribution [8]. In addi-
tion, considering the scheme where source messages are assigned to disjoint
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classes and encoded by codes that depend on the class index, attains the
sphere-packing exponent in those cases where it is tight [10].

In this chapter, we study the random-coding exponent of joint source
channel coding under various ensembles. In Section 2.1, we consider the
scheme where codewords are generated according to a conditional distribu-
tion that depends on the instantaneous source symbol. However, in Section
2.2, we simplify the coding scheme to the case where codewords and messages
are statistically independent of each other. Finally, in Section 2.3, by com-
paring the results obtained in Sections 2.1 and 2.2, we show that there is no
penalty in the error exponent if the messages are assumed to be statistically
independent of the codewords.

Throughout this chapter, to distinguish between conditional input dis-
tribution and input distribution independent of the source probability, we
denote () as the conditional input distribution and Q as the marginal input
distribution.

2.1 Statistical Dependency between the Mes-
sages and Coedwords

As mentioned in Chapter 1, for the MAC with correlated sources, considering
statistical dependency between the messages and codewords leads to a larger
error exponent. To examine whether this idea can also improve the error
exponent of single-user communication or not, we study various ensembles.
In all studied ensembles in this section, we assume that codewords are gen-
erated by a conditional probability distribution of the codeword symbol that
depends on the instantaneous source symbol.

2.1.1 Message Dependent Ensemble with Statistical
Dependency

Here, we derive an achievable random-coding error exponent for joint source
channel coding where codebooks are generated by a conditional probability
distribution of the codeword symbol that depends both on the instantaneous
source symbol and on the type of the source sequence. In other words, for
every message u € U™, we randomly generate a codeword x(u) according to
the probability distribution Qﬁ(u) (z|u) = [T}, Qr(w)(5]u), where Qny) is
a conditional probability distribution that depends on the type of u, denoted
by 7(u).
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Proposition 2.1. For a given channel W and source Py, E™% is an achiev-
able exponent where

E™* =  min  D(Pyxy||PuQp,W)
Puxy€Puxxxy
+| D(Puxy||PuQp, Py) — H(Py) +, (2.6)
and [x]* = max{0,z}.
Proof. See Section 2.4.1. n

In Section 2.2.1, we will study a simplified version of (2.6) known as
message-dependent exponent. By showing that message-dependent expo-
nent is equal with (2.6), we will prove that removing statistical dependency
between the messages and codewords, will not effect on the error exponent.

2.1.2 Independent and Conditionally Distributed En-
semble

In this section, we study icd ensemble, a simpler ensemble than the one de-
scribed in Section 2.1.1. Here, statistically codewords depend on the source
messages, and are generated independently according to a conditional distri-
bution denoted by Q.

In fact, we randomly generate a codeword x(u) € X" according to the
conditional probability distribution Q™(x|u) = [T}, Q(x;]u;). By setting
QPU (z|u) = Q(z|u) in Proposition 2.1, it can be proved that the following
exponent is achievable

. R _ R A R +
Eied = min D(Pyxy||PuQW) + |D(Puxy||PuQPy) — H(Py)|

Puxy€Puxxxy
(2.7)

where ij and Py are marginal distributions of the ]3U Xv.

Proposition 2.2. The optimal joint distribution Pyxy minimizing (2.7), is
given by

P(ij(U,ZL’,y) =




where in view of (2.8), an equal expression of (2.7) can be expressed as

B = max Eo.(p, P, Q, W), (2.9)
where
Eos(p, Py, Q,W) log(Z(ZZPU (@|u)W (y|$)1i")1+p>‘
L (2.10)
Proof. See Section 2.4.2. ]

2.1.3 Conditional Constant-Composition Ensemble

In this section, we describe conditional constant-composition ensemble which
can be considered as a generalization of the constant-composition ensemble.
Consider a discrete memoryless source which is characterized by a distribu-
tion Pj(uw) = [I;_, Pu(ug). For a given message u = (uy,ug,...,uy,), we
consider the sub-sequences of w which have the same symbols. We define
Ju(u) as the set of all positions where the symbol u appears in w, i.e. for all
uel

Ju(u) ={i € {1,2,...,n},such that u; = u}. (2.11)

The subsequence can be represented by u(j,(u)). Let Q(z|u) be a conditional
input distribution. We approximate the conditional distribution ¢ (z|u) with
a type-p conditional distribution (), that satisfies

Qp(zlu) € {O,;,;,...,l}, (2.12)

for all x € X and u € U. We set p depends on v and u, p = ‘ju_(u)‘ and
choose this distribution such that the variational distance between () and @),
satisfies

@ulala) - Qlat)| < - (2.13)

For every u € U, we randomly pick a sequence x, of length |j,(u)| from the
set TP(Q,) and set x(j,(u)) = x,. Codebook C is called a conditional
constant-composition codebook with distribution Q, if x(u) = (Z)ueu,
where x, € T2(Q,).

Now, we apply constant-composition random coding to determine an
achievable exponent.
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Proposition 2.3. Consider a conditional constant-composition ensemble gen-
erated by conditional distribution Q). For the point-to-point channel with
transition probability W and source probability distribution Py, the following
exponent is achievable

+
E<° = min D(Pyxy||PyQW) + I(U,X;Y)—H(ﬁU)] . (2.14)

PUXY eSccc

where the set S°° is defined as
Seec & {pUXY : Pyxy = pUQpHXUapU € Pu, ZSYlXU € PJ/IXXL{}- (2.15)

Proof. One simple way to prove Proposition 2.3, is using Proposition 2.1.
In fact, for conditional constant-composition ensemble, we ought to consider
only Pyyy that their conditional distribution PX|U is Q. By applying the
identity Pyxy = PUQPy|X in D(Pyxy||PyQW) in (2.6), noticing the fact
that D(PyQPy xu||PyQPy) = I(U, X;Y), (2.6) is derived as

+
E“°= min D(Pyxy||PbQW)+ |I(UX;Y)—H(P,)| , (2.16)

Py xy eScee

which proves Proposition 2.3. The long way is very similar to the proof
presented in Section 4.3.9. n

Next, we determine an equivalent expression for the derived exponent in
(2.14). We continue by proving the following proposition.

Proposition 2.4. An equivalent dual expression for the exponent given in
(2.14) can be expressed as

E°° = max E()s (p, Py, Q W) (2'17>
p€[0,1]
where
E§(p, Py, QW) =
ﬁ(u x) L _ N 1+p
max —log <Z (Ze o Py(u) e Q(x|u)W (y|x)1+p> )
Aluz): uU,T
>, Blua)Q(x|u)=0 Y
(2.18)
Proof. See Section 2.4.3. -
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2.2 Source-Channel Coding without Statisti-
cal Dependency

As mentioned in Chapter 1, joint source-channel coding leads larger expo-
nent than separate source-channel coding. In this section, by considering
joint source-channel coding, we re-obtain achievable exponents for message-
dependent, iid and generalized constant-composition ensembles.

2.2.1 Message-Dependent Ensemble

Message-dependent ensemble was studied in [16] and [21] and the derivation
of achievable exponent were done in the dual domain. Here, by doing the
analysis in the primal domain and applying the Lagrange duality theory, we
re-obtain the message-dependent random-coding exponent obtained in [10].

In this section, we consider a simplified version of the ensemble described
in Section 2.1.1. In fact, we consider a case where codebooks are generated
according to a distribution that only depends on the type of the whole source
sequence. For every message u € U", codeword x(u) is generated randomly
according to the probability distribution Q7 ,\(2) = I1}—; Qn(u)(2;), Where
Qr(u) is a probability distribution that depends on the type of u, denoted by
m(u).

Proposition 2.5. For point-to-point channel W with source Py, an achiev-
able random-coding exponent for joint source channel coding is

E™ = min D(Py||Py)

Py ePy
R N R R +
+ _ min  D(Pxy||Qp, W)+ |D(Pxy||Qp, Fy) — H(Py)| . (2.19)
Pxy€Pxxy

where [x]" = max{0,z}.

Proof. Let in Proposition 2.1, condewords are generated according to Qg (x)
rather than QpU (x|u). By setting QpU(x|u) = Qp,(z) in Proposition 2.1,
and noting to the fact that when there is no statistical dependency between
random variables U and X, we have

D(Pyxy||[PuQp,W) = D(Py||Py) + D(Pxy||Qp, W), (2.20)
Proposition 2.5 is proved. [

Now, to determine an equivalent expression for the derived exponent given
in (2.19), we start by proving the following Lemma.
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Lemma 2.1. Let 0 = yp41 < v < ... < 799 <y =1 be L+ 1 positive
ordered numbers such that vy > min Py(u) and v2 < max Py(u). For each
Py € Py, there exists a unique ¢ € {1, ..., L} such that

log(7Ve+1) ZPU ) log(Py(u)) < log(e)- (2.21)

Proof. See Section 2.4.4. O

In fact, Lemma 2.1 describes a situation where the set Py, is partitioned by
L classes given by (2.21) and the classes are indexed by ¢. Roughly speaking,
the equivalent expression of Lemma 2.1 in the dual domain is that the source-
message set U" is partitioned into L classes where the class ¢ € {1,..., L} is

D' ={uclU" : 4}, < Ph(u) <} (2.22)

Now, we consider L input distributions as {Q1,...,Qr}, and we assign
the distribution Q, to the class ¢. Briefly, in primal domain, if P belongs
to the class £, then we let Qp = Q. Given £ € {1,..., L}, depending on
the class index of PU, the input distribution is determined. In addition, the
interpretation in the dual domain is that for the messages belonging to D¢,
input distribution @), is assigned to generate codewords.

Proposition 2.6. Consider L input distributions as {Q1,...,Qr} and let
0=741 <7 < ... <% <y =1beL+1 positive ordered numbers such
that v, > min Py(u) and v < max Py(u). An equivalent dual expression for
the exponent given in (2.19) can be expressed as

md __ —
E - ’ygla,?y(L Ze?i’unL} ;)Iél[%}li] EO(pu an ) Es,f(p7 PU,, y Ye+1, 7@)7 (223>

where Ey(-) given by (1.14), and

Es,f(p7 PU; ’7€+17 /YE) -

ES(pwH? PU) + E;(:O'Yul)(p - pwH) ﬁ < 1+pié+l )

1 1 1
Es(p7 PUy) 1+p"/2+1 S ?ﬁ S 1+p72 9 (224)
Es(pye, Pu) + Ei(py)(p = py,) o > T

where in (2.24), El(p,) = M‘ D For0 =y, < <<, <
=P~
i = 1, the parameter p,, for { = 1,...,L is the solution of the implicit
equation
>, Pu(u) ™ log Py (u)
. Pulu) ™
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when min, Py(u) < v, < max, Py(u) is satisfied. However, when ~y, >
max, Py(u), p,, = —14 and when ~, < min, Py(u), p,, = —1_ [21].

Proof. See Section 2.4.5. O

We remark that since we considered L classes an L input distributions,
there are LT possible assignments. In (2.23), the optimal assignment of input
distributions to source classes is considered.

Assuming L = 3, for { = 1,2,3, Figure 2.1 shows E;(p, P, Ye+1,Ve)
defined in (2.24), versus p where in view of Proposition 2.6, we have v; = 1
and 4 = 0. Consider E;(-), for an interval of p, Eso(+) given in (2.24), is a
tangent line to E,(-) function; however, for the ps between p,, and p., is the
Gallager source function.

The reason why straight lines are appeared is explained in the following.
Firstly, we recall the primal form of E(-) function, i. e.

—Es(p, Py) = Anin D (Pyl|Py) - H (Py). (2.26)

Now, consider the empirical distribution Py. From the proof of Lemma 2.1,
it can be verified that for u € T"A(pU), we have Pj(u) = e" 22, Pu () log(Py (u)),
Noting that all messages in 7"(Py) have the same probability, there exist a
~v € [0,1] such that " = P& (u) = "2 Pu()los(Pu(w) | o1 equivalently

>~ Py(u)log(Py(u)) = log(7). (2.27)

Roughly speaking, (2.27) represents the primal form of an empirical distri-
bution. Thus, the minimization problem of (2.26) with the constraint given
by (2.27), can be interpreted as the the Gallager’s source function when the
empirical distribution of the source is fixed.

Applying Lagrange duality theory to (2.26) with the constrain given by
(2.27), we find that
—E,(p,Py,v) = ‘min D (Py||Py) = H (Py),  (2.28)

PyePy:
>, Pu () log(Py(u))=log(v)

where

Es(ﬂv PU;’Y) = Es (p’yv PU) + E; (p’y) (p - p’Y) ) (2'29)

is the straight line tangent to E,(-) function at p, and p, is derived by (2.25)
when v, = 7.
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Figure 2.1:  E, ¢(p, Py, Yo+1,7) for £ =1,2,3.

Next, as a special case, we partition Py, into two classes, i.e. L = 2. In
fact, the two-class partitioning was widely studied in [16]. Here, to emphasize
two-class partitioning, we rename the set D* when ¢ € {1,2} as A¥(y) for
1 = 1,2. In other words, setting v3 = 0, 72 = v and 7; = 1 in Lemma 2.1,
the classes D! and D? are respectively renamed as

Al(y) ={ueu" : Py(u) >}, (2.30)
A7) ={ueum : Pj(u) <~} (2.31)

where 0 < v <1 is a fixed threshold.

As mentioned, (2.30) and (2.31) are the interpretations of Lemma 2.1
in the dual domain. It means that for the messages belonging to the class
A“(7), codewords are generated according to the input distribution Q;, where
1=1,2.

Setting v3 = 0, 72 = v and 73 = 1 in Proposition 2.6, the achievable
exponent (2.23), when two classes are assigned is given by

Emd(PU7 {Qla Q2}7 W) = max min max EO(pJ Qi7 W) - Es,i(pv PU77)7

~e[0,1] i€{1,2} pe[0,1]

(2.32)
where from (2.24), by setting v3 = 0, 75 = v and 7; = 1, we have
E (,0 P 7)_{Es(p7PU) ?lpz H}p«,’ (2 33>
s, 1\M, LU, - .
Es(pV7PU)+E;(p7)(p_pV) ﬁlp < ﬁ’
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and

Ey(p, Py) SR
Eyo(p, Pu,v) = ’ Lo = 14,7 (2,34
2 P, 7) {Esm,m FEp)o—p) e 2

In (2.33) and (2.34), the parameter p, is the solution of the implicit equation
given by (2.25) when min,, Py(u) < v < max, Py(u) is satisfied. We observe
that Es1(p, -) follows the Gallager E,(p, -) function for an interval of p, while
it is the straight line tangent to Es(p,-) beyond that interval, and similarly
for Eso(p,-).

When v € [0, min, Py(u)), we have that p, = —1_ and hence E;(p,-) =
Eq(p,-) and Es2(p, ) = —oo. Otherwise, when 7 € (max, Py(u), 1], we have
that p, = —1, and hence E,;(p,) = —oo0 and Es(p,-) = Es(p,-). In our
analysis, it suffices to consider v = 0 or 7 = 1 to represent the cases where
Es1(p,-) or Ega(p,-) are infinity. For such cases, we have

s1(p, Pu,0) = Eq(p, Py), FEsa(p, Py,0) = —o0, (2.35)
E&l(p, PU, 1) = —0Q, E572(p, PU, 1) = E5<p, PU) (236)

It has been shown that partitioning the source messages into two classes
leads larger exponent than (1.19); however, there is no benefit in terms of
error exponent, if we partition the source message-set into more than two
classes [10]. Here, we present another proof for this fact.

Proposition 2.7. For the optimal assignment of three input distributions

{Q1,Q2,Q3}, we denote E™ given by (2.23) as E™Y( Py, {Q1, Qq, Q3}, W).
Then, we have

Emd(PU7 {Qh Q2> Q3}> W) = max {Emd(PUa {Qla Q2}7 W)?
E™(Py {Qa Qs} W), E™(Pu Q1 Q) W)}, (2.37)

where the right hand side of (2.37) is defined by (2.32).
Proof. See Section 2.4.6. ]

Since it was proved that in terms of error exponent, partitioning the
source messages into two classes is sufficient, from now we focus on (2.32).
In view of (2.33) and (2.34), we recall that E;(-) for i = 1,2 is either E(-)
function given by (1.9), or E,(-) given by (2.29).

To find the optimal 7 maximizing (2.32), we use Lemma A.G. Setting
E(p,Q1) = Eo(p,Q1,W) and E(p,Q2) = Eo(p,Q2, W) in Lemma A.6, the
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optimal v* maximizing (2.32), is obtained at the point where max, Ey(-, Q1)—
Es1(+) equals to max, Ey(-, Q2) — Es2(+). Figure 2.2 shows this equality where
p1 and py are given by

p; = arg [TH?X Eo(p, Qi, W) — Esi(p, Pu,v"), (2.38)
p€0,1

for i = 1,2. In view of Lemma A.6, from (A.37) we conclude that

E™(Py,{Q1,Q2}, W) = max Eo(p, {Q1,Q2}, W) = Elp, Pu),  (2:39)

p€[0,1]

where Ey(+) is given by (2.4). Since Ey(-) is greater than the Gallager’s
channel function, we conclude that message-dependent exponent given by
(2.32) or (2.39) is greater than iid exponent presented in (1.19).

Coming back to Figure 2.2, we note that both p; and p, derived by (2.38),
are located on the straight line and also on the both sides of p,. Otherwise,
the message-dependent exponent will equal to iid exponent.

For example, Figure 2.3 shows an example where both p; and p, are
located one side of p,. As a result, one of them is located on the E(-)
function. In the example of Figure 2.3, ps is located on E function. Hence,
from (A.36) we have

Eo(p1,Q1, W) — Es1(p, Pu,v") = Eo(p2, Q2, W) — E(p, Pu), (2.40)

where the right hand side of (2.40) is Gallager exponent given by (1.19).

Briefly, there are many sources and channels that the message-dependent
exponent for them equals to their iid exponent. However, there are also
examples that for them (2.32) is greater than (1.19). Here, we bring one
of them. We consider a discrete memoryless source Py with alphabet U =
{1,2} where Py(1) = 0.028 and Py(2) = 0.972. We also consider a discrete
memoryless channel with X = {1,...,6} and Y = {1,...,4}. The transition
probability of this channel, denoted as W where

1-— 3]{31 k’l kl kl

kv 1-3k Kk ky
k1 By 1-=3k Kk

e A A T (2.41)
0.5— ]{3205 — k’g ]{?2 k’g
ko ko 0.5 — ky0.5 — ko
for k; = 0.056 and ko = 0.01. Considering two input distributions as
@:1=100000.50.5] (2.42)
Q2 = [0.25 0.25 0.25 0.25 0 0], (2.43)
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Figure 2.2: Message-dependent random coding ensemble gives larger expo-
nent than iid ensemble.

from (2.32) we find that v* = 0.6541 and

E™ = 0.1734, (2.44)
E' = 0.1721, (2.45)

where E' is given by (1.19) for the best assignment of input distributions. As
can be seen, for this example, message-dependent random coding exponent
is larger than iid exponent.

2.2.2 iid Random-Coding Exponent

In Section 1.2.1.2, we briefly reviewed the iid random coding exponent. Here,
we bring the results in both primal and dual domain. For joint source-channel
coding, by drawing the codewords independently of the source messages ac-
cording to an identical product distribution Q"(x) = [[j_, Q(z;), and using
random-coding argument, the following exponent is achievable

E' = min D(Py||Py)
Py ePy
~ R R o1+
+  min  D(Pxy||QW) + |D(Pxy||QFy) — H(Py)| , (2.46)
Pxy€Pxxy
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Figure 2.3: Message-dependent random coding ensemble gives the same
exponent as iid ensemble.

where by setting () instead of @z () in Proposition 2.5, equation (2.46)
can be proved. Next,by applying Lagrange duality theory, we find the dual
form of (2.46).

Proposition 2.8. The optimal distributions which minimize the objective
function in (2.46) are given by

QW (sle) ™ (5 QW (ul) 7 )

Piy(,y) = - (247)
S5 (25 Q@W @)™ )
and
e Py(u)™
Pru) = . 2.48
) = S (2.48)

In addition, inserting (2.47) and (2.48) into (2.46), an equivalent expression
of (2.46) is Gallager’s exponent [5, Prob. 5.16] and is given by

Eiid = m[%)li] E()(p,Q,W) _Es(p7 PU)a (249)
rel0,
where Es(p, Py) and Eo(p, Q, W) are given in (1.9) and (1.14), respectively.
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Proof. The proof of (2.49) was given in many literature, for example [, Sec.
5.6]. However, here we apply Lagrange duality theory to (2.46) with con-
straints that 3, Py(u) = 1 and also Sy Pxy(z,y) = 1. To avoid repeating,
we use the the result of Proposition 2.6. Since for the given problem in (2.46),
the input distribution ) does not depend on the source type, only one input
distribution is considered. As a result, in (2.23), the number of classes is
only one. By inserting L = 1 in (2.23), (2.49) is proved.

More precisely, since only one input distribution is considered, in the
proof of Proposition 2.6 in Section 2.4.5, the two inequality constrains given
in (2.144) and (2.145) are inactive and thus their corresponding Lagrangian
coefficients (A, and Agyq) are zero. By inserting () instead of @ p, and apply-
ing Ay = A\pp1 = 01in (2.152) in view of (2.160), Proposition 2.8 is proved. [J

2.2.3 Generalized Constant-Composition Exponent

Constant-composition ensemble was widely studied in [15] and [20]. It has
been shown that constant-composition random-coding exponent is larger
than iid random-coding exponent [15], [20].

Moreover, as mentioned before, message-dependent random-coding expo-
nent is larger than iid random-coding exponent [16]. Here, we merge the idea
of message-dependent and constant-composition ensembles, and we present
an achievable exponent for a generalization of the constant composition en-
semble.

We consider a case where codebooks are generated according to a type
distribution that depends on the composition of the whole source sequence.
In other words, for a given source message composition Py e P Qp, € Px
is fixed and can be approximated by the type distribution @, 5 , where

@, b, (x) € {0, %, %, o 1}. The variational distance between Q)5 and @
satisfies ‘QPU (x) — QnﬁU(l’)‘ < i

Briefly, sub-codebook C(Py) = {az(u); u € T”(py)} is called a constant-
composition sub-codebook with input distribution Qp, if x(u) € T"(Q,, z,)

TL?PU

for all u € T”(]SU). And codewords of each sub-codebook are randomly
drawn uniformly from the set of sequences with type @, p . Addition-
ally, codebook C is considered as the union of all sub-codebooks, i. e. C =

UPUGPZ} C(pU)

By applying constant-composition random coding, it can be proved that
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the following exponent is achievable

E& = min D(Py||Py)
PyePy

+  min _ D(Pxy||Qp, W)+ | (X;Y) — H(Py)

PXY €Secc (]SU)

T (2.50)

where Py is the marginal distribution of Pyy and
Sgcc(pU) L {ﬁxy . pr = QpUpY\Xpr\X € PyM/}. (251)

Note that (2.50) can be derived from (2.19), by considering the fact that
for the constant-composition ensemble, we ought to consider only PXy that
their marginal distribution Py is Q; p,- By applying the identity Pyy =

QPUPYIX in D(PXY||QPU ) in (2.19) and noticing that

D(Qp, Prix|Qp, ) = 1(X;Y), (2.52)
(2.50) is proved.

Like before, the aim of this section is determining an alternative expres-
sion for the achievable exponent given by (2.50). By using the fact that
[z]* = maxg<,<1 pr and Fan’s minimax theorem [22], we obtain

E®° = min max D(PUHPU) pH(PU)

PU €Py p€(0,1]
+  min _ D(Pxy||Qp, W) +pI (X;Y). (2.53)
Pxy €S8°(Py)

To determine a dual expression for the achievable exponent given in
(2.53), we apply Lagrange duality theory to the two minimizations over Pxy
and Py. Firstly, we fix Py € Py and we consider the inner minimization over
Pxy € §&°(Py), i.e. we focus on the following optimization problem

~ min _ D(Pxy||Qp, W)+ pI (X;Y). (2.54)
Pxyesee(Py)
To apply Lagrange duality theory to the optimization problem given in (2.54),
we use the following Lemma.

Lemma 2.2. For the generalized constant-composition ensemble, we have

min  D(Pay||Qp, W) + o (X;Y) = B (0,Qp, W), (255)

]SXY c€Secce (pU)

where,
E5(p, QW)
a(z) L 1+p
= max —log ( e Q(x)W (y|z) > 2.56
a(z):y ), a(z)Q(z)=0 g (; =" ) ( )
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Proof. See Section 2.4.7. [

Now, by applying Lemma 2.2 into (2.53), we obtain

EE° = min max D(Py||Py) — pH(Py) + E&(p, Qp, , W), (2.57)
PyePy p€0,1] v

where the optimization problem over Py in (2.57), is exactly the primal form
of (2.24) or if we consider two classes, the primal form of (2.33) and (2.34).
Thus, for generalized constant-composition ensemble, we obtain

EgCC: i ECC i,W _Esi ,P, y 258
max min max 0"(p, Qi W) (0, Py, ) (2.58)

where for i = 1,2, E,;(p, Py) is given by (2.33) and (2.34).
As a special case, by considering only one input distribution, (2.58) gives
the constant-composition exponent, i.e.

B = max ES(p,Q, W) — Ey(p, Py). (2.59)

p€[0,1]

To compare (2.58) with (2.59) we use Lemma A.6. By setting E(p, Q;) =
E§(p, Qi, W) for i = 1,2, in Lemma A.6, a simpler expression of (2.58) can
be written as

E* = max ESC(Pa {le QQ} ) W) - ES(ﬁa PU)’ (260)

p€(0,1]

where since ES°(-) > E§°(-), we conclude that the generalized constant-
composition ensemble leads larger exponent than constant-composition en-
semble.

In addition, in Lemma A.9, it is shown that £ given by (2.60) is greater
than £ in (2.49). From Lemma A.9, let Q* be an input distribution max-
imizing £, For the cases that £ derived by a constant-composition Q*,
we have ¢ = Eid,

2.3 Comparing the Exponents
In this section, by comparing the exponents derived in Sections 2.1 and 2.2,
we show that there is no penalty in the error exponent if the messages are

assumed to be statistically independent of the codewords.
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2.3.1 icd and iid Ensembles

Here, we are going to show that, in terms of error exponent, ensembles gen-
erated with a conditional distribution have no advantage over the iid ensem-
bles. To do this, for a given conditional distribution @, we define a family of
marginal distributions as {Qp; p € [0, 1]}, where

Qp(x) =>_ P (w)Q(wlu), (2.61)
and
Py(u)T
P.i (u)= ———"—. 2.62
() >u Puu)™e (262

Considering (2.61) and (2.62), we may note that Q,(z) >, PU(u)ﬁ =
> PU(u)ﬁQ(ﬂu) By replacing -, PU(u)ﬁQ(ﬂu) appeared in (2.10)
with Q,(z) >, PU(U)TIP, we obtain

EO,S(pv PU7 Qa W) =
~log (X (L Q@) S @)™ Wyl ™) ™) (2:63)
= EO(ﬂv QP?W) _Es(pa pU)? (264>

where in (2.64), in view of (1.9) and (1.14), we used the identity that
log(ab) = log(a) + log(b).

By comparing (2.64) with (2.49), and in view of (2.9), we conclude that
ensembles generated with a conditional distribution attain the same expo-
nent as Gallager’s exponent. In other words, for a given conditional input
distribution @ and p, we can always find an iid distribution Q,, such that
Eo(p, Py, QW) = Eo(p,Q,, W) — E(p, Py). The proof of this equality in
the primal domain is presented in Section 2.4.8, i. e. in Section 2.4.8 we show
that

N _ ~ n — N +
D(Pixyl|[PuQW) + | D(Poxy||[PEQPY) — H(F))| = (2.65)
“ “ “ ~ ~ +
DB 1Pu) + D(Pil|Q,W) + | D(Pio 1Q,B5) — H(P)| . (2.66)

where Py, p;(y and ]5;} are optimal distributions associated to icd and iid
exponents and are given in (2.8), (2.47) and (2.48), respectively.
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The same approach can be used to show that message-dependent ensem-
ble with statistical dependency does not give a larger exponent than message-
dependent ensemble without any statistical dependency between messages
and codewords.

At this point, in the dual domain, we obtain reliable transmission condi-
tions similarly to [5] by evaluating the the partial derivative of the objectives
in (2.49) and (2.9) at p = 0. Since both Ey ¢ and Ey — E; are concave func-

tions with respect to p, i. e. QQEO’S < 0 and M < 0, the maximum of

exponents occurs at p* where 88 %5 = () and % = 0, respectively. Now,
if the derivative of Ej, and EO E,; at p = 0 be positive, then Ej, and
Ey — E will increase from p = 0 to p* and then they will start to decrease.
Thus, by recalling that Eq (0, Py, Q, W) = Ey(0,Q, W) — E,(0, Py) = 0, to
make sure max,cpo,1] Fo,s(p, Pv, @, W) and max,cpo,1) Eo(p, Q, W) — E(p, Pv)
are always positive, it suffices that their derivatives at p = 0 be positive.

To compare the transmissible conditions of the iid and icd ensembles,
firstly we focus on the partial derivative of the Ey(p, Q,, W) — E4(p, Pr) at

p = 0, which yields

aEO(pa va W) aEs(p7 ) o aEO(pa Qm W)
ap ’pz(] ap ‘p:() o ap ’sz H(PU> (267)

_IQ()WX Y ZW y|$

an( )’ — H(Py), (2.68)

p=0

where in (2.67), we used the fact that the derivative of F(p, Py) with respect
to p at p = 0 is the source entropy and in (2.68), we differentiated from
Eo(p,Q,, W) at p=0. Note that @)y in (2.68) denotes @), at p =0, and

ylr) (2.69)

Ioow(X;Y) ZQO W (y|x)log ZQO 3(5 W)

0Qp ()
dp

Evaluating the derivative of @), given in (2.61) with respect to p, yields

an(x)‘ _
dp 1p=0
ZQ lu) ( w) log (Py(w)) + Py(u ZPU )log (Py (i ))) (2.70)

— > Q(z|u) Py (u) log (Py(u) Py) > Q(x|u)Pr(u (2.71)

u u

To determine the quantity of (2.68), it suffices to compute

p=0"
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where (2.71) follows from the definition of the source entropy. Putting back

LQH’;@) :0 derived in (2.71) into >, , W (y|z) 6Q” )’ presented in (2.68),
we obtain
3@
> Wl )| = = 3 W) Qelu) Po(u) o (P (w)

uU,x,Y

H(Py) Z W (y|2)Q(x|u)Py(u) = 0, (2.72)

u,x,Y

where in (2.72) we used the fact that 3, , Pr(u)Q(z|u)W (y|z) = 1 and
also the definition of the source entropy.

By replacing zero instead of Y-, , W (y|z) = BQ” z)

Y appeared in (2.68), we
obtain the reliable transmission condltlon as

aEWO(pu Qp7 W)’ N aEs(ﬁPU)‘
ap p=0 p =0

= [QOW(X; Y) - H(PU) >0, (273>

where as mentioned ()y denotes (), at p = 0.

Next we focus on the transmissible condition of the source Py by using icd
exponent. Again, by evaluating the partial derivative of the E (p, Py, Q, W)
at p = 0, we obtain

aEO,S(pv PU7 Qa W) ‘
dp p=0

= Igw (X;Y) — H(Py) > 0, (2.74)

where
Wil
QW (4]7)

Iow (X;Y) = > Py(uw)Q(z|u)W (y|z) logZPU( (2.75)

U,y L
Considering (2.73) and (2.74) and noting to the fact that maxg, Ig,w(X;Y) =
maxg Ioy (X;Y), we conclude that to have a reliable transmission over chan-
nel W, for both iid and icd ensembles, the source entropy should be lower
than channel capacity.

2.3.2 Conditional Constant-Composition Ensemble and
Constant-Composition Ensemble

In the section, by comparing (2.17) and (2.59) we show that in terms of
error exponent, there is no benefit to use conditional constant-composition
ensemble instead of generalized constant-composition ensemble.
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Proposition 2.9. Consider a source with probability distribution Py, for a
gwen conditional distribution Q(z|u), there exists a Q,(x) given in (2.61),
such that

ES?;(pa PUQa W) S Egc(pa va W) - Es(pa PU)7 (276)

where E§5(-), Eg°(-) and E(p, Py) are given in (2.18), (2.56) and (1.9),
respectively.

Proof. See Section 2.4.9. O

Considering the obtained results, we may conclude that in terms of er-
ror exponent, using ensembles generated with conditional distribution has
no advantage over those of generated with marginal distribution. However,
combining the results presented in Section 2.2, we have the following relation
between achievable exponents

Eeec > pmd > pid, (2.77)

2.4 Proofs

2.4.1 Proof of Proposition 2.1

We first bound €”, the average error probability over the ensemble, for a
given block length n. Applying the random coding union bound [23] for joint
source channel coding, we have

i =) @

where &’ has the same distribution as « but is independent of y. Recalling
that 7(w) denotes the type of source sequence u, and codewords are generated
according to a conditional distribution which depends on the 7(w), we bound
€' as

G S Z P;}XY(UHway)min{la Z P

u,z,y u'#u

" < Z PBXY(“’kuy) min{L Z Q;L(u’)(x/|u/)} (279)
u,z,y u'#u
) PR YW (yl=')
e 2!

Next, we group the outer and inner summations in (2.79) based on the
empirical distributions of (u,x,y) and (u’, &), respectively, and then sum
over all possible empirical distributions, respectively denoted by Fyxy and
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PUXy. We note that the summation over PUXY runs over the set of all
possible empirical distributions, P, vy, while the summation over Pyxy is
restricted to the set K", defined as

K"(Pyxy) 2 {pUXY € Plxaxy

Py = Py, Ep[ANU, X,Y)] > Eg[AU, X, Y)]}, (2.80)

where AU, X,Y) = log (PU(U)W(Y|X)>. As a result, we can write the
summations in equation (2.79) respectively as

Z PITJL'XY<u7w7y> = Z Z P{}XY(’uﬂway)? (281>

wrY Puxy€Ply xxy (w2, y)eT™(Puxy)

and

> Q:(u/)(wlml) = ) ) @Z(u,)(w’|u’),
F’#“ , Pyxy€eK™(Pyxy) (v ,@ €Ty (Puxy)

PRHW (wle!)

PI@W )~

x':

(2.82)
where 7,'(+) is given by (1.40). )
Since the conditional distribution Q7 (2'|u’) has the same value for all
(u,2) € E”(PUXY), we have

Z QZ(uq(w’!u’) = ’E"(pUXY)’QZ(u/)@IWI)- (2.83)

(u/,w/)eﬁ (Pny)

Considering (1.40) and the fact that Py = Py in K"(Pyxy) in (2.80), we
have the following upper bound
‘Tn(pUXY)‘ enH(PUXy)+o(n)

‘En(pUXY)’— ’T”(py)’ < B (2.84)

where o(n) is a sequence satisfying lim,, O(:) = 0. In addition, using [20,

Eq. (1)] for conditional distributions, for all (u/,x’) € 7;”(]5UXY), we have
the following identity on the conditional probability

Qo (@) = " 2wy Py () 1og @, ) (2.85)

where in (2.85), we used the fact that the type of u is Py. Combining inequal-
ity (2.84) and identity (2.85) into (2.83), we obtain the following inequality

S Q) < PRI PR ) g

(v 2)eTy (Puxy)
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Further, upper bounding the right hand side of equation (2.86) by the max-
imum over the empirical probability distributions Pyxy € K"(Pyxy), we
have

Z Q:rl(u’) (w,|ul) <
(u' &) €T (Puxy)

i o (PP IPe@p, P -1(Po) ) o) (2.87)

Pyxy €K™ (Pyxy)
Moreover, in view of [20, Eq. (12)], the second summation of the right
hand side of (2.81) can be expressed as

-n (D(pUXYHPUQpU W)

> FPixy(uwmy)<e (2.88)

(uvxvy)ETn(PUXY)
Similarly to (2.87), we may upper bound the right hand side of (2.88) by the
maximum over the empirical distributions Pyxy € P, xxy; i- €.

e—n (D(pUXYHPUQpUW) ' (

> Pixy(u, @, y) < max 2.89)

. p n
(uz.y) €T (Puxy) Uxy €Plxxxy

Putting back the results obtained in equations (2.89) and (2.87) into the
respective inner and outer summations (2.81) and (2.82), we obtain that the
average error probability (2.79) can be bounded as

—n D(ﬁUXYHPUQ” W) .
" < > ~ max e ( ) min {1,
~ n
Puxy €Pf, nny | UXY Plixaexy
n(DPuxv1Pu@p, Pr)~H(Py) ) +oln
) _ max_ e ( ForrlFoQey r)mHEw) ()}v (2.90)
. A Pyxyekn (P
PUXYG’CTL(PUXY) UXY ( UXY)

where using the fact that the cardinalities of the sets K"(Pyxy) and P, XY
behave polynomially with the codeword length n, and satisfy

‘Kn(pUXY)) < ‘,PZZXXX)} < eD(ﬂ)’ (2.91)
we bound €" as
€' < max e_n(D(PUXYHPUQPUW)JFO(n) min {1,
Puxy€Pllyxxy
. e_n(D@UXYﬁU@pUﬁy>—H<PU>)+o<n>}, (2.92)
Pyxyekn(Pyxy)
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Using the identity min{1, e*} = el9" we may write equation (2.92) as

& < eTnE o) (2.93)
where
E"=  min D(pUXYHPUQPUW)
PUXYGPZZ{LXXXJJ
. . _ o+
+|  min D(PUXY||PUQPUPY)—H(PU)} . (2.94)
PyxyeK™(Puxy)

Using Lemma A.1, we find that E™ > E7', where

. _ . A .+
Eg: R min D(Pny||PUQpUW>+ D(Pny||PUQ15UPy)—H(PU)
Puxy €Ply xxy
(2.95)
As a result, the average error probability is bounded as
& < enBotoln), (2.96)

Taking logarithm and liminf from both sides of the equation (2.96) and
noting that the inequality

lim inf max{a,, b,} > max { lim inf a,, lim inf bn}, (2.97)

implies that
liminf[a,]" > {lim inf anr, (2.98)
n—oo n—oo

we obtain

1 . _
lim inf —— log(€™) > lim inf min D(P, PyQas W
e g(€") = S S (Poxy||[Po@p, W)

R . “ R +
+liminf D(Poxy | PuQp, Pr) = H(Pu)| . (2:99)

We further note that the set of all empirical distributions is dense in the
set of all possible probability distributions, and that the functions involved in
(2.99) are uniformly continuous over their arguments. Hence, we may replace
the optimization over empirical distributions by an optimization over the set
of all possible distributions in (2.99) concluding Proposition 2.1.
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2.4.2 Proof of Proposition 2.2

Since the proof of Proposition 2.2 is very similar to the proof of Lemma A.3,
we omit some details to avoid repetition.

Using the identity that max{0,a} = max,co 1 pa and in view of Fan’s
minimax theorem [22], stating that min, sup, f(a, b) = sup, min, f(a,b) pro-
vided that the minimum is over a compact set, f(+,b) is convex in a for all
b, and f(a,-) is concave in b for all a, equation (2.7) can be written as

EiCd = Imax min D(pnyHPUQW)

PE0,L] Pyxy €Puxxxy

+pD(Pyxy||PuQPy) — pH(Py). (2.100)

SettAing PZAY = lf’UXy and Py = FA’UQA in Lemma A4, we will find that
D(PnyHPUQPy) = IIliHVY D(PnyHPUQVy). By applying this fact to
(2.100), we obtain

E'°d = max min min D(Pyxy||PyQW)

PElOL] W Pyxy €Puxxxy

+pD(Pyxy||PyQVy) — pH(Py), (2.101)

where Vi is an arbitrary probability assignment over the channel output
alphabet ).

Now, to solve the optimization problem in (2.101), we apply Lagrange
duality theory. Firstly we consider the minimization over Pyyy in (2.101).
Since the objective function in (2.101) is convex with respect to Pyxy and
the constraint 3°, . Pyxy = 1 is affine, the strong duality conditions are
satisfied and we have

~ min D(Pyxy||PyQW) 4+ pD(Pyxy||PyQVy) — pH(Py)  (2.102)
Pyxy€Pyuxxxy

= max min LY Pyxy,6), (2.103)

Puxy€Puxxxy

5

where minp Li<d(Pyxy,0) is the Lagrange dual function of (2.102) and is
given by

ﬁiCd(pny, ) = D(pUXYHPUQW) + PD(pUXYHPUQVY) - PH(pU)
+9(1 - Z pUXY(u7$7y)>v (2104)

u7‘/1:7y

where 6 is the Lagrange multiplier associated with the well-known constraint
>uzy Puxy(u,z,y) = 1. We proceed by analyzing the KKT conditions for
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Pyyy. Firstly, we simplify (2.104) by using the definitions of the relative en-
tropy and entropy and considering the fact that >>; a;logb; +c¢3; a;logb; =
Y; a;log bj*¢, which leads to

pUXY(Ua z, ?J)1+p

EiCd(pUXng) = Z ﬁny(U,fE;y) IOg

iy Py (u)Q(a|u) W (y|z)Vy (y)?
+ 9(1 -y PUXY(u,a;,y)>. (2.105)

_ Next, we apply the KKT conditions. Since strong duality holds, optimal
(Puxy, ) must satisfy KKT conditions, i. e. for optimal (Pyxy,#), we have
W = 0 which yields

Puxy (u, z,y)*°
Py (w)Q(u) =W (y|z)Vy (y)?

log +(14p)—6=0. (2.106)

Solving (2.106) with respect to PUXy(u, x,y), the optimal value of PUXy(U, x,y)
is derived as

0—(+p)

Puxy(u,z,y) = ¢ 17 Py(u) ™ Qa|u)W (yla) = Ve (y) 5. (2.107)

To apply the constraint }°,, , , Pyxy (u,z,y) = 1, we sum both sides of (2.107)
over (u,x,y) which gives us the optimal value of 6. Putting back the optimal
0 in (2.107), the optimal Pyxy (u,z,y) is derived as

(2.108)

By inserting the optimal value of Pyyy obtained in (2.108) into (2.105), we
obtain

max  min LY Pyxy,0) =
0 Puxy€Puxxxy

(0t plog (X Pulu) QW bla) V)™ ). (2109)

u,x,y

Next, in view of (2.101), (2.102) and (2.109), we have
1

Eed = max —(1+p)log (max > Py(u

p€l0,1 Y o uzy

Qatw)W (yl) V4 ()77 ),
(2.110)
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where in (2.110), by using the fact that logarithm is an increasing function,
we took the minimization inside the logarithm.

Now, in order to find the optimal value of V4, we use Lemma A.2. By
defining f(y) = X, PU(u)ﬁpQ(x|u)W(y|x)ﬁlp, in view of Lemma A.2, the
optimal value of V4 which maximizes the objective function inside the loga-
rithm in (2.110) is given by

(Sue P QW () )

W (y) = — L
5 ( Sae Po@) H Q0w (712)77

(2.111)

By inserting the obtained Vi (y) derived in (2.111) into (2.110) and (2.108),
we obtain

P(;XY(U’:LV:U) -

Po () Q)W (yl) 7 (3 Po@) o Q(ala) W (sla) T )

2 (%PU(U)EPQ(‘T’“)W(MJI @)”p o (212)
and
B = max —log (3 (S Rl Qi W o) ), 2113

which concludes the proof.

2.4.3 Proof of Proposition 2.4

Again, we apply the Lagrange duality theory. For Prxy € S¢. we have
I(U,X;Y) = D(Pyxy||PyQPy). Considering this fact and setting Z =
UX and P; = PyQ in Lemma A.4, we may conclude that I(UX;Y) =
D(Pyxy||PyQPy) = miny, D(Pyxy||PyQVy). Asaresult, in view of Lemma
A4, (2.14) can be expressed as

+
B = R min D(PUX}/HPUQW) + | min D(Pny||PUQVy) — H(PU) s
PUXYESCCC Vy
(2.114)

where, V4 is an arbitrary probability assignment over the channel output
alphabet Y. In view of the identity that max{0,a} = max,cj 1] pa and Fan’s
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minimax theorem [22], E°¢ given in (2.114) can be written as

E°° = max min min  D(Pyxy||PyQW)

p€El01] Vv Py eScce

+pD(Pyxy||PyQVy) — pH(Py).  (2.115)

To derive an alternative expression for E°¢ given in (2.115), firstly we
focus on the inner minimization over Pyxy € S in (2.115). In fact, we
consider the following optimization problem as the primal problem, where

min  D(Pyxy||PuQW) + pD(Pyxy||PyQVy) — pH(Py).  (2.116)

pUXY ESCCC

Like before, to determine the optimal value of pUXy which minimizes
(2.116), we apply Lagrange duality theory. We consider the presented con-
straints in (2.15) which leads 3, , , Puxy (u, z,y) = 1 and the new constraint
Puxy (u,z,y) = pU(u)Q(:v|u)]5y|XU(y]x,u), i.e forallz € X and u € U, we
have If’X|U(x|u) = Q(x|u) or

~ ZpUXY<u>$ay)
— PN P, x\u,x
Qalu) = Py (alu) = LX)

)
Py (u) S Poxy(u,z,5)
z,y

(2.117)

where in (2.117), we used the definition of marginal distribution. By multi-
plying both sides of (2.117) by 3°, , Prxy (u,x,¥), an equivalent constrain of
the (2.15) is given by

Z]SUXy(u,a:,y) :@([ﬂu)Zpny(u,f,@). (2118)

Now, in view of the constraint presented in (2.118) and the obvious fact
that >, ., PUXy(u,x,y) = 1, we define £°¢ as the Lagrangian associated
with the optimization problem given in (2.116). Since the objective function
is a convex function over a convex set and the two constraints (2.118) and
> uzy ]Sny(’LL,JZ',y) = 1 are affine, the strong duality conditions hold and
therefore

min D(pnyHPUQW)—l—pD(pnyHﬁUQVy)—pH(pU) (2119)

pUXY ESCCC

= max min £CCC(]5UXy, 9,05), (2.120)
6(')79 pUXY
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where

LC(Pyxy, 0, 8) = D(Puxy||PuQW) + pD(Pyxy || PrQVy) — pH(Py)
+25(U; ) (Q($|U) ZPUXY(Ua T,y) — ZPUXY(UJ, y))

Y,z

+0 (1 — ZPUXY(u,x,y)>, (2.121)

ury

and 6, 3 associate respectively with the constraints 3, , . Prxy (u,z,y) = 1
and (2.118). Using the definition of the relative entropy, entropy and the fact
that >°; a;logb; +c3 2 a;logb; =37, a;log bjl*c, the Lagrangian is simplified
as

A A pUXY(Ua xz, y)1+p
L(Puxy,8,8) =) FPuxy(u,z,y)log —
1;31 Py (u)Q(z|u) e W (y|x) Vy (y)°

+ Z B(u,x) (Q(:v|u) Z pny(U, Ty) — Z pUXy(u, x, y)>

y)a_:

+0 (1 — ZPUXY(u,g;,y)> . (2.122)

uxry

Since the strong duality holds, the Lagrange multipliers satisfies the KKT

AL (Pyxy,0,8)

T = 0, we obtain

conditions. By setting

?UXY(U%Z/)H"
Py (u)Q(x|u) oW (y|z)Vy (y)r

—i—Zﬂ u, 7)Q(Z|u) — Blu,r) = 0. (2.123)

log +(1+4+p) —0

Solving (2. 123) with respect to PUXy(u x,y) and applying the constraint
that 32, ., Pyxy (u,z,y) = 1, the optimal Ppyy (u, z,y) is derived as

Pixy(u,z,y) =
Blua)=)  Bua)Q(x|u)

e Py (u) ™7 Q(au) W (y|) 7 Vi (y) 757
Blua)=Y_ Bu,2)Q(x]u) L 1 B (2.124)
de 17 Py (u) ™ Q(zu)W (y|z) T+ Vy (y) T+
U,T,y

Next, we apply the second constraint given in (2.118). In view of (2.118),
we sum PUXy(u x,y) given in (2.124) over y to obtain PUX(u x). We also
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sum PUXY(U x,y) over (z,y) to obtain Py(u). By inserting the fact that
Q(z|u) = Pux(wz) , we find that the optimal 5 satisfies

Py (u)

Zﬁu 7)Q(Z|u) =

>, W (yle) ™ Vy (y)
B(U@)fzi B(u,)Q(&|u) _ _ N _\ 2
e € = QF|w)W (5|7) ™0 Var () T

—(14 p)log (2.125)

Inserting the optimum values of (Pyxy, ) derived in (2.124) and (2.125),
respectively into (2.122), we obtain

LCCC (/6) —
Bluw) =) Buz)QE|u) 1 1 p
Ao (X A PRl bl V()T )

U, T,y
(2.126)

where L£(8) = maxpming £°CC(]5U xv,0,0). To simplify £¢(/3), we de-
fine B(u,z) £ B(u,r) — X5 B(u, 2)Q(Z|u). Multiplying both sides of 5(u, )
by Q(z|u) and summing over z, implies that 3, 5(u, 2)Q(z|u) = 0. Replac-
ing B(u, ) — X5 B(u, 2)Q(z|u) appeared in (2.126) with the B(u,z), £(3)
in (2.126) can be expressed as

B(u,z)

£ = 1“”%(Zew”% Qalu) W (yl) H Ve ()75 ),
(2.127)

subject to the constraint Y, B(u,z)Q(z|u) = 0. Considering (2.126) and
(2.127), we conclude that maxg(u,q) L°(8) = MaX3(4,2):5> B(ue)@(elu)=0 L (B)-
Considering this fact, in view of (2.127) and (2.120), we note that the left
hand of (2.120) is equal with the MAX G (4,0):5 () Q) =0 L°(B), 1. e.

~min  D(Pyxy||PyQW) + pD(Puxy||PyQVy) — pH(Py) =
PUXYGSCCC

B(u.)

) max —(1+p) log( e 10 Py(u) ™ Q(z|u)
ﬁ(u,m)zxﬁ(u,m)Q(mW) 0 uzx:y

xW(y|x)1ipvy(y)1ip>. (2.128)
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Now, in view of (2.115) and (2.128), we conclude that

E“ = max min max
pe(0,1] Vy ~ ﬁ(u,m)
> Bluz)Q(z]u)=0
Bu,2) -
—(1+4 p)log ( > et Py(u 1+PQ(3:|u)W(y\x)H1PVy(y)l+pﬂ>. (2.129)

u,z,Y

. . e . .
Again, by using Fan’s minimax theorem, we can swap miny, and maxg as

E°° = max max
pe[0,1] B(u, x)

Z B(u,2)Q(z|u)=0
(14 p)log (max Y e Py(u )1in(xyu)W<yyx)1ipvy(y)1+"p>, (2.130)

Y ouzxy

where in (2.130) by using the fact that the logarithm is an increasing function,

we took the minimization inside the logarithm. Considering the maximiza-
B(u,z) _

tion over Vy in (2.130), we define e(y) = 32, , e 1+» PU(u)ﬁQ(:ﬂu)W(y]az)ﬁ,

which leads to

H‘l/?/xz e(y)Vy(y)ﬁ, (2.131)

where the objective function in (2.131) is concave function of V4. Using
Lemma A.2; the optimal value of Vi (y) of the objective function in (2.130)
is derived as

B(u,z) 1= 1\ Itp
(zwe 55 Py ™ QU)W (o) ™)

N\
Sy ( Sae e 5 @) QW (712) 7
Putting back Vi (y) obtained in (2.132) into (2.130), we obtain

E° = max
p€E[0,1]

Bu,z) - 1\t
max  —log (2 (XM P QlW ) ),
B(ux) uU,T

. ) Q(alu)=0 !

(2.133)
where by defining
E((;?sc(p’ PUv Q?W) =

Sue o -
(.0 s (Z (Ze e PU(“)“’Q($|U)W(y|x)1ip) )7
B(u,z):

>, Blu,a)Q(xlu)=0 Y
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Proposition 2.4 is proved.

2.4.4 Proof of Lemma 2.1

We recall that P;; denotes the set of all empirical distributions on a vector
in Y™ and given Py € Pj, the type class T"(Py) is the set of all sequences in
U" with type Py. Thus, U™ can be partitioned by the source type messages,
i.e. U =Up,epn T"(Py).

Moreover, in view of [21], we define D} £ {u : v, < Ph(u) < v}
for ¢ € {1,...,L} where 7,41 = 0 and 73 = 1. To make sure D} # (), we
assume 7, > min Py (u) and o < max Py(u). Given £ € {1, ..., L}, from the
definition of D}, it can be verified that D}'s are disjoint subsets (referred to
as classes) such that U™ = U, Dy. Thus, U™ can be also partitioned by
Dy's. We refer ¢ as the indexed class.

Noting to the fact that all w € 7™(Py) have the same probability, Djs
are unions of type classes. We shall prove that T"(pU) C Dy provided that
log Yet1 < 3, Pu(u)log Py(u) <log~,, which means that the intersection of
T"(Py) and D} can be expressed as

n wip T (Py) log Yer1 < X Pu(u)log Py(u) < log s,
Dy ﬂT (Fv) = {@ otherwise.
(2.135)

To show (2.135), let w € T™(Py), it means that the string w contains ex-
actly nﬁU(u) occurrences of letter u or the probability of sequence u can be
written as P(u) = [Tuey Po(u)"7®™ . In addition, since U™ is partitioned
by Dys, there exists a unique ¢ such that w € D} or v}, < Pi(u) <
v¢- By expressing the probability of w in terms of its type, we obtain
Vi1 < ey Pou)™” v(w) < 47 Using the properties that b¢ = 16 and
log(aias) = log(ai) + log(as), we conclude enlosre+1 < ¢n 2., Pulw)log Pu(w)
™18 which is equivalent to the expression logvey1 < 3, Py (u) log Py (u)
logv, in (2.135). In fact, we showed that if w € T"(Py) = u € Dy,
i.e. T"(]BU) C Dy, provided that logye1 < 3, 15U(u) log Py(u) < log~,.

As a result, in view of (2.135), D} can be rewritten as

Dr = {u: fy < Ph(w) < 7} (2.136)

= {T"(Py) : logves1 < Y Py(u)log Py(u) < log,}. (2.137)

In other words, let Py € P}, there exists a unique £ € {1,..., L} such that
logver1 < X, Pu(u)log Py(u) < log, In addition, since the set of all em-

pirical distributions is dense in the set of all possible probability distributions
Py, we conclude Lemma 2.1.
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2.4.5 Proof of Proposition 2.6

In order to prove Proposition 2.6, we simplify the achievable exponent in
(2.19) as

E™ = min max D(Py||Py) — pH(Py)
PUE'PL{ p€[0,1]

+  min  D(Pxy||Qp, W) + pD(Pxy||Qp, Py), (2.138)

Pxy€Pxxy

where in (2.138) we used the identity that max{0,a} = max,cjo1) pa and
Fan’s minimax theorem stating that min, sup, f(a,b) = sup, min, f(a,b) pro-
vided that the minimum is over a compact set, f(-,b) is convex in a for all
b, and f(a,-) is concave in b for all a.

Next, to determine the dual expression for the achievable exponent, we
apply Lagrange duality theory to the two minimizations over the Py and Pyy
in (2.138). Firstly, we fix Py € Py and we consider the inner minimization
over pr € Pxxy, i. e. we focus on the following optimization problem

 min D(]3Xy||QpUW)+pD(f’Xy||QPUf’y). (2.139)

Pxy€Pxxy

Lemma A.3 shows that (2.139) can be expressed as

min  D(Pxy||Qp, W) + pD(Pxy[|@p, Pr) = Bolp, Qp,, W), (2.140)

Pxy€Pxxy

where Ey(+) is given by (1.14). Now, combining (2.138) and (2.140), we face
the following optimization problem

E™ = min max D(Py||Py) — pH(Py) + Eo(p, Qp,. W). (2.141)

Pyepy pEN0,1]

To determine the optimal value of ﬁU, firstly we consider the input dis-
tribution @p, and its dependency on Fy. As mentioned, in view of Lemma

2.1, we can split the minimization over Py into minimization over disjoint
classes given by (2.21). For the Py belonging to the class ¢, we let QRp, = Qe

Now, in view of Lemma 2.1, by splitting the minimization over P in (2.141)
into disjoint classes, we obtain

F™ = min max min D(Py||Py) — pH(P,
2e{1,...,L} p€l0,1] PrePy: (Pul|lPy) — pH(Py)
log ve+1 <Zu Py (u) log Py (u)<log e

+E0(P, Q@aW)a (2142)
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where in (2.142), we changed () p,, into Q¢, we used the fact that min,es f(z) =
min; minges; f(r), where the set S is partitioned by the S;s, and also in view
of Sion’s minimax theorem [21], we swap the maximization over p with the
minimization over ISU.

At this point, we consider the inner minimization over Py in (2.142) to
apply Lagrange duality theory. Since D(Py||Py) — pH(Py) is the only quan-
tity in (2.142) that depends on the PU, we consider the following optimization
problem as the primal problem

min D(By||Py) — pH (By). (2.143)
{DUEPM:
logve41<y, Pu(u)log Py(u)<log~ye

where the objective function D(Py||Py) — pH(Py) and the two inequality
constrains

log Ye41 — ZPU )log Py(u) <0 (2.144)
3" Py(u)log Py(u) —logye < 0, (2.145)

are convex with respect to Py and the equality constraints of ), ]5U(u) =1
is affine. Thus, the primal problem in (2.143) satisfies the strong duality
conditions which leads to
‘min D(Py||Py) — pH(Py) =
{DUGPM:
logve+1<) ,, Pu(u)log Py (u)<log~

max min E(PU, 0, Nexv1, Ne), (2.146)

Ae41>0,00>0 py,
0

where min 5(}3(], 0, Aey1, \e) is the Lagrange dual function to the primary

problem (2.143) and £(Py, 0, A\11, \¢) is the Lagrangian associated with the
optimization problem in (2.143) and is given by

L(Py,0, M1, \o) = D(Py||Py) — pH(Py) + 9<1 -% PU(u)>
+)\g+1<logw“ = ZPU ) log Py(u )) + )\Z(ZPU )log Py(u) — lOg’}/g).

(2.147)

Using the definition of relative entropy and entropy, the Lagrangian is sim-
plified as

. Py (u)t+e A
£(PU,¢9, )‘Z—Hu)‘l ZPU lOgP ( )1+)\£+1_)\£ +8(1—§PU(U))

+ Aeg1logverr — Aelog . (2.148)
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Since the strong duality holds, we proceed to simplify (2.148) using the KKT
conditions. For the optimum values of (P, 0, A\p11, A¢), the KKT conditions

implies that OL(Pxy B Me) 0, which yields

Py

ISU(U)HP
PU(u)1+/\€+l_>\€

log +(1+p) —6=0. (2.149)

By solving (2.149) with respect to Py, we find that

~ 0—(1+p) A=

Py(u)=e 1 Py(u)™ ™o . (2.150)

Summing both sides of (2.150) over u and considering the fact that 3, Py (u) =
1, we obtain

0—(1+p) 1241 =2

l=e 10 > Pylu)” v . (2.151)

0—(14p)
Inserting the value of e 17+ obtained in (2.151) into (2.150), the optimal
value of Py(u) is derived as

. Py ()5

PU(U) = [ESVIRES VI

- > Py(a) 5

(2.152)

Putting back the optimum values of (Py,#) derived in (2.152) and (2.151)
into (2.148), the Lagrangian can be written as

ItAep1—2e

L1, 2e) = =(1+ p)log (X o)™ 55 ) + Aegalog est = Arlog
(2.153)

where L£(Ag1, Ar) = maxgming E(py, 0, o1, Ae)-

Now, in view of (2.146) and (2.153), we may determine the maximum
of L(Aey1,A¢) with respect to Apq > 0 and A, > 0. Let A\;,; and A} be
the quantities which maximize the Lagrangian in (2.153). The KKT con-
ditions imply that for the cases where the constraints presented in (2.144)
and (2.145) are inactive, A\j,; = A; = 0. While, for the case where the in-

DL < (), the maximum of the
N7, ’

ILON N \
#{; = 0 (same for the A\}).

At this point, based on the activation or inactivation of (2.144) and (2.145)
we consider four cases.

equality constraint in (2.144) is active, since

Lagrangian occurs at the A7 ; > 0, where
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Case I: Assume (2.144), (2.145) are active and inactive, respectively.

Considering the facts that (2.145) is inactive and L is a convex function with
OL(N;, ;.0

respect to As41, we conclude that A\; = 0 and — By setting

OL(N;,,,0)

8)\’5+1

axy
= 0, we obtain

1+)\Z+1

> Pu(u) T log Py (u)

*
14»/\2+1

Zu PU(U’) e

where (2.154) and its properties are given in Lemma A.5.
In view of Lemma A.5, we recall that (2.154) is the same function as

(A.33), if %41 5 defined as

1+p

= log Ye+1, (2.154)

1"’)\}(_’_1 o 1 * _ p_pjl;l—kl
1 1 * = App1 = 17*7
+p +pw+1 +pw+1

(2.155)

where noting to (2.154), p, = satisfies (A.33).

Now, we come back to the problem of determining the maximum of
the L£(Ar41,A¢) given in (2.153), when (2.144) and (2.145) are active and
inactive, respectively. Since (2.145) is inactive, A; = 0 and due to the
fact that (2.144) is active, Aj,; > 0 in (2.154) maximizes the Lagrangian
in (2.153). Moreover, in view of (2.155), by applying A;,; > 0 we con-

clude that —— > =. By inserting A} = 0 in (2.153), substituting
Pyes1 TP

log y¢41 obtained in (2.154) into (2.153), and noting this fact that %pp’%) =

1
log(>>., PU(u)ﬁ) — ﬁp 2o I;:iu;;;ljiplj (u), the maximum of the Lagrangian

for the first case can be expressed as

max E()\€+1a )\g) ==

Ae+120,A0>0

1 - 1
Ltp  14p5,.,

—Es(p,.,» Pu) = (p = 05, ) ES(05,,,): (2.156)

Case II: In this case, we assume (2.144) is inactive which leads that

M4 = 0 and (2.145) is active which leads that Mgi’;z) = 0. Similarly, by
setting ng\’f D _ 0, we obtain
(4
5 Pu(w) 7 log Py(u)
w Po(u) ™ lo u
v oo U~ log e, (2.157)

Zu PU(U) e
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1-);

where again we put as

1+p

1—-X) 1 )\*:pf;é—p

Lt e, T T,

: (2.158)

Due to the activation of (2.145), A} > 0 where in view of (2.158) we conclude
that —— > —L—. By inserting \j,; = 0 and logv, obtained in (2.157)

14+p 1+pi;l
into (2.153), and noting to the relation of %pf”), the maximum of the

Lagrangian for the second case is derived as

1 1
- * — i * ! N
)\Z+g%§\520 L(Aer1, M) = —Es(p3,, Pu) = (p = 03, E(03,), I+p ” L+pz,
(2.159)

Case III: In this case both (2.144) and (2.145) are inactive, A\j,, =

Af = 0. In other words, since 8?\225 < 0 and g% < 0, the maximum of
241 4
the Lagrangian is derived at the A\pyy < 0 and A\, < 0. By applying the

non-positive condition to (2.155) and (2.158), we conclude # < ﬁp <
Ye+1
1

e Finally, by inserting A\j,; = A; = 0 in (2.153), the maximum of the

Lagrangian is derived as

1 1 1
L(Aos1,Ne) = —Es(p, Py), < < . (2.160
>\z+1H21%7§220 (et Ae) (o, Fv) 1+ Py 14+p~ 1+ P, ( )

Case IV: Finally, for the case where both (2.144) and (2.145) are active,
the maximum of the Lagrangian is derived at the A\;y; > 0 and A\, > 0.

Considering this fact, in view of (2.155) and (2.158), we have ﬁlp < 1+p£
Vo1

and it is contradiction with

1 1 . 1 1
and — > — which means =~
I+p 1407, 405,44 1407,

the inequality presented in (A.34). As a result, this case does not occur.
Combining (2.156), (2.159) and (2.160), the maximum value of the La-

grangian is derived as

>

max »C()\ZJrl; )\g) ==

Ae+120,A0>0

_Es(pfyg+17PU) - (p_ p’YZJrl)E;(p"{eJrl)’ 1 +p < 1 +,0* )
Ye+1
1

1<1<
1+ﬂ%¢_1§p_1+ﬁ/

1
_Es(pf‘ygaPU)_(p_pfye)E;(p:Z)’ 1_|_p > 1—|—p* ’
Ye

—Ey(p, Pv), (2.161)
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where p5 and pZ, satisfies (A.33). Comparing (2.161) with (2.24), we find
that

)\z+1r121%?){\z20£()\£+17 Xe) = —Es(p, Py, Yo, 7e). (2.162)
Now, in view of the (2.162), (2.143) and (2.147), the optimal value of the
objective function in (2.143) is given by

Amin D(pUHPU)_pH(pU) = —Es,f(P,PU>’Y£+17W)~
PyePy:
log 1<y, Pu(u)log Py(u)<log~ye

(2.163)

Inserting (2.163) into (2.142), by optimizing over thresholds, Proposition
2.6 is proved.

2.4.6 Proof of Proposition 2.7

In order to prove Proposition 2.7, firstly we will show that the left hand side
of (2.37) is smaller than the right hand side of it. Then, we will prove that
the right hand side of (2.37) is smaller than the left hand side of it.

Consider the scheme where the source-message set is partitioned into
three classes, i. e. 0 = v < 73 < 75 < 11 = 1 are four positive ordered
numbers such that 3 > min Py(u) and v < max Py(u). For given in-
put distribution @y, where ¢ = 1,2,3, from (2.23), the message-dependent
random-coding exponent is derived as

E™Y( Py, {Q1,Qq,Q3}, W) =

max min  max Fy(p, Q;, W) — Es(p, Py, ,Ye)s 2.164
e cio ey oy o0 Qi W) = Baalp, ot ), (2164)

where since 3 < 7,, the maximization over v, in (2.164), is done over |3, 1].
Additionally, from (2.24) E; ((p, Py, Yes1,ve) for £ =1,2,3 is

Es(p 27PU>+E;(p 2)(:0_p2> = < s
Es,l(pa PU7 V2, 1) = {Es(p’YPU) ! ! 1+f <1+Piy2 (2165)

1+p72 — 1+p’

and

Bylprar Po) + Bilo) (b = ) @ < 1{%,
Eqa(p, Py, s, 72) = § Eslp, Po) T S < 1 (2.166)
Ey(pros Pu) + Ep) (P = Pr) 115 2 15
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and

1 1
Py B a6
E(prss Pu) + E5(pys)(p = prs) T > I+pyg

ES,S(pa PU,O,"}/?,) = {

In (2.165), (2.166) and (2.167), the parameter p,, is the solution of the im-
plicit equation given by (2.25).

For given 7, and 73, Figure 2.4 shows the functions Ej¢(p, Py, Yet1,7e)
for ¢ = 1,2,3 and Es;(p, Py,72), Esi(p, Pu,vs) for i = 1,2. As shown in
Figure 2.4, by comparing (2.165) with (2.33), and also by comparing (2.167)
with (2.34), we immediately conclude that for given 7, and 73, we have

Es1(p; Pu,v2, 1) = Es1(p, Puyy2), (2.168)
E373(pa PU,O,'}/?,) = Es,2(p7 PU7,73>- (2169)

Similarly, in view of Figure 2.4, the function FEss(p, Py, vs,72) given by
(2.167), can be expressed as

Es2(p, Pu,vs,72) = min { £, 2(p, Pu,v2), Es1(ps Puyvys)} - (2.170)

To prove (2.170), we note that for given v3 < 79, from (2.25), we have

1;,73 < 14;72’ From (2.33) and (2.34), min {E2(p, Pu,72), Es1(p, Pu,v3)}

can be written as
min {ES,Z(p7 PU7 72)7 Es,l(pa PUa ’)/3)} =

E(prs: Pu) + Elpra)(p = Pr) 155 < o

1 1 1
Es(p, PU) m > m Z T+pog (2171)

E(pro, Pr) + Elp2a)(p = pr) 155 2 15

where in (2.171), we used the fact that ; +;W < < +1pv . Comparing right hand
3 2

side of (2.171) with (2.166), we conclude (2.170).

Now, considering E™( Py, {Q1, Q2, Q3}, W) in (2.164), for £ =1,2,3, we
replace Es¢(p, Pu,Yet1,7e) with the right hand sides of equations (2.168),
(2.169) and (2.170), i. e.

726[’\/371]7 pe[ovl}
'736[0’1]

E(PUa {QlaQQaQ?)}aW) = nax mll’l{ max EO(pa QlaW) - Es,l(p7 PU7P)/2)7

prne[%}l(] EO(p: Q27 W)_ min {E&Q(p, PUa 72)? Es,l(pv PU7 73)} )

max E()(p, Qg, W) - E572(p, PU, 73)} (2172)

p€[0,1]
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(2.172), we find that

Emd(PUa {Qla Q27 Q3}7 W) = max [O 1] min {EOSI(Q1772>7

¥2€[v3,1],73€

max { Fos2(Q2,72), Fos1(Q2,73) }, Eos2(Qs3, 73)}7

(2.173)
where for:=1,2, k=2,3and j =1,2,3
EOsi(Qj) ’Yk) - pé[%}l{} EO(pu QJ: W) - ES,i(IOa PU7 rYk) (2174)

Next, we extend the the inner minimization of (2.173). In fact, the min-
imum of (2.173), chooses the lowest value of three terms which can be mod-
elled as min {a, max {c,d},b}. Using the identity min{a, max {c,d},b} =
max {min {a, ¢,b} ,min{a,d,b}}, (2.173) can be rewritten as

Emd(PU,{Qth,Qﬂ,W) = max

v2€[v3,1],73€[0,1]

max { min { Eos1(Q1, V2), Eos2(Q2, V2), Fos2(Qs,73)},

min { Eos1(Q1, 72); Los1(Q2:73), Eos2(Q3,73) } } (2.175)

Now, in (2.175), by taking the maximizations over 73 and =y, inside the
braces, we find that

E(PUa{Qla Q2a Q3}7 W) S
max{ max min { Eye1(Q1,2), Eos2(Q2,72), Fos2(@3,73)} 5

726[071]7’736[071}

min { Eos1 (Q1,72), Eos1(Q2,73), Eos2(Q3,73) } }, (2.176)

max
72€[071]773€[071]

where in (2.176), by taking maximization over v, € [0,1] rather than the
interval of [vs, 1], we lower bound E™4(Py, {Q1, Q2,Q3}, W). As can be seen
in (2.176), for every o and 73, Fos1(Q1,72) and Eys(Q2,72) do not depend
on 3. Similarly, in the last term of (2.176), Fos(Q2,73) and Foea(Q3,73)
do not depend on 7,. Hence, using max-min inequality, we weak (2.176), by
swapping the maximization over 73 with the minimization inside the second
term of (2.176), and also by swapping the maximization over v, with the
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minimization inside the last term of (2.176), i. e.

E(Py,{Q1,Q2,Q3}, W) <

max{ max min {E031(Q1,72),E052(Q2,’Y2) max EOSz(Q3>’Y3)}7
72€[0,1] 0,1]

)
736[ 71

max min{ max Eos1(Q17’Yz)ans1(Q2,’Y3),E&Q(Q&%)}}' (2-177)

v3€[0,1] Y2€[0,1]

Now, in view of (2.174), we recall from (2.35) and (2.36), that by moving
~v3 along the interval [0, 1], Epso(Q3,73) decreases from infinity to the function
max,eo1] Fo(p, Qs, W)—Es(p, Py). It means that optimal 3 = 0 which leads
that in (2.177), max,,ecjo1] Fos2(@s3,73) = +o0o. Similarly, in the last term of
(2.177), maxy,ep,1] Fos1(Q1,72) = +oo. Thus, after taking minimizations
between infinity and the remained terms, we obtain

E™( Py, {Q1, Qa, Q3}, W) < max{ max min { Eos1 (Q1, 72), Eos2(Q2,72)}

726[071]

max min { Eys1(Q2,73), Fos2(Q3,73)} }, (2.178)

736[0’1}

where we bound the right hand side (2.178) by adding the extra term where

E™( Py, {Q1,Qq, Q3}, W) < max{ max min { Eos1(Q1, V2), Los2(Q2,72)}

’726[071]

max min { Fos1 (Q2,73), Eos2(@3,73)}, max min {Eos1(Q1,7), Fos2(Q3,7)} }
736[071] 'YE[O’]-]
(2.179)

Now in view of (2.174), we find that fori = 1,2, k = 2,3 and j,j' = 1,2,3

max min { Eoui (Q, %), Fose (@, 1)} = E™ (Pu, {Q;, Qy }, W), (2.180)

v €[0,1]

where ¢ denotes the complement index of i over the set {1,2}. Thus, (2.179)
can be rewritten as

E™(Py Q1. Q2. Qs}, W) < max { E™ (P, {Q1, Q) W),

E™ (Py,{Q2,Qs}, W), E™ (Py,{Q1,Qs}, W) } (2.181)

Up to here we proved that (2.37) is smaller than the right hand side of it.
Next, we are going to prove the reverse direction of the inequality in (2.181).
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2.4.6.1 Proving the Reverse Direction of (2.181)

Firstly, we consider the definition of E;5(p, Py, s, 72) in (2.166). As shown
in Figure 2.4, we have

Es(p, Pu,v3,72) < Esa(p, Pu,7s), (2.182)
Ess(p, Pu,vs,72) < Eso(p, Pu, 72). (2.183)

where Es1(p, Pu,vs) and Esa(p, Py, 72) is defined in (2.33) and (2.34). To
show (2.182) and (2.183), we recall that since always the tangent line is lower
than Es(p, Py), from definitions of (2.33), (2.34) and (2.166), we immediately
conclude (2.182) and (2.183).

Starting from (2.164), the message-dependent exponent derived by con-
sidering three class, is bounded as

Emd(PUJ {Q17Q27Q3}7 W) Z max 0,1] min {EOSI(Q17’72)J

y2€[v3,1],73€

Eos1(Q2, 73), EOsZ(Q?)a 73)}; (2-184)

where in (2.184), in view of (2.174), we respectively applied (2.168), (2.182)
and (2.169) into the E;,(-) for £ = 1,2,3. Since the first term of (2.184)
does not depend on 73, the optimal ~5 is the point that the increasing and
decreasing functions of (2.184) with respect to 3 are equal to each other
(Lemma A.8). Considering (2.35) and (2.36), and noting to the fact that the
last two terms of (2.184) does not depend on 75, we conclude that by moving
72 along the [y, 1], the first term of (2.184) increases from Eyg(Q1,73) to
infinity. Hence, the optimal -, is the point that the first term of (2.184) be
equal with the rest terms. Thus, by removing the first term of (2.184), and
in view of (2.32), (2.184) is bounded as

Emd(PUa {Qla Q27Q3}7 W) Z max _min { max EO(p7 Q27 W) - Es,l(pa PU773)7

~v3€[0,1] p€l0,1]

max EO(pa Q37 W) - E5,2<p7 PU?VS)} = Emd(PU7 {QQa Q3}7 W) (2185)

p€[0,1]

In addition, since v3 < 79, in view of (2.174), (2.164) can be also written
as

Emd(PU, {Qb Q, Q3}> W) = max min {Eosl(Qh%),
736[07’72]7’726[()’1}
,%%51{} Eo(p, Q2, W) — Es2(p, Puy7s, 72), Fos2 (@3, 73)}, (2.186)
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where in (2.186) the maximization over 7o is done over [0, 1]; however, the
maximization over s is done over [0,7s]. In (2.186) we also applied (2.168)
and (2.169). Now, by using (2.183) for the second term of (2.186), we find
that

E™( Py, {Q1, Q2. Q3}, W) > max min {E051(Q1772)>

7v3€[0,72],72€[0,1]

EOS2(Q27’72)7 EOSQ(Q3>P)/3)}‘ (2187)

Using the same approach as the way (2.185) was derived, we can remove
the third term of (2.187) which yields

E" Py, {Q1, Q2,Qs}, W) > E™(Py, {Q1,Qa}, W). (2.188)

Finally by setting o = -3, we upper bound (2.164), and we find

E™(Py, {Q1, Q2. Qs}, W) = E™(Py, {Q1,Qs}, ). (2.189)

Combining (2.185), (2.188) and (2.189), we conclude the proof.

2.4.7 Proof of Lemma 2.2

In order to prove Lemma 2.2, we recall that for Pyy EASgCC(]aU), we have
Pxy = Qp, Pyix which leads I (X;Y) = D(Pxy||Qp, Py). Next, we use
Lemma A.4. By setting Z = X and Pz = (Jp, in Lemma A.4, the quan-
tity D(pxyHQpUﬁy) satisfies equation (A.18) and we can conclude that
I(X;Y) = D(Pxyl||Qp, Py) = miny, D(Pxy||@Qp,Vy). Applying this fact
to (2.54), an equivalent expression of the (2.54) is given by

_min - D(Pxy[|Qp, W)+ pl (X;Y) = (2.190)
Pxyesee(Py)
min min D(nyHQf;UW) + IOD(PXy”QPUVy), (2191)

VW PyyeSece(Py)

where, Vy is an arbitrary probability assignment over the channel output
alphabet ).

To derive an alternative expression for the optimization problem in (2.191),
we fix Vy and we apply Lagrange duality theory to the inner minimization
over Pyy in (2.191), i. e.

min _ D(Pxy||Qp, W) + pD(Pxy||Qp, V¥). (2.192)

pxyGSgCC(ISU)
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In order to find the optimal value of Pxy in (2.192), we consider the
constraints in (2.51) and the fact that the sum of the probability distribution
Pxy over all possible values of (z,y) is 1. In other words, the following
constraints are considered

Qp, (@) =Y Pxy(z,y), > Pxy(z,y) =1 (2.193)

Now, by using Lagrange duality theory, we minimize (2.192) subject to the
constraints presented in (2.193). Note that with this particular problem
the strong duality conditions are satisfied, because the objective function in
(2.192) is a convex function over a convex set and the two constraints given
in (2.193) are affine. Thus, we have

_min  D(Pxy||Qp, W) + pD(Pxy[|Qp, Vy) = maxmin L(Pxy, 0, a),
nyeSgCC(PU) a(~),0 Pxvy

(2.194)

where minp__ L(Pxy, 6, a) is the Lagrange dual function of (2.192) and the
Lagrangian is given by

L(Pxy,0,0) = D(Pxy||Qp, W) + pD(Pxv||Qp, V¥)
(1= Pxy(z,9)) + > a(2)(Qp, () = 3 Pxy(w,y)), (2.195)
x,y x Y
where a and 6 correspond to the Lagrange multipliers for the constraints
given in (2.193).

Using the definition of the relative entropy and the fact that 3°; a; log b; +
cyjajlogb; =3, a;log b;“, the Lagrangian is simplified as

Py (a,y)*"
Qp, ()W (y|z) Vy ()P

—|—9<1 — Zﬁxy(m,y)) + > az) (QF’U (z) — Zﬁxy(x,y)). (2.196)

£CC(]5Xy,9,a) - ZpXY(xay) log
z,Y

To determine the Lagrange dual function, in view of the KKT conditions,

L£o°(Pxy,0,0)

the optimal values of (ny, 0, «) satisfy 9 Parloy) = 0 which implies

Pxy (z,y)t**
Qp, ()W (y|z) Vy (y)P

Solving the equation (2.197) with respect to Pyy, vields

log +(1+p) —0—az)=0. (2.197)

6—(1+p) o(z)

Pry(a,y) = e 07 e Qp ()W (y]2) 75 Vi () 5. (2.198)
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Summing both sides of (2.198) over (z,y) and applying the constraint that
> ey Pxy(z,y) =1, we obtain

—(14p)

S = (S on @ TWhn ) L 219)

6—(1+p) N
Substituting e 5" derived in (2.199) into (2.198), Pxy(x,y) can be ex-

pressed as

a(z) 1 p
. Q) T Vs (y) Tor
Py (.4) = ea(z)Q (@)W (ylz) = Vy (y) | (2.200)
Zel+ﬂQP (%) ZW y|x) 1+PVy( )1+P

Now, we derived the optimal value of Pxy(x,y). Recalling from (2.51),
Qp, (¥) = ¥, Pxy(z,y), by summing both sides of (2.200) over y, we note
that

o) 1 P
o) = 5 ew;@p @W i) V) a0
T L R0, @) T W0 ()

where by removing (p, (x) # 0 from both sides and taking the logarithm,
we obtain

STW (yla) T Vi (y) 5

a(z) = —(1+p)log | )
(Zelif?@P ) SV 3le) Ve (7 >1+p>

T

(2.202)

Putting back Pxy (,y) obtained in (2.200) and a(x) obtained in (2.202) into
(2.196), maxgminp  L°(Pxy,0,a) can be derived as

oc(:i)

@p, () log - -
Z " (Zeu—p ZW ylx) 1+pVY( )1+p>1+p

a(z)

—(1+p) log<Zel+PQ ZW ylx) 1+PVy )—i—ZQP

(2.203)

where in (2.203) we used the facts that log(}) = loga — logb and loge® =
s. Again, in view of s = loge®, we rewrite 3; Qp (Z)a(Z) in (2.203) as
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Y5 Qp (@®a@)
—(14p)loge™ 7 . Finally, by using the identity that logc-+logd =
log(c.d), (2.203) can be expressed as

(o3

£%(a) = ~(1+ p)log (757 X0 T EEQ (@)W (yl) Yy ()77 ).
:B’y
(2.204)

where £%(a) = maxgming,_ L Pxy, 0, a).

To simplify £(a), we define a(z) 2 a(z) —3; a(Z)Qp, (7). Multiplying
both sides of a(z) by Qp, () and summing over = implies 3>, a(z)Qp (v) =
0. Setting a(x) = a(x) — X7 a(Z)Qp, (T), the quantity of L(a) in (2.204)
can be expressed in terms of a(z) as

£a) = —(1 4 p)log (Ze

a

S Qp, @W )TV ()7 ), (2205)

subject to the constraint Y-, a(z)Qp, (z) = 0. Considering (2.204) and
(2.205), we may conclude that maxa () £(ar) = MaX5():5° s@)q, (@)=0 £(@).
@ U

Considering this fact, in view of (2.205), (2.194) and (2.191), we have

min  D(Pxy||Qp, W) + pD(Pxy||Qp, Py) =

PXYES%'CC(PU)

a(x) 1 P
min max —1—|—plog( e Qp (x)W(y|lx 1+pvyyl+p),
W (@)Y, a()Qp, (1)=0 1) ;} p (D)W b))

(2.206)
Again, by using Fan’s minimax theorem [22], we can swap miny, and maxg.)
as
min - D(Pxy[|Qp, W) + pD(Pxy[|Qp, ) =
nyésgCC(PU)
a(z) 1 P
max min—(1+ p)log ( X5 Qp, (@)W (gl) Vi ()7 ).
a(z):y 0 a(@)Qp, (1)=0 Vv xz; P
(2.207)

Now, we focus on the minimization over Vi (y). Since the logarithm is an
increasing function, (2.207) can be expressed as

min D(prHQPUW)+pD(PXY||QpUPY) =

PxyeSee(Py)
a(zx) 1 ,
e~ o (a0 TQp (W (o) PV ) ).
a(z):y a(2)Qp,, (2)=0 Ve wz,?; Py

(2.208)
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where by defining f(y) = >, Q%QPU (x)W(y|x)ﬁlp and using Lemma A.2,
we obtain

min  D(Pxy||Qp, W) + pD(Pxy||Qp, Pr) =

Pxy €8sec(Pyr)

max —log<zy:(zx:e

&(m):zx &(I)QPU (z)=0

a

Qs W ™)), (2:209)

By renaming the right hand side of (2.209) as Eg¢(p, Qp, , W), Lemma 2.2 is
proved.

2.4.8 Proof of (2.66)

In order to prove (2.66), we start by the optimal P,y given in (2.8). By
inserting the optimal Py, given in (2.8) into (2.7), we obtain

+

B = DBy ||Ps@W) + | DBy |B5QR) ~ HPD)| . (2:210)

Firstly, we focus on the second term of (2.210), i. e. {D(]%Xﬂ |P5Q P —

NN . N
H(Pﬁ)} . Using the identity that Py (y) = X, . Pixy (u, ,y), the optimal

quantity of P (y) associated to the primal domain of icd exponent in (2.7)
is given by
1= 1\ e
(S U@ ™ QEENDW (417) 757 )
Py (y) = — —cl (2.211)
£ ( S Pol@) Q0 (71) 7 )

To determine the second term of (2.210), by using the definitions of the
relative entropy and entropy and by inserting Py, and Py (y) obtained in
(2.8) and (2.211), respectively into the second term of (2.210), we obtain

A

D(Péxyl\PEQpé) - H( L*f) =
1

Z p[ij(u, z,y) log B T1p
S Po@) T Q(an) W (y}) ™)

(2.212)

At this point, we use @, introduced in (2.61). Inserting Py given in (2.8)
into (2.212) and then replacing 3, PU(u)ﬁ D(z|u) with Q,() X, PU(u)ﬁ,
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equation (2.212) can be written as

D(pgxyﬂpéép;) - H(f’g) -
P2 Q ()W (y1) 5 (30 Q)W (41)7% )
Z 1+p
U,T,Y Z PU Z <ZQP yll‘ 1+p)

Y
Po(u) W (y] )1p(ZQp W (%) 1+p)p
i+p
ST FS XAy

x log (2.213)

Considering the fact that log(a.b) = log(a) + log(b) and using the definition
of the entropy for distribution P 1 L given in (2.62), (2.213) is simplified as

D(ﬁéxprz?QP;) - H(ﬁé) -
QW (yl) 7 (X Q@)W (v12)77 )

T

% > (;Qp@vv@rz)ﬁﬂ)w

Y

Wyle) ™ (2 Qo)W le) )

T

(Ce@wum)

T

(2.214)

In order to express (2.214) in terms of relative entropy and entropy,
P
2 QW™ (T, 0@wuln ™ )

1+p
>, (S e@wem™)
Summing both sides of P%y (2, y) over z, we find P (y) as

(ZQp Wle) 1J1rp)1+p
Z (%:Qp —_— 1ip)Hp.

in view of (2.47), we define Py (x,y) £

Py(y) =

(2.215)

To simplify (2.214), in view of the defined P%y (z,y), by adding and sub-

tracting the quantity -, , Pty (2, y)log (Z Q”(( )| e )Hp in (2.214) and
Qp(@)W (y)z) TP
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considering (2.215), we obtain

p O F 5 A P
D(Ppxy||PpQPY) = H(PG) = —H(P1) + 3 Py (,y) log m
| " 2216)

Recalling the definition of the relative entropy, from (2.216), we conclude
that

“ . _ “ + R “ +
D(By IP5QR) — H(Pp)| = [ DBy llQ, ) — H(P )| - (2217

Now, we focus on the first part of the (2.210), D(PQXYHPUQW) y
inserting the optimal Py, given in (2.8) into the D(Pfyy||PyQW), w
have

D(Pf;XYHPUQW) = Z Pg}XY(“axay)

u,x,Y

Py (u) W (y|z) w(ZPU QW ()T

p

x log (2.218)

i yuz(zp[] QW () )

Again by putting Py vy (u, z, ) given in (2.8) into (2.218) and then replacing
> PU(u)ﬁC_Q(ﬂu) with Q,(x) >, Pu(u )1ip in view of P_1_ L given in (2.62),

and the definition of P)*(Y, after some mathematical mampulatlons, we obtain

: . : Piy (,y)
D(P} xy ||PuQW) = D(P_1_||P, P log =~ 50 (2219
(Poxy |[PuQ@W) ( ﬁ” v) +% v (7,y) log Q,(x)W (y|z) ( )
= D(P_[|P) + DBy |1QW). (2220)
where in (2.220), we used the definition of the relative entropy.
Combining (2.217) and (2.220), we conclude that
. _ . . NICEs

DByl IPeQW) + | DBl 1P Q) — H(FG)| =

. . +
D(Pu|IPo) + | D(PivllQu ) - H(PL)| . (222)

where by considering Pﬁ and P} given in (2.62) and (2.48), respectively
(2.66) is proved.

68



2.4.9 Proof of Proposition 2.9

In order to prove the proposition 2.9, we use the following lemma.

Lemma 2.3. Let Q,(z) =3, Pﬁ (w)Q(x|u). It can be proved that

B (0.3 Py (w)Q(elu), W) — Ev(p, Py) = max

a(u,r):

DI Pﬁlp (w)é(u,z)Q(x|u)=0

~tos (X (X Ry QW 1) 7)), (2.222)

Y u,T
where Pﬁ (u) is defined in (2.62).
Proof. See Section 2.4.10. ]

Next, in order to prove the proposition 2.9, in view of Lemma 2.3, we shall
show that the quantity of E§°(p, Q,, W)—E(p, Py) given in (2.222) is greater
than or equal with the E§5(p, Py, Q,W). To do this, we compare Ef5 given
in (2.18) with the E5® — E given in (2.222). Considering (2.18) and (2.222),
we may note that in both cases we have a maximization problem with the
same objective function and different constraints. Noting to the fact that the
maximum value of the objective function with more constraints is lower than
that of with less constraints, to prove the proposition 2.9, it suffices to show
that B(u,z) given in (2.18) is more restrictive than @&(u,z) given in (2.222),
i.e, it suffices to prove that

{Blw.2): B )Q(atn) = 0} < {aw.0): = Py (w)atu, «)Q(elu) =0},
(2.223)

To show (2.223), we note that for all A(u, ) € {5(u, )+ %, Blu, 2)Q(wlu) =
0}, we have Y, f(u, 2)@Q(z|u) = 0. Multiplying both sides of the equality by

P_1 (u) and summing over u, we obtain

S Py ()3, 2) Q) = 0=

T+p

Bu,x) € {&(u,x) Y P (u)a(u, 2)Q(x|u) = 0}. (2.224)

T+p

From f(u,z) € {ﬁ(u,m) DY Blu, 1) Q(x|u) = 0}, we conclude [(u,z) €
{d(u,x) S P ()i, 2)Q(alu) = o}, i e. (2.223) is proved which

concludes the proof.
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2.4.10 Proof of Lemma 2.3

We start with E§°(p, Q,, W) — Es(p, Py). In view of (2.56), E§®(p, Q,, W) —
Eq(p, Py) can be expressed as

E8C<p7 Qp7 W) - Es(p7 PU)
1

= max —log (Z (E:PU(U)ﬁ Zew@p@)w(mx)w)lﬂ)’

a(@):y, @(@)Qp(x)=0 -
(2.225)

where in (2.225), we used the definitions of E§¢(p, Q,, W), Es(p, Py) and the
fact that log(a) + log(b) = log(a.b). To express Eg°(p,Q,, W) — Es(p, Pv)

in terms of Q(z|u), by using the definition of @Q,(x) in (2.61), we insert
> Pli (u)Q(z|u) instead of Q,(x) in (2.225), i.e

ES(p,Y P (w)Q(z|u), W) — Ey(p, Py) = max

0 TP W) B = e

~log (Z (S et PU(U)1iPQ(I|u)W(y|x)lip>l+p>, (2.226)
y U,

where P_1_ 1 (u) is given in (2.62). Comparing (2.226) with (2.222) and noting

the fact that logarithm is an increasing function, we may conclude that in
order to prove Lemma 2.3, it suffices to show that

mn S (SR

)

Qe gy )

zu’
(2.227)
a(u,z) — 1 1+P
_ in 5 (X Pole) e 5 Qal W (yfo) 7 )
a(ua): T -
Zz,u Pﬁp(u)a(u,m)Q(ﬂu)—O
(2.228)

To show (2.227) equals to (2.228), we define two functions as k(x,u) =
P (u)Q(lu) and h(u,z,y) = Py (u) ™ Q(z]u)W (y|z) ™ and we use Lem-
mas A.10 and A.11. It can be verified that the defined functions k(z,u) and
h(u, z,y) satisfy the conditions of the Lemma A.10 and the optimal &*(x) and
&*(u, x) which minimize (2.227) and (2.228) are given in (A.63) and (A.65),
respectively. Next, we shall show that for the defined k(u,x) and h(u,z,y)

h(u,z,y) _ Z humy

the conditions of Lemma A.11 are also satisfied, i. e. Koe) = S k)
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From the definition of k(z,u) and h(u,x,y), we note that the quantity of

h(u,z,y)

o) equals to

S P (w)Q(z|u) - ZPU(u)ﬁW(yM)%”, (2.229)

where the last equality in (2.229) follows from the fact that P . (u) =

1
Py (u)t+p

—. From (2.229), we may verify that for the defined functions

>, Puw)THe
h(u, x,y) and k(u, ), we have hls(‘f:f)/) = %hli?f;;) As a result, the functions

h(u,z,y) and k(u, z) also satisfy the conditions of Lemma A.11. Considering
Lemma A.11, h(u,x,y) and k(u,z) we find that a*(u,x) = a*(x) = a*(x)
and thus (2.227) is equal with (2.228), i. e. Lemma 2.3 is proved.
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Chapter 3

The Multiple-Access Channel
with Independent Sources

Many works studied the achievable rates and error exponent for a two-user
MAC. Here, we just mention some of them. In [25], by considering separate
source-channel coding, a universal exponent for the MAC was derived. By
universal, we mean that a fixed choice of codewords and decoding set achieves
the exponent. In [26], an achievable region is derived for the MAC under
mismatched decoding. For the mismatched decoding, the decoding rule is
fixed and possibly suboptimal. For more details about mismatched decoding
for single user-communication and multiple-access channel see [27]. In [25],
it was shown that using structure coding can improve the error exponent of
the MAC. Maximum error probability criterion and feedback for the MAC
were studied in [29].

By considering separate source-channel coding, in [30] and [31], respec-
tively lower and upper bounds for the error exponent of the MAC were ob-
tained. For the MAC with independent sources, the idea of considering
dependency between messages and codewords was studied in [32].

In this chapter, we study the idea of message-dependent ensemble for the
MAC. As discussed in Chapter 2, for single-user communication, message-
dependent random-coding exponent is larger than iid random-coding expo-
nent. In this Chapter, we show that this result can be generalized to the
MAC with independent sources.

After introducing the system setup in Section 3.1, by considering the
message-dependent ensemble, and doing the analysis in the dual domain, in
Section 3.2, we present an achievable exponent for the MAC with independent
sources. In fact, for each user, the source messages are partitioned into
two classes and codebooks are generated by drawing codewords from an
input distribution depending on the class index of the source message. The
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partitioning thresholds that maximize the achievable exponent are given by
the solution of a system of equations. We also derive both lower and upper
bounds for the achievable exponent in terms of Gallager’s source and channel
functions.

In Sections 3.3, we generalize the obtained results to the case where more
than two users are considered, and also the number of classes for each user
is arbitrary. Parts of this chapter were presented in [33].

3.1 System Setup

We consider two independent sources characterized by probability distribu-
tions Py,, Py, on alphabets U and U,, respectively. We recall again that
underlined font represents a pair of quantities for users 1 and 2, such as
Y= (71,72), u = (U1>U2) or W(?/\@) = W(y’%,xz)-

Encoder v = 1,2, maps a length-n source message w, to the length-n
codeword x,(u,) drawn from the codebook C¥ = {x,(u,) € X : u, €
U'}. Both terminals send the codewords over a discrete memoryless MAC
with transition probability W (y|xy, z2), input alphabets &}, &5, and output
alphabet ).

Given the received sequence y, the decoder estimates the transmitted
pair of messages u based on the maximum a posteriori criterion, i. e.

i = argmax Py, (ur) P, () W™ (y|2 (w1), (). (3.1)
u EUT XU
An error occurs if @ # w. The error probability for a given pair of codebooks
(C,C?) is given by

€'(C',C?) 2P (U, Tn) # (UL, )] (3.2)

and an exponent FE is achievable if there exists a sequence of codebooks such
that

1
lim inf ——log €'(C!,C?) > E. (3.3)

n n’ n
In order to show the existence of such sequences of codebooks, we use random-
coding arguments, i. e. we find a sequence of ensembles whose error proba-
bility averaged over the ensemble, denoted as €", tends to zero.

3.2 Message-Dependent Exponent

Message-dependent ensemble is described in Section 2.2.1. In this section,
we generalize the idea of message-dependent random coding for the MAC
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with independent sources.
For user v = 1,2, we fix a threshold 0 < v, < 1 to partition the source-
message set U into two classes AL(v,) and A%(v,) defined as

Ab(w) = {w, €U = PG (w) >0}, (3.4)
Al() = {u, €U} = Pp(w,) <)} (3.5)

For every message u, € Al(v,), we randomly generate a codeword x,(u,)
according to the probability distribution @, (x,) = ITj_; Qv1(x.), and for
every message u, € A2%(v,), we randomly generate a codeword x,(u,) ac-
cording to the probability distribution @Q,2(x,) = IT}_; Qu2(x,e). In fact,
Qu,i, for © = 1,2, is a probability distribution that depends on the class of
u,. Thus, codewords are generated independently according to message-
dependent distributions.

As mentioned in (1.43) and (1.44), the symbol 7 € {{1},{2},{1,2}} is
used to denote the error event type of the error probability (3.2), i. e. re-
spectively (ﬁl,ug) 7é (’U,h'U,Q), (ul,ﬁg) 7& ('U,l,’u,g) and (’&1,’&2) 7é (ul,u2).
We denote the complement of 7 as 7¢ among the subsets of {1,2}. We em-
phasize that throughout this chapter, for error type 7 = {1,2}, we have
Py, (u,) = Py, (u1)Py,(uz). Additionally, since only independent sources are
considered, the following facts are obvious Pfj(u) = Py, (u1)Pg,(us), and
Py(u) = Py, (u1) Py, (uz).

Now, by using the introduced random-coding ensemble, we derive an
achievable exponent for the MAC with independent sources.

Proposition 3.1. For the two-user MAC with transition probability W, two
independent sources with joint probability distribution Py, Py, and class dis-
tributions {Q,1,Qua} with user index v = 1,2, the following exponent is
achievable

E = max min ~1nin
y1,72€[0,1] Te{{1},{2},{1,2}} #1,i2=1,2

FT,i-,—,iTc (Ql,ip QQ,’L'Q » V1 ’72) ) (36)
where

Friie (@11, Q245,71,72) = max Ey(p, Qri, , WQre; )

p€[0,1]
_Es,iT (P, PUT 5 ’)/7') - Es,i.rc (07 PUTc ) PVTC)' (37)

In (3.7), the functions Eq(-) for three different values of T, is given by (1.28).
Eg1(+) and E,(+) are respectively given by (2.33) and (2.34). For error type

T ={1,2}, we define E;_(p, Pu,,v) = Eqi (p, Puy, 1) + Esi,(p, Py, 72) and
Faoviie () = Frioyim()
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Proof. See Section 3.4.1. m

We recall that in (3.7), for 7 = {1} and 7 = {2}, WQ;e,; . denotes
a point-to-point channel with input and output alphabets given by X, and
Xre x Y, respectively. For 7 = {1, 2}, the input distribution Q, ;. = @14, Q2.,
is the product distribution @y ;, (z1)Q2,,(x2) over the alphabet X} x X», and
WQre; =W.

To have a better insight about three types of error in (3.7), we extend it
for different values of 7. Equation (3.7) for 7 = {1}, 7 = {2} and 7 = {1, 2},
respectively is given by

F{l},il,iz (QLila Q2,z‘2, V15 72) = pe[%}l{} EO(P, Ql,m WQQ,@)

_Es,il (P> PU1a’71) - ES,iz (07 PU27 72)' (38>
F{Q},iz,i1 (Ql,iu QZ,iZJ 1, 72) = nax EO(p, Q2,i27 WQL’il)

p€E[0,1]
_Es,il (07 PUU’VI) - Esﬂ'z (107 PU27 72) (39>

F{1,2},i1,i2 (Ql,m Qz,m 71, ’72) = ;2[%}1(] ED(P» Ql,z’l Q2,i2» W)

—FEsi,(p, Puys 1) — Esiy(p, Py, 2). (3.10)

In Proposition 3.1, we remark that the optimal assignment of input dis-
tributions to source classes is considered in (3.6). Since we considered two
source-message classes AL(7v,), A2(7,) and two input distributions Q, 1, Q.2
for each user v = 1, 2, there are four possible assignments.

Up to here, we found the message-dependent random-coding exponent
for the MAC with independent sources in terms of some maximizations and
minimizations. We proceed to simplify it by finding the optimal values of ~;
and vs.

3.2.1 Optimal Thresholds

The derived achievable exponent (3.6) contains a maximization over v, the
thresholds that determine how source messages are partitioned into classes.
Rearranging the minimizations over 7, i, and i, defining f;, ;,(v) as

o — i . . . : 11
f11712 (’717 ’72) Te{{l]ir{lg}l,{lﬂ}} T,ir,irc (Ql,lp QQ,U? T, 72) ) (3 )

where F; ; .(-) is given in (3.7), the exponent (3.6) can be written as

E = max min fi1,i2(71a72)' (312)

~v1,72€[0,1] 91,32=1,2
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We note that regardless the values of is, f1,,(7) is non-decreasing with
respect to v, and fy;,(7) is non-increasing with respect to ;. Similarly,
regardless the values of i1, fir () is non-decreasing with respect to 7, and
fir.2(7) is non-increasing with respect to 2. As a result, we derive a system
of equations to compute the optimal thresholds ~7 and 75.

Proposition 3.2. The optimal v and 75 mazimizing (3.6) satisfy

i0=1,2

min finai(,73) = min fin2(7,732)-
i1=1,2 11=1,2

min fl,iQ (7{7 75) = 1’1}1{12 f2,i2 (’7’1’(7 75)7
i2=1, (3.13)

When (3.13) has no solutions, then v} € {0,1}. In particular, if f1,,(0,72) >

f2,i2(0,72) then 77 = 0, otherwise vy = 1; and if fi 1(11,0) > fiy 2(11,0), we
have v5 = 0, otherwise v5 = 1.

Proof. See Section 3.4.2. ]

We note that the optimal 77 and ~3 are the points where the minimum
of all non-decreasing functions with respect to 7, is equal with the minimum
of all non-increasing functions with respect to ~,, for both v =1, 2.

As shown in Chapter 2, for single user communication, the final expression
of message-dependent random coding exponent, is expressed in terms of (2.4).
However, for the MAC, finding an unique expression like (2.4), is difficult. In
the sequel, we give a graphical intuition of optimal thresholds for the MAC
with independent sources.

As shown in (3.13), due to the values of indices 41,7 = 1,2, there are four
functions in terms of f;, ;,(7). Depending on the fact that for the optimal
v+ and 73, which of these four functions would be equal to each other, the
achievable exponent given by (3.6) can be decoupled from atleast one optimal
threshold. To have a better insight, we can categorize the possible solutions of
(3.13). However, since the possible results of (3.13) may be very complicated,
to have an intuition, we only focus on the error type {1,2}. The intuition
can be generalized to (3.13).

3.2.1.1 The Intuition of Optimal Thresholds for Error Type {1,2}

Assume that we have a magic model that only the error type 7 = {1,2}
occurs. Thus, from (3.6), the achievable exponent is derived as

max ~ min _ max Ey(p, Q14 Q2,, W)

71,72€[0,1] i1,i2=1,2 p€[0,1]
—Es,il (pa PU17P)/1> - Es,ig (p, PU2, ")/2) (314)
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Similar to f;, ;,(7) given by (3.11), we define E(Zfs’iQ (7) as

E&s’iZ (11:72) = nax Eo(p, Q1. Q2,i,, W)

peE[0,1]
_Es,i1 (p> PUU’Vl) - ES,iz (p7 PUzv’YQ)v (315)

where by using the same reasoning in Proposition 3.2, the optimal 7 and 73
maximizing (3.14), satisfy

min Eo7*(v7,73) = min Eg (77, 73), (3.16)
19=1, 2=1,
min E¢ (77, 73) = min B¢ (7, 73), (3.17)
11=1, 11=1,

and like before, when there is no solution for (3.16) and (3.17), then v} €
{0,1} for v = 1,2. To simplify expressions, we also define pj ; as

i, 4, = argmax Eo(p, Q1,4 Qa,iy, W)

p€[0,1]
_Es,il(p> PUla’YI) - Es,iz(p7 PUQ”YQ)' (318)

As (3.16) and (3.17) suggest, for v = 1,2, at the points where the mini-
mum of non-decreasing functions with respect to 7, is equal with the mini-
mum of non-increasing functions with respect to ,, the optimal 4} and 73
are obtained. Here, we discuss about the possible outcomes for the solution of
the system of equations given by (3.16) and (3.17). We start by introducing
some functions.

The exponent given by (3.14), is expressed in terms of Es;, (p, Py,, 1) +
Es, (p, Py,, 1) for i1,i; = 1,2. From (2.33) and (2.34), we recall that E ; (-)
is E,(-) for an interval of p, while it is £,(-) beyond that interval, where
1, = 1,2. Similarly, for the MAC with independent sources, the function
Esi (p, Puyym1) + Esi, (p, Puy, 1) for dy,ia = 1,2, is one of the following
equations

ES (pa PUI) + ES (p7 PUz) =

(14 ) log (Z PU1<u1>1+%> (14 p)log (Z PU2<u2>1+%) (3.19)

ul u

E, (p, Pu,) + Es (p, Puyy o) =
Es (0, Poy) + Es (P2, Puy) + E5 (p,) (p = pyn) » (3.20)
E, (p, Puy,m) + Es (p, Pu,) =
Eq (py, Pu,) + Ei(py,) (p = py) + Es (p, Poy) , (3.21)
E, (p, Pu,, ) + E, (p, Pu,,v2) =
Ey(pyy, Poy) + B (py) (p = py) + Es (P, Poy) + B (p3,) (P = pyn) 5 (3.22)
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where E,(-) and E,(-), respectively given by (1.9) and (2.29). Additionally,
from (2.25), p,, is the tangent point where E;(-) is tangent to E(-).

Figure 3.1 shows equations (3.19), (3.20), (3.21) and (3.22) with respect
to p. As shown in Figure 3.1, for given ; and 7, the straight line (3.22)
is tangent to both (3.20) and (3.21) at respectively, p,, and p,,. Moreover,
both (3.20) and (3.21) are themselves tangent to (3.19) at respectively, p,,
and p.,.

Figure 3.2 shows Es;, (p, Pu,,71) + Esi, (p, Pu,,71) when all four combi-
nations of iq,iy = 1,2 are applied. As can be seen, depending on the region
of p, the function Eg;, (p, Py,,71) + Es.i, (p, Puy,71), is one of the equations
given by (3.19), (3.20), (3.21) and (3.22).

In Chapter 2, for point-to-point communication with two given input
distributions @1,Q2 € Py, we showed that by moving « along the [0, 1]
interval, the straight line tangent to E,(-) function, i. e. E,(-) is changed.

A

Let p7 and p} be the points where respectively Ey(p, Q1, W) — Es(p, Pu,7),
and Ey(p, Q2, W) — Es(p, Py, ) are maximized with respect to p. In Chapter
2, we showed that the optimal threshold is derived at the point where the
distances between two Eo(-) functions and E,(-) at p} and p} are equal to

each other.

Unlike to single-user communication, for the MAC with two user v = 1, 2,
the optimal ~ is obtained at the points where the distances between Ejy(+)
functions and one of the function given by (3.19), (3.21), (3.20) and (3.22)
are equal to each other. To have a better insight, we proceed by studying
visually how optimal v} is derived when v = 1,2. We start by categorizing
the possible outcomes of system of equations given by (3.16) and (3.17).

1. No solutions for both (3.16) and (3.17):
Firstly, we assume that the system of equations given by (3.16) and (3.17),
does not have any solution. Thus, the optimal v, for v = 1,2 is either zero
or one. Considering (2.35) and (2.36), it means that we cannot achieve more
than iid random-coding exponent, and for this case, (3.14) is simplified as

max max max Ey (p, Q14 Q2,, W) — Es(p, Pu,) — Es(p, Pu,)- (3.23)

i1=1,2 is=1,2 pe[0,1]

2. No solution for (3.17), while (3.16) has solution:
In this case, we assume that (3.16) has solution which gives v}, while there
is no solution for (3.17), and ~3 is either zero or one. Hence, from (2.35)
and (2.36), we note that if 45 = 0, then the solution of (3.16) is derived
when iy = 1; however, if 75 = 1, the solution of (3.16) is derived for iy = 2.
Figure 3.3 shows an example where 75 = 0, and (3.16) is solved such that
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Figure 3.1: Equations (3.19), (3.20), (3.21) and (3.22) with respect to p.

2 —]

0 0.15 Py 0.45 0.6 Py 09 1

Figure 3.2:  E,;, (p, Puy, 1) + Esiy (p, Puy,y2) for dy,i9 = 1,2.

Eys(75,0) = By, (7%,0), i. e

max Eo(p, Q11Q21, W) — Es1(p, Puy, ) — Es(p, Pu,) =

prg[%)l(} EO(p7 Q1,2Q2,17 W) - ES,Q(pa PU17,YI) - Es(pa PU2)7 (324>
where as shown in Figure 3.3, the distance between Ey(p, Q11Q21, W) and
(3.21) at py , is equal with the distance between Eqy(p, Q1.2Q2,1, W) and (3.21)
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Figure 3.3: The solution of system of equations is derived as Eésl (7%,0) =
Eg; (71,0). Both p7, and pj ; are located on E,(p, Py, ) + Ey(p, Py,). See
Figure 3.2 for more details.

at p5 1, where p7, and p5 , are defined in (3.18).

Since 75 = 0, the E,;(-) for user 2, is always equal to Es(p, Py,). We
define new Gallagher’s channel function as Ey(-) — Es(p, Py,). Now, like
single-user communication, by moving ~;, the optimal ~7 is obtained at the
point where the distances between the new Gallagher’s channel functions and
Es(p, Py, ,~7) are equal to each other. Figure 3.3 shows the same idea.

Applying Lemma A.6, we can express the achievable exponent by a sim-
pler expression. Setting E(p, Q1) = Eo(p, Q11Q21, W) — Es(p, Py,) and
E(p,Q2) = Eo(p, Q12Q21, W) — Es(p, Py,) in Lemma A.6, (3.14) for this

example can be expressed as

max min max Eo(ﬂa Ql,ilQZ,iga W) - Es,il (P, PUp”Yl)

v1,72€[0,1] 41,i2=1,2 p€[0,1]

_Es,iz (pv PUZ’ 72) = prg[%)l(} EQ(ﬂ? W) - ES(ﬂ? PUl)’ (325)
where
Es(p,W) = sup {)\ max Eo(p1, Q1. @21, W) — Es(p1, Pu,)
p1,p2,A€[0,1]: i1=1,2

Ap1+(1—=X)p2=p

(L= ) max Folpa, QuisQaas W) = Eslpa, Pin) . (3:26)

3. No solution for (3.16), while (3.17) has solution:
Similar to the previous case, assume that ~3 is derived by solving (3.17),
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while (3.16) has no solution, i. e. 45 = 1 or 77 = 0. Figure 3.4 shows an
example where 77 = 1, and the solution of (3.17) is obtained such that
Ega(1,93) = Egi(1,95), i e

pme[%)l(] Eo(ﬂa Q1,2Q2,1, W) - Es(ﬂ; PUl) - Es,l(ﬂa PU2> ’Y;) =

prg[%ﬁ EO(p7 Q1,2Q2,27 W) - Es(p> PUl) - ES,Q(pa PUQ? ’7;)7 (327>

where as shown in Figure 3.4, the distance between Ey(p, Q12Q21, W) and
(3.20) at p3 , is equal with the distance between Ey(p, Q1,2Q2,2, W) and (3.20)
at p3,, where p3; and pj, are respectively the optimal ps maximizing the
left hand and the right hand sides of (3.27).

The same reasoning applied for the case 2, is also valid for this case, i. e. by
moving s, the optimal 775 is derived at the point where the distances between
the new Gallagher’s channel functions Ey(-) — Es(p, Py,) and Ey(p, Py, ,73)
at points p5, and p;, are equal to each other. By setting E(p,Q1) =
Ey(p, Q12Q21, W)—Es(p, Prr,) and E(p, Q2) = Eo(p, Q1,2Q2,2, W)—Es(p, Pu,)
in Lemma A.6, we can express (3.14) as

max — min _max Ey(p, Q1 Qo W)
71 7726[071} 11,42=1,2 pe[oal}

_ES,il (P, PU17/71) - Es,ig(ﬂ, PU27/72) = max E3(p7 W) - Eé‘(pv PU2)7 (328>

p€0,1]
where
Es(% W) = sup | {)\ max Eo(Pb Q1,2Q2,i2; W) - Es(Pl, PUl)
0,1]:

Pl,ﬂQ)\E[ i9=1,2
Ap1+(1-X)p2=p

+(1—=A) max Eo(p2, Q1,2Q2,i,, W) — Es(p2, PUl)}~ (3.29)

4. Both (3.16) and (3.17) have solutions:
For this case, assume both (3.16) and (3.17) have solutions. Figure 3.5
shows an example of this case where (3.16) is solved such that Eg%(vf,73) =
Ey2(v.75) i e
52[%)1(] EO(p, Q1,1Q2,27 W) - ES,l(p7 PU17 ’yf) - E5,2<p7 pU27 75) =

prg[%a(} EO(p7 Q1,2Q2,27 W) - ES,Q(pa PUpﬁ)/I) - Es,2([), PU2>P)/;)7 (330>

and (3.17) is solved such that Eozf(vf,yg) = Eg; (V,73), 1. e.

pfél[%% Eo(ﬂy Q1,2Q2,2, W) - Es,Q(M Py, 7;) - Es,2(,07 Py,, 75) =

max Eo(p, Q12Q2,1, W) — Esa(p, Py, 77) — Esa(p, Puyy73)- (3.31)
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Figure 3.4: The solution of systems of equations is derived as E§§ (1,v) =

Eg’f(l, 75). Both p3, and pj , are located on Eg(p, Py,) + E,(p, Py, 7). See
Figure 3.2 for more details.

As shown in Figure 3.5, the distance between Ey(p,@110Q22, W) and
(3.21) at pj, is equal to the distance between Ey(p, Q1,2Q2,1, W) and (3.19)
at p3,, and both are equal to the distance between Ey(p, Q12Q2.2, W) and
(3.22) at p5,, where p7 ,, p5, and p5, are defined in (3.18).

Consider (3.30), i. e. Eé:f(yf,ﬁ) = Eozﬁ(ﬂyf,yg). We define new Gal-
lager’s channel function as Ey(-) — Esa(p, Pu,,75). Then, by moving v
along the interval [0, 1], the optimal 77 is derived at the point where the
distances between these new Gallager’s channel functions and the tangent
line E,(p, Py,, ) are equal to each other.

Applying Lemma A.6 in (3.30), we set E(p, Q1) = Eo(p, Q11Q22, W) —
Es2(p, Po,,75) and E(p, Q2) = Eo(p, Q1.2Q2.2, W)—Es2(p, Pr,,75) in Lemma
A.6. Then, (3.14) for this example is obtained as

max  min max Ey(p, Qi Q2. W)
719’726[071] i1,i2=1,2 pe[ovl]

_Es,i1 (,0, PU1771> - Es,iz (:07 PU27'72) = max EZ(/)? W) - ES(p7 PU1)’ (332)

p€l0,1]

EZ(Pa W) = sup {)\ m_a1x2 Eo(p1, Qi Q22, W) — Es2(p1, Puy, 73)
p1,p2,A€[0,1]: =54
Ap1+(1=A)p2=p

+ (1 - )\) glﬁxz Eo(ﬁ% Q1,¢1Q2,2> W) - Es,2(P2; PUQ»VE)}' (3-33)
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Figure 3.5: The solution of system of equations is derived as Eéf(vf, V) =
Egﬁ(vl*,yg) = Eg; (V1,73)- Pl P51 and ps,, respectively are located on
L?S(p, Py, 7)) + Es(p, Pu,), Es(p, Puy) + Es(p, Py,) and the straight line
Es(p, P 77) + Es(p, Puy,77)-

We can also consider (3.31), i. e. ES2(v,73) = Egu(75,7%), and de-
fine new Gallager’s channel function as E(p, Q1) (p,Q1 9Q22, W) —

Es,Z(p7 PUla’yl) and E(p7 QZ) EO(p7Q1,2Q2,17 ) E (p7 PUla’yl) in Lemma
A.6. Hence, (3.14) is simplified as

max  min max Ey(p, Q1 Q2,p, W)

~Y1,72€[0,1] i1,82=1,2 pe[0,1]

_Es,h (pa PU1771) - ES %2<p7 PU2772) - I&%ﬁﬂE ()0; W) - ES(p7 PU2>7 (334>

where

Eﬁ(ﬂv W) = sup {)\ maf%Eo(,Oqu 2Q2127 ) —ES,Q(Pl,PUU%*)
01702)\6[0,1]5 2
Ap1+(1=A)p2=p

+ (1= A) max Eo(pa, Q1,2Q2,iz: W) — Es (2, PUNWT)}- (3.35)
5. Both (3.16) and (3.17) give the same answer, and p.,: # p.s:

For this case, again both (3.16) and (3.17) have solutions; however, both
of them give the same answer. Figure 3.6 shows an example for this case,
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where the solution of (3.16) gives Eésl (7)) = Eg;sz(yf, 7)), 1. e.

pfél[%)li} Eo(% Q1,1Q2,1, W) - Es,l(p7 PUN’YI) - Es,1(p, PU2775) =

prg[%,)l(] E0<p7 Q1,2Q2,27 W) - E5,2<p7 PUN’}/I) - E5,2<p7 PU27 75)7 (336)
and the solution of (3.17) gives again (3.36).

As shown in Figure 3.6, the distance between FEy(p,@11Q21, W) and
(3.22) at pj; is equal to the distance between Ey(p, Q1,2Q2.2, W) and (3.22)
at pj o, where p7, and pj, are defined by (3.18).

Like before, we can define new Gallagher’s channel functions as F(p, Q1) =
Eo(p; Q11Q21, W) — Eg1(p; Py, v3) and E(p, Q2) = Eo(p, Q12Q22, W) —
Es2(p, Pu,,73). Then, by moving v € [0,1], the optimal ~; is obtained
at the point, where the distance between E(p,Q;) and the tangent line
(p, Pu,,71) is equal to the distance between F(p, Q)2) and the tangent line
(p, Py, ,71)- Inserting E(p, Q1) and E(p, Q2) in Lemma A.6, we can express
(3.14) as

E
E

S
S

max — min max Eo(p, Q1 @2, W)
71772€[071] i1,62=1,2 pe[ovl]

_ES,Z& (:07 PUU’YI) - E&i? (:07 PU2"72) - ;gl[%}l(] E_'g(p, W) - Es(p7 PU1)7 (337)

E¢(p,W)=  sup {A max Fo(p1, Q1@ W) = Esa(p1, Pv,75)
P17p2,)\€[0,1]1 =5
Ap1+(1=X)p2=p

+(1 =) max Eo(p2, Q1,iQ2,, W) — Es2(p2, PUQ,WQ)}. (3.38)

Alternatively, we can set E(p, Q1) = Eo(p, Q11Q21, W) — Es1(p, Poy,7)
and E(p, Q2) = Eo(p, Q12Q22, W)—Es2(p, Pu,,77), which gives the following
exponent

max ~ Iin max EO(pv Ql,h Q27i27 W)
717726[071] i1,i2=1,2 pe[ovl]

_Es,i1 (pa PUlu’YI) - E87i2 (p7 PUQ?’YQ) = max Eg(p7 W) - Es(p7 PUz)a (339)

p€[0,1]

where

Eé’(/u W)= sup {A H_lélﬂé Eo(p1, Q1,iQ2:, W) — Es1(p1, Pu,, 1)
p1,02,2€[0,1]: =5
Ap1+(1=A)p2=p

+ (1 - >\) g%i EO(an Qu@zz‘, W) - Es,2(,02, PUUVD}- (3-40)
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Figure 3.6: Ey;(7,73) = Egs(77,73), while p. # py;. Both pj, and pj,
are located on the straight line Es(p, Py,,vT) + Es(p, Pu,,v5).

6. Both (3.16) and (3.17) give the same answer and p,: = p.s:
Figure 3.7 shows an example of this case where the solutions of both (3.16)
and (3.17) gives Eys (v,7%) = B (O, 73), i e.

max E0<p7 Ql,lQQ,lu W) — Es,l(/)7 PU17 7;) - ES,l(ﬂv PU27 7;) =

p€l0,1]

max Eo(p, Q1,2Q2,27 W) - ES,Q(pa PUlerI) - ES,Q(pa PU27’Y;)7 (341>

p€E(0,1]

and also we have p,» = p.s, which leads that all (3.20),(3.21) and (3.22)
be tangent to (3.19) at p,x = pyz. As shown in Figure 3.7, the distance
between Ey(p, Q1,1Q2,1, W) and (3.22) at pj | is equal to the distance between
Eo(p, Q12Q2,2, W) and (3.22) at pj,, where pj, and pj, are given by (3.18).

To simplify the exponent, like before we can use Lemma A.6 two times.
However, from Figure 3.7 it can be seen easily that since the distances be-
tween two Eo(-) functions and the straight line, £, (p, Py, , 71 )+ Es (p, Poy, 72)
are the same, the distance between the parallel line and E, (p, Pyyym1) +
E, (p, Py,, ) is equal to the exponent. Moreover, since Py = Prg 5 (3.22) 18
tangent to E,(p, P, ) + Es(p, Pu,) at pyx = pys. Recalling that, the exponent
is the distance between two parallel lines, we focus on the their distance at
py: = pys- Hence, for this example, the following exponent is achievable

max min max Eo(p> Q1,1 Q2 W) — Es,il(P, Py,m)

v1,72€[0,1] 41,i2=1,2 p€[0,1]

_E&iz (,0, PU27 72) = pnel[%}l(] Eﬁ(p7 W) - ES(ﬂ? PU1) - ES(ﬂ? PUQ)’ (342)
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Figure 3.7: Ey'; (7v,73) = Eos(11,73), and py: = pyy. Both pi | and p3, are
located on the straight line Fg(p, Py,,77) + Fs(p, Puy,73)-

where

Ee(p, W) = sup {)\ max Eo(p1, Q1,iQ2,, W)
P17,027)\E[071]3 =54
Ap1+(1=A)p2=p

(1= ) mas Folpa, QuiQais W)} (3.43)

)

All the other possible outcomes of (3.16) and (3.17), can be considered
as one of the six cases studied above. We see that, even for 7 = {1,2},
finding a unique expression of exponent that does not depend on 77 and 73,
is difficult. However, from intuition point of view, these six cases can be
easily generalized to (3.13). Since expressing the final exponent atleast is
coupled with one of the thresholds, it seems that finding an equation like
(2.39) is difficult for the MAC, and maybe unlike single-user communication,
the sufficient number of classes is not two.

Even though ~f and +} can be computed through equation (3.13), the
final expression of the achievable exponent (3.6) is still coupled with 7 and
v5. In the sequel, we alternatively study both lower and an upper bounds
that do not depend on 7; and .

3.2.2 A Lower Bound for the Achievable Exponent

In order to find a lower bound for the achievable exponent presented in (3.6),
we use properties (2.35) and (2.36). Firstly, we maximize over v, € {0, 1}
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rather than v, € [0, 1], to lower bound (3.6). Let d(vy1,72) be

d(71,72) = I}llllgl firin (715 72)- (3.44)
Then,
E = max d(v, > max d(7v1,72). 3.45
Jmax d(y,m) 2 max | d(m,7) (3.45)
On the other hand,
max _d(7y1,72) = max{d(0,0),d(0,1),d(1,0),d(1,1)}. (3.46)

717’726{071}

Taking into account properties (2.35) and (2.36), we note that f;, ;,(71,72),
for 71,72 € {0,1}, is either infinity, or the Gallager’s source-channel expo-
nent, i. e.

max Eo(p, Qri., WQre,i .) — Es(p, Pu,). (3.47)

p€0,1]

For example, fi, :,(0,1) equals equation (3.47) for i; = 1 and i; = 2, and
fir.i,(0,1) = oo for the rest of combinations of iy and i,. Thus, d(0,1) =
min, max,eco1] Eo(p, Qri, s WQrei..) — Es(p, Py, ) for iy = 1 and i, = 2. Sim-
ilarly, d(1,0) = min, max,c(,1) Eo(p, @ri,, WQre; .) — Es(p, Py,) for iy = 2
and 75 = 1, and so on. Hence, we obtain the following lower bound

E Z EL (PUl-PUQJ W) ) (348)
where
Ey, (Py,Py,, W) = i F- . 3.49
L (P Pop, W) = gy max, B ) Frie e (349)
with
FTLz e m[%% Eo(p, Qriy, WQre; .) — Es(p, Pu,). (3.50)
20T HOT pe , ’ 107

We note that for 7 = {1} and 7 = {2}, FF, ;  in (3.50) is the error
exponent of the point-to-point channel W@, . for an iid random-coding
ensemble with distribution @, ;. For 7 = {1,2}, we have WQ,; . = W and
E(p, Pu.) = Es(p, Py,) + Es(p, Py, ), so that (3.50) is the error exponent of
the point-to-point channel W for an iid random-coding ensemble with distri-
bution @1, Q2,,. Hence, the lower bound (3.49) selects the best assignment
of input distributions over all four combinations through i, and 5.

38



3.2.3 An Upper Bound for the Achievable Exponent

Now, we derive an upper bound for (3.6) inspired by the tools used in [16]
for single user communication. For the MAC with independent sources, we
use the max-min inequality [22] to upper-bound (3.6) by swapping the max-
imization over 7,7, with the minimization over 7. Then, for a given 7, we
use Lemma 3.2 in Section 3.4.3 to obtain the following result.

Proposition 3.3. The achievable exponent (3.6) is upper bounded as

E < Ey(Py, Py,, W), (3.51)

where
Ey(Py, Py, W) = Te{{lﬁg}l’m}} FY, (3.52)

where
FY = max max Ey(p, {Qr1,Qrat, WQrei.) — Es(p, P.), (3.53)

ire=1,2 p[0,1]

where Eo(-) is defined by (2.4). We recall that for T = {1,2}, we have
{QT,lv Qr,2} = {Qm, (2,1, Q12, Q2,2} and Ey(p, Py,) = Es(p, Pu,)+Es(p, Po,).

Proof. See Section 3.4.3. ]

From equation (3.52), we observe that the upper bound is the minimum of
three terms depending on 7 € {{1},{2},{1,2}}. For 7 € {{1},{2}}, we know
that the message of user 7¢ is decoded correctly so that user 7 is virtually
sent either over channel W@, or WQ,c . Hence, the objective function of
(3.52) is the single-user exponent for source Py, and point-to-point channel
WQre,; . where codewords are generated according to two assigned input
distributions {Q;1, @2} depending on class index of source messages. As a
result, we note that the maximization over ¢, = 1,2 is equivalent to choose
the best channel (either WQ,c1 or WQ,c2) in terms of error exponent.

As pointed in Lemma 3.2, we note that for error type 7 = {1} and 7 = {2}
we have equality in (3.103). In other words, if we had a magic model that
only error type 7 = {1} or 7 = {2} occurred, then the final exponent would
be decoupled from both thresholds. Thus, for the mentioned magic model
that only error type 7 = {1} or 7 = {2} occurs, the sufficient number of
thresholds for each user is one. More specifically, in view of (3.103), for
error type 7 = {1}, the sufficient number of classes for the first user is two,
and it gives the concave-hull term. However, the classes of the second user
determine two channels namely W3, and WQq 5.
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3.2.4 Numerical Example

Here we provide a numerical example comparing the achievable exponent,
the lower bound and the upper bound given in (3.6), (3.49) and (3.52),
respectively. We consider two independent discrete memoryless sources with
alphabet U, = {1,2} for v = 1,2 where Py, (1) = 0.028 and P, (1) = 0.01155.
We also consider a discrete memoryless multiple-access channel with X; =
Xy ={1,2,...,6} and |Y| = 4. The transition probability of this channel,
denoted as W, is given by

(3.54)

where

1—-3k Kk ky ka1
bo1=3k ko
I R T
W=t ok 1-3k | (3.55)
05— ka05—ks ky ko
ks ky 05— k0.5 — ko

for k; = 0.056 and ks = 0.01. W5 and W3 are 6 x 4 matrices whose rows are
all the copy of 5™ and 6' row of matrix W, respectively. Let the m-th row
of matrix W; is denoted by Wi (m). Wy, W5 and Wy are respectively given

by

Wi(2) Wi(3) Wi(4)
Wi (3) Wi(4) Wi(1)
Wi(4) Wi(1) Wi (2)
W= w7 lwie | o= wie) (3.56)
W1(6) Wi (5) W1(6)
Wi(5) W1(6) Wi(5)

We observe that W is a 36 x 4 matrix where the transition probability
W (y|zy1, z2) is placed at the row z; + 6(z2 — 1) of matrix W, for (z1,z9) €
{1,2,...,6} x{1,2,...,6}. Recalling that each source has two classes and that
four input distributions generate codewords, there are four possible assign-
ments of input distributions to classes. Among all possible permutations, we
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select the one that gives the highest exponent. For user v = 1,2, we consider
the set of input distributions {[0 000 0.50.5], [0.25 0.25 0.25 0.25 0 O]}

For the channel given in (3.54), the optimal assignment is

Q,1=100000.50.5], (3.57)
Q.2 =[0.25 0.25 0.25 0.25 0 0], (3.58)

for both ¥ = 1,2. Since we consider two input distributions for each user,
the function max,co1) Eo(p, @ri,, WQrei..) is not concave in p [16]. For
this example, from (3.13), we numerically compute the optimal 7 and ~J
maximizing (3.6) leading to v = 0.8159 and ~4 = 0.7057.

Tables 3.1, 3.2 and 3.3 respectively show the objective functions F;;_; .(-),
FF; i ., and FY given in (3.7), (3.50) and (3.53), involved in the derivation
of the achievable exponent (3.6), lower bound (3.49) and upper bound (3.52).
The shaded elements in Tables 3.1 and 3.3 respectively are the exponent and
the upper bound. Additionally, the shaded elements in Table 3.2 are the
iid exponent for different input distributions assignments. Solving equations
(3.6), (3.49), (3.52) using the partial optimization in Tables 3.1, 3.2 and 3.3,
we respectively obtain

E (PU1PU27 {Ql,b QLQ} ) {Q2,17 QQ,Z} 5 W) = 010577 (359)

and
Ev(Py, Py, W) = 0.0989, (3.60)
Eu(Py, Py, W) = 0.1073. (3.61)

We observe that the percentage difference between the achievable expo-
nent F(Py, Py,, W) and the lower bound Ey(Py, Py,, W) is 6.875%. For a
given set of two distributions for each user, the lower bound Ey,(Py, Py,, W)
corresponds to the iid random-coding error exponent when each user uses
only one input distribution. In Chapter 2, a similar comparison is made for
point-to-point communication. In view of (2.44) and (2.45), for single-user
communication, the exponent achieved by an ensemble with two distribu-
tions is 0.75% higher than the one achieved by the iid ensemble. Hence, our
example illustrates that using message-dependent random coding with two
class distributions may lead to higher error exponent gain in the MAC than
in point-to-point communication, compared to iid random coding.

3.3 Generalizing to Multiple-Classes

In this section, we generalize the main results given in Section 3.2 to the
K-user MAC. Moreover, in view of [21], we consider multiple classes for each
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Table 3.1:  Values of F.; _; .(-) in (3.7) with optimal thresholds 7} = 0.8159
v = 0.7057, for types of error 7, and user classes 7, and .

(Z-laz-Z)
Ly 21 12 (22)
r={1} 02566 01721 0.1057 0.1103

r={2} 0.2597 0.1057 0.2526 0.2087
r={1,2} 0.1057 0.1073 0.1127 0.1180

Table 3.2: Values of FTL’iM-TC in (3.50) for types of error 7, and input distri-
bution Q1,i;, Q2,i-

QleQ?,l Ql,?vQ?,l Q1,17Q2,2 Q1,27Q2,2

r={1} 01723 01721  0.0251  0.0342
T={2} 02526  0.0989  0.2526  0.2019
7={1,2} 0.0900  0.1073  0.0900  0.0984

Table 3.3: Values of FV in (3.53) for types of error 7.
T={1} 7={2} 7={L2}
0.1734  0.2526 0.1073

user. Foruser v =1,.. K, let 0= r,41 <V, < ... <Y2 <1 =1Dbe
L, + 1 positive ordered numbers such that 7, , > min Py, (u,) and 7,2 <
max Py, (u,). The source-message set U is partitioned into L, classes where
the class ¢, € L, = {1, ..., L, } is defined as

Dl = {w, €U : Ay 01 < PO, (w) <30} (3.62)

When L, = 2 by setting 7,2 = 7, we have DY = A% (~,) where A% (v,) is
given by (3.4) and (3.5). For the messages belonging to D%, input distribu-
tion ), ¢, is assigned to generate codewords.

Throughout this section, the underlined font denotes an ordered tuple of
quantities for K users, i. e. U = (U, .., Uk) and Py(u) = [T, Py, (w).

Proposition 3.4. For the K-user MAC with transition probability W and
source probability distributions Py, , ..., Py, , the following exponent is achiev-
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able

E(P[_J?{Qlﬂv"'7Q17L1}7"'7{QK717""QK7LK}’W) = max max

Y1,25Y1,Ly VK, 25VK, L

min min F 0l _c 1079 e+ K/ 1.1y -3 YK.L 1
re{{1}{l, K} €L, €Ly T (@uers oo Qritres Mty s Vi)
(3.63)

where for allv =1,..., K, v,1 =1 and v, 1,+1 = 0. In addition,

F‘I’,fq—,e.rc (QI,EU sy QK,€K771,17 sy IYK,LKJrl) = max EO(p7 QT,£T7 WQTC,ETc)

p€E[0,1]

- Es,@-r (/)7 PUTu fy‘l',@,—+17 77',57—) - ES,ZTC (07 PUTc 3 fch,ch+17 fY‘rC,ZTc)u (364)
where Egy, (+) is defined by (2.24).
Proof. See Section 3.4.4. [

Remark 3.1. As a special case, we consider K-user MAC where L, =
{1,2} for allv = 1,..., K. When L = 2, we have v,; = 1 and 7,3 =
0 leading to p,,, = —1y and p,,, = —1_. Thus, from (2.24), we con-
clude that for two-class source, Es1(p, Pu, Vw2, Yw1) = Esi(p, Pu,,vw2) and
Es,Q(pu Pqu V.3, 71/,2) = Es,2<p7 PUw 71/,2) where the functions Es,l(pv PUm’YI/,Q)
and Eso(p, Py,,Vv2) are defined by (2.33) and (2.34), respectively. Thus,
(3.63) is simplified as

E(Py,{Q11,Q12}, ... {Qk1,Qk2},W)= max .. max min min

’71,26[0,1} 'YK,QG[O,I} T lrflc=12
;2[?)’)1(} Eo(p, QT,Zq—y WQTC,ZTc> - ES,Z'T (pa PUT ) 7T,2) - ES,iTc (107 PUTC ) 776,2)'
(3.65)

Remark 3.2. We recall that for the K-user MAC, the error probability for
a given ordered tuple of codebooks (C1,...,CK), is given by P [[:] #* U]. We
use the symbol T € {{1},...,{1,2,...,}(}} to denote the error event type
of the error probability. There are 25 — 1 error event types including the
events that the message of one source is decoded wrongly, the events that the
messages of two sources are decoded wrongly and so on. For K-user MAC,
the complement of T is denoted by 7° among the subsets of {1,2,..., K}.

For exzample, let K = 6 and 7 = {1,3,6}. Then, {, = ({1,03,05), L, =
Ly X L3 x Lg and therefore b = (lo,ly,l5), Lre = Lo X L4 X L5. We
note that Esy (p, Pu.,-) = Es1(p, Pu,,-) + Es3(p, Py, -) + Es(p, Pug, ) and
Qre, is the product distribution Q1 (21)Qs,,(x3)Q6 ¢ (z6) over the alphabet
X X X3 x Xg. Stmilarly, WQ e, . is a multiple access channel with input and
output alphabets given by X; X X3 X Xg and Xo X Xy x X5 X Y, respectively.
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Now, we extend proposition 3.2 to K-user MAC with multiple classes. In
order to find a way to optimize 7,2, ...,7,,r, for v = 1,..., K, we recall that
as mentioned in Proposition 3.4, 7,1 =1l and v, 1,41 =0 forallv =1,..., K.
Hence, to optimize v, 2, ..., V.1, We express (3.63) as

E(PU7 {Ql,la ) QI,L1} JIREES) {QK,b cey QK,LK} ; W) =
ppax . omax o oamin e e Yenen), o (3.66)

where

le,.A.,eK (71,1, ey ’YK,LKH) = HlTiIl FT,ET,ZTC (Ql,ﬂla ey QK,zKa’h,l, ey ’YK,LKH) )
(3.67)

where F 4 4. (-) is given by (3.64). Since Esy, (p, Pu,, Vutu+1, Vot , ) only de-
pends on 7,4, and 7,4, 41, for i, = 2, ..., L, the function FT’ET’KTC('))EV:@ only
depends on 7., , V1., +1 and does not change with the rest of the partitioning
thresholds. Hence, to determine the optimal 7, ;,, it suffices to consider the
objective function at ¢, =i, and ¢, =i, — 1.

for

Fori, =2,...,L,, let {, = i, for an arbitrary 7. Then, F,, , .(-)

¢, =i, is of the form of max, E(p) — Es;, (p, Pu,, Yvi,+1, Vv,i,) and similarly

the function FT,ET,ZTC(')’ for ¢, =i, — 1 is of the form of max, F(p) —
Yv, by

Esi, 1 (p; P, Tvjiv s ’Ym'y—l)-

By using Lemma A.15, we find that F, 4 . (-)‘ZV:Z,U and Frgo 4 .(+) i
are respectively non-increasing and non-decreasing with respect to v,,;,. Us-
ing the fact that the minimum of monotonic functions is monotonic, we
conclude that fo, s (V115 -, VK’LK—H)’ZD:L, is non-increasing with respect to

Yoin and fo, o (711, ""7KvLK+1)‘g - is non-decreasing with respect to
v=1ly—

Vvin- We recall again, f, . (-) for E: = 4,,4, — 1 changes with ~,,, and is
constant with respect to 7, , for the rest of £,. Table 3.4 shows the increas-
ing, decreasing and constant behaviour of f, . () when K = 2, and the
first source-message set is partitioned into three classes while the second one
is partitioned into two classes.

In order to find the optimal source-partition thresholds, we adopt the
following notation. The complement index of v € {1,..., K} is denoted by

v¢ and Vo, 18 the sequence of 7,9, ...,7,, without term 7,,,. We define
s Vor, - For example, for three-user MAC, let Ly = 3,

Vvt = Yvemye
[ P Imye=2,..,L ¢

Ly = 4 and Lz = 2. Then, for v = 2 and ¢, = 3, we have v, , = 722,724
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Table 3.4: The behaviour of fy, s,(71.2,71.3,72,2) given by (3.67) for a two-user
MAC.

Y12 Y13 722 ‘ Y1,2 V1,3 722
f1,1(’>’1,2,71,3>’72,2) e - /! f1,2(71,2,71,3, 72,2) /! - AWV
f2,1(71,2,’71,37’72,2) N /! /! f2,2(71,2,71,3, 72,2) N /! N
f3,1(71,2,71,3’72,2) - N /! f3,2(71,2;71,3772,2) - N N\

and Yye . ez L Vs 2.5 V3.ms I which leads
Vo] oy _g = V120713, 72,25 72,45 73,2- (3.68)

Now, for any i, € {2,..., L, }, we will determine the optimal ,;, . Since
only fgl’m’gK(')‘é _, and fglng()’Z _, _, depend on 7,,;,, we split the min-

imization over ¢, of (3.66), as

E(Py, {Q11, . Qu s {QK 1, s Qi }, W) =

max max min min ¢ 11y -3 YK.L 1 ‘ )
Vi Vvyiv {fl,c€£ Tt (VL1 ooy Y Lt )é,,:zu—l’
min ¢ 1.1y s YK.L 1 ‘ )
lyceL, cfh v (’y ek 7’}/ Lt ) ey:’tu’

Eue{ﬁ,,—{zryl,zu—l}} Z,,cGE,,c fh, WL (P)/l,h ) P)/K,LK+1)}' (369)

We note that for a given 7,,,, the optimization problem given by (3.69)
satisfies Lemma A.8. Setting v = v,.,, k1(y) = ming ez, . fgl,m’ZK(')‘e o
and ko(7y) = ming .z, . fgl’m’gK(')‘E . , in Lemma A.8, and noting to the fact
that the third term of (3.69), i. e ; ming, ez, (i, i, —13y Mg cer,e foo, 0 ()
does not change with 7, , by applymg Lemma A8, for i, € {2,...,L,}, the
optimal v, ;, satisfies

Elgélglcfel ..... e (V115 oy VR L 41) b=iv—1nt,
i foe (V105 '-~,7K,LK+1)‘£ i)’ (3.70)
whenever (3.70) has solution. Otherwise, 77, =0 when f, . (-) =i >
Vo=
f€1,-~~,4K('> 0,=i, Or ’Y:,i,, =1 when fel,n-fK(') ly=i,—1 < ffl,...,h{(') ly=i, -
Vvip, =0 Yvyip =1 Vv yiv =
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Since (3.70) is valid for all v and ¢,,, by repeating the approach for given
Yy.0, We conclude the following proposition.

Proposition 3.5. Letv =1,..., K, fori, =2,..., L,, 7}, mazimizing (3.63)

satisfies
ngggﬂ ffh---,fK (’7{,17 X 7;(,LK+1)’[V:Z-V71 = é,,{%ig,c ffl,---ng (7?,17 ey Vf{,LK-&-l)uu:iuv

(3.71)
where 75, =1 and v}, 1 = 0. When (3.71) has no solutions, then v, =
{0,1}. In particular if fo, o (*) ty=i 1 > forotn (¢) =iy Yyi, = 0 other-
wise vy, = 1.

Remark 3.3. As a special case, we consider K-user MAC where L, = {1,2}
forallv =1,..,K. Since L, =2, v, =1, 7,3 = 0, it suffices to find 7, ,

in (3.71). Applying the facts that i, = 2, (3.71) for K-user MAC with two
classes is simplified as

min ffl,m,fK(’Yilv "'77}((,3>|€u:2' (372>

min_fo, e (V115 -.-,7%,3)\&:1 =
veET

Oe=1,2

Like Section 3.2.2, we lower bound the exponent given by (3.63), by
maximizing over source-partition thresholds belonging to {0, 1}. Considering
(2.24), we recall that if 7,541 = Ve = 1 O Vurt1 = Ve, = 0, then
E.(p, Py,, ) = —oo [21]. While, if 7,41 = 0 and v, = 1, then we find
Gallager’s source function as Es(p, Py,,0,1) = Eg(p, Py,). As a result, for
the case where source-partition thresholds being only zero or one, fo, . 4. (-)
is either infinity, or the Gallager’s source-channel exponent, i. e.

max Eo(p, Qre,, WQrer..) — Es(p, Pu.). (3.73)

pE[0,1]

In fact, by maximizing over {0, 1}, we choose the the Gallager’s source-
channel exponent for the best assignment of input, i. e. since the source-
partition thresholds are ordered as 0 = v, 1,41 < Yn, < ... < Y2 <Y1 = 1,
for user v, there is an optimal ¢, where by having v,,,+1 = 0 and 7,,, =1
the maximum Gallager’s source-channel exponent is derived. Hence,

E(ng{Ql,h"'7Ql,L1}7"'7{QK717 ---7QK,LK}7W) Z
max ... max d(Q1e,, ., Qrey), (3.74)

liely [Lg€elp

where

d(Ql,élu cerey QL,KK) = H17_in ;’»’Ic‘l[%%} EO(pJ QT,Zq—u WQTC,ZTc) - Es(pu PU,.)- (375>

For a K-user MAC with two classes, we only apply £, = {1,2} for all
v=1,..,Kin (3.74).
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3.4 Proofs

3.4.1 Proof of Proposition 3.1

To prove Proposition 3.1, we follow similar steps than in [16]. Firstly, we
start by bounding €”, the average error probability over the ensemble, for a
given block length n. Applying the random-coding union bound [23] for joint
source-channel coding, we have

Fo(a)W (y| X)
> .
u§yPUXY(u x,y) min {1 %Pl Pow)(ylz) = 1] }, (3.76)
where for independent sources, we have Pfj(u) = P, (u1)P§,(u2), and & has
the same distribution as & but is independent of y.

The summation over & # u can be grouped into three types of events,
speciﬁcally (’&1,'&2) 7& (U17'll,2>, (ul,ﬁg) 7é ('U,l,’u,g) and (’&1,’&2) 7é (ul,u2).
These three types of error events are denoted by 7 € {{1},{2},{1,2}}, re-
spectively. Using the fact that min{l,a + b} < min{l,a} + min{1,b}, we
further bound €" as

€<y e (3.77)

T

where for Pg(u) = Pg, (u1) Py, (u2),

<> Ph(w)d ) Pyy(z,y)mind1, Y > (&) 0
w Ty W Fu, B Wi ylere )
T P" W leseg) S

(3.78)

and Q7 , denotes the channel-input distribution corresponding to the source
message U, .

Next, we break the summation over w in (3.78) into the summations over
the messages belonging to the classes AL(v,), A%(7,) and then summed over
all classes. Moreover, by considering the case where codewords are generated
according to distributions that depend on the class index of the sources, the
outer summation of (3.78), can be written as

ZPU prywy Z Z PUl(Ul) Z Pt%("h)

Y i82=12 4 € A () u2€A2 (72)

X Zlel (21)Q3;, () W" (y|21, 22).  (3.79)
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Similarly, the inner summation of (3.78) can be grouped based on the
classes of @, and then sum over all classes. Applying this fact and in view of
Markov’s inequality for s; ; > 0, the inner summation of (3.78) is bounded
as

Z Z Q:—L,jf ('I'ACT) S

UrFu, P (ar) W (yler@c)
L PR ur ) Wi (yley,@g) =
Ur

Z Z Z QZ,]‘T (&) (P{}T (a )W (y|2-, wTC)>SiT'jT 7 (3.80)

Jjr=1,2 ﬁTeAZ‘T(’YT) & PIT}T (UT)Wn(y|m1; w2)

where for 7 = {1,2}, we have j, = ji,Jjo, and @, € A’ (y,) equals to
@y € Al (71), 1y € AP (7). Inserting (3.80) into the inner minimization of
(3.78) and using the inequality min{1, A + B} < min, ycj 1 A? + B for
A, B >0, p,p €10,1], the inner term of (3.78) is derived as

min {1, 3 > (@)
Qrttr Pl @OWler@re)

7
TP (un)Wh(yley @) =

< Z min Gj, (Si.ro, Tre,y)Pivic

j.,.:]_72pi7'j7-€[071] (Pg.,-(uT)Wn(y|wl,a}2>> TiTPirjr

where
Gi (8, @re,y) = Z ZP{},(UT)S ﬁ,if(mT)W”(mwT,a:Tc)s, (3.82)
ur €AY (v7) *7

and p; ;. € [0,1] and s, ;. > 0. By putting back (3.79) and (3.81) into the
respective outer and inner terms of (3.78), the average error probability is
bounded as

a< > > min > Y P (ue)Qh, ()

et 2ini=12 P SO yare | e
Gir <1 - SiTijiTjT I mTC7 y)G]T (Si7j77 a:’7'67 y)pi'rjv' ° (383)
Applying Holder’s inequality in the form of

1\ P 1\ 1p
Zczazbz S (ZCZGZP> (ZC’ia;?) s (384)

for p € [0, 1], into (3.83), we obtain

1 Pirjr p . 1_pi7j7
-n : n n rJT
&< Y min FU(1—sipig,—— Fy Sirirs T ;
o i21,0Pirir €[0,1] irjr — Pirjr
(3.85)
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Z Z Z PU c uTC TC’L L(mTc)Gjr(avacay)b'

lre= 12”7-66/47_ (1, )chy

(3.86)
. i (1405,
Now, by setting s;_;, = ﬁ, Pirjr = %Jp:’f) and p;_;, = 1+p , the average
error probability can be written as
1 Piy
F 1 I+pi, F 1 1 I+pi,
er < min " s 14 ps. P — 14 p, .
jT,i.,-Z:LZ p’i7-7pj7'€[0 1} 1 + ,01,-,- p I 1 _'_ p]T p]

(3.87)

Since F(-), Fj*(-) > 0 and 1+p +1f2- = 1, by using weighted arithmetic-

geometric inequality, (3.87) is bounded as

2
1 1
€ < min " 1+ i
J};l pirpir€00,1] 1 + pi. T <1 + pi. p )

Pi 1
4+ Pir_pm 40 ), (3.88
Hmn”@+% %>( )

where by rearranging the terms of the sum, we have

— 1+

&< >  min F!
=1 QPiTijTG[OJ]
T 7

1 1 ;
,1+piT> > ( N ) (3.89)
ir jr=1,2

Next, we may use the following Lemma.

Lemma 3.1. For a given p € [0,1], and F[*(a,b) defined in (3.86), the
following inequality holds

tre=1

1
_ilo Fn _ 1+ > mln E 5 7—7,7_7W TC i
g( <1+p p)) 0(p, @ Qresive)
_Es,iT (pa PU7—7IYT) - Es,iTc (07 PU.,-m/YTC) - E lOg(Z), (390)

where Ey(-) is given by (1.28) and Es;(-) fori = 1,2 is given by (2.33) and
(2.34).
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Proof. To prove Lemma 3.1, we recall that by inserting G;. (ﬁp,wﬂ,y)
defined in (3.82) into (3.86), F}* (1+p’ 1+ p) can be written as

rlrit)- T % P&xuﬁ)( S Rl >)

e =h2 AT (yre) ur €A (9r)
1+p
)+> . (3.91)

Applying the identity > ,c4 f(u) =X, f(u)1{u € A} to the summation over
u, € A¥(v,),v = 7,7° of (3.91), we obtain

X Z Q'rcz A\ Lre (ZQ a';T Wn(

Trc,Yy

1 irc
£ <1+p»1+P> = > ZP&C(UTc)ﬂ{UTC € Az (%c)}

ire=1,2Urc

145
) (Z Py (w5, € A7 <%>}> TR, (392)

where in (3.92), in view of (1.28) we applied > f - (Za ga)c => (Za Ja

bl / C)C into the first summation of (3.91) and we expressed it in terms of Ej

function.

Next, we focus on the summations over w, and wu,c in (3.92). Let v =
7,7 in view of (3.4) and (3.5), for a given u,, we have Il{ul, € .A,E(fy,,)}:
H{P,’}V(ul,) > 4"} and ]l{ul, € Aff(’yy)}: H{ng(uy) < v}, Considering
this fact and applying ]l{a < b}§ (2))\ for A > 0 to all indicator functions
of (3.92), we find that

(71)’27(:)\7(:
F(ppe) < i, B SR (500 )

“Vie=1,2urc Py, . (e
1 v P ,E( Qn. WnQ,, )
X Pl o(u)Te | ———— e O\ R e ize ) (3,93
(%: V) ) .

where in (3.93) we tightened the bound by minimizing the objective function
over Ay, Aye > 0.

Using Lemma A.16 in Appendix A, the first and the second terms of (3.93)
can be expressed in terms of the E;(-) function at p = 0 and arbitrary p,
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respectively. Doing so, we obtain that

Fn <1 —:il_ p 1 + p) < Z s JiT (pvP[th_r 77¢)+Es,i7c (OvP[tLITC 777”}0) 7E0 (p:QZ@TanQT,iTc ) )

tre=1,2

(3.94)

Finally, we bound each term in the summation in (3.94) by the maximum
term, use that the sources and the channel are memoryless, and taking log-
arithms, we obtain to (3.90). O

Next, upper bounding (3.89) by the maximum term over i, further upper
bounding by the worst type of error 7, taking logarithms and using (3.90),
after some mathematical manipulations we find that the exponential decay
of € is given by

1
——log(€") > min min maX] Eo(p, Qriy s WQre )
n

T iryirc p€[0,1

s, (0. P, 0) — B (0, Pueoe) — 2 (.05
where o(n) is a sequence satisfying lim,, .. @ = (0. Using the following
properties

lim inf(an +b,) > lim inf ay, + lim inf b, (3.96)

lim inf min{ay, b, } = min { lim inf ay, lim inf b, } (3.97)

lim inf max{a,} > max { lim inf an} (3.98)

we further obtain that

1
lim inf —— log(€") > min min max Ey (p, Qri,, WQre i .)

n—oo T irjire pel0,1]

—Esi. (p,Pu,yvr) — Esie (0, Py, vyre) . (3.99)

Finally, we optimize (3.99) over =, for v = 1,2. This concludes the proof.

3.4.2 Proof of Proposition 3.2

Now, we focus on F; ; .(-) givenin (3.7). Let ¢; = 1 for an arbitrary 7. Since
~v1 and vy, are independent from each other, regardless the value of iy, the
function Fy, ;. (-) is of the form max, E(p) — Es1(p, Pv,,71). Then, using
Lemma A.7, we have that F,; ; .(-) is non-decreasing with respect to 7.
Similarly, when i; = 2, we have that F,; ; .() is of the form max, E(p) —

yUrylre
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Eso(p, Py,,71) so that it is non-increasing with respect to ;. The same
reasoning applies for i,. That is, F,; ; .(-) is non-decreasing with respect
to 9 for i5 = 1, and non-increasing with respect to 7, for 15 = 2, always
regardless of the value of 7.

Using the fact that the minimum of monotonic functions is monotonic,
we conclude that f;, ;,(7) given in (3.11) is non-decreasing with respect to v,
when i; = 1, and non-increasing with respect to 74 when 7, = 2. Similarly,
[firi2(7) is non-decreasing (non-increasing) with respect to 7, when iy = 1
(i = 2).

Writing equation (3.12) as

max max minmin f;, 5, (71, 72), (3.100)
71 72 12 11

for a fixed vq, the optimization problem max., min;, min;, f;, i, (71,72) satis-
fies Lemma A.8 with v = 79, i = io, and k;(y) = min;, f;, s(71,7). Therefore,
the optimal 3 satisfies

min fi,1(71,75) = min fi, 2(11,73), (3.101)
11=1, 11=1,

whenever (3.101) has solution. Otherwise, we have 73 = 0 when f;, 1(71,0) >

fi172(71’ 0)7 or 75 = 1 when fihl(’ylaO) S fi1,2(’}/170)‘

Setting v, = 73, the optimization problem max,, min,, min;, f;, ;,(71,73)
satisfies Lemma A.8 with v = vy, i = 4, and k;(y) = min,, f;,,(7,75). Hence,
7+ maximizing (3.12) satisfies

min fii,(71,72) = i fo.i (91, 73), (3.102)
ig=1, in=1,

and in the case (3.102) does not have solution, 7§ = 0 when f;,,(0,7,) >
f2.,(0,72), or 7§ = 1 otherwise. Combining (3.101) and (3.102) we obtain
(3.13).

3.4.3 Proof of Proposition 3.3

In view of the max-min inequality [22], after upper bounding (3.6) by swap-
ping the maximization over 7;,7, with the minimization over 7, the upper
bound given by (3.52), follows immediately from the following Lemma.

Lemma 3.2. For a given 7 = {{1},{2},{1,2}}, we have
max  min max Fy(p, Qri., WQrei.) — Es;i (p, Pu., V)

Y1,72€[0,1] iryire=1,2 p€[0,1]

~Biire(0, Pyc,yre) < max, max Eo(p,{Qr1, Qr2}, WQreio) = Es(p, Pur),
(3.103)
where equality holds for T = {{1},{2}}.
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Proof. Firstly, we consider 7 = {{1},{2}}. In this case, by focusing on the
optimization problem given on the left hand side of (3.103), we may note
that since Es; . (0, Py._.,7v-) does not depend on p, the maximization over p
of the left hand side of (3.103) is done independently from Ej; .(0, Py ., Yre).
Additionally, in view of (2.35) and (2.36), we may note that by moving 7.
along the [0, 1] interval, E,1(0, Py .,7re) decreases from zero to —oo, while
Es2(0, Py, 7yre) increases from —oo to zero. Hence, the minimum over i,
and i,c of

max Eo(p7 QT,’iT; WQTC,Z'TC) - Es,iq— (107 PU-,—7 ’)/T) - ES,’iTc (OJ PUTC ) 7T"')7 (3104)

pE[0,1]

is attained at v, = 0 for i, = 1, or v, = 1 for i, = 2, both leading to
Esi (0, Py_.,7r) = 0. As a result, it is sufficient to consider max, .cfo,1}
instead of max,_.c[p,1]. This implies that the left hand side of (3.103) can be
written as

Y

max{ max min max Eo(p, Qrirs WQye.e) — Esi (p, P, 7s)

yrel0d] i pel01]

i.,.cil,"/Tc:O

max min max FEo(p, Qri, ., WQrei .) — Es;i (p, Pu,,Vr ,
v+€[0,1] ir p€l0,1] 0(p Q Q ”) 7 (p g 7)i7c22,77c:1}
(3.105)

or equivalently

Joax, max Juin max Eo(p, Qriy, WQre i) — Esi, (p, Pu,,v-).  (3.106)
Equation (3.106) can be interpreted as an achievable exponent for a point-
to-point channel with transition-probability W Q< ., a pair of distributions
{Qr1,Qr2} and a partition of the source message set into two classes. This
problem is well-studied in [16]. In fact, i, in (3.106) is just a parameter
selecting either W@ e 1 or WQeo. From [10, Theorem 2| or Lemma A.6,
equation (3.106) is equal to

max max Ey(p, {Qr1, Qrat, WQrei.) — Es(p, Py.), (3.107)

i,e=1,2 pe[0,1]

which leads (3.103) for type 7 € {{1},{2}}.

For 7 = {1,2}, in view of the min-max inequality [22], we upper bound
the left hand side of (3.103) by swapping the maximization over v, with the
minimization over ¢; as

max min{Tl (m), Tg('yl)}, (3.108)

716[071]
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where

T1(y1) = max min max Ey(p, Q1,102 W)

~v2€[0,1] i2=1,2 p€0,1]
_Es,l(pv PU17’71) - Es,iz(pa PU27’72), (3109)
and

Ty(71) = max min max Fy(p, Q1,2Q24,, W)

v2€[0,1] 12=1,2 p€0,1]
- 872(107 PU1771) - Es,ig(p7 PUQ,'YQ)- (3110)

We note that Es1(p, Py, 71) in (3.109) does not change with i3 and 2. Thus,
the optimization problem (3.109) can be seen as a refined achievable exponent
for a point-to-point channel with a new Ejy function as Ey(p, Q11Q2.,, W) —
Es1(p, Py,, 1) having two input distributions {Q11Q2.1, Q1.1Q22}, and a par-
tition of a source message into two classes. Equation (3.109) can be written in
terms of the concave hull of max;,cq1,2y Eo(p, Q1,1Q2,i,, W) — Es1(p, Pu,, 7).
Since Es1(p, Py,,m) is a convex function with respect to p, using Lemma
A.13 we upper bound the concave hull of max;,c(1.) Eo(p, Q1,1Q2,i,, W) —
Es1(p, Puy,) by Eo(p, {Q11Q2,1, Q11Q22}, W) —Es1(p, Py, 71). Therefore,
from applying [16, Theorem 2|, T1(y1) is upper bounded as

T (71) < pme[%)f] Eo(ﬂ, {Q1,1Q2,1, Q1,1Q2,2}> W) - Es,l(pa PUU%) - Es(/), PUQ)'

(3.111)
Similarly,
Ty(m) < max Eo(p, {Q12Q2.1, Q12Q22}, W) — Eg2(p, Py, 11) — Es(p, Pu,).-
(3.112)

Inserting the right hand sides of (3.111) and (3.112) into (3.108), we obtain
in{ 7 T < i E ; ; W

max mm{ (1), 2(%)} < max min max Fo(p, {Q1i @21, Qriy Qa2 W)
_Es,h (pa PUU’Yl) - Es(pa PU2>'

(3.113)

Again, the right hand side of (3.113) can be written in terms of the con-
cave hull of the function Eg(p, {Q1,4,Q21, Q1. @22}, W) — Es(p, Py,). Since
Es(p, Py,) is convex in p, we apply Lemma A.13 again to upper bound the
concave hull of Ey(p, {Q14,Q2,1, Qi @22}, W) — Es(p, Py,) by the function
Eo(p,{Q11,Q12,Q21,Q22}, W) — E(p, Py,). Finally using [10, Theorem 2],
we obtain that (3.108) is upper bounded by

max Eo(p,{Q11, @12, Q21,Q22}, W) — Es(p, Puy) — Es(p, Pu,).  (3.114)

]
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3.4.4 Proof of Proposition 3.4

In order to prove Proposition 3.4, we follow the same steps given in Section
3.4.1. Adopting the underlined notation for K users, and applying random-
coding union bound [23] for joint source-channel coding, €” the average error
probability over the ensemble is bound as

Py(a)Wn(y|X)
u%:yPUXY(u x,y) mln{l %P[P TOLECT >1 }, (3.115)

which is the same as bound given by (3.76). Like before, by using the fact
that min{1,a + b} = min{1,a} + min{1,b} we have €* < > €&’ where €’ is
given by (3.78) for 7 € {{1}, {1, ...,K}}.

Following the next step in Section 3.4.1, by considering multiple classes
for K-users, we find similar equations to (3.79) and (3.80). Now, instead of
summing over 4, and A (7;,), the summations over w and @, in (3.79) and
(3.80) are done as

25w Piy(zy)= 2, 3 Po(w)e D 3. Py (ux)

el uy ED ZKEEK %% EDK

X3 Q0 (1) Qe y ()W (Y21, s ), (3.116)
z,y

and

n o (A
2 2 (1) <
fl,,—;ﬁuT N P{}T(ﬂf)wn(mﬁ’ﬂmq—c)
FTPE Cun) W (yle @)

P (@)W (gl 0,) |
> D@ (& (P”( T)Wn(y’wh@» . (3.117)

Jr€Lr 4., GD]T &r

Same reasoning given in Section 3.4.1, (3.81) for K users and multiple
classes is derived as

min < 1, Z Z Z Z,jT(‘r’%T)

W AU, Urdu, | PR (ar)Wh(ylér,a,c)
L P” )W yla1,@s)

j ! c Plrjr
S min Gj‘f (367]7, Lr 7y) sjg jrPlrjr ) (3118)
Jr€Ls Per iz €[01] (P{JZ—T (uT>Wn<y‘.’1317 CUQ)) rir Plrjr
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where Gy_(+) for K users and multiple classes is modified as

G (8, e, Y) Z > Pp (u)*Q (2 )W (y|a,, @re ). (3.119)

DZT Tr

Next, we find a modified version of (3.83) for multiple classes where the
summation over j, is done over L, and instead of summing over iy, we
have summing over 3% Yo, er,- By applying Hélder’s inequality, we modify
(3.85) for K users and multiple classes as

1 pz'r]"r p@ . l_pZTjT
-n : n TJ)T
&< > 11 | . (1 = St Plrjrs ) Ey (%gﬂ 1_) ;

Grlr €L p@'f‘j‘re[o71 0rjir pfr]'r

(3.120)

where for K-user MAC with multiple classes, we have

Fa,b)= > Y > Ph o (ue)Qhy (20)G), (a, T, )" (3.121)

7.c EL c u, GD Lrc Trc,Y

o o per(Ip4r) | ‘
TJr T 1+pj7’ p&—y-,— - 1+p27— rir 1+pg7_’ a mOdlﬁed

version of (3.87) is derived where rather than summation over j, i, we have
Jry by € L. Applying arithmetic-geometric inequality, we find

1 1 pi
e < min  F' | ——, 14 po. + .
@-rezﬁrpé'”pj"e[o’l} €T<1+p57 & ) Z <1+MT 1+p]‘r>

]TEET
(3.122)

Setting s, and py

Next, we bound F (-) defined in (3.121) by using similar steps as Lemma
3.1. By inserting G (ﬁ, ) defined in (3.119) into (3.121), we will find an

expression similar to (3.91) where instead of summing over i,. € {1,2} and
u, € A (~,) for v = 7, 7¢, we have summation over [, € L, and u, € D%.
Thus, (3.92) for K users and multiple classes is modified as

n 1 l.c
FZT<1+péT>1+pET> Z ZPUCUT (u’TCGDTC)

lcEL c Urc

. 1+pe, . .
X (Z Py (ur) ™ 1 (u, € DﬁT)) ) (5 13)

A
Using the fact IL{a < b}§ (g) for A > 0, we tighten the bound of
indicator function as

1 (VZele < P, (u,) < %7},4”) <
n )‘ué /\UZ 1
Ly Pn y L+
min _ vty by, (u) o (3.124)
)‘V,Zy+1:)‘u,Z1, >0 Pgu (ul/> P)/ZT/LJVJF:L
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for v = 7,7¢ Applying (3.124) into the all indicators function of (3.123)
yields

Fe< 1 ,1+,%) i G
14

L+ pe,

T EE,—(;

)\T’e‘r )\Tyl‘r“rl 1+PZ7—

. e (e \ T (P (ur) ) e
X min Py (u,) ' *rer o T
>0 uZT UT( T) (P{JLV(UV)>

)\7',27—4»1 7A‘r,£7— =

)\.,-c l_c n ATC L_c+1
.y e V(P
X min P{JL'TC (’UITC) (P{JLV(’L;,)) ( - u .
v

n
)‘TC,ZTC +17)\TC,£7—C 20 Urc ’YTC,ch-‘rl
(3.125)

n
PYT,ETJrl

Applying Lemma A.12 in Appendix A, into the second and third terms
of (3.125) at arbitrary p and at p = 0 , respectively, we find that

1 _E s n 7‘/1/71‘ n
min F'| ——— 1+p, | < Z min e (PZT Q7 e, Qr,eTC)
9276[071] T ]- + pe.,. ETC ELTC pzTE[O,l]

X eEs,ZT (pvpﬁT 7’77',Z7—+17’Y7',Z7—)+Es,27_c (07P[7JLTC 771'5,Z7_c+177‘rc,é7.c)‘ (3126)
By inserting (3.126) into (3.122), bounding each term in the summations
over £, and ¢, by the maximum terms, and using the fact that the sources
and the channel are memoryless, we obtain

& < max max min e "Eo(PQrerWQre )

T T €Ly Lre€L e pe[0,1]
X enES,fT (p,PUT VT, +1VT 8 )+nES,ZTc (07PU.,-C V7€ c+1 "YTCvZ-rC) X O(n) R (3 127)

where o(n) is a sequence satisfying lim,, .. logz(”) = 0. Recalling that ¢" <
> €2, by bounding the average error probability by the worst type of error T,

taking logarithm from both sides of it, using the properties given by (3.96),
(3.97) and (3.98), we find that

1
liminf —— log(€"®) > min min min max F ( WQ . . )
mint —— g(€") = mi fuip, min max Eolp, Qriers WQrepe

_ES,ET (p7 PUTa ’YT,ZT—H) ’}/T,ZT) - ES,ZTC (07 PUTc 3 ’Y’?’C,ZTc—‘rl) ,}/’T’C,KTC)' (3128)

Finally, we optimize (3.128) over 7,1, ..., Yy, for v =1, ..., K. This concludes
the proof.
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Chapter 4

The Multiple-Access Channel
with Correlated Sources

As mentioned in Chapter 1, for the MAC with correlated sources, the ob-
tained reliable transmission conditions in [12] are not optimal. In [31], by
applying coding techniques, a new set of sufficient conditions were proposed.
Moreover, in [35] new sufficient conditions for three-user MAC with corre-
lated sources were studied.

Here, we study the MAC with correlated sources which is described in
Section 1.1. After introducing the Gallager’s source function for correlated
sources, in Section 4.1, an achievable random-coding error exponent for joint
source-channel coding over a multiple access channel with correlated sources
is obtained in both primal and dual domains. The results are analyzed where
either messages and codewords are statistically dependent or independent.
From transmissible region, we find that considering statistical dependency
between messages and codewords leads larger exponent.

In Section 4.2, we generalize the results to the constant-composition fam-
ilies. Like single-user communication, generally, by fixing the composition of
the codewords, we attain more exponent. Parts of this chapter were presented
in [36] and [37].

In this chapter, we frequently use (1.24). Thus, firstly we introduce the
Gallager’s source function for two correlated sources.

Lemma 4.1. Consider two correlated sources characterized by Py. For
source v = 1,2, its outputs can be encoded into 2™ codewords such that
the probability of ambiguous encoding P, is bounded as

1
——log P, > min max pR, — Es . (p, Pv), 4.1
nooete = ey e’ +(p ) (41)

where for 7 ={1,2}, R; = R1 + Ry, and E, ,(-) is given by (1.24).

109



Proof. See Section 4.3.1 m

4.1 Message-Dependent Random-Coding Ex-
ponent with Statistical Dependency

As shown in Chapter 2, tuning the random-coding ensemble leads to im-
proved exponents in the point-to-point channel [7] and in the multiple-access
channel [38,39].

Inspired by these fact, we are motivated to consider joint source-channel
coding where codewords are generated by a conditional probability distribu-
tion of the codeword symbol that depends both on the instantaneous source
symbol and on the type of the source sequence. In particular, codebooks
are drawn from a multi-letter distribution that is the product of indepen-
dent conditional distributions that depend on the corresponding single-letter
value of the source message.

For user v = 1,2, we assign to source probability distribution Py, a con-
ditional probability distribution Q,, py, (z|u). We represent the set of these
distributions by {Q..p, : Pv, € Py, }. For every message ul! € Ul, we
randomly generate a codeword x, (u, ) according to the probability distribu-
tion Q7 . (u,) (@) = TT72y Qur(u,) (Twiltin,i), Where Q, x(u,) is & probability
distribution that depends on the type of u,, denoted by 7(w,).

Proposition 4.1. For the two-user MAC with transition probability W, cor-
related sources Py and the set of input distributions {QMPU” , Py, € Pu,,} for

v = 1,2, an achievable exponent E™% is given by

mds . . A — _
= min min D(P, P, . W
1 TE{{l}’{Q}’{l’z}}IS,UXYGPyxgcxy (UXYH UQLPUngJaU2 )
+
+[~ min  D(Pyxy|[Pv, Q. p, PUTCXTcy)—H(PUT)] ,
Pyxy€Ls(Puxy) T
(4.2)
where

. A (= N .
L. (Pyxy)= {PUXY € Puxxxy : Pu..x..v = Pu..x..v,

Es\U, X,Y) > Ep\U, X, Y)}, (4.3)

and \(U, X,Y) = log (Py(U)W (Y|X)), [a]* = max{0, }.
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We briefly note that by setting Pyyy = PUQLPUl QZPUQW and Pyyy =

p(_]z(y, the exponent in (4.2) can be shown to recover the achievable region
obtained by Cover, El Gamal and Salehi [12].

Proof. See Section 4.3.2. [

Next, we show that the achievable exponent given by (4.2) is ensemble
tightness. In other words, in Section 4.3.3, we prove that

lim sup — 1@ < Eds (4.4)
n—00 n
where € denotes the average error probability over the ensemble.

Now, to express the dual form of (4.2), like before we can apply the
Lagrange duality theory. However, since the interpretation of the results are
complicated, firstly we consider the case where the messages and codewords
are statistically independent.

4.1.1 Statistically Independent Input Distributions

By applying the same approach in Section 4.3.2; the achievable exponent of
(4.2) for statistically independent messages and codewords is simplified to

md . . . A 7~
= min min min  D(FPyl||Py) + D(P 5 5 W
= o B A, by, DN+ DP@ @2, W)
+
+ l ~ min N ~ min R D(PXYHQT,PU PXTcY> - H(PUTU.,-C>‘| 3 (45)
Pyelcsyf(Py) PZ{YEICC,T (Pg(Y) T

where

A

,CS,T( U) = {p(_] S Py . pUTc = pU_rc, Eplog (P_U(U)> Z Eplog (P(_](U))},
(4.6)

and

A

Ker(Pxy) = {pgcy € Pwxy: Px.y = pX,.cYa
B log (W(Y]X)) > B, log<W<Y|z<>)}, (47)

and [z]T = max{0, z}.
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Next, by setting T' = U, Z = Upe, U = U, X = X;, W = Q¢ p, CW
and Y = X,.Y in Lemma A.14 and then using the identity max{0,a} =
max,eco1] pa, (4.5) is simplified as

E™ >min  min  min D(P(_]HP[_]) + D(pXYHQl,PUl QZPUQ W)

T Pxy€Pxxy PuePu

+ max pD(]—c’XyHQT,pUT ]SXTCY) - PH(pUT\UTc)~ (4.8)

p€E(0,1]

To find the dual form of (4.8), we firstly analyze the source-exponent
terms. Recalling from (3.4) and (3.5), in Chapter 3, for each user a fixed
threshold was considered to partition the source-message set into two classes.
Here, we use the same idea in the primal domain. To express the primal form
of (3.4) and (3.5) for correlated sources, we recall that due to distributed
source coding [9], the messages of each source are encoded independently from
the other user. Considering this fact, in the following Lemma the asymptotic
form of (3.4) and (3.5) for correlated sources is given.

Lemma 4.2. Let Py be the probability distribution of two correlated sources
and for source v = 1,2, Py, be the marginal distribution of Py. Given
v, € [0,1] as the partitioning threshold, the set Py can be partitioned into
disjoint classes namely as BL(v,) and B(v,) where

B,(7.) = {ﬁU € Py iy Py(u)log Py, (u,) > 10%(%)} , (4.9)
By(v) = {pU € Py Y Py(u)log Py, (u,) < 10g(%)} : (4.10)
Proof. See Appendix 4.3.4. ]

Let v € {1,2} and v° denotes the complement index of v among the
set {1,2}. Roughly speaking, B.(v,) in (4.9), can be interpreted as the
asymptotic union of joint sequences (u;,us) with joint-type ]53, where as
long as the marginal probability Py} (u, ) is not less than the threshold 77, the
empirical distribution of u,. can be arbitrary (similarly for B2(v,) in (4.10)).
The following Proposition finds the Gallager source exponent function for
the messages belonging to classes B(v,) and B2(v,).

Proposition 4.2. Letv € {1,2}, and v° be the complement index of v among
the set {1,2}. For given v, € [0,1] and i, € {1,2}, in view of B¥(~,) given
by (4.9) and (4.10), we have

. ~min D(Pyl|Py) — pH(Pu,ju..) = —Esri1.(p, Pu. ),
Py ePy:PyeBit (v1)NB2 (v2)

(4.11)
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where

Esmil,iz (pa PUa 7) =

min lo
Ai>0,02>0 gz;

-

Ur g Y2

_(=nfn _(=D2x | 149
(ZP (u) ™ (PUl(u1)> e <PU2(U2)> e )
vlu)t+e | ——— - .

(4.12)
Proof. See Section 4.3.5. ]

In fact, in (4.12), the objective function is a convex function with respect
to A\, for v = 1,2, and hence the optimal A, minimizing (4.12) are the solution
of an implicit equation which is obtained by setting the partial derivative of
the objective function of (4.12) with respect to A, equal to zero. To be
precise, for the cases where both constraints pg € Bi'(y,) and pg € B2 (1)
are active, A\; and Ay derived as the solution of the implicit equation, are
greater than zero. Otherwise, the solution of the implicit equation is negative
and the optimal A, is zero.

Here, we compare the result given by (4.12), with independent sources.
In Chapter 3, it has been shown that by partitioning the source into two
classes, the obtained exponent is given in terms of Eg; (-) function where
i, =1,2.

Additionally, from Lemma A.16, for the source v = 1,2, with probability
distribution Py, , the partitioning threshold ,, and 7, = 1,2, we have

_ (=D,
PUI/ (u’/>> e

T

1

Esi, (0 Pu,, ) = nin logg Py, (u,) ( (4.13)

For independent sources, by applying Py(u) = Py, (u1) Py, (uz2) in (4.12),
and in view of (4.13), the function E,; ,(p, Py,) is simplified as

ES,T,ilﬂé (pv PU1 (ul)PUz (U’?)v :Y) = ES,i-r (pv PUﬂVT) + ES,iTc (07 PUTm%'C)u
(4.14)

where as discussed in (3.7), for 7 = {1, 2}, Es; (p, Pu,v) = Esi,(p, Pu,, 1) +
Esi,(p, Puy,72). In fact, depending on the tangent points given in (2.25),
Es {1.2},i1,i, () as a function of pis either Eq(p, Py, )+Es(p, Pu,.) or Es(p, Py, )+
Esi .(p, Py .,v.e) where v can be 1 or 2, and v° denotes the complement in-
dex of v among the set {1,2}.

For error type 7 € {{1},{2}} and for the four combinations of i1,y €
{1,2}, Figure 4.1 shows (4.14) for two independent sources with given -,
Y2 As shown in (4.14) and for Figure 4.1, the functions FE.;.(-) and
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Independent sources

0.1

5-1072

Figure 4.1:  The function Ej,;, ;,(-) given by (4.14) for two independent
sources Py, (u1)Py,(ug) versus p, for the fixed 71 and 7, where iy,iy = 1, 2.
For error type 7 € {{1},{2}}, the solid red and blue curves are respectively
E(p, Py.) and Es(p, Py,) + Es; (0, Py_.,Yre).

Es . 21(+) follow Es(p, Py,) given by (1.9), for an interval of p, while they
are the straight line tangent to Gallager’s source function beyond that inter-
val. However, the functions E .1 2(-) and Ej ,24(-) are either the Gallager’s
source function shifted by E; .(0, Py _.,7V-e) or the straight line tangent to
it.

On the other hand, for correlated sources with four combinations of
i1, € {1,2}, Figure 4.2 shows (4.12) for two correlated sources with given
1, Y2 and error type 7. It can be seen that for the example of Figure 4.2,
the functions Fs,11(-) and Es,01(-) are the generalized Gallager’s source
function (1.24) for an interval of p, while they are a curve tangent to Ej ()
beyond that interval. Thus, unlike the independent sources, instead of a
straight line tangent to Gallager’s source function, for correlated sources, a
curve is tangent to E, (-). The reason for this is explained in the following.

In Figure 4.2, consider E; ;21(-) where ¢; = 2 and i, = 1. For the region
of p where E,,51(-) equals to E,.(-), both constraints Py € B?(v;) and
Py € Bl(v,) are inactive, while for the region of p where E,,1(-) equals
to the curve tangent to E,.(-), only one of the constraints Py € B2(y,) or
Py € Bl(v,) is active (similarly for E, .1 1(-)). For given iy, i, let v € {1,2}
correspond to the active constraint. For example, in Figure 4.2, for the
region of p where E; ;21(-) equals to the tangent curve, only the constraint
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Correlated sources

1072
g 10~ ‘ ‘
(e Es,T,l,l(.) ////
Es,T,Q’l(.)
4 [ Es,T,l,Q(.) ) )
2 [ - - ES,T,Q,Q(-) p."‘x )
0 QU
,:,,/,;51“
—2 |
_4 | | | ‘
0 0.2 0.4 0.6 08 d

Figure 4.2: The function E ., ;,(+) given by (4.12) for two correlated sources
versus p, for the fixed v, and ~, where i1,i5 = 1,2. The solid red and blue
curves are respectively given by (1.24) and (4.16).

Py € Biv(v,) is active. Then, the primal form of the curve is

- min D(Pyl|Py) = pH(Pu,ju..), (4.15)

py Epy:
Zy Py (u)log Py, (uy)=log(v)

that corresponds to the Gallager’s source exponent function of messages
source v whose empirical distributions are fixed, i. e. the set {PU € Py :

5y Pu(u)log Py, (u,) = log(,)}

We note that (4.15), describes the situation that only the type class of
one of the sources is fixed. Thus, we have more freedom in the source-type
class of another source. This implies that for correlated sources the joint-
type class is not fixed, but rather contains the union of joint-type classes
whose type class of one of the sources is fixed. Thus, unlike the independent
sources, for correlated sources (4.15) is a curve rather than a straight line.

Coming back to Figure 4.2, for an for an interval of p, the functions

Es77',1,2 () (Es,7'72,2 ()) Is

P ()~ 5\
. % U, Uy ’
gunz%log; (;Pv(u) i ( ) ) , (4.16)

c T

where v € {1,2} corresponds to the fact that only the constraint Py €
Bir(v,) is active. In addition, beyond that interval of p, the functions
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Eyr12(-) (Egra0(-)) is (4.12) where both constraints Py € Bi'(v;) and
Py € B#(7,) are active.

Next, considering (4.8), we note that the optimization problem over p)_(,y
n (4.8) is coupled with the minimization problem over Py through Qu.py,
for v = 1,2, In view of classes defined by (4.9) and (4.10), we express
the dependency of the input distribution @), Py, ON Py, through the class
index. In other words, for Py, € B(y,), we let Q. fy,
larly for pU,, € B%(v,), we let QVPU = (),2. Applying this to (4.8), and

splitting the minimization over PU into minimization over disjoint classes as
we find that

= (), and simi-

mlnzl ip=1,2 11 nPuGPM P[j€B (71), PUEBZQ( 2)?

E™ > min min min , ~min  D(FPyl||Py)
T i1i2= 12PU€771,{ PUEB (71),Py€B;2(72)ng€Pg(><y

+D(Pyy||Qui, Q2 W) + max pD(Pxy[|Qri, Px.ev) = pH(Puju..)-
(4.17)
By using the min- max inequality, we swap the maximization over p with

the mlmmlzatlons over Pyy € Pyxy and Py in (4.17), i. e. B > E™d where
E™d s given by

E™ = min min max min D(pXYHQl,'h Q2,:,W)
i1,2=1,2 T pel0,1] Pyy ePaxy .
+pD(Pyvl|Qri Proy) + min  D(Pyl|Py) = pH (P o).
PUE'PLJZ
PyeBy! (v1)NB32 (72)

(4.18)

In (4.18), the inner minimization problems over Pyy € Pyyy and Py €
Py, respectively lead to the channel and source exponent functions. The

minimization over p_y is discussed in Proposition 4.2, while to find channel
exponent function, we use Lemma A.3. By setting ]3Xy = pr and Q = Q.
in Lemma A.3, the minimization over pr in (4.18), is optimized as

~min D(Pxy||Q1,1,Q2:,W) + pD(Pxy||Qri. Px,.v)
Pxy€Pxxy
= EO(pv QT,iTa WQTC,i.C,.)7 (419>
where Ey(-) is given by (1.14).

Now, putting back the results obtained in equations (4.19) and (4.11)
into the respective minimization problems over Pyy and Py of (4.18), and
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defining

11,8 ) = i E ’ TiaW T8 _EST’ii ,P, )
fui(mye) = wmin o max Eop, Qric, WQreie) = Eorivia (0 Py 7)

(4.20)
an alternative expression for (4.18) is derived as

pod : 1,0 , , 191
'7171:)22?6,1] ifiglzqyz f 15 2(71 72) ( )

where in (4.21), we optimized the exponent over 7, for v = 1,2. We re-
call that since two source-message classes namely B(v,), B%(v,) and two
input distributions @)1, ), 2 are considered for each user v = 1,2, there are
four possible assignments where in (4.21) the optimal assignment of input
distributions is considered.

In Section 4.3.6, we show that for v = 1, 2, the function

max EO (p7 QT,'iT7 WQTC,ii) - Es,T,i1,i2 (p7 PU7 :Y)v (422)

pE[0,1]

is non-decreasing with respect to v, when 7, = 1 and is non-increasing with
respect to v, when i, = 2. Considering this fact, to find the optimal
maximizing (4.21), we can use the same approach proposed in Propositiofl
3.2. In other words, the optimal v; and ~, are the points where the minimum
of all non-decreasing functions with respect to 7, is equal with the minimum
of all non-increasing functions.

Proposition 4.3. The optimal v and v mazimizing (4.21) satisfy

i2=1,2

min fi1(77,75) = min f;, 2(77,73)-
i1=1,2 11=1,2

min fi,(77,75) = min fou,(77,73),
=1, (4.23)

When (4.23) has no solutions, then v} € {0,1}. In particular, if f1,,(0,72) >

f2,i2(0,72) then 77 = 0, otherwise 77 = 1; and if fi, 1(11,0) > fiy 2(71,0), we
have v5 = 0, otherwise v5 = 1.

Proof. See Section 4.3.6. [

4.1.1.1 iid Random-Coding Exponent

Next, we show that the achievable exponent given by (4.21), is greater than
iid random-coding exponent. We recall that for iid ensemble, for each user,
only one input distribution generates codewords. For a two-user MAC with
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two correlated source P, transition probability W and given input distribu-
tions (01 and @), the i.i.d random-coding exponent is given by

Eiid —_

max Fy(p, Qr, WQre) — Es - (p, Py), (4.24)

min
re{{1}.{2},{1,2}} p€0.1]

where E ,(-) and Ey(-) are respectively given by (1.24) and (1.14). To prove
(4.24), we recall that iid ensemble is a special case of message-dependent
ensemble where for each user, only one class is considered. Assume that all
the messages of user v are generated according to (), = @, for v = 1,2.
Thus, all the messages belong to the first class, i. e. 73 = 79 = 0 and 7; =
19 = 1, and hence

Es,T,l,l(pa PU7 07 O) = Es,‘r(p> PU) (425>

Applying Q1 and Q5 in (4.19) as input distributions, by considering (4.25),
in view of (4.20), the exponent of (4.21) is simplified as (4.24).

Proposition 4.4. The achievable exponent given by (4.21) is greater than
that achieved using only one input distribution for each user, i. e.

E™ > max max min F, (4.26)
ie{l,2yizefl,2y T T
where
FY .= max Ey(p, Qri,, WQre..) — Es+(p, Py). (4.27)

p€[0,1]

Like (3.50), the lower bound in (4.26) selects the best iid random-coding
exponent among the all four combinations of input distributions through 7,
and ig.

Proof. See Section 4.3.7. n

4.1.1.2 Numerical Example

In this section, we develop an example showing that using two input distri-
butions for each user, attains larger achievable exponent than the case where
each user uses one input distribution. We consider two correlated discrete
memoryless sources with alphabet U, = {1,2} for v = 1,2 where

0.0005  0.0095
PU<0.0005 0.9895>' (4.28)

We also consider a discrete memoryless MAC, given by (3.54). As men-
tioned before, we observe that W is a 36 x 4 matrix where the transition
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Figure 4.3: min;, ;, fi, i, (71,72) With respect to 1 and 7,.

probability W (y|xy,x2) is located at row z; + 6(z2 — 1) of matrix W, for
(x1,22) € {1,2,...,6} x {1,2,...,6}. Recalling that each source has two
classes and that four input distributions generate codewords, there are four
possible assignments of input distributions to classes. Among all possible
permutations, we select the one that gives the highest exponent. Here, for
user v = 1,2, we consider the set of input distributions {[0 000 0.5 0.5],

[0.25 0.25 0.25 0.25 0 O]} For the channel given in (3.54), the optimal as-
signment is

Q.1 =1[00000.50.5] (4.29)
Q2 =1[0.25 0.25 0.25 0.25 0 0], (4.30)

for both v =1, 2.

For this example, from (4.23), we numerically compute the optimal 77 and
~5 maximizing (4.21) leading to 77 = 0.8469 and 5 = 0.6581. The message-
dependent exponent is derived as E™4 = 0.2611, while iid exponent for the
best assignment is derived as 0.2503. Figure 4.3 shows min;, ;, fi, , () with
respect to 71 and 7,. It can be seen that the maximum of min,, ;, fil;é () is
derived at (0.8469,0.6581); however, the lower bound is obtained at (1,0).

4.1.1.3 On the Error Type 7 € {{1},{2}}

In this section, we only focus on the error type 7 = {1} or 7 = {2}. Since
for these two error types, the messages of user 7 and 7¢ are respectively
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Table 4.1:  Values of (4.22) with optimal thresholds v} = 0.8469 v5 = 0.6581,
for types of error 7, and user classes i, and i,c.

(7:177:2>
(LY (12) (21 (22)
r={1} 03172 02735 03120 0.2611

T={2} 0398 04372 0.2611 0.4119
r={1,2} 02611 02972 0.2630 0.2883

Table 4.2: Values of FY

i in (4.27) for types of error 7, and input distri-
bution @1 ,, @2,

Ql,lv@?,l Q1,17Q2,2 Q1,27Q2,1 Q1,27Q2,2

T ={1} 0.2682 0.0642 0.3120 0.0879
T ={2} 0.3986 0.3986 0.2503 0.3696
r={1,2}  0.2097 0.2097 0.2630 0.2360

decoded incorrectly and correctly, one can conclude that for 7 = {1}, {2},
the message of user 7¢ is known at the receiver. To be precise, consider Figure
4.4, where the source is characterized by a probability distribution Py_on the
source alphabet U,.. The source message w, with length n is mapped onto
codeword x,(w,) which also has length n and is drawn from the codebook
C™ = {x,(u,;),u, € U"}. In addition, the channel state is characterized by
a probability distribution Py _.|v, .

Like before, we partition the source messages into two classes and we
assign two input distributions. In view of (3.4) and (3.5), for u, € Al(y,),
the codewords are generated according to Q. 1, while for u, € A%(v;), the
input distribution (), 9 is applied to generate codewords.

Similarly, we partition the outputs of the channel state Py .y, into two
classes. According to the class of u,c € Al(7,¢), the encoder sends the
codewords over the discrete memoryless channel with transition probability
W Qe with input alphabet X, and output alphabet Y x X, and for u,. €
A2.(7,¢), the channel W@, 5 is utilized to transmit the codewords.

For the model described in this section, by using random-coding union
bound, for 7 = {1} or 7 = {2}, the achievable exponent is obtained as

max min max FEy(p, Qri, , WQreic) — Es 144, (p, Pu, j), (4.31)

Yreyr€[0,1] irire=1,2 p€[0,1]
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Figure 4.4: Single user transmission in the presence of channel state.

where Ej 1,4, () is given by (4.12). We note that since 7 = {1}, {2} is given,
if the minimization over 7 in (4.21) is removed, (4.31) will equal to (4.21).
In Section 4.3.8, we show that (4.31) equals to

max{ max min max Ey(p, Qri, WQre1) — Es i (ps Pusyr),

vr€[0,1] ir=1,2 pe[0,1]

max min max Fy(p, Qri., WQre2) — Es 1. (p, PU,’yT)}, (4.32)

'77‘6[071] ir=1,2 pe[ovl]

where

P (u)) "\
Forsn (921 U’%):ini%logz(ZPU@li" (UU> ) .
T Urc Ur 77'
(4.33)

The first term of (4.32) can be interpreted as the message-dependent
exponent of channel W Q)1 where the source Py, is correlated to the channel
state. Similarly, the second term (4.32) has the similar meaning. Due to
(4.32), we can interpret that the final exponent is the exponent of the better
channel WQe; or WQ,co. Applying Py = Py, Py,, we find (3.53) as a
special case where the source and channel sate are independent.

4.1.2 Statistical Dependency between Messages and
Codewords

Now, we can find the dual form of (4.2). Firstly, by setting U = U, X = X,
W =Py .Q.p WandY =U.X.Y in Lemma A.1, (4.2) can be bounded

as the minimization over only pUXy € Puxxxy. Then, by considering the
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fact that Pz(z) = 3, Pzr(z,t), (4.9) and (4.10) can be rewritten as

B)(v) = {PUXY € Puxy + . Puxy(u,z,y)log Py, (u,) > log(y,)

u,T,Y
(4.34)
Bi(vy,) = {Pyg(y € Puxy : 3 PUXY u,z,y)log Py, (u,) < log(7,)
u,T,Y
(4.35)

Next, we split the minimization over Pyyy € Pyxy into minimization
1
over disjoint classes as min;, ;,—1,2 min ; PyePysPyeB (1), Py B2 (12 where B ()

and B2(v,) are given by (4.34) and (4.35). Finally, by following the same
approach presented in Section 4.1.1, the dual form of (4.2) can be written as
Emds > fmds where

Emds — : : Emds 4.
| Dnax . min min max iz (057), (4.36)
and
mds _ . 1 PUl (ul) _%
Britp2) = 202520 10g< Zy: <u§a;T Pl ( M )
Urc,Trc
P _(=D"2x ~ 1+p
X <U2<u2)) e QT,Z’T (];T’uT)QTC,iTc (xTC’uTC>1iPW(y|'Z‘)1ip) > .
Y2

(4.37)

By setting the partial derivative of the objective function of (4.37) with
respect to A, equal to zero, an implicit equation is derived to give A\, max-
imizing (4.37). In fact, if the constraints given by (4.34) and (4.35) are
active, the optimal X3 > 0 maximizing (4.37) is obtained as the solution of
the implicit equation. Otherwise, \¥ = 0.

Applying the same approach given in the proof of Lemma 4.3, we easily
find that for v = 1,2, EX®, (-) is non-decreasing (non-increasing) with re-
spect to 7, when i, = 1 (i, = 2). Thus, like before in view of Lemma A.8,
the optimal thresholds obtained at point that the minimum of non-decreasing
functions with respect to -, is equal to the minimum of non-increasing func-
tions, i. e. the the optimal -, maximizing (4.45) is obtained at the points
where

= min max E™®, (p,7)

iv=1 T pelo,1] Tt

min max E™; (p,7) : (4.38)

T pefon)

1,=2
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and when (4.38) has no solution, the optimal =, is either zero or one.
Comparing (4.37) with the objective function of (4.20), we find that as
long as the messages and codewords are statistically independent

Ef}ﬁs,zg (p7 ;7) = EO(pa Q7'7i-r7 WQTC,ZE) - E87T,i1,i2 (P, PU? j)’ (439)
where E™%, (\), Ey(-) and E 4, ;,(-) are respectively given by (4.37), (1.14)

T,01,12
and (4.12). However, recalling from (1.35), unlike MAC with independent
sources, for the MAC with correlated sources, since through Py the input
distributions of both users depend on each other, the statistical dependency

between messages and codewords may affect error exponent.

4.2 Studying Generalized Conditional Constant-
Composition Ensemble

In this section, in view of Section 2.1.3, we consider the ensemble defined as
follows. For user v = 1,2, we assign to every source probability distribution
Py, a conditional probability distribution Q,, Py, (x|u). For a given message
Uy, = (Up1,Uy2, ..., Uyy), We consider the sub-sequences of w which have the
same symbols. We define j, (u,) as the set of all positions where the symbol
u, appears in u,, i.e. for all u, € U,

Ju, (w,) = {i € {1,2,...,n}, such that u,; = u,}. (4.40)

The subsequence can be represented by w, (7, (uw,)).

Let Qux(u,)(Tv|uw,) be a conditional distribution that depends on the type
of u,, m(u,). We approximate the conditional distribution @, r(,,) with a
type-p conditional distribution Q,,m,,,(uy) that satisfies

_ 1 2
Qupr(u) (To|uy) € {0,,,...,1}, 4.41
por(un) (To|Uy) . (4.41)

forall z, € &, and u, € U,. We set p depends on u,, and wu,,, p = |ju, (u,)| and
choose this distribution such that the variational distance between @, x(u, )
and Q,,p r(u,) satisfies

1
< —. 4.42
p (4.42)

‘Qu,p,ﬂ(ul,) ($V|UV) - C_21/,71’(11,1,) (I‘V|U,,)

For every u, € U,, we randomly pick a sequence x,,,, of length |j,, (u,)| from

the set 77 (Qup., r(u,)) and set x,(j,, (w)) = €., We apply constant com-
position random coding with the set of distributions {Qwuwﬂ(uu) (xl,|ul,)}
u

VEZ/{V
to determine an achievable exponent.
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Proposition 4.5. For generalized conditional constant-composition random
coding over a two-user MAC with two correlated sources, ¢ is an achiev-
able exponent where

[E8cce — min D(p_UXYl |PUQ1,PU1 QQ’pUQ W)

pUXYGSgCCC
N +
+l1 (X,:Y|Uyre, X,e) —H(PUT|UTC)] . (443)
and
Seeee £ {ﬁUXY € Puxaxy : Poxy = PuQ, p, Qup, Privx,
Py € Py, Prux € PyluxX}- (4.44)
Proof. See Section 4.3.9. O]

Corollary 4.1. Two sources with joint distribution Py(u) can be transmitted
reliably over a two-user MAC with conditional probability W, if satisfy the
achievable region proposed by Cover, El Gamal and Salehi [172].

As mentioned before, to have a reliable transmission exponents must be
strictly positive. The derived exponents in (4.43) is always positive unless
D(PUXYHPUQ1 Py, Q, Py, W) = 0. In this case, by imposing the positivity
condition on the second terms of (4.43), Corollary 4.1 will be proved.

Next, by applying Lagrange duality theory, we find the dual form of
(4.43). The derivation is exactly the same as the one presented in Section
2.4.3. Applying the same approach as Section 2.4.3, the dual form of (4.43)
is obtained as

E®° = max min min max E2°, 4.45
12 €l0] iyia=12 T pefol] Ty21,22 (p7 7)7 ( )
where
Efcz(icm (p7 /Y) _max 5 fax
A >0 ,\2>0 B (u1,x1): B2 (uz,z2):

Zml B1(u1,21)Q1,i, (w1]u1)=0 Z 32 (u2,@2)Q2,i (T2|u2)=0

_10g< 3 <ZPU . <pU(u1)> <1>1A1(PU2(W))_(_P$A2

Ur, Ty é! Y2

u.,c Trc

Bi(uy,x1)+Bo(ug,xg) — =
xXe I+p Tyir (leuT)QTC,i.,—C (xTC

v W) )
(4.46)
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To interpret (4.45), we start by recalling the properties of EZ7, (-). Fol-
lowing the same steps given in the proof of Lemma 4.3, we conclude that for

v=1,2, E5', ()’ ~and EX ()’ _, are respectively non-decreasing and

T,11,12 T,11,12

non-increasing with respect to 7,. Thus, in view of Lemma A.8, the optimal
7, maximizing (4.45) is obtained at the points where
gcee

E = min max
iz (07) iy=1 T pef0,1]

gcee

B ()

min max
T pe[0,1]

(4.47)

z,,72

and when (4.47) has no solution, the optimal =, is either zero or one.
In addition, by comparing e () in (4.46) with E™ds. (.) in (4.37),

T,11,12 T,01,12
we find that with respect to E;nﬂsm( ), the function Efiicm(-) contains two

extra constrains shown by 31 (u1, 1) Ba(ug, z2). Roughly speaking, these two
constrains guarantee that for user v = 1,2, codewords of all the messages
belonging to the class i, have the fixed conditional composition.

We note that by setting Bi(uy, 1) = Po(ug, mou) = 0 in (4.46), we
have E™ds. (\) = E5%, (+). And since E£S°, (-) contains maximization over

Ty11,12 T,01,22 Ty81,12
Bll(ulﬂ‘rv) we have E;g'clclczg (:07 ) > E;'Ilgs,lg (p7 ) yleldlng

[8cce > Emds) (448)

where equality holds when the optimal £ (uy, 1) and By (us, £5) maximizing
(4.46) be zero.

Now, we study the case where codewords and messages are statistically
independent. By following exactly the same steps presented in Section 2.4.7,
the dual form (4.43) when codewords and messages are statistically indepen-
dent is obtained as

B = max min min max Eg (p7 QT irs WQTC ic) - Es Ty01,12 (pa PUa 7)7
Y1,72€[0,1] i1,i2=1,2 T p€[0,1] ) s ,THi1, U
(4.49)

where F 4, 4,(+) is given by (4.12) and

Egcc (pa Q’T,i7—7 WQTC,ig) - max max
o (z1): ag(mg)

Zml a1(z1)Q1(z1) OZ a1(w2)Q2(z2)=0

1+p
ay(zq) as(xzg)
—log Z (Ze e i Qr,z‘T(wT)W(ykr)HIPQTc,iTC(xTc)HIP> . (4.50)

¢,y

Comparing (4.50) with Ey(p, Qr;,, WQre ) appeared in (4.20), it can be
verified that since input distributions in (4.50) have the fixed composition,
E§“() contains two extra maximization over «q(z;) and as(xs). Following
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the steps that are nearly identical to the proof of Lemma A.9, we can conclude
that

E(g);cc(p> Q77i77 WQTC,Z'.CF) 2 EO (p7 Q‘r,ifa WQT¢,Z'$)7 (451)

and hence
e > pmd) (4.52)

where E™4 is given by (4.21).

To summarize the results, for the MAC with correlated source, we ob-
tained E™d, Fmds peece and E5° respectively given by (4.21), (4.36), (4.45)
and (4.49). Considering (4.48) and (4.52), the final conclusion is

[8cce > Emds’ (453)
E&c > pmd, (4.54)

However, unlike single-user communication, the comparison between F&
and E#° or the relation between E™% and E™ are not as easy as the
single-user communication.

The results obtained in this chapter are valid for the MAC with inde-
pendent sources. However, by using the similar input distributions given by
(2.61), we can conclude that statistical dependency between messages and
codewords has no benefit for independent sources.

4.3 Proofs

4.3.1 Proof of Lemma 4.1

To prove (4.1), we use the idea of random bins [10]. Let v = 1,2, for each
sequence U, an index is drawn randomly from {1, 2, .., 2”R”}. The set of all
sequences U, which have the same index are said to form a bin.

To generate codebooks, every u, € U" is assigned to one of 2"% bins

independently according to a uniform distribution on {1, 2, Q"R"}. Assume
that the index of the bin to which w, belongs, is z,,. Thus, encoder ¢, : U] —

{1,2, ..,Q”R”}, sends z,, i. e.

¢(u,) = 7, (4.55)

Decoder, by receiving the bin indices (z1, x2), declares @ as the transmit-
ted message if

’l:l/ = arg max P{}(y)]l{gbl(ul) = $1}]]_{¢2(’U/2) = ZEQ}, (456)

(w1,u)eUp xUy
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where 1{-} is an indicator function. An error occurs if @ # w, which can
be split into three events, namely (w1, us) # (uy,us2), (w1, U2) # (w1, Us)
and (@, Us) # (u1,us). We respectively denote these types of error by

7 e {{1}, {2}, {1,2}}.

Let P, denotes the the average error probability. Like before, using

the random-coding union bound [23] and the fact that min{l,a + b} <
min{1, a} + min{1, b}, we find that
r< Y r (457)
re{{1}.{2}.{1,2}}
where

Z [_7} u prl x PX2($2)

7 Pyt ure) 1{p- () = 2}
l P o) } (4.58)

and Py, is uniform over {1, 2, 2”3"}. We recall that the probability given
inside of (4.58), is the probability that ¢-(@,) = z, when Pp(t,, u.e) >
Py (u).

Applying Markov’s inequality to (4.58), we find that

PT<ZPU ZPXl I PXQ(ZEQ)

Pt ure)\’
min{l,Q_”RT > <Uf(7,_7}(u))> }> (4.59)

UrF#Ur

> 1

mm{l Z P

UrFUr

where in (4.59), we used the fact that P[¢(@,) = x,;] = 5. Using the
inequality min{1, a} < min,ejo 1 a” and inserting Py, (z,) = 27" to (4.59),
PT is bounded as

p
P7 < min ZP" u)'” S’”ZZ nf1g-nk (2 nRy > Py ( 'u,T,uTc)> ,

p€[0,1] 7 s
(4.60)

where since Py, is uniform over {1, ...,Z”RV}, we have Y, 27"% = 1. By
applying this fact to (4.60), using the memoryless property of the sources,
after some simple mathematical manipulations, we find that

1 P
—— log(PT) > max max pR, — log (Z Py (u)t—*° (Z PU(UT7UTC>S> ) ,

$20 pe(0,1] o

(4.61)
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where in (4.61), to tight the bound, we maximized over s > 0. Using Holder’s

inequality it can be proved that the optimal s = — maximizes (4.61) [5,

1+p
Prob. 5.6]. Hence,

(; Py (ur, uTc)liﬂ> o (4.62)

1
— Zlog(PT) > R.—1
- og(P) > max p ogUT

c

Next, in view of (4.57), by upper bounding the summation by the worst
type of error, we conclude the proof.

4.3.2 Proof of Proposition 4.1

The proof of Proposition 4.1 is similar to the one presented in Section 2.4.1.
Bounding €", the average error probability over the ensemble, and applying
the random coding union bound [23] for joint source channel coding, we
obtain

o< 3 rovtes (S BEES L s

where & has the same distribution as & but is independent of y. We group the
error events corresponding to the summation over (@, ws) # (uq,uy) into
three types of error events, namely (@, us) # (w1, u2), (w1, U2) # (U1, us)
and (@1, Us) # (w1, us). We respectively denote these types of error by
7 e {{1},{2},{1,2}}. Using that min{1,a + b} < min{l, a} + min{l, b}, we
further bound €" as

&<y e, (4.64)

EZ S PZ}XY(@,@,ZJ) min{la Z Z,n(ﬂT)("i}T’ﬁT)}-

Ur £Ur
Pry(ar urc) W (ylar, @ c)

— >
T P W e my) o

(4.65)

Like Section 2.4.1, we group the outer and inner summations in (4.65) based
on their empirical distributions. Let p,UXY denotes a possible empirical dis-
tribution of (u,x,y). Since there is no constraint on (u,z,y), P(_]XY runs
over the set of all possible empirical distributions, P, y.y. On the other
hand, since based on the MAP criterion, (i, &,) leads to error, the empirical

128



distribution of (@, &,) denoted by Pyxy is restricted to the set £, defined
as

R N i R
L2 (Pyxy) 2 {Puxy € Plxany : Porex,ey = Puex,ev,

EsA(U, X,Y)] > Ep[AU, X,Y)]}. (4.66)
As a result, we can write the summations in equation (4.65) respectively as

Z P{}Xy(u,@,y) = Z Z Pﬁgy('&‘w@a?J)v (4.67)

v,y ngcyépﬁxgxy (w.z,y)eT"(Puxy)

and

N A A _
Z T,ﬂ'(ﬁﬁ(wT‘uT) -
Ur AUr
Pry(ar urc) W (ylér,@ c)

Pi}(y)W"(yIzpmz) =

> > 07 (i) (B |ihr), (4.68)

Puxy €Ly (Puxy) (8r,@:)€TL o cy(Puxy)

T

where T, . ., (+) is defined by (1.40).

Since the conditional distribution Q’T‘W(ﬁT)(ﬁszT) has the same value for

all (4., &,) € T

rcLrcy

(Pyxy), we have

Z _Z,w(ﬁf)(§37|ﬁ7> = |7:Zcm7cy(ﬁ)(_f)_(Y)|Qz,w(ﬁf)(ﬁ37|ﬁ7)-

(@r@r)€TY o oy(Puxy)

(4.69)

Considering (140) and the fact that PUTcX,.cY = pU,.cX.rcY in E:’(pgz(y) in
(4.66), we have the following upper bound

‘7‘”(13 ,UXY)’ P H (P xy)+o(n)

‘TR(PUTcXTCY)‘ N enH(PUTcXTCy)

’mmcy PUXY)‘ = a (4.70)

where o(n) is a sequence satisfying lim,, o(:) = 0. In addition, using equa-

tion (1.37) for conditional distributions, for all (@.,,&,) € mcwfcy(PUXY)a
we have the following identity on the conditional probability

AN (@T|ﬂﬂ') = en Zyﬂ@vy PUXY(%%Z/) 10g QT,IBUT (xTIUT) : (471)

T, (tr)
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Combining inequality (4.70) and identity (4.71) and into (4.69), we obtain
the following inequality

> _Z,n(m)(-’irmr) <
(ﬂfﬂﬁrT)eT&LTchcy(ﬁgXY)
e—n(D(Pyg(YHPUT QT’PUT PUTCXTCY)—H(PUT)> +0(n). (4'72>

Further upper bounding the right hand side of equation (4.72) by the max-
imum over the empirical probability distributions Pyxy € LP(Pyxy), we
have

> () (@ |tr) <
(Ur&r)ETY o oy(Puxy)
(DA P_~PCC—HP>
) max. e n( (Puxvl| UTQT,pUT U e X cy)—H(Pu,) +0(n). (4'7?))
PUXYGEZ_L(Pyg(y)

Moreover, in view of (1.39), the second summation of the right hand side
of (4.67) can be expressed as

PuxyllPuQy p, Qopy; W)

) Poxy(u,z,y) < e_"(D( o (4.74)

(u.z,y)€ET(Pyxy)

where ]SUV denotes the marginal distribution of FA’U, for v = 1,2. Similarly to
(4.73), we may upper bound the right hand side of (4.74) by the maximum
over the empirical distributions Pyxy € Py xxy, i- €

—n(D(P PyQ, . Q. » W)
> Poxy(u,z,y) < max e n( Py lPuQupy, oy, W)

p,UXYGPz;thgxy

(4.75)

Putting back the results obtained in equations (4.75) and (4.73) into the
respective inner and outer summations (4.67) and (4.68), we obtain that the
average error probability (4.65) can be bounded as

—n(D(Puxy|lPuQ, p, Qs p W)) .
< > max e ( T T TR T min < 1,

A PyxyePn
Puxy€Pl xny o) UXXXY

max

- . )
- ) PyxyeLl?(Puxy)

e—n (D(Pyg(YHPm QTJSUT PUTCXTCY)—H(ﬁUT)) +o(n) }
(4.76)
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where by using the fact that the cardinality of the sets £7(Pyxy ) and Pliscxxy

behave polynomially with the codeword length n, and satisfy ‘,CZ(PU Xy)‘ <
< eo("), we find that

‘Pﬁxafxy

—n(D(P
e < max e (

vxvIPrQy e, Qopy, W)) Foln) min { 1
A~ Y
P,UXYEnggéxy

max (&

—n(D(PUXYHPUTQT,ﬁUTPUTchcw—H(ﬁUT))w(n)} (4.77)
PyxyeLr(Puxy)

Using the identity min{1,e®} = el?" | we may write equation (4.77) as

Eﬂ; S e—nE,?-i—O(n)’ (478)
where
El=  min  D(Pyxv||Py@Q, p, Qsp, W)
PUXYGPIZX{YX)} U1 t Ug
~ ~ _ N ~ +
+ ~ minA D(P[_JXYHPUTQT,PU PUTCXTCY> - H(PUT) N (479)
PyxyeL?(Puxy) "

Since the average error probability over the ensemble is bounded by the
summation over the error events, we further upper bound the summation by
the worst type of error, i. e.

Z EZ < e " min, E.?—&-o(n)‘ (480)
Hence, from (4.64), we conclude that €” is upper bounded by the right hand

side of (4.80), i. e.
& S e—nminT E_’ﬁ-i—o(n)‘ (481)

Using the following properties
liminf(a, + b,) > liminf a,, + liminf b, (4.82)
n—00 n—00 n—ro0
ligggf min{a,, b, } = min { liggiorolf y,, liggglf bn}, (4.83)
we obtain that €* asymptotically satisfies

o 1 n
hTrLrl}g}f—ﬁlog(e ) >
min lim inf min D(P PyQ, 5 Qyn W
re({Lh L2} "R Py eP s, FoarllPe@, @, W)
N o R 1+
+ lim inf min D(PUXY|‘PU‘I’QT,ﬁUTPUTCXTCY) — H(PUT)

"o LPyxy el (Puxy)

(4.84)
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We note that the inequality

lim inf max{a,, b} > max { lim inf ay, lim inf b, } (4.85)
implies that
lim inf[a,|* > {lim inf anr. (4.86)

We further note that the set of all empirical distributions is dense in the set
of all possible probability distributions, and that the functions involved in
(4.84) are uniformly continuous over their arguments. Hence, we may replace
the optimization over empirical distributions by an optimization over the set
of all possible distributions. Using (4.86) in (4.84), we obtain

1 R _ _
liminf — —lo > min min D(P P, 5 s W
minf - log(e T)—Te{{l},{z},{l,z}}ﬁggyepgmy PoavliPu@, @, V)
Jr
+|  min D(FPyxvy||Pu, @ p, Fu,ex,ev) —H(Py,)| , (4.87)
Pyg{yGET(Pyxy) T

where L, (PUXY) is defined in (4.3). By renaming the right hand side of
(4.87) as E™9 | we conclude the proof.

4.3.3 Proof of (4.4)

In Section 4.3.3.1, by following the same method given in [11, Th. 1], we
showed that
1

€2 u, T
_TE{{l} {2}, {12}}4uzm:y Poxy(u,z,y)

min{l, Z P

or equivalently

1 n
TG{{I} {2} {1, 2}}1 e PUXY(’Q/;@,’!J)

i {1, > @D | (18)
uLFur

’T-P"("n )W ylel e
P @)W (yler,z) =

€>

4

where (4.89) follows from the fact that the inner probability in (4.88) is
equal with the summation over all codewords which are distributed according
Qrr(ury and give rise to an error according to the MAP criterion.
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Next, we group the outer and inner summations in (4.89) based on the
empirical distributions of (u,x,y) and (u’,x)), respectively, and then sum
over all possible empirical distributions, respectively denoted by p(_]z(y and
Pyxy. In view of (4.67) and (4.68), we have

Z Pﬁxy(%i_ﬂay) = Z Z PﬁXY(y”@’y)’ (4.90)

wvL.y pggcyépﬁxgxy (u,z,y)eT™(Puxy)
and
Z QZ,ﬂ'(uQ)(‘rB;lu;> = Z Z Z,fr(ug_)(w;‘u;)v
urFur Pyxye (ul 7)€

. Pg(u;,ufc)W"(ylm/T,mTc) >1 E:L(Pyz(y) quTchCy([:’yzgy)

R ST A Ty

(4.91)

where the set L? is defined by (4.66).
To compute the right hand of (4.90) and (4.91), we use [15, Lemma 2.3]
and [15, Lemma 2.6] which lead to

> Poxy(u, @, y) > ein<D(PUXY”PUQI»PIAQ2aPUzW))+°("), (4.92)
(u.z,y)eT™(Pyxy)
and since the type of u/, w(u") can be written as Py_, we have
Z QZ,W( /)<wfr‘u;) Z 6_7L<D(]5*UXYHPUTQ"vﬁUT pUTCXTCY)_H(PUT)) +O(n)7
(ul,@)e
T cw cy(Puxy)
(4.93)

where o(n) is a sequence satisfying lim,, 0(:) =0.
Putting back (4.92) and (4.93) into (4.89), the average error probability
is bounded as

€> max ! Z e_n(D(PUXYHPUQLPUl 2.5, W) Fo(m)
re{{1},{2},{1,2}} 4 -
U A UXX XY
- {17 5 (PP, Q. g, PUTCXTCw—H(ﬁUT))ﬂ(n)} (4.94)
Pyxy€eLM(Pyxy)

Lower bounding the right hand of (4.94) by considering only the maximum
terms in each summation, using the identity min{1,e"} = eld” | taking loga-
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rithms on both sides of (4.94) and multiplying result by —< we obtain

1 . _ ~ o(n)
——e< min min D (B P, 5 s W)+ —=
n re{{1},{2}.{1.2}} pUXYG’Pﬁxgxy ( (_])_(YH (_]Ql,P[/lQ27PI}2 ) n
. 5 o N . o(n)]”
~ min_ D (PUXYHPUTQT,PU PUTcX,.cY> —H(Py,)+——=| .
Pyxy €LY (Puxy) ’ n
(4.95)

Now we take lim sup from both sides of (4.95) and use the following properties

lim sup min{a,, b,} < min { lim sup a,,, lim sup b,, }, (4.96)

n—oo n—oo n—oo
limsup(a,, +b,) < limsup a,, + lim sup b, (4.97)

n— 00 n— 00 n—00

lim sup max{a,, b,} = max { lim sup a,,, lim sup bn}, (4.98)

n—00 n—00 n—00

we obtain
1 N _ _
limsup ——€ < min min D (R P, A s W)+
n_)oop n re{{11{21{1.2}} PyxvePuxaxy ( UXYH (_]QLPUl Q2,Pm )

+
l ~ min D (PUXYHPUTQT,PU PUTCXTCY) — H(PUT)] )
Pyxy€Ll:(Pyxy) T
(4.99)

where in (4.99) we used the facts that the set of all empirical distributions
is dense in the set of all possible probability distributions, and that the
functions involved in (4.95) are uniformly continuous over their arguments.
Hence, we may replace the optimization over empirical distributions by an
optimization over the set of all possible distributions.

4.3.3.1 Proof of Equation (4.89)

As mentioned before, the error probability for a given pair of codebooks is
denoted by €(C!,C?) where

G(Clvcz) = P (U{7 Ué) 7& (U1> UQ) >

> max
re{{1},{2},{1,2}}

P[U; # U],
(4.100)

where in (4.100), we group the error events into three types of error events
and we used the fact that the probability of union of some events is greater
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than than the probability of each individual event and specifically the more
probable one. Thus, in view of (4.100), we found that

1 2 /
e(C,C*) > e PlU; # U,|. (4.101)
Now, for given codebooks C! and C? and for type 7 error, let By, be
the event that one or more codewords yield a strictly higher metric than the
transmitted one, and let B;, be the event that the transmitted codeword
yields a metric which is equal with [ other codewords. In view of (4.101), for
type 7 error, we have

Ur|—1
o ]

e(Ch,C% > max PlU’ # U.| =P[B,,| + P[B,,]—— (4.102
CO2 a7 | = BBy — Bl (4102)

|tz -1

zP[BO,T]+5 P[B,.]  (4.103)
=1

1
E S(C1.C) + PBy]  (4104)

eT(Cl, C?), (4.105)

where (4.103) follows by noting to the fact that the {{3-} is an increasing

sequence, in (4.104) we defined € (C!,C?) £ P[B,,] + ZWT| "P[B,,] as the
error probability of a decoder which decodes ties as errors and the inequality
in (4.105) follows by lower bounding (4.104) by the first of the two terms.
Averaging (4.105) over the random-coding distribution, we obtain

_ 1 Pu(U')W"(Y|X'(U’))
€ > max 2E<IP{U4L¥JUT o T T >1|U,x Y}D
(4.106)
Po(u) W (y| X
> g 52 Pl (un0.) i {12]}»[ %(J)W“((?ﬁrw)) z 1] }
(4.107)

where X’ has the same distribution as X but is independent of Y and (4.107)
follows by the approach given in [12]. The verification of (4.107) is explained
in the following.
In [12], it is shown that for an arbitrary sequence of probabilistic events
Ay, ..., Ay, we have
k k Pl A2
PUA)= Y s 5
o Zim PlAiN A

i=1

(4.108)
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where for each event A;, we have P[A;] < ++P[A;] which leads to P[A;]P[4;] <

P[A;] (% + ]P’[Aj]). By summing both sides of last inequality over j we find
that

> PlAJPIA,] < PLAJ(1+ S PA,) (4.109)

=1

In addition, for the case that the events are pairwise independent we have
P[A;NA;] = P[A;]P[A;]. Substituting (4.109) into (4.108), we find that if
the events are pairwise independent we have

S aTase  PAL_shElA
i=1 1+ E (P4 T+ E?:l P[A;]

(4.110)

where the last inequality in (4.110) follows by applying the inequality ;¢ >
tmin{1,a}. Applying (4.110) into (4.106), we obtain the lower bound given
1 (4.107).

4.3.4 Proof of Lemma 4.2

Recalling P;; is the set of all empirical distributions on a joint vector in
U™, and T"(pg) is the set of all joint sequences in Y™ with empirical dis-
tribution Pg, U" can be partitioned by all possible empirical distributions,
Le U"=Upepp T"(Py). Since all u belonging to the set 7"(Py) has the

same probability, the set Y™ can be partitioned into two classes AL(7,) and

A () as

An) E{ue U T"(Fy) : Pp,(w) =0}, (4.111)
A() 2 ue U 7 T"(Py) : Py, (w,) <7}, (4.112)

for a given =, € [0, 1] where v =1, 2.
By letting v as the complement of v € {1,2}, and noting that for u €
T"(Py), the sequence w,, contains exactly n Y, e . Py(u) occurrences of u,,

the probability of w, is Py, (w,) = [, e, Fu, (u,,)nz%c ) et T™(Py) C
AL(v,), for u™ € T*(B ) the condition Py (w,) > v, can be written as
[T, e, Pu, (ul,)nzw Pulu ) > v where by taking logarithm from both sides,
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it is simplified as 3, Py (u) log Py, (u,) > log(v,). Using the same reasoning
for T"(Py) C A%(7,), the sets AL(7,) and A%(7,) can be rewritten as

Al(y) = {PU € Py ZPU )log Py, (u,) > log(’y,,)} , (4.113)
A2 (y,) = {PU €Py: ZPU ) log Py, (u,) < log(%)} , (4.114)

where in (4.113) and (4.114), we express Al(7,) and A2(v,) in terms of
empirical distributions.

As n tends to infinity, since the set of all empirical distributions is dense
in the set of all possible probability distributions Py, the sets AL(v,) and
A2(7,), respectively tend to Bl(v,) and B2(v,) given by (4.9) and (4.10),
and hence Lemma 4.2 is proved.

4.3.5 Proof of Proposition 4.2

To prove Proposition 4.2, we start by finding the dual form of the following
problem.

min  D(Py||Py) - pH(Py,.). (4.115)

f:’y EPM :ﬁy 66111 (1) ,f:’y 68;2 (72)

by applying Lagrange duality theory to the minimization problem. We use Ay
and \s as the Lagrange multipliers, respectively associate with the constraints
Py € Bi'(m) and Py € B (7).

We simplify the objective function of (4 115). Since D(ISU JVu..) >0, for
any V.. € Py,., we have -, PU( )logPU (Ure) > 22, PU( )log Vi (tre).
Multiplying both sides of the inequality by -1 and adding —H (PU) to the

both sides of it, we find that 3, PU( ) log — B E <2 PU( ) log Vo, (U )

Recalling the definition of H (PUT‘U .), the left hand side of the 1nequahty is

—H(ISUHUTC) meaning that —H(PUT|U ) <X, Py (u)log N (( Y -5 From the
last inequality, we conclude that the right hand side of the mequahty is always
greater than —H (Fy,|v..) and only is equal to —H (Py, .. ) when Ve (Ure) =

Py (ure) for all values of ure € Ure, 1. . miny, 37, Py(u)log Voo (( %) 5=

—H(ISUT|UTC). By applying this fact to the the objective function of (4.115),
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we obtain

- ; i Py(u)
D(FyllPy) = pH(Pu,u.e) = min D(Py||Py) +pZPU wlog 7y
(4.116)

Applying (4.116) to the objective function of (4.115), we find that

~ min  D(Py||Py) - pH(Py,p,.) =  min
PyePy:Py 66711 (71),Py EB? (72) VU‘I’C EPUTC
Py(u
I_Ilirl ) (PUHPU +’0sz logﬁ (4.117)
PyePy:PyeBl (1),Py B2 (12) U, (Ure)

Now, we apply Lagrange duality theory to the inner minimization over
Py in (4.117). Considering the constraints Py € Bi'(y1) and Py € B (v,),
and in view of definitions (4.9) and (4.10), the Lagrangian associated with
the primal is given by

A

P Py(u
A(Vi,e, Py, 0,01, 22) = D(Pyl|Py) +pZPU logV((u))
0 (1 N ZPM) + (=1 (Z Py(u)log Py, (ur) — log vl)
- u,x,y

+(—1)2)y (Z pg(y) log Py, (us) — logw) , (4.118)

where A, A2 and 6 are respectively the Lagrange multipliers associated with
the inequalities constraints pg € Bi'(m), 151,1 € BY(7,) and the sum of any
probability distribution over its alphabet is one.

Noting that the objective function and the inequalities constrains given by
(4.9) and (4.10) are convex with respect to Py, and the equality constraint
is affine, strong duality conditions are satisfied. Thus, the primal optimal
objective and the dual optimal objective are equal,

Py(u)
min min P Py) u)log ————
Vu,c€PU . PyePy:PyeB (v1)NB; 22(72) U|| U ; VUTC (UTC)
= min max_ maxmin A(Vy ., PU,G A1, A2), (4.119)

VU CGPU c )\1>0 )\2>0 9 PU

where we recall that for v = 1,2, the condition A, > 0 in (4.119) associated
with inequality constraint (—1)% (Z Py(u)log Py, (u,) — log(v,) < 0).
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Slnce the strong duality holds, in view of the KKT conditions, by setting
~5- =0, and applying the constraint °, PU( ) = 1, we obtain

aPU
AV, M, Ag) = —(=1D)" A log v — (—1)2)3 log 7,

1 (—1) 1A (—1)%2 2 o
— (1+p)log (Z Py ()™ Py, (un) ™ 17 Py (ug)™ 150 QVUTCch)“”) ’

(4.120)

where A(Vy, ., A1, A2) = maxgming, A(VUTc,pU,G,Al,)\Q). Inserting (4.120)
into (4.119), we find 7

Py(u)
min min P Py) + P u)lo
VUTC pyG'Py: ( v | ’ U p Z U g V (uTC)

PueBit (m1),PreBR (v2)

= vy 1611617%1[] . Alg&a},\}2(>0A<VU cy )\1, )\2) (4121)

We note that in (4.121), V. € Py and A, € [0,400) for v = 1,2.
Since Py is a compact convex set, [0, +00) is a convex set, A(Vy ., A1, Ag) is
concave on [0, +00) and convex on Py ., (4.121) satisfies the Sion’s minimax
theorem. Thus, we swap the maximization over A\, with minimization over
Vu.. which leads to

A

Py(u)
min min P Py) + P u)lo
Vu_e PyePy: ( UH U PZ U gVU c(uTc)
15963? (71)7ﬁy6532 (72)

=, max 131617r)1U C AV e, A, A2). (4.122)

Next, to solve the minimization over Vi, . in the right hand side of (4.122),
by inserting A(-) given by (4.120) into (4.122), we find that

Py(u)

min min  D(Py||Py) +p> Pylu logi =

VUTC Py Epg:py GB;I (71)0822 (v2) Z V (uTC)
By )\

. 1 Uy Uy L

W38, (P lg(mZP ( " )
_(=D2x
P 1+p
X (U(“?)> VUTC(uTcyL), (4.123)
Y2
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where in (4.123), considering the fact that logarithm is an increasing function,
we took the minimization over V. inside the logarithm.

Now, we can apply Lemma A.2 into the optimization problem given by
the right hand side of (4.123). By defining

(=112 (=129

i) = X Pl (P(“)) (P”) )

T V2

we let Vi (y) = Vi (ure) and e(y) = e(ur) in Lemma A.2. Thus, the optimal
V.. is derived as

1 C(nitn C(nizag \ TP
> Py(u)™0 Py (ur)” 0 Pyy(ug)” 150
Ur

1 (=D RECTV A
YD Pulty, tia) ™ Py, (1) 7 Py, (ug)” 1#7

Urc Ur

(4.125)

In addition, in view of (A.14) in Lemma A.2, the optimization problem inside

1
(4.123) is equal by (ZUTC e(uTc)Hp) e

A

A A PU(U)
min min A D(Pyl||Py)+p) Py(u)log———— =
VUTC pyEPy:ﬁyEBil (’Yl)ﬁB;z (’YQ) B ‘ B ) Xy: B ( ) VU‘I‘C (uTC)

_ES,T,ilﬂé (p7 PU> j) (4126>
where in (4.126), in view of Ej ,;, ;,(-) is defined by (4.12), we used the fact
that maxy —f(A\) = —min, f(A\). By replacing the left hand side of (4.117)
with the left hand side of (4.126), we conclude the proof.

4.3.6 Proof of Proposition 4.3

We start by proving the following Lemma.
Lemma 4.3. Let Ey(p) be a continues function of p. Considering Fs -, i,(+)
gwen by (4.12), forv = 1,2, the function max, Eo(p>_Es,Tﬂ'1’Z'2(')‘A _, s mon-

decreasing with respect to 7y, and the function max, Ey(p) — Es,md,iz(')). .

s mon-increasing with respect to v, .

Proof. Forv = 1,2, from (4.9) and (4.10), we note that by letting v/, > ~//, we
have Bl(7)) C BL(v”) and B2(v/,) 2 B%(v!). Thus, for all p € [0, 1] by letting
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i, = 1in (4.11), we conclude that for 4/, the minimization problem of (4.11)
>

is done over smaller set than for +)/, which leads to —Ej,;,.i,(-,7,)|. »
—Es i1 (70| » for all values of p > 0. Similarly, for i, = 2, since the
minimization problem of (4.11) for +/ is done over larger set than v/, we

< _—FE._ . (..~ ’ .
i,=2 5777117712( 771/) iy =2

Hence, let v¢ be the complement index of v € {1,2} and Ey(p) be a
function of p. For a given 7,c, we assume v, > ~/. Thus, regardless the

have _Esj,il,iz (.7 71,/)

value of i, the maximum of Ey(p) — Esri,.4,(-,7,)

Eo(p) = Esrivia (W), _
decreasing with respect to 7,. The same reasoning concludes max, Fy(p) —

. is not smaller than

Ty=

| meaning that max, Eo(p) — Es,m-l,zé()‘, | s non-
1y,=

Eq il )‘ , Is non-increasing with respect to ,. O
=

Now, in view of (4.20), we define F,;, ;,(7) as

FT,il,iQ (j) - plg[%é]?] EO(p7 QT,’LT) WQTC,if_) - E'S,T,il,i2 <p7 P[_]7 ])7 (4127)

where f;, ;,(y) = min, F;; (7). We note that F.; ;,(7) is of the form
maxe[o,1] EOZp) — B rivia(ps P_U_, 7) in Lemma 4.3. In view of Lemma 4.3,
F. 1., and F.4,, are respectively non-decreasing and non-increasing with re-
spect to v;. Similarly, regardless the value of 7y, F;;, 1 and F,;, o are respec-
tively non-decreasing and non-increasing with respect to vs.

Considering f;, ;,(y) = min, F;;, ;,(7), by applying the fact that the min-
imum of monotonic functions is monotonic, f;, ;, (7) defined by (4.20) is non-
decreasing and non-increasing with respect to +,, respectively when 7, = 1
and 7, = 2, for v =1,2.

Next, to find the optimal v maximizing (4.21), we express E™ as

max max minmin f;, ;,(7), (4.128)
7 "2 2 11 -

where for a fixed 71, the optimization problem max., min;, min;, f;, ;,(7) sat-
isfies Lemma A.8 with v = 79, i = iy, and k;(y) = min;, f;, ;(71,7). There-
fore, the optimal ~3 satisfies

min fi,1(v1,73) = min fi, 2(71,7%), (4.129)
i1=1, i1=1,

whenever (4.129) has solution. Otherwise, we have 43 = 0 when f;, 1(71,0) >
fil,?(,ylao); or ”}/5 =1 when fi1,1</}/170) S f’i1,2(’71, O)

Now, applying 72 = 73, the problem max,, min;, min;, f;, ;,(71,73) satis-
fies Lemma A.8 with v = vy, i =4y, and k;(y) = min,, fi,(7,73). Hence, 7}
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maximizing (4.21) satisfies

min fi,(77,75) = min fou, (77,75), (4.130)
19=1, in=1,

and in the case (4.130) does not have solution, 7§ = 0 when f;;,(0,72) >
f2.,(0,72), or 7§ = 1 otherwise. Combining (4.129) and (4.130) we obtain
(4.23).

4.3.7 Proof of Proposition 4.4

To prove Proposition 4.4, we use the properties of E; ;;, ,(-) function. Like
always, v € {1,2}, and v° denotes the complement index of v among the set
{1,2}.

Let 7, € (max,, Py, (u,),1]. In view of (4.9), regardless the value of i,c,
the minimization problem given by the left hand side of (4.11), is done over an

empty set when 7, = 1 which leads to ESM-M-Q(-)‘, _, = o0 However, for the
case v, € (maxy, Py, (u1),1] and y2 € (max,, Py,(us2), 1], if we have i; = iy =
2, by considering (4.10), the problem is simplified to a minimization problem

without any constraint over distribution Py, leading to Es .22(p, Py, 7,) =

ES,T (p7 PU)'
Similarly, when v; € [0, min,, Py, (u1)) and v, € [0, min,, Py,(us)), if
i1 = iz = 1, (4.11) is simplified as a minimization problem without any

constraint over distribution Py meaning that Es . 11(p, Pu,v.) = Es - (p, Pv).
While, regardless the value of i,, for v, € [0, min,, Py, (u,)), if i, = 2, again

= —00.
iy=2
In our analysis, it suffices to consider 7, = 0 or 7, = 1 to represent the cases

where Ej ;- ;,(-) is infinity. Let v = 1,2, same reasoning yields

the minimization is done over an empty set leading to Es ;;, 4, (+)

ES,T,ldz(')‘%:l = Es,r,Q,iQ(')‘%:O = Eoria()] = Borina()] = =00,
(4.131)
and
Es: ’ = FEs, ’ = Lo\ P, P )
{ m11(0) 12072 =0 m12(0) =091 +(p, Pv) (4.132)
ES’T’Q’l(.) y1=1,72=0 - ES’TQ’?(.) 1=1,72=1 - ES’T(p’ Py>'

From (4.20), we conclude that for the cases given by (4.131) and (4.132),
the function f;, ;,(71,72) is either infinity or is the Gallager exponent, i. e.

max Eo(p, Qri, s WQre i) — Es, 7(p, Py). (4.133)

min
Te{{1}.,{2},{1,2}} p€[0,1]

142



For example, when 71, v, € {0, 1}, the function f;, ;,(0,0) is equal to (4.133)
when 7; = i3 = 1, and is infinity for the rest combinations of i; and 7.

As a result, when 1,7, € {0, 1}, from (4.131) and (4.132) we find that
fir.i»(7) is finite in only one case, and it is infinity for other combinations of
i1 and i, more specificity

min fu 12( 0) = fl,l(oao), min le zQ( 1) = f1’2<0, 1), (4134)

i1,i90=1,2 i1,92=1,2
“IZIZHI% fll Z2( 70) = f2,1(170)7 zl%lI%Qf“ 12( 71) = f2,2<17 1)' (4135)

Next, by considering (4.134) and (4.134), we lower bound the achievable
exponent given by (4.21). By taking maximization over v, € {0,1}, rather
than the interval of [0, 1], i. e

E™ > max firis (71, 72), (4.136)

~v1,72€{0,1} @1, 12 1 2

we can find the following lower bound for E™d

Emd > maX{ mm fu 12<O O) mln fll Z2(O 1)

11,02= i1,i9=
mm le 22(1 0), mir% inlm(l, 1)}, (4.137)
1,22=1,

11,12

where by applying (4.134) and (4.135) into the minimizations over i; and iz,
we rewrite (4.137) as

E™ > max {f11(0,0), f1.2(0,1), fo1(1,0), fa(1,1)}. (4.138)

Inserting (4.133) into (4.138), we conclude (4.26).

4.3.8 Proof of (4.32)

From (4.12), we consider the following function

_(=DTAr N\ 14
PU e\ Ure 1 PUT (u.,-> I+p
iy (0 (£ s i

Urc Yre fYT

where the optimal #* minimizing (4.139) is either positive, negative or zero.
More precisely, by setting the first derivative of (4.139) with respect to 7
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equal to zero, n* is obtained as the solution of following equation

log(fY’rC ) =

i 1+p
Z (=17 xr
PU c /LLTC),I7 log PU c UTC ( E PU 1+p PU (uT>>_ 1+p >

Urc

oty \ P
> Py (ure)” ZPU ™ (P, (up))” ¥

Urc

(4.140)

Let the optimal n* satisfying (4.140), be positive. By comparing (4.139)
with (4.12), we can easily conclude that (4.139) is equal to Es ., ,(+)

ire=1"
While, since n* > 0, in (4.12) the A, minimizing ES,T,h,iz(')‘. , Is negative,
lrc=

and hence the optimal \X. = 0, i. e. when 7% > 0, the function E ;;, 4, (-)

ipe=2

equals to Fs ., (-) given by (4.33). Similarly, if n* < 0, Es,m-lﬂé(-)" _, will

equal to (4.33), while Es,mhh(-)" 8 (4.139). Finally, when n* = 0, both
ES’T,i1,i2(~)’_ _, and Es,v-,il,ig(')“ _, are equal to (4.33). Thus, n* = 0 plays

a critical role in the behaviour of the Ej ;;, 4, (+).
Given ;, let for v, = 7, we have n* =0 1. e.

_yyira, \ 1P
> log (Py.. (ure) (ZPU )T (Py. (uT))_( e )

Urc (—1yi7 A, 1+p
Z(ZPU 5 (P (uy)” )

Urc

log(v,) = . (4.141)

For v, € [0,7,), the optimal 7* maximizing (4.139) is negative, while for
Yre € (Vy, 1] we have n* > 0. To be precisely, we recall from Lemma 4.3,

Es,‘r,h,ig(')’i — and Es,‘r,h,ig(') P
decreasing with respect to 7,.. Moreover, in view of (4.131) and (4.132),

, are respectively non-increasing and non-

we can conclude that the function ES,T,il,iQ(‘)’, . is constant on the interval
Lrc=

0,7,) and equals to (4.33). While, by increasing ~,. along the interval [0, 7,),
the function ESN-M-Q(-)‘, . increases from —oo to (4.33). At 4, =, both

ES,T,Z-M-2(~)L _,and ES’T’il’”(')‘i __, are equal to (4.33). An then, by moving
V- along the interval (7,,1], the function Es,mi,iz(')'. » decreases from

(4.33) to —oo, while ES,T,iIJ-Q(-)y _, equals to (4.33) and is constant on the
interval (v, 1]. ’
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As a result, (4.31) can be rewritten as

max max  min  max Ey(p, Qri,, WQreic) — Es 14 4,(p, P, ),
Yre€[0,7m), irsire=1,2 p€[0,1] -
’yTE[O,l]

max X min max EO (P> QT,iq—? WQTC,’LE.) - Es,T,ihiz (IO> PU7 Y) }7

Yre €[, 1], irsire=1,2 p€[0,1]
~v-€[0,1]

(4.142)

where as mentioned, in the first and second terms of (4.142) the minimization
over i,c is attained respectively at ¢, = 1 and ¢, = 2, both leading to

max{ max min max Eo(p, Qri , WQrec;e) — Es 1, (p, Pu,7r),

~+€[0,1] ir=1,2 pe[0,1]

max min max Ey(p, Qri,, WQre i) — Es 1. (p, PU,%)}, (4.143)

7rel0,1] ir=1,2 pe0,1]

which concludes the proof.

4.3.9 Proof of Proposition 4.5

The proof of Theorem 4.3.9 is very similar to the presented proof in Section
4.3.2. To avoid repetition, here we just mention the main steps. Like before,
initially we bound €", the average error probability over the ensemble for
a given block length n. By applying the random coding union bound [23]
for joint source channel coding, and then grouping error events, the average
error probability is bounded as

& <> e, (4.144)

E:'L < PgXY(y’az_cay) min {17 Z :'L,p,fr(ﬁ-r)(:%7'|aT)}'

Wy Fuy Do
P{} (tr 7UTC)WH (yl&r 7ZTC)

= >
Pﬁ(y)W"(y\mmmTc) =

(4.145)

Like before, we group the outer and inner summations in (4.145) based
on the empirical distributions of (u, ,y) and (@, &), respectively and then
sum over all possible empirical distributions. Due to the fact that we study
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conditional constant-composition ensemble, the all possible empirical distri-
butions of (u, x,y) denoted by p{_] x,v are restricted to the types of empirical
distributions of (u,#,y) whose distribution of z, given u, are the type-p
conditional distribution defined in (4.41). It means that Pyxy belongs to
the set

S & {Pyxy : Puxy = PuQuy by, Qo Privs,
Py € P Privx € Piya ), (4.146)

where PUV is the marginal distribution of ﬁy. Moreover, the empirical distri-
bution of the inner summation in (4.145) is denoted by Pyx y and is restricted
to the set

ccC( D A D cce . P
L8 (Puxy) = {P_UXY €S Puex,ey = Puex.ev,

EsAU, X,Y) > EpA(U, X, Y)}. (4.147)

Thus, equation (4.145) can be rewritten as

EZ < Z Z Pﬁ)_(y(yw@ay)

PyxyeSE (u,a.y)eT(Puxy)

min {1, > > ‘Z’W(m)(ﬁmm)}. (4.148)

Pyxy L (Puxy) (r #0)€TE o oy(Puxy)

Since for all (@, &,) € mcm_rcy(pg)jy), distribution Qz,p,w(ﬁ.r)<£7|la7') has
the same value, the inner sum of (4.148) is

Z 7¢,p,7r(ﬁ7—)(‘,i7"/&’7') = ’mcmfcy(PU-Xy)‘Qﬁ,p,ﬂ(ﬁT)(ﬁzT’ﬂT%
(r 7)ETE e oy (PUxy)

(4.149)
where \mchcy(ﬁUXy)] is defined in (1.40). Noting (&, Z,) € mcw‘rcy(pgz(y),

n

we can write (7, )

1. e.

(! |ul) as the number of occurrence of the symbols,
Qip,ﬂ(u;)(wﬂu;) = "y PO (W)@ 5y (@rlun)logQ py, (rlur) (4.150)
As before, combining (4.150) and (4.70) into (4.149), we obtain
> i _Z,p,ﬁ(u;)(a:H’u’;—) <
(w7 ® )T e ey(PUXY)
T (PPOxY 1P Q iy, Pex ) =H(Pu,) ) oln)

) max
Pyxy €Ly, (Puxy)

, (4.151)
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where we bounded (4.151) by the maximum over the empirical probability
distributions P(_])_(y € L& CC(PUXY)

Additionally, to compute the summation over (u, z,y) € T’“‘Tcwﬂy(pg Xv)
n (4.148), we follow the same steps deriving (4.75). Thus we have

—n(D(P PyQ, . p. Qu, p W
> Poxy(u,z,y) < max e n( Pyl @y py, Doy, )).

R P eSgCCC

(4.152)

Combining (4.151) and (4.152) into (4.148), taking the polynomial number
of types into account and recognizing that a probability must be at most 1,
the average error probability is bounded by

g: < max e_n<D(PUXYHPUQ1,p,PU1 Qz,p,ﬁU2 W)) +o(n)

P_U{(Y es%ccc

. 0 (D@Uxy 1P, @, 1y, Pyex er)=H(Pu,) ) Holn)
mins 1, max e T .
Pyxyelsn(Puxy)

(4.153)

Like before, by taking logarithm from both sides of (4.153), using the identity
min{1,e*} = el we find that

——log(e}) = B — ——, (4.154)

E;r} = min D(pUXY||PUQ1,p,pU1 QQ,p,PU2 W>+

pggyesgccc
min D(Puxv||Pv,Qr.p, Pu,ex.ev) — H(Py,)
Pyxy€Ls5 (Pyxy) T

(4.155)

Now, by setting U = U, X = X,, W = Py .Qr°,p, Py .W and Y =
Ure XY in Lemma A.1, (4.155) is bounded as

E!>  min  D(Pyxy||PuQ,p, Qopp,. W)+
PUXYE‘S'rgLCCC Pl Uy P Uy

[D(Puxv||Pr,Q,, 5, Poox.cv) — H(Py)| . (4.156)
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Recalling (4.147), we have PUTC X,y = FA’UTC QTC% Py Py‘UTC x.. and thanks to

(4.146), p(_])_(y = pUQLp,PUl sz’p% Py|XU. Applying these facts to (4.156),
(4.154) is bounded as

1 n o(n) . A = =
- log(€r) = —— =+ gy e D(FPuxv||Pu@yyp,, @2p.,, W)
N +
+ [I (XY |Ure, Xre) = H( Py, (4.157)

Since both sides of (4.157) are bounded, by taking lim inf from both sides,
and then using the fact that U, Pjj, v« is dense in the set of all distributions,
we conclude the proof.
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Chapter 5

Conclusions and Future Work

In this thesis, for the point-to-point and the multiple-access channels, we
studied a number of random coding ensembles reviewed in the following.

1. The iid ensemble: for this coding scheme, codewords of each user are
generated independently according to an identical input distribution.

2. The icd ensemble: for this coding scheme, codewords of each user
are generated independently according to a conditional probability dis-
tribution.

3. The message-dependent ensemble: for this coding scheme, the
source outputs of each user are partitioned into countable classes and
are encoded by the codes that depend on the class index.

4. The constant-composition ensemble, in which for each user, code-
words are drawn from the set of sequences with a given empirical dis-
tribution.

5. The conditional constant-composition ensemble: for this coding
scheme, codewords are drawn from the conditional constant-composition
sequences. In other words, codewords are generated such that for the
message u,, and its corresponding codeword «,,, the ratio of the number
of occurrences of joint symbols (u,, z,) € U, x X, in the joint sequences
(u,,x,) to the number of occurrences of u, in u,, remains constant.

6. The generalized constant-composition ensemble, in which the
ideas of the message-dependent and the conditional constant-composition
ensembles are merged. For each user, the source messages are assigned
into disjoint classes, and codewords are drawn from the set of sequences
with a given empirical distribution that depends on the class index.
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7. The generalized conditional constant-composition ensemble, in
which the ideas of the message-dependent and the conditional constant-
composition ensembles are merged.

We found that for single-user communication and also for the MAC with
independent sources, among the studied ensembles, the generalized constant-
composition ensemble has the largest exponent. Thus, for the MAC with
independent sources, in terms of error exponent, there is no benefit to apply
statistical dependency between the messages and codewords. On the other
hand, the results show that for the MAC with correlated sources, considering
statistical dependency between the messages and codewords is essential.

In this thesis, we mainly focused on the messaged-dependent ensemble,
where to generate codewords, we assign a set of input distributions rather
than one input distribution. Hence, the optimal number of input distri-
butions are another problem to answer. For single-user communication, in
Proposition 2.7, we showed that two input distributions are sufficient for the
message-dependent random-coding exponent. However, for the MAC with
independent sources, we could only show that for the error type 7 = {1} or
7 = {2}, the sufficient number of input distributions for each user is two.
Unfortunately, the proof in Section 2.4.6 cannot be easily generalized to the
error type 7 = {1,2}. On the other hand, we could not find an example
showing that assigning more than two input distributions has benefit for the
exponent. As a result, the sufficient number of input distributions is for the
message-dependent exponent is still an open problem.

To generalize the results to continuous alphabet, we may use the idea
of cost-constrained random-coding ensemble [5, Ch. 7]. In fact, for user
v = 1,2, we can consider the cost-constrained ensemble characterized by the
following conditional distribution

1

PXU|UI./ (wV ’,u’V) =

ﬁ Qv(ﬂjj,umw)ﬂ{wu € SZ(UV)}, (5.1)

v j=1
where

E(u) = {a:u : ’aﬁ(wu,uy) — ¢, (w,)

<4}, (5.2)

and (i, is a normalizing constant, J, is a positive constant and ¢, (u,) =
Y, Ql’j(wy|uy)a}l(wy,uy). In addition, for each [, = 1,2, ..., L,, the func-
tion a;,(z,,u,) is a real-valued function known as a cost function where
ap (z,w) = 37 a, (5., Uj0).-

As discussed in [5, p. 324], the ensemble of codes whose all codewords
satisfies the constraint is included in the class of codes for which the average
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over the codewords satisfies the constraint. Thus, to find the achievable
exponent, by noting that af (x,,w,) = X7 ay, (7., u;,), we may simplify

o1, (u,) as

¢lu (uu) = Z H Ql/(xj,lj|uj,l/) <al,, (xl,ua ul,u) + ...+ ai, (J:nﬂn un,y))

(@1,050sTn,0) =1

(5.3)
=Y a(rrp,u)Q@iplu,) Y. QU (e Ty |Us . Uny) +
T1,v ($2,u7---7$n,u)
+ Z ar, ('rn,ua un,u)Qu<xn,l/’un,V) Z Q:/Lil(xl,lh X xnfl‘ulalﬁ e u”*1:1’>
Tn,v (1‘1,1/7-"71'7171,1/)
(5.4)

- ZZ x],l/auju Ql/ Xj, V‘U’], Z¢l ujl/ n¢l,,(u1/)a

J ZTjv

where in (5.3), we used the fact that af (x,,w,) = X7 @i, (5., u5,), in (5.4)
we broke the summation over (zy,,...,2,,) into summation over z;, and
summation over (&1, ..., Ti—1 4 Tit1ps -, Tnyp) and in (5.5), we used the iden-
tities that Y, Qr (@, |u,) = 1 and ¢y, (u,) = Eg, [ay, (zy, u,)]. For the cost-
constrained random coding, it may be proved that the following exponent is
achievable

min max sup log< Z Z PU( 1*"6211 (ml (z1,u1)— ¢11(u1))

T p€l0,1] {ri, 715} Yy Trc,Upe N Ur,@r
T a;, (r2,u U — A — T+e
oS iz (1 2.02) Q)QT(;ETWT) W (ylz) ™ Q. (xTc|uTc>1ip> ) (5.6)

We may compare the cost-constrained exponent given by (5.6) with condi-
tional constant-composition and icd exponents. Discussion about (5.6) and
its application for continuous alphabets are left for future works.

In this thesis, we only derived achievable exponents for the MAC by using
the idea of random coding. In Section 4.3.3, we showed that the primal form
of the achievable exponent given by (4.2) is ensemble tightness. However,
we do not find an upper bound for the error exponent satisfied by any code.
Generally, finding converse bounds for the MAC is more difficult than single-
user communication. It may be simpler to start by separate source-channel
coding, for the MAC with independent sources. In [31], by using Csiszar’s
techniques [15], sphere-packing and minimum-distance exponents were found.

Hypothesis-testing method can be another approach to find converse
bound. However, since here we have three types of error, the test should
be chosen more carefully. On the other hand, due to [13], the performance
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of the maximal error and the average error for the MAC are not as easy as
the point-to-point channel.
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Appendix A

General Lemmas

In this Appendix, we provide a number of general lemmas that will be used
through the thesis. Throughout this Appendix, we consider a discrete mem-
oryless source characterized by a probability distribution P .

Lemma A.1. Assume E™ be

E" = R min D(pUXYHPUQﬁUW)
Poxy €Plxxxy
- o “ - +
+ B minA D(PUXY||PUQ15UPY) —H(PU) 5 (Al)
Pyxyek™(Puxy)

where
KM (Pyxy) &
{Puxy € Plaxy : Pr = Pr.Ep\U, X, Y)] > ExAU, X, Y)]},  (A2)

and N(U, X,Y) = Py (U)W (Y|X). It can be proved that

R _ R . _ “ “ +
Em 2 min D(PUXY||PUQPUW)+ {D(PUXYHPUQPUPY) —H(PU):| .
(A.3)

PUXYEPﬁXny

Proof. To prove (A.3), firstly we assume
D (Pyxy||PuQp,Py) = H(Py) > D (Pyxy||PyQp Pr) — H(Py), (A4)

which leads to

D (Poxy|1BoQi, )~ H)| 2 [D (Poxv 1o, ) — H()]|
(A5)
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By adding D (ﬁ’UXyHPUQpUW) on the both sides of (A.5), (A.3) will be

proved. In the alternative case

D (Puxyl|PyQp, Pr) = H(Py) < D (Puxy||PyQp, Py) — H(Py), (A6)
by noting (A.2), we have EpA(U, X,Y) > EpA(U, X,Y) or

>~ Puxy(u,z,y)log (Pu()W(yla)) > 3 Prxy (u,z,y)log (Py(w)W (ylz)).

u,xr,y u,xr,y
(A7)
Subtracting (A.7) from (A.6), we obtain
5 PUXY(“» z,y)
Pyxy(u,z,y)log ( = S <
u%,:y P ()W (y|x)Qp, (x]u) Py (y)
A pUXY(% z,y)
S Py (. 2.) log ( wet) )y
wzy Py(u)W (y|x)Qp, (x|u) Py (y)

Moreover, in view of (A.2), Py = Py which leads to the fact that H(Py) =
H(Py) or equivalently

> Pyxy(u,z,y)log Py (y) = > Pyxy (u,z,y)log Py (y). (A.9)

u,x,y u,z,y

By adding (A.9) to the both sides of (A.8), we obtain

(pUJ%ﬁZSZ’i)@WJ =

A ZSUXY(U7$7y) )
>~ Puxy(u,z,y)lo = . A.
2 Foxr(w.y) g(PUw)W(y\w@pU(xru) (A.10)

Noting to the definition of the relative entropy, (A.10) can be expressed as

Z pUXY(U,flf,y) log

u7x7y

D(Pyxy||PyQp, W) < D(Pyxy||PuQp,W). (A.11)

- - N - +
By adding {D (Puxyl|Pu@p, Py) = H(Py)| on the both sides of (A.11), we

obtain

+

D(Pyxy||PyQp,W) + [D (PUXYHpUQPUpY) — H(Py)| <

+
D(pUXYHPUQPUW> + lD (pUXYHﬁUQﬁUpY) — H(pU>1 . (A12>
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Since IC"(]5UXY) C Pl xxy» we proved that whether D (pUXy| |15UQ13U py) —
H(Py) be lower than D (pUXYHpUQpUpY) — H(ZSU) or greater, we have

E™ > min D(PUXYHPUQPUW)

PUXYG,P&XXXJ/
+

+lD(pUXY||pUQPl,ﬁY) —H(PU] : (A.13)

]

Lemma A.2. Let Vy be a probability distribution and e(y) be a positive
function such that for p € [0,1], the quantity -, e(y)Vy(y)Tpp
function of Vy(y). Then, we have

1S a concave

_1
B T+p
@MZdeMW=<ZdW“> , (A14)
Yoy y
e(y)™
de(g)up‘
Proof. Recalling that >, Vy-(y) = 1, the Lagrangian associated with the
optimization problem in (A.14) can be written as

AVy,0) =3 e(y)Vy ()™ +0(1 = Vi (y)). (A.15)

Y

where the optimal Vy mazximizing (A.14) is obtained as Vy (y) =

In view of the KKT condition, setting the partial derivative of A(Vy-,#) with
respect to Vy (y) equal to zero, yields

P T =
Hpe(y)Vy(y) o —0=0. (A.16)

Solving (A.16) with respect to Vy (y), applying the constraint that 3>, Vy-(y) =

e(y)'™”
eyt
the optimal V- (y) into the left hand side of (A.14) proves Lemma A.2. [

1, the optimal value of Vi (y) is derived as Vi (y) = Inserting

Lemma A.3. For a given channel W with input distribution ), we have

min D(ISX}/HQW)—FpD(prHpr) :E0<p7Q7W)7 (A17)

PxyvE€Pxxy

where Ey(p, Q, W) = —log (Zy (Zm Q(x)W(y|x)H1p)1+ﬁ>.
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Proof. Firstly, we show that

D(Pxy||QPy) = H‘kl’n D(Pxy||QVy), (A.18)

where Vy is an arbitrary probability assignment over the alphabet ). To
prove (A.18), we use Lemma A.4. Setting Z = X and Pz = @ in Lemma
A4, (A.18) will prove.

Next, by substituting (A.18) into the left hand side of (A.17), it remains
to show that

min ~ min  D(Pxy||QW) + pD(Pxy||QVy) = Eo(p,Q,W).  (A.19)

W Pxy€Pxxy

In order to prove (A.19), we start by applying Lagrange duality theory to
the inner minimization over Pyy in (A.19). By recognizing that the sum
of the probabilities of all possible outcomes must be 1, the Lagrangian of
optimization problem over Pyy can be expressed as

A(Pyy,8) = D(Pxy ||QW) + pD(Pxy|lQVy) + 9(1 ~Y Poyla, y>),
x,y
(A.20)

where since the objective function is convex with respect to Pyxy and the
constraint 3>, , Pxy(z,y) = 1 is affine, strong duality holds which leads to

min  D(Pxy||QW) + pD(Pxy|lQVy) = maxmin A(Pxy,6).  (A.21)

Pxy€Pxxy Pxy

Using the definition of the relative entropy, the Lagrangian is simplified
as

. B . pxy(l’, y)tte N
MPxr o) = 32 Pty log s s + o(1- > Prrla »):

(A.22)
Since strong duality holds, we can proceed by analyzing the necessary KKT
conditions. Setting % = 0 yields
D 14+p
ok G G OO0 (A
leading to
Pry(a,y) = ¢ 5" Q@)W (yla) 7 Var (4) 7. (A.24)
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Summing both sides of (A.24) over z,y and applying >°, , Pxy(z,y) =1, we
obtain

0—(1+p) p

l=e T ZQ W (yl) 745 Vi (y) 750

(A.25)

Putting back T2 obtained in (A.25) into (A.24), the optimal Pyy is given
by

Q)W (y]) ™7V (y) T
ZQ ) y‘x 1+pVY( )1+p

z,y

Substituting (A.26) into (A.22), yields

Pyy(z,y) = (A.26)

max min A(pxy, 0) = —(1+ p)log (Z Q(x y]a:)lﬂ Wy (y )1iﬂ> , (A.27)

Pxy

where by putting back (A.27) into (A.21), (A.19) can be written as
min ~ min  D(Pxy||QW) 4 pD(Pxy||QVy)

YW Pxy€Pxxy
= mln (14 p)log (ZQ W (y|x) 1+ﬂVy( )1ip> . (A.28)

Since the function in the log term of (A.28) is a concave function with
respect to Vi and the logarithm is an increasing function, (A.28) can be
simplified as

min  min  D(Pxy||QW) + pD(Pxy||QVy)

VW Pxy€ePxxy
(14 oo (xS QW) V)7 ) (a2
Yoay

where the optimization problem of the right hand side of (A.29) is solved by
using Lemma A.2.
1
Setting e(y) = >, Q(z)W (y|z)™» in Lemma A.2, from (A.29) we obtain
min  min D(pxyHQW) + pD(pXYHQVY)

VW Pxy€Pxxy
_1

—(1+4p)log (Z (Z@ W (y|z) 1+p>l+p) - (A.30)

Applying the identity that (1+ p) log(b1 ») = log(b) to the right hand side of
(A.30), in view of the definition of Ey(-) an ( 19), we conclude (A.17). O
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Lemma A.4. Suppose Py be a probability distribution and let Pyy be an
arbitrary joint distribution where Py is its marginal distribution. It can be
proved that

D(pZYHPZpY) = H‘l/inD(pZYHPZVY), (A.31)
Y

where Vy is an arbitrary probability assignment over the alphabet ).

Proof. 1t suffices to show that D(sz||PZPy) < D(Pyy||PzVy) with equality
if Py( ) = Vi (y) for all y. Subtracting D(PZY||PZVY) from D(PZYHPZPY)
leads to

D(Pyy||PzPy) — D(Pyy|| P V) =

A Vy (y)
PZY Z, lo = = —
zZz; (79} log Py (y)

D(Vy||P,) <0, (A.32)

where (A.32) follows from the fact that the relative entropy is non-negative
with equality when Vy-(y) = >, ﬁzy(z y) forally € Y. Thus, from (A.32) we
conclude that D(Pyy || P Py) < D(PXY||PZVY) and equality holds if Vy (y) =

Py( ) for all Yy < Y. Asa result D(szHPZpy) IIllIlVY (sz||P2Vy) ]

1
(u) 17 log Py (u)
1

. P . . :
Lemma A.5. The function 2ot is continuous, non-decreasing

Zu Py (u) T
and one-to-one with respect to m Thus, for a given ~y, € [0,1] for £ =
1,...,L, let 1+p be the solution of the following equation
e

1
Y Pu(w) 7 log Py(u)

: = log(7e). (A.33)

Zu Py (u) AL

1
Since 2y o) T liPU(u) is non-decreasing with respect to 1—, we have
> . Puw)THe MG
<= ! < ! (A.34)
Ye+1 = Ve ” - .
1405, 147,

Lemma A.6. Let E(p,@Q1) and E(p,Q2) be two concave and continuous
functions of p. Consider the following optimization problem

E — E,i(p, Pu,7), A.35
Tnax min max (p, Qi) — Esi(p, Pu,7v) (A.35)
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where for i = 1,2, Eq1(-) and Eg5(-) are given by (2.33) and (2.34). The
optimal ~v* mazimizing (A.35), satisfies

max E(p, Q1) — Es1(p, Pu,7") = max E(p, Q2) — Esa(p, Pu, 7). (A.36)
p€l0,1] p€0,1]

When (A.36) has no solutions, the optimal v* is either zero or one. In fact,
Zf maxpyec(o,1] E(P, Ql) - Es,l(ﬁv PU» 0) > maxpyco,1] E(pa Q2) - Es,?(pa PUa O);
then v* = 0, otherwise v* = 1. Moreover, for the expression given by (A.35),
we have

max mln maXE(p7 QZ) - Es,i(p) PUa 7) = mnax E(p) - Es(pu PU)7 (A37)
~v€l0,1]i=1,2 p p€[0,1]

where Eq(+) is given by (1.9), and we have

E(p) = sup {A max E(py, Q;) + (1 — A) max E(py, Qi)} . (A.38)
p1,p2,AE[0,1]: 1=1,2 i=1,2
Ap1+(1=X)p2=p

Proof. From Lemma A.7, we conclude that with respect to v, both functions
max, E(pa Ql) - Es,l(pu PU7 fy) and maxp, E(pa Q2) - ES,2(p7 PU7 7) are non-
decreasing and non-increasing, respectively. Thus, (A.35) satisfies Lemma
A8 with ky(y) = max, E(p, Q1) —Es1(p, P, ) and ko(y) = max, E(p, Q) —
Ess(p, Pu,v). Therefore, the optimal v* satisfies (A.36).

In order to prove (A.37), without loss of generality, we write (A.35) as

max min max FE(p;, Q;) — Es.i(pi, Pu,7), (A.39)

~v€[0,1] i=1,2 p;€[0,1]
where the optimal v* is obtained by solving (A.36). In addition, correspond-
ing to v*, let p,«, given by (2.25), be the tangent point to E,(-) function.

Letting 7* as the optimal value maximizing (A.39), we define p} and pj as
follows

pi = arg r[na]xE (p1, Q1) — Esa(pr, Pu, "), (A.40)
p1€[0,1

ps = argmax E(py, Q2) — Es2(p2, Pu,7"), (A41)
p2€[0,1]

where 7* is derived by solving (A.36).
Therefore, (A.36) can be written as

E(p; Ql) - Es,l(pi(a PU: '7*) = E(pga QQ) - Es,Q(pza PU7 /y*)a (A42)

where without loss of generality we assume pj < p,» < p5. Recalling that
E;(-) for i = 1,2 is either the Gallager’s source function, or a straight line
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tangent to it. We assume both p} and pj, respectively are located at the
straight line parts of E;1(-) and Ejo(+). Without this assumption, in view of
Figure 2.2 and Figure 2.3, (A.36) is equal to

max { max F(p, Q1) — Es(p, Py), max E(p, Q2) — Es(p, PU)} . (A43)

p€[0,1] p€[0,1]

Since both p7 and pj, are located at the straight line part, in view of
(2.33) and (2.34), (A.36) can be written as

E(p}, Q1) — Es (py, Pu) — E. (py) (p} — pyr) =
E(p3,Q2) — Eq (pye, Pu) — EL (py+) (p5 — pye) - (A.44)

By solving (A.44) with respect to E (p,+), we find that

E; (pv*) _ E(p; Ql) B E(p’ﬁ, Q2) ) (A45)

i — P

Inserting the the right hand side of (A.45), in to E (p,+) appeared in the
left hand side of (A.44), (A.39) is derived as

i E 75 i) — Es 7P7 =
RIS 2 Bl @) = Bl P )

p* — Py * :0* — P> *
(1 - 1*’1> E(ﬂl? Ql) + ﬁEQO% QQ) - Es(p’}’*7 PU); (A46>

P1— P2

17— P2

where the sum of coefficients of E(p}, Q1) and E(p5, (Q)s) is one. By defining

A= pj*:p;**, recalling the definitions of py, p5 and v*, and expressing pj and
1 2

ps in terms of A and p,+, (A.46) is obtained as

i F i, i) — B ’P, =
R ey Bl @) = Bue P

max max (1 —=X) E(p1,Q1) + AE(p2, Q2) — Es(py, Py). (A.47)

Py p1,p2,AE[0,1]:
(A=) p1+Ap2=p

By comparing (A.47) with (A.38), we conclude (A.37).
[

Lemma A.7. Let E(p) be a function of p. Considering (2.33) and (2.34),
the function fi(v) = max,cp1 E(p) — Es1(p, Pu,7) is non-decreasing with
respect to v and fo(7y) = max,cpo1) E(p) — Es2(p, Pu,) is non-increasing
with respect to 7.
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1
1+p,Y/ ’
p is defined in (2.25). Considering (2.33) we conclude that for all values
of p € [0,1] we have Es1(p, Py,7v) > Esi1(p, Py,v'). Thus, the maximum of
E(p)—E;1(p, Py, 7) is not greater than the maximum of E(p)—E; 1(p, Pu,7')
meaning that fi(y) < fi(7) or that fi() is non-decreasing in .

Similarly, if v < 4/, by considering (2.34) we conclude that for all values of
p € [0,1] we have Fs(p, Py,v) < Esa(p, Py,7'). Using the same reasoning,
we have fy(v) > fa(7'), or equivalently that fs(7) is non-increasing in ~.
[

Lemma A.8. Let k() and ka(7y) be respectively continuous non-decreasing
and non-increasing functions with respect to vy € [0,1]. The optimal v* max-
imizing min;_y o k;(7y) satisfies the following equation

k(7)) = k2 (7). (A.48)
When (A.48) does not have any solution, we have v* = 0 if ki (0) > ko(0),
and v* =1 otherwise.

where

Proof. Let v,~" € [0,1] where v < 4/, or equivalently ﬁ <

Proof. In fact, the relative behaviour of a non-decreasing function with a
non-increasing function can be categorized in three cases.

1. We focus on the first case where k1(0) < k2(0) and ki(1) > ko(1),
i. e. there exists a v* such that ki(7*) = ko(v*). In this case, the
function min; k;(y) is non-decreasing from [0,7*), and non-increasing
from (v*, 1]. Thus, the maximum over « of min; k;(y) occurs at v = v*.

2. If k1(0) < k2(0) and k1(1) < ko(1), ki(7y) and ka(7) do not cross in
v € [0,1]. Hence, we have min; k;(y) = k1(y) and obviously since it is
an non-decreasing function the maximum over v occurs at v = y* = 1.

3. When £;(0) > k2(0), we have min; k;(y) = k2(7) and hence v* = 0.

UJ

Lemma A.9. For a given point-to-point channel W with input distribution
input distribution @, we have

E(():C(p7 Qa W) > EO(pa Q7 W)? (A49)

where E§°(+) and Ey(-) are respectively given by (2.56) and (1.14). More
precisely,

a(r):Zirrl;(L:i()Q(z):O —log <Z (Z e 1+p Q(x y|x)%) +p> >
o <Z <ZQ Wiyle) ﬁp)w)’ (A.50)

where the equality holds for the optimal QQ mazimizing (1.14).
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Proof. To prove (A.50), we start by obtaining the optimal &*(z) maximizing
the left hand side of (A.50). Since logarithm is a non-decreasing function,

the optimal a*(z) maximizing

max —log (Z (Ze 5 Q(x y\a:)%) +p>, (A.51)

&(z):zz a(z)Q(z)=0

has the same value with the one minimizing

- 1+p
i 1+P +o . A.52
C'V(ﬂE)E:IHC}Vl(fEl)Q Z ( Z ‘ Q y\:c) ) ( )

Since the objective function of (A.52) is convex with respect to a(z) and the
constraint Y-, a(x)Q(z) = 0 is affine, we have

min Z(ZerQ | ) 1 )1+P_

&(m):zz a(z)Q(x

max min y (Z o7 Q(x)W(y|x)m)l+p + 1 (— > oz(x)Q(x)) , (A.B3)

Booa(z) y T

where by taking derivative with respect to a(x), the optimal a(x)* satisfies

a(z)* a(z)*

= 2T Q@)W ) (T QW) (A5

where by summing both sides of (A.54) with respect to x and considering
the fact >, Q(z) = 1, we obtain

a(@)*

> (X Qe W(ylz)w) . (A.55)

Comparing (A.55) with (2.56), we have
E(p, QW) = — log(u). (A.56)

Additionally, removing Q(x) # 0 from both sides of (A.54) and taking
logarithm from both sides of it, yields

Ql
=
*

g 1o (z W)™ (X e QWi ™)' ) (15)

where by applying the constraint >, a(x)*Q(z) = 0 to (A.57), we find that

a(z)*

og(4) = QL) o W (0ke) 7 (S H QUaw ol )’ ) (458)
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and by comparing (A.58) with (A.56), E§¢ will equal to

a(

5 (p, @ W) = = 2 Q) log (Z W(yle)™ (3 e 112*@(96)W(y!x)1ip)p> :
(A.59)

Next, applying Jensen’s inequality to (A.59) yields

E5(p. QW) 2 ~log (Z Q(x) ZW(W)H%(ze%%L*@(x)W(mx)lip)ﬂ) |

(A.60)
which is equal to Ey(-) function, i. e.

B (0.QW) > Eolp, Q. W), (A.61)
where as shown in [20, Eq. (31)], for the optimal input distribution maxi-
mizing Fy(+), we have equality in (A.61).

[

Lemma A.10. Let h(u,x,y) be a positive function of variables (u,x,y) and
suppose k(x,u) be a positive function of (x,u) such that 3, , k(x,u) = 1.
Consider the following optimization problem

a(z I+p
min > (Zelip) h(u,x,y)) , (A.62)

&(m):zzyu k(z,u)a(z)=0 "y w

where p € [0,1]. The optimal value of a(x) which minimizes the objective
function in (A.62) is denoted by &*(x) and satisfies

&*(x) = (1+ p) log T
zy: (;h(u,x,y)e T+p ) Z&:h(u,x,y)
(2 9)e ™) S ha, 7 9)
x(zk(f,a)log§<“z;h ' ) %" y) (A.63)

In addition, the optimal value of &(u, x) which minimizes the following prob-
lem

a(u,z) I+p
min e %0 h(u,x, y)> , (A.64)
&(u,m):zx’“ k(z,u)a(u,z)=0 zy: ( UZ;
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is denoted by &*(u,x) and satisfies

a*(u,x) = 0 k(x,u) 5
( ) (1+P)1 gz <§h(u7x7y)ea1(rf”z)> h(u,x,@)
S (S h(az5)e ) a7, )
x<§ﬂ:k(f,ﬂ)log y ( :@u) ) ’ ) (A.65)

Proof. To solve the optimization problems given in Lemma A.10 we apply
Lagrange duality theory. Since the objective functions given in (A.62) and
(A.64) are convex with respect to a(x) and &(u,x), respectively and the
constraints >, , k(z,u)a(r) = 0 and 3, , k(z,u)a(u,z) = 0 are affine, the
strong duality holds for both problems.

To prove Lemma A.10, firstly we focus on the optimization problem given
(A.62). Since the primal problem given in (A.62) satisfies the strong duality
conditions, we have

min Z(%e

&(x):zz,uk(x,u)&(x)zo v

a(a) 1+p A
o h(u, x, y)) = max min Lo(a,v), (A.66)

a(x)

where ming () ﬁg(o_z, v) is the Lagrange dual function of the primary problem
(A.62) and the Lagrangian is given by

&

Lofa,v) =% (Z T h(u, z, y))Hp +v(0— Y k(z,u)a(x),  (A67)

Y

where v is the Lagrange multiplier associated with the given constraint
>ewk(z,u)a(xr) = 0. In order to determine maxming(,) L2(a, ), in view

9Lz(aw) _

of the KKT conditions, for the optimal values of (&, v), we have =32

which leads to

> (e

Yy

@

Sh,7.9)

P a(x)

et Z h(t,z,y) — v Z k(x,u) = 0. (A.68)

By solving (A.68) with respect to a(z), we obtain
v ZE k(l‘, a)

(@)

i |
> (zm h(w,y)ew) >a (i, 7, §)

a(x) = (1+ p)log (A.69)

To apply the constraint 3, , k(z,u)a(r) = 0, by multiplying both sides of
(A.69) by k(z,u), summing over (u,z) and using the fact that log(ab) =
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log(a) — log(3), we get

Z (Z T h(u7 ‘%7 g>€afp))p Zﬁ h(ﬁa xz, g)
log(v) > k(z,u) = k(z,u)log S 5 ) :

(A.70)

Considering the identity that 3, , k(u,z) = 1, optimal v is derived as

a(@)

> (z W, 7, y)ew) > h(@, 7, 7)
Zﬂ k"(i'a ’l_L)

v = exp (;k‘(f,ﬂ) log > (A.71)

Putting back v obtained in (A.71) into (A.69) and using the fact that €8 =
a, the optimal value of & is derived in (A.63) as a*(x).

Now, in order to find the optimal &(u,x) which minimizes (A.64), again
we apply Lagrange duality theory. since the approach is exactly the same,
we omit some details.

The Lagrange dual function to the primary problem (A.64) is

Ls(a,p) =" <Ze“iii h(u, y)>1+ n(0 Zk ,u)d(u, x)), (A.72)

)

where p is the Lagrange multiplier associated with the given constraint

e k(z,u)a(u, £) = 0. In view of the KKT conditions, by setting M =
0, we have

a(u, ‘L) P &(u,x)

Z (Ze o h(u xvy)> e o h(u,x,y) — pk(z,u) = 0. (A.73)

Solving (A.73) with respect to &(u,z), applying >, , k(x,u)&(u,r) = 0 and
> s k(u,z) = 1, after some mathematical manipulations, the optimal value
of a(u,x) is derived by (A.65) as &*(u, z). O

Lemma A.11. Let h(u,z,y) and k(x,u) in Lemma A.10 are chosen such

that for all values of (u,x,y), we have k?xxuy = ZZ hk?juy . Then &*(u,z) =

a*(z) for all u € U and the quantity of (A.62) is equal with the quantity
given in (A.64).

(u,z uh(%% ) h(u,x uh(u,z, )
Proof. If X y = ZX:: e ‘l; , we define z(x, y) as z(x,y) = Ig(xuy) = %uk(xﬂf)’ .

By replacmg z(m y) instead of % and h]ia%) in (A.63) and (A.65),
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respectively the quantities of a*(x) and &*(u,x) are given by

a*(z)

& (@) = ~(1+ p)log (X ( L@,z 9)e ™ ) 2(w,7) )

x (Z; k(7 ) 1Zg z:j?uz; W, 3, § e"li?)pz(f, y)), (A.74)
and |
& (u,x) = —(1+ p) log (}yj (Z M7 e ) 2w, 5) )
<( Sk 1og§ (Snw a0 ) @), (A7)

where from (A.75), we may note that the first term of (A.75) only depends on

x and the second term, is constant. As a result, when h]gé‘fl’f)’) = %hliu’gﬁ’y) —
, (zyu)

z(x,y) holds, the quantity of a*(u,z) only depends on z and for v’ # wu,
we have &*(u/,x) = &*(u,z) which implies &*(u,z) = a*(x). Using this
fact, by replacing &*(u,x) with &*(x) in (A.75) and comparing it with with
64*( ) given in (A.74), we conclude that &*(u,z) = &*(z) = a*(x) when

” iy y) % hku 2) . Putting back the optimal value of &*(z) given in (A.74)
into objective functions in (A.62) and (A.64), concludes Lemma A.11, i. e. the
quantity of (A.62) is equal with the quantity given in (A.64). O

Lemma A.12. For v 1,7y € [0,1], let v541 < 7. Then, for probability
distribution Py we have

Tl P( ) M;q 1+p
oy Qi R s COR I I O )
;?k“w(zp" " (rg) () ) o
(A.76)

where Es; (p, Pu,Yit1,7i) s given by (2.24).

Proof. Since the objective function of (A.76) is convex with respect to A; and
Ait1, we have

*
Ar>0
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for j =4,i+ 1. We recall that when the solution A} for j = 4,7+ 1 to (A.77)
is strictly negative, then A\¥ = 0. Let A7 > 0, then (A.77) yields

1—AX 42X

Ty Pr’}(U)ZWi;fiff}(“)) — log(+"), (A.78)
2w By (w) 15
and if A7, > 0, from (A.77) we have
X PGw) T 1,nl(j§*<PU(u)) = log("41). (A.79)

) i+1

Yu P (u) 15

Since the left hand sides of (A.78) and (A.79) are same, we conclude that if
both A7 > 0 and A7, > 0, then v; = ;1. In other words, if v; # vit1, it
is impossible that (A.78) and (A.79) are satisfied at the same time, i. e. it is
impossible that A7 > 0 and A7, ; > 0 at the same time.

Thus, we consider three cases including only (A.78) is satisfied, only
(A.79) is satisfied and none of the them are satisfied and we define p,, and

p’7i+1 as

11—\ 1

A _ , (A.80)
L+p  1+p,
LA 1 (A.81)

1+p  1+4p,.,

1. Let only (A.78) is satisfied, i. e. AF > 0 and A}, ; = 0. Applying A7 > 0
into (A.80), yields

1 1
- > 0. (A.82)
L+p 1+p,,
1=-Ar 1

Moreover, by inserting A7, ; = 0 and into (A.78), we obtain

1+p = 1+py,

Zu Py (w) 7 log(Py () _y 0oy (A.83)
Yo Py (u) T

where by considering (1.9), 4" in (A.83) can be expressed as

,y;l — 6Es (p’Yi ,P{}(u))—(l—f—p% )E./s (p’Yi 7P[77L(u)) . (A84)
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In addition, setting I_Jrf =1 +1p and A7, = 0 into the left hand side
i

of (A.76), leads to

1+p

A Nit1
1 n +p [ pPn I+p
min Z Pp(u)™e i u(w) =
Ait1,220 \ T Pﬁ (u) PYanrl

Py; —P Py P

1+p # n
:<§:Hﬂmu%ﬂ A s () S )

(]

where we used a(lt?) = e(+P)los(@)  Quhstituting (A.84) into (A.85),
yields

A

n 1+Z Pn( ) Aff e

= P2 (P PG (W)~ (p=p2 ) B (pr; Py (), (A.86)

for ps satisfying (A.82), i. e. for

1 - 1
1+p 1+IO’Y¢'

(A.87)

. Let only (A.79) is satisfied, i. e. A7, > 0 and A\f = 0. Using the

+>‘;'K-~-1 — 1
1+p 1+p’n+1

same steps as previous case, by defining ! , and applying

Ar.q > 0 into (A.81), for ps satisfying

1 1
< , (A.88)
L+p 1T+ py,
we have
Ai Ait1y 1+4p
n 1+p [ PR 1+p
min_ > P{}(u)ﬁ % u(w)
Ait1,A:20 | T Pg(u) %n-i-l
— eEs(p’yH_l1P{}(u))_(p_p"{i+1)Eé(p'\/i+11P{JL(u))’ (A89)
where p,, , satisfies the following equation
1
>u Pi(w) i log(Ph (w "
«Lolw) 70 ST gz, (a0)

S Py (w) T
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3. Let none of the equations (A.78) and (A.79) are satisfied, i. e. both A\;1;
and \; satisfying (A.77) are negative. Applying A;y1 < 0 and A\j;q <
into (A.80) and (A.81), for ps satisfying

1 1 1
< < :
1+10'Yi+1 N 1+,0 N 1+10%'
we insert A¥,; = A} = 0 into the left hand side of (A.76), which leads

n N\ o5/ pn ity o
min_ [ PR (u)Te o\ Bp(u)) _ o Pelp P (w)
W0\ % rw) \
(A.92)

(A.91)

Combining (A.92) for (A.91), (A.89) for (A.88) and (A.86) for (A.87), con-
cludes the proof. O

Lemma A.13. Let Los(p) = Lo(p) — Ls(p) where Lo(p) is a continuous
function and Lg(p) is a convex function of p. Then,

Los(p) < Lo(p) — Ls(p), (A.93)
where Los and Ly denote the concave hull of Los(p) and Lo(p), respectively.

Proof. From the definition of concave hull in (2.4), the left hand side of
(A.93) is given by

L= s {0Lo(p)+ (1= O)La(p)}.  (A99)
P17P279€[0,1} :
Op1+(1-0)p2=p

Using the definition of Lgs(p), the right hand side of (A.94) is simplified as

0Los(p1) + (1 — 0)Los(p2) =
OLo(pr) + (1 = 0)Lo(pa) = OL(pr) = (1= O)Lulpe).  (A.95)

Since Lg(p) is a convex function of p, and so OLs(p1) + (1 — ) Ls(p2) >
Ls(0p1 + (1 — 0)py), we further obtain that

0Los(p1) + (1 = 0)Los(p2) < 0Lo(p1) + (1 —0)Lo(p2) — Ls(p),  (A.96)

where we used that p; 4+ (1 — 0)py = p. Taking supremum from both sides
of (A.96), in view of [11, Sec. 2.9], we obtain that

sup  {0Los(p1) + (1= O)Las(pa) | <
p1,p2,0€[0,1] :
Op1+(1-6)p2=p

sup {0Lo(p1) + (1= 0)Lo(p) | — Lilp), (A.97)
p1,p2,0€[0,1] :
0p1+(1—0)p2=p

concluding the proof. O]
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Lemma A.14. Let T and Z be two correlated random variables character-
ized by Pry = Py. For a given channel W, source Py = Pryz, and input
distribution @, let E be

E= min min D(Py||Py) + D(Pxy||QW)

]SUE'PM pxyEPXXy

. . - +
-+ ~ Hlil’lA _ minA D(PXY’HQPy> - H(PT|Z> y (A98>
PUE]CS(PU) nyEICC(ny)
where
Ko(Py) & {Py € Py: Py = Py, Bplog (Py(U)) > Eplog (Pu(U))},
(A.99)
and

A

Ke(Pxy) & {ﬁxy € Pxxy : Pr = Py,
Eplog (W(Y[X)) > Eplog (W(Y|X))}. (A.100)
It can be proved that
E> min min D(Py||Py) + D(Pxy||QW)
PyePy Pxy€Pxxy

+[D(13XY||Q15Y) — H(Pryz) :

(A.101)
Proof. Firstly, assume for the optimal Py, Pyy, Py and Pyy minimizing
(A.98), we have

D(Pxy||QPy) — H(Priz) > D(Pxy||QPy) — H(Prz), (A.102)
which leads to

D(Payl|QBy) — H(Prz)|

> [D(pXYHQpY) - H(pﬂz) +- (A.103)

Adding D(Py||Py) + D(Pxy||QW) to the both sides of (A.103), (A.101) is
proved. Alternatively, if

D(Pxy||QPy) — H(Prz) < D(Pxy||QPy) — H(Priz), (A.104)

in view of (A.99), since Py(2) = Py(z), for all z € Z, we add —H(Py) =
—H(Py7) to the both sides of (A.104), where since Prjz = 22, we have

D(Pxy||QPy) + > Py(u)log (pU(U>> <

D(Pxy||QPy) + > Pu(u)log (Pu(u)). (A.105)
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Next, by using Ej log (PU(U)> > Eplog (PU(U)) and Ep log (W(Y|X)) >
Eplog (W(Y\X)), respectively given by (A.99) and (A.100), we find

ZPU )log (Py(u)) + Y Pxy(z,y) log (W(y|z)) >

T,y

3~ i) log (Pulu) + 3 Py (. log (W (yla)) .~ (A.106)

T,y

Subtracting (A.106) from (A.105) leads to

ZPU log<P<>>+ZPnyy)log< Pxy (@) )g

Py(u) W (ylz)Q(z) Py ()
5 v (u) e o Pxy(z,y)
2l @@wﬂ+z%””“@mmw%@>“m)

Moreover, in view of (A.100), Py = Py which yields H(Py) = H(Py) or
equivalently

> Pxy(x,y)log Py (y) = > Pxy(w,y) log Py (y). (A.108)

T,y z,y

By adding (A.108) to the both sides of (A.107), we have

p (U) pr(Ly)
= ot ion (105 ) + 5 Puvtato (7t ) <

ZPU ) log (PUEU;> ZPXY z,y) log (W) (A.109)

Using the definition of the relative entropy, (A.109) can be expressed as

D(Py||Py) + D(Pxy||QW) < D(Py||Py) + D(Pxy||QW).  (A.110)

+

By adding [D(prHQPy) — H(Prz)| on the both sides of (A.110), we

obtain

+

D(Py||Py) + D(Pxy||QW) + [D(pXYHQpY) — H(Priz)| <

. . B . . +
D(Byl|Py) + D(Pxy||QW) + [D(PXYHQPY) —H(Ple)] (A1)
Inasmuch as ICS(pUA) C Py and ’Cc(ﬁXy) C Pxaxy, we have proved that
whether D(Pxy||QPy)— H(Prz) be lower than D(Pxy||QPy) — H(Pr|z) or
greater, we have (A.101). O
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Lemma A.15. Let E(p) be a continuous function of p and we have 0 =
Vi1 <90 < o <y < = 1. Considering (2.24), for £ = 2,..., L, the
function

for—1(ye) = Hl[%ai] E(p) — Eso—1(p, P, Vo0, Vo—-1), (A.112)

is non-decreasing with respect to v, and

ff(yf) = prg[%ﬁi] E(P) - Esl(pv PU7 Y041, ’VV,E)a (Allg)

s mon-increasing with respect to 7.

Proof. In order to prove Lemma A.15, we compute E; () and E; ¢(+) for the
fixed source-partitioning thresholds ;.1 < v, < -1 and also we compute
Egp_1(-) and E; ¢ (-) for the fixed source-partitioning thresholds v,41 < yp <
Ye—1. We will show that if 7 < v then Egy_1(-) > Esp_1(-) and Es(-) <
Esp(-). Thus, max, E(p) — Ese—1(p, Py) < max, E(p) — Esp_1(p, Py) and
max, E(p) — Es(p, Py) > max, E(p) — Es ¢ (p, Py) meaning that f,_;(ye)
and fy(v,) are respectively non-decreasing and non-increasing with respect
to .

To prove Esp1(-) > Esp_1(+), recalling that v, < 7, we have 1+1Pw <
i + P . Hence, for vp41 <70 < 701 we express Eso_1(-) as
Eso1(p, Puy Yo, Yop-1) =
Es(pye, Pu) + Ei(ps)(p — pr,) i < T
Es(p, Fv) T, < T S 1+;1>W’ All4
Es(p, Py) 1+/1w, S5 S Ty Ay
Ey(pye s P) + Ey(pye ) (0 = Pry ) T > T
and for vo11 < vy < p-1, Esp—1(+) can be written as
Esv-1(p, Puy Yoo, Yoo-1) =
Eu(pays Pu) + ELpy,) (0 = pry) T < T
Es(pyys Pu) + EL(py,)(p = ) o Sy S 1+;1W’ (A115)
Es(p, F) Ty ST S Ty
Es(pye1s Pv) + Ey(pre )P = Py ) T T

where we recall that since F function is a convex function in the region of p e

[0, 1], the tangent line at p,, lies below E,. In addition, since 5 +p <7 +/1’w
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and the tangent line at p,, is above the tangent line at p,, for m <7 +p7
I
As a result, by comparing (A.114) and (A.115), we conclude that for all
p € [0,1] we have Es,—1(p, Py) > Esp—1(p, Pv).
To prove F, () < Esp(-) for v¢ < vp, similarly, for y,41 < 9, < 901 we

have

Esé(07 PU77V€+17’7V€) =

E (p’72+17 PU) + E (p’Y£+1)(p p’Ye+1) ?lp < 1+p1“/2+1 )
1 1 1
Es(pa PU) 1_;'_’076_{1 S 1+f S 1+p'1YZ’ (A 116)
Es(pw’PU)+E;(p7e)<p_p7z) e < Ttp < 140y,
Es<p7£a PU) + Eé(ﬂw)(ﬂ - pw) ﬁ > 1+;7£/ )
and for Ye+1 S Yer S Ye—1
ES,Z’ (p7 PU7 7U,£'+17 ’YV,Z’) -
E (pw+1>PU) + E;(p7e+1)(p - p’yeH) ﬁlp < 1_,_;{“_1 y
(pva) 1+1 Sigl_‘_l )
E.(p. Py) P — 77 e (A117)
s 1+P’yg 11+p - 1+1PW4/’
s(p’yzm PU) =+ E; (,O'ye/)(p p’}’g/) 1+p > 1+p-yl, )
where since ;7 ;pw < 7 +p7 for ﬁlp > g +pw the tangent line of E; at pp is
4 o /
above of the tangent line of E at py, meaning that E, ¢(p, Py) < Es v (p, Pv).

]

Lemma A.16. Let i = 1,2, for a given source probability distribution Py
and some 7y € [0,1]. Then, we have that

. (—11+>;'A 1+p
1 7 AT

Py (u)

where Es ;(p, Pu,7y) fori=1,2 is given by (2.33) and (2.34).

Proof. In order to prove (A.118), we may note that since the objective func-
tion in (A.118) is convex with respect to A, the optimal A\* satisfies

st o

A*>0
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This leads to

S Pp(w) T log(Py(w)
—— D = log(y"). (A.120)
It is convenient to define p, through the implicit equation
1—(=1)"\" 1
1+p  1+p,
When the solution to (A.120) is strictly negative, i. e. when
(—1)@'( Lot ) <0, (A.122)
1+p 1+p,
we have A\* = 0, and hence (A.118) simplifies to

1 v e
P”(u)1+P< )
(2 v Py (u) .

1+p
(ZP" 1+p> = e Felw) — (A.123)

(A.121)

Otherwise, when the solution to (A.120) is non-negative, i. e. when

(—1)1'( S )20 (A.124)

I+p 1+p,
and using (A.121), the left hand side of (A.118) satisfies

(=D 14p
fyn 1+p
in (ZPU b <P{}(u)> )

P e (1+p)10g(P (u )1+P“/> nP1=b
=D Pi(u)Te | AT =e F ey (AL125)

where we used a(!*t?) = e(1+A)18(@)  Using (A.121) into (A.120), we may
express y" in terms of the F,(-) function and its derivative F’(-) as

A" = eFelpr PG (W)= (1) Bx(pr P () (A.126)
Inserting the right hand side of (A.126) into (A.125), we obtain
. (—11+>;'A 1+p
min (Z Pr(u (P;Y( )) ) — o Bs(pr PE()=(0=p2) Bl (p P (w)
(A.127)
Finally, combining (A.123) and (A.127) respectively for (A.122) and (A.124),
and using the definitions (2.33) and (2.34), we conclude the proof. O
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