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Abstract
Due to delay constraints of modern communication systems, studying re-
liable communication with finite-length codewords is much needed. Er-
ror exponents are one approach to study the finite-length regime from the
information-theoretic point of view. In this thesis, we study the achiev-
able exponent for single-user communication and also multiple-access chan-
nel with both independent and correlated sources. By studying different
coding schemes including independent and identically distributed, indepen-
dent and conditionally distributed, message-dependent, generalized constant-
composition and conditional constant-composition ensembles, we derive a
number of achievable exponents for both single-user and multi-user commu-
nication, and we analyze them.

Resum
A causa de les restriccions de retard dels sistemes de comunicació moderns,
estudiar la fiabilitat de la comunicació amb paraules de codis de longitud
finita és important. Els exponents d’error són un mètode per estudiar el rè-
gim de longitud finita des del punt de vista de la teoria de la informació. En
aquesta tesi, ens centrem en assolir l’exponent per a la comunicació d’un sol
usuari i també per l’accés múltiple amb fonts independents i correlacionades.
En estudiar els següents esquemes de codificació amb paraules independents
i idènticament distribuïdes, independents i condicionalment distribuïdes, de-
penent del missatge, composició constant generalitzada, i conjunts de com-
posició constant condicional, obtenim i analitzem diversos exponents d’error
assolibles tant per a la comunicació d’un sol usuari com per la de múltiples
usuaris.
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Resumen
Las restricciones cada vez más fuertes en el retraso de transmisión de los
sistemas de comunicación modernos hacen necesario estudiar la fiabilidad de
la comunicación con palabras de códigos de longitud finita. Los exponentes
de error son un método para estudiar el régimen de longitud finita desde el
punto de vista la teoría de la información. En esta tesis, nos centramos en
calcular el exponente para la comunicación tanto de un solo usuario como
para el acceso múltiple con fuentes independientes y correladas. Estudiando
diferentes familias de codificación, como son esquemas independientes e idén-
ticamente distribuidos, independientes y condicionalmente distribuidos, que
dependen del mensaje, de composición constante generalizada, y conjuntos
de composición constante condicional, obtenemos y analizamos varios expo-
nentes alcanzables tanto para la comunicación de un solo usuario como para
la de múltiples usuarios.
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Preface
The assumption of infinite length sequences usually performs the key role

in proving the Shannon coding theorems. However, the delay and the com-
plexity constraints of the modern communication systems demand analysis
of the theoretical limits of communication with finite-length sequences. The
error exponent approach provides a better way of evaluating the exponential
decay of the error probability as a function of the sequence length. Not only
does the error exponent establish the fundamental limits of reliable commu-
nication but it also gives an insight about constructing better codes whose
error probability tends to zero more quickly. Considering the importance
of the error exponent, this thesis studies a number of achievable exponents
under different coding schemes and carries out analyses for both single-user
and multi-user communication systems.
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Chapter 1

Introduction

Shannon in his well known paper [1] answered two fundamental questions of
information theory. He considered the system consisting of one transmitter
and one receiver, and studied the problem of reliable communication over it.
Unlike single-user communication, for multi-user communication containing
multiple senders and receivers, the problem of reliable communication is not
solved in many cases. In this thesis, we focus on point-to-point and multiple-
access channels presented in the following.

1.1 System Setup
Here, we describe the system model of both single-user and multi-user com-
munication systems that will be assumed throughout the thesis (except where
stated otherwise). We follow the notation presented in Section 1.4.

Figure 1.1 shows a point-to-point communication system consisting of
a source, an encoder, a channel and a decoder. A discrete source over a
finite alphabet U is defined as a sequence of n-dimensional random variables
U , where each U takes values in Un. The jth element of the sequence U
is denoted by Uj, where j ∈ {1, ..., n}. In this thesis, we only consider
memoryless sources, and we say that the source PU is memoryless if and only
if, the Ujs are iid and their distribution is given by PU . Thus, the discrete
memoryless source PU generates length-n messages u = (u1, ..., un) ∈ Un
according to probability distribution P n

U (u) = ∏n
j=1 PU(uj).

The output of the source is processed by an encoder where each message is
assigned to a codeword with block length n. The encoder maps the message
u ∈ Un into the length-n codeword x(u) = (x1, ..., xn) ∈ X n drawn from the
codebook C = {x(u) : u ∈ Un}.

Then, codewords are transmitted over a channel with finite input al-

3
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Source
PU

Encoder Channel
W

Decoder UserUn Xn Y n Ûn

Figure 1.1: Transmission of a source over the point-to-point channel.

phabet X and finite output alphabet Y . A discrete channel is a sequence
of n-dimension transition matrices W n, where W n(y|x) is the conditional
probability of y ∈ Yn given x ∈ X n. Here, we only consider discrete mem-
oryless channels where the output sequence y = (y1, ..., yn) ∈ Yn is ran-
domly generated from the input sequence x ∈ X n according to W n(y|x) =∏n
j=1W (yj|xj). Due to the randomness inherent of the channel, the received

sequence at the output of channel differs from the original one. Hence, a
decoder is used to estimate the transmitted message based on a specific
criterion. Here, we use the maximum a posteriori (MAP) decoder. More
precisely, by receiving the sequence y, the MAP decoder estimates the trans-
mitted message û based on the following criterion

û = arg max
u∈Un

P n
U (u)W n(y |x(u)). (1.1)

An error occurs if the decoded message û differs from the transmitted u.
The error probability for a given codebook C is given by

εn(C) , P[Û 6= U ]. (1.2)

In addition, we say that the source PU is transmissible over the channel, if
there exists a sequence of codebooks Cn such that we have limn→∞ ε

n(Cn) = 0.
In this thesis, we also study the transmission over the multiple-access

channel (MAC). Figure 1.2 shows the transmission of two correlated sources
over the MAC. The discrete memoryless sources are characterized by a prob-
ability distribution PU1U2 on the alphabet U1 × U2, where U1 and U2 are the
respective alphabets of the two sources, and the source messages u1 and u2
have length n.

For user ν = 1, 2, the source message uν is mapped onto codeword xν(uν),
which also has length n and is drawn from the codebook Cν = {xν(uν);uν ∈
Unν }. Both terminals send the codewords over a discrete memoryless multiple
access channel with transition probability W (y|x1, x2), input alphabets X1
and X2, and output alphabet Y .

Given the received sequence y, the decoder estimates the transmitted
pair messages (u1,u2) based on the maximum a posteriori criterion,

(û1, û2) = arg max
(u1,u2)∈Un1 ×Un2

P n
U1U2(u1,u2)W n

(
y|x1(u1),x2(u2)

)
. (1.3)

4
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Correlated
sources

PU1U2(u1, u2)

Encoder 1

Encoder 2
W (y|x1, x2) Decoder

Un
1

Un
2

Xn
1

Xn
2

Y n
Ûn

1

Ûn
2

Figure 1.2: Transmission of two correlated sources over the MAC.

An error occurs if the decoded messages (û1, û2) differ from the transmitted
(u1,u2); the error probability for a given pair of codebooks is thus given by

εn(C1, C2) , P
[
(Û1, Û2) 6= (U1,U2)

]
. (1.4)

Like single-user communication, the pair of sources (U1, U2) is transmis-
sible over the channel if there exists a sequence of codebooks (C1

n, C2
n) such

that limn→∞ ε
n(C1

n, C2
n) = 0.

1.2 Preliminaries
The goal of communication is transmitting a message from a source to a des-
tination, reliably. By reliable transmission, we mean that one can reconstruct
the message at the destination with a very low probability of error.

In [1], Shannon studied the problem of reliable communication in a single
point-to-point connection. He answered two fundamental questions in com-
munication. Firstly, he found the fundamental limits on data compression as
source entropy and showed the impossibility of compressing a source without
information loss, if the average number of bits per source symbol is less than
the source entropy. Secondly, he also proved channel coding theorem stating
that for a given channel, there exists a quantity known as channel capacity
such that reliable communication is only possible at rates below the channel
capacity.

In fact, Shannon by introducing the idea of random coding, and using the
jointly typical decoder, found the fundamental limits of communication. In
this section, we review these fundamental theorems for both point-to-point
and multiple-access channels.

1.2.1 Error Exponent
A large number of information theoretic problems can be modelled as trans-
mitting a message over a noisy channel with very small error probability.
However, having small error probability corresponds to an increasingly large

5
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block length, and large block length n imposes delay on the system. In ad-
dition, due to delay requirements in practical systems, it is needed to use
codewords with finite block length.

Hence, it is important to study error probability in presence of codewords
with finite block length n. By using the maximum likelihood decoder, it has
been shown that for discrete memoryless channel, there exist a coding scheme
which error probability tends to zero exponentially as block length tends to
infinity [2], [3, Theorem 3], [4, Ch. 9] and [5, Ch. 5].

In fact, by expressing error probability as an exponential function of block
length n, we can not only determine reliable transmission conditions that
under them error probability tends to zero, but we can also construct better
coding schemes leading error probability tends to zero more quickly.

Roughly speaking, we are interested expressing the error probability as
an exponential function of block length n such as e−nE, where the exponent
E shows how quickly the error probability drops as a function of n. Recall-
ing that for point-to-point communication, the error probability is given by
(1.2), we define the error exponent as follows. An exponent E is said to be
achievable if there exists a sequence of codebooks such that

lim inf
n→∞

− 1
n

log
(
εn(Cn)

)
≥ E, (1.5)

and the supremum of all achievable exponents is defined as error exponent.
In fact, we can measure the performance of two different coding schemes

by comparing their corresponding achievable exponents. Particularly, the
one that has larger exponent, its error probability tends to zero more quickly.
Throughout this thesis, we propose different coding schemes and by compar-
ing their exponent, we evaluate their performance.

For the multiple-access channel, the error probability given by (1.4). Sim-
ilarly, an exponent E is achievable if there exists a sequence of codebooks
such that

lim inf
n→∞

− 1
n

log
(
εn(C1

n, C2
n)
)
≥ E, (1.6)

and error exponent is defined as the supremum of all achievable exponents
given by (1.6).

1.2.1.1 Source Coding and Channel Coding

As mentioned, the source coding theorem deals with the ultimate limit of
compressing a source sequence. Here, we review it. Consider a discrete

6
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memoryless source PU on the alphabet U , where an encoder compresses all
|U|n messages into a set with 2nR elements, i. e.

Un →
{

1, 2, ..., 2nR
}
, (1.7)

where the rate R is the average number of bits per source symbol.
In [6, Eq. (5.18)], it is showed that the average error probability of de-

compressing is upper bounded as an exponential function with respect to n,
and its exponent is given by

max
ρ≥0

ρR− Es(ρ, PU), (1.8)

where

Es(ρ, PU) = (1 + ρ) log
(∑

u

PU(u)
1

1+ρ

)
, (1.9)

is known as Gallager source function.
Since the error probability is upper bounded by e−n(maxρ≥0 ρR−Es(ρ,PU )),

it tends to zero if its exponent given by (1.8) is greater than zero. By us-
ing a similar argument to [6, Theorem 5.1], it can be proved that reliable
compression is possible, if we have

R >
∂Es(ρ, PU)

∂ρ

∣∣∣
ρ=0

= H(PU), (1.10)

where H(PU) is known as source entropy, and is given by

H(PU) = −
∑
u∈U

PU(u) log (PU(u)) , (1.11)

and conversely, if the rate R is less than the source entropy, the probability
of error tends to one.

Next, to review the channel coding theorem, we consider the Figure
1.3. Message m ∈

{
1, 2, ..., 2nR

}
is mapped into the length-n codeword

x(m) drawn from the codebook C =
{
x(1), ...,x(2nR)

}
. All codewords

are generated independently according to an identical product distribution
Qn(x) = ∏n

j=1Q(xj). The decoder receives the sequence y at the chan-
nel output, and estimates the transmitted message based on the maximum
likelihood criterion,

m̂ = arg max
m∈{1,2,...,2nR}

W n (y|x(m)) . (1.12)

7
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Encoder Channel
W

Decoder Userm Xn Y n m̂

Figure 1.3: Communication channel.

An error occurs if the decoded message m̂ differs from the transmitted m.
In [6, Eq. (6.31)], it has been shown that the iid exponent

E(R,W ) = max
Q∈PX

max
ρ∈[0,1]

E0(ρ,Q,W )− ρR, (1.13)

is achievable where

E0(ρ,Q,W ) = − log
∑
y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (1.14)

is known as Gallager channel function.
To find the reliable transmission conditions, by setting E(R,W ) in (1.13)

positive, and following the approach given by [6, Theorem 6.2], we find that

R < max
Q∈PX

∂E0(ρ,Q,W )
∂ρ

∣∣∣
ρ=0

= max
Q∈PX

I(X;Y ) = C, (1.15)

where I(X;Y ) is known as mutual information between input and output of
channel W , and C is the channel capacity. As mention in (1.15), the channel
capacity is the maximum of all I(X;Y ) which is defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

Q(x)W (y|x) log W (y|x)∑
x̄

Q(x̄)W (y|x̄)
. (1.16)

Conversely, if the rate of information is higher than the channel capacity,
then the probability of error is bounded away from zero.

Combining (1.10) and (1.15) provides us the possibility of the reliable
transmission of the discrete memoryless source PU over a point-to-point mem-
oryless channel, if its entropy is less than the capacity of the channel, i. e.

H(PU) < C. (1.17)

Similarly, by combining (1.8) and (1.13), we find that by the concatenation
of source and channel codes, the error probability exponentially tends to zero
by the exponent

min
{

max
ρ≥0

ρR− Es(ρ, PU), max
ρ∈[0,1]

max
Q∈PX

E0(ρ,Q,W )− ρR
}
. (1.18)

8
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1.2.1.2 Joint Source-Channel Coding

For joint source-channel coding, by considering Figure 1.1, the encoder maps
a length-n source message u to the length-n codeword x(u), where all code-
words generated independently according to an identical input distribution
Q. In [5, Prob. 5.16], Gallager derived the following exponent for an iid
ensemble

max
ρ∈[0,1]

E0(ρ,Q,W )− Es(ρ, PU), (1.19)

where Es(·) and E0(·), respectively are given by (1.9) and (1.14).
Comparing (1.18) and (1.19), we find that joint source-channel coding

leads to larger exponent than the concatenation of source and channel coding,
and hence its performance in terms of error exponent is better than the
separate source-channel coding. In [7, Theorem 3], it was proved that the
error exponent of joint design is may be up to twice that of the separate
design. However, by a similar argument to Gallager [5, Theorem 5.6.3],
we find (1.17) as a reliable transmission condition for joint source-channel
coding.

The rest of this thesis is devoted to joint source-channel coding exponent
for both point-to-point and multiple-access channels when different coding
schemes are applied.

1.2.2 Random Coding
Shannon in [1] used the random coding idea to prove the possibility of reliable
transmission over a noisy channel. We recall that, if there exists a sequence
of codebooks whose error probability tends to zero, reliable communication
is possible.

Consider an iid ensemble, where for a given input distribution Q, all
codewords of each codebook are generated independently according to the
identical distribution Q. In order to compute the average error probability
over the ensemble of all codebooks, it suffices that for each message, we sum
over all length-n codewords x ∈ X n when the input distribution Q is applied.
Table 1.1 shows the ensemble of all possible codebooks for two messages m1
andm2, when the length of codewords is n = 2 and X = {0, 1}. Each column
of Table 1.1 shows one possible codebook and the probability of occurring
each of them depends on the input distribution Q. If the error probability
averaged over an ensemble of codebooks tends to zero, then there exists at
least one sequence of codebooks whose error probability also tends to zero.

In this thesis, we frequently compute the average error probability by
applying random coding technique, and then we find an achievable exponent

9
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Table 1.1: The ensemble of all codes for two messages with block length
n = 2, and X = {0, 1}. Each column shows one possible code.

m1 00 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11
m2 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

for our problems. We usually use two different forms of solution to compute
error exponent. The first way of solution suggested by Csiszár and Körner [8],
is built based on the method of types properties, and the results are given in
the form of Kullback-Leibler divergence minimization. The final expression
of the exponent is known as the exponent in the primal domain, i. e. as
a multidimensional optimization problem over distributions. In fact, the
exponent in the primal domain gives us a good insight about the characterize
of the error event; however, since it contains a multidimensional optimization
problem, it is difficult to analyze.

On the other hand, for obtaining the error exponent, there is another
way of solution suggested by Gallager [5], where the exponent is derived by
applying Chernoff bound. Results are given in the form of optimization over
an scaler usually shown by ρ. The final expression of the exponent is known
as the exponent in the dual domain, i. e. a lower dimensional problem over
parameters in terms of Gallager source and channel functions. Comparing to
the exponent in the primal domain, the exponent in the dual domain is easier
to analyze; however, sometimes it is difficult to understand the operational
meanings behind the derivations.

Usually, by applying Lagrange duality theorem on the exponent in the
primal domain, we can get the exponent in the dual domain. In the thesis,
we apply both methods for different problems, and we use Lagrange duality
theorem to have the results both in primal domain and dual domain.

1.2.3 The Multiple-Access Channel

As shown in Figure 1.2, the multiple access channel considers the problem of
transmitting information from two or more sources to one receiver. To answer
the fundamental limits of communication over the MAC, like point-to-point
case, reliable compression and reliable transmission of it were studied. Here,
we study the MAC with two correlated sources. We proceed by formally
presenting the compression of two sources, and then discussing the reliable
transmission over the MAC.

10
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1.2.3.1 Distributed Source Coding

Distributed source coding studies the compression of multiple correlated in-
formation sources that do not communicate with each other.

As shown in Figure 1.4, we consider two correlated sources with joint
distribution PU1U2 . For ν = 1, 2, the encoder ν compresses all Unν messages
into a set with 2nRν elements, i. e. for two encoder mapping, we have

Un1 →
{

1, 2, .., 2nR1
}
, (1.20)

Un2 →
{

1, 2, .., 2nR2
}
, (1.21)

and the decoder decodes
(
Ûn

1 , Û
n
2

)
as the transmitted messages, i. e. the

decoder mapping is{
1, 2, .., 2nR1

}
×
{

1, 2, .., 2nR2
}
→ Un1 × Un2 . (1.22)

As pointed in (1.4), an error occurs if
(
Ûn

1 , Û
n
2

)
6= (Un

1 ,U
n
2 ). In fact, the

error event ˆ
¯
U 6= ˆ

¯
U can be split into three disjoint types of error events,

namely (Û1,U2) 6= (U1,U2), (U1, Û2) 6= (U1,U2) and (Û1, Û2) 6= (U1,U2).
These events are respectively labelled by τ , with τ ∈ {{1}, {2}, {1, 2}}. The
notation of index τ is explained in Section 1.4, specifically in (1.43) and
(1.44). In Chapter 4, we present the exponent of the error probability as

min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

ρRτ − Es,τ (ρ, PU1U2), (1.23)

where for τ = {1, 2}, Rτ = R1 + R2. Moreover, Es,τ (·) is the generalized
Gallager’s source functions for error type τ , and is given by

Es,τ (ρ, PU1U2) = log
∑
uτc

(∑
uτ

PU1U2(u1, u2)
1

1+ρ

)1+ρ

. (1.24)

Considering source coding theorem for single-user communication, if these
two sources are encoded and decoded separately, the reliable rate for the
first source is R1 > H (PU1), and similarly the reliable rate for the second
source is R2 > H (PU2). Thus, to have a reliable compression, we have
R1 + R2 > H (PU1) + H (PU2). Slepian and Wolf have shown that it is
possible to code these two sources with lower rate as [9]

Rτ >
∂Es,τ (ρ, PU1U2)

∂ρ

∣∣∣
ρ=0

= H
(
PUτ |Uτc

)
, (1.25)

where as presented in Section 1.4, for τ = {1, 2}, (1.25) is equal to R1 +R2 >
H(PU1U2).

11
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Correlated
sources

PU1U2(u1, u2)

Encoder 1

Encoder 2
Decoder Decoder

Un
1

Un
2

Xn
1

Xn
2

(
Ûn

1 , Û
n
2

)

Figure 1.4: Compression of two correlated sources.

Considering Figure 1.5, when two sources are encoded and decoded sepa-
rately, the achievable region is shown by blue; however, by separately encod-
ing and jointly decoding, the achievable region increases to the red region.
Roughly speaking, instead of H (PU1) +H (PU2), a rate R > H(PU1U2) would
be sufficient to accurately reconstruct both PU1 and PU2 at the decoder. As
a result, instead of H (PU1) + H (PU2), we only need H (PU1U2) to describe
joint sources error freely.

1.2.3.2 Transmissible Region

Many studies found the reliable transmission conditions for the multiple-
access channel [10], [11], [12]. Separate source-channel coding for the MAC
with independent sources was studied in [10] and [13], where for ν = 1, 2,
encoder ν takes as input a message mν uniformly distributed on the set{

1, 2, ..., 2nRν
}
, and transmits its corresponding codeword xν(mν) from the

codebook Cν =
{
xν(1), ...,xν(2nRν )

}
over the MAC with transition proba-

bility of W . Considering iid ensemble, for given input distributions Q1 and
Q2, by receiving the output sequence, the decoder estimates the transmitted
messages based on the maximum likelihood decoder,

(m̂1, m̂2) = arg max
(m1,m2):m1∈{1,...,2nR1},m2∈{1,...,2nR2}

W n (y |x1,x2) . (1.26)

In [13], the exponent of the error probability was derived as

min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0 (ρ,Qτ ,WQτc)− ρRτ (1.27)

where E0(·) is given by (1.14), and is the Gallager channel function for chan-
nel WQτc and input distribution Qτ , i. e.

E0 (ρ,Qτ ,WQτc) =

− log
∑

xτc∈Xτc ,y∈Y

 ∑
xτ∈Xτ

Qτ (xτ )W (y|x1, x2)
1

1+ρQτc(xτc)
1

1+ρ

1+ρ

, (1.28)
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H
(
PU1|U2

)
H (PU1) H (PU1U2)

H
(
PU2|U1

)

H (PU2)

H (PU1U2)

R1

R2

Figure 1.5: Distributed source coding.

and for types of error τ = {1} and τ = {2}, WQτc denotes as a point-to-
point channel with input and output alphabets given by Xτ and Xτc × Y ,
respectively, and transition probability W (y|x1, x2)Qτc(xτc). For τ = {1, 2},
the input distribution Qτ = Q1Q2 is the product distribution Q1(x1)Q2(x2)
over the alphabet X1 × X2, and WQτc,i = W . In [10] and [13], by using the
similar argument to the single-user communication, the reliable transmission
conditions for the MAC was derived as

Rτ <
∂E0 (ρ,Qτ ,WQτc)

∂ρ

∣∣∣
ρ=0

= I (Xτ ;Y |Xτc) . (1.29)

The transmissible region derived by conditions in (1.29), is shown in Fig-
ure 1.6. Like before, if the decoder decodes the message of each user sepa-
rately, only the blue region in Figure 1.6 is achieved. In fact, the blue region
of Figure 1.6 can be interpreted as the region that obtained by considering
the assumption that each user send its message over its channel. Assuming
no interference between the two users, the channel model can be simplified
as W (y|x1, x2) = W (y|x1)W (y|x2), and hence we only can achieve the blue
region. However, by decoding simultaneously the messages of both users, the
transmissible region increases to the red region.

Combining (1.29) with (1.25), we can say that correlated sources PU1U2

can be transmitted reliably over the MAC, if

H
(
PUτ |Uτc

)
< I(Xτ ;Y |Xτc). (1.30)

However, by an example in [12], it was shown that the above strategy is
suboptimal for correlated sources. Suboptimal means one can send pair mes-
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I (X1;Y ) I (X1;Y |X2)I (X1, X2;Y )

I (X2;Y )

I (X2;Y |X1)

I (X1, X2;Y )

R1

R2

Figure 1.6: Transmissible region for iid ensemble.

sages reliably over the MAC without satisfying (1.30). Here, we review the
presented example in [12].

Based on the condition in (1.30), to have a reliable communication, the
rate should satisfies H (PU1U2) < I (X1, X2;Y ). Now, assume U1 and U2 as
two binary random variables with joint probability distribution PU1U2(u1, u2),
where u1, u2 ∈ {0, 1}, andPU1U2(0, 0) = 1

3 , PU1U2(0, 1) = 0,
PU1U2(1, 0) = 1

3 , PU1U2(1, 1) = 1
3 .

(1.31)

From (1.31), we find that H (PU1U2) = 1.58 bits. By considering a MAC
with characterization Y = X1 + X2, we can verified that for iid ensemble,
the maximum of mutual information I (X1, X2;Y ) is 1.5. Consequently,

H (PU1U2) = 1.58 > 1.5 = I (X1, X2;Y ) , (1.32)

which means that these two correlated sources do not satisfies conditions in
(1.30) and cannot be transmitted reliably over the given channel.

On the other hand, with simple encoding as X1 = U1 and X2 = U2, we
have

Y = X1 +X2 = U1 + U2 =


0 decoded as=⇒ Û1 = 0, Û2 = 0,
1 decoded as=⇒ Û1 = 1, Û2 = 0,
2 decoded as=⇒ Û1 = 1, Û2 = 1,

(1.33)

where obviously, one can decode the messages correctly, and hence the prob-
ability of error is equal to zero. In other words, the above example shows

14
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the sub-optimality of (1.30), where the example does not satisfy the reliable
transmission conditions which are derived by considering iid ensemble; how-
ever, with a simple encoding and decoding, the messages are decoded with
zero error probability.

In fact, in [12], MAC with correlated sources was studied, where system
model is the same with the one discussed in Section 1.1. In [12], it was
proved that in presence of correlated sources, codes generated according to
the conditional probability distributions statistically depending on the source
messages, leads to larger transmissible region than that of achieved by iid
ensemble. In fact, the following transmissible region was derived for the MAC
with correlated sources [12]

H
(
PUτ |Uτc

)
< I (Xτ ;Y |Xτc , Uτc) . (1.34)

Although, for correlated sources, for error type τ = {1, 2}, we have
I (X1, X2;Y ) in both (1.30) and (1.34), the values of I (X1, X2;Y ) in (1.30)
and (1.34) are different. More specifically, for the mentioned example in [12]
reviewed above, in (1.30), I (X1, X2;Y ) = 1.5 which is derived by considering
the joint distribution

PX1X2Y (x1, x2, y) = Q1(x1)Q2(x2)W (y|x1, x2), (1.35)

while the mutual information I (X1, X2;Y ) = 1.58 in (1.34) is derived by
considering the joint distribution

PX1X2Y (x1, x2, y) =
∑
u1,u2

PU1U2(u1, u2)Q1(x1)Q2(x2)W (y|x1, x2). (1.36)

Thus, I (X1, X2;Y ) for the iid ensemble in (1.30) is different with that of for
icd ensemble in (1.34).

However, the conditions in (1.34) are not still sufficient. An example pre-
sented in [14], shows that one can transmit information through the MAC
reliably, without satisfying (1.34). It means that in contrast to single-user
communication, the problem of reliable transmission of two correlated sources
has not been solved yet and just the sufficient conditions of a reliable trans-
mission has been derived.

1.3 Overview of Thesis
The thesis is structured as follows:
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• In Chapter 2, we study single-user communication under various coding
scheme including iid, icd, md, gcc, cc and ccc ensembles. We re-obtain
a number of achievable random coding exponents for joint source chan-
nel coding in both primal and dual domains. For message-dependent
random-coding exponent, we presented another proof to show that in
terms of error exponent, there is no benefit to generate codewords with
more than two input distributions. We also find that for point-to-point
channel, there is no penalty in the error exponent if the messages are
assumed to be statistically independent of the codewords.

• In Chapter 3, we derive an achievable error exponent for the multiple-
access channel with two independent sources. For each user, the source
messages are partitioned into two classes and codebooks are generated
by drawing codewords from an input distribution depending on the
class index of the source message. The partitioning thresholds that
maximize the achievable exponent are given by the solution of a sys-
tem of equations. We also derive both lower and upper bounds for the
achievable exponent in terms of Gallager’s source and channel func-
tions. By using the results obtained by Chapter 4, we can conclude
that considering statistical dependency between messages and code-
words may not improve error exponent for the MAC with independent
sources.

• In Chapter 4, after discussing about the Gallager’s source function for
two correlated sources, we study the random-coding exponent of joint
source-channel coding for the multiple-access channel with correlated
sources. For each user, by defining a threshold, the messages of each
source are partitioned into two classes. The achievable exponent for
correlated sources with two message-dependent input distributions for
each user is determined and shown to be larger than that achieved using
only one input distribution for each user. A system of equations is pre-
sented to determine the optimal thresholds maximizing the achievable
exponent. We show that the obtained achievable exponent is ensem-
ble tightness. We also generalize the result to constant-composition
families.

• In Chapter 5, we discuss about the future works.

• Appendix A provide general Lemmas used frequently throughout this
thesis.
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1.4 Notation
Throughout this thesis, the following notations are used.

Sets and variables:
Sets are denoted by calligraphic upper case letter, e.g., X , and the n-Cartesian
product set of X is denoted by X n. A scalar random variable is denoted by
a capital letter, e.g., X, lower case letters is used as a particular realisation,
e.g., x ∈ X , capital bold letter denotes the random vector, e.g., X, small
bold letter x ∈ X n is the deterministic vector. The cardinality of a set such
as X , or equivalently the number of elements in X is shown by |X |.

Probability distribution and types:
Except where stated otherwise, the probability distribution of a random vari-
able is denoted by placing the random variable as a subscript, e.g. PU . A
joint distribution of a pair of random variables (U1, U2) is denoted by PU1U2

and the conditional distribution is denoted by PU1|U2 or PU2|U1 . The distri-
bution of random vector U with length n is shown by P n

U . The set of all
possible distributions of single letter U is denoted by PU , and the set of all
empirical distributions on a vector in Un (i.e. types) is denoted by PnU .

Given P̂X ∈ PnX , the type class T n(P̂X) is the set of all sequences in X n

with type P̂X . If x ∈ T n(P̂X), for any probability distribution Qn(x) =∏n
i=1Q(xi), we have the following facts [15]

Qn(x) = en
∑

x∈X P̂X(x) logQ(x), (1.37)
enH(P̂X)

(n+ 1)|X | ≤
∣∣∣T n(P̂X)

∣∣∣ ≤ enH(P̂X). (1.38)

Considering (1.37) and (1.38), we have

P
[
T n(P̂X)

]
=

∑
x∈T n(P̂X)

Qn(x) ≤ e−nD(P̂X ||Q). (1.39)

Given P̂XY ∈ PnX×Y and y ∈ T n(P̂Y ), the conditional type class T ny (P̂XY ) is
defined to be the set of all sequences x ∈ X n such that (x,y) ∈ T n(P̂XY ).
It can be proved that [15]

∣∣∣T ny (P̂XY )
∣∣∣ =

∣∣∣T n(P̂XY )
∣∣∣∣∣∣T n(P̂Y )
∣∣∣ . (1.40)

Similarly, for given y ∈ Y , the set T ny (P̂X|Y ) is defined to be the set of all
sequences x such that x contains nP̂X|Y (x|y) occurrence of letter x ∈ X .
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To distinguish between conditional input distribution and input distribu-
tion independent of the source probability, the conditional input distribution
is denoted by bar, i. e. Q̄, while Q denotes an input distribution statistically
independent of message. More specifically,

PX(x)PU(u) = Q(x)PU(u) (1.41)
PXU(x, u) = PU(u)Q̄(x|u). (1.42)

The MAC notation:
Throughout this thesis, except where stated otherwise, we use the following
notation for the MAC. The symbol ν denotes the user 1 or 2, i. e. ν ∈ {1, 2},
and νc denotes the complement index of ν among set {1, 2}. To simplify some
expressions, we use underline to represent a pair of quantities for users 1 and
2, such as

¯
u = (u1, u2),

¯
u = (u1,u2),

¯
U = U1 × U2, P

¯
U(

¯
u) = PU1U2(u1, u2)

or the transition probability of the MAC as W (y|
¯
x) = W (y|x1, x2). We

also frequently use the symbol τ ∈ {{1}, {2}, {1, 2}} to denote the error
event type of the error probability (1.4), i. e. τ = {1} as the error event
(Û1,U2) 6= (U1,U2), τ = {2} as the error event (U1, Û2) 6= (U1,U2) and
τ = {1, 2} for the error event (Û1, Û2) 6= (U1,U2). The complement of τ
is denoted by τ c among the subsets of {1, 2}. For example, τ c = {2} for
τ = {1} and τ c = ∅ for τ = {1, 2}. In order to simplify some expressions, we
adopt the following notational convention,

uτ =


∅ τ = ∅
u1 τ = {1}
u2 τ = {2}

¯
u τ = {1, 2}

, Qτ (xτ ) =


∅ τ = ∅
Q1(x1) τ = {1}
Q2(x2) τ = {2}
Q1(x1)Q2(x2) τ = {1, 2}

, (1.43)

when X1 and X2 are independent from each other, and also

PUτ (uτ ) =


∅ τ = ∅
PU1(u1) τ = {1}
PU2(u2) τ = {2}
P

¯
U(

¯
u) τ = {1, 2}

, Uτ =


∅ τ = ∅
U1 τ = {1}
U2 τ = {2}
U1 × U2 τ = {1, 2}

, (1.44)

when U1 and U2 are correlated to each other.
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Chapter 2

Single User Communication

As mentioned in Chapter 1, for point-to-point communication, many studies
show that joint source channel coding might be expected to have a better
error exponent than separate source channel coding [5, 7, 8, 16]. To have a
better insight about error exponent for single-user communication, we quickly
review some previous works.

Since finding an exact expression for error probability is very difficult,
many works investigated upper and lower bounds on the average error prob-
ability, or equivalently lower and upper bounds for the error exponent. Us-
ing random-coding technique leads (1.13) as a lower bound of error expo-
nent [5, Ch. 5], [4, Ch. 9]. However, since at low rates, the error probability
of poor codes in the ensemble dominates the average error probability, the
performance of (1.13) at low rate is weak [5, Sec. 5.7]. In [5], through
an expurgation process, a tight exponent at low rates was proposed [5, Eq.
5.7.10].

In fact, both random-coding and expurgating methods gives lower bounds
on the error exponent. On the other hand, sometimes finding an upper
bound for error exponent satisfied by every code is challenging. Generally,
hypothesis-testing method [17] is utilized to derive upper bound for error
exponent. The two well-known upper bounds of error exponent are sphere-
packing exponent [18] and minimum-distance exponent [19].

For the rates greater than critical rate [5, Sec. 5.6], the random-coding
and sphere-packing bounds are coincide to each other, while the expurgate
and minimum-distance bounds are coincide at rate R = 0. In terms of error
exponent, at low rates, an upper bound known as straight-line bound has bet-
ter performance than sphere-packing bound. The straight-line bound is ob-
tained by connecting any two points of sphere-packing and minimum-distance
bounds. Thus, for the rates smaller than critical rate, the error exponent is
greater than random-coding exponent, and is smaller than sphere-packing

19



“output” — 2019/5/22 — 9:04 — page 20 — #36

exponent.
As mentioned in Chapter 1, considering joint source-channel coding, the

random-coding exponent is derived as (1.19). However, by partitioning
message sets into source-type classes and assigning constant-composition
codes [20], to map messages within a source type onto sequences within
a channel-input type, the following achievable exponent is derived [8]

min
H(U)≤R≤log |U|

sup
ρ≥0
{ρR− Es(ρ, PU)}+ max

ρ∈[0,1]

{
max
Q

E0(ρ,Q,W )− ρR
}
. (2.1)

In addition, in [8, Lemma 2], the sphere-packing bound on the exponent is
obtained as

min
H(U)≤R≤log |U|

sup
ρ≥0
{ρR− Es(ρ, PU)}+ max

ρ≥0

{
max
Q

E0(ρ,Q,W )− ρR
}
. (2.2)

By applying Fenchel’s duality, it was shown that [7]

min
H(U)≤R≤log |U|

sup
ρ≥0
{ρR− Es(ρ, PU)}+ max

ρ∈[0,1]

{
max
Q

E0(ρ,Q,W )− ρR
}

= max
ρ∈[0,1]

Ē0(ρ,Q,W )− Es(ρ, PU), (2.3)

where, Ē0 is the point-wise supremum over all convex combinations of any
two values of the function E0(ρ,Q,W ), i. e.

Ē0(ρ,Q,W ) , sup
ρ1,ρ2,θ∈[0,1] :
θρ1+(1−θ)ρ2=ρ

{
θE0(ρ1,Q,W ) + (1− θ)E0(ρ2,Q,W )

}
, (2.4)

and Q is a set of distributions.
Finally, in [16], it is proved that joint source-channel random coding where

source messages are assigned to different classes and codewords are generated
according to a distribution that depends on the class index of source message,
achieves the following exponent

max
ρ∈[0,1]

Ē0(ρ,Q,W )− Es(ρ, PU), (2.5)

which coincides with the sphere-packing exponent [8, Lemma 2] whenever it
is tight.

To summarize the results, using codewords with a composition depen-
dent on the source message leads to a better exponent than the case where
codewords are drawn according to a fixed product distribution [8]. In addi-
tion, considering the scheme where source messages are assigned to disjoint
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classes and encoded by codes that depend on the class index, attains the
sphere-packing exponent in those cases where it is tight [16].

In this chapter, we study the random-coding exponent of joint source
channel coding under various ensembles. In Section 2.1, we consider the
scheme where codewords are generated according to a conditional distribu-
tion that depends on the instantaneous source symbol. However, in Section
2.2, we simplify the coding scheme to the case where codewords and messages
are statistically independent of each other. Finally, in Section 2.3, by com-
paring the results obtained in Sections 2.1 and 2.2, we show that there is no
penalty in the error exponent if the messages are assumed to be statistically
independent of the codewords.

Throughout this chapter, to distinguish between conditional input dis-
tribution and input distribution independent of the source probability, we
denote Q̄ as the conditional input distribution and Q as the marginal input
distribution.

2.1 Statistical Dependency between the Mes-
sages and Coedwords

As mentioned in Chapter 1, for the MAC with correlated sources, considering
statistical dependency between the messages and codewords leads to a larger
error exponent. To examine whether this idea can also improve the error
exponent of single-user communication or not, we study various ensembles.
In all studied ensembles in this section, we assume that codewords are gen-
erated by a conditional probability distribution of the codeword symbol that
depends on the instantaneous source symbol.

2.1.1 Message Dependent Ensemble with Statistical
Dependency

Here, we derive an achievable random-coding error exponent for joint source
channel coding where codebooks are generated by a conditional probability
distribution of the codeword symbol that depends both on the instantaneous
source symbol and on the type of the source sequence. In other words, for
every message u ∈ Un, we randomly generate a codeword x(u) according to
the probability distribution Q̄n

π(u)(x|u) = ∏n
j=1 Q̄π(u)(xj|uj), where Q̄π(u) is

a conditional probability distribution that depends on the type of u, denoted
by π(u).
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Proposition 2.1. For a given channel W and source PU , Emds is an achiev-
able exponent where

Emds = min
P̂UXY ∈PU×X×Y

D(P̂UXY ||PUQ̄P̂U
W )

+
[
D(P̂UXY ||P̂UQ̄P̂U

P̂Y )−H(P̂U)
]+
, (2.6)

and [x]+ = max{0, x}.

Proof. See Section 2.4.1.

In Section 2.2.1, we will study a simplified version of (2.6) known as
message-dependent exponent. By showing that message-dependent expo-
nent is equal with (2.6), we will prove that removing statistical dependency
between the messages and codewords, will not effect on the error exponent.

2.1.2 Independent and Conditionally Distributed En-
semble

In this section, we study icd ensemble, a simpler ensemble than the one de-
scribed in Section 2.1.1. Here, statistically codewords depend on the source
messages, and are generated independently according to a conditional distri-
bution denoted by Q̄.

In fact, we randomly generate a codeword x(u) ∈ X n according to the
conditional probability distribution Q̄n(x|u) = ∏n

j=1 Q̄(xj|uj). By setting
Q̄P̂U

(x|u) = Q̄(x|u) in Proposition 2.1, it can be proved that the following
exponent is achievable

Eicd = min
P̂UXY ∈PU×X×Y

D(P̂UXY ||PUQ̄W ) +
[
D(P̂UXY ||P̂UQ̄P̂Y )−H(P̂U)

]+
,

(2.7)

where P̂U and P̂Y are marginal distributions of the P̂UXY .

Proposition 2.2. The optimal joint distribution P̂UXY minimizing (2.7), is
given by

P̂ ∗UXY (u, x, y) =

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ

(∑
ū,x̄

PU(ū)
1

1+ρ Q̄(x̄|ū)W (y|x̄)
1

1+ρ

)ρ
∑
ȳ

(∑
ū,x̄

PU(ū)
1

1+ρ Q̄(x̄|ū)W (ȳ|x̄)
1

1+ρ

)1+ρ , (2.8)
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where in view of (2.8), an equal expression of (2.7) can be expressed as

Eicd = max
ρ∈[0,1]

E0,s(ρ, PU , Q̄,W ), (2.9)

where

E0,s(ρ, PU , Q̄,W ) = − log
(∑

y

(∑
x

∑
u

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ
)1+ρ

)
.

(2.10)

Proof. See Section 2.4.2.

2.1.3 Conditional Constant-Composition Ensemble
In this section, we describe conditional constant-composition ensemble which
can be considered as a generalization of the constant-composition ensemble.
Consider a discrete memoryless source which is characterized by a distribu-
tion P n

U (u) = ∏n
k=1 PU(uk). For a given message u = (u1, u2, ..., un), we

consider the sub-sequences of u which have the same symbols. We define
ju(u) as the set of all positions where the symbol u appears in u, i.e. for all
u ∈ U

ju(u) = {i ∈ {1, 2, ..., n}, such that ui = u}. (2.11)

The subsequence can be represented by u(ju(u)). Let Q̄(x|u) be a conditional
input distribution. We approximate the conditional distribution Q̄(x|u) with
a type-p conditional distribution Q̄p that satisfies

Q̄p(x|u) ∈
{

0, 1
p
,
2
p
, ..., 1

}
, (2.12)

for all x ∈ X and u ∈ U . We set p depends on u and u, p = |ju(u)| and
choose this distribution such that the variational distance between Q̄ and Q̄p

satisfies ∣∣∣Q̄p(x|u)− Q̄(x|u)
∣∣∣ < 1

p
. (2.13)

For every u ∈ U , we randomly pick a sequence xu of length |ju(u)| from the
set T pu (Q̄p) and set x(ju(u)) = xu. Codebook C is called a conditional
constant-composition codebook with distribution Q̄, if x(u) = (xu)u∈U ,
where xu ∈ T pu (Q̄p).

Now, we apply constant-composition random coding to determine an
achievable exponent.
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Proposition 2.3. Consider a conditional constant-composition ensemble gen-
erated by conditional distribution Q̄. For the point-to-point channel with
transition probability W and source probability distribution PU , the following
exponent is achievable

Eccc = min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) +
[
I (U,X;Y )−H(P̂U)

]+

, (2.14)

where the set Sccc is defined as

Sccc ,
{
P̂UXY : P̂UXY = P̂UQ̄P̂Y |XU , P̂U ∈ PU , P̂Y |XU ∈ PY|X×U

}
. (2.15)

Proof. One simple way to prove Proposition 2.3, is using Proposition 2.1.
In fact, for conditional constant-composition ensemble, we ought to consider
only P̂UXY that their conditional distribution P̂X|U is Q̄. By applying the
identity P̂UXY = P̂UQ̄P̂Y |X in D(P̂UXY ||PUQ̄W ) in (2.6), noticing the fact
that D(P̂UQ̄P̂Y |XU ||P̂UQ̄P̂Y ) = I(U,X;Y ), (2.6) is derived as

Eccc = min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) +
[
I (U,X;Y )−H(P̂U)

]+

, (2.16)

which proves Proposition 2.3. The long way is very similar to the proof
presented in Section 4.3.9.

Next, we determine an equivalent expression for the derived exponent in
(2.14). We continue by proving the following proposition.

Proposition 2.4. An equivalent dual expression for the exponent given in
(2.14) can be expressed as

Eccc = max
ρ∈[0,1]

Eccc
0,s (ρ, PU , Q̄,W ), (2.17)

where

Eccc
0,s (ρ, PU , Q̄,W ) =

max
β̄(u,x):∑

x
β̄(u,x)Q̄(x|u)=0

− log
(∑

y

(∑
u,x

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ
)
.

(2.18)

Proof. See Section 2.4.3.
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2.2 Source-Channel Coding without Statisti-
cal Dependency

As mentioned in Chapter 1, joint source-channel coding leads larger expo-
nent than separate source-channel coding. In this section, by considering
joint source-channel coding, we re-obtain achievable exponents for message-
dependent, iid and generalized constant-composition ensembles.

2.2.1 Message-Dependent Ensemble
Message-dependent ensemble was studied in [16] and [21] and the derivation
of achievable exponent were done in the dual domain. Here, by doing the
analysis in the primal domain and applying the Lagrange duality theory, we
re-obtain the message-dependent random-coding exponent obtained in [16].

In this section, we consider a simplified version of the ensemble described
in Section 2.1.1. In fact, we consider a case where codebooks are generated
according to a distribution that only depends on the type of the whole source
sequence. For every message u ∈ Un, codeword x(u) is generated randomly
according to the probability distribution Qn

π(u)(x) = ∏n
j=1Qπ(u)(xj), where

Qπ(u) is a probability distribution that depends on the type of u, denoted by
π(u).

Proposition 2.5. For point-to-point channel W with source PU , an achiev-
able random-coding exponent for joint source channel coding is

Emd = min
P̂U∈PU

D(P̂U ||PU)

+ min
P̂XY ∈PX×Y

D(P̂XY ||QP̂U
W ) +

[
D(P̂XY ||QP̂U

P̂Y )−H(P̂U)
]+
, (2.19)

where [x]+ = max{0, x}.

Proof. Let in Proposition 2.1, condewords are generated according to QP̂U
(x)

rather than Q̄P̂U
(x|u). By setting Q̄P̂U

(x|u) = QP̂U
(x) in Proposition 2.1,

and noting to the fact that when there is no statistical dependency between
random variables U and X, we have

D(P̂UXY ||PUQP̂U
W ) = D(P̂U ||PU) +D(P̂XY ||QP̂U

W ), (2.20)

Proposition 2.5 is proved.

Now, to determine an equivalent expression for the derived exponent given
in (2.19), we start by proving the following Lemma.
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Lemma 2.1. Let 0 = γL+1 ≤ γL ≤ ... ≤ γ2 ≤ γ1 = 1 be L + 1 positive
ordered numbers such that γL > minPU(u) and γ2 ≤ maxPU(u). For each
P̂U ∈ PU , there exists a unique ` ∈ {1, ..., L} such that

log(γ`+1) <
∑
u

P̂U(u) log(PU(u)) ≤ log(γ`). (2.21)

Proof. See Section 2.4.4.

In fact, Lemma 2.1 describes a situation where the set PU is partitioned by
L classes given by (2.21) and the classes are indexed by `. Roughly speaking,
the equivalent expression of Lemma 2.1 in the dual domain is that the source-
message set Un is partitioned into L classes where the class ` ∈ {1, ..., L} is

D` =
{
u ∈ Un : γn`+1 < P n

U (u) ≤ γn`ν

}
. (2.22)

Now, we consider L input distributions as {Q1, ..., QL}, and we assign
the distribution Q` to the class `. Briefly, in primal domain, if P̂U belongs
to the class `, then we let QP̂U

= Q`. Given ` ∈ {1, ..., L}, depending on
the class index of P̂U , the input distribution is determined. In addition, the
interpretation in the dual domain is that for the messages belonging to D`,
input distribution Q` is assigned to generate codewords.

Proposition 2.6. Consider L input distributions as {Q1, ..., QL} and let
0 = γL+1 ≤ γL ≤ ... ≤ γ2 ≤ γ1 = 1 be L + 1 positive ordered numbers such
that γL > minPU(u) and γ2 ≤ maxPU(u). An equivalent dual expression for
the exponent given in (2.19) can be expressed as

Emd = max
γ2,...,γL

min
`∈{1,...,L}

max
ρ∈[0,1]

E0(ρ,Q`,W )− Es,`(ρ, PUν , γ`+1, γ`), (2.23)

where E0(·) given by (1.14), and

Es,`(ρ, PU , γ`+1, γ`) =
Es(ργ`+1 , PU) + E ′s(ργ`+1)(ρ− ργ`+1) 1

1+ρ <
1

1+ργ`+1
,

Es(ρ, PUν ) 1
1+ργ`+1

≤ 1
1+ρ ≤

1
1+ργ`

,

Es(ργ` , PU) + E ′s(ργ`)(ρ− ργ`) 1
1+ρ >

1
1+ργ`

,

(2.24)

where in (2.24), E ′s(ργ) = ∂Es(ρ,PU )
∂ρ

∣∣∣
ρ=ργ

. For 0 = γL+1 ≤ γL ≤ ... ≤ γ2 <

γ1 = 1, the parameter ργ` for ` = 1, ..., L is the solution of the implicit
equation ∑

u PU(u)
1

1+ρ logPU(u)∑
u PU(u)

1
1+ρ

= log(γ`), (2.25)
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when minu PU(u) ≤ γ` ≤ maxu PU(u) is satisfied. However, when γ` ≥
maxu PU(u), ργ` = −1+ and when γ` ≤ minu PU(u), ργ` = −1− [21].

Proof. See Section 2.4.5.

We remark that since we considered L classes an L input distributions,
there are LL possible assignments. In (2.23), the optimal assignment of input
distributions to source classes is considered.

Assuming L = 3, for ` = 1, 2, 3, Figure 2.1 shows Es,`(ρ, PU , γ`+1, γ`)
defined in (2.24), versus ρ where in view of Proposition 2.6, we have γ1 = 1
and γ4 = 0. Consider Es,2(·), for an interval of ρ, Es,2(·) given in (2.24), is a
tangent line to Es(·) function; however, for the ρs between ργ2 and ργ3 is the
Gallager source function.

The reason why straight lines are appeared is explained in the following.
Firstly, we recall the primal form of Es(·) function, i. e.

−Es(ρ, PU) = min
P̂U∈PU

D
(
P̂U ||PU

)
−H

(
P̂U
)
. (2.26)

Now, consider the empirical distribution P̂U . From the proof of Lemma 2.1,
it can be verified that for u ∈ T n(P̂U), we have P n

U (u) = en
∑

u
P̂U (u) log(PU (u)).

Noting that all messages in T n(P̂U) have the same probability, there exist a
γ ∈ [0, 1] such that γn = P n

U (u) = en
∑

u
P̂U (u) log(PU (u)), or equivalently∑

u

P̂U(u) log(PU(u)) = log(γ). (2.27)

Roughly speaking, (2.27) represents the primal form of an empirical distri-
bution. Thus, the minimization problem of (2.26) with the constraint given
by (2.27), can be interpreted as the the Gallager’s source function when the
empirical distribution of the source is fixed.

Applying Lagrange duality theory to (2.26) with the constrain given by
(2.27), we find that

−Ês(ρ, PU , γ) = min
P̂U∈PU :∑

u
P̂U (u) log(PU (u))=log(γ)

D
(
P̂U ||PU

)
−H

(
P̂U
)
, (2.28)

where

Ês(ρ, PU , γ) = Es (ργ, PU) + E ′s (ργ) (ρ− ργ) , (2.29)

is the straight line tangent to Es(·) function at ργ and ργ is derived by (2.25)
when γ` = γ.
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Figure 2.1: Es,`(ρ, PU , γ`+1, γ`) for ` = 1, 2, 3.

Next, as a special case, we partition PU into two classes, i.e. L = 2. In
fact, the two-class partitioning was widely studied in [16]. Here, to emphasize
two-class partitioning, we rename the set D` when ` ∈ {1, 2} as Ai(γ) for
i = 1, 2. In other words, setting γ3 = 0, γ2 = γ and γ1 = 1 in Lemma 2.1,
the classes D1 and D2 are respectively renamed as

A1(γ) =
{
u ∈ Un : P n

U (u) ≥ γ
}
, (2.30)

A2(γ) =
{
u ∈ Un : P n

U (u) < γ
}
, (2.31)

where 0 ≤ γ ≤ 1 is a fixed threshold.
As mentioned, (2.30) and (2.31) are the interpretations of Lemma 2.1

in the dual domain. It means that for the messages belonging to the class
Ai(γ), codewords are generated according to the input distribution Qi, where
i = 1, 2.

Setting γ3 = 0, γ2 = γ and γ1 = 1 in Proposition 2.6, the achievable
exponent (2.23), when two classes are assigned is given by

Emd(PU , {Q1, Q2},W ) = max
γ∈[0,1]

min
i∈{1,2}

max
ρ∈[0,1]

E0(ρ,Qi,W )− Es,i(ρ, PU , γ),

(2.32)

where from (2.24), by setting γ3 = 0, γ2 = γ and γ1 = 1, we have

Es,1(ρ, PU , γ) =
{
Es(ρ, PU) 1

1+ρ ≥
1

1+ργ ,

Es(ργ, PU) + E ′s(ργ)(ρ− ργ) 1
1+ρ <

1
1+ργ ,

(2.33)
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and

Es,2(ρ, PU , γ) =
{
Es(ρ, PU) 1

1+ρ <
1

1+ργ ,

Es(ργ, PU) + E ′s(ργ)(ρ− ργ) 1
1+ρ ≥

1
1+ργ .

(2.34)

In (2.33) and (2.34), the parameter ργ is the solution of the implicit equation
given by (2.25) when minu PU(u) ≤ γ ≤ maxu PU(u) is satisfied. We observe
that Es,1(ρ, ·) follows the Gallager Es(ρ, ·) function for an interval of ρ, while
it is the straight line tangent to Es(ρ, ·) beyond that interval, and similarly
for Es,2(ρ, ·).

When γ ∈ [0,minu PU(u)), we have that ργ = −1− and hence Es,1(ρ, ·) =
Es(ρ, ·) and Es,2(ρ, ·) = −∞. Otherwise, when γ ∈ (maxu PU(u), 1], we have
that ργ = −1+ and hence Es,1(ρ, ·) = −∞ and Es,2(ρ, ·) = Es(ρ, ·). In our
analysis, it suffices to consider γ = 0 or γ = 1 to represent the cases where
Es,1(ρ, ·) or Es,2(ρ, ·) are infinity. For such cases, we have

Es,1(ρ, PU , 0) = Es(ρ, PU), Es,2(ρ, PU , 0) = −∞, (2.35)
Es,1(ρ, PU , 1) = −∞, Es,2(ρ, PU , 1) = Es(ρ, PU). (2.36)

It has been shown that partitioning the source messages into two classes
leads larger exponent than (1.19); however, there is no benefit in terms of
error exponent, if we partition the source message-set into more than two
classes [16]. Here, we present another proof for this fact.

Proposition 2.7. For the optimal assignment of three input distributions
{Q1, Q2, Q3}, we denote Emd given by (2.23) as Emd(PU , {Q1, Q2, Q3},W ).
Then, we have

Emd(PU , {Q1, Q2, Q3},W ) = max
{
Emd(PU , {Q1, Q2},W ),

Emd(PU , {Q2, Q3},W ), Emd(PU , {Q1, Q3},W )
}
, (2.37)

where the right hand side of (2.37) is defined by (2.32).

Proof. See Section 2.4.6.

Since it was proved that in terms of error exponent, partitioning the
source messages into two classes is sufficient, from now we focus on (2.32).
In view of (2.33) and (2.34), we recall that Es,i(·) for i = 1, 2 is either Es(·)
function given by (1.9), or Ês(·) given by (2.29).

To find the optimal γ maximizing (2.32), we use Lemma A.6. Setting
E(ρ,Q1) = E0(ρ,Q1,W ) and E(ρ,Q2) = E0(ρ,Q2,W ) in Lemma A.6, the
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optimal γ? maximizing (2.32), is obtained at the point where maxρE0(·, Q1)−
Es,1(·) equals to maxρE0(·, Q2)−Es,2(·). Figure 2.2 shows this equality where
ρ1 and ρ2 are given by

ρi = arg max
ρ∈[0,1]

E0(ρ,Qi,W )− Es,i(ρ, PU , γ?), (2.38)

for i = 1, 2. In view of Lemma A.6, from (A.37) we conclude that

Emd(PU , {Q1, Q2},W ) = max
ρ∈[0,1]

Ē0(ρ, {Q1, Q2} ,W )− Es(ρ, PU), (2.39)

where Ē0(·) is given by (2.4). Since Ē0(·) is greater than the Gallager’s
channel function, we conclude that message-dependent exponent given by
(2.32) or (2.39) is greater than iid exponent presented in (1.19).

Coming back to Figure 2.2, we note that both ρ1 and ρ2 derived by (2.38),
are located on the straight line and also on the both sides of ργ. Otherwise,
the message-dependent exponent will equal to iid exponent.

For example, Figure 2.3 shows an example where both ρ1 and ρ2 are
located one side of ργ. As a result, one of them is located on the Es(·)
function. In the example of Figure 2.3, ρ2 is located on Es function. Hence,
from (A.36) we have

E0(ρ1, Q1,W )− Es,1(ρ, PU , γ?) = E0(ρ2, Q2,W )− Es(ρ, PU), (2.40)

where the right hand side of (2.40) is Gallager exponent given by (1.19).
Briefly, there are many sources and channels that the message-dependent

exponent for them equals to their iid exponent. However, there are also
examples that for them (2.32) is greater than (1.19). Here, we bring one
of them. We consider a discrete memoryless source PU with alphabet U =
{1, 2} where PU(1) = 0.028 and PU(2) = 0.972. We also consider a discrete
memoryless channel with X = {1, ..., 6} and Y = {1, ..., 4}. The transition
probability of this channel, denoted as W where

W =



1− 3k1 k1 k1 k1
k1 1− 3k1 k1 k1
k1 k1 1− 3k1 k1
k1 k1 k1 1− 3k1

0.5− k20.5− k2 k2 k2
k2 k2 0.5− k20.5− k2


, (2.41)

for k1 = 0.056 and k2 = 0.01. Considering two input distributions as

Q1 = [0 0 0 0 0.5 0.5], (2.42)
Q2 = [0.25 0.25 0.25 0.25 0 0], (2.43)

30



“output” — 2019/5/22 — 9:04 — page 31 — #47

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 ρ1 0.5 ργ 0.7 ρ2 0.9 1
ρ
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Figure 2.2: Message-dependent random coding ensemble gives larger expo-
nent than iid ensemble.

from (2.32) we find that γ? = 0.6541 and

Emd = 0.1734, (2.44)
Eiid = 0.1721, (2.45)

where Eiid is given by (1.19) for the best assignment of input distributions. As
can be seen, for this example, message-dependent random coding exponent
is larger than iid exponent.

2.2.2 iid Random-Coding Exponent
In Section 1.2.1.2, we briefly reviewed the iid random coding exponent. Here,
we bring the results in both primal and dual domain. For joint source-channel
coding, by drawing the codewords independently of the source messages ac-
cording to an identical product distribution Qn(x) = ∏n

j=1Q(xj), and using
random-coding argument, the following exponent is achievable

Eiid = min
P̂U∈PU

D(P̂U ||PU)

+ min
P̂XY ∈PX×Y

D(P̂XY ||QW ) +
[
D(P̂XY ||QP̂Y )−H(P̂U)

]+
, (2.46)
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Ē0 (ρ, {Q1, Q2} ,W )
E0 (ρ,Q1,W )
E0 (ρ,Q2,W )
Es,1 (ρ, PU , γ?)
Es,2 (ρ, PU , γ?)

Figure 2.3: Message-dependent random coding ensemble gives the same
exponent as iid ensemble.

where by setting Q(x) instead of QP̂U
(x) in Proposition 2.5, equation (2.46)

can be proved. Next,by applying Lagrange duality theory, we find the dual
form of (2.46).
Proposition 2.8. The optimal distributions which minimize the objective
function in (2.46) are given by

P̂ ?
XY (x, y) =

Q(x)W (y|x)
1

1+ρ

(∑
x̄Q(x̄)W (y|x̄)

1
1+ρ

)ρ
∑
ȳ

(∑
x̄Q(x̄)W (ȳ|x̄)

1
1+ρ

)1+ρ , (2.47)

and

P̂ ?
U(u) = PU(u)

1
1+ρ∑

ū PU(ū)
1

1+ρ
. (2.48)

In addition, inserting (2.47) and (2.48) into (2.46), an equivalent expression
of (2.46) is Gallager’s exponent [5, Prob. 5.16] and is given by

Eiid = max
ρ∈[0,1]

E0(ρ,Q,W )− Es(ρ, PU), (2.49)

where Es(ρ, PU) and E0(ρ,Q,W ) are given in (1.9) and (1.14), respectively.

32



“output” — 2019/5/22 — 9:04 — page 33 — #49

Proof. The proof of (2.49) was given in many literature, for example [5, Sec.
5.6]. However, here we apply Lagrange duality theory to (2.46) with con-
straints that ∑u P̂U(u) = 1 and also ∑x,y P̂XY (x, y) = 1. To avoid repeating,
we use the the result of Proposition 2.6. Since for the given problem in (2.46),
the input distribution Q does not depend on the source type, only one input
distribution is considered. As a result, in (2.23), the number of classes is
only one. By inserting L = 1 in (2.23), (2.49) is proved.

More precisely, since only one input distribution is considered, in the
proof of Proposition 2.6 in Section 2.4.5, the two inequality constrains given
in (2.144) and (2.145) are inactive and thus their corresponding Lagrangian
coefficients (λ` and λ`+1) are zero. By inserting Q instead of QP̂U

and apply-
ing λ` = λ`+1 = 0 in (2.152) in view of (2.160), Proposition 2.8 is proved.

2.2.3 Generalized Constant-Composition Exponent

Constant-composition ensemble was widely studied in [15] and [20]. It has
been shown that constant-composition random-coding exponent is larger
than iid random-coding exponent [15], [20].

Moreover, as mentioned before, message-dependent random-coding expo-
nent is larger than iid random-coding exponent [16]. Here, we merge the idea
of message-dependent and constant-composition ensembles, and we present
an achievable exponent for a generalization of the constant composition en-
semble.

We consider a case where codebooks are generated according to a type
distribution that depends on the composition of the whole source sequence.
In other words, for a given source message composition P̂U ∈ PnU , QP̂U

∈ PX
is fixed and can be approximated by the type distribution Qn,P̂U

, where
Qn,P̂U

(x) ∈
{

0, 1
n
, 2
n
, ..., 1

}
. The variational distance between QP̂U

and Qn,P̂U

satisfies
∣∣∣QP̂U

(x)−Qn,P̂U
(x)
∣∣∣ < 1

n
.

Briefly, sub-codebook C(P̂U) =
{
x(u);u ∈ T n(P̂U)

}
is called a constant-

composition sub-codebook with input distribution QP̂U
if x(u) ∈ T n(Qn,P̂U

)
for all u ∈ T n(P̂U). And codewords of each sub-codebook are randomly
drawn uniformly from the set of sequences with type Qn,P̂U

. Addition-
ally, codebook C is considered as the union of all sub-codebooks, i. e. C =⋃
P̂U∈PnU

C(P̂U).
By applying constant-composition random coding, it can be proved that
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the following exponent is achievable

Egcc = min
P̂U∈PU

D(P̂U ||PU)

+ min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) +

[
I (X;Y )−H(P̂U)

]+
, (2.50)

where P̂Y is the marginal distribution of P̂XY and

Sgcc(P̂U) ,
{
P̂XY : P̂XY = QP̂U

P̂Y |X , P̂Y |X ∈ PY|X
}
. (2.51)

Note that (2.50) can be derived from (2.19), by considering the fact that
for the constant-composition ensemble, we ought to consider only P̂XY that
their marginal distribution P̂X is QP̂U

. By applying the identity P̂XY =
QP̂U

P̂Y |X in D(P̂XY ||QP̂U
W ) in (2.19) and noticing that

D(QP̂U
P̂Y |X ||QP̂U

P̂Y ) = I (X;Y ) , (2.52)

(2.50) is proved.
Like before, the aim of this section is determining an alternative expres-

sion for the achievable exponent given by (2.50). By using the fact that
[x]+ = max0≤ρ≤1 ρx and Fan’s minimax theorem [22], we obtain

Egcc = min
P̂U∈PU

max
ρ∈[0,1]

D(P̂U ||PU)− ρH(P̂U)

+ min
P̂XY ∈Scc(P̂U )

D(P̂XY ||QP̂U
W ) + ρI (X;Y ) . (2.53)

To determine a dual expression for the achievable exponent given in
(2.53), we apply Lagrange duality theory to the two minimizations over P̂XY
and P̂U . Firstly, we fix P̂U ∈ PU and we consider the inner minimization over
P̂XY ∈ Sgcc(P̂U), i.e. we focus on the following optimization problem

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρI (X;Y ) . (2.54)

To apply Lagrange duality theory to the optimization problem given in (2.54),
we use the following Lemma.
Lemma 2.2. For the generalized constant-composition ensemble, we have

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρI (X;Y ) = Ecc

0 (ρ,QP̂U
,W ), (2.55)

where,

Ecc
0 (ρ,Q,W )

= max
ᾱ(x):

∑
x
ᾱ(x)Q(x)=0

− log
(∑

y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

)
. (2.56)
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Proof. See Section 2.4.7.

Now, by applying Lemma 2.2 into (2.53), we obtain

Egcc = min
P̂U∈PU

max
ρ∈[0,1]

D(P̂U ||PU)− ρH(P̂U) + Ecc
0 (ρ,QP̂U

,W ), (2.57)

where the optimization problem over P̂U in (2.57), is exactly the primal form
of (2.24) or if we consider two classes, the primal form of (2.33) and (2.34).
Thus, for generalized constant-composition ensemble, we obtain

Egcc = max
γ∈[0,1]

min
i∈{1,2}

max
ρ∈[0,1]

Ecc
0 (ρ,Qi,W )− Es,i(ρ, PU , γ), (2.58)

where for i = 1, 2, Es,i(ρ, PU) is given by (2.33) and (2.34).
As a special case, by considering only one input distribution, (2.58) gives

the constant-composition exponent, i.e.

Ecc = max
ρ∈[0,1]

Ecc
0 (ρ,Q,W )− Es(ρ, PU). (2.59)

To compare (2.58) with (2.59) we use Lemma A.6. By setting E(ρ,Qi) =
Ecc

0 (ρ,Qi,W ) for i = 1, 2, in Lemma A.6, a simpler expression of (2.58) can
be written as

Egcc = max
ρ∈[0,1]

Ēcc
0 (ρ, {Q1, Q2} ,W )− Es(ρ, PU), (2.60)

where since Ēcc
0 (·) ≥ Ecc

0 (·), we conclude that the generalized constant-
composition ensemble leads larger exponent than constant-composition en-
semble.

In addition, in Lemma A.9, it is shown that Ecc given by (2.60) is greater
than Eiid in (2.49). From Lemma A.9, let Q? be an input distribution max-
imizing Eiid. For the cases that Ecc derived by a constant-composition Q?,
we have Ecc = Eiid.

2.3 Comparing the Exponents
In this section, by comparing the exponents derived in Sections 2.1 and 2.2,
we show that there is no penalty in the error exponent if the messages are
assumed to be statistically independent of the codewords.
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2.3.1 icd and iid Ensembles
Here, we are going to show that, in terms of error exponent, ensembles gen-
erated with a conditional distribution have no advantage over the iid ensem-
bles. To do this, for a given conditional distribution Q̄, we define a family of
marginal distributions as

{
Qρ; ρ ∈ [0, 1]

}
, where

Qρ(x) =
∑
u

P 1
1+ρ

(u)Q̄(x|u), (2.61)

and

P 1
1+ρ

(u) = PU(u)
1

1+ρ∑
u PU(u)

1
1+ρ

. (2.62)

Considering (2.61) and (2.62), we may note that Qρ(x)∑u PU(u)
1

1+ρ =∑
u PU(u)

1
1+ρ Q̄(x|u). By replacing ∑

u PU(u)
1

1+ρ Q̄(x|u) appeared in (2.10)
with Qρ(x)∑u PU(u)

1
1+ρ , we obtain

E0,s(ρ, PU , Q̄,W ) =

− log
(∑

y

(∑
x

Qρ(x)
∑
u

PU(u)
1

1+ρW (y|x)
1

1+ρ
)1+ρ

)
(2.63)

= E0(ρ,Qρ,W )− Es(ρ, PU), (2.64)

where in (2.64), in view of (1.9) and (1.14), we used the identity that
log(ab) = log(a) + log(b).

By comparing (2.64) with (2.49), and in view of (2.9), we conclude that
ensembles generated with a conditional distribution attain the same expo-
nent as Gallager’s exponent. In other words, for a given conditional input
distribution Q̄ and ρ, we can always find an iid distribution Qρ, such that
E0,s(ρ, PU , Q̄,W ) = E0(ρ,Qρ,W ) − Es(ρ, PU). The proof of this equality in
the primal domain is presented in Section 2.4.8, i. e. in Section 2.4.8 we show
that

D(P̂ ∗UXY ||PUQ̄W ) +
[
D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U)

]+
= (2.65)

D(P̂ ?
U ||PU) +D(P̂ ?

XY ||QρW ) +
[
D(P̂ ?

XY ||QρP̂
?
Y )−H(P̂ ?

U)
]+
, (2.66)

where P ∗UXY , P̂ ?
XY and P̂ ?

U are optimal distributions associated to icd and iid
exponents and are given in (2.8), (2.47) and (2.48), respectively.

36



“output” — 2019/5/22 — 9:04 — page 37 — #53

The same approach can be used to show that message-dependent ensem-
ble with statistical dependency does not give a larger exponent than message-
dependent ensemble without any statistical dependency between messages
and codewords.

At this point, in the dual domain, we obtain reliable transmission condi-
tions similarly to [5] by evaluating the the partial derivative of the objectives
in (2.49) and (2.9) at ρ = 0. Since both E0,s and E0 − Es are concave func-
tions with respect to ρ, i. e. ∂2E0,s

∂ρ2 ≤ 0 and ∂2(E0−Es)
∂ρ2 ≤ 0, the maximum of

exponents occurs at ρ∗ where ∂E0,s
∂ρ∗

= 0 and ∂(E0−Es)
∂ρ∗

= 0, respectively. Now,
if the derivative of E0,s and E0 − Es at ρ = 0 be positive, then E0,s and
E0 − Es will increase from ρ = 0 to ρ∗ and then they will start to decrease.
Thus, by recalling that E0,s(0, PU , Q̄,W ) = E0(0, Q,W )− Es(0, PU) = 0, to
make sure maxρ∈[0,1]E0,s(ρ, PU , Q̄,W ) and maxρ∈[0,1]E0(ρ,Q,W )−Es(ρ, PU)
are always positive, it suffices that their derivatives at ρ = 0 be positive.

To compare the transmissible conditions of the iid and icd ensembles,
firstly we focus on the partial derivative of the E0(ρ,Qρ,W ) − Es(ρ, PU) at
ρ = 0, which yields

∂E0(ρ,Qρ,W )
∂ρ

∣∣∣
ρ=0
− ∂Es(ρ, ·)

∂ρ

∣∣∣
ρ=0

= ∂E0(ρ,Qρ,W )
∂ρ

∣∣∣
ρ=0
−H(PU) (2.67)

= IQ0W (X;Y )−
∑
x,y

W (y|x)∂Qρ(x)
∂ρ

∣∣∣
ρ=0
−H(PU), (2.68)

where in (2.67), we used the fact that the derivative of Es(ρ, PU) with respect
to ρ at ρ = 0 is the source entropy and in (2.68), we differentiated from
E0(ρ,Qρ,W ) at ρ = 0. Note that Q0 in (2.68) denotes Qρ at ρ = 0, and

IQ0W (X;Y ) =
∑
x,y

Q0(x)W (y|x) log W (y|x)∑
x̄

Q0(x̄)W (y|x̄)
. (2.69)

To determine the quantity of (2.68), it suffices to compute ∂Qρ(x)
∂ρ

∣∣∣
ρ=0

.
Evaluating the derivative of Qρ given in (2.61) with respect to ρ, yields

∂Qρ(x)
∂ρ

∣∣∣
ρ=0

=
∑
u

Q̄(x|u)
(
− PU(u) log (PU(u)) + PU(u)

∑
ū

PU(ū) log (PU(ū))
)

(2.70)

= −
∑
u

Q̄(x|u)PU(u) log (PU(u))−H(PU)
∑
u

Q̄(x|u)PU(u), (2.71)
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where (2.71) follows from the definition of the source entropy. Putting back
∂Qρ(x)
∂ρ

∣∣∣
ρ=0

derived in (2.71) into ∑x,yW (y|x)∂Qρ(x)
∂ρ

∣∣∣
ρ=0

presented in (2.68),
we obtain

∑
x,y

W (y|x)∂Qρ(x)
∂ρ

∣∣∣
ρ=0

= −
∑
u,x,y

W (y|x)Q̄(x|u)PU(u) log (PU(u))

−H(PU)
∑
u,x,y

W (y|x)Q̄(x|u)PU(u) = 0, (2.72)

where in (2.72) we used the fact that ∑u,x,y PU(u)Q̄(x|u)W (y|x) = 1 and
also the definition of the source entropy.

By replacing zero instead of ∑x,yW (y|x)∂Qρ(x)
∂ρ

∣∣∣
ρ=0

appeared in (2.68), we
obtain the reliable transmission condition as

∂E0(ρ,Qρ,W )
∂ρ

∣∣∣
ρ=0
− ∂Es(ρ, PU)

∂ρ

∣∣∣
ρ=0

= IQ0W (X;Y )−H(PU) > 0, (2.73)

where as mentioned Q0 denotes Qρ at ρ = 0.
Next we focus on the transmissible condition of the source PU by using icd

exponent. Again, by evaluating the partial derivative of the E0,s(ρ, PU , Q̄,W )
at ρ = 0, we obtain

∂E0,s(ρ, PU , Q̄,W )
∂ρ

∣∣∣
ρ=0

= IQ̄W (X;Y )−H(PU) > 0, (2.74)

where

IQ̄W (X;Y ) =
∑
u,x,y

PU(u)Q̄(x|u)W (y|x) log W (y|x)∑
ū,x̄

PU(ū)Q̄(x̄|ū)W (y|x̄)
. (2.75)

Considering (2.73) and (2.74) and noting to the fact that maxQ0 IQ0W (X;Y ) =
maxQ̄ IQ̄W (X;Y ), we conclude that to have a reliable transmission over chan-
nel W , for both iid and icd ensembles, the source entropy should be lower
than channel capacity.

2.3.2 Conditional Constant-Composition Ensemble and
Constant-Composition Ensemble

In the section, by comparing (2.17) and (2.59) we show that in terms of
error exponent, there is no benefit to use conditional constant-composition
ensemble instead of generalized constant-composition ensemble.
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Proposition 2.9. Consider a source with probability distribution PU , for a
given conditional distribution Q̄(x|u), there exists a Qρ(x) given in (2.61),
such that

Eccc
0,s (ρ, PUQ̄,W ) ≤ Ecc

0 (ρ,Qρ,W )− Es(ρ, PU), (2.76)

where Eccc
0,s (·), Ecc

0 (·) and Es(ρ, PU) are given in (2.18), (2.56) and (1.9),
respectively.

Proof. See Section 2.4.9.

Considering the obtained results, we may conclude that in terms of er-
ror exponent, using ensembles generated with conditional distribution has
no advantage over those of generated with marginal distribution. However,
combining the results presented in Section 2.2, we have the following relation
between achievable exponents

Egcc ≥ Emd ≥ Eiid. (2.77)

2.4 Proofs

2.4.1 Proof of Proposition 2.1
We first bound ε̄n, the average error probability over the ensemble, for a
given block length n. Applying the random coding union bound [23] for joint
source channel coding, we have

ε̄n ≤
∑
u,x,y

P n
UXY (u,x,y) min

{
1,
∑
u′ 6=u

P
[
P n
U (u′)W n(y|X ′)
P n
U (u)W n(y|x) ≥ 1

]}
, (2.78)

where x′ has the same distribution as x but is independent of y. Recalling
that π(u) denotes the type of source sequence u, and codewords are generated
according to a conditional distribution which depends on the π(u), we bound
ε̄n as

ε̄n ≤
∑
u,x,y

P n
UXY (u,x,y) min

{
1,

∑
u′ 6=u

x′:
Pn
U

(u′)Wn(y|x′)
Pn
U

(u)Wn(y|x) ≥1

Q̄n
π(u′)(x′|u′)

}
. (2.79)

Next, we group the outer and inner summations in (2.79) based on the
empirical distributions of (u,x,y) and (u′,x′), respectively, and then sum
over all possible empirical distributions, respectively denoted by P̂UXY and
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P̃UXY . We note that the summation over P̂UXY runs over the set of all
possible empirical distributions, PnU×X×Y , while the summation over P̃UXY is
restricted to the set Kn, defined as

Kn(P̂UXY ) ,
{
P̃UXY ∈ PnU×X×Y :

P̃Y = P̂Y ,EP̃ [λ(U,X, Y )] ≥ EP̂ [λ(U,X, Y )]
}
, (2.80)

where λ(U,X, Y ) = log
(
PU(U)W (Y |X)

)
. As a result, we can write the

summations in equation (2.79) respectively as∑
u,x,y

P n
UXY (u,x,y) =

∑
P̂UXY ∈PnU×X×Y

∑
(u,x,y)∈T n(P̂UXY )

P n
UXY (u,x,y), (2.81)

and ∑
u′ 6=u

x′:
Pn
U

(u′)Wn(y|x′)
Pn
U

(u)Wn(y|x) ≥1

Q̄n
π(u′)(x′|u′) =

∑
P̃UXY ∈Kn(P̂UXY )

∑
(u′,x′)∈T ny (P̃UXY )

Q̄n
π(u′)(x′|u′),

(2.82)

where T ny (·) is given by (1.40).
Since the conditional distribution Q̄n

π(u′)(x′|u′) has the same value for all
(u′,x′) ∈ T ny (P̃UXY ), we have∑

(u′,x′)∈T ny (P̃UXY )

Q̄n
π(u′)(x′|u′) = |T ny (P̃UXY )|Q̄n

π(u′)(x′|u′). (2.83)

Considering (1.40) and the fact that P̃Y = P̂Y in Kn(P̂UXY ) in (2.80), we
have the following upper bound

∣∣∣T ny (P̃UXY )
∣∣∣ =

∣∣∣T n(P̃UXY )
∣∣∣∣∣∣T n(P̃Y )
∣∣∣ ≤ enH(P̃UXY )+o(n)

enH(P̂Y )
, (2.84)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0. In addition, using [20,
Eq. (1)] for conditional distributions, for all (u′,x′) ∈ T ny (P̃UXY ), we have
the following identity on the conditional probability

Q̄n
π(u′)(x′|u′) = en

∑
u,x,y P̃UXY (u,x,y) log Q̄P̃U (x|u), (2.85)

where in (2.85), we used the fact that the type of u is P̃U . Combining inequal-
ity (2.84) and identity (2.85) into (2.83), we obtain the following inequality

∑
(u′,x′)∈T ny (P̃UXY )

Q̄n
π(u′)(x′|u′) ≤ e

−n
(
D(P̃UXY ||P̃U Q̄P̃U P̂Y )−H(P̃U )

)
+o(n)

. (2.86)
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Further, upper bounding the right hand side of equation (2.86) by the max-
imum over the empirical probability distributions P̃UXY ∈ Kn(P̂UXY ), we
have ∑

(u′,x′)∈T ny (P̃UXY )

Q̄n
π(u′)(x′|u′) ≤

max
P̃UXY ∈Kn(P̂UXY )

e
−n
(
D(P̃UXY ||P̃U Q̄P̃U P̂Y )−H(P̃U )

)
+o(n)

. (2.87)

Moreover, in view of [20, Eq. (12)], the second summation of the right
hand side of (2.81) can be expressed as

∑
(u,x,y)∈T n(P̂UXY )

P n
UXY (u,x,y) ≤ e

−n
(
D(P̂UXY ||PU Q̄P̂UW

)
. (2.88)

Similarly to (2.87), we may upper bound the right hand side of (2.88) by the
maximum over the empirical distributions P̂UXY ∈ PnU×X×Y , i. e.

∑
(u,x,y)∈T n(P̂UXY )

P n
UXY (u,x,y) ≤ max

P̂UXY ∈PnU×X×Y
e
−n
(
D(P̂UXY ||PU Q̄P̂UW

)
. (2.89)

Putting back the results obtained in equations (2.89) and (2.87) into the
respective inner and outer summations (2.81) and (2.82), we obtain that the
average error probability (2.79) can be bounded as

ε̄n ≤
∑

P̂UXY ∈PnU×X×Y

max
P̂UXY ∈PnU×X×Y

e
−n
(
D(P̂UXY ||PU Q̄P̂UW

)
min

{
1,

∑
P̃UXY ∈Kn(P̂UXY )

max
P̃UXY ∈Kn(P̂UXY )

e
−n
(
D(P̃UXY ||P̃U Q̄P̃U P̂Y )−H(P̃U )

)
+o(n)

}
, (2.90)

where using the fact that the cardinalities of the sets Kn(P̂UXY ) and PnU×X×Y
behave polynomially with the codeword length n, and satisfy∣∣∣Kn(P̂UXY )

∣∣∣ ≤ ∣∣∣PnU×X×Y ∣∣∣ ≤ eo(n), (2.91)

we bound ε̄n as

ε̄n ≤ max
P̂UXY ∈PnU×X×Y

e
−n
(
D(P̂UXY ||PU Q̄P̂UW

)
+o(n) min

{
1,

max
P̃UXY ∈Kn(P̂UXY )

e
−n
(
D(P̃UXY ||P̃U Q̄P̃U P̂Y )−H(P̃U )

)
+o(n)

}
. (2.92)
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Using the identity min{1, ea} = e[a]+ , we may write equation (2.92) as

ε̄n ≤ e−nE
n+o(n), (2.93)

where

En = min
P̂UXY ∈PnU×X×Y

D(P̂UXY ||PUQ̄P̂U
W )

+
[

min
P̃UXY ∈Kn(P̂UXY )

D(P̃UXY ||P̃UQ̄P̃U
P̂Y )−H(P̃U)

]+
. (2.94)

Using Lemma A.1, we find that En ≥ En
o , where

En
o = min

P̂UXY ∈PnU×X×Y
D(P̂UXY ||PUQ̄P̂U

W ) +
[
D(P̂UXY ||P̂UQ̄P̂U

P̂Y )−H(P̂U)
]+
.

(2.95)

As a result, the average error probability is bounded as

ε̄n ≤ e−nE
n
o +o(n). (2.96)

Taking logarithm and lim inf from both sides of the equation (2.96) and
noting that the inequality

lim inf
n→∞

max{an, bn} ≥ max
{

lim inf
n→∞

an, lim inf
n→∞

bn
}
, (2.97)

implies that
lim inf
n→∞

[an]+ ≥
[

lim inf
n→∞

an
]+
, (2.98)

we obtain

lim inf
n→∞

− 1
n

log(ε̄n) ≥ lim inf
n→∞

min
P̂UXY ∈PnU×X×Y

D(P̂UXY ||PUQ̄P̂U
W )

+
[

lim inf
n→∞

D(P̂UXY ||P̂UQ̄P̂U
P̂Y )−H(P̂U)

]+
. (2.99)

We further note that the set of all empirical distributions is dense in the
set of all possible probability distributions, and that the functions involved in
(2.99) are uniformly continuous over their arguments. Hence, we may replace
the optimization over empirical distributions by an optimization over the set
of all possible distributions in (2.99) concluding Proposition 2.1.
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2.4.2 Proof of Proposition 2.2
Since the proof of Proposition 2.2 is very similar to the proof of Lemma A.3,
we omit some details to avoid repetition.

Using the identity that max{0, a} = maxρ∈[0,1] ρa and in view of Fan’s
minimax theorem [22], stating that mina supb f(a, b) = supb mina f(a, b) pro-
vided that the minimum is over a compact set, f(·, b) is convex in a for all
b, and f(a, ·) is concave in b for all a, equation (2.7) can be written as

Eicd = max
ρ∈[0,1]

min
P̂UXY ∈PU×X×Y

D(P̂UXY ||PUQ̄W )

+ρD(P̂UXY ||P̂UQ̄P̂Y )− ρH(P̂U). (2.100)

Setting P̂ZY = P̂UXY and PZ = P̂UQ̄ in Lemma A.4, we will find that
D(P̂UXY ||P̂UQ̄P̂Y ) = minVY D(P̂UXY ||P̂UQ̄VY ). By applying this fact to
(2.100), we obtain

Eicd = max
ρ∈[0,1]

min
VY

min
P̂UXY ∈PU×X×Y

D(P̂UXY ||PUQ̄W )

+ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U), (2.101)

where VY is an arbitrary probability assignment over the channel output
alphabet Y .

Now, to solve the optimization problem in (2.101), we apply Lagrange
duality theory. Firstly we consider the minimization over P̂UXY in (2.101).
Since the objective function in (2.101) is convex with respect to P̂UXY and
the constraint ∑u,x,y P̂UXY = 1 is affine, the strong duality conditions are
satisfied and we have

min
P̂UXY ∈PU×X×Y

D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U) (2.102)

= max
θ

min
P̂UXY ∈PU×X×Y

Licd(P̂UXY , θ), (2.103)

where minP̂UXY L
icd(P̂UXY , θ) is the Lagrange dual function of (2.102) and is

given by

Licd(P̂UXY , θ) = D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U)

+ θ
(

1−
∑
u,x,y

P̂UXY (u, x, y)
)
, (2.104)

where θ is the Lagrange multiplier associated with the well-known constraint∑
u,x,y P̂UXY (u, x, y) = 1. We proceed by analyzing the KKT conditions for
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P̂UXY . Firstly, we simplify (2.104) by using the definitions of the relative en-
tropy and entropy and considering the fact that ∑j aj log bj + c

∑
j aj log bj =∑

j aj log b1+c
j , which leads to

Licd(P̂UXY , θ) =
∑
u,x,y

P̂UXY (u, x, y) log P̂UXY (u, x, y)1+ρ

PU(u)Q̄(x|u)1+ρW (y|x)VY (y)ρ

+ θ
(

1−
∑
u,x,y

P̂UXY (u, x, y)
)
. (2.105)

Next, we apply the KKT conditions. Since strong duality holds, optimal
(P̂UXY , θ) must satisfy KKT conditions, i. e. for optimal (P̂UXY , θ), we have
∂Licd(P̂UXY ,θ)

∂P̂UXY
= 0 which yields

log P̂UXY (u, x, y)1+ρ

PU(u)Q̄(x|u)1+ρW (y|x)VY (y)ρ
+ (1 + ρ)− θ = 0. (2.106)

Solving (2.106) with respect to P̂UXY (u, x, y), the optimal value of P̂UXY (u, x, y)
is derived as

P̂UXY (u, x, y) = e
θ−(1+ρ)

1+ρ PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ . (2.107)

To apply the constraint∑u,x,y P̂UXY (u, x, y) = 1, we sum both sides of (2.107)
over (u, x, y) which gives us the optimal value of θ. Putting back the optimal
θ in (2.107), the optimal P̂UXY (u, x, y) is derived as

P̂UXY (u, x, y) = PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ∑
ū,x̄,ȳ

PU(ū)
1

1+ρ Q̄(x̄|ū)W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ
. (2.108)

By inserting the optimal value of P̂UXY obtained in (2.108) into (2.105), we
obtain

max
θ

min
P̂UXY ∈PU×X×Y

Licd(P̂UXY , θ) =

−(1 + ρ) log
( ∑
u,x,y

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
. (2.109)

Next, in view of (2.101), (2.102) and (2.109), we have

Eicd = max
ρ∈[0,1]

−(1 + ρ) log
(

max
VY

∑
u,x,y

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
,

(2.110)
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where in (2.110), by using the fact that logarithm is an increasing function,
we took the minimization inside the logarithm.

Now, in order to find the optimal value of VY , we use Lemma A.2. By
defining f(y) = ∑

u,x PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ , in view of Lemma A.2, the
optimal value of VY which maximizes the objective function inside the loga-
rithm in (2.110) is given by

VY (y) =

(∑
u,x PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ

∑
ȳ

(∑
ū,x̄ PU(ū)

1
1+ρ Q̄(x̄|ū)W (ȳ|x̄)

1
1+ρ

)1+ρ . (2.111)

By inserting the obtained VY (y) derived in (2.111) into (2.110) and (2.108),
we obtain

P̂ ?
UXY (u, x, y) =

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ

(∑
ū,x̄

PU(ū)
1

1+ρ Q̄(x̄|ū)W (y|x̄)
1

1+ρ

)ρ
∑
ȳ

(∑
ū,x̄

PU(ū)
1

1+ρ Q̄(x̄|ū)W (ȳ|x̄)
1

1+ρ

)1+ρ , (2.112)

and

Eicd = max
ρ∈[0,1]

− log
(∑

y

(∑
u,x

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ

)1+ρ)
, (2.113)

which concludes the proof.

2.4.3 Proof of Proposition 2.4
Again, we apply the Lagrange duality theory. For P̂UXY ∈ Sccc, we have
I (U,X;Y ) = D(P̂UXY ||P̂UQ̄P̂Y ). Considering this fact and setting Z =
UX and PZ = P̂UQ̄ in Lemma A.4, we may conclude that I (U,X;Y ) =
D(P̂UXY ||P̂UQ̄P̂Y ) = minVY D(P̂UXY ||P̂UQ̄VY ). As a result, in view of Lemma
A.4, (2.14) can be expressed as

Eccc = min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) +
[

min
VY

D(P̂UXY ||P̂UQ̄VY )−H(P̂U)
]+

,

(2.114)

where, VY is an arbitrary probability assignment over the channel output
alphabet Y . In view of the identity that max{0, a} = maxρ∈[0,1] ρa and Fan’s
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minimax theorem [22], Eccc given in (2.114) can be written as

Eccc = max
ρ∈[0,1]

min
VY

min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W )

+ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U). (2.115)

To derive an alternative expression for Eccc given in (2.115), firstly we
focus on the inner minimization over P̂UXY ∈ Sccc in (2.115). In fact, we
consider the following optimization problem as the primal problem, where

min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U). (2.116)

Like before, to determine the optimal value of P̂UXY which minimizes
(2.116), we apply Lagrange duality theory. We consider the presented con-
straints in (2.15) which leads∑u,x,y P̂UXY (u, x, y) = 1 and the new constraint
P̂UXY (u, x, y) = P̂U(u)Q̄(x|u)P̂Y |XU(y|x, u), i. e. for all x ∈ X and u ∈ U , we
have P̂X|U(x|u) = Q̄(x|u) or

Q̄(x|u) = P̂X|U(x|u) = P̂UX(u, x)
P̂U(u)

=

∑
y

P̂UXY (u, x, y)∑
x̄,ȳ

P̂UXY (u, x̄, ȳ)
, (2.117)

where in (2.117), we used the definition of marginal distribution. By multi-
plying both sides of (2.117) by ∑x,y P̂UXY (u, x, y), an equivalent constrain of
the (2.15) is given by

∑
y

P̂UXY (u, x, y) = Q̄(x|u)
∑
x̄,ȳ

P̂UXY (u, x̄, ȳ). (2.118)

Now, in view of the constraint presented in (2.118) and the obvious fact
that ∑u,x,y P̂UXY (u, x, y) = 1, we define Lccc as the Lagrangian associated
with the optimization problem given in (2.116). Since the objective function
is a convex function over a convex set and the two constraints (2.118) and∑
u,x,y P̂UXY (u, x, y) = 1 are affine, the strong duality conditions hold and

therefore

min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U) (2.119)

= max
β(·),θ

min
P̂UXY

Lccc(P̂UXY , θ, β), (2.120)
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where

Lccc(P̂UXY , θ, β) = D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U)

+
∑
u,x

β(u, x)
(
Q̄(x|u)

∑
y,x̄

P̂UXY (u, x̄, y)−
∑
y

P̂UXY (u, x, y)
)

+ θ

(
1−

∑
uxy

P̂UXY (u, x, y)
)
, (2.121)

and θ, β associate respectively with the constraints ∑u,x,y PUXY (u, x, y) = 1
and (2.118). Using the definition of the relative entropy, entropy and the fact
that ∑j aj log bj + c

∑
j aj log bj = ∑

j aj log b1+c
j , the Lagrangian is simplified

as

Lccc(P̂UXY , θ, β) =
∑
uxy

P̂UXY (u, x, y) log P̂UXY (u, x, y)1+ρ

PU(u)Q̄(x|u)1+ρW (y|x)VY (y)ρ

+
∑
u,x

β(u, x)
(
Q̄(x|u)

∑
y,x̄

P̂UXY (u, x̄,y)−
∑
y

P̂UXY (u, x, y)
)

+ θ

(
1−

∑
uxy

P̂UXY (u, x, y)
)
. (2.122)

Since the strong duality holds, the Lagrange multipliers satisfies the KKT
conditions. By setting ∂Lccc(P̂UXY ,θ,β)

∂P̂UXY
= 0, we obtain

log P̂UXY (u, x, y)1+ρ

PU(u)Q̄(x|u)1+ρW (y|x)VY (y)ρ
+ (1 + ρ)− θ

+
∑
x̄

β(u, x̄)Q̄(x̄|u)− β(u, x) = 0. (2.123)

Solving (2.123) with respect to P̂UXY (u, x, y) and applying the constraint
that ∑u,x,y P̂UXY (u, x, y) = 1, the optimal P̂ ?

UXY (u, x, y) is derived as

P̂ ?
UXY (u, x, y) =

e
β(u,x)−

∑
x̄
β(u,x̄)Q̄(x̄|u)

1+ρ PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ∑
u,x,y

e
β(u,x)−

∑
x̄
β(u,x̄)Q̄(x̄|u)

1+ρ PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

. (2.124)

Next, we apply the second constraint given in (2.118). In view of (2.118),
we sum P̂UXY (u, x, y) given in (2.124) over y to obtain P̂UX(u, x). We also
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sum P̂UXY (u, x, y) over (x, y) to obtain P̂U(u). By inserting the fact that
Q̄(x|u) = P̂UX(u,x)

P̂U (u) , we find that the optimal β satisfies

β(u, x)−
∑
x̄

β(u, x̄)Q̄(x̄|u) =

−(1 + ρ) log
∑
yW (y|x)

1
1+ρVY (y)

ρ
1+ρ

∑
x̄,ȳ e

β(u,x̄)−
∑

x̄
β(u,x̄)Q̄(x̄|u)

1+ρ Q̄(x̄|u)W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ

. (2.125)

Inserting the optimum values of (P̂UXY , β) derived in (2.124) and (2.125),
respectively into (2.122), we obtain

Lccc(β) =

−(1 + ρ) log
( ∑
u,x,y

e
β(u,x)−

∑
x̄
β(u,x̄)Q̄(x̄|u)

1+ρ PU(u)
1

1+ρQ(x|u)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
,

(2.126)

where Lccc(β) = maxθ minP̂UXY L
ccc(P̂UXY , θ, β). To simplify Lccc(β), we de-

fine β̄(u, x) , β(u, x)−∑x̄ β(u, x̄)Q̄(x̄|u). Multiplying both sides of β̄(u, x)
by Q̄(x|u) and summing over x, implies that ∑x β̄(u, x)Q̄(x|u) = 0. Replac-
ing β(u, x)−∑x̄ β(u, x̄)Q̄(x̄|u) appeared in (2.126) with the β̄(u, x), Lccc(β)
in (2.126) can be expressed as

Lccc(β̄) = −(1 + ρ) log
( ∑
u,x,y

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρVY (y)

ρ
1+ρ

)
,

(2.127)

subject to the constraint ∑x β̄(u, x)Q̄(x|u) = 0. Considering (2.126) and
(2.127), we conclude that maxβ(u,x) Lccc(β) = maxβ̄(u,x):

∑
x
β̄(u,x)Q̄(x|u)=0 Lccc(β̄).

Considering this fact, in view of (2.127) and (2.120), we note that the left
hand of (2.120) is equal with the maxβ̄(u,x):

∑
x
β̄(u,x)Q̄(x|u)=0 Lccc(β̄), i. e.

min
P̂UXY ∈Sccc

D(P̂UXY ||PUQ̄W ) + ρD(P̂UXY ||P̂UQ̄VY )− ρH(P̂U) =

max
β̄(u,x):

∑
x
β̄(u,x)Q̄(x|u)=0

−(1 + ρ) log
( ∑
u,x,y

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)

×W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
. (2.128)
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Now, in view of (2.115) and (2.128), we conclude that
Eccc = max

ρ∈[0,1]
min
VY

max
β̄(u,x):∑

x
β̄(u,x)Q̄(x|u)=0

−(1 + ρ) log
( ∑
u,x,y

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρVY (y)

ρ
1+ρ

)
. (2.129)

Again, by using Fan’s minimax theorem, we can swap minVY and maxβ̄(·) as

Eccc = max
ρ∈[0,1]

max
β̄(u,x):∑

x
β̄(u,x)Q̄(x|u)=0

−(1 + ρ) log
(

max
VY

∑
u,x,y

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρVY (y)

ρ
1+ρ

)
, (2.130)

where in (2.130) by using the fact that the logarithm is an increasing function,
we took the minimization inside the logarithm. Considering the maximiza-
tion over VY in (2.130), we define e(y) = ∑

u,x e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ ,

which leads to
max
VY

∑
y

e(y)VY (y)
ρ

1+ρ , (2.131)

where the objective function in (2.131) is concave function of VY . Using
Lemma A.2, the optimal value of VY (y) of the objective function in (2.130)
is derived as

VY (y) =

(∑
u,x e

β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ

∑
ȳ

(∑
ū,x̄ e

β̄(ū,x̄)
1+ρ PU(ū)

1
1+ρ Q̄(x̄|ū)W (ȳ|x̄)

1
1+ρ

)1+ρ . (2.132)

Putting back VY (y) obtained in (2.132) into (2.130), we obtain
Eccc = max

ρ∈[0,1]

max
β̄(u,x):∑

x
β̄(u,x)Q̄(x|u)=0

− log
(∑

y

(∑
u,x

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ)
,

(2.133)
where by defining
Eccc

0,s (ρ, PU , Q,W ) =

max
β̄(u,x):∑

x
β̄(u,x)Q̄(x|u)=0

− log
(∑

y

(∑
u,x

e
β̄(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ)
,

(2.134)
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Proposition 2.4 is proved.

2.4.4 Proof of Lemma 2.1
We recall that PnU denotes the set of all empirical distributions on a vector
in Un and given P̃U ∈ PnU , the type class T n(P̃U) is the set of all sequences in
Un with type P̃U . Thus, Un can be partitioned by the source type messages,
i. e. Un = ⋃

P̃U∈PnU
T n(P̃U).

Moreover, in view of [21], we define Dn` , {u : γn`+1 < P n
U (u) ≤ γn` }

for ` ∈ {1, ..., L} where γL+1 = 0 and γ1 = 1. To make sure Dn` 6= ∅, we
assume γL > minPU(u) and γ2 ≤ maxPU(u). Given ` ∈ {1, ..., L}, from the
definition of Dn` , it can be verified that Dn` s are disjoint subsets (referred to
as classes) such that Un = ⋃L

`=1Dn` . Thus, Un can be also partitioned by
Dn` s. We refer ` as the indexed class.

Noting to the fact that all u ∈ T n(P̃U) have the same probability, Dn` s
are unions of type classes. We shall prove that T n(P̃U) ⊆ Dn` provided that
log γ`+1 <

∑
u P̃U(u) logPU(u) ≤ log γ`, which means that the intersection of

T n(P̃U) and Dn` can be expressed as

Dn`
⋂
T n(P̃U) =

{
T (P̃U) log γ`+1 <

∑
u P̃U(u) logPU(u) ≤ log γ`,

∅ otherwise.
(2.135)

To show (2.135), let u ∈ T n(P̃U), it means that the string u contains ex-
actly nP̃U(u) occurrences of letter u or the probability of sequence u can be
written as P n

U (u) = ∏
u∈U PU(u)nP̃U (u). In addition, since Un is partitioned

by Dn` s, there exists a unique ` such that u ∈ Dn` or γn`+1 < P n
U (u) ≤

γn` . By expressing the probability of u in terms of its type, we obtain
γn`+1 <

∏
u∈U PU(u)nP̃U (u) ≤ γn` . Using the properties that bc = ec log(b) and

log(a1a2) = log(a1) + log(a2), we conclude en log γ`+1 < en
∑

u
P̃U (u) logPU (u) ≤

en log γ` which is equivalent to the expression log γ`+1 <
∑
u P̃U(u) logPU(u) ≤

log γ` in (2.135). In fact, we showed that if u ∈ T n(P̃U) ⇒ u ∈ Dn` ,
i. e. T n(P̃U) ⊆ Dn` , provided that log γ`+1 <

∑
u P̃U(u) logPU(u) ≤ log γ`.

As a result, in view of (2.135), Dn` can be rewritten as
Dn` = {u : γn`+1 < P n

U (u) ≤ γn` } (2.136)
= {T n(P̃U) : log γ`+1 <

∑
u

P̃U(u) logPU(u) ≤ log γ`}. (2.137)

In other words, let P̃U ∈ PnU , there exists a unique ` ∈ {1, ..., L} such that
log γ`+1 <

∑
u P̃U(u) logPU(u) ≤ log γ`. In addition, since the set of all em-

pirical distributions is dense in the set of all possible probability distributions
PU , we conclude Lemma 2.1.
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2.4.5 Proof of Proposition 2.6
In order to prove Proposition 2.6, we simplify the achievable exponent in
(2.19) as

Emd = min
P̂U∈PU

max
ρ∈[0,1]

D(P̂U ||PU)− ρH(P̂U)

+ min
P̂XY ∈PX×Y

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ), (2.138)

where in (2.138) we used the identity that max{0, a} = maxρ∈[0,1] ρa and
Fan’s minimax theorem stating that mina supb f(a, b) = supb mina f(a, b) pro-
vided that the minimum is over a compact set, f(·, b) is convex in a for all
b, and f(a, ·) is concave in b for all a.

Next, to determine the dual expression for the achievable exponent, we
apply Lagrange duality theory to the two minimizations over the P̂U and P̂XY
in (2.138). Firstly, we fix P̂U ∈ PU and we consider the inner minimization
over P̂XY ∈ PX×Y , i. e. we focus on the following optimization problem

min
P̂XY ∈PX×Y

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ). (2.139)

Lemma A.3 shows that (2.139) can be expressed as

min
P̂XY ∈PX×Y

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ) = E0(ρ,QP̂U
,W ), (2.140)

where E0(·) is given by (1.14). Now, combining (2.138) and (2.140), we face
the following optimization problem

Emd = min
P̂U∈PU

max
ρ∈[0,1]

D(P̂U ||PU)− ρH(P̂U) + E0(ρ,QP̂U
,W ). (2.141)

To determine the optimal value of P̂U , firstly we consider the input dis-
tribution QP̂U

and its dependency on P̂U . As mentioned, in view of Lemma
2.1, we can split the minimization over P̂U into minimization over disjoint
classes given by (2.21). For the P̂U belonging to the class `, we let QP̂U

= Q`.
Now, in view of Lemma 2.1, by splitting the minimization over P̂U in (2.141)
into disjoint classes, we obtain

Emd = min
`∈{1,...,L}

max
ρ∈[0,1]

min
P̂U∈PU :

log γ`+1<
∑

u
P̂U (u) logPU (u)≤log γ`

D(P̂U ||PU)− ρH(P̂U)

+ E0(ρ,Q`,W ), (2.142)
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where in (2.142), we changedQP̂U
intoQ`, we used the fact that minx∈S f(x) =

minj minx∈Sj f(x), where the set S is partitioned by the Sjs, and also in view
of Sion’s minimax theorem [24], we swap the maximization over ρ with the
minimization over P̂U .

At this point, we consider the inner minimization over P̂U in (2.142) to
apply Lagrange duality theory. Since D(P̂U ||PU)−ρH(P̂U) is the only quan-
tity in (2.142) that depends on the P̂U , we consider the following optimization
problem as the primal problem

min
P̂U∈PU :

log γ`+1<
∑

u
P̂U (u) logPU (u)≤log γ`

D(P̂U ||PU)− ρH(P̂U), (2.143)

where the objective function D(P̂U ||PU) − ρH(P̂U) and the two inequality
constrains

log γ`+1 −
∑
u

P̂U(u) logPU(u) < 0 (2.144)∑
u

P̂U(u) logPU(u)− log γ` < 0, (2.145)

are convex with respect to P̂U and the equality constraints of ∑u P̂U(u) = 1
is affine. Thus, the primal problem in (2.143) satisfies the strong duality
conditions which leads to

min
P̂U∈PU :

log γ`+1<
∑

u
P̂U (u) logPU (u)≤log γ`

D(P̂U ||PU)− ρH(P̂U) =

max
λ`+1≥0,λ`≥0

θ

min
P̂U

L(P̂U , θ, λ`+1, λ`), (2.146)

where minP̂U L(P̂U , θ, λ`+1, λ`) is the Lagrange dual function to the primary
problem (2.143) and L(P̂U , θ, λ`+1, λ`) is the Lagrangian associated with the
optimization problem in (2.143) and is given by

L(P̂U , θ, λ`+1, λ`) = D(P̂U ||PU)− ρH(P̂U) + θ
(

1−
∑
u

P̂U(u)
)

+λ`+1

(
log γ`+1 −

∑
u

P̂U(u) logPU(u)
)

+ λ`

(∑
u

P̂U(u) logPU(u)− log γ`
)
.

(2.147)
Using the definition of relative entropy and entropy, the Lagrangian is sim-
plified as

L(P̂U , θ, λ`+1, λ`) =
∑
u

P̂U(u) log P̂U(u)1+ρ

PU(u)1+λ`+1−λ`
+ θ

(
1−

∑
u

P̂U(u)
)

+ λ`+1 log γ`+1 − λ` log γ`. (2.148)
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Since the strong duality holds, we proceed to simplify (2.148) using the KKT
conditions. For the optimum values of (P̂U , θ, λ`+1, λ`), the KKT conditions
implies that ∂L(P̂XY ,θ,λ`+1,λ`)

∂P̂U
= 0, which yields

log P̂U(u)1+ρ

PU(u)1+λ`+1−λ`
+ (1 + ρ)− θ = 0. (2.149)

By solving (2.149) with respect to P̂U , we find that

P̂U(u) = e
θ−(1+ρ)

1+ρ PU(u)
1+λ`+1−λ`

1+ρ . (2.150)

Summing both sides of (2.150) over u and considering the fact that∑u P̂U(u) =
1, we obtain

1 = e
θ−(1+ρ)

1+ρ
∑
u

PU(u)
1+λ`+1−λ`

1+ρ . (2.151)

Inserting the value of e
θ−(1+ρ)

1+ρ obtained in (2.151) into (2.150), the optimal
value of P̂U(u) is derived as

P̂U(u) = PU(u)
1+λ`+1−λ`

1+ρ∑
ū

PU(ū)
1+λ`+1−λ`

1+ρ

. (2.152)

Putting back the optimum values of (P̂U , θ) derived in (2.152) and (2.151)
into (2.148), the Lagrangian can be written as

L(λ`+1, λ`) = −(1 + ρ) log
(∑

u

PU(u)
1+λ`+1−λ`

1+ρ

)
+ λ`+1 log γ`+1 − λ` log γ`,

(2.153)

where L(λ`+1, λ`) = maxθ minP̂U L(P̂U , θ, λ`+1, λ`).
Now, in view of (2.146) and (2.153), we may determine the maximum

of L(λ`+1, λ`) with respect to λ`+1 ≥ 0 and λ` ≥ 0. Let λ∗`+1 and λ∗` be
the quantities which maximize the Lagrangian in (2.153). The KKT con-
ditions imply that for the cases where the constraints presented in (2.144)
and (2.145) are inactive, λ∗`+1 = λ∗` = 0. While, for the case where the in-
equality constraint in (2.144) is active, since ∂2L

∂λ2
`+1
≤ 0, the maximum of the

Lagrangian occurs at the λ∗`+1 ≥ 0, where ∂L(λ∗`+1,λ`)
∂λ∗

`+1
= 0 (same for the λ∗`).

At this point, based on the activation or inactivation of (2.144) and (2.145)
we consider four cases.
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Case I: Assume (2.144), (2.145) are active and inactive, respectively.
Considering the facts that (2.145) is inactive and L is a convex function with
respect to λ`+1, we conclude that λ∗` = 0 and ∂L(λ∗`+1,0)

∂λ∗
`+1

= 0. By setting
∂L(λ∗`+1,0)
∂λ∗

`+1
= 0, we obtain

∑
u PU(u)

1+λ∗
`+1

1+ρ logPU(u)∑
u PU(u)

1+λ∗
`+1

1+ρ

= log γ`+1, (2.154)

where (2.154) and its properties are given in Lemma A.5.
In view of Lemma A.5, we recall that (2.154) is the same function as

(A.33), if 1+λ∗`+1
1+ρ is defined as

1 + λ∗`+1
1 + ρ

= 1
1 + ρ∗γ`+1

⇒ λ∗`+1 =
ρ− ρ∗γ`+1

1 + ρ∗γ`+1

, (2.155)

where noting to (2.154), ρ∗γ`+1
satisfies (A.33).

Now, we come back to the problem of determining the maximum of
the L(λ`+1, λ`) given in (2.153), when (2.144) and (2.145) are active and
inactive, respectively. Since (2.145) is inactive, λ∗` = 0 and due to the
fact that (2.144) is active, λ∗`+1 > 0 in (2.154) maximizes the Lagrangian
in (2.153). Moreover, in view of (2.155), by applying λ∗`+1 > 0 we con-
clude that 1

1+ρ∗γ`+1
> 1

1+ρ . By inserting λ∗` = 0 in (2.153), substituting

log γ`+1 obtained in (2.154) into (2.153), and noting this fact that ∂Es(ρ,PU )
∂ρ

=

log(∑u PU(u)
1

1+ρ )− 1
1+ρ

∑
u
PU (u)

1
1+ρ logPU (u)∑

u
PU (u)

1
1+ρ

, the maximum of the Lagrangian

for the first case can be expressed as

max
λ`+1≥0,λ`≥0

L(λ`+1, λ`) =

−Es(ρ∗γ`+1
, PU)− (ρ− ρ∗γ`+1

)E ′s(ρ∗γ`+1
), 1

1 + ρ
<

1
1 + ρ∗γ`+1

. (2.156)

Case II: In this case, we assume (2.144) is inactive which leads that
λ∗`+1 = 0 and (2.145) is active which leads that ∂L(0,λ∗` )

∂λ∗
`

= 0. Similarly, by
setting ∂L(0,λ∗` )

∂λ∗
`

= 0, we obtain

∑
u PU(u)

1−λ∗
`

1+ρ logPU(u)∑
u PU(u)

1−λi∗
1+ρ

= log γ`, (2.157)
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where again we put 1−λ∗`
1+ρ as

1− λ∗`
1 + ρ

= 1
1 + ρ∗γ`

⇒ λ∗` =
ρ∗γ` − ρ
1 + ρ∗γ`

, (2.158)

Due to the activation of (2.145), λ∗` > 0 where in view of (2.158) we conclude
that 1

1+ρ > 1
1+ρ∗γ`

. By inserting λ∗`+1 = 0 and log γ` obtained in (2.157)
into (2.153), and noting to the relation of ∂Es(ρ,PU )

∂ρ
, the maximum of the

Lagrangian for the second case is derived as

max
λ`+1≥0,λ`≥0

L(λ`+1, λ`) = −Es(ρ∗γ` , PU)− (ρ− ρ∗γ`)E
′
s(ρ∗γ`),

1
1 + ρ

>
1

1 + ρ∗γ`
.

(2.159)

Case III: In this case both (2.144) and (2.145) are inactive, λ∗`+1 =
λ∗i = 0. In other words, since ∂2L

∂λ2
`+1
≤ 0 and ∂2L

∂λ2
`
≤ 0, the maximum of

the Lagrangian is derived at the λ`+1 ≤ 0 and λ` ≤ 0. By applying the
non-positive condition to (2.155) and (2.158), we conclude 1

1+ρ∗γ`+1
≤ 1

1+ρ ≤
1

1+ρ∗γ`
. Finally, by inserting λ∗`+1 = λ∗` = 0 in (2.153), the maximum of the

Lagrangian is derived as

max
λ`+1≥0,λ`≥0

L(λ`+1, λ`) = −Es(ρ, PU), 1
1 + ρ∗γ`+1

≤ 1
1 + ρ

≤ 1
1 + ρ∗γ`

. (2.160)

Case IV: Finally, for the case where both (2.144) and (2.145) are active,
the maximum of the Lagrangian is derived at the λ`+1 ≥ 0 and λ` ≥ 0.
Considering this fact, in view of (2.155) and (2.158), we have 1

1+ρ <
1

1+ρ∗γ`+1

and 1
1+ρ >

1
1+ρ∗γ`

which means 1
1+ρ∗γ`+1

> 1
1+ρ∗γ`

and it is contradiction with
the inequality presented in (A.34). As a result, this case does not occur.

Combining (2.156), (2.159) and (2.160), the maximum value of the La-
grangian is derived as

max
λ`+1≥0,λ`≥0

L(λ`+1, λ`) =

−Es(ρ∗γ`+1
, PU)− (ρ− ρ∗γ`+1

)E ′s(ρ∗γ`+1
), 1

1 + ρ
<

1
1 + ρ∗γ`+1

,

−Es(ρ, PU), 1
1 + ρ∗γ`+1

≤ 1
1 + ρ

≤ 1
1 + ρ∗γ`

,

−Es(ρ∗γ` , PU)− (ρ− ρ∗γ`)E
′
s(ρ∗γ`),

1
1 + ρ

>
1

1 + ρ∗γ`
,

(2.161)
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where ρ∗γ`+1
and ρ∗γ` satisfies (A.33). Comparing (2.161) with (2.24), we find

that

max
λ`+1≥0,λ`≥0

L(λ`+1, λ`) = −Es,`(ρ, PU , γ`+1, γ`). (2.162)

Now, in view of the (2.162), (2.143) and (2.147), the optimal value of the
objective function in (2.143) is given by

min
P̂U∈PU :

log γ`+1<
∑

u
P̂U (u) logPU (u)≤log γ`

D(P̂U ||PU)− ρH(P̂U) = −Es,`(ρ, PU , γ`+1, γ`).

(2.163)

Inserting (2.163) into (2.142), by optimizing over thresholds, Proposition
2.6 is proved.

2.4.6 Proof of Proposition 2.7
In order to prove Proposition 2.7, firstly we will show that the left hand side
of (2.37) is smaller than the right hand side of it. Then, we will prove that
the right hand side of (2.37) is smaller than the left hand side of it.

Consider the scheme where the source-message set is partitioned into
three classes, i. e. 0 = γ4 < γ3 ≤ γ2 < γ1 = 1 are four positive ordered
numbers such that γ3 > minPU(u) and γ2 ≤ maxPU(u). For given in-
put distribution Q`, where ` = 1, 2, 3, from (2.23), the message-dependent
random-coding exponent is derived as

Emd(PU , {Q1, Q2, Q3},W ) =
max

γ2∈[γ3,1],γ3∈[0,1]
min

`∈{1,2,3}
max
ρ∈[0,1]

E0(ρ,Qi,W )− Es,`(ρ, PU , γ`+1, γ`), (2.164)

where since γ3 ≤ γ2, the maximization over γ2 in (2.164), is done over [γ3, 1].
Additionally, from (2.24) Es,`(ρ, PU , γ`+1, γ`) for ` = 1, 2, 3 is

Es,1(ρ, PU , γ2, 1) =

Es(ργ2 , PU) + E ′s(ργ2)(ρ− ργ2) 1
1+ρ <

1
1+ργ2

,

Es(ρ, PU) 1
1+ργ2

≤ 1
1+ρ ,

(2.165)

and

Es,2(ρ, PU , γ3, γ2) =


Es(ργ3 , PU) + E ′s(ργ2)(ρ− ργ3) 1

1+ρ <
1

1+ργ3
,

Es(ρ, PU) 1
1+ργ3

≤ 1
1+ρ <

1
1+ργ2

,

Es(ργ2 , PU) + E ′s(ργ2)(ρ− ργ2) 1
1+ρ ≥

1
1+ργ2

,

(2.166)
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and

Es,3(ρ, PU , 0, γ3) =

Es(ρ, PU) 1
1+ρ <

1
1+ργ3

,

Es(ργ3 , PU) + E ′s(ργ3)(ρ− ργ3) 1
1+ρ ≥

1
1+ργ3

.
(2.167)

In (2.165), (2.166) and (2.167), the parameter ργ` is the solution of the im-
plicit equation given by (2.25).

For given γ2 and γ3, Figure 2.4 shows the functions Es,`(ρ, PU , γ`+1, γ`)
for ` = 1, 2, 3 and Es,i(ρ, PU , γ2), Es,i(ρ, PU , γ3) for i = 1, 2. As shown in
Figure 2.4, by comparing (2.165) with (2.33), and also by comparing (2.167)
with (2.34), we immediately conclude that for given γ2 and γ3, we have

Es,1(ρ, PU , γ2, 1) = Es,1(ρ, PU , γ2), (2.168)
Es,3(ρ, PU , 0, γ3) = Es,2(ρ, PU , γ3). (2.169)

Similarly, in view of Figure 2.4, the function Es,2(ρ, PU , γ3, γ2) given by
(2.167), can be expressed as

Es,2(ρ, PU , γ3, γ2) = min {Es,2(ρ, PU , γ2), Es,1(ρ, PU , γ3)} . (2.170)

To prove (2.170), we note that for given γ3 ≤ γ2, from (2.25), we have
1

1+ργ3
≤ 1

1+ργ2
. From (2.33) and (2.34), min {Es,2(ρ, PU , γ2), Es,1(ρ, PU , γ3)}

can be written as

min {Es,2(ρ, PU , γ2), Es,1(ρ, PU , γ3)} =
Es(ργ3 , PU) + E ′s(ργ3)(ρ− ργ3) 1

1+ρ <
1

1+ργ3
,

Es(ρ, PU) 1
1+ργ2

> 1
1+ρ ≥

1
1+ργ3

,

Es(ργ2 , PU) + E ′s(ργ2)(ρ− ργ2) 1
1+ρ ≥

1
1+ργ2

,

(2.171)

where in (2.171), we used the fact that 1
1+ργ3

≤ 1
1+ργ2

. Comparing right hand
side of (2.171) with (2.166), we conclude (2.170).

Now, considering Emd(PU , {Q1, Q2, Q3},W ) in (2.164), for ` = 1, 2, 3, we
replace Es,`(ρ, PU , γ`+1, γ`) with the right hand sides of equations (2.168),
(2.169) and (2.170), i. e.

E(PU ,
{
Q1, Q2, Q3

}
,W ) = max

γ2∈[γ3,1],
γ3∈[0,1]

min

 max
ρ∈[0,1]

E0(ρ,Q1,W )− Es,1(ρ, PU , γ2),

max
ρ∈[0,1]

E0(ρ,Q2,W )−min {Es,2(ρ, PU , γ2), Es,1(ρ, PU , γ3)} ,

max
ρ∈[0,1]

E0(ρ,Q3,W )− Es,2(ρ, PU , γ3)

. (2.172)
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Figure 2.4: Es,`(ρ, PU , γ`+1, γ`) for ` = 1, 2, 3 and Es,i(ρ, PU , γ2),
Es,i(ρ, PU , γ3) for i = 1, 2

Applying A −min{B,C} = max{A − B,A − C}, to the second term of
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(2.172), we find that

Emd(PU , {Q1, Q2, Q3},W ) = max
γ2∈[γ3,1],γ3∈[0,1]

min

E0s1(Q1, γ2),

max {E0s2(Q2, γ2), E0s1(Q2, γ3)} , E0s2(Q3, γ3)

,
(2.173)

where for i = 1, 2, k = 2, 3 and j = 1, 2, 3

E0si(Qj, γk) = max
ρ∈[0,1]

E0(ρ,Qj,W )− Es,i(ρ, PU , γk). (2.174)

Next, we extend the the inner minimization of (2.173). In fact, the min-
imum of (2.173), chooses the lowest value of three terms which can be mod-
elled as min {a,max {c, d} , b}. Using the identity min {a,max {c, d} , b} =
max {min {a, c, b} ,min {a, d, b}}, (2.173) can be rewritten as

Emd(PU , {Q1, Q2, Q3},W ) = max
γ2∈[γ3,1],γ3∈[0,1]

max
{

min {E0s1(Q1, γ2), E0s2(Q2, γ2), E0s2(Q3, γ3)} ,

min {E0s1(Q1, γ2), E0s1(Q2, γ3), E0s2(Q3, γ3)}
}
. (2.175)

Now, in (2.175), by taking the maximizations over γ3 and γ2 inside the
braces, we find that

E(PU ,{Q1, Q2, Q3},W ) ≤

max
{

max
γ2∈[0,1],γ3∈[0,1]

min {E0s1(Q1, γ2), E0s2(Q2, γ2), E0s2(Q3, γ3)} ,

max
γ2∈[0,1],γ3∈[0,1]

min {E0s1(Q1, γ2), E0s1(Q2, γ3), E0s2(Q3, γ3)}
}
, (2.176)

where in (2.176), by taking maximization over γ2 ∈ [0, 1] rather than the
interval of [γ3, 1], we lower bound Emd(PU , {Q1, Q2, Q3},W ). As can be seen
in (2.176), for every γ2 and γ3, E0s1(Q1, γ2) and E0s2(Q2, γ2) do not depend
on γ3. Similarly, in the last term of (2.176), E0s1(Q2, γ3) and E0s2(Q3, γ3)
do not depend on γ2. Hence, using max-min inequality, we weak (2.176), by
swapping the maximization over γ3 with the minimization inside the second
term of (2.176), and also by swapping the maximization over γ2 with the
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minimization inside the last term of (2.176), i. e.

E(PU , {Q1, Q2, Q3},W ) ≤

max
{

max
γ2∈[0,1]

min
{
E0s1(Q1, γ2), E0s2(Q2, γ2), max

γ3∈[0,1]
E0s2(Q3, γ3)

}
,

max
γ3∈[0,1]

min
{

max
γ2∈[0,1]

E0s1(Q1, γ2), E0s1(Q2, γ3), E0s2(Q3, γ3)
}}

. (2.177)

Now, in view of (2.174), we recall from (2.35) and (2.36), that by moving
γ3 along the interval [0, 1], E0s2(Q3, γ3) decreases from infinity to the function
maxρ∈[0,1]E0(ρ,Q3,W )−Es(ρ, PU). It means that optimal γ3 = 0 which leads
that in (2.177), maxγ3∈[0,1]E0s2(Q3, γ3) = +∞. Similarly, in the last term of
(2.177), maxγ2∈[0,1]E0s1(Q1, γ2) = +∞. Thus, after taking minimizations
between infinity and the remained terms, we obtain

Emd(PU , {Q1, Q2, Q3},W ) ≤ max
{

max
γ2∈[0,1]

min {E0s1(Q1, γ2), E0s2(Q2, γ2)} ,

max
γ3∈[0,1]

min {E0s1(Q2, γ3), E0s2(Q3, γ3)}
}
, (2.178)

where we bound the right hand side (2.178) by adding the extra term where

Emd(PU , {Q1, Q2, Q3},W ) ≤ max
{

max
γ2∈[0,1]

min {E0s1(Q1, γ2), E0s2(Q2, γ2)} ,

max
γ3∈[0,1]

min {E0s1(Q2, γ3), E0s2(Q3, γ3)} , max
γ∈[0,1]

min {E0s1(Q1, γ), E0s2(Q3, γ)}
}
.

(2.179)

Now in view of (2.174), we find that for i = 1, 2, k = 2, 3 and j, j′ = 1, 2, 3

max
γk∈[0,1]

min {E0si(Qj, γk), E0sic(Qj′ , γk)} = Emd
(
PU ,

{
Qj, Qj′

}
,W

)
, (2.180)

where ic denotes the complement index of i over the set {1, 2}. Thus, (2.179)
can be rewritten as

Emd(PU , {Q1, Q2, Q3},W ) ≤ max
{
Emd (PU , {Q1, Q2},W ) ,

Emd (PU , {Q2, Q3},W ) , Emd (PU , {Q1, Q3},W )
}
. (2.181)

Up to here we proved that (2.37) is smaller than the right hand side of it.
Next, we are going to prove the reverse direction of the inequality in (2.181).
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2.4.6.1 Proving the Reverse Direction of (2.181)

Firstly, we consider the definition of Es,2(ρ, PU , γ3, γ2) in (2.166). As shown
in Figure 2.4, we have

Es,2(ρ, PU , γ3, γ2) ≤ Es,1(ρ, PU , γ3), (2.182)
Es,2(ρ, PU , γ3, γ2) ≤ Es,2(ρ, PU , γ2). (2.183)

where Es,1(ρ, PU , γ3) and Es,2(ρ, PU , γ2) is defined in (2.33) and (2.34). To
show (2.182) and (2.183), we recall that since always the tangent line is lower
than Es(ρ, PU), from definitions of (2.33), (2.34) and (2.166), we immediately
conclude (2.182) and (2.183).

Starting from (2.164), the message-dependent exponent derived by con-
sidering three class, is bounded as

Emd(PU , {Q1, Q2, Q3},W ) ≥ max
γ2∈[γ3,1],γ3∈[0,1]

min
{
E0s1(Q1, γ2),

E0s1(Q2, γ3), E0s2(Q3, γ3)
}
, (2.184)

where in (2.184), in view of (2.174), we respectively applied (2.168), (2.182)
and (2.169) into the Es,`(·) for ` = 1, 2, 3. Since the first term of (2.184)
does not depend on γ3, the optimal γ3 is the point that the increasing and
decreasing functions of (2.184) with respect to γ3 are equal to each other
(Lemma A.8). Considering (2.35) and (2.36), and noting to the fact that the
last two terms of (2.184) does not depend on γ2, we conclude that by moving
γ2 along the [γ3, 1], the first term of (2.184) increases from E0s1(Q1, γ3) to
infinity. Hence, the optimal γ2 is the point that the first term of (2.184) be
equal with the rest terms. Thus, by removing the first term of (2.184), and
in view of (2.32), (2.184) is bounded as

Emd(PU , {Q1, Q2, Q3},W ) ≥ max
γ3∈[0,1]

min

 max
ρ∈[0,1]

E0(ρ,Q2,W )− Es,1(ρ, PU , γ3),

max
ρ∈[0,1]

E0(ρ,Q3,W )− Es,2(ρ, PU , γ3)

 = Emd(PU , {Q2, Q3},W ). (2.185)

In addition, since γ3 ≤ γ2, in view of (2.174), (2.164) can be also written
as

Emd(PU , {Q1, Q2, Q3},W ) = max
γ3∈[0,γ2],γ2∈[0,1]

min
{
E0s1(Q1, γ2),

max
ρ∈[0,1]

E0(ρ,Q2,W )− Es,2(ρ, PU , γ3, γ2), E0s2(Q3, γ3)
}
, (2.186)
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where in (2.186) the maximization over γ2 is done over [0, 1]; however, the
maximization over γ3 is done over [0, γ2]. In (2.186) we also applied (2.168)
and (2.169). Now, by using (2.183) for the second term of (2.186), we find
that

Emd(PU , {Q1, Q2, Q3},W ) ≥ max
γ3∈[0,γ2],γ2∈[0,1]

min
{
E0s1(Q1, γ2),

E0s2(Q2, γ2), E0s2(Q3, γ3)
}
. (2.187)

Using the same approach as the way (2.185) was derived, we can remove
the third term of (2.187) which yields

Emd(PU , {Q1, Q2, Q3},W ) ≥ Emd(PU , {Q1, Q2},W ). (2.188)

Finally by setting γ2 = γ3, we upper bound (2.164), and we find

Emd(PU , {Q1, Q2, Q3},W ) ≥ Emd(PU , {Q1, Q3},W ). (2.189)

Combining (2.185), (2.188) and (2.189), we conclude the proof.

2.4.7 Proof of Lemma 2.2
In order to prove Lemma 2.2, we recall that for P̂XY ∈ Sgcc(P̂U), we have
P̂XY = QP̂U

P̂Y |X which leads I (X;Y ) = D(P̂XY ||QP̂U
P̂Y ). Next, we use

Lemma A.4. By setting Z = X and PZ = QP̂U
in Lemma A.4, the quan-

tity D(P̂XY ||QP̂U
P̂Y ) satisfies equation (A.18) and we can conclude that

I (X;Y ) = D(P̂XY ||QP̂U
P̂Y ) = minVY D(P̂XY ||QP̂U

VY ). Applying this fact
to (2.54), an equivalent expression of the (2.54) is given by

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρI (X;Y ) = (2.190)

min
VY

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

VY ), (2.191)

where, VY is an arbitrary probability assignment over the channel output
alphabet Y .

To derive an alternative expression for the optimization problem in (2.191),
we fix VY and we apply Lagrange duality theory to the inner minimization
over P̂XY in (2.191), i. e.

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

VY ). (2.192)
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In order to find the optimal value of P̂XY in (2.192), we consider the
constraints in (2.51) and the fact that the sum of the probability distribution
P̂XY over all possible values of (x, y) is 1. In other words, the following
constraints are considered

QP̂U
(x) =

∑
y

P̂XY (x, y),
∑
x,y

P̂XY (x, y) = 1. (2.193)

Now, by using Lagrange duality theory, we minimize (2.192) subject to the
constraints presented in (2.193). Note that with this particular problem
the strong duality conditions are satisfied, because the objective function in
(2.192) is a convex function over a convex set and the two constraints given
in (2.193) are affine. Thus, we have

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

VY ) = max
α(·),θ

min
P̂XY

Lcc(P̂XY , θ, α),

(2.194)

where minP̂XY L
cc(P̂XY , θ, α) is the Lagrange dual function of (2.192) and the

Lagrangian is given by

Lcc(P̂XY , θ, α) = D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

VY )
+θ
(
1−

∑
x,y

P̂XY (x, y)
)

+
∑
x

α(x)
(
QP̂U

(x)−
∑
y

P̂XY (x, y)
)
, (2.195)

where α and θ correspond to the Lagrange multipliers for the constraints
given in (2.193).

Using the definition of the relative entropy and the fact that∑j aj log bj+
c
∑
j aj log bj = ∑

j aj log b1+c
j , the Lagrangian is simplified as

Lcc(P̂XY , θ, α) =
∑
x,y

P̂XY (x, y) log P̂XY (x, y)1+ρ

QP̂U
(x)1+ρW (y|x)VY (y)ρ

+θ
(
1−

∑
x,y

P̂XY (x, y)
)

+
∑
x

α(x)
(
QP̂U

(x)−
∑
y

P̂XY (x, y)
)
. (2.196)

To determine the Lagrange dual function, in view of the KKT conditions,
the optimal values of (P̂XY , θ, α) satisfy ∂Lcc(P̂XY ,θ,α)

∂P̂XY (x,y) = 0 which implies

log P̂XY (x, y)1+ρ

QP̂U
(x)1+ρW (y|x)VY (y)ρ + (1 + ρ)− θ − α(x) = 0. (2.197)

Solving the equation (2.197) with respect to P̂XY , yields

P̂XY (x, y) = e
θ−(1+ρ)

1+ρ e
α(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ . (2.198)
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Summing both sides of (2.198) over (x, y) and applying the constraint that∑
x,y P̂XY (x, y) = 1, we obtain

e
θ−(1+ρ)

1+ρ =
(∑

x

e
α(x)
1+ρQP̂U

(x)
∑
y

W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)−1
. (2.199)

Substituting e
θ−(1+ρ)

1+ρ derived in (2.199) into (2.198), P̂XY (x, y) can be ex-
pressed as

P̂XY (x, y) =
e
α(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ∑
x̄

e
α(x̄)
1+ρQP̂U

(x̄)
∑
ȳ

W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ
. (2.200)

Now, we derived the optimal value of P̂XY (x, y). Recalling from (2.51),
QP̂U

(x) = ∑
y P̂XY (x, y), by summing both sides of (2.200) over y, we note

that

QP̂U
(x) =

∑
y

e
α(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ∑
x̄

e
α(x̄)
1+ρQP̂U

(x̄)
∑
ȳ

W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ
, (2.201)

where by removing QP̂U
(x) 6= 0 from both sides and taking the logarithm,

we obtain

α(x) = −(1 + ρ) log
( ∑

y

W (y|x)
1

1+ρVY (y)
ρ

1+ρ

∑
x̄

e
α(x̄)
1+ρQP̂U

(x̄)
∑
ȳ

W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ

)
. (2.202)

Putting back P̂XY (x, y) obtained in (2.200) and α(x) obtained in (2.202) into
(2.196), maxθ minP̂XY L

cc(P̂XY , θ, α) can be derived as

∑
x̄

QP̂U
(x̄) log eα(x̄)(∑

x

e
α(x)
1+ρQP̂U

(x)
∑
y

W (y|x)
1

1+ρVY (y)
ρ

1+ρ
)1+ρ =

− (1 + ρ) log
(∑

x

e
α(x)
1+ρQP̂U

(x)
∑
y

W (y|x)
1

1+ρVY (y)
ρ

1+ρ
)

+
∑
x̄

QP̂U
(x̄)α(x̄),

(2.203)

where in (2.203) we used the facts that log(a
b
) = log a − log b and log es =

s. Again, in view of s = log es, we rewrite ∑x̄QP̂U
(x̄)α(x̄) in (2.203) as
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−(1 +ρ) log e−
∑

x̄
Q
P̂U

(x̄)α(x̄)

1+ρ . Finally, by using the identity that log c+ log d =
log(c.d), (2.203) can be expressed as

Lcc(α) = −(1 + ρ) log
(
e
− 1

1+ρ
∑

x̄
α(x̄)QP̂U (x̄)∑

x,y

e
α(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
,

(2.204)

where Lcc(α) = maxθ minP̂XY L
cc(P̂XY , θ, α).

To simplify Lcc(α), we define ᾱ(x) , α(x)−∑x̄ α(x̄)QP̂U
(x̄). Multiplying

both sides of ᾱ(x) by QP̂U
(x) and summing over x implies ∑x ᾱ(x)QP̂U

(x) =
0. Setting ᾱ(x) = α(x) −∑x̄ α(x̄)QP̂U

(x̄), the quantity of Lcc(α) in (2.204)
can be expressed in terms of ᾱ(x) as

Lcc(ᾱ) = −(1 + ρ) log
(∑
x,y

e
ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
, (2.205)

subject to the constraint ∑x ᾱ(x)QP̂U
(x) = 0. Considering (2.204) and

(2.205), we may conclude that maxα(x) Lcc(α) = maxᾱ(x):
∑

x
ᾱ(x)QP̂U (x)=0 Lcc(ᾱ).

Considering this fact, in view of (2.205), (2.194) and (2.191), we have

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ) =

min
VY

max
ᾱ(x):

∑
x
ᾱ(x)QP̂U (x)=0

−(1 + ρ) log
(∑
x,y

e
ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
.

(2.206)

Again, by using Fan’s minimax theorem [22], we can swap minVY and maxᾱ(·)
as

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ) =

max
ᾱ(x):

∑
x
ᾱ(x)QP̂U (x)=0

min
VY
−(1 + ρ) log

(∑
x,y

e
ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
.

(2.207)

Now, we focus on the minimization over VY (y). Since the logarithm is an
increasing function, (2.207) can be expressed as

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ) =

max
ᾱ(x):

∑
x
ᾱ(x)QP̂U (x)=0

−(1 + ρ) log
(

max
VY

∑
x,y

e
ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
,

(2.208)
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where by defining f(y) = ∑
x e

ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρ and using Lemma A.2,
we obtain

min
P̂XY ∈Sgcc(P̂U )

D(P̂XY ||QP̂U
W ) + ρD(P̂XY ||QP̂U

P̂Y ) =

max
ᾱ(x):

∑
x
ᾱ(x)QP̂U (x)=0

− log
(∑

y

(∑
x

e
ᾱ(x)
1+ρQP̂U

(x)W (y|x)
1

1+ρ
)1+ρ

)
, (2.209)

By renaming the right hand side of (2.209) as Ecc
0 (ρ,QP̂U

,W ), Lemma 2.2 is
proved.

2.4.8 Proof of (2.66)
In order to prove (2.66), we start by the optimal P̂ ∗UXY given in (2.8). By
inserting the optimal P̂ ∗UXY given in (2.8) into (2.7), we obtain

Eicd = D(P̂ ∗UXY ||PUQ̄W ) +
[
D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U)

]+
. (2.210)

Firstly, we focus on the second term of (2.210), i. e.
[
D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−

H(P̂ ∗U)
]+

. Using the identity that P̂ ∗Y (y) = ∑
u,x P̂

∗
UXY (u, x, y), the optimal

quantity of P̂ ∗Y (y) associated to the primal domain of icd exponent in (2.7)
is given by

P̂ ∗Y (y) =

(∑
ū,x̄ PU(ū)

1
1+ρ Q̄(x̄|ū)W (y|x̄)

1
1+ρ

)1+ρ

∑
ȳ

(∑
ū,x̄ PU(ū)

1
1+ρ Q̄(x̄|ū)W (ȳ|x̄)

1
1+ρ

)1+ρ . (2.211)

To determine the second term of (2.210), by using the definitions of the
relative entropy and entropy and by inserting P̂ ∗UXY and P̂ ∗Y (y) obtained in
(2.8) and (2.211), respectively into the second term of (2.210), we obtain

D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U) =

∑
u,x,y

P̂ ∗UXY (u, x, y) log
PU(u)

1
1+ρW (y|x)

1
1+ρ

(∑
ū,x̄ PU(ū)

1
1+ρ Q̄(x̄|ū)W (y|x̄)

1
1+ρ

)ρ
(∑

ū,x̄ PU(ū)
1

1+ρ Q̄(x̄|ū)W (y|x̄)
1

1+ρ

)1+ρ .

(2.212)

At this point, we use Qρ introduced in (2.61). Inserting P̂ ∗UXY given in (2.8)
into (2.212) and then replacing ∑u PU(u)

1
1+ρ Q̄(x|u) with Qρ(x)∑u PU(u)

1
1+ρ ,
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equation (2.212) can be written as

D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U) =

∑
u,x,y

PU(u)
1

1+ρQρ(x)W (y|x)
1

1+ρ

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)ρ
∑
ū

PU(ū)
1

1+ρ
∑
ȳ

(∑
x̄

Qρ(x̄)W (ȳ|x̄)
1

1+ρ

)1+ρ

× log
PU(u)

1
1+ρW (y|x)

1
1+ρ

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)ρ
∑
ū

PU(ū)
1

1+ρ

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)1+ρ . (2.213)

Considering the fact that log(a.b) = log(a) + log(b) and using the definition
of the entropy for distribution P 1

1+ρ
given in (2.62), (2.213) is simplified as

D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U) =

−H(P 1
1+ρ

) +
∑
x,y

Qρ(x)W (y|x)
1

1+ρ

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)ρ
∑
ȳ

(∑
x̄

Qρ(x̄)W (ȳ|x̄)
1

1+ρ

)1+ρ

× log
W (y|x)

1
1+ρ

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)ρ
(∑

x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)1+ρ . (2.214)

In order to express (2.214) in terms of relative entropy and entropy,

in view of (2.47), we define P̂ ?
XY (x, y) ,

Qρ(x)W (y|x)
1

1+ρ
(∑

x̄
Qρ(x̄)W (y|x̄)

1
1+ρ
)ρ

∑
ȳ

(∑
x̄
Qρ(x̄)W (ȳ|x̄)

1
1+ρ
)1+ρ .

Summing both sides of P̂ ?
XY (x, y) over x, we find P̂ ?

Y (y) as

P̂ ?
Y (y) =

(∑
x̄

Qρ(x̄)W (y|x̄)
1

1+ρ

)1+ρ

∑
ȳ

(∑
x̄

Qρ(x̄)W (ȳ|x̄)
1

1+ρ

)1+ρ . (2.215)

To simplify (2.214), in view of the defined P̂ ?
XY (x, y), by adding and sub-

tracting the quantity ∑x,y P̂
?
XY (x, y) log Qρ(x)(∑

x̄
Qρ(x̄)W (y|x̄)

1
1+ρ
)1+ρ in (2.214) and
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considering (2.215), we obtain

D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U) = −H(P 1
1+ρ

) +
∑
x,y

P̂ ?
XY (x, y) log P̂ ?

XY (x, y)
Qρ(x)P̂ ?

Y (y)
.

(2.216)

Recalling the definition of the relative entropy, from (2.216), we conclude
that[

D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U)
]+

=
[
D(P̂ ?

XY ||QρP̂
?
Y )−H(P 1

1+ρ
)
]+
. (2.217)

Now, we focus on the first part of the (2.210), D(P̂ ∗UXY ||PUQ̄W ). By
inserting the optimal P̂ ∗UXY given in (2.8) into the D(P̂ ∗UXY ||PUQ̄W ), we
have

D(P̂ ∗UXY ||PUQ̄W ) =
∑
u,x,y

P̂ ∗UXY (u, x, y)

× log
PU(u)

1
1+ρW (y|x)

1
1+ρ

(∑
ū,x̄

PU(ū)
1

1+ρQ(x̄|ū)W (y|x̄)
1

1+ρ

)ρ
PU(u)W (y|x)

∑
ȳ

(∑
ū,x̄

PU(ū)
1

1+ρQ(x̄|ū)W (ȳ|x̄)
1

1+ρ

)1+ρ . (2.218)

Again by putting P̂ ∗UXY (u, x, y) given in (2.8) into (2.218) and then replacing∑
u PU(u)

1
1+ρ Q̄(x|u) with Qρ(x)∑u PU(u)

1
1+ρ , in view of P 1

1+ρ
given in (2.62),

and the definition of P̂ ?
XY , after some mathematical manipulations, we obtain

D(P̂ ∗UXY ||PUQ̄W ) = D(P 1
1+ρ
||PU) +

∑
x,y

P̂ ?
XY (x, y) log P̂ ?

XY (x, y)
Qρ(x)W (y|x) (2.219)

= D(P 1
1+ρ
||PU) +D(P̂ ∗UXY ||QρW ), (2.220)

where in (2.220), we used the definition of the relative entropy.
Combining (2.217) and (2.220), we conclude that

D(P̂ ∗UXY ||PUQ̄W ) +
[
D(P̂ ∗UXY ||P̂ ∗UQ̄P̂ ∗Y )−H(P̂ ∗U)

]+
=

D(P 1
1+ρ
||PU) +

[
D(P̂ ?

XY ||QρP̂
?
Y )−H(P 1

1+ρ
)
]+
, (2.221)

where by considering P 1
1+ρ

and P ?
U given in (2.62) and (2.48), respectively

(2.66) is proved.
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2.4.9 Proof of Proposition 2.9
In order to prove the proposition 2.9, we use the following lemma.
Lemma 2.3. Let Qρ(x) = ∑

u P 1
1+ρ

(u)Q̄(x|u). It can be proved that

Ecc
0 (ρ,

∑
u

P 1
1+ρ

(u)Q̄(x|u),W )− Es(ρ, PU) = max
α̃(u,x):∑

x,u
P 1

1+ρ
(u)α̃(u,x)Q̄(x|u)=0

− log
(∑

y

(∑
u,x

e
α̃(u,x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ)
, (2.222)

where P 1
1+ρ

(u) is defined in (2.62).

Proof. See Section 2.4.10.

Next, in order to prove the proposition 2.9, in view of Lemma 2.3, we shall
show that the quantity of Ecc

0 (ρ,Qρ,W )−Es(ρ, PU) given in (2.222) is greater
than or equal with the Eccc

0,s (ρ, PU , Q,W ). To do this, we compare Eccc
0,s given

in (2.18) with the Ecc
0 −Es given in (2.222). Considering (2.18) and (2.222),

we may note that in both cases we have a maximization problem with the
same objective function and different constraints. Noting to the fact that the
maximum value of the objective function with more constraints is lower than
that of with less constraints, to prove the proposition 2.9, it suffices to show
that β̄(u, x) given in (2.18) is more restrictive than α̃(u, x) given in (2.222),
i.e, it suffices to prove that{
β̄(u, x) :

∑
x

β̄(u, x)Q̄(x|u) = 0
}
⊆
{
α̃(u, x) :

∑
u,x

P 1
1+ρ

(u)α̃(u, x)Q̄(x|u) = 0
}
.

(2.223)

To show (2.223), we note that for all β̄(u, x) ∈
{
β̄(u, x) : ∑x β̄(u, x)Q̄(x|u) =

0
}
, we have ∑x β̄(u, x)Q̄(x|u) = 0. Multiplying both sides of the equality by

P 1
1+ρ

(u) and summing over u, we obtain∑
u,x

P 1
1+ρ

(u)β̄(u, x)Q̄(x|u) = 0⇒

β̄(u, x) ∈
{
α̃(u, x) :

∑
u,x

P 1
1+ρ

(u)α̃(u, x)Q̄(x|u) = 0
}
. (2.224)

From β̄(u, x) ∈
{
β̄(u, x) : ∑x β̄(u, x)Q̄(x|u) = 0

}
, we conclude β̄(u, x) ∈{

α̃(u, x) : ∑u,x P 1
1+ρ

(u)α̃(u, x)Q̄(x|u) = 0
}
, i. e. (2.223) is proved which

concludes the proof.
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2.4.10 Proof of Lemma 2.3
We start with Ecc

0 (ρ,Qρ,W )−Es(ρ, PU). In view of (2.56), Ecc
0 (ρ,Qρ,W )−

Es(ρ, PU) can be expressed as

Ecc
0 (ρ,Qρ,W )− Es(ρ, PU)

= max
ᾱ(x):

∑
x
ᾱ(x)Qρ(x)=0

− log
(∑

y

(∑
u

PU(u)
1

1+ρ
∑
x

e
ᾱ(x)
1+ρQρ(x)W (y|x)

1
1+ρ
)1+ρ

)
,

(2.225)

where in (2.225), we used the definitions of Ecc
0 (ρ,Qρ,W ), Es(ρ, PU) and the

fact that log(a) + log(b) = log(a.b). To express Ecc
0 (ρ,Qρ,W ) − Es(ρ, PU)

in terms of Q̄(x|u), by using the definition of Qρ(x) in (2.61), we insert∑
u P 1

1+ρ
(u)Q̄(x|u) instead of Qρ(x) in (2.225), i.e.

Ecc
0 (ρ,

∑
u

P 1
1+ρ

(u)Q̄(x|u),W )− Es(ρ, PU) = max
ᾱ(x):

∑
x,u

ᾱ(x)P 1
1+ρ

(u)Q̄(x|u)=0

− log
(∑

y

(∑
u,x

e
ᾱ(x)
1+ρ PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ
)1+ρ

)
, (2.226)

where P 1
1+ρ

(u) is given in (2.62). Comparing (2.226) with (2.222) and noting
the fact that logarithm is an increasing function, we may conclude that in
order to prove Lemma 2.3, it suffices to show that

min
ᾱ(x):∑

x,u
P 1

1+ρ
(u)ᾱ(x)Q̄(x|u)=0

∑
y

(∑
u,x

PU(u)
1

1+ρ e
ᾱ(x)
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ

(2.227)

= min
α̃(u,x):∑

x,u
P 1

1+ρ
(u)α̃(u,x)Q̄(x|u)=0

∑
y

(∑
u,x

PU(u)
1

1+ρ e
α̃(u,x)
1+ρ Q̄(x|u)W (y|x)

1
1+ρ

)1+ρ
.

(2.228)

To show (2.227) equals to (2.228), we define two functions as k(x, u) =
P 1

1+ρ
(u)Q̄(x|u) and h(u, x, y) = PU(u)

1
1+ρ Q̄(x|u)W (y|x)

1
1+ρ and we use Lem-

mas A.10 and A.11. It can be verified that the defined functions k(x, u) and
h(u, x, y) satisfy the conditions of the Lemma A.10 and the optimal ᾱ∗(x) and
α̃∗(u, x) which minimize (2.227) and (2.228) are given in (A.63) and (A.65),
respectively. Next, we shall show that for the defined k(u, x) and h(u, x, y)
the conditions of Lemma A.11 are also satisfied, i. e. h(u,x,y)

k(u,x) =
∑

u
h(u,x,y)∑
u
k(u,x) .
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From the definition of k(x, u) and h(u, x, y), we note that the quantity of
h(u,x,y)
k(u,x) equals to

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ

P 1
1+ρ

(u)Q̄(x|u)
=

∑
u

PU(u)
1

1+ρ Q̄(x|u)W (y|x)
1

1+ρ∑
u

P 1
1+ρ

(u)Q̄(x|u)
=
∑
u

PU(u)
1

1+ρW (y|x)
1

1+ρ , (2.229)

where the last equality in (2.229) follows from the fact that P 1
1+ρ

(u) =
PU (u)

1
1+ρ∑

u
PU (u)

1
1+ρ

. From (2.229), we may verify that for the defined functions

h(u, x, y) and k(u, x), we have h(u,x,y)
k(u,x) =

∑
u
h(u,x,y)∑
u
k(u,x) . As a result, the functions

h(u, x, y) and k(u, x) also satisfy the conditions of Lemma A.11. Considering
Lemma A.11, h(u, x, y) and k(u, x) we find that α̃∗(u, x) = α̃∗(x) = ᾱ∗(x)
and thus (2.227) is equal with (2.228), i. e. Lemma 2.3 is proved.
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Chapter 3

The Multiple-Access Channel
with Independent Sources

Many works studied the achievable rates and error exponent for a two-user
MAC. Here, we just mention some of them. In [25], by considering separate
source-channel coding, a universal exponent for the MAC was derived. By
universal, we mean that a fixed choice of codewords and decoding set achieves
the exponent. In [26], an achievable region is derived for the MAC under
mismatched decoding. For the mismatched decoding, the decoding rule is
fixed and possibly suboptimal. For more details about mismatched decoding
for single user-communication and multiple-access channel see [27]. In [28],
it was shown that using structure coding can improve the error exponent of
the MAC. Maximum error probability criterion and feedback for the MAC
were studied in [29].

By considering separate source-channel coding, in [30] and [31], respec-
tively lower and upper bounds for the error exponent of the MAC were ob-
tained. For the MAC with independent sources, the idea of considering
dependency between messages and codewords was studied in [32].

In this chapter, we study the idea of message-dependent ensemble for the
MAC. As discussed in Chapter 2, for single-user communication, message-
dependent random-coding exponent is larger than iid random-coding expo-
nent. In this Chapter, we show that this result can be generalized to the
MAC with independent sources.

After introducing the system setup in Section 3.1, by considering the
message-dependent ensemble, and doing the analysis in the dual domain, in
Section 3.2, we present an achievable exponent for the MAC with independent
sources. In fact, for each user, the source messages are partitioned into
two classes and codebooks are generated by drawing codewords from an
input distribution depending on the class index of the source message. The
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partitioning thresholds that maximize the achievable exponent are given by
the solution of a system of equations. We also derive both lower and upper
bounds for the achievable exponent in terms of Gallager’s source and channel
functions.

In Sections 3.3, we generalize the obtained results to the case where more
than two users are considered, and also the number of classes for each user
is arbitrary. Parts of this chapter were presented in [33].

3.1 System Setup
We consider two independent sources characterized by probability distribu-
tions PU1 , PU2 on alphabets U1 and U2, respectively. We recall again that
underlined font represents a pair of quantities for users 1 and 2, such as

¯
γ = (γ1, γ2),

¯
u = (u1, u2) or W (y|

¯
x) = W (y|x1, x2).

Encoder ν = 1, 2, maps a length-n source message uν to the length-n
codeword xν(uν) drawn from the codebook Cν = {xν(uν) ∈ X n

ν : uν ∈
Unν }. Both terminals send the codewords over a discrete memoryless MAC
with transition probability W (y|x1, x2), input alphabets X1, X2, and output
alphabet Y .

Given the received sequence y, the decoder estimates the transmitted
pair of messages

¯
u based on the maximum a posteriori criterion, i. e.

¯
û = arg max

¯
u∈Un1 ×U

n
2

P n
U1(u1)P n

U2(u2)W n
(
y|x1(u1),x2(u2)

)
. (3.1)

An error occurs if
¯
û 6=

¯
u. The error probability for a given pair of codebooks

(C1, C2) is given by

εn(C1, C2) , P
[
(Û1, Û2) 6= (U1,U2)

]
, (3.2)

and an exponent E is achievable if there exists a sequence of codebooks such
that

lim inf
n→∞

− 1
n

log εn(C1
n, C2

n) ≥ E. (3.3)

In order to show the existence of such sequences of codebooks, we use random-
coding arguments, i. e. we find a sequence of ensembles whose error proba-
bility averaged over the ensemble, denoted as ε̄n, tends to zero.

3.2 Message-Dependent Exponent
Message-dependent ensemble is described in Section 2.2.1. In this section,
we generalize the idea of message-dependent random coding for the MAC
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with independent sources.
For user ν = 1, 2, we fix a threshold 0 ≤ γν ≤ 1 to partition the source-

message set Unν into two classes A1
ν(γν) and A2

ν(γν) defined as

A1
ν(γν) =

{
uν ∈ Unν : P n

Uν (uν) ≥ γnν
}
, (3.4)

A2
ν(γν) =

{
uν ∈ Unν : P n

Uν (uν) < γnν
}
. (3.5)

For every message uν ∈ A1
ν(γν), we randomly generate a codeword xν(uν)

according to the probability distribution Qν,1(xν) = ∏n
`=1Qν,1(xν,`), and for

every message uν ∈ A2
ν(γν), we randomly generate a codeword xν(uν) ac-

cording to the probability distribution Qν,2(xν) = ∏n
`=1Qν,2(xν,`). In fact,

Qν,i, for i = 1, 2, is a probability distribution that depends on the class of
uν . Thus, codewords are generated independently according to message-
dependent distributions.

As mentioned in (1.43) and (1.44), the symbol τ ∈ {{1}, {2}, {1, 2}} is
used to denote the error event type of the error probability (3.2), i. e. re-
spectively (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2) and (û1, û2) 6= (u1,u2).
We denote the complement of τ as τ c among the subsets of {1, 2}. We em-
phasize that throughout this chapter, for error type τ = {1, 2}, we have
PUτ (uτ ) = PU1(u1)PU2(u2). Additionally, since only independent sources are
considered, the following facts are obvious P n

¯
U (

¯
u) = P n

U1(u1)P n
U2(u2), and

P
¯
U(

¯
u) = PU1(u1)PU2(u2).
Now, by using the introduced random-coding ensemble, we derive an

achievable exponent for the MAC with independent sources.

Proposition 3.1. For the two-user MAC with transition probability W , two
independent sources with joint probability distribution PU1PU2 and class dis-
tributions {Qν,1, Qν,2} with user index ν = 1, 2, the following exponent is
achievable

E = max
γ1,γ2∈[0,1]

min
τ∈{{1},{2},{1,2}}

min
i1,i2=1,2

Fτ,iτ ,iτc (Q1,i1 , Q2,i2 , γ1, γ2) , (3.6)

where

Fτ,iτ ,iτc (Q1,i1 , Q2,i2 , γ1, γ2) = max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )

−Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc). (3.7)

In (3.7), the functions E0(·) for three different values of τ , is given by (1.28).
Es,1(·) and Es,2(·) are respectively given by (2.33) and (2.34). For error type
τ = {1, 2}, we define Es,iτ (ρ, PUτ ,¯

γ) = Es,i1(ρ, PU1 , γ1) +Es,i2(ρ, PU2 , γ2) and
F{1,2},iτ ,iτc (·) = F{1,2},i1,i2(·).
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Proof. See Section 3.4.1.

We recall that in (3.7), for τ = {1} and τ = {2}, WQτc,iτc denotes
a point-to-point channel with input and output alphabets given by Xτ and
Xτc×Y , respectively. For τ = {1, 2}, the input distribution Qτ,iτ = Q1,i1Q2,i2
is the product distribution Q1,i1(x1)Q2,i2(x2) over the alphabet X1×X2, and
WQτc,i = W .

To have a better insight about three types of error in (3.7), we extend it
for different values of τ . Equation (3.7) for τ = {1}, τ = {2} and τ = {1, 2},
respectively is given by

F{1},i1,i2 (Q1,i1 , Q2,i2 , γ1, γ2) = max
ρ∈[0,1]

E0(ρ,Q1,i1 ,WQ2,i2)

−Es,i1(ρ, PU1 , γ1)− Es,i2(0, PU2 , γ2). (3.8)
F{2},i2,i1 (Q1,i1 , Q2,i2 , γ1, γ2) = max

ρ∈[0,1]
E0(ρ,Q2,i2 ,WQ1,i1)

−Es,i1(0, PU1 , γ1)− Es,i2(ρ, PU2 , γ2). (3.9)
F{1,2},i1,i2 (Q1,i1 , Q2,i2 , γ1, γ2) = max

ρ∈[0,1]
E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2). (3.10)

In Proposition 3.1, we remark that the optimal assignment of input dis-
tributions to source classes is considered in (3.6). Since we considered two
source-message classes A1

ν(γν), A2
ν(γν) and two input distributions Qν,1, Qν,2

for each user ν = 1, 2, there are four possible assignments.
Up to here, we found the message-dependent random-coding exponent

for the MAC with independent sources in terms of some maximizations and
minimizations. We proceed to simplify it by finding the optimal values of γ1
and γ2.

3.2.1 Optimal Thresholds
The derived achievable exponent (3.6) contains a maximization over

¯
γ, the

thresholds that determine how source messages are partitioned into classes.
Rearranging the minimizations over τ , iτ and iτc , defining fi1,i2(

¯
γ) as

fi1,i2(γ1, γ2) = min
τ∈{{1},{2},{1,2}}

Fτ,iτ ,iτc (Q1,i1 , Q2,i2 , γ1, γ2) , (3.11)

where Fτ,iτ ,iτc (·) is given in (3.7), the exponent (3.6) can be written as

E = max
γ1,γ2∈[0,1]

min
i1,i2=1,2

fi1,i2(γ1, γ2). (3.12)
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We note that regardless the values of i2, f1,i2(
¯
γ) is non-decreasing with

respect to γ1 and f2,i2(
¯
γ) is non-increasing with respect to γ1. Similarly,

regardless the values of i1, fi1,1(
¯
γ) is non-decreasing with respect to γ2 and

fi1,2(
¯
γ) is non-increasing with respect to γ2. As a result, we derive a system

of equations to compute the optimal thresholds γ?1 and γ?2 .

Proposition 3.2. The optimal γ?1 and γ?2 maximizing (3.6) satisfymin
i2=1,2

f1,i2(γ?1 , γ?2) = min
i2=1,2

f2,i2(γ?1 , γ?2),
min
i1=1,2

fi1,1(γ?1 , γ?2) = min
i1=1,2

fi1,2(γ?1 , γ?2). (3.13)

When (3.13) has no solutions, then γ?ν ∈ {0, 1}. In particular, if f1,i2(0, γ2) >
f2,i2(0, γ2) then γ?1 = 0, otherwise γ?1 = 1; and if fi1,1(γ1, 0) > fi1,2(γ1, 0), we
have γ?2 = 0, otherwise γ?2 = 1.

Proof. See Section 3.4.2.

We note that the optimal γ?1 and γ?2 are the points where the minimum
of all non-decreasing functions with respect to γν is equal with the minimum
of all non-increasing functions with respect to γν , for both ν = 1, 2.

As shown in Chapter 2, for single user communication, the final expression
of message-dependent random coding exponent, is expressed in terms of (2.4).
However, for the MAC, finding an unique expression like (2.4), is difficult. In
the sequel, we give a graphical intuition of optimal thresholds for the MAC
with independent sources.

As shown in (3.13), due to the values of indices i1, i2 = 1, 2, there are four
functions in terms of fi1,i2(

¯
γ). Depending on the fact that for the optimal

γ?1 and γ?2 , which of these four functions would be equal to each other, the
achievable exponent given by (3.6) can be decoupled from atleast one optimal
threshold. To have a better insight, we can categorize the possible solutions of
(3.13). However, since the possible results of (3.13) may be very complicated,
to have an intuition, we only focus on the error type {1, 2}. The intuition
can be generalized to (3.13).

3.2.1.1 The Intuition of Optimal Thresholds for Error Type {1, 2}

Assume that we have a magic model that only the error type τ = {1, 2}
occurs. Thus, from (3.6), the achievable exponent is derived as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2). (3.14)
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Similar to fi1,i2(
¯
γ) given by (3.11), we define Ei1,i2

0,s (
¯
γ) as

Ei1,i2
0,s (γ1, γ2) = max

ρ∈[0,1]
E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2), (3.15)

where by using the same reasoning in Proposition 3.2, the optimal γ?1 and γ?2
maximizing (3.14), satisfy

min
i2=1,2

E1,i2
0,s (γ?1 , γ?2) = min

i2=1,2
E2,i2

0,s (γ?1 , γ?2), (3.16)

min
i1=1,2

Ei1,1
0,s (γ?1 , γ?2) = min

i1=1,2
Ei1,2

0,s (γ?1 , γ?2), (3.17)

and like before, when there is no solution for (3.16) and (3.17), then γ?ν ∈
{0, 1} for ν = 1, 2. To simplify expressions, we also define ρ?i1,i2 as

ρ?i1,i2 = arg max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2). (3.18)

As (3.16) and (3.17) suggest, for ν = 1, 2, at the points where the mini-
mum of non-decreasing functions with respect to γν is equal with the mini-
mum of non-increasing functions with respect to γν , the optimal γ?1 and γ?2
are obtained. Here, we discuss about the possible outcomes for the solution of
the system of equations given by (3.16) and (3.17). We start by introducing
some functions.

The exponent given by (3.14), is expressed in terms of Es,i1 (ρ, PU1 , γ1) +
Es,i2 (ρ, PU2 , γ1) for i1, i2 = 1, 2. From (2.33) and (2.34), we recall that Es,iν (·)
is Es(·) for an interval of ρ, while it is Ês(·) beyond that interval, where
iν = 1, 2. Similarly, for the MAC with independent sources, the function
Es,i1 (ρ, PU1 , γ1) + Es,i2 (ρ, PU2 , γ1) for i1, i2 = 1, 2, is one of the following
equations

Es (ρ, PU1) + Es (ρ, PU2) =

(1 + ρ) log
(∑
u1

PU1(u1)
1

1+ρ

)
+ (1 + ρ) log

(∑
u2

PU2(u2)
1

1+ρ

)
, (3.19)

Es (ρ, PU1) + Ês (ρ, PU2 , γ2) =
Es (ρ, PU1) + Es (ργ2 , PU2) + E ′s (ργ2) (ρ− ργ2) , (3.20)

Ês (ρ, PU1 , γ1) + Es (ρ, PU2) =
Es (ργ1 , PU1) + E ′s (ργ1) (ρ− ργ1) + Es (ρ, PU2) , (3.21)

Ês (ρ, PU1 , γ1) + Ês (ρ, PU2 , γ2) =
Es (ργ1 , PU1) + E ′s (ργ1) (ρ− ργ1) + Es (ργ2 , PU2) + E ′s (ργ2) (ρ− ργ2) , (3.22)
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where Es(·) and Ês(·), respectively given by (1.9) and (2.29). Additionally,
from (2.25), ργν is the tangent point where Ês(·) is tangent to Es(·).

Figure 3.1 shows equations (3.19), (3.20), (3.21) and (3.22) with respect
to ρ. As shown in Figure 3.1, for given γ1 and γ2, the straight line (3.22)
is tangent to both (3.20) and (3.21) at respectively, ργ1 and ργ2 . Moreover,
both (3.20) and (3.21) are themselves tangent to (3.19) at respectively, ργ2

and ργ1 .
Figure 3.2 shows Es,i1 (ρ, PU1 , γ1) + Es,i2 (ρ, PU2 , γ1) when all four combi-

nations of i1, i2 = 1, 2 are applied. As can be seen, depending on the region
of ρ, the function Es,i1 (ρ, PU1 , γ1) + Es,i2 (ρ, PU2 , γ1), is one of the equations
given by (3.19), (3.20), (3.21) and (3.22).

In Chapter 2, for point-to-point communication with two given input
distributions Q1, Q2 ∈ PX , we showed that by moving γ along the [0, 1]
interval, the straight line tangent to Es(·) function, i. e. Ês(·) is changed.
Let ρ?1 and ρ?2 be the points where respectively E0(ρ,Q1,W ) − Ês(ρ, PU , γ),
and E0(ρ,Q2,W )−Ês(ρ, PU , γ) are maximized with respect to ρ. In Chapter
2, we showed that the optimal threshold is derived at the point where the
distances between two E0(·) functions and Ês(·) at ρ?1 and ρ?2 are equal to
each other.

Unlike to single-user communication, for the MAC with two user ν = 1, 2,
the optimal γ?ν is obtained at the points where the distances between E0(·)
functions and one of the function given by (3.19), (3.21), (3.20) and (3.22)
are equal to each other. To have a better insight, we proceed by studying
visually how optimal γ?ν is derived when ν = 1, 2. We start by categorizing
the possible outcomes of system of equations given by (3.16) and (3.17).

1. No solutions for both (3.16) and (3.17):
Firstly, we assume that the system of equations given by (3.16) and (3.17),
does not have any solution. Thus, the optimal γν for ν = 1, 2 is either zero
or one. Considering (2.35) and (2.36), it means that we cannot achieve more
than iid random-coding exponent, and for this case, (3.14) is simplified as

max
i1=1,2

max
i2=1,2

max
ρ∈[0,1]

E0 (ρ,Q1,i1Q2,i2 ,W )− Es(ρ, PU1)− Es(ρ, PU2). (3.23)

2. No solution for (3.17), while (3.16) has solution:
In this case, we assume that (3.16) has solution which gives γ?1 , while there
is no solution for (3.17), and γ?2 is either zero or one. Hence, from (2.35)
and (2.36), we note that if γ?2 = 0, then the solution of (3.16) is derived
when i2 = 1; however, if γ?2 = 1, the solution of (3.16) is derived for i2 = 2.
Figure 3.3 shows an example where γ?2 = 0, and (3.16) is solved such that
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−1

0

1

2

0 0.1 0.2 ργ1 0.4 0.5 0.6 0.7 ργ2 0.9 1
ρ

Eq. (3.19)
Eq. (3.20)
Eq. (3.21)
Eq. (3.22)

Figure 3.1: Equations (3.19), (3.20), (3.21) and (3.22) with respect to ρ.

−1

0

1

2

0 0.15 ργ1 0.45 0.6 ργ2 0.9 1
ρ

Es,1(PU1 , ·) + Es,1(PU2 , ·)
Es,1(PU1 , ·) + Es,2(PU2 , ·)
Es,2(PU1 , ·) + Es,1(PU2 , ·)
Es,2(PU1 , ·) + Es,2(PU2 , ·)

Figure 3.2: Es,i1 (ρ, PU1 , γ1) + Es,i2 (ρ, PU2 , γ2) for i1, i2 = 1, 2.

E1,1
0,s (γ?1 , 0) = E2,1

0,s (γ?1 , 0), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,1,W )− Es,1(ρ, PU1 , γ
?
1)− Es(ρ, PU2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,1,W )− Es,2(ρ, PU1 , γ
?
1)− Es(ρ, PU2), (3.24)

where as shown in Figure 3.3, the distance between E0(ρ,Q1,1Q2,1,W ) and
(3.21) at ρ?1,1 is equal with the distance between E0(ρ,Q1,2Q2,1,W ) and (3.21)
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0

0.5

1

1.5

2

2.5

0 ρ?2,1
ργ1 ρ?1,1 .6 ργ2 1

ρ

E0(·, Q1,1Q2,1)
E0(·, Q1,2Q2,1)

Eq. (3.19)
Eq. (3.21)

Figure 3.3: The solution of system of equations is derived as E1,1
0,s (γ?1 , 0) =

E2,1
0,s (γ?1 , 0). Both ρ?1,1 and ρ?2,1 are located on Ês(ρ, PU1 , γ

?
1) +Es(ρ, PU2). See

Figure 3.2 for more details.

at ρ?2,1, where ρ?1,1 and ρ?2,1 are defined in (3.18).
Since γ?2 = 0, the Es,1(·) for user 2, is always equal to Es(ρ, PU2). We

define new Gallagher’s channel function as E0(·) − Es(ρ, PU2). Now, like
single-user communication, by moving γ1, the optimal γ?1 is obtained at the
point where the distances between the new Gallagher’s channel functions and
Ês(ρ, PU1 , γ

?
1) are equal to each other. Figure 3.3 shows the same idea.

Applying Lemma A.6, we can express the achievable exponent by a sim-
pler expression. Setting E(ρ,Q1) = E0(ρ,Q1,1Q2,1,W ) − Es(ρ, PU2) and
E(ρ,Q2) = E0(ρ,Q1,2Q2,1,W ) − Es(ρ, PU2) in Lemma A.6, (3.14) for this
example can be expressed as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )− Es,i1(ρ, PU1 , γ1)

−Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ē2(ρ,W )− Es(ρ, PU1), (3.25)

where

Ē2(ρ,W ) = sup
ρ1,ρ2,λ∈[0,1]:

λρ1+(1−λ)ρ2=ρ

{
λ max
i1=1,2

E0(ρ1, Q1,i1Q2,1,W )− Es(ρ1, PU2)

+(1− λ) max
i1=1,2

E0(ρ2, Q1,i1Q2,1,W )− Es(ρ2, PU2)
}
. (3.26)

3. No solution for (3.16), while (3.17) has solution:
Similar to the previous case, assume that γ?2 is derived by solving (3.17),
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while (3.16) has no solution, i. e. γ?1 = 1 or γ?1 = 0. Figure 3.4 shows an
example where γ?1 = 1, and the solution of (3.17) is obtained such that
E2,1

0,s (1, γ?2) = E2,2
0,s (1, γ?2), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,1,W )− Es(ρ, PU1)− Es,1(ρ, PU2 , γ
?
2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,2,W )− Es(ρ, PU1)− Es,2(ρ, PU2 , γ
?
2), (3.27)

where as shown in Figure 3.4, the distance between E0(ρ,Q1,2Q2,1,W ) and
(3.20) at ρ?2,1 is equal with the distance between E0(ρ,Q1,2Q2,2,W ) and (3.20)
at ρ?2,2, where ρ?2,1 and ρ?2,2 are respectively the optimal ρs maximizing the
left hand and the right hand sides of (3.27).

The same reasoning applied for the case 2, is also valid for this case, i. e. by
moving γ2, the optimal γ?2 is derived at the point where the distances between
the new Gallagher’s channel functions E0(·) − Es(ρ, PU1) and Ês(ρ, PU2 , γ

?
2)

at points ρ?2,1 and ρ?2,2 are equal to each other. By setting E(ρ,Q1) =
E0(ρ,Q1,2Q2,1,W )−Es(ρ, PU1) and E(ρ,Q2) = E0(ρ,Q1,2Q2,2,W )−Es(ρ, PU1)
in Lemma A.6, we can express (3.14) as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ē3(ρ,W )− Es(ρ, PU2), (3.28)

where

Ē3(ρ,W ) = sup
ρ1,ρ2,λ∈[0,1]:

λρ1+(1−λ)ρ2=ρ

{
λ max
i2=1,2

E0(ρ1, Q1,2Q2,i2 ,W )− Es(ρ1, PU1)

+(1− λ) max
i2=1,2

E0(ρ2, Q1,2Q2,i2 ,W )− Es(ρ2, PU1)
}
. (3.29)

4. Both (3.16) and (3.17) have solutions:
For this case, assume both (3.16) and (3.17) have solutions. Figure 3.5
shows an example of this case where (3.16) is solved such that E1,2

0,s (γ?1 , γ?2) =
E2,2

0,s (γ?1 , γ?2), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,2,W )− Es,1(ρ, PU1 , γ
?
1)− Es,2(ρ, PU2 , γ

?
2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,2,W )− Es,2(ρ, PU1 , γ
?
1)− Es,2(ρ, PU2 , γ

?
2), (3.30)

and (3.17) is solved such that E2,2
0,s (γ?1 , γ?2) = E2,1

0,s (γ?1 , γ?2), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,2,W )− Es,2(ρ, PU1 , γ
?
1)− Es,2(ρ, PU2 , γ

?
2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,1,W )− Es,2(ρ, PU1 , γ
?
1)− Es,1(ρ, PU2 , γ

?
2). (3.31)
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0

2

4

6

8

0 0.2 ργ1 0.5 ρ?2,2
ργ2 ρ?2,1

ρ

E0(·, Q1,2Q2,1)
E0(·, Q1,2Q2,2)

Eq. (3.19)
Eq. (3.20)

Figure 3.4: The solution of systems of equations is derived as E2,1
0,s (1, γ?2) =

E2,2
0,s (1, γ?2). Both ρ?2,1 and ρ?2,2 are located on Es(ρ, PU1) + Ês(ρ, PU2 , γ

?
2). See

Figure 3.2 for more details.

As shown in Figure 3.5, the distance between E0(ρ,Q1,1Q2,2,W ) and
(3.21) at ρ?1,2 is equal to the distance between E0(ρ,Q1,2Q2,1,W ) and (3.19)
at ρ?2,1, and both are equal to the distance between E0(ρ,Q1,2Q2,2,W ) and
(3.22) at ρ?2,2, where ρ?1,2, ρ?2,1 and ρ?2,2 are defined in (3.18).

Consider (3.30), i. e. E1,2
0,s (γ?1 , γ?2) = E2,2

0,s (γ?1 , γ?2). We define new Gal-
lager’s channel function as E0(·) − Es,2(ρ, PU2 , γ

?
2). Then, by moving γ1

along the interval [0, 1], the optimal γ?1 is derived at the point where the
distances between these new Gallager’s channel functions and the tangent
line Ês(ρ, PU1 , γ1) are equal to each other.

Applying Lemma A.6 in (3.30), we set E(ρ,Q1) = E0(ρ,Q1,1Q2,2,W ) −
Es,2(ρ, PU2 , γ

?
2) and E(ρ,Q2) = E0(ρ,Q1,2Q2,2,W )−Es,2(ρ, PU2 , γ

?
2) in Lemma

A.6. Then, (3.14) for this example is obtained as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ēa
4 (ρ,W )− Es(ρ, PU1), (3.32)

where

Ēa
4 (ρ,W ) = sup

ρ1,ρ2,λ∈[0,1]:
λρ1+(1−λ)ρ2=ρ

{
λ max
i1=1,2

E0(ρ1, Q1,i1Q2,2,W )− Es,2(ρ1, PU2 , γ
?
2)

+ (1− λ) max
i1=1,2

E0(ρ2, Q1,i1Q2,2,W )− Es,2(ρ2, PU2 , γ
?
2)
}
. (3.33)
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ρ?2,2
ργ1 ρ?2,1

ργ2 ρ?1,2
ρ

E0(·, Q1,1Q2,2)
E0(·, Q1,2Q2,2)
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Figure 3.5: The solution of system of equations is derived as E1,2
0,s (γ?1 , γ?2) =

E2,2
0,s (γ?1 , γ?2) = E2,1

0,s (γ?1 , γ?2). ρ?1,2, ρ?2,1 and ρ?2,2, respectively are located on
Ês(ρ, PU1 , γ

?
1) + Es(ρ, PU2), Es(ρ, PU1) + Es(ρ, PU2) and the straight line

Ês(ρ, PU1 , γ
?
1) + Ês(ρ, PU1 , γ

?
1).

We can also consider (3.31), i. e. E2,2
0,s (γ?1 , γ?2) = E2,1

0,s (γ?1 , γ?2), and de-
fine new Gallager’s channel function as E(ρ,Q1) = E0(ρ,Q1,2Q2,2,W ) −
Es,2(ρ, PU1 , γ

?
1) and E(ρ,Q2) = E0(ρ,Q1,2Q2,1,W )−Es,2(ρ, PU1 , γ

?
1) in Lemma

A.6. Hence, (3.14) is simplified as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ēb
4(ρ,W )− Es(ρ, PU2), (3.34)

where

Ēb
4(ρ,W ) = sup

ρ1,ρ2,λ∈[0,1]:
λρ1+(1−λ)ρ2=ρ

{
λ max
i2=1,2

E0(ρ1, Q1,2Q2,i2 ,W )− Es,2(ρ1, PU1 , γ
?
1)

+ (1− λ) max
i1=1,2

E0(ρ2, Q1,2Q2,i2 ,W )− Es,2(ρ2, PU1 , γ
?
1)
}
. (3.35)

5. Both (3.16) and (3.17) give the same answer, and ργ?1 6= ργ?2 :

For this case, again both (3.16) and (3.17) have solutions; however, both
of them give the same answer. Figure 3.6 shows an example for this case,
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where the solution of (3.16) gives E1,1
0,s (γ?1 , γ?2) = E2,2

0,s (γ?1 , γ?2), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,1,W )− Es,1(ρ, PU1 , γ
?
1)− Es,1(ρ, PU2 , γ

?
2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,2,W )− Es,2(ρ, PU1 , γ
?
1)− Es,2(ρ, PU2 , γ

?
2), (3.36)

and the solution of (3.17) gives again (3.36).
As shown in Figure 3.6, the distance between E0(ρ,Q1,1Q2,1,W ) and

(3.22) at ρ?1,1 is equal to the distance between E0(ρ,Q1,2Q2,2,W ) and (3.22)
at ρ?2,2, where ρ?1,1 and ρ?2,2 are defined by (3.18).

Like before, we can define new Gallagher’s channel functions as E(ρ,Q1) =
E0(ρ,Q1,1Q2,1,W ) − Es,1(ρ, PU2 , γ

?
2) and E(ρ,Q2) = E0(ρ,Q1,2Q2,2,W ) −

Es,2(ρ, PU2 , γ
?
2). Then, by moving γ1 ∈ [0, 1], the optimal γ?1 is obtained

at the point, where the distance between E(ρ,Q1) and the tangent line
Ês(ρ, PU1 , γ1) is equal to the distance between E(ρ,Q2) and the tangent line
Ês(ρ, PU1 , γ1). Inserting E(ρ,Q1) and E(ρ,Q2) in Lemma A.6, we can express
(3.14) as

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ēa
5 (ρ,W )− Es(ρ, PU1), (3.37)

where

Ēa
5 (ρ,W ) = sup

ρ1,ρ2,λ∈[0,1]:
λρ1+(1−λ)ρ2=ρ

{
λmax
i=1,2

E0(ρ1, Q1,iQ2,i,W )− Es,1(ρ1, PU2 , γ
?
2)

+ (1− λ) max
i=1,2

E0(ρ2, Q1,iQ2,i,W )− Es,2(ρ2, PU2 , γ
?
2)
}
. (3.38)

Alternatively, we can set E(ρ,Q1) = E0(ρ,Q1,1Q2,1,W )−Es,1(ρ, PU1 , γ
?
1)

and E(ρ,Q2) = E0(ρ,Q1,2Q2,2,W )−Es,2(ρ, PU1 , γ
?
1), which gives the following

exponent

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )

−Es,i1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ēb
5(ρ,W )− Es(ρ, PU2), (3.39)

where

Ēb
5(ρ,W ) = sup

ρ1,ρ2,λ∈[0,1]:
λρ1+(1−λ)ρ2=ρ

{
λmax
i=1,2

E0(ρ1, Q1,iQ2,i,W )− Es,1(ρ1, PU1 , γ
?
1)

+ (1− λ) max
i=1,2

E0(ρ2, Q1,iQ2,i,W )− Es,2(ρ2, PU1 , γ
?
1)
}
. (3.40)
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0

2

4

6

ρ?2,2
ργ1 0.6 ργ2 ρ?1,1

ρ

E0(·, Q1,1Q2,1)
E0(·, Q1,2Q2,2)

Eq. (3.19)
Eq. (3.22)

Figure 3.6: E1,1
0,s (γ?1 , γ?2) = E2,2

0,s (γ?1 , γ?2), while ργ?1 6= ργ?2 . Both ρ?1,1 and ρ?2,2
are located on the straight line Ês(ρ, PU1 , γ

?
1) + Ês(ρ, PU2 , γ

?
2).

6. Both (3.16) and (3.17) give the same answer and ργ?1 = ργ?2 :
Figure 3.7 shows an example of this case where the solutions of both (3.16)
and (3.17) gives E1,1

0,s (γ?1 , γ?2) = E2,2
0,s (γ?1 , γ?2), i. e.

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,1,W )− Es,1(ρ, PU1 , γ
?
1)− Es,1(ρ, PU2 , γ

?
2) =

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,2,W )− Es,2(ρ, PU1 , γ
?
1)− Es,2(ρ, PU2 , γ

?
2), (3.41)

and also we have ργ?1 = ργ?2 , which leads that all (3.20),(3.21) and (3.22)
be tangent to (3.19) at ργ?1 = ργ?2 . As shown in Figure 3.7, the distance
between E0(ρ,Q1,1Q2,1,W ) and (3.22) at ρ?1,1 is equal to the distance between
E0(ρ,Q1,2Q2,2,W ) and (3.22) at ρ?2,2, where ρ?1,1 and ρ?2,2 are given by (3.18).

To simplify the exponent, like before we can use Lemma A.6 two times.
However, from Figure 3.7 it can be seen easily that since the distances be-
tween two E0(·) functions and the straight line, Ês (ρ, PU1 , γ1)+Ês (ρ, PU2 , γ2)
are the same, the distance between the parallel line and Ês (ρ, PU1 , γ1) +
Ês (ρ, PU2 , γ2) is equal to the exponent. Moreover, since ργ?1 = ργ?2 , (3.22) is
tangent to Es(ρ, PU1) +Es(ρ, PU2) at ργ?1 = ργ?2 . Recalling that, the exponent
is the distance between two parallel lines, we focus on the their distance at
ργ?1 = ργ?2 . Hence, for this example, the following exponent is achievable

max
γ1,γ2∈[0,1]

min
i1,i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,i1Q2,i2 ,W )− Es,i1(ρ, PU1 , γ1)

−Es,i2(ρ, PU2 , γ2) = max
ρ∈[0,1]

Ē6(ρ,W )− Es(ρ, PU1)− Es(ρ, PU2), (3.42)
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0

2

4

ρ?2,2 0.3 ργ1 = ργ2 ρ?1,1 1
ρ

The parallel line
E0(·, Q1,1Q2,1)
E0(·, Q1,2Q2,2)

Eq. (3.19)
Eq. (3.22)

Figure 3.7: E1,1
0,s (γ?1 , γ?2) = E2,2

0,s (γ?1 , γ?2), and ργ?1 = ργ?2 . Both ρ
?
1,1 and ρ?2,2 are

located on the straight line Ês(ρ, PU1 , γ
?
1) + Ês(ρ, PU2 , γ

?
2).

where

Ē6(ρ,W ) = sup
ρ1,ρ2,λ∈[0,1]:

λρ1+(1−λ)ρ2=ρ

{
λmax
i=1,2

E0(ρ1, Q1,iQ2,i,W )

+(1− λ) max
i=1,2

E0(ρ2, Q1,iQ2,i,W )
}
. (3.43)

All the other possible outcomes of (3.16) and (3.17), can be considered
as one of the six cases studied above. We see that, even for τ = {1, 2},
finding a unique expression of exponent that does not depend on γ?1 and γ?2 ,
is difficult. However, from intuition point of view, these six cases can be
easily generalized to (3.13). Since expressing the final exponent atleast is
coupled with one of the thresholds, it seems that finding an equation like
(2.39) is difficult for the MAC, and maybe unlike single-user communication,
the sufficient number of classes is not two.

Even though γ?1 and γ?2 can be computed through equation (3.13), the
final expression of the achievable exponent (3.6) is still coupled with γ?1 and
γ?2 . In the sequel, we alternatively study both lower and an upper bounds
that do not depend on γ1 and γ2.

3.2.2 A Lower Bound for the Achievable Exponent
In order to find a lower bound for the achievable exponent presented in (3.6),
we use properties (2.35) and (2.36). Firstly, we maximize over γν ∈ {0, 1}
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rather than γν ∈ [0, 1], to lower bound (3.6). Let d(γ1, γ2) be

d(γ1, γ2) = min
i1,i2

fi1,i2(γ1, γ2). (3.44)

Then,

E = max
γ1,γ2∈[0,1]

d(γ1, γ2) ≥ max
γ1,γ2∈{0,1}

d(γ1, γ2). (3.45)

On the other hand,

max
γ1,γ2∈{0,1}

d(γ1, γ2) = max{d(0, 0), d(0, 1), d(1, 0), d(1, 1)}. (3.46)

Taking into account properties (2.35) and (2.36), we note that fi1,i2(γ1, γ2),
for γ1, γ2 ∈ {0, 1}, is either infinity, or the Gallager’s source-channel expo-
nent, i. e.

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es(ρ, PUτ ). (3.47)

For example, fi1,i2(0, 1) equals equation (3.47) for i1 = 1 and i2 = 2, and
fi1,i2(0, 1) = ∞ for the rest of combinations of i1 and i2. Thus, d(0, 1) =
minτ maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,iτc )−Es(ρ, PUτ ) for i1 = 1 and i2 = 2. Sim-
ilarly, d(1, 0) = minτ maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,iτc ) − Es(ρ, PUτ ) for i1 = 2
and i2 = 1, and so on. Hence, we obtain the following lower bound

E ≥ EL (PU1PU2 ,W ) , (3.48)

where

EL (PU1PU2 ,W ) = max
i1∈{1,2}

max
i2∈{1,2}

min
τ∈{{1},{2},{1,2}}

F L
τ,iτ ,iτc

, (3.49)

with
F L
τ,iτ ,iτc

= max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es(ρ, PUτ ). (3.50)

We note that for τ = {1} and τ = {2}, F L
τ,iτ ,iτc

in (3.50) is the error
exponent of the point-to-point channel WQτc,iτc for an iid random-coding
ensemble with distribution Qτ,i. For τ = {1, 2}, we have WQτc,iτc = W and
Es(ρ, PUτ ) = Es(ρ, PU1) + Es(ρ, PU2), so that (3.50) is the error exponent of
the point-to-point channel W for an iid random-coding ensemble with distri-
bution Q1,i1Q2,i2 . Hence, the lower bound (3.49) selects the best assignment
of input distributions over all four combinations through i1 and i2.
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3.2.3 An Upper Bound for the Achievable Exponent
Now, we derive an upper bound for (3.6) inspired by the tools used in [16]
for single user communication. For the MAC with independent sources, we
use the max-min inequality [22] to upper-bound (3.6) by swapping the max-
imization over γ1,γ2 with the minimization over τ . Then, for a given τ , we
use Lemma 3.2 in Section 3.4.3 to obtain the following result.

Proposition 3.3. The achievable exponent (3.6) is upper bounded as

E ≤ EU(PU1PU2 ,W ), (3.51)

where

EU(PU1PU2 ,W ) = min
τ∈{{1},{2},{1,2}}

FU
τ , (3.52)

where

FU
τ = max

iτc=1,2
max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )− Es(ρ, PUτ ), (3.53)

where Ē0(·) is defined by (2.4). We recall that for τ = {1, 2}, we have
{Qτ,1, Qτ,2} = {Q1,1, Q2,1, Q1,2, Q2,2} and Es(ρ, PUτ ) = Es(ρ, PU1)+Es(ρ, PU2).

Proof. See Section 3.4.3.

From equation (3.52), we observe that the upper bound is the minimum of
three terms depending on τ ∈ {{1}, {2}, {1, 2}}. For τ ∈ {{1}, {2}}, we know
that the message of user τ c is decoded correctly so that user τ is virtually
sent either over channel WQτc,1 or WQτc,2. Hence, the objective function of
(3.52) is the single-user exponent for source PUτ and point-to-point channel
WQτc,iτc where codewords are generated according to two assigned input
distributions {Qτ,1, Qτ,2} depending on class index of source messages. As a
result, we note that the maximization over iτc = 1, 2 is equivalent to choose
the best channel (either WQτc,1 or WQτc,2) in terms of error exponent.

As pointed in Lemma 3.2, we note that for error type τ = {1} and τ = {2}
we have equality in (3.103). In other words, if we had a magic model that
only error type τ = {1} or τ = {2} occurred, then the final exponent would
be decoupled from both thresholds. Thus, for the mentioned magic model
that only error type τ = {1} or τ = {2} occurs, the sufficient number of
thresholds for each user is one. More specifically, in view of (3.103), for
error type τ = {1}, the sufficient number of classes for the first user is two,
and it gives the concave-hull term. However, the classes of the second user
determine two channels namely WQ2,1 and WQ2,2.
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3.2.4 Numerical Example
Here we provide a numerical example comparing the achievable exponent,
the lower bound and the upper bound given in (3.6), (3.49) and (3.52),
respectively. We consider two independent discrete memoryless sources with
alphabet Uν = {1, 2} for ν = 1, 2 where PU1(1) = 0.028 and PU2(1) = 0.01155.
We also consider a discrete memoryless multiple-access channel with X1 =
X2 = {1, 2, . . . , 6} and |Y| = 4. The transition probability of this channel,
denoted as W , is given by

W =



W1
W2
W3
W4
W5
W6


, (3.54)

where

W1 =



1− 3k1 k1 k1 k1
k1 1− 3k1 k1 k1
k1 k1 1− 3k1 k1
k1 k1 k1 1− 3k1

0.5− k20.5− k2 k2 k2
k2 k2 0.5− k20.5− k2


, (3.55)

for k1 = 0.056 and k2 = 0.01. W2 and W3 are 6× 4 matrices whose rows are
all the copy of 5th and 6th row of matrix W1, respectively. Let the m-th row
of matrix W1 is denoted by W1(m). W4, W5 and W6 are respectively given
by

W4 =



W1(2)
W1(3)
W1(4)
W1(1)
W1(6)
W1(5)


W5 =



W1(3)
W1(4)
W1(1)
W1(2)
W1(5)
W1(6)


W6 =



W1(4)
W1(1)
W1(2)
W1(3)
W1(6)
W1(5)


. (3.56)

We observe that W is a 36 × 4 matrix where the transition probability
W (y|x1, x2) is placed at the row x1 + 6(x2 − 1) of matrix W , for (x1, x2) ∈
{1, 2, ..., 6}×{1, 2, ..., 6}. Recalling that each source has two classes and that
four input distributions generate codewords, there are four possible assign-
ments of input distributions to classes. Among all possible permutations, we
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select the one that gives the highest exponent. For user ν = 1, 2, we consider
the set of input distributions

{
[0 0 0 0 0.5 0.5], [0.25 0.25 0.25 0.25 0 0]

}
.

For the channel given in (3.54), the optimal assignment is

Qν,1 = [0 0 0 0 0.5 0.5], (3.57)
Qν,2 = [0.25 0.25 0.25 0.25 0 0], (3.58)

for both ν = 1, 2. Since we consider two input distributions for each user,
the function maxρ∈[0,1] E0(ρ,Qτ,iτ ,WQτc,iτc ) is not concave in ρ [16]. For
this example, from (3.13), we numerically compute the optimal γ?1 and γ?2
maximizing (3.6) leading to γ?1 = 0.8159 and γ?2 = 0.7057.

Tables 3.1, 3.2 and 3.3 respectively show the objective functions Fτ,iτ ,iτc (·),
F L
τ,iτ ,iτc

, and FU
τ given in (3.7), (3.50) and (3.53), involved in the derivation

of the achievable exponent (3.6), lower bound (3.49) and upper bound (3.52).
The shaded elements in Tables 3.1 and 3.3 respectively are the exponent and
the upper bound. Additionally, the shaded elements in Table 3.2 are the
iid exponent for different input distributions assignments. Solving equations
(3.6), (3.49), (3.52) using the partial optimization in Tables 3.1, 3.2 and 3.3,
we respectively obtain

E (PU1PU2 , {Q1,1, Q1,2} , {Q2,1, Q2,2} ,W ) = 0.1057, (3.59)

and

EL(PU1PU2 ,W ) = 0.0989, (3.60)
EU(PU1PU2 ,W ) = 0.1073. (3.61)

We observe that the percentage difference between the achievable expo-
nent E(PU1PU2 ,W ) and the lower bound EL(PU1PU2 ,W ) is 6.875%. For a
given set of two distributions for each user, the lower bound EL(PU1PU2 ,W )
corresponds to the iid random-coding error exponent when each user uses
only one input distribution. In Chapter 2, a similar comparison is made for
point-to-point communication. In view of (2.44) and (2.45), for single-user
communication, the exponent achieved by an ensemble with two distribu-
tions is 0.75% higher than the one achieved by the iid ensemble. Hence, our
example illustrates that using message-dependent random coding with two
class distributions may lead to higher error exponent gain in the MAC than
in point-to-point communication, compared to iid random coding.

3.3 Generalizing to Multiple-Classes
In this section, we generalize the main results given in Section 3.2 to the
K-user MAC. Moreover, in view of [21], we consider multiple classes for each
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Table 3.1: Values of Fτ,iτ ,iτc (·) in (3.7) with optimal thresholds γ?1 = 0.8159
γ?2 = 0.7057, for types of error τ , and user classes iτ and iτc .

(i1, i2)
(1,1) (2,1) (1,2) (2,2)

τ = {1} 0.2566 0.1721 0.1057 0.1103
τ = {2} 0.2597 0.1057 0.2526 0.2087
τ = {1, 2} 0.1057 0.1073 0.1127 0.1180

Table 3.2: Values of F L
τ,iτ ,iτc

in (3.50) for types of error τ , and input distri-
bution Q1,i1 , Q2,i2 .

Q1,1,Q2,1 Q1,2,Q2,1 Q1,1,Q2,2 Q1,2,Q2,2

τ = {1} 0.1723 0.1721 0.0251 0.0342
τ = {2} 0.2526 0.0989 0.2526 0.2019
τ = {1, 2} 0.0900 0.1073 0.0900 0.0984

Table 3.3: Values of FU
τ in (3.53) for types of error τ .

τ = {1} τ = {2} τ = {1, 2}
0.1734 0.2526 0.1073

user. For user ν = 1, ..., K, let 0 = γν,Lν+1 ≤ γν,Lν ≤ ... ≤ γν,2 < γν,1 = 1 be
Lν + 1 positive ordered numbers such that γν,Lν > minPUν (uν) and γν,2 ≤
maxPUν (uν). The source-message set Unν is partitioned into Lν classes where
the class `ν ∈ Lν = {1, ..., Lν} is defined as

D`νν =
{
uν ∈ Unν : γnν,`ν+1 < P n

Uν (uν) ≤ γnν,`ν

}
. (3.62)

When Lν = 2 by setting γν,2 = γν , we have D`νν = A`νν (γν) where A`νν (γν) is
given by (3.4) and (3.5). For the messages belonging to D`νν , input distribu-
tion Qν,`ν is assigned to generate codewords.

Throughout this section, the underlined font denotes an ordered tuple of
quantities for K users, i. e.

¯
U = (U1, ..,UK) and P

¯
U(

¯
u) = ∏K

l=1 PUl(ul).

Proposition 3.4. For the K-user MAC with transition probability W and
source probability distributions PU1 , ..., PUK , the following exponent is achiev-
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able

E(P
¯
U , {Q1,1, ..., Q1,L1} , ..., {QK,1, ..., QK,LK} ,W ) = max

γ1,2,...,γ1,L1
... max

γK,2,...,γK,LK

min
τ∈{{1},...,{1,...,K}}

min
`1∈L1,...,`L∈LK

Fτ,`τ ,`τc (Q1,`1 , ..., QK,`K , γ1,1, ...., γK,LK+1) ,

(3.63)

where for all ν = 1, ..., K, γν,1 = 1 and γν,Lν+1 = 0. In addition,

Fτ,`τ ,`τc (Q1,`1 , ..., QK,`K , γ1,1, ...., γK,LK+1) = max
ρ∈[0,1]

E0(ρ,Qτ,`τ ,WQτc,`τc )

− Es,`τ (ρ, PUτ , γτ,`τ+1, γτ,`τ )− Es,`τc (0, PUτc , γτc,`τc+1, γτc,`τc ), (3.64)

where Es,`ν (·) is defined by (2.24).

Proof. See Section 3.4.4.

Remark 3.1. As a special case, we consider K-user MAC where Lν =
{1, 2} for all ν = 1, ..., K. When L = 2, we have γν,1 = 1 and γν,3 =
0 leading to ργν,1 = −1+ and ργν,3 = −1−. Thus, from (2.24), we con-
clude that for two-class source, Es,1(ρ, PUνγν,2, γν,1) = Es,1(ρ, PUν , γν,2) and
Es,2(ρ, PUν , γν,3, γν,2) = Es,2(ρ, PUν , γν,2) where the functions Es,1(ρ, PUν , γν,2)
and Es,2(ρ, PUν , γν,2) are defined by (2.33) and (2.34), respectively. Thus,
(3.63) is simplified as

E(P
¯
U , {Q1,1, Q1,2} , ..., {QK,1, QK,2} ,W ) = max

γ1,2∈[0,1]
... max

γK,2∈[0,1]
min
τ

min
`τ ,`τc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,`τ ,WQτc,`τc )− Es,iτ (ρ, PUτ , γτ,2)− Es,iτc (ρ, PUτc , γτc,2).

(3.65)

Remark 3.2. We recall that for the K-user MAC, the error probability for
a given ordered tuple of codebooks (C1, ..., CK), is given by P

[
ˆ
¯
U 6=

¯
U
]
. We

use the symbol τ ∈
{
{1}, ..., {1, 2, ..., K}

}
to denote the error event type

of the error probability. There are 2K − 1 error event types including the
events that the message of one source is decoded wrongly, the events that the
messages of two sources are decoded wrongly and so on. For K-user MAC,
the complement of τ is denoted by τ c among the subsets of {1, 2, ..., K}.

For example, let K = 6 and τ = {1, 3, 6}. Then, `τ = (`1, `3, `6), Lτ =
L1 × L3 × L6 and therefore `τc = (`2, `4, `5), Lτc = L2 × L4 × L5. We
note that Es,`τ (ρ, PUτ , ·) = Es,1(ρ, PU1 , ·) + Es,3(ρ, PU3 , ·) + Es,6(ρ, PU6 , ·) and
Qτ,`τ is the product distribution Q1,`1(x1)Q3,`3(x3)Q6,`6(x6) over the alphabet
X1×X3×X6. Similarly, WQτc,iτc is a multiple access channel with input and
output alphabets given by X1 ×X3 ×X6 and X2 ×X4 ×X5 × Y, respectively.
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Now, we extend proposition 3.2 to K-user MAC with multiple classes. In
order to find a way to optimize γν,2, ..., γν,Lν for ν = 1, ..., K, we recall that
as mentioned in Proposition 3.4, γν,1 = 1 and γν,Lν+1 = 0 for all ν = 1, ..., K.
Hence, to optimize γν,2, ..., γν,Lν , we express (3.63) as

E(P
¯
U , {Q1,1, ..., Q1,L1} , ..., {QK,1, ..., QK,LK} ,W ) =

max
γ1,2,...,γ1,L1

... max
γK,2,...,γK,LK

min
`τ∈Lτ ,`τc∈Lτc

f`1,...,`K (γ1,1, ..., γK,LK+1), (3.66)

where

f`1,...,`K (γ1,1, ..., γK,LK+1) = min
τ
Fτ,`τ ,`τc (Q1,`1 , ..., QK,`K , γ1,1, ...., γK,LK+1) ,

(3.67)

where Fτ,`τ ,`τc (·) is given by (3.64). Since Es,`ν (ρ, PUν , γν,`ν+1, γν,`ν , ) only de-
pends on γν,`ν and γν,`ν+1, for iν = 2, ..., Lν , the function Fτ,`τ ,`τc (·)

∣∣∣
`ν=iν

only
depends on γν,iν , γν,iν+1 and does not change with the rest of the partitioning
thresholds. Hence, to determine the optimal γν,iν , it suffices to consider the
objective function at `ν = iν and `ν = iν − 1.

For iν = 2, ..., Lν , let `ν = iν for an arbitrary τ . Then, Fτ,`τ ,`τc (·)
∣∣∣
γν,`ν

for
`ν = iν is of the form of maxρE(ρ)−Es,iν (ρ, PUν , γν,iν+1, γν,iν ) and similarly
the function Fτ,`τ ,`τc (·)

∣∣∣
γν,`ν

for `ν = iν − 1 is of the form of maxρE(ρ) −
Es,iν−1 (ρ, PUν , γν,iν , γν,iν−1).

By using Lemma A.15, we find that Fτ,`τ ,`τc (·)
∣∣∣
`ν=iν

and Fτ,`τ ,`τc (·)
∣∣∣
`ν=iν−1

are respectively non-increasing and non-decreasing with respect to γν,iν . Us-
ing the fact that the minimum of monotonic functions is monotonic, we
conclude that f`1,...,`K (γ1,1, ..., γK,LK+1)

∣∣∣
`ν=iν

is non-increasing with respect to
γν,iν and f`1,...,`K (γ1,1, ..., γK,LK+1)

∣∣∣
`ν=iν−1

is non-decreasing with respect to
γν,iν . We recall again, f`1,...,`K (·) for `ν = iν , iν − 1 changes with γν,iν and is
constant with respect to γν,`ν for the rest of `ν . Table 3.4 shows the increas-
ing, decreasing and constant behaviour of f`1,...,`K (·) when K = 2, and the
first source-message set is partitioned into three classes while the second one
is partitioned into two classes.

In order to find the optimal source-partition thresholds, we adopt the
following notation. The complement index of ν ∈ {1, ..., K} is denoted by
νc and γcν,`ν is the sequence of γν,2, ..., γν,Lν without term γν,`ν . We define
γ̄ν,`ν = γνc,mνc

∣∣∣
mνc=2,..,Lνc

, γcν,`ν . For example, for three-user MAC, let L1 = 3,
L2 = 4 and L3 = 2. Then, for ν = 2 and `ν = 3, we have γcν,`ν = γ2,2, γ2,4
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Table 3.4: The behaviour of f`1,`2(γ1,2, γ1,3, γ2,2) given by (3.67) for a two-user
MAC.

γ1,2 γ1,3 γ2,2 γ1,2 γ1,3 γ2,2

f1,1(γ1,2, γ1,3, γ2,2) ↗ − ↗ f1,2(γ1,2, γ1,3, γ2,2) ↗ − ↘
f2,1(γ1,2, γ1,3, γ2,2) ↘ ↗ ↗ f2,2(γ1,2, γ1,3, γ2,2) ↘ ↗ ↘
f3,1(γ1,2, γ1,3, γ2,2) − ↘ ↗ f3,2(γ1,2, γ1,3, γ2,2) − ↘ ↘

and γνc,mνc
∣∣∣
mνc=2,..,Lνc

= γ1,m1

∣∣∣
m1=2,3

, γ3,m3

∣∣∣
m3=2

, which leads

γ̄ν,`ν
∣∣∣
ν=2,`ν=3

= γ1,2, γ1,3, γ2,2, γ2,4, γ3,2. (3.68)

Now, for any iν ∈ {2, ..., Lν}, we will determine the optimal γν,iν . Since
only f`1,...,`K (·)

∣∣∣
`ν=iν

and f`1,...,`K (·)
∣∣∣
`ν=iν−1

depend on γν,iν , we split the min-
imization over `ν of (3.66), as

E(P
¯
U ,
{
Q1,1, ...,Q1,L1

}
, ..., {QK,1, ..., QK,LK} ,W ) =

max
γ̄ν,iν

max
γν,iν

min
{

min
`νc∈Lνc

f`1,...,`K (γ1,1, ..., γK,LK+1)
∣∣∣
`ν=iν−1

,

min
`νc∈Lνc

f`1,...,`K (γ1,1, ..., γK,LK+1)
∣∣∣
`ν=iν

,

min
`ν∈{Lν−{iν ,iν−1}}

min
`νc∈Lνc

f`1,...,`K (γ1,1, ..., γK,LK+1)
}
. (3.69)

We note that for a given γ̄ν,iν , the optimization problem given by (3.69)
satisfies Lemma A.8. Setting γ = γν,iν , k1(γ) = min`νc∈Lνc f`1,...,`K (·)

∣∣∣
`ν=iν−1

and k2(γ) = min`νc∈Lνc f`1,...,`K (·)
∣∣∣
`ν=iν

, in Lemma A.8, and noting to the fact
that the third term of (3.69), i. e. min`ν∈{Lν−{iν ,iν−1}}min`νc∈Lνc f`1,...,`K (·)
does not change with γν,iν , by applying Lemma A.8, for iν ∈ {2, ..., Lν}, the
optimal γν,iν satisfies

min
`νc∈Lνc

f`1,...,`K (γ1,1, ..., γK,LK+1)
∣∣∣
`ν=iν−1,γ?ν,iν

=

min
`νc∈Lνc

f`1,...,`K (γ1,1, ..., γK,LK+1)
∣∣∣
`ν=iν ,γ?ν,iν

, (3.70)

whenever (3.70) has solution. Otherwise, γ?ν,iν = 0 when f`1,...,`K (·)
∣∣∣`ν=iν−1
γν,iν=0

>

f`1,...,`K (·)
∣∣∣ `ν=iν
γν,iν=0

or γ?ν,iν = 1 when f`1,...,`K (·)
∣∣∣`ν=iν−1
γν,iν=1

≤ f`1,...,`K (·)
∣∣∣ `ν=iν
γν,iν=1

.
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Since (3.70) is valid for all ν and `ν , by repeating the approach for given
γ̄?ν,`ν we conclude the following proposition.
Proposition 3.5. Let ν = 1, ..., K, for iν = 2, ..., Lν, γ?ν,iν maximizing (3.63)
satisfies

min
`νc∈Lνc

f`1,...,`K (γ?1,1, ..., γ?K,LK+1)
∣∣∣
`ν=iν−1

= min
`νc∈Lνc

f`1,...,`K (γ?1,1, ..., γ?K,LK+1)|`ν=iν ,

(3.71)
where γ?ν,1 = 1 and γ?ν,Lν+1 = 0. When (3.71) has no solutions, then γ?ν,iν =
{0, 1}. In particular if f`1,...,`K (·)

∣∣∣`ν=iν−1
γν,iν=0

> f`1,...,`K (·)
∣∣∣ `ν=iν
γν,iν=0

, γ?ν,iν = 0 other-

wise γ?ν,iν = 1.
Remark 3.3. As a special case, we consider K-user MAC where Lν = {1, 2}
for all ν = 1, ..., K. Since Lν = 2, γ?ν,1 = 1, γ?ν,3 = 0, it suffices to find γ?ν,2
in (3.71). Applying the facts that iν = 2, (3.71) for K-user MAC with two
classes is simplified as

min
`νc=1,2

f`1,...,`K (γ?1,1, ..., γ?K,3)
∣∣∣
`ν=1

= min
`νc=1,2

f`1,...,`K (γ?1,1, ..., γ?K,3)|`ν=2. (3.72)

Like Section 3.2.2, we lower bound the exponent given by (3.63), by
maximizing over source-partition thresholds belonging to {0, 1}. Considering
(2.24), we recall that if γν,`ν+1 = γν,`ν = 1 or γν,`ν+1 = γν,`ν = 0, then
Es,`(ρ, PUν , ·) = −∞ [21]. While, if γν,`ν+1 = 0 and γν,`ν = 1, then we find
Gallager’s source function as Es,`(ρ, PUν , 0, 1) = Es(ρ, PUν ). As a result, for
the case where source-partition thresholds being only zero or one, f`1,...,`K (·)
is either infinity, or the Gallager’s source-channel exponent, i. e.

max
ρ∈[0,1]

E0(ρ,Qτ,`τ ,WQτc,`τc )− Es(ρ, PUτ ). (3.73)

In fact, by maximizing over {0, 1}, we choose the the Gallager’s source-
channel exponent for the best assignment of input, i. e. since the source-
partition thresholds are ordered as 0 = γν,Lν+1 ≤ γν,Lν ≤ ... ≤ γν,2 < γν,1 = 1,
for user ν, there is an optimal `ν where by having γν,`ν+1 = 0 and γν,`ν = 1
the maximum Gallager’s source-channel exponent is derived. Hence,

E(P
¯
U , {Q1,1, ..., Q1,L1} , ..., {QK,1, ..., QK,LK} ,W ) ≥

max
`1∈L1

... max
`K∈LK

d(Q1,`1 , ...., QL,`K ), (3.74)

where
d(Q1,`1 , ...., QL,`K ) = min

τ
max
ρ∈[0,1]

E0(ρ,Qτ,`τ ,WQτc,`τc )− Es(ρ, PUτ ). (3.75)

For a K-user MAC with two classes, we only apply Lν = {1, 2} for all
ν = 1, ..., K in (3.74).
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3.4 Proofs

3.4.1 Proof of Proposition 3.1
To prove Proposition 3.1, we follow similar steps than in [16]. Firstly, we
start by bounding ε̄n, the average error probability over the ensemble, for a
given block length n. Applying the random-coding union bound [23] for joint
source-channel coding, we have

ε̄n ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

1,
∑
¯
û 6=

¯
u

P
[
P n

¯
U (

¯
û)W n(y|

¯
X̂)

P n

¯
U (

¯
u)W n(y|

¯
x) ≥ 1

], (3.76)

where for independent sources, we have P n

¯
U (

¯
u) = P n

U1(u1)P n
U2(u2), and

¯
x̂ has

the same distribution as
¯
x but is independent of y.

The summation over
¯
û 6=

¯
u can be grouped into three types of events,

specifically (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2) and (û1, û2) 6= (u1,u2).
These three types of error events are denoted by τ ∈ {{1}, {2}, {1, 2}}, re-
spectively. Using the fact that min{1, a + b} ≤ min{1, a} + min{1, b}, we
further bound ε̄n as

ε̄n ≤
∑
τ

ε̄nτ , (3.77)

where for P n

¯
U (

¯
u) = P n

U1(u1)P n
U2(u2),

ε̄nτ ≤
∑
¯
u

P n

¯
U (

¯
u)
∑
¯
x,y

P n

¯
XY (

¯
x,y) min

1,
∑

ûτ 6=uτ

∑
x̂τ :

Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2) ≥1

Qn
τ,ûτ (x̂τ )

,
(3.78)

and Qn
τ,ûτ denotes the channel-input distribution corresponding to the source

message ûτ .
Next, we break the summation over

¯
u in (3.78) into the summations over

the messages belonging to the classes A1
ν(γν), A2

ν(γν) and then summed over
all classes. Moreover, by considering the case where codewords are generated
according to distributions that depend on the class index of the sources, the
outer summation of (3.78), can be written as∑

¯
u

P n

¯
U (

¯
u)
∑
¯
x,y

P n

¯
XY (

¯
x,y) =

∑
i1,i2=1,2

∑
u1∈A

i1
1 (γ1)

P n
U1(u1)

∑
u2∈A

i2
2 (γ2)

P n
U2(u2)

×
∑
¯
x,y

Qn
1,i1(x1)Qn

2,i2(x2)W n(y|x1,x2). (3.79)
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Similarly, the inner summation of (3.78) can be grouped based on the
classes of ûτ and then sum over all classes. Applying this fact and in view of
Markov’s inequality for siτ jτ ≥ 0, the inner summation of (3.78) is bounded
as ∑

ûτ 6=uτ

∑
x̂τ :

Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2) ≥1

Qn
τ,jτ (x̂τ ) ≤

∑
jτ=1,2

∑
ûτ∈Ajττ (γτ )

∑
x̂τ

Qn
τ,jτ (x̂τ )

(
P n
Uτ (ûτ )W n(y|x̂τ ,xτc)
P n
Uτ (uτ )W n(y|x1,x2)

)siτ jτ
, (3.80)

where for τ = {1, 2}, we have jτ = j1, j2, and ûτ ∈ Ajττ (γτ ) equals to
û1 ∈ Aj11 (γ1), û2 ∈ Aj22 (γ2). Inserting (3.80) into the inner minimization of
(3.78) and using the inequality min{1, A + B} ≤ minρ,ρ′∈[0,1]A

ρ + Bρ′ for
A,B ≥ 0, ρ, ρ′ ∈ [0, 1], the inner term of (3.78) is derived as

min

1,
∑

ûτ 6=uτ

∑
x̂τ :

Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2) ≥1

Qn
τ,jτ (x̂τ )


≤

∑
jτ=1,2

min
ρiτ jτ∈[0,1]

Gjτ (siτ jτ ,xτc ,y)ρiτ jτ(
P n
Uτ (uτ )W n(y|x1,x2)

)siτ jτ ρiτ jτ , (3.81)

where

Giτ (s,xτc ,y) =
∑

uτ∈Aiττ (γτ )

∑
xτ

P n
Uτ (uτ )

sQn
τ,iτ (xτ )W

n(y|xτ ,xτc)s, (3.82)

and ρiτ jτ ∈ [0, 1] and siτ jτ ≥ 0. By putting back (3.79) and (3.81) into the
respective outer and inner terms of (3.78), the average error probability is
bounded as

ε̄nτ ≤
∑

jτ=1,2

∑
i1,i2=1,2

min
ρiτ jτ∈[0,1]

∑
y,xτc

∑
uτc∈A

iτc

τc
(γτc )

P n
Uτc

(uτc)Qn
τc,iτc

(xτc)

Giτ (1− siτ jτρiτ jτ ,xτc ,y)Gjτ (siτ jτ ,xτc ,y)ρiτ jτ . (3.83)

Applying Hölder’s inequality in the form of
∑
i

Ciaibi ≤
(∑

i

Cia
1
p

i

)p(∑
i

Cia
1

1−p
i

)1−p

, (3.84)

for p ∈ [0, 1], into (3.83), we obtain

ε̄nτ ≤
∑

jτ ,iτ=1,2
min

ρiτ jτ∈[0,1]
F n
iτ

(
1− siτ jτρiτ jτ ,

1
piτ jτ

)piτ jτ
F n
jτ

(
siτ jτ ,

ρiτ jτ
1− piτ jτ

)1−piτ jτ
,

(3.85)
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where

F n
jτ (a, b) =

∑
iτc=1,2

∑
uτc∈A

iτc

τc
(γτc )

∑
xτc ,y

P n
Uτc

(uτc)Qn
τc,iτc

(xτc)Gjτ (a,xτc ,y)b.

(3.86)

Now, by setting siτ jτ = 1
1+ρjτ

, ρiτ jτ = ρiτ (1+ρjτ )
1+ρiτ

and piτ jτ = 1
1+ρiτ

, the average
error probability can be written as

ε̄nτ ≤
∑

jτ ,iτ=1,2
min

ρiτ ,ρjτ∈[0,1]
F n
iτ

(
1

1 + ρiτ
, 1 + ρiτ

) 1
1+ρiτ

F n
jτ

(
1

1 + ρjτ
, 1 + ρjτ

) ρiτ
1+ρiτ

.

(3.87)

Since F n
iτ (·), F n

jτ (·) ≥ 0 and 1
1+ρiτ

+ ρiτ
1+ρiτ

= 1, by using weighted arithmetic-
geometric inequality, (3.87) is bounded as

ε̄nτ ≤
2∑

jτ ,iτ=1
min

ρiτ ,ρjτ∈[0,1]

1
1 + ρiτ

F n
iτ

(
1

1 + ρiτ
, 1 + ρiτ

)

+ ρiτ
1 + ρiτ

F n
jτ

(
1

1 + ρjτ
, 1 + ρjτ

)
, (3.88)

where by rearranging the terms of the sum, we have

ε̄nτ ≤
∑
iτ=1,2

min
ρiτ ,ρjτ∈[0,1]

F n
iτ

(
1

1 + ρiτ
, 1 + ρiτ

) ∑
jτ=1,2

(
1

1 + ρiτ
+ ρjτ

1 + ρjτ

)
. (3.89)

Next, we may use the following Lemma.

Lemma 3.1. For a given ρ ∈ [0, 1], and F n
iτ (a, b) defined in (3.86), the

following inequality holds

− 1
n

log
F n

iτ

(
1

1 + ρ
, 1 + ρ

) ≥ min
iτc=1,2

E0 (ρ,Qτ,iτ ,WQτc,iτc )

−Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc)−
1
n

log(2), (3.90)

where E0(·) is given by (1.28) and Es,i(·) for i = 1, 2 is given by (2.33) and
(2.34).
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Proof. To prove Lemma 3.1, we recall that by inserting Giτ

(
1

1+ρ ,xτc ,y
)

defined in (3.82) into (3.86), F n
iτ

(
1

1+ρ , 1 + ρ
)
can be written as

F n
iτ

(
1

1 + ρ
,1 + ρ

)
=

∑
iτc=1,2

∑
uτc∈A

iτc

τc
(γτc )

P n
Uτc

(uτc)
 ∑

uτ∈Aiττ (γτ )

P n
Uτ (uτ)

1
1+ρ

1+ρ

×
∑
xτc ,y

Qn
τc,iτc

(xτc)
∑

xτ

Qn
τ,iτ (xτ )W

n(y|xτ ,xτc)
1

1+ρ

1+ρ

. (3.91)

Applying the identity ∑u∈A f(u) = ∑
u f(u)1{u ∈ A} to the summation over

uν ∈ Aiνν (γν), ν = τ, τ c of (3.91), we obtain

F n
iτ

(
1

1 + ρ
, 1 + ρ

)
=

∑
iτc=1,2

∑
uτc

P n
Uτc

(uτc)1
{
uτc ∈ Aiτcτc (γτc)

}

×

∑
uτ

P n
Uτ

(uτ)
1

1+ρ1

{
uτ ∈ Aiττ (γτ )

}1+ρ

e−E0(ρ,Qnτ,iτ ,WnQτ,iτc ), (3.92)

where in (3.92), in view of (1.28) we applied ∑b fb ·
(∑

a ga
)c

= ∑
b

(∑
a ga ·

f
1/c
b

)c
into the first summation of (3.91) and we expressed it in terms of E0

function.
Next, we focus on the summations over uτ and uτc in (3.92). Let ν =

τ, τ c, in view of (3.4) and (3.5), for a given uν , we have 1
{
uν ∈ A1

ν(γν)
}

=
1

{
P n
Uν (uν) ≥ γnν } and 1

{
uν ∈ Ai2ν (γν)

}
= 1

{
P n
Uν (uν) < γnν }. Considering

this fact and applying 1
{
a ≤ b

}
≤
(
b
a

)λ
for λ ≥ 0 to all indicator functions

of (3.92), we find that

F n
iτ

(
1

1 + ρ
, 1 + ρ

)
≤ min

λτ ,λτc≥0

∑
iτc=1,2

∑
uτc

P n
Uτc

(uτc)
(

γnτc

P n
Uτc

(uτc)

)(−1)iτc λτc

×

∑
uτ

P n
Uτ (uτ )

1
1+ρ

(
γnτ

P n
Uτ (uτ )

) (−1)iτ λτ
1+ρ

1+ρ

e−E0(ρ,Qnτ,iτ ,WnQτ,iτc ), (3.93)

where in (3.93) we tightened the bound by minimizing the objective function
over λτ , λτc ≥ 0.

Using Lemma A.16 in Appendix A, the first and the second terms of (3.93)
can be expressed in terms of the Es,i(·) function at ρ = 0 and arbitrary ρ,
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respectively. Doing so, we obtain that

F n
iτ

(
1

1 + ρ
, 1 + ρ

)
≤

∑
iτc=1,2

e
Es,iτ (ρ,PnUτ ,γnτ )+Es,iτc

(
0,PnUτc ,γ

n
τc

)
−E0(ρ,Qnτ,iτ ,WnQτ,iτc ).

(3.94)

Finally, we bound each term in the summation in (3.94) by the maximum
term, use that the sources and the channel are memoryless, and taking log-
arithms, we obtain to (3.90).

Next, upper bounding (3.89) by the maximum term over iτ , further upper
bounding by the worst type of error τ , taking logarithms and using (3.90),
after some mathematical manipulations we find that the exponential decay
of ε̄n is given by

− 1
n

log(ε̄n) ≥ min
τ

min
iτ ,iτc

max
ρ∈[0,1]

E0 (ρ,Qτ,iτ ,WQτc,iτc )

−Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc)−
log(o(n))

n
, (3.95)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0. Using the following
properties

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn (3.96)

lim inf
n→∞

min{an, bn} = min
{

lim inf
n→∞

an, lim inf
n→∞

bn
}
, (3.97)

lim inf
n→∞

max{an} ≥ max
{

lim inf
n→∞

an
}
, (3.98)

we further obtain that

lim inf
n→∞

− 1
n

log(ε̄n) ≥ min
τ

min
iτ ,iτc

max
ρ∈[0,1]

E0 (ρ,Qτ,iτ ,WQτc,iτc )

−Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc) . (3.99)

Finally, we optimize (3.99) over γν for ν = 1, 2. This concludes the proof.

3.4.2 Proof of Proposition 3.2
Now, we focus on Fτ,iτ ,iτc (·) given in (3.7). Let i1 = 1 for an arbitrary τ . Since
γ1 and γ2 are independent from each other, regardless the value of i2, the
function Fτ,iτ ,iτc (·) is of the form maxρE(ρ) − Es,1(ρ, PU1 , γ1). Then, using
Lemma A.7, we have that Fτ,iτ ,iτc (·) is non-decreasing with respect to γ1.
Similarly, when i1 = 2, we have that Fτ,iτ ,iτc (·) is of the form maxρE(ρ) −
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Es,2(ρ, PU1 , γ1) so that it is non-increasing with respect to γ1. The same
reasoning applies for i2. That is, Fτ,iτ ,iτc (·) is non-decreasing with respect
to γ2 for i2 = 1, and non-increasing with respect to γ2 for i2 = 2, always
regardless of the value of i1.

Using the fact that the minimum of monotonic functions is monotonic,
we conclude that fi1,i2(

¯
γ) given in (3.11) is non-decreasing with respect to γ1

when i1 = 1, and non-increasing with respect to γ1 when i1 = 2. Similarly,
fi1,i2(

¯
γ) is non-decreasing (non-increasing) with respect to γ2 when i2 = 1

(i2 = 2).
Writing equation (3.12) as

max
γ1

max
γ2

min
i2

min
i1

fi1,i2(γ1, γ2), (3.100)

for a fixed γ1, the optimization problem maxγ2 mini2 mini1 fi1,i2(γ1, γ2) satis-
fies Lemma A.8 with γ = γ2, i = i2, and ki(γ) = mini1 fi1,i(γ1, γ). Therefore,
the optimal γ?2 satisfies

min
i1=1,2

fi1,1(γ1, γ
?
2) = min

i1=1,2
fi1,2(γ1, γ

?
2), (3.101)

whenever (3.101) has solution. Otherwise, we have γ?2 = 0 when fi1,1(γ1, 0) >
fi1,2(γ1, 0), or γ?2 = 1 when fi1,1(γ1, 0) ≤ fi1,2(γ1, 0).

Setting γ2 = γ?2 , the optimization problem maxγ1 mini1 mini2 fi1,i2(γ1, γ
?
2)

satisfies Lemma A.8 with γ = γ1, i = i1, and ki(γ) = mini2 fi,i2(γ, γ?2). Hence,
γ?1 maximizing (3.12) satisfies

min
i2=1,2

f1,i2(γ?1 , γ?2) = min
i2=1,2

f2,i2(γ?1 , γ?2), (3.102)

and in the case (3.102) does not have solution, γ?1 = 0 when f1,i2(0, γ2) >
f2,i2(0, γ2), or γ?1 = 1 otherwise. Combining (3.101) and (3.102) we obtain
(3.13).

3.4.3 Proof of Proposition 3.3
In view of the max-min inequality [22], after upper bounding (3.6) by swap-
ping the maximization over γ1,γ2 with the minimization over τ , the upper
bound given by (3.52), follows immediately from the following Lemma.
Lemma 3.2. For a given τ = {{1}, {2}, {1, 2}}, we have

max
γ1,γ2∈[0,1]

min
iτ ,iτc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ , γτ )

−Es,iτc (0, PUτc , γτc) ≤ max
iτc=1,2

max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )− Es(ρ, PUτ ),
(3.103)

where equality holds for τ = {{1}, {2}}.
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Proof. Firstly, we consider τ = {{1}, {2}}. In this case, by focusing on the
optimization problem given on the left hand side of (3.103), we may note
that since Es,iτc (0, PUτc , γτc) does not depend on ρ, the maximization over ρ
of the left hand side of (3.103) is done independently from Es,iτc (0, PUτc , γτc).
Additionally, in view of (2.35) and (2.36), we may note that by moving γτc
along the [0, 1] interval, Es,1(0, PUτc , γτc) decreases from zero to −∞, while
Es,2(0, PUτc , γτc) increases from −∞ to zero. Hence, the minimum over iτ
and iτc of

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ , γτ )− Es,iτc (0, PUτc , γτc), (3.104)

is attained at γτc = 0 for iτc = 1, or γτc = 1 for iτc = 2, both leading to
Es,iτc (0, PUτc , γτc) = 0. As a result, it is sufficient to consider maxγτc∈{0,1}
instead of maxγτc∈[0,1]. This implies that the left hand side of (3.103) can be
written as

max
{

max
γτ∈[0,1]

min
iτ

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ , γτ )
∣∣∣∣∣
iτc=1,γτc=0

,

max
γτ∈[0,1]

min
iτ

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ , γτ )
∣∣∣∣∣
iτc=2,γτc=1

}
,

(3.105)

or equivalently

max
iτc=1,2

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ , γτ ). (3.106)

Equation (3.106) can be interpreted as an achievable exponent for a point-
to-point channel with transition-probability WQτc,iτc , a pair of distributions
{Qτ,1, Qτ,2} and a partition of the source message set into two classes. This
problem is well-studied in [16]. In fact, iτc in (3.106) is just a parameter
selecting either WQτc,1 or WQτc,2. From [16, Theorem 2] or Lemma A.6,
equation (3.106) is equal to

max
iτc=1,2

max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )− Es(ρ, PUτ ), (3.107)

which leads (3.103) for type τ ∈ {{1}, {2}}.
For τ = {1, 2}, in view of the min-max inequality [22], we upper bound

the left hand side of (3.103) by swapping the maximization over γ2 with the
minimization over i1 as

max
γ1∈[0,1]

min
{
T1(γ1), T2(γ1)

}
, (3.108)
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where
T1(γ1) = max

γ2∈[0,1]
min
i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,i2 ,W )

−Es,1(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2), (3.109)
and

T2(γ1) = max
γ2∈[0,1]

min
i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,i2 ,W )

−Es,2(ρ, PU1 , γ1)− Es,i2(ρ, PU2 , γ2). (3.110)
We note that Es,1(ρ, PU1 , γ1) in (3.109) does not change with i2 and γ2. Thus,
the optimization problem (3.109) can be seen as a refined achievable exponent
for a point-to-point channel with a new E0 function as E0(ρ,Q1,1Q2,i2 ,W )−
Es,1(ρ, PU1 , γ1) having two input distributions {Q1,1Q2,1, Q1,1Q2,2}, and a par-
tition of a source message into two classes. Equation (3.109) can be written in
terms of the concave hull of maxi2∈{1,2}E0(ρ,Q1,1Q2,i2 ,W )−Es,1(ρ, PU1 , γ1).
Since Es,1(ρ, PU1 , γ1) is a convex function with respect to ρ, using Lemma
A.13 we upper bound the concave hull of maxi2∈{1,2}E0(ρ,Q1,1Q2,i2 ,W ) −
Es,1(ρ, PU1 , γ1) by Ē0(ρ, {Q1,1Q2,1, Q1,1Q2,2},W )−Es,1(ρ, PU1 , γ1). Therefore,
from applying [16, Theorem 2], T1(γ1) is upper bounded as
T1(γ1) ≤ max

ρ∈[0,1]
Ē0(ρ, {Q1,1Q2,1, Q1,1Q2,2},W )− Es,1(ρ, PU1 , γ1)− Es(ρ, PU2).

(3.111)
Similarly,
T2(γ1) ≤ max

ρ∈[0,1]
Ē0(ρ, {Q1,2Q2,1, Q1,2Q2,2},W )− Es,2(ρ, PU1 , γ1)− Es(ρ, PU2).

(3.112)
Inserting the right hand sides of (3.111) and (3.112) into (3.108), we obtain

max
γ1∈[0,1]

min
{
T1(γ1), T2(γ1)

}
≤ max

γ1
min

i1∈{1,2}
max
ρ∈[0,1]

Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W )

−Es,i1(ρ, PU1 , γ1)− Es(ρ, PU2).
(3.113)

Again, the right hand side of (3.113) can be written in terms of the con-
cave hull of the function Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W ) − Es(ρ, PU2). Since
Es(ρ, PU2) is convex in ρ, we apply Lemma A.13 again to upper bound the
concave hull of Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W ) − Es(ρ, PU2) by the function
Ē0(ρ, {Q1,1, Q1,2, Q2,1, Q2,2},W )−Es(ρ, PU2). Finally using [16, Theorem 2],
we obtain that (3.108) is upper bounded by

max
ρ
Ē0(ρ, {Q1,1, Q1,2, Q2,1, Q2,2},W )− Es(ρ, PU1)− Es(ρ, PU2). (3.114)
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3.4.4 Proof of Proposition 3.4
In order to prove Proposition 3.4, we follow the same steps given in Section
3.4.1. Adopting the underlined notation for K users, and applying random-
coding union bound [23] for joint source-channel coding, ε̄n the average error
probability over the ensemble is bound as

ε̄n ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

1,
∑
¯
û6=

¯
u

P
[
P n

¯
U (

¯
û)W n(y|

¯
X̂)

P n

¯
U (

¯
u)W n(y|

¯
x) ≥ 1

], (3.115)

which is the same as bound given by (3.76). Like before, by using the fact
that min{1, a + b} = min{1, a} + min{1, b} we have ε̄n ≤ ∑

τ ε̄
n
τ where ε̄nτ is

given by (3.78) for τ ∈
{
{1}, ..., {1, ..., K}

}
.

Following the next step in Section 3.4.1, by considering multiple classes
for K-users, we find similar equations to (3.79) and (3.80). Now, instead of
summing over iν and Aνiν (γiν ), the summations over

¯
u and ûτ in (3.79) and

(3.80) are done as∑
¯
u

P n

¯
U (

¯
u)
∑
¯
x,y

P n

¯
XY (

¯
x,y) =

∑
`1∈L1

∑
u1∈D

`1
1

P n
U1(u1)...

∑
`K∈LK

∑
uK∈D

`K
K

P n
UK

(uK)

×
∑
¯
x,y

Qn
1,`1(x1)...Qn

K,`K(xK)W n(y|x1, ...,xK), (3.116)

and ∑
ûτ 6=uτ

∑
x̂τ :

Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2) ≥1

Qn
τ,ûτ (x̂τ ) ≤

∑
jτ∈Lτ

∑
ûτ∈Djττ

∑
x̂τ

Qn
τ,jτ (x̂τ )

(
P n
Uτ (ûτ )W n(y|x̂τ ,xτc)
P n
Uτ (uτ )W n(y|x1,x2)

)siτ jτ
. (3.117)

Same reasoning given in Section 3.4.1, (3.81) for K users and multiple
classes is derived as

min

1,
∑

ûτ 6=uτ

∑
ûτ 6=uτ

∑
x̂τ :

Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2) ≥1

Qn
τ,jτ (x̂τ )


≤

∑
jτ∈Lτ

min
ρ`τ jτ∈[0,1]

Gjτ (s`τ jτ ,xτc ,y)ρ`τ jτ(
P n
Uτ (uτ )W n(y|x1,x2)

)s`τ jτ ρ`τ jτ , (3.118)
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where G`τ (·) for K users and multiple classes is modified as
Glτ (s,xτc ,y) =

∑
uτ∈Dlττ

∑
xτ

P n
Uτ (uτ )

sQn
τ,lτ (xτ )W

n(y|xτ ,xτc)s. (3.119)

Next, we find a modified version of (3.83) for multiple classes where the
summation over jτ is done over Lτ and instead of summing over i1, i2 we
have summing over∑K

ν=1
∑
`ν∈Lν . By applying Hölder’s inequality, we modify

(3.85) for K users and multiple classes as

ε̄nτ ≤
∑

jτ ,`τ∈Lτ
min

ρ`τ jτ∈[0,1]
F n
`τ

(
1− s`τ jτρ`τ jτ ,

1
p`τ jτ

)p`τ jτ
F n
jτ

(
s`τ jτ ,

ρ`τ jτ
1− p`τ jτ

)1−p`τ jτ
,

(3.120)
where for K-user MAC with multiple classes, we have
F n
jτ (a, b) =

∑
`τc∈Lτc

∑
uτc∈D

`τc

τc

∑
xτc ,y

P n
Uτc

(uτc)Qn
τc,`τc

(xτc)Gjτ (a,xτc ,y)b. (3.121)

Setting s`τ jτ = 1
1+ρjτ

, ρ`τ jτ = ρ`τ (1+ρjτ )
1+ρ`τ

and p`τ jτ = 1
1+ρ`τ

, a modified
version of (3.87) is derived where rather than summation over jτ , iτ , we have
jτ , `τ ∈ Lτ . Applying arithmetic-geometric inequality, we find

ε̄nτ ≤
∑
`τ∈Lτ

min
ρ`τ ,ρjτ∈[0,1]

F n
`τ

(
1

1 + ρ`τ
, 1 + ρ`τ

) ∑
jτ∈Lτ

(
1

1 + ρ`τ
+ ρjτ

1 + ρjτ

)
.

(3.122)
Next, we bound F n

`τ (·) defined in (3.121) by using similar steps as Lemma
3.1. By inserting G`τ

(
1

1+ρ`τ
, ·
)
defined in (3.119) into (3.121), we will find an

expression similar to (3.91) where instead of summing over iτc ∈ {1, 2} and
uν ∈ Aiνν (γν) for ν = τ, τ c, we have summation over lτc ∈ Lτc and uν ∈ D`νν .
Thus, (3.92) for K users and multiple classes is modified as

F n
`τ

(
1

1 + ρ`τ
, 1 + ρ`τ

)
=

∑
`τc∈Lτc

∑
uτc

P n
Uτc

(uτc)1
(
uτc ∈ D`τcτc

)

×

∑
uτ

P n
Uτ (uτ )

1
1+ρ`τ 1

(
uτ ∈ D`ττ

)1+ρ`τ

e
−E0

(
ρ,Qnτ,`τ ,W

nQnτ,`τc

)
. (3.123)

Using the fact 1
{
a ≤ b

}
≤
(
b
a

)λ
for λ ≥ 0, we tighten the bound of

indicator function as
1

(
γnν,`ν+1 < P n

Uν (uν) ≤ γnν,`ν

)
≤

min
λν,`ν+1,λν,`ν≥0

(
γnν,`ν

P n
Uν (uν)

)λν,`ν (P n
Uν (uν)
γnν,`ν+1

)λν,`ν+1

, (3.124)

106



“output” — 2019/5/22 — 9:04 — page 107 — #123

for ν = τ, τ c. Applying (3.124) into the all indicators function of (3.123)
yields

F n
`τ

(
1

1 + ρ`τ
, 1 + ρ`τ

)
≤

∑
`τc∈Lτc

e
−E0

(
ρ`τ ,Q

n
τ,`τ

,WnQnτ,`τc

)

× min
λτ,`τ+1,λτ,`τ≥0

∑
uτ

P n
Uτ (uτ )

1
1+ρ`τ

(
γnν,`τc

P n
Uν (uν)

) λτ,`τ
1+ρ`τ

(
P n
Uτ (uτ )
γnτ,`τ+1

)λτ,`τ+1
1+ρ`τ


1+ρ`τ

× min
λτc,`τc+1,λτc,`τc≥0

∑
uτc

P n
Uτc

(uτc)
(

γnν,`τc
P n
Uν (uν)

)λτc,`τc (P n
Uτc

(uτc)
γnτc,`τc+1

)λτc,`τc+1

.

(3.125)

Applying Lemma A.12 in Appendix A, into the second and third terms
of (3.125) at arbitrary ρ and at ρ = 0 , respectively, we find that

min
ρ`τ∈[0,1]

F n
`τ

(
1

1 + ρ`τ
, 1 + ρ`τ

)
≤

∑
`τc∈Lτc

min
ρ`τ∈[0,1]

e
−E0

(
ρ`τ ,Q

n
τ,`τ

,WnQnτ,`τc

)

× eEs,`τ (ρ,PnUτ ,γτ,`τ+1,γτ,`τ )+Es,`τc (0,PnUτc ,γτc,`τc+1,γτc,`τc )
. (3.126)

By inserting (3.126) into (3.122), bounding each term in the summations
over `τ and `τc by the maximum terms, and using the fact that the sources
and the channel are memoryless, we obtain

ε̄nτ ≤ max
`τ∈Lτ

max
`τc∈Lτc

min
ρ∈[0,1]

e−nE0(ρ,Qτ,`τ ,WQτ,`τc )

×enEs,`τ (ρ,PUτ ,γτ,`τ+1,γτ,`τ )+nEs,`τc (0,PUτc ,γτc,`τc+1,γτc,`τc ) × o(n), (3.127)

where o(n) is a sequence satisfying limn→∞
log o(n)

n
= 0. Recalling that ε̄n ≤∑

τ ε̄
n
τ , by bounding the average error probability by the worst type of error τ ,

taking logarithm from both sides of it, using the properties given by (3.96),
(3.97) and (3.98), we find that

lim inf
n→∞

− 1
n

log(ε̄n) ≥ min
τ

min
`τ∈Lτ

min
`τc∈Lτc

max
ρ∈[0,1]

E0
(
ρ,Qτ,`τ ,WQτc,`τc

)
−Es,`τ (ρ, PUτ , γτ,`τ+1, γτ,`τ )− Es,`τc (0, PUτc , γτc,`τc+1, γτc,`τc ). (3.128)

Finally, we optimize (3.128) over γν,1, ..., γν,Lν for ν = 1, ..., K. This concludes
the proof.
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Chapter 4

The Multiple-Access Channel
with Correlated Sources

As mentioned in Chapter 1, for the MAC with correlated sources, the ob-
tained reliable transmission conditions in [12] are not optimal. In [34], by
applying coding techniques, a new set of sufficient conditions were proposed.
Moreover, in [35] new sufficient conditions for three-user MAC with corre-
lated sources were studied.

Here, we study the MAC with correlated sources which is described in
Section 1.1. After introducing the Gallager’s source function for correlated
sources, in Section 4.1, an achievable random-coding error exponent for joint
source-channel coding over a multiple access channel with correlated sources
is obtained in both primal and dual domains. The results are analyzed where
either messages and codewords are statistically dependent or independent.
From transmissible region, we find that considering statistical dependency
between messages and codewords leads larger exponent.

In Section 4.2, we generalize the results to the constant-composition fam-
ilies. Like single-user communication, generally, by fixing the composition of
the codewords, we attain more exponent. Parts of this chapter were presented
in [36] and [37].

In this chapter, we frequently use (1.24). Thus, firstly we introduce the
Gallager’s source function for two correlated sources.
Lemma 4.1. Consider two correlated sources characterized by P

¯
U . For

source ν = 1, 2, its outputs can be encoded into 2nRν codewords such that
the probability of ambiguous encoding Pe is bounded as

− 1
n

logPe ≥ min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

ρRτ − Es,τ (ρ, P
¯
U), (4.1)

where for τ = {1, 2}, Rτ = R1 +R2, and Es,τ (·) is given by (1.24).
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Proof. See Section 4.3.1

4.1 Message-Dependent Random-Coding Ex-
ponent with Statistical Dependency

As shown in Chapter 2, tuning the random-coding ensemble leads to im-
proved exponents in the point-to-point channel [7] and in the multiple-access
channel [38,39].

Inspired by these fact, we are motivated to consider joint source-channel
coding where codewords are generated by a conditional probability distribu-
tion of the codeword symbol that depends both on the instantaneous source
symbol and on the type of the source sequence. In particular, codebooks
are drawn from a multi-letter distribution that is the product of indepen-
dent conditional distributions that depend on the corresponding single-letter
value of the source message.

For user ν = 1, 2, we assign to source probability distribution PUν a con-
ditional probability distribution Q̄ν,PUν

(x|u). We represent the set of these
distributions by {Q̄ν,PUν

: PUν ∈ PUν}. For every message unν ∈ Unν , we
randomly generate a codeword xν(uν) according to the probability distribu-
tion Q̄n

ν,π(uν)(xν |uν) = ∏n
i=1 Q̄ν,π(uν)(xν,i|uν,i), where Q̄ν,π(uν) is a probability

distribution that depends on the type of uν , denoted by π(uν).

Proposition 4.1. For the two-user MAC with transition probability W , cor-
related sources P

¯
U and the set of input distributions

{
Q̄ν,PUν

, PUν ∈ PUν
}
for

ν = 1, 2, an achievable exponent Emds
1 is given by

Emds
1 = min

τ∈{{1},{2},{1,2}}
min

P̂
¯
U

¯
XY ∈P

¯
U×

¯
X×Y

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W )

+
[

min
P̃

¯
U

¯
XY ∈Lτ (P̂

¯
U

¯
XY )

D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
]+

,

(4.2)

where

Lτ (P̂
¯
U

¯
XY ) ,

{
P̃

¯
U

¯
XY ∈ P

¯
U×

¯
X×Y : P̃UτcXτcY = P̂UτcXτcY ,

EP̃λ(
¯
U,

¯
X, Y ) ≥ EP̂λ(

¯
U,

¯
X, Y )

}
, (4.3)

and λ(
¯
U,

¯
X, Y ) = log

(
P

¯
U(

¯
U)W (Y |

¯
X)
)
, [x]+ = max{0, x}.
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We briefly note that by setting P̂
¯
U

¯
XY = P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W and P̂

¯
U

¯
XY =

P̃
¯
U

¯
XY , the exponent in (4.2) can be shown to recover the achievable region

obtained by Cover, El Gamal and Salehi [12].

Proof. See Section 4.3.2.

Next, we show that the achievable exponent given by (4.2) is ensemble
tightness. In other words, in Section 4.3.3, we prove that

lim sup
n→∞

− 1
n
ε̄ ≤ Emds

1 , (4.4)

where ε̄ denotes the average error probability over the ensemble.
Now, to express the dual form of (4.2), like before we can apply the

Lagrange duality theory. However, since the interpretation of the results are
complicated, firstly we consider the case where the messages and codewords
are statistically independent.

4.1.1 Statistically Independent Input Distributions
By applying the same approach in Section 4.3.2, the achievable exponent of
(4.2) for statistically independent messages and codewords is simplified to

Emd
1 = min

τ∈{{1},{2},{1,2}}
min
P̂

¯
U∈P

¯
U

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
U ||P

¯
U) +D(P̂

¯
XY ||Q1,P̂U1

Q2,P̂U2
W )

+
[

min
P̃

¯
U∈Ks,τ (P̂

¯
U )

min
P̃

¯
XY ∈Kc,τ (P̂

¯
XY )

D(P̃
¯
XY ||Qτ,P̃Uτ

P̂XτcY )−H(P̃Uτ |Uτc )
]+

, (4.5)

where

Ks,τ (P̂
¯
U) ,

{
P̃

¯
U ∈ P

¯
U : P̃Uτc = P̂Uτc , EP̃ log

(
P

¯
U(

¯
U)
)
≥ EP̂ log

(
P

¯
U(

¯
U)
)}
,

(4.6)

and

Kc,τ (P̂
¯
XY ) ,

{
P̃

¯
XY ∈ P

¯
X×Y : P̃XτcY = P̂XτcY ,

EP̃ log
(
W (Y |

¯
X)
)
≥ EP̂ log(W (Y |

¯
X)
)}
, (4.7)

and [x]+ = max{0, x}.
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Next, by setting T = Uτ , Z = Uτc , U =
¯
U , X = Xτ , W = Qτc,P̂Uτc

W

and Y = XτcY in Lemma A.14 and then using the identity max{0, a} =
maxρ∈[0,1] ρa, (4.5) is simplified as

Emd
1 ≥ min

τ
min

P̂
¯
XY ∈P

¯
X×Y

min
P̂

¯
U∈P

¯
U

D(P̂
¯
U ||P

¯
U) +D(P̂

¯
XY ||Q1,P̂U1

Q2,P̂U2
W )

+ max
ρ∈[0,1]

ρD(P̂
¯
XY ||Qτ,P̂Uτ

P̂XτcY )− ρH(P̂Uτ |Uτc ). (4.8)

To find the dual form of (4.8), we firstly analyze the source-exponent
terms. Recalling from (3.4) and (3.5), in Chapter 3, for each user a fixed
threshold was considered to partition the source-message set into two classes.
Here, we use the same idea in the primal domain. To express the primal form
of (3.4) and (3.5) for correlated sources, we recall that due to distributed
source coding [9], the messages of each source are encoded independently from
the other user. Considering this fact, in the following Lemma the asymptotic
form of (3.4) and (3.5) for correlated sources is given.
Lemma 4.2. Let P

¯
U be the probability distribution of two correlated sources

and for source ν = 1, 2, PUν be the marginal distribution of P
¯
U . Given

γν ∈ [0, 1] as the partitioning threshold, the set P
¯
U can be partitioned into

disjoint classes namely as B1
ν(γν) and B2

ν(γν) where

B1
ν(γν) =

P̂¯
U ∈ P

¯
U :

∑
¯
u

P̂
¯
U(

¯
u) logPUν (uν) ≥ log(γν)

 , (4.9)

B2
ν(γν) =

P̂¯
U ∈ P

¯
U :

∑
¯
u

P̂
¯
U(

¯
u) logPUν (uν) < log(γν)

 . (4.10)

Proof. See Appendix 4.3.4.

Let ν ∈ {1, 2} and νc denotes the complement index of ν among the
set {1, 2}. Roughly speaking, B1

ν(γν) in (4.9), can be interpreted as the
asymptotic union of joint sequences (u1,u2) with joint-type P̂ n

¯
U , where as

long as the marginal probability P n
Uν (uν) is not less than the threshold γnν , the

empirical distribution of uνc can be arbitrary (similarly for B2
ν(γν) in (4.10)).

The following Proposition finds the Gallager source exponent function for
the messages belonging to classes B1

ν(γν) and B2
ν(γν).

Proposition 4.2. Let ν ∈ {1, 2}, and νc be the complement index of ν among
the set {1, 2}. For given γν ∈ [0, 1] and iν ∈ {1, 2}, in view of Biνν (γν) given
by (4.9) and (4.10), we have

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1)∩Bi22 (γ2)

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ) = −Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ),

(4.11)
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where

Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ) =

min
λ1≥0,λ2≥0

log
∑
uτc

∑
uτ

P
¯
U(

¯
u)

1
1+ρ

(
PU1(u1)
γ1

)− (−1)i1λ1
1+ρ

(
PU2(u2)
γ2

)− (−1)i2λ2
1+ρ

1+ρ

.

(4.12)

Proof. See Section 4.3.5.

In fact, in (4.12), the objective function is a convex function with respect
to λν for ν = 1, 2, and hence the optimal λν minimizing (4.12) are the solution
of an implicit equation which is obtained by setting the partial derivative of
the objective function of (4.12) with respect to λν equal to zero. To be
precise, for the cases where both constraints P̂

¯
U ∈ Bi11 (γ1) and P̂

¯
U ∈ Bi22 (γ2)

are active, λ1 and λ2 derived as the solution of the implicit equation, are
greater than zero. Otherwise, the solution of the implicit equation is negative
and the optimal λν is zero.

Here, we compare the result given by (4.12), with independent sources.
In Chapter 3, it has been shown that by partitioning the source into two
classes, the obtained exponent is given in terms of Es,iν (·) function where
iν = 1, 2.

Additionally, from Lemma A.16, for the source ν = 1, 2, with probability
distribution PUν , the partitioning threshold γν , and iν = 1, 2, we have

Es,iν (ρ, PUν , γν) = min
λν≥0

log
∑
uν

PUν (uν)
1

1+ρ

(
PUν (uν)
γν

)− (−1)iν λν
1+ρ

. (4.13)

For independent sources, by applying P
¯
U(

¯
u) = PU1(u1)PU2(u2) in (4.12),

and in view of (4.13), the function Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ) is simplified as

Es,τ,i1,i2(ρ, PU1(u1)PU2(u2),
¯
γ) = Es,iτ (ρ, PUτ , γτ ) + Es,iτc (0, PUτc , γτc),

(4.14)

where as discussed in (3.7), for τ = {1, 2}, Es,iτ (ρ, P¯
U ,

¯
γ) = Es,i1(ρ, PU1 , γ1)+

Es,i2(ρ, PU2 , γ2). In fact, depending on the tangent points given in (2.25),
Es,{1,2},i1,i2(·) as a function of ρ is either Es(ρ, PUν )+Es(ρ, PUνc ) or Es(ρ, PUν )+
Es,iνc (ρ, PUνc , γνc) where ν can be 1 or 2, and νc denotes the complement in-
dex of ν among the set {1, 2}.

For error type τ ∈ {{1}, {2}} and for the four combinations of i1, i2 ∈
{1, 2}, Figure 4.1 shows (4.14) for two independent sources with given γ1,
γ2. As shown in (4.14) and for Figure 4.1, the functions Es,τ,1,1(·) and
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0 0.2 0.4 0.6 0.8 1

0

5 · 10−2

0.1

ρ

Independent sources

Es,τ,1,1(·)
Es,τ,2,1(·)
Es,τ,1,2(·)
Es,τ,2,2(·)

Figure 4.1: The function Es,τ,i1,i2(·) given by (4.14) for two independent
sources PU1(u1)PU2(u2) versus ρ, for the fixed γ1 and γ2 where i1, i2 = 1, 2.
For error type τ ∈ {{1}, {2}}, the solid red and blue curves are respectively
Es(ρ, PUτ ) and Es(ρ, PUτ ) + Es,iτc (0, PUτc , γτc).

Es,τ,2,1(·) follow Es(ρ, PUτ ) given by (1.9), for an interval of ρ, while they
are the straight line tangent to Gallager’s source function beyond that inter-
val. However, the functions Es,τ,1,2(·) and Es,τ,2,2(·) are either the Gallager’s
source function shifted by Es,iτc (0, PUτc , γτc) or the straight line tangent to
it.

On the other hand, for correlated sources with four combinations of
i1, i2 ∈ {1, 2}, Figure 4.2 shows (4.12) for two correlated sources with given
γ1, γ2 and error type τ . It can be seen that for the example of Figure 4.2,
the functions Es,τ,1,1(·) and Es,τ,2,1(·) are the generalized Gallager’s source
function (1.24) for an interval of ρ, while they are a curve tangent to Es,τ (·)
beyond that interval. Thus, unlike the independent sources, instead of a
straight line tangent to Gallager’s source function, for correlated sources, a
curve is tangent to Es,τ (·). The reason for this is explained in the following.

In Figure 4.2, consider Es,τ,2,1(·) where i1 = 2 and i2 = 1. For the region
of ρ where Es,τ,2,1(·) equals to Es,τ (·), both constraints P̂

¯
U ∈ B2

1(γ1) and
P̂

¯
U ∈ B1

2(γ2) are inactive, while for the region of ρ where Es,τ,2,1(·) equals
to the curve tangent to Es,τ (·), only one of the constraints P̂

¯
U ∈ B2

1(γ1) or
P̂

¯
U ∈ B1

2(γ2) is active (similarly for Es,τ,1,1(·)). For given i1, i2, let ν ∈ {1, 2}
correspond to the active constraint. For example, in Figure 4.2, for the
region of ρ where Es,τ,2,1(·) equals to the tangent curve, only the constraint
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0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8 ·10−2

ρ

Correlated sources

Es,τ,1,1(·)
Es,τ,2,1(·)
Es,τ,1,2(·)
Es,τ,2,2(·)

Figure 4.2: The function Es,τ,i1,i2(·) given by (4.12) for two correlated sources
versus ρ, for the fixed γ1 and γ2 where i1, i2 = 1, 2. The solid red and blue
curves are respectively given by (1.24) and (4.16).

P̂
¯
U ∈ Biνν (γν) is active. Then, the primal form of the curve is

− min
P̂

¯
U∈P

¯
U :∑

¯
u
P̂

¯
U (

¯
u) logPUν (uν)=log(γν)

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ), (4.15)

that corresponds to the Gallager’s source exponent function of messages
source ν whose empirical distributions are fixed, i. e. the set

{
P̂

¯
U ∈ P

¯
U :∑

¯
u P̂¯

U(
¯
u) logPUν (uν) = log(γν)

}
.

We note that (4.15), describes the situation that only the type class of
one of the sources is fixed. Thus, we have more freedom in the source-type
class of another source. This implies that for correlated sources the joint-
type class is not fixed, but rather contains the union of joint-type classes
whose type class of one of the sources is fixed. Thus, unlike the independent
sources, for correlated sources (4.15) is a curve rather than a straight line.

Coming back to Figure 4.2, for an for an interval of ρ, the functions
Es,τ,1,2(·) (Es,τ,2,2(·)) is

min
λν≥0

log
∑
uτc

∑
uτ

P
¯
U(

¯
u)

1
1+ρ

(
PUν (uν)
γν

)− (−1)iν λν
1+ρ

1+ρ

, (4.16)

where ν ∈ {1, 2} corresponds to the fact that only the constraint P̂
¯
U ∈

Biνν (γν) is active. In addition, beyond that interval of ρ, the functions
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Es,τ,1,2(·) (Es,τ,2,2(·)) is (4.12) where both constraints P̂
¯
U ∈ Bi11 (γ1) and

P̂
¯
U ∈ Bi22 (γ2) are active.
Next, considering (4.8), we note that the optimization problem over P̂

¯
X,Y

in (4.8) is coupled with the minimization problem over P̂
¯
U through Qν,P̂Uν

for ν = 1, 2. In view of classes defined by (4.9) and (4.10), we express
the dependency of the input distribution Qν,P̂Uν

on P̂Uν , through the class
index. In other words, for P̂Uν ∈ B1

ν(γν), we let Qν,P̂Uν
= Qν,1 and simi-

larly for P̂Uν ∈ B2
ν(γν), we let Qν,P̂Uν

= Qν,2. Applying this to (4.8), and
splitting the minimization over P̂

¯
U into minimization over disjoint classes as

mini1,i2=1,2 min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2), we find that

Emd
1 ≥ min

τ
min

i1,i2=1,2
min

P̂
¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
U ||P

¯
U)

+D(P̂
¯
XY ||Q1,i1Q2,i2W ) + max

ρ∈[0,1]
ρD(P̂

¯
XY ||Qτ,iτ P̂XτcY )− ρH(P̂Uτ |Uτc ).

(4.17)

By using the min-max inequality, we swap the maximization over ρ with
the minimizations over P̂

¯
XY ∈ P

¯
X×Y and P̂

¯
U in (4.17), i. e. Emd

1 ≥ Emd where
Emd is given by

Emd = min
i1,i2=1,2

min
τ

max
ρ∈[0,1]

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
XY ||Q1,i1Q2,i2W )

+ ρD(P̂
¯
XY ||Qτ,iτ P̂XτcY ) + min

P̂
¯
U∈P

¯
U :

P̂
¯
U∈B

i1
1 (γ1)∩Bi22 (γ2)

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ).

(4.18)

In (4.18), the inner minimization problems over P̂
¯
XY ∈ P

¯
X×Y and P̂

¯
U ∈

P
¯
U , respectively lead to the channel and source exponent functions. The

minimization over P̂
¯
U is discussed in Proposition 4.2, while to find channel

exponent function, we use Lemma A.3. By setting P̂XY = P̂
¯
XY and Q = Qτ,iτ

in Lemma A.3, the minimization over P̂
¯
XY in (4.18), is optimized as

min
P̂

¯
XY ∈P

¯
X×Y

D(P̂
¯
XY ||Q1,i1Q2,i2W ) + ρD(P̂

¯
XY ||Qτ,iτ P̂XτcY )

= E0(ρ,Qτ,iτ ,WQτc,icτ ), (4.19)

where E0(·) is given by (1.14).
Now, putting back the results obtained in equations (4.19) and (4.11)

into the respective minimization problems over P̂
¯
XY and P̂

¯
U of (4.18), and
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defining

fi1,i2(γ1, γ2) = min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ),

(4.20)

an alternative expression for (4.18) is derived as

Emd = max
γ1,γ2∈[0,1]

min
i1,i2=1,2

fi1,i2(γ1, γ2), (4.21)

where in (4.21), we optimized the exponent over γν for ν = 1, 2. We re-
call that since two source-message classes namely B1

ν(γν), B2
ν(γν) and two

input distributions Qν,1, Qν,2 are considered for each user ν = 1, 2, there are
four possible assignments where in (4.21) the optimal assignment of input
distributions is considered.

In Section 4.3.6, we show that for ν = 1, 2, the function

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ), (4.22)

is non-decreasing with respect to γν when iν = 1 and is non-increasing with
respect to γν when iν = 2. Considering this fact, to find the optimal

¯
γ

maximizing (4.21), we can use the same approach proposed in Proposition
3.2. In other words, the optimal γ1 and γ2 are the points where the minimum
of all non-decreasing functions with respect to γν is equal with the minimum
of all non-increasing functions.

Proposition 4.3. The optimal γ?1 and γ?2 maximizing (4.21) satisfymin
i2=1,2

f1,i2(γ?1 , γ?2) = min
i2=1,2

f2,i2(γ?1 , γ?2),
min
i1=1,2

fi1,1(γ?1 , γ?2) = min
i1=1,2

fi1,2(γ?1 , γ?2). (4.23)

When (4.23) has no solutions, then γ?ν ∈ {0, 1}. In particular, if f1,i2(0, γ2) >
f2,i2(0, γ2) then γ?1 = 0, otherwise γ?1 = 1; and if fi1,1(γ1, 0) > fi1,2(γ1, 0), we
have γ?2 = 0, otherwise γ?2 = 1.

Proof. See Section 4.3.6.

4.1.1.1 iid Random-Coding Exponent

Next, we show that the achievable exponent given by (4.21), is greater than
iid random-coding exponent. We recall that for iid ensemble, for each user,
only one input distribution generates codewords. For a two-user MAC with
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two correlated source P
¯
U , transition probability W and given input distribu-

tions Q1 and Q2, the i.i.d random-coding exponent is given by

Eiid = min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0(ρ,Qτ ,WQτc)− Es,τ (ρ, P
¯
U), (4.24)

where Es,τ (·) and E0(·) are respectively given by (1.24) and (1.14). To prove
(4.24), we recall that iid ensemble is a special case of message-dependent
ensemble where for each user, only one class is considered. Assume that all
the messages of user ν are generated according to Qν = Qν,1 for ν = 1, 2.
Thus, all the messages belong to the first class, i. e. γ1 = γ2 = 0 and i1 =
i2 = 1, and hence

Es,τ,1,1(ρ, P
¯
U , 0, 0) = Es,τ (ρ, PU). (4.25)

Applying Q1 and Q2 in (4.19) as input distributions, by considering (4.25),
in view of (4.20), the exponent of (4.21) is simplified as (4.24).

Proposition 4.4. The achievable exponent given by (4.21) is greater than
that achieved using only one input distribution for each user, i. e.

Emd ≥ max
i1∈{1,2}

max
i2∈{1,2}

min
τ
F L
τ,iτ ,iτc

, (4.26)

where
F L
τ,iτ ,iτc

= max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,τ (ρ, P¯
U). (4.27)

Like (3.50), the lower bound in (4.26) selects the best iid random-coding
exponent among the all four combinations of input distributions through i1
and i2.

Proof. See Section 4.3.7.

4.1.1.2 Numerical Example

In this section, we develop an example showing that using two input distri-
butions for each user, attains larger achievable exponent than the case where
each user uses one input distribution. We consider two correlated discrete
memoryless sources with alphabet Uν = {1, 2} for ν = 1, 2 where

P
¯
U =

(
0.0005 0.0095
0.0005 0.9895

)
. (4.28)

We also consider a discrete memoryless MAC, given by (3.54). As men-
tioned before, we observe that W is a 36 × 4 matrix where the transition
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Figure 4.3: mini1,i2 fi1,i2(γ1, γ2) with respect to γ1 and γ2.

probability W (y|x1, x2) is located at row x1 + 6(x2 − 1) of matrix W , for
(x1, x2) ∈ {1, 2, ..., 6} × {1, 2, ..., 6}. Recalling that each source has two
classes and that four input distributions generate codewords, there are four
possible assignments of input distributions to classes. Among all possible
permutations, we select the one that gives the highest exponent. Here, for
user ν = 1, 2, we consider the set of input distributions

{
[0 0 0 0 0.5 0.5],

[0.25 0.25 0.25 0.25 0 0]
}
. For the channel given in (3.54), the optimal as-

signment is

Qν,1 = [0 0 0 0 0.5 0.5], (4.29)
Qν,2 = [0.25 0.25 0.25 0.25 0 0], (4.30)

for both ν = 1, 2.
For this example, from (4.23), we numerically compute the optimal γ?1 and

γ?2 maximizing (4.21) leading to γ?1 = 0.8469 and γ?2 = 0.6581. The message-
dependent exponent is derived as Emd = 0.2611, while iid exponent for the
best assignment is derived as 0.2503. Figure 4.3 shows mini1,i2 fi1,i2(

¯
γ) with

respect to γ1 and γ2. It can be seen that the maximum of mini1,i2 fi1,i2(
¯
γ) is

derived at (0.8469, 0.6581); however, the lower bound is obtained at (1, 0).

4.1.1.3 On the Error Type τ ∈ {{1}, {2}}

In this section, we only focus on the error type τ = {1} or τ = {2}. Since
for these two error types, the messages of user τ and τ c are respectively

119



“output” — 2019/5/22 — 9:04 — page 120 — #136

Table 4.1: Values of (4.22) with optimal thresholds γ?1 = 0.8469 γ?2 = 0.6581,
for types of error τ , and user classes iτ and iτc .

(i1, i2)
(1,1) (1,2) (2,1) (2,2)

τ = {1} 0.3172 0.2735 0.3120 0.2611
τ = {2} 0.3986 0.4372 0.2611 0.4119
τ = {1, 2} 0.2611 0.2972 0.2630 0.2883

Table 4.2: Values of F L
τ,iτ ,iτc

in (4.27) for types of error τ , and input distri-
bution Q1,i1 , Q2,i2 .

Q1,1,Q2,1 Q1,1,Q2,2 Q1,2,Q2,1 Q1,2,Q2,2

τ = {1} 0.2682 0.0642 0.3120 0.0879
τ = {2} 0.3986 0.3986 0.2503 0.3696
τ = {1, 2} 0.2097 0.2097 0.2630 0.2360

decoded incorrectly and correctly, one can conclude that for τ = {1}, {2},
the message of user τ c is known at the receiver. To be precise, consider Figure
4.4, where the source is characterized by a probability distribution PUτ on the
source alphabet Uτ . The source message uτ with length n is mapped onto
codeword xτ (uτ ) which also has length n and is drawn from the codebook
Cτ = {xτ (uτ ),uτ ∈ Unτ }. In addition, the channel state is characterized by
a probability distribution PUτc |Uτ .

Like before, we partition the source messages into two classes and we
assign two input distributions. In view of (3.4) and (3.5), for uτ ∈ A1

τ (γτ ),
the codewords are generated according to Qτ,1, while for uτ ∈ A2

τ (γτ ), the
input distribution Qτ,2 is applied to generate codewords.

Similarly, we partition the outputs of the channel state PUτc |Uτ into two
classes. According to the class of uτc ∈ A1

τc(γτc), the encoder sends the
codewords over the discrete memoryless channel with transition probability
WQτc,1 with input alphabet Xτ and output alphabet Y × Xτ and for uτc ∈
A2
τc(γτc), the channel WQτc,2 is utilized to transmit the codewords.
For the model described in this section, by using random-coding union

bound, for τ = {1} or τ = {2}, the achievable exponent is obtained as

max
γτc ,γτ∈[0,1]

min
iτ ,iτc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ), (4.31)
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PUτ encoder
Un
τ Xn

τ
W Y n

PUτc |Uτ
Un
τc Un

τc

Figure 4.4: Single user transmission in the presence of channel state.

where Es,τ,i1,i2(·) is given by (4.12). We note that since τ = {1}, {2} is given,
if the minimization over τ in (4.21) is removed, (4.31) will equal to (4.21).

In Section 4.3.8, we show that (4.31) equals to

max
{

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,1)− Es,τ,iτ (ρ, P¯
U , γτ ),

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,2)− Es,τ,iτ (ρ, P¯
U , γτ )

}
, (4.32)

where

Es,τ,iτ (ρ, P¯
U , γτ ) = min

λτ≥0
log

∑
uτc

∑
uτ

P
¯
U(

¯
u)

1
1+ρ

(
PUτ (uτ )
γτ

)− (−1)iτ λτ
1+ρ

1+ρ

.

(4.33)

The first term of (4.32) can be interpreted as the message-dependent
exponent of channelWQτc,1 where the source PUτ is correlated to the channel
state. Similarly, the second term (4.32) has the similar meaning. Due to
(4.32), we can interpret that the final exponent is the exponent of the better
channel WQτc,1 or WQτc,2. Applying P

¯
U = PU1PU2 , we find (3.53) as a

special case where the source and channel sate are independent.

4.1.2 Statistical Dependency between Messages and
Codewords

Now, we can find the dual form of (4.2). Firstly, by setting U = Uτ , X = Xτ ,
W = PUτcQτc,P̂Uτc

W and Y = UτcXτcY in Lemma A.1, (4.2) can be bounded
as the minimization over only P̂

¯
U

¯
XY ∈ P

¯
U×

¯
X×Y . Then, by considering the

121



“output” — 2019/5/22 — 9:04 — page 122 — #138

fact that PZ(z) = ∑
t PZT (z, t), (4.9) and (4.10) can be rewritten as

B1
ν(γν) =

P̂¯
U

¯
XY ∈ P

¯
U

¯
X

¯
Y :

∑
¯
u,

¯
x,y

P̂
¯
U

¯
XY (

¯
u,

¯
x, y) logPUν (uν) ≥ log(γν)

 ,
(4.34)

B2
ν(γν) =

P̂¯
U

¯
XY ∈ P

¯
U

¯
X

¯
Y :

∑
¯
u,

¯
x,y

P̂
¯
U

¯
XY (

¯
u,

¯
x, y) logPUν (uν) < log(γν)

 .
(4.35)

Next, we split the minimization over P̂
¯
U

¯
XY ∈ P

¯
U

¯
XY into minimization

over disjoint classes as mini1,i2=1,2 min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2), where B

1
ν(γν)

and B2
ν(γν) are given by (4.34) and (4.35). Finally, by following the same

approach presented in Section 4.1.1, the dual form of (4.2) can be written as
Emds

1 ≥ Emds where

Emds = max
γ1,γ2∈[0,1]

min
i1,i2=1,2

min
τ

max
ρ∈[0,1]

Emds
τ,i1,i2(ρ,

¯
γ), (4.36)

and

Emds
τ,i1,i2(ρ,

¯
γ) = max

λ1≥0,λ2≥0
− log

( ∑
y

uτc ,xτc

( ∑
uτ ,xτ

P
¯
U(

¯
u)

1
1+ρ
(PU1(u1)

γ1

)− (−1)i1λ1
1+ρ

×
(PU2(u2)

γ2

)− (−1)i2λ2
1+ρ Q̄τ,iτ (xτ |uτ )Q̄τc,iτc (xτc|uτc)

1
1+ρW (y|

¯
x)

1
1+ρ

)1+ρ
)
.

(4.37)

By setting the partial derivative of the objective function of (4.37) with
respect to λν , equal to zero, an implicit equation is derived to give λν max-
imizing (4.37). In fact, if the constraints given by (4.34) and (4.35) are
active, the optimal λ?ν ≥ 0 maximizing (4.37) is obtained as the solution of
the implicit equation. Otherwise, λ?ν = 0.

Applying the same approach given in the proof of Lemma 4.3, we easily
find that for ν = 1, 2, Emds

τ,i1,i2(·) is non-decreasing (non-increasing) with re-
spect to γν when iν = 1 (iν = 2). Thus, like before in view of Lemma A.8,
the optimal thresholds obtained at point that the minimum of non-decreasing
functions with respect to γν is equal to the minimum of non-increasing func-
tions, i. e. the the optimal γν maximizing (4.45) is obtained at the points
where

min
τ

max
ρ∈[0,1]

Emds
τ,i1,i2(ρ,

¯
γ)
∣∣∣
iν=1

= min
τ

max
ρ∈[0,1]

Emds
τ,i1,i2(ρ,

¯
γ)
∣∣∣
iν=2

, (4.38)
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and when (4.38) has no solution, the optimal γν is either zero or one.
Comparing (4.37) with the objective function of (4.20), we find that as

long as the messages and codewords are statistically independent

Emds
τ,i1,i2(ρ,

¯
γ) = E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ), (4.39)

where Emds
τ,i1,i2(·), E0(·) and Es,τ,i1,i2(·) are respectively given by (4.37), (1.14)

and (4.12). However, recalling from (1.35), unlike MAC with independent
sources, for the MAC with correlated sources, since through P

¯
U the input

distributions of both users depend on each other, the statistical dependency
between messages and codewords may affect error exponent.

4.2 Studying Generalized Conditional Constant-
Composition Ensemble

In this section, in view of Section 2.1.3, we consider the ensemble defined as
follows. For user ν = 1, 2, we assign to every source probability distribution
PUν a conditional probability distribution Q̄ν,PUν

(x|u). For a given message
uν = (uν,1, uν,2, ..., uν,n), we consider the sub-sequences of u which have the
same symbols. We define juν (uν) as the set of all positions where the symbol
uν appears in uν , i.e. for all uν ∈ Uν

juν (uν) = {i ∈ {1, 2, ..., n} , such that uν,i = uν} . (4.40)

The subsequence can be represented by uν(juν (uν)).
Let Q̄ν,π(uν)(xν |uν) be a conditional distribution that depends on the type

of uν , π(uν). We approximate the conditional distribution Q̄ν,π(uν) with a
type-p conditional distribution Q̄ν,p,π(uν) that satisfies

Q̄ν,p,π(uν)(xν |uν) ∈
{

0, 1
p
,
2
p
, ..., 1

}
, (4.41)

for all xν ∈ Xν and uν ∈ Uν . We set p depends on uν and uν , p = |juν (uν)| and
choose this distribution such that the variational distance between Q̄ν,π(uν)
and Q̄ν,p,π(uν) satisfies∣∣∣Q̄ν,p,π(uν)(xν |uν)− Q̄ν,π(uν)(xν |uν)

∣∣∣ < 1
p
. (4.42)

For every uν ∈ Uν , we randomly pick a sequence xν,uν of length |juν (uν)| from
the set T puν (Q̄ν,puν ,π(uν)) and set xν(juν (u)) = xν,uν . We apply constant com-
position random coding with the set of distributions

{
Q̄ν,puν ,π(uν)(xν |uν)

}
uν∈Uν

to determine an achievable exponent.
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Proposition 4.5. For generalized conditional constant-composition random
coding over a two-user MAC with two correlated sources, Egccc is an achiev-
able exponent where

Egccc = min
P̂

¯
U

¯
XY ∈Sgccc

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W )

+
[
I (Xτ ;Y |Uτc , Xτc)−H(P̂Uτ |Uτc )

]+

, (4.43)

and

Sgccc ,
{
P̂

¯
U

¯
XY ∈ P

¯
U×

¯
X×Y : P̂

¯
U

¯
XY = P̂

¯
UQ̄1,P̂U1

Q̄2,P̂U2
P̂Y |

¯
U

¯
X ,

P̂
¯
U ∈ P

¯
U , P̂Y |

¯
U

¯
X ∈ PY|

¯
U×

¯
X

}
. (4.44)

Proof. See Section 4.3.9.

Corollary 4.1. Two sources with joint distribution P
¯
U(

¯
u) can be transmitted

reliably over a two-user MAC with conditional probability W , if satisfy the
achievable region proposed by Cover, El Gamal and Salehi [12].

As mentioned before, to have a reliable transmission exponents must be
strictly positive. The derived exponents in (4.43) is always positive unless
D(P̂

¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W ) = 0. In this case, by imposing the positivity

condition on the second terms of (4.43), Corollary 4.1 will be proved.
Next, by applying Lagrange duality theory, we find the dual form of

(4.43). The derivation is exactly the same as the one presented in Section
2.4.3. Applying the same approach as Section 2.4.3, the dual form of (4.43)
is obtained as

Egccc = max
γ1,γ2∈[0,1]

min
i1,i2=1,2

min
τ

max
ρ∈[0,1]

Egccc
τ,i1,i2(ρ,

¯
γ), (4.45)

where

Egccc
τ,i1,i2(ρ,

¯
γ) = max

λ1≥0,λ2≥0
max

β̄1(u1,x1):∑
x1
β̄1(u1,x1)Q̄1,i1 (x1|u1)=0

max
β̄2(u2,x2):∑

x2
β̄2(u2,x2)Q̄2,i2 (x2|u2)=0

− log
( ∑

y,
uτc ,xτc

( ∑
uτ ,xτ

P
¯
U(

¯
u)

1
1+ρ
(PU1(u1)

γ1

)− (−1)i1λ1
1+ρ

(PU2(u2)
γ2

)− (−1)i2λ2
1+ρ

×e
β̄1(u1,x1)+β̄2(u2,x2)

1+ρ Q̄τ,iτ (xτ |uτ )Q̄τc,iτc (xτc |uτc)
1

1+ρW (y|
¯
x)

1
1+ρ

)1+ρ
)
.

(4.46)
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To interpret (4.45), we start by recalling the properties of Egccc
τ,i1,i2(·). Fol-

lowing the same steps given in the proof of Lemma 4.3, we conclude that for
ν = 1, 2, Egccc

τ,i1,i2(·)
∣∣∣
iν=1

and Egccc
τ,i1,i2(·)

∣∣∣
iν=2

are respectively non-decreasing and
non-increasing with respect to γν . Thus, in view of Lemma A.8, the optimal
γν maximizing (4.45) is obtained at the points where

min
τ

max
ρ∈[0,1]

Egccc
τ,i1,i2(ρ,

¯
γ)
∣∣∣
iν=1

= min
τ

max
ρ∈[0,1]

Egccc
τ,i1,i2(ρ,

¯
γ)
∣∣∣
iν=2

, (4.47)

and when (4.47) has no solution, the optimal γν is either zero or one.
In addition, by comparing Egccc

τ,i1,i2(·) in (4.46) with Emds
τ,i1,i2(·) in (4.37),

we find that with respect to Emds
τ,i1,i2(·), the function Egccc

τ,i1,i2(·) contains two
extra constrains shown by β̄1(u1, x1) β̄2(u2, x2). Roughly speaking, these two
constrains guarantee that for user ν = 1, 2, codewords of all the messages
belonging to the class iν have the fixed conditional composition.

We note that by setting β̄1(u1, x1) = β̄2(u2, x2u) = 0 in (4.46), we
have Emds

τ,i1,i2(·) = Egccc
τ,i1,i2(·). And since Egccc

τ,i1,i2(·) contains maximization over
β̄ν(uν , xν), we have Egccc

τ,i1,i2(ρ,
¯
γ) ≥ Emds

τ,i1,i2(ρ,
¯
γ) yielding

Egccc ≥ Emds, (4.48)

where equality holds when the optimal β̄1(u1, x1) and β̄2(u2, x2) maximizing
(4.46) be zero.

Now, we study the case where codewords and messages are statistically
independent. By following exactly the same steps presented in Section 2.4.7,
the dual form (4.43) when codewords and messages are statistically indepen-
dent is obtained as

Egcc = max
γ1,γ2∈[0,1]

min
i1,i2=1,2

min
τ

max
ρ∈[0,1]

Egcc
0 (ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ),

(4.49)

where Es,τ,i1,i2(·) is given by (4.12) and

Egcc
0 (ρ,Qτ,iτ ,WQτc,icτ ) = max

ᾱ1(x1):∑
x1
ᾱ1(x1)Q1(x1)=0

max
ᾱ2(x2):∑

x2
ᾱ1(x2)Q2(x2)=0

− log
∑
xτc ,y

(∑
xτ

e
ᾱ1(x1)

1+ρ e
ᾱ2(x2)

1+ρ Qτ,iτ (xτ )W (y|
¯
x)

1
1+ρQτc,iτc (xτc)

1
1+ρ

)1+ρ

. (4.50)

Comparing (4.50) with E0(ρ,Qτ,iτ ,WQτc,icτ ) appeared in (4.20), it can be
verified that since input distributions in (4.50) have the fixed composition,
Egcc

0 (·) contains two extra maximization over α1(x1) and α2(x2). Following
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the steps that are nearly identical to the proof of Lemma A.9, we can conclude
that

Egcc
0 (ρ,Qτ,iτ ,WQτc,icτ ) ≥ E0(ρ,Qτ,iτ ,WQτc,icτ ), (4.51)

and hence

Egcc ≥ Emd, (4.52)

where Emd is given by (4.21).
To summarize the results, for the MAC with correlated source, we ob-

tained Emd, Emds, Egccc and Egc, respectively given by (4.21), (4.36), (4.45)
and (4.49). Considering (4.48) and (4.52), the final conclusion is

Egccc ≥ Emds, (4.53)
Egcc ≥ Emd. (4.54)

However, unlike single-user communication, the comparison between Egcc

and Egccc or the relation between Emds and Emd are not as easy as the
single-user communication.

The results obtained in this chapter are valid for the MAC with inde-
pendent sources. However, by using the similar input distributions given by
(2.61), we can conclude that statistical dependency between messages and
codewords has no benefit for independent sources.

4.3 Proofs

4.3.1 Proof of Lemma 4.1
To prove (4.1), we use the idea of random bins [40]. Let ν = 1, 2, for each
sequence Uν , an index is drawn randomly from

{
1, 2, .., 2nRν

}
. The set of all

sequences Uν which have the same index are said to form a bin.
To generate codebooks, every uν ∈ Unν is assigned to one of 2nRν bins

independently according to a uniform distribution on
{

1, 2, .., 2nRν
}
. Assume

that the index of the bin to which uν belongs, is xν . Thus, encoder φν : Unν →{
1, 2, .., 2nRν

}
, sends xν , i. e.

φ(uν) = xν . (4.55)

Decoder, by receiving the bin indices (x1, x2), declares ˆ
¯
u as the transmit-

ted message if

ˆ
¯
u = arg max

(u1,u2)∈Un1 ×Un2
P n

¯
U (

¯
u)1{φ1(u1) = x1}1{φ2(u2) = x2}, (4.56)
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where 1{·} is an indicator function. An error occurs if ˆ
¯
u 6=

¯
u, which can

be split into three events, namely (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2)
and (û1, û2) 6= (u1,u2). We respectively denote these types of error by
τ ∈ {{1}, {2}, {1, 2}}.

Let Pe denotes the the average error probability. Like before, using
the random-coding union bound [23] and the fact that min{1, a + b} ≤
min{1, a}+ min{1, b}, we find that

Pe ≤
∑

τ∈{{1},{2},{1,2}}
P τ
e , (4.57)

where

P τ
e ≤

∑
¯
u

P n

¯
U (

¯
u)
∑
¯
x

PX1(x1)PX2(x2)

min

1,
∑

ûτ 6=uτ

P
[
P n

¯
U (ûτ ,uτc)1{φτ (ûτ ) = xτ}

P n

¯
U (

¯
u) ≥ 1

] , (4.58)

and PXν is uniform over
{

1, 2, .., 2nRν
}
. We recall that the probability given

inside of (4.58), is the probability that φτ (ûτ ) = xτ when P n

¯
U (ûτ ,uτc) ≥

P n

¯
U (

¯
u).
Applying Markov’s inequality to (4.58), we find that

P τ
e ≤

∑
¯
u

P n

¯
U (

¯
u)
∑
¯
x

PX1(x1)PX2(x2)

min

1, 2−nRτ
∑

ûτ 6=uτ

(
P n

¯
U (ûτ ,uτc)
P n

¯
U (

¯
u)

)s , (4.59)

where in (4.59), we used the fact that P [φ(ûτ ) = xτ ] = 1
2nRτ . Using the

inequality min{1, a} ≤ minρ∈[0,1] a
ρ and inserting PXν (xν) = 2−nRν to (4.59),

P τ
e is bounded as

P τ
e ≤ min

ρ∈[0,1]

∑
¯
u

P n

¯
U (

¯
u)1−sρ∑

¯
x

2−nR12−nR2

2−nRτ
∑

ûτ 6=uτ

P n

¯
U (ûτ ,uτc)s

ρ ,
(4.60)

where since PXν is uniform over
{

1, ..., 2nRν
}
, we have ∑xν 2−nRν = 1. By

applying this fact to (4.60), using the memoryless property of the sources,
after some simple mathematical manipulations, we find that

− 1
n

log(P τ
e ) ≥ max

s≥0
max
ρ∈[0,1]

ρRτ − log
∑

¯
u

P
¯
U(

¯
u)1−sρ

(∑
uτ

P
¯
U(uτ , uτc)s

)ρ ,
(4.61)
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where in (4.61), to tight the bound, we maximized over s ≥ 0. Using Hölder’s
inequality it can be proved that the optimal s = 1

1+ρ maximizes (4.61) [5,
Prob. 5.6]. Hence,

− 1
n

log(P τ
e ) ≥ max

ρ∈[0,1]
ρRτ − log

∑
uτc

(∑
uτ

P
¯
U(uτ , uτc)

1
1+ρ

)1+ρ

. (4.62)

Next, in view of (4.57), by upper bounding the summation by the worst
type of error, we conclude the proof.

4.3.2 Proof of Proposition 4.1
The proof of Proposition 4.1 is similar to the one presented in Section 2.4.1.
Bounding ε̄n, the average error probability over the ensemble, and applying
the random coding union bound [23] for joint source channel coding, we
obtain

ε̄n ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

{
1,
∑
ˆ
¯
u 6=

¯
u

P
[
P n

¯
U (ˆ

¯
u)W n(y| ˆ

¯
X)

P n

¯
U (

¯
u)W n(y|

¯
x) ≥ 1

]}
, (4.63)

where ˆ
¯
x has the same distribution as

¯
x but is independent of y. We group the

error events corresponding to the summation over (û1, û2) 6= (u1,u2) into
three types of error events, namely (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2)
and (û1, û2) 6= (u1,u2). We respectively denote these types of error by
τ ∈ {{1}, {2}, {1, 2}}. Using that min{1, a+ b} ≤ min{1, a}+ min{1, b}, we
further bound ε̄n as

ε̄n ≤
∑
τ

ε̄nτ , (4.64)

where

ε̄nτ ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

{
1,

∑
ûτ 6=uτ

x̂τ :
Pn

¯
U

(ûτ ,uτc )Wn(y|x̂τ ,xτc )

Pn

¯
U

(
¯
u)Wn(y|x1,x2) ≥1

Q̄n
τ,π(ûτ )(x̂τ |ûτ )

}
.

(4.65)

Like Section 2.4.1, we group the outer and inner summations in (4.65) based
on their empirical distributions. Let P̂

¯
U

¯
XY denotes a possible empirical dis-

tribution of (
¯
u,

¯
x,y). Since there is no constraint on (

¯
u,

¯
x,y), P̂

¯
U

¯
XY runs

over the set of all possible empirical distributions, Pn
¯
U×

¯
X×Y . On the other

hand, since based on the MAP criterion, (ûτ , x̂τ ) leads to error, the empirical
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distribution of (ûτ , x̂τ ) denoted by P̃
¯
U

¯
XY is restricted to the set Lnτ , defined

as

Lnτ (P̂
¯
U

¯
XY ) ,

{
P̃

¯
U

¯
XY ∈ Pn

¯
U×

¯
X×Y : P̃UτcXτcY = P̂UτcXτcY ,

EP̃ [λ(
¯
U,

¯
X, Y )] ≥ EP̂ [λ(

¯
U,

¯
X, Y )]

}
. (4.66)

As a result, we can write the summations in equation (4.65) respectively as∑
¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) =

∑
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y), (4.67)

and ∑
ûτ 6=uτ

x̂τ :
Pn

¯
U

(ûτ ,uτc )Wn(y|x̂τ ,xτc )

Pn

¯
U

(
¯
u)Wn(y|x1,x2) ≥1

Q̄n
τ,π(ûτ )(x̂τ |ûτ ) =

∑
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

∑
(ûτ ,x̂τ )∈T nuτcxτcy(P̃

¯
U

¯
XY )

Q̄n
τ,π(ûτ )(x̂τ |ûτ ), (4.68)

where T nuτcxτcy(·) is defined by (1.40).
Since the conditional distribution Q̄n

τ,π(ûτ )(x̂τ |ûτ ) has the same value for
all (ûτ , x̂τ ) ∈ T nuτcxτcy(P̃

¯
U

¯
XY ), we have

∑
(ûτ ,x̂τ )∈T nuτcxτcy(P̃

¯
U

¯
XY )

Q̄n
τ,π(ûτ )(x̂τ |ûτ ) = |T nuτcxτcy(P̃

¯
U

¯
XY )|Q̄n

τ,π(ûτ )(x̂τ |ûτ ).

(4.69)

Considering (1.40) and the fact that P̃UτcXτcY = P̂UτcXτcY in Lnτ (P̂
¯
U

¯
XY ) in

(4.66), we have the following upper bound

∣∣∣T nuτcxτcy(P̃
¯
U

¯
XY )

∣∣∣ =

∣∣∣T n(P̃
¯
U

¯
XY )

∣∣∣∣∣∣T n(P̃UτcXτcY )
∣∣∣ ≤ enH(P̃

¯
U

¯
XY )+o(n)

enH(P̂UτcXτcY )
, (4.70)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0. In addition, using equa-
tion (1.37) for conditional distributions, for all (ûτ , x̂τ ) ∈ T nuτcxτcy(P̃

¯
U

¯
XY ),

we have the following identity on the conditional probability

Q̄n
τ,π(ûτ )(x̂τ |ûτ ) = e

n
∑

¯
u,

¯
x,y P̃¯

U
¯
XY (

¯
u,

¯
x,y) log Q̄τ,P̃Uτ

(xτ |uτ )
. (4.71)
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Combining inequality (4.70) and identity (4.71) and into (4.69), we obtain
the following inequality∑

(ûτ ,x̂τ )∈T nuτcxτcy(P̃
¯
U

¯
XY )

Q̄n
τ,π(ûτ )(x̂τ |ûτ ) ≤

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
)

+o(n)
. (4.72)

Further upper bounding the right hand side of equation (4.72) by the max-
imum over the empirical probability distributions P̃

¯
U

¯
XY ∈ Lnτ (P̂

¯
U

¯
XY ), we

have ∑
(ûτ ,x̂τ )∈T nuτcxτcy(P̃

¯
U

¯
XY )

Q̄n
τ,π(ûτ )(x̂τ |ûτ ) ≤

max
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
)

+o(n)
. (4.73)

Moreover, in view of (1.39), the second summation of the right hand side
of (4.67) can be expressed as

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y) ≤ e

−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W

)
, (4.74)

where P̂Uν denotes the marginal distribution of P̂
¯
U , for ν = 1, 2. Similarly to

(4.73), we may upper bound the right hand side of (4.74) by the maximum
over the empirical distributions P̂

¯
U

¯
XY ∈ Pn

¯
U×

¯
X×Y , i. e.

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y) ≤ max

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W

)
.

(4.75)

Putting back the results obtained in equations (4.75) and (4.73) into the
respective inner and outer summations (4.67) and (4.68), we obtain that the
average error probability (4.65) can be bounded as

ε̄nτ ≤
∑

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

max
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W )
)

min
{

1,

∑
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

max
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
)

+o(n)
}
,

(4.76)
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where by using the fact that the cardinality of the sets Lnτ (P̂
¯
U

¯
XY ) and Pn

¯
U×

¯
X×Y

behave polynomially with the codeword length n, and satisfy
∣∣∣Lnτ (P̂

¯
U

¯
XY )

∣∣∣ ≤∣∣∣Pn
¯
U×

¯
X×Y

∣∣∣ ≤ eo(n), we find that

ε̄nτ ≤ max
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W )
)

+o(n) min
{

1,

max
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

e−n(D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ P̂UτcXτcY )−H(P̃Uτ ))+o(n)

}
, (4.77)

Using the identity min{1, ea} = e[a]+ , we may write equation (4.77) as

ε̄nτ ≤ e−nE
n
τ +o(n), (4.78)

where

En
τ = min

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W )

+
[

min
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
]+
. (4.79)

Since the average error probability over the ensemble is bounded by the
summation over the error events, we further upper bound the summation by
the worst type of error, i. e.∑

τ

ε̄nτ ≤ e−nminτ Enτ +o(n). (4.80)

Hence, from (4.64), we conclude that ε̄n is upper bounded by the right hand
side of (4.80), i. e.

ε̄n ≤ e−nminτ Enτ +o(n). (4.81)
Using the following properties

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn (4.82)

lim inf
n→∞

min{an, bn} = min
{

lim inf
n→∞

an, lim inf
n→∞

bn
}
, (4.83)

we obtain that ε̄n asymptotically satisfies

lim inf
n→∞

− 1
n

log(ε̄n) ≥

min
τ∈{{1},{2},{1,2}}

lim inf
n→∞

min
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W )

+ lim inf
n→∞

[
min

P̃
¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
]+
.

(4.84)
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We note that the inequality

lim inf
n→∞

max{an, bn} ≥ max
{

lim inf
n→∞

an, lim inf
n→∞

bn
}
, (4.85)

implies that
lim inf
n→∞

[an]+ ≥
[

lim inf
n→∞

an
]+
. (4.86)

We further note that the set of all empirical distributions is dense in the set
of all possible probability distributions, and that the functions involved in
(4.84) are uniformly continuous over their arguments. Hence, we may replace
the optimization over empirical distributions by an optimization over the set
of all possible distributions. Using (4.86) in (4.84), we obtain

lim inf
n→∞

− 1
n

log(ε̄nτ ) ≥ min
τ∈{{1},{2},{1,2}}

min
P̂

¯
U

¯
XY ∈P

¯
U×

¯
X×Y

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W )

+
[

min
P̃

¯
U

¯
XY ∈Lτ (P̂

¯
U

¯
XY )

D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
]+

, (4.87)

where Lτ (P̂
¯
U

¯
XY ) is defined in (4.3). By renaming the right hand side of

(4.87) as Emds
1 , we conclude the proof.

4.3.3 Proof of (4.4)
In Section 4.3.3.1, by following the same method given in [41, Th. 1], we
showed that

ε̄ ≥ max
τ∈{{1},{2},{1,2}}

1
4
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y)

min
{

1,
∑

u′τ 6=uτ

P
[
P n

¯
U (

¯
u′)W n(y|

¯
X ′)

P n

¯
U (

¯
u)W n(y|

¯
x) ≥ 1

]}
, (4.88)

or equivalently

ε̄ ≥ max
τ∈{{1},{2},{1,2}}

1
4
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y)

min
{

1,
∑

u′τ 6=uτ

x′τ :
Pn

¯
U (u′τ ,uτc )W

n(y|x′τ ,xτc )
Pn

¯
U

(
¯
u)Wn(y|x1,x2) ≥1

Q̄n
τ,π(u′τ )(x′τ )

}
, (4.89)

where (4.89) follows from the fact that the inner probability in (4.88) is
equal with the summation over all codewords which are distributed according
Q̄τ,π(u′τ ) and give rise to an error according to the MAP criterion.
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Next, we group the outer and inner summations in (4.89) based on the
empirical distributions of (

¯
u,

¯
x,y) and (u′τ ,x′τ ), respectively, and then sum

over all possible empirical distributions, respectively denoted by P̂
¯
U

¯
XY and

P̃
¯
U

¯
XY . In view of (4.67) and (4.68), we have∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) =

∑
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y), (4.90)

and ∑
u′τ 6=uτ

x′τ :
Pn

¯
U (u′τ ,uτc )W

n(y|x′τ ,xτc )
Pn

¯
U

(
¯
u)Wn(y|x1,x2) ≥1

Q̄n
τ,π(u′τ )(x′τ |u′τ ) =

∑
P̃

¯
U

¯
XY ∈

Lnτ (P̂
¯
U

¯
XY )

∑
(u′τ ,x′τ )∈

T nuτcxτcy(P̃
¯
U

¯
XY )

Q̄n
τ,π(u′τ )(x′τ |u′τ ),

(4.91)

where the set Lnτ is defined by (4.66).
To compute the right hand of (4.90) and (4.91), we use [15, Lemma 2.3]

and [15, Lemma 2.6] which lead to

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y) ≥ e

−n
(
D

(
P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W

))
+o(n)

, (4.92)

and since the type of u′τ , π(u′τ ) can be written as P̃Uτ , we have

∑
(u′τ ,x′τ )∈

T nuτcxτcy(P̃
¯
U

¯
XY )

Q̄n
τ,π(u′τ )(x′τ |u′τ ) ≥ e

−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ P̂UτcXτcY )−H(P̃Uτ )

)
+o(n)

,

(4.93)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0.
Putting back (4.92) and (4.93) into (4.89), the average error probability

is bounded as

ε̄ ≥ max
τ∈{{1},{2},{1,2}}

1
4

∑
P̂

¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,P̂U1

Q̄2,P̂U2
W

)
+o(n)

min
{

1,
∑

P̃
¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ P̂UτcXτcY )−H(P̃Uτ )

)
+o(n)

}
. (4.94)

Lower bounding the right hand of (4.94) by considering only the maximum
terms in each summation, using the identity min{1, ea} = e[a]+ , taking loga-
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rithms on both sides of (4.94) and multiplying result by − 1
n
we obtain

− 1
n
ε̄ ≤ min

τ∈{{1},{2},{1,2}}
min

P̂
¯
U

¯
XY ∈Pn

¯
U×

¯
X×Y

D
(
P̂

¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W
)

+ o(n)
n[

min
P̃

¯
U

¯
XY ∈Lnτ (P̂

¯
U

¯
XY )

D
(
P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY
)
−H(P̃Uτ ) + o(n)

n

]+

.

(4.95)

Now we take lim sup from both sides of (4.95) and use the following properties

lim sup
n→∞

min{an, bn} ≤ min
{

lim sup
n→∞

an, lim sup
n→∞

bn
}
, (4.96)

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (4.97)

lim sup
n→∞

max{an, bn} = max
{

lim sup
n→∞

an, lim sup
n→∞

bn
}
, (4.98)

we obtain

lim sup
n→∞

− 1
n
ε̄ ≤ min

τ∈{{1},{2},{1,2}}
min

P̂
¯
U

¯
XY ∈P

¯
U×

¯
X×Y

D
(
P̂

¯
U

¯
XY ||P

¯
UQ̄1,P̂U1

Q̄2,P̂U2
W
)

+
[

min
P̃

¯
U

¯
XY ∈Lτ (P̂

¯
U

¯
XY )

D
(
P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY
)
−H(P̃Uτ )

]+

,

(4.99)

where in (4.99) we used the facts that the set of all empirical distributions
is dense in the set of all possible probability distributions, and that the
functions involved in (4.95) are uniformly continuous over their arguments.
Hence, we may replace the optimization over empirical distributions by an
optimization over the set of all possible distributions.

4.3.3.1 Proof of Equation (4.89)

As mentioned before, the error probability for a given pair of codebooks is
denoted by ε(C1, C2) where

ε(C1, C2) , P
[
(U ′1,U ′2) 6= (U1,U2)

]
≥ max

τ∈{{1},{2},{1,2}}
P[U ′τ 6= Uτ ],

(4.100)

where in (4.100), we group the error events into three types of error events
and we used the fact that the probability of union of some events is greater

134



“output” — 2019/5/22 — 9:04 — page 135 — #151

than than the probability of each individual event and specifically the more
probable one. Thus, in view of (4.100), we found that

ε(C1, C2) ≥ max
τ∈{{1},{2},{1,2}}

P[U ′τ 6= Uτ ]. (4.101)

Now, for given codebooks C1 and C2 and for type τ error, let B0,τ be
the event that one or more codewords yield a strictly higher metric than the
transmitted one, and let Bl,τ be the event that the transmitted codeword
yields a metric which is equal with l other codewords. In view of (4.101), for
type τ error, we have

ε(C1, C2) ≥ max
τ∈{{1},{2},{1,2}}

P[U ′τ 6= Uτ

]
= P[B0,τ ] +

|Uτ |−1∑
l=1

P[Bl,τ ]
l

l + 1 (4.102)

≥ P[B0,τ ] + 1
2

|Uτ |−1∑
l=1

P[Bl,τ ] (4.103)

= 1
2ε
′
τ (C1, C2) + 1

2P[B0,τ ] (4.104)

≥ 1
2ε
′
τ (C1, C2), (4.105)

where (4.103) follows by noting to the fact that the { n
1+n} is an increasing

sequence, in (4.104) we defined ε′τ (C1, C2) , P[B0,τ ] + ∑|Uτ |−1
l=1 P[Bl,τ ] as the

error probability of a decoder which decodes ties as errors and the inequality
in (4.105) follows by lower bounding (4.104) by the first of the two terms.
Averaging (4.105) over the random-coding distribution, we obtain

ε̄ ≥ max
τ

1
2E
(
P
[ ⋃
U ′τ 6=Uτ

{P n

¯
U (

¯
U ′)W n(Y |

¯
X ′(

¯
U ′))

P n

¯
U (

¯
U)W n(Y |

¯
X(

¯
U)) ≥ 1

∣∣∣
¯
U ,

¯
X,Y

}])
(4.106)

≥ max
τ

1
4
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

{
1,

∑
u′τ 6=uτ

P
[
P n

¯
U (

¯
u′)W n(y|

¯
X ′)

P n

¯
U (

¯
u)W n(y|

¯
x) ≥ 1

]}
,

(4.107)

where
¯
X ′ has the same distribution as

¯
X but is independent of Y and (4.107)

follows by the approach given in [42]. The verification of (4.107) is explained
in the following.

In [42], it is shown that for an arbitrary sequence of probabilistic events
A1, ..., Ak, we have

P
[ k⋃
i=1

Ai
]
≥

k∑
i=1

P[Ai]2∑k
j=1 P[Ai

⋂
Aj]

, (4.108)
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where for each eventAj, we have P[Aj] ≤ 1
k
+P[Aj] which leads to P[Ai]P[Aj] ≤

P[Ai]
(

1
k

+ P[Aj]
)
. By summing both sides of last inequality over j we find

that
k∑
j=1

P[Ai]P[Aj] ≤ P[Ai]
(
1 +

k∑
j=1

P[Aj]). (4.109)

In addition, for the case that the events are pairwise independent we have
P[Ai

⋂
Aj] = P[Ai]P[Aj]. Substituting (4.109) into (4.108), we find that if

the events are pairwise independent we have

P
[ k⋃
i=1

Ai
]
≥

k∑
i=1

P[Ai]
1 +∑k

j=1 P[Aj]
=

∑k
i=1 P[Ai]

1 +∑k
j=1 P[Aj]

≥ 1
2 min

{
1,

k∑
i=1

P[Ai]
}
,

(4.110)

where the last inequality in (4.110) follows by applying the inequality α
1+α ≥

1
2 min{1, α}. Applying (4.110) into (4.106), we obtain the lower bound given
in (4.107).

4.3.4 Proof of Lemma 4.2
Recalling Pn

¯
U is the set of all empirical distributions on a joint vector in

¯
Un, and T n(P̃

¯
U) is the set of all joint sequences in

¯
Un with empirical dis-

tribution P̃
¯
U , ¯
Un can be partitioned by all possible empirical distributions,

i. e.
¯
Un = ⋃

P̃
¯
U∈Pn

¯
U
T n(P̃

¯
U). Since all

¯
u belonging to the set T n(P̃

¯
U) has the

same probability, the set
¯
Un can be partitioned into two classes A1

ν(γν) and
A2
ν(γν) as

A1
ν(γν) ,

{
¯
u ∈

⋃
P̃

¯
U∈Pn

¯
U

T n(P̃
¯
U) : P n

Uν (uν) ≥ γnν
}
, (4.111)

A2
ν(γν) ,

{
¯
u ∈

⋃
P̃

¯
U∈Pn

¯
U

T n(P̃
¯
U) : P n

Uν (uν) < γnν
}
, (4.112)

for a given γν ∈ [0, 1] where ν = 1, 2.
By letting νc as the complement of ν ∈ {1, 2}, and noting that for

¯
u ∈

T n(P̃
¯
U), the sequence uν contains exactly n

∑
uνc

P̃
¯
U(

¯
u) occurrences of uν ,

the probability of uν is PUν (uν) = ∏
uν∈Uν PUν (uν)

n
∑

uνc
P̃

¯
U (

¯
u). Let T n(P̃

¯
U) ⊆

A1
ν(γν), for ¯

un ∈ T n(P̃
¯
U), the condition P n

Uν (uν) ≥ γnν can be written as∏
uν∈Uν PUν (uν)

n
∑

uν̄
P̃

¯
U (

¯
u) ≥ γnν where by taking logarithm from both sides,
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it is simplified as ∑
¯
u P̃¯

U(
¯
u) logPUν (uν) ≥ log(γν). Using the same reasoning

for T n(P̃
¯
U) ⊆ A2

ν(γν), the sets A1
ν(γν) and A2

ν(γν) can be rewritten as

A1
ν(γν) =

P̃¯
U ∈ Pn

¯
U :

∑
¯
u

P̃
¯
U(

¯
u) logPUν (uν) ≥ log(γν)

 , (4.113)

A2
ν(γν) =

P̃¯
U ∈ Pn

¯
U :

∑
¯
u

P̃
¯
U(

¯
u) logPUν (uν) < log(γν)

 , (4.114)

where in (4.113) and (4.114), we express A1
ν(γν) and A2

ν(γν) in terms of
empirical distributions.

As n tends to infinity, since the set of all empirical distributions is dense
in the set of all possible probability distributions P

¯
U , the sets A1

ν(γν) and
A2
ν(γν), respectively tend to B1

ν(γν) and B2
ν(γν) given by (4.9) and (4.10),

and hence Lemma 4.2 is proved.

4.3.5 Proof of Proposition 4.2

To prove Proposition 4.2, we start by finding the dual form of the following
problem.

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ), (4.115)

by applying Lagrange duality theory to the minimization problem. We use λ1
and λ2 as the Lagrange multipliers, respectively associate with the constraints
P̂

¯
U ∈ Bi11 (γ1) and P̂

¯
U ∈ Bi22 (γ2).

We simplify the objective function of (4.115). SinceD(P̂Uτc ||VUτc ) ≥ 0, for
any VUτc ∈ PUτc , we have ∑

¯
u P̂¯

U(
¯
u) log P̂Uτc (uτc) ≥

∑
¯
u P̂¯

U(
¯
u) log VUτc (uτc).

Multiplying both sides of the inequality by −1 and adding −H(P̂
¯
U) to the

both sides of it, we find that ∑
¯
u P̂¯

U(
¯
u) log P̂

¯
U (

¯
u)

P̂Uτc (uτc ) ≤
∑

¯
u P̂¯

U(
¯
u) log P̂

¯
U (

¯
u)

VUτc (uτc ) .

Recalling the definition of H(P̂Uτ |Uτc ), the left hand side of the inequality is
−H(P̂Uτ |Uτc ) meaning that −H(P̂Uτ |Uτc ) ≤

∑
¯
u P̂¯

U(
¯
u) log P̂

¯
U (

¯
u)

VUτc (uτc ) . From the
last inequality, we conclude that the right hand side of the inequality is always
greater than −H(P̂Uτ |Uτc ) and only is equal to −H(P̂Uτ |Uτc ) when VUτc (uτc) =
PUτc (uτc) for all values of uτc ∈ Uτc , i. e. minVUτc

∑
¯
u P̂¯

U(
¯
u) log P̂

¯
U (

¯
u)

VUτc (uτc ) =
−H(P̂Uτ |Uτc ). By applying this fact to the the objective function of (4.115),
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we obtain

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ) = min

VUτc∈PUτc
D(P̂

¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)
.

(4.116)

Applying (4.116) to the objective function of (4.115), we find that

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U)− ρH(P̂Uτ |Uτc ) = min

VUτc∈PUτc

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)
. (4.117)

Now, we apply Lagrange duality theory to the inner minimization over
P̂

¯
U in (4.117). Considering the constraints P̂

¯
U ∈ Bi11 (γ1) and P̂

¯
U ∈ Bi22 (γ2),

and in view of definitions (4.9) and (4.10), the Lagrangian associated with
the primal is given by

Λ(VUτc , P̂¯
U , θ, λ1, λ2) = D(P̂

¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)

+θ
1−

∑
¯
u

P̂
¯
U(

¯
u)
+ (−1)i1λ1

∑
¯
u,

¯
x,y

P̂
¯
U(

¯
u) logPU1(u1)− log γ1


+(−1)i2λ2

∑
¯
u

P̂
¯
U(

¯
u) logPU2(u2)− log γ2

 , (4.118)

where λ1, λ2 and θ are respectively the Lagrange multipliers associated with
the inequalities constraints P̂

¯
U ∈ Bi11 (γ1), P̂

¯
U ∈ Bi22 (γ2) and the sum of any

probability distribution over its alphabet is one.
Noting that the objective function and the inequalities constrains given by

(4.9) and (4.10) are convex with respect to P̂
¯
U , and the equality constraint

is affine, strong duality conditions are satisfied. Thus, the primal optimal
objective and the dual optimal objective are equal,

min
VUτc∈PUτc

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1)∩Bi22 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)

= min
VUτc∈PUτc

max
λ1≥0,λ2≥0

max
θ

min
P̂

¯
U

Λ(VUτc , P̂¯
U , θ, λ1, λ2), (4.119)

where we recall that for ν = 1, 2, the condition λν ≥ 0 in (4.119) associated
with inequality constraint (−1)iν

(∑
¯
u P̂¯

U(
¯
u) logPUν (uν)− log(γν) < 0

)
.
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Since the strong duality holds, in view of the KKT conditions, by setting
∂Λ
∂P̂

¯
U

= 0, and applying the constraint ∑
¯
u P̂¯

U(
¯
u) = 1, we obtain

Λ(VUτc , λ1, λ2) = −(−1)i1λ1 log γ1 − (−1)i2λ2 log γ2

− (1 + ρ) log
∑

¯
u

P
¯
U(

¯
u)

1
1+ρPU1(u1)−

(−1)i1λ1
1+ρ PU2(u2)−

(−1)i2λ2
1+ρ VUτc (uτc)

ρ
1+ρ

 ,
(4.120)

where Λ(VUτc , λ1, λ2) = maxθ minP̂
¯
U

Λ(VUτc , P̂¯
U , θ, λ1, λ2). Inserting (4.120)

into (4.119), we find

min
VUτc

min
P̂

¯
U∈P

¯
U :

P̂
¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)

= min
VUτc∈PUτc

max
λ1≥0,λ2≥0

Λ(VUτc , λ1, λ2). (4.121)

We note that in (4.121), VUτc ∈ PUτc and λν ∈ [0,+∞) for ν = 1, 2.
Since PUτc is a compact convex set, [0,+∞) is a convex set, Λ(VUτc , λ1, λ2) is
concave on [0,+∞) and convex on PUτc , (4.121) satisfies the Sion’s minimax
theorem. Thus, we swap the maximization over λν with minimization over
VUτc which leads to

min
VUτc

min
P̂

¯
U∈P

¯
U :

P̂
¯
U∈B

i1
1 (γ1),P̂

¯
U∈B

i2
2 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)

= max
λ1≥0,λ2≥0

min
VUτc∈PUτc

Λ(VUτc , λ1, λ2). (4.122)

Next, to solve the minimization over VUτc in the right hand side of (4.122),
by inserting Λ(·) given by (4.120) into (4.122), we find that

min
VUτc

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1)∩Bi22 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)
=

max
λ1≥0,λ2≥0

−(1 + ρ) log
(

max
VUτc∈PUτc

∑
¯
u

P
¯
U(

¯
u)

1
1+ρ

(
PU1(u1)
γ1

)− (−1)i1λ1
1+ρ

×
(
PU2(u2)
γ2

)− (−1)i2λ2
1+ρ

VUτc (uτc)
ρ

1+ρ

)
, (4.123)
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where in (4.123), considering the fact that logarithm is an increasing function,
we took the minimization over VUτc inside the logarithm.

Now, we can apply Lemma A.2 into the optimization problem given by
the right hand side of (4.123). By defining

e(uτc) =
∑
uτ

P
¯
U(

¯
u)

1
1+ρ

(
PU1(u1)
γ1

)− (−1)i1λ1
1+ρ

(
PU2(u2)
γ2

)− (−1)i2λ2
1+ρ

, (4.124)

we let VY (y) = VUτc (uτc) and e(y) = e(uτc) in Lemma A.2. Thus, the optimal
VUτc is derived as

VUτc (uτc) =

(∑
uτ

P
¯
U(

¯
u)

1
1+ρPU1(u1)−

(−1)i1λ1
1+ρ PU2(u2)−

(−1)i2λ2
1+ρ

)1+ρ

∑
ūτc

(∑
ūτ

P
¯
U(ū1, ū2)

1
1+ρPU1(ū1)−

(−1)i1λ1
1+ρ PU2(ū2)−

(−1)i2λ2
1+ρ

)1+ρ .

(4.125)

In addition, in view of (A.14) in Lemma A.2, the optimization problem inside
(4.123) is equal by

(∑
uτc

e(uτc)1+ρ
) 1

1+ρ , i. e.

min
VUτc

min
P̂

¯
U∈P

¯
U :P̂

¯
U∈B

i1
1 (γ1)∩Bi22 (γ2)

D(P̂
¯
U ||P

¯
U) + ρ

∑
¯
u

P̂
¯
U(

¯
u) log

P̂
¯
U(

¯
u)

VUτc (uτc)
=

−Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ) (4.126)

where in (4.126), in view of Es,τ,i1,i2(·) is defined by (4.12), we used the fact
that maxλ−f(λ) = −minλ f(λ). By replacing the left hand side of (4.117)
with the left hand side of (4.126), we conclude the proof.

4.3.6 Proof of Proposition 4.3
We start by proving the following Lemma.

Lemma 4.3. Let E0(ρ) be a continues function of ρ. Considering Es,τ,i1,i2(·)
given by (4.12), for ν = 1, 2, the function maxρE0(ρ)−Es,τ,i1,i2(·)

∣∣∣
iν=1

is non-
decreasing with respect to γν, and the function maxρE0(ρ) − Es,τ,i1,i2(·)

∣∣∣
iν=2

is non-increasing with respect to γν.

Proof. For ν = 1, 2, from (4.9) and (4.10), we note that by letting γ′ν > γ′′ν , we
have B1

ν(γ′ν) ⊆ B1
ν(γ′′ν ) and B2

ν(γ′ν) ⊇ B2
ν(γ′′ν ). Thus, for all ρ ∈ [0, 1] by letting
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iν = 1 in (4.11), we conclude that for γ′ν the minimization problem of (4.11)
is done over smaller set than for γ′′ν , which leads to −Es,τ,i1,i2(·, γ′ν)

∣∣∣
iν=1
≥

−Es,τ,i1,i2(·, γ′′ν )
∣∣∣
iν=1

for all values of ρ ≥ 0. Similarly, for iν = 2, since the
minimization problem of (4.11) for γ′ν is done over larger set than γ′′ν , we
have −Es,τ,i1,i2(·, γ′ν)

∣∣∣
iν=2
≤ −Es,τ,i1,i2(·, γ′′ν )

∣∣∣
iν=2

.
Hence, let νc be the complement index of ν ∈ {1, 2} and E0(ρ) be a

function of ρ. For a given γνc , we assume γ′ν > γ′′ν . Thus, regardless the
value of iνc , the maximum of E0(ρ) − Es,τ,i1,i2(·, γ′ν)

∣∣∣
iν=1

is not smaller than
E0(ρ)−Es,τ,i1,i2(·, γ′′ν )

∣∣∣
iν=1

meaning that maxρE0(ρ)−Es,τ,i1,i2(·)
∣∣∣
iν=1

is non-
decreasing with respect to γν . The same reasoning concludes maxρE0(ρ) −
Es,τ,i1,i2(·)

∣∣∣
iν=2

is non-increasing with respect to γν .

Now, in view of (4.20), we define Fτ,i1,i2(
¯
γ) as

Fτ,i1,i2(
¯
γ) = max

ρ∈[0,1]
E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P

¯
U ,

¯
γ), (4.127)

where fi1,i2(
¯
γ) = minτ Fτ,i1,i2(

¯
γ). We note that Fτ,i1,i2(

¯
γ) is of the form

maxρ∈[0,1]E0(ρ) − Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ) in Lemma 4.3. In view of Lemma 4.3,

Fτ,1,i2 and Fτ,2,i2 are respectively non-decreasing and non-increasing with re-
spect to γ1. Similarly, regardless the value of i1, Fτ,i1,1 and Fτ,i1,2 are respec-
tively non-decreasing and non-increasing with respect to γ2.

Considering fi1,i2(
¯
γ) = minτ Fτ,i1,i2(

¯
γ), by applying the fact that the min-

imum of monotonic functions is monotonic, fi1,i2(
¯
γ) defined by (4.20) is non-

decreasing and non-increasing with respect to γν , respectively when iν = 1
and iν = 2, for ν = 1, 2.

Next, to find the optimal
¯
γ maximizing (4.21), we express Emd as

max
γ1

max
γ2

min
i2

min
i1

fi1,i2(
¯
γ), (4.128)

where for a fixed γ1, the optimization problem maxγ2 mini2 mini1 fi1,i2(
¯
γ) sat-

isfies Lemma A.8 with γ = γ2, i = i2, and ki(γ) = mini1 fi1,i(γ1, γ). There-
fore, the optimal γ?2 satisfies

min
i1=1,2

fi1,1(γ1, γ
?
2) = min

i1=1,2
fi1,2(γ1, γ

?
2), (4.129)

whenever (4.129) has solution. Otherwise, we have γ?2 = 0 when fi1,1(γ1, 0) >
fi1,2(γ1, 0), or γ?2 = 1 when fi1,1(γ1, 0) ≤ fi1,2(γ1, 0).

Now, applying γ2 = γ?2 , the problem maxγ1 mini1 mini2 fi1,i2(γ1, γ
?
2) satis-

fies Lemma A.8 with γ = γ1, i = i1, and ki(γ) = mini2 fi,i2(γ, γ?2). Hence, γ?1
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maximizing (4.21) satisfies

min
i2=1,2

f1,i2(γ?1 , γ?2) = min
i2=1,2

f2,i2(γ?1 , γ?2), (4.130)

and in the case (4.130) does not have solution, γ?1 = 0 when f1,i2(0, γ2) >
f2,i2(0, γ2), or γ?1 = 1 otherwise. Combining (4.129) and (4.130) we obtain
(4.23).

4.3.7 Proof of Proposition 4.4
To prove Proposition 4.4, we use the properties of Es,τ,i1,i2(·) function. Like
always, ν ∈ {1, 2}, and νc denotes the complement index of ν among the set
{1, 2}.

Let γν ∈ (maxuν PUν (uν), 1]. In view of (4.9), regardless the value of iνc ,
the minimization problem given by the left hand side of (4.11), is done over an
empty set when iν = 1 which leads to Es,τ,i1,i2(·)

∣∣∣
iν=1

= −∞. However, for the
case γ1 ∈ (maxu1 PU1(u1), 1] and γ2 ∈ (maxu2 PU2(u2), 1], if we have i1 = i2 =
2 , by considering (4.10), the problem is simplified to a minimization problem
without any constraint over distribution P̂

¯
U , leading to Es,τ,2,2(ρ, P

¯
U , γν) =

Es,τ (ρ, P
¯
U).

Similarly, when γ1 ∈ [0,minu1 PU1(u1)) and γ2 ∈ [0,minu2 PU2(u2)), if
i1 = i2 = 1, (4.11) is simplified as a minimization problem without any
constraint over distribution P̂

¯
U meaning that Es,τ,1,1(ρ, P

¯
U , γν) = Es,τ (ρ, P

¯
U).

While, regardless the value of iνc , for γν ∈ [0,minuν PUν (uν)), if iν = 2, again
the minimization is done over an empty set leading to Es,τ,i1,i2(·)

∣∣∣
iν=2

= −∞.
In our analysis, it suffices to consider γν = 0 or γν = 1 to represent the cases
where Es,τ,i1,i2(·) is infinity. Let ν = 1, 2, same reasoning yields

Es,τ,1,i2(·)
∣∣∣
γ1=1

= Es,τ,2,i2(·)
∣∣∣
γ1=0

= Es,τ,i1,1(·)
∣∣∣
γ2=1

= Es,τ,i1,2(·)
∣∣∣
γ2=0

= −∞,
(4.131)

and Es,τ,1,1(·)
∣∣∣
γ1=0,γ2=0

= Es,τ,1,2(·)
∣∣∣
γ1=0,γ2=1

= Es,τ (ρ, P
¯
U),

Es,τ,2,1(·)
∣∣∣
γ1=1,γ2=0

= Es,τ,2,2(·)
∣∣∣
γ1=1,γ2=1

= Es,τ (ρ, P
¯
U).

(4.132)

From (4.20), we conclude that for the cases given by (4.131) and (4.132),
the function fi1,i2(γ1, γ2) is either infinity or is the Gallager exponent, i. e.

min
τ∈{{1},{2},{1,2}}

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es, τ(ρ, P
¯
U). (4.133)
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For example, when γ1, γ2 ∈ {0, 1}, the function fi1,i2(0, 0) is equal to (4.133)
when i1 = i2 = 1, and is infinity for the rest combinations of i1 and i2.

As a result, when γ1, γ2 ∈ {0, 1}, from (4.131) and (4.132) we find that
fi1,i2(

¯
γ) is finite in only one case, and it is infinity for other combinations of

i1 and i2, more specificity

min
i1,i2=1,2

fi1,i2(0, 0) = f1,1(0, 0), min
i1,i2=1,2

fi1,i2(0, 1) = f1,2(0, 1), (4.134)

min
i1,i2=1,2

fi1,i2(1, 0) = f2,1(1, 0), min
i1,i2=1,2

fi1,i2(1, 1) = f2,2(1, 1). (4.135)

Next, by considering (4.134) and (4.134), we lower bound the achievable
exponent given by (4.21). By taking maximization over γν ∈ {0, 1}, rather
than the interval of [0, 1], i. e.

Emd ≥ max
γ1,γ2∈{0,1}

min
i1,i2=1,2

fi1,i2(γ1, γ2), (4.136)

we can find the following lower bound for Emd

Emd ≥ max
{

min
i1,i2=1,2

fi1,i2(0, 0), min
i1,i2=1,2

fi1,i2(0, 1),

min
i1,i2=1,2

fi1,i2(1, 0), min
i1,i2=1,2

fi1,i2(1, 1)
}
, (4.137)

where by applying (4.134) and (4.135) into the minimizations over i1 and i2,
we rewrite (4.137) as

Emd ≥ max {f1,1(0, 0), f1,2(0, 1), f2,1(1, 0), f2,2(1, 1)} . (4.138)

Inserting (4.133) into (4.138), we conclude (4.26).

4.3.8 Proof of (4.32)
From (4.12), we consider the following function

min
λτ≥0,η

log
∑
uτc

(
PUτc (uτc)

γτc

)η ∑
uτ

P
¯
U(

¯
u)

1
1+ρ

(
PUτ (uτ )
γτ

)− (−1)iτ λτ
1+ρ

1+ρ

, (4.139)

where the optimal η? minimizing (4.139) is either positive, negative or zero.
More precisely, by setting the first derivative of (4.139) with respect to η
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equal to zero, η? is obtained as the solution of following equation

log(γτc) =∑
uτc

PUτc (uτc)η
? log (PUτc (uτc))

(∑
uτ

P
¯
U(

¯
u)

1
1+ρ (PUτ (uτ ))

− (−1)iτ λτ
1+ρ

)1+ρ

∑
uτc

PUτc (uτc)η
?

(∑
uτ

P
¯
U(

¯
u)

1
1+ρ (PUτ (uτ ))

− (−1)iτ λτ
1+ρ

)1+ρ .

(4.140)

Let the optimal η? satisfying (4.140), be positive. By comparing (4.139)
with (4.12), we can easily conclude that (4.139) is equal to Es,τ,i1,i2(·)

∣∣∣
iτc=1

.

While, since η? > 0, in (4.12) the λτc minimizing Es,τ,i1,i2(·)
∣∣∣
iτc=2

is negative,

and hence the optimal λ?τc = 0, i. e. when η? > 0, the function Es,τ,i1,i2(·)
∣∣∣
iτc=2

equals to Es,τ,iτ (·) given by (4.33). Similarly, if η? < 0, Es,τ,i1,i2(·)
∣∣∣
iτc=1

will

equal to (4.33), while Es,τ,i1,i2(·)
∣∣∣
iτc=2

is (4.139). Finally, when η? = 0, both

Es,τ,i1,i2(·)
∣∣∣
iτc=1

and Es,τ,i1,i2(·)
∣∣∣
iτc=2

are equal to (4.33). Thus, η? = 0 plays
a critical role in the behaviour of the Es,τ,i1,i2(·).

Given γτ , let for γτc = γη we have η? = 0 i. e.

log(γη) =

∑
uτc

log (PUτc (uτc))
(∑

uτ

P
¯
U(

¯
u)

1
1+ρ (PUτ (uτ ))

− (−1)iτ λτ
1+ρ

)1+ρ

∑
uτc

(∑
uτ

P
¯
U(

¯
u)

1
1+ρ (PUτ (uτ ))

− (−1)iτ λτ
1+ρ

)1+ρ . (4.141)

For γτc ∈ [0, γη), the optimal η? maximizing (4.139) is negative, while for
γτc ∈ (γη, 1] we have η? > 0. To be precisely, we recall from Lemma 4.3,
Es,τ,i1,i2(·)

∣∣∣
iτc=1

and Es,τ,i1,i2(·)
∣∣∣
iτc=2

are respectively non-increasing and non-
decreasing with respect to γτc . Moreover, in view of (4.131) and (4.132),
we can conclude that the function Es,τ,i1,i2(·)

∣∣∣
iτc=1

is constant on the interval
[0, γη) and equals to (4.33). While, by increasing γτc along the interval [0, γη),
the function Es,τ,i1,i2(·)

∣∣∣
iτc=2

increases from −∞ to (4.33). At γτc = γη both

Es,τ,i1,i2(·)
∣∣∣
iτc=1

and Es,τ,i1,i2(·)
∣∣∣
iτc=2

are equal to (4.33). An then, by moving

γτc along the interval (γη, 1], the function Es,τ,i1,i2(·)
∣∣∣
iτc=1

decreases from

(4.33) to −∞, while Es,τ,i1,i2(·)
∣∣∣
iτc=2

equals to (4.33) and is constant on the
interval (γη, 1].
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As a result, (4.31) can be rewritten as

max
{

max
γτc∈[0,γη),
γτ∈[0,1]

min
iτ ,iτc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ),

max
γτc∈[γη ,1],
γτ∈[0,1]

min
iτ ,iτc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,i1,i2(ρ, P
¯
U ,

¯
γ)
}
,

(4.142)

where as mentioned, in the first and second terms of (4.142) the minimization
over iτc is attained respectively at iτc = 1 and iτc = 2, both leading to

max
{

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,iτ (ρ, P¯
U , γτ ),

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,icτ )− Es,τ,iτ (ρ, P¯
U , γτ )

}
, (4.143)

which concludes the proof.

4.3.9 Proof of Proposition 4.5
The proof of Theorem 4.3.9 is very similar to the presented proof in Section
4.3.2. To avoid repetition, here we just mention the main steps. Like before,
initially we bound ε̄n, the average error probability over the ensemble for
a given block length n. By applying the random coding union bound [23]
for joint source channel coding, and then grouping error events, the average
error probability is bounded as

ε̄n ≤
∑
τ

ε̄nτ , (4.144)

where

εnτ ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y) min

{
1,

∑
ûτ 6=uτ x̂τ :

Pn

¯
U

(ûτ ,uτc )Wn(y|x̂τ ,xτc )

Pn

¯
U

(
¯
u)Wn(y|xτ ,xτc ) ≥1

Q̄n
τ,p,π(ûτ )(x̂τ |ûτ )

}
.

(4.145)

Like before, we group the outer and inner summations in (4.145) based
on the empirical distributions of (

¯
u,

¯
x,y) and (ûτ , x̂τ ), respectively and then

sum over all possible empirical distributions. Due to the fact that we study
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conditional constant-composition ensemble, the all possible empirical distri-
butions of (

¯
u,

¯
x,y) denoted by P̂

¯
U

¯
X,Y are restricted to the types of empirical

distributions of (
¯
u,

¯
x,y) whose distribution of xν given uν are the type-p

conditional distribution defined in (4.41). It means that P̂
¯
U

¯
XY belongs to

the set
Sgccc
n ,

{
P̂

¯
U

¯
XY : P̂

¯
U

¯
XY = P̂

¯
UQ̄1,p,P̂U1

Q̄2,p,P̂U2
P̂Y |

¯
U

¯
X ,

P̂
¯
U ∈ Pn

¯
U , P̂Y |¯

U
¯
X ∈ PnY|

¯
U×

¯
X

}
, (4.146)

where P̂Uν is the marginal distribution of P̂
¯
U . Moreover, the empirical distri-

bution of the inner summation in (4.145) is denoted by P̃
¯
U

¯
X,Y and is restricted

to the set

Lgccc
τ,n (P̂

¯
U

¯
XY ) ,

{
P̃

¯
U

¯
XY ∈ Sgccc

n : P̃UτcXτcY = P̂UτcXτcY ,

EP̃λ(
¯
U,

¯
X, Y ) ≥ EP̂λ(

¯
U,

¯
X, Y )

}
. (4.147)

Thus, equation (4.145) can be rewritten as
ε̄nτ ≤

∑
P̂

¯
U

¯
XY ∈Sgccc

n

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y)

min
{

1,
∑

P̃
¯
U

¯
XY ∈Lgccc

τ,n (P̂
¯
U

¯
XY )

∑
(ûτ x̂τ )∈T nuτcxτcy(P̃

¯
U

¯
XY )

Q̄n
τ,p,π(ûτ )(x̂τ |ûτ )

}
. (4.148)

Since for all (ûτ x̂τ ) ∈ T nuτcxτcy(P̃
¯
U

¯
XY ), distribution Q̄n

τ,p,π(ûτ )(x̂τ |ûτ ) has
the same value, the inner sum of (4.148) is∑

(ûτ x̂τ )∈T nuτcxτcy(P̃
¯
U

¯
XY )

Q̄n
τ,p,π(ûτ )(x̂τ |ûτ ) = |T nuτcxτcy(P̃

¯
U

¯
XY )|Q̄n

τ,p,π(ûτ )(x̂τ |ûτ ),

(4.149)

where |T nuτcxτcy(P̃
¯
U

¯
XY )| is defined in (1.40). Noting (ûτ x̂τ ) ∈ T nuτcxτcy(P̃

¯
U

¯
XY ),

we can write Q̄n
τ,p,π(u′τ )(x′τ |u′τ ) as the number of occurrence of the symbols,

i. e.
Q̄n
τ,p,π(u′τ )(x′τ |u′τ ) = e

n
∑

xτ ,uτ
P̃Uτ (uτ )Q̄τ,p,P̃Uτ

(xτ |uτ ) log Q̄τ,p,P̃Uτ
(xτ |uτ )

. (4.150)
As before, combining (4.150) and (4.70) into (4.149), we obtain∑

(u′τ ,x′τ )∈T nuτcxτcy(P̃
¯
U

¯
XY )

Q̄n
τ,p,π(u′τ )(x′τ |u′τ ) ≤

max
P̃

¯
U

¯
XY ∈Lcc

τ,n(P̂
¯
U

¯
XY )

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,p,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
)

+o(n)
, (4.151)
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where we bounded (4.151) by the maximum over the empirical probability
distributions P̃

¯
U

¯
XY ∈ Lgccc

τ,n (P̂
¯
U

¯
XY ).

Additionally, to compute the summation over (
¯
u,

¯
x,y) ∈ T nuτcxτcy(P̃

¯
U

¯
XY )

in (4.148), we follow the same steps deriving (4.75). Thus, we have

∑
(
¯
u,

¯
x,y)∈T n(P̂

¯
U

¯
XY )

P n

¯
U

¯
XY (

¯
u,

¯
x,y) ≤ max

P̂
¯
U

¯
XY ∈Sgccc

n

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,p,P̂U1

Q̄2,p,P̂U2
W )
)
.

(4.152)

Combining (4.151) and (4.152) into (4.148), taking the polynomial number
of types into account and recognizing that a probability must be at most 1,
the average error probability is bounded by

ε̄nτ ≤ max
P̂

¯
U

¯
XY ∈Sgccc

n

e
−n
(
D(P̂

¯
U

¯
XY ||P

¯
U Q̄1,p,P̂U1

Q̄2,p,P̂U2
W )
)

+o(n)

min
{

1, max
P̃

¯
U

¯
XY ∈Lgccc

τ,n (P̂
¯
U

¯
XY )

e
−n
(
D(P̃

¯
U

¯
XY ||P̃Uτ Q̄τ,p,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
)

+o(n)
}
.

(4.153)

Like before, by taking logarithm from both sides of (4.153), using the identity
min{1, ea} = e[a]+ , we find that

− 1
n

log(ε̄nτ ) ≥ En
τ −

o(n)
n

, (4.154)

where

En
τ = min

P̂
¯
U

¯
XY ∈Sgccc

n

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,p,P̂U1

Q̄2,p,P̂U2
W )+ min

P̃
¯
U

¯
XY ∈Lgccc

τ,n (P̂
¯
U

¯
XY )

D(P̃
¯
U

¯
XY ||P̃Uτ Q̄τ,P̃Uτ

P̂UτcXτcY )−H(P̃Uτ )
 .
(4.155)

Now, by setting U = Uτ , X = Xτ , W = PUτc Q̄τ
c, p, P̂UτcW and Y =

UτcXτcY in Lemma A.1, (4.155) is bounded as

En
τ ≥ min

P̂
¯
U

¯
XY ∈Sgccc

n

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,p,P̂U1

Q̄2,p,P̂U2
W )+[

D(P̂
¯
U

¯
XY ||P̂Uτ Q̄τ,p,P̂Uτ

P̂UτcXτcY )−H(P̂Uτ )
]
. (4.156)
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Recalling (4.147), we have P̂UτcXτcY = P̂Uτc Q̄τc,p,P̂Ucτ
P̂Y |UτcXτc and thanks to

(4.146), P̂
¯
U

¯
XY = P̂

¯
UQ̄1,p,P̂U1

Q̄2,p,P̂U2
P̂Y |

¯
X

¯
U . Applying these facts to (4.156),

(4.154) is bounded as

− 1
n

log(ε̄nτ ) ≥ −o(n)
n

+ min
P̂

¯
U

¯
XY ∈Sgccc

n

D(P̂
¯
U

¯
XY ||P

¯
UQ̄1,p,P̂U1

Q̄2,p,P̂U2
W )

+
[
I
(
X;Y

∣∣∣Uτc , Xτc

)
−H(P̂Uτ |Uτc )

]+
. (4.157)

Since both sides of (4.157) are bounded, by taking lim inf from both sides,
and then using the fact that ∪nPn

¯
U×

¯
X×Y is dense in the set of all distributions,

we conclude the proof.
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Chapter 5

Conclusions and Future Work

In this thesis, for the point-to-point and the multiple-access channels, we
studied a number of random coding ensembles reviewed in the following.

1. The iid ensemble: for this coding scheme, codewords of each user are
generated independently according to an identical input distribution.

2. The icd ensemble: for this coding scheme, codewords of each user
are generated independently according to a conditional probability dis-
tribution.

3. The message-dependent ensemble: for this coding scheme, the
source outputs of each user are partitioned into countable classes and
are encoded by the codes that depend on the class index.

4. The constant-composition ensemble, in which for each user, code-
words are drawn from the set of sequences with a given empirical dis-
tribution.

5. The conditional constant-composition ensemble: for this coding
scheme, codewords are drawn from the conditional constant-composition
sequences. In other words, codewords are generated such that for the
message uν and its corresponding codeword xν , the ratio of the number
of occurrences of joint symbols (uν , xν) ∈ Uν×Xν in the joint sequences
(uν ,xν) to the number of occurrences of uν in uν , remains constant.

6. The generalized constant-composition ensemble, in which the
ideas of the message-dependent and the conditional constant-composition
ensembles are merged. For each user, the source messages are assigned
into disjoint classes, and codewords are drawn from the set of sequences
with a given empirical distribution that depends on the class index.
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7. The generalized conditional constant-composition ensemble, in
which the ideas of the message-dependent and the conditional constant-
composition ensembles are merged.

We found that for single-user communication and also for the MAC with
independent sources, among the studied ensembles, the generalized constant-
composition ensemble has the largest exponent. Thus, for the MAC with
independent sources, in terms of error exponent, there is no benefit to apply
statistical dependency between the messages and codewords. On the other
hand, the results show that for the MAC with correlated sources, considering
statistical dependency between the messages and codewords is essential.

In this thesis, we mainly focused on the messaged-dependent ensemble,
where to generate codewords, we assign a set of input distributions rather
than one input distribution. Hence, the optimal number of input distri-
butions are another problem to answer. For single-user communication, in
Proposition 2.7, we showed that two input distributions are sufficient for the
message-dependent random-coding exponent. However, for the MAC with
independent sources, we could only show that for the error type τ = {1} or
τ = {2}, the sufficient number of input distributions for each user is two.
Unfortunately, the proof in Section 2.4.6 cannot be easily generalized to the
error type τ = {1, 2}. On the other hand, we could not find an example
showing that assigning more than two input distributions has benefit for the
exponent. As a result, the sufficient number of input distributions is for the
message-dependent exponent is still an open problem.

To generalize the results to continuous alphabet, we may use the idea
of cost-constrained random-coding ensemble [5, Ch. 7]. In fact, for user
ν = 1, 2, we can consider the cost-constrained ensemble characterized by the
following conditional distribution

PXν |Uν (xν |uν) = 1
µν,n

n∏
j=1

Q̄ν(xj,ν |uj,ν)1
{
xν ∈ Eνn(uν)

}
, (5.1)

where

Eνn(u) ,
{
xν :

∣∣∣anlν (xν ,uν)− φlν (uν)∣∣∣ ≤ δν
}
, (5.2)

and µν,n is a normalizing constant, δν is a positive constant and φlν (uν) =∑
xν Q̄

n
ν (xν |uν)anlν (xν ,uν). In addition, for each lν = 1, 2, ..., Lν , the func-

tion al,ν(xν , uν) is a real-valued function known as a cost function where
anlν (x,u) = ∑n

j alν (xj,ν , uj,ν).
As discussed in [5, p. 324], the ensemble of codes whose all codewords

satisfies the constraint is included in the class of codes for which the average
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over the codewords satisfies the constraint. Thus, to find the achievable
exponent, by noting that anlν (xν ,uν) = ∑n

j alν (xj,ν , uj,ν), we may simplify
φlν (uν) as

φlν (uν) =
∑

(x1,ν ,...,xn,ν)

n∏
jν=1

Q̄ν(xj,ν |uj,ν)
(
alν (x1,ν , u1,ν) + ...+ alν (xn,ν , un,ν)

)
(5.3)

=
∑
x1,ν

al(x1,ν , u1,ν)Q̄(x1,ν |u1,ν)
∑

(x2,ν ,...,xn,ν)
Q̄n−1
ν (x2,ν ...xn,ν |u2,ν ...un,ν) + ...

+
∑
xn,ν

alν (xn,ν , un,ν)Q̄ν(xn,ν |un,ν)
∑

(x1,ν ,...,xn−1,ν)
Q̄n−1
ν (x1,ν , ..., xn−1|u1,ν , ..., un−1,ν)

(5.4)
=
∑
j

∑
xj,ν

a(xj,ν , uj,ν)Q̄ν(xj,ν |uj,ν) =
∑
j

φlν (uj,ν) = nφlν (uν), (5.5)

where in (5.3), we used the fact that anlν (xν ,uν) = ∑n
j alν (xj,ν , uj,ν), in (5.4)

we broke the summation over (x1,ν , ..., xn,ν) into summation over xi,ν and
summation over (x1,ν , ..., xi−1,ν , xi+1,ν , ..., xn,ν) and in (5.5), we used the iden-
tities that∑xν Q̄

n−1
ν (xν |uν) = 1 and φlν (uν) = EQ̄ν [alν (xν , uν)]. For the cost-

constrained random coding, it may be proved that the following exponent is
achievable

min
τ

max
ρ∈[0,1]

sup
{rl1 ,rl2}

− log
( ∑
y,xτc ,uτc

( ∑
uτ ,xτ

P
¯
U(

¯
u)

1
1+ρ e

∑
l1
r̄l1

(
al1 (x1,u1)−φl1 (u1)

)

× e
∑

l2
r̄l2

(
al2 (x2,u2)−φl2 (u2)

)
Q̄τ (xτ |uτ )W (y|

¯
x)

1
1+ρ Q̄τc(xτc|uτc)

1
1+ρ

)1+ρ)
. (5.6)

We may compare the cost-constrained exponent given by (5.6) with condi-
tional constant-composition and icd exponents. Discussion about (5.6) and
its application for continuous alphabets are left for future works.

In this thesis, we only derived achievable exponents for the MAC by using
the idea of random coding. In Section 4.3.3, we showed that the primal form
of the achievable exponent given by (4.2) is ensemble tightness. However,
we do not find an upper bound for the error exponent satisfied by any code.
Generally, finding converse bounds for the MAC is more difficult than single-
user communication. It may be simpler to start by separate source-channel
coding, for the MAC with independent sources. In [31], by using Csiszár’s
techniques [15], sphere-packing and minimum-distance exponents were found.

Hypothesis-testing method can be another approach to find converse
bound. However, since here we have three types of error, the test should
be chosen more carefully. On the other hand, due to [43], the performance
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of the maximal error and the average error for the MAC are not as easy as
the point-to-point channel.

152



“output” — 2019/5/22 — 9:04 — page 153 — #169

Appendix A

General Lemmas

In this Appendix, we provide a number of general lemmas that will be used
through the thesis. Throughout this Appendix, we consider a discrete mem-
oryless source characterized by a probability distribution PU .

Lemma A.1. Assume En be

En = min
P̂UXY ∈PnU×X×Y

D(P̂UXY ||PUQ̄P̂U
W )

+
[

min
P̃UXY ∈Kn(P̂UXY )

D(P̃UXY ||P̃UQ̄P̃U
P̂Y )−H(P̃U)

]+
, (A.1)

where

Kn(P̂UXY ) ,{
P̃UXY ∈ PnU×X×Y : P̃Y = P̂Y ,EP̃ [λ(U,X, Y )] ≥ EP̂ [λ(U,X, Y )]

}
, (A.2)

and λ(U,X, Y ) = PU(U)W (Y |X). It can be proved that

En ≥ min
P̂UXY ∈PnU×X×Y

D(P̂UXY ||PUQ̄P̂U
W ) +

[
D(P̂UXY ||P̂UQ̄P̂U

P̂Y )−H(P̂U)
]+
.

(A.3)

Proof. To prove (A.3), firstly we assume

D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y
)
−H(P̃U) ≥ D

(
P̂UXY ||P̂UQ̄P̂U

P̂Y
)
−H(P̂U), (A.4)

which leads to[
D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y
)
−H(P̃U)

]+
≥
[
D
(
P̂UXY ||P̂UQ̄P̂U

P̂Y
)
−H(P̂U)

]+
.

(A.5)

153



“output” — 2019/5/22 — 9:04 — page 154 — #170

By adding D
(
P̂UXY ||PUQ̄P̂U

W
)
on the both sides of (A.5), (A.3) will be

proved. In the alternative case

D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y
)
−H(P̃U) ≤ D

(
P̂UXY ||P̂UQ̄P̂U

P̂Y
)
−H(P̂U), (A.6)

by noting (A.2), we have EP̃λ(U,X, Y ) ≥ EP̂λ(U,X, Y ) or∑
u,x,y

P̃UXY (u, x, y) log (PU(u)W (y|x)) ≥
∑
u,x,y

P̂UXY (u, x, y) log (PU(u)W (y|x)) .

(A.7)

Subtracting (A.7) from (A.6), we obtain

∑
u,x,y

P̃UXY (u, x, y) log
(

P̃UXY (u, x, y)
PU(u)W (y|x)Q̄P̃U

(x|u)P̂Y (y)

)
≤

∑
u,x,y

P̂UXY (u, x, y) log
(

P̂UXY (u, x, y)
PU(u)W (y|x)Q̄P̂U

(x|u)P̂Y (y)

)
. (A.8)

Moreover, in view of (A.2), P̃Y = P̂Y which leads to the fact that H(P̃Y ) =
H(P̂Y ) or equivalently∑

u,x,y

P̃UXY (u, x, y) log P̂Y (y) =
∑
u,x,y

P̂UXY (u, x, y) log P̂Y (y). (A.9)

By adding (A.9) to the both sides of (A.8), we obtain

∑
u,x,y

P̃UXY (u, x, y) log
(

P̃UXY (u, x, y)
PU(u)W (y|x)Q̄P̃U

(x|u)

)
≤

∑
u,x,y

P̂UXY (u, x, y) log
(

P̂UXY (u, x, y)
PU(u)W (y|x)Q̄P̂U

(x|u)

)
. (A.10)

Noting to the definition of the relative entropy, (A.10) can be expressed as

D(P̃UXY ||PUQ̄P̃U
W ) ≤ D(P̂UXY ||PUQ̄P̂U

W ). (A.11)

By adding
[
D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y
)
−H(P̃U)

]+
on the both sides of (A.11), we

obtain

D(P̃UXY ||PUQ̄P̃U
W ) +

[
D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y
)
−H(P̃U)

]+

≤

D(P̂UXY ||PUQ̄P̂U
W ) +

[
D
(
P̃UXY ||P̃UQ̄P̂U

P̂Y
)
−H(P̃U)

]+

. (A.12)
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Since Kn(P̂UXY ) ⊂ PnU×X×Y , we proved that whether D
(
P̃UXY ||P̃UQ̄P̃U

P̂Y

)
−

H(P̃U) be lower than D
(
P̂UXY ||P̂UQ̄P̂U

P̂Y
)
−H(P̂U) or greater, we have

En ≥ min
P̂UXY ∈PnU×X×Y

D(P̂UXY ||PUQ̄P̂U
W )

+
[
D(P̂UXY ||P̂UQ̄P̂U

P̂Y )−H(P̂U
]+

. (A.13)

Lemma A.2. Let VY be a probability distribution and e(y) be a positive
function such that for ρ ∈ [0, 1], the quantity ∑y e(y)VY (y)

ρ
1+ρ is a concave

function of VY (y). Then, we have

max
VY

∑
y

e(y)VY (y)
ρ

1+ρ =
(∑

y

e(y)1+ρ
) 1

1+ρ

, (A.14)

where the optimal VY maximizing (A.14) is obtained as VY (y) = e(y)1+ρ∑
ȳ e(ȳ)1+ρ .

Proof. Recalling that ∑y VY (y) = 1, the Lagrangian associated with the
optimization problem in (A.14) can be written as

Λ(VY , θ) =
∑
y

e(y)VY (y)
ρ

1+ρ + θ(1−
∑
y

VY (y)). (A.15)

In view of the KKT condition, setting the partial derivative of Λ(VY , θ) with
respect to VY (y) equal to zero, yields

ρ

1 + ρ
e(y)VY (y)

−1
1+ρ − θ = 0. (A.16)

Solving (A.16) with respect to VY (y), applying the constraint that∑y VY (y) =

1, the optimal value of VY (y) is derived as VY (y) = e(y)1+ρ∑
ȳ e(ȳ)1+ρ . Inserting

the optimal VY (y) into the left hand side of (A.14) proves Lemma A.2.

Lemma A.3. For a given channel W with input distribution Q, we have

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QP̂Y ) = E0(ρ,Q,W ), (A.17)

where E0(ρ,Q,W ) = − log
(∑

y

(∑
xQ(x)W (y|x)

1
1+ρ
)1+ρ)

.
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Proof. Firstly, we show that

D(P̂XY ||QP̂Y ) = min
VY

D(P̂XY ||QVY ), (A.18)

where VY is an arbitrary probability assignment over the alphabet Y . To
prove (A.18), we use Lemma A.4. Setting Z = X and PZ = Q in Lemma
A.4, (A.18) will prove.

Next, by substituting (A.18) into the left hand side of (A.17), it remains
to show that

min
VY

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QVY ) = E0(ρ,Q,W ). (A.19)

In order to prove (A.19), we start by applying Lagrange duality theory to
the inner minimization over P̂XY in (A.19). By recognizing that the sum
of the probabilities of all possible outcomes must be 1, the Lagrangian of
optimization problem over P̂XY can be expressed as

Λ(P̂XY , θ) = D(P̂XY ||QW ) + ρD(P̂XY ||QVY ) + θ
(

1−
∑
x,y

P̂XY (x, y)
)
,

(A.20)

where since the objective function is convex with respect to P̂XY and the
constraint ∑x,y P̂XY (x, y) = 1 is affine, strong duality holds which leads to

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QVY ) = max
θ

min
P̂XY

Λ(P̂XY , θ). (A.21)

Using the definition of the relative entropy, the Lagrangian is simplified
as

Λ(P̂XY , θ) =
∑
x,y

P̂XY (x, y) log P̂XY (x, y)1+ρ

Q(x)1+ρW (y|x)VY (y)ρ + θ
(

1−
∑
x,y

P̂XY (x, y)
)
.

(A.22)

Since strong duality holds, we can proceed by analyzing the necessary KKT
conditions. Setting ∂Λ(P̂XY )

∂P̂XY (x,y) = 0 yields

log P̂XY (x, y)1+ρ

Q(x)1+ρW (y|x)VY (y)ρ + (1 + ρ)− θ = 0, (A.23)

leading to

P̂XY (x, y) = e
θ−(1+ρ)

1+ρ Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ . (A.24)
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Summing both sides of (A.24) over x, y and applying ∑x,y P̂XY (x, y) = 1, we
obtain

1 = e
θ−(1+ρ)

1+ρ
∑
x,y

Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ . (A.25)

Putting back e
θ−(1+ρ)

1+ρ obtained in (A.25) into (A.24), the optimal P̂XY is given
by

P̂XY (x, y) = Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ∑
x̄,ȳ

Q(x̄)W (ȳ|x̄)
1

1+ρVY (ȳ)
ρ

1+ρ
. (A.26)

Substituting (A.26) into (A.22), yields

max
θ

min
P̂XY

Λ(P̂XY , θ) = −(1 + ρ) log
(∑
x,y

Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
, (A.27)

where by putting back (A.27) into (A.21), (A.19) can be written as

min
VY

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QVY )

= min
VY
−(1 + ρ) log

(∑
x,y

Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
. (A.28)

Since the function in the log term of (A.28) is a concave function with
respect to VY and the logarithm is an increasing function, (A.28) can be
simplified as

min
VY

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QVY )

= −(1 + ρ) log
(

max
VY

∑
x,y

Q(x)W (y|x)
1

1+ρVY (y)
ρ

1+ρ

)
, (A.29)

where the optimization problem of the right hand side of (A.29) is solved by
using Lemma A.2.

Setting e(y) = ∑
xQ(x)W (y|x)

1
1+ρ in Lemma A.2, from (A.29) we obtain

min
VY

min
P̂XY ∈PX×Y

D(P̂XY ||QW ) + ρD(P̂XY ||QVY )

= −(1 + ρ) log
∑

y

(∑
x

Q(x)W (y|x)
1

1+ρ

)1+ρ
 1

1+ρ

. (A.30)

Applying the identity that (1+ρ) log(b
1

1+ρ ) = log(b) to the right hand side of
(A.30), in view of the definition of E0(·) and (A.19), we conclude (A.17).
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Lemma A.4. Suppose PZ be a probability distribution and let P̂ZY be an
arbitrary joint distribution where P̂Y is its marginal distribution. It can be
proved that

D(P̂ZY ||PZP̂Y ) = min
VY

D(P̂ZY ||PZVY ), (A.31)

where VY is an arbitrary probability assignment over the alphabet Y.

Proof. It suffices to show thatD(P̂ZY ||PZP̂Y ) ≤ D(P̂ZY ||PZVY ) with equality
if P̂Y (y) = VY (y) for all y. Subtracting D(P̂ZY ||PZVY ) from D(P̂ZY ||PZP̂Y )
leads to

D(P̂ZY ||PZP̂Y )−D(P̂ZY ||PZVY ) =∑
z,y

P̂ZY (z, y) log VY (y)
P̂Y (y)

= −D(VY ||P̂y) ≤ 0, (A.32)

where (A.32) follows from the fact that the relative entropy is non-negative
with equality when VY (y) = ∑

z P̂ZY (z, y) for all y ∈ Y . Thus, from (A.32) we
conclude thatD(P̂ZY ||PZP̂Y ) ≤ D(P̂XY ||PZVY ) and equality holds if VY (y) =
P̂Y (y) for all y ∈ Y . As a result, D(P̂ZY ||PZP̂Y ) = minVY D(P̂ZY ||PZVY ).

Lemma A.5. The function
∑

u
PU (u)

1
1+ρ logPU (u)∑

u
PU (u)

1
1+ρ

is continuous, non-decreasing

and one-to-one with respect to 1
1+ρ . Thus, for a given γ` ∈ [0, 1] for ` =

1, ..., L, let 1
1+ρ∗γ`

be the solution of the following equation

∑
u PU(u)

1
1+ρ∗γ` logPU(u)∑

u PU(u)
1

1+ρ∗γ`

= log(γ`). (A.33)

Since
∑

u
PU (u)

1
1+ρ logPU (u)∑

u
PU (u)

1
1+ρ

is non-decreasing with respect to 1
1+ρ , we have

γ`+1 ≤ γ` ⇒
1

1 + ρ∗γ`+1

≤ 1
1 + ρ∗γ`

. (A.34)

Lemma A.6. Let E(ρ,Q1) and E(ρ,Q2) be two concave and continuous
functions of ρ. Consider the following optimization problem

max
γ∈[0,1]

min
i=1,2

max
ρ∈[0,1]

E(ρ,Qi)− Es,i(ρ, PU , γ), (A.35)

158



“output” — 2019/5/22 — 9:04 — page 159 — #175

where for i = 1, 2, Es,1(·) and Es,2(·) are given by (2.33) and (2.34). The
optimal γ? maximizing (A.35), satisfies

max
ρ∈[0,1]

E(ρ,Q1)− Es,1(ρ, PU , γ?) = max
ρ∈[0,1]

E(ρ,Q2)− Es,2(ρ, PU , γ?). (A.36)

When (A.36) has no solutions, the optimal γ? is either zero or one. In fact,
if maxρ∈[0,1]E(ρ,Q1) − Es,1(ρ, PU , 0) > maxρ∈[0,1]E(ρ,Q2) − Es,2(ρ, PU , 0),
then γ? = 0, otherwise γ? = 1. Moreover, for the expression given by (A.35),
we have

max
γ∈[0,1]

min
i=1,2

max
ρ
E(ρ,Qi)− Es,i(ρ, PU , γ) = max

ρ∈[0,1]
Ē(ρ)− Es(ρ, PU), (A.37)

where Es(·) is given by (1.9), and we have

Ē(ρ) = sup
ρ1,ρ2,λ∈[0,1]:

λρ1+(1−λ)ρ2=ρ

{
λmax
i=1,2

E(ρ1, Qi) + (1− λ) max
i=1,2

E(ρ2, Qi)
}
. (A.38)

Proof. From Lemma A.7, we conclude that with respect to γ, both functions
maxρE(ρ,Q1) − Es,1(ρ, PU , γ) and maxρE(ρ,Q2) − Es,2(ρ, PU , γ) are non-
decreasing and non-increasing, respectively. Thus, (A.35) satisfies Lemma
A.8 with k1(γ) = maxρE(ρ,Q1)−Es,1(ρ, PU , γ) and k2(γ) = maxρE(ρ,Q2)−
Es,2(ρ, PU , γ). Therefore, the optimal γ? satisfies (A.36).

In order to prove (A.37), without loss of generality, we write (A.35) as

max
γ∈[0,1]

min
i=1,2

max
ρi∈[0,1]

E(ρi, Qi)− Es,i(ρi, PU , γ), (A.39)

where the optimal γ? is obtained by solving (A.36). In addition, correspond-
ing to γ?, let ργ? , given by (2.25), be the tangent point to Es(·) function.
Letting γ? as the optimal value maximizing (A.39), we define ρ?1 and ρ?2 as
follows

ρ?1 = arg max
ρ1∈[0,1]

E(ρ1, Q1)− Es,1(ρ1, PU , γ
?), (A.40)

ρ?2 = arg max
ρ2∈[0,1]

E(ρ2, Q2)− Es,2(ρ2, PU , γ
?), (A.41)

where γ? is derived by solving (A.36).
Therefore, (A.36) can be written as

E(ρ?1, Q1)− Es,1(ρ?1, PU , γ?) = E(ρ?2, Q2)− Es,2(ρ?2, PU , γ?), (A.42)

where without loss of generality we assume ρ?1 < ργ? < ρ?2. Recalling that
Es,i(·) for i = 1, 2 is either the Gallager’s source function, or a straight line
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tangent to it. We assume both ρ?1 and ρ?2, respectively are located at the
straight line parts of Es,1(·) and Es,2(·). Without this assumption, in view of
Figure 2.2 and Figure 2.3, (A.36) is equal to

max
{

max
ρ∈[0,1]

E(ρ,Q1)− Es(ρ, PU), max
ρ∈[0,1]

E(ρ,Q2)− Es(ρ, PU)
}
. (A.43)

Since both ρ?1 and ρ?2, are located at the straight line part, in view of
(2.33) and (2.34), (A.36) can be written as

E(ρ?1, Q1)− Es (ργ? , PU)− E ′s (ργ?) (ρ?1 − ργ?) =
E(ρ?2, Q2)− Es (ργ? , PU)− E ′s (ργ?) (ρ?2 − ργ?) . (A.44)

By solving (A.44) with respect to E ′s (ργ?), we find that

E ′s (ργ?) = E(ρ?1, Q1)− E(ρ?2, Q2)
ρ?1 − ρ?2

. (A.45)

Inserting the the right hand side of (A.45), in to E ′s (ργ?) appeared in the
left hand side of (A.44), (A.39) is derived as

max
γ∈[0,1]

min
i=1,2

max
ρi∈[0,1]

E(ρi, Qi)− Es,i(ρ, PU , γ) =(
1− ρ?1 − ργ?

ρ?1 − ρ?2

)
E(ρ?1, Q1) + ρ?1 − ργ?

ρ?1 − ρ?2
E(ρ?2, Q2)− Es(ργ? , PU), (A.46)

where the sum of coefficients of E(ρ?1, Q1) and E(ρ?2, Q2) is one. By defining
λ = ρ?1−ργ?

ρ?1−ρ
?
2
, recalling the definitions of ρ?1, ρ?2 and γ?, and expressing ρ?1 and

ρ?2 in terms of λ and ργ? , (A.46) is obtained as

max
γ∈[0,1]

min
i=1,2

max
ρi∈[0,1]

E(ρi, Qi)− Es,i(ρ, PU , γ) =

max
ργ

max
ρ1,ρ2,λ∈[0,1]:

(1−λ)ρ1+λρ2=ργ

(1− λ)E(ρ1, Q1) + λE(ρ2, Q2)− Es(ργ, PU). (A.47)

By comparing (A.47) with (A.38), we conclude (A.37).

Lemma A.7. Let E(ρ) be a function of ρ. Considering (2.33) and (2.34),
the function f1(γ) = maxρ∈[0,1] E(ρ) − Es,1(ρ, PU , γ) is non-decreasing with
respect to γ and f2(γ) = maxρ∈[0,1] E(ρ) − Es,2(ρ, PU , γ) is non-increasing
with respect to γ.
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Proof. Let γ, γ′ ∈ [0, 1] where γ ≤ γ′, or equivalently 1
1+ργ ≤

1
1+ργ′

, where
ργ is defined in (2.25). Considering (2.33) we conclude that for all values
of ρ ∈ [0, 1] we have Es,1(ρ, PU , γ) ≥ Es,1(ρ, PU , γ′). Thus, the maximum of
E(ρ)−Es,1(ρ, PU , γ) is not greater than the maximum of E(ρ)−Es,1(ρ, PU , γ′)
meaning that f1(γ) ≤ f1(γ′) or that f1(γ) is non-decreasing in γ.

Similarly, if γ ≤ γ′, by considering (2.34) we conclude that for all values of
ρ ∈ [0, 1] we have Es,2(ρ, PU , γ) ≤ Es,2(ρ, PU , γ′). Using the same reasoning,
we have f2(γ) ≥ f2(γ′), or equivalently that f2(γ) is non-increasing in γ.

Lemma A.8. Let k1(γ) and k2(γ) be respectively continuous non-decreasing
and non-increasing functions with respect to γ ∈ [0, 1]. The optimal γ? max-
imizing mini=1,2 ki(γ) satisfies the following equation

k1(γ?) = k2(γ?). (A.48)
When (A.48) does not have any solution, we have γ? = 0 if k1(0) > k2(0),
and γ? = 1 otherwise.
Proof. In fact, the relative behaviour of a non-decreasing function with a
non-increasing function can be categorized in three cases.

1. We focus on the first case where k1(0) < k2(0) and k1(1) > k2(1),
i. e. there exists a γ? such that k1(γ?) = k2(γ?). In this case, the
function mini ki(γ) is non-decreasing from [0, γ?), and non-increasing
from (γ?, 1]. Thus, the maximum over γ of mini ki(γ) occurs at γ = γ?.

2. If k1(0) < k2(0) and k1(1) < k2(1), k1(γ) and k2(γ) do not cross in
γ ∈ [0, 1]. Hence, we have mini ki(γ) = k1(γ) and obviously since it is
an non-decreasing function the maximum over γ occurs at γ = γ? = 1.

3. When k1(0) ≥ k2(0), we have mini ki(γ) = k2(γ) and hence γ? = 0.

Lemma A.9. For a given point-to-point channel W with input distribution
input distribution Q, we have

Ecc
0 (ρ,Q,W ) ≥ E0(ρ,Q,W ), (A.49)

where Ecc
0 (·) and E0(·) are respectively given by (2.56) and (1.14). More

precisely,

max
ᾱ(x):

∑
x
ᾱ(x)Q(x)=0

− log
(∑

y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

)
≥

− log
(∑

y

(∑
x

Q(x)W (y|x)
1

1+ρ
)1+ρ

)
, (A.50)

where the equality holds for the optimal Q maximizing (1.14).
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Proof. To prove (A.50), we start by obtaining the optimal ᾱ?(x) maximizing
the left hand side of (A.50). Since logarithm is a non-decreasing function,
the optimal ᾱ?(x) maximizing

max
ᾱ(x):

∑
x
ᾱ(x)Q(x)=0

− log
(∑

y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

)
, (A.51)

has the same value with the one minimizing

min
ᾱ(x):

∑
x
ᾱ(x)Q(x)=0

∑
y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

. (A.52)

Since the objective function of (A.52) is convex with respect to ᾱ(x) and the
constraint ∑x ᾱ(x)Q(x) = 0 is affine, we have

min
ᾱ(x):

∑
x
ᾱ(x)Q(x)=0

∑
y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

=

max
µ

min
ᾱ(x)

∑
y

(∑
x

e
ᾱ(x)
1+ρQ(x)W (y|x)

1
1+ρ
)1+ρ

+ µ

(
−
∑
x

ᾱ(x)Q(x)
)
, (A.53)

where by taking derivative with respect to ᾱ(x), the optimal ᾱ(x)? satisfies

µQ(x) =
∑
y

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
(∑

x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)ρ
, (A.54)

where by summing both sides of (A.54) with respect to x and considering
the fact ∑xQ(x) = 1, we obtain

µ =
∑
y

(∑
x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)1+ρ

. (A.55)

Comparing (A.55) with (2.56), we have

Ecc
0 (ρ,Q,W ) = − log(µ). (A.56)

Additionally, removing Q(x) 6= 0 from both sides of (A.54) and taking
logarithm from both sides of it, yields

ᾱ(x)?
1 + ρ

= log(µ)− log
(∑

y

W (y|x)
1

1+ρ
(∑

x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)ρ)

, (A.57)

where by applying the constraint ∑x ᾱ(x)?Q(x) = 0 to (A.57), we find that

log(µ) =
∑
x

Q(x) log
(∑

y

W (y|x)
1

1+ρ
(∑

x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)ρ)

, (A.58)
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and by comparing (A.58) with (A.56), Ecc
0 will equal to

Ecc
0 (ρ,Q,W ) = −

∑
x

Q(x) log
(∑

y

W (y|x)
1

1+ρ
(∑

x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)ρ)

.

(A.59)

Next, applying Jensen’s inequality to (A.59) yields

Ecc
0 (ρ,Q,W ) ≥ − log

(∑
x

Q(x)
∑
y

W (y|x)
1

1+ρ
(∑

x

e
ᾱ(x)?
1+ρ Q(x)W (y|x)

1
1+ρ
)ρ)

,

(A.60)

which is equal to E0(·) function, i. e.

Ecc
0 (ρ,Q,W ) ≥ E0(ρ,Q,W ), (A.61)

where as shown in [20, Eq. (31)], for the optimal input distribution maxi-
mizing E0(·), we have equality in (A.61).

Lemma A.10. Let h(u, x, y) be a positive function of variables (u, x, y) and
suppose k(x, u) be a positive function of (x, u) such that ∑u,x k(x, u) = 1.
Consider the following optimization problem

min
ᾱ(x):

∑
x,u

k(x,u)ᾱ(x)=0

∑
y

(∑
u,x

e
ᾱ(x)
1+ρ h(u, x, y)

)1+ρ
, (A.62)

where ρ ∈ [0, 1]. The optimal value of ᾱ(x) which minimizes the objective
function in (A.62) is denoted by ᾱ∗(x) and satisfies

ᾱ∗(x) = (1 + ρ) log

∑
ū

k(x, ū)
∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
ᾱ∗(x̄)
1+ρ

)ρ∑
û

h(û, x, ȳ)

×
(∑
x̃,ũ

k(x̃, ũ) log

∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
ᾱ∗(x̄)
1+ρ

)ρ∑
û

h(û, x̃, ȳ)∑
ū

k(x̃, ū)

)
. (A.63)

In addition, the optimal value of α̃(u, x) which minimizes the following prob-
lem

min
α̃(u,x):

∑
x,u

k(x,u)α̃(u,x)=0

∑
y

(∑
u,x

e
α̃(u,x)
1+ρ h(u, x, y)

)1+ρ
, (A.64)
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is denoted by α̃∗(u, x) and satisfies

α̃∗(u, x) = (1 + ρ) log k(x, u)∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
α̃∗(ū,x̄)

1+ρ

)ρ
h(u, x, ȳ)

×
(∑
x̃,ũ

k(x̃, ũ) log

∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
α̃∗(ū,x̄)

1+ρ

)ρ
h(ũ, x̃, ȳ)

k(x̃, ũ)

)
. (A.65)

Proof. To solve the optimization problems given in Lemma A.10 we apply
Lagrange duality theory. Since the objective functions given in (A.62) and
(A.64) are convex with respect to ᾱ(x) and α̃(u, x), respectively and the
constraints ∑x,u k(x, u)ᾱ(x) = 0 and ∑x,u k(x, u)α̃(u, x) = 0 are affine, the
strong duality holds for both problems.

To prove Lemma A.10, firstly we focus on the optimization problem given
(A.62). Since the primal problem given in (A.62) satisfies the strong duality
conditions, we have

min
ᾱ(x):

∑
x,u

k(x,u)ᾱ(x)=0

∑
y

(∑
u,x

e
ᾱ(x)
1+ρ h(u, x, y)

)1+ρ
= max min

ᾱ(x)
L̂2(ᾱ, ν), (A.66)

where minᾱ(x) L̂2(ᾱ, ν) is the Lagrange dual function of the primary problem
(A.62) and the Lagrangian is given by

L̂2(ᾱ, ν) =
∑
y

(∑
u,x

e
ᾱ(x)
1+ρ h(u, x, y)

)1+ρ
+ ν

(
0−

∑
x,u

k(x, u)ᾱ(x)
)
, (A.67)

where ν is the Lagrange multiplier associated with the given constraint∑
x,u k(x, u)ᾱ(x) = 0. In order to determine max minᾱ(x) L̂2(ᾱ, ν), in view

of the KKT conditions, for the optimal values of (ᾱ, ν), we have ∂L̂2(ᾱ,ν)
∂ᾱ

= 0,
which leads to∑

ȳ

(∑
ū,x̄

e
ᾱ(x̄)
1+ρ h(ū, x̄, ȳ)

)ρ
e
ᾱ(x)
1+ρ

∑
û

h(û, x, ȳ)− ν
∑
ū

k(x, ū) = 0. (A.68)

By solving (A.68) with respect to ᾱ(x), we obtain

ᾱ(x) = (1 + ρ) log ν
∑
ū k(x, ū)∑

ȳ

(∑
ū,x̄ h(ū, x̄, ȳ)e

ᾱ(x̄)
1+ρ

)ρ∑
û h(û, x, ȳ)

. (A.69)

To apply the constraint ∑x,u k(x, u)ᾱ(x) = 0, by multiplying both sides of
(A.69) by k(x, u), summing over (u, x) and using the fact that log(ab) =
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log(a)− log(1
b
), we get

log(ν)
∑
x,u

k(x, u) =
∑
x,u

k(x, u) log

∑
ȳ

(∑
ū,x̄ h(ū, x̄, ȳ)e

ᾱ(x̄)
1+ρ

)ρ∑
û h(û, x, ȳ)∑

ū k(x, ū) .

(A.70)

Considering the identity that ∑x,u k(u, x) = 1, optimal ν is derived as

ν = exp
(∑
x̃,ũ

k(x̃, ũ) log

∑
ȳ

(∑
ū,x̄ h(ū, x̄, ȳ)e

ᾱ(x̄)
1+ρ

)ρ∑
û h(û, x̃, ȳ)∑

ū k(x̃, ū)

)
. (A.71)

Putting back ν obtained in (A.71) into (A.69) and using the fact that elog a =
a, the optimal value of ᾱ is derived in (A.63) as ᾱ∗(x).

Now, in order to find the optimal α̃(u, x) which minimizes (A.64), again
we apply Lagrange duality theory. since the approach is exactly the same,
we omit some details.

The Lagrange dual function to the primary problem (A.64) is

L̂3(α̃, µ) =
∑
y

(∑
u,x

e
α̃(u,x)
1+ρ h(u, x, y)

)1+ρ
+ µ

(
0−

∑
x,u

k(x, u)α̃(u, x)
)
, (A.72)

where µ is the Lagrange multiplier associated with the given constraint∑
x,u k(x, u)α̃(u, x) = 0. In view of the KKT conditions, by setting ∂L̂3(α̃,µ)

∂α̃
=

0, we have

∑
y

(∑
u,x

e
α̃(u,x)
1+ρ h(u, x, y)

)ρ
e
α̃(u,x)
1+ρ h(u, x, y)− µk(x, u) = 0. (A.73)

Solving (A.73) with respect to α̃(u, x), applying ∑x,u k(x, u)α̃(u, x) = 0 and∑
x,u k(u, x) = 1, after some mathematical manipulations, the optimal value

of α̃(u, x) is derived by (A.65) as α̃∗(u, x).

Lemma A.11. Let h(u, x, y) and k(x, u) in Lemma A.10 are chosen such
that for all values of (u, x, y), we have h(u,x,y)

k(x,u) =
∑

u
h(u,x,y)∑
u
k(x,u) . Then α̃

∗(u, x) =
ᾱ∗(x) for all u ∈ U and the quantity of (A.62) is equal with the quantity
given in (A.64).

Proof. If h(u,x,y)
k(x,u) =

∑
u
h(u,x,y)∑
u
k(x,u) , we define z(x, y) as z(x, y) , h(u,x,y)

k(x,u) =
∑

u
h(u,x,y)∑
u
k(x,u) .

By replacing z(x, y) instead of
∑

u
h(u,x,y)∑
u
k(x,u) and h(u,x,y)

k(x,u) in (A.63) and (A.65),
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respectively the quantities of ᾱ∗(x) and α̃∗(u, x) are given by

ᾱ∗(x) = −(1 + ρ) log
(∑

ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
ᾱ∗(x̄)
1+ρ

)ρ
z(x, ȳ)

)

×
(∑
x̃,ũ

k(x̃, ũ) log
∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
ᾱ∗(x̄)
1+ρ

)ρ
z(x̃, ȳ)

)
, (A.74)

and

α̃∗(u, x) = −(1 + ρ) log
(∑

ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
α̃∗(ū,x̄)

1+ρ

)ρ
z(x, ȳ)

)

×
(∑
x̃,ũ

k(x̃, ũ) log
∑
ȳ

(∑
ū,x̄

h(ū, x̄, ȳ)e
α̃∗(ū,x̄)

1+ρ

)ρ
z(x̃, ȳ)

)
, (A.75)

where from (A.75), we may note that the first term of (A.75) only depends on
x and the second term, is constant. As a result, when h(u,x,y)

k(x,u) =
∑

u
h(u,x,y)∑
u
k(x,u) =

z(x, y) holds, the quantity of α̃∗(u, x) only depends on x and for u′ 6= u,
we have α̃∗(u′, x) = α̃∗(u, x) which implies α̃∗(u, x) = α̃∗(x). Using this
fact, by replacing α̃∗(u, x) with α̃∗(x) in (A.75) and comparing it with with
ᾱ∗(x) given in (A.74), we conclude that α̃∗(u, x) = α̃∗(x) = ᾱ∗(x) when
h(u,x,y)
k(x,u) =

∑
u
h(u,x,y)∑
u
k(x,u) . Putting back the optimal value of ᾱ∗(x) given in (A.74)

into objective functions in (A.62) and (A.64), concludes Lemma A.11, i. e. the
quantity of (A.62) is equal with the quantity given in (A.64).

Lemma A.12. For γi+1, γi ∈ [0, 1], let γi+1 ≤ γi. Then, for probability
distribution PU we have

min
λi+1,λi≥0

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ

1+ρ

= eEs,i(ρ,PnU ,γi+1,γi),

(A.76)

where Es,i (ρ, PU , γi+1, γi) is given by (2.24).

Proof. Since the objective function of (A.76) is convex with respect to λi and
λi+1, we have

∂

∂λj

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ


1+ρ
∣∣∣∣∣∣∣∣
λ?j≥0

= 0, (A.77)
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for j = i, i+ 1. We recall that when the solution λ?j for j = i, i+ 1 to (A.77)
is strictly negative, then λ?j = 0. Let λ?i > 0, then (A.77) yields

∑
u P

n
U (u)

1−λ?
i

+λ?
i+1

1+ρ log(P n
U (u))∑

u P
n
U (u)

1−λ?
i

+λ?
i+1

1+ρ

= log(γni ), (A.78)

and if λ?i+1 > 0, from (A.77) we have

∑
u P

n
U (u)

1−λ?
i

+λ?
i+1

1+ρ log(P n
U (u))∑

u P
n
U (u)

1−λ?
i

+λ?
i+1

1+ρ

= log(γni+1). (A.79)

Since the left hand sides of (A.78) and (A.79) are same, we conclude that if
both λ?i > 0 and λ?i+1 > 0, then γi = γi+1. In other words, if γi 6= γi+1, it
is impossible that (A.78) and (A.79) are satisfied at the same time, i. e. it is
impossible that λ?i > 0 and λ?i+1 > 0 at the same time.

Thus, we consider three cases including only (A.78) is satisfied, only
(A.79) is satisfied and none of the them are satisfied and we define ργi and
ργi+1 as

1− λi
1 + ρ

= 1
1 + ργi

, (A.80)

1 + λi+1

1 + ρ
= 1

1 + ργi+1

. (A.81)

1. Let only (A.78) is satisfied, i. e. λ?i > 0 and λ?i+1 = 0. Applying λ?i > 0
into (A.80), yields

1
1 + ρ

− 1
1 + ργi

> 0. (A.82)

Moreover, by inserting λ?i+1 = 0 and 1−λ?i
1+ρ = 1

1+ργi
into (A.78), we obtain

∑
u P

n
U (u)

1
1+ργi log(P n

U (u))∑
u P

n
U (u)

1
1+ργi

= log(γni ), (A.83)

where by considering (1.9), γni in (A.83) can be expressed as

γni = eEs(ργi ,P
n
U (u))−(1+ργi )E

′
s(ργi ,P

n
U (u)). (A.84)
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In addition, setting 1−λ?i
1+ρ = 1

1+ργi
and λ?i+1 = 0 into the left hand side

of (A.76), leads to

min
λi+1,λi≥0

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ

1+ρ

=

=
(∑

u

P n
U (u)

1
1+ργi

)1+ρ

γ
n
ργi−ρ
1+ρ

i = e
(1+ρ) log

(
PnU (u)

1
1+ργi

)
γ
n
ργi−ρ
1+ργi

i , (A.85)

where we used a(1+ρ) = e(1+ρ) log(a). Substituting (A.84) into (A.85),
yields

min
λi+1,λi≥0

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ

1+ρ

= eEs(ργi ,P
n
U (u))−(ρ−ργi )E

′
s(ργi ,P

n
U (u)), (A.86)

for ρs satisfying (A.82), i. e. for

1
1 + ρ

>
1

1 + ργi
. (A.87)

2. Let only (A.79) is satisfied, i. e. λ?i+1 > 0 and λ?i = 0. Using the
same steps as previous case, by defining 1+λ?i+1

1+ρ = 1
1+ργi+1

, and applying
λ?i+1 > 0 into (A.81), for ρs satisfying

1
1 + ρ

<
1

1 + ργi+1

, (A.88)

we have

min
λi+1,λi≥0

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ

1+ρ

= eEs(ργi+1 ,P
n
U (u))−(ρ−ργi+1 )E′s(ργi+1,PnU (u)), (A.89)

where ργi+1 satisfies the following equation

∑
u P

n
U (u)

1
1+ργi+1 log(P n

U (u))∑
u P

n
U (u)

1
1+ργi+1

= log(γni+1). (A.90)
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3. Let none of the equations (A.78) and (A.79) are satisfied, i. e. both λi+1
and λi satisfying (A.77) are negative. Applying λi+1 ≤ 0 and λi+1 ≤
into (A.80) and (A.81), for ρs satisfying

1
1 + ργi+1

≤ 1
1 + ρ

≤ 1
1 + ργi

, (A.91)

we insert λ?i+1 = λ?i = 0 into the left hand side of (A.76), which leads

min
λi+1,λi≥0

∑
u

P n
U (u)

1
1+ρ

(
γni

P n
U (u)

) λi
1+ρ
(
P n
U (u)
γni+1

)λi+1
1+ρ

1+ρ

= eEs(ρ,P
n
U (u)).

(A.92)

Combining (A.92) for (A.91), (A.89) for (A.88) and (A.86) for (A.87), con-
cludes the proof.
Lemma A.13. Let L0s(ρ) = L0(ρ) − Ls(ρ) where L0(ρ) is a continuous
function and Ls(ρ) is a convex function of ρ. Then,

L̄0s(ρ) ≤ L̄0(ρ)− Ls(ρ), (A.93)

where L̄0s and L̄0 denote the concave hull of L0s(ρ) and L0(ρ), respectively.
Proof. From the definition of concave hull in (2.4), the left hand side of
(A.93) is given by

L̄0s(ρ) = sup
ρ1,ρ2,θ∈[0,1] :
θρ1+(1−θ)ρ2=ρ

{
θL0s(ρ1) + (1− θ)L0s(ρ2)

}
. (A.94)

Using the definition of L0s(ρ), the right hand side of (A.94) is simplified as
θL0s(ρ1) + (1− θ)L0s(ρ2) =

θL0(ρ1) + (1− θ)L0(ρ2)− θLs(ρ1)− (1− θ)Ls(ρ2). (A.95)
Since Ls(ρ) is a convex function of ρ, and so θLs(ρ1) + (1 − θ)Ls(ρ2) ≥
Ls(θρ1 + (1− θ)ρ2), we further obtain that

θL0s(ρ1) + (1− θ)L0s(ρ2) ≤ θL0(ρ1) + (1− θ)L0(ρ2)− Ls(ρ), (A.96)
where we used that θρ1 + (1− θ)ρ2 = ρ. Taking supremum from both sides
of (A.96), in view of [44, Sec. 2.9], we obtain that

sup
ρ1,ρ2,θ∈[0,1] :
θρ1+(1−θ)ρ2=ρ

{
θL0s(ρ1) + (1− θ)L0s(ρ2)

}
≤

sup
ρ1,ρ2,θ∈[0,1] :
θρ1+(1−θ)ρ2=ρ

{
θL0(ρ1) + (1− θ)L0(ρ2)

}
− Ls(ρ), (A.97)

concluding the proof.
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Lemma A.14. Let T and Z be two correlated random variables character-
ized by PTZ = PU . For a given channel W , source PU = PTZ, and input
distribution Q, let E be

E = min
P̂U∈PU

min
P̂XY ∈PX×Y

D(P̂U ||PU) +D(P̂XY ||QW )

+
[

min
P̃U∈Ks(P̂U )

min
P̃XY ∈Kc(P̂XY )

D(P̃XY ||QP̂Y )−H(P̃T |Z)
]+
, (A.98)

where

Ks(P̂U) ,
{
P̃U ∈ PU : P̃Z = P̂Z , EP̃ log

(
PU(U)

)
≥ EP̂ log

(
PU(U)

)}
,

(A.99)
and

Kc(P̂XY ) ,
{
P̃XY ∈ PX×Y : P̃Y = P̂Y ,

EP̃ log
(
W (Y |X)

)
≥ EP̂ log

(
W (Y |X)

)}
. (A.100)

It can be proved that

E ≥ min
P̂U∈PU

min
P̂XY ∈PX×Y

D(P̂U ||PU) +D(P̂XY ||QW )

+
[
D(P̂XY ||QP̂Y )−H(P̂T |Z)

]+
. (A.101)

Proof. Firstly, assume for the optimal P̂U , P̂XY , P̃U and P̃XY minimizing
(A.98), we have

D(P̃XY ||QP̂Y )−H(P̃T |Z) ≥ D(P̂XY ||QP̂Y )−H(P̂T |Z), (A.102)

which leads to[
D(P̃XY ||QP̂Y )−H(P̃T |Z)

]+
≥
[
D(P̂XY ||QP̂Y )−H(P̂T |Z)

]+
. (A.103)

Adding D(P̂U ||PU) + D(P̂XY ||QW ) to the both sides of (A.103), (A.101) is
proved. Alternatively, if

D(P̃XY ||QP̂Y )−H(P̃T |Z) ≤ D(P̂XY ||QP̂Y )−H(P̂T |Z), (A.104)

in view of (A.99), since P̃Z(z) = P̂Z(z), for all z ∈ Z, we add −H(P̃Z) =
−H(P̂Z) to the both sides of (A.104), where since PT |Z = PU

PZ
, we have

D(P̃XY ||QP̂Y ) +
∑
u

P̃U(u) log
(
P̃U(u)

)
≤

D(P̂XY ||QP̂Y ) +
∑
u

P̂U(u) log
(
P̂U(u)

)
. (A.105)
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Next, by using EP̃ log
(
PU(U)

)
≥ EP̂ log

(
PU(U)

)
and EP̃ log

(
W (Y |X)

)
≥

EP̂ log
(
W (Y |X)

)
, respectively given by (A.99) and (A.100), we find∑

u

P̃U(u) log (PU(u)) +
∑
x,y

P̃XY (x, y) log (W (y|x)) ≥
∑
u

P̂U(u) log (PU(u)) +
∑
x,y

P̂XY (x, y) log (W (y|x)) . (A.106)

Subtracting (A.106) from (A.105) leads to

∑
u

P̃U(u) log
(
P̃U(u)
PU(u)

)
+
∑
x,y

P̃XY (x, y) log
(

P̃XY (x, y)
W (y|x)Q(x)P̂Y (y)

)
≤

∑
u

P̂U(u) log
(
P̂U(u)
PU(u)

)
+
∑
x,y

P̂XY (x, y) log
(

P̂XY (x, y)
W (y|x)Q(x)P̂Y (y)

)
. (A.107)

Moreover, in view of (A.100), P̃Y = P̂Y which yields H(P̃Y ) = H(P̂Y ) or
equivalently∑

x,y

P̃XY (x, y) log P̂Y (y) =
∑
x,y

P̂XY (x, y) log P̂Y (y). (A.108)

By adding (A.108) to the both sides of (A.107), we have

∑
u

P̃U(u) log
(
P̃U(u)
PU(u)

)
+
∑
x,y

P̃XY (x, y) log
(

P̃XY (x, y)
W (y|x)Q(x)

)
≤

∑
u

P̂U(u) log
(
P̂U(u)
PU(u)

)
+
∑
x,y

P̂XY (x, y) log
(

P̂XY (x, y)
W (y|x)Q(x)

)
. (A.109)

Using the definition of the relative entropy, (A.109) can be expressed as

D(P̃U ||PU) +D(P̃XY ||QW ) ≤ D(P̂U ||PU) +D(P̂XY ||QW ). (A.110)

By adding
[
D(P̃XY ||QP̂Y ) − H(P̃T |Z)

]+
on the both sides of (A.110), we

obtain

D(P̃U ||PU) +D(P̃XY ||QW ) +
[
D(P̃XY ||QP̂Y )−H(P̃T |Z)

]+
≤

D(P̂U ||PU) +D(P̂XY ||QW ) +
[
D(P̃XY ||QP̂Y )−H(P̃T |Z)

]+
. (A.111)

Inasmuch as Ks(P̂U) ⊂ PU and Kc(P̂XY ) ⊂ PX×Y , we have proved that
whether D(P̃XY ||QP̂Y )−H(P̃T |Z) be lower than D(P̂XY ||QP̂Y )−H(P̂T |Z) or
greater, we have (A.101).
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Lemma A.15. Let E(ρ) be a continuous function of ρ and we have 0 =
γL+1 ≤ γL ≤ ... ≤ γ2 < γ1 = 1. Considering (2.24), for ` = 2, ..., L, the
function

f`−1(γ`) = max
ρ∈[0,1]

E(ρ)− Es,`−1(ρ, PU , γν,`, γν,`−1), (A.112)

is non-decreasing with respect to γ` and

f`(γ`) = max
ρ∈[0,1]

E(ρ)− Es,`(ρ, PU , γν,`+1, γν,`), (A.113)

is non-increasing with respect to γ`.

Proof. In order to prove Lemma A.15, we compute Es,`−1(·) and Es,`(·) for the
fixed source-partitioning thresholds γ`+1 ≤ γ` ≤ γ`−1 and also we compute
Es,`′−1(·) and Es,`′(·) for the fixed source-partitioning thresholds γ`+1 ≤ γ`′ ≤
γ`−1. We will show that if γ` ≤ γ`′ then Es,`−1(·) ≥ Es,`′−1(·) and Es,`(·) ≤
Es,`′(·). Thus, maxρE(ρ) − Es,`−1(ρ, PU) ≤ maxρE(ρ) − Es,`′−1(ρ, PU) and
maxρE(ρ) − Es,`(ρ, PU) ≥ maxρE(ρ) − Es,`′(ρ, PU) meaning that f`−1(γ`)
and f`(γ`) are respectively non-decreasing and non-increasing with respect
to γ`.

To prove Es,`−1(·) ≥ Es,`′−1(·), recalling that γ` < γ`′ , we have 1
1+ργ`

<
1

1+ργ`′
. Hence, for γ`+1 ≤ γ` ≤ γ`−1 we express Es,`−1(·) as

Es,`−1(ρ, PU , γν,`, γν,`−1) =

Es(ργ` , PU) + E ′s(ργ`)(ρ− ργ`) 1
1+ρ <

1
1+ργ`

,

Es(ρ, PU) 1
1+ργ`

≤ 1
1+ρ ≤

1
1+ργ`′

,

Es(ρ, PU) 1
1+ργ`′

≤ 1
1+ρ ≤

1
1+ργ`−1

,

Es(ργ`−1 , PU) + E ′s(ργ`−1)(ρ− ργ`−1) 1
1+ρ >

1
1+ργ`−1

,

(A.114)

and for γ`+1 ≤ γ`′ ≤ γ`−1, Es,`′−1(·) can be written as

Es,`′−1(ρ, PU , γν,`′ , γν,`′−1) =

Es(ργ`′ , PU) + E ′s(ργ`′ )(ρ− ργ`′ )
1

1+ρ <
1

1+ργ`
,

Es(ργ`′ , PU) + E ′s(ργ`′ )(ρ− ργ`′ )
1

1+ργ`
≤ 1

1+ρ ≤
1

1+ργ`′
,

Es(ρ, PU) 1
1+ργ`′

≤ 1
1+ρ ≤

1
1+ργ`−1

,

Es(ργ`−1 , PU) + E ′s(ργ`−1)(ρ− ργ`−1) 1
1+ρ >

1
1+ργ`−1

,

(A.115)

where we recall that since Es function is a convex function in the region of ρ ∈
[0, 1], the tangent line at ργ`′ lies below Es. In addition, since 1

1+ργ`
< 1

1+ργ`′
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and the tangent line at ργ` is above the tangent line at ργ`′ for
1

1+ρ <
1

1+ργ`
.

As a result, by comparing (A.114) and (A.115), we conclude that for all
ρ ∈ [0, 1] we have Es,`−1(ρ, PU) ≥ Es,`′−1(ρ, PU).

To prove Es,`(·) ≤ Es,`′(·) for γ` ≤ γ`′ , similarly, for γ`+1 ≤ γ` ≤ γ`−1 we
have

Es,`(ρ, PU , γν,`+1, γν,`) =

Es(ργ`+1 , PU) + E ′s(ργ`+1)(ρ− ργ`+1) 1
1+ρ <

1
1+ργ`+1

,

Es(ρ, PU) 1
1+ργ`+1

≤ 1
1+ρ ≤

1
1+ργ`

,

Es(ργ` , PU) + E ′s(ργ`)(ρ− ργ`) 1
1+ργ`

< 1
1+ρ ≤

1
1+ργ`′

,

Es(ργ` , PU) + E ′s(ργ`)(ρ− ργ`) 1
1+ρ >

1
1+ργ`′

,

(A.116)

and for γ`+1 ≤ γ`′ ≤ γ`−1

Es,`′(ρ, PU , γν,`′+1, γν,`′) =

Es(ργ`+1 , PU) + E ′s(ργ`+1)(ρ− ργ`+1) 1
1+ρ <

1
1+ργ`+1

,

Es(ρ, PU) 1
1+ργ`+1

≤ 1
1+ρ ≤

1
1+ργ`

,

Es(ρ, PU) 1
1+ργ`

< 1
1+ρ ≤

1
1+ργ`′

,

Es(ργ`′ , PU) + E ′s(ργ`′ )(ρ− ργ`′ )
1

1+ρ >
1

1+ργ`′
,

(A.117)

where since 1
1+ργ`

< 1
1+ργ`′

for 1
1+ρ >

1
1+ργ`′

the tangent line of Es at ρ`′ is
above of the tangent line of Es at ρ`, meaning that Es,`(ρ, PU) ≤ Es,`′(ρ, PU).

Lemma A.16. Let i = 1, 2, for a given source probability distribution PU
and some γ ∈ [0, 1]. Then, we have that

min
λ≥0

∑
u

P n
U (u)

1
1+ρ

(
γn

P n
U (u)

) (−1)iλ
1+ρ

1+ρ

= eEs,i(ρ,P
n
U ,γ

n), (A.118)

where Es,i(ρ, PU , γ) for i = 1, 2 is given by (2.33) and (2.34).

Proof. In order to prove (A.118), we may note that since the objective func-
tion in (A.118) is convex with respect to λ, the optimal λ? satisfies

∂

∂λ

∑
u

P n
U (u)

1
1+ρ

(
γn

P n
U (u)

) (−1)iλ
1+ρ

1+ρ∣∣∣∣∣∣∣
λ?≥0

= 0. (A.119)
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This leads to ∑
u P

n
U (u)

1−(−1)iλ?
1+ρ log(P n

U (u))∑
u P

n
U (u)

1−(−1)iλ?
1+ρ

= log(γn). (A.120)

It is convenient to define ργ through the implicit equation
1− (−1)iλ?

1 + ρ
= 1

1 + ργ
. (A.121)

When the solution to (A.120) is strictly negative, i. e. when

(−1)i
(

1
1 + ρ

− 1
1 + ργ

)
< 0, (A.122)

we have λ? = 0, and hence (A.118) simplifies to∑
u

P n
U (u)

1
1+ρ

(
γn

P n
U (u)

) (−1)iλ
1+ρ

1+ρ∣∣∣∣∣∣
λ=0

=

(∑
u

P n
U (u)

1
1+ρ

)1+ρ

= eEs(ρ,P
n
U (u)). (A.123)

Otherwise, when the solution to (A.120) is non-negative, i. e. when

(−1)i
(

1
1 + ρ

− 1
1 + ργ

)
≥ 0 (A.124)

and using (A.121), the left hand side of (A.118) satisfies

min
λ≥0

∑
u

P n
U (u)

1
1+ρ

(
γn

P n
U (u)

) (−1)iλ
1+ρ

1+ρ

=
(∑

u

P n
U (u)

1
1+ργ

)1+ρ

γn
ργ−ρ
1+ρ = e

(1+ρ) log
(
PnU (u)

1
1+ργ

)
γ
n
ργ−ρ
1+ργ , (A.125)

where we used a(1+ρ) = e(1+ρ) log(a). Using (A.121) into (A.120), we may
express γn in terms of the Es(·) function and its derivative E ′s(·) as

γn = eEs(ργ ,P
n
U (u))−(1+ργ)E′s(ργ ,PnU (u)), (A.126)

Inserting the right hand side of (A.126) into (A.125), we obtain

min
λ≥0

∑
u

P n
U (u)

1
1+ρ

(
γn

P n
U (u)

) (−1)iλ
1+ρ

1+ρ

= eEs(ργ ,P
n
U (u))−(ρ−ργ)E′s(ργ ,PnU (u)).

(A.127)
Finally, combining (A.123) and (A.127) respectively for (A.122) and (A.124),

and using the definitions (2.33) and (2.34), we conclude the proof.
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