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With the red hair of one she-urchin in the gutter I will set fire to all 

modern civilization. Because a girl should have long hair, she should 

have clean hair; because she should have clean hair, she should not 

have an unclean home; because she should not have an unclean 

home, she should have a free and leisured mother; because she should 

have a free mother, she should not have an usurious landlord; 

because there should not be an usurious landlord, there should be 

redistribution of property; because there should be a redistribution of 

property, there shall be a revolution. That little urchin with the gold-

red hair, whom I have just watched toddling past my house, she shall 

not be lopped and lamed and altered; her hair shall not be cut short 

like a convict’s; no, all the kingdoms of the earth shall be hacked and 

mutilated to suit her. She is the human and sacred image; all around 

her the social fabric shall sway and split and fall; the pillars of 

society shall be shaken, and the roofs of ages come rushing down, and 

not one hair of her head shall be harmed. 

G. K. Chesterton, What’s wrong with the world 
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In truth, it is only by eternal institutions like hair, that we can test passing 

institutions like empires. If a house is so built as to knock a man’s head off 

when he enters it, it is built wrong. 

G. K. Chesterton, What’s wrong with the world 

 

Introduction 

1. The personal roots of this thesis 

There is an exercise of scientific honesty with which I would like to start. I believe that, 

especially in social sciences, our scientific approach towards the real world, what we see 

and how we see it, is determined by who we are, our social position, our values and 

prejudices, our worldview. There is a subtle degree of subjectivity that is unavoidable, 

and the only way to approach to it objectively, is by stating it explicitly from the very 

beginning. Thus, I will start this introduction with a brief presentation of the personal 

roots of this thesis.  

I had my first Economics class in high school. The first day, our teacher told us that 

Economics was the science that deals with the problem of how to satisfy unlimited human 

needs with limited resources. That first day I decided that I should study economics, 

because apparently it was an area with great influence in everyone’s life, and looked like 

something was wrong with it if in its very definition it was confusing needs and desires. 

Luckily, I had also an amazing Philosophy teacher in high school, with whom I learned 

the amusement of philosophical reflection. Thus, after high school I ended up studying 

Economics and Philosophy at the university, because if I was to become economist, I 

would be one with a sound consideration of what is and what should be. I would like to 

think that this thesis would not disappoint that 16-year-old girl committed to build a better 

world. 

During the years at the Complutense University in Madrid, I lived and learned between 

two worlds, feeling sometimes too economist for being a philosopher, sometimes too 

philosopher for being an economist. However, I found my place in that field of knowledge 

that is the in-between, in the space in which life, reality, the world, is complex and not 

easy to grasp; a space with no clear boundaries; a territory with not many, if any, clear, 

eternal, universal certainties; a realm that moves, changes and transforms, that is flexible 
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and requires flexibility. Through those university years I learned some things, unlearned 

some others, and built up my epistemological ethos. 

When I decided to do a PhD I did it with the conviction that the house we live in 

(Capitalism) is built wrong, and even though there are different means that could test it 

(such as feminism, racism and inequality), sustainability was my red hair (Chesterton, 

1912). My ethical commitment with sustainability is not based only on a concern for 

social justice, or on a speciesist and anthropocentric interest on trying to guarantee our 

own survival as species in the current ecological crisis. I consider, of course, the 

importance of those issues, but I am also convinced that there is an intrinsic value in 

nature and that every living species has a right to live that ought to be respected (Katie, 

2007; Routley, 1973). Additionally, I wanted to focus on agriculture because I understood 

that the basis of human subsistence is how we obtain our food. No other economic activity 

makes sense if we are not able to feed ourselves. That was my initial research interest, the 

starting point from where this work has been built. However, throughout the intellectual 

journey of this PhD, the research subject has expanded. The two-dimensional geometric 

form conformed by sustainability and agriculture, now has transformed and acquired the 

shape of a network of interrelated ideas, facts, theories and concepts. The topic of 

agricultural sustainability has gained complexity and depth. On the one hand, the 

investigation process has transformed my initial concept of sustainability. Naïvely 

understood at the beginning as an ideal state to be achieved, now I use this concept 

understanding it as a process, a dynamic equilibrium that requires continuous adaptation 

and decision-making. On the other hand, agriculture has become much more than just 

growing food: it is a way of living, a cultural expression, an economic activity, a social 

practice and a way of relating with Nature. This dynamic and complex perspective is 

somehow a worldview that is not restricted to the field of agricultural sustainability, but 

can be applied also to social and economic systems as a whole.  

When Economy is defined as a life process (Sahlins, 1988) in which markets, money, and 

profits are just a part but do not constitute the whole, it becomes easier to distinguish the 

eternal institutions from the passing ones. Furthermore, it becomes easier to imagine new 

possibilities. For building a new house, the old one needs to be tested from its foundations. 

However, building a new house of this kind is an exciting and exhausting task that can 

only be done collectively. I am glad that throughout these years of PhD I have found 

many inspiring authors that I have read with delight. And of course, I am very grateful 
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that the University of Barcelona gave me the opportunity to work with a fascinating group 

of researchers that have not only bright brains but also wonderful hearts. 

 

2. The importance of agriculture and its historical (and future) 

transformations 

Agriculture is a minor economic activity in GDP terms. According to the data available 

for 2016 from FAO1 the value added of agriculture as a share of the world GDP was only 

4.18%. However, that small proportion of GDP is potentially able to feed the actual world 

population of more than 7.5 billion people —even though an 11% prevalence of 

undernourishment exists nowadays due to poverty, food waste and food distribution 

patterns (Berners-Lee, Kennelly, Watson, & Hewitt, 2018). Additionally, it employs more 

than one quarter of the labourers worldwide and covers 37% of the total land area. Thus, 

despite the reduced significance of agriculture in monetary terms, in real terms agriculture 

is still a major economic activity.  

The current global agricultural and food production system has important flaws that can 

be grouped in two different dimensions. On one hand, there are problems of economic 

and social inequality caused to a large extent because of the increased presence and power 

of large global corporations in the industrial agrifood system (Etxezarreta, 2006; 

McMichael, 2013; Patel, 2012a). On the other hand, modern industrial agriculture is also 

of great importance in the sustainability crisis that characterises the Capitalocene (Moore, 

2017, 2018). This PhD thesis is focused on the second type of problems derived from 

modern industrial agriculture, but it is important to acknowledge that the social and 

ecological problematics are ultimately related since they both respond to a structural 

organization of agricultural production centred on profit maximization.  

Agriculture has a key role in global environmental change (Campbell et al., 2017; IPCC, 

2014; Tilman, Fargione, et al., 2001). According to the framework of the planetary 

boundaries proposed by Rockstrom et al. (2009) and Steffen et al. (2015) that establishes 

the limits that should not be surpassed if we want to avoid an abrupt global environmental 

change, agriculture has been a major driver in the transgression of two of these 

boundaries: biogeochemical flows (i.e. the alteration of Nitrogen and Phosphorus global 

                                                 
1 http://faostat.fao.org/static/syb/syb_5000.pdf  

http://faostat.fao.org/static/syb/syb_5000.pdf
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cycles) and biosphere integrity (i.e. the loss of genetic diversity and functional diversity). 

Additionally, agriculture is a major driver in two boundaries under increasing risk: 

freshwater use and land-system change; and a significant driver of a third one: climate 

change. Together with other human activities, agriculture is pushing these environmental 

limits risking to destabilize the Earth System with hazardous consequences. Agricultural 

systems need to be transformed so that their ecological impacts are reduced and mitigated, 

but agriculture also needs to adapt to the new coming environmental conditions while 

feeding a larger global population. Transforming agriculture towards a sustainability path 

is urgent and the changes needed are profound.  

These current sustainability problems are not inherent to any agricultural system, rather 

they are closely related to the modern expansion of a particular agricultural model. During 

the 20th century, and especially after the Second World War with the spread of the Green 

Revolution, agriculture experienced a great transformation. Modern industrialized farm 

systems have achieved a great increase of agricultural output, but at the abovementioned 

sustainability costs. The differences between traditional and industrial farm systems are 

sharp (Table 1) since these two agricultural models reflect different technological 

capacities and contrasting ways of understanding agricultural production and relating 

with Nature.  

 

Table 1. Main characteristics of traditional and industrialised agricultural systems. Source: own 

elaboration from (Altieri, 2004; Altieri & Nicholls, 2005; Mazoyer & Roudart, 2006) 

Traditional agriculture Industrialized agriculture 

-Local resources (environment, 

knowledge, seeds) 

-Organic matter recycling 

-Polycultures 

-Structural diversity 

-Integrated livestock management 

-Human and animal workforce 

-Medium/small scale 

-External resources (standardized 

technology, knowledge, seeds) 

-Industrial fertilizers 

-Monocultures 

-Industrial pesticides 

-Industrial livestock management 

-Mechanization 

-Large scale 
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-Self-sufficiency, reduced 

external/market dependency, functional 

diversity 

-Moderate yields 

-Resilience 

-Dependence on external inputs, market 

orientation, specialization 

 

-High yields 

-Unsustainability 

 

Understanding how the transition from organic traditional farm systems to industrialized 

agricultural systems took place and transformed the biophysical, social and economic 

structure of agroecosystems is important in order to build more sustainable food systems. 

Traditional farm systems are an important source of ecological knowledge and have 

certain features (such as the reduced use of external inputs or the resilience capacity) that 

will be important for building more sustainable farm systems in the future. Analysing 

which were the drivers of the transition towards industrialized farming, and which were 

the techniques and strategies that allowed the maintenance of the productive capacity of 

agroecosystems in the past, is important for the future. Thus, this thesis looks at history 

in order to learn for the future.  

 

3. Les Oluges: small is relevant 

Initially, the case study of Les Oluges was conceived to be an introductory exercise in my 

thesis. The study of a small village in Catalonia for which good historical sources were 

already available would let me familiarise with the innovative methodology developed 

by the Sustainable Farm Systems (SFS) international research group before jumping to 

another case study which could fit more with my initial interests. However, once I stepped 

into that municipality of La Segarra I had never heard about before, I never left. I stayed 

in Les Oluges for two reasons. On the one hand there was a pragmatic point: after all the 

time and effort put on organizing the database and obtaining the first results, it was not 

clear whether the timespan of my PhD would be compatible with the investment of time 

needed to clear up a new territory, finding the historical sources needed, building the 

database and disentangling its functioning. Thus, it made sense trying to make the best 

use of the database already developed for Les Oluges instead of building a new one. On 

the other hand, however, there was another cause: from that first analysis there appeared 
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interesting results and some further questions that required a deeper analysis. The more 

acquainted I got with the particularities of Les Oluges, the more interested I became in 

understanding it, in analysing its details, in answering the questions that its investigation 

was rising. Indeed, the research issues stirred by this apparently small case study are not 

exhausted yet. 

The interest on the analysis of Les Oluges was first considered as a contrasting point with 

the case of study of the Vallès agroecosystem that other colleagues of the SFS Catalan 

Team were working on. Comparing the transformation paths that agroecosystems 

pertaining to each of the two Catalonias (Vallès as part of the rich, wet, closer to the coast 

of Catalonia, and Oluges as part of the poor, dry, inner part of Catalonia) (Vilá Valentí & 

Vila, 1973) was a relevant contribution to the work developed by the SFS research group. 

However, Les Oluges has ended up earning its own significance as a relevant case study 

by itself.  

The historical evolution of Les Oluges is representative of the changes experienced in the 

rain-fed cereal-growing agroecosystems of Spain (Mata Olmo, 2002). These 

agroecosystems were traditionally characterised by relatively tough environmental 

conditions for agriculture, poor and irregular harvests, highly fragmented cropland, 

terraced lands and extensive cultivation with fallow every other year, and the 

predominance of mules and donkeys as draft force. Until the end of the decade of 1950s 

the use of mineral fertilizers and mechanization were low, but they expanded from the 

decade of the 1960s transforming profoundly these agroecosystems. A very important 

rural exodus accompanied this agricultural transformation. Additionally, fallow was 

reduced and eventually eliminated, cropland expanded, land property increased, and 

livestock density rose, mainly focused on milk and meat production in intensive stabling 

and linked to the vertical integration in industrial agrifood chains. These are the basic 

characteristics of Les Oluges, and of the agroecosystems with largest area in the territory 

of Spain. Therefore, the historical analysis of Les Oluges is an approach to the changes 

experienced in great part of the Spanish agroecosystems.   

Furthermore, the historical sources of Les Oluges provided the possibility of analysing a 

particular traditional Mediterranean crop system in great detail. This analysis has been 

relevant for several reasons. Firstly, because it sheds light into an agricultural practice –

the intercropping of cereals with woody crops such as vines, olives and almonds– of 

which records are scarce but that was widespread in traditional Mediterranean 
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agroecosystems. Secondly, because it challenges one of the key ideas of the modern 

agricultural model: that competence among crops reduces the productivity in 

polycultures. Finally, the biocultural analysis of the traditional intercropping system in 

Les Oluges provides valuable knowledge about the multifunctionality and complexity of 

sustainable agricultural systems. The study of the silvoarable system in Les Oluges, which 

is presented in Chapter 4 of this thesis, is a contribution that opens a long path of future 

research.  

Thus, the relevance of the study of this small village from La Segarra is multiple and 

ample. It was relevant for the work developed in the SFS international research group; 

for understanding the historical transformation of agricultural systems in great part of 

Spain, and for improving the understanding and enhancing the importance of a traditional 

agricultural knowledge that is currently disappearing. In that sense, this PhD thesis seeks 

to contribute to the international FAO’s call to study and value the Globally Important 

Agricultural Heritage Systems (GIAHS2) as important reservoirs of site-specific know-

how accumulated over generations that become increasingly important to cope with the 

Global Change underway. Whether Les Oluges is a globally important case study is an 

open question, but in any case the methods used to study this small Catalan village and 

the results obtained are useful to that aim.     

 

4. Aim and structure of the thesis 

The research on the agroecosystem of Les Oluges started from the recognition that 

modern industrialized agricultural systems are not sustainable, and was based on the 

hypothesis that analysing the historical transition from organic to industrialized 

agricultural systems by means of the Green Revolution, and how it changed the 

characteristics and functioning on agroecosystems, it is possible to obtain valuable 

information that can be helpful for the improvement of agricultural sustainability in the 

future. Thus, this investigation aims to give answer to the following questions: i) how did 

the transition from a traditional organic agroecosystem to an industrial farm system take 

place?, ii) how did this agricultural transformation affect the sustainability of the 

agroecosystem?, iii) which are the main drivers of the unsustainability of modern 

                                                 
2 See http://www.fao.org/giahs/background/en/  

http://www.fao.org/giahs/background/en/
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industrialized agriculture?, and iv) what can we learn from traditional agroecosystems in 

order to build more sustainable farm systems in the future?  

The structure of this thesis reflects the intellectual journey that this investigation has 

entailed. As a map that guides the lines of thought that sustain the thesis, Chapter 1 

introduces the theoretical foundations of the research. Then, Chapters 2 to 4 present the 

corresponding articles that conform the analysis of Les Oluges. From these, the first two 

chapters focus on the sustainability of the functioning of the agroecosystem from a 

biophysical perspective in the three points of time studied: i) c. 1860, when Les Oluges 

was a traditional organic farm system; ii) 1959, when the agroecosystem operated under 

a mixed of organic and industrialized functioning; and iii) 1999, when Les Oluges was a 

fully industrialized agroecosystem. Chapter 2 contains the analysis of the historical 

agricultural transformation of Les Oluges from the perspective of its energy efficiency, 

while Chapter 3 analyses that historical transformation from belowground, with the 

nutrient balances of the agroecosystem at the municipal and crop system scales. Then, 

Chapter 4 disentangles the rationality of the traditional silvoarable system present in the 

agroecosystem until the mid-20th century. Finally, the conclusions from the investigation 

and the possibilities for further research are presented in Chapter 7, together with some 

final remarks. 

 



 

 

 

 

 

 

 

 

 

 

 

I confess I am not charmed with the ideal of life held out by those who 

think that the normal state of human beings is that of struggling to get 

on; that the trampling, crushing, elbowing, and treading on each 

other’s heels, which form the existing type of social life, are the most 

desirable lot of human kind, or anything but the disagreeable 

symptoms of one of the phases of industrial progress. 

[…] 

But the best state for human nature is that in which, while no one is 

poor, no one desires to be richer, nor has any reason to fear being 

thrust back, by the efforts of others to push themselves forward. 

[…] 

If the earth must lose that great portion of its pleasantness which it 

owes to things that the unlimited increase of wealth and population 

would extirpate from it, for the mere purpose of enabling it to support 

a larger, but not a better or a happier population, I sincerely hope, 

for the sake of posterity, that they will be content to be stationary, 

long before necessity compels them to it. 

[…] 

It is scarcely necessary to remark that a stationary condition of 

capital and population implies no stationary state of human 

improvement. There would be as much scope as ever for all kinds of 

mental culture, and moral and social progress; as much room for 

improving the Art of Living, and much more likelihood of its being 

improved, when minds ceased to be engrossed by the art of getting on. 

 

John Stuart Mill, Principles of Political Economy (“Of the Stationary State”)
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una mirada desde la alcantarilla  

puede ser una visión del mundo 

la rebelión consiste en mirar una rosa 

hasta pulverizarse los ojos 

Alejandra Pizarnik, Árbol de Diana 

 

Chapter 1: Theoretical Foundations 

In this chapter I will introduce the main scientific perspectives that constitute the 

theoretical background of this work. The aim is not to provide a profound description of 

each of them, but to expose those elements of greater importance for understanding where 

is located this investigation within the domain of the social sciences in a mix of History, 

Economics, Anthropology and Ecology; and how the different approaches presented have 

guided and contributed to the historical analysis carried out. 

First, I will make a brief introduction to the fields of Environmental History and 

Ecological Economics, together with the theory of Social Metabolism, which conform 

the general background, the basic worldview to perceive Society-Nature relations and 

socioeconomic systems. Secondly, Agroecology is presented as the scientific approach to 

understand the ecological functioning of agricultural systems. After these two 

perspectives, somewhat more focused on the material dimension of the economic and 

agricultural processes, another two theories will be introduced, with a greater attention 

given to cultural, social, intangible dimensions. Thus, thirdly I will expose the theories of 

Biocultural Heritage and Landscapes, which highlight the relevance of historical 

biophysical analysis as a way to approach to traditional knowledge. Finally, the field of 

Peasant Studies and the theory of Peasant Economy will be introduced, which offers an 

alternative rationality to understand the organization of productive systems.   

 

1. Environmental History, Ecological Economics and Social Metabolism. 

Environmental History (González de Molina & Toledo, 2011) and Ecological Economics 

(Costanza & Haeckel, 1996; Daly & Farley, 2011) start from the premise that societies 

and economic systems are inserted in and fundamentally linked to their natural 
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environment. Introducing this elemental fact is what distinguishes them from 

conventional approaches in Economics and History. They are biocentric fields of study, 

rather than anthropocentric, understanding that the survival and welfare of human beings 

is conditioned by the survival and well-being of all living beings with whom we coexist 

and that make life possible on Earth (Costanza & Haeckel, 1996; González de Molina & 

Toledo, 2014). Against the modern dichotomy that separated Humanity and Nature 

(Moore, 2017), they defend the existence of one single socioecological system, in which 

human societies and natural environments are interrelated and coevolve and thus, the 

history of humanity cannot be understood without taking into consideration its relations 

with the environment.  

One way of understanding the Humanity-Nature relation is provided by the theory of 

Social Metabolism (González de Molina & Toledo, 2014). The idea of the Social 

Metabolism is derived from Marx, who used the term “metabolism” for describing the 

relation that was established between humans and nature through the process of labour 

(Foster, 2000; Martinez-Alier, 2013). The sociometabolic perspective focuses on the 

material base of the relations between societies and nature, the flows of energy and 

materials that societies exchange with their environment. The metabolism of societies is 

a dynamic process through which Society and Nature determine each other. This 

relationship between human beings and the environment that surrounds them is mediated 

by social institutions and cultural practices. Thus, for assessing the metabolism of 

socioecological systems it is important to pay attention not only to the biophysical flows, 

but also to the institutional and cultural dimensions that shape these flows.  

Historically, three main metabolic modes or regimes can be distinguished:  

i) The Cinegetic or Extractive Mode of Social Metabolism, characteristic of 

hunter-gatherer societies and based on the appropriation and consumption of 

elements from the ecosystem. It was the dominant social metabolism until the 

Neolithic Revolution some 12,000 years ago. The social forms of organization 

associated to this social metabolism are the family, the band and the tribe. 

Ideologically, Human-Nature relations were governed by a kind of traditional 

ecological knowledge now defined as “sacred ecology” (Berkes, 2008), a 

cosmovision that considered no separation between humans and nature, that 

attributed life and spirit to the environment, and infused nature with religious, 

ethical and moral considerations. 
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ii) The advent of agriculture gave place to the Organic or Agrarian Metabolism, 

based on the domestication of nature, the transformation of landscapes, and 

the use of solar energy (mainly through agricultural production) for the 

appropriation of resources. The characteristic forms of social organization of 

this social metabolism are seniorities, chiefdoms, States and empires, even 

though domestic units and communities played a key role in the organization 

of agricultural production. Peasantry, carrying out the agricultural activities, 

was the most important social category. Markets gained importance but still 

had a secondary role in the process of distribution of goods, networks of 

mutual support were organized to guarantee social subsistence, and powerful 

classes survive through the appropriation of surpluses. A cosmovision of 

solidarity between humans and nature conducted their relations, and the local 

ecological knowledge accumulated through practice and transmitted across 

generations was a key element for the survival of the population. 

iii) With the Industrial Revolution a new mode took place that extends until 

current times. The Industrial Metabolism is based on the use of mineral and 

fossil sources of energy that helped to expand the social metabolic processes 

of appropriation, transformation, circulation, consumption and excretion of 

energy and materials. Capitalism shapes the social organization, with the 

organization of production in factories, the individual as the main economic 

agent, and the distribution process ruled by markets. The relationship of 

humans with nature is based on the idea that humans dominate nature. 

Anthropocentrism and the search of monetary profit and improved material 

wellbeing lead to the consideration of nature as a mere factor of production.   

Each of these sociometabolic regimes, predominant in different historical periods, 

entailed a distinct Human-Nature relationship that includes not only the biophysical 

dimension, but also certain social organization and cultural structures that shape the 

socioecological systems and characterize the metabolic modes.  

With the advent of Capitalism and the Industrial Metabolism a great transformation 

occurred (Polanyi, 2003). It is not by chance that economic history and the history of 

economic thought take this period as their starting point. Not because there was no 

economy before. Understood in real or substantive terms (Polanyi, 1957), as the way 

societies obtain and guarantee their material living, there was certainly economy before: 
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any form of human subsistence requires an economic activity, a social metabolism.   

However, during Modernity starts the separation of the economy as an independent and 

autonomous sphere (Dumont, 1980; Polanyi, 2003). Markets, technological innovation 

and economic growth became the ruling and driving forces of economics and society. The 

conventional economic theory has been built over the assumptions that markets are the 

social institution that should govern the distribution of resources and there should be no 

interference in their functioning; that the continued economic growth is possible and 

desirable, and that the economic system is independent of the natural environment or able 

to overcome the possible environmental constraints thanks to technological innovation.  

Ecological Economics disputes these assumptions (Costanza & Haeckel, 1996; Daly & 

Farley, 2011; Georgescu-Roegen, 1975). Reintroducing human societies and economic 

systems as subsystems in the biosphere implies introducing limits on the economic 

activity that societies can carry out without risking their sustainability. Economic systems 

are open systems that exchange energy and materials with their environment (Kapp, 1994) 

and economic processes are subject to the second law of thermodynamics, the Entropy 

law (Georgescu-Roegen, 1971). Introducing the energy analysis in the study of 

agricultural systems and their historical transformations is of utmost relevance, since 

agriculture has the potential to be a net energy supplier for the economic system, but with 

the spread of the Green Revolution in the second half of the 20th century it has been 

transformed into an energy sink, demanding more energy than it produces and using 

inputs from non-renewable resources (Leach, 1976; Naredo & Campos, 1980; Pimentel 

et al., 1973; Puntí i Culla, 1988).   

 

2. Agroecology 

Agroecology can be defined primarily as the application of ecological concepts and 

theories to the design and management of agricultural systems (Altieri & Nicholls, 2005; 

Gliessman, 1998). However, this discipline, whose origin can be traced back to the first 

decades of the 20th century, has broadened its perspective in recent decades adding social 

dimensions on its object of study.  

Initially, agroecology was a combination of ecology (the functioning of ecosystems), 

agronomy (the management of agricultural systems) and some economics (the monetary 

dimension of agriculture as an economic activity) (Dalgaard, Hutchings, & Porter, 2003; 
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A. Wezel & Soldat, 2009). However, from the last decades of the 20th century 

agroecology has consolidated as a food production system alternative (and opposed) to 

industrial agriculture. The agroecological approach takes into consideration not only the 

agricultural process of food production, but expands its object of study towards the whole 

agrifood system, including concerns over social justice and cultural awareness (Altieri & 

Nicholls, 2005; Francis et al., 2003; Gliessman, 2015; Holt-Giménez & Altieri, 2013). 

Thus, agroecology enlarged towards a system-wide approach, understanding that only by 

assessing the interaction of all the components of the food system (agricultural 

production, economic structures, power relations, access to knowledge…), a fundamental 

agricultural change towards sustainability can be achieved. In order to transform 

profoundly the model of industrial agriculture, the whole socioeconomic context in which 

it operates needs to be transformed too.  

Similar to the theories of Social Metabolism, Environmental History and Ecological 

Economics that aim to address the sustainability problems of our current socioecological 

system by transforming the way we understand Human-Nature relations and the 

functioning of our economic system, Agroecology also aims to address the sustainability 

problems of our current agricultural systems by transforming the way we understand the 

functioning of agroecosystems. 

In the search of knowledge on how to design and manage sustainable farm systems, 

agroecology turns its eyes towards traditional agricultural agroecosystems (Altieri, 2004; 

Francis et al., 2003). Farm systems are the result of the coevolution of natural and social 

systems. Some of the generally shared characteristics of the traditional agroecosystems 

previous to the Green Revolution make them especially relevant to confront the 

unsustainability of modern industrial agriculture. Given that the unsustainability of 

modern agriculture is linked to the excessive use of industrial inputs, the expansion of 

monocultures and the primal profit orientation, traditional agricultural systems that 

minimize the use of external inputs, rely on crop diversity and multiple land uses, and 

aim to maintain the productive capacity of the agroecosystem and its resilience, are of 

especial interest for an agroecological transition. Furthermore, the knowledge associated 

to the adaptation to local conditions and to the autonomous ecosystem management 

(Vandermeer, 2011) is of great value for the future design of a sustainable agriculture. 

Generally, traditional farming systems have been able to meet the subsistence needs of 

the population linked to them, providing multiple goods and services while sustaining 
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biodiversity. They have been adapted to a wide diversity of environments, being able to 

maintain their productive capacity without modern agricultural inputs and technologies. 

The persistence of many traditional agricultural systems nowadays, that have been able 

to endure over generations adapting to the changing socioecological context, is an 

evidence of their sustainability and resilience, and future agricultural innovation should 

combine the knowledge accumulated on these traditional agricultural practices 

(Koohafkan & Altieri, 2017). However, while some traditional agroecosystems persist 

nowadays, another large part of these farm systems has disappeared as a result of the 

spread of the Green Revolution or is disappearing due to economic and ecological 

pressures (Koohafkan & Altieri, 2011). The significance of this loss is not only because 

of the ecological consequences of transforming potentially sustainable agroecosystems 

that were created through a long process of socio-ecological coevolution into 

unsustainable farm systems that can be environmentally harmful, and disregard local 

natural resources; but there is also an important loss of knowledge about the local 

environment and those social practices and strategies that created and sustained 

traditional farm systems and provided the means of subsistence of the local population.  

 

3. Biocultural Heritage and Landscapes 

The search of valuable knowledge in traditional agricultural systems carried out by 

agroecological approaches is also defended by the theoretical perspectives of the 

Biocultural Heritage and Biocultural Landscapes. The idea that there is an indissoluble 

link between biological and cultural diversity was drawn from the fields of ethnoecology 

and ethnobiology, and gave birth to the concept of biocultural diversity, which embraces 

“the diversity of life in all its manifestations: biological, cultural and linguistic” (Maffi, 

2012). Thus, the term “biocultural” refers to the consideration of socio-ecological systems 

as a whole in which humans and nature coevolve.   

As any other species, human beings depend on their capability to adapt to the natural 

environment, and on the knowledge accumulated through their experience as individuals, 

communities, and species. The history of life on Earth can be characterized as a process 

of biological and cultural (Loh & Harmon, 2014) evolution and diversification in which 

each species adapts to, is transformed, and transforms its surrounding environment. With 

respect to human beings, there is a key process of diversification and coevolution between 
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human communities and their environments that started around 12,000 years ago with the 

origins of agriculture. Through agricultural development humans adapted their productive 

systems and practices to the local environment that, at the same time, has been 

transformed. Thus, traditional agricultural systems can be considered a reservoir of our 

species memory (Toledo & Barrera-Bassols, 2008): a collection of ecological knowledge, 

experiences and procedures that have sustained our survival in relation with nature.  

The biocultural heritage is particularly embedded in traditional agricultural landscapes 

and biocultural landscapes. The continuous interactions between human communities and 

nature through the domestication, variation and introduction of species, the 

transformation of the geomorphology, the implementation of water management systems 

and the use and promotion of certain environmental elements and features, has often 

created resilient landscapes of great biological and cultural diversity (Agnoletti & 

Emanueli, 2016). The importance of these landscapes is not merely as relics or vestiges 

to be kept in a showcase. Biocultural landscapes contain a history of human evolution, of 

adaptation strategies, technological innovations, and social values. They contain our 

species memory and, in the current context of ecological crisis, they constitute bio-

cultural refugia (Barthel, Crumley, & Svedin, 2013), places in which to find shelter in 

periods of struggle, to find learnings that help us to deal with adverse conditions. The 

importance of rediscovering the knowledge deposited in this biocultural heritage and 

landscapes stems from the need to maintain biocultural diversity and enhance the 

synergies between cultural and biological diversity.  

 

4. Peasant Economy   

The definition of peasant as an analytical category has been largely debated and is still 

contested (Bernstein, 2009; Bernstein & Byres, 2001; Edelman, 2013; Shanin, 1982). 

Traditionally, the debate has turned around the opposition Lenin versus Chayanov, 

discussing whether peasants were part of a historical process of economic and social 

differentiation (and thus belong to a pre-capitalist condition that would eventually 

disappear), or if they constituted a coherent social type (with a distinctive economic logic 

and certain characteristics suitable to describe peasants anywhere and anytime). 

Nowadays, the use of the term “peasant” is considered to be highly romanticised and 
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ideologically loaded (Bernstein, 2010; Edelman, 2013). However, when clearly defined 

the term “peasant” can be a useful analytical category.   

The literature on peasant studies is long, but in this work we will focus on the productive 

principles associated to this category: the peasant economy. This work is aligned with the 

Chayanovian perspective (Chayanov, 1966) and considers that the peasant domestic unit 

of production is not governed by the same rationality as a capitalist agricultural 

exploitation. One of the characteristics that defines peasants is that they maintain a 

relation of ‘dependent autonomy’ (Narotzky, 2016). Peasant economies are tied to a wider 

socioeconomic system, but are not completely determined by it. This situation is due to a 

great extent to the fact that peasant production units have another two important 

characteristics: they own their means of production, and they do not depend on hired 

labour because the production is organized and carried out by family labour. In this sense, 

their functioning is similar to a ‘domestic mode of production’ (Sahlins, 1976), with a 

strong influence of kinship relations and a primarily subsistence orientation. Thus, the 

peasant production is not directed towards accumulation and profit maximization. The 

principles that govern the productive decisions of the peasant farm are, according to 

Chayanov, two balances: the labour-consumer balance, and the utility-drudgery balance. 

Briefly, they mean that in a domestic peasant unit there will be a correlation among the 

available family labour used and the consumption needs of the family unit, so that the 

basic needs of the family as a whole are satisfied. Any effort will be done if needed until 

a basic subsistence level is achieved, since the utility of the extra production obtained 

until that point will be high. However, further increases on the production will be 

carefully assessed considering the effort needed and the utility obtained.  

Following Van der Ploeg (2013), another set of balances can be added following the 

chayanovian perspective to obtain a more complete analysis of peasant agriculture. Even 

though a balance autonomy-dependency is explicitly mentioned, it is possible to consider 

that all the following balances are interrelated and aim ultimately to guarantee that a 

certain autonomy is maintained, thus preserving the dependent autonomy relation of 

peasantry. These additional balances are between: people and living nature, production 

and reproduction, internal and external resources, scale and intensity, and the already 

mentioned balance between autonomy and dependency. 

The perspective on peasant economy provides an economic rationality different from the 

dominant capitalist one. It considers that agricultural production is organized according 
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to other aims than profit maximization, and that the economic organization can be done 

beyond market mechanisms. Thus, it provides a tool that helps analysing the agricultural 

economy from a substantive point of view (Polanyi, 1957). 

 

5. Raising the theoretical grounding  

Every scientific investigation starts from a certain theoretical background that determines 

the approach to the subject of study, the analytical tools to be used, and the expected 

results. In this case the theoretical starting points of this thesis are the fields of 

Environmental History, Ecological Economics and Social Metabolism, and Agroecology. 

These theories provided the background on which the methodology developed by the SFS 

was sustained and therefore, they lay the foundations of the energy and nutrient balances 

analysis. However, this scientific research has been a reflexive process (Davies, 2008; 

Finlay & Gough, 2003; Harding, 1987) in which the object of study and the researcher 

influenced each other. As the investigation on the historical transformations of the 

agroecosystem of Les Oluges evolved, so did the theoretical foundations that sustained 

it. The biophysical analysis of the energy balances of Les Oluges showed a striking 

characteristic of the agroecosystem of Les Oluges: the particular crop pattern of the 

silvoarable system combining cereals and woody crops. This specificity had been also 

noticed before by Enric Tello in his research on La Segarra (Tello, 1995), and probably 

it was a mix between his long held curiosity and my personal tendency towards more 

cultural, abstract issues that led the investigation to delve into the biocultural arena. Thus, 

the analysis of the nutrient balances that is presented on the third chapter, is already a 

work that links more explicitly the biophysical and cultural dimensions of the 

management of the agroecosystem, connecting the nutrient balances with the fertilising 

practices of each point of time studied. However, the stand on the Biocultural Heritage 

and Landscapes is more evident in Chapter 4, when it joins with the Peasant Economy 

approach in the analysis of the traditional intercropping systems as a final step of the 

analysis of Les Oluges.  

Despite their diverse origins, the theories presented in this chapter conform a sound 

theoretical background. They emphasize different dimensions of socioecological systems, 

but share some basic assumptions, such as acknowledging the existence of inextricable 

links between humans and nature; and considering the complexity of socioecological 
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systems, not trying to reduce the reality to more formally manageable structures, but 

acknowledging the epistemological limitations of separated academic fields and 

defending the importance of the inter- and multidisciplinarity and the dialogue between 

scientific disciplines and with the practical or symbolic know-how of peasants. 

Furthermore, they all have a critical background, not only because they point out what is 

wrong in our current Human-Nature relations, but they also propose means to transform 

that situation and achieve a better future.  
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 Chapter 2: More than energy transformations: A historical 

transition from organic to industrialised farm systems in a 

Mediterranean village (Les Oluges, Catalonia, 1860-1959-

1999)3 

 

Abstract 

The analysis of energy efficiency of agroecosystems from a sociometabolic perspective 

is a useful way to assess the sustainability of farm systems. In this chapter we examine 

the transition of a Mediterranean agroecosystem from an organic farm system in the mid 

nineteenth century to an industrialised one at the end of the twentieth century by means 

of the technologies and ideology of the Green Revolution. Given that many of the world’s 

agricultural systems have experienced, or are currently experiencing this transformation, 

our results are relevant for building more sustainable agricultural systems in future. Our 

results highlight the relevance of livestock density, and the flows of biomass reused and 

unharvested biomass as key elements affecting the sustainability of the agroecosystem 

not only from a socioeconomic perspective, but also from an agroecological point of view. 

Additionally, from a biocultural perspective our investigation sustains the relevance of 

the study of traditional farm systems for the development of a sustainable agriculture.  

 

                                                 
3 The authors of this work are: 

Lucía Díeza*, Xavier Cussób, Roc Padróc, Inés Marcoa, Claudio Cattaneod, José Ramón Olarietae, Ramón 

Garraboub & Enric Telloa 

(a Department of Economic History, Institutions, Policy and World Economy, University of Barcelona, 

Barcelona, Spain; b Department of Economics and Economic History, Autonomous University of 

Barcelona, Bellaterra, Spain; cInstitute of Regional and Metropolitan Studies of Barcelona (IERMB), 

Autonomous University of Barcelona, Bellaterra, Spain; d Department of Environmental Studies, Faculty 
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1. Introduction 

The need to build more sustainable agricultural systems, able to feed a growing 

population in an era of climate change and biodiversity depletion, is a major concern 

(Pretty et al., 2010). Current industrial agriculture heavily depends on fossil energy and 

does not seem adequate for achieving this goal in the long term. Conversely, there is a 

growing interest in agroecology and innovative ways to update and develop the bio-

cultural knowledge embedded in traditional organic farm systems in order to search for a 

more sustainable agriculture (Altieri, 2004; Altieri & Nicholls, 2005; Gliessman, 2015; 

International Assessment of Agricultural Knowledge, Science and Technology for 

Development [IAASTD], 2009; Koohafkan, Altieri, & Gimenez, 2012; Schutter, 2010; 

Toledo & Barrera-Bassols, 2008; UNCTAD, 2013; Vandermeer, Smith, Perfecto & 

Quintero, 2009; Wezel et al., 2014).  

This work seeks to add some knowledge about the basic features of sustainable farm 

systems by adopting a historical approach based on a sociometabolic analysis of 

agroecosystems (Fischer-Kowalski & Haberl, 2007; González de Molina & Toledo, 2014; 

Haberl, Fischer-Kowalski, Krausmann, Martínez-Alier & Winiwarter 2009).  Many of 

the world’s agricultural systems have experienced, or are currently experiencing similar 

transformations, by means of the technologies and ideology of the Green Revolution, that 

our historical case study underwent from the mid-twentieth century onwards. Traditional 

peasant management of agroecosystems relied on the use of local resources and remained 

within its biophysical constraints. They performed multiple uses and combinations of land 

covers, developed complex associations of crops and polycultures, recycled many by-

products, and kept the use of external inputs at low levels (Gliessman, Engles & Krieger, 

1998; Plieninger, Höchtl & Spek, 2006). All these components of integrated management 

of agroecosystems were substituted throughout the industrialisation of agriculture by the 

expansion of monocultures, and a high dependence on fossil-based external inputs. A 

much more single-minded management that was mainly focused on the target of 

increasing labour productivity, maximising land yields and generating short-term profits, 

replaced past organic traditional management of agroecosystems that kept an integrated 

management among living funds (population, land, livestock and farm-associated 

biodiversity). The spread of monocultures and mechanization, the extensive use of 

chemical fertilizers and biocides, and the increase of livestock density based on purchased 

feedstuff in modern industrial agriculture and animal farming have been linked to 
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ecological problems of pollution and unsustainability, such as the degradation of soil 

quality, water eutrophication, greenhouse gasses emissions, increased dependence on 

non-renewable resources and fossil fuels, and loss of genetic diversity, resilience and 

ecosystem services provision (Altieri & Nicholls, 2005; Conway & Pretty, 2009; Foley 

et al., 2005; Gliessman, 2015). Furthermore, industrial farming systems and food 

production are also associated with global economic inequality and human health 

problems (Horrigan, Lawrence, & Walker, 2002; Johns & Eyzaguirre, 2006; Patel, 2012b; 

O. De Schutter, 2010; Tilman & Clark, 2014). 

In this chapter we analyse the socio-ecological transition of the farm system of Les 

Oluges, a village located in the inland semiarid plain of Catalonia (Spain), from the mid-

nineteenth century to the end of the twentieth century. This time span focuses on the 

transformation from an organic traditional farm system before the arrival of the Green 

Revolution in the mid-20th century to an industrialised agriculture by the end of the 

century, when this industrialisation was completed and reached its zenith. Our analysis 

reflects that the full industrialisation of the agroecosystem undermined its sustainability 

due to its lower energy efficiency, its greater dependence on external inputs and fossil 

fuels, and its reduced capacity to host associated biodiversity. The beginning of the 21st 

century would have inaugurate a new land-use regime characterized by an increased 

globalisation of sociometabolic flows (Guzmán et al., 2018; Soto et al., 2016), a greater 

efficiency of external inputs (Pellegrini & Fernández, 2018), as well as an spread of 

environmental awareness (Jepsen et al., 2015) that should be further studied. 

In the following section we introduce our sociometabolic methodological approach 

applied at the farm community level on a municipal scale that helps us to understand 

agroecosystems as cultural landscapes (Antrop, 2005) shaped by human knowledge and 

labour. This approach allows us to analyse agroecosystem changes not only from a purely 

biophysical standpoint, but also looking at the social traits that fostered the transition 

towards increasingly unsustainable farm systems. Then, we outline the features of the 

case study and the sources used. In the second section we present the results, mainly 

looking at the changing structure of energy fund-flow patterns of these agroecosystems, 

and their ensuing energy returns on investment at three different points of time (1860, 

1959 and 1999). In the third section we discuss our results by comparing them with 

another case study in Catalonia (Spain) so as to highlight some key features and 

determinants of the sustainability of these farm systems. To conclude we emphasise the 
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importance of livestock management, the dependence on external inputs, and local 

adaptation to biogeographical natural resource endowments for the agroecological 

efficiency of farm systems.    

2. Methodology and sources 

2.1.Methodology 

The methodology applied in this study has been thoroughly explained in previous works 

published by the international research project on Sustainable Farm Systems (SFS) 

(Galán et al., 2016; Gingrich et al., 2018; Guzmán & González de Molina, 2015; Guzmán, 

González de Molina, Soto Fernández, Infante-Amate, & Aguilera, 2017; Tello et al., 

2016; Tello et al., 2015), which has been applied to different case studies around the world 

on various spatiotemporal scales. The basic modelling follows Georgescu-Roegen’s 

distinction between funds and flows (1971), and establishes a way of accounting for the 

energy transformation and circulation that characterises the structure and functioning of 

farm systems from an agroecological perspective. Funds are defined by their capacity to 

transform biophysical flows and provide goods and services useful to farmers and society. 

Funds can only transform energy flows at a given rate, and need an energy investment if 

they are meant to keep their capacity and functioning over time (Giampietro, Cerretelli, 

& Pimentel, 1992). Different flows of energy are absorbed and provided by these funds, 

which opens a choice of either interconnecting them through an increasingly complex and 

integrated energy network or, on the contrary, keeping them separate into ever simpler 

and linear bioconversion chains. Here lies the most important feature that shapes the 

organic or industrial character of farming (Figure 1). The energy fund-flow pattern 

adopted determines the agroecosystem functioning, the ensuing landscape patterns and 

processes as the territorialized metabolic imprint, and the ecosystem services provided 

(Baró et al., 2016; Marull, Font, Tello, et al., 2016; Millenium Ecosystem Assessment, 

2005) 

The main living funds of an agroecosystem are: farmland, livestock, farming community 

and farm-associated biodiversity. They provide the basic structure of the agroecosystem 

from which different flows of energy carriers can be distinguished depending on their 

use, their aim, and their origin. In this regard, we understand the agroecosystem as an 

ecosystem that requires human labour, as information-as-structure in order to set up a 

purpose-oriented pattern of energy flows (Font et al., n.d.). Funds provide an output, but 

must not be degraded to maintain its productive capacity and stability over time 
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(Gliessman et al., 1998). Thus, the farming community is not only a fund but a free agent 

with a will that plays a fundamental role in the agroecosystem structure and functioning. 

As our model adopts the point of view of this farming community, we place it outside the 

agroecosystem boundaries together with the rest of society. The rationale behind this 

analytical decision is based on the fact that the farming community devises and manages 

the agroecosystem, introducing a set of External Inputs (EI), and receiving the useful flow 

we name Final Produce (FP). The labour provided by this farming community is also 

considered an External Input that takes into account the amount of embodied energy of 

the diet eaten by farm operators that is metabolised while working in the agroecosystem 

(Marco, Padró, Cattaneo, Caravaca, & Tello, 2018;  Tello et al., 2015). Hence, setting the 

agroecosystem’s boundaries in this way allows us to differentiate the energy fluxes that 

loop inside the agroecosystem as Biomass Reused (BR) from those that flow outside (FP), 

and those fluxes that come from outside the agroecosystem (EI). The sum of FP and BR 

equals the Total Produce (TP) obtained from the available farmland and livestock, i.e. the 

amount of energy that the agroecosystem generates and is either reinvested for the 

maintenance of its funds (BR) or diverted to meet human needs (FP). In some situations, 

a part of the TP does not perform any role as BR or FP; in such case, we consider this 

part as Waste (W). These are the main funds and flows considered from a socioeconomic 

perspective.  

Additionally, in order to delve into the ecological dimension of agroecosystems other 

flows are taken into account. The actual Net Primary Productivity (NPPact) considers the 

whole phytomass biologically produced by the existing land covers within the 

agroecosystem and throughout the year studied (Krausmann et al., 2013; Vitousek, 

Ehrlich, Ehrlich, & Matson, 1986) . It includes the biomass harvested, as well as the 

Unharvested Phytomass (UhP), which is the above- and below-ground biomass that 

remains in the agroecosystem independently of human aims. UhP is a valuable resource 

for maintaining farm-associated biodiversity and the provision of ecosystem services. 
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Figure 1. Diagram of the main funds and flows of an agroecosystem. Source: Tello et al. 2015, 

2016. 

 

 

Such a complex pattern of farming funds and flows cannot be assessed in energy terms 

by a single input/output ratio. Several interrelated EROIs (Energy Return on Investment 

ratios) are calculated in order to analyse the energy performance of agroecosystems. This 

multi-EROI approach considers the maintenance of the agroecosystem funds as the 

grounding requirement for a sustainable functioning of farm systems. Two different 

groups of EROIs are considered (Table 2). On the one hand, economic EROIs analyse the 

agroecosystem from an anthropocentric or socioeconomic perspective, linking the energy 

carriers produced by the agroecosystem that are available for human consumption with 

the energy purposely invested in it by the farming community and the society it belongs 

to. On the other hand, given that agroecosystems are not fully human-colonised 

ecosystems and depend to some extent on ecosystem services, a set of agroecological 

EROIs are also calculated. These consider the whole photosynthetic productivity of the 

agroecosystem (NPPact) beyond the biomass appropriated by humans in order to measure 

the space left to associated biodiversity and the provision of ecosystem services.  
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Table 2. Equations of the EROIs employed in the analysis. Source: Tello et al. 2015, 2016; 

Guzmán & González de Molina, 2015; Guzmán et al., 2017. 

Economic EROIs 

Final EROI  𝐹𝐸𝑅𝑂𝐼 =
𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
 

Internal Final 

EROI  
𝐼𝐹𝐸𝑅𝑂𝐼 =

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑
 

External Final 

EROI  
𝐸𝐹𝐸𝑅𝑂𝐼 =

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
 

Final EROI on 

Labour 
𝐿𝑎𝑏𝑜𝑢𝑟 𝐹𝐸𝑅𝑂𝐼 =

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝐿𝑎𝑏𝑜𝑢𝑟
 

Agroecological EROIs 

NPPact EROI 𝑁𝑃𝑃𝐸𝑅𝑂𝐼 =
𝑁𝑃𝑃𝑎𝑐𝑡

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
  

Agroecological 

Final EROI 
𝐴𝐹𝐸𝑅𝑂𝐼 =

𝐹𝑖𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒

𝑈𝑛h𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑃h𝑦𝑡𝑜𝑚𝑎𝑠𝑠 + 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
 

Biodiversity 

EROI 
𝐵𝑖𝑜𝑑.  𝐸𝑅𝑂𝐼 =

𝑈𝑛ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑃h𝑦𝑡𝑜𝑚𝑎𝑠𝑠

𝑈𝑛h𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑃h𝑦𝑡𝑜𝑚𝑎𝑠𝑠 + 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑅𝑒𝑢𝑠𝑒𝑑 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡𝑠
 

 

 

Final EROI (FEROI) measures the efficiency of agroecosystems as providers of energy 

carriers for human use taking into account the total investment made by farmers in it. This 
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indicator can be broken down into Internal FEROI (IFEROI) and External FEROI 

(EFEROI). Each of these considers the returns of farming investment depending on 

whether it is the biomass produced by the agroecosystem and reinvested in it (BR) by 

farmers, or the external energy carriers (EI) that society and farmers invest in the 

agroecosystem from outside. Additionally, the Final EROI on Labour (FEROL) gives a 

measure of the energy productivity of farmers’ labour invested. 

From an agroecological perspective, NPPactEROI assesses the whole energy return of the 

agroecosystem beyond a human provision perspective, which is in turn considered by the 

Agroecological Final EROI (AFEROI).  The difference between AFEROI and FEROI is 

the consideration that the agroecosystem’s capacity to provide flows of energy available 

for human use does not depend only on the human intervention and investment of energy 

inputs, but also on the unharvested biomass left in the agroecosystem without human 

intervention. The ratio AFEROI/FEROI provides a measure of human colonisation of the 

agroecosystem photosynthetic produce, so that when it equals 0 indicates that there is no 

human detraction at all, and it means a total human colonisation when it reaches a value 

of 1. Similarly, Human Appropriation of NPP (HANPP) measures the share of NPPact that 

is controlled by humans for their own purposes (TP/NPPact). Finally, Biodiversity EROI 

gives a measure of the agroecosystem’s capacity to maintain farm-associated biodiversity 

through the availability of biomass flows not appropriated by humans per unit of the total 

energy carriers flowing through the agroecosystem as inputs for all heterotrophic non-

domesticated living beings.    

2.2.The village of Les Oluges in the inland dry plain of Catalonia  

Les Oluges is a small village located at 490-650 m.a.s.l. in the Segarra County, in the 

province of Lleida (Catalonia, Spain) (Figure 2). It belongs to the so called Poor and Dry 

Catalonia, an area characterised by its aridity and its concentrated settlement pattern in 

contrast to the Rich and Wet Catalonia where average rainfall is higher and population 

was settled in a more scattered pattern (Burgueño, 2014; Garrabou, Planas, & Saguer, 

2001; Vilá Valentí & Vila, 1973). The Sió River and the Riera de Vergós, two temporary 

creeks, are the only streams in the township. The Dry Mediterranean Continental climate 

of the area is characterised by cold winters and hot and dry summers that, combined with 

aridity (the period of water stress is from April to October (Garrabou, Naredo & Ávila 

Cano, 1999) jeopardise crop yields. 
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Figure 2. Maps of Spain and Catalonia (divided by Counties) showing the location of Les Oluges 

and the four municipalities of the case study in the Vallès County (Caldes de Montbui, Castellar 

del Vallès, Polinyà and Sentmenat) used for the comparative analysis. Source: our own. 

 

 

The Segarra County had always had an agriculture mainly dedicated to cereals, but 

vineyards had also traditionally been grown to some extent (Vilá Valentí & Vila, 1973). 

From the eighteenth century vineyards grew in response to a regional commercial 

network in which liquors were sold abroad in order to import certain basic products that 

were needed to complement the frequently scarce yield from cereal lands (Tello, 1986). 

During the second half of the nineteenth century vine cultivation expanded in the area at 

the expense of forests in order to take advantage of the favourable market conditions when 

the Phylloxera plague began destroying all the vines in France (Pujadas i Rúbies, Solé i 

Roig & Pujadas, 1980). The vineyard boom lasted until 1894, when the Phylloxera plague 

reached the Segarra County. 

In the first decades of the twentieth century, as a result of the end of the turn-of-the-

century agrarian crisis, there was an increased specialisation toward cereal cultivation in 

the arid plains of Lleida province. Mineral fertilisers started to be used, together with new 

machinery powered by horses or mules (ploughs, reapers and threshers) and tractors. The 

creation of peasant unions and cooperatives helped the rapid spread of these new farm 
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implements and industrial inputs4 (Ramon Muñoz, 1999). This process was framed in a 

context of great political, social and economic changes in Catalonia and Spain. It was a 

period of industrialisation and rural exodus, in which agriculture was definitely changing 

its mainly subsistence and organic character by adopting a mixed organic-industrial one 

within a greater market orientation. Another important feature of this period was the 

beginning of livestock specialisation in some areas of Catalonia for which cereal-growing 

territories such as the Segarra County provided grain for feed (García Pascual, 1993; 

Pujadas i Rúbies et al., 1980; Pujol, 2002) 

From the 1950s onwards the Green Revolution spread in Catalonia and Spain, agriculture 

became a completely industrialised activity, and rural population decreased steadily. 

Under the new technological package, cooperatives became increasingly concentrated 

and expanded an agribusiness scheme of contract farming and vertical integration (García 

Pascual, 1993). Following the specialisation trend in Catalonia and Spain, by the end of 

the 20th century the weight of livestock production also increased, becoming more 

dependent on feed imports (Soto et al., 2016). Furthermore, the inputs of nutrients from 

synthetic fertilizers in the Spanish territory reached their maximum in the decades of 1990 

and 2000 (Guzmán et al., 2018). These trends can be appreciated in Les Oluges in 1999, 

a moment that could be characterised as a culmination of the Green Revolution. 

2.3.Sources 

 In order to build the energy balance of Les Oluges c.1860 we used multiple historical 

records. The municipal land-use register (Amillaramiento) of 1860 gave us the pattern of 

land use of the existing farmland in the village. The local agricultural survey (Cartilla 

evaluatoria) of 1883 provided us with the information on cropland and livestock 

productivities and labour requirements. Livestock composition and human population 

data were obtained from the cattle census of 1865, and the municipal population register 

of 1870. Given that most of these historical documents were recorded for tax purposes, a 

concealment of information was expected. In particular, the total municipal surface 

registered in the 1860 Amillaramiento was significantly smaller than the real area of the 

village. Previous studies in other Catalonian municipalities showed that a great part of the 

                                                 
4 In the Segarra County the use of chemical and mineral fertilisers increased from 9.7 kg/ha of sown 

cropland in 1907 to 256.7 kg/ha in 1934 (Ramon Muñoz, 1999). New industrial machinery powered by 

mules was spread from 1920s onwards. However, according to the municipal agricultural surveys 

consulted, the first tractor was introduced in Les Oluges in 1957; ten years later there were 27 tractors 

registered in the village.  
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missing surface corresponded to woodland underestimation. The same assumption was 

made in this case, adding 345 hectares (18.4% of the total farmland area) to the area of 

woodland registered in the Amillaramiento. Despite this addition, the results obtained did 

not change significantly in terms of energy flows and returns (EROIs).     

The data for the construction of the energy and nutrients balance of 1959 was obtained 

from the local cadastre of 1959, the municipal agricultural surveys of 1956 and 1959, the 

Spanish agricultural census of 1962 and from oral local surveys. During this period 

agriculture was experiencing a very rapid transformation with the spread of the Green 

Revolution. Thus, it was crucial to adjust the data as accurately as possible to the year 

studied that, nevertheless, will only reflect a short moment in this process of 

sociometabolic transformation of the agroecosystem.  

For the balance of 1999 data was taken from the 1999 agricultural census. It was only 

possible to obtain municipal data for characterising the size and composition of the local 

funds (farmland, livestock heads and agrarian population), and the rest of the flows were 

estimated from provincial data. 

 

3. Results 

3.1.Funds 

3.1.1. Farming community and labour 

From 1857 Les Oluges experienced a progressive process of depopulation that 

accelerated during the second half of the twentieth century (Figure 3). In the three time 

points studied the highest population density was registered in 1860, with 42 

inhabitants/km2. The number of Annual Working Units (AWU) needed in this period was 

significantly lower than the total population. However, this figure does not take into 

account the seasonality of agrarian work. Real labour demand would peak in the summer, 

corresponding to the period of cereal harvest.   
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Figure 3. Historical evolution of population (inhabitants) and mechanisation (total horsepower 

of tractors) in Les Oluges. Source: Our own, from Centre d’Estudis Demogràfics 

(http://ced.uab.es/en/infraestructures/banc-de-dades-espanya-i-catalunya/) and municipal 

agricultural surveys. 

 

 

Population halved by 1959, and then again by 1999. This depopulation process was not 

an obstacle for the increase of cropland area and land use intensification. Three processes 

counterbalanced the loss of farming population and combined differently throughout two 

different stages. During the first half of the twentieth century the introduction of synthetic 

fertilisers allowed a yield increase (in the case of wheat, grain yield almost doubled from 

1860 to 1959; see Appendix 1). Together with cropland diversification, and the help of 

improved machinery still powered by mules, all these improvements increased labour 

productivity as well. In 1959 the labour demand of the agroecosystem rose from 102 to 

181 AWU. Crop diversification smoothed out labour seasonality and, with the new farm 

implements, reduced work requirements per hectare of cropland (from 0.28 GJ/ha in 1860 

to 0.22GJ/ha in 1959).  

A second stage towards industrialisation of farming ensued during the second half of the 

twentieth century. The expansion of cereal monoculture and the diffusion of tractors (Fig. 

3) made possible a high increase in the total surface workable by a single agrarian worker: 

a five-fold increase from less than 9 ha per AWU in 1860 and 1959, to more than 45 ha 

in 1999. Consequently, population density decreased to a minimum of 10 inhabitants/km2. 
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3.1.2. Farmland 

In 1860 traditional organic farming involved a close integration among land uses that 

included cropland, woodland and pastureland. The most widespread crop system was the 

association of extensive grain growing with a relatively intensive vineyard cultivation 

(Figure 4a). This alley-cropping system mainly consisted of growing cereals in the land 

strips between rows of trees or vines, by sowing one and leaving another fallow 

alternatively. This associated crop pattern characterised the traditional cultural landscape 

of Les Oluges until the second half of the last century. 

Figure 4.The changing agrodiversity of land-use patterns in Les Oluges, before and after the 

Green Revolution. a) Land uses in 1860; b) Land uses in 1959; c) Land uses in 1999. Source: 

Our own, from the sources detailed in the text. 

Figure 4 (a) 
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Figure 4 (b) 

 

 

Figure 4 (c) 

 

 

Cropland productivity was low because of the low yields (see Table 6 in Appendix), but 

also due to the widespread need for biennial fallow which left uncultivated one half of 
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the cropland destined to cereals. This low productivity of cropland required, in turn, an 

intensive use of woodland for obtaining feed and organic fertilisers.  

There was a fragile balance between cultivated and uncropped land that was broken by 

cropland expansion and intensification in the mid-twentieth century. From 1860 to 1959 

(Figure 4a andFigure 4b) we observe a strong deforestation process that shrunk 

forestlands from 44% to only 11% of total farmland. Until that moment woodland and 

brushwood areas had been fundamental for providing additional feed to livestock, 

alternative fertilisers to the scarce manure, and firewood for domestic use. This, and the 

keeping of a site-specific peasant bio-cultural knowledge, may help explain why up to 

1959 cropland expansion and intensification took place in Les Oluges by keeping a 

considerable area devoted to woody crops-cereal intercropping. This practice could 

somehow replace woodland resources providing animal feed and firewood through 

pruning. The result was a notable diversification of cropland through the introduction of 

new crops and a greater variety of alley-cropping associations (Table 3 and Figure 4b) 

that augmented the possibilities of the agroecosystem, even though water scarcity made 

it still necessary to keep 34% of the cereal cropland in fallow. 

Table 3. The changing structure of Les Oluges agroecosystem’s funds in 1860, 1959 and 1999. 

Source: Our own, from the sources detailed in the text. 

Les Oluges - Funds 

Farming Community 1860 1959 1999 

Inhabitants 795 404 191 

Population density 

(inhabitants/km2) 
42 22 10 

Annual Working Units1 102 181 35 

         

 Farmland 1860 1959 1999 

Cropland 

(ha) 
 

Vegetable gardens 4.3 0.5% 4.6 0.3% 0.3 0.02% 

Irrigated cereals   3.1 0.2%   

Rain-fed cereals 160.8 18% 511.7 33% 1,486.4 93% 
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Fodder     5.1 0.3% 

Vineyard   56.5 4%   

Olive groves 0.2 0.02% 6.3 0.4% 16.7 1% 

Almond trees   25.5 2% 53.9 3% 

Cereals & vineyard 405.2 46% 105.3 7%   

Cereals & olives 16.6 2% 33.9 2%   

Cereals & almond 

trees 
  86.8 6%   

Cereals, vineyard & 

olives 
0.1 0.01% 11.7 1%   

Cereals, vineyard & 

almond trees 
  91.5 6%   

Cereals, olives & 

almond trees 
  46.8 3%   

Other associated 

crops 
  50.5 3%   

Fallow 301.4 34% 538.3 34% 28.2 2% 

Total Cropland 888.5 47% 1,572.7 84% 1,590.6 84% 

Pastureland (ha) 155.8 8% 93.3 5% 0.2 0% 

Woodland (ha) 830.8 44% 209.1 11% 302.2 16% 

Total Farmland (ha) 1,875 1,875 1,893 

        

Livestock 1860 1959 1999 

 

Horses 2 3  

Mules  56 120  
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Draft         

animals   

(Heads) 

Donkeys 146 10  

Cows & oxen 20   

Livestock 

(Heads) 
 

Cows & oxen   600 

Swines 165 80 6,588 

Sheeps & goats 325 310 500 

Poultry & rabbits 790 2,550 369,026 

Total LU500 151 124 3,082 

Total LU500/km2 8 7 163 

1 As defined by Eurostat an Annual Working Unit expresses “the work performed by one person 

who is occupied on an agricultural holding on a full-time basis” 

(http://ec.europa.eu/eurostat/statistics-

explained/index.php/Glossary:Annual_work_unit%28AWU%29) 

 

Throughout the second half of the twentieth century pastureland disappeared while 

livestock density soared (Table 3). In 1999 livestock was confined into feedlots. Chemical 

fertilisers became an essential form of fertilisation along with manure, and tractors 

substituted for animal power. As a result, a great part of the internal flows of the 

agroecosystem was removed, largely simplifying the cultural landscape: 93% of cropland 

was devoted to grains in an almost complete homogenous cropland (Figure 4c), three 

fourths of which dedicated to barley. 

3.1.3. Livestock 

In 1860 Les Oluges had a relatively low livestock density of 8 livestock units of a 

standardised weight of 500 kg (LU500) per km2 of farmland (Table 3) with a third of the 

livestock weight corresponding to donkeys (Figure 5). Donkeys were appropriate for a 

semiarid agroecosystem like Les Oluges in which feed was not abundant: they were less 

powerful animals than mules or horses, but also less demanding for their maintenance.   

http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Annual_work_unit%28AWU%29
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Annual_work_unit%28AWU%29
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Figure 5. The changing livestock composition in Les Oluges, before and after the Green 

Revolution (1860-1959-1999). Source: Our own, from the sources detailed in the text. 

 

 

In 1959 availability of synthetic fertilisers made it possible to partially overcome the 

previous limitations of natural resources. They allowed a significant cropland expansion 

and land-use intensification, whereas livestock density was reduced from 8 to 7 

LU500/km2, and donkeys were largely replaced by mules —a change required to power 

the new machinery used to carry out the crop expansion with a 49% decrease in the 

farming population. Given that pigs were mainly raised for domestic consumption, their 

number decreased with the decline in population. The increase of cropland productivity 

provided enough resources to feed the barnyard animals, and the use of woodland and 

pastureland decreased. The considerable increase in poultry and rabbits marks the 

beginning of a process of specialisation on fowl raising that the Segarra County has gone 

through from the mid-twentieth century onwards.  

In 1999 livestock density skyrocketed to 163 LU500/km2 (Table 3) largely due to the 

greater number of pigs and poultry, whose fattening in feedlots became completely 

industrialised. Draft animals disappeared, and sheep and goats slightly increased but had 

a testimonial role among livestock.    
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3.2.Flows and EROIs 

From 1860 to 1959 and 1999 the agroecosystem became more productive in energy terms 

(Table 4). However, the composition of its energy fluxes changed significantly. In 1860 

most of this produce came from woodland, while in the following years there was a 

process of ‘agriculturalisation’ (Guzmán & González de Molina, 2015) of farmland by 

which cropland increased its surface and became the main source of biomass production. 

The increase in cropland produce in 1959 was mainly due to cropland expansion, whereas 

in 1999 it was largely the result of the increase in cereal yields. 

The TP appropriated was increasingly diverted to FP throughout the period studied. The 

back of that coin was the decrease of the biomass reinvested into the agroecosystem (BR) 

as feed and fertiliser. Between 1860 and 1959 in spite of the increase in the FP extracted, 

the flow of BR decreased in absolute terms in this same period. BR increased again in 

1999, but only because of the rise of livestock density. The abandonment of the BR effort 

kept in traditional organic agroecosystems was only possible due to its replacement with 

EI. In 1860, EI came exclusively from the agrarian community, while in 1959 further EI 

were introduced from the rest of society in the shape of machinery and mineral fertilisers. 

Table 4. Energy flows in the agroecosystem of Les Oluges village, before and after the Green 

Revolution (1860-1959-1999). Source: Our own, from the sources detailed in the text. 

Les Oluges – Flows (in Gigajules) 

 1860 1959 1999 

NPPact 116,099.98 125,259.33 226,120.77 

Unharvested Phytomass 57,887.93 50% 51,130.70 41% 70,941.61 31% 

Total 

Produce 

Total TP 58,504.03 74,358.54 186,947.09 

Cropland 22,094.33 38% 67,303.58 91% 155,017.82 83% 

Pastureland 2,731.43 5% 1,635.97 2% 0.00 0% 

Woodland 33,386.29 57% 5,189.07 7% 161.34 0.1% 

Livestock 291.98 0.5% 229.92 0.3% 31,767.92 17% 

Total FP 24,365.80 43,378.13 147,155.68 
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Final 

Produce 

From cropland 3,200.18 13% 39,095.87 90% 115,226.42 78% 

From woodland 20,873.63 86% 4,052.34 9% 161.34 0.1% 

From livestock 291.98 1% 229.92 1% 31,767.92 22% 

Biomass 

Reused 

Total BR 34,138.23 30,980.41 34,774.31 

Farmland 

Total 11,658.13 34% 13,949.72 45% 9,102.89 26% 

Seeds 671.14 6% 2,001.96 14% 3,413.32 37% 

Buried 

biomass 
4,123.00 35% 11,947.76 86% 5,689.57 63% 

Formiguers 6,864.00 59%     

Livestock 

Total 22,480.10 66% 17,030.69 55% 25,671.42 74% 

Feed from 

cropland 
8,122.06 36% 11,778.10 69% 22,001.97 86% 

Feed from 

pastureland 
5,549.81 25% 2,550.89 15%   

Feed from 

woodland 
7,481.08 33% 221.81 1%   

Stall 

bedding 
1,327.16 6% 2,478.89 15% 3,669.44 14% 

External 

Inputs 

Total EI 1,273.25 6,602.63 266,313.31 

Agrarian 

Community 

Labour 249.52 20% 351.72 5% 500.87 0.2% 

Residues 1,023.72 80% 520.23 8%   

Societal 

inputs 

Machinery   2,522.79 38% 60,606.16 23% 

Fertilisers 

and biocides 
  3,207.89 49% 14,014.85 5% 
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Seeds     7,449.85 3% 

For 

livestock 
    183,741.93 69% 

Livestock 

Services 

Total LS 3,102.16 9,072.99 37,294.33 

Manure 2,364.11 76% 8,458.68 93% 37,294.33 100% 

Draft Power 738.05 24% 614.31 7%   

Waste   5,017.10 

 

Table 5. Energy Returns on Investment ratios (EROI) in the agroecosystem of Les Oluges village, 

before and after the Green Revolution (1860-1959-1999). Source: Our own, from the sources 

detailed in the text. 

EROIs 1860 1959 1999 

Final EROI FP/(BR+EI) 0.69 1.15 0.49 

External Final EROI FP/EI 19.14 6.57 0.55 

Internal Final EROI FP/BR 0.71 1.40 4.23 

Final EROI on Labour FP/Labour 97.65 123.33 4,204.45 

NPPact EROI NPPact/(BR+EI) 3.28 3.33 0.75 

AFEROI FP/(UhP+BR+EI) 0.26 0.49 0.40 

Biodiversity EROI UhP/(UhP+BR+EI) 0.62 0.58 0.19 

AFEROI/FEROI  0.38 0.42 0.81 

HANPP TP/NPPact 50% 59% 83% 

 

Yet in 1959, the replacement of BR by EI was still in its infancy, and the absolute and 

relative amount of EI remained small. This explains that the FEROI (Table 5) increased 

between 1860 and 1959, since the unavoidable reduction in the return to EI (EFEROI) 

was offset by the IFEROI increase due to the simultaneous reduction of BR. This balance 
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could be kept only as long as the agroecosystem maintained a mixed organic-industrial 

functioning. The replacement of BR by EI, became almost complete in 1999. From 1959 

to 1999, FP increased threefold, but at the cost of an amount of EI forty times higher. 

Additionally, although most of the FP came from cropland, EI and BR flows were mainly 

directed to feed the livestock. As a result, the total energy spent doubled the energy 

content of the FP provided to society.   

The great increase in livestock density and the replacement of BR by EI had an adverse 

outcome apart from the loss of energy efficiency. A new flow appeared: waste. This flux 

refers to resources which under a traditional organic management used to be recycled in 

the agroecosystem as organic matter stored in the soil, but now have no use or are 

produced in excess (i.e. surplus manure and crop by-products). The size of this flow is 

strongly determined by the assumptions made (see Appendix) given the lack of statistics 

on the pace at which reuse of by-products was given up; but ultimately its significance 

goes beyond its volume, since it denotes a significant eco-inefficiency of farm 

management.  

Another relatively small flow in all three points in time that has a key importance is 

labour. Its relevance lies on being the main force that manages the agroecosystem, 

providing information and knowledge for its functioning in order to satisfy human needs. 

Labour productivity expressed by the Final EROI on Labour soared in 1999 as a result of 

the mechanisation of agriculture and industrialisation of livestock production. However, 

despite Les Oluges produced much more biomass energy in 1999 than in 1860, and with 

a greater labour productivity, its energy efficiency was lower. Only the IFEROI was 

higher in 1999 than in previous times, but this entailed the abandonment of an energy 

flow essential for the sustainable reproduction of agroecosystems: the BR aimed at 

maintaining soil living organisms and fertility, and integrating land uses.  

The clearance of woodland area lessened the most important biological source of high-

concentrated energy carriers, but the increase in cropland productivity balanced out this 

effect in total NPPact. Yet NPPactEROI highlights that the increase in the total biomass 

photosynthesised was attained at the cost of a massive unsustainable consumption of 

fossil-fuelled EI, which also decreased the energy efficiency of the agroecosystem. 

Higher yields at the expense of EI are also behind the evolution of AFEROI. The fact that 

it reaches a higher value in 1999 than in 1860 should be read carefully. Like the greater 

IFEROI of 1999, a higher AFEROI does not mean better ‘efficiency’ but rather the fact 
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of extracting a FP six times larger from the farmland, while recirculating in it only 15% 

more UhP and BR than in 1860. The internal energy flows looped into the agroecosystem 

were greater than the energy content of the biomass extracted from it in 1860, but these 

internal flows were reduced in 1959 and 1999. Conversely, the lower AFEROI in 1860 

reveals the great reinvestment of biomass flows needed to sustain the energy productivity 

under an organic farm management. 

 

4. Discussion  

4.1.The energy transformations of Les Oluges 

The results obtained in Les Oluges in 1860 show an agroecosystem in which farmers 

were, as in any traditional organic agroecosystem, closely tied to their territory and 

constrained by its ecological features, to which they had developed biocultural adaptation 

strategies based on an integrated and (to some extent) extensive use of land (Pujol, 2001). 

Since aridity was the most important limitation and irrigation was not available for most 

of the land –or when available, it was only occasional—, agriculture needed to adapt to 

water scarcity. The widespread use of biennial fallow was the main response to this 

limitation. This dry-farming management allowed the soil to recover nutrients and to 

increase the amount of water stored in it (Garrabou, Naredo & Ávila Cano, 1999). Aridity 

also prevented land-use intensification by the introduction of legumes or fodder crops in 

formerly fallow land (Garrabou, 1978). This reduced the possibilities of feeding more 

livestock that could provide enough manure to fertilise more intensive crop rotations. 

Livestock density was similar or even a bit larger than in coastal Catalonia (Marco et al., 

2018), but far from the 25 LU500/km2 of Austria or some parts of the United States in the 

nineteenth century (Cunfer & Krausmann, 2009, 2015). Its composition was also an 

adaptation to the local ecological conditions. The difficulty in sustaining a sufficient 

livestock density made it necessary to draw upon woodland not only for providing enough 

feed, but also for supplementing the scarcity of manure by the traditional technique of 

formiguers –e.g. burning forest biomass in a set of small kilns, and ploughing the charcoal 

into cultivated soils (Olarieta, Padró, Masip, Rodríguez-Ochoa & Tello, 2011). The 

energy flows of 1860 show that forestland was an essential resource for the functioning 

and maintenance of the agroecosystem, providing soil nutrients, animal feed, wood, 

firewood and other by-products for domestic use (Iriarte Goñi, 2003). Livestock played a 

key role in integrating this agro-ecological mixed farming (Krausmann, 2004).  
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The intercropping system developed in Les Oluges was also a traditional adaptation to 

aridity. This association of perennial and annual crops was not only a diversification 

response to the risk of frequent harvest failures from the perspective of economic 

rationality, nor merely a way to take advantage of market conditions. This intercrop can 

be regarded as a wise management of the natural resource endowment that sought to attain 

greater agroecosystem stability by taking advantage of the agroecological synergies set 

among different land covers and plant root systems to improve yield stability, resistance 

to pests, and resilience to cope with adverse climate events. The greater complexity and 

heterogeneity of cropland also benefited farm-associated biodiversity (Alam et al., 2014; 

Altieri & Nicholls, 2002, 2004; Palma et al., 2007; Rigueiro-Rodríuez, McAdam & 

Mosquera-Losada, 2009). The relatively high population density of Les Oluges in 1860 

(42 inhabitants/ km2)  is the midpoint between traditional intensive organic agricultures  

with a strong vineyard specialisation (60 inhabitants/km2 or above) and the densities 

found in extensive cereal-growing regions of inner Spain (25 inhabitants/km2 or below) 

at that time (Badia-Miró & Tello, 2014; Garrabou, Tello & Cussó, 2008). 

The introduction of fertilisers, machinery, and new crops and seeds changed the 

agroecosystem of Les Oluges in 1959. They allowed for a partial substitution of BR by 

replacing the traditional labour-intensive techniques of fertilisation (the formiguers) and 

supplementing manure and fallow. In addition, tractors started to replace animal draught 

power. Thus, the agroecosystem was able to increase its cultivated area, to raise cropland 

yields and to provide more energy resources for human consumption (FP). But 

mechanisation also involved the removal of many dry-stone walls (Olarieta & Padró, 

2016) as the old terraces were too narrow for the new machinery. The investment in these 

operations and the costs to the agroecosystem in terms of increased soil erosion and 

organic matter and nutrient losses still needs to be assessed. 

The slight decrease of livestock density did not tame the increase in yields because the 

lower need for pasture was coupled with increased housing of animals and manure 

availability, and the agroecosystem started a process of increasing emancipation from the 

land (Mayumi, 1991) through a greater dependence on EI. Neither the lower population 

density was an impediment for the enlargement of cropland. Mechanisation increased 

productivity of labour and the maintenance of the intercropping system prevented the 

increase of seasonality, a clever Chayanovian improvement (Chayanov, 1966; Van der 

Ploeg, 2013). The enlargement of cropland and the remarkable deforestation of Les 
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Oluges in 1959 was also driven, by the increasingly stronger market connections. The 

improvement of the railway network and the boom of vineyard in the second half of the 

19th century facilitated a greater market orientation of agriculture (Badia-Miró, Tello, 

Valls, & Garrabou, 2010), with the support, from the beginning of the 20th century, of 

peasant unions and cooperatives, which became a fundamental tool for the 

commercialisation of the agricultural inputs (mineral fertilisers and machinery) and 

produce (cereal grains and flour, and animal products) (Ramon Muñoz, 1999).   

The agroecosystem of Les Oluges in 1959 was based on a mixed organic-industrial 

farming that made it possible to increase its energy efficiency and cropland productivity. 

However it would not be until 1999 that some of the former ecological constraints on 

farm management would be overcome. The spread of the Green Revolution technical 

package got rid of the main organic management practices (Soto et al., 2016; Guzmán et 

al., 2017). With the elimination of fallow and grazing land a great deal of the former land 

cost of agrarian sustainability (LACAS) (Guzmán, González de Molina & Alonso, 2011) 

has been transferred to other territories, while the agroecosystem of Les Oluges acquired 

the main features of a modern industrial agroecosystem: monoculture, mechanisation, 

dependence on external inputs and low labour requirements. In addition, livestock density 

soared, becoming a key element in the unsustainability of the agroecosystem (Soto et al., 

2016). Traditionally farm animals had played an important role in agroecosystems as 

providers of multiple services and products (Krausmann, 2004). Paradoxically, while 

their weight in the agroecosystem’s structure has vastly increased at present, triggered by 

the human dietary transition towards unhealthy levels of meat consumption  (Smil, 2002; 

Soto et al., 2016; Tilman & Clark, 2014), their former integrating agroecological role has 

been lost. Furthermore, despite providing only 17% of the FP in 1999, most of the energy 

introduced and reinvested in the agroecosystem was aimed to feeding livestock, becoming 

a key determinant of the overall energy efficiency of the farm system. 

Crop diversification was replaced by a cereal monoculture; the application of synthetic 

fertilisers boosted despite the greater availability of manure; livestock feeding in feedlots 

was decoupled from cropland; and the consumption of agrochemicals soared in order to 

tackle with the growing imbalances of this simplified agroecosystem that lost a great deal 

of the self-regulation capacity provided by its farm-associated biodiversity. Through 

these changes, the agroecosystem of Les Oluges became a net consumer of energy from 
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the society with an EFEROI below one, while in 1860 and 1959 it had been a net producer 

of energy for the society.  

Finally, the decrease of Unharvested Phytomass can be linked to a reduction of the 

agroecosystem’s capacity to host biodiversity either belowground, in the soil food chains, 

or aboveground in the land cover diversity and species richness (Marull et al., 2017).  A 

nature-based agroecosystem has been replaced by an industrial farming system relying 

on fossil fuel depletion.  

4.2.Les Oluges in a comparative view 

Previous studies carried out with this same methodology (Galán et al., 2016; Guzmán & 

González de Molina, 2015; Guzmán et al., 2017; Marco et al., 2018) allow us to compare 

the results obtained in Les Oluges, and better understand some of the determinants of the 

sustainability of agroecosystems. Here we will mainly focus on the contrast between Les 

Oluges and another Catalan case study: four townships in the Vallés county with an 

approximate total area of 120 km2 (Sentmenat, Caldes de Montbui, Castellar del Vallès 

and Polinyà) (Figure 2). Vallès has been widely studied from a historical sociometabolic 

perspective (Badia-Miró, Tello, Valls & Garrabou, 2010; Cussó, Garrabou & Tello, 2006; 

Galán et al., 2016 Marco et al., 2018; Padró, Marco, Cattaneo, Caravaca, & Tello, 2017). 

It belongs to the wetter and wealthier part of Catalonia, and provides a particularly 

relevant contrast to compare with our semiarid case study.  

Under organic farming conditions in mid-nineteenth century, Vallès was favoured by its 

climate conditions and proximity to Barcelona. Higher rainfall allowed for a more 

intensive land use, substituting fallow with crop rotations including leguminous crops 

(Garrabou & Planas, 1998). These provided soil fertilisation, feed for livestock, and more 

resources available for human use. Additionally, its proximity to Barcelona and its port 

was a driving force for market orientation and specialisation of agriculture. More than 

half of the cropland of Vallès was dedicated to vineyard in 1860, while in the same period 

in Les Oluges the expansion of vineyard reached only 46% of cropland and was grown 

exclusively in alley-cropping association with cereals and olives. Their socio-ecological 

endowment rendered higher energy efficiency in Vallès (with a FEROI of 1.03) than in 

Les Oluges. BR was the main flow invested in the sustenance of the agroecosystem, and 

it had to be much higher in Les Oluges than in Vallès in 1860. From the TP of the 

agroecosystem, Vallès invested 48% as BR, while in Les Oluges this percentage was 

58%. 
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The situation changed after the Phylloxera plague that reached Vallès from 1883 and the 

Segarra County from 1894 onwards (JCA, 1911). Les Oluges followed the 

abovementioned process of deforestation and cropland expansion in which vines, together 

with other tree crops, maintained a significant role. In Vallès cropland area diminished, 

and rainfed cereals and pastureland took over most of the land previously dedicated to 

vineyards. Additionally, Vallès began a process of livestock specialisation producing 

dairy and meat for the nearby urban centres. From 1860 to 1950s FEROIs of Les Oluges 

and Vallès experienced opposite trends: energy efficiency diminished in Vallès (with a 

FEROI of 1.01) and increased in Les Oluges. This also holds true for the agroecological 

EROIs (AFEROI of Vallès was 0.49 in 1860 and 0.25 in 1956).  

In 1999 the energy efficiency of both agroecosystems dropped. The lower energy 

efficiency of Vallès (with a FEROI of 0.22) was mainly due to its greater specialisation 

in livestock (with a livestock density of 241LU500/km2, mostly swines). The  expansion 

of forests on abandoned agricultural land in Vallès did not compensate for the  

homogenisation of land covers, polarised into urban (22% of total area), woodland (57%) 

and grain-growing monocultures (18%) (Marull, Pino, & Tello, 2008; Olarieta, 

Rodríguez-Valle, & Tello, 2008). The unbalanced livestock density in relation to cropland 

area led to a problem of an excess of manure produced.  

Land uses also reflect the different socioeconomic structure of Vallès and Les Oluges. In 

Vallès population grew over the 20th century, and even though agriculturally active-

population decreased, other economic sectors, such as industry and services, developed 

in the area. Conversely, Les Oluges remained based on agriculture and its population 

constantly decreased during the last century. 

Despite the more adverse natural resource endowment and after a rather similar historical 

evolution in energy terms, Les Oluges reached a relatively greater energy efficiency than 

Vallès in 1999 mainly due to a lower livestock density.  

These results are in line with the ones obtained at the state scale (Guzmán et al., 2017; 

Soto et al., 2016). Spanish agriculture has experienced large increases in livestock 

numbers, woodland area, and cropland productivity. However, the higher amount of BR 

and EI needed to feed livestock are among the main causes of the loss of farming energy 

efficiency throughout the twentieth century. Despite the abandonment of woodland and 
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pastureland, UhP declined because of the higher proportion of biomass appropriated for 

human consumption (AFEROI), rendering a declining Biodiversity EROI.  

 

5. More than energy transformations 

The transformation of the agroecosystem of Les Oluges, and its comparative view with 

other case studies, bring to light three main ideas. Firstly, the importance of livestock 

density for the energy performance of agroecosystems stands out. The low energy 

efficiency of animals as bio-converters (Gliessman et al., 1998) imposes a considerable 

burden on any farm system, not only in energy terms but also regarding competition with 

land uses for human food (Guzmán & González de Molina, 2009). Past organic farm 

systems managed to override this burden by taking advantage of the use of animals as 

bio-converters of farm by-products or domestic residues that would otherwise be disposed 

of. Animals would also be fed from the less productive soils, such as grazing natural 

pastures in mountainous areas or shrub land, increasing the production obtained from 

these lands. This integration of livestock feeding into complex agroecosystems 

maintained a high land cover diversity able to host farm-associated biodiversity that 

enhanced the provision of regulatory and sustenance ecosystem services (Haberl, 2015; 

Marull, Font, Padró, Tello, & Panazzolo, 2016). Under the industrial functioning, the high 

density of livestock dependent on imported feed and the loss of livestock-farmland 

integration has affected the loss of energy efficiency of the agroecosystem. Livestock 

requires a great investment of energy and produces a relatively small amount of energy 

for satisfying human needs mainly focused on animal food products. Additionally, the 

industrialisation of livestock farming has led to severe agroecosystem degradation. 

Pollution by slurry from feedlots, and landscape biodiversity losses, are two clear 

examples of this socio-ecological deterioration (Naylor et al., 2005; Padró, Marco, 

Cattaneo, Caravaca, & Tello, 2017; Tilman & Clark, 2014).  

Secondly, the intensive production of barley and deforestation in Les Oluges can be 

linked, at least from a theoretical perspective, to the very high levels of livestock density 

in Vallès, where feedlots rely on large feed imports and more than half of the land has 

been abandoned and spontaneously reforested. Contrary to the positive views of this 

transition, made possible in Vallès by the land sparing effect of intensive feed grain-

growing in Les Oluges or similar areas, the crude fact is that biodiversity has been 
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degraded in  the former—a result that supports the alternative claims for a land sharing 

approach to nature conservation (Barthel et al., 2013; Bennett, 2017; Fischer et al., 2008).  

It is not only wild habitats that are important for the maintenance of biodiversity, but also 

the degree of human appropriation of photosynthetic capacity and the spatial disturbance 

patterns that take place in agroecosystems, which in turn give rise to diversification, 

heterogeneity and complexity of landscapes (Marull et al., 2016, 2018)  

Thirdly, we found that mixed organic-industrial farm systems provide interesting 

examples of agroecosystems that made it possible to raise cropland productivity and thus 

overcome some bottlenecks of traditional organic farming, while keeping some energy-

efficient balances agro-ecologically sound. These are nowadays called eco-functional 

intensification practices (FAO, 2013). 

The example of Les Oluges in 1959 shows an interesting combination of modern 

innovations and traditional farm management methods based on local peasant knowledge. 

Use of relatively small amounts of synthetic fertilisers and machinery reduced the 

dependence on a limited amount of manure and animal draught force, overriding the 

LACAS (Guzmán & González de Molina, 2009; Guzmán et al., 2011).  True, the 

introduction of inputs based on fossil fuels and non-renewable resources started an 

unsustainable path which would eventually lead to an extreme simplification of farmland 

and livestock processes as seen in 1999. However, in the mid-twentieth century the 

agroecosystem still retained important elements of its organic functioning. One of these 

was fallow. Even though this practice has long been deemed as a signal of backwardness 

in agrarian systems, it is still a convenient dry-farming practice in arid areas (Garrabou et 

al., 1999; Garrabou, Naredo, & Balboa, 1996). Additionally fallow land can be used as 

pasture or, when it is not used by livestock, it is made available for the associated 

biodiversity that provides important ecosystem services. Another important traditional 

feature of Les Oluges in 1959 was the maintenance and increased diversity of farming 

systems that intercropped vines, olives and almond trees with cereals. The reasons behind 

the maintenance and advance of this intercropping system need to be further studied 

(Vandermeer, 1989). 

Fallowing and intercropping were two long-lasting traits of site-specific peasant 

knowledge in Les Oluges, and the whole Segarra County (Tello, 1986), that remained as 

sources of significant agro-ecological awareness until the dawn of the Green Revolution. 

The local impact of the European-wide agricultural crisis at the end of the nineteenth 
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century gave rise to a growing presence of farmer unions, cooperatives and local public 

institutions. These organisations played an important role in making available new 

fertilisers and machinery to smallholders, and conducting research and experimentation 

on improved cereal seeds and animal breeds adapted to the local environment (Ramon 

Muñoz, 1998, 1999).  

However, after the Spanish Civil War (1936-1939) this positive institutional environment 

disappeared. Free unions were banned, coops were tightly controlled by the dictatorship, 

and the former decentralised centres of scientific research, innovation and dissemination 

of agricultural knowledge were substituted by an authoritarian state-led model that spread 

the imported chemical, mechanical and biological technologies of the Green Revolution. 

Farmers did not play any active role in the progress and practice of this agricultural 

knowledge. The implementation of the Green Revolution came along in Les Oluges with 

the introduction of a new form of agricultural practice based on a foreign scientific 

knowledge that put the focus exclusively on cropland and labour productivities, 

disregarding the ecological specificities and reproductive necessities of each 

agroecosystem. This clearly contrasts with a traditional peasant knowledge that has been 

developed through generations and adapted to local conditions, which is knowledge- 

instead of input-intensive, and usually aimed at maintaining the productivity of the 

agroecosystem in the long run (Altieri, 2004; Patel, 2012; Pujol, 2001; Shiva, Rojas 

Rosales, & Guyer, 2007; Toledo & Barrera-Bassols, 2008). This cultural, technological, 

social and ecological transformation left its footprint on the landscape. The traditional 

intercropping system that depicted a landscape pattern in stripes disappeared together 

with at least part of its traditional biocultural heritage. 

 

6. Conclusions 

What, then, can be learned about the sustainability of future farm systems from this case 

study? The historical sociometabolic analysis of agroecosystems provides valuable 

insights into the elements that can enhance or degrade the sustainability of 

agroecosystems. Our case study of Les Oluges directs attention to three aspects. First, the 

increase of livestock density and the industrialised livestock management functionally 

disconnected with farming is an important driver for the loss of energy efficiency of 

modern agroecosystems. In order to build more efficient agroecosystems in energy terms, 
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it is necessary to reduce livestock density and re-integrate its feeding sources with farming 

into more complex agroecosystems. Second, the harming consequences of substituting 

internal biomass reuse flows by external inputs, especially when these external inputs are 

based on non-renewable and pollutant sources like fossil fuels. The biomass recycled into 

the agroecosystems (both the reused and the unharvested biomass) is important for 

sustaining the productive capacity of their fund elements, and for the provision of 

ecosystem services that increase their resilience. This leads us to a third aspect: 

sustainable farm systems need to be locally adapted to their ecological conditions. In this 

regard, it would be worthwhile studying the biocultural memory (Toledo & Barrera-

Bassols, 2008) of these Mediterranean traditional farm systems, recovering the local 

knowledge imprinted on agricultural landscapes. The complex intercropping systems 

developed in Les Oluges up to mid-twentieth century can be good examples to learn from.   
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Appendix to Chapter 2: Main assumptions for the calculation of the energy balances 

of Les Oluges in 1860, 1959 and 1999. 

The calculation of the energy balances of Les Oluges has been made following some of 

the main criteria and assumptions made in the previous study of Vallès (see the 

Supplementary Material in Marco, Padró, Cattaneo, Caravaca, & Tello, 2017) and the 

working papers of Aguilera et al., (2015) and Guzmán et al. (2014). We mainly followed 

this methodology for calculating by-products, livestock produce and human diets, 

applying the estimates to the original data we had about the main produce, livestock 

composition and population of Les Oluges in the different points of time. However, the 

agroecosystem of Les Oluges had its own distinctive features, which have been 

represented as faithfully as the availability of data allowed.  

The main raw data from which we started to build the energy profile of Les Oluges comes, 

first, from the land uses detailed in the text, to which we added their productivity, obtained 

from the local records and surveys or from provincial records. Table 6 shows the 

production of farmland in Les Oluges in physical terms. 

Additionally, we estimated the NPPact of the agroecosystem of Les Oluges considering 

not only the above-ground biomass, but also the below-ground biomass produced by the 

agroecosystem. Below-ground biomass was estimated following Guzmán et al. (2014) 

and refers to the roots of the trees and plants grown in the farmland. This is an important 

component of the phytomass produced, since it represents 48%, 35% and 20% of the 

NPPact of Les Oluges in 1860, 1959 and 1999 respectively.   

 

Table 6. Farmland production in Les Oluges in 1860, 1959 and 1999; according to our 

estimations. 

FARMLAND PRODUCTION  1860 1959 1999 

Yield (dry 

matter, 

kg/ha) 

Vegetable 

garden 

Main produce 825 922 3,873 

By-products 1,006 1,401 3,170 

Wheat 

(irrigated) 

Main produce   2,064   

By-products   3,654   

Wheat 
Main produce 550 1,032 2,536 

By-products 1,145 1,939 2,593 

Barley Main produce 770 1,720 2,690 
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By-products 1,603 3,220 2,804 

Rye 
Main produce 467     

By-products 973     

Oat 
Main produce   1,290   

By-products   2,524   

Fodder 
Main produce    20,350 

By-products       

Vine 
Main produce 98 132   

By-products 1,285 1,697   

Olive  
Main produce 77 320 1,167 

By-products 1,027 3,189 13,824 

Almond 
Main produce   574   

By-products   1,532   

Woodland, schrubland & 

pastureland 

 (dry matter, kg/ha) 

Woodland - timber & 

firewood 
1,579 813 813 

Grass 1,002 1,002 1,002 

Acorns, mulch & 

others 
73 73   

Pinewood - timber & 

firewood 
  875   

Riparian woods - 

timber &firewood 
  162   

 

 

The first adjustment we had to do in order to reflect the local specificities of Les Oluges 

involves the estimation of fallow land, which was traditionally widespread in Les Oluges. 

The historical records consulted, such as the cartilla evaluatoria, state that cropland sown 

with cereal was left uncultivated every other year. Therefore, we maintained half of the 

cereal cropland (for monoculture and associated crops) as fallow in our model for 1860. 

For 1959 we obtained local information by inquiry. Fallow was practiced every other year 

in most of the cereal cropland, except for the plots closer to the river, which were left 

fallow once every five years.  

Secondly we had to estimate the amount and size of formiguers used in Les Oluges in 

1860. We took as a reference the data available for a nearby village, Balaguer, and 

obtained a mean of 209 formiguers per hectare used in vegetable gardens and 102 

formiguers per hectare in cereal cropland. Each formiguer would have been built with 20 
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kg of wood from woodland. According to the cartilla evaluatoria of Les Oluges, these 

were the only lands where formiguers were built. However, given the scarcity of manure 

that the historical records acknowledge for the Segarra County, and that in vineyard areas 

it was common to build formiguers with the pruned branches from the vines, we also 

added formiguers to the hectares were cereals and vineyard where intercropped.  

The scarcity of manure and the widespread use of fallow were connected in Les Oluges. 

Scarcity of manure led to the need to keep cropland fallow in alternate years, but only the 

fallow land of monocultures was available for pasture since where cereals were sown 

between the vines, the strips left fallow could not be grazed because livestock could 

damage the vines. Thus livestock feeding required resources from the woodland to satisfy 

its needs, but this also meant that in 1860 a greater amount of manure was lost when 

animals were grazing.   

For calculating the feed distribution among the livestock we followed these steps. For the 

energy balances of 1860 and 1959, first we calculated the feed available for livestock 

feeding, both from grains as barley, and from by-products, domestic residues and 

pastureland. Then we distributed it taking into consideration the suitability for each 

animal and the relevance of the animal for the sustenance and provision of the 

agroecosystem. For 1999, we did the same, but in this case we also include the feed 

imported from abroad and we included the embodied energy of this feed. Thus, in 1860 

in order to fulfil the nutritional needs of the livestock, it was necessary to resort to 

woodland resources.  

Grazing and formiguers are included in the resources extracted from woodland in 1860, 

but the total extraction of wood from the woodland was estimated using the data available 

for the nearby village of Balaguer. For 1959 and 1999 we used provincial data for the 

estimation of woodland biomass production and resources extracted from it.  

When the agroecosystem of Les Oluges has been transformed into and industrial farm 

system, many local farming specificities have tended to disappear. Cropland was 

fertilised mainly with manure and synthetic fertilisers. The amount of manure available 

has been estimated according to the composition and management of the livestock-

barnyard fund component of the agroecosystem. The information about the use of mineral 

fertilisers was obtained from local surveys that gave us the dose of synthetic fertilisers 

applied per hectare. By accounting a nutrient balance of the agroecosystem we obtained 
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the total amount of synthetic fertilisers applied and the number of hectares fertilised 

(Table 7). For the nutrient balance we took into consideration the traditional cultural uses 

of cropland fertilisation–i.e. which crops were prioritised for fertilisation and which crops 

were seldom fertilised—and, for 1999, the limit set by the legislation which establishes a 

maximum of 170kg of nitrogen per hectare (Diari Oficial de la Generalitat de Catalunya 

DOGC, 2009).   

Table 7. Manure and synthetic fertilisers applied in Les Oluges in 1860, 1959 and 1999; 

according to our estimations. 

 

Total kg 
Total hectares 

fertilised 
Kg/ha 

1860 1959 1999 1860 1959 1999 1860 1959 1999 

Manure 

(fresh matter) 
920,947 1,540,252 35,562,160 165 269 791 5,580 5,719 44,979 

Synthetic 

fertilisers 
 155,590 4,039,000  389 696  400 5,805 

 

Finally, in 1999 we had to estimate the flux that we considered waste. In our case, it 

includes only the burned biomass of pruning. The surplus of straw available after 

satisfying its possible uses inside the agroecosystem (livestock feeding and bedding), has 

been considered FP. In 1999 the surplus of straw was 43% of the FP. Including this by-

product as waste would have increased the volume of this flow more than twelve times 

and the FEROI would have fall to 0.28. 
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Chapter 3: Belowground and aboveground sustainability: 

Historical management change in a Mediterranean 

agroecosystem (Les Oluges, Spain, 1860-1959-1999)56 

 

Abstract 

This chapter studies the historical evolution of the farming practices in a semi-arid 

Mediterranean village (Les Oluges, Catalonia). We analyse the agroecosystem from a 

sociometabolic perspective at three different points in time (c.1860, 1959 and 1999), 

focusing on the estimation of the nutrient balances and connecting the assessment of the 

belowground sustainability with the aboveground dimension of agroecosystem 

management. Nutrient balances at the municipal scale were more equilibrated in 1860 

and 1959 (with nutrient balances between -6 and 1 kg/ha) than in 1999 (with nutrient 

surpluses over 86 kg/ha), but at the crop system scale nutrient deficits existed at all the 

points in time. The discussion reflects the complexity of sustainable farming management 

assessing the efficiency, accomplishment and durability of soil fertility management, and 

concludes highlighting the unsustainability of industrialized agriculture and the value of 

integrated management of agroecosystems to improve agricultural sustainability.  

 

1. Introduction 

Mediterranean ecosystems have been managed by humans over millennia transforming 

and adapting their societies and the environment in a process of coevolution in which 

agriculture played an important role (Agnoletti & Emanueli, 2016; Blondel, 2006). 

Agricultural systems are shaped by biophysical and socioeconomic factors, which 

determine the adoption of different management practices. Since the spread of the Green 

Revolution throughout the second half of the 20th century, Mediterranean agroecosystems 

                                                 
5 The authors of this work are: Lucía Díeza*, José Ramón Olarietab and Enric Telloa 

(a Department of Economic History, Institutions, Policy and World Economy, University of Barcelona, 

Barcelona, Spain; b Department of Soil Science and Environment, Engineering School of Agriculture 

(ETSEA), University of Lleida, Lleida, Spain) 

This work has been sent to the journal Human Ecology with me as corresponding author, and is in review 

process. I carried out the estimation of the nutrient balances, developed the analysis and wrote this work. 

José Ramón Olarieta was an important help providing me his advice as expert on soil sciences; him, together 

with Enric Tello, contributed in the guidance of the discussion process.  
6 We would like to thank Xavier Mestre, Josep Maria Llenes and Vicent Torres for their information about 

the agricultural managements in 1959 and 1999. 
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experienced a great transformation. Traditional agricultural practices were locally 

adapted and fundamentally depended on organic resources, while modern agricultural 

methods can be characterized by their use of technologies and industrial external inputs 

largely dependent on fossil fuels. This transformation has entailed a series of 

environmental problems that challenge the sustainability of industrialized agriculture. In 

order to overcome the flaws of modern agricultural management the study of traditional 

farm systems is gaining attention as a source of valuable knowledge for a sustainable 

design and management of current and future agroecosystems (Altieri 2004; Eichhorn et 

al. 2006; Plieninger, Höchtl, and Spek 2006; Bignal and McCracken 2000; Barthel, 

Crumley, and Svedin 2013; Martin et al. 2010). 

This work analyses the historical transition of the agroecosystem of Les Oluges, a small 

village in Lleida province (Catalonia, Spain), from traditional organic farming in the mid-

19th century to a fully industrialized agricultural system in 1999. The analysis is grounded 

on the perspective of Social Metabolism, focusing on the material dimension of the 

exchange of energy and materials between society and the environment, and 

acknowledging that this exchange is mediated by culture (González de Molina & Toledo, 

2014). Furthermore, the analysis of the agrarian metabolism of Les Oluges follows an 

agroecological approach considering that the flows of energy,  water, and the cycling of 

nutrients are the most fundamental processes in agroecosystems, and human intervention 

is a key determinant of the functioning of these processes that distinguishes them from 

wild ecosystems (Stephen R. Gliessman, 2015). Farmers maintain the productive capacity 

of the agroecosystem by a continuous investment of external energy through their labour, 

material inputs and information, and by managing the resources available to replenish the 

nutrients extracted through harvest. Thus, the sustainability of an agroecosystem can be 

assessed by looking at how the different human management practices affect the flows of 

energy carriers and the cycling of nutrients that play a vital role in the reproduction of 

their renewable living funds (i.e. farmland, livestock-barnyard, farm-associated 

biodiversity, and farming community). Aboveground, the flow of energy has to keep 

some level of efficiency in terms of the energy needed to produce a unit of energy output 

to be sustainable in the long run (Tello et al. 2016), and the rate of extraction of resources 

cannot exceed the rate of regeneration of the funds. Belowground, a sustainable cycling 

of soil nutrients must also show an equilibrium between inputs and outputs. This will be 

assessed as the efficiency of the fertilization practices. Sustained deficits in the long term 
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can involve soil nutrient mining and lead to a reduction of cropland fertility and 

productivity. Conversely, surpluses of nutrients can also create a loss of productivity 

and/or pollution problems. Ultimately, these imbalances can damage soil fertility, 

although many other processes and elements may affect it (García-Ruiz et al. 2012).  

There are several conditions that affect belowground sustainability beyond nutrient 

cycling (Neary, Klopatek, DeBano, & Ffolliott, 1999), such as soil physical 

characteristics, nutrient and water storage capacity, organic matter content and 

belowground biodiversity. Even though the historical resources available do not allow us 

to develop an in depth analysis of all of these conditions, we will provide an 

approximation to these issues by assessing the accomplishment of the fertilization 

practices. Finally, the assessment of belowground sustainability considers also the 

durability of the management practices regarding the renewability of the fertilizing 

sources employed. 

 

2. Methodology  

2.1.Nutrient balances 

We calculate the nutrient balances for the three main macronutrients: nitrogen (N), 

phosphorus (P) and potassium (K). The methodology employed is based on previous 

studies for various Mediterranean agroecosystems at different scales (Galán del Castillo, 

2015; Garcia-Ruiz, González de Molina, Guzmán, Soto, & Infante-Amate, 2012; 

Garrabou Segura & González de Molina, 2010). We consider the following flows of 

nutrients (see Methodological Annex): 

 -Human outputs: crops extraction (main produce and by-products) 

-Human inputs: seeds, irrigation, buried biomass, manure (which includes 

humanure in 1860 and 1959), burnt biomass (formiguers7), and mineral and 

synthetic fertilizers. 

-Natural outputs: gaseous losses of N and leaching. 

-Natural inputs: atmospheric deposition, and symbiotic and non-symbiotic N 

fixation. 

                                                 
7 A formiguer was a heap of shrubs and small tree branches that was burnt under a soil cover in the cropland. 

Then, the ashes and charcoal were spread and buried into the soil.  
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Nutrient balances are a useful but limited tool for assessing the maintenance of soil 

fertility through agricultural management (Öborn et al., 2003; Oenema, Kros, & De Vries, 

2003). First, nutrient balances do not cover all the physical and biological processes 

involved in the complex phenomenon of soil fertility. Some important conditions and 

characteristics of soils are left aside, such as soil rootable depth, texture and structure, 

cation exchange capacity, pH, salinity, organic matter and soil biota. A second limitation 

of the nutrient balances (shared with the reconstruction of the energy balances) is that it 

is not possible to obtain all the necessary local or on-site data, especially for their 

historical reconstruction. However, the balances of N, P and K presented in this work 

contain the most relevant fluxes of these nutrients, and the lack of data has been offset 

using available information from similar nearby agroecosystems and from modern studies 

that consider similar ecological conditions. Even though the results need to be interpreted 

with caution, they still offer an important insight into the long-term evolution of the 

agroecosystem sustainability. 

The nutrient balances of Les Oluges have been calculated at two different scales. 

Aggregated results at municipal scale give an account of the total capacity of the 

agroecosystem for the replenishment of nutrients extracted within this boundary. In this 

respect it is important to acknowledge two limitations of this analysis. Firstly,  given the 

lack of information about the flows of nutrients into and out of Les Oluges, we have 

assumed that the cycling of nutrients is confined to the administrative limits of the 

municipio8, even though this was probably not the case in the past and is certainly not so 

in the present. Secondly, the data available for some flows of nutrients cannot be 

extrapolated to the municipal scale. We have dealt with these limitations specially for the 

estimating the flows of nutrients corresponding to manure and soil erosion, as explained 

in the next section.  

Furthermore, a positive result at the municipal scale does not mean that soil nutrients are 

being replenished for all the land uses and particular plots. To complement this 

perspective, the nutrient balances for each type of crop system have been estimated. This 

approach allows us to appreciate the different management practices that might have been 

employed on each crop system and their capacity to sustain soil fertility. 

                                                 
8 A municipio (municipality or township) is an administrative unit composed by the built village centre and 

the surrounding rural areas of cropland, woodland and pastureland with some scattered farms or isolated 

buildings linked by a network of roads and paths. 
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2.2.Estimation of the main flows of nutrients 

The structure of the agroecosystem was built using different historical records. Land-use 

registers and cadastres of the municipio provided cropland composition and the 

distribution of farmland among cropland, woodland, pastureland and urban uses. 

Additionally, information obtained from cattle census and local population registers 

determined the sizes of the livestock-barnyard complex and the farming community. The 

flows of nutrients were calculated from the structure of the agroecosystem.  

Crop extractions was estimated multiplying the yields obtained according to local 

agricultural surveys by the nutrient contents of each crop according to Soroa (1953), 

Fernández-Escobar et al. (2015) and Galán del Castillo (2015). From these crop 

extractions, the amounts of nutrients reintroduced on cropland as seeds and buried 

biomass (stubble and vine pruning) were estimated.  

The calculation of the volume of water used for irrigation was based on Vicedo i Rius et 

al. (1999) considering the different yields from rainfed and irrigated yields of wheat in 

Les Oluges. The resulting volume of water used for irrigation was 1900 m3/ha in wheat 

and olive groves, and 3300 m3/ha in vegetable gardens. The concentrations in N, P and K 

of the water used were obtained from Galan del Castillo (2015).  

The availability of manure was estimated from the livestock-barnyard composition, 

excluding the losses during grazing and including animal beds. Additionally, manure in 

1860 and 1959 includes human excreta. The total nutrients available for fertilization from 

manure exclude also the losses during composting and storage of the heap. The local 

sources available for 1860 and 1959 (JCA, 1890; Soroa, 1953) provided the information 

about the distribution of manure among crop systems and the doses applied. For 1999, 

manure was applied up to the maximum legal dose9: 170, 75, and 130 kg of N ha-1  for 

cereals, almond trees, and irrigated olive groves respectively. Given the large availability 

of manure in 1999, it was possible that flows of manure between the municipio of Les 

Oluges and nearby territories existed. It was not possible to obtain data for 1999, but 

current data revealed that the amount of local hectares fertilized with external manure is 

similar to the amount of external hectares fertilised with local manure (20% of cropland 

                                                 
9http://agricultura.gencat.cat/web/.content/07-ramaderia/dejeccions-ramaderes-fertilitzants-

nitrogenats/enllacos-documents/fitxers-binaris/annex_3_dosis_maximes.pdf  

http://agricultura.gencat.cat/web/.content/07-ramaderia/dejeccions-ramaderes-fertilitzants-nitrogenats/enllacos-documents/fitxers-binaris/annex_3_dosis_maximes.pdf
http://agricultura.gencat.cat/web/.content/07-ramaderia/dejeccions-ramaderes-fertilitzants-nitrogenats/enllacos-documents/fitxers-binaris/annex_3_dosis_maximes.pdf
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approximately). These fluxes would thus cancel each other and we excluded these flows 

from our balances.  

For estimating the flows of nutrients from formiguers we followed Les Oluges 

agricultural survey (cartilla evaluatoria) of 1883, which indicated that they were built 

only in vegetable gardens and cereals. We estimated their size and the number of 

formiguers built in each crop system on the basis of their monetary value. The 

effectiveness of formiguers for the management of soil fertility has long been debated 

(Roxas Clemente, 1808). Modern experiments show that, further from the direct input of 

N, P and K in charcoal and ashes, the mineralization of organic matter caused by the heat 

of the formiguer produced a flush of plant available P, while the loss of mineral N during 

burning was compensated in the short term by an increase in the mineralization of organic 

N afterwards. Additionally, formiguers helped to reduce weeds and pests, and aided in 

‘loosening’ the soil (Mestre & Mestres, 1949; José Ramón Olarieta et al., 2011). In this 

work, the nutrient contribution of each formiguer was estimated following the results 

from Olarieta et al. (2011). 

The information about the use of industrial fertilisers was obtained from local 

informants10. According to these, the doses applied in the mid-20th century were 1 kg of 

guano per kg of seeds, and 1 kg of ammonium nitrate per kg of seeds, and they were only 

applied on cereals. In 1999, the doses applied were 7,000 kg/ha of a compound fertilizer 

2/2/1 (which provides 140 kg of N, 140 kg of P and 70 kg of K) and 270 kg/ha of “spring 

nitrate”, which has been considered to be calcium ammonium nitrate with a 27% content 

of N. However, the total N applied according to the doses in 1999 (213 kg of N ha-1) is 

above the legal allowed (120 kg of N ha-1). Since both hypotheses resulted in large 

surpluses of nutrients, the results showed in this work correspond to the mean between 

them. 

The distribution of manure and industrial fertilizers in 1860 and 1959 has been estimated 

considering the different soil qualities recorded in the sources consulted. According to 

the historical records of 1860, the distribution of crops and fertilizing resources were 

linked to the quality of the soil: best quality soil was sown with wheat and received greater 

fertilization, while medium and lowest quality soils were sown with barley and rye 

                                                 
10 We would like to thank Xavier Mestre, Josep Maria Llenes and Vicent Torres for their information about 

the agricultural managements in 1959 and 1999. 
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respectively and received lower doses of fertilization. In the same vein, for 1959 we have 

considered that wheat was fertilized with mineral fertilizers and was left fallow one every 

five years, while barley and oat only received manure and were left fallow every other 

year. In 1999 there is no distinction among soil qualities, and the distribution of fertilizing 

sources was made considering the records of fertilized surfaces, which indicate that 10% 

of the almond trees were fertilized, and irrigated olives received manure. For cereals, we 

distributed first the manure, until the maximum legal dose, and once all the manure was 

applied, we considered the remaining hectares fertilized with industrial fertilizers.  

The flows of other inputs and outputs have been estimated following different sources 

that provided data for ecological conditions similar to our agroecosystem (Bosch Serra, 

Iglesias Fernández, Amat Bové, & Boixadera Llobet, 2007; Galán del Castillo, 2015; 

Harris, 1988; Peoples et al., 2016).  

Fallow was also a widespread practice for managing soil fertility in traditional agriculture, 

especially in arid and semi-arid climates (Stephen R. Gliessman, 2015; Oliver, Robertson, 

& Weeks, 2010). However, fallow is not a fertilizing method in terms of nutrient 

replenishment, but  a way  of managing soil fertility by increasing the water stored on the 

soil, and by helping to control weeds, diseases and pests (Oliver et al., 2010; Shiel, 2006). 

According to the historical sources, in 1860 cereal cropland in Les Oluges needed to be 

left fallow every other year, and in 1959 this need was reduced to one every five years 

but only in the soils of best quality. In order to show the relevance of this management 

we have differentiated the input of nutrients through the natural processes of deposition 

and non-symbiotic N fixation that occur in fallow land (included under the label ‘fallow’ 

in the nutrient balances at the crop system scale) and in sown cropland.  

Finally, we have not included the nutrient losses caused by soil erosion because, at the 

aggregated scale, the soil erosion that affected mainly platforms at the top of the hills, 

would be cancelled by the deposit of these sediments in the valley floors and terraced 

slopes. At the crop system scale, it was not possible to make proper estimations of the 

distribution of land uses and crop systems for all the points in time studied, as would be 

needed to determine soil erosion and formation. However, in this respect it is important 

to highlight the existence of terraces, an ancient form of soil conditioning aimed at 

improving cropland fertility, but not at the replenishment of nutrients. Dry-stone terraces 

were an important part of the traditional biocultural landscapes (Agnoletti & Emanueli, 

2016). In Les Oluges, they were originally built not only for flattening slopes and 
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increasing the land suitable for cultivation, but also as way of reducing soil erosion and 

managing surface runoff (Olarieta and Padró 2016). The construction and maintenance 

of terraced systems, linked to traditional management practices and knowledge (Sandor, 

2006), has been abandoned to a great extent in recent times.           

 

3. The structure of Les Oluges agroecosystem and its historical 

transformation 

Les Oluges is a small village from La Segarra County, in Lleida (Catalonia) (Figure 6). 

It is located on the upper valley of the Sió River, at 490-650 m.a.s.l. The climate is dry 

continental Mediterranean, with cold and foggy winters and hot and dry summers. 

Average annual rainfall is below 500 mm, and the period of water stress runs from April 

to October (Ramon Garrabou et al., 1999). The capacity for irrigation was severely 

limited by the scarce volume of water of the Siò and Riera de Vergós rivers. These semi-

arid climate conditions limited crop yields and endangered harvests through recurrent 

draughts and frosts.  

Figure 6. Map of Spain and Catalonia showing the location of Les Oluges. Source: our own. 

 

The agroecosystem of Les Oluges experienced important structural changes throughout 

the time span studied, as the size, composition, and interrelationships of its living funds 

were transformed. These changes can be outlined in three processes. 
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Table 8. Composition of the main agroecosystem funds of Les Oluges in 1860, 1959 and 1999. 

Source: Our own, from the sources detailed in the text. 

Les Oluges - FUNDS 1860 1959 1999 

Farming 

community 

Inhabitants 795 404 191 

Annual Working Units11 102 181 35 

Farmland 

(hectares) C
ro

p
la

n
d

 

Cereals 
Sown 161 

36% 
515 

58% 
1,486 93% 

Fallow 161 399   

Associated 

Crops 

Sown 422 
63% 

427 
36% 

  

Fallow 141 139   

Others 4 1% 93 6% 76 5% 

Fallow     28 2% 

Total 888 47% 1,573 84% 1,591 84% 

Pastureland 156 8% 93 5% 0.2 0% 

Woodland & scrubland 831 44% 209 11% 302 16% 

Livestock 

Horses 2 3  

Mules 56 120  

Donkeys 146 10  

Cows & oxen 20  600 

Swines 165 80 6,588 

Sheeps & goats 325 310 500 

Fowl and rabbits 790 2,550 369,026 

LU500 151 124 3,082 

 

First, from 1860 to 1999 there was a process of cropland expansion, particularly intense 

from 1860 to 1959. Traditionally, cereals were the most widespread crop in Les Oluges, 

growing mainly wheat, barley, and rye. However, from the second half of the 19th century 

the Phylloxera crisis in France created favourable market conditions that propelled 

vineyard expansion in Catalonia. This enlargement was carried out in Les Oluges by 

clearing woodland and using the traditional intercropping system in which cereals were 

grown between the widely-spaced rows of vines. The crop system that associated vines 

and cereals became the most abundant in 1860 (Table 8) (with 96% of the cropland under 

associated crops corresponding to vines and cereals, and 4% to olive trees and cereals). 

In 1894 the Phylloxera plague reached the Segarra County ending the vineyard boom 

(JCA, 1911), and the agroecosystem returned toward cereal production, substituting rye 

with oat. The presence of vines decreased (only 25% of associated crops corresponded to 

                                                 
11 http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Annual_work_unit_(AWU)  

http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Annual_work_unit_(AWU)
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vines and cereals in 1959), but the alley crop association system was maintained with the 

introduction of olive and almond trees (Figure 7) (Pujadas i Rúbies et al., 1980). In 1999, 

grain monocultures took up most of the cropland, with barley being grown in 80% of the 

area of cereals.  

Figure 7. Aerial pictures of Les Oluges in 1956. The image on the top shows a general overview 

of the village and the surrounding cropland; the bottom image shows the detail of the 

intercropping system. Source: Orthophotos of Catalonia in 1956-57 from the Institut Cartogràfic 

i Geològic de Catalunya (ICGC), under licence CC BY-NC-SA 4.0. 

 

 

 

In addition to cropland enlargement there was also an increase in cropland productivity 

throughout the whole period (Table 9). This process was twofold: the introduction of new 

seeds and industrial fertilizers from the mid-20th century allowed, on the one hand, to 

increase yields and, on the other hand, reduced the need for fallow and therefore increased 

the area of cereals sown. 
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Table 9. Mean yields of the crops grown in Les Oluges in 1860, 1959 and 1999. Source: Our own, 

from the sources detailed in the text. 

CROP YIELDS 

(kg fresh matter ha-1) 
1860 1959 1999 

Vegetable 

gardens 

Main produce 8,675 9,392 26,078 

By-products 7,881 5,582 17,079 

Cereals 
Main produce 693 1,567 3,039 

By-products 1,442 2,855 3,138 

Vines 
Main produce 693 780  

By-products 2,379 3,243  

Olive trees 
Main produce 113 320 808 

By-products 1,195 4,520 14,037 

Almonds 
Main produce  600 467 

By-products  1,795 1,795 

Fodder   18,178 

 

Secondly, the agroecosystem of Les Oluges experienced a continuous process of 

depopulation from 1860 to 1999. The farming community in 1999 was only one quarter 

of that in 1860. The agricultural crisis after the Phylloxera plague boosted agricultural 

migration to industrial centres and cities, and in the first half of the 20th century the 

introduction of machinery, mineral fertilizers and new seeds increased labour 

productivity and reduced the need of agricultural workers.   

Finally, the process of modernization of the agroecosystem affected also the composition 

and volume of the livestock-barnyard fund. From 1860 to 1959, livestock density 

decreased 18% (Table 8) because of the lower agrarian population and the introduction 

of new machinery that reduced the need for animal draft force. The greater availability of 

feeding resources allowed to substitute mules for donkeys and the availability of manure 

increased (Table 10) due to a reduced need for pasture (Díez et al., 2018).  From 1959 to 

1999 livestock density multiplied by 25 and animal husbandry was also transformed. 

While traditional livestock management was integrated in farmland, with animals feeding 

from by-products, domestic residues and grazing in less productive soils, under industrial 

management livestock was kept on feedlots and depended on feed imports.       
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Table 10. Manure availability and distribution among crop systems in Les Oluges in 1860, 1959 

and 1999. Source: Our own, from the sources detailed in the text. 

MANURE 1860 1959 1999 

Total available (kg fresh matter) 1,242,572 1,540,252 35,562,160 

  

Mean dose of 

manure applied 

on cropland  

(kg fresh matter 

ha-1) 

Vegetable gardens 10,184 10,000 20,000 

Cereals 1,567 5,643 44,965 

Almonds   19,841 

Irrigated olive trees   34,391 

 

4. Nutrient balance results 

4.1.Aggregated scale 

Figure 8 shows the remarkable increase in the flows of nutrients in Les Oluges especially 

from 1959 to 1999. The volume of nutrients extracted rose with cropland enlargement 

and increased cropland productivity, but the application of manure and industrial 

fertilizers made it possible to offset that greater extraction. However, while in 1860 and 

1959 the input and output of nutrients were nearly balanced, in 1999 the volume of 

nutrients introduced in cropland was larger than the nutrients extracted, thus leading to a 

great surplus in the nutrient balances (Table 11).  
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Figure 8. Nutrient balances of Les Oluges in 1860, 1959 and 1999 at the aggregated scale. 

Source: Our own, from the sources detailed in the text.  

 

 

In 1860, the main input of nutrients came from manure, followed by atmospheric 

deposition (which respectively provided 48% and 10% of the nutrients extracted). 

However, in terms of area fertilized, formiguers were the most widespread management, 

since they were built in cereal monocultures and in the intercropping system that 

combined vines and cereals. Formiguers played an important role as input of nutrients: 

they provided 15% of the P and K extracted, but they had an initially negative impact on 

N increasing by 13% the human extraction of this nutrient.   
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Table 11. Detail of the flows of nutrients and the surplus/deficit of the nutrient balances of Les Oluges in 1860, 1959 and 1999 at aggregated scale. The hectares 

refer to the total surface on which this flow of nutrients occur. The figures of N, P and K refer to the mean kg/ha of each flow. Source: Our own, from the sources 

detailed in the text. 

Detail of the nutrient 

balances at the aggregated 

scale 

1860 1959 1999 

ha N P K ha N P K ha N P K 

Crop extraction 888 -13.40 -2.35 -8.98 1573 -21.77 -3.90 -12.02 1591 -66.78 -13.05 -39.38 

Seeds 306 2.04 0.38 0.46 929 2.57 0.42 0.51 1492 4.03 0.86 1.23 

Irrigation 4 2.90 0.07 1.83 8 2.41 0.05 1.52 4 2.64 0.06 1.66 

Buried biomass 422 0.70 0.07 0.91 941 0.48 0.10 0.62 1487 1.24 0.23 1.83 

Manure 165 19.01 7.20 29.14 269 20.82 11.50 24.39 795 169.10 111.59 220.70 

Formiguers 570 -2.72 0.53 2.04         

Industrial fertilizers     389 56.75 10.47 5.23 701 166.45 109.46 54.73 

Gaseous losses 4 -8.5   658 -6.03   1496 -14.96   

Leaching 4 -7.5 0 -3.5 8 -7.5 0 -3.5 4 -7.5 0 -3.5 

Deposition 888 2.90 0.07 0.50 1573 2.90 0.07 0.50 1591 2.90 0.07 0.50 

Non-symbiotic N fixation 888 1.00   1573 1.00   1591 1.00   

Symbiotic N fixation 4 22.41   5 22.41   5 13.09   

             

Total surplus/deficit  -7 (±0) 0 (±0) -1 (±0)  -1 (±0) 1 (±0) -5 (±0)  86 (±21) 92 (±14) 98 (±7) 
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In 1959 the nutrient balances improved for N and P, but worsened for K. Again, the 

surpluses and deficits are not large enough to consider them determinant. The 

agroecosystem was functioning in a relative equilibrium of nutrient cycling, although it 

must be noted that the area and productivity of cropland were much higher in 1959 than 

in 1860 (Table 8 andTable 9). The area fertilized with manure increased 63%, providing 

an input of nutrients per hectare similar to that of 1860. However, it was the introduction 

of mineral fertilizers which played a key role in the increased capacity of the 

agroecosystem for sustaining the higher nutrient extraction, even though this was 

achieved at the expense of the alien territories from where the guano and ammonium 

nitrate were extracted (Cushman, 2013). Furthermore, the availability of these new 

fertilizing source enabled the abandonment of the use of formiguers, which required a 

large investment of labour.   

Finally, the relative balance of inputs and outputs of nutrients changed in 1999. The 

extraction of nutrients increased more than three-fold between 1959 and 1999, while the 

input of nutrients multiplied by a factor of thirteen. Not only manure was widely available 

because of the greater livestock density, but the amount of industrial fertilizers applied 

also increased. Compared with 1959, the area fertilized with industrial fertilizers 

increased 80%, with a mean input of nutrients almost eight times larger. Along with the 

greater input of nutrients, losses also rose. However, the results obtained at the aggregated 

scale show large surplus in the balances of the three soil macronutrients.  

4.2.Crop system scale 

The results of the nutrient balances for each crop system in 1860, 1959 and 1999 are 

shown in Table 12. When we look at the crop scale the distribution of the deficits and 

surpluses of nutrients can be qualified according to the management practices carried out 

on each crop system, which is related to the different value or importance given to each 

crop in the socioeconomic and cultural context. At the three points in time studied most 

of the crop systems were actually experiencing a deficit of nutrients. Only cereal 

monocultures achieved positive nutrient balances, and intercropping system and woody 

crops monocultures tended to have nutrient deficits.  

Given the large diversity of crop systems in Les Oluges, especially until the mid-20th 

century, we will focus the analysis on the most widespread crop systems: cereal 

monocultures, and alley-cropping of vines and cereals in 1860 and 1959; and cereal 

monocultures and almond trees in 1999. 
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Table 12. Nutrient balances of the crop systems of Les Oluges in 1860, 1959 and 1999 (kg/ha). Source: Our own, from the sources detailed in the text. 

Nutrient balances  

Crop systems 

1860 1959 1999 

ha N P K ha N P K ha N P K 

Vegetable gardens 4.28 -51.51 -13.92 -30.11 4.65 8.41 11.90 4.10 0.28 23.24 40.02 35.49 

Cereals 

 

Irrigated wheat         3.11 -21.62 -1.78 -29.46        

Wheat 47.29 2.61 2.88 13.56 492.96 15.12 2.85 -6.47 301.39 87.95 98.44 107.91 

Barley 114.02 1.72 2.25 8.41 320.91 -11.81 1.66 -4.20 1185.04 93.96 98.21 103.92 

Rye 160.20 4.26 1.83 11.55                

Oat         97.20 -8.58 2.78 1.96         

Fallow                 28.22 3.90 0.07 0.50 

Fodder                 5.13 6.38 -1.06 -1.57 

Olives (rainfed) 0.18 -3.21 -0.15 -0.02 6.31 -18.17 -0.27 -1.02 12.80 -62.76 -2.04 -4.50 

Olives (irrigated)                 3.80 -74.56 79.73 153.63 

Vineyard         56.54 -11.06 -1.70 -10.96         

Almond trees         25.54 -20.10 -6.79 -7.81 53.87 -5.47 1.38 5.58 

Vines & wheat 27.42 -18.45 -2.11 -9.96 117.06 2.53 0.62 -6.97         

Vines & barley 156.96 -16.03 -2.18 -11.18 21.65 -10.81 0.25 -6.44         

Vines & rye/oat 355.87 -10.12 -1.68 -6.43 5.28 -9.07 0.86 -3.14         

Olives & wheat 0.65 -4.38 -0.87 -2.14 17.90 3.75 1.34 -3.30         

Olives & barley 7.84 -4.03 -0.94 -3.77 25.29 -11.20 0.93 -2.71         

Olives & rye/oat 13.62 -1.50 -0.94 -1.56 5.34 -9.25 1.61 0.99         

Vines, olives & rye 0.15 -3.94 -1.35 -4.07                 

Almonds & wheat         61.13 1.44 -0.86 -6.06         

Almonds & barley         56.71 -13.98 -1.20 -4.33         

Almonds & oat         10.59 -12.28 -0.51 -0.65         

Vine, almonds & wheat         77.66 -2.74 -1.20 -7.09         

Vine, almonds & barley         38.38 -13.25 -1.48 -6.68         

Olives, almonds & wheat         22.38 -2.78 -0.98 -4.69         

Olives, almonds & barley         36.08 -13.81 -1.28 -4.26         

Olives, almonds & oat         1.64 -12.38 -0.78 -1.53         

Vine, olives, almonds & wheat         58.47 -8.76 -2.09 -6.48         

Vine, olives, almonds & barley         9.90 -13.21 -2.21 -6.31         
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In 1860 only cereals grown as monocrop achieved a positive balance of nutrients. 

According to the historical records, given the scarcity of manure it was applied in 

vegetable gardens, and in cereal monocultures when supply was sufficient (Figure 9a). 

Additionally, wood from woodland was used to burn formiguers in the cereal land to 

supplement manure. These where the main inputs of nutrients in cereal monocultures, 

together with fallow, and constituted a net input of nutrients from woodland and 

pastureland into cereal cropland (except for the nutrients recycled from the by-products 

fed to animals and reintroduced as manure). However,  fallow was the only technique that 

contributed a net input of nutrients (Figure 9b) as the other practices associated with the 

restoration of soil fertility were actually a recycling of the nutrients extracted through the 

by-products (formiguers in this crop system were built with vine pruning instead of wood 

from woodland). The intercropping of vines and cereals showed a negative balance of 

nutrients, but it must be highlighted that it was less pronounced in the case of vines and 

rye, which was the most widespread intercrop (Table 12). 

Figure 9. Detail of the inputs and outputs of the main crop systems of Les Oluges in 1860. 9a) 

Composition of the nutrient balances of cereals; 9b) Composition of the nutrient balances of the 

intercropping of vines and cereals. Source: Our own, from the sources detailed in the text.   
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9b) 

 

 

In 1959 the situation was more complex. Most crop systems had nutrient deficits, 

especially for N and K. The distribution of these deficits was determined to a great extent 

by the kind of fertilization applied on each type of crop. Taking this into consideration, 

our results show that those crop systems that received mineral fertilizers were more 

generally able to replenish the N extracted, though the application of manure provided a 

more balanced input of the three macronutrients (Figure 10).    
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Figure 10. Detail of the nutrient balances of the main crop systems of Les Oluges in 1959. 10a) 

Composition of the nutrient balances of rain-fed cereals; 10b) Composition of the nutrient 

balances of the intercropping of vines and cereals. Source: Our own, from the sources detailed 

in the text.  
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Given that there was a greater availability of fertilizers, all the crop systems which 

included cereals (as a single crop and in association with other crops) could receive either 

manure or mineral fertilizers. However, as the intercropping systems increased the 

number of species included, the surpluses of nutrients were reduced and deficits rose.  

In 1999 the different management practices applied allow us to distinguish among woody 

crops and cereals, but there is no difference in the fertilization applied to wheat and barley.  

Figure 11. Detail of the nutrient balances of the main crop systems of Les Oluges in 1999. 11a) 

Composition of the nutrient balances of cereals; 11b) Composition of the nutrient balances of 

almonds. Source: Our own, from the sources detailed in the text.  

11a) 
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11b) 

 

 

The availability of fertilizers escalated in 1999, but their distribution remained unequal 

(Table 12). Cereal monocultures, which covered 93% of cropland, obtained large 

surpluses of nutrients, either when fertilized with manure or with synthetic fertilizers 

(Figure 11a). Fallow was abandoned as a strategy for soil fertility management, and it 

became a way to obtain subsidies from the European Common Agricultural Policy (CAP). 

Woody crops received some fertilization with manure, but it was only applied in irrigated 

olive groves and in 10% of almond hectares. The almond fields fertilized with manure 

had a largely positive balance of nutrients (Figure 11b), whereas manure applied on 

irrigated olive trees (with the maximum dose legally allowed) could not offset a negative 

balance of N (Table 12).  

 

5. Discussion 

5.1.Changes in soil fertility management: efficiency, accomplishment and durability 

The results obtained from the nutrient balances of Les Oluges in 1860, 1959 and 1999 are 

relevant to examine the sustainability of the different management practices of soil 

fertility applied in each period from a combined perspective that evaluates their 

efficiency, accomplishment and durability.  

Efficiency is assessed considering the capacity of these practices for balancing the 

nutrients extracted. In this sense, the nutrient balances of 1860 and 1959 can be 

considered more efficient than those of 1999. The former were close to equilibrium, 
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meaning that nutrients might have been replenished even though the fertilizing resources 

available at the aggregated scale were quite scarce. Additionally, most of the deficits and 

surpluses at the crop system level were not severe, which underlines the effort and 

ingenuity of farmers to sustain crop yields in a context of low availability of fertilizers 

that required a great investment of biomass recycling in order to reintroduce part of the 

nutrients extracted. On the contrary, the large surplus of nutrients in 1999 for some of the 

crop systems and at the aggregated scale reveals an excessive and inefficient use of 

fertilizers that could even damage cropland fertility in the long run.   

Accomplishment of the soil fertility management can be qualitatively understood from an 

agroecological perspective as the capacity of the fertilization techniques to contribute not 

only to the cycling of nutrients, but also to some of the other elements that determine soil 

fertility. An in-depth analysis of these elements would go beyond our possibilities, but it 

is possible to approximate some of the effects of certain management practices. First, we 

can assess the effects on three interrelated elements: soil organic matter content, soil 

biodiversity, and water and nutrient storage capacity. Among the fertilizers applied in Les 

Oluges, manure and buried biomass are the most important sources of organic matter. 

They were used in all the time points studied, with similar relevance in 1860 and 1999 

(being 68% and 62% of the total nutrient inputs respectively) but with lower relevance in 

1959 (being 42% of the total nutrient inputs). Soil organic matter improves the capacity 

of the soil to retain water and nutrients, but also serves as food for soil biota, which 

performs multiple functions in soils and is of great importance for the sustainability and 

fertility of soils (Bardgett & Van Der Putten, 2014; Brussaard, de Ruiter, & Brown, 2007; 

Stephen R. Gliessman, 2015). Furthermore, belowground biodiversity is linked to 

aboveground biodiversity (De Deyn & Van Der Putten, 2005; Wardle et al., 2004), which 

we estimate was greater in 1860 and 1959, when the various intercrops may have 

increased biodiversity at the crop system scale. Conversely, soil biota can be negatively 

affected by pesticides, herbicides and industrial inorganic fertilizers (Thiele-Bruhn, 

Bloem, de Vries, Kalbitz, & Wagg, 2012). These are widely used in modern intensive 

agricultural systems, such as Les Oluges in 1999. Furthermore, pharmaceutical antibiotics 

used in intensive livestock farming, which are present in the manure applied in cropland, 

can also be detrimental for soil biodiversity. Finally, fallow and terraces were traditional 

management practices aimed to improve the nutrient and water storage capacity of soils 

in 1860 and 1959 that were vanishing in 1999. Thus, even though we cannot measure the 
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effect of these practices in our historical analysis, it is possible to assert that the traditional 

practices employed in 1860 and 1959, when the agroecosystem was under an organic and 

mixed industrial-organic management, would have been better suited for the 

accomplishment of soil fertility than the industrial practices of 1999. 

The durability of the soil fertility practices may be assessed considering the renewability 

or non-renewability of the fertilizers employed. In this respect, mineral and synthetic 

fertilizers obtained from finite natural resources and polluting industrial processes imply 

the unsustainability of the practices in 1959 and 1999. However, the renewability of 

fertilizing resources would also be endangered in 1860 when woodland was cleared for 

expanding cropland and by the extraction of biomass by grazing and to produce 

formiguers. Thus, in order to evaluate the durability of the management practices, we will 

connect the belowground and aboveground sustainability of the agroecosystem to 

complete our assessment. 

5.2.Belowground and aboveground sustainability 

The energy analysis of the farm system of Les Oluges (Díez et al., 2018) provides some 

insights on the aboveground dimension of the agroecosystem sustainability and 

emphasizes some of the results obtained from the belowground analysis. 

First, the industrialized management of the agroecosystem in 1999 was not sustainable 

neither above- nor below-ground, despite its high productivity and the large availability 

of fertilizing resources. The energy efficiency of Les Oluges in 1999 was the lowest 

among the studied periods, as a result of the large increase of livestock density and the 

large dependence on external inputs that reduced and partially replaced the energy 

recirculated within the agroecosystem. In 1999 Les Oluges required two units of energy 

for each unit of energy produced (Díez et al. 2018), and introduced more than 4 units of 

macronutrients per unit of macronutrient output.  

Secondly, the aboveground and belowground analyses emphasize the relevance of the 

integrated management of farmland funds usually found in organic farm systems 

(Gingrich, Haidvogl, Krausmann, Preis, & Garcia-Ruiz, 2015; Fridolin Krausmann, 

2004; Tello, Garrabou, Cussó, Olarieta, & Galán, 2012) with livestock and biomass 

recycling playing a key role. Soil fertility practices in 1860 and 1959 were better able to 

balance nutrient cycling with a lower dependency on external inputs and, additionally 

they were better adapted to assess the multiple processes that affect soil fertility. The 
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energy analysis of Les Oluges in 1860, and especially in 1959, revealed an agroecosystem 

that was able to combine biomass reuses and external inputs so that provision for human 

purposes and farm associated biodiversity (which is linked to the provision of ecological 

services) were reasonably balanced.  

However, the sustainability of these traditional agroecosystem managements in 1860 and 

1959 needs to be further qualified. The intensive use of woodland and the deforestation 

process in 1860 could not have continued indefinitely, and would have ultimately 

compromised the sustainability of the agroecosystem. The arrival of the Phylloxera 

plague and the introduction of mineral fertilizers and modern machinery changed the 

socioeconomic context and technological possibilities of Les Oluges. Mineral fertilizers 

reduced the local land cost of the agroecosystem sustainability (Guzmán et al., 2011) by 

diminishing the need for fallow and importing nutrients from distant territories, instead 

of transferring them from woodland and pastureland. Additionally, the new industrial 

inputs reduced the labour needed to manage the agroecosystem. However, the beginning 

of the industrialized management was combined with some traditional features that 

proved useful for the sustainability of the agroecosystem. External inputs were 

complemented with the recirculation of nutrients through biomass reuse. The dependence 

on non-renewable resources that the introduction of modern technologies implied could 

probably be environmentally bearable as long as these industrial inputs were used at a 

small scale, but it introduces a new tension between the sustainability at the local and 

global scales: a metabolic rift  (Bellamy, 1999). 

6. Conclusions 

Sustainable management of agroecosystems has been a hard task throughout history. The 

aboveground and belowground analysis presented in this chapter reveals that the 

challenges faced and the solutions adopted to keep farm systems sustainable over time 

depended on multiple dimensions, and have been affected by different ecological, 

technological and socioeconomic factors. However, sustainability is not a fixed condition, 

but a dynamic process. In this sense, the results of our historical analysis reflect that a 

more productive agroecosystem does not mean a more sustainable one. The main reason 

for that is having given up the sustenance effort devoted to reproduce the living funds of 

the agroecosystem through local renewable biomass flows by keeping a multi-purpose 

and integrated management adapted to the site-specific ecological and socioeconomic 

conditions. When the availability of cheaper external inputs of industrial origin, coming 
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directly or indirectly from non-renewable fossil fuels, made that effort no longer 

necessary, its manifold agroecological virtues came also to an end. Sustainable 

management of agroecosystems needs to deal with different tensions and balances, and 

our case study reflects the strain over the renewability of resources and between different 

scales of analysis: crop system, agroecosystem and global levels. In order to deal with 

these tensions and multiple balances of the art of farming  (Netting, 1993; Van der Ploeg, 

2013), the study of traditional integrated management practices can offer useful insights 

for better prospects of sustainability. 
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Chapter 4: Searching on the Art of Farming: Socio-ecological 

analysis of a traditional Mediterranean silvoarable crop system 

(Les Oluges, Catalonia, c.1860)12 

 

Abstract 

The expansion of the Green Revolution throughout the second half of the 20th century led 

to a great homogenization of cropland under monoculture crop systems which are linked 

to some of the ecological and social problems of modern agriculture. The potential of 

polycultures for the implementation of more sustainable agricultural systems is 

highlighted by agroecological approaches, and traditional farming practices can be a great 

source of knowledge on this respect. This chapter focuses on the study of the traditional 

intercropping system present in Les Oluges until the mid-20th century. It analyses the 

advantages that this crop system could entail from a socioeconomic and agroecological 

perspective. The results obtained point out to the complexity of traditional farm 

management that required to satisfy multiple aims and opens the way for more research 

needed to understand and recover the knowledge embedded in traditional Mediterranean 

polyculture systems.  

 

1. Introduction 

The spread of the Green Revolution from the mid-20th century caused a major change in 

agricultural landscapes and farming practices. Mediterranean agricultural landscapes 

were traditionally diverse and heterogeneous, integrating different land uses in 

agroecosystems and sometimes mixing different crops within the same plot. However, 

agricultural modernization transformed most of this polyculture landscapes into 

homogeneous land covers of single crop systems. The aim of this new model of 

agriculture was to increase cropland productivity in order to meet the demands of an 

expanding global population and the upscaling of the dietary ladder towards higher meat 

and dairy intake unhealthy for the people and the ecosystems (Soto et al., 2016; Tilman 

                                                 
12 This chapter was elaborated during my stay at the Università degli Studi di Scienze Gastronomiche di 

Pollenzo (UNISG), under the supervision of professor Paola Migliorini. I carried out the analysis, 

considering the possible measures that could be employed, and wrote this chapter. Paola Migliorini, 

provided her advice in order to improve the clearness of the results presentation. Additionally she, together 

with Enric Tello and José Ramón Olarieta, helped me discussing the results. 
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& Clark, 2014). The use of improved seeds and synthetic fertilizers raised productivity of 

cultivated soils, and motor-machinery reduced the need of agricultural labour. 

Additionally, pesticides were widely used to protect harvests from pests. The Green 

Revolution succeeded in the achievement of higher agricultural outputs, but incurring in 

significant ecological and social costs (Evenson & Gollin, 2003). Monocultures and 

improved seeds, selected for their high yields, lack the defensive mechanisms of locally 

adapted traditional seeds and mixed crops, being more prone to pest attacks (Conway, 

2005; Yapa, 1993). The continued cultivation of soil with the same crop depletes soil 

fertility. Furthermore, the specialization of agricultural systems reduces biodiversity, 

weakening the capacity of agroecosystems to provide ecological services. All this 

increases the need of external inputs for the industrialized management of agriculture 

(Altieri & Rosset, 1996; Conway & Pretty, 2009; Tilman, Cassman, Matson, Naylor, & 

Stephen Polasky, 2002). Additionally, mechanization reduces the need of labour in 

farmland, and the diminishing prices of agricultural products because of the higher 

supply, together with the increasing dependence on increasingly costly industrial inputs, 

leads in many cases to precarious subsistence for farmers and the depopulation and 

abandonment of rural areas (Conway & Barbier, 1990; Pretty, 2005) . 

Facing these problems, agroecology proposes that the study of traditional farm systems, 

based on an integrated management of multiple land uses and multiple cropping systems, 

can provide a basis for developing more sustainable and fair agricultural systems (Altieri 

& Koohafkan, 2017; Gliessman, 1985; Pretty & Bharucha, 2018; Schutter & 

Vanloqueren, 2011). This chapter analyses the traditional polycultures present in Les 

Oluges, an agroecosystem from the inner part of Catalonia. In order to understand the 

advantages of polyculture the analysis is carried out from a double perspective. On the 

one hand, the biophysical analysis is grounded on an agroecological point of view, taking 

into consideration the productivity, resilience and sustainability of crop systems. On the 

other hand, the socioeconomic approach is based on a Chayanovian point of view of the 

peasant economy considering that the productive decisions of traditional farmers were 

not based solely on the maximization of output or income, but involved more complex 

arrangements that led to optimize site-specific balances pondering the consumption needs 

and the labour capacities, as well as the irreplaceability of resources (Chayanov, 1966; 

Van der Ploeg, 2013).  
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There is a growing interest in the study and implementation of more diverse crop systems 

in order to reduce the environmental costs of modern industrialized monocultures. New 

researches have expanded the terminology used, and there are various terms we can use 

for defining the crop systems in our case study. The broadest concepts are polyculture 

(Agnoletti & Emanueli, 2016) or multiple cropping system (Stephen R Gliessman, 1985), 

which refer to the cultivation of two or more crops in the same piece of land, either 

simultaneously or consecutively. The concept of intercropping (Vandermeer, 1989) is 

used for those polycultures that combine different crops in the same field and at the same 

time. Additionally, agroforestry (Nerlich, Graeff-Hönninger, & Claupein, 2013), alley 

cropping (Grebner, Bettinger, & Siry, 2013) and silvoarable systems (Eichhorn et al., 

2006; Rigueiro-Rodríguez et al., 2009), refer to those intercropping systems that combine 

woody perennial crops with agricultural annual crops and/or livestock breeding. Given 

that the polycultures of Les Oluges, which combined cereals, vines and olives, fall under 

any of these definitions, all these terms will be used throughout this work.  

2. Historical overview of the agroecosystem of Les Oluges 

2.1.Biophysical and socioeconomic context 

Our case study is located in the Segarra County (Lleida province), in the inner part of 

Catalonia. The climate of this area is Dry Mediterranean Continental, with low average 

annual rainfall (less than 500 mm), a period of water stress that runs from April to October 

(Ramon Garrabou et al., 1999), cold and foggy winters, hot and dry summers, and 

frequent adverse climate events that jeopardize harvests. Thus, traditional agricultural 

practices in Les Oluges needed to be adapted to low cropland productivity and high 

climate variability and risk.    

The historical changes of the structure and functioning of Les Oluges agroecosystem have 

been explained in previous works (Díez et al., 2018; Díez, Olarieta & Tello, forthcoming) 

with more detail, but it is important to highlight here some of the relevant features for our 

current analysis. Historically, agriculture in Les Oluges has been mainly dedicated to 

grow cereals, but other Mediterranean crops were also present, such as vines, olives and 

almonds. Traditional agricultural management was able to cope with the ecological 

constraints by adopting an integrated use of local resources, which combined the use of 

livestock, woodland and cropland for sustaining the productive capacity of the 

agroecosystem. In the second half of the 19th century, an intensive use of woodland made 

up for the low cropland productivity. Woodland was a source of animal feed, fertilization 



 

86 

 

resources, and surface for cropland expansion (Díez et al., 2018). Additionally, the 

composition of livestock used as draft force was also adapted to the limited feed 

resources, with donkeys being the most abundant draft animals. With a relatively high 

population density (42 inhabitants/km2, well above the average in the Lleida province and 

quite optimal for viticulture (Badia-Miró & Tello, 2014)) and under favourable market 

conditions, vine cultivation expanded in Les Oluges in this period, extending the 

polyculture crop system in which vines and cereals were grown in association. 

In the 20th century, after the phylloxera plague destroyed most of the vines in Les Oluges, 

the silvoarable system did not disappear. The turn-of-the-century agricultural crisis 

spurred a process of depopulation that continued throughout the whole century. However, 

by the 1950s and 60s the agroecosystem started to adopt some of the technologies of the 

Green Revolution. Higher cropland productivity was achieved with the use of new seeds 

and the introduction of mineral fertilizers and tractors, but the traditional agroforestry 

system was maintained. The number of hectares grown under multiple cropping was 

similar to that of 1860, but in this period, the intercropping system was diversified 

introducing a greater presence of olives and almonds in the crop associations. However, 

by the end of the century, the full mechanization and industrialization of the 

agroecosystem erased the polyculture landscape with the spread of grain monocultures.  

 

2.2.The relevance of the alley cropping system in Les Oluges 

The relevance of polyculture systems in traditional agroecosystems and for the 

sustainability and resilience of farming practices is widely acknowledged in agroecology 

and landscape ecology (Altieri & Rosset, 1996; Biasi, Brunori, Ferrara, & Salvati, 2017; 

Gliessman, 1985; Moreno et al., 2018; Wezel et al., 2014). Furthermore, our previous 

analysis revealed that the silvoarable cropping system was a key element for the 

functioning of the Les Oluges agroecosystem. In the mid-19th century, with a relatively 

high rural population density and low cropland productivity, it was a way to make a more 

intensive use of cropland taking advantage of the market conditions without overlooking 

subsistence needs. However, in the mid-20th century, with half the previous population, 

the introduction of the first industrial inputs and much higher cropland productivity, the 

conservation of the alley cropping system could probably respond to other aims. The 

maintenance of the traditional intercropping system introduced a greater diversity of 
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crops, and was an important feature that allowed increase the agroecosystem energy 

efficiency and sustainability in socioeconomic and agroecological terms.    

The lack of local specific data for the mid-20th century does not allow to analyse in 

sufficient depth the silvoarable system in that period. Thus, the analysis will focus on the 

associated crops that were present in 1860, understanding that, with due caution, some of 

the results could be extrapolated to the crop systems of the following century up to the 

1970s or 1980s.  

Moreover, the possibility of extending the results obtained to different temporal and 

geographical contexts is important because the presence of this intercropping system was 

not restricted to Les Oluges. The Mediterranean polyculture was widely spread 

throughout South Europe (Agnoletti, 2013; Agnoletti & Emanueli, 2016; Colomba, 

2017), and there are records showing that the association of vines (and olives and other 

Mediterranean woody crops) with cereals (and other annual crops) was quite ubiquitous 

in Catalonia and all over Spain (Elías Pastor, 2016; Junta Consultiva Agronómica, 1889). 

Unfortunately, further from some short mentions that assert its existence, it has not been 

possible to find sufficient data to compare its productivity or obtain explanations about 

the rationality behind the adoption and long maintenance of this crop system. This 

research is an attempt to explore this issue.     

3. Sources and methodology 

The basic source used for this investigation is the Cartilla evaluatoria of Les Oluges for 

1883, a local agricultural survey made for tax purposes. This historical source provides 

the accounts of the produce and costs associated to different crops systems of Les Oluges. 

Since this document was elaborated for calculating taxes, it does not reflect the actual 

productivity and costs of each year and piece of land, but an agreed estimation of the 

mean produce and requirements that should be close to reality in order to avoid tax fraud 

or social unrest. The information from the Cartilla evaluatoria was combined with the 

distribution of land uses registered in the Amillaramiento of Les Oluges for 1860, and 

with the cattle census of 1865. The Cartilla evaluatoria provides data for a greater variety 

of crop systems than the ones that were actually registered in the Amillaramiento of 1860.  

Even though some changes in the land uses can be expected from 1860 to 1883, this 

analysis will focus on the most abundant crop systems included in the land use register, 

providing the results for the minor crop systems in the Annex. 
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The methodology used compares the polycultures and monocultures from various points 

of view: productivity, labour requirements, energy efficiency, and soil nutrient cycling 

and balances. Thus, traditional theoretical perspectives on agricultural systems are 

combined with more recently developed perspectives of agroecology and social 

metabolism approaches. The aim is to assess the possible advantages and disadvantages 

of the poly-cultural and mono-cultural crop systems taking into consideration the multiple 

dimensions that may affect the decision-making process of traditional farmers. The 

indicators have been estimated considering the best possible management of one hectare 

of each crop system, given the characteristics of the agroecosystem and the agricultural 

practices of Les Oluges in the second half of the 19th century. Cereals are considered to 

be left fallow every other year, either in monoculture and in polyculture. Additionally, 

according to the prevalence of donkeys in the composition of livestock, the annual feed 

needed to sustain one donkey has been taken as the measure to assess the capacity of each 

crop system to maintain the draft force needed for its cultivation and transport. Finally, 

even though the use of formiguers13 was only recorded in the Cartilla evaluatoria in 

vegetable gardens and cereal monocultures, the use of formiguers has been considered in 

all the crop systems that include vines in order to optimize the possible uses of the 

resources provided by each crop system, given that the use of vine pruning for this 

fertilization technique was widespread in the traditional agricultural practices in Catalonia 

( Galán, 2017; Olarieta et al., 2011).   

4. The agroecosystem of Les Oluges and its silvoarable system in 1860 

The distribution of farmland in Les Oluges in 1860 (Table 13) was shared quite evenly 

between cropland and woodland (47% and 44% of total farmland respectively). In 

cropland, the predominant crop systems were cereal monoculture and especially the 

agroforestry system that combined cereals and vines (36% and 61% of the cultivated area 

respectively). It is worth noting that vines were only cultivated in intercropping systems, 

either with cereals or with cereals and olive trees, and there was no vineyard monocrop. 

Additionally, the distribution of crop systems in the different land qualities followed a 

significant pattern. These land qualities did not indicate only the physical conditions of 

soils, but make reference also to the suitability of the different plots for different crops 

and their distribution. This is clearly seen in the distribution of cereals in monocultures 

                                                 
13 This was a traditional fertilization and soil conditioner technique that consisted on building piles of wood, 

covering them with soil and burning them for burying the charcoal and some ashes in the cropland 

afterwards ( Olarieta et al., 2011). 
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and polycultures. Wheat was cultivated in the land of first quality, barley in the land of 

second quality, and rye in third quality land.  

Table 13. Land uses in Les Oluges the second half of the 19th century. Source: Our own, from the 

sources detailed in the text. 

Land uses (ha)  
Land qualities Total 

Hectares 1 2 3 

Vegetable gardens 3.03 1.25 0.00 4.28 

Cereals 47.29 114.02 160.20 321.52 

Olive trees 0.00 0.00 0.18 0.18 

Cereals and olive trees 0.65 7.84 13.62 22.12 

Cereals and vines 27.42 156.96 355.87 540.25 

Cereals, vines and olive trees 0.00 0.00 0.15 0.15 

Woodland 16.42 128.16 686.27 830.84 

Pastureland    155.80 

Total 94.81 408.24 1216.28 1875.13 

 

The most abundant land uses correspond to soils of second and third quality, either for 

monocultures and polycultures, with the exception of vegetable gardens. Indeed, 40% of 

cropland was cereals (rye) and vines of third quality. 

Additionally, Table 14 shows that the distribution of crop systems was quite similar 

among landowners. Total farmland included cropland, woodland and pastureland.  

Table 14. Distribution of the main crop systems in Les Oluges by land ownership size. Source: 

Our own, from the sources detailed in the text. 

Quintile 
Total 

farmland (ha) 

Mean 

(ha) 

Cropland (% of 

farmland) 

Cereals & vines 

polycultures 

(% of 

cropland) 

Cereal 

monocultures 

(% of 

cropland) 

1 55.66 - 13.88 23.62 54% 53% 43% 

2 11.99 - 3.99 6.97 62% 67% 28% 

3 3.99 - 2.18 2.96 74% 76% 21% 

4 2.11 - 1.05 1.6 68% 76% 22% 

5 1.02 – 0.00 0.56 88% 66% 27% 

 

Those with larger farmland properties, tended to have a greater proportion of woodland 

and pastures and a larger share of cereal monocultures in their property, which reflects 

also their tendency to grab best quality lands. Medium and small landowners had 66-76% 
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of their cropland cultivated with cereals and vines polyculture, and only 21-28% of their 

cropland was for grain monoculture. The differences on the distribution of crop systems 

among small and large landowners were not that large, indicating that the choice between 

cereal monoculture or the intercropping system was not related to the abundance of soil 

resources of the farming unit only, but the quality of the soils predominant in Les Oluges 

was also determinant. Given the scarcity of soils of good quality for growing cereals 

alone, most of the landowners dedicated an important share of their cropland to the 

cultivation of a polyculture of vines and cereals. Furthermore, the Cartilla evaluatoria 

indicates that in the context of cropland expansion, deforested soils were mainly 

cultivated with the silvoarable system of vines and cereals.  

5. Results 

5.1.Land Equivalent Ratio (LER) 

The main measure for the comparative analysis of the intercrop and monoculture systems 

is the Land Equivalent Ratio (LER), which compares the relative land requirements of 

the intercrop and the monocultures, giving a measure of how much land would be needed 

to obtain the same produce in monocultures as in the alley cropping system (Vandermeer, 

1989). The LER is the sum of the relative yields. When it is higher than 1, the polyculture 

is more efficient, or has advantage over the monoculture. As detailed in the Annex, the 

LER has been calculated considering the energy content of the main produce and the by-

products of each crop. 

Table 15. Land Equivalent Ratio (LER) of the polyculture crop systems registered in the local 

agricultural survey of Les Oluges (1883). Source: Our own, from the sources detailed in the text. 

Crop systems 
LER 

1Q 2Q 3Q 

Vines & olive trees 1.05 1.07 0.98 

Cereals & vines 0.97 1.00 0.97 

Cereals & olive trees 1.02 1.00 0.90 

Cereals, vines & olive trees 1.08 1.07 1.09 

 

The LER obtained for the different polyculture systems of Les Oluges (Table 15) are all 

close to 1, indicating a similar productivity of the crops both in the monocultures and 

polycultures. Thus, it cannot be concluded that the alley cropping systems were more 

energy efficient than the monoculture, at least according the results obtained with the 

relatively low accuracy of our sources. These results are conditioned by the fact that the 

Cartilla evaluatoria of Les Oluges established generally the same productivity of crops 
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in monocultures and polycultures. This could seem suspicious, but the sources found for 

other villages nearby which allow comparing only cereals in monoculture and polyculture 

offer similar or even higher productivities for cereals in polyculture with vines than in 

monoculture. Thus, despite needing to be cautious with these results, it is possible to 

affirm the lack of disadvantage for the mixed crop systems. Efficiency was similar for 

monocultures and polycultures, with no clear advantage for any of these crop systems in 

terms of land productivity in energy terms. These results are similar to those obtained by 

Trenbath (1974) on a comparison of 572 multiple crop systems, with most of them 

obtaining a LER close to 1. 

Interestingly, those polycultures that would have a larger advantage over monocrops were 

not present in the agroecosystem studied (such as the mix of vines and olives), or were 

present in very small share of cropland (such as the silvoarable system including cereals, 

vines and olives). The fact that those crop mixtures that include olive trees tended to have 

higher LER values is mainly related to their by-products with a high energy content (green 

shoots used for animal feeding, firewood obtained from pruning, and pomace and olive 

bones obtained after pressing the olives; see Infante-Amate & González de Molina, 2013). 

Additionally, given that the cultivation of vines was mostly for commercial purposes and 

that the LER results are close to 1, an approximation to the Income Equivalent Ratio can 

be calculated, in order to assess the possibility of an economic advantage of the intercrop 

of vines and cereals. Following Vandermeer (1989), in this case the comparison is made 

taking into account only the most valuable of the monocultures, which was vineyard. 

Comparing the net incomes in money terms of the intercropping of vines and cereals, and 

vines as single crop, the results obtained were 0.85, 0.89 and 1.00 for first, second and 

third qualities respectively. There are two ways of reading these results. Considering the 

economic returns, alley cropping was not advantageous in economic terms except for 

third quality soils in which there was neither advantage nor disadvantage. However, 

taking into consideration the tax purpose of the historical sources, alley cropping of vines 

with cereals can also be considered advantageous viewing the results in terms of a lower 

taxation compared to the monoculture of vines.   

5.2.Labour requirements and seasonality 

A measure similar to the LER was estimated for analysing the labour requirements of the 

polycultures and assess if they were advantageous in labour terms. The Relative Total 

Labour Costs compares the labour needed for each crop system, either in days per hectare 
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or in monetary terms (pesetas/ha). In this case, a value below one would indicate a lower 

labour cost and an advantage either in time or money terms of the polyculture over the 

monoculture. 

Table 16. Relative Total Labour Cost of the crop systems of Les Oluges in days and monetary 

terms. Source: Our own, from the sources detailed in the text. 

Crop systems 

Relative Total Labour Cost 

Days Pesetas 

1Q 2Q 3Q 1Q 2Q 3Q 

Vines & olive trees 1.07 1.03 0.95 1.01 0.98 0.84 

Cereals & vines 1.10 1.05 1.00 1.07 1.02 0.91 

Cereals & olive trees 1.30 1.23 0.96 0.97 0.95 0.77 

Cereals, vines & olive t. 1.30 1.31 1.37 0.99 1.00 0.97 

 

The results obtained (Table 16) in days of work measured in time are not favourable for 

polycultures. The values of the Relative Total Labour Cost in days/ha show values higher 

or close to one, revealing that the monoculture would require a lower labour investment, 

and would therefore be more advantageous in work terms—as expected, given that 

growing cereals were also less labour intensive than growing vines (Badia-Miró & Tello, 

2014). However, the same calculation made in monetary terms reveals an opposite result, 

with most of the figures being close or lower than one, what would indicate an advantage 

of the polyculture over monoculture regarding the costs of labour. These results indicate 

that despite requiring more days of work, the labour invested in polycultures was less 

expensive. Two elements explain these labour savings in monetary terms: the reduced 

need for ploughing, and the higher share of female work in the intercropping system.  

Ploughing was the most expensive task since it required a pair of powerful draft animals 

and a man. It had a cost of 10 pesetas/day including the cost of hiring the animals and a 

man. On the contrary, female labour (hired for those tasks considered less intense) was 

the cheapest, costing 1 peseta/day (half of the man’s wage). Table 17 shows the relative 

needs of ploughing and female work in each crop system. The reduced need for ploughing 

in the silvoarable systems is explained by the smaller area that was ploughed. Considering 

that the management of cereals included fallow every other year, one hectare of grain 

monoculture can be considered half sown, half fallow each year. The ploughing of that 

half hectare of fallow surface required between 1.75 and 3 days, with more days worked 

in the soils of best quality. In one hectare of vines and olives, either as single or mixed 

crop, the number of days required for ploughing the space between the lines of the woody 
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crops was higher, between 3.5 and 6 days. However, in one hectare of the silvoarable 

systems that combined cereals and woody crops, the area occupied by the rows of vines 

has to be discounted as it was only dug by hand. Therefore, half of the spaces between 

the woody crops would be sown, and only the other half of these spaces (those left for 

fallow) needed to be ploughed. Ploughing work was therefore reduced to between 1.75 

and 1 days.  

Regarding female work, each crop had at least one task traditionally done by women. 

According to the Cartilla evaluatoria, days of women work were more abundant in the 

monocultures of vines and olives, where female work was used for harvesting, requiring 

between 2 and 12 days of work per hectare in vineyard and between 14 and 33 days of 

female work in olive groves. In cereals, women worked between 1 and 3 days per hectare 

weeding the cropland.  

Table 17. Share of ploughing and female days of work over the total working days for the crop 

systems of Les Oluges. Source: Our own, from the sources detailed in the text. 

Crop systems 

Days of ploughing  

(% of total working days) 

Days of female work  

(% of total working days) 

1Q 2Q 3Q 1Q 2Q 3Q 

Cereals 37% 31% 31% 12% 6% 6% 

Vines 40% 42% 49% 23% 17% 9% 

Olive trees 46% 45% 51% 58% 57% 51% 

Vines & olive trees 39% 39% 42% 46% 41% 40% 

Cereals & vines 20% 23% 22% 29% 21% 17% 

Cereals & olive trees 17% 21% 25% 53% 47% 37% 

Cereals, vines & olive t. 17% 18% 18% 40% 34% 36% 

 

Another useful approach to the labour requirements of monocultures and polycultures in 

Les Oluges is the analysis of their distribution throughout the year, i.e. the evenness or 

unevenness of labour seasonality. 

Figure 12 shows the distribution of days of work needed per hectare of each crop system 

throughout the year. Woody crops had a greater seasonality, with minimum work 
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requirements in summer, at the same moment when the demand of work in cereal 

monocultures peaks.  

Figure 12. Days of work by season required on each crop system in Les Oluges (1Q: first quality 

soil; 2Q: second quality soil; 3Q: third quality soil). Source: Our own, from the sources detailed 

in the text. 

 

 

The distribution of working days in monocultures is reflected and nuanced in 

polycultures. The seasonality of agroforestry system that combined vines and olives was 

similar to the monocultures of these crops. However, seasonality was reduced in the 

silvoarable crop systems that include cereals with woody crops.  
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5.3.Energy analysis and nutrient balances. 

Two important criteria for analysing the efficiency and sustainability of agroecosystems 

from a biophysical point of view is the study of the energy and nutrient balances. A 

scheme of the main flows of energy and nutrients of each crop system has been estimated 

according to the traditional agricultural practices used in Les Oluges. In pursuit of clarity 

of the analysis, the focus here will be on the most widespread crop system: the 

intercropping of vines and cereals. However, the results for all the crop systems is 

provided in the Annex14, together with a description of the main flows of energy and the 

basic assumptions made for building the energy profiles and nutrient balances. 

Figure 13 shows the diagram of the main energy flows in cereal monoculture (Figure 

13a), vine monoculture (Figure 13b) and the silvoarable system that combined vines and 

cereals (Figure 13c). Only cereal monoculture and the intercropping of vines and cereals 

were actually present in Les Oluges in the second half of the 19th century, but vineyard 

monoculture is included for allowing the comparison of the polyculture with the 

corresponding monocultures.   

The graphic representation of the energy flows shows the complexity of the energy 

functioning of each crop system through the connections with other fund elements of the 

agroecosystem. Cereal monocultures were the most culturally valued and favoured crop 

system when the best land was allocated, given their key relevance for subsistence. They 

were usually placed in the best pieces of dry land, and even though it was strictly needed 

to leave the land fallow every other year, this was the only crop system that received 

fertilization from manure if there was availability of this scarce resource. Furthermore, 

wood from other land uses, such as woodland and scrubland, was needed to build 

formiguers in cereal monoculture. In vineyards, the fertilization resources came from this 

same crop system, as vine pruning was used for building formiguers or as fresh buried 

biomass, a common practice in other parts of Catalonia at that time (Tello et al., 2012).    

Figure 13. Scheme of the flows of energy of some of the crop systems in Les Oluges. 13a) Cereals 

monoculture, 13b) Vineyard monoculture (1Q: first quality soil; 2Q: second quality soil; 3Q: 

third quality soil) , 13c) Cereals and vines intercropping (W&V: intercropping of wheat and vines 

in first quality soil; B&V: intercropping of barley and vines in second quality soil; R&V: 

                                                 
14 Management of woody crops was comparable. The results for the crop systems that include olive trees 

are similar to those of the vineyard with the singularity that olive crop systems received no reinvestment of 

biomass for fertilization.  
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intercropping of rye and vines in third quality soil). Source: Our own, from the sources detailed 

in the text. 

13a) 

 

13b) 
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13c) 

 

 

The management of the silvoarable system that mixed vines and cereals was similar to 

the management of vines in monoculture. The fertilizing resources were reuses of the by-

products, and no manure was applied on the cereals grown between the vines. 

The distribution of the energy flows that make up the NPPact of each crop system (Table 

18) shows that the greatest part of the energy produced remained as Unharvested 

Phytomass in all the cases. However, the part that was appropriated and managed by 

humans was distributed quite different in each crop system. Cereal monocultures 

provided the greatest share of energy for animal feed, while the share of energy for human 

use was rather low. Additionally, cereal monocultures were mainly fertilized through 

external biomass inputs, thus only seeds were recycled in cropland. Vines monoculture 

and the silvoarable system had a more even distribution of the NPP harvested. Looking 

at the NPP distribution, the intercropping system could have advantage over the 

monoculture of cereals regarding the Final Produce, while also being more advantageous 

than vine monoculture regarding animal feed.  
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Table 18. Distribution of the NPPact according to the energy flows of each crop system. Source: 

Our own, from the sources detailed in the text. 

Crop systems 

NPPact distribution 

Unharvested 

Phytomass 

Final 

Produce 
Animal feed 

Recycling 

(seeds and 

fertilization) 

Wheat 55% 8% 35% 2% 

Barley 53% 9% 36% 2% 

Rye 56% 7% 36% 2% 

Vines 

1Q 38% 17% 16% 29% 

2Q 40% 23% 15% 22% 

3Q 44% 18% 13% 25% 

Wheat & vines 51% 13% 16% 20% 

Barley & vines 53% 17% 17% 13% 

Rye & vines 57% 13% 14% 15% 

 

Additionally, the nutrient balances of these crop systems (Table 19) reflect their different 

managements. Cereal monocultures were the only crop system with positive nutrient 

balances, thanks mainly to the great effort put in the replenishment of soil fertility through 

the use of manure. Without manure fertilization, vine monoculture and the silvoarable 

system did not recover the nutrients extracted, but the lower extraction of nutrients in the 

silvoarable system allowed to obtain smaller deficits, maintaining the productive capacity 

of soil under the intercropping system for a longer time.   

 

 

 

 

 

 



 

99 

 

Table 19. Nutrient balances (kg/ha) of the main macronutrients (Nitrogen (N), Phosphorus (P), 

and Potassium (K)) for cereals monoculture, vineyard monoculture (1Q: first quality soil; 2Q: 

second quality soil; 3Q: third quality soil) and the silvoarable system of cereals and vines W&V: 

intercropping of wheat and vines in first quality soil; B&V: intercropping of barley and vines in 

second quality soil; R&V: intercropping of rye and vines in third quality soil). Source: Our own, 

from the sources detailed in the text. 

Nutrient balances N/ha P/ha K/ha 

Cereals 

Wheat (W)    2.61 2.88 13.56 

Barley (B)    1.72 2.25   8.41 

Rye (R)    4.26 1.83 11.55 

Vines (V) 

1Q -34.12 -2.95 -17.01 

2Q -25.76 -2.59 -14.75 

3Q -17.52 -1.53   -9.54 

Cereals & vines 

W&V -18.45 -2.11   -9.96 

B&V -16.03 -2.18 -11.18 

R&V -10.12 -1.68   -6.43 

 

According to the energy analysis, each of the crop systems had some advantage. Vineyard 

was the crop system that provided most energy available for human use (FP), even though 

this is in part an effect of the high energy content of the woody by-products used as fuel 

or fertilizer. Cereal monoculture provided the greatest animal feed, with one hectare 

affording up to 40-50% of the annual needs of a donkey, while one hectare of vines 

monoculture and the intercropping of vines and cereals, respectively, only allowed to 

meet 20% and 15% of the donkey annual needs at most. Finally, the silvoarable system 

had the lowest labour requirement in energy terms (considering not only the amount of 

days of work but also its intensity –or ‘drudgery’ (Chayanov, 1966), with more 

demanding tasks consuming more energy per unit of time—, and a labour productivity 

measured in energy terms higher than the one of cereal monocultures and similar to that 

of vine monocultures (the ratio of GJ obtained as Final Produce divided by those invested 

as labour in cereal monocultures was between 10-21 GJ, while being 42-61 GJ in vines 

monoculture and 38-62 GJ in the intercropping system).  

The energy efficiency of these crop systems can also be analysed using some of the EROIs 

(Energy Return On Investment ratios) that have been employed in the study of traditional 

and modern agroecosystems in previous works (Guzmán et al., 2018; Guzmán & 

González de Molina, 2015; Tello et al., 2016; 2015). The Final Energy Return On 

Investment (FEROI) indicates the energy efficiency of the crop system for the 

provisioning of human needs, dividing the Final Produce by the total energy invested or 

Total Inputs Consumed (TIC) as Biomass Reused and External biomass Inputs. The 
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Biodiversity Return measures the efficiency of the agroecosystem for sustaining 

associated biodiversity and is estimated dividing the total energy content of the phytomass 

produced through the photosynthesis (NPPact), by the Unharvested Phytomass, i.e. the 

above and belowground biomass that has not been directly managed by humans and 

remains available to potentially sustain associated biodiversity (which can provide 

important ecosystem services). Finally, the NPPEROI provides a measure of the total 

energy efficiency of the agroecosystem in terms of photosynthetic biomass produced.  

Table 20 shows that the monoculture of vines has the highest energy efficiency for all the 

EROIs considered, while the monoculture of cereals has, by far, the lowest energy 

efficiency. These differences reflect the different management practices of each crop 

system. Cereal monocultures were the crop system that received a higher energy 

investment, especially through manure, in order to sustain soil fertility. Thus, its lower 

energy efficiency indicates the great effort put in the sustenance of the productive capacity 

of cereal monocultures. Additionally, the fact that the EROIs of the silvoarable system 

were closer to those of the monoculture of vines indicates the similarities in the 

management of these two crop systems.  

Table 20. Main agroecological EROIs (Energy Return On Investment ratios) for some of the 

cropping system in Les Oluges (1Q: first quality soil; 2Q: second quality soil; 3Q: third quality 

soil). Source: Our own, from the sources detailed in the text. 
 

 

 

 

 

 

 

 

 

 

aFinal EROI = Final Produce / Total Inputs Consumed 
bBiodiversity Return = Unharvested Phytomass / (Total Inputs Consumed + Unharvested 

Phytomass) 
cNPPact EROI = NPPact / (Total Inputs Consumed + Unharvested Phytomass) 

 

The Biodiversity Return shows that the silvoarable system, besides including higher crop 

diversity, had also a greater capacity to sustain associated biodiversity, which can be 

related to the provision of ecological services such as pest control.   

EROIs 
FEROIa BIODIVERSITYb NPPactEROIc 

1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 

Wheat 0.05   0.28   0.50   

Barley  0.08   0.33   0.62  

Rye   0.05   0.29   0.53 

Vines 0.39 0.62 0.48 0.46 0.52 0.54 1.20 1.29 1.22 

Cereals & vines 0.36 0.54 0.44 0.59 0.63 0.66 1.14 1.20 1.15 
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6. Discussion 

The results obtained allow us to examine the possible rationality behind the 

implementation, expansion and maintenance of the silvoarable system in Les Oluges. 

Multiple cropping systems have advantages and disadvantages (Gliessman, 1985). 

However, the widespread use through time and space of intercropping systems in Les 

Oluges and in the Mediterranean landscapes, points to greater advantages than 

disadvantages, at least until the spread of motor mechanization in the second half of the 

20th century. Thus, this discussion will focus on the analysis of the advantages of the 

polyculture. These advantages can be divided in two main types: those referred to the 

agronomic-biological dimensions, and those referred to the socio-economic aspects. 

6.1.Agroecological interactions 

The results of the LER suggest that there was a weak competition between the crops used 

in the polycultures in Les Oluges. This is not an unusual result (Trenbath, 1974; 

Vandermeer, 1989) as the productivity of polycultures is usually similar or above that of 

the corresponding monocultures. As Vandermeer (1989) mentions, the fact that the LER 

shows an advantage (or in our case a lack of disadvantage) of the intercrop over its 

monocultural components “may not require any special explanatory mechanism, any 

more than the coexistence of two species requires any further explanation other than they 

do not affect one another strongly enough to cause extinction. Yet, in the sense that they 

are grown in the same field but do not compete intensively, the lack of competition may 

require some sort of explanation” (pp. 32-33). There is limited availability of scientific 

records that analyse the agronomic interactions in the intercropping of vines and cereals 

outside the use of the latter as cover crops in vineyards. However, some possibilities can 

be mentioned. 

One of the mechanisms affecting the reduced competition between cereals and vines is 

niche differentiation (Tilman, Reich, et al., 2001; Tilman, Wedin, & Knops, 1996; 

Vandermeer, 1989). Niche differentiation means that the existence of different cycles of 

water and nutrient absorption of each crop avoids intense competition for water and 

nutrients. On the one hand, the highest demand for nutrients by cereals occurs between 

tillering and stem elongation (from autumn until spring; see García-Serrano Jiménez et 

al., 2009), when the vine is in a dormancy period and using resources already 

accumulated; on the other hand, the highest demand of vines takes place during flowering 

and veraison (in summer; see Ripoche, Metay, Celette, & Gary, 2011), when the cereal 
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has been harvested. Furthermore, grapevines could adapt their rooting and water and 

nutrient uptake when intercropped,  which could be a mechanism of productive 

competition (Cardinael et al., 2015; Celette, Findeling, & Gary, 2009; Celette, Gaudin, & 

Gary, 2008).   

In addition, several studies propose that agroforestry systems in general, and those that 

include vine cultivation in particular, help increase insect biodiversity, providing 

protection against pests among other ecological services (Altieri & Nicholls, 2002, 2004; 

Diane, Francis, Nicholls, & Altieri, 2004; Moreno et al., 2018; Nerlich, Graeff-

Hönninger, & Claupein, 2013; Torralba, Fagerholm, Burgess, Moreno, & Plieninger, 

2016). Soil biota could also be favoured by a greater availability and diversity of soil 

organic matter in the intercropping system than in woody monocultures. The spare of 

ploughing in nearly half the total cropping area, and the light plow used, may help 

reinforce the preservation of soil biota.  

The distribution of crop systems among land qualities, and the fact that most landowners 

had a significant share of their cropland under polyculture, suggest that there could have 

been some facilitation process related to the soils where vines were cultivated, which 

were usually sloped lands and deforested soils. Additionally, cereals could be helpful for 

avoiding the relatively high soil erosion in vineyards (García-Ruiz, 2010; Garcia et al., 

2018; Ruiz-Colmenero, Bienes, & Marques, 2011).  

All these agroecological processes of niche differentiation and mutual facilitation, pest 

protection and soil erosion prevention could have played a role and help explain the 

persistence of the more diversified polycultural systems until the mid-20th century. More 

research is needed to specify the relative role of each of these agroecology factors and of 

their possible mutual synergies in different site-specific contexts and poly-cultural 

systems (Vandermeer, 1989).  

6.2.Socioeconomic dimension 

The results obtained also give us some insights about the socioeconomic rationality 

propelling the expansion of the alley cropping of vines and cereals. As peasant studies 

theories have argued (Chayanov, 1966; Van der Ploeg, 2013), traditional farmers make 

their decisions trying to balance different elements of their production process, regarding 

the achievement of an even allocation of family labour and a constant income in the long 

term, rather than the maximization of profits in the short term. Thus, if in land 
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productivity terms there was no clear advantage of the intercropping system over the 

respective monocultures, it is possible to defend that there were other socioeconomic and 

cultural reasons that favoured the adoption, spread and long-term maintenance of the 

silvoarable system.  

Risk diversification has usually been argued to be the main reason behind the cultivation 

of multiple crops by traditional farmers, as for example in the traditional common land 

(McCloskey, 1989, 1991). This could be the case in Les Oluges, where adverse climate 

effects and variable rainfall patterns and drought frequently damaged harvest. However, 

diversification of risks would not necessarily lead to the cultivation of different crops in 

the same plot, as in the silvoarable system, since the same risk avoidance could be 

obtained from cultivating different crops in different pieces of land scattered across 

different parts of the municipality. The question of risk diversification in the 

intercropping systems is mainly related to a more diversified use of soil resources. In case 

of a bad year or a total failure of one of the crops, these resources could still be in place.     

Certainly, the expansion of vine cultivation from the mid-19th century was a response to 

the market boom of this crop. Then, the question would be why cereals were kept 

intercropped between the vines as it was already done during the previous centuries in the 

Segarra County (Tello, 1986, 1995). The answer could be linked to the hard agricultural 

conditions of Les Oluges and the low productivity of its cropland, and to the efforts of 

balancing and making the best use of scarce resources such as human labour and animal 

work.  

On the one hand, the silvoarable system that combined cereals and vines allowed savings 

in the most expensive tasks, such as ploughing, which required the use of a more powerful 

draft force –mules instead of donkeys— that were also more costly to maintain. It also 

allowed a more even gender distribution of agricultural tasks, increasing the use of female 

labour. Additionally, the more even seasonality could reduce the need to hire external 

workers in the periods of peak work, such as for the cereal and vine harvest. Furthermore, 

even though monoculture of cereals provided greater resources for satisfying the needs 

of draft animals, the differences in this respect between vineyard and the intercropping 

system were not very high, and the intercropping system was better suited for replenishing 

the nutrients extracted than the vineyard monocrop without the large investment of 

external fertilization that cereal monocultures required. 
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Thus, the intercropping system of cereals and vines provided a better balance between the 

needs of family labour allocation, animal work and feeding, and fertilizing resources than 

the respective monocultures. Each farming family could adapt the share of this 

intercropping system depending on the productive factors available, such as the family 

composition and labour availability, the quantity and quality of soils, and the access to 

animal work. However, it seems clear that the socioeconomic rationality of this 

silvoarable system can be better understood in terms of a peasant economy (Chayanov, 

1966) and the ‘art of farming’ of the traditional peasantries rather than the fully market-

oriented farmers (Van der Ploeg, 2013). The alley cropping of grains and vines was an 

agricultural heritage of an age-old peasant culture that considered farming as a process of 

balancing different production relations of agriculture: labour-consumption, people-

living nature, production-reproduction, internal-external resources, and autonomy-

dependence.   

While the agroecological analysis supports the advantages of intercropping in the same 

field, most of the socioeconomic advantages of polyculture could be also obtained by 

applying agricultural diversification at the landscape level, with different plots cultivated 

with different crops not necessarily mixed in the same field. Only the saving of animal 

work entailed a clear socioeconomic advantage of intercropping at the plot level. This is 

an important finding of extending the accountancy of Land Equivalent Ratios to labour 

requirement through what we have named Relative Total Labour Cost. 

The silvoarable system studied could also respond to other cultural values that the limited 

historical sources available do not reflect. One possibility is linked with the 

irreplaceability of agricultural resources and the different value given to agricultural crops 

reflected in the management practices associated to each crop system. Cereal was a 

subsistence crop, essential for the survival of the farming community, while wine and 

brandies were a secondary market-oriented cash crop. Given the reduced productivity of 

cropland and the high risks of crop failure due to environmental hazards, sowing cereals 

between the lines of vines was a strategy of agricultural intensification aimed to increase 

the output obtained by piece of land and achieve a better satisfaction of basic needs. Put 

in another way, polyculture helped peasants to better avoid marked dependence and the 

risk of falling into forced sales due to indebtedness (Bhaduri, 1983, 1986; Tello, 1990). 

We deem that understanding the long-lasting persistence of alley cropping requires 

combining agroecology and socioeconomic reasons from a peasant rationality (Tello, 
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1986), as well as from a rural community-wide biocultural standpoint. This study has 

advanced some steps in this direction by applying for the first time to past historical 

sources the Land Equivalent Ratios, and extending its use to the Relative Total Labour 

Cost. More research is needed to go deeper in this research from a biocultural heritage 

point of view (Altieri & Koohafkan, 2017).   

7. Conclusions 

The long-term historical evolution of the alley cropping of cereals and vines observed in 

Les Oluges village, with the spread of this polyculture system in the mid-19th century, 

and its diversification in the mid-20th century, until its complete disappearance by the end 

of the last century, highlights the biocultural adaptability and resilience of this kind of 

traditional intercropping systems. The analysis carried out has revealed some of the 

possible advantages of this type of diversified and multifunctional farming. It has tried to 

disentangle the rationality of that mixed crop system in the second half of the 19th century, 

but the relevance of the methods used and results obtained are not restricted to this 

particular place and time. They open the way for more research needed to recover from 

the oblivion many other types of Mediterranean traditional polycultures. 

The value of this kind of historical agroecology studies goes beyond the limited scope of 

the local results obtained. It highlights the relevance of a traditional poly-cultural practice 

of which records are scarce, despite having been quite widespread before the massive 

adoption of the Green Revolution. Additionally, it provides a multidimensional agro-

ecological and socioeconomic analysis needed to comprehend the complexity of the 

functioning of peasant traditional ways of farming. Furthermore, recovering and 

emphasizing the advantages of forgotten polycultures can provide useful knowledge to 

increase the multifunctionality and resilience of current agricultural systems worldwide, 

challenging the modern unsustainability of industrialized agriculture.  
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Apendix to Chapter 4: Extended results. 

This Annex includes more detailed account of the results obtained for all the crop systems 

recorded in the local agricultural survey (Cartilla evaluatoria) of Les Oluges. 

1. Land Equivalent Ratio (LER) 

The Land Equivalent Ratio (LER) was obtained from the estimation of the energy content 

of the total produce of the crop systems. The total produce includes the main produce and 

the by-products of the crops systems. The LER is the sum of the relative yields, which 

are calculated as the yield of the polyculture divided by the yield of the monoculture. All 

these steps are shown in Table 21. 

Table 21. Total produce, relative yields and Land Equivalent Ratio (LER) of the crop systems 

registered in the local agricultural survey of Les Oluges (1883) (1Q: first quality soil; 2Q: second 

quality soil; 3Q: third quality soil). Source: Our own, from the sources detailed in the text. 

Crop systems 

Total produce (kg/ha 

dry matter) 
Relative yields  LER 

1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 

Wheat 848                 

Barley   1,187               

Rye     720             

Vines 3,311 2,748 1,996             

Olives 2,090 1,571 1,104             

Vines & 

olives 

Vines 1,749 1,374 998 0.53 0.50 0.50 
1.05 1.07 0.98 

Olives 1,097 889 526 0.52 0.57 0.48 

Cereals 

& vines 

Cereals 424 593 339 0.50 0.50 0.47 
0.97 1.00 0.97 

Vines 1,562 1,374 998 0.47 0.50 0.50 

Cereals 

& olives 

Cereals 424 593 339 0.50 0.50 0.47 
1.02 1.00 0.90 

Olives 1,097 785 474 0.52 0.50 0.43 

Cereals, 

vines & 

olives 

Cereals 424 593 339 0.50 0.50 0.47 

1.08 1.07 1.09 Vines 1,056 869 720 0.32 0.32 0.36 

Olives 548 393 289 0.26 0.25 0.26 

 

2. Relative Total Labour Cost 

The Relative Total Labour Cost was estimated following the same methodology of the 

LER, in this case using the number of days of work required for each crop system (Table 

22) and the monetary cost of this labour invested (Table 23), recorded in the Cartilla 

evaluatoria. 
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Table 22. Total labour cost and Relative Total Labour Cost, in number of days required, of the 

crop systems of Les Oluges (1Q: first quality soil; 2Q: second quality soil; 3Q: third quality soil). 

Source: Our own, from the sources detailed in the text. 

Crop systems 
Total labour cost (days/ha) 

Relative Total Labour 

Cost  

1Q 2Q 3Q 1Q 2Q 3Q 

Wheat 21.10           

Barley   14.82         

Rye     14.64       

Vines 51.11 40.01 26.64       

Olives 55.81 40.99 27.33       

Vines & 

olives 

Vines 19.60 17.23 11.08 
1.07 1.03 0.95 

Olives 38.08 24.71 14.53 

Cereals & 

vines 

Cereals 11.87 9.40 7.67 
1.10 1.05 1.00 

Vines 27.68 16.56 12.56 

Cereals & 

olives 

Cereals 11.87 9.40 7.67 
1.30 1.23 0.96 

Olives 41.28 24.39 12.02 

Cereals, 

vines & 

olives 

Cereals 11.87 9.40 7.67 

1.30 1.31 1.37 Vines 19.98 15.51 12.33 

Olives 19.62 11.99 10.58 

 

Table 23. Total labour cost and Relative Total Labour Cost, in monetary cost, of the crop systems 

of Les Oluges (1Q: first quality soil; 2Q: second quality soil; 3Q: third quality soil). Source: Our 

own, from the sources detailed in the text. 

Les Oluges 1860 
Total labour cost (pesetas/ha) 

Relative Total Labour 

Cost  

1Q 2Q 3Q 1Q 2Q 3Q 

Wheat 77.95         

Barley   56.38         

Rye     56.03       

Vines 132.46 110.25 83.51       

Olives 125.58 91.28 68.60       

Vines & 

olives 

Vines 55.49 46.09 30.30 
1.01 0.98 0.84 

Olives 73.84 51.74 32.56 

Cereals & 

vines 

Cereals 52.16 39.30 32.65 
1.07 1.02 0.91 

Vines 53.03 35.44 27.45 

Cereals & 

olives 

Cereals 36.23 28.25 24.51 
0.97 0.95 0.77 

Olives 63.95 40.64 22.49 

Cereals, 

vines & 

olives 

Cereals 36.23 28.25 24.51 

0.99 1.00 0.97 Vines 37.04 29.85 23.50 

Olives 31.10 20.49 17.09 

 

Additionally, for the assessment of labour seasonality, the days of work required by each 

crop system were grouped by season (Table 24). 
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Table 24. Number of days of work required by season in each crop system in Les Oluges (1Q: 

first quality soil; 2Q: second quality soil; 3Q: third quality soil). Source: Our own, from the 

sources detailed in the text. 

Working days by 

season 
Spring Summer Autumn Winter 

Standard 

Deviation 

Wheat 0.97 7.33 6.93 3.26 3.05 

Barley 0.58 5.12 4.99 3.26 2.11 

Rye 0.58 4.94 4.99 3.26 2.07 

Vines 1Q 23.38 0.00 27.73 0.00 14.86 

Vines 2Q 21.05 0.00 18.95 0.00 11.58 

Vines 3Q 16.69 0.00 9.94 0.00 8.17 

Olives 1Q 20.93 0.00 16.28 18.60 9.49 

Olives 2Q 15.70 0.00 11.63 13.66 7.03 

Olives 3Q 12.21 0.00 6.98 8.14 5.08 

Vines & olives 1Q 25.06 0.00 21.06 14.83 11.00 

Vines & olives 2Q 20.41 0.00 15.78 9.01 8.87 

Vines & olives 3Q 13.43 0.00 10.50 4.94 5.96 

Wheat & vines 16.46 6.92 16.16 0.00 7.94 

Barley & vines 12.23 4.90 8.83 0.00 5.26 

Rye & vines 9.46 4.19 6.59 0.00 4.00 

Wheat & olives 13.37 6.92 15.70 17.15 4.52 

Barley & olives 10.08 4.90 9.69 9.13 2.40 

Rye & olives 5.62 4.19 5.62 4.27 0.81 

Wheat, vines & olives 17.79 6.92 18.60 8.14 6.19 

Barley, vines & olives 14.09 4.90 13.55 4.36 5.32 

Rye, vines & olives 11.09 4.19 11.53 3.78 4.24 

 

 

3. Energy efficiency and nutrient balances 

For the estimation of the energy flows the following assumptions were made: 

3.1. Draft animal 

It considers the requirements of one donkey (the most abundant draft animal in 1860) 

throughout a year. Its feed is provided by: i) crop system by-products (straw, vine leaves, 

olive tree browsing), and ii) external feed (straw) needed to complete the animal needs. 

Only cereal monocultures include the possibility of pasture in the fallow land, since the 

historical records state that pasturing in the cropland were woody crops are grown could 

be harmful for the perennials.  
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3.2. Soil distribution 

The distribution of cereals by soil quality, as registered in the Cartilla evaluatoria is: 

wheat in first quality, barley in second quality and rye in third quality. This distribution 

applies for cereal monocultures and polycultures. Reflecting the practice of fallow every 

other year, half of the cereal of cropland is considered to be left fallow in monocultures 

and polycultures.  

In polycultures that include two different crops, half of the land is used for one crop, and 

the other half for the other crop. In the polyculture that includes cereals, vines and olives, 

soil distribution includes 25% of the land sown with cereals, 25% fallow, 25% cultivated 

with vines and 25% cultivated with olives.  

3.3. Energy flows 

NPP is the sum of the Total Produce and the Unharvested Phytomass. The Total Produce 

(TP) includes the main produce and the by-products of cropland. Unharvested Phytomass 

(UhP) includes adventitious herbs, wild animal intake, and roots. 

Final Produce (FP) includes the main produce and the by-products that are available for 

human use after recycling those available for animal feed and fertilization. 

The Total Inputs Consumed (TIC) include the biomass that is recycled from the same 

cropland for animal feed, seeds and fertilization (buried biomass and formiguers), as well 

as external inputs of biomass such as the wood from woodland and the external animal 

feed needed (measured as the equivalent of the deficit of metabolizable energy of feed 

considered in cereal straw). However, given the high energy content of the manure 

applied in cereal monocultures, in this crop system the TIC consider the energy content 

of manure and the energy content of the animal work, and do not include the energy 

content of animal feed in order to avoid double counting. The number of formiguers built 

in one hectare of vineyard and cereal monocultures were 93 in first quality soil, and 56 in 

second and third quality soils. However, given the existence of fallow in cereals, this 

amount is divided by two in cereal monocultures. Similarly, in the intercropping systems 

that included vines, the number of formiguers built is accounted proportional to the share 

of cropland occupied by the vines. Formiguers in cereal monocultures are assumed to be 

built with wood from woodland and are thus external inputs from the plot boundaries 

standpoint. In vines, formiguers are assumed to be built with the wood available from 

vine pruning and strain replacement, and are thus considered biomass reused.  
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Figure 14.Scheme of the energy fluxes of the crop systems from Les Oluges that have not been 

included in the main text (1Q: first quality soil; 2Q: second quality soil; 3Q: third quality soil; 

W&O: wheat and olive trees; B&O: barley and olive trees; R&O: rye and olive trees; WV&O: 

wheat, vines and olive trees; BV&O: barley, vines and olive trees; RV&O: rye, vines and olive 

trees). Source: Our own, from the sources detailed in the text. 

14a) 
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14b) 

14c) 
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14d) 

 

 

The distribution of the total energy produced in each crop system (NPPact) among the 

different uses and energy flows considered in presented in Table 25, and Table 26 shows 

the results of the EROIS for all the crop systems of the Cartilla evaluatoria of Les Oluges.  

 

Table 25. Distribution of the NPPact according to the energy flows of each crop system. Source: 

Our own, from the sources detailed in the text. 

Crop systems 

NPPact distribution 

Unharvested 

Phytomass 

Final 

Produce 
Animal feed 

Recycling 

(seeds and 

fertilization) 

Wheat 55% 8% 35% 2% 

Barley 53% 9% 36% 2% 

Rye 56% 7% 36% 2% 

Vines 1Q 38% 17% 16% 29% 
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2Q 40% 23% 15% 22% 

3Q 44% 18% 13% 25% 

Olives 

1Q 55% 39% 6%   

2Q 60% 34% 5%   

3Q 67% 29% 4%   

Vines & 

Olives 

1Q 46% 29% 11% 14% 

2Q 58% 24% 8% 9% 

3Q 66% 30% 7% 10% 

Wheat & vines 51% 13% 16% 20% 

Barley & vines 53% 17% 17% 13% 

Rye & vines 57% 13% 14% 15% 

Wheat & olives 61% 28% 10% 1% 

Barley & olives 64% 23% 12% 1% 

Rye & olives 72% 18% 9% 1% 

Wheat, vines & olives 54% 22% 14% 10% 

Barley, vines & olives 56% 21% 15% 8% 

Rye, vines & olives 60% 19% 13% 8% 

 

Table 26. EROIs of all the crop systems from Les Oluges. Source: Our own, from the sources 

detailed in the text. 

Crop systems  

Les Oluges 1860 

FEROI AFEROI BIODIVERSITY NPPactEROI 

1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 1Q 2Q 3Q 

Wheat 0.05   0.04   0.28   0.50   

Barley  0.08   0.05   0.33   0.62  

Rye   0.05   0.04   0.29   0.53 

Vines 0.39 0.62 0.48 0.21 0.30 0.22 0.46 0.52 0.54 1.20 1.29 1.22 

Olives 2.26 2.60 2.14 0.54 0.47 0.36 0.76 0.82 0.83 1.39 1.36 1.25 

Vines & olives 1.10 1.39 1.10 0.40 0.32 0.22 0.64 0.77 0.80 1.40 1.32 1.22 

Cereals & vines 0.36 0.54 0.44 0.15 0.20 0.15 0.59 0.63 0.66 1.14 1.20 1.15 

Cereals & olives 2.39 1.67 1.68 0.38 0.29 0.21 0.84 0.82 0.87 1.38 1.29 1.21 

Cereals, vines & olives 0.90 0.90 0.87 0.28 0.26 0.23 0.69 0.71 0.74 1.28 1.26 1.22 
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3.4. Nutrient balances 

The nutrient balances of the crop system from Les Oluges (Table 27) have been calculated 

following the methodology employed and thoroughly explained in Chapter 3.  

Table 27. Nutrient balances of the main macronutrients (Nitrogen (N), Phosphorus (P), and 

Potassium (K)) for all the crop systems from Les Oluges. Source: Our own, from the sources 

detailed in the text. 

Nutrient balances N/ha P/ha K/ha 

Cereals 

1ª 2.61 2.88 13.56 

2ª 1.72 2.25 8.41 

3ª 4.26 1.83 11.55 

Vines 

1ª -34.12 -2.95 -17.01 

2ª -25.76 -2.59 -14.75 

3ª -17.52 -1.53 -9.54 

Olives 

1ª -9.64 -0.37 -0.49 

2ª -6.25 -0.25 -0.24 

3ª -3.21 -0.15 -0.02 

Vines & olives 

1ª -23.25 -1.80 -9.43 

2ª -16.68 -1.44 -7.54 

3ª -10.20 -0.84 -4.76 

Cereals & vines 

1ª -18.45 -2.11 -9.96 

2ª -16.03 -2.18 -11.18 

3ª -10.12 -1.68 -6.43 

Cereals & olives 

1ª -4.38 -0.87 -2.14 

2ª -4.03 -0.94 -3.77 

3ª -1.50 -0.94 -1.56 

Cereals, vines & 

olives 

1ª -15.94 -1.91 -8.05 

2ª -13.07 -1.84 -8.80 

3ª -8.99 -1.63 -5.58 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

El poder sólo es realidad donde palabra y acto no se han separado, 

donde las palabras no están vacías y los hechos no son brutales, 

donde las palabras no se emplean para velar intenciones sino para 

descubrir realidades, y los actos no se usan para violar y destruir 

sino para establecer relaciones y crear nuevas realidades. 

Hannah Arendt, La condición humana 
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Si entre los dedos se me escapa volando una flor 

 y yo la dejo que me marque el camino… 

Extremoduro, La vereda de la puerta de atrás 

Chapter 5: Conclusions and final remarks 

This chapter presents the concluding remarks of the thesis. First, I will set forth the main 

contributions of the research that I have developed. Secondly, I will introduce some of 

the limitations of this work and next, I will propose further developments that could 

enlarge the outreach of the investigation. Finally, some last reflections will be the ending 

of this thesis.  

 

1. Main contributions of this thesis 

The historical analysis if the agroecosystem of Les Oluges has provided important 

insights on the sociometabolic transformations of farm systems by means of the spread 

of the Green Revolution. This section does not want to repeat the contributions that are 

already presented in Chapters 2-4, but the aim here is to highlight the most significant 

learnings obtained from each chapter, and how can this research, as a whole, contribute 

to the investigation on the sustainability of farm systems. 

The research questions presented in the Introduction (p. 7) of this thesis have been 

answered. Chapters 2 and 3 have shown how the transition from traditional organic 

farming to industrialized agriculture took place in Les Oluges, the changes in the structure 

and functioning of the farm system, and how this transformation affected the 

sustainability of the agroecosystem considering the energy and nutrient balances of the 

three points of time studied. The drivers of the unsustainability of modern agricultural 

functioning are also identified: the rise of livestock density; the increased dependence on 

External Inputs and the abandonment of Biomass Reused, as well as the relinquishment 

of traditional traits such as the polyculture system with the complete homogenization of 

cropland monoculture. These drivers are linked to the simplification of the agroecosystem 

functioning and management. Thus, learning from the complexity of the disappeared 

intercropping system of Les Oluges is a key lesson that is obtained from this study of 

traditional agroecosystems.     
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However, further from specifically answering the research questions established at the 

beginning, the investigation on Les Oluges provided powerful insights that set forth 

important contributions for the research on sustainable farm systems.   

The energy efficiency analysis deployed in Chapter 3 provided results that confirm the 

general trends observed in other case studies, but it also has an important peculiarity, 

which is the improvement of the EROIs in 1959, under a mixed organic-industrialised 

functioning. This result is of great interest because it shows that under certain 

circumstances it is possible to achieve a combination of External Inputs and Biomass 

Reused that can improve the productivity of the agroecosystem for human purposes while 

maintaining some ecological benefits. This can be especially interesting in those cases 

that, as Les Oluges, have tough soil and climate conditions that severely constrain 

cropland productivity. 

The extensive use of industrial external inputs in modern agriculture causes important 

pollution and energy inefficiency problems. Agroecology defends that in order to build 

more sustainable farm systems, the dependence on external inputs needs to be reduced. 

However, as the case of Les Oluges in 1959 shows, this does not necessarily mean that 

external inputs need or should be completely eliminated. The question on the sustainable, 

efficient and optimal use of external inputs nowadays is about what kind of external inputs 

and to what extent should they be used avoiding an external dependence and internal 

linearity which supress the agroecosystem complexity.  

The question on the volume and nature of the external inputs leads us to the contributions 

of the nutrient balances on Chapter 4. The belowground assessment on the transformation 

of the fertilization practices in Les Oluges illustrates the complexity of the agroecosystem 

management. Examining the accomplishment of the different soil fertility managements 

in each point of time from the perspective of their efficiency, adequacy and durability, is 

a key contribution of this PhD thesis that gives an idea of the intricacies of soil fertility 

and agroecosystems management. However, this multiple assessment on the nutrient 

balances raises an important question on the definition of sustainability. The excessive 

use of fertilizing resources in 1999 was clearly unsustainable, but the more levelled 

nutrient balances under traditional (c. 1860) and mixed organic-industrial functioning (in 

1959) entail different sustainability problems: the deforestation process in 1860, and the 

use of non-renewable fertilizing resources in 1959. Again, with respect to the use of 
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fertilizing resources we find a similar question to that arisen previously: what kind of 

fertilizing resources, and to what extent? 

This issue is especially relevant given the great diversity of agroecosystems around the 

world and the need to adapt agricultural practices to the specific local conditions. The 

transition towards more sustainable farming, despite urgent, is complex and needs to be 

gradual in order to ensure social adaptability, and the capacity of the various 

agroecosystems to function under different degrees of use of external inputs should be 

considered and assessed.    

Finally, the main contributions of Chapter 5 are twofold. The application of the LER to 

the historical examination of the intercropping system, and the proposal of the Relative 

Total Labour Cost, are analytical contributions that should be highlighted. Additionally, 

there is an important historiographic contribution on the recuperation and recognition of 

a traditional polyculture system of which little record is maintained. The combination of 

the agroecological and peasant economy perspectives is an effort to unveil the traditional 

knowledge embedded on that biocultural heirloom. Furthermore, this analysis provides 

support to the introduction of a different economic rationality in agricultural systems in 

order to enhance their sustainability.  

 

2. Limitations of the research 

The development of a historiographic research from a sociometabolic perspective is, 

probably by its very nature, subject to various sources of limitations that arise from its 

multi- and interdisciplinary character.  

First, there is a limitation that is probably widespread on historical research. The historical 

sources available for the analysis of Les Oluges provided valuable information about the 

structure and functioning of the agroecosystem, but working with the historical sources 

has implied a process of critical evaluation of the sources and estimation of those data 

and information that was either not available or not reliable. This is a limitation that makes 

it necessary to remind that the reconstruction of the land use patterns, human labour and 

animal work application, energy and nutrient balances, and the functioning of the crop 

systems, do not reflect exactly how things were, but are reasonable estimations of what 

could have been the case. There will always remain some uncertainty in this respect that 
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needs to be recognized, even though the results obtained correspond to a legitimate 

approximation that gives rise to relevant insights.  

Secondly, another limitation that I consider necessary to acknowledge is the narrow case 

study on which this thesis has been focused. A municipality of 20 km2 and less than two 

hundred inhabitants nowadays does may not seem a case study of enough relevance for a 

PhD thesis on agroecological transformations and sustainable agriculture. Certainly, 

expanding the focus with an in-depth comparative study or inserting the analysis of Les 

Oluges on wider transformations at the county, regional and national scale, would have 

reduced this narrowness. However, as explained in the introduction of this thesis, Les 

Oluges is a case study representative of the historical evolution of many other localities 

in Spain, and its analysis could provide a basis to understand what happened in other 

semi-arid cereal-growing Mediterranean agroecosystems.  

Finally, there is a limitation of this research that has to do with the mix of disciplines that 

it contains. The elaboration of the nutrient balances (Chapter 3) and the agroecological 

analysis of the intercropping system (Chapter 4), required an incursion into an agronomic 

field that was completely foreign for me and for which the historical data available was 

scant. The help and advice of José Ramón Olarieta on this respect has been fundamental, 

and it is thanks to him that I have been able to develop a somewhat sound analysis in this 

sense.  

 

3. Further developments and research 

This PhD thesis on Les Oluges is concluded, but it has opened many paths through which 

it is possible to deepen and enlarge the investigation on the long-term agricultural 

transformations that have led us to the current unsustainability of agrifood systems. Here 

are some of the possible developments that this forthcoming research could follow: 

i. The historical analysis of Les Oluges ends in 1999, when the adoption of the 

Green Revolution technological package and the industrialization of the 

agroecosystem were completed. As mentioned in Chapter 3, that could be 

considered the peak moment of the agricultural industrialization process. 

From then on there has been an increased environmental concern that might 

have reduced some traits of the industrial agroecosystem. Thus, one line of 

further development would be to extend the timespan of the analysis to the 
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first decades of the 21st century (2009 and even 2019 if data were available). 

This could be relevant not only because it would provide an idea as to what 

extent the increased environmental awareness affected the agroecosystem, and 

if a transition towards a more sustainable farming system is already taking 

place; but also because it could be useful for understanding and helping that 

eventual transition towards sustainability and link the historical analysis with 

actual policy advise.  

ii. There is one dimension of the sociometabolic analysis that has not been 

covered in this thesis: socioeconomic institutions. In order to fill this absence, 

a historical analysis of land property and rent distribution could be carried out. 

Additionally, it would also be enlightening to carry out a deeper understanding 

on the role that the peasant unions and cooperatives played from the beginning 

of the 20th century in the implementation of the Green Revolution technologies 

in Les Oluges. The relevance of these institutions in La Segarra has already 

been pointed out (Ramon Muñoz, 1998, 1999), but its linkages with the 

agricultural transformation experienced during the 20th century should be 

further studied.  

iii. The research line opened in Chapter 4 with the historical analysis of 

Mediterranean polycultures offers several possibilities for further 

development. First, the possibility to develop comparative studies with similar 

crop systems in other regions, national and international, and in other time 

periods, would be helpful for clearing out the agroecological and 

socioeconomic advantages that silvoarable polycultures had; and it would 

allow to understand the contrast among different crop combinations.  

Secondly, even though the conclusions reached in my first attempt on this 

respect were not univocal, it would also be enriching to do some deeper 

archival research looking for more historical sources about the intercropping 

system that could provide an idea about why traditional farmers used this crop 

system, and which were the advantages perceived on combining these woody 

and grain crops. Finally, another line of research that falls out of the field of 

this thesis but that I think the historical analysis of the intercropping system 

could promote, is to amend the lack of historical data with the implementation 

of some agronomic empirical research on this type of crop systems at present. 

This could be useful in light of the necessary transformations that 
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Mediterranean agroecosystems will have to accomplish in order to adapt to a 

dryer and more unstable climate in the near future.  

In one of the conferences on which I have presented some parts of this work, one person 

asked me how was this research contributing or helping to the inhabitants and farmers of 

the agroecosystem of Les Oluges. The aim of this thesis is not to contribute to the 

economic development or the well-being of Les Oluges, or not directly. As it was 

conceived, its contribution would be more oriented towards the academic and policy 

fields. However, that question made me think that the exclusively academic approach is 

a limitation of this research. Thus, another further development of this thesis should be to 

divulgate this investigation so that the people from Les Oluges can get to know there was 

once, someone, who spent several years of her life researching on their village, and that 

there is a sociometabolic interpretation of the historical transformations that Les Oluges 

has experienced.   

 

4. Final remarks  

I doubt whether this thesis could be considered a brick added to the construction of a 

sustainable socioeconomic system, or if it is rather a line in the plan of that future 

sustainable house. Probably, both metaphors could be applied. On the one hand, as an 

academic work, it has no direct tangible effects, but it helps sustain the theoretical basis, 

it contributes to the knowledge on how to build sustainable farm systems that could, 

ideally, guide future social decisions. Thus, it is certainly a line in the plan. On the other 

hand, the real, substantive contribution of this thesis is not that straightforward, but 

ultimately, it has certainly affected me, my knowledge, ideas and interests, some of my 

habits and my way of relating with the world have been transformed. At least, that is a 

small brick added to a more sustainable home and I hope that the effects of this thesis can 

be widen in the future. Many more steps need to be carried out and more lines need to be 

put together, some of them could stem and be related to this thesis, but the contribution 

of this research can be considered fulfilled.  

  

 



 

 

 

 

  

Beethoven, Symphony no. 6 Op. 68, (Pastorale). 

“Shepherd's song. Cheerful and thankful feelings 

after the storm”  
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