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CHAPTER 1 - INTRODUCTION -

1 INTRODUCTION

From infancy to adulthood, similarities between people, objects, events, or situations are established.
Similarity is inherently associated with daily activities, such as discerning between colors and shapes, it
being an intrinsic feature of humans. This concept is also well established in scientific studies, as can be
illustrated in the similarity between sequences to build up 3D structures of proteins by homology modeling,
or phylogenetic analysis of organisms. The concept of similarity, thus, constitutes one of the basic processes
of human thought: the ability to learn through comparative analysis.

Already in 1869, Dmitri Mendeleev based his reasoning on the similarity of chemical properties to
create the first version of the periodic table. To our astonishment, Mendeleev even advanced the properties
of certain elements that were still to be discovered.! Chemical informatics and medicinal chemistry also
take profit of this concept to find relationships between molecules. Attempts to quantify how a given
compound resembles to another have a long history in drug discovery. Furthermore, molecular similarity
has been exploited to find guidelines in search of novel compounds with suitable pharmacological profiles.
Therefore, the concept of similarity is linked to another characteristic: the ability to establish predictions.

Many methods that compute molecular similarities have been developed in the last 50 years, and
new techniques continue to be proposed.® Molecular similarity is a complex issue that can only be assessed
if the search space is limited to key molecular properties and under certain predefined conditions. Thus,
each method defines a set of molecular descriptors and comparison algorithms that enable exploring the
chemical space and quantify (di)similarities. In this framework, similarity measurements are associated
with a variety of chemical features, such as bonding patterns, atomic positions, molecular conformation,
shape and volume, and spatial disposition of molecular properties. Nevertheless, the inclusion of solvation
properties in similarity measurements has been more elusive, though desolvation is recognized to be one of
the major forces that modulate the binding of ligands to the target receptors.

In this context, the research group on Computational Biology and Drug Design (CBDD) at the
University of Barcelona developed a methodology based on the use of continuous solvation models coupled
with methods of quantum chemistry (QM)*® to evaluate the solvation free energy of (bio)organic
compounds, and to decompose this thermodynamic quantity into atomic contributions, yielding lipophilic
profiles suited for similarity studies.

Under these premises, this thesis seeks to reconcile similarity and lipophilicity through the
development of a 3D grid-based algorithm, called PharmScreen®, for rigid-body molecular superposition
and lipophilic similarity searching. This chapter is intended to briefly introduce the main blocks that
constitute this work, considering (i) molecular similarity as a drug discovery tool, and (ii) lipophilicity as

the primary descriptor.
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1.1 Molecular Similarity
1.1.1  Overview of Molecular Similarity

The study of molecular similarity plays a main role in chemoinformatics'®! and is a key step in medicinal
chemistry.'?12 Its assessment has been closely merged with the history of chemical and physical science for
more than one century,**!® pioneered by Kopp®® in 1842, who reported the first relationship between
structures and physicochemical properties. However, it was not until the middle of the 1980s that similarity
methods came into wide use. This resulted from two major contributions: the implementation of the
quantitative structure—activity relationships (QSAR) methodology developed by Hansch and Fujital’, and
the work carried out at Ledere!® and Pfizer'® Laboratories showing that similarity between two compounds
can be evaluated in a computationally efficient way. Finally, the concept of molecular similarity was
consolidated through the well-known similarity-property principle (SPP), which was introduced in the early
1990s and became a milestone in molecular similarity analysis.

The SPP states that “structurally similar molecules are more likely to have similar properties”,*
including biological activity. This principle summarizes the core issue of similarity searches, where
molecular comparisons can be exploited to infer resemblance in the biological response of compounds. In
this context, the existence of data relative to the biomolecular target is not a sine qua non condition for the
development of drug discovery projects. Furthermore, by resorting to simplified information (e.g., a set of
known ligands), it may be possible to identify novel hits (compare) and find structure-activity relationships
(predict) at a low computational expense. These features made similarity evaluation to be a fundamental
ingredient for the development of many computational methods.

Similarity helps in the design of mimetic and bioisosteric compounds, provides a measure of
chemical diversity between molecules, defines a metrics for structure-activity correlations, and facilitates
the determination of the bioactive molecular overlay in search of novel actives. Common ligand-based
drug design (LBDD) techniques such as virtual screening (VS) and clustering methods,? have their origin
in these applications and have become key resources in computer-aided drug discovery (CADD).

In the last state-of-the-art review in tools that exploit molecular similarity®, a total of 115
publications of LBDD techniques were analyzed, showing the significant impact and usefulness of these
techniques in drug discovery. Computational, chemical, and life science journals that were operational and
had an impact factor greater than 2.0 in 2009 were selected in this study. The analysis of these works
showed that~60% of these studies reported hits with <1 uM potency and that~30% of the hits had a potency
<10 uM. Thus, the majority of the ligand-based virtual screening (LBVS) hits were relatively potent. In
addition, they determined that 78 of the analyzed LBDD studies had reported totally unique structures not
published before. Taken together, the results of their analysis revealed that many practical LBDD
applications resulted in the identification of new and interesting active compounds that recognize the value
of using these techniques.

The practical use of similarity techniques in the last years is still a hot topic in rational drug design,

either alone?>?" or in combination with structure-based protocols.?-*" To further reinforce its applicability,
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let us remark the fact that reference books provide a specific chapter or section for the application of
molecular similarity in different areas of the field, such as “Computational Methods for GPCR Drug
Discovery ™8, “Computational Toxicology®, “Bioinformatics !, and “Successful Drug Discovery”.*

Despite the existence of successful stories and the broad adoption of well-established techniques,
molecular similarity still faces challenges, starting with its definition. Just like in any other comparison
context, molecular similarity is linked to a certain degree of subjectivity, since it is difficult to use a unique
similarity evaluation approach in all scenarios. Consider, for example, the neurotransmitters norephedrine
(CsHs-CHOH-CH(CH3)-NH,), ephedrine (C¢Hs-CHOH-CH(CH3)-NHCHs), and pseudoephedrine (CsHs-
CHOH-CHNH(CHs;)-CHs). If we pay attention to the 2D structure of the whole molecule, these drugs
appear visibly similar. The difference between ephedrine and pseudoephedrine is the stereochemistry of a
single chiral center, while these two compounds differ from norephedrine only in the substitution of a
hydrogen atom by a methyl group. However, the high 2D similarity does not correlate with their
physiological behavior, which is driven by its 3D structure. Ephedrine is the most potent stimulant,***? and
it is used as a bronchodilator, vasoconstrictor, and cardiac stimulator. Pseudoephedrine is mainly employed
in flu treatment as a decongestant, and norephedrine is used as an appetite suppressor and in cold and cough
medications. The distinct physiological effects produced by these phenylpropanolamines exemplify how
similarity is the consequence of the bounded comparison of a multifaceted nature: molecules that seem
quite similar from a structural point of view (e.g., atom connections) could show significant differences
from a medicinal chemistry perspective.*?

Accordingly, similarity acquires a subjective meaning influenced by the molecular features relevant
for similarity appraisal and the definition of the similarity measurement. Indeed, the similarity paradox*
states that small modifications in molecules can cause them to modify their activity. To avoid this paradox
it is convenient, if not necessary, to take into account two main factors: (i) to select series of comprehensive
compounds for testing, and (ii) to consider that the biological activity usually stems from the interplay of a
number of complex processes, which cannot be easily represented by a set of linear relationships.t® To
better describe these processes, non-linear estimations should be used, where the structural, topological,

and molecular descriptors are independent of one another.

1.1.2 Methods for similarity Evaluation

In chemoinformatic approaches, the measure of molecular similarity involves mainly two major
components*: the molecular descriptors and the similarity function. Descriptors capture the relevant
features for molecular evaluation, and the similarity function transforms the comparison between pairs of
properties in real numbers commonly within the interval [0,1]. For each component of the molecular
representation, a certain degree of importance is assigned through the weighting of similarity coefficient.

Some works even consider this weighting scheme as a third independent component. %4647
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Molecular descriptors can be defined in one, two, or three dimensions:

1D-molecular descriptors include the simplest representation without atomic connections
information: (i) physicochemical/biological properties, and (ii) chemical features® (e.g.,
number of atoms, bonds, functional groups, etc.). This chemical information can be
expressed in a simple one-line**-°! code, which allows a fast extraction and treatment of
molecular information. For example, LINGO®?, a hologram of SMILES strings, provides a
method to derive structure-related properties and to compute directly from one-dimensional
representations.
2D-molecular descriptors are the most common similarity method derived from
connection tables, 2D-electrotopological and topological descriptors: (sub)graphs and
(sub)structure.>*%° The approaches using electrotopological descriptors represent the
electrical properties of atoms and molecules in a topological frame (e.g., the
electron accessibility for each atom). On the other hand, the graph-based
representation defines molecules as a function of their structure or substructure. For
example, one molecule can be reduced to nodes where each one corresponds to ring
systems, heteroatoms, acyclic components, or functional groups.®®
3D-molecular descriptors were introduced and gained more attention recently because of
their potential to explore the molecular projection in the surrounding space.>” Since the
binding affinity between molecules and target proteins is governed by atomic interactions
in the 3D space, molecules with similar 3D shape and properties could have shared
biological activities, even though their 1D and 2D representations are not similar. 1D and
2D methods tend to find close chemical analogs to known active compounds, but fail to
predict activity differences between them®®. What is lacking from 1D and 2D methods are
obviously 3D structural information of compounds and target proteins.

3D molecular descriptors provide molecular information in the context of
molecular properties, chemical groups, or the spatial distribution of atoms. In general, it
refers to molecular surfaces and volumes. Nevertheless, most CADD tools using 3D

representations present alignment dependence.

3D molecular representations seem closer to the reality of the ligand-receptor binding process. However,

some validation works®*-®* reports better performance from 2D methods in terms of the number of actives

retrieved. Noise associated with incomplete conformational sampling, subtle deficiencies in the quality of

descriptors, offering little additional information to 2D connectivity, and limitations in molecular

alignments, are possible causes to explain this behavior. Nevertheless, the reason behind this response

seems to be also conditioned by two main factors: (i) the benchmarking sets used for such comparison are

biased towards 2D similarity, and (ii) the concept of correlating the number of actives retrieved with high

18
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accuracy instead of structural diversity. Methods making use of 3D features have less dependence on

underlying atom connectivity, and thus, provide highly ranked structures based on new scaffolds.®

The similarity function provides a quantitative measure of the chemical resemblance from a global or local
point of view. Local similarities are focused on a specific molecule section (heteroatoms, functional group,
rings, etc.), which is known or can be inferred to be responsible for the activity, while global similarity
considers the whole molecule. For example, a pharmacophore model where only specific features
responsible for the activity are compared may apply a local similarity evaluation, whereas the confrontation
of the whole volumes of different drug-like molecules implies global similarity measurements.

The Tanimoto coefficient is the most widely used global similarity coefficient for both binary

fingerprints and continuous data representations. It is defined in Eq. 1, with a = = 1. It is also known as

the Dice coefficient when o= g = 1/,,.

¢ 1
ala—c)+pBb—-c)+c

Similarity coefficient,p =

where a represents the number of features present in molecule A, b is the number of features in molecule
B, and c is the number of features in common between molecules A and B.

However, a partial similarity measurement, such as Tversky coefficient, can also be extracted from
Eq 1. When values of a = 1 and B = 0 are used, the number of features only present in molecule B disappears
from the equation. This means that even if there are features only present in molecule B, it does not influence
the similarity. Thus, the Tversky similarity between benzene and naphthalene is 1, since naphthalene
completely contains benzene as a substructure. An extensive description of similarity coefficients has been
provided elsewhere 34,

These similarity coefficients can be used to select those compounds with a higher probability of
being active and classify them according to the degree of similarity with selected templates. Compounds
with higher similarity can be kept, while compounds with lower similarity can be discarded. While this
approach is easy to use and well accepted, it has some limitations. On one side, a high similarity coefficient
value does not always imply that two compounds will have the same activity. Some minor structural
changes could greatly modulate the activity of a compound depending on how they affect the interactions
with the protein, as has been noted previously. On the other, there is no universal cutoff of similarity value
for determining that a compound will have similar activity to a reference molecule.

To avoid these inconveniences, VS can be complemented with SAR studies and an activity cliff
description®, thereby focusing similarity measurements on activity determinants using partial similarity
functions. Moreover, the combination of similarity methods based on different criteria is recommended to
discard compounds that may be incorrectly prioritized by a given methodology. Different types of
coefficients perform differently in alternative situations, and the results obtained can thus complement each

other.%6
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1.1.3 3D Molecular Similarity Applications.

It is common to see applications of 3D similarity in early stages of drug discovery,®¢"8 although the
foundations of QSAR were already established almost 40 years ago®. Accordingly, commercial tools have
been developed using physicochemical abstractions like 3D shape or electrostatic potential to identify
similar compounds and apply these molecular properties to the design of new compounds.

Methods using 3D similarity are divided into two main groups: QSAR and LBVS tools. 3D-QSAR
is used to drive potency and identify active compounds in lead-optimization projects’®. The Comparative
molecular field analysis (COMFA)™ is the most paradigmatic method. On the other hand, LBVS is used to
rank compounds based on the similarity relative to a given reference. Both categories are described in more
detail in next sections. Finally, 3D similarity can also be used to complement structure-based virtual
screening (SBVS).

1.1.3.1 Quantitative structure-activity relationships

3D QSAR approaches play a significant role in early phases of chemical exploration, where the
aim is understanding the SAR and use this knowledge to build a predictive model. The wide applicability
of these models can be noted by the huge number of works where COMFA™ and related techniques such as
Comparative Molecular Similarity Indices Analysis (COMSIA),”? have been used.”>’® CoMFA exploits
the combination of electrostatic and steric fields. On the other hand, COMSIA was formulated extending
the numbers of descriptors, including hydrophobic and hydrogen-bond donor and acceptor properties, as
well as including a distinct expression for the projection of these properties into the surrounding space.

3D-QSAR methodologies require a series of structural analogs that interact in the same way at the
same binding site. Since the differences captured by the model must be only due to the accommodation of
different functional groups to the binding site, molecular alignment becomes critical for the success of the
process. Besides predicting activity, QSAR models can be used to understand the relevance of particular

features for a specific effect.”

1.1.3.2 Ligand Based Virtual Screening Tools

LBVS can rank novel ligands by 3D similarity in order to find compounds that are related to known actives.
Commercial software has been developed to explore databases of chemical structures that are similar to
known actives or possess a pharmacophore or substructure in common with a known active.

The most representative approach within the tools that do not require molecular overlay (non-
superpositional methods) is the Ultrafast Shape Recognition method (USR),”® which involves the analysis
of atomic distances to a set of reference positions. Later versions were adapted to include more molecular

properties.’®8
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Superpositional methods encompass protocols where the similarity between molecular pairs is
computed after overlapping molecules (Table 1). Typical types of descriptors comprise Gaussian shape,
molecular fields, and pharmacophoric features.

One of the most used approximations to represent molecular shape and volume in superpositional
methods is the Gaussian function employed by ROCS (Rapid Overlay of Chemical Structures)®-82, ShaEP
(Shape and Electrostatic Potential)®, SHAFTS (Shape-Feature Similarity)® and LIGSIFT®. Moreover,
these approaches supplement the shape-based similarity by mapping chemical groups into pharmacophoric
features®®-%, An alternative representation is what Phase Shape®*° applies, where the whole molecular
volume is treated as hard spheres. In contrast, Surflex-Sim®* and SURFCOMP®? explore the concept of
local similarity exploiting specific properties of the molecular surface.

Molecular fields® represent a distinct approach where comparison relies on the spatial variation of
interaction energies with a probe. The attributes that are assumed to lead the biological activity, such as the
regions of positive and negative charge, are used to define fields. Blaze®** applies this principle to
incorporate off-atom charges to obtain a representation of the electronic environment. Moreover, steric and
hydrophobic features are included. BRUTUS® or MIMIC®" combines steric and electrostatic fields.

A 3D pharmacophore model extracts common chemical features that are essential for bioactivity
from a series of active ligands. Pharmacophoric points generally include a core and features such as
hydrogen bond acceptors/donors, heteroatoms, and charged groups®. Once the pharmacophoric points are
determined, a triangle or tetrahedron is formed between them, and the distances are used for similarity
measurements. These representations are further encoded into strings that have information on the selected
features and the distances of the edges of the polygon built. As an example, FLAP® defines discrete points
for fields of molecular interactions computed using GRID®. All possible combinations of 4
pharmacophoric points are generated (quadruplets). Similarly, Tuplets!®1% encodes 2, 3, and 4
pharmacophoric points and determines five features: donor atom, acceptor atom, hydrophobic center,

positive nitrogen, and negative center.

Table 1 | An overview of some superpositional methods

Method Description Sub-Class

ROCS8182 Fast Gaussian overlay based shape Shape-guided
comparison. Widely used shape based Gaussian
virtual screening tool. function.

ShaEpP® Generate consensus shape patterns Shape-guided
based on structural features of known Gaussian function
ligands.

SHAFTS# It combines shape similarity with Shape-guided

pharmacophoric features. Employs a Gaussian function
hybrid similarity metric combining
shape and chemical similarity.
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LIGSIFT®

Uses Gaussian molecular shape overlay
for fast small molecule alignment and a

Shape-guided
Gaussian function

size-independent scoring function for
efficient VS based on the statistical
significance of the score.
Phase Shape®®  Phase Shape represents a structure as a
set of hard atomic van der Waals
spheres and uses atom triplets to align
molecules.

Shape-guided not
Gaussian function

SURFCOMP®2  Molecular surface is divided into
patches and corresponding patches are
identified using geometrically invariant
descriptors  and  physicochemical

properties.

Shape-guided not
Gaussian function

Blaze®% Exploits the local extrema of molecular  Field-based
interactions fields to align and score
molecules.
BRUTUS® Aligns  molecules  using  field Field-based
information derived from charge
distributions and van der Waals shapes
of the compounds.
MIMIC3 Molecular field based matching Field-based
program (steric volume and
electrostatic fields).
FLAP® Provides a common reference
framework for comparing molecules,
using GRID Molecular Interaction

Fields (MIFs).

Pharmacophore

Encodes the interfeature distances of a
set of interesting pharmacophore
features: pairs, triplets, quartets.

Tupletstoh104 Pharmacophore

Overall, molecular overlap and similarity measurements are accomplished by using a variety of
approaches, which exploit shape, electrostatic, and pharmacophoric features. Especially, 3D shape-based
similarity analysis has become, in recent years, the method of choice in increasing number of virtual
screening campaigns.® However, although the hydrophobic/hydrophilic balance is known to be critical in
pharmacokinetics and pharmakodinamics?®®-1% and ligand (de)solvation is a major contribution to the
variation in maximal achievable binding free energy for a drug-like molecule,*®11° the consideration of the

differential solvation properties of molecules in similarity measurements and alignment procedures for VS
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has not been widely explored, partly due to the difficulty in defining an accurate 3D distribution of

hydrophilic/hydrophobic properties.

1.1.3.3 3D similarity as a complement of structure-based methods.

VS tools are divided in two groups: ligand-based (LB) and structure-based (SB) methods. SB methods
exploit receptor data!*l1'2 and have to take into account different structural conformations. In addition, they
generally use oversimplified scoring functions and have a high computational cost. On the other side, LB
methods are biased toward the existence of known ligands, and it is affected by the training set quality, and
obviously the lack of protein structure information. Accordingly, combining molecular similarity with
structure-based approaches, such as docking, has been proposed as a way to solve the shortcomings of both
approximations using sequential, parallel, or hybrid approaches. 113115

The sequential approach divides the screening process in multiple steps with the goal of
overcoming the expensive computational cost of SB methods. A prefiltering is used at the beginning where
the less expensive LB approach is applied. The best compounds are further evaluated, usually using docking
into the protein-binding site.116-118

In the parallel approach, both methods are run independently, and the top hits retrieved from
each method are selected for biological testing. One of the first works that expose the prospective of this
procedure was conducted in 2011%°. Nevertheless, this approach has given rise to hybrid functions that
represent a true combination of structural and ligand information. Protein-ligand pharmacophores concept
arises from this idea. The observed protein-ligand interactions are directly translated into pharmacophore
features which have demonstrated success in VS'2° and for profiling purposes.*?

Hybrid approaches articulate SB and LB information in a unique core. Three alternatives are (i)
the use of pharmacophore models to constrain poses generated by docking in a specific binding mode, (ii)
the development of pseudoreceptors from an expansion of traditional QSAR methods, and (iii) the 3D
similarity between docked compounds and a known crystallographic ligand is performed to re-score the
docking ranking'??, Figure 1. (see ref.!? for details about pharmacophoric constraints, refs.!'4?* for
pseudoreceptors development, and ref'? for the re-scoring of docked poses).

~ CAOB NG
M Step 1 \ Step 2 - \\ AN,
PN ’ sz, 0L ’
i 4 \ P . "\ \ 1°t Molecule
N Docking v Y 3D similarity evaluation 2nd Molecule
! . . with the co-crystalized | A \
- ligand )] - ':\

3 Molecule

Figure 1 | Example of hybrid approach where the docking poses and co-crystallized ligand similarity are computed to re-score
docking ranking.
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1.1.4 Inthe interface of molecular comparison: basics of our proposal.

This section aims to present the antecedents of the two fundamental pillars on which our tool of molecular
alignment and lipophilic similarity search, PharmScreen, is sustained: the multipolar expansion of

electrostatic potential and the grid-based similarity assessment.

1.1.4.1 Molecular alignment: the use of multipole moments.

Several theories and methodologies exploit electron distribution to evaluate molecular similarity in
alignment procedures 226127 3 core step in superpositional ligand-based methods. These descriptors are
intended to model the charge distribution in drug-like compounds, as electrostatics plays an essential role
in the interaction with the target. Platt et al.'?® proposed to use the Cartesian multipole expansion moments
as a solution to approximate the evaluation of the electrostatic interaction energy*?’ and are the main
procedure used to align molecules based on electron distribution.*?12 In parallel, Grant et al.****3! proposed
the so-called shape multipoles or moments as descriptors to align molecules based on a Gaussian model.
Their work was a success and the starting point to develop the program ROCS.32

In this framework, the zero-order moments of the mass and charge distribution are the total sum
of their contributions: the total mass and the net charge, respectively. If the mass distribution is our subject
of study, the first-order moments located in the center of mass are zero, and the second-order moments are

the moments of inertia, Eq. 2, can then be used for shape-based molecular alignment.

where i is summed over the atomic centers, m; is the atomic weight of the i atom, 7; is a vector from the
center of rotation to the ith atom.

In the inertial tensor, the diagonal moments corresponding to the three spatial directions for which
the angular velocities about these directions are parallel to their respective components of angular momenta
are called the principal inertia moments. These moments depend, however, on the center of expansion.
Since the origin is otherwise arbitrary, the moments of the mass distribution are calculated at the center-of-
mass of each molecule.

In the case of the charge distribution, the first-order moment of the charge distribution is the
dipole moment, which depends on the net charge. If the molecule is charged, the value of the dipole depends
on the reference point used for its calculation, but its value is not affected by the origin of the axes for
neutral molecules. This obeys to the fact that the lowest order nonvanishing moment of the electrostatic
multipolar expansion does not depend upon the reference origin. The values of all the higher-order
multipolar moments depend on the choice of the origin of the multipolar expansion, which may affect the

calculation of second- and higher-order components of the multipolar expansion.
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The solution proposed by Platt et al.’?® was the expansion of the electrostatic potential through
multipolar decomposition at selected reference points. This method offers a reference frame were
guadrupolar axes are calculated relative to the “monopole center” for charged molecules, and “dipole
center” for neutral molecules. This choice is dictated by the convergence of the leading terms in the
multipolar series expansion of the electrostatic potential. If the molecule is charged, the leading term is the
monopole term, and the dipolar term is zero when determined relative to center-of-charge. Thus, the choice
of center of monopole as the origin of expansion guarantees that the monopolar contribution to the
electrostatic potential most closely approximates the total electrostatic potential over most of the space.
Hence, the quadrupolar term emerges as the second most relevant contribution, and the principal
quadrupolar axes can then be used to align molecules.

The first nonvanishing term for neutral polar molecules is the dipole moment. By using the
center-of-dipole as reference point, the dipole moment lies along one of the principal axes of the
quadrupole, whose value along this direction would be zero, and the quadrupolar tensor yields an
orthogonal set of principal axes that can be utilized for molecular alignment, Eqg. 3.

N
Q = ) 10gPosu (37 = 721 3
i=l

1.1.4.2 3D Grid-based similarity function

Finding molecular diversity is one of the primary aims in early stages of drug discovery projects, especially
in VS. However, changes in the functional groups of drug-like molecules give rise to changes in biological
activity. Thus, structural agnostic methods based on molecular interactions fields (MIF) are an appropriate
option to address the compromise offered by chemical diversity. This idea was initially introduced by Carb6
et al.™* to compare electron densities and subsequently applied in QSAR™™** and LVBS®*%1% tools to
compute similarities between shape, electrostatic, and hydrophobic size surfaces.

The evaluation of overlapped molecules using spaced grid points surrounding them is a

conventional approach to apply MIF in molecular similarity studies,”*">% Figure 1.
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Figure 2 | Example of a superposition of two molecules in a set of field points used for similarity index calculations.

Under this scope, the energy between a probe atom and a molecule is computed at each grid point,

typically using an exponential function,’? p(q); eq 4.

N
_ —ar. 2
r(qQ = z Wprobek Wik€ ™ 4
i=l

where i = summation index over all atoms of the molecule g under investigation, wix = value of the
physicochemical property k of atom i; Wprohex = probe atom value of property k, a = attenuation factor, and
riq = mutual distance between probe atom at grid point g and atom i of the test molecule.

Thus, a similarity index can be quantified theoretically by comparing the field values to compute

similarities between pairs of aligned molecules.

1.2 Lipophilicity in drug design

The therapeutic effect of a drug is achieved when a molecule binds and modifies a druggable disease-
protein target at a specific binding site. Studies of target druggability highlighted the relevance of shape
and hydrophobicity in drug binding.®**-1% In particular, ligand desolvation was recognized to be mostly
responsible for the variation in maximal achievable binding free energy for a drug-like molecule.**
Otherwise, polar interactions in the binding sites play a primary role for both binding and selectivity.14-14?
Hence, the analysis of the 3D pattern of lipophilicity of ligands could be crucial to identify specific features
of ligand recognition at druggable pockets.

In this context, Cheng et al.1® modulated the maximal achievable binding free energy (AGp4p)
for a drug-like molecule from the observation of a clear trend toward higher fraction hydrophobic SASA

and a lower radius of curvature of the pocket for druggable targets. Contemporary studies that analyzed the
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use of descriptors to discriminate small molecule-binding pockets reported similar tendency.!®613” The
druggability model assumes that favorable affinity is largely driven by the hydrophobic effect.!*® This
agrees with the view that druggable binding sites appear to be closed and “greasy” cavities, whereas polar
interactions are crucial for binding and selectivity4®142, Hence, it is reasonable to expect that the analysis
of the 3D pattern of hydrophobicity/hydrophilicity of ligands could be a valuable feature to define molecular
similarity between drug-like molecules.

Computational empirical methods have already been developed to estimate lipophilic interactions
between ligand and receptors from octanol/water partition coefficient (logPow) determined by molecular
fragments or atom types.1#4-146 These empirical approaches to lipophilicity potential include the molecular
lipophilicity potential (MLP),*" or the Hydropathic INTeractions (HINT).1*® They are based on the concept
that the spatial distribution of the empirically determined lipophilicity of molecules provides guidelines
about the molecular determinants of ligand binding. The molecular lipophilicity potential (MLP) offers a
quantitative 3D description of the lipophilicity potential to determine the hydrophobic pattern implicated
in recognition of the biomolecular target. MLP combines fragment-based lipophilic contributions with
distance-dependent function. This technique can be used in combination with 3D-QSAR or docking
methods'®®. On the other hand, HINT provides an empirical and quantitative evaluation of the
ligand—receptor complex as a sum of pairwise interactions between atomic hydrophobicities. Since these
parameters are taken from experimental data of log P ow, their use in diverse applications in biomolecular
structure and drug discovery®5! has been easily considered.

Roger and Cammarata'®21%® proposed to rely on molecular properties derived from quantum
mechanical descriptors instead of addressing determinations from an empirical perspective. They proposed
to represent the partition coefficient by indices obtained from molecular orbital theory, particularly charge
density and electrophilic superdelocalizability to represent the partitioning of aromatic molecules between
nonpolar and polar phases. In a later approach, a nonlinear regressional model was presented for the
estimation of octanol/water partition coefficients. The molecular surface, volume, weight, and charge
densities on nitrogen and oxygen atoms of the molecule were the molecular descriptors employed to
estimate of logP. All the descriptors were determined by using fully optimized structures based on AMI
calculations'®. Further studies have appeared that include more descriptors, and use alternative prediction
systems such as regression models or neural networks, %1%

These efforts converged in the heuristic molecular lipophilic potential (HMLP).*"1%® HMLP is a
structure-based technique requiring no empirical indices of atomic lipophilicity. In this model, the
lipophilicity potential generated is derived from the electron density function and the electrostatic potential.
The interactions of dipole and multipole moments, hydrogen bonds, and charged atoms in a molecule are
included as hydrophilic interactions.

Alternatively, the computation of lipophilicity/hydrophilicity can have its origin on the description
of the solvent as a continuum polarizable medium that reacts against the perturbing field created by the
charge distribution of the solute.’>*%1 These approaches are grouped under the heading of QM self-

consistent reaction field (SCRF) methods, which provide a direct procedure to determine the solvation free
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energy, and hence the partition coefficient. This system offers the benefit of decomposing the total solvation
free energy in atomic contributions, which allows us to carry out studies on the molecular determinants of
bioactivity and be extended to studies of molecular similarity.162-164

In line with the criterion given in previous works of this extensive topic,%11% QM solvation models
are classified into six categories, namely, (1) the apparent surface charge (ASC) methods, (2) the multipole
expansion (MPE) methods, (3) the generalized Born approximation (GBA), (4) the image charge (IMC)
methods, (5) the finite element methods (FEM), and (6) the finite difference methods (FDM). A complete
description of these methods is beyond the purpose of this work, and we limit ourselves to address the
reader to the reviews above cited!®11%® and to comparative studies of their performances?®”**®, Nevertheless,
some aspects of the MST-SCRF model (included in the ASC methods), are discussed in the next section,
since it is used o derived 3D distribution profile of lipophilicity for molecular similarity approaches.

1.2.1 The QM Continuum Solvation MST Model.

The Miertus-Scrocco-Tomasi (MST) model*®51%7 is a reformulation of the formalism of dielectric
polarizable continuous model (DPCM) optimized for organic and biological systems®®, It has been
parameterized at the HF/6-31G(d) level and with semiempirical AM1 and PM3 methods,”816°170 and to
describe solvation in different solvents: water, dimethylsulfoxide, octanol, chloroform, and carbon
tetrachloride.

This method provides fractional contributions to the solvation free energy for the reversible work
necessary to transfer a molecule from the gas phase to a specific solvent at constant concentration, pressure,
and temperature. As advantage, the influence of the whole molecule in the contribution of a given atom is
considered.

The MST model computes the free energy of solvation as the sum of three contributions: cavitation
(AGeav), van der Waals (AGww), and electrostatic (AGele), Which can be expressed as the sum of atomic
contributions, eq 5. The first two components (AGea and AGww) are grouped in the “non-electrostatic
contribution”, in which the first term is the work required for creating a cavity shaped to accommodate the
solute in the solvent and the second term accounts for dispersion-repulsion between solute and solvent. The
third term (AGele) is responsible for the “electrostatic contribution”, which measures the work needed to
build up the solute charge distribution in the solvent (see ref.° for detailed review of MST model), Figure
3.

N N
AGgy = z 1AGsol,i = Z 1(AGcav,i + AGvW,i + AGele,i)
i= i=
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Solvent Solute

\

Electrostatic

Figure 3 | Miertus-Scrocco-Tomasi (MST) Model: Framework for Continuum Solvation Calculations (AGg,; ). The AGeav iS the
work required for creating a cavity shaped to accommodate the solute in the solvent, AGvaw term accounts for dispersion-repulsion
(orange arrows), between solute and solvent, and AGele measures the work needed to build up the solute charge distribution in the
solvent. See, eqs 6, 7, 8.

The cavitation free energy (AG.q,,) is computed following Pierotti’s scaled particle theory!™* adapted to
molecular-shaped cavities according to the procedure proposed by Claverie.’? In this model, the atomic
cavitation and van der Waals free energy, non-electrostatic contributions, are computed according to:

N N

S.
AGe,y = z AG’cav,i = ZS_IAGE,/iW 6
£ é T
i=1 =1
N N
MGuaw = ) AGyawi = ) 88", 7
i=i i=i

where AG;,’,/iW = AGY; — AGP; and its contribution is weighted by the ratio of the solvent-exposed surface

(Si) of atom i to the total surface (S), and AE”" = AEY — AE? , where the atomic surface tension of

atom i, &j, is determined by fitting the experimental free energy of solvation.”*"

Otherwise, AGgje, €9 7, encode electrostatic features of the molecule, eq 8.

N N M 1
AGele = ZAGele = ZZ Lp0§< LIJO> 8
i=1 j

i=1 j=i
where N is the total number of atoms, M is the total number of reaction field charges (qf"l, located at

sol

q;
|ri —ri|

jei

position rj), and ¥ is the wave function of the solute in the gas phase.

1.2.2 3D lipophilic profile from MST calculations.

The hydrophobicity of a molecule is typically determined from the partitioning between octanol and water

(LogPom), which in turn is related to the free energy of transfer (AGow) Of a given solute between these two
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solvents, eq 9. Therefore, hydrophobicity can be expressed in terms of the solvation free energy of the

compound upon transfer from the gas phase to the water and organic phase, Figure 4.

e _AGY — AGH
2.303RT _ 2.303RT 9

logP, Jw =

where AGy and AG, denote the solvation free energy in water and octanol, respectively, and T is the
temperature.

M
(gas)
aguaeer [/ AGgs !
1 =G
/
M a6 M
(water) AGtO/W (octanol)
T

Figure 4 | Thermodynamic cycle for the determination of free energy of transfer of a molecule M between two immiscible
solvents from the solvation free energies.

The decomposition scheme!™ formulated for the solvation free energy within the MST version
of the PCM solvation model®8 offers a solution to define the hydrophobicity pattern of a molecule from the
atomic contribution to LogPow €gs 10 and 11. This arrangement allows us to evaluate the hydrophobic
complementarity between a given molecule and its biological target via a fractional decomposition of

LogPaw into atomic contributions.

N N
lOgP = z__llogpsol,i = Z._l(logpcav,i + lngvdw,i + 10gpele,i) 10

1= 1

o)

1 § " 1 E !
08%x i=1 08X 08X iz1  2.303RT 11

(x = ele, cav or vdW)

where N is the total number of atoms in the molecule, and AGwyo i is the atomic contribution of atom i to
the transfer free energy from n-octanol to water (A G wio,i=A G wi— A Go,i).

MST-derived applications use the atomic contributions to the thermodynamic components of the
differential solvation free energy in water and n-octanol. Accordingly, the computation of the 3D
distribution pattern of molecular lipophilicity considers the effect of specific chemical features of the
molecule, such as the existence of specific tautomers, conformational species, the formation of specific
intramolecular interactions or the influence of other groups in one atom contribution, offering an advantage

over experimental approaches, Figure 5.
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These patterns have been previously exploited as logP descriptors to derive structure-activity
relationchips®®2163175 and play a decisive role in the development of PharmScreen atomic contributions.

The decomposition of the logP into three contributions: electrostatic (logPee), cavitation
(logPcav), and van der Waals (logPvaw) allowed us the study of the relationships between the biological
activity and the combination of the different descriptors. The fields derived from logP,,, and logP,,, are
highly correlated®1%3, both contributions depend on the solute-exposed surface of atoms. They reflect the
size and shape of the molecule, and therefore the information encoded for these descriptors is expected to
relate to steric field.

Since the simultaneous inclusion of both non-electrostatic fields would be redundant and has
been reported in previous works!®? that the best combinations of descriptors include the electrostatic
contribution and one non-electrostatic representative. In particular, the best combination arises from the
addition of LogPei and LogPc contribution,*? which have been used by PharmScreen.

Atom-Based Representation

N \‘"v . A
* * Octanol
Water
AGyys -145 2.15 2.06 AGyas  -1.04 2.82 -1.37
Lipophilic molecular fields
Apolar
Polar

Figure 5 | The AGtranf ow Of the nitro group change based on the other benzene substituent. Right, the nitro group is apolar (the
other substituent acts an acceptor), left, the nitro group is polar (the other substituent acts as donor). AGtranf ow COMputed using MST
model.

Previous studies had already addressed the use of these parameters in similarity applications, such
as the self-hydrophobic similarities of molecular pairs were correlated with the inhibitory activity of a set
of ACAT inhibitors and the binding affinities for a series of 5-HT3R agonist,'” or the comparison of base

pairs of nucleic acid bases with hydrophobic counterparts.'’®
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2 OBJECTIVES

The use of computational methods for the search of active molecules is a core theme of chemo-informatics.
One of its aims is to allow the high-throughput screening (HTS) of large libraries of compounds to identify
potential hits against new pharmacological targets. Given the decreasing number of new drugs per billion
US dollars spent on R&D approved by the Food and Drug Administration (FDA),'”" the efficiency halves
every 9 years. The availability of efficient and comprehensive frameworks based on novel descriptors at
the initial stages of drug discovery projects could alleviate this trend, complementing the output derived
from traditional descriptors in LBVS tools.

In this context, this thesis proposes the development of a 3D VSLB tool (PharmScreen) to search
for structurally diverse compounds with potential biological activity, contributing to reduce the high cost
of experimental screening techniques. While molecular overlap and similarity measurements are
traditionally accomplished by using approaches that primarily exploit shape, electrostatic, and
pharmacophoric features, hydrophobicity, which plays a main role in pharmacodynamics and
pharmacokinetics, has been relegated to the sidelines in VS methods.

Since atom- or fragment-based models have been used in VS tools®*® to obtain a qualitative
picture of hydrophobic/hydrophilic areas, the main objective is to exploit the Miertus-Scrocco-Tomasi
(MST) continuum solvation model, which relies on the integral equation formalism of the polarizable
continuum model (IEFPCM), to account for the 3D lipophilic similarity between pairs of drug-like
molecules.

With this general aim, the specific objectives of this work are indicated as follows:

1. Validation and development of a competent 3D alignment based on the partition of molecular
lipophilicity into atomic contributions using the MST method.

2. To establish a balanced choice between accuracy and computational expensiveness to compute
hydrophobic descriptors.

3. To calibrate the suitability of the MST-derived hydrophobic descriptors relative to traditional
properties.

4. To examine the usefulness of the alignment descriptors to discern between active and inactive
compounds.

5. To validate the lipophilic similarity framework developed as a competent tool for VS campaigns.
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3 PUBLICATIONS

Three papers have been compiled for the defense of this thesis. Each of them, preceded by an
overview and a brief summary of the results and conclusions, are included in this chapter.

The first paper, entitled “Development and Validation of Molecular Overlays Derived
From 3D Hydrophobic Similarity with PharmScreen”, introduces PharmScreen in the scientific
community as a new alignment tool. The overlap algorithm that exploits hydrophobic atomic
contribution is presented and validated with the CCDC AstraZeneca Validation Overlays Data
Test (more detail on the results summary in section 3.1)

In the second paper, entitled “Lipophilicity in drug design: an overview of lipophilicity
descriptors in 3D-QSAR studies”, encodes the use of quantum mechanical-based descriptors
derived from continuum solvation models, as an open novel avenue for gaining insight into
structure—activity relationships studies. In particular, the suitability of MST-based atomic
lipophilicity contributions in combination with hydrogen bond pattern for 3D-QSAR studies is
explored (in section 3.2).

The third paper, entitled “Similarity assessment of lipophilic distribution: a boost for
structure-based methods”, assesses the complementarity between 3D similarity using hydrophobic
molecular profile derived from semi-empirical Quantum-Mechanical (QM) calculations and the
scoring function of a wild accepted molecular docking package, Glide. Methodology development
and validation details in section 3.3.

In addition, since the industrial framework on which this thesis has been developed, a
patent, entitled “Calculating molecular similarity”, was applied. In this document are described
both the hydrophobic descriptors used to compute molecular similarity and the algorithm

implemented to perform it (section 3.4).
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ABSTRACT: Molecular alignment is a standard procedure
for three-dimensional (3D) similarity measurements and
pharmacophore elucidation. This process is influenced by
several factors, such as the physicochemical descriptors
utilized to account for the molecular determinants of
biological activity and the reference templates. Relying on
the hypothesis that the maximal achievable binding affinity for
a drug-like molecule is largely due to desolvation, we explore a
novel strategy for 3D molecular overlays that exploits the
partitioning of molecular hydrophobicity into atomic
contributions in conjunction with information about the

100 Hard
Q
Q\/ 80
»
§ 60
= [ BRTUERTE—— N
3

40
<

20

Template
09535 456780101112131415161718 Hydrophobic+HB
Sets

distribution of hydrogen-bond (HB) donor/acceptor groups. A brief description of the method, as implemented in the software
package PharmScreen, including the derivation of the fractional hydrophobic contributions within the quantum mechanical
version of the Miertus—Scrocco—Tomasi (MST) continuum model, and the procedure utilized for the optimal superposition
between molecules, is presented. The computational procedure is calibrated by using a data set of 402 molecules pertaining to
14 distinct targets taken from the literature and validated against the AstraZeneca test, which comprises 121 experimentally
derived sets of molecular overlays. The results point out the suitability of the MST-based hydrophobic parameters for
generating molecular overlays, as correct predictions were obtained for 94%, 79%, and 54% of the molecules classified into easy,
moderate, and hard sets, respectively. Moreover, the results point out that this accuracy is attained at a much lower degree of
identity between the templates used by hydrophobic/HB fields and electrostatic/steric ones. These findings support the
usefulness of the hydrophobic/HB descriptors to generate complementary overlays that may be valuable to rationalize
structure—activity relationships and for virtual screening campaigns.

B INTRODUCTION

The assumption that structurally similar molecules have similar
biological activities has been widely exploited in chemical
informatics and drug discovery.'~* This premise underlies
most practical applications in chemical and pharmaceutical
research, such as the identification of new candidate
compounds in screening studies through similarity searching
against known actives. However, the concept of molecular
similarity is subjective,S and its quantification depends on the
representation of the chemical features present in the
compounds by means of 1D, 2D, or 3D descriptors, the
weighting of these descriptors, and the mathematical
expression of the similarity function.

3D-based similarity methods rely on the molecular
geometry, which can be used in different ways through non-
super-positional and superpositional methods.”™® The former
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involves the analysis of atomic distances to a set of reference
positions, as implemented in the Ultrafast Shape Recognition
(USR) method,” which has been adapted to include other
molecular properties.'”'" Superpositional methods involve the
overlay of compounds in a process intended to maximize
overlap of molecular shape and/or pharmacophoric features.
Shape-guided similarity can be achieved by exploiting specific
properties of the molecular surface, as implemented in Surflex-
Sim'* and SURFCOMP,"* or alternatively through the
representation of the molecular volume with hard spheres,
such as Phase Shape,” or Gaussian functions, which are used
in ROCS (Rapid Overlay of Chemical Structures),'”'® ShaEP
(Shape and Electrostatic Potential),'” SHAFTS (Shape-
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Feature Similarity),'® and LIGSIFT." These latter methods
supplement the shape-based similarity b}r mapping chemical
groups into pharmacophoric features.””~>* On the other hand,
molecular fields™ represent a distinct approach wherein
comparison relies on the spatial variation of interaction
energies with probes, as implemented in FieldScreen™* and
FLAP.”*

Shape and electrostatics dominate the realm of chemical
descriptors used in 3D-based similarity.”® However, this hides
the fundamental role played by other contributions to the
binding affinity, such as the (de)solvation of both ligand and
receptor.”’ At this point, it is worth noting that approximate
models for estimating the maximal achievable affinity of target
binding sites for drug-like compounds have shown the
relevance of nonpolar desolvation.”® This is consistent with
studies that support the concept that favorable drug binding is
largely driven by the hydrophobic effect,””™** whereas polar
interactions provide “anchor points” contributing to ligand
specificity and/or directionality in the binding pocket,”" and
modulate ligand binding kinetics.”® In this context, one may
question whether hydrophobicity alone may encode valuable
information to guide similarity measurements between
molecules.

While lipophilicity is of paramount importance for drug
pharmacokinetics,”* it has been rarely used as the primary
descriptor in understanding ligand—receptor recognition.
Elaborate implementations of this concept are the Molecular
Lipophilicity Potential (MLP)** and the Hydropathic INTer-
action (HINT) score.”**” The MLP offers a quantitative 3D
description of the lipophilicity from all the molecular fragments
on the surrounding space of a compound and has found
applications in 3D-QSAR and docking.™® On the other hand,
HINT provides an empirical, but quantitative, evaluation of the
ligand—receptor complex as a sum of pairwise interactions
between atomic hydrophobicities. Since these parameters are
taken from experimental data of the octanol/water partition
coefficient (log P, ), both enthalpy and entropy contributions
are accounted for by the HINT score, which has been used in
diverse ag}plications in biomolecular structure and drug
discovery.”” !

Here we present a novel strategy to evaluate molecular
similarity from 3D distribution maps of hydrophobicity and to
guide the overlay of compounds according to hydrophobic
topology. Instead of using empirical data, as implemented in
MLP and HINT, the method exploits hydrophobic maps
estimated from quantum mechanical (QM) theoretical
calculations of the differential solvation of a solute in water
and n-octanol. These calculations are performed within the
framework of self-consistent reaction fields methods and,
particularly, the Miertus—Scrocco—Tomasi (MST) continuum
solvation method.””** It is noteworthy that the derivation of
3D distribution maps of the global log P, is facilitated by the
partition of the solvation free energies into atomic contribu-
tions following a perturbative treatment of the electrostatic
coupling between solute and solvent and taking advantage of
the dependence of nonelectrostatic contributions on the
solvent-exposed surface of atoms. As an advantage, this
method provides fractional contributions to the lipophilicity
that incorporate the influence of the whole molecule in the
contribution of a given atom. Moreover, they do not depend
on the existence of suitable parameters for new chemical
groups, which might not be present in the empirical databases.
The algorithm has been implemented in a new tool called

PharmScreen, which follows the successful application of these
atomic contributions to the analysis of hydrophobic
pharmacophores, which were found to have predictive
potential comparable to other standard 3D-QSAR techni-
ques.***> The main application of PharmScreen is the 3D
ligand-based virtual screening against single or multiple
template targets, while exploiting a pregenerated ensemble of
conformers for flexible compounds. The alignment to the
template is completed by superimposition of molecular
moments of the 3D hydrophobic distribution but may be
subsequently refined by means of Monte Carlo sampling. The
method has been calibrated by using a diverse set of ligands
taken from known crystallographic complexes and further
validated against the AstraZeneca benchmarking set, which
contains 121 experimentally derived molecular overlays
spanning across multiple protein families.”® Finally, molecular
overlays obtained from the hydrophobic contributions are
discussed in light of the results obtained using standard
electrostatic and steric fields, which are widely used in 3D
molecular alignment studies.

B METHODS

Derivation of 3D Atomic Hydrophobicity Maps. In the
MST method, 3D hydrophobicity maps can be determined
from the partition of the overall molecular hydrophobicity
(estimated from the calculated log P,,,) into atomic
contributions (log P, ; eq 1), which in turn stem from the
combination of atomic contributions to the solvation in water

(AG,,;) and n-octanol (AG,)).

g AGw/o,i

N
logP,,, = D logP, =) ————
& Lo/w E 8 Fo/wi g 2.303RT (1)

where N is the total number of atoms in the molecule, and
AG,,, is the atomic contribution of atom i to the transfer free
energy from n-octanol to water (AG,,,; = AG,,; — AG,,).

This decomposition scheme has been presented elsewhere,
and here we limit ourselves to remark the essential details
needed for the overlay protocol described below. The solvation
free energy is obtained by adding electrostatic (AG.) and
nonelectrostatic (cavitation, AG_,,, and van der Waals, AG,y)
components. The work needed to build up the solute charge
distribution in the solvent (AG,,) is calculated from the
interaction between the solvent reaction field (represented by a
set of charges g; spread on the surface of the solute/solvent
boundary) and the polarized char§e distribution of the solute.
By using a perturbative treatment, "~ AG,, can be expressed as
the addition of atomic contributions (AG,,;) generated from
the interaction of the nonpolarized solute and the subset of
point charges placed on the cavity surface of a given atom, and
the electrostatic contribution to log P,,, can be computed as
noted in eq 2.
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)
where K and L stand for the total number of reaction field
charges in water (g}') and n-octanol (gf), located at positions
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r¢ and rf, respectively (note that a distinct solvent- dependent
boundary is used in the MST model for the two solvents),"’
and W° is the wave function of the solute in the gas phase.
Therefore, log P, ; accounts for the atomic contribution to
the differential electrostatic (free) energy due to the interaction
of the whole solute with the reaction field charges spread onto
the surface patch of atom i.

With regard to the nonelectrostatic terms, AG,,, is
determined following Pierotti’s scaled particle theory®” adapted
to molecular-shaped cavities,”” and AG,yy is computed using a
linear relationship to the solvent-exposed surface of each atom.
Therefore, cavitation and van der Waals contributions to log
P, (eqs 3 and 4) permit a straightforward decomposition into
atomic components depending on the contribution of a given
atom to the molecular surface.

N
lOg cav a Z log C;‘:.,, - Z S_AGG/W
i=l °T (3)
N
log P:X/ = Z log P! /w: Z S,-A:fo/w @
i=1 i=l1 4

where AG"/ " = AGp; — AGp; and its contribution is weighted
by the ratio of the solvent-exposed surface (S;) of atom i to the
total surface (S;), and AEY = £ — £, where the atomic
surface tension of atom i, &, is determined by fitting the
experimental free energy of solvation.*>*’

Overall, the hydrophobicity of a molecule can be partitioned
into atomic contributions, each decomposable into electro-
static (log o), cavitation (logPZy,.), and van der Waals
(log P2V ) components (eq $).

Zlog /W,l
i=l

N
z (log /Wl F* log S‘VINI + log o/w, l)

i=l

Jw,i

log By =

()

Molecular Fields. In this context, molecular overlays may
be guided by the similarities between the molecular fields
generated from the projection of log P),; (X: ele, cav, YW)
contributions in the 3D space around the molecules. However,
the usage of these descriptors must be performed subject to
two considerations:

(i) While there is little redundancy between electrostatic
and nonelectrostatic components, there is a large
correlation between log P&, and log P}y, ;, as expected
from their dependence on the solvent exposure of atoms
(egs 3 and 4).** Since the simultaneous inclusion of
these fields would be highly redundant, molecular
overlays have been determined from the log PgJ

contributions alone, which would contain information

about the size and shape of the molecule.

The atomic contribution to log P,/ and log Pﬁ‘fw of

polar atoms is negative, reflecting the tendency to be

better solvated in water than in n-octanol. While the
magnitude of log P, ,,; and log P, ; reflects the polarity
of the corresponding atom, it does not contain
information about its hydrogen-bond (HB) donor/
acceptor character, which may be expected to be crucial
for attaining a proper molecular alignment. As an
example, Figure 1 shows the negative contributions of N,
NH, and NH, determined for adenine, and for the NH;"

(i)
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Figure 1. Contributions of selected polar atoms or functional groups
(HB donor/acceptor groups shown in blue/red, respectively) to the
molecular log P, and log P2, (in parentheses) for adenine and the
zwitterionic form of glycine. Using these descriptors alone, self-
alignment could lead to counterintuitive molecular overlays where HB
donor/acceptor groups are superposed (right side of the plot).

and COO™ groups in zwitterionic glycine. In the absence
of information about the HB signature, self-alignment
would lead to chemically counterintuitive overlays, such
as the superposition of the carboxylate unit onto the
protonated amine of glycine upon rotation around the
bisector of the backbone CH, group, or the super-
position of the NH and NH, donor groups onto the N
acceptors upon rotation along the longitudinal axis of
adenine. Therefore, the explicit addition of a HB field is
necessary to preserve the proper HB recognition pattern
of molecules.

On the basis of these considerations, molecular overlays
have been determined using two or three molecular fields,
which combine the atomic contributions to (i) the total log
P, and (ii) the electrostatic (log P¥,) and cavitation (log

<) contributions, supplemented in both cases with a HB
field. The hydrophobic descriptors were obtained by using the
MST solvation model parametrized for the semiempirical
Hamiltonian RM1.°"°? Choice of this level of theory was
motivated by its low computational cost compared to ab initio
methods. Nevertheless, to evaluate the influence of the QM
method used to derive the hydrophobic descriptors, additional
computations were performed using the MST version****
parametrized at the B3LYP/6-31G(d) level. Calculations were
performed usmg locally modified versions of MOPAC®>® and
Gaussian 09.”* With regard to the HB field, donor and
acceptor sites were identified based on the classification of the
various functional groups present in the molecule, with the
subsequent assignment of an arbitrary parameter of +1 for all
hydrogen atoms in HB donors, and —1 for N and O atoms that
may act as acceptors. This description of the HB features of a
molecule is simpler than more elaborate approaches that take
into account experimental distributions of hydrogen-bonded
atoms,>® empirical scales,”®” or parameters derived from QM
calculations.”®® Nevertheless, it is worth noting that the
strength of the polar character is already contained in the
magnitude of the atomic hydrophobic contribution (log P,/
log P%,.) of donor/acceptor groups. Therefore, this should
suffice to provide a parameter suitable to distinguish the HB
signature of compounds.

Molecular Overlays. An initial set of alignments is
generated from the set of molecular moments that describe
the 3D hydrophobic distribution in a compound. The
definition of these moments was inspired on the multipolar
expansion of the electrostatic potential (see below).”°" The
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pool of initial alignments is subsequently used to identify the
most suitable overlay according to a score function that takes
into account the similarity of molecular fields. Finally,
refinement of the overlaid pose is accomplished through a
Metropolis Monte Carlo algorithm.

Multipole Expansion of log P,,. Since the atomic log P,
contributions comprise positive/negative values that denote
the apolar/polar character of atoms, the 3D hydrophobic
distribution is described with respect to the center of the
“hydrophobic monopole” (R,; eq 6).

iy

m

log

/Wll

lOg o/w (6)
where 7; denotes the position of atom i.

This definition minimizes the contribution of the “hydro-
phobic dipole”, which is zero, and the first nonvanishing term
is the “hydrophobic quadrupole” (Q; eq 7). It defines two
independent principal values (note that the quadrupole tensor
is traceless) and three principal axes, which represent the
canonical axes that define the molecular orientations of the
compound and are invariant to the translation of the molecule.

Q Z lOg /wx 1;; - |;’;|21)

(7)

For compounds with log P, . equal to zero, the leading term
is the hydrophobic dipole, and hence the center of expansion is
defined as the center of dipole, which minimizes the
contribution of the quadrupolar term. The dipole direction
coincides with one of the quadrupolar principal axes, which has
a null principal value. Therefore, the quadrupolar tensor yields
an orthogonal set of principal axes that can be used for
molecular alignment.

Multipole Expansion of log P, The atomic log P,
contributions may adopt zero or negative values due to the
more favorable electrostatic interaction arising upon hydration
compared to solvation in #n-octanol. Then, the molecular
alignment is performed using the hydrophobic quadrupole,
following the same formalism described above for log P, .

Multipole Expansion of log Pgj,. In this case, the alignment
is accomplished through calculation of the moments of inertia
(I; eq 8) obtained from the atomic log Pj,; contributions,
which upon diagonalization provides the principal axes of
rotation.

N
Ti= log
X ®

Score Function. For each molecular alignment, field values
are computed by projecting the atomic (hydrophobic + HB)
contributions into a 3D grid using an e gonentlal function
(p(q); eq 9) as implemented in COMSIA.

cav
o/w,i

(71 = 77)

N
pla) = X we™

i=l

©)

where w; is the actual value of the atomic property of atom i, &
is the attenuation factor, which was set to 0.3," and ry is the
distance between the grid point g and atom i.

The similarity between each projected field (k) is evaluated
using the Tanimoto coefficient (T}), and the global score (S) is
determined by combining the Tanimoto index obtained for the
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distinct molecular fields using normalized weighting factors
(A eq 10).

S= Z AT
k (10)

Molecular Systems. Calibration of the weighting factors
was achieved using a training set that consists of 14 molecular
systems (Table 1). A subset of nine systems (subset I)

Table 1. Molecular Systems Considered As a Training Set

number of

subset system molecules
) i cyclin dependent kinase 2 (CDK2) 57
elastase 7
estrogen receptor (ER) 13
human immunodeficiency virus (HIV; 1) 28
mitogen activated protein kinase 14 13

(MAPK14)

rhinovirus 8
thermolysin (1) 12

trypsin 7

human immunodeficiency virus (HIV; 2)P 10
I chromanone 34
cruzain 32
dopamine D2/D4 41
GSK-3p 74
thermolysin (2) 74

“From ref 63. “From ref 64. “From ref 44 and references therein.

containing considered X-ray data on 168 ligand—protein
complexes was used as a benchmark data set in previous
studies.””** To obtain the reference structure for molecular
overlays, X-ray structures retrieved from the Protein Data
Bank® were cleaned, leaving only the protein and the ligand of
interest, and in the case of structures containing multiple
chains, only chain A was retained. Then, a multiple protein
alignment was performed for each target using PyMOL,*® and
the aligned ligands were extracted and used as reference
structures. With the exception of cyclin dependent kinase 2
(CDK2) and human immunodeficiency virus (HIV), these
systems contain a limited number of compounds (between 7
and 13). Therefore, we also included a second subset of five
systems (subset II) containing between 32 and 74 structurally
related molecules, which were aligned by using X-ray
crystallographic data and pharmacophoric constraints in
previous studies (see ref 44 and references therein).
Validation of PharmScreen was subsequently performed
using the AstraZeneca Overlays Validation Test Set (AZ
test).”” It contains 121 experimentally derived molecular
overlays from 119 targets. The targets were classified into four
categories (easy, moderate, hard, and unfeasible, comprising
22, 73, 18, and 8 systems, respectively) according to the
expected difficulty to reproduce the experimental overlay.””
The categorization of the AZ test set was made according to
three parameters: (i) the average shape match, calculated on all
the possible pairwise combinations of ligands within a set, (ii)
the average Color score (i.e, a measure of overlap for
predefined pharmacophore points obtained by aligning groups
with the related properties), which accounts for feature
similarity, and (iii) the average Tanimoto coefficient used to
measure 2D fingerprint similarity. Then, using the Borda tallies
determined for the three parameters, a consensus ranking scale
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was defined for classification of the targets into easy, moderate,
hard, and unfeasible sets (the lower the Borda tally, the easier
the prediction for the compounds pertaining to a given target).

The list of targets is provided in Supporting Information
Table SI. Let us note that some targets, like trypsin, elastase,
cruzain, and p38 MAP kinase, are present both in the training
set and AZ test set. However, the overlap between the
compounds pertaining to these targets is low: no overlap for
trypsin and elastine, a single case (X-ray entry 3106) for
cruzain, and three cases (X-ray entries 1M7Q, 10ZL, and
1YQJ) for p38 MAP kinase.

All the molecular overlays were obtained for the molecules
in aqueous solution at neutral pH. To this end, they were
prepared with OpenBabel®® and the final state was checked in
all cases. Finally, to avoid any influence of the initial alignment
on the molecular overlay, the molecules were randomly
positioned in space without changing the internal geometry.

Performance Evaluation. Previous studies have indicated
that the success in predicting molecular overlays is influenced
by the choice of the template, the degree of similarity between
compounds and templates, and the accuracy of the template’s
conformation.”* Accordingly, the overall performance can be
affected by the conformational aspects of ligands and the
intrinsic accuracy of the overlay methods. For this reason, this
study is focused on the X-ray conformations of the
compounds, which permits to concentrate the comparative
analysis in the intrinsic features of the molecular descriptors.
Two metrics were used to check the performance of
PharmScreen. Following Chen et al,** every single molecule
was used as template for the alignment of the remaining
molecules in the corresponding set. The molecular overlay was
considered to be correct when the root-mean-square deviation
(RMSD) of the heavy atoms was less than or equal to 2.0 A
from the X-ray arrangement. The performance was then
calculated as the average value (in percentage) of correct
overlays found for all molecule-template pairs in each set.
Alternatively, the accuracy in predicting the molecular overlay
for a given compound was determined by taking into account
only the pose with the best similarity score, irrespective of the
template utilized in the molecular alignment.

Comparison against Electrostatic/Steric Fields. Fi-
nally, to further assess the suitability of the hydrophobic
descriptors, molecular overlays were also obtained by
combining electrostatic and steric fields. The aim was 2-fold:
(i) to check the influence of the molecular descriptors on the
number of successful overlays and (ii) to verify whether the
two sets of descriptors lead to identical molecular alignments.
For the sake of comparison, the electrostatic field was
determined from the atomic partial charges obtained by fitting
the semiempirical RM1 electrostatic potential calculated
around the molecule using the NDDO-based strategy.’””’
On the other hand, the steric field was calculated by using the
cube of the atomic radii’' (taken from the Tripos MMFF94
force field).”” Furthermore, the initial alignment of the
molecules was performed following the same formalism
described above for the hydrophobic descriptors (i.e., multi-
polar expansion for atomic charges, and moments of inertia for
the atomic radii) and the molecular overlays were refined using
a Metropolis Monte Carlo algorithm.

B RESULTS AND DISCUSSION

Calibration of Weighting Factors in the Similarity
Function. Calibration of the similarity score was performed

1600

with the aim of deriving optimal weighting factors of the
molecular fields using the training set. Table 2 reports the

Table 2. Weighting Factors Chosen for Molecular Overlays
upon Combination of Total Hydrophobicity and HB Fields”

weight (log P,,,,/HB)

100/0 70/30
subset system average best average best
1 CDK2 9 64 11 63

elastase 14 0 14 0
ER 30 76 33 76
HIV (1) 17 53 22 57
MAPI14 21 61 21 61
rhinovirus 72 100 72 100
thermolysin (1) 21 50 33 50
trypsin SS 57 N 87
HIV (2) 26 50 30 50
total (155) 20.8 59.4 24.0 60.0
11 chromanone 92 100 88 100
cruzain 68 96 69 96
dopamine 22 90 21 90
GSK-3f 53 100 53 100
thermolysin (2) 23 87 27 87
total (255) 460 94.1 52.9 94.1
I+1I total (410) 36.7 81.0 419 81.1

“Average value (%) of successful overlaps for all ligand-template pairs,
and best value (%) obtained from the pose with the highest similarity
score for each molecule.

results obtained for the combination of total log P,,, and HB
descriptors, which were weighted by factors of 70% and 30%,
respectively. Inclusion of the HB distribution retains or
improves the average accuracy of the molecular overlays
compared to the performance obtained exclusively from the
atomic log P,/ contributions. The improvement is largely
dependent on the specific set of compounds, as it is primarily
observed for the molecules pertaining to HIV and thermolysin
in subset I, and thermolysin in subset II. Nevertheless, this
effect is less apparent when the alignments with the best
similarity are considered, which reflects the relevant influence
exerted by the template on the molecular alignment. On the
other hand, the overall performance is only slightly affected by
the specific weight of the HB field (see Table S2 in the
Supporting Information).

The optimal weights obtained for the combination of
electrostatic (log P,) and cavitation (log PZY,) components
of the hydrophobicity with the HB field are reported in Table
3. Preliminary analysis led to an optimal weighting of log P2,
and log P57, fields close to 30/70 (see Table S3 in Supporting
Information), which was subsequently refined upon inclusion
of the HB field. Upon inclusion of the HB field, the largest
accuracy was obtained for weighting factors of 15 (log PSf,),
5SS (log PSY,), and 30 (HB), although the overall performance
was only slightly affected by the specific weights of these fields
(see Table S4—SS in the Supporting Information).

Comparison of Tables 2 and 3 shows that replacement of
the total log P, ,, contribution by its electrostatic and cavitation
components ameliorates the overall accuracy for subsets I and
II, increasing the average accuracy in the predicted molecular
overlays from 24.0% to 38.0% for subset I, and from 52.9% to
65.6% for subset II. This trait is also observed using the best
score, as the accuracy is enlarged from 60.0% to 78.7% for the
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Table 3. Weighting Factors Chosen for Molecular Overlays
upon Combination of Electrostatic and Cavitation
Components of the Hydrophobicity and HB Fields”

weight (log P<¥, /log PS5, /HB)

30/70/0 15/55/30
subset system average best average best
I CDK2 18 85 22 87

elastase 39 42 29 42
ER 44 100 43 92
HIV (1) 48 64 47 67
MAP14 20 61 24 84
rhinovirus 61 87 81 100
thermolysin (1) 30 58 35 66
trypsin 59 71 73 8S
HIV (2) 64 50 66 60
total (155) 34.1 736 38.0 78.7
II chromanone 94 100 93 100
cruzain 97 100 95 100
dopamine 42 100 42 100
GSK-3p 75 100 75 100
thermolysin (2) 37 95 44 94
total (255) 64.0 98.5 65.6 982
I+ total (410) 52.7 89.1 54.0 90.80

“Average value (%) of successful overlaps for all ligand-template pairs,
and best value (%) obtained from the pose with the highest similarity
score for each molecule.

compounds in subset I, although this improvement is lower in
the series of compounds included in the subset II (from 94.1%
to 98.2%), which can be ascribed to the larger congeneric
character of the compounds included in these molecular sets.
On the other hand, the alignment results are very sensitive to
the templates, as noted in the range of the average accuracy,
which varies from 22% for CDK2 to 81% for rhinovirus in
subset I, and from 42 for dopamine D2/D4 antagonists to 95%
for cruzain inhibitors (Table 3).

Figure 2 shows the comparison of the average value (%) of
molecules correctly superposed for the distinct proteins of the
training set. A relevant trait is the consistent improvement in
the number of correctly predicted overlays observed in all cases

le

upon decomposition of the total log P, into log P§/,, and log

P, which is larger than 15% in 9 sets. Indeed, the
combination of log P2, and log PSY, performs significantly
better (p < 0.05) in 10 out of 14 sets, and the statistical
significance is even higher (p < 0.001) in 7 targets.

Overlays from RM1 and B3LYP Hydrophobic Con-
tributions. In order to evaluate the influence of the QM
method used to derive the hydrophobic contributions, the
accuracy of the molecular overlays obtained from fractional
contributions obtained from MST/RM1 and MST/B3LYP
computations was examined. The overall performance of the
molecular overlays obtained from these computations is shown
in Figure 3, which indicates that similar results are obtained
from RM1 and B3LYP fragmental contributions for all data
sets. Indeed, the slight differences observed in few cases are not
found to be statistically significant.

This finding is remarkable when one takes into account the
important saving in computational time due to the use of
semiempirical calculations, as noted in a reduction by a factor
of ~250 in the time required for the computation of atomic
contributions for the ligand in PDB entry 1AQ1 (CDK2 set;
RM1 calculations performed in an Intel Xeon CPU ES-2666v3
at 2.9 GHz, and B3LYP/6-31G(d) computations carried out in
an Intel Xeon CPU ES564S5 at 2.4 GHz; the factor of ~250 was
adjusted taking into account the differences in the clock
computer cycle). Therefore, these findings support the
suitability of the semiempirical RM1 Hamiltonian, which
offers a much better balance between overlay accuracy and
computational expensiveness.

Validation with the AstraZeneca Data Set. The AZ test
comprises 121 molecular systems encoded in four categories
(easy, moderate, hard, and unfeasible) based on how easy or
difficult it would be for a program to reproduce the
experimental overlay.*® The accuracy of the molecular overlays
predicted from log Pf,l/ew/log </ HB fields (weights of 15/55/
30, respectively) is shown in Figure 4, which shows the overlay
accuracy determined using the poses with the best similarity
score. For the sake of comparison, Figure 4 also displays the
results obtained by using electrostatic/steric fields (see
Methods). Let us note that the weights of these two fields
were previously adjusted using the compounds included in the
training set, leading to contributions of 50% for each field (see
Table S6 in the Supporting Information).
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Figure 2. Number (%) of correctly predicted overlays obtained from log P, ,,/HB (weights 70/30; green) and log PS%, /log P, /HB (weights 15/

55/30; orange) fields. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 3. Overlay accuracy (%) determined for (A) log P,,,/HB (weights 70/30) and log P, /log P, /HB (weights 15/55/30) fields. The
average values of correctly predicted alignments from semiempirical RM1 and B3LYP hydrophobic contributions are shown as dashed lines and

solid area, respectively.

100

80

60

40

20

Accuracy (%)

80

60

40

20

D E F

100

80

60!

40

20 l
0

100

|

8

o

60

4

o

2

o

U

Protein Families

ﬁigure 4. Comparison of experimental and predicted molecular overlays by target family. Accuracy (%) of molecular overlays predicted from log
orw/log P& /HB (orange) and electrostatic/steric (yellow) fields for the different protein families. A transferase, B hydrolase, C oxidoreductase, D
lyases, E ligases, F isomerases, G DNA-binding proteins, H chaperones, I BET, and L iLBP. The results are sorted from highest to lowest

performance as obtained from electrostatic/steric results.

The combination of log P2, /log P, /HB fields leads to an
overall success of 88% for the AZ data set. This performance is
slightly better than the results obtained from the molecular
overlays generated by combining electrostatic and steric fields,
which yielded a global accuracy of 82%. This tendency is also
found when the average metrics is considered (38% versus
35.6% for of log Pgj,/log Pg\/HB and electrostatic/steric
fields, respectively; see Table S7 in the Supporting
Information). The larger differences between the protein
families are obtained for transferases, where 87% and 79% of
the molecules were correctly aligned from log P, /log P,/
HB and electrostatic/steric descriptors, respectively, followed

1602

by oxidoreductases (94% and 88%, respectively), while the
differences were generally less notable for the rest of protein
categories. Nevertheless, it must be noted that the performance
of log P /log P%Y/HB and electrostatic/steric descriptors
may exhibit significant differences for individual targets, as can
be observed in Figure S1 in the Supporting Information. On
the other hand, there is no apparent correlation between the
accuracy and the global hydrophobicity of the compounds,
which was estimated using the AlogP method, as noted in
Figure S2 (Supporting Information). This reveals the fact that
the relevant property is not the total logP but the 3D
distribution pattern of the atomic hydrophobic contributions.
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cav

Almost all the ligands included in the 22 sets within the easy
category were correctly aligned (96.5% accuracy; Figure 5), a

trait also found for most of the ligands pertaining to the 73 sets
in the moderate category (accuracy of 79.4%). The overall
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performance obtained for the molecular overlays predicted
from electrostatic/steric fields is identical (96.6% and 79.4%
for easy and moderate sets, respectively), although there are
differences in the accuracy attained for individual targets in the
moderate category. As expected, the percentage of correctly
overlaid ligands was reduced to 54% for the 18 sets under the
hard category. In this case, the accuracy obtained with log
Pk /log PYY,/HB descriptors exceeded the behavior found for
electrostatic/steric fields, with an overall success of 48%.
Finally, the behavior for the unfeasible category was reduced to
31%, reflecting the difficulty in predicting the molecular
overlays in cases where the molecules explore different
subpockets within the binding cavity of the targets in this
category (see Figure S3 in the Supporting Information).

These results can be compared with the performance
reported by Giangreco et al. in the assessment of a Cambridge
Structural Database-driven overlay program using the AZ data
set.”” Thus, using as reference the accuracy obtained using the
best AlignScore, the number (%) of correctly predicted overlays
was 95, 73, and 39 for easy, moderate, and hard sets, whereas
no ligand was successfully predicted in the unfeasible category.
On the other hand, Chan has recently reported a novel
algorithm, named MolAlign, which was also checked using the
AZ data set.”” In this case, the percentage of correct overlays
was 95, 68, 44, and 13 (results derived by using conformers
generated with Ballon and Confect, considering a geometrically
successful arrangement in any of the top five solutions).
Although caution is required for a quantitative comparison due
to the differences in the computational protocol and
performance metrics adopted in these studies, present results
suggest that PharmScreen leads to a slight improvement for the
targets pertaining to the hard set.
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It is worth noting that the apparently similar overall
performance of log P2% /log P<./HB and electrostatic/steric
fields does not necessarily imply that these descriptors lead to
identical overlays for a given compound. This can be verified in
Figure 6, which shows the number (%) of identical
superpositions (i.e., those with a RMSD < 2 A) between the
best poses predicted by the two combinations of molecular
fields for the four categories of compounds present in the AZ
data set. In general, the larger the degree of difficulty expected
for the four categories, the lower the identity between the
predicted overlays for the best poses. Thus, for the 22 sets
included in the easy category, both log P, /log P<¥,/HB and
electrostatic/steric fields lead to the same molecular align-
ments in 18 cases, and the agreement is larger than 80% in the
remaining 4 cases. This level of identity is attained in S0 out of
the 73 sets included in the moderate category, and it is found
only in 4 cases out of the 18 sets pertaining to the hard
category. Finally, only a single set reaches a number of identical
overlays larger than 50% for the unfeasible targets. Therefore,
although the overall accuracy achieved from log P2, /log P<Y,/
HB and electrostatic/steric fields is similar for every separate
category of targets (Figure 5), Figure 6 shows that these
descriptors may lead to different molecular overlays for the
compounds pertaining to individual targets, especially for those
included in the hard category.

It may also be questioned whether the best pose obtained by
using log 2 log Py)/HB and electrostatic/steric fields
comes from the same template or from distinct reference
molecules. To answer this question, Figure 7 represents the
number (%) of common templates shared in the best
alignment of the compounds by the two sets of descriptors.
Even for the subset of easy targets, comparison of the plots in
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Figures 6 and 7 shows that there is not a correspondence
between the degree of common templates and the identity in
molecular overlays obtained from the two classes of
descriptors. Thus, there is a perfect agreement between the
chosen templates only in 3 out of the 22 cases pertaining to the
easy category, while the template identity lies close to or below
60% in S cases (sets 4, 6, 9, 12, and 13) that, nevertheless,
yielded 100% identity in the molecular overlays of the
compounds. A perfect identity between templates is limited
to 4 out of the 73 cases in the moderate family, and 3 out of
the 18 sets in the hard category.

Finally, we compared the overla?r accuracy (%) predicted for
the best pose obtained from log P/, /log P} /HB fields versus
the identity (%) between the templates that led to the correct
alignment from the experimental pose (RMSD < 2 A) when
these descriptors and the electrostatic/steric ones were used.
This comparison is shown in Figure 8 using different symbols
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Figure 8. Representation of the overlay accuracy (%) obtained from
log P /log P, /HB fields versus the identity (%) of templates
leading simultaneously to correct molecular alignments using log
P /log P<Y /HB and electrostatic/steric fields. Results obtained for
the sets in easy, moderate, hard, and unfeasible categories are shown
as green circles, yellow squares, red triangles, and blue stars,

respectively.

for the targets included in easy, moderate, hard, and unfeasible
categories. The results point out that a successful prediction of
the molecular overlay can be achieved with a low degree of
identity between the templates chosen for the two sets of
molecular fields. For instance, there are cases in the moderate
category where molecular overlays are predicted with 80%
accuracy, but the correspondence between the templates used
with log P2, /log PS, /HB and electrostatic/steric fields can
be as low as 30%. Overall, this indicates that the two sets of
descriptors provide complementary information that may lead
to plausible molecular overlays useful for predicting the relative
arrangement between molecules.

Discussion of Selected Cases. In this section we examine
the molecular overlays for selected representative cases
pertaining to the easy, moderate and hard systems, as the
lack of common recognition features in the unfeasible set
makes the prediction of molecular overlays to be difficult in the
absence of additional structural information, such as key
pharmacophoric features.

Easy Set. For the targets in this category, the overlay
accuracy is larger than 80% (Figure 5), although the template
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identity can be notably lower (Figure 7). This is illustrated by
the molecular alignments obtained for the 7 ligands in target
P30291 (Tyrosine kinase Weel; set 12 in this category), which
are predicted correctly in all cases, but the template identity is
only 42%. As shown in Figure 9, the ligand in X-ray structure

S:0.74

A B

Figure 9. Molecular overlays obtained for the compound bound to
tyrosine kinase Weel in PDB entry 1 X 8B (C atoms in green).
Molecular overlays were obtained for template molecules taken from
(A) PDB entry 3CRO (C atoms in magenta) and (B) 2Z2W (C atoms
in yellow) when log P /log P<,/HB and electrostatic/steric fields,
respectively, were used. S denotes the similarity score.

1X8B obtained the highest similarity against the template taken
from PDB entry 3CRO when log P, /log P<Y, /HB descriptors
were used. However, when electrostatic/steric fields were
adopted, the highest similarity was found against the template
taken from PDB entry 2Z2W. This illustrates how the correct
molecular overlay can be obtained for a given compound from
distinct templates depending on the specific set of descriptors
used in similarity measurements.

Moderate Set. The overall overlay accuracy obtained when
log P2, /log P5¥./HB and electrostatic/steric descriptors are
used is almost identical (79%; Figure 5). In most cases the two
sets of descriptors give rise to similar poses, but the overlaid
ligands may often differ by most than 2 A, which is a widely
accepted threshold in checking the accuracy of predicted poses.
This is exemplified in Figure 10 for the ligand bound to
cytochrome P450 2A6 (taken from PDB entry 1ZL0; set 35 in
moderate category), as the best alignment obtained against the
template taken from PDB entry 3EBS leads to arrangements
that differ by more than 2 A from the experimental pose when
electrostatic/steric descriptors were considered.

Hard Set. This is the set that gives rise to most notable
differences in the molecular overlays obtained between the two
sets of descriptors. For instance, the log P /log PSY,./HB
descriptors led to a correct prediction for 7 (1QPE, 20F2,
2ZM], 3AC]J, 3AD4, 3ADS, and 3AD6) out of the 10 ligands
bound to target P06239 (tyrosine-protein kinase LcK; set 3 in
this category), whereas only 3 cases (20F2, 3AD4, and 3AD6)
were correctly predicted from electrostatic/steric fields. As an
example, Figure 11 shows the alignment of the ligand present
in PDB entry 1QPE and the compound in the X-ray structure
2ZM1, which was used as template. Figure 11 shows the
reversal of the ligand orientation obtained between the two
sets of descriptors.

For P11309 (serine/threonine protein kinase pim-1; set S in
hard category) the log P2, /log PS¥,/HB fields generated a
correct prediction for 20 out of the 31 ligands in the set,
whereas electrostatic/steric descriptors succeeded in the
molecular alignment in 12 cases. Two representative examples
are shown in Figure 12, which shows the correct alignment of
ligands taken from X-ray structures 1YI3 and 3MAE using as
templates the compounds extracted from 2C3I and 3R00 when
hydrophobic descriptors are used. Note the reversed
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Figure 10. Molecular overlays obtained for the compound bound to cytochrome P450 2A6 in PDB entry 1ZL0. (A) Representation of the overlaid
ligand (C atoms in green: log P2, /log P%Y,/HB; C atoms in yellow: electrostatic/steric) against the template taken from PDB entry 3EBS (C
atoms in magenta). (B) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in green) overlaid using log P2, /log
PS)/HB descriptors. (C) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in yellow) overlaid using electrostatic/

steric descriptors.

RMSD: 0.95 A RMSD: 5.69 A

Figure 11. Molecular overlays obtained for the compound bound to tyrosine-protein kinase LcK in PDB entry 1QPE. (A) Representation of the
overlaid ligand (C atoms in green log P, /log P, /HB; C atoms in yellow electrostatic/steric) against the template taken from PDB entry 2ZM1
(C atoms in magenta). (B) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in green) overlaid using log P£¥, /log

<./HB descriptors. (C) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in yellow) overlaid using electrostatic/
steric descriptors.

Ligand: 1YI3 Template: 2C3I

RMSD: 1.64 A RMSD: 4.34 A

Ligand: 3MA3 Template: 3R00
D E

RMSD: 0.76 A RMSD: 5.34 A

Figure 12. Molecular overlays obtained for compounds bound to serine/threonine protein kinase pim-1 in PDB entries (top) 1YI3 and (bottom)
3MA3. (A, D) Representation of the overlaid ligand (C atoms in green log P, /log P<%:,/HB; C atoms in yellow electrostatic/steric) against the
template taken from PDB entry (top) 2C3I and (bottom) 3R00 (C atoms in magenta). (B, E) Comparison of the experimental pose (C atoms in
white) and the ligand (C atoms in green) overlaid using log P£%, /log P<,/HB descriptors. (C, F) Comparison of the experimental pose (C atoms
in white) and the ligand (C atoms in yellow) overlaid using electrostatic/steric descriptors.

orientations of the two ligands obtained for these templates by aligned when electrostatic/steric fields were used (30RZ,
the two sets of descriptors. 30TU, 4A06, and 4A07). As noted in Figure 13, even though

Finally, an example of the correct overlay predicted only the alignment obtained from the log PZ%,/log PZY/HB
from electrostatic/steric fields is the allosteric site in 015530 descriptors resembles the X-ray pose (panel B), the

(serine/threonine protein kinase pdpkl; set 14 in this chlorobenzene unit is deviated, making the RMSD slightly
category). For this system the hydrophobic descriptors larger than the threshold, presumably due to the tendency to
generated a correct prediction for two (30TU and 4A07) match the chlorobenzene unit of the ligand onto the
out of the five cases, while four compounds were correctly benzofuran unit of the template.
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Figure 13. Molecular overlays obtained for compounds bound to serine/threonine protein kinase pdpkl in PDB entry 30RZ. (A) Representation
of the overlaid ligand (C atoms in green log PS%, /log P&, /HB; C atoms in yellow electrostatic/steric) against the template taken from PDB entry
30RX (C atoms in magenta). (B) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in green) overlaid using log
P /log P, /HB descriptors. (C) Comparison of the experimental pose (C atoms in white) and the ligand (C atoms in yellow) overlaid using

o/w
electrostatic/steric descriptors.

B CONCLUSIONS

Since the maximal binding affinity that can be attained by a
target is primarily due to the curvature and apolar surface of
the binding pocket,”® an accurate representation of the 3D
pattern of hydrophobic/hydrophilic regions may be valuable as
a source of descriptors in rational drug design. In particular, we
have presented PharmScreen, a tool that generates ligand
overlays based on MST fractional contributions to the octanol/
water partition coefficients.

The results obtained for the systems included in the AZ
calibration data set give support to the assumption that the
hydrophobic/hydrophilic balance in a molecule, supplemented
with the HB features, may provide a useful signature to enrich
molecular alignment studies performed traditionally based only
on electrostatic and steric properties. The results point out the
suitability of the MST based-hydrophobic parameters, as
correct overlays were predicted for 94%, 79%, and 54% of the
molecules classified into easy, moderate, and hard sets,
respectively. Moreover, the results point out that this accuracy
is attained at a much lower degree of identity between the
templates used by the combination of electrostatic/steric fields,
which reinforces the complementarity between these descrip-
tors in order to take into account the increasing complexity of
the targets under investigation. These findings support the
usefulness of PharmScreen as a valuable alternative for
molecule superposition and virtual screening of chemical
libraries, and future studies will be conducted to calibrate its
performance in ligand-based virtual screening studies.
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Table S1. List of targets included in the AstraZeneca dataset.

Family D* Name Category  Npps” no Source
transferase A9JQLY dehydrosqualene synthase ~ Unfeasible 6 4 Staphylococcus
Aureus
transferase 014757  serine/threonine-protein Moderate 42 53 Homo Sapiens
kinase Chkl
transferase 014965  serine/threonine-protein Moderate 11 71 Homo Sapiens
kinase 6
transferase 015530  3-phosphoinositide Moderate 18 46 Homo Sapiens
dependent protein kinase-1
transferase 015530* 3-phosphoinositide Hard 5 14 Homo Sapiens
dependent protein kinase-1
transferase 060674  tyrosine-protein kinase Moderate 13 70 Homo Sapiens
JAK2
bromodomainand 060885  glutathione-requiring Moderate 8 1 Homo Sapiens
extra-terminal prostaglandin D synthase
protein
hydrolase 076074 cGMP-specific 3'.5'-cyclic =~ Moderate 9 22 Homo Sapiens
phosphodiesterase
oxidoreductase 076290 pteridine reductase Moderate 9 25 Trypanosoma Brucei
Brucei
oxidoreductase P00374  dihydrofolate reductase Easy 15 1 Homo Sapiens
transferase P00469  thymidylate synthase Moderate 5 67 Lactobacillus Casei
transferase P00489  protein (glycogen Easy 42 2 Oryctolagus
phosphorylase) Cuniculus
transferase P00509  aspartate aminotransferase ~ Easy 6 22 Escherichia Coli
transferase P00517  cAMP-dependent protein Moderate 21 39 Bos Taurus
kinase. alpha-catalytic
subunit
transferase P00520  proto-oncogene tyrosine- Moderate 8 40 Mus Musculus
protein kinase ABL
transferase P00523  proto-oncogene tyrosine- Moderate 13 72 Gallus Gallus
protein kinase Src
hydrolase P00730  lysozyme Moderate 11 2 Enterobacteria
Phage T4
hydrolase P00734  alpha thrombin Moderate 78 15 Homo Sapiens
hydrolase P00742  coagulation factor XA Moderate 37 14 Homo Sapiens
hydrolase P00749  protein (urokinase-type Moderate 27 16 Homo Sapiens
plasminogen activator)
hydrolase P00760  trypsin Moderate 71 3 Bos Taurus
hydrolase P00772  elastase Hard 5 2 Sus Scrofa
hydrolase P00797  renin Easy 6 3 Homo Sapiens
hydrolase P00808  beta-lactamase Hard 8 11 Bacillus
Licheniformis
hydrolase P0O0811  beta-lactamase Unfeasible 24 1 Escherichia Coli
lyase P00918  carbonic anhydrase II Moderate 135 37 Homo Sapiens
lyase P00929  tryptophan synthase Moderate 10 19 Salmonella
Typhimurium
chaperone P02829  HSP82 Moderate 11 63 Saccharomyces
Cerevisiae
DNA-binding P03372  oestrogen receptor Moderate 27 23 Homo Sapiens
proteins
oxidoreductase P04035  protein (HMG-COA Moderate 7 30 Homo Sapiens
reductase)
hydrolase P04058  acetylcholinesterase Unfeasible 8 5 Torpedo Californica
oxidoreductase P04642  l-lactate dehydrogenase A Moderate 8 51 Rattus Norvegicus
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Table S3. Effect of weighting factors on the alignment accuracy upon combination of
electrostatic and cavitation components of the molecular hydrophobicity. Average value (%) of
successful overlays for all ligand-template pairs, and best value (%) obtained from the pose with

the highest similarity score.

Weight (log P“‘/f" llog P{™)
Subset System 50/50 40/60 20/80
Average| Best |Average| Best |Average| Best
I CDK2 17 84 18 85 20 82
Elastase 29 28 39 42 35 42
ER 44 100 44 100 44 100
HIV (1) 42 57 45 64 46 57
MAPK14 18 53 20 61 24 69
Rhinovirus 63 87 61 87 86 100
Thermolysin (1)| 30 50 30 58 28 66
Trypsin 57 71 59 71 61 7al
HIV (2) 61 50 64 50 58 40
Total (155) 32.4 70.0 34.1 73.6 36.1 1235
I Chromanone 93 100 94 100 94 100
Cruzain 98 100 97 100 98 100
Dopamine 42 100 42 100 40 100
GSK-3pB 76 100 76 100 74 100
Thermolysin (2) 37 95 37 95 34 95
Total 255) | 642 | 985 | 643 | 985 | 626 | 985
1+ | Total (410) | 5221 | 878 | 529 | 891 | 527 | 887
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Table S6. Effect of weighting factors on the alignment accuracy upon combination of
electrostatic and steric fields. Average value (%) of successful overlays for all ligand-template

pairs, and best value (%) obtained from the pose with the highest similarity score.

Weight (Electrostatic/Steric)
Subset System 50/50 40/60 30/70 20/80

Average | Best | Average | Best | Average | Best | Average | Best

I CDK2 17 80 16 78 16 78 16 84

Elastase 35 42 35 42 31 57 31 71

ER 36 69 36 69 32 69 33 76

HIV (1) 46 67 45 67 44 67 43 67

MAPK14 22 76 22 84 22 92 22 84
Rhinovirus 69 100 72 100 66 100 63 100
Thermolysin (1) 19 50 18 66 18 66 15 66

Trypsin 61 85 65 85 61 85 57 71

HIV (2) 64 70 61 60 58 60 57 60

Total (155) 329 73 32.4 73.5 31.1 74.8| 303 77

I Chromanone 91 100 87 100 85 100 84 100
Cruzain 95 100 96 100 95 100 95 100

Dopamine 35 100 34 100 31 100 30 100

GSK-3p 76 100 76 100 76 95 75 94
Thermolysin (2) 22 94 21 95 19 95 18 95

Total (255) 58.12 98.2 57.26 98.5 5581 |97.1| 5594 96
I+1I Total (410) 48.59 88.7 47.88 89.1 45.63 | 88.7| 4810 89.3




Figure S2. Representation of the accuracy (%) in molecular overlays obtained from log P

olw

log P/ /HB fields versus the global hydrophobicity of ligands determined by using AlogP.
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Figure S3. (A) Superposition of all crystallographic ligands of P30291 (Tyrosine-protein

kinase), chosen as an example of easy target, and molecular alignments obtained from log Po‘,lf/

log P’" /HB and electrostatic/steric fields. Compared with the crystallographic structure all

ligands have a RMSD < 2 A. (B) Superposition of all crystallographic ligands of P42567
(Epidermal growth factor receptor substrate 15; left) and P59071 (Basic phospholipase A2

VRV-PL-VIIIa; right), chosen as examples of unfeasible targets.

P30291 _ _
X-ray log P<* /log P<" / HB Electrostatic/Steric
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The pharmacophore concept is a fundamental cornerstone in drug discovery, playing a critical role in de-
termining the success of in silico techniques, such as virtual screening and 3D-QSAR studies. The reliability
of these approachesis influenced by the quality of the physicochemical descriptors used to characterize the
chemical entities. In this context, a pivotal role is exerted by lipophilicity, which is a major contribution to
host—guest interaction and ligand binding affinity. Several approaches have been undertaken to account
for the descriptive and predictive capabilities of lipophilicity in 3D-QSAR modeling. Recent efforts encode
the use of quantum mechanical-based descriptors derived from continuum solvation models, which open
novel avenues for gaining insight into structure-activity relationships studies.
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The pharmacophore concept & its application in drug design

Almost all processes of life are determined by the recognition between biomolecules, a process dictated by the
chemical complementarity between the interacting partners [1]. An effective characterization of the chemical features
associated with the structure of both ‘host’ and ‘guest’ is necessary for disclosing the key molecular determinants
implicated in the formation of the host—guest complex. In drug discovery studies addressing the interaction of small
molecules (ligands) with macromolecular receptors, these determinants are generally encoded under the concept
of pharmacophore. A simple and intuitive definition can be attributed to Paul Ehrlich, since this concept can be
related to ‘@ molecular framework that carries (phoros) the essential features responsible for a drugs (pharmacon) biological
activity” 2. Nevertheless, Ehrlich did not use the term pharmacophore in his papers, where the terms "haptophore’
and 'toxophore’ were adopted [3]. Instead, the modern concept of pharmacophore evolved from the identification
of ‘chemical groups’ to the definition as ‘patterns of abstract features in space” by Schueler [4), reflected in early
models depicting key features for biological activity that must satisfy certain geometrical relationships [5,6], and the
development of the first pharmacophore pattern recognition programs (7). Thus, according to the International
Union of Pure and Applied Chemistry (IUPAC), a pharmacophore “does not represent a real molecule or a real
association of functional groups, but a purely abstract concept that accounts for the common molecular interaction
capacities of a group of compounds toward their target structure,” being the largest common denominator shared by a
set of active molecules [8].

This evolution has been accompanied by the progressive refinements triggered by advances in molecular de-
scriptors and computational methods seen in the last 30 years, since a variety of i silico techniques have exploited
the pharmacophore concept. This is exemplified by virtual screening (VS) studies of large molecular databases
performed to identify new promising compounds according to their similarity to a given privileged template,
which should contain reference physicochemical features relevant for biological activity [9-11]. Molecular/chemical

(global/local) similarity is a subjective concept since it depends on the specific details of the methodological ap- newlands
press
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proach, the nature of the molecular features relevant for similarity assessment, and the definition of the similarity
function [12]. A sensitive and effective estimation of molecular similarity is a fundamental pre-requisite for the
identification of potential leads starting from a chemical reference, which represents the paradigm of V.

Another successful application of the pharmacophore concept is linked to 3D-quantitative structure—activity
relationships (3D-QSAR) [13], such as CoMFA [14], CoMSIA (15] and GRID/GOLPE [16]. These methods permit
to identify a pharmacophore from the relationships between the biological activities of a set of aligned molecules
and the projection of selected physicochemical descriptors into the surrounding space, leading to the disclosure of
regions favorable or not to the bioactivity of compounds. 3D-QSAR approaches are also used to model ADME(T)
properties in the attempt to predict whether a molecular candidate would be able to achieve its biological target [17].
Optimization of both ligand potency and ADME(T) profile is absolutely required to translate promising molecular
candidates to successful low-dose therapeutics. However, the success of this operation is not trivial, since the final
result depends on factors such as the quality of the input data, as well as the adequacy and level of description of the
physicochemical parameters used in the analysis. In fact, Gleeson and collaborators (18] have observed the existence
of a diametrically opposed relationship between descriptors that efficaciously model drug potency and ADME(T)
properties, making more challenging the drug discovery process.

Lipophilicity in drug design
The relevance of lipophilicity in understanding the pharmacological profile of drug-like compounds is widely
recognized [19], as a broad variety of biodistribution and toxicological processes are ultimately related to the
differential solubility of solutes in aqueous and nonaqueous environments. This is illustrated by Lipinski’s rule-
of-five [20], which relates the drug-likeness of oral compounds with molecular weight, hydrogen bonding and
lipophilicity. Being a key property for the prediction of ADME(T) properties, this has stimulated the development
of experimental and computational approaches to quantify the lipophilicity of a (bio)organic molecule.
Experimentally, the lipophilicity of a molecule can be quantified by its partition coefficient (), as this equilibrium
thermodynamic property measures the ratio of concentrations of the compound between two immiscible solvents,
generally water and n-octanol. In turn, the partition coefficient can be expressed in terms of the transfer free energy
(AGE’!W) between the two solvents (Equation 1).

AGY™ = —2.303 RT logP (Eq. 1)

Lipophilicity reflects the complex interplay between the intermolecular forces that dictate the differential solvation
in the aqueous and organic phases. Accordingly, it can be factorized in terms of selected physicochemical properties
of the compound that may be relevant for the preferential solvation in aqueous and nonaqueous solvents, as shown
in Equation 2 [21], and references therein.

logP'= vV —AA-T41IE (Eq. 2)

where v is a constant, V'is the molar volume, which encompasses the ability of the solute to elicit nonpolar
interactions, A is related to the polarity of the compound, and finally 7 and /E accounts for the solute capacity
to form ionic interactions, which favor partitioning into the aqueous phase, and for the contribution due to
intramolecular effects, respectively.

Let us note that lipophilicity and hydrophobicity, which are often used as equivalent concepts, are not strictly
synonymous, the latter being in fact one of the contributions to molecular lipophilicity (22). Thus, while hydropho-
bicity can be defined as the tendency of nonpolar groups of a molecule to aggregate in order to minimize the
unfavorable exposition to the surrounding polar (water) solvent, lipophilicity is a measure of the affinity of the
molecule for the nonpolar solvent in a biphasic system constituted by a polar and a nonpolar solvent.

Lipophilicity affects a number of pharmacokinetic parameters (Figure 1). Low lipophilicity is responsible of high
aqueous solubility, which is a key factor for drug-likeness, but an excessively low lipophilicity could compromise
the ability of the drug to achieve the biological target. On the opposite site, highly soluble compounds possess poor
permeability through biological membranes, limiting absorption along the gastrointestinal tract or the transport
across the blood—brain barrier. Therefore, optimal requirements for efficient solubility and permeability properties
are inevitably enclosed in a very narrow range of lipophilicity. Another key aspect for drug-likeness is bioavailability,
which is inversely correlated to low first-pass clearance. Once again, lipophilicity is crucial since high lipophilicity
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Figure 1. Schematic representation of the central role of lipophilicity in drug potency and pharmacokinetics profile.
Direct (+) and inverse (-) correlation of lipophilicity with each of the main steps of ADME process are also highlighted.

is associated with high clearance and low metabolic stability. Overall, a careful handling of lipophilicity is required
to optimize compound availability at the biological target.

On the other hand, lipophilicity has rarely been used as the primary descriptor in ligand—receptor recognition.
Indeed, following the IUPAC recommendation for the definition of a pharmacophore, it is defined as ‘the ensemble
of steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological
target structure” 8]. This definition hides the key role played by (de)solvation in the recognition and binding of
a drug-like compound to its macromolecular target (23], especially keeping in mind that the maximal achievable
affinity that can be attained for target binding sites is largely influenced by nonpolar desolvation [24]. This is
consistent with the concept that favorable drug binding is largely driven not only by the global lipophilicity of a
compound, but more importantly by the spatial distribution of polar and apolar regions along the chemical skeleton.
Thus, while apolar regions determine the binding affinity with complementary lipophilic regions of the binding
site, polar interactions would provide ‘anchor points’ contributing to ligand specificity and/or directionality in the
binding pocket, as well as to modulate binding kinetics of the ligand [25-30].

Taken together, these data suggest that a concomitant optimization of both pharmacokinetic profile and drug
potency have to be done to obtain successful drug products. This is encoded in the concept of lipophilicity efficiency
(LipE), which provides a metric that normalizes the potency (generally measured as K; or ICs) of the ligand against
a protein target for the lipophilicity of the compound [31-33]. This is achieved by substracting the logP (or the
distribution coefficient for ionizable molecules, logD) from the negative logarithm of the potency (Equation 3).

lipE = —log(potency) — logP (Eq. 3)

Lipophilicity efficiency can be useful to provide guidelines to study the simultaneous effects exerted by structural
changes on potency and lipophilicity, which is central for drug design and lead optimization programs, thus giving
support to the formulation of the ‘lipophilic pharmacophore’ concept.

From empirical fragment/atom-based approaches to 3D structure-based methods to estimate
lipophilicity

Numerous efforts have been done to assess lipophilicity by means of experimental methods [34-36]. Similarly, a
plethora of computational approaches for estimating log? have also been developed [37-42]. We limit ourselves to

(o}
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remark selected fundamental concepts, while the reader is addressed to the previously quoted reviews for detailed
comparative analysis.

Within the framework of substructure-based methods for logP estimation, fragmental and atom-based techniques
follow a general additive scheme as shown in Equation 4,

logP = Z a;f; + Z b;F; (Eq. 4)
i=1 =1

where logP is the sum of the weighted (a;) contribution of each fragment/atom (f;) and a correction factor (bjF;).

Fragmental methods are illustrated by the work of Leo, Hansch and Elkins 43] as well as Nys and Rekker [44]. The
former relies on the concept of substituent constant, which encodes the lipophilicity contribution of a chemical
group or atom when it replaces a hydrogen atom in a reference compound, and the theoretical estimation of logPo/w
follows an additivity scheme, named cLOGP. This method permits to extrapolate the partition coefficients starting
from a list of experimentally fitted fragmental contributions to lipophilicity. An arbitrary set of interfragmental
rules was then used to compile a database library of fragment-weighted lipophilicity contributions. On the other
hand, Nys and Rekker [44] introduced the concept of hydrophobic fragmental constant (f), which represents the
lipophilicity contribution of a constituent part of a structure to the total lipophilicity of a given compound.
Fragments range from atoms to heterocyclic rings, so that functional groups with direct contribution to resonance
interactions were left intact, and are differentitated upon linkage to aliphatic and aromatic structures. The differences
between experimental logP and the additive value estimated from the ) fapproach was accounted for by correction
rules, reflecting factors such as the presence of vicinal electronegative centers in the chemical structure, aromatic
condensation, cross-conjugation or hydrogen-bonding (45].

An example of atom-based partitioning strategy was undertaken by Ghose and Crippen, who developed a
procedure that combines lipophilicity contributions at an atomic level leading to the ALOGP method. This
method encompassed a list of 120 atom types for carbon, hydrogen, oxygen, nitrogen, sulfur and halogens [46-4s].
An alternative strategy is the XLOGP method [49], which is based on the summation of atomic contributions
derived from experimental lipophilicity data of 1831 organic molecules, and includes correction factors for some
intramolecular interactions.

In the last decades, the evolution of computer performances enabled the development of whole molecule-based
strategies to predict the lipophilicity by taking into account the 3D-structure of compounds, and thus the effect
of molecular conformation. Among all the available techniques, the molecular lipophilicity potential (MLP) (50)
offers an empirical quantitative 3D-description of the lipophilicity potential from all the molecular fragments on
the surrounding space of a compound. The MLP approach is then intended to model the lipophilic interactions
between ligand and receptor as noted in Equation 5,

N
MLPy = ) _ Fi f(di) (Eq. 5)

i=1

where F; is the lipophilic fragmental contribution and f(dj) is a distance function which depends on the
separation between a given fragment (7) and any point on the molecular surface or volume (k).

Molecular fields derived from the MLP potential have found a wide range of pharmaceutical applications,
including the prediction of skin permeation and distribution of new chemical entities [51], modeling of peptides
and proteins [52,53], and structure—activity relationships studies [54].

The Hydrophobic INTeraction (HINT) method represents an alternative, promising strategy for the study of
lipophilicity in biomolecular interactions [55,56). This method exploits a scale of hydrophobic fragments constants
at the atomic level by means of an adaptation of the CLOGP method, which are then used to evaluate a pairwise
interaction energy term (bj) between atoms 7 and j in the interacting partners according to Equation 6,

by = 3;5;3;5;T;;R;; + rj (Eq. 6)

where 4; and §; are respectively the hydrophobic constant and the accessible surface area of the atom 7, 7j; is a
logic function describing the character of interacting pairs (attraction or repulsion), and R;; and 7;; denote functions
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of the distance between atoms 7 and j, the former following an exponential form and the latter a Lennard—Jones
implementation.

Equation 5 encodes the formalism of the ‘natural’ HINT force-field, which has been used to explore a variety of
applications in ligand—protein and protein—protein interactions [57-61].

Other approaches have relied on molecular properties derived from quantum mechanical treatments of molecules.
An early attempt is the work by Roger and Cammarata [62,63], who related the logP of aromatic compounds with
the charge density of both 7 and o electron frameworks and the induced polarization. In a distinct approach, the
BLOGP method relied on semiempirical AM1 calculations to derive geometrical and quantum chemical descriptors
for the prediction of logP [64,65]. In a similar approach, Clark and coworkers performed AM1 and PM3 calculations
to derive a series of descriptors, including electrostatic potentials, total dipole moments, mean polarizabilities,
surfaces, volumes and charges, which were used in the prediction of partition coefficients (66,67].

These efforts can also be exemplified with the concept of heuristic MLP (68,69]. In this approach, the
lipophilic/hydrophilic features of a compound are determined from the analysis of the electrostatic potential
computed at the molecular surface. To this end, a dimensionless distance-dependent screening function is used to
compare the local electron density at the surface of a given atom with the electrostatic potential generated on the
rest of atoms. The screening function, which was derived from statistical mechanical treatment of polar solvent
molecules as dipoles, accounts for the influence exerted by the atomic descriptors of the electrostatic potential from
surrounding atoms. Ultimately, such a comparison leads to the definition of an atomic lipophilicity index, which
can adopt positive or negative values, reflecting the lipophilic and hydrophilic nature, respectively, of such an atom.

Finally, a distinct approximation comes from the usage of solute—solvent correlation functions derived by using the
reference interaction site model (RISM) as descriptors for QSAR studies. By using a classical statistical mechanics-
based solvent model combined with machine learning, 1D solute—solvent correlation functions were used to predict
Caco-2 cell permeabilities [70). As an extension of this approach, Gussregen ez al. proposed the Comparative Analysis
of 3D-RISM Maps (CARMa) methodology (71]. In this computational strategy, the classical electrostatic and steric
fields generally used in CoMFA are replaced by solute—solvent distribution functions determined from 3D-RISM
computations, which are subsequently treated as descriptors to perform QSAR analysis. The method was validated
using a set of serine protease inhibitors as a test system.

Even though CARMa uses a statistical mechanics solvent model, the electrostatic and steric effects implemented
in CoMFA cannot be directly captured. This issue has been recently addressed by solving 3D-RISM equations for a
solvent comprising CoMFA probes in aqueous solution, this extension being referred to as CARMa (electrolyte) [72].
The analysis performed for six protein—ligand systems reveals a small but consistent increase in prediction accuracy

compared with CoMFA.

Lipophilicity from quantum mechanical continuum solvation methods

More elaborate methods for estimating the partition coefficients have been proposed in the framework of quantum
mechanical (QM)-based continuum solvation models (73,74], which were developed with the aim of predicting the
solvation free energy of solutes treating the solvent as a continuum polarizable medium. In spite of this rather
crude approximation, these methods have proved to be a promising strategy that combines well established physical
formalisms, a straightforward mathematical implementation and a reduced computational cost, while predicting
solvation free energies of (bio)organic compounds with chemical accuracy after a careful parameterization against
experimental data [75-77]. Since a broad review of these formalisms and their applications exceeds the aim of this
review, we limit ourselves to stress a selected set of recent studies addressing the potential impact of QM-based
continuum methods in drug design.

COSMO & COSMO-RS-based approaches

In this context, the Continuum Solvation Model for Real Solvents (COSMO-RS) has been recently utilized to
evaluate the similarity between molecules within the so-called COSMOsim method (78]. This method relies on the
conductor-like screening model (COSMO) calculations to derive the so-called o-profile of a given compound. The
o-profile collects the set of polarization charge densities generated on the surface patches of the molecule immersed
in the solvent, which is treated as an ideal conductor. The 1D histogram distribution of the ¢ values for the
whole set of surface elements enclosed in the molecular surface gives rise to a characteristic signature of the solute,
which can be used to measure a o-profile-based similarity between compounds with application for the detection
of bio-isosteric fragments or molecules. In order to enhance the computational efficiency, the o-profile of a new
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compound can be replaced with a composition of partial o-profiles taken from similar fragments of precalculated
molecules stored in a database using COSMOfrag (79].

Since the o-profile does not contain information about the spatial distribution of the polarization charge density,
COSMOsim3D has been recently proposed to alleviate this limitation [80]. To this end, COSMOsim3D projects the
surface charge density of each surface segment onto a regular 3D grid, so that each point of the grid has an associated
local o-profile. In other words, instead of generating a single 1D o-profile for the entire molecule, COSMOsim3D
creates a local 1D o-profile at each position of a regular 3D grid. This process leads to a 4D histogram defined
by the three Cartesian dimensions of the grid point and the local o-profile as the fourth dimension. If calculated
for two molecules, this strategy can be ultimately used to estimate their overall similarity. Furthermore, these local
o-profiles have been also used to generate molecular interactions fields for 3D-QSAR studies [81].

Fragmental lipophilicity model from the Miertus-Scrocco-Tomasi method: the Hyphar approach

The Miertus—Scrocco-Tomasi (MST) solvation model has been used to develop 3D-distribution patterns of
lipophilicity, which in turn have been exploited in predicting molecular overlays and 3D-QSAR studies [82,83]. The
MST model is a parametrized version of the polarizable continuum model developed by Tomasi and coworkers [84,85]
at both semiempirical, Hartree—Fock and B3LYP levels [86-89] (for a review see [90]). From the solvation free energies
in water and 7-octanol, one can derive the 7-octanol/water partition coefficient (Equation 1), which is a property
of the whole molecule. Nevertheless, by decomposing the solvation free energy into atomic contributions, one can
obtain the 3D profile of lipophilicity from the corresponding atomic contributions to the logP. For a molecule (M)
containing /V atoms, this is achieved by decomposing the logP (or the corresponding transfer free energy, AG°/ M)
into electrostatic (logPelc,i), cavitation (logP,yi) and van der Waals (logP,,i) components, which can be derived
from the polar (AG®™) and nonpolar (e AG‘J@:;) contributions to the solvation free energy (Equations 7 &

ele,i cav,i?
8).
N
AGHY, = Z AGYY = ) (AGYS + AGLY + AGY) (Eq. 7)
i=1
N N
logPM = Z logPi = Z (lochle,i + lochav,i + long\X/,i) (Eq 8)

i=1 i=1

Partitioning of the electrostatic term into atomic contributions can be made resorting to a perturbation ap-
proximation of the coupling between the solute charge distribution and the solvent reaction field (91}, leading to
Equation 9,

k I
1 k" 1°
o/w ° q q °
logPi; = (W71 ) = I Y - tie 1Y (Eq. 9)

kiei Liei

where W° is the solute wave function in the gas phase, and K and L stand for the total number of reaction field
charges in water (¢}") and n-octanol (g;), located at positions 7 and ;.
The atomic decomposition of the cavitation and van der Waals terms takes advantage of the linear dependence

with the solvent-exposed surface of the atoms in the molecule (Equations 10 & 11).

logP?,y; = Z AG°’W (Eq. 10)
N
logPi’(;}'l Z SiAEYw (Eq. 11)
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where AG;{;‘” = AGyp; — AGyp;, AGp; being the cavitation free energy of atom 7, AEY™ = EY — £°, with E;
being the atomic surface tension and S; denotes the contribution of atom 7 to the total molecular surface (St).

In contrast to the COSMO-RS-based approaches, which rely on the concept of o-profile (see above), the MST-
derived applications use the atomic contributions to the thermodynamic components of the differential solvation
free energy in water and n-octanol, which are encoded under the partition coefficient between these two solvents.
Accordingly, they take into account the effect of specific chemical features of the molecule, such as the existence of
specific tautomers or conformational species, or the formation of specific intramolecular interactions (i.e., hydrogen
bond), in the computation of the 3D-distribution pattern of molecular lipophilicity.

These patterns have been exploited to predict the chemical similarity between compounds (921. By using the
MST-based hydrophobic descriptors logP:l/e"s")i and logPZ:Xi, acomputational procedure has been proposed to identify
the molecular overlay that maximizes the lipophilic similarity. To this end, molecular similarity was achieved
by comparing the hydrophobic fields generated by the molecules, which were prealigned following multipole
expansions of the atomic lipophilic contributions. On the other hand, simple descriptors of the hydrogen-bond
(HB) donor/acceptor character of atoms were used to complement the information about the chemical nature
of polar atoms in a molecule (briefly, the current implementation assigns an arbitrary value of +1 to hydrogen
atoms in HB donors, and -1 to N and O atoms that may act as acceptors). This choice obeys to the fact that
the polar nature of hydrophilic groups cannot distinguish the HB donor/acceptor character, as this information
s{:l term. Hydrophobic and HB properties are then projected into a 3D grid
using the exponential function (Equation 12) implemented in CoMSIA [15], and then compared by means of the
Tanimoto coefficient.

is not implicitly encoded by the logP

Py = wie_ar‘Z‘l (Eq. 12)

The method was implemented in PharmScreen software (83,93 and was successfully used to evaluate the molecular
overlay for a collection of 121 molecular systems compiled by AstraZeneca, denoted as the AstraZeneca Overlays
Validation Test Set [94]. This set contains molecular overlays experimentally characterized for 119 targets, which were
grouped in four categories according to the expected difficulty in predicting the experimental overlay: easy, moderate,
hard and unfeasible. The results pointed out that correct overlays were predicted for 94% (easy), 79% (moderate) and
54% (hard) of the cases. Moreover, the overall performance obtained from classical electrostatic/steric descriptors
and from Hyphar ones was fairly similar for easy and moderate subsets, but the accuracy obtained with Hyphar
for the subset of hard cases exceeded the performance obtained with electrostatic/steric properties. Finally, it was
found that the similar performance of Hyphar and electrostatic/steric descriptors does not imply that they lead
to identical overlays. Rather, the analysis of the predicted poses revealed that the degree of identity in molecular
overlays was reduced with the increase in the difficulty of the target. Overall, these findings point out that Hyphar
descriptors may be a valuable alternative for molecule superposition and VS of chemical libraries, especially for
targets that may be challenging for predictive molecular similarity techniques.

On the other hand, the atom-centered MST-derived hydrophobic contributions have also been used as physic-
ochemical descriptors to derive 3D-QSAR models using PharmQSAR (s21. MST/IEFPCM calculations were
performed for five sets of compounds, including dopamine D2 /D4 receptor antagonists, antifungal chromanones,
glycogen synthase kinase-3 inhibitors, cruzain inhibitors and thermolysin inhibitors. The compounds in these
sets covered a wide range of variance in selected physicochemical properties (molecular weight, hydrogen-bond
donor/acceptor, clogP and number of rotatable bonds). The 3D-QSAR models obtained with the hydrophobic
pharmacophore (HyPhar) were found to have a predictive accuracy comparable to standard CoMFA and CoMSiA
techniques. Moreover, Hyphar descriptors were also valuable to discriminate the selectivity of compounds acting
as inhibitors of thrombin, trypsin and factor Xa [83].

Overall, these findings support the usefulness of the MST-derived lipophilic descriptors as a valuable alternative
to electrostatic/steric properties to carry out VS of chemical libraries for molecular similarity, as well as to derive 3D-
lipophilic pharmacophores, thus providing valuable complementary information to gain insight into the molecular
determinants of bioactivity.
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A comparative analysis between Hyphar & electrostatic/steric properties

The strength of Hyphar descriptors in 3D-QSAR studies may be attributed to two major features. First, the
concept of lipophilicity is very intuitive and widely accepted in medicinal chemistry. Second, the partitioning of
lipophilicity, which reflects a property of the whole molecule, into atomic or fragmental contributions permits to
obtain a graphical representation of the distribution pattern of polar and apolar regions adapted to the 3D-structure
of a given compound. In turn, this paves the way to rationalize the recognition between a small compound and
its macromolecular target from the complementarity between hydrophilic and lipophilic groups of the ligand and
the polar and apolar nature of the side chains of residues that shape the binding pocket. As an additional remark,
let us note that resorting to Hyphar descriptors benefits from the accurate description of the molecular charge
distribution that can be attained by QM methods, which may take into account the influence arising from the
chemical features of the bioactive compound, such as the ionization state, the preference for a tautomeric species,
and the adoption of a given conformational state representative of the binding mode of the ligand.

Given the novelty of MST-based atomic lipophilicity contributions, it is nevertheless necessary to explore their
suitability for 3D-QSAR studies. In this context, this section reports the results of a comparative analysis performed
to calibrate the performance of Hyphar descriptors through comparison with electrostatic/steric ones. This analysis
has been carried out using the comprehensive benchmark dataset compiled by Sutherland and coworkers [95], which
comprises 113 ACE inhibitors, 111 AChE inhibitors, 147 ligands for BZR, 282 COX-2 inhibitors, 361 DHFR
inhibitors, 66 GPB inhibitors, 74 THER inhibitors and 87 THR inhibitors.

Accordingly, the CoMFA/CoMSIA results reported in [95] were compared with the 3D-QSAR models obtained
using Hyphar descriptors, which combine both ‘polar’ (logP,;, ;) and ‘non-polar’ (logP.4, ;) hydrophobic contributions
(see above). To this end, the atomic electrostatic and nonelectrostatic components of the lipophilicity were used
to generate the molecular fields through projection into a grid that encloses the set of aligned compounds using a
similarity index function (see [82] for further details). For the sake of comparison, the original molecular geometries
and protonation states of compounds were kept in this study. All the details about models generation, grid
dimensions and points, training/test sets, and related activity ranges for the eight sets compiled by Sutherland are
reported in Supplementary Tables 1-3. Only for the THERM dataset partition between training and test sets was
made as indicated in [15].

As a preliminary step, the effect of the QM method selected to derive the hydrophobic contributions on the
performance of the 3D-QSAR Hyphar models was evaluated for a subset of four systems (D2 inhibitors, antifungal
chromanones, GSK3- and cruzain inhibitors) taken from our previous study [s2]. To this end, Hyphar descriptors
were derived from continuum computations performed with the MST version parametrized for the semiempirical
RM1 method [96], and alternatively with the version parametrized at the B3LYP/6-31G(d) level [89]. Comparison
of the statistical parameters obtained for the subset of training and test compounds defined for each molecular
system is shown in Table 1.

The results reveal that there is large resemblance in the overall performance of the 3D-QSAR models obtained
from MST/RM1 and MST/B3LYP Hyphar descriptors for all datasets. This finding is remarkable, since 3D-QSAR
models derived from the RM1 hydrophobic descriptors compare well with the performance obtained at the B3LYP
level, but at a much lower computational cost, making the usage of semiempirical methods highly attractive for the
study of large libraries of drug-like compounds. Accordingly, the computationally less demanding RM1 method
seems to be a promising choice for 3D-QSAR studies with Hyphar parameters.

On the basis of these results, the benchmark dataset reported by Sutherland and coworkers [95] was examined using
the MST/RM1 Hyphar descriptors. The 3D-QSAR Hyphar models were compared with the CoMFA/CoMSIA
results reported in [95], which were obtained by using electrostatic potential-fitted charges at the MNDO level, but
for the THER set, where Gasteiger—Marsili charges were used. For the sake of comparison, an additional model,
denoted CoMFA (RM1), which exploits RM1 electrostatic-potential fitted partial charges in conjunction with an
steric field obtained from the Lennard—Jones potential with a positively charged C.3 atom probe, was also examined.
This model, therefore, is intended to explore the efficiency of RM1-based partial charges in defining electrostatic
features of molecules at the atomic level.

Table 2 shows the statistical parameters of the 3D-QSAR models. In general, similar performances were obtained
for the different 3D-QSAR models determined for molecules in the training test included in a given system, as
noted in the large resemblance between the statistical values of the regression (%) and cross-validation (qz) models.
The same trend can be observed for the test set compounds, although a small improvement was found for CoMFA
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Table 1. Statistical parameters of the 3D-QSAR HyPhar models obtained from Miertus-Scrocco-Tomasi/B3LYP and

Miertus-Scrocco-Tomasi/RM1 calculations for the four sets of compounds.f

System Training set Test set Nct Field (%)
2 q? s Spress a s Elec Nonelec

D2

MST/B3LYP 0.94 0.77 0.31 0.60 0.78 0.57 3 68.6 314

MST/RM1 0.93 0.74 0.28 0.65 0.71 0.63 3 70.9 29.1

Chromanones

MST/B3LYP 0.77 0.51 0.49 0.29 0.81 0.20 3 343 65.7

MST/RM1 0.76 0.42 0.51 0.32 0.66 0.82 3 421 57.9

GSK3

MST/B3LYP 0.91 0.80 0.12 0.19 0.79 0.21 3 54.5 45.5

MST/RM1 0.91 0.82 0.30 0.18 0.79 0.21 5 64.7 35.3

Cruzain

MST/B3LYP 0.81 0.50 0.31 0.51 0.69 0.47 2 53.0 47.0

MST/RM1 0.91 0.65 0.31 0.44 0.70 0.46 3 58.4 41.6

TSee [91] for a proper description of the molecular sets. Nc denotes the number of PLS components in the best 3D-QSAR model, and the terms Elec and Nonelec stand for the fraction
(in percentage) of electrostatic (logPes,) and nonelectrostatic (logP..,) hydrophobic contributions to the final model.
MST: Miertus-Scrocco-Tomasic.

(RM1) and Hyphar models in GPB and THERM systems compared with reference CoMFA/CoMSIA models.
In addition, a higher level of accuracy was also achieved by the models derived from RM1 calculations since the
number of outliers in the test set was lower than in classical CoOMFA/CoMSIA (Supplementary Table 4). On the
other hand, both BZR and COX2 were confirmed to be challenging systems for QSAR modeling, as already noted
by Sutherland and coworkers [95]. For instance, in case of COX2, part of the reason for the poor predictive behavior
may probably be ascribed to the fact that training and test set cover different ranges of in the property space.

The predictive performance of the models was also examined by analyzing their capacity to discriminate between
active and inactive compounds. To this end, for each molecular system the compounds in the test set were
ranked according to their experimental potency: ‘active/positive’ (P) and ‘inactive/negative’ (N) were categorized
by applying a threshold value of 6.0 (in pICsy/pK; units). Then, test set compounds with a predicted pICsy/pK;
value larger than the threshold value were considered ‘actives/positives’ (TP), whereas compounds with a predicted
pICso/pK; value lower than the threshold were considered ‘inactives/negatives’ (TN). For each molecular system,
the number of B, N, TP and TN compounds, as well as false positives (FP) and false negatives (FN) are compiled in
Supplementary Table 5. In turn, these values were used to identify correctly negative (specificity or TNR; in green
in Figure 2) and positive (sensitivity or TPR; in blue in Figure 2) compounds, and to reduce the false negative rate
(‘fall-out’ or FPR; in red in Figure 2) by applying Equations. 13-15.

Specificity(TNR) n I (Eq. 13)
pecificity "N S ANTED) q.
TP TP
SCHSlthll’y(TPR) = ? = m (Eq 14)
FP FP
Fall — FPR) = — = —— =1—-TNR Eq. 1
all = ouFPR) = I = B TN (Eg-15)

These parameters, which can vary from 0 to 1, can be considered a measure of the predictive performance of
the model. According to this classification, a model can be considered good if it has high specificity/sensitivity
and low fall-out values. Nevertheless, this analysis requires a balanced partition of active and inactive compounds
in the set of compounds, a requirement that is not fulfilled in the case of BZR and GPB systems, since only one
inactive and one active compound are present in these two sets, respectively. Accordingly, the results obtained for
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Table 2. Statistical parameters obtained for COMFA and CoMSiA models reported with the results determined by using

COMFA (RM1) and Hyphar models in this study for the eight molecular systems (ACE, AChE, BZR, COX2, DHFR, GPB, THERM
and THR).f

System Training set Test set Nct Field (%)

rz q? s Spress r2 S Ele N-Ele HB
ACE #
CoMFA 0.80 0.68 1.04 - 0.49/0.55 1.54/1.47 3 - - -
CoMSiA 0.76 0.65 115 - 0.52/0.58 1.48/1.41 3 - - -
CoMFA (RM1) 0.82 0.67 0.42 1:32: 0.54/0.61 1.45/1.32 3 294 70.6 -
Hyphar 0.75 0.64 0.51 1.43 0.42/0.62 1.62/1.35 2 28.8 53.5 17.7
AChE
CoMFA 0.88 0.52 0.41 - 0.47/0.56 0.95/0.87 5 - - -
CoMSiA 0.86 0.48 0.45 - 0.44/0.60 0.98/0.81 6 - - -
CoMFA (RM1) 0.90 0.54 0.32 0.85 0.35/0.52 1.07/0.86 6 20.0 80.0 -
Hyphar 0.76 0.45 0.50 0.92 0.65 0.78 4 64.1 18.7 17.2
BZR
CoMFA 0.61 0.32 0.41 - 0.00/0.18 0.97/0.81 3 - - -
CoMSiA 0.62 0.41 0.41 - 0.08/0.30 0.93/0.75 3 - - -
CoMFA (RM1) 0.60 0.36 0.64 0.53 0.21/0.21 0.81/0.80 3 30.5 69.5 -
Hyphar 0.67 0.37 0.58 0.54 0.00/0.02 0.91/0.86 6 48.8 16.7 345
cox2
CoMFA 0.70 0.49 0.56 - 0.29/0.37 1.24/1.09 5 - - -
CoMSIA 0.69 0.43 0.56 - 0.03/0.22 1.44/1.20 6 - - -
CoMFA (RM1) 0.74 0.51 0.52 0.72 0.19/0.34 1.20/1.07 5 286 71.4 -
Hyphar 0.60 0.52 0.63 0.71 0.26/0.40 1.15/0.99 3 85.4 4.3 10.3
DHFR
CoMFA 0.79 0.65 0.59 - 0.59/0.70 0.89/0.73 5 - - -
CoMSiA 0.76 0.63 0.62 - 0.52/0.63 0.96/0.81 5 - - -
RM1 CoMFA 0.81 0.67 0.44 0.73 0.42/0.55 1.04/0.91 4 17.7 82.3 -
Hyphar 0.72 0.63 0.53 0.78 0.53/0.56 0.94/0.89 5 36.2 38.8 25.0
GPB
CoMFA 0.84 0.42 0.43 - 0.42/0.37 0.94/0.70 4 - - -
CoMSiA 0.78 0.43 0.50 - 0.46/0.34 0.90/0.82 4 - - -
CoMFA (RM1) 0.88 0.43 0.36 0.85 0.51 0.89 4 24.4 75.6 -
Hyphar 0.83 0.54 0.42 0.75 0.71 0.68 3 52.0 2.7 453
THERM
CoMFA 0.94 0.51 0.55 1.54 0.60 1.26 7 - - -
CoMSiA 0.85 0.54 0.73 - 0.36/0.46 1.87/1.60 6 - - -
CoMFA (RM1) 0.90 0.46 0.33 1.57 0.51/0.66 1.39/1.18 5 255 74.5 -
Hyphar 0.84 0.49 0.41 1.51 0.67 1.13 4 37.9 255 36.6
THRY
CoMFA 0.86 0.59 0.36 - 0.54/0.73 1.59/0.56 4 - - -
CoMSiA 0.88 0.62 0.34 - 0.55/0.62 0.76/0.66 5 - - -
CoMFA (RM1) 0.89 0.59 0.33 0.64 0.45/0.58 0.86/0.82 5 16.0 84.0 -
Hyphar 0.87 0.64 0.37 0.59 0.53/0.56 0.79/0.74 4 37:5 41.7 20.8

TFor test sets compounds, statistical parameters (> and S) with (left) and without (right) outliers (i.e., compounds with residuals higher than 2.5-fold the standard deviation) are indicated.
The number of outliers for each system is reported in Supplementary Table 4.

t See [91] for a proper description of the molecular sets. Nc denotes the number of PLS components in the best 3D-QSAR model, and the terms Elec and Nonelec stand for the fraction (in
percentage) of electrostatic (logPele, i) and nonelectrostatic (logPcav,i) hydrophobic contributions to the final model.

*mol0088 (original file name mol-17) was excluded because it contains iodine atom.

Imol008s8 (original file name 82) was excluded due to problems with the input geometry.

ACE: 113 angiotensin converting enzyme; AChE: 111acetylcholinesterase; BZR: 147 ligands for benzodiazepine receptors; CoMFA: Comparative molecular field analysis; CoMSiA: Molecular
similarity indices in a comparative analysis; COX-2: 282 cyclooxygenase-2; DHFR: 361 dihydrofolatereductase; GPB: 66 glycogen phosphorylase b; THER: 74 thermolysin ; THR: 87 thrombine.
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Figure 2. Specificity (in green), sensitivity (in blue) and fall-out (in red) for RM1 CoMFA (left) and H2 (right) models
the test sets of the eight systems.

ACE: 113 angiotensin converting enzyme; AChE: 111acetylcholinesterase; BZR: 147 ligands for benzodiazepine
receptors; COX2: 282 cyclooxygenase-2; DHFR: 361 dihydrofolatereductase; GPB: 66 glycogen phosphorylase b; THER:
74 thermolysin ; THR: 87 thrombine.
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Figure 3. Spearman (Rs) coefficients for the first (Q1; in green), the second (Q2; in blue) and the third (Q3; in red)
quartiles for RM1 CoMFA (left) and H2 (right) models.

ACE: 113 angiotensin converting enzyme; AChE: 111acetylcholinesterase; BZR: 147 ligands for benzodiazepine
receptors; COX2: 282 cyclooxygenase-2; DHFR: 361 dihydrofolatereductase; GPB: 66 glycogen phosphorylase b; THER:
74 thermolysin; THR: 87 thrombine.

BZR and GPB should be excluded from the analysis. For the rest of molecular systems, both CoMFA (RM1) and
Hyphar models exhibit generally similar trends (Figure 2). The Hyphar model has a slightly better performance
in sensitivity /specificity and fall-out values for AchE, THERM and THR systems, whereas the opposite trend is
found for CoMFA (RM1) in ACE and COX2.

Finally, the ability of COMFA (RM1) and Hyphar models to rank the compounds according to their potency was
also examined (Figure 3). To this end, the Spearman (Rs) coefficient for the first (Q1; in green), second (Q2; in blue)
and third (Q3; in red) quartiles, which would encompass molecules with highest, medium and low activity /affinity,
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were determined for the test set compounds in each system. Although there is a notable resemblance in the general
trends obtained for COMFA (RM1) and Hyphar models, slightly better performances (higher Rs values) are observed
for Hyphar models, especially for compounds of higher activity/affinity (Q1/Q2), whereas the differences are less
pronounced for compounds in Q3, probably due to the larger noise associated with the biological activity low
active compounds.

Overall, the results obained for the benchmark systems reveal that the Hyphar descriptors yield 3D-QSAR
models with an overall performance that compares with the results obtained using standard CoMFA /CoMSiA.
Hyphar models also seem to be more effective in locating (high sensibility) and ranking (high Rs) true positives,
especially in regions of high and medium activity/affinity.

Final consideration & perspective

The concept of pharmacophore is essential to disclose the key features that dictate the interaction between ligand
and receptor. Hence, it represents an important tool to identify guidelines valuable in computer-aided drug
design, covering a variety of applications such as molecular similarity, VS, ligand optimization, scaffold hopping,
as well as modeling of ADME(T) properties and target identification. The descriptive and predictive power
of pharmacophores depends on the quality and adequacy of molecular properties used to disclose the hidden
relationship between activity and chemical structure. In the last decades, several strategies were developed to
derive descriptors capable of capturing the chemical features relevant for drug design, including the application of
descriptors derived from QM methods coupled to continuum solvation models.

Although fundamental for the activity of drug-like compounds, inclusion of lipophilicity as a major descriptor
has revealed more elusive, possibly due to the complexity of the chemical processes encompassed by this concept,
or the difficulty to find a rigorous formalism to reduce it to atomic contributions since lipophilicity reflects a
property of the whole molecule. In this context, it is worth stressing the efforts in deriving tools such as MLP [51]
and HINT (55,56], where the molecular lipophilicity was treated by means of empirical atomic contributions, and
hence enabling the analysis of the 3D-distribution of polar/apolar regions along the chemical scaffold to provide a
novel interpretation to the molecular determinants responsible of biological activity.

QM-based continuum solvation methods are a promising strategy for deriving 3D-descriptors, such as COSMO-
RS-based o-profiles [78-81] or MST-derived 3D-lipophilicity patterns [82,83,92,97-99], which in turn may be exploited
in computer-aided drug design. The set of studies reported up to now for a variety of benchmark datasets,
covering both measurements of molecular similarity for aligned compound or the derivation of 3D-QSAR models,
are encouraging. In general, the statistical performance of these QM-based descriptors compares well with the
results obtained from classical approaches, generally combining electrostatic and steric fields, as illustrated in the
comparative analysis reported here for the sets of compounds considered by Sutherland and coworkers [95]. At least
in part, this may be due to the limitations of electrostatic/steric descriptors for describing enthalpy and entropy
contributions to the binding affinity. On the other hand, QM-based approaches permit to account directly for the
specific features of the bioactive species of the ligand, including effects attributable to ionization, tautomerism or
the specific conformation, which may be advantageous compared with generic descriptors derived from empirical
contributions. These computational approaches benefit from the usage of lipophilicity, a property widely used in
drug design, easy to interpret by medicinal chemists and linked to a physicochemical property that can be measured
experimentally. Through partitioning of the molecular lipophilicity into atomic contributions, novel fractional
models that account for the 3D-lipophilicity pattern of compounds can then be exploited in computer-assisted
drug design.

Overall, the analysis of structure—activity relationships in terms of the lipophilic/hydrophilic balance may provide
auseful signature to complement studies performed with electrostatic/steric properties. In this sense, the QM MST-
based hydrophobic descriptors are valuable in predicting molecular overlays and elucidating molecular similarity
patterns. The higher descriptive quality of these descriptors could thus offer interesting clues in searching for novel
bioactive compounds, especially for challenging targets.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/full/
10.4155/fmc-2018-0435
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Executive summary

e All biological and biochemical processes are driven by the general concept of host-guest complementarity.
Accordingly, an essential but effective description of the ‘guest’ is required for a successful prediction of ‘host’
recognition.

e The pharmacophore concept is a fundamental cornerstone in drug discovery, as it accounts for the common
interaction features of a group of compounds toward their target structure, playing a critical role in determining
the success of in silico techniques.

e Optimized descriptors able to model both pharmacokinetics and pharmacodynamics properties in drug design are
not easily achievable, and the use of suboptimal physicochemical parameters may be a more effective strategy.

e Besides the relevance in predicting ADME(T) properties, lipophilicity exerts a pivotal role in accounting for the
maximal achievable affinity that can be attained between ligand and receptor.

e The usage of lipophilicity descriptors may offer novel opportunities to disclose the underlying relationships
between chemical features and biological activity. In this context, the availability of refined version of QM-based
continuum solvation models may be an effective strategy for deriving novel descriptors well suited for drug
design.

e In 3D-QSAR studies, the Miertus-Scrocco-Tomasi-derived Hyphar descriptors have been shown to provide models
for structure-activity relationships with a predictive accuracy comparable to COMFA/CoMSiA techniques based on
electrostatic/steric parameters.

e The Hyphar descriptors are also a valuable alternative for molecule superposition and virtual screening of
chemical libraries, especially for targets that may be challenging for predictive molecular similarity techniques.

e The availability of ‘polar’ and ‘non-polar’ fractional descriptors obtained from Miertus-Scrocco-Tomasi-based
continuum solvation models may be valuable to explore the molecular determinants of bioactivity, providing
complementary interpretations to classical descriptors in the rational design of novel compounds.
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Computational details of 3D-QSAR (CoMFA, CoMSIA, Hyphar) models.

CoMFA/CoMSiA models determined by Sutherland and coworkers [S1] relied on molecular geometries
obtained by energy minimization with the MMFF94S force field in Sybyl [S2]. Electrostatic potential-fitted
(ESP) charges were determined using the semiempirical MNDO method [S3], but for compounds in the
THER set, where Gasteiger-Marsili partial charges [S4] were adopted. Aligned compounds were enclosed
in a2 A-spaced grid with boundaries set to 4 A around the molecules. The “minimum c” value for removing
descriptors with low variance was set to 2.0 for CoMFA and 1.0 for CoMSiA.

The Hyphar model was derived using PharmQSAR® and the same molecular alignment defined in ref. S1.
Atomic “polar” (log P, ;) and “non-polar” (log P, ;) hydrophobic contributions were obtained from MST
continuum solvation calculations coupled to the semiempirical Hamiltonian RM1 [S5]. In addition, a third
field that accounts for the HB donor/acceptor character of polar atoms was included as described in Ref.
S6. The aligned molecules were enclosed in a 1 A-spaced grid with boundaries set to 4 A around the
molecules. The similarity index function implemented in CoMSiA [S7] was applied to project the atomic
contributions. PLS statistical analysis based on the NIPALS algorithm was performed to evaluate models
robustness. In this regard, each projected field was stored in a MxNg matrix (M is the number of molecules
and Ng is the number of grid points). Field values were then centered, scaled to unit variance and columns
with a standard deviation lower than a certain threshold (typically 0.1-0.01) were excluded. The best Hyphar
model, in term of number of PLS components, was identified in accordance to the lowest standard deviation
error in prediction (Spress) corrected by the degree of freedom of the model and the predictive ability of
the model for the test set (+°). The effect of outliers on the predictive performance for the test set was also
examined.

Finally, for the sake of comparison, PharmQSAR® was also used to derived an additional CoMFA model,
named CoMFA (RM1), which was obtained by combining the electrostatic field determined from the RM1
ESP partial charges in conjunction with an steric field obtained from the Lennard-Jones potential interaction

energies with a positively charged C.3 atom probe.



Table S1. Details about pre-compiled sets in Ref. S1.
System * Training Test Set Activity Range Activity
Set (Internal (Training set) ¢ Range (Test
validation) set) ©
Angiotensin converting enzyme 76 37% 2.14-9.88 2.70-9.94
(ACE)
Acetylcholinesterase (AChE) 74 37 4.28-9.52 427-922
Benzodiazepine (BZR) 98 49 6.34 -8.92 5.52 -8.85
Cyclooxygenase-2 (COX-2) 188 94 4.03-9.00 4.03 -8.70
Dihydrofolate reductase (DHFR) 237 124 3.30-9.81 3.57-9.40
Glycogen phosphorylase b (GPB) 44 22 1.30-5.50 1.40 - 6.80
Thermolysin (THERM) ™ 59 15 0.52-10.17 2.51-7.73
Thrombine (THR) 59 28" 4.57-8.48 4.36 —8.38

* Compounds defined as “inactives” in Ref. S1 were excluded from this study.

** Partition in training-test sets made according to Ref. S7.

2 mol0088 with original file name “meol_17”, was excluded because it contains iodine atom.

® mol0088 with original file name “82” was excluded from the calculations due to problems with the input geometry.

¢ Experimental data for ACE, AChE, BZR, COX-2, and DHFR sets are in pICso units. Experimental data for GPB, THERM and
THR sets are in pK; units.

Table S2. Details of grid and field projections for sets reported in Table 1.

Set Grid step size Box Extension Radius probe Grid points
ACE 1.0 4.0 1.52 18009
AChE 1.0 4.0 1.52 17472
BZR 1.0 4.0 1.52 11440
COX2 1.0 4.0 1.52 10488
DHFR 1.0 4.0 1.52 12144
GPB 1.0 4.0 1.52 10488
THERM 1.0 4.0 1.52 18720
THR 1.0 4.0 1.52 14300

* All grids use C.3 probe atom with charge +1, a grid step size of 1.0 A, a box extension of 4.0 A, and a probe radius of 1.52 A.

Table S3. Grid dimensions for CoMFA (RM1) and Hyphar models calculated in this study.

ACE AChE BZR COX2 DHFR GPB THERM THR
X min -10.46 -10.62 -11.42 14.03 4.72 -10.68 -9.30 -5.66
X max 15.54 12.38 13.58 37.03 26.72 12.32 15.70 19.34
y min -14.92 51.29 -8.97 14.56 -4.29 -8.07 -17.76 -16.93
y max 13.08 76.29 12.03 32.56 16.71 9.93 11.24 4.07
Z min -10.21 54.07 -8.14 4.65 -1.03 -7.24 -12.30 -0.79
Z max 11.79 81.07 10.86 26.65 21.98 14.76 10.70 23.21




Table S4. Number of outliers in the test set.

ACE | AChE | BZR | COX2 | DHFR | GPB | THERM | THR
CoMFA/CoMSIA *
1 1 [ 3 ] s 1 e | 1 ] 1 | 1
CoMFA (RM1)
3 | 2 [ v [ 5 1 5 | o | 3 | 1
Hyphar
s [ o [ 1 ] 5 [ 1 ] o ] 0 | 1

* Number of outliers for COMFA/CoMSIA models taken from Ref. S1.

Table S5. Number of positives (P), negatives (N), true positives (TP), true negatives (TN), false
positives (FP), false negatives (FN) for each molecular system. A threshold of 6.0 to the pICso/pK;
value was applied to classify compounds of each test set.

| P|N| TP [ TN ]| FP | FN
ACE
CoMFA(RMI1) 19 18] 9 17 1 10
Hyphar 19 18] 9 15 3 10
AChE
CoMFA (RM1) 280 9 | 28 4 6 0
Hyphar 28 1 9 28 5 5 0
BZR
CoMFA (RM1) 4511 | 44 0 1 1
Hyphar 45 | 1 45 0 1
COX2
CoMFA (RM1) 61 |32 ] 55 7 25 6
Hyphar 61 [32] 60 5 27 1
DHFR
CoMFA (RM1) 59 165] 54 | 42 | 23 5
Hyphar 59 165] 54 | 42 | 23 5
GPB
CoMFA (RM1) 1 [21] 0 21 0 1
Hyphar 1 |21 0 21 0 1
THERM
CoMFA (RM1) 718 4 6 2 3
Hyphar 7 18 6 8 0 1
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Abstract

In structure-based (SB) virtual screening (VS), a scoring function is usually applied to rank a database of
screened compounds. Docking programs are generally successful in reproducing the experimental binding
modes, but the scoring functions still present serious limitations to provide an accurate estimate of the
binding affinity. The combination of SB and ligand-based (LB) 3D similarity may be a promising strategy
to increase hit rates in VS. Here, we propose a combined method to solve the limitations of both VS
approximations that balances both the docking score with the similarity between compounds and a reference
ligand. In this work, the similarity is determined through an atom-based description of the 3D distribution
lipophilicity map determined calculations performed with the MST continuum solvation model. Different
strategies have been explored to combine the information provided by docking and similarity measurements
to obtain an improved ranking score. For a benchmarking of 44 data sets, including 41 targets, the proposed
methods increase the identification of actives compounds in the early stage (ROCe%) and total (AUC)

performance of VS compared to pure LB and SB methods in isolation.

Key words

Virtual screening, Compound ranking, Molecular docking, Binding mode, 3D similarity, Protein-ligand

interactions






INTRODUCTION

Structure-based (SB) and ligand-based (LB) approaches have been widely used in virtual screening (VS)
processes in computer-aided drug design.’? SB techniques encompass methods that exploit the structural
information of the macromolecular target, enabling the study of the binding mode of drug-like compounds.
Thus, they rely on the availability of precise three-dimensional information of the structural arrangement
of atoms in the target protein, particularly regarding the geometrical and physicochemical properties of the
residues that shape the ligand binding cavity. This information can be determined experimentally (X-ray
crystallography, nuclear magnetic resonance, or cryo-electron microscopy), or through computational
methods (homology modeling or molecular dynamics)3#. The most accepted and extensively applied SB
technique is molecular docking, which predicts the preferred orientation of a drug-like compound, often
supplemented with pharmacophoric constraints, and the search for hits in VS of fragment and compound
libraries. On the other hand, LB refers to a diverse group of strategies, which primarily disclose similarity
relationships between molecular descriptors without the need for structural information of the target. The
similarity principle property (SPP)® relies on the concept that similar compounds should have similar
properties. Under this framework, a wide variety of methods have been developed with the aim to find
structure-activity relationships, derive pharmacophores that may rationalize the activity of compounds, and
the application of similarity measurements to the search of novel chemical scaffolds .58

Many efforts have been dedicated to improving the accuracy and predictive power of both LB- and
SB methods, which are limited by several challenges. On one side, besides the lack of precise structural
information of the target, LB methods are limited by the quality of the descriptors used to characterize the
chemical features of compounds, the consistency and chemical diversity of the training set, and the
mathematical formalism that underlies the measurements of similarity between molecules. On the other
hand, SB methods may be affected by the limited accuracy of the 3D geometrical data, the involvement of
different conformational states, often induced by specific ligands, of the target protein, or the assistance of
structural waters in mediating ligand binding. Even in the case of well-defined structural models of the
target protein, the predictive power of SB techniques may be affected by the use of oversimplified scoring
functions, which provide a rough approximation to the balance between enthalpic and entropic
contributions to the ligand-target interaction, and the exhaustiveness of the sampling search, which may
lead to a substantial computational cost for VS applications.®

In this context, the combination of LB and SB methods may be a valuable synergistic strategy to
exploit the structural and chemical information available for the target biological system, and to minimize
the bias due to the intrinsic deficiencies of both methods.1%2 In fact, the combination of LB and SB methods
has been reviewed by Drwal and Griffith,2 who classified the combined approaches into three categories:
sequential, parallel, and hybrid approaches. The sequential approach splits the screening process into
various steps to overcome the expensive computational cost of the SB approach. Accordingly, a prefiltering
step is performed at the beginning of the VS using less expensive LB techniques, and the retrieved hits are

subsequently evaluated using molecular docking.'*8 In the parallel approach, LB and SB methods are run



independently, and then the results are merged to obtain a mixed ranking.®"-1 Finally, hybrid approaches
integrate 3D ligand information and SB in one independent system. The most common approach consists
of translating protein-ligand interactions from SB tools into pharmacophore features to be used in LB
algorithms. These approach has been demonstrated successfully in VS? and for profiling purposes?.
Alternatively, in other hybrid protocols the similarity between the docked compounds (SB) and a known
crystallographic ligand (LB) is computed to re-score the docking outcome.!??? This protocol directly
addresses the docking scores limitations, but only a few validation studies have been reported.*%

Most of these methods were born to improve the discrimination capacity between active and
inactive molecules. To attain this objective, an accurate scoring and ranking function must be defined.
However, the scored output produced by docking tools is not always the best way to select compounds and
rank them.?82” This work aims to explore parallel and hybrid approaches throughout the combination of
molecular docking and 3D similarity based on the comparison of fractional descriptions of the 3D
lipophilicity distribution pattern of molecules derived from quantum mechanical (QM) continuum solvation
models.?-3 In particular, we evaluate the suitability of a hybrid method that takes advantage of data fusion'®
techniques to re-rank the docked poses with 3D similarity.

METHODS

Test dataset. The performance of VS methods is highly sensitive to the set of compounds. Therefore, a big
and diverse number of receptors should be taken into account in order to include cases were different tools
work better. For our purposes here, the Directory of Useful Decoys (DUD; http://dud.docking.org/)*? has
been used. Although DUD is suitable to address the weaknesses of docking methods, LB methods can
easily account for the differences between actives and inactives®. For this reason, the subset of DUD
proposed by Good and Opera called DUD_LIB_VS_1.0*-% has been chosen, as this specific dataset was
conceived with the aim of avoiding an overestimation of the performance of LB methods. A lead-like filter
and clustering algorithm was applied to eliminate large molecules with inappropriate physicochemical
properties and to reduce the artificial bias between structural analogs and actives during the enrichment
test.3"38 Additionally, four sets taken from DEKOIS V2.0 (http://www.dekois.com)*, which was specially
compiled to evaluate combined LB and SB methods,?® were also considered.

The DUD_LIB_VS_1.0 set contains known actives and mimetic*®® decoys for 40 target proteins
downloaded from the DUD website. The second set is made up of the DHFR, GR, HIV1PR, and VEGFR2
benchmarking sets directly extracted from DEKOIS V2.0, a subset previously used to test combinatorial
approaches.** In this benchmark, each different set has the same size and the same number of active ligands,
selected from BindingDB.*> For ease of reading, DUD_LIB_VS 1.0 will be referred to as BS1
(benchmarking set 1), and the subset of DEKOIS 2.0 as BS2 (benchmarking set 2). Since there is an overlap
between BS1 and BS2 targets, a suffix (BS1/BS2) is added to each target name. A detailed description of

the original datasets is provided in tables S1 of the Supporting Information.


http://dud.docking.org/
http://www.dekois.com/

Ligand Preparation. In this study, two complementary aspects of ligand-receptor interactions were
analyzed: the (de)solvation contribution using the MST-derived lipophilicity descriptors implemented in
PharmScreen,* and the ligand fit into the binding site, which was examined using Glide.*4¢

To obtain an initial 3D conformation, the geometry of all ligands was minimized using the
semiempirical Hamiltonian RM1474® using a locally modified version of MOPAC.** The hydrophobic
descriptors used in the LB method were obtained by using the RM1-parametrized version of the MST
solvation model.”® The parameterization of MST/RM1 provides accurate estimates of the solvation free
energy for neutral molecules. However, the treatment of ionic compounds is more delicate due to the high
dependence between the scaling factor used to modulate de electrostatic boundary between solute and
solvent and the nature of the ionizable group.*® Therefore, all compounds were modeled considering a
neutral state. MolVS®, a standardization tool written in Python using the RDKit%! chemistry framework,
was applied to neutralize the protonation states. Tautomerism was not modified. To explore the
conformation space, 100 conformations for each database ligand were calculated using RDKit®!. For the
SB approach, tautomerism and the ionization state from the original sets were not modified.

Protein Preparation. A target was picked for each ligand set to perform the SB analysis. For BS1, all 40
targets were obtained from the DUD Web site (DUD release 2). The original waters and co-factors retained
for each protein target were maintained. For BS2, the targets were obtained from the Protein Data Bank
(PDB)®2. The protocol to preserve waters and co-factors in this set was the one reported by Anighoro and
Bajorath?. All the structures were prepared using the “Protein Preparation Wizard” module in Maestro. A

detailed description of the targets is provided in Supporting Information Table S1.

Query Preparation. The query structures chosen to perform the similarity search in the LB analysis are the
same as reported in previous works. 2353853 Tg achieve LB similarity in BS1, the queries selected were the
same as proposed by Huang et al.*® and used later in the validation of LB tools®*® The structures were
downloaded from DUD Web site (DUD release 2). For BS2, the same co-crystallized ligands used by
Anighoro and Bajorath® were extracted from the PDB (Table S1).

Ligand-Based VS. PharmScreen was used as the LB virtual screening tool with all settings left at the default
configuration. This methodology exploits the partitioning of lipophilicity into atomic contributions within
the framework of continuum solvation models in conjunction with the hydrogen bond distribution.*®* The
calibration of the field weighting was achieved using a training set that consists of 14 molecular systems®®-
%8, The largest accuracy was reported for weighting factors of 15 (electrostatic contribution to logP), 55

(non-electrostatic contribution to LogP), and 30 (Hydrogen bond).*?

Structure-Based VS. Both HTVS and SP modes were used in Glide as the SB virtual screening tool. The

receptor grids were centered on the molecule selected as the query in the LB method. Grid dimensions were
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defined as default except for BS2 where the sizes conform to the indications set in the reference paper?.
The general van der Waals radius-scaling factor was reduced (default: 1.0, modified to 0.9) to decrease the
number of rejected molecules. The remaining settings in the grid generation were left at the default values.
With the same objective, the cutoff of Coulomb-van der Waals energy and H-bond score was virtually
disallowed for the docking job (default: 0.0, modified to 1000). Even with these changes, some molecules
were rejected in docking calculations with Glide and they were excluded in the analysis of the results

obtained for BS1 and BS2. A list of discarded molecules is reported in Supporting Information Table S1.

Protocols applied to Combine LB and SB methods. Three different protocols were tested for the
combination of LB and SB methods, namely, parallel ranking, rescoring ranking, and consensus ranking.

The first protocol pertains to the parallel combination category,®® where the output rankings
obtained from separate LB and SB screenings are merged to create the final ranking. With the aim to treat
both methods with equal parity, the first molecule of SB ranking and the first molecule of LB ranking will
occupy the first and second position (or vice versa) of the final parallel ranking (PR). Between this pair of
molecules, the first will be the compound with the lower sum of both ranking positions. Accordingly, the
molecules ranked second for each method would be re-ranked third and fourth, and so on until all molecules
are reordered.

The other two protocols fall into the hybrid category.®® The rescoring ranking (RR) protocol
generates a ranking based on the scores of a 3D similarity method? using the alignment obtained by the SB
approach. Finally, the consensus ranking (CR) is based on the combination of the SB (docking) ranking
and the RR, following the protocol formulated in parallel ranking.

The Tanimoto coefficient and Tversky coefficient®® were used to score the docked poses in both
RR and CR. None of these methods require any prior knowledge or input other than the results from the

single methods and, thus, are directly applicable.

Performance Evaluation. Receiver Operator Characteristic (ROC) curves and Area Under the ROC Curve
(AUC) were used as the metrics to assess the performance of the three SB+LB re-ranking strategies.t*52
On the other hand, the ROC enrichment factor (ROCe, Eq. 1) captures the performance at a given
percentage of the poses at the top of the ranking,.

X%
Nactivels selected TPTPFN Sensitivity
N total actives +
ROCe X% = = = 1
e X% NX% FP 1 — specificity @

decoys selected

N total decoys TN +FP
ROCe values at false positive rates of 0.5%, 1.0%, 2.0%, 5.0% are reported as suggested by Jan
and Nicholls.% Both metrics ~AUC and ROCe- were used to validate the combination strategies.

In addition, chemotype clustering analyses was included in our evaluation throughout the awROCe



values®, Eq.2. This parameter was determined taking into account the same percentages adopted for ROCe.

Nclusters Nj X%

2 2 wijai;

awRO0Ce X% = xI:i) clusters @
decoys selected

N total decoys

where w;; = Ni is the weight of the it" structure from the j" cluster, N;is the number of structures in a given
J

% - - - - -
cluster, af‘j is 1 or 0 depending on whether the ith structure of the j* cluster already (respectively) appeared
or not in the chosen fraction of the dataset. With this solution the value of the true positive hit is weighted

depending on the cluster to which it belongs to and on the number of molecules in the cluster.
RESULTS AND DISCUSSION

The results obtained from the VS are reported in Table 1, which shows the average ROCe in the top 0.5%,
1%, 2% and 5% and the average AUC (results for individual sets are provided in Sl, Tables S2 and S3).
The comparison of these parameters permits to assess the performance of the three combination strategies
(PR, RR, and CR) considered in this study. The results in Table 1 are obtained using the SP mode of Glide
considering the two similarity metrics (Tanimoto and Tversky). The analysis of the results obtained for
Glide using the HTVS mode, where the poses are expected to be less accurate, are reported in Sl (Table
S2) and discussed later. Furthermore, the awROCe metric was employed to evaluate the impact of structural

analogues in early enrichment.

Table 1. AUC and ROCe metrics for PharmScreen, Glide SP, and the three combination strategies (PR, RR, CR).

GLOBAL PARTIAL
SIMILARITY SIMILARITY
Pharm Glide PR RR CR RR CR
Screen SP
BS1 | ROCE 335 283 37.3 32.9 32.2 43.1 43.1
0.5
ROCE 21.2 1838 24.0 22.0 22.7 27.5 27.9
1
ROCE 125 123 15.4 13.0 145 17.0 175
2
ROCE 6.6 6.8 8.2 6.7 8.0 8.5 9.5
5
AUC 0.66 0.74 0.77 0.71 0.76 0.76 0.8
BS2 | ROCE 17.7 34.6 30.8 38.6 41.4 32.8 39.0
0.5
ROCE 105 20.6 22.0 22.6 30.6 16.4 28.0
1
ROCE 84 126 14.4 13.3 18.1 11.3 17.1
2
ROCE 6.6 7.1 8.6 7.1 9.4 6.2 9.0
5
AUC 0.72 0.72 0.81 0.73 0.77 0.73 0.78




Assessment of the combination strategies derived using global similarity. For BS1, the three combination
strategies lead to a slightly higher performance compared to either PharmScreen or Glide (Table 1) when
the global similarity measurement is used. Different trends are, however, observed for the BS2 dataset,
where the combined approach improves both ROCe and AUC, especially for the CR.

Even though the average trends using global similarity do not show a remarkable difference in the
overall performance, significant differences can be found for individual members of the dataset (see Sl
Tables S2 and S3), as can be found in the results obtained for BS2. In this case, CR leads to a remarkable
improvement in both ROCe and AUC compared to PharmScreen and Glide. On the other hand, RR
performs better than PR in recovering actives in the initial stages of the VS. Furthermore, the improvement
found PR is challenged by the higher computational cost required for this method.

The analysis of the average trends masks the occurrence of significant improvements observed for
individual targets. This is illustrated by the behavior observed for DHFR_BS2. In this target, a narrow and
deep pocket defines a single binding mode, which is shown in Figure 1. Moreover, the query and 24 hits
share in their structure a pyrido[2-3]pyrimidine ring, which is able to form 3 hydrogen bonds with 3 amino
acids (GIu30A, lle7A, and Val115A)% settled at the bottom of the pocket, thus favoring the definition of
a unique specific binding mode. Thus, the query and most of the docked hits show a high overlap (see
Figure 1). These conditions are ideal for the application of the RR protocol. Let us note that for DHFR_BS1,
which shares the biological target with DHFR_BS2, RR also performs better than the rest of the methods,
as noted in the fact that ROCe 0.5% increased from 25.6 for Glide SP to 76.9 for the RR method (S| Table
S2).

Figure 1. Binding mode of DHFR (PDB code: 1kmv, green), co-crystallized reference molecule (green), docked molecules with a
pyrido[2-3]pyrimidine ring using Glide (cyan).

Conversely, Trypsin_BS1 presents an open and superficial pocket, where a significant part of the

crystallized ligand is exposed to the solvent (Figure 2). In this case, the ligands exhibit a higher diversity

in their binding mode to the pocket, and hence RR, which computes the similarity from the crystallized



ligand, performs worse. Nevertheless, the challenges posed by the existence of multiple binding modes are
solved by the use of CR, which appears to be a suitable strategy to correct the limitations of either docking

and similarity measurements.

Figure 2. Binding mode of beta-trypsin (PDB code: 1bju, purple), co-crystallized reference molecule (green), docked molecules
using Glide (cyan).

Although the preceding results give support to the adoption of the RR method, there are cases where
this strategy leads to a negligible improvement in the re-ranking of compounds. This is exemplified by
COMT_BS1, which also exhibits a large solvent-exposed pocket (Figure 3A). In this case, RR is not able
to account for the existence of multiple binding modes. Two causes have been identified: (1) the results
obtained with Glide are not high enough to enhance RR, and (2) although the molecules of this set share
the same binding mode, the different size between five actives (ZINC03814485, ZINC00392003,
ZINC03814484, ZINC00021789, and ZINC00330141) and the crystallographic reference penalize the 3D
similarity evaluation (Figure 3B). None of them is re-ranked above 5% of the ranking.

Figure 3. Left, binding mode of catechol O-metiltransferasa (PDB code: 1h1d, blue), co-crystallized reference molecule (green),
docked molecules using Glide (cyan). Right, reference molecule (green, co-crystallized structure BIA) and 5 docked ligands of
COMT set (ZINC03814485, ZINC00392003, ZINC03814484, ZINC00021789, and ZINC00330141) by Glide (cyan) in the



binding site of catechol O-metiltransferasa (blue). 5 possible hydrogen bonds are reported between the reference and lysine 144,
asparagine 170 and glutamine 199.

In summary, the results point out that CR is the combination strategy that recovers more actives.
However, the performance may be limited by the constraints imposed by measurements of global similarity
against the reference compound, besides the potential influence exerted by the occurrence of different

binding modes for the set of ligands.

Influence of partial similarity on the performance of hybrid approaches. The usage of a partial
similarity measurement, such as Tversky coefficient, can offer a suitable tradeoff to alleviate the impact of
the preceding problem and improve the performance of hybrid approaches.

Table 1 shows the ROCe and AUC values obtained from the application of a partial similarity coefficient
(the results for all sets are reported in SI Table S3). The RR leads to a notable increase in both ROCe and
AUC when the Tversky coefficient is used for most BS1 sets, even improving the behavior observed for
PR but at a much lower computational expensiveness. As an example, let us note that 4 out of 5 hits
(ZINC03814485, ZINC00392003, ZINC03814484, and ZINC00330141) showed in Figure 3 are rescored
within 1% of the ranking using partial similarity measurements. In addition, Figure 4 shows the hits found
in the ROCe 0.5% using the Tversky coefficient for SRC and PPAR_gamma, which is contrast with the
lack of actives in these early enrichments when the global similarity (Tanimoto) metrics is considered.
Accordingly, the performance of the CR also exhibits an improved performance, outperforming the ranking
obtained from Glide SP in both BS1 and BS2 datasets. With this enhancement, CR coupled to partial
similarity measurements becomes the best performing protocol for recovering actives among the

combination strategies.

Figure 4. Left, binding mode of tyrosine kinase (PDB code: 2src, green), co-crystallized reference molecule (cyan), and docked
hits using Glide in the ROCe 0.5% (cyan). Right, binding mode of peroxisome proliferator-activated receptor gamma (PDB code:
1fm9, green), co-crystallized reference molecule (cyan), and docked hits using Glide in the ROCe 0.5% (cyan).

As a final remark, it is worth examining in more detail the results obtained for BS2. Compared to
the results reported using global similarity, slightly lower average values are obtained using partial

similarity, as noted in the decrease of ROCe 1% from30.6% to 28.0. This is primarily due to the results



obtained for HIV1IPR_BS2 and GR_BS2, whereas there is generally an improvement for DHFR_BS2 and
VEGFR2_BS2 (Sl Table S3 and S4). A detailed analysis showed that some decoys positioned in the lower
part of the ranking discarded by Tanimoto coefficient are shifted to the top when similarity is evaluated
with the Tversky coefficient. Thus, for HIVPR_BS2, 16 out of 18 first decoys (ROCe 1%) using local
similarity are ranked lower than position 95 with global similarity. Similarly, for GR_BS2, 7 out of 14 first
decoys (ROCe 1%) using Tversky coefficient are ranked lower than position 70 with Tanimoto metrics.
This behavior, which primarily arises from the comparison of molecules with notable differences in their
size, is shown in Figure 5, which displays two representative decoys for RR using the local similarity for
HIV-1 protease and glucocorticoid receptor.

Globally, CR in combination with local similarity measurements outperforms all other methods,
although RR may occasionally give slightly improved results for specific targets.

Figure 5. Left, binding mode of HIV-1 protease (PDB code: 3nu3, green), co-crystallized reference molecule (cyan), and docked
hits using Glide in the ROCe 0.5% (cyan). Right, binding mode of glucocorticoid receptor (PDB code: 1nhz, green), co-crystallized
reference molecule (cyan), and docked hits using Glide in the ROCe 0.5% (cyan).

Robustness assessment. To further analyze the performance consistency, heatmaps of the hierarchical
position of each approach among the others for ROCe 1% and AUC are reported in this section (the
remaining metrics are presented in SI Figures S1 and S2). Figure 6 and 7 shows the comparison of the
combination methods using local similarity, which returns an increase in the performance against pure
PharmScreen and Glide SP methods. Figure 6, corroborates the better performance of CR, showing higher
robustness in addition to higher performance. In particular, Figure 7, which compares CR directly with
PharmScreen and Glide SP, shows that CR is never ranked third for ROCe 1% and only in one case for
AUC, giving support to the combined use of LB and SB rankings. Thus, CR improves clearly the results

offering a balanced alternative to standard VS methods.
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Figure 6. Heatmap of the hierarchical position of all methods for ROCe 1 % and AUC. The color scale is indicative of the position,
being the first green and the fifth red.
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Figure 7. Heatmap of the hierarchical position of CR with local similarity against PharmScreen and Glide SP performance for
ROCe 1% and AUC. The method ranked first is shown in green, the second in black and the third in red.

Finally, the effect of global versus local similarity measurements in CR is shown in Figure 8 (see
Sl Figure S3 for the analysis of the remaining metrics). Contrary to what is observed in the average
performance value of Tablel, for BS2 (last 4 sets), only 2 sets perform better using Tanimoto coefficient
than Tversky metrics (ROCe 1% and AUC).
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Figure 8. Heatmap of the hierarchical position of CR using global (Tanimoto) and local (Tversky) similarity measurements for
ROCe 0.5% and AUC. The method ranked first is shown in green and the second in red.

Comparison of Combined HTVS methods against Glide SP. Finding a balance between computational
efficiency and accuracy in predictions is a relevant aspect to be considered in VS. In this section, the
influence of using the Glide HTVS score on the performance of combined protocols is evaluated and
compared with the results discussed above for Glide SP.

In general, the combined methods derived from Glide SP perform better (see SI Tables S2 and S3).
However, similar trends can also be observed for Glide HTVS. If a global similarity coefficient is used
(Tn), PR and CR return a better performance and robustness (S| Tables S4) than the other methods for BS2.
However, unlike SP, since the lower values of Glide HTVS affect CR, the performance values reported by
RR are the highest for BS2. When local similarity is used, CR is found to be the best option in terms of
performance for BS1. However, CR performance falls below PR for BS2 in all average metrics.

Finally, the performance of combined HTVS approaches is compared with Glide SP to determine
if similar results are obtained with a considerable time reduction. Table 2 suggests that combined methods
emerged from HTVS in combination with partial similarity overcome Glide SP results.

Table 2. AUC and ROCe metrics for Glide SP and the three combination strategies (PR, RR, CR) derived from Glide HTVS.

GLOBAL PARTIAL
SIMILARITY SIMILARITY
Glide PR RR CR RR CR
SP
ALL | ROCE 320 35.6 30.2 3.7 393 401
DATA | 05
SETS | ROCE 202 23.9 18.6 207 245 243
1
ROCE  12.1 15.3 11.3 132 140 152
2
ROCE 6.6 7.9 6.0 7.0 7.8 7.8
5
AUC 07 0.8 0.7 0.7 0.7 0.7
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Chemotype diversity analysis. To ensure the chemical diversity of hits founded, a weighting scheme based
on the ROC metric following ligand clustering is applied®. Since this analysis requires a clustered set,
DUD_LIB_VS 1.0,5” BS1 is the only benchmark employed in this section. Table 3 shows the average of
awROCe at different percentages for PharmScreen, Glide SP, and the best combined method, CR with local
similarity. The results point out that the latter achieved the best overall performance in chemotype
enrichment, in line with ROCe values. In addition, the heatmaps of robustness for the awROCe 1% and 5%
are reported in Figure 10. Individual values and heatmaps at all percentages are shown in S| Tables S4 and
S5. For none of the percentages studied more than two sets are classified in third position using CR with
local similarity (Figure 10 and Sl Figure S5). The improvement of chemotype enrichment (awROCe) using

CR corroborates the synergy between LB and SB, apart from the bias of similar chemotypes existence.

Table 3. awROCe metrics for Glide SP and the three combination strategies (CR) derived from Glide SP.

PharmScreen Glid SP CR

BS1 | awROCe 26.4 29.3 41.4
0.5
awROCe 17.4 19.4 26.0
1
awROCe 10.3 11.8 11.6
2
awROCe 5.9 6.6 8.9
5

awROCe 1% awROCe 5%

Figure 10. Heatmap of the hierarchical position of Consensus Ranking using Tv among PharmScreen and Glide SP performance
for awROCe 1% and 5%. The method ranked first is shown in green, the second in black and the third in red.



CONCLUSIONS

Since (de)solvation is fundamental for the establishment of the ligand-receptor complex, it can be expected
that ligands docked in the same pocket share lipophilic characteristics which are complementary to the
residues that shape the binding pocket, even if there are several binding modes. Thus, lipophobicity
similarity is hypothesized as a valid scoring function for discerning between active and inactive compounds.

In this work, we have explored three alternatives to combine topological distribution of LB-
lipophilic similarity and SB approaches. The fusion of 3D similarity and docking output was based on the
idea that deficiencies in one method would be compensated for by others, inspired by the “consensus
scoring”® in the docking field. To address the proposed approaches, a proof-of-concept investigation was
carried out. For 44 data sets, including 41 targets, 3D similarity and docking score performance was
compared against the combined methods.

The results show that combined protocols are a valuable tool in VS. Combined ranking reduces the
dependency on single VS method performance as well as having the potential to outperform the best single
method used. We show that, on average, 44 data sets investigated herein, combined methods recover more
active compounds than individual LB and SB tools. Among the proposed protocols, CR using partial
similarity has the best average performance in recovering actives in the data sets, but both RR and PR also
have good performance.

An essential feature of the combined methods introduced herein is that 3D similarity calculations
are independent of the generation of docking poses. Hence, any existing ranking can also be re-evaluated
based on 3D similarity calculations relative to experimental binding modes.

These findings support the usefulness of LogPee/LOgPca/HB as driver descriptors in molecular

similarity studies in promoting their use in virtual screening campaigns in combination with SB techniques.
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Table S1. List of targets included in BS1 and BS2. In brackets the number of hits discarded.

Target PDB Decoys Ligands Discarded Discarded Discarded Total
code htvs Sp Htvs + sp molecules
BS1 | ace 1086 1796 46 10 1 10 1832
ache leve 3859 99 32 15 34(2) 3924
ada 1stw 927 23 4 2 6 944
alr2 1lah3 986 26 11 2 12 1000
ampc 1xgj 786 21 10 3 11 796
ar 1xq2 | 2848 69 111 38| 118(1) 2799
cdk2 1ckp | 2070 47 31 4 33(1) 2084
comt 1lhld 468 11 1 0 1 478
cox1 1p4g 910 23 0 0 0 933
COX2 1cx2 | 12606 212 215 54 238(2) 12580
dhfr 3dfr 8350 190 82 14 94 8446
egfr 1ml17 | 15560 365 106 21 116 15809
er_agonist 112i 2568 63 44 25 59 2572
er_antagonist 3ert 1058 18 55 5 59(3) 1017
fgfrl lagw 3462 71 30 12 33 3500
fxa 1fO0r 2092 64 19 19 19 2137
gart 1c2t 155 8 2 0 2 161
gpb 1a8i 2135 52 24 6 32(1) 2155
gr 1m2z 2585 32 225 225 225 2392
hivrt 1rtl 1494 34 47 17 50 1478
hivpr 1hpx 9 4 0 0 0 13
hmga 1hw8 1423 25 21 2 22 1426
hsp90 luy6 975 23 14 5 15 983
inha 1p4d4 2707 57 20 1 21 2743
mr 2aa2 636 13 38 6 42 607
na ladg 1713 49 15 5 16 1746
p38 1kv2 6779 137 16 3 18 6898
parp lefy 1350 31 12 2 12 1369
pde5 1xp0 1698 26 69 11 73 1651
pdgfrb model | 5603 124 60 12 63(2) 5664
pnp 1b8o | 1036 25 19 33 47(1) 1014
ppar_gamma 1fm9 40 6 2 0 2 44
pr 1sr7 920 22 35 14 39(1) 903
rxr_alpha 1mvc 575 18 67 7 70 523
sahh la7a 1346 33 44 26 66 1313
src 2src 5679 98 27 8 34 5743
thrombin 1ba8 1148 23 12 0 12 1159
tk 1kim 891 22 10 4 11 902
trypsin 1bju 718 9 13 3 13 714
vegfr2 wr2 | 2712 48 73 13 78(1) 2682
BS2 | dhfr 1kmv | 1200 40 24 7 24(1) 1216
vegfr2 1nhz 1200 40 102 23 | 105(15) 1135
gr 3nu3 1200 40 29 9 29(4) 1211
hivlpr 3vo3 1200 40 104 7 104(3) 1136

Table S2. ROCE and AUC values for all data sets included in BS1 and BS2 using Glide in HTVS mode. Parallel ranking (PR),
rescoring ranking (RR) and consensus ranking (CR). Tv: Tversky coefficient.

ROCe 0.5%
Target Pha Glide PR RR CR CRtv CRtv

BS1 | ace 174 174 21.7 26.1 21.7 34.8 30.4




ache 57.7 0.0 28.9 35.1 22.7 26.8 20.6
ada 0.0 8.7 0.0 8.7 8.7 8.7 8.7
alr2 7.7 15.4 15.4 7.7 15.4 15.4 23.1
ampc 76.2 0.0 38.1 9.5 9.5 9.5 0.0
ar 53.7 29.9 41.8 35.8 38.8 29.9 38.8
cdk2 0.0 34.8 8.7 8.7 26.1 17.4 26.1
comt 54.5 0.0 54.5 0.0 0.0 54.5 54.5
coxl 0.0 8.7 8.7 26.1 17.4 17.4 17.4
cox2 145.5 60.3 111.0 99.5 101.4 93.8 95.7
dhfr 0.0 6.4 4.3 12.8 9.6 27.7 23.4
egfr 15.9 15.9 23.0 20.3 19.7 35.6 35.1
er_agonist 92.1 47.6 57.1 98.4 57.1 85.7 76.2
er_antagonist 40.0 13.3 13.3 80.0 26.7 80.0 40.0
fofrl 8.5 33.8 33.8 2.8 25.4 0.0 25.4
fxa 6.3 12.5 12.5 0.0 6.3 3.1 9.4
gart 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gpb 47.1 7.8 35.3 70.6 51.0 78.4 43.1
gr 68.8 43.8 50.0 50.0 50.0 81.3 81.3
hivrt 41.2 29.4 52.9 35.3 47.1 41.2 47.1
hivpr 50.0 50.0 100.0 0.0 0.0 50.0 100.0
hmga 40.0 80.0 80.0 88.0 104.0 80.0 104.0
hsp90 34.8 0.0 34.8 26.1 26.1 26.1 26.1
inha 80.7 3.5 52.6 7.0 10.5 7.0 7.0
mr 107.7 123.1 138.5 123.1 138.5 138.5 138.5
na 4.1 69.4 36.7 57.1 69.4 81.6 102.0
p38 5.8 0.0 4.4 14.6 11.7 13.1 13.1
parp 6.5 71.0 45.2 6.5 38.7 45.2 71.0
pde5 23.1 15.4 30.8 0.0 15.4 46.2 38.5
pdgfrb 13.1 8.2 13.1 11.5 11.5 31.1 27.9
pnp 8.3 0.0 8.3 16.7 16.7 41.7 25.0
ppar_gamma 33.3 0.0 33.3 33.3 33.3 133.3 33.3
pr 28.6 0.0 19.0 19.0 9.5 9.5 9.5
rxr_alpha 88.9 122.2 144.4 144.4 133.3 100.0 144.4
sahh 24.2 0.0 6.1 36.4 12.1 12.1 6.1
src 4.1 22.7 20.6 4.1 16.5 12.4 20.6
thrombin 0.0 8.7 8.7 0.0 8.7 8.7 8.7
tk 9.1 9.1 9.1 18.2 18.2 18.2 18.2
trypsin 22.2 88.9 44.4 0.0 44.4 44.4 88.9
vegfr2 21.3 46.8 55.3 12.8 42.6 8.5 38.3
average 33.5 27.6 37.4 31.2 32.9 41.2 42.9
St_desv 34.6 33.1 35.1 36.6 33.9 36.2 375
max 145.5 123.1 144.4 144.4 138.5 138.5 144.4
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 25.6 0.0 20.5 30.8 25.6 41.0 15.4
vegfr2 0.0 16.7 11.1 5.6 11.1 16.7 16.7
gr 22.2 5.6 16.7 16.7 11.1 11.1 11.1
hivipr 23.1 7.7 23.1 30.8 30.8 7.7 15.4
average 17.7 7.5 17.8 20.9 19.7 19.1 14.6
St_desv 11.9 6.9 5.2 12.2 10.1 15.1 2.4
max 25.6 16.7 23.1 30.8 30.8 41.0 16.7
min 0.0 0.0 11.1 5.6 11.1 7.7 11.1
All | average 32.0 25.8 35.6 30.2 31.7 39.2 40.4
data | St_desv 33.4 321 34.0 35.2 32.6 35.3 36.7
Sets ["max 145.5 123.1 144.4 144.4 138.5 138.5 144.4
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 1%
Target Pha Glide PR RR CR CR tv CRtv
BS1 | ace 15.2 13.0 13.0 13.0 13.0 21.7 19.6
ache 47.4 1.0 25.8 21.6 16.5 18.6 11.3
ada 0.0 4.3 4.3 13.0 8.7 8.7 8.7




alr2 3.8 11.5 7.7 3.8 1.7 7.7 11.5
ampc 38.1 0.0 28.6 4.8 4.8 4.8 4.8
ar 31.3 28.4 35.8 19.4 23.9 28.4 22.4
cdk2 2.2 17.4 15.2 6.5 17.4 8.7 19.6
comt 27.3 18.2 36.4 0.0 0.0 27.3 36.4
coxl 4.3 4.3 4.3 21.7 8.7 8.7 13.0
cox2 76.6 37.8 70.3 52.6 54.1 50.2 52.6
dhfr 0.5 3.7 3.2 10.6 7.4 18.6 15.4
egfr 9.0 15.9 15.1 14.5 14.8 19.7 22.2
er_agonist 74.6 49.2 63.5 55.6 58.7 57.1 58.7
er_antagonist 60.0 33.3 26.7 46.7 46.7 60.0 46.7
fgfrl 7.0 18.3 19.7 14 16.9 0.0 16.9
fxa 3.1 7.8 9.4 1.6 4.7 3.1 6.3
gart 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gpb 45.1 7.8 25.5 43.1 35.3 49.0 29.4
gr 37.5 21.9 31.3 28.1 25.0 43.8 40.6
hivrt 23.5 14.7 26.5 17.6 23.5 23.5 26.5
hivpr 25.0 25.0 50.0 0.0 0.0 25.0 50.0
hmga 24.0 40.0 40.0 44.0 56.0 48.0 52.0
hsp90 21.7 0.0 17.4 13.0 13.0 13.0 13.0
inha 40.4 1.8 40.4 3.5 5.3 3.5 5.3
mr 53.8 69.2 69.2 76.9 69.2 76.9 69.2
na 2.0 36.7 30.6 34.7 44.9 57.1 55.1
p38 3.6 0.0 2.9 10.2 7.3 8.0 6.6
parp 3.2 51.6 35.5 16.1 35.5 38.7 48.4
pde5 11.5 11.5 19.2 0.0 7.7 23.1 19.2
pdgfrb 8.2 4.1 6.6 6.6 5.7 18.9 15.6
pnp 4.2 8.3 4.2 12.5 8.3 29.2 12.5
ppar_gamma 16.7 0.0 16.7 16.7 16.7 66.7 16.7
pr 19.0 0.0 14.3 9.5 9.5 4.8 4.8
rxr_alpha 50.0 66.7 72.2 72.2 72.2 61.1 72.2
sahh 24.2 9.1 12.1 30.3 15.2 18.2 6.1
src 5.2 14.4 13.4 3.1 11.3 9.3 13.4
thrombin 0.0 17.4 4.3 0.0 8.7 17.4 13.0
tk 4.5 4.5 9.1 9.1 9.1 9.1 9.1
trypsin 11.1 77.8 55.6 22.2 55.6 33.3 66.7
vegfr2 12.8 25.5 29.8 6.4 25.5 8.5 21.3
average 21.2 19.3 25.1 19.1 21.6 25.7 25.8
St_desv 21.1 20.4 20.0 19.9 20.2 20.9 20.5
max 76.6 77.8 72.2 76.9 72.2 76.9 72.2
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 12.8 0.0 12.8 15.4 15.4 20.5 15.4
vegfr2 2.8 11.1 5.6 5.6 8.3 8.3 8.3
gr 11.1 8.3 11.1 13.9 8.3 5.6 5.6
hivipr 15.4 7.7 15.4 19.2 15.4 15.4 7.7
average 10.5 6.8 11.2 13.5 11.9 12.4 9.2
St_desv 5.5 4.8 4.2 5.8 4.1 6.8 4.3
max 15.4 11.1 15.4 19.2 15.4 20.5 15.4
min 2.8 0.0 5.6 5.6 8.3 5.6 5.6
All | average 20.2 18.2 23.9 18.6 20.7 24.5 24.3
data | St _desv 20.4 19.8 19.5 19.1 19.5 20.3 20.1
Sets ["max 76.6 77.8 72.2 76.9 72.2 76.9 72.2
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 2%
Target Pha Glide PR RR CR CRtv CRtv
BS1 | ace 10.9 6.5 10.9 8.7 7.6 14.1 12.0
ache 28.9 15 16.5 13.9 10.3 10.8 9.3
ada 0.0 4.3 2.2 6.5 6.5 4.3 6.5
alr2 1.9 5.8 5.8 1.9 5.8 3.8 7.7




ampc 21.4 0.0 19.0 2.4 2.4 2.4 2.4
ar 18.7 20.1 23.9 13.4 17.2 16.4 23.1
cdk2 2.2 13.0 9.8 3.3 9.8 5.4 10.9
comt 13.6 13.6 22.7 0.0 9.1 13.6 18.2
cox1 2.2 4.3 4.3 10.9 10.9 6.5 6.5
cox2 39.5 24.2 39.7 27.5 28.9 26.3 28.5
dhfr 0.5 3.5 2.1 8.2 5.6 14.4 10.1
egfr 7.0 11.1 12.2 9.3 10.8 11.2 12.7
er_agonist 40.5 30.2 39.7 31.7 32.5 31.0 34.1
er_antagonist 43.3 23.3 36.7 30.0 30.0 33.3 30.0
fgfrl 6.3 9.2 10.6 0.7 9.2 1.4 8.5
fxa 1.6 4.7 5.5 1.6 3.9 2.3 3.9
gart 0.0 12.5 0.0 0.0 0.0 0.0 0.0
gpb 27.5 3.9 18.6 24.5 19.6 25.5 20.6
gr 23.4 10.9 18.8 15.6 14.1 23.4 21.9
hivrt 14.7 10.3 14.7 10.3 11.8 11.8 14.7
hivpr 12.5 12.5 25.0 0.0 0.0 12.5 25.0
hmga 18.0 22.0 22.0 26.0 28.0 28.0 30.0
hsp90 13.0 0.0 10.9 6.5 6.5 6.5 6.5
inha 21.1 0.9 20.2 1.8 2.6 5.3 2.6
mr 30.8 42.3 38.5 42.3 42.3 42.3 42.3
na 1.0 18.4 18.4 25.5 25.5 30.6 31.6
p38 4.0 0.0 1.8 6.6 5.1 4.4 4.0
parp 1.6 33.9 22.6 11.3 27.4 24.2 33.9
pde5 5.8 11.5 9.6 5.8 5.8 17.3 13.5
pdgfrb 4.1 2.9 4.1 3.7 3.3 10.2 9.4
pnp 2.1 12.5 6.3 8.3 8.3 14.6 14.6
ppar_gamma 8.3 0.0 8.3 8.3 8.3 33.3 8.3
pr 9.5 7.1 7.1 9.5 4.8 2.4 2.4
rxr_alpha 27.8 33.3 36.1 36.1 36.1 30.6 36.1
sahh 15.2 7.6 13.6 18.2 16.7 25.8 12.1
src 3.1 9.3 9.8 3.1 7.2 5.7 8.8
thrombin 0.0 10.9 8.7 0.0 8.7 8.7 13.0
tk 4.5 2.3 4.5 4.5 4.5 45 45
trypsin 5.6 38.9 38.9 16.7 44 .4 16.7 44.4
vegfr2 6.4 12.8 18.1 5.3 14.9 7.4 12.8
average 12.5 12.3 16.0 11.5 13.7 14.7 15.9
St_desv 12.2 11.1 11.6 11.0 11.7 11.1 11.9
max 43.3 42.3 39.7 42.3 44 .4 42.3 44.4
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 9.0 1.3 6.4 11.5 7.7 10.3 10.3
vegfr2 1.4 8.3 6.9 6.9 5.6 4.2 5.6
gr 9.7 5.6 8.3 8.3 8.3 4.2 5.6
hivipr 135 3.8 9.6 9.6 9.6 9.6 9.6
average 8.4 4.8 7.8 9.1 7.8 7.1 7.7
St_desv 5.1 3.0 1.4 2.0 1.7 3.3 2.5
max 135 8.3 9.6 11.5 9.6 10.3 10.3
min 1.4 1.3 6.4 6.9 5.6 4.2 5.6
All | average 12.1 11.6 15.2 11.3 13.1 14.0 15.2
data | St _desv 11.8 10.8 11.3 10.5 11.3 10.8 11.6
sets " max 43.3 42.3 39.7 42.3 44.4 42.3 44.4
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 5%
Target Pha Glide PR RR CR CR tv CRtv
BS1 | ace 5.7 3.0 6.1 3.5 3.5 7.0 5.7
ache 13.2 2.9 11.8 7.2 6.6 7.0 5.8
ada 3.5 2.6 1.7 3.5 5.2 2.6 3.5
alr2 0.8 3.8 2.3 0.8 2.3 1.5 3.1
ampc 8.6 1.0 8.6 2.9 1.9 1.9 1.0
ar 9.9 12.8 12.2 7.5 11.0 9.6 13.1




cdk2 1.7 7.4 6.5 1.7 5.7 3.0 6.5
comt 5.5 7.3 9.1 1.8 55 9.1 9.1
coxl 3.5 3.5 5.2 6.1 7.0 5.2 5.2
cox2 17.1 12.2 16.9 11.8 12.9 11.2 12.9
dhfr 0.3 2.9 1.7 5.6 4.8 8.3 6.8
egfr 3.8 6.0 7.4 4.9 5.8 5.6 6.2
er_agonist 17.1 13.3 17.5 16.2 15.2 14.0 15.2
er_antagonist 17.3 13.3 17.3 14.7 14.7 14.7 17.3
fofrl 4.2 3.9 5.4 0.8 3.7 0.6 3.9
fxa 0.9 2.2 2.5 1.3 2.2 2.2 2.5
gart 5.0 7.5 2.5 2.5 5.0 2.5 5.0
gpb 12.9 3.1 12.9 11.0 10.2 10.2 10.2
gr 12.5 5.0 9.4 6.9 6.9 10.6 9.4
hivrt 7.1 6.5 8.2 5.3 5.9 7.1 7.1
hivpr 5.0 5.0 10.0 0.0 0.0 5.0 10.0
hmga 9.6 10.4 10.4 12.8 12.0 12.8 14.4
hsp90 7.8 1.7 5.2 3.5 2.6 3.5 2.6
inha 9.5 0.4 8.8 0.7 1.1 3.2 2.5
mr 15.4 16.9 16.9 18.5 16.9 18.5 16.9
na 0.8 9.0 7.8 12.7 13.1 15.5 13.9
p38 2.2 0.7 1.9 3.5 2.8 2.5 2.5
parp 1.3 14.8 135 8.4 135 135 16.1
pde5 3.1 8.5 6.9 4.6 6.9 9.2 9.2
pdgfrb 1.6 1.3 1.6 1.6 1.6 5.2 4.8
pnp 3.3 5.0 5.8 3.3 5.8 5.8 6.7
ppar_gamma 3.3 0.0 3.3 6.7 3.3 13.3 6.7
pr 3.8 4.8 6.7 3.8 6.7 2.9 3.8
rxr_alpha 13.3 14.4 15.6 15.6 14.4 15.6 15.6
sahh 9.1 9.7 9.1 10.9 10.3 13.9 13.3
src 2.7 5.6 6.0 1.9 5.2 4.5 6.2
thrombin 2.6 5.2 4.3 2.6 4.3 5.2 6.1
tk 7.3 2.7 3.6 8.2 3.6 4.5 3.6
trypsin 8.9 15.6 15.6 6.7 17.8 8.9 17.8
vegfr2 3.0 6.8 7.2 3.0 6.8 3.4 6.0
average 6.6 6.5 8.1 6.1 7.1 7.5 8.2
St_desv 5.0 4.7 4.8 4.8 4.7 4.8 4.9
max 17.3 16.9 17.5 18.5 17.8 18.5 17.8
min 0.3 0.0 1.6 0.0 0.0 0.6 1.0
BS2 | dhfr 4.6 4.1 4.6 5.6 5.6 4.6 4.6
vegfr2 5.0 4.4 5.0 4.4 6.1 2.8 3.9
gr 6.7 2.8 6.1 5.0 4.4 1.7 2.8
hivlpr 10.0 2.3 6.9 6.9 3.8 4.6 4.6
average 6.6 3.4 5.7 5.5 5.0 3.4 4.0
St_desv 2.5 1.0 1.1 1.1 1.0 15 0.9
max 10.0 4.4 6.9 6.9 6.1 4.6 4.6
min 4.6 2.3 4.6 4.4 3.8 1.7 2.8
All average 6.6 6.2 7.9 6.1 6.9 7.1 7.8
data | St_desv 4.8 4.6 4.6 4.6 4.6 4.7 4.8
Sets ["max 17.3 16.9 17.5 18.5 17.8 18.5 17.8
min 0.3 0.0 1.6 0.0 0.0 0.6 1.0
AUC
Target Pha Glide PR RR CR CRtv CRtv
BS1 | ace 0.53 0.52 0.58 0.57 0.52 0.63 0.61
ache 0.77 0.65 0.76 0.72 0.73 0.76 0.77
ada 0.79 0.59 0.73 0.59 0.67 0.63 0.66
alr2 0.59 0.71 0.70 0.50 0.64 0.51 0.65
ampc 0.78 0.52 0.74 0.58 0.56 0.56 0.56
ar 0.91 0.82 0.93 0.87 0.90 0.90 0.93
cdk2 0.46 0.66 0.75 0.55 0.65 0.55 0.64




comt 0.38 0.73 0.72 0.49 0.71 0.69 0.79
cox1 0.55 0.61 0.59 0.54 0.58 0.58 0.60
cox2 0.96 0.87 0.97 0.84 0.88 0.82 0.88
dhfr 0.52 0.72 0.65 0.75 0.74 0.78 0.77
egfr 0.53 0.63 0.67 0.57 0.60 0.61 0.62
er_agonist 0.97 0.95 0.97 0.95 0.95 0.92 0.95
er_antagonist 0.96 0.73 0.93 0.85 0.84 0.88 0.87
fgfrl 0.47 0.59 0.58 0.48 0.54 0.47 0.55
fxa 0.33 0.52 0.44 0.44 0.50 0.48 0.52
gart 0.59 0.86 0.83 0.77 0.83 0.73 0.80
gpb 0.87 0.64 0.87 0.78 0.76 0.80 0.78
gr 0.89 0.67 0.84 0.83 0.79 0.88 0.85
hivrt 0.70 0.67 0.79 0.75 0.72 0.77 0.73
hivpr 0.28 0.42 0.53 0.19 0.36 0.42 0.56
hmga 0.89 0.82 0.90 0.89 0.93 0.92 0.93
hsp90 0.83 0.61 0.80 0.59 0.67 0.61 0.65
inha 0.67 0.52 0.64 0.45 0.49 0.54 0.59
mr 0.97 0.93 0.96 0.98 0.98 0.98 0.98
na 0.57 0.82 0.80 0.91 0.90 0.94 0.93
p38 0.51 0.54 0.51 0.49 0.52 0.44 0.49
parp 0.47 0.95 0.90 0.87 0.94 0.92 0.96
pde5 0.50 0.82 0.74 0.73 0.78 0.82 0.82
pdgfrb 0.28 0.37 0.33 0.36 0.35 0.59 0.54
pnp 0.77 0.70 0.79 0.60 0.70 0.64 0.70
ppar_gamma 0.49 0.60 0.48 0.62 0.56 0.79 0.71
pr 0.59 0.69 0.69 0.35 0.69 0.44 0.65
rxr_alpha 0.87 0.92 0.95 0.94 0.95 0.93 0.95
sahh 0.85 0.86 0.84 0.87 0.88 0.92 0.92
src 0.35 0.66 0.65 0.59 0.65 0.67 0.67
thrombin 0.62 0.80 0.78 0.60 0.78 0.74 0.80
tk 0.77 0.76 0.79 0.84 0.82 0.86 0.83
trypsin 0.85 0.92 0.97 0.85 0.92 0.85 0.94
vegfr2 0.58 0.74 0.72 0.67 0.77 0.68 0.75
average 0.66 0.70 0.75 0.67 0.72 0.72 0.75
St_desv 0.21 0.15 0.16 0.19 0.17 0.17 0.14
max 0.97 0.95 0.97 0.98 0.98 0.98 0.98
min 0.28 0.37 0.33 0.19 0.35 0.42 0.49

BS2 | dhfr 0.60 0.74 0.74 0.62 0.72 0.66 0.73
vegfr2 0.62 0.69 0.73 0.65 0.72 0.64 0.71
gr 0.86 0.49 0.82 0.63 0.60 0.57 0.54
hivlpr 0.81 0.32 0.75 0.66 0.61 0.67 0.62
average 0.72 0.56 0.76 0.64 0.66 0.64 0.65
St_desv 0.13 0.19 0.04 0.02 0.06 0.05 0.09
max 0.86 0.74 0.82 0.66 0.72 0.67 0.73
min 0.60 0.32 0.73 0.62 0.60 0.57 0.54

All | average 0.66 0.69 0.75 0.67 0.71 0.71 0.74

data | St_desv 0.20 0.15 0.15 0.18 0.16 0.16 0.14

Sets | max 0.97 0.95 0.97 0.98 0.98 0.98 0.98
min 0.28 0.32 0.33 0.19 0.35 0.42 0.49

Table S3. ROCE and AUC values for all data sets included in BS1 and BS2 using Glide in SP mode. Parallel ranking (PR),
rescoring ranking (RR) and consensus ranking (CR). Tv: Tversky coefficient.

ROCe 0.5%
Target Pha Glide PR RR CR CR tv CRtv
BS1 | ace 17.4 8.7 17.4 39.1 21.7 34.8 26.1
ache 57.7 0.0 26.8 72.2 28.9 51.5 22.7
ada 0.0 8.7 0.0 0.0 0.0 26.1 17.4
alr2 7.7 7.7 7.7 7.7 7.7 154 154
ampc 76.2 0.0 38.1 9.5 9.5 9.5 9.5




ar 53.7 14.9 35.8 41.8 35.8 38.8 35.8
cdk2 0.0 34.8 17.4 8.7 21.7 21.7 26.1
comt 54.5 0.0 54.5 0.0 0.0 54.5 36.4
cox1 0.0 174 8.7 174 174 8.7 174
cox2 145.5 16.3 74.6 152.2 71.8 136.8 68.9
dhfr 0.0 6.4 4.3 37.2 16.0 50.0 33.0
egfr 15.9 55 17.0 32.3 23.6 78.9 49.3
er_agonist 92.1 44.4 76.2 98.4 73.0 98.4 88.9
er_antagonist 40.0 0.0 13.3 26.7 13.3 13.3 13.3
fgfrl 8.5 50.7 39.4 2.8 31.0 0.0 31.0
fxa 6.3 125 125 0.0 6.3 3.1 9.4
gart 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gpb 47.1 0.0 314 94.1 43.1 82.4 43.1
gr 68.8 43.8 50.0 50.0 50.0 81.3 75.0
hivrt 41.2 11.8 35.3 41.2 41.2 235 23.5
hivpr 50.0 100.0 100.0 0.0 0.0 50.0 50.0
hmga 40.0 80.0 80.0 96.0 96.0 112.0 120.0
hsp90 34.8 0.0 34.8 34.8 34.8 34.8 34.8
inha 80.7 49.1 80.7 73.7 70.2 91.2 84.2
mr 107.7 61.5 92.3 92.3 92.3 107.7 92.3
na 4.1 77.6 32.7 24.5 44.9 65.3 106.1
p38 5.8 0.0 4.4 7.3 5.8 5.8 2.9
parp 6.5 38.7 32.3 12.9 25.8 45.2 77.4
pde5 23.1 30.8 38.5 7.7 30.8 23.1 46.2
pdgfrb 13.1 14.8 14.8 14.8 14.8 21.3 21.3
pnp 8.3 16.7 16.7 16.7 16.7 41.7 33.3
ppar_gamma 33.3 33.3 66.7 0.0 0.0 100.0 66.7
pr 28.6 9.5 28.6 9.5 19.0 19.0 19.0
rxr_alpha 88.9 155.6 100.0 88.9 100.0 55.6 100.0
sahh 24.2 30.3 42.4 30.3 48.5 6.1 24.2
src 4.1 22.7 20.6 0.0 16.5 35.1 39.2
thrombin 0.0 174 8.7 0.0 8.7 0.0 8.7
tk 9.1 9.1 9.1 72.7 54.5 72.7 54.5
trypsin 22.2 66.7 88.9 0.0 66.7 0.0 66.7
vegfr2 21.3 34.0 38.3 4.3 29.8 8.5 34.0
average 335 28.3 37.3 32.9 32.2 43.1 43.1
St_desv 34.6 32.6 29.4 374 21.7 36.6 30.7
max 145.5 155.6 100.0 152.2 100.0 136.8 120.0
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 25.6 25.6 35.9 76.9 76.9 76.9 71.8
vegfr2 0.0 55.6 16.7 22.2 27.8 22.2 38.9
gr 22.2 11.1 16.7 16.7 22.2 16.7 22.2
hivipr 23.1 46.2 53.8 38.5 38.5 154 23.1
average 17.7 34.6 30.8 38.6 41.3 32.8 39.0
St_desv 11.9 20.0 17.9 27.2 24.7 29.6 23.2
max 25.6 55.6 53.8 76.9 76.9 76.9 71.8
min 0.0 11.1 16.7 16.7 22.2 154 22.2
average 32.0 28.9 36.7 335 33.0 42.7 42.0
St_desv 334 315 28.4 36.4 27.3 35.4 29.9
max 145.5 155.6 100.0 152.2 100.0 136.8 120.0
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 1%
Target Pha Glide PR RR CR CRtv CRtv
BS1 | ace 15.2 4.3 13.0 19.6 19.6 17.4 19.6
ache 474 1.0 23.7 38.1 28.9 34.0 21.6
ada 0.0 4.3 4.3 21.7 4.3 13.0 17.4
alr2 3.8 115 3.8 3.8 3.8 7.7 7.7
ampc 38.1 4.8 28.6 4.8 4.8 4.8 4.8
ar 31.3 134 25.4 26.9 194 28.4 22.4




cdk2 2.2 19.6 10.9 4.3 13.0 10.9 19.6
comt 27.3 0.0 27.3 0.0 0.0 36.4 27.3
coxl 4.3 8.7 8.7 17.4 17.4 4.3 13.0
cox2 76.6 15.3 59.3 77.0 64.1 74.2 56.9
dhfr 0.5 4.8 3.2 25.0 16.0 32.4 21.8
egfr 9.0 7.1 10.7 25.8 16.7 449 38.9
er_agonist 74.6 38.1 61.9 63.5 57.1 60.3 55.6
er_antagonist 60.0 40.0 26.7 53.3 53.3 66.7 40.0
fgfrl 7.0 26.8 23.9 14 21.1 14 21.1
fxa 3.1 7.8 9.4 1.6 4.7 1.6 6.3
gart 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gpb 45.1 0.0 21.6 52.9 35.3 56.9 27.5
gr 37.5 21.9 31.3 28.1 25.0 43.8 40.6
hivrt 23.5 5.9 20.6 20.6 20.6 17.6 11.8
hivpr 25.0 50.0 50.0 0.0 0.0 25.0 25.0
hmga 24.0 40.0 40.0 56.0 52.0 56.0 64.0
hsp90 21.7 0.0 17.4 17.4 17.4 17.4 17.4
inha 40.4 24.6 40.4 38.6 35.1 47.4 43.9
mr 53.8 38.5 61.5 53.8 53.8 53.8 53.8
na 2.0 40.8 30.6 34.7 46.9 53.1 59.2
p38 3.6 0.0 2.9 3.6 3.6 5.8 2.9
parp 3.2 41.9 19.4 12.9 25.8 38.7 45.2
pde5 11.5 26.9 19.2 3.8 15.4 15.4 23.1
pdgfrb 8.2 7.4 7.4 7.4 7.4 10.7 10.7
pnp 4.2 8.3 8.3 12,5 8.3 375 16.7
ppar_gamma 16.7 16.7 33.3 0.0 0.0 50.0 33.3
pr 19.0 9.5 19.0 4.8 9.5 14.3 14.3
rxr_alpha 50.0 83.3 77.8 77.8 72.2 27.8 66.7
sahh 24.2 18.2 21.2 21.2 24.2 9.1 21.2
src 5.2 21.6 10.3 1.0 8.2 21.6 29.9
thrombin 0.0 8.7 8.7 0.0 8.7 0.0 8.7
tk 4.5 4.5 9.1 45.5 40.9 40.9 40.9
trypsin 11.1 55.6 44.4 0.0 33.3 11.1 44.4
vegfr2 12.8 19.1 23.4 4.3 19.1 6.4 19.1
average 21.2 18.8 24.0 22.0 22.7 27.5 27.9
St_desv 21.1 18.6 18.5 22.7 19.4 20.9 17.9
max 76.6 83.3 77.8 77.8 72.2 74.2 66.7
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 12.8 15.4 25.6 38.5 48.7 38.5 46.2
vegfr2 2.8 30.6 16.7 11.1 27.8 11.1 27.8
gr 11.1 5.6 11.1 13.9 11.1 8.3 11.1
hivlpr 15.4 30.8 34.6 26.9 34.6 7.7 26.9
average 10.5 20.6 22.0 22.6 30.6 16.4 28.0
St_desv 5.5 12.3 10.3 12.6 15.6 14.8 14.3
max 15.4 30.8 34.6 38.5 48.7 38.5 46.2
min 2.8 5.6 11.1 11.1 11.1 7.7 11.1
average 20.2 18.9 23.8 22.1 23.4 27.5 27.3
St_desv 20.4 18.0 17.8 21.9 19.0 20.3 17.3
max 76.6 83.3 77.8 77.8 72.2 74.2 66.7
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 2%
Target Pha Glide PR RR CR RR tv CRtv
BS1 | ace 10.9 3.3 9.8 12.0 10.9 9.8 10.9
ache 28.9 0.5 15.5 21.6 18.6 20.6 14.4
ada 0.0 6.5 2.2 10.9 8.7 15.2 8.7
alr2 1.9 9.6 3.8 1.9 3.8 5.8 7.7
ampc 21.4 2.4 19.0 4.8 4.8 2.4 4.8
ar 18.7 10.4 17.2 16.4 14.2 19.4 14.9
cdk2 2.2 18.5 10.9 2.2 10.9 8.7 14.1
comt 13.6 0.0 13.6 0.0 0.0 18.2 13.6




cox1 2.2 4.3 6.5 10.9 10.9 6.5 6.5

cox2 39.5 14.4 38.5 39.2 39.2 38.8 36.6

dhfr 0.5 5.3 2.4 16.0 13.0 21.5 16.8

egfr 7.0 5.9 8.1 16.2 14.8 24.4 24.8

er_agonist 40.5 26.2 38.9 38.9 34.9 34.9 34.9

er_antagonist 43.3 30.0 43.3 30.0 30.0 33.3 36.7

fofrl 6.3 14.8 15.5 2.1 13.4 0.7 13.4

fxa 1.6 4.7 55 1.6 3.9 2.3 3.9

gart 0.0 12.5 0.0 0.0 0.0 0.0 0.0

gpb 27.5 0.0 15.7 31.4 23.5 32.4 21.6

gr 23.4 10.9 18.8 17.2 14.1 23.4 21.9

hivrt 14.7 11.8 11.8 10.3 10.3 11.8 7.4

hivpr 12.5 25.0 25.0 0.0 0.0 12.5 12.5

hmga 18.0 22.0 22.0 30.0 28.0 28.0 32.0

hsp90 13.0 0.0 10.9 8.7 8.7 8.7 8.7

inha 21.1 13.2 20.2 19.3 18.4 24.6 22.8

mr 30.8 23.1 30.8 30.8 30.8 34.6 30.8

na 1.0 23.5 19.4 24.5 30.6 35.7 36.7

p38 4.0 0.4 1.8 4.0 1.8 5.1 2.9

parp 1.6 29.0 14.5 9.7 19.4 22.6 33.9

pde5 5.8 15.4 15.4 3.8 135 17.3 15.4

pdgfrb 4.1 3.7 4.1 3.7 3.7 5.7 5.3

pnp 2.1 6.3 4.2 12.5 6.3 22.9 14.6

ppar_gamma 8.3 8.3 16.7 0.0 0.0 25.0 16.7

pr 9.5 4.8 9.5 2.4 4.8 7.1 9.5

rxr_alpha 27.8 41.7 41.7 38.9 41.7 19.4 36.1

sahh 15.2 9.1 13.6 18.2 18.2 22.7 18.2

src 3.1 16.0 11.3 4.1 10.3 18.0 20.1

thrombin 0.0 6.5 4.3 0.0 4.3 6.5 4.3

tk 4.5 2.3 4.5 22.7 22.7 22.7 20.5

trypsin 5.6 38.9 33.3 0.0 22.2 5.6 33.3

vegfr2 6.4 12.8 13.8 4.3 12.8 6.4 13.8

average 12,5 12.3 15.3 13.0 14.4 17.0 17.5

St_desv 12.2 10.7 11.4 12.2 11.1 10.9 10.9

max 43.3 41.7 43.3 39.2 41.7 38.8 36.7

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BS2 | dhfr 9.0 10.3 14.1 19.2 26.9 20.5 26.9

vegfr2 14 18.1 16.7 6.9 18.1 5.6 16.7

gr 9.7 2.8 5.6 9.7 8.3 5.6 5.6

hivipr 135 19.2 21.2 17.3 19.2 135 19.2

average 8.4 12.6 14.4 13.3 18.1 11.3 17.1

St_desv 5.1 7.7 6.6 5.9 7.6 7.2 8.8

max 135 19.2 21.2 19.2 26.9 20.5 26.9

min 14 2.8 5.6 6.9 8.3 5.6 5.6

average 12.1 12.4 15.3 13.0 14.8 17.0 17.3

St_desv 11.8 10.3 11.0 11.7 10.9 10.7 10.6

max 43.3 41.7 43.3 39.2 41.7 38.8 36.7

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROCe 5%

Target Pha Glide PR RR CR RR tv CRtv
BS | ace 5.7 1.7 6.1 5.2 5.7 7.4 6.1
1 ache 13.2 0.8 111 10.1 8.9 9.1 8.7

ada 3.5 2.6 2.6 5.2 7.8 7.0 8.7

alr2 0.8 54 3.8 15 4.6 3.1 5.4

ampc 8.6 1.0 8.6 1.9 2.9 1.0 1.9

ar 9.9 10.1 9.9 7.2 8.7 8.1 9.9

cdk2 1.7 10.4 8.7 2.2 8.7 3.9 8.7

comt 5.5 3.6 7.3 0.0 1.8 7.3 7.3

cox1 3.5 2.6 4.3 6.1 7.0 3.5 4.3




cox2 17.1 9.8 16.7 15.9 16.4 15.9 16.2
dhfr 0.3 6.3 2.6 8.7 8.0 124 11.2
egfr 3.8 4.8 5.3 8.7 8.8 10.6 11.6
er_agonist 17.1 13.3 16.8 16.2 16.5 16.5 15.6
er_antagonist 17.3 13.3 17.3 12.0 13.3 14.7 16.0
fgfrl 4.2 6.5 7.3 2.0 6.2 1.1 5.9
fxa 0.9 2.2 2.5 1.3 2.2 2.2 2.5
gart 5.0 7.5 5.0 0.0 5.0 0.0 5.0
gpb 12.9 0.8 11.0 145 125 15.7 125
gr 125 5.0 94 7.5 7.5 11.3 94
hivrt 7.1 7.1 8.8 5.3 7.1 7.1 8.8
hivpr 5.0 10.0 10.0 0.0 0.0 5.0 5.0
hmga 9.6 9.6 104 144 12.8 144 13.6
hsp90 7.8 2.6 7.0 35 4.3 35 4.3
inha 9.5 6.3 8.8 8.8 7.7 10.9 9.8
mr 154 154 154 154 154 154 154
na 0.8 114 94 135 14.3 17.1 17.1
p38 2.2 1.2 1.9 34 1.8 3.1 2.3
parp 1.3 16.1 11.6 9.7 13.5 15.5 16.8
pde5 3.1 8.5 6.9 3.8 6.9 10.0 10.0
pdgfrb 1.6 1.6 1.6 1.6 1.5 3.3 2.6
pnp 3.3 4.2 4.2 11.7 6.7 15.0 10.8
ppar_gamma 3.3 3.3 6.7 0.0 3.3 10.0 10.0
pr 3.8 2.9 3.8 1.9 1.9 3.8 3.8
rxr_alpha 13.3 16.7 17.8 16.7 17.8 12.2 17.8
sahh 9.1 10.3 8.5 10.9 9.1 13.9 13.3
src 2.7 8.5 7.4 4.3 7.6 8.7 11.1
thrombin 2.6 4.3 2.6 2.6 2.6 5.2 5.2
tk 7.3 3.6 4.5 11.8 10.0 10.9 10.0
trypsin 8.9 15.6 15.6 0.0 15.6 2.2 15.6
vegfr2 3.0 6.4 7.7 3.0 7.2 3.8 8.1
average 6.6 6.8 8.2 6.7 8.0 8.5 9.5
St_desv 5.0 4.7 4.5 5.3 4.8 5.2 4.6
max 17.3 16.7 17.8 16.7 17.8 17.1 17.8
min 0.3 0.8 1.6 0.0 0.0 0.0 1.9
BS2 | dhfr 4.6 7.7 8.2 8.2 11.8 9.2 12.8
vegfr2 5.0 7.8 7.8 5.6 8.9 4.4 8.3
gr 6.7 2.2 4.4 6.1 4.4 2.8 3.3
hivipr 10.0 10.8 13.8 8.5 12.3 8.5 11.5
average 6.6 7.1 8.6 7.1 94 6.2 9.0
St_desv 25 3.6 3.9 15 3.6 3.1 4.2
max 10.0 10.8 13.8 8.5 12.3 9.2 12.8
min 4.6 2.2 4.4 5.6 4.4 2.8 3.3
average 6.6 6.9 8.2 6.7 8.1 8.6 94
St_desv 4.8 4.5 4.4 5.1 4.6 5.0 4.5
max 17.3 16.7 17.8 16.7 17.8 17.1 17.8
min 0.3 0.8 1.6 0.0 0.0 0.0 1.9
AUC
Target Pha Glide PR RR CR RR tv CRtv
BS1 | ace 0.53 0.45 0.49 0.61 0.57 0.70 0.69
ache 0.77 0.62 0.76 0.72 0.72 0.73 0.72
ada 0.79 0.61 0.75 0.77 0.78 0.78 0.79
alr2 0.59 0.80 0.75 0.56 0.74 0.55 0.76
ampc 0.78 0.39 0.69 0.58 0.53 0.58 0.54
ar 0.91 0.85 0.92 0.85 0.90 0.90 0.93
cdk2 0.46 0.79 0.85 0.66 0.79 0.62 0.77
comt 0.38 0.78 0.69 0.53 0.68 0.70 0.83
coxl 0.55 0.66 0.64 0.57 0.63 0.61 0.63
cox2 0.96 0.89 0.96 0.91 0.93 0.90 0.93
dhfr 0.52 0.84 0.74 0.86 0.85 0.91 0.91




egfr 0.53 0.74 0.70 0.70 0.74 0.70 0.76
er_agonist 0.97 0.93 0.96 0.95 0.95 0.95 0.94
er_antagonist 0.96 0.91 0.96 0.93 0.94 0.96 0.97
fgfrl 0.47 0.66 0.64 0.53 0.63 0.54 0.65
fxa 0.33 0.52 0.44 0.44 0.49 0.47 0.51
gart 0.59 0.88 0.81 0.73 0.81 0.72 0.81
gpb 0.87 0.64 0.89 0.90 0.89 0.91 0.90
gr 0.89 0.67 0.85 0.82 0.78 0.87 0.84
hivrt 0.70 0.74 0.81 0.68 0.71 0.69 0.71
hivpr 0.28 0.69 0.75 0.22 0.53 0.44 0.56
hmga 0.89 0.86 0.90 0.92 0.94 0.96 0.94
hsp90 0.83 0.76 0.84 0.54 0.77 0.59 0.75
inha 0.67 0.57 0.61 0.71 0.65 0.82 0.80
mr 0.97 0.90 0.95 0.97 0.96 0.98 0.96
na 0.57 0.91 0.85 0.94 0.95 0.95 0.96
p38 0.51 0.50 0.51 0.65 0.64 0.57 0.61
parp 0.47 0.95 0.91 0.93 0.96 0.97 0.98
pde5 0.50 0.82 0.78 0.69 0.80 0.81 0.85
pdgfrb 0.28 0.31 0.27 0.29 0.28 0.54 0.47
pnp 0.77 0.87 0.84 0.81 0.87 0.88 0.90
ppar_gamma 0.49 0.40 0.54 0.59 0.52 0.84 0.79
pr 0.59 0.67 0.64 0.37 0.58 0.59 0.68
rxr_alpha 0.87 0.96 0.98 0.94 0.97 0.91 0.96
sahh 0.85 0.92 0.91 0.89 0.92 0.95 0.94
src 0.35 0.81 0.79 0.72 0.80 0.78 0.82
thrombin 0.62 0.74 0.76 0.53 0.75 0.65 0.77
tk 0.77 0.87 0.88 0.92 0.94 0.94 0.94
trypsin 0.85 0.89 0.97 0.85 0.92 0.84 0.94
vegfr2 0.58 0.82 0.80 0.57 0.78 0.59 0.79
average 0.66 0.74 0.77 0.71 0.76 0.76 0.80
St_desv 0.21 0.17 0.16 0.19 0.16 0.16 0.14
max 0.97 0.96 0.98 0.97 0.97 0.98 0.98
min 0.28 0.31 0.27 0.22 0.28 0.44 0.47
BS2 | dhfr 0.60 0.77 0.81 0.70 0.84 0.76 0.86
vegfr2 0.62 0.74 0.77 0.68 0.71 0.68 0.71
gr 0.86 0.64 0.80 0.71 0.70 0.65 0.64
hivipr 0.81 0.76 0.86 0.83 0.87 0.84 0.87
average 0.72 0.73 0.81 0.73 0.78 0.73 0.77
St_desv 0.13 0.06 0.04 0.07 0.09 0.08 0.11
max 0.86 0.77 0.86 0.83 0.87 0.84 0.87
min 0.60 0.64 0.77 0.68 0.70 0.65 0.64
average 0.66 0.7 0.8 0.7 0.8 0.8 0.8
St_desv 0.20 0.2 0.2 0.2 0.2 0.2 0.1
max 0.97 1.0 1.0 1.0 1.0 1.0 1.0
min 0.28 0.3 0.3 0.2 0.3 0.4 0.5

Table S4. AUC and ROCe metrics for PharmScreen, Glide HTVS, and Combined methods derived from Glide HTVS. Parallel

ranking (PR), rescoring ranking (RR) and consensus ranking (CR). Tv: Tversky coefficient.

Pha Glide | PR RR CR RRtv | CRtv
BS1 ROCE 0.5 335 27.6 37.4 31.2 | 329 42.4 42.9

ROCE 1 21.2 193 | 251 19.1| 216 257 | 258
ROCE 2 125 12.3 16.0 115| 137 14.7 15.9
ROCE 5 6.6 6.5 8.1 6.1 7.1 7.52 8.2
AUC 0.7 0.7 0.8 0.7 0.7 0.72 0.7

BS2 ROCE 0.5 17.7 7.5 17.8 209 | 19.7 19.1 14.6
ROCE 1 10.5 6.8 11.2 135 | 119 12.4 9.2




ROCE 2 8.4 4.8 7.8 9.1 7.8 7.1 7.7

ROCE 5 6.6 3.4 5.7 55 5.0 3.4 4.0

AUC 0.7 0.6 0.8 0.6 0.7 0.6 0.6
ROCe 5% ROCe 1% ROCe 0.5%

Figure S1. Heatmap of the hierarchical position of all methods among the others for ROCe 0.5%, 2% and 5%. The color scale is
indicative of the position, being the first green and the fifth red. Parallel ranking (PR), rescoring ranking (RR) and consensus
ranking (CR).
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Figure S2. Heatmap of the hierarchical position of Consensus Ranking (CR) using Tversky coefficient for ROCe 0.5%, 2% and
5%. The method ranked first is shown in green, second in black and third in red.



CR Tanimoto

Figure S3. Heatmap of the hierarchical position of Consensus Ranking (CR) using Tversky coefficient for ROCe 0.5%, 2%, 5%.
The method ranked first is shown in green and the second in red.

Table S6. awROCE values for all data sets included in BS1 and BS2 using PharmScreen (Pha), Glide in SP mode and Consensus

ROCe 0.5%

Ranking using tv (CR tv).

CR Tversky

ROCe 2%

CR Tversky

CR Tanimoto

ROCe 5%

CR Tversky

‘2
... 1

CR Tanimoto

awROCEe 0.5% awROCe 1%
Target Pha Glide CRtv Pha Glide CRtv
BS1 | ace 33.7 10.5 16.9 28.4 5.3 14.7
ache 46.4 0.0 8.4 40.5 0.3 12.6
ada 0.0 3.1 8.3 0.0 1.6 7.8
alr2 7.1 7.1 11.9 3.6 12.5 6.0
ampc 19.0 0.0 33.3 9.5 1.2 16.7
ar 11.3 3.1 7.3 6.6 3.1 9.2
cdk2 0.0 314 28.1 1.6 16.8 16.4
comt 100.0 0.0 25.0 50.0 0.0 18.8
cox1 0.0 18.2 15.2 9.1 9.1 12.1
cox2 85.9 12.6 26.1 54.3 10.1 38.4
dhfr 0.0 14.6 34.6 0.1 8.3 22.3
egfr 12.4 13.7 33.2 8.3 13.4 25.6
er_agonist 60.6 43.0 95.2 52.7 40.1 60.8
er_antagonist 22.5 0.0 12.5 43.8 40.0 40.0
fgfrl 20.0 66.3 47.9 12.1 34.2 27.7
fxa 21.1 6.3 5.9 10.5 8.4 3.1
gart 0.0 0.0 0.0 0.0 0.0 0.0
gpb 44.1 0.0 43.5 25.3 0.0 32.4
gr 49.4 19.4 51.9 25.9 9.7 27.2
hivrt 23.5 13.7 17.6 17.6 6.9 8.8
hivpr 33.3 133.3 66.7 16.7 66.7 33.3
hmga 27.8 100.0 140.4 15.8 50.0 72.1
hsp90 25.0 0.0 25.0 15.6 0.0 125
inha 50.7 23.2 67.1 25.4 11.6 37.9
mr 58.3 33.3 50.0 29.2 20.8 29.2
na 0.7 151.7 142.9 0.3 76.2 79.3
p38 10.9 0.0 10.5 5.5 0.0 5.6
parp 28.6 20.5 87.6 14.3 25.3 46.0
pde5 15.9 20.5 25.0 8.0 17.0 125
pdgfrb 26.0 27.3 38.5 18.2 13.6 19.2
pnp 7.1 23.8 73.8 3.6 11.9 36.9
ppar_gamma 33.3 33.3 66.7 16.7 16.7 33.3




pr 50.0 50.0 62.5 50.0 33.3 32.8
rxr_alpha 35.6 62.2 40.0 20.0 64.4 26.7
sahh 12.9 16.1 12.9 12.9 9.7 11.3
src 11.9 20.6 28.9 7.8 19.9 23.8
thrombin 0.0 30.8 15.4 0.0 15.4 15.4
tk 3.2 28.6 44 .4 1.6 14.3 27.0
trypsin 28.6 85.7 85.7 14.3 61.9 57.1
vegfr2 32.3 48.4 48.4 19.4 27.4 27.4
average 26.2 29.3 41.4 17.4 19.4 26.0
St_desv 23.3 35.4 33.9 15.7 20.3 18.1
max 100.0 151.7 142.9 54.3 76.2 79.3
min 0.0 0.0 0.0 0.0 0.0 0.0
awROCe 2% awROCe 5%
Target Pha Glide CR tv Pha Glide CR tv
BS1 | ace 18.0 2.9 7.6 9.5 14 4.6
ache 21.8 0.1 10.5 9.6 0.4 5.3
ada 0.0 2.3 3.9 2.8 0.9 5.9
alr2 1.8 10.7 7.4 0.7 51 5.2
ampc 5.4 0.6 8.9 2.1 0.2 3.6
ar 3.9 2.5 12.7 3.2 3.7 10.0
cdk2 2.4 17.8 11.1 1.4 10.4 7.8
comt 25.0 0.0 9.4 10.0 4.6 5.0
cox1l 45 45 6.1 3.9 3.6 4.8
cox2 28.5 10.4 27.6 14.2 6.7 12.6
dhfr 0.1 10.0 14.0 0.0 8.7 11.6
egfr 7.3 8.9 18.5 3.7 6.1 8.9
er_agonist 28.4 33.0 37.7 13.7 14.4 15.9
er_antagonist 43.8 28.8 37.1 175 12.0 15.7
fgfrl 7.3 21.4 17.1 7.1 10.3 8.6
fxa 5.3 4.3 4.2 2.6 1.7 3.8
gart 0.0 12.5 0.0 5.0 6.0 5.0
gpb 13.4 0.0 30.4 5.6 0.6 14.1
gr 14.8 49 154 9.6 2.2 6.4
hivrt 9.7 10.8 4.9 5.6 6.7 6.9
hivpr 8.3 33.3 16.7 3.3 13.3 6.7
hmga 22.8 31.3 36.1 10.6 12.9 16.9
hsp90 9.1 0.0 6.3 5.3 3.8 4.2
inha 14.9 6.5 21.1 8.0 3.9 9.0
mr 16.7 12.5 16.7 8.3 8.3 8.3
na 0.2 38.6 47.8 0.1 15.8 19.5
p38 3.3 0.0 3.2 1.4 1.2 2.6
parp 7.1 15.7 37.3 3.1 10.6 16.1
pde5 4.0 10.8 9.1 2.5 7.0 8.2
pdgfrb 9.1 6.8 9.6 3.6 2.8 4.1
pnp 1.8 7.0 23.0 5.7 3.9 13.1
ppar_gamma 8.3 8.3 16.7 3.3 3.3 10.0
pr 25.0 16.7 17.2 10.0 7.0 6.9
rxr_alpha 11.1 32.2 14.4 14.4 12.9 13.3
sahh 8.1 4.8 9.7 4.8 5.5 7.1
src 4.1 12.9 16.5 2.9 8.8 9.6
thrombin 0.0 8.7 7.7 3.5 5.5 6.3
tk 1.6 7.1 13.5 2.5 4.3 6.3
trypsin 7.1 45.2 38.1 9.5 18.1 18.1
vegfr2 9.7 16.9 18.5 4.2 7.8 9.8
average 10.3 12.6 16.6 5.9 6.6 8.9
St_desv 9.8 11.8 11.6 4.3 4.6 4.5
max 43.8 45.2 47.8 175 18.1 19.5
min 0.0 0.0 0.0 0.0 0.2 2.6




awROCe 0.5% awROCe 2%

Figure S4. Heatmap of the hierarchical position of Consensus Ranking using Tanimoto and Tversky coefficient for awROCe 0.5%
and 2%. The method ranked first is shown in green, second in black and third in red.
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Abstract

Methods and tools for measuring degrees of similarity between molecules using information of
molecules hydrophobicity is proposed. In example, sets of field values for each of the molecules
are calculated, each field values representing hydrophobicity of the respective molecules. The
calculated sets of field values are combined to generate similarity index.
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CALCULATING MOLECULAR SIMILARITY

The present disclosure relates to computational chemistry and more

specifically to calculating similarity between molecules.

BACKGROUND

Correct molecular superposition and comparison is a well-known problem in
computational chemistry. One of the main tasks of computational chemists is
to search for new molecules in order to find alternative structures able to bind
to a given receptor or decide which molecule modifications are more
appropriate in order to improve its affinity, solubility, etc. To this end, they
typically rely on known compounds with known properties and the aim is to
disclose other molecules highly similar to the reference compounds. This is
done by combining molecular alignment and similarity measures to capture
the degree of similarity of these molecules. It is not trivial to know which is the
correct alignment or similarity metric because different molecule properties are
going to be more important depending on the problem. Therefore, multiple
similarity metrics exist that help comparing molecules, some of them using
steric or electrostatic fields or field extrema.

SUMMARY

As used in the specification and appended claims, the terms “a”, “an” and
“the” include both singular and plural referents, unless the context clearly
dictates otherwise. Thus, for example, “an apparatus” or “a device” includes

one apparatus or device as well as plural apparatuses or devices.

A computer-implemented method of comparing molecules using information of
molecule hydrophobicity is disclosed. This is performed by comparing two

superposed molecules (m1, m2) and retrieving a Similarity Index (Sl). The Sl
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may be in the form of a numerical value that represents the similarity between

m1 and m2.

Using information of molecular hydrophobicity permits to generate accurate
similarity indexes, particularly for drug-like compounds. As drugs need to be
soluble in a polar environment like blood, a drug needs to be hydrophilic.
Furthermore, drugs need to pass through cellular membranes and other
lipophilic barriers, thus they should not be too hydrophilic. Also, drugs need to
interact with the target biological receptor, i.e. they need to desolvate both the
ligand and the binding pocket.

In a first aspect, a computer-implemented method of measuring a degree of
similarity between two molecules m1, m2 is provided. The method comprises
calculating a set of field values for each of the two molecules, each field value
representing hydrophobicity of the respective molecules, and combining the
calculated sets of field values to generate a similarity index. The similarity
index (SI(m1,m2)) may be a numerical value that represents the similarity
between two molecules (m1 and m2). The field values may be calculated for a
set of M points in space (C). This set of points may be uniformly distributed in
space. For each point (c) we may have three coordinate values (cx, ¢y, C;). In a
cubic uniformly distributed grid, M may be equal to the multiplication of the

number of points in each coordinate axis.

In some examples, calculating a set of field points for each of the two
molecules may comprise creating a grid of points in space, i.e. a set of field
point coordinates, and calculating the influence of different hydrophobicity
values of each molecule at each field point to generate the value of the field at
a given field point. A descriptor point (i) may be a point defined in space where
a hydrophobicity value (hv) is present. Each descriptor point may have three
coordinate values (iy, Iy, iz). A hydrophobicity value (hv(i)) may be a numerical
value representing molecule hydrophobicity in a given descriptor point. The

number of descriptor points (N) may be the total number of hydrophobicity
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values. If hydrophobicity values are defined at each atom, then N would be the

number of atoms.

In some examples, a possible location of the descriptor points may be the
atom centers. A possible way of calculating the hydrophobicity values (hv)
may be by using the logarithm of the partition coefficient P (logP) or a

partitional type of the logP using fractional components.

Calculating the set of points C may be performed by creating a 3D mesh (e.g.
cube or sphere) of uniformly distributed points with the studied molecules in
the center. This may be performed by defining a border length (b) and a grid
spacing distance (s) and finding the molecule coordinate extrema in each
coordinate axis. The 3D mesh origin (co) may be defined by subtracting the

border length from the minimum molecule coordinates (Coordwin):

Co x = Coordpin x— b (Eq. 1)

Then the size of the 3D mesh may be calculated by finding the first integer
number of points (D) in each coordinate direction that multiplied by the grid
spacing is bigger than the distance between the maximum molecule
coordinates (Coordwuax) and the minimum molecule coordinates (Coordwin) plus
two times the border length:

|CoordMax_x—CoordMin_x|+2b)

D, = round ( (Eq. 2)

S

Finally, once the 3D mesh origin and the number of points in each coordinate
direction is defined, iteration over all the field points (c) to calculate their
coordinates may take place. Field point coordinates may be calculated by
adding to the 3D mesh origin coordinates the number of the field point
multiplied by the grid spacing in each coordinate direction. Eq.3 shows how
the x-axis coordinates of field point Q are calculated (being a number from O
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f(hvy, de) = hvg - exp(—a - dg”)  (Ea.7)
being a an adjusting factor.

In some examples, the method may further comprise calculating a local
representation of hydrophobicity at different areas of the molecule.

In some examples, the hydrophobicity descriptor (hv;) may be calculated
using the contribution of each atom to the logP by using parameters related
to the transfer of the molecule from apolar and polar phases. The logP is the
ratio of concentrations of a compound in a mixture of two immiscible phases at
equilibrium. These two phases are usually solvents, typically water and an
organic phase like octanol. In that case, the logarithm of the partition
coefficient P may be calculated as follows:

o/w water organic
logP __ AG,) _ AGHTET—AG (Eq 8)
2.303RT 2.303RT )

where AGsq is the solvation free energy or Gibbs free energy in solution
(water, organic phase like octanol), R is gas constant and T is the
temperature. The solvation free energy or Gibbs free energy (AGs,;) is the
amount of free energy required from the transfer of the molecule from the gas

phase to the interior of the solvent.

In other case hv could be calculated using the fractional logP (Pf), which may
be defined as the logP calculated with any of the individual components of the
solvation free energy like AGcay, AGwy Or AGegle:

AG)\?/ater_AGOTganlC

X .
Pf = T (X:ele,cavorvW) (Eq.9)

In some examples, calculating the 3D distribution of polar and apolar regions
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in the molecule may comprise calculating the free energy of solvation (AGSol)
by combining the cavitation (AG_Cav), the van der Waals (AG_VW) and the

electrostatic components (AG_Ele).

In some examples, combining the cavitation (AG_Cav), the van der Waals
(AG_VW) and the electrostatic components (AG_Ele) may comprise
calculating the solvation free energy by using the accurate polarizable
continuum model (PCM) developed by Miertus-Scrocco and Tomasi (MST)
and is calculated by adding three energy contributions, the cavitation (AG¢.y),

the van der Waals (AGy, ) and the electrostatic terms (AGg,.):

AGgy; = AGegy + AGyy + AGEe (Eq.10)

where AG.., is the free energy required for creating a cavity shaped to
accommodate the solute in the solvent, AGw is the free energy accounting for
dispersion-repulsion interactions between solute and solvent, and AGg is the
free energy needed to build up the solute charge distribution in the solvent.

In some examples, the similarity index for each field point may be equal to the
size of the intersection between the two molecules (SI(m1,m2)) for all the field
points divided by the size of the union of all the field points of the two sets.

In some examples, the intersection of a given field point may be computed
picking the smallest absolute field value at that point if both fields are positive

or negative and is set to 0 otherwise.

In some examples, the method may further comprise combining multiple

similarity indexes.

The proposed method provides key differences over existing solutions. First,
the use of atomic contributions to the LogP or Pf is proposed to calculate field
points, and second it is proposed to calculate a similarity metric using the
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In another aspect, a computational chemistry tool for measuring a degree of
similarity between two molecules is disclosed. The tool may comprise means
for calculating a set of field points for each of the two molecules, each field
point representing hydrophobicity of the respective molecules. The tool may
further comprise means for combining the calculated sets of field points to
generate a similarity index.

To reduce the computational cost of the proposed algorithm, the
computational tool may employ multiple acceleration methods. These
methods may include task parallelization or the usage of hardware
accelerators to reduce the time required to perform similarity calculation.

Task parallelization may take advantage of the data independence of various
tasks of the proposed algorithm. For example, instead of executing the
algorithm in a sequential way, it may detect those tasks that may be executed
in parallel and execute those tasks concurrently, thus reducing the overall
execution time. Task parallelization may be achieved at different levels; in the
proposed algorithm, it may be implemented at the molecule level if multiple
similarity indexes need to be calculated by calculating all similarity indexes in
parallel. It may also be implemented at the field point level in the field
calculation or in the similarity index calculation. Additional techniques may be
employed at the instruction level for a finer grain parallelization such as

vectorization of mathematical operations.

One way of implementing the proposed algorithms would be through a
software computer program to be executed in the computational tool. The
computational tool may employ graphic processing units (GPUs) for the
parallelization of tasks through the usage of specific programming languages.
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Finally, critical tasks that are executed often may also be performed by ad-hoc
computational devices designed specifically for this task and included in the
computational tool. This may be implemented with an electronic circuit
capable of performing such tasks and fabricating it or implementing it in
reprogrammable hardware devices such as Field Programmable Gate-Arrays
(FPGASs).

In another aspect, a computer program product is disclosed. The computer
program product may comprise program instructions for causing a computing
system to perform a method of measuring a degree of similarity between two

molecules according to some examples disclosed herein.

The computer program product may be embodied on a storage medium (for
example, a CD-ROM, a DVD, a USB drive, on a computer memory or on a
read-only memory) or carried on a carrier signal (for example, on an electrical

or optical carrier signal).

The computer program may be in the form of source code, object code, a
code intermediate source and object code such as in partially compiled form,
or in any other form suitable for use in the implementation of the processes.
The carrier may be any entity or device capable of carrying the computer

program.

For example, the carrier may comprise a storage medium, such as a ROM, for
example a CD ROM or a semiconductor ROM, or a magnetic recording
medium, for example a hard disk. Further, the carrier may be a transmissible
carrier such as an electrical or optical signal, which may be conveyed via

electrical or optical cable or by radio or other means.

When the computer program is embodied in a signal that may be conveyed
directly by a cable or other device or means, the carrier may be constituted by

such cable or other device or means.
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Alternatively, the carrier may be an integrated circuit in which the computer
program is embedded, the integrated circuit being adapted for performing, or
for use in the performance of, the relevant methods.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of the present disclosure will be described in the
following, with reference to the appended drawings, in which:

Figure 1A schematically illustrates a method of measuring a degree of

similarity between two molecules according to an example;

Figure 1B schematically illustrates two example molecules to be compared
before and after superposition;

Figure 1C schematically illustrates an example superposition in a set of field

points used for Similarity Index calculation;

Figure 2 schematically illustrates a method of measuring a degree of similarity

between two molecules according to another example;

Figure 3 schematically illustrates a use case for molecular virtual screening

according to an example.

Figure 4 schematically illustrates a computational tool for measuring a degree

of similarity between two molecules according to an example.

DETAILED DESCRIPTION OF EXAMPLES

Figure 1A schematically illustrates a method of measuring a degree of
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similarity between two molecules according to an example. In block 105, a set
of field point values for each of the two molecules may be calculated. Each
field point value may represent hydrophobicity of the respective molecules.
Then, in block 110, the calculated sets of field point values may be combined
to generate a similarity index.

Figure 1B schematically illustrates two example superposed molecules m1
and m2 to be compared before and after superposition. Figure 1C
schematically illustrates an example superposition of two molecules in a set of
field points used for similarity index calculation;

In order to compute the Similarity Index, the proposed method uses a set of
field points representing the hydrophobicity of each of the two compared
molecules (m1 and m2). Field points are calculated creating a grid of points in
space and calculating the influence of the different hydrophobicity values of
each molecule in each field point. Once the two sets of field points are
calculated (Fm1 and Fn2), they are combined to obtain the Similarity Index.

In order to compute the values of the field in a given point (c) a possible
implementation would use Eq. 4. A possible implementation of the field
formula would be Eq. 6. and another possible implementation of the field
formula would be Eq. 7.

A possible way of calculating the hydrophobicity values (hv;) is using the
fractional description of free energies of solvation or the LogP. These
hydrophobic descriptors could be the atomic contribution to the solvation free
energy or the LogP partition, or any of the terms in which it can be
decomposed (Cavitation, Van der Waals or Electrostatic) or a combination of

them.

The hydrophobic/hydrophilic character of a drug may be described by using
parameters related to the transfer of the molecule from apolar and polar
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phases. These parameters are typically the free energy of solvation, which is
calculated in polar phase usually with water, and in an apolar phase typically
represented with apolar solvents such as chloroform, carbon tetrachloride,
hexane or octanol. In this context, a well-known measure of hydrophobicity is
the LogP, which is computed with Eq. 8.

Typically, a unique global measure of the hydrophobic/hydrophilic character of
a drug is computed and used in the drug design process. However, the 3D
distribution of polar/apolar regions in the molecule is also important and
therefore it is desirable to have a local -representation of

hydrophobicity/hydrophilicity in different areas of the molecule.

Traditional approaches for atomic-level descriptors are based on empirical
parameters obtained for fragments/chemical groups and calculating the
influence in a given point with the distance to each fragment. Alternatively,
quasi-empirical methods or theoretical methods can be used.

The proposed tool is based on the accurate polarizable continuum model
(PCM) developed by Miertus-Scrocco and Tomasi (MST). In the MST method,
the free energy of solvation (AGsy) is calculated summing up the cavitation,
the van der Waals and the electrostatic components as shown in Eq. 10.

The cavitation and van der Waals components of AGsy can be easily
decomposed into atomic contributions, since they depend on the exposure of
atoms to the solvent.

The cavitation component (AGcay) is computed following Pierotti (Pierotti, R.A.,
“A scaled particle theory of aqueous and nonaqueous solutions”, Chem. Rev.
76, 1976, 717) scaled particle theory adapted to cavities of molecular shape,
so that the contribution of a given atom is weighted according to its exposure
to the solvent.
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AGCav (l) = SA

U AGr(D)  (Eg. 11)

St
where SAS; is the solvent accessible surface of atom i, SASt is the surface
area of such an atom, and AG,(i) stands for the cavitation free energy of the

isolated atom.

The van der Waals term (AGww) is computed using a linear relationship with
the atomic surface as given by Equation (12), where the parameter «; stands
for the atomic van der Waals surface tension.

AGyy (0) = a;SAS; (Eq. 12)

The electrostatic component of the free energy (AGge) is computed
considering the interaction of the solute charge distribution with the surface
elements pertaining to the surface generated by such an atom.

sol
j
T—Tj

AGg (0) = Zy=€1N Z:th=1 <¢O

¥°) (Eq. 13)

where ° accounts for the wavefunction of the solute in vacuo, qf"‘ stands for

the charge associated with the surface element j generated in response to the
fully polarized charge distribution of the solute in solution, and M is the
number of surface elements of the total number of atoms N.

These parameters are used in the proposed method either together or
separately. For example, separate LogP values of each of the aforementioned
components could be used and then generate multiple interaction fields that
could be used for alignment and comparison.

A possible implementation of the Similarity Index (SI(m1,m2)) is to use the
Tanimoto or Jaccard index, which is defined as the size of the intersection
(Ilm1,m2)) divided by the size of the union of the two sets. The result of this
operation is a number that ranges between 0 and 1 being 0 completely
different and 1 the same. It can be computed with the following formulas (Eq.
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14) and (Eq. 15).

P olim1m2,i)|
3 olFma (DI+EE | P (D1-ZE 11 (m1,m2,0)|

SI(m1,m2) = (Eq. 14)

if ((Fpy(@) > 0)and (Fp,(i) > 0)) or ((Fpq (i) < 0) and (Fp,(i) < 0))
1(m1,m2,i) = min(|Fppy (D], | Fr2 (D)
else (Eq. 15)
I(m1,m2,i) =0

The intersection of a given field point (i) is computed picking the smallest
absolute field value at that point if both fields are positive or negative and is

set to 0 otherwise.

Additionally, multiple similarity indexes could be used, in which case their
similarity metric could be calculated and combined with the hydrophobic

similarity with the following formula:
Similarity = XM W, - SI; (Eq. 16)

where M is the number of similarity indexes, Wy are the weights assigned to

each similarity index and SI; are the similarity indexes.

The previously presented combination of similarity indexes could include
multiple  hydrophobic  similarity indexes computed using different
hydrophobicity values (hv;) like the terms in which it can be decomposed
(Cavitation, Van der Waals or Electrostatic).

Furthermore, the presented similarity index could be used to guide the
superposition process of two molecules with any iterative method either alone
or combined with other similarity metrics.

Figure 2 schematically illustrates a method of measuring a degree of similarity
between two molecules according to another example. In block 200,
information regarding the first and second superposed molecules may be
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introduced. In block 205 grid values (set of field point coordinates) may be
calculated based on the introduced information. In block 210 hydrophobic
descriptor values for the first molecule may be determined (either calculated
or retrieved from a memory of pre-calculated values) based on the information
introduced for the first superposed molecule. In block 215 hydrophobic
descriptor values for the second molecule may be determined (similarly, they
may be either calculated or retrieved from a memory of pre-calculated values)
based on the information introduced for the second superposed molecule. In
block 220, the field values may be calculated for the first molecule based on
the grid value calculation and the hydrophobic descriptor value determination
for the first molecule. Accordingly, in block 225, the field values may be
calculated for the second molecule based on the grid value calculation and the
hydrophobic descriptor value calculation for the second molecule. In block
230, a similarity index may be calculated based on the field value calculations.
Optionally, in block 235, the calculated similarity index may be combined with

other similarity index or indexes to generate a final similarity index.

Figure 3 schematically illustrates a use case for molecular virtual screening
according to an example. The computational tool 310 may be connected or
may receive information about molecules from a molecule database 305.
Then information about a reference molecule may be received or introduced.
In a typical scenario, a reference molecule will be compared with some or all
the molecules that may be included in the molecule database. The molecular
database may comprise data related to the molecule such as the molecule
name, the number of atoms in the molecule, the coordinates of each atom, the
type of atom and the existing type of bond between the atoms. The
computational tool 310 may comprise a molecule preprocessing module 315.
The molecule preprocessing module 315 may preprocess the information
received from the molecule database for any particular molecule. The
computational tool 310 may further comprise a reference molecule
preprocessing module 330. The reference molecule preprocessing module

320 may preprocess the information introduced or received for the reference
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molecule. The purpose of the two modules is to adjust the received
information so that the two molecules (the one from the database and the
reference one) to be comparable. The computational tool may further
comprise a molecule superposition module 325 that performs superposition of
the two molecules during any iteration. The computational tool may further
comprise a similarity calculation module 330. The similarity calculation module
330 may perform calculations according to methods disclosed herein. The
computational tool may iterate for all the molecules of the database and then
provide the results to a similarity index sorting module 335. The sorting
module 335 may rank the results to provide the best match.

Figure 4 schematically illustrates a computational tool for measuring a degree
of similarity between two molecules according to an example, and its usage
for performing a virtual screening of a molecule database. The computational
tool 400 may be connected or may receive information about molecules from
molecule database 405. This molecule database may be a storage device
including multiple molecule data entries, each of them containing relevant
information of the molecule like the molecule name, the number of atoms in
the molecule, the coordinates of each atom, the type of atom and the existing
type of bond between the atoms.

Information about molecules in the database may be read by a database read
processing element 410 in the computational tool 400 and stored in the
computational tool system memory 415. The system memory 415 may be in
the form of a unified or distributed storage medium. In a typical scenario, one
of the stored molecules may be selected as the reference molecule and
compared to the rest of the molecules. In other scenarios, a molecule that is
not part of the molecule database may be compared with the molecules in the
molecule database. A system memory read function is indicated with a
straight line whereas a system memory write function is indicated with a
dashed line in the example of Fig. 4.
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The computational tool 400 may comprise one or multiple hydrophobic
descriptors calculation processing elements 420. The hydrophobic descriptors
calculation processing element 420 may calculate the hydrophobicity
descriptor values for any particular molecule from an entry of the system
memory and store these descriptors in another entry in the system memory
415. In the example of Fig. 4, there is data for three molecules stored in
system memory entries 415a, 415b and 415c. Accordingly, the hydrophobic
descriptors calculation processing elements 420 may write the result of the
hydrophobicity descriptor value calculations to memory entries 415e, 415f,
415g. The hydrophobicity descriptor values may be calculated every time or
may be calculated once and retrieved from the memory whenever there is a

similarity index calculation.

The computational tool may further comprise one or multiple molecule
superposition processing elements 425. The molecule superposition
processing element may generate a new set of coordinates for any particular
molecule from system memory so this molecule is overlapped in space with
the reference molecule and then store the new coordinates in system
memory. In the example of Fig. 4 for the 3 molecules, three sets of
coordinates (indicated as Super Coord 1, 2 and 3) in memory entries 415h,
415i and 415j, respectively.

The computational tool may further comprise one or multiple grid calculation
processing elements. The grid calculation processing element 430 may read
the coordinates of one or multiple molecules and generate a set of points in
space and store them in system memory. System memory entry 415d
indicates the memory entry where the field points may have been stored. The
purpose of this module is to generate the set of points in space that will be
used later to calculate the field values of each molecule.

The computational tool may further comprise one or multiple field calculation

processing elements. The field calculation processing element 435 may read
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the coordinates of a molecule, its hydrophobicity descriptors and a set of field
points from system memory and calculate the field value in each of the field
points. The calculated field values may then be stored in system memory. In
the example, the system memory entries used are entries 415k, 415| and
415m, each entry for the field values of the corresponding molecule 1, 2 and
3, respectively. The coordinates used in the field calculation processing
element 435 may be the coordinates previously read from the molecule
database or the coordinates generated by a molecule superposition
processing element 425.

The computational tool may further comprise one or multiple similarity index
processing elements 440. The similarity index processing element 440 may
read two sets of field values from system memory, each from a different
molecule, and calculate a similarity index that may be stored in system
memory. System memory entries 415n and 4150 may be used to store the Sl
for two comparisons. The similarity index module may perform calculations
according to methods disclosed herein. In a typical scenario, one set of field
values would be always the set of field values of the reference molecule.

The computational tool may further comprise one or multiple sorting
processing elements 450. The sorting processing elements may read multiple
similarity indexes and order them by the similarity index value, obtaining a
molecule order. In a typical scenario, the sorting processing element may
generate a molecule ranking that may be used to select those molecules of
the molecule database that are more similar or less similar to the reference
molecule.

Those of skill would further appreciate that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the
embodiments disclosed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illustrate this

interchangeability of hardware and software, various illustrative components,
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blocks, modules, circuits, and steps have been described above generally in
terms of their functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a

departure from the scope of the exemplary embodiments of the invention.

The various illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be implemented or
performed with a general purpose processor, a Graphics Processing Unit
(GPU), a Digital Signal Processor (DSP), an Application Specific Integrated
Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other
programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions
described herein. A general purpose processor may be a microprocessor, but
in the alternative, the processor may be any conventional processor,
controller, microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other such

configuration.

The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a
software module executed by a processor, or in a combination of the two. A
software module may reside in Random Access Memory (RAM), flash
memory, Read Only Memory (ROM), Electrically Programmable ROM
(EPROM), Electrically Erasable Programmable ROM (EEPROM), registers,
hard disk, a removable disk, a CD-ROM, or any other form of storage medium
known in the art. An exemplary storage medium is coupled to the processor

such that the processor can read information from, and write information to,
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the storage medium. In the alternative, the storage medium may be integral to
the processor. The processor and the storage medium may reside in an
ASIC. The ASIC may reside in a user terminal. In the alternative, the
processor and the storage medium may reside as discrete components in a

user terminal.

In one or more exemplary embodiments, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted over
as one or more instructions or code on a computer-readable medium.
Computer-readable media includes both computer storage media and
communication media including any medium that facilitates transfer of a
computer program from one place to another. A storage media may be any
available media that can be accessed by a computer. By way of example,
and not limitation, such computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any connection is
properly termed a computer-readable medium.

Although only a number of examples have been disclosed herein, other
alternatives, modifications, uses and/or equivalents thereof are possible. All
possible combinations of the described examples are also covered. Thus, the
scope of the present disclosure should not be limited by particular examples,
but should be determined only by a fair reading of the claims that follow. If
reference signs related to drawings are placed in parentheses in a claim, they
are solely for attempting to increase the intelligibility of the claim, and shall not
be construed as limiting the scope of the claim.

Further, although the examples described with reference to the drawings

comprise computing apparatus/systems and processes performed in
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computing apparatus/systems, the invention also extends to computer
programs, particularly computer programs on or in a carrier, adapted for

putting the system into practice.
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CLAIMS

1. A computer-implemented method of measuring a degree of similarity

between two molecules, comprising:

calculating a set of field values for each of the two molecules, each field
value representing hydrophobicity of the respective molecules,

combining the calculated sets of field values to generate a similarity

index.

2. The method according to claim 1, wherein calculating a set of field
points for each of the two molecules comprises

defining a set (C) of points (c) in space;

identifying a set () of descriptor points (i) in space, each descriptor
point (i) having an associated hydrophobicity value (hv)

calculating the influence of different hydrophobicity values (hv) at each
point ¢ to generate the value of the hydrophobicity field.

3. The method according to claim 2, wherein calculating the influence of
different hydrophobicity values of each molecule at each point ¢ is performed
with the following formula

F(c) = o f (hvy, dey)

where the field value F(c) is the sum of the contributions of the different
descriptor points to that field point ¢, being N the number of hydrophobicity
values, c the field point from the set C and f(hv;,d.;) a field formula using
hydrophobicity values (hv;) and the distance (d.) between each descriptor

point i and the field point c.

4. The method according to claim 3, wherein the field formula f(hv;,d.;)

is:

hv;
f(hvi: dci) = #
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a5 The method according to claim 3, wherein the field formula f(hv;,d.;)
is:
f(hv;,de;) = hv; - exp(—a - dciz)
6. The method according to any of claims 1 to 5, further comprising

calculating a local representation of hydrophobicity at different areas of the

molecule.

7. The method according to claim 6, wherein the hydrophobicity value
(hv;) is calculated using the logarithm of the partition coefficient P, LogP or
fractional components of LogP, by using parameters related to the transfer of
the molecule from apolar and polar phases of the molecule wherein

LO P _ AGpolar_AGapolar
g 2.303RT

where AG is the solvation energy in solution (water, organic phase like
octanol), R is gas constant and T is the temperature

8. The method according to claim 7, wherein the hydrophobicity value is
calculated for the center of each atom of the molecule.

9. The method according to claim 7 or 8, wherein calculating the 3D
distribution of polar and apolar regions in the molecule comprises calculating
the free energy of solvation (AG) by using one or more of the cavitation
(AG_Cav), the van der Waals (AG_VW) and the electrostatic components
(AG_Ele).

10. The method according to claim 9, wherein using comprises summing
up the cavitation (AGq,,), the van der Waals (AGyy) and the electrostatic

components (AGg,.), wherein:
AGso; = AGegy + AGyy + AGg,

11.  The method according to any of claims 1 to 10, wherein the similarity
index for each field point is equal to the size of the intersection (I(m1,m2))
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between the two molecules for all the field points divided by the size of the
union of all the field points of the two sets.

12.  The method according to claim 1, wherein the intersection of a given
field point is computed picking the smallest absolute field value at that point if
both fields are positive or negative and is set to 0 otherwise.

13. The method according to any of claims 1 to 12, further comprising

combining multiple similarity indexes.

14. A computational chemistry tool for measuring a degree of similarity
between two molecules, comprising:
means for calculating a set of field points for each of the two molecules,
each field point representing hydrophobicity of the respective molecules; and
means for combining the calculated sets of field points to generate a

similarity index.

15.  The computational chemistry tool according to claim 14, wherein the
means for calculating a set of field points for each of the two molecules
comprises:

a memory;

one or more hydrophobicity descriptor processing elements to
determine hydrophobicity descriptor values; and

one or more field calculation processing elements to read the
determined hydrophobicity descriptor values and a set of field points from the
memory and calculate the field value in each of the field points.

16. The computational chemistry tool according to claim 15, wherein the
one or more hydrophobicity descriptor processing elements are configured to
calculate the hydrophobicity descriptor values.

17.  The computational chemistry tool according to claim 15, wherein the
hydrophobicity descriptor values are pre-calculated and the one or more
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hydrophobicity descriptor processing elements are configured to retrieve the

hydrophobicity descriptor values from a memory.

18.  The computational chemistry tool according to any of claims 14 to 17,
further comprising a grid calculation processing element to calculate the field

points.

19. The computational tool according to any of claims 15 to 18, further
comprising one or more molecule superposition processing elements to
generate new coordinates for the molecules and store them in the system

memory.

20. The computational chemistry tool according to any of claims 14 to 19,
wherein the means for combining the calculated sets of field points to

generate a similarity index comprises a similarity index processing element.

21. The computational chemistry tool according to claim 20, further

comprising a sorting processing element.

22. The computational chemistry tool according to any of claims 14 to 21,
comprising multiple hydrophobic descriptor calculation processing elements,
molecule superposition processing elements and field calculation processing

elements to compare molecules in a parallel configuration.

23. A computer program product comprising program instructions for
causing a computing system to perform a method according to any of claims 1
to 13.

24. A computer program product according to claim 23, embodied on a

storage medium.
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25. A computer program product according to claim 23, carried on a carrier
signal.
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CHAPTER 4 - RESULTS SUMMARY -
4 RESULTS SUMMARY

The study of molecular similarity and the aim to exploit 3D-distribution patterns of lipophilicity have
provided the necessary impetus to carry out this research project. Under this framework, we have developed
a LBVS tool that exploits a novel set of hydrophobic descriptors derived from QM self-consistent reaction
field calculations. The outcome of this work is presented in two main sections that (1) define a
computational approach that enables to perform a reliable molecular alignment, and (2) establish an ordered
similarity relationship between aligned pairs of compounds with respect to a molecular reference template.
The latter includes a preliminary study in 3D-QSAR, where our alignment descriptors are applied to

structure-activity relationships.

4.1 Lipophilic descriptors in molecular alignment

Molecular alignment is a core procedure in 3D CADD tools, which enables pharmacophore elucidation,
QSAR analysis, or to perform VS campaigns. Obtaining a correct alignment is not trivial and is influenced
by several factors, including the quality of the physicochemical descriptors used. Traditionally, steric and
electrostatic descriptors have dominated the choice of molecular descriptors,'’®17° whereas other molecular
determinants of drug activity have been mostly ignored, or given a secondary role, such as the
hydrophobic/hydrophilic balance.

Relying on the hypothesis that the maximal achievable binding affinity variation for an optimized
drug-like molecule is largely due to desolvation,'® PharmScreen is presented as a novel strategy for 3D
alignment of small molecules. PharmScreen exploits the usage of molecular lipophilicity and hydrogen-

bond donors/acceptors to obtain accurate 3D molecular alignments.

4.1.1 Molecular descriptors and implementation

The alignment method is based on the hydrophobic descriptors obtained by using the Miertus-Scrocco-
Tomasi self-consistent continuum solvation method (MST-SCRF),® particularly the version parametrized
for the semiempirical Hamiltonian RM1. Under this framework, the molecular hydrophobicity can be
partitioned into atomic contributions, each decomposable into electrostatic, and non-electrostatic
(cavitation and van der Waals) components. However, due to the large redundancy between non-
electrostatic components, molecular overlays have been determined only from the logPeie and logPcav, Which
have demonstrated to have a good performance in comparison to other standard 3D-QSAR techniques.162163

Starting from the 3D topological distribution of hydrophobicity constituted by the atomic
contributions, a set of molecular moments inspired on the multipolar expansion of the electrostatic potential
are defined.!?® Each moment is defined by using an expansion center and the principal axes of a specific
tensor matrix. The use of LogPiwta and LogPere allows the definition of a “hydrophobic monopole” where
the “quadrupole tensor” is positioned. The former exploits the information about the net polar/apolar

character of atoms, and the latter relies on the differential electrostatic interaction of the individual atoms
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arising upon hydration relative to solvation in n-octanol. In the case of logPc, which encodes information
about shape, the alignment is accomplished throughout calculations of the moments of inertia. For each
molecular pair, a pool of alignments is obtained based on these moments.

In the second stage, a score function selects the best overlay among the multiple alignments derived
from the hydrophobic descriptors (Figure 6). The logPwta and logPee 0f polar groups are negative, reflecting
the preference for solvation in water, but they do not include information about the hydrogen-bond
donor/acceptor character. For this reason, this information is included in the score function as a third
component to preserve the information about the acceptor/donor recognition properties of the compound.
To this end, an arbitrary parameter of +1 is assigned to all hydrogen considered as donors, and — 1 for N

and O atoms that may act as acceptors. For each overlay, the atomic contributions are projected into a 3D
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Figure 6 | Alignment scheme. The quadrupole tensor (Q) and inertial tensors (I) positioned in the center of expansion (ﬁ) define
the moments for each pair of compounds to build the alignment pool. The global score (S) is determined by the Tanimoto coefficient
(T,,) obtained for the different molecular fields using a normalized weighting factor (1). All proposed alignments in the pool are
evaluated, and only the one with the highest score is reported as the final alignment for each molecule pair.

4.1.2 Weights calibration and QM methods

The scoring function is determined combining the Tanimoto coefficients obtained for the different
molecular fields using a normalized weighting factor. The training set used to calibrate the score function
weights, as well as to evaluate the QM method used to derive the hydrophobic contributions, consisted of
14 series of compounds used as a benchmarking ensemble (with 410 ligands in total). This set combines
X-ray crystal structures'®182 and pharmacophoric models.'®? Molecular overlays were determined using
either two or three molecular fields. The former combines the atomic contributions of the logPiotal
supplemented with a hydrogen bond field (HB). The third molecular field combines the electrostatic
(logPeie) and cavitation (logPcav) contributions in addition to the HB field. The analysis of the weighting
factors was performed in the presence and absence of the HB contribution.

The optimal weights are found to be close to 30/70 for the combinations of descriptors 10gPw/HB
and logPee/logPcav. Upon inclusion of the HB field in the latter, the weighting factors were refined to 15
(log Peie), 55 (log Pcav), and 30 (HB).
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On average, the weighted factors chosen for the combination of logPei and logPcav give rise to
obtain better results compared to the exclusive use of the total hydrophobicity. The addition of HB field

also enhances the performance in the two field combinations, as can be noted in Table 2.

Table 2 | Weighting factors chosen for molecular overlays upon combination of electrostatic and cavitation components of
hydrophobicity and upon combination with the HB descriptors. The average value (%) of successful overlaps for all ligand-template
pairs are reported. The molecular overlay is considered to be correct when the RMSD of the heavy atoms is < 2.0 A from the X-

ray arrangement or pharmacophoric model.

weights (LogP contributions/HB)

l0gP1otal 100/0 70/30

Subset 1 (155) 20.8 24.0
Subset 2 (255) 46.0 52.9
total (410) 36.7 41.9
logPeie/log Peav 30/70/0 15/55/30
Subset 1 (155) 34.1 38.0
Subset 2 (255) 64.0 65.6
total (410) 52.7 54.0

Due to the low computational cost compared to ab initio methods, the calibration of the weighting
factors in the similarity function was performed using the semiempirical Hamiltonian RM1. Nevertheless,
the performances of descriptors derived from MST/RM1* and MST/B3LYP/6-31G(d)® calculations
(calculated using locally modified versions of MOPAC!® and Gaussian 09#*, respectively) were compared
to evaluate the influence of the method in the alignment accuracy for the molecules included in the training
set. As shown in Figure 7, similar results were obtained at the two levels of theory. In light of these results,
the subsequent generation of hydrophobic descriptors was carried out by using the MST solvation model

parametrized for the semiempirical Hamiltonian RM1, which was integrated in PharmScreen.
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Figure 7 | Overlay accuracy (%) determined for logPeie/logPcav/HB fields. The average values of correctly predicted alignments
from semiempirical RM1 and B3LYP hydrophobic contributions are shown as dashed lines and solid area, respectively. The
molecular overlay is considered to be correct when the RMSD of the heavy atoms is < 2.0 A from the X-ray arrangement or
pharmacophoric model.

4.1.3 Overlay accuracy validation

To validate the alignment approach presented in this study, a retrospective validation study was carried out
with the CCDC AstraZeneca Overlays Validation Test Set!® (AZ), which comprises 1456 ligands in 121
sets. In Ref.1% the ligands in the distinct X-ray crystallographic structures were examined and classified in
four categories based on how easy or difficult it would be to reproduce the experimental overlay. This
systematic analysis yielded a classification of the ligands as easy, moderate, hard, and unfeasible,
comprising 210, 1447, 187 and 103 compounds, respectively.

The accuracy of the molecular overlays predicted from logPee/logPc/HB fields (weights of
15/55/30, respectively) is compared with the results obtained by using electrostatic/steric fields. To further
validate the findings of this comparison, the weights of these latter fields were also optimized using the
compounds in the training set. The most efficient weighting fields were found to be close to 50/50.

The results for the AZ set confirm the suitability of the MST based-hydrophobic parameters for
generating molecular overlays with correct predictions. A similar success rate was obtained using the two
sets of descriptors for compounds of easy and moderate categories (96.5% and 79.4%). However, a success
rate of 54.4% and 31.3% were obtained with MST-based descriptors for the molecules classified into hard
and unfeasible sets. Using electrostatic/steric fields the performance for the hard and unfeasible set category
was slightly reduced to 48% and 27%, respectively.

It is worth noting that the apparently similar overall performance of logPee/logPc/HB and
electrostatic/steric fields does not necessarily imply that these descriptors lead to identical overlays for a
given compound. Figure 8 shows the number (%) of identical superpositions between the best pose
predicted from the hydrophobic/HB and electrostatic/steric fields. This comparison shows that the number
of similar orientations decreases as the difficulty of the category increases. Thus, for the 22 sets in the easy
category, logPee/logP./HB and electrostatic/steric fields lead to the same molecular alignments in 18
cases, and the agreement is larger than 80% in the remaining 4 cases. This level of identity is attained in 50

out of the 73 sets included in the moderate category, and it is found only in 4 cases out of the 18 sets
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pertaining to the hard category. Finally, only a single set reaches a number of identical overlays larger than
50% for the unfeasible targets. Thus, although the two sets of descriptors yielded similar overall
performances, they do not lead necessarily to similar overlays for the same compounds, especially for those

included in the most difficult categories.
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Figure 8 | Degree of identity (%) between the molecular overlays obtained predicted from logPele/logPca/HB and electrostatic/steric
fields. Two orientations are considered to be equal when the RMSD of the heavy atoms is < 2.0 A from the X-ray arrangement

To illustrate the preceding comments, Figure 9 shows the alignment of the ligand taken from X-ray structure
1YI13 over the compound extracted from 2C31 when hydrophobic descriptors are used in comparison to the
alignment produced by electrostatic/steric descriptors. In this particular case, hydrophobic descriptors yield
the closest orientation to the X-ray structure (RMSD of 1.64 A), whereas electrostatic/steric fields lead to
a wrong orientation (RMSD of 4.34 A). On the other side, Figure 10 shows how the steric/electrostatic
fields bring the ligand extracted from 30ORX to the closest alignment to the X-ray structure (RMSD of 1.54
A), while hydrophobic descriptors induce an incorrect orientation (RMSD of 2.14 A).

These results highlight the complementarity that may exist between hydrophobic/HB and
electrostatic/steric fields. The chemical space is broad and diverse, and two molecular moieties that appear
seemingly equivalent according to a given set of descriptors may not be equivalent when another set is
used. Accordingly, each subset of actives can be addressed from different perspectives.’®”18 Thus, the
possibility to select different properties in searching for a drug-like compound go beyond the range of

molecular similarity relationships under investigation and may facilitate the study of specific cases.
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Figure 9 | Molecular overlays obtained for compounds linked to the serine protein kinase/threonine PIM-1(PDB code:2c3i, purple).
Representation of the overlapping 1yi3 (green) superimposed using logPele / logPcav / HB (upper). Representation of the 2c3i
(green) binder superimposed using electrostatic / steric descriptors (lower).
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Figure 10 | Molecular overlays obtained for compounds linked to the serine protein kinase/threonine pdpk1(PDB code:3orz,
purple). Representation of the overlapping 3orx (green) superimposed using logPele / logPcav / HB (upper). Representation of the
3orx (green) binder superimposed using electrostatic / steric descriptors (lower).

In the interest of standardizing the assessment of alignment tools, Jones et al. proposed the
AlignScore metric: only sets with a percentage of success > 50% are considered as correct. The analysis of
PharmScreen’s overlays making use of this metric returns values of 100%, 93%, 55%, and 13% for easy,
moderate, hard, and unfeasible sets. Previous studies used AlignScore to analyze the performance of two
alignment tools: the Cambridge Structural Database-driven overlay program (CSD)® and MolAlign*®°. For
the former, the percentage of correct overlays was 95%, 76%, 39%, and 0%, although it must be noticed
that in this case the starting point was not the experimental conformation, which increases the complexity
of the evaluation and might justify the lower performance. With regard to MolAlign, the number (%) of
correctly predicted overlays was 95%, 68%, 44%, and 13% (results derived by using conformers generated
with Balloon and Confect, considering a geometrically successful arrangement in any of the top five
solutions). Although caution is required for a quantitative comparison due to the differences in the
computational protocol and performance metrics, present results suggest that PharmScreen produces

competitive overlays.
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Overall, based on logPele/logPcav/HB scoring function, the template-ligand pairs can be compared
and ranked, enabling the use of PharmScreen as a LBVS tool through a pre-generated ensemble of

conformers for flexible compounds.

4.2 Lipophilic descriptors in 3D-QSAR

After developing and applying the proposed descriptors successfully to molecular alignment in Section 3.1,
this approach was tested in 3D-QSAR studies to validate its ability to predict SAR models. Due to the
partitioning of lipophilicity in atomic contributions, the graphical representation of the distribution pattern

of polar and apolar regions can be adapted to 3D-QSAR methods in a straightforward way.

4.2.1 Onthe QM method applied to derive the 3D-QSAR model

As in the case of the alignment study, the effect of the QM accuracy level in 3D-QSAR was
evaluated. The hydrophobic descriptors derived from MST method were obtained using both the
semiempirical RM1 Hamiltonian and the version parametrized at the B3LYP/6-31G(d) level. The models
were assessed for a subset of four systems (D2 inhibitors, antifungal chromanones, GSK3-8, and cruzain
inhibitors)!%2, Figure 11 reveals that there is a large resemblance in the overall performance of MST/RM1
and MST/B3LYP for all datasets. Accordingly, the computationally less demanding RM1 method seems to
be a promising choice for 3D-QSAR studies using hydrophobic parameters. Thus, the benchmark dataset

was examined using the MST/RM1 descriptors.

Chromanone

Dopamine

GSK3-8

Figure 11 | Statistical parameters (r2, dashed line, and S, solid area) for the test set of the 3D-QSAR HyPhar models obtained from
MST/B3LYP (grey) and MST/RM1(blue) calculations for the four sets of compounds.

4.2.2 3D-QSAR validation

The standard CoOMFA/CoMSi A systems were compared with the 3D-QSAR model presented in
this work. This analysis was carried out using the comprehensive benchmark dataset compiled by

Sutherland and coworkers,*** which comprises 1265 structures grouped in 8 categories (AChE inhibitors,
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ligands for BZR, ACE inhibitors, COX-2 inhibitors, THER inhibitors, DHFR inhibitors, GPB inhibitors,
and THR inhibitors).

In general, the different 3D-QSAR models return similar statistical parameters for the test set (R-
squared and the standard error of the regression), though there is a slight improvement for GPB and
THERM systems according to hydrophobic and CoOMFA/RM1 models.

To measure the value of these models to rank the compounds, a comparison was made between
predicted and experimental potencies using the Spearman correlation coefficient, whereas the ability to
discern between active and inactive compounds were estimated from the specificity and sensitivity
properties. The Spearman (RS) coefficient for the first (Q1) and second (Q2) quartile performed by
CoMFA/RML1 and hydrophobic models are reported in Figure 12. Except for COX2 and THR, higher Rs
values are observed for the presented model in both Q1 and Q2. In this latter case, COMFA/RM1 returns a
higher Rs coefficient only for BZR.

ACE: ACE
AChE: AChE
BZR BZR
COX2 COX2
DHFR1 DHFR
GPB] GPB
THERM{ THERM
THR THR

10 05 00 05 10 0.0 0.5 1.0

Figure 12| Spearman coefficient (Rs) for the first (Q1), left, and the second (Q2), right, quartiles for COMFA/RML (grey) and
hydrophobic (dark blue) models.

Figure 13 shows the values for specificity (inactive molecules are correctly detected as such) and
sensitivity (active molecules correctly recognized as such) obtained from the tested models. The
hydrophobic approach has a slightly better performance in sensitivity/specificity values for AChE, THERM
and THR systems, whereas the opposite trend is found for COMFA/RML1 in ACE and COX2.
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Figure 13 | The specificity, left, and sensitivity, right, for COMFA/RM1 (grey) and hydrophobic (dark blue) models.

Overall, the results obtained reveal that the hydrophobic descriptors yield 3D-QSAR models with
an overall performance that compares with standard CoMFA/CoMSIA results. Moreover, these models may
be a valuable measure to rank molecules based on molecular similarity (high sensitivity and Rs).

4.3 Three-dimensional similarity in combination with molecular docking

In the final part of the thesis, the complementarity between the two main groups of techniques that have
traditionally divided VS has been evaluated: structure-based and ligand-based methods. It is well known
that both methods have inherent limitations that could be overcome by the usage of a hybrid approach.

In structure-based virtual screening, the most used tool has been molecular docking. The balance
between predicted accuracy and computational cost is one of its major drawbacks. The consideration of
different structural conformations and the use of simplified score functions may limit the accuracy of the
ranking score, due to deficiencies in the definitions of enthalpic and entropic contributions to the binding
affinity. Consequently, the inclusion of 3D similarity information can be valuable in the identification of
new active compounds.

In ligand-based virtual screening, on the other hand, no information of the target is used, giving
equal importance to all the regions of the molecules while only a small part could be relevant for the binding
mode.

Validation is a sensitive stage dependent on the selected test set. In order to compare the proposed
protocol, the Directory of useful decoys (DUD)*? was used, specifically the set known as
DUD_LIB_VS_1.1% This set addresses the limitations of the original DUD data set to not overestimate the
performance of ligand-based methods. In addition, four sets especially compiled to evaluate combined
virtual screening methods®®* were added, downloaded directly from the DEKOIS V.2 database.'®® As

molecular docking software, Glide®®%7 was used, and as molecular 3D similarity approach PharmScreen
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was applied, and by extension its hydrophobic descriptors derived from the MST calculations. PharmScreen

and Glide results running as a standalone tool are also reported.

43.1

Combined score function exploration

Three different protocols were tested. Namely, parallel ranking, rescoring ranking, and consensus ranking.

176

Parallel Ranking (PR): ligand-based and structure-based approaches are run independently, and
subsequently, the final rankings from the two approaches are combined. The new classification is
based on the original ranking position obtained from LB and docking approaches, treating both
methods with equal parity. Accordingly, the first molecule of docking ranking and the first
molecule of LB ranking will occupy the first and second position or vice versa in the final ranking.
The first will be the one with the lowest mark of both ranking positions. Accordingly, the molecules
ranked second for each method would be re-ranked third and fourth, and so on until all molecules
are reordered. This framework is guided by the assumption that there is no single approach that
will provide optimal screening in all circumstances.%

Rescoring Ranking (RR): the final docking ranking is rescored based on the 3D similarity of the
best pose obtained for each compound with known co-crystallographic ligands. This protocol aims
to propose an alternative to solve the limitations of the scoring function approximations performed
in molecular docking!®®2%,

Consensus Ranking (CR): the docking ranking and the rescoring ranking are merged following the
same protocol proposed in PR, but in this case, the overlays used by PharmScreen are taken from
the docking tool. CR was intended to solve the limitations that RR presents due to the bias
introduced toward poses with high overlap between the docking ligand and the template. In large
binding sites, a single structure cannot cover all possible binding modes (Figure 14). Accordingly,
a consensus between both docking and RR ranking is a convenient proposal to cover the mutual
limitations. Ideally, the final ranking will include on the top the poses detected as best by both
methods. Although the limitations of the docking score function have been reported,*?:1% due to
the existence of multiple bindings modes, there are still scenarios where 3D similarity cannot
provide an alternative to evaluate docking poses. A consensus between docking result and the

rescored outcome using 3D similarity aims to offer a hybrid scenario to assess the outcome of VS.
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Figure 14 | Binding mode of beta-trypsin (PDB code: 1bju, purple), co-crystallized reference molecule (green), docked molecules
using Glide (cyan)

Two similarity coefficients have been examined to score the docked poses of RR and CR: the
Tanimoto coefficient (Tn), which is conceived to measure the global similarity (default option in
PharmScreen, Tn), and the Tversky coefficient (Tv), which evaluates the partial similarity between the
poses.

Although the molecular similarity of pairs of compounds with different size is computed, when
only a specific region of the ligand interacts with the receptor, considering the similarity as a whole could
introduce noise. As an example, Figure 15 shows a selection of docked ligands by Glide in the binding site
of COMT. The overlap of the molecules with the co-crystallized ligand is reduced to the 3-
nitrocyclohexane-1,2-diol moiety, making them more convenient to take into account a partial similarity
measure.

As an advantage, Tversky coefficient allows focusing the evaluation in the small molecule,
highlighting the overlapped section. The improvement in recovering hits using Tv in comparison with Tn
for COMT s illustrated in Figure 16.
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e

Figure 15 | Reference molecule (green, co-crystallized structure BIA) and 5 docked ligands of COMT set (ZINC03814485,
ZINC00392003, ZINC03814484, ZINC00021789, and ZINC00330141) by Glide (cyan) in the binding site of Catecol O-
metiltransferasa (blue). 5 possible hydrogen bonds are reported between the reference and lysine 144, asparagine 170 and glutamine
199.
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Figure 16 | Comparison of ROC Curves for COMT system performed by Glide and Consensus ranking using Tanimoto
(Consensus Tn) and Consensus ranking using Tversky (Consensus Tv).

4.3.2 Performance evaluation

Regarding the three protocols, CR in combination with Tv is the one that recovers a higher number of hits,
especially in the first part of the ranking. As shown in Table 3, for all the analyzed metrics (ROCe and
AUC), the best combined approach (CR) leads to an increase in the results relative to both PharmScreen
and Glide.
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The higher values are highlighted in blond. CR and RR are performed using Tv.

PharmScreen Glide PR RR CR
ROCe 0.5 32.0 28.9 33.5 42.2 42.7
ROCe 1 20.2 18.9 22.1 26.5 21.7
ROCe 2 121 12.2 13.0 16.5 17.4
ROCe 5 6.5 6.8 6.7 8.3 9.4
AUC 0.66 0.70 0.77 0.71 0.76

The ROC curves of pnp (purine nucleoside phosphorylase) and inha (inhibin alpha protein) systems

performed by the ligand-based and structure-based methods, and the best combined method (consensus

ranking using partial similarity) are illustrated as example in Figure 17.
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Figure 17 | Comparison of ROC Curves for pnp (purine nucleoside phosphorylase), right, and inha (inhibin alpha chain), left,
performed by Glide, PharmScreen and Consensus ranking using Tversky (Consensus Tv).

To further analyze the consistency of the methods, considering the use of Tv for RR and CR, the

average of the hierarchical position of each approach among the others is presented in Table 4. As an

illustrative case, Figure 18 reports the individual relative position of each method for all sets in ROCe 1%.

Consistent with the previous results, CR shows higher robustness among the combined methods. It can be

seen that CR is positioned on average as the 2" best tool, while PharmScreen and Glide alone are positioned

on average as the 3' best approach.

Table 4 | The average of the hierarchical position of each approach among the others. A perfect method that always gets the
highest performance gets a value of 1.0. The higher values are highlighted in blond. RR and CR use Tv.

PharmScreen = Glide PR RR CR
ROCe 0.5 31 3.3 2.6 2.3 2.3
ROCe 1 3.2 33 2.8 2.4 2.2
ROCe 2 3.2 35 2.7 2.2 2.3
ROCe 5 3.3 3.4 2.6 2.4 1.9
AUC 3.8 33 2.8 3.0 2.2
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Figure 18 | Heatmap of the hierarchical position of all methods among the others for ROCe 1 %. The color scale is indicative of
the position, being the first green and the fifth red. RR and CR use Tv.
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5 DISCUSSION

3D LBVS methods have been used for many years in drug discovery, with a variable success depending on
different factors, such as the complexity of the target system or the suitability of the molecular descriptors.
New approaches are still necessary to cover the broad spectrum of relationships that a drug-like molecule
may establish with the organism. In spite of the complexity of processes that modulate the activity of a
drug, most tools are primarily focused on the use of shape or electrostatic descriptors. In contrast, since the
maximum ligand-receptor binding affinity can be explained mainly by the curvature and apolar surface of
the protein-binding site,® an exact representation of the 3D pattern of hydrophobic/hydrophilic regions
can be a valuable guideline in the construction of a pharmacodynamic profile.

This influence is not only related to the ligand-receptor complex but also to a considerable variety
of pharmacokinetic processes. Lipophilicity, therefore, is a crucial parameter to consider in the rational
drug design pipeline. To enhance the molecular similarity studies with the hydrophobic/hydrophilic
balance, PharmScreen was conceived as a tool to exploit lipophilic 3D similarity. The papers reported in
this thesis exemplify the efforts performed to examine the reliability of MST-based hydrophobic
descriptors, and the main findings and challenges that arise will be briefly discussed.

The overlays based on the MST contributions to octanol/water partition coefficients and the
ability of MST-derived descriptors to predict molecular activity using 3D-QSAR models are the main issues
discussed in the first and second publications. Results support the assumption that lipophilicity,
supplemented by HB acceptor/donor descriptors, provides a useful signature to enrich the information that
can be retrieved from (i) molecular alignment and (ii) QSAR models, complementing the results obtained
traditionally from electrostatic and steric properties.

Correct superpositions of 94%, 79%, 54% and 13% of the molecules classified in easy, moderate,
difficult and unfeasible sets (AZ), respectively, have been predicted. In addition, there is a low percentage
of overlap between the alignments reported by the hydrophobic and traditional descriptors, highlighting the
complementarity of both methods and, thus, facilitating the analysis of the growing number of complex
systems under investigation. Therefore, plausible molecular overlays are provided by these sets of
descriptors throughout alternative information to traditional descriptors.

Along the same lines, as reported in the second paper, the strong resemblance of the statistical
values of the regression (r? and S) and cross-validation (g?) disclosed by the standard models (CoMFA and
CoMSiA) and our descriptors corroborates the competitive results provided by the atomic decomposition
of lipophilicity as 3D-QSAR descriptor. Moreover, LogPee/LogPc/HB models also seem to be more
effective ranking (high Rs) and locating (high sensibility) true positives, especially in the first quartiles
(molecules ordered by activity/affinity).

As a common issue, the performance of both alignment process and 3D-QSAR models from
MST/RM1 and MST/B3LYP levels were compared. The similar overall performance of the two QM

methods and the lower computational requirement of the RM1 approach make the latter a promising choice
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for PharmScreen’s alignment protocol and 3D-QSAR studies in the exploitation of atomic solvation free
energy parameters.

Taken together, the results obtained for the benchmarking sets confirm the usefulness of
lipophilicity as a valuable alternative for molecular alignment and structure-activity relationship prediction.

Finally, the applicability of our descriptors in VS has been explored in order to re-evaluate the
complexes constituted by docking techniques (in our case, Glide). Since (de)solvation is fundamental for
the establishment of the ligand-receptor complex, it can be expected that the docked ligands in the same
pocket share lipophilic characteristics, even if there are several binding modes. However, approximations
that affect solvation contribution!®® are applied in the docking score functions, and by extension, some
docking programs show problems performing VS, especially in hydrophobic binding pockets.?%!

In view of the work presented in the third publication, the LogPee/LogPca/HB similarity is
introduced as a valid scoring function for discerning between active and inactive compounds. Specific
binding typically requires the formation of key interactions between targets and ligands. Thus, 3D similarity
relative to experimental binding modes could be sufficient to distinguish active compounds from decoys.
However, multiple binding modes usually exist and, hence, a re-evaluation that computes the similarity
from a single query is not always sufficient. Therefore, a consensus between docking ranking and the re-
evaluation ranking based on 3D similarity is proposed (CR), which returns a considerable improvement
compared to each VS method alone. CR provides an increase in AUC and ROCe metrics, both in
performance and in robustness. Although PR and RR (Tv) return lower results than CR, their performance
overcomes PharmScreen and Glide as standalone tools. RR and CR improve the success rate, with only a
slight increase in time and resources. Nevertheless, the obvious higher computational resources demand for
PR should also be considered.

These findings support the usefulness of LogPe/LogPca/HB as relevant descriptors in molecular
similarity studies, promoting their use in virtual screening campaigns considering LB approaches or in
combination with SB. Indeed, PharmScreen is being tested by national and international companies:
Merck, Eli Lilly, Almirall and Esteve amongst others, and two national scientific institutions have acquired
a license: CNIO and CIMA.
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6 CONCLUSIONS

This thesis comprises both the development and validation of a LBVS tool that exploits 3D atomic
contributions to lipophilicity, PharmScreen. This section summarizes the main conclusions found in the

course of this work:

e Atomic descriptors of hydrophobicity obtained from Miertus—Scrocco—Tomasi-based continuum
solvation models are a valuable alternative to explore novel frameworks in CADD. In fact, the
partition of molecular lipophilicity into atomic contributions using the MST/RM1 model provides
a three-dimensional lipophilicity pattern of drug-like compounds valuable for molecular similarity
studies.

e The similar overall performance of MST/RM1 and MST/B3LYP/6-31G(d) and the lower
computational requirement for the former makes MST/RM1 to be a balanced choice for
PharmScreen’s alignment protocol and 3D-QSAR studies to represent atomic solvation free energy

contributions.

e MST-derived Hydrophobic descriptors have demonstrated to be competitive for molecular
alignments in comparison to traditional properties, especially for targets that may be challenging

for predictive molecular similarity techniques.

e In 3D-QSAR studies, the proposed descriptors provide models for structure-activity relationships
with predictive accuracy comparable to CoMFA/CoMSIiA models based on electrostatic/steric

parameters.

e PharmScreen exhibits a competitive performance as a VS tool compared to the tested docking
software. On average, the performance of molecular docking is improved thanks to the similarity
from the topological distribution of lipophilicity characteristics between docked ligands and a

known active with only a slight increase in time and resources.

e The results obtained from the analysis of hydrophobic/hydrophilic descriptors presented in this
thesis opens a new window to explore the vast chemical space, complementing the information

derived from traditional descriptors in ligand- and structure-based approaches.
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