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In order for A.I. systems to work, they need to be trained.
And we, we humans, are their mothers and fathers.

We are their study buddies.
We are the ones these A.I. systems are learning from.
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Abstract
Designing novel drugs is a complex process which requires finding molecules
in a vast chemical space that bind to a specific biomolecular target and
have favorable physio-chemical properties. Machine learning methods
can leverage previous data and use it for new predictions helping the
processes of selection of molecule candidate without relying exclusively
on experiments. Particularly, deep learning can be applied to extract
complex patterns from simple representations. In this work we leverage
deep learning to extract patterns from three-dimensional representations
of molecules. We apply classification and regression models to predict
bioactivity and binding affinity, respectively. Furthermore, we show that it
is possible to predict ligand properties for a particular protein pocket. Fi-
nally, we employ deep generative modeling for compound design. Given
a ligand shape we show that we can generate similar compounds, and
given a protein pocket we can generate potentially binding compounds.
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Resum
El disseny de drogues novells es un procés complex que requereix tro-
bar les molècules adequades, entre un gran ventall de possibilitats, que
siguin capaces d’unir-se a la proteı̈na desitjada amb unes propietats fisi-
coquı́miques favorables. Els mètodes d’aprenentatge automàtic ens ser-
veixen per a aprofitar dades antigues sobre les molècules i utilitzar-les
per a noves prediccions, ajudant en el procés de selecció de molècules
potencials sense la necessitat exclusiva d’experiments. Particularment,
l’aprenentatge profund pot sera plicat per a extreure patrons complexos a
partir de representacions simples. En aquesta tesi utilitzem l’aprenentatge
profund per a extreure patrons a partir de representacions tridimensionals
de molècules. Apliquem models de classificació i regressió per a predir
la bioactivitat i l’afinitat d’unió, respectivament. A més, demostrem que
podem predir les propietats dels lligands per a una cavitat proteica deter-
minada. Finalment, utilitzem un model generatiu profund per a disseny
de compostos. Donada una forma d’un lligand demostrem que podem
generar compostos similars i, donada una cavitat proteica, podem generar
compostos que potencialment s’hi podràn unir.
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Preface
The field of deep learning has exploded. In 2012 Alex Krizhevsky, Ilya
Sutskever and Geoffrey E. Hinton showed that neural networks can be
trained to predict content of an image in an end-to-end fashion, just by
presenting raw images to a network. After that, progress has been made
at an unstoppable pace, making it difficult for researchers to keep up with
all the latest papers. For example NeurIPS 2018, largest machine lear-
ning conference, tickets sold out in just a few minutes, faster than many
popular concerts.

On the other hand, pharmaceutical industry is thirsty for disruption.
Past promising approaches such as combinatorial chemistry and high-
throughput screening did not live up to its expectations. Developing a
drug costs billions and can take over decade, in addition to being plagued
with high failure rate.

Here we attempt to bridge the gap. We try to leverage the available
data and apply it to the process of drug design. Taking inspiration from
state-of-the-art methods for image and text analysis, we apply the met-
hods to problems of designing novel drugs. Although these are only the
first steps towards new type of data-driven drug discovery, I have a bright
outlook on the future. If computers can create images that humans cannot
tell apart from real, why can’t they design novel pharmaceuticals?
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Chapter 1

INTRODUCTION

Whether we are aware or not machine learning (ML) technology is well
integrated in modern society. Spam filters for our emails, recommenda-
tions on e-commerce websites, and auto-completion of our messages are
all powered by machine learning algorithms.[1] These algorithms, that
learn from data, can also be employed to aid in drug discovery. Herein
we present a collection of such applications.

This thesis is structured as follows. Firstly, we introduce concepts of
ML with a focus on elements relevant to the carried out research. De-
scription of drug discovery challenges that we tackled follows. In chapter
3 produced publications are presented. Finally, we discuss the research
outcome and draw conclusions.

1.1 Machine learning and deep learning
Fundamentally, machine learning is the study of algorithms and statis-
tical models that instead of relying on usage of explicit instructions, is
learning from patterns seen in data. After a learning phase the models can
be exploited to uncover novel patters or to predict future data.[2] Machine
learning algorithms improve their performance as the quality and quantity
of data increases. However, the data is often high-dimensional with com-
plex structure and for some algorithms extracting patterns can be hard.
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For these tasks deep learning (DL) enabled major breakthroughs. Two
most notable examples are image[3] and speech[4] recognition.

DL includes a class of machine learning algorithms that uses artifi-
cial neural networks (ANNs). Deep feedforward networks, also known
as multilayer perceprots (MLP) are the most common type of networks.
MLP can be viewed as an function approximator f ∗. For example, regres-
sor y = f ∗(x) maps input x to prediction y. The mapping is dependent on
parameters of the network θ (y = f(x; θ)) and we want to learn values
of these parameters so that we can approximate a target function.[5]

In MLPs the function f(x) is composed of multiple consecutive trans-
formations. For example, a three layer network can be presented in the
following way: f(x) = f 3(f 2(f 1(x))). Typically, each transformation
f i is defined as f i(xi) = φ(Axi + b), where A and b are learnable pa-
rameters of the network and φ is an activation function used to introduce
non-linear transfromations to the network.

Training a neural network is done by updating weights to minimize
a loss function, L(ŷ,y), which penalizes the distance between the pre-
diction ŷ and the target y. Backpropagation algorithm, introduced by
Rumelhart et al. [6], is the most commonly used algorithm for this mini-
mization. It uses chain rule to calculate the derivative of the loss function
L with respect to each parameter θ of the network. The calculated gradi-
ents of the weights,∇θ, are then used to update the network weights:

θ := θ − η∇θ, (1.1)

where η is the learning rate. Nowdays, ANNs are trained with stochastic
gradient descent (SGD) using mini-batches. This means that the gradients
∇θ are computed and averaged based on the examples in the mini-batch.
Over the years several variants of SGD have been developed to accelerate
the training process. These include AdaGrad[7], AdaDelta[8], RMSprop
and Adam[9].
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1.1.1 Convolutional neural networks
Convolutional neural networks[10] (CNNs) are special kind of neural net-
works for processing data that has a grid-like topology, for example im-
ages. Convolution operation is the keys component in these networks and
with restrictive connectivity neurons of a convolution can operate only on
region of the input, called receptive field. Because the weights, also ref-
ereed to as kernels, are shared and used for all receptive fields, same fea-
tures can be extracted from different locations. Furthermore, by sharing
weights CNNs reduce the number of parameters that need to be learned,
while at the same time allow for transnational equivariance.

Typically, for two-dimensional input I , such as images, when per-
forming a convolutional function we move receptive fields over both di-
mensions, i and j, and use a three-dimensional kernel K:

S(i, j) =
∑
m

∑
n

∑
c

I(i+m, j + n, c)K(m,n, c). (1.2)

In this case the receptive field is of size m × n and the convolution op-
eration with the network will generative single value, S(i, j), for a par-
ticular receptive field. The same mathematical operation is depicted in
Figure 1.1 top. By applying this operation across the image we generate
a feature map. Moreover, because in case of images there are also chan-
nels (red, green, blue), kernel needs to be scaled appropriately, taking
into the account the extra dimension c. Finally, by applying multiple ker-
nel to the same input we can generate multiple feature maps in the next
layer. Commonly in CNNs after the convolutional function a bias term
is added to each feature map, followed by an activation function. This
sequence of transformations can repeat several, even hundreds, times (Fi-
grure 1.1 bottom). In equation 1.2, a two-dimensional neural network
is presented, but convolutions can span arbitrary number of dimensions.
For example, one-dimensional convolution can be applied to predict bind-
ing DNA motifs[12] and three-dimensional to segmentation of biomedical
images.[13] In this work we use three-dimensional convolutions as one of
the core processing components.

Arguably, research and usage of convolutional and deep learning in
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Figure 1.1: Convolutional operation and convolutional neural networks.
(top) Example of convolutional operation for two-dimensional input
with |c| = 1. Input feature map (in blue) is processed by a ker-
nel of size 3 × 3 (shaded, weights are displayed in bottom right)
to produce an output feature map (green). (bottom) Example of a
convolutional neural network with two convolutional operations. Im-
age content was taken from [11] and en.wikipedia.org/wiki/
Convolutional_neural_network
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general took off in 2012 with AlexNet[3], winning the ImageNet Large-
Scale Image Classification Challenge[14] by a substantial margin. The
winning model combined usage of CNNs together with Rectified Linear
Units (ReLUs)[15], dropout[14] and pooling. ReLU activation function,
defined as f(x) = max(0, x), allowed better gradient propagation and
faster training than previously commonly used tanh activation function.
Dropout, which sets zero to an output of an neuron with certain probabil-
ity, reduced the overfitting. Finally, pooling layer summarizes the outputs
of neighboring groups in the same feature map and thus reduces the size
of the feature maps.

Since AlexNet, several improvements have been proposed, further im-
proving the performance of image classification with CNNs. Most no-
tably, the improvements come from changes to architecture, such as in-
creasing the depth (number of layers)[16] and feature map connectivity.[17,
18] It is also worth noting that batch normalization method [19] was a ma-
jor factor contributing to the ease of training ANNs.

As the methods have been developed, so has hardware evolved. Now
it is a norm to train neural networks on graphics processing units (GPUs),
enabling orders of magnitude faster training than CPUs.[20] Furthermore,
software packages such as Caffe[21], Tensorflow[22] and Pytorch[23] al-
low fast development and training of models.

1.1.2 Recurrent neural networks

Output of convolutional operation is limited to a receptive field, this can
be a problem when dealing with sequential data and long distance de-
pendencies. Recurrent neural networks (RNNs) are connectionist models
that can capture the dynamics of sequences via cycles in the network of
nodes[24] and have been proposed as a method to deal with sequential
data. For image captioning tasks[25], speech synthesis and music gener-
ation task they can serve as output producing model. They can be also
used for time series prediction e.g. natural language processing, or be
applied to interactive tasks such as language translation. For these tasks
long short-term memory (LSTM)[26], a variant of RNNs, is the most used
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Figure 1.2: Operations in LSTM network. Image take from https:
//colah.github.io/

RNN implementation.
Figure 1.2 shows schematic representation of LSTM network. Given

an input xt at timespet t, output ht is calculated as a result of operations
in a LSTM cell (in green). In total there are four layers (in yellow) in a
single cell. in addition to xt output is also dependent on state of previous
cell: memory and hidden state (black arrows from previous cell).

1.1.3 Generative modeling
Complementary to supervised learning, where the goal is to determine
mapping of input x to output y, unsupervised learning methods are ap-
plied to discover ”interesting structure” in the data. Typical applications
include dimensionality reduction and clustering. Generative models are
also part of unsupervised algorithms and have received a lot of attention in
recent years. Generative models try to generate new samples from same
probabilistic distribution as a training set. In the following section we
describe variational autoencoders (VAE)[27] and generative adversarial
networks (GANs)[28], two most commonly neural network-based gener-
ative models.

An autoencoder is a pair of networks, an encoder and a decoder. The
encoder takes input and compresses it into dense representation (latent
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space), which the decoder networks can convert back to the original in-
put (Figure 1.3 top). Typically, the encoder and decoder are trained to-
gether through backpropagation. Latent space of autoencoders may not
be continuous or easy to interpolate, which might be a problem when us-
ing autoencoders as generative models. VAEs overcome this shortcoming
by making, by design, the latent space continuous. This is achieved by
introducing an encoder that outputs a vector of means µ and standard de-
viations σ. Then we sample z from a distribution defined by these two
parameters (reparameterization) and pass the sampled values z to the de-
coder. By doing this certain degree of variability is introduced and the
latent space is smoothed. Furthermore, Kullback-Leibler divergence term
(KL)[29] is added to loss in addition to the reconstruction loss. KL term
ensures that that latent space variables µ and σ closely resemble a target
distribution and thus making the latent space continuous.

Generative adverserial networks (Figure 1.3 bottom), is a special sub-
group of generative models, where two types of networks are being trained
simultaneously. In the process, a generator (G) is trained to generate sam-
ple instances that try to fool a discriminator (D), which on the other hand
tries to distinguish between generated and real samples. Essentially, the
objective is to find a Nash equilibrium of a value function V for two player
min-max problem:

min
G

max
D

V (D,G) =Ex∼pdata(x)[log(D(x))] +

Ez∼pz(z)[log(1−D(G(z)))],
(1.3)

where z is latent variable most commonly drawn from low-dimensional
Gaussian or uniform distributions. Over the past few year performance of
GANs has drastically improved. [30, 31, 32, 33, 34] Usage of GANs has
also been extended to new settings such as image-to-image mapping[35]
that can also work on unpaired samples[36] or multimodal one-to-many
mapping.[37]

7



Sample

Generated
Samples

La
te

nt
 ra

nd
om

Va
ria

bl
e

Generator

Database of
compounds

Discriminator Real/Fake

Encoder D
ec

od
er

μ

σ2

zreparameteriza
tion
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Figure 1.4: Machine learning applications in the drug discovery pro-
cess and required data characteristics. Figure taken from Vamathevan et.
al.[38]

1.2 Challenges of drug design

Developing new drug is a complex process typically taking more than
12 years and costs in excess of one billion dollar.[39] The process can
be split into two stages: preclinical stage with R&D and clinical stage.
The former stage involves identifying targets, screening of compounds,
optimization of promising compounds and testing them in animals. Lat-
ter stage includes testing of compounds in humans to evaluate efficacy
and safety of the compounds. It is known that in addition to high devel-
opment costs, there is also a high rate of failure. For example, study by
Wong et. al.[40] shows that approval rate of drug approval entering a clin-
ical phase ranges from 3.4% for oncology to 33.4% for infectious disease
vaccines. However, throughout the whole process data is being generated
and companies, driven by the desire to reduce the costs, want to leverage
the obtained data to increase the success rate of future drug development.
Hence, for all stages of drug development machine learning algorithms
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are being developed and utilized (Figure 1.4). This includes identifying
novel targets[41], providing evidence for target-disease associations[42],
and predicting success of clinical trial[43], just to name a few.

In this work we focus on the early stages of drug discovery process—
lead discovery and lead optimization. for these stages the usage of ma-
chine learning methods has a long history. Quantitative structure activity
relationship (QSAR), where relationship between target binding ligands
and biological activity is modeled, has been used in drug discovery for
decades[44, 45], and with advent of deep learning methods in other fields
interests data-driven methods for drug discovery has also resurged.[46]
However, besides QSAR there are is a variety of tools available to dis-
cover novel binding candidates (Figure 1.5).[47] These methods can be
divided into structure-based and ligand-based methods[48] and both have
potential to be augmented with machine learning approaches.

When designing a drug it is crucial that the ligand binds strongly to
a protein target. Binding affinities are usually expressed as equilibrium
dissociation constant KD:

KD = [R][L]
[LR] , (1.4)

where [R], [L] and [LR] are concentrations of unbound receptor, unbound
ligand and receptor-ligand complex, respectively. The lower the KD the
stronger the protein-ligand binding is. A good starting ligand will have
binding affinity in µM range and in the process of lead optimization the
goal is to increase the binding affinity to a nM range.

For a successful binding and protein function modulation the ligand
must have shape complementary to the protein and form favorable in-
teractions. For example, apolar groups tend to be close, hydrogen bond
donors pair with acceptors and charged groups of ligands are frequently
neutralized by protein groups of opposite charge.[49] Furthermore, water
interactions can play an important role in stabilizing protein-ligand com-
plexes.

During the process of lead optimization it is also important to keep in
mind ADME-Tox properties (absorption, distribution, excretion, metabolism,
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Figure 1.5: Methods available for discovery of novel drug candidates.
Which method is employed depends on whether three-dimensional target
structure of is known and quality and quantity of data on binding ligands.

and toxicity) so that the final compound will be processed by the body in a
desirable way and will have no adverse effects. Prediction and optimiza-
tion for these properties has also been tackled by deep learning[50, 51],
in addition to suggesting chemical syntheses for novel compounds.[52]

1.2.1 Structure-based drug design
Focal point of an early stage drug discovery is identification of lead com-
pounds with pharmacological activity against a target. To this end, ex-
perimental screening of large libraries of chemicals against a target has
been applied. This process is referred to as high-throughput screening.
Through the process compounds that modulate a particular biomolecu-
lar pathway can be identified. As High-throughput screening is costly
and time-demanding, in silico methods such as structure-based drug de-
sign have been proposed as alternative. By utilizing knowledge of the
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three-dimensional structure of the biological target it is possible to study
protein-ligand molecular interactions using structure-based methods.[53]

Structure-based method can be grouped into two groups: de novo
design and virtual screening. For both methods it is critical to obtain
a target structure. This is typically done by X-ray crystallography or
nuclear magnetic resonance (NMR), although newer methods such as
cryogenic electron microscopy[54] are also getting more and more at-
tention. Since 1958 when the first three-dimensional crystal structure
of Myoglobin was presented[55], the collection of protein structures is
evergrowing[56], making usage data-driven approaches more appealing.

The chemical drug-like space is estimated to consists of between 1023

and 1060 molecules[57] and only about 108 have ever been synthesized.[58]
In order to explore the depth of chemical space structure-based virtual
screening projects design virtual libraries that can be orders of magnitude
bigger than non-virtual ones. The compounds from these libraries are
synthesized only if needed.

Compounds from the virtual libraries are, in a processed called docking[59,
60, 61], fitted into a protein cavity of target protein and evaluated with a
scoring function.Typically scoring functions evaluate quality of docked
poses and guide the process to to relevant low energy ligand confirma-
tions. Thus design of a good scoring function is critical. Overall, a good
scoring function should be able to achieve three things[62]:

• prioritize low energy (experimental) poses

• distinguish active compounds from inactive

• predict absolute binding affinity

Scoring functions can be grouped into three groups[63]: force field-
based, knowledge-based and empirical. First group of scoring functions
calculates the sum of energy terms from a classical force field, usually
considering the interaction energies of the protin-ligand complex and in-
ternal ligand energy. Typically, implicit solvent models are used to calcu-
late solvent energy.[64] Knowledge-based scoring functions, on the other
hand, are derived from statistical analysis of interacting protein-ligand
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atom pairs in known crystal structures.[65, 66] Finally, empirical scoring
methods are developed to reproduce experimental affinity data.[67] This
group includes machine learning methods.

Although docking and other virtual screening methods, such as molec-
ular dynamics[68], can omit lab experiments, we can still only explore a
part of chemical space. De novo drug design approaches, on the other
hand, can build up a diverse set of compounds that can accommodate into
a protein pocket. These methods can be grouped into two groups: link-
ing and growing. Linking algorithms start from placed fragments in pro-
tein pocket and then combine them into compounds. Growing algorithms
extend existing fragment and then add, remove or change fragments to
improve activity.[69]

1.2.2 Ligand-based drug design

Complementary to structure-based methods computer-aided drug design
can leverage information from ligands only. By identify a set of com-
pounds that bind to a particular target, one can extract their structure
and search a library for similar compounds or, again, de novo design
compounds. Ideally, the goal is to extract from the compounds impor-
tant physicochemical properties, while discarding extraneous informa-
tion. The methods can be further divided into machine learning ones
(QSAR), similarity search and pharmacophore modeling ones.[70]

Similarity searching is based on theory that structurally similar com-
pounds have similar binding properties.[71] The structure can be further
divided grouped into three categories: one-, two- or three-dimensional.[72]
One- and two-dimensional methods, such as SMILES strings and struc-
tural fingerprints, are efficient at finding close analogs, however they tend
to fail at predict activity differences between them.[73] By encoding spa-
tial information it is easier to capture anatomist protein-ligands interac-
tions, even though they might not share similar substrucutre profile. In
the following sections we describe some popular shape-based methods.

Ultrafast Shape Recognition (USR)[74] calculates distribution of atomic
distances in compounds. To include pharmacophoric feature distribution

13



of hydrophobic, aromatic, hydrogen bond donor and hydrogen bond ac-
ceptor, USR has been extended to USRCAT.[75] The distribution profile
can then be used to search for similar compounds.

Gaussian function-based description methods, such as Rapid Overlay
of Chemical Structures (ROCS)[76], can be considered a more precise,
although computationally demeaning approach. The algorithm searches
for optimal alignment of two molecules, query and template, maximizing
volume overlap. Other descriptions of shape include surface-based meth-
ods such as MSMS[77] and field-based methods[78], that compare how
presence of molecules affects other molecules in the space.

Finally, pharmacophore-based modeling tries to model spatial fea-
tures of molecule that is essential for protein-ligand binding.[79] Phar-
macophore models can be build based on structural data[80] or be struc-
ture independent. In the latter case different conformations of known lig-
ands are generated, followed by building a consensus model of pharma-
cophores. Compounds from a database can then be screened against the
designed pharmacophore model.

1.2.3 Featurization

One of the core challenges for molecular machine learning is to mean-
ingfully encode molecules so that they can be processed by algorithms,
typically this means encoding a molecule into a fixed-length vector. Al-
though SMILES, strings describing structure of chemical species, can be
used as molecule representation, most algorithms perform better if in-
formative representation is provided. This holds true especially for linear
models, but also for other non-deep learning methods such as support vec-
tor machines[81] and random forests[82]. On the other hand, as discussed
in first chapter, DL methods can avoid selection of features and make pre-
dictions based on complex relations of simple features. Which features
in combination with which algorithm performs well is an active area of
research. Furthermore, deep learning methods are not limited to a fixed-
size vector. Instead, they can accommodate a variety of representations,
including variable length SMILES strings or a graph representation.
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Thus far several methods of featurization have been proposed and
evaluated. Following the work of Wu et. al.[83] (Figure 1.6) this includes:

• Extended-Connectivity Fingerprints.[84] This featurization captures
topological characteristics of a molecule by breaking the molecule
into substrucutres. Information on substrucutres of the molecule is
then hashed into a fixed length fingerprint.

• Coulomb matrix.[85] This matrix holds information on nuclear charges
and repulsion between pairs of atoms.

• Grid featurizer.[86, 87] This featurization is designed for protein-
ligand complexes. The feature vector consists of ligand finger-
prints, fingerprint of protein atoms close to the ligand, fingerprint
of atom pairs between protein and ligand atoms and counts of salt
bridges, and Hydrogen bonds.

• Symmetry function.[88] This is an atomic coordinates representa-
tion, that preserves rotational and permutational symmetry of the
system. It includes information on atom distances and angles formed
by triplets of atoms.

• Graph convolutions. For each atom a feature vector is computed
(e.g. atom type, valance, hybridization) together with a neighbor
list. This type or representation is suitable for message passing
networks.[89]

• Wave. Similar to wave graph convolutions, but connectivity fea-
tures contain more information than just pairs of neighbors. Infor-
mation can include bond properties, distances and ring information.

Complementary to these featurizations, one can also used three-dimensional
features such as USR descriptors presented in previous section.

Molecules as images

Here however, we model biological molecules in a way similar to images,
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Figure 1.6: Methods for featurization of Molecules. Figure taken from
Wu et. al.[83]
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but in three dimensions. Biomolecular structures are discretized into a
grid, with a fixed resolution (1Å in our case). The fixed size grid (e.g.
24Å for all three sides) is centered around the molecule considered or
binding site in case of a protein. Values in the grid are dependent on close
by atoms, the distance of an atom from point in grid (r) and van der Waals
radius of the considered atom (rvdw), following equation:

n(r) = 1− exp
(
− (rvdw/r)12

)
. (1.5)

Intuitively, this function interpolates atom densities. If an atom is close to
a grid point that point will have a value close to 1 and if it is far the value
will be close to 0. Other tackling similar problems have used different
representations, mainly binary cutoff[90] or combination of Gaussian and
quadratic functions.[91]

Furthermore, as images consist of channels (red, green and blue), so
do we use multiple channels to encode atom properties and consequently
making training process easier. Atom are assigned to one or multiple
channels based on pharmacophore-like properties that are relevant for
forming molecular interactions. In the publications we used following
channels: hydrophobic, aromatic, hydrogen bond donor, hydrogen bond
acceptor and positive or negative partial charge.

1.2.4 Regression and classification for drug design

Once obtaining three-dimensional representations we use convolutional
neural networks (CNNs) to process the representation, again, in a way
similar to image processing with CNNs. For Publication 3.1[92] and Pub-
lication 3.2[93] we downsample feature maps to a vector followed by a
single layer perceptron that outputs predicted binding affinity (− logKD)
or probability of bioactivity, respectively. Neural network presented in
Publication 3.3[94] does not downsample feature maps, instead the out-
put array has the same dimensions as the input and outputs probabilities
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for ligand shape.

Interpreting predictions

Outputs from neural networks undergo multi-layer transformation and
thus they are hard to interpret. However, interpretability matters and with
obtaining interpretable models we can, according to Selvaraju et.al.[95]:
identify model failure modes, establish confidence in users and help us
with machine teaching—use models to teach humans make better deci-
sions.

Several methods have been proposed to help visually interpret results.
By masking part of the input[96] one can identify salient parts of in-
put. Ragoza et. al.[91] applied this by masking out ligand fragments
and they were able to determine which fragments contribute positively
or negatively to predicted binding affinity. Other approaches such as
guided backpropagation[97], class activation maps (CAM)[98] and grad-
CAM[95] have been proven useful in analysis of images.

In Publication 3.1[93] we applied CAM method to highlight for which
areas of protein-ligand complex the neural network believes contribute
either positively or negatively to bioactivity.

1.2.5 Generative modeling for drug design

Following success of generative models in image, text and music gener-
ative models have also been applied to lead generation and optimization.
In fact, Elton et. al.[99] counted over 45 publications that use genera-
tive models for molecules, all published in recent years. The field took
of with work of Gómez-Bombarelli et. al.[100], appearing on arXiv in
October 2016. Since then variety of generative models have been pro-
posed. These generative models can be grouped into four categories: re-
current neural networks (RNNs)[101], autoencoders, generative adversar-
ial networks[102] and reinforcement learning methods[103, 104]. Gener-
ative models complement genetic algorithms[105] and fragments-based
[106] design when building virtual libraries, either diverse or focused.
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Recurrent neural networks with SMILES representation are, arguably,
the simplest way to generate novel molecules with generative models. By
presenting sequence of SMILES tokens as input the network can learn
probabilities for next token, conditioned on previous tokens in sequence.
For example, Segler et. al.[107] have shown that by training a RNNs on a
set of active compounds, one can generate novel compounds, with proven
bioactivity.

In publication 3.4[108] we take a slightly different approach. Inspired
by image captioning networks[25], we use CNNs to extract a vectorized
latent representation of a shape, and feed that into a RNN to generate
SMILES strings. by doing string-to-shape encoding, instead of string-
to-string, we could capture shape similarity that could be hard to infer
from string due to big edit distance. For similar reasons Jin et. al.[109]
proposed usage of molecular graphs instead of strings.
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Chapter 2

OBJECTIVES

The main objective of this doctorate has been to pioneer the used of deep
learning methods to facility drug design process. Specifically, we focused
on shape-based modeling where the models are presented with simple 3D
representations of molecules. The work can be further divided into two
objectives: usage of supervised learning methods, such as regression and
classification, and generative modeling. Simplified representation of the
carried out work grouped by publications is presented in Figure 2.1.

Developing software was one of the key components and we wanted
to ensure accessibility of applications and reproducibility of the results,
hence for all publications we made available a web application and for
some of them we released the source code.

2.1 Supervised modeling
For supervised predictive modeling we focused on problems of structure-
based drug design, where both information from ligands and the target
proteins are considered. By presenting spatial information of atoms for
both molecules, we want our models to discover arbitrary molecular fea-
tures that can be either favorable or unfavorable for protein-ligand bind-
ing. We apply this to two related problems: classification and regression.
In the classification task we train a neural network to distinguish active
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Publication 3.1: BindScope Publication 3.2: Kdeep

Publication 3.3: LigVoxel

Publication 3.4: LigDream

Publication 3.5: LiGANN

Protein-ligand
complex CNN

probability of
Bioactivity 

Protein pocket CNN Spacial pocket
properties

Molecule shape CNN RNN

Generative model

SMILES

SMILES

Generative model

CNN RNNCNN

Generative model

Protein pocket Ligand Shape

CNNProtein-ligand
complex Binding

affinity

Figure 2.1: Developed predictive and generative models.
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ligands from inactives and in regression task our aim is to predict abso-
lute binding affinity of active compounds.

Finally, our objective is also to explore multi-output neural network,
where we want to predict spatial properties of ligands for a given protein
pocket.

2.2 Generative modeling for de novo compound
generation

The second objective was to apply generative modeling to aid in drug
design process. We explored the modeling in ligand- and structure-based
settings. In the former setting the objective was to, given an input molecule
presented as a shape, generate a diverse set of compounds that retain sim-
ilarity to the starting molecule. For the latter group the objective was
to show that it is possible for neural networks to generate ligands with
properties complementary to initially presented protein pocket.

To achieve these objectives we drew inspiration from methods develop
in the field of image processing and applying them to drug design.
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Chapter 3

PUBLICATIONS

3.1 PlayMolecule BindScope: large scale CNN-
based virtual screening on the web

M. Skalic, G. Martı́nez-Rosell, J. Jiménez and G. De Fabritiis. Bioinfor-
matics 35. 1237-1238 (2018).

Summary
Bindscope is a method and a web application for bioactivity prediction in
structure-based drug design. Given a protein-ligand complex it leverages
3D convolutional neural networks to discriminate binding compounds
from non-binding ones. The network was trained on 101 targets and cor-
responding known binders and selected decoys from DUD-E database,
docked to the target. Compared to previous work we show improved per-
formance by using DenseNet style neural networks, while at the same
time reducing complexity of the input representation. The jobs submitted
via the web application are processed by a GPU-accelerated computer,
thus making it suitable for large-scale screening. Furthermore, the ap-
plication employs class activation maps to provide an insight into which
areas of the complex contribution positively or negatively to the final pre-
dicted affinity.
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Skalic M, Martínez-Rosell G, Jiménez J, De Fabritiis G. 
PlayMolecule BindScope: Large scale CNN-based virtual 
screening on the web. Bioinformatics. 2019 Apr 
1;35(7):1237–8. DOI: 10.1093/bioinformatics/bty758

https://academic.oup.com/bioinformatics/article/35/7/1237/5086393


3.2 KDEEP : Protein–Ligand Absolute Binding
Affinity Prediction via 3D-Convolutional Neu-
ral Networks

J. Jiménez, M. Skalic, G. Martı́nez-Rosell and G. De Fabritiis. Journal of
Chemical Information and Modeling 58. 287-296 (2018).

Summary
In this paper we pursue binding affinity prediction, considering− log10 KD

as the target value and leveraging convolutional neural networks in a sim-
ilar way to previously presented method BindScope. The models were
trained and evaluated on PDBbind v.2016 dataset in addition to being
evaluated on other datasets such as CSAR and target specific congeneric
series. On the standard PDBbind benchmark the method outperformed
previously proposed random forrest-based method RF-Score as well as
empirical scoring functions. However, for certain targets other methods,
such as empirical and machine learning scoring or free energy perturba-
tion, can still outperform the proposed neural network model.

Note: my contribution to this work as second author has been optimiza-
tion of the procedure, application development as well assisting in prepa-
ration of the manuscript.
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Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. KDEEP: 
Protein-Ligand Absolute Binding Affinity Prediction via 3D-
Convolutional Neural Networks. J Chem Inf Model. 2018 Feb 
26;58(2):287–96. DOI: 10.1021/acs.jcim.7b00650

https://pubs.acs.org/doi/10.1021/acs.jcim.7b00650


3.3 LigVoxel: inpainting binding pockets us-
ing 3D-convolutional neural networks

M. Skalic, A. Varela-Rial, J. Jiménez, G. Martı́nez-Rosell and G. De Fab-
ritiis. Bioinformatics 35. 243-250 (2018).

Summary
In previous works we have shown that neural networks can be used for
regression or classification tasks and here we turn our attention to multi-
ouput neural networks. The problem we are trying to solve is inferring
ligand shapes from a protein pocket and optionally basic information
about the ligand. Given protein structures from scPDB database with
well defined pockets we train neural network to map protein shape to lig-
and shape. We show that the model can capture relevant pharmacophores.
Furthermore, we show that the shapes can be used in placing the ligand
into the pocket, just by maximizing the overlap between the ligand and
the generated shapes.
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Skalic M, Varela-Rial A, Jiménez J, Martínez-Rosell G, De 
Fabritiis G. LigVoxel: Inpainting binding pockets using 3D-
convolutional neural networks. Bioinformatics. 2019 Jan 
15;35(2):243–50. DOI: 10.1093/bioinformatics/bty583

https://academic.oup.com/bioinformatics/article/35/2/243/5050023


3.4 Shape-Based Generative Modeling for de-
novo Drug Design

M. Skalic, J. Jiménez, D. Sabbadin and G. De Fabritiis. Journal of Chem-
ical Information and Modeling 59. 1205-1214 (2018).

Summary
This work focuses on ligand-based de-novo drug design. The proposed
method works similar to image captioning, where a neural network gen-
erates sequence of words that describe a given image. In this work, how-
ever, we trained networks to generate sequence of SMILES strings, start-
ing from three-dimensional compounds. The networks were trained and
evaluated on drug-like ZINC database of compounds. We show that it
is possible to generate novel and previously unseen compounds similar
to a seed compound and thus explore chemical space of compounds that
maintain drug-like characteristics. Furthermore we show in case of sev-
eral proteins that the model can generate potential binders.
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Skalic M, Jiménez J, Sabbadin D, De Fabritiis G. Shape-
Based Generative Modeling for de Novo Drug Design. J 
Chem Inf Model. 2019 Mar 25;59(3):1205–14. DOI: 
10.1021/acs.jcim.8b00706

https://pubs.acs.org/doi/10.1021/acs.jcim.8b00706


3.5 From Target to Drug: Generative Model-
ing for Multimodal Structure-Based Drug
Design

M. Skalic, D. Sabbadin, B. Sattarov and G. De Fabritiis. Preprint.

Summary
In previous two publications we showed that it is possible to predict ligand
properties for a protein pocket and that from ligand shapes we can gen-
erate ligand representation as SMILES. In this work we combine these
two tasks into an end-to-end pipeline. To produce distinguishable and di-
verse ligand shapes we apply BiCycleGAN[37] and then use captioning
networks to finally generate SMILES strings. We show, using QSAR and
docking tools, that there is an enrichment in generating compounds over
sampling a virtual library.
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Skalic M, Sabbadin D, Sattarov B, Sciabola S, De Fabritiis G. 
From Target to Drug: Generative Modeling for the 
Multimodal Structure-Based Ligand Design. Mol Pharm. 
2019 Oct 7;16(10):4282–91. DOI: 10.1021/
acs.molpharmaceut.9b00634

https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00634


Chapter 4

DISCUSSION

In this chapter we reflect on the results produced in the publications, de-
scribe applicability in drug design pipelines, as well as highlight chal-
lenges and future work to be performed.

We have presented a series of applications that use deep learning and
can be integrated into a drug design pipeline. In process of lead discovery
generative models (Publication 3.4) can be applied to generate a library
of compounds, the library can then be docked against a target. The dock-
ing can be assisted by property fields generated by method presented in
Publication 3.3. By applying method developed in Publication 3.1 com-
pounds in the library can be filtered based on activity and then prioritized
by their binding affinity (Publication 3.2). In process of lead optimiza-
tion, we can again use generative models to find analogs or identify novel
scaffolds (Publication 3.4). Alternatively, we have also shown that neural
networks can be employed to directly design ligands from protein pocket
(Publication 3.5).

Applications BindScope[93] and KDEEP[92] challenge state-of-the
art performance on standard evaluation datasets. Although we shown that
neural networks can compete with other methods, there are targets on
which the methods do not perform well. As these methods are data driven
we should be vigilant when applying them. Training set can be skewed
and evaluation examples can substantially differ from training, leading

127



to extrapolation and poorer performance. More recent works describe
some of these limitations.[110, 111, 112] As an alternative, physics-based
predictive models are being explored, putting less emphasis on training
data bias.[113]

We have carried some of the pioneering work of deep learning for
drug design, but at the same time a lot of similar research has been done in
parallel. AtomNet[90] was the first use case of three-dimensional CNNs
for bioactivity classification. Similarly Ragoza et. al.[91] showed usage
of CNNs do discriminate between correct and incorrect binding poses.
Finally, shortly after publication of Bindscope, Imrie et. al.[114] also
proposed CAM-like visualizations.

Arguably, generative models for compound design received even more
attention than methods for structure-based virtual screening[99] and a
couple of benchmarks have been proposed to evaluate them.[115, 116]
However, in drug design at different stages we want to achieve different
goals. For example in early stage of lead discovery we want diverse li-
braries, but in later stage, in lead optimization, we want close analogs
to our lead with higher affinity to the target, thus it is hard to evaluate
performance of generative models.

In addition to binding affinity, there are three relevant factor for early
stage drug discovery that are typically optimized for, but outside the scope
of the work present here: synthetic accessibility, pharmacokinetics and
off-target activity. Optimization for which have also been tackled by deep
learning approaches. For example either by reinforcement learning[117]
or Bayesian optimization.[100] Herein proposed generative models take
these optimization goals into account only implicitly, e.g. we assume that
if a training set consists of synthetically accessible molecules so will the
generated ones. However, the proposed shape-based methods can also
operate in latent space, and thus optimization through latent space can
also be applied to our methods.

When it comes to end-to-end structure-based drug design we have
shown that neural networks can achieve this goal and according to QSAR
and virtual screening methods generate better compounds than sampling
libraries. To the extent of our knowledge this is first attempt at generative
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modeling in structure-based setting and with future advances in the field
we can expect even more powerful tools and better enrichment.

4.1 Post publication use cases
The present methods are not by any meany finished and wrapped-up projects.
All developed applications have been, in collaboration with Accelera labs
sl, packed into Singularity[118] containers. With this virtualization the
applications can be ran on variety of hardware and operating system com-
binations. This allows for results reproducibility even on new computa-
tional systems.

Furthermore, all applications are available to scientific community as
part of playmolecule.org platform. Since release over six thousand
jobs have been submitted to the web applications (Table 4.1).

Developed methods have also been used on new projects. Testing
BindSope on an industrial scale projects reviled that it can challenge com-
monly used commercial software Glide[60] in in virtual screening cam-
paigns, distinguishing binding compounds from non-binding ones.

KDEEP has was part of best performing solution of D3R challenge,
where participants were tasked with ranking compounds based on their
binding affinity to BACE protein.1 The application is also the backbone
for a follow-up application that predicts differences in binding affinity for
congeneric series.2

All in all, drug design still remains a hard problem and we are in early
stages in applying deep learning to the problems. However, we do believe
that given the complexity of developing novel drugs, deep learning can
complement established methods. Work presented is only a small, yet
relevant, step towards data-driven solutions.

1https://drugdesigndata.org/php/d3r/gc4/combined/
scoringboth/index.php?component=1479&method=combined

2https://playmolecule.org/DeltaDelta/
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Table 4.1: Developed applications, their access link, number of jobs sub-
mitted and publication acceptance date. Number of jobs is extracted at
the time of writing (May 27., 2019).
Application URL Jobs Publication

Bindscope playmolecule.org/BindScope/ 1167 29.8.2018
KDEEP playmolecule.org/Kdeep/ 4140 8.1.2018
LigVoxel playmolecule.org/LigVoxel/ 466 6.7.2018
LigDream playmolecule.org/LigDream/ 253 14.2.2019
LiGANN playmolecule.org/LiGANN/ 23 N.A.*

* publication is not accepted yet, web application is undergoing tested.
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Chapter 5

CONCLUSIONS

1. Deep learning is shown to be a powerful tool for tackling problems
related to drug discovery process. Particularly, three-dimensional
shapes have been proven useful as input representation.

2. Convolutional neural networks can be applied to predict bioactivity
of small molecules in structure-based settings. Furthermore, regres-
sion models can also be applied to predict binding affinity.

3. Convolutions can be used to infer ligand shapes from protein pock-
ets in a purely data-driven setting.

4. Trained captioning-like networks, consisting of convolutional and
recurrent neural networks, can be used to variationally decode a
compound shape into SMILES strings and thus be applied to ex-
plore chemical space focused around a compounds.

5. Generative models have been shown to be a valid option for end-to-
end design of ligands in structure-based settings.
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