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Abstract

Numerical simulation, the use of computers to run a program which implements a

mathematical model for a physical system, is an important part of today techno-

logical world. It is required in many scienti�c and engineering �elds to study the

behavior of systems whose mathematical models are too complex to provide analyt-

ical solutions and it makes virtual evaluation of systems responses possible (virtual

twins). This drastically reduces the number of experimental tests for accurate de-

signs of the real system that the numerical model represents.

However these virtual twins, based on classical methods which make use of a

rich representations of the system (e.g. �nite element method), rarely allows real-

time feedback, even when considering high performance computing, operating on

powerful platforms. In these circumstances, the real-time performance required in

some applications are compromised. Indeed the virtual twins are static, that is, they

are used in the design of complex systems and their components, but they are not

expected to accommodate or assimilate data so as to de�ne dynamic data-driven

application systems. Moreover signi�cant deviations between the observed response

and the one predicted by the model are usually noticed due to inaccuracy in the

employed models, in the determination of the model parameters or in their time

evolution.

In this thesis we propose di�erent methods to solve these handicaps in order to

perform real-time monitoring and control. In the �rst part Model Order Reduction

(MOR) techniques are used to accommodate real-time constraints; they compute a

good approximation of the solution by simplifying the solution procedure instead

of the model. The accuracy of the predicted solution is not compromised and e�-

cient simulations can be performed (digital twins). In the second part data-driven

modeling are employed to �ll the gap between the parametric solution, computed

by using non-intrusive MOR techniques, and the measured �elds, in order to make

dynamic data-driven application systems, DDDAS, possible (hybrid twins).
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Résumé

La simulation numérique, c'est-à-dire l'utilisation des ordinateurs pour exécuter un

programme qui met en ÷uvre un modèle mathématique d'un système physique,

est une partie importante du monde technologique actuel. Elle est nécessaire dans

de nombreux domaines scienti�ques et techniques pour étudier le comportement de

systèmes dont les modèles mathématiques sont trop complexes pour fournir des solu-

tions analytiques et elle rend possible l'évaluation virtuelle des réponses des systèmes

(jumeaux virtuels). Cela réduit considérablement le nombre de tests expérimentaux

nécessaires à la conception précise du système réel que le modèle numérique repré-

sente.

Cependant, ces jumeaux virtuels, basés sur des méthodes classiques qui utilisent

une représentation �ne du système (ex. méthode des éléments �nis), permettent

rarement une rétroaction en temps réel, même dans un contexte de calcul haute

performance, fonctionnant sur des plates-formes puissantes. Dans ces circonstances,

les performances en temps réel requises dans certaines applications sont compro-

mises. En e�et, les jumeaux virtuels sont statiques, c'est-à-dire qu'ils sont utilisés

dans la conception de systèmes complexes et de leurs composants, mais on ne s'at-

tend pas à ce qu'ils prennent en compte ou assimilent des données a�n de dé�nir

des systèmes d'application dynamiques pilotés par les données. De plus, des écarts

signi�catifs entre la réponse observée et celle prévue par le modèle sont généralement

constatés en raison de l'imprécision des modèles employés, de la détermination des

paramètres du modèle ou de leur évolution dans le temps.

Dans cette thèse, nous proposons di�érentes méthodes pour résoudre ces handi-

caps a�n d'e�ectuer une surveillance et un contrôle en temps réel. Dans la première

partie, les techniques de Réduction de Modèles sont utilisées pour tenir compte des

contraintes en temps réel ; elles calculent une bonne approximation de la solution

en simpli�ant la procédure de résolution plutôt que le modèle. La précision de la

solution n'est pas compromise et des simulations e�caces peuvent être réalisées (ju-

meaux numériquex ). Dans la deuxième partie, la modélisation pilotée par les données

est utilisée pour combler l'écart entre la solution paramétrique calculée, en utilisant

des techniques de réduction de modèles non intrusives, et les champs mesurés, a�n

de rendre possibles des systèmes d'application dynamiques basés sur les données

(jumeaux hybrides).
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Resumen

La simulación numérica, el uso de ordenadores para ejecutar un programa que im-

plementa un modelo matemático de un sistema físico, es una parte importante del

mundo tecnológico actual. En muchos campos de la ciencia y la ingeniería es ne-

cesario estudiar el comportamiento de sistemas cuyos modelos matemáticos son

demasiado complejos para proporcionar soluciones analíticas, haciendo posible la

evaluación virtual de las respuestas de los sistemas (gemelos virtuales). Esto reduce

drásticamente el número de pruebas experimentales para los diseños precisos del

sistema real que el modelo numérico representa.

Sin embargo, estos gemelos virtuales, basados en métodos clásicos que hacen uso

de una rica representación del sistema (por ejemplo, el método de elementos �nitos),

rara vez permiten la retroalimentación en tiempo real, incluso cuando se conside-

ra la computación en plataformas de alto rendimiento. En estas circunstancias, el

rendimiento en tiempo real requerido en algunas aplicaciones se ve comprometido.

En efecto, los gemelos virtuales son estáticos, es decir, se utilizan en el diseño de

sistemas complejos y sus componentes, pero no se espera que acomoden o asimilen

los datos para de�nir sistemas de aplicación dinámicos basados en datos. Además, se

suelen apreciar desviaciones signi�cativas entre la respuesta observada y la predicha

por el modelo, debido a inexactitudes en los modelos empleados, en la determinación

de los parámetros del modelo o en su evolución temporal.

En esta tesis se proponen diferentes métodos para resolver estas limitaciones con

el �n de realizar un seguimiento y un control en tiempo real. En la primera parte se

utilizan técnicas de Reducción de Modelos para satisfacer las restricciones en tiempo

real; estas técnicas calculan una buena aproximación de la solución simpli�cando el

procedimiento de resolución en lugar del modelo. La precisión de la solución no se

ve comprometida y se pueden realizar simulaciones e�cientes (gemelos digitales).

En la segunda parte se emplea la modelización basada en datos para llenar el vacío

entre la solución paramétrica, calculada utilizando técnicas de reducción de modelos

no intrusivas, y los campos medidos, con el �n de hacer posibles los sistemas de

aplicación dinámicos basados en datos (gemelos híbridos).
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Résumé étendu

Depuis la précédente (troisième) révolution industrielle, la simulation numérique a

été largement utilisée dans de nombreux domaines scienti�ques et techniques et elle

est aujourd'hui l'un des acteurs majeurs du monde technologique. En fait, elle per-

met d'étudier virtuellement les comportements et les réponses des systèmes (i) sans

avoir besoin de résoudre analytiquement les modèles mathématiques (généralement

complexes) associés aux systèmes, (ii) en réduisant le nombre d'expériences (généra-

lement coûteuses et longues) réalisées sur le système lors de sa phase de conception.

Au cours du XXe siècle, de nombreuses méthodes ont été mises au point pour réaliser

des simulations numériques capables d'émuler un système physique en résolvant les

modèles mathématiques décrivant son comportement complexe (di�érences �nies,

éléments �nis, volumes �nis, méthodes spectrales, technique sans maillage, . . .)

dé�nissant les jumeaux virtuels qui, avec la modélisation et les expériences (pour la

calibration et la validation des modèles) ont joué un rôle prépondérant en ingénierie.

Cependant, les jumeaux virtuels ont un inconvénient majeur. Avant de résoudre

un problème donné, l'utilisateur doit introduire les di�érents paramètres impliqués

(par exemple les paramètres des matériaux et les charges appliquées) et dé�nir le

domaine dans lequel le problème est posé. Dès que le problème est résolu (en utilisant

des ordinateurs de plus en plus puissants et des algorithmes rapides, robustes et

précis), di�érentes quantités d'intérêt peuvent être calculées. Cela signi�e que les

jumeaux virtuels sont statiques : ils sont utilisés dans la conception de systèmes

complexes et de leurs composants, mais ils ne peuvent pas accueillir ou assimiler des

données a�n de dé�nir des systèmes d'application dynamiques pilotés par le données

(DDAS, Dynamic Data-Driven Application Systems en anglais). En raison du temps

caractéristique des stratégies de simulation standard, ils permettent rarement le

retour d'information en temps réel requis dans certaines applications (par exemple

le retour d'information haptique dans la simulation chirurgicale ou le contrôle basé

sur la simulation impliqué dans la robotique, l'internet des objets ou les robots

autonomes), même si on considère le calcul haute performance, fonctionnant sur des

plateformes puissantes. De plus, l'optimisation et les analyses inverses impliquées

dans les procédures d'étalonnage nécessitent respectivement de nombreux calculs

directs pour trouver les paramètres optimaux ou les paramètres recherchés. En�n,

la quanti�cation et la propagation de l'incertitude nécessitent également d'améliorer

l'e�cacité des stratégies habituelles.

Le contrôle en temps réel pourrait être obtenu au moyen de techniques

basées sur l'utilisation de représentations adaptées du système, reliant certaines

entrées à certaines sorties par une fonction de transfert. Même si ces méthodes

assurent une représentation en temps réel, leur représentation du système est
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Résumé étendu

trop grossière par rapport aux représentations �nes des systèmes, comme celles

réalisées par exemple par éléments �nis (transitoires 3D dans la plupart des cas),

qui permettent des simulations haute �délité. Cependant, comm déjà mentionné,

ces représentations trop riches, excellentes du point de vue de la compréhension

du système et de la contrôlabilité à petite échelle, ne permettent pas de procéder

en temps réel sur les plates-formes de calcul habituelles ou sur les systèmes déployés.

Même si l'utilisation d'ordinateurs plus puissants pouvait résoudre ces pro-

blèmes, cela en entraînerait deux autres. Premièrement, il ne permettrait pas

aux petites et moyennes entreprises d'avoir accès aux ressources de simulation

appropriées (nécessaires pour assurer l'innovation) et, deuxièmement, il ne serait

pas facilement intégré aux systèmes déployés. Ce besoin d'outils de simulation en

temps réel et en même temps accessibles a donné naissance, au début de XXIe siècle,

à de nouvelles solutions en matière de modélisation et de procédures de simulation.

C'est là que les techniques de Réduction de Modèles (MOR, Model Order Reduction

en anglais) ont ouvert de nouvelles possibilités pour des simulations plus e�caces.

Une alternative possible dans le cadre de la méthode MOR consiste à extraire "hors

ligne" les modes les plus signi�catifs impliqués dans la solution du modèle, qui

constitueront la base dite d'approximation réduite, puis à projeter la solution des

problèmes "assez similaires" dans cette base réduite. Comme le nombre de fonctions

impliquées dans la base réduite est assez faible, seuls quelques coe�cients doivent

être calculés pour déterminer la solution du problème et un problème discret de très

petite taille doit être résolu à chaque itération ou pas de temps. Ainsi, les techniques

de discrétisation basées sur les MOR permettent d'importantes économies de temps

de calcul, de plusieurs ordres de grandeur dans certains cas, ce qui permet de tenir

compte des contraintes en temps réel. Une autre possibilité consiste à calculer hors

ligne en utilisant toutes les ressources de calcul nécessaires, par exemple le calcul

haute performance (HPC, High Performance Computing en anglais), et tout le

temps de calcul nécessaire, une solution paramétrique contenant la solution de tous

les scénarios possibles. Cette solution paramétrique est ensuite particularisée en

ligne à l'aide d'installations de calcul légères, comme des dispositifs déployés, des

tablettes ou des smartphones pour e�ectuer en temps réel une simulation e�cace,

une optimisation, une analyse inverse, une propagation de l'incertitude ou un

contrôle par simulation. C'est la philosophie adoptée par la Proper Generalized De-

composition (PGD) qui a été utilisée dans de nombreuses applications pour calculer

des solutions paramétriques de modèles représentant des processus, structures et

systèmes complexes. Ainsi, quelques heures de calcul intensif hors ligne permettent

de construire des solutions paramétriques très générales capables d'assurer des

réponses quasi instantanées aux requêtes, tout en conservant le niveau de précision

des discrétisations habituelles. De plus, les techniques de réduction de modèles

permettent également d'assimiler les données collectées par les capteurs dans les

modèles physiques. Des données collectées qui peuvent être analysées, classées et

visualisées grâce à de nombreuses techniques développées à partir de la �n du XXe

siècle dans les domaines de l'intelligence arti�cielle et de l'apprentissage machine
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Résumé étendu

comme les techniques de réduction de dimensionnalité linéaire et non linéaire basées

sur l'analyse de variétés et des model learners basés sur l'utilisation de régression

linéaire et non linéaire, arbres décisionnels, forêts aléatoires, réseaux de neurones

et techniques d'apprentissage profond. L'intégration des techniques de réduction

de modèles avec l'intelligence arti�cielle a donné naissance à ce qu'on appelle les

jumeaux numériquex dans le but principal d'identi�er les paramètres impliqués

dans le modèle ainsi que leur évolution en temps réel, anticipant les actions de leurs

capacités prédictives. Grâce à l'utilisation des jumeaux numériquex, le contrôle par

simulation a été envisagé et réalisé avec succès dans de nombreuses applications,

dans de nombreux cas en utilisant des dispositifs informatiques déployés.

En raison de la grande importance que les jumeaux numériquex basés sur la

réduction de modèles ont sur le monde technologique, la partie principale de cette

thèse concerne le développement de nouvelles techniques qui peuvent être utilisées

pour améliorer ces jumeaux numériquex. Cette thèse concerne en particulier l'utili-

sation de la réduction de modèles et des techniques pilotés par les données a�n de

développer de nouveaux outils de simulation pour la surveillance et le contrôle en

temps réel à deux échelles di�érentes :

1. Echelle du composant mécanique : on propose des méthodes pour évaluer ef-

�cacement la réponse dynamique des plaques métalliques et composites dans

des cas linéaires et non linéaires, avec un accent particulier sur sa dépendance

vis-à-vis des paramètres et sur les méthodes non-intrusives. L'intérêt de l'étude

de la réponse dynamique est donné par l'importance qu'elle a dans l'identi�-

cation de l'existence d'un dommage et de sa localisation dans le composant

mécanique, c'est-à-dire dans les techniques de surveillance de la santé struc-

turelle pour lesquelles une méthode est également présentée dans ce travail.

2.1. Echelle du processus mécanique : on développe des outils de simulation des

processus permettant le calcul (et le recalcul) en temps réel des prédictions,

l'optimisation, l'identi�cation des paramètres, le contrôle et l'analyse inverse

pendant le processus et on les applique à un procédé de fabrication additive.

Cependant, même si l'utilisation de jumeaux numériquex permet d'examiner

les modèles haute �délité à toutes leurs échelles presque en temps réel en utilisant

des plateformes informatiques raisonnables (dès que les e�orts hors ligne sont

accomplis), lorsque ces installations informatiques sont intégrées dans des systèmes

d'applications pilotés par les données, des di�cultés imprévues apparaissent

immédiatement. Dans la pratique, on constate des écarts importants entre les

réponses prévues et observées, ce qui limite leur utilisation dans de nombreuses

applications. Ces écarts peuvent être dus à : (i) des inexactitudes dans les modèles

employés qui parfois ne sont pas su�samment précis pour décrire les systèmes réels ;

(ii) une évolution temporelle a priori presque imprévisible de certains modèles et

(iii) des inexactitudes dans la détermination des paramètres des modèles ou dans

leur évolution temporelle, qui peuvent présenter des �uctuations stochastiques dans
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Résumé étendu

le temps et l'espace. Une certaine partie de l'écart (sa composante non biaisée

au sens statistique) peut être considérée comme un bruit, mais la partie biaisée

restante prouve l'existence d'un modèle caché qui fonctionne mais qui échappe à

notre compréhension. A�n de résoudre ce problème et d'obtenir un contrôle e�cace

du système, une possibilité consiste à construire "à la volée" un modèle piloté par

les données capable de combler l'écart entre la prédiction du modèle et les mesures.

En fait, dès que le modèle piloté par les données permet de faire des prévisions

précises, les stratégies de contrôle peuvent être appliquées en toute sécurité. Une

alternative importante pour alléger la construction de telles corrections pilotées

par les données, mais qui n'est pas développée dans ce travail de thèse, consiste à

extraire les connaissances des modèles phénoménologiques guidés par les données

en utilisant à nouveau des stratégies d'apprentissage machine (arbres de décision

et ses variantes et améliorations). De plus, a�n d'améliorer le dialogue entre les

prédictions (modèle et modèle piloté par les données) et les utilisateurs, la réalité

augmentée pourrait également être utilisée.

La dernière partie de la thèse est donc consacrée au développement d'un nou-

veau concept : le concept de jumeaux hybrides (HT, Hybrid Twins en anglais). Les

jumeaux hybrides combinent des solutions de modèles paramétriques basées sur le

HPC avec des modèles de déviation construits "à la volée" et pilotés par les données,

rendant possibles des systèmes d'application dynamiques pilotés par les données. En

particulier, on applique le concept des jumeaux hybrides à l'

2.2. Echelle du processus mécanique : on développe DDDAS pour deux proces-

suss di�érents, un processus de Moulage par Transfert de Résine (RTM, Resin

Transfer Molding en anglais) et un processus de démantèlement d'une centrale

nucléaire, composé de trois ingrédients principaux : (i) un noyau de simulation

capable de résoudre des problèmes mathématiques complexes représentant des

modèles physiques sous contraintes en temps réel (en utilisant les méthodes

MOR présentées dans la partie précédente de la thèse) ; (ii) des stratégies avan-

cées capables de procéder à l'assimilation et au traitement des données, ainsi

qu'à la modélisation pilotés par les données ; (iii) un mécanisme permettant

d'adapter le modèle en ligne à des environnements en évolution (contrôle).

On propose ici un bref aperçu de chaque chapitre.

Echelle du composant mécanique

La première partie de la thèse est consacrée à l'échelle du composant mécanique.

En particulier, le Chapitre 2 traite de la surveillance non destructive de la santé

structurale et présente une nouvelle technique e�cace pour l'évaluation en temps

réel des dommages dans les structures. Ce travail a été motivé par le fait que la dé-

térioration et la dégradation des structures sont très préoccupantes dans le monde

entier, car elles sont la principale cause des défaillances structurelles. Une attention
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Résumé étendu

particulière doit alors être portée a�n d'éviter la défaillance soudaine des compo-

sants structurels. Les améliorations dans les domaines des capteurs de déplacement

et d'accélération à faible coût, du matériel de conditionnement et d'échantillon-

nage des signaux, des systèmes électroniques d'acquisition de données, ont poussé

la communauté scienti�que à utiliser la réponse dynamique des systèmes structu-

rels comme outil d'évaluation des dommages et de la sécurité. Récemment, diverses

techniques non destructives basées sur l'évolution des vibrations structurelles ont

fait l'objet de nombreuses publications, non seulement pour détecter la présence de

dommages, mais aussi pour en déterminer l'emplacement et la gravité. Les méthodes

de Contrôle Non Destructifs (NDT, Non-destructive Testing en anglais) sont l'un

des sujets les plus importants dans le domaine de la Surveillance de la Santé Struc-

turale (SHM, Structural Health Monitoring en anglais). Ces méthodes doivent être

capables d'identi�er les dommages lorsqu'ils apparaissent et de capturer et localiser

la zone endommagée.

Il existe plusieurs techniques d'identi�cation du système pour obtenir des pa-

ramètres structurels inconnus comme le rapport d'amortissement, les fréquences

propres ou la forme des modes. La base de ces méthodes est d'extraire des informa-

tions de certaines mesures sur la structure, comme, par exemple, les accélérations

ou les déplacements. Une première classi�cation divise les méthodes du domaine

fréquentiel et du domaine temporel.

Les réponses dans le domaine fréquentiel peuvent être obtenues à partir de ré-

ponses de séries temporelles par des techniques d'estimation non paramétriques et

de traitement du signal qui utilisent la transformée de Fourier. En ce qui concerne les

méthodes d'analyse modale, elles reposent sur l'utilisation d'informations modales

extraites de mesures d'entrées-sorties au moyen des méthodes d'analyse modale ou

uniquement de données de sortie mesurées sous excitation ambiante (vent, charges

de tra�c, etc.) sans utiliser de forces arti�cielles.

Les méthodes dans le domaine temporel évitent les problèmes de fuite ou de

proximité des fréquences naturelles. Les paramètres modaux peuvent être identi�és à

partir de mesures dans le domaine temporel et les caractéristiques de vibration et les

propriétés modales extraites peuvent être utilisées pour détecter l'occurrence et/ou

la localisation des dommages en comparant les propriétés modales identi�ées avec

les valeurs initiales. Ces méthodes permettent également de détecter directement

les dommages sur la base des données mesurées. Une autre approche de ce groupe

fait appel à de nombreuses techniques de traitement du signal et à l'intelligence

arti�cielle comme outils d'analyse pour étudier les signaux de vibration et en extraire

des caractéristiques pour représenter les caractéristiques du signal.

Une autre classi�cation pourrait être faite en fonction de la nature de la force

d'excitation : certaines méthodes fonctionnent avec une force d'impulsion connue,

d'autres avec des excitations naturelles inconnues, et un troisième groupe travaille

avec une combinaison des méthodes précédentes.

L'analyse par ondelettes est également une technique attrayante largement uti-

lisée pour le contrôle non destructif, dans laquelle une transformation ondelettes

est appliquée sur les formes modales de vibration. Comme cette analyse est capable
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d'identi�er les changements dans les formes modales, les dommages peuvent être

facilement identi�és ainsi que leur emplacement spatial.

Les techniques de réduction de modèles ont été largement utilisées a�n de lo-

caliser les dommages sous contraintes en temps réel. L'apprentissage automatique

permet également d'extraire la multiplicité dans laquelle vivent les solutions de pro-

blèmes d'ingénierie complexes et couplés. Ainsi, des paramètres non corrélés peuvent

être e�cacement extraits des données collectées à partir de simulations numériques,

d'expériences ou même de données collectées à partir d'appareils de mesure adé-

quats. La Proper Orthogonal Decomposition (POD), qui est équivalente à l'Analyse

en Composantes Principales (PCA, Principal Components Analysis en anglais), peut

être considérée comme un extracteur d'information d'un ensemble de données qui

tente de trouver un sous-espace linéaire de dimensionnalité inférieure à l'espace ori-

ginal. De plus, les transformations basées sur le PCA préservent les distances, là où

d'autres stratégies de réduction de la dimensionnalité non linéaire n'y parviennent

pas. Il est également habituel voir dans ce contexte des approches qui combinent les

techniques d'apprentissage automatique et techniques de réduction de modèles ; de

plus, les techniques d'exploration de données sont également utilisées dans le cadre

du SHM.

Ce chapitre propose une nouvelle stratégie basée sur la combinaison de la

réduction de modèles, qui extrait une base réduite des instantanés non endom-

magées, qui servira à projeter n'importe quelle solution mesurée sur celle-ci, avec

des techniques d'exploration de données. Lors de la projection du champ mesuré

dans cette base réduite, on s'attend à ce que les régions non endommagées soient

mieux approximés que celles dans lesquels les dommages sont présents. Ainsi, des

stratégies d'exploration de données peuvent être utilisées pour di�érencier les deux

régions (non endommagées et endommagées). En�n, a�n de limiter le nombre de

points de collecte des données, la méthodologie décrite ci-dessus est combinée à une

stratégie de complétion de données basée sur l'utilisation de l'apprentissage par

dictionnaire.

Pour calculer la réponse dynamique d'un système, le Chapitre 3 se concentre

sur des techniques numériques e�caces basées sur une représentation séparée.

La première partie du chapitre se concentre sur les problèmes dynamiques 3D

dé�nis dans les domaines de type plaque. De nombreux systèmes mécaniques et

structures complexes impliquent des pièces en plaque et en coque dont la principale

particularité est d'avoir une dimension caractéristique (celle liée à l'épaisseur) beau-

coup plus petite que les autres (dimensions du plan). L'introduction d'hypothèses

cinématiques et mécaniques appropriées permet de réduire le problème mécanique

général 3D à un problème 2D impliquant les coordonnées en plan. C'était la voie

utilisée pour dériver les théories des poutres, des plaques et des coques en méca-

nique des solides, qui ont été étendues plus tard à beaucoup d'autres domaines de

la physique, comme les écoulements dans des espaces étroits, les problèmes ther-

miques ou électromagnétiques des strati�és, parmi tant d'autres. Cependant, dans

de nombreux cas, lorsque l'on aborde des physiques complexes couplées, la validité
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des hypothèses capables de réduire les modèles de la 3D à la 2D devient douteuse et

par conséquent, a�n d'assurer des résultats précis, des discrétisations 3D semblent

obligatoires. Cependant, ces dernières impliquent des mailles trop �nes lorsqu'on

considère des procédures éprouvées de discrétisation basées sur des maillages, où

la taille des mailles est presque déterminée par l'épaisseur du domaine et par les

détails du matériau et/ou de la solution à représenter. A�n d'alléger la complexité

de calcul associée, une solution entièrement en 3D peut être calculée à l'aide d'une

représentation séparée plan/hors-plan dont la complexité de calcul reste celle qui

caractérise les simulations 2D en plaque ou en coque.

Dans de nombreuses analyses structurelles et simulations des processus de for-

mage les aspects dynamiques ne peuvent pas être négligés et les modèles élastiques

sont alors remplacés par leurs homologues élastodynamiques. Di�érentes techniques

de discrétisation et procédures d'intégration temporelle peuvent être utilisées dans

ce cas.

Lorsqu'on considère une analyse implicite, la solution à chaque pas de temps né-

cessite quelques itérations pour faire respecter l'équilibre. Au contraire, les schémas

explicites ne nécessitent pas d'itération car les accélérations nodales sont résolues

directement, et à partir desquelles les vitesses et les déplacements sont calculés par

simple intégration. A son tour, les déplacements permettent de calculer les défor-

mations et les contraintes. Le principal inconvénient des simulations explicites est

que le pas de temps doit véri�er la condition de stabilité, qui diminue avec la taille

de l'élément.

Au contraire, les intégrations élastodynamiques implicites deviennent incondi-

tionnellement stables, c'est-à-dire qu'il n'y a pas de limite dans le pas de temps à

considérer en matière de stabilité. Ainsi, les pas de temps implicites sont généra-

lement de plusieurs ordres de grandeur plus grands que ceux considérés dans les

intégrations temporelles explicites. Cependant, l'intégration implicite nécessite la

solution de systèmes linéaires plusieurs fois à chaque étape de chargement lorsqu'il

s'agit de modèles non linéaires. Les techniques explicites n'exigent pas cette inversion

de matrice et, par conséquent, abordent facilement les non-linéarités (non-linéarités

de contact ou de matériaux).

Lorsque la dynamique s'applique à des domaines dégénérés, comme les plaques

ou les coques, et qu'aucune hypothèse de simpli�cation acceptable n'est disponible

pour réduire leur complexité à 2D, des solutions entièrement 3D semblent obliga-

toires. C'est par exemple le cas lorsque on considère l'endommagement dynamique

progressif des strati�és composites, où une description riche à travers l'épaisseur

pourrait être extrêmement utile.

Les représentations séparées plan/hors-plan permettent de réduire la solution

3D à une séquence de problèmes 2D (dans le plan) et 1D (le long de l'épaisseur),

comme il a été prouvé dans des travaux antérieurs par l'étude des élastostatiques

dans les domaines des plaques et des coques.

Même si la mise en ÷uvre de schémas d'intégration implicites dans une représen-

tation séparée 3D plan/hors-plan n'implique pas de di�cultés majeures, l'utilisation

d'une intégration explicite, préférable dans de nombreuses applications, par exemple
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les simulations de crash, devient une question délicate. En fait, le maillage utilisé

pour discrétiser la dimension hors plan (épaisseur) détermine le pas de temps limite

assurant la stabilité, et par conséquent il pourrait devenir rapidement inabordable

lors du ra�nage de la discrétisation hors-plan.

Ainsi, dans cette première partie du chapitre, nous introduisons une nouvelle

représentation hybride explicite/implicite plan/hors-plan pour les problèmes dyna-

miques dé�nis dans des domaines en forme de plaques qui calculent e�cacement des

solutions 3D et où les contraintes de stabilité sont exclusivement déterminées par

les discrétisations plus grossières dans le plan.

La deuxième partie du chapitre analyse di�érents schémas d'intégration de la

dynamique des solides dans le domaine fréquentiel, avec la Proper Generalized De-

composition. Comme déjà mentionné, les équations qui régissent la dynamique des

solides sont généralement formulées soit dans le domaine temporel, soit dans le do-

maine fréquentiel. La première est préférée pour le calcul des réponses transitoires,

alors que l'approche en fréquence est un choix intéressant pour le calcul des réponses

forcées.

Les descriptions temporelles sont utilisées à la fois dans les cas linéaires et non

linéaires, étant particulièrement e�caces lorsqu'elles sont combinées avec l'analyse

modale. Cette dernière permet d'exprimer la solution sur une série d'équations dif-

férentielles ordinaires découplées.

Les problèmes deviennent un peu plus complexes dans le cas de la dynamique

paramétrée, et plus concrètement lorsque ces paramètres dépendent de la fréquence.

Dans ce cas, la modélisation basée sur la fréquence semble plus appropriée que

sa contrepartie temporelle, dès lors que les formes fonctionnelles exprimant la dé-

pendance paramétrique de la fréquence sont compatibles avec l'utilisation d'une

représentation séparée espace-fréquence-paramètres.

Nous revenons dans cette deuxième partie du chapitre, par souci d'exhaustivité,

sur le cas de la dynamique linéaire et de l'approche hybride harmonique-modale

développée dans des travaux antérieurs et on l'étend au traitement de la dynamique

paramétrique non linéaire.

Cependant, la solution entièrement 3D calculée à l'aide de la représentation

séparée plan/hors-plan et dont la complexité de calcul reste celle caractéristique

des simulations 2D de plaques ou de coques, semble trop intrusive pour être mise

en ÷uvre dans les logiciels commerciaux de mécanique structurelle qui proposent

généralement di�érents éléments �nis de plaques et de coques, même dans le cas

des plaques ou coques composites multicouches. C'est pourquoi dans le Chapitre 4

nous proposons des méthodes qui permettent d'intégrer des descriptions 3D dans des

modèles de plaques ou de coques implémentés dans tous les logiciels, sans a�ecter

sa complexité informatique qui reste celle liée aux analyses 2D standard.

Comme l'expérience a montré que ces descriptions enrichies ne sont souvent

obligatoires que localement, dans certaines régions ou composants de structure, la

première partie du chapitre est consacrée à proposer une procédure d'enrichissement

capable de traiter les comportements locaux en 3D, en préservant le couplage direct
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minimalement invasif avec les discrétisations existantes des plaques et coques. Pour-

faire ça, deux voies d'enrichissement di�érentes sont envisagées, la première basée

sur l'utilisation de la représentation séparée et la deuxième sur une simple condensa-

tion. La première méthodologie permet d'obtenir des descriptions très �nes enrichies

en 3D tandis que la dernière est particulièrement bien adaptée aux comportements

inélastiques et dynamiques.

A�n de traiter les problèmes pour lesquels les descriptions enrichies sont obliga-

toires dans tous le domaine, la deuxième partie du chapitre propose une méthode

plus générale qui permet une intégration e�cace des descriptions entièrement en 3D

dans les logiciels de plaques existants.

Echelle du processus mécanique

La deuxième partie de la thèse concerne l'échelle du processus mécanique. Elle com-

mence dans le Chapitre 5 en utilisant les concepts de réduction de modèles déve-

loppés dans les chapitres précédents a�n de traiter de l'évaluation de la distorsion

des pièces dans les processuss de Fabrication Additive (AM, Additive Manufacturing

en anglais). La motivation de ce travail a été donnée par le fait que l'adoption des

technologies de fabrication additive au niveau industriel a posé plusieurs dé�s à la

communauté scienti�que, allant de l'étude des interactions à l'échelle de la particule

à la prévision de l'état mécanique de la pièce �nale.

Les processuss de fabrication additive ont été largement simulés à l'aide de la

méthode des éléments �nis. D'autres techniques ont également été prises en compte,

telles que les méthodes lattice Boltzmann, les di�érences �nies, les volumes �nis et

les modèles discrets.

Une modélisation globale des processus et la solution e�cace qui lui est associée

restent aujourd'hui hors de portée car de nombreux dé�s subsistent, concernant

la physique et les échelles multiples nécessitant des modèles �ns et riches, bien

calibrés dans des conditions extrêmes (dans l'espace, le temps et les conditions du

processus). Ces circonstances et la longueur extrêmement longue de la trajectoire du

processus compromettent l'e�cacité d'outils de simulation numérique bien éprouvés.

Ces di�cultés peuvent être regroupées en trois catégories :

• Complexité géométrique. La �exibilité des technologies de fabrication additive

permet l'utilisation de l'optimisation de la topologie au stade de la conception.

Il en résulte généralement des pièces minces, très sensibles aux déformations.

Les géométries complexes nécessitent également des maillages plus �ns et donc

des modèles numériques de grande taille.

• Forte dépendance à la stratégie de fabrication. Ceci est principalement dû aux

modèles non linéaires et couplés impliqués dans les transformations de phase

et les comportements inélastiques.

• La nature progressive du processus. Une partie est composée de milliers de

couches déposées constituées chacune d'une succession de rubans de moins de

1mm d'épaisseur.
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Ces di�cultés justi�ent le fait que les approches standard conduisent à des temps

de simulation prohibitifs. Ainsi, les technologies de simulation bien éprouvées ne

peuvent pas être utilisées pour e�ectuer des analyses paramétriques et explorer

e�cacement l'espace de conception paramétrique pour optimiser les processus ou

pour e�ectuer des contrôles en temps réel basés sur la simulation.

Des e�orts importants ont été déployés a�n de proposer de nouvelles straté-

gies informatiques. Parmi celles-ci, les approches d'adaptabilité de maillage, qui

consistent à e�ectuer un ra�nage/grossissement, sont largement considérées comme

permettant de résoudre la région dans laquelle le spot s'applique. Cependant, et

malgré les progrès signi�catifs dans l'adaptation du maillage, le remaillage entraîne

ses propres di�cultés et a motivé au cours de la dernière décennie la proposition

et le développement de méthodes sans mailles, qui ont résolu certains problèmes

et en ont créé de nombreux autres. Dans tous les cas, le grossissement est limité

par la localisation du champ ainsi que par la nécessité de décrire avec précision

des géométries extrêmement complexes. Cependant, l'un des principaux obstacles à

une simulation e�cace des processus AM de prédiction des distorsions des pièces,

indépendamment de la richesse du modèle, est lié au modèle numérique lui-même,

par le fait d'assembler et de résoudre de très grands systèmes d'équations à chaque

pas de temps et dans une géométrie qui évolue avec le temps. Ainsi, la réduction de

modèles a été envisagée comme un remède possible pour atteindre des simulations

plus rapides sans compromettre la précision.

Ce chapitre présente une modélisation paramétrique simpli�ée et sa solution

paramétrique ultérieure pour évaluer les distorsions paramétriques survenant dans

les pièces fabriquées par fabrication additive. Les paramètres pris en compte sont

ceux qui paramétrent les trajectoires du processus (qui dépendent de plusieurs

paramètres de matériau et de processus), l'intensité et l'anisotropie de retrait

thermique (qui dépendent directement de la trajectoire du processus) et les couches

déposées (qui décrivent la progression du processus). L'outil de simulation proposé

permet d'évaluer en temps réel l'impact des paramètres qui viennent de se référer

sur la distorsion de la pièce, de procéder à la compensation géométrique requise et

d'e�ectuer l'optimisation, l'analyse de sensibilité et la propagation des incertitudes.

Alors que le chapitre 5 traite d'un problème mis en place dans un contexte de

simulation standard (jumeaux numériquex), où les techniques MOR sont utilisées

pour accélérer le processus de simulation, le Chapitre 6 présente un concept com-

plètement nouveau : le concept de jumeaux hybrides. La modélisation pilotée par

les données est utilisée pour combler l'écart entre la solution déterministe paramé-

trique calculée en utilisant le constructeur PGD non intrusif (et dont les paramètres

sont déterminés par assimilation des données) et les champs mesurés. Dès que le

modèle piloté par les données permet de faire des prédictions précises, les stratégies

de contrôle peuvent être appliquées en toute sécurité.

Ce concept est d'abord appliqué aux pièces composites fabriquées à partir du

processus RTM. Le RTM est une famille de processuss connexes dans la fabrication

de composites, dans laquelle des �bres continues, utilisées comme renfort (milieu
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poreux), sont d'abord placées dans la partie inférieure d'un moule et ensuite une

matrice polymère est injectée sous forme de résine liquide dans la cavité. Après dur-

cissement, la pièce est démoulée. L'imprégnation de la préforme avec la résine est

régie par la loi de Darcy, mais le tenseur de perméabilité est généralement di�cile à

déterminer. Ensuite, pendant le processus de formage, le jumeau hybride est utilisé

pour assurer une prédiction numérique correcte à des �ns de contrôle et pour intro-

duire les informations précises du processus de formage dans la prédiction du cycle

de vie de la pièce a�n de permettre la maintenance prédictive.

Ensuite, nous appliquons le jumeau hybride à un processus de démantèlement

d'une centrale nucléaire. Le jumeau hybride est utilisé pour aider l'opérateur à se

déplacer dans une salle avec di�érentes sources d'émission (points de travail) situées

à di�érents endroits pour choisir la trajectoire la plus sûre grâce aux capteurs dont

il est équipé.

En�n, le chapitre de conclusion résume les principales contributions de la thèse

et discute de certaines possibilités de développements futurs.
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Chapter 1

Introduction

1.1 Motivations and objectives of the thesis

Since the previous (third) industrial revolution numerical simulation has been

widely used in many scienti�c and engineering �elds and is now one of the mayor

players in the technological world. In fact it allows to virtually study the behaviors

and the responses of systems (i) without the need to analytically solve the (usually

complex) mathematical models associated to the systems, (ii) reducing the number

of (usually expensive and long) experiments performed on the system to get

accurate designs. During the 20th century many methods have been developed

to carry out numerical simulations able to emulate a physical system by solving

the mathematical models describing its complex behavior (�nite di�erences, �nite

elements, �nite volumes, spectral methods, meshless technique, . . . ) de�ning

the so called virtual twins, which together with modeling and experiments (for

model calibration and validation purposes) played a major role in engineering

[Hey et al. 2009].

However the virtual twins have a main drawback. Prior to solve a given problem,

the user must introduce the di�erent involved parameters (e.g. material parameters

and applied loads) and de�ne the domain in which the problem is posed. As soon

as the problem is solved (by using more and more powerful computers and fast, ro-

bust and accurate algorithms) di�erent quantities of interest can be then calculated.

That means that the virtual twins are static: they are used in the design of complex

systems and their components, but they can not accommodate or assimilate data in

order to de�ne Dynamic Data-Driven Application Systems (DDAS) [Darema 2015].

Due to the characteristic time of standard simulation strategies they rarely allows

real-time feedback required in some applications (e.g. haptic feedback in surgical

simulation or simulation-based control involved in robotics, internet of things or au-

tonomous robots), even when considering high performance computing, operating

on powerful platforms. Moreover, optimization and inverse analyses involved in cal-

ibration procedures require respectively many direct calculations to �nd the optimal

or the searched parameters. Finally, uncertainty quanti�cation and propagation also

require enhancing the e�ciency of usual strategies.

Real-time control could be gotten by means of techniques based on the use

of adapted representations of the system, relating some inputs to some outputs

through a transfer function. Even if these methods ensure real-time, their repre-

sentation of the system is too coarse compared to rich representations of systems,
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as the ones performed using for example �nite elements (3D transient in the most

of cases), which allow for high �delity simulations. However, as previously said,

these too rich representations, excellent from the point of view of the system

understanding and �ne-scale controllability, do not allow proceeding in real-time in

usual computational platforms or deployed systems.

Even if the use of more powerful computers could overcome these issues,

in fact it would bring other two problems. First it would not allow small and

medium industries to access to the appropriate simulation resources (required for

ensuring innovation) and second it would not be easily integrated in deployed

systems. This need of real-time and, at the same time, accessible simulation

tools brought to the birth, at the beginning of the 21st century, of new solutions

in what concerned modeling and simulation procedures. It's here when Model

Order Reduction (MOR) techniques opened new possibilities for more e�cient

simulations. A possible alternative within the MOR framework consists in ex-

tracting �o�ine� the most signi�cant modes involved in the model solution, that

will constitute the so-called reduced approximation basis, and then project the

solution of �quite similar� problems in that reduced basis. As the number of

functions involved in the reduced basis is quite low, only a few coe�cients must

be calculated for determining the problem solution and a discrete problem of

very small size must be solved at each iteration or time step. Thus, MOR-based

discretization techniques allow important computing-time savings, of several

orders of magnitude in some cases, making possible accommodating to real-time

constraints [Chinesta et al. 2015, Chinesta & Ladeveze 2014]. Another possibility

consists of calculating o�ine using all the needed computational resources, e.g.

High Performance Computing (HPC), and computing time, a parametric solu-

tion containing the solution of all possible scenarios. This parametric solution

is then particularized online using light computational facilities, as deployed

devices, tablets or smartphones for performing in real-time e�cient simulation,

optimization, inverse analysis, uncertainty propagation and simulation-based

control. This was the philosophy adopted by the so-called Proper General-

ized Decomposition (PGD) which was used in many applications in order to

compute parametric solutions of models representing complex processes, struc-

tures and systems [Bur et al. 2016, Chinesta et al. 2011, Chinesta et al. 2013b,

Chinesta et al. 2014a, Chinesta et al. 2014b, Chinesta et al. 2015]. Thus, few

hours of intensive o�ine computation allow the construction of very general

parametric solutions able to ensure almost instantaneous responses to queries,

while keeping the level of accuracy of usual discretizations. Moreover model

order reduction techniques also allow to assimilate data collected from sensors

into the physically-models. Collected data which can be analyzed, classi�ed

and visualized thanks to many techniques developed, starting from the end of

the 20th century, in the areas of arti�cial intelligence and machine learning

as linear and nonlinear dimensionality reduction techniques based on manifold

learning [Lee & Verleysen 2007, Kambhatla & Leen 1997, Schölkopf et al. 1998,
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Schölkopf et al. 1999, Zhang & Zha 2003, T. Roweis & K. Saul 2000] and model

learners based on the use of linear and nonlinear regressions, decision tress, ran-

dom forests, neural networks and deep-learning techniques [Parsa et al. 2018,

Ibáñez Pinillo et al. 2018, Criminisi et al. 2011, Criminisi et al. 2012,

Goodfellow et al. 2016, Raissi et al. 2017a, Raissi et al. 2017b, Moitra 2018,

Anandkumar et al. 2014]. The integration of MOR techniques with arti�cial

intelligence gave arise to the so-called digital twins with the main aim of identifying

parameters involved in the model as well as their time evolution in real time,

anticipating actions from their predictive capabilities. By using digital twins

simulation-based control was envisaged and successfully accomplished in many

applications, in many cases using deployed computing devices [Alfaro et al. 2014].

Because of the great importance that digital twins based on MOR have on the

technological world, the main part of this thesis concerns the development of new

techniques that can be used to improve these digital twins. In particular this thesis

concerns the use of model order reduction and data-driven techniques in order to

develop new simulation tools for real-time monitoring and control at two di�erent

scales:

1. Scale of the mechanical component : we propose methods to e�ciently evaluate

the dynamical response of metal and composite plates in both linear and

nonlinear case, with a focus in particular on its dependence on parameters

and on non-intrusive methods. The interest in the study of the dynamical

response is given by the importance that it has in the identi�cation of the

existence of damage and of its location in the mechanical component, i.e. in

the structural health monitoring techniques for which a method is presented

in this work too.

2.1. Scale of themechanical process: we developed processes simulation tools allow-

ing real time calculation (and re-calculation) of the predictions, optimization,

parameters identi�cation, control and inverse analysis during the process and

we apply them to an additive manufacturing process.

However, even if by using digital twins high-�delity models can be examined

at all their scales in almost real-time by using reasonable computing platforms

(as soon as the o�ine e�orts is accomplished), when these computing facilities

are integrated into data-driven applications systems unexpected di�culties appear

immediately. In practice signi�cant deviations between the predicted and observed

responses are noticed, limiting their use in many applications. These deviations can

be due to: (i) inaccuracies in the employed models that sometimes are not accurate

enough descriptions of the real systems; (ii) an a priori almost unpredictable time

evolution of certain models and (iii) inaccuracies in the determination of the model

parameters or in their time-evolution, that can present space and time stochastic

�uctuations. A certain part of the deviation (its unbiased component in a statistical

sense) can be viewed as a noise, but the remaining biased part proves the existence
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of an hidden model that operates but escapes to our understanding. In order to

address this problem and e�ciently attained system control, one possibility consists

in constructing �on-the-�y� a data-driven model able to �ll the gap between model

prediction and measurement. In fact, as soon as the data-driven model allows

making accurate predictions, control strategies can be safely applied. An important

alternative alleviating the construction of such data-driven corrections, but which

is not developed in this thesis work, consists of extracting knowledge from the

phenomenological data-driven models by using again machine-learning strategies

(decision trees and its variants and improvements). Moreover in order to improve

the dialogue between predictions (model and data-driven) and users, augmented

reality could also be employed.

Thus the last party of the thesis is devoted to the development of a new concept:

the Hybrid Twin (HT) concept. The hybrid twins combine HPC-based parametric

model solutions with �on-the- �y� data-driven constructed deviation-model, making

DDDAS possible [Chinesta et al. 2018]. In particular we apply the HT concept to

the

2.2. Scale of the mechanical process: we developed DDDAS for two di�erent pro-

cesses, a Resin Transfer Molding (RTM) process and a dismantling process of

a nuclear central, consisting of three main ingredients: (i) a simulation core

able to solve complex mathematical problems, representing physical models,

under real-time constraints (by using the MOR methods presented in the pre-

vious part of the thesis); (ii) advanced strategies able to proceed with data-

assimilation, data-curation and data-driven modeling; and (iii) a mechanism

to adapt the model online to evolving environments (control).

1.2 Contributions and structure of the thesis

This thesis is actually a compilation of results published (or submitted for publi-

cation) in articles and conference proceedings of scienti�c journals. Chapters 2, 3

and 4 address the scale of the mechanical component, while chapters 5 and 6

address the scale of the mechanical process. In particular chapter 6 develops the

new concept of the Hybrid Twin.

1.2.1 Scale of the mechanical component

The �rst part of the thesis is devoted to the scale of the mechanical component. In

particular the thesis begins in Chapter 2 dealing with non-destructive structural

health monitoring and presenting a new e�cient technique for real-time evaluation

of damage in structures. The motivation for this work came up from the fact that

structural deterioration and degradation are of great concern worldwide, being dam-

age the main cause of structural failure. A special attention must then be paid in
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order to avoid the sudden failure of structural components. The improvements in

the �elds of low-cost displacement and acceleration transducers, signal conditioning

and sampling hardware, electronic data acquisition systems, pushed the interest of

the scienti�c community in the use of the dynamic response of structural systems as

a tool to evaluate damage and safety. Recently, various non-destructive techniques

based on changes in the structural vibrations patterns have been extensively pub-

lished not only to detect the presence of damage but also to identify the location

and the severity of it. Non-destructive Testing (NDT) methods are one of the most

important topics in the Structural Health Monitoring (SHM) �eld. These methods

have to be able to identify damage when it appears and capture and locate the

damaged area.

Several system identi�cation techniques exist to obtain unknown structural

parameters as damping ratio, natural frequencies or mode shapes [Ljung 1999,

Peeters & De Roeck 2001]. The basis of these methods is to extract information

from some measurements on the structure, as, for example, accelerations or dis-

placements. A �rst classi�cation divides the methods in frequency domain and time

domain methods.

Frequency domain techniques have the advantage of modal analysis methods,

where the analysis can be done in some range of frequencies of interest or with

some structural modes. In [Maia et al. 1997, Liu et al. 2009, Mohan et al. 2013,

Canales et al. 2009, Brincker et al. 2001] frequency domain responses are obtained

from time series responses by non-parametric estimation and signal processing

techniques which make use of the Fourier transform. Concerning modal analysis

methods [Cawley & Adams 1979, West 1986, Salehi et al. 2010, Pandey et al. 1991,

Yam et al. 1996, Zhang & Aktan 1995, Xu et al. 2015] they are based on the use

of modal information extracted from input-output measurements by means of the

modal analysis methods or from only output data measured under the ambient

excitation (wind, tra�c loads, etc.) without making use of arti�cial forces.

Time domain methods avoid problems as leakage or closeness to natural

frequencies. In [Ibrahim & Mikulcik 1977, Vandiver et al. 1982, Ibrahim 1986,

Juang & Pappa 1985, Cattarius & Inman 1997, Peeters & De Roeck 2001,

Ruocci et al. 2011] authors identi�ed modal parameters from time domain

measurements and used the extracted vibration features and modal properties

for detecting damage occurrence and/or location by comparing the identi�ed

modal properties with the original values. It is also possible with these methods

[Park et al. 2008, Todorovska & Trifunac 2010, Todorovska & Rahmani 2013] to

directly detect damage based on the measured data. Another approach in this

group [Lu & Hsu 2002, Law et al. 2005, Xu & Chen 2004] makes use of many signal

processing techniques and arti�cial intelligence as analysis tools to investigate the

vibration signals and extract features to represent the signal characteristics.

Another classi�cation could be done depending on the nature of the excitation

force: some methods work with a known impulse force [Ibrahim & Mikulcik 1976],

others work with unknown natural excitations [James et al. 1992], and a third group

works with a combination of the previous ones [Reynders et al. 2010].
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Wavelet analysis is also an appealing technique widely used for the non-

destructive testing, in which a wavelet transform is applied on modal shapes of

vibration. Since this analysis is capable to identify changes in the modal shapes,

damage can be easily identi�ed as well as its spatial location. There is a vast lit-

erature on the extensive use of wavelets [Huang et al. 2009, Rucka & Wilde 2006,

Chang & Chen 2004, Wang & Deng 1999, Huang et al. 2009, Loutridis et al. 2004,

Loutridis et al. 2005, Fan & Qiao 2009, Kim & Melhem 2004].

Reduced order modeling techniques have been widely used in order to locate

damage under real-time constraints. In [Capellari et al. 2015] authors applied the

Proper Orthogonal Decomposition (POD) to track the structural behavior followed

by an improved particle �ltering strategy (extended Kalman updating). Machine

learning is also helping for extracting the manifold in which the solutions of complex

and coupled engineering problems are living. Thus, uncorrelated parameters can be

e�ciently extracted from the collected data coming from numerical simulations, ex-

periments or even from the data collected from adequate measurement devices. The

Proper Orthogonal Decomposition (POD), that is equivalent to Principal Compo-

nents Analysis (PCA), can be viewed as an information extractor from a data set

that attempts to �nd a linear subspace of lower dimensionality than the original

space. Moreover, PCA-based transformations preserve distances, where other non-

linear dimensionality reduction strategies fail to accomplish it. In [Vitola et al. 2016]

authors proposed a data-driven methodology for the detection and classi�cation of

damages by using multivariate data-driven approaches and PCA. Support Vector

Machine (SVM) was used for damage detection in [Gui et al. 2017].

It is also usual in this context approaches that combine machine learning tech-

niques and reduced order modeling, like in [Taddei et al. 2016] where authors used

machine-learning algorithms to generate a classi�er that monitors the damage state

of the system and a Reduced Basis method to reduce the computational burden

associated with model evaluations. Proper Orthogonal Decomposition approxima-

tions and Self-Organizing Maps (SOM) are combined to realize a fast mapping from

measured quantities in order to propose a data-driven strategy to assist online rapid

decision-making for an unmanned aerial vehicle that uses sensed data to estimate

its structural state [Mainini & Willcox 2015].

Data mining techniques are also used in the context of the SHM. In

[Muthuraman et al. 2016] authors propose an approach for damage identi�cation

and optimal sensor placement in Structural Health Monitoring by using a Genetic

Algorithm technique (GA) whereas in [Gordan et al. 2017] authors combined data

mining (GA), machine learning (PCA) and deep learning (neural networks) tech-

niques in the damage identi�cation context. Concerning deep learning techniques, it

is interesting the work developed in [Selva et al. 2013] in which a smart monitoring

of aeronautical composites plates based on electromechanical impedance measure-

ments and arti�cial neural networks is presented. At its turn [Lin 2012] proposes

the same technique in the monitoring of a frame structure model for damage iden-

ti�cation.

This chapter proposes a new strategy based on the combination of model order
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reduction, that extracts a reduced basis from undamaged snapshots, that will

serve for projecting any measured solution on it, with data-mining techniques.

When projecting into this reduced basis the measured �eld, undamaged regions are

expected being better approximated than the ones in which damage occurs. Thus,

data-mining strategies can be then used to di�erentiate both regions (undamaged

and damaged). Finally, in order to limit the number of points at which data is

collected, the just described methodology is combined with a data-completion

strategy based on the use of dictionary learning.

In order to compute the dynamical response of a system, Chapter 3 focuses on

e�cient numerical techniques based on separated representation.

The �rst part of the chapter focuses on 3D dynamical problems de�ned in plate-

like domains. Many mechanical systems and complex structures involve plate and

shell parts whose main particularity is having a characteristic dimension (the one

related to the thickness) much lower than the other ones (in-plane dimensions). The

introduction of appropriate kinematic and mechanic hypotheses allow the reduction

of the general 3D mechanical problem to a 2D involving the in-plane coordinates.

This was the route employed for deriving beam, plate and shell theories in solid me-

chanics [Oñate 2010, Ahmad et al. 1970], that were extended later to many other

physics, like �ows in narrow gaps, thermal or electromagnetic problems in laminates,

among many others. However, in many cases, when addressing complex coupled

physics the validity of hypotheses able to reduce models from 3D to 2D becomes

doubtful and consequently, in order to ensure accurate results, 3D discretizations

seem compulsory. However the last imply too �ne meshes when considering well-

experienced mesh-based discretization procedures, where the mesh size is almost

determined by the domain thickness and the material and/or solution details to

be represented. In order to alleviate the associate computational complexity in

[Bognet et al. 2012, Bognet et al. 2014] authors proposed computing the fully 3D

solution employing an in-plane-out-of-plane separated representation whose compu-

tational complexity remains the one characteristic of 2D plate or shell simulations.

In many structural analysis and simulations of forming processes dynamical as-

pects cannot be neglected and then elastic models are replaced by their elastody-

namics counterparts. It exists a vast literature on structural dynamics, covering

di�erent discretization techniques and time integration procedures [Sun et al. 2000,

Gravouil & Combescure 2001, Prior 1994, Taylor et al. 1995, Pinho et al. 2006].

When considering an implicit analysis, solution at each time step needs some

iterations to enforce equilibrium. On the contrary explicit schemes do not require

iteration as the nodal accelerations are solved directly, and from which velocities and

displacements are calculated by simple integration. At its turn displacements allow

the calculation of strains and stresses. The main handicap of explicit simulations is

that the time step must verify the stability condition, decreasing with the element

size.

On the contrary implicit elastodynamics integrations become unconditionally

stable, that is, there is not a limit in the time step to be considered in what con-
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cerns stability. Thus, implicit time steps are generally several orders of magnitude

larger than the ones considered in explicit time integrations. However, implicit in-

tegration requires the solution of linear systems several times at each loading step

when addressing nonlinear models. Explicit techniques do not require that matrix

inversion and consequently address nonlinearities (contact or material nonlineari-

ties) easily. In [Hughes & Liu 1978] a hybrid schema was proposed that considers

the domain composed of two parts in which explicit and implicit time integrations

apply.

When dynamics applies on degenerated domains, like plates or shells, and no

acceptable simplifying hypotheses are available for reducing their complexity to 2D,

fully 3D solutions seem compulsory. This is for example the case when considering

the progressive dynamic damage of composite laminates, where a rich through-the-

thickness description could be extremely valuable, among many other scenarios in

which a fully 3D formulation is retained.

In plane-out-of-plane separated representations allow reducing the 3D solu-

tion to a sequence of 2D (in-plane) and 1D (along the thickness) problems, as

proved when considering elastostatics in plate and shell domains [Bognet et al. 2012,

Bognet et al. 2014].

Even if the implementation of implicit integration schemes into a 3D in-plane-

out-of-plane separated representation does not imply major di�culties, the use of

explicit integration, preferable in many applications, e.g. crash simulations, becomes

a tricky issue. In fact the mesh employed for discretizing the out-of-plane dimension

(thickness) determines the limit time-step ensuring stability, and consequently it

could become quickly una�ordable when re�ning the out-of-plane discretization.

Thus, in this �rst part of the chapter, we introduce a new hybrid explicit/implicit

in-plane-out-of-plane separated representation for dynamic problems de�ned in

plate-like domains that computes e�ciently 3D solutions and where the stability

constraints are exclusively determined by the coarser in-plane discretizations.

The second part of the chapter analyses di�erent integration schemes of solid dy-

namics in the frequency domain involving the Proper Generalized Decomposition.

As previously said, governing equations in solid dynamics are usually formulated

either in the time or in the frequency domains. The former is preferred when cal-

culating transient responses, whereas the frequency approach is an appealing choice

for calculating forced responses. Both approaches have been extensively used and

described in many classical books as, for instance [Warburton 1995].

Time descriptions are used in both the linear and the nonlinear cases, be-

ing specially e�cient when combined with modal analysis. The last allows

expressing the solution on a series of decoupled ordinary di�erential equa-

tions. Other works considered advanced space-time separated representations

[Ladeveze 1989, Ladeveze 1999, Ladevèze & Chamoin 2011], for addressing tran-

sient dynamics [Barbarulo et al. 2015, Boucinha et al. 2014, Gregori et al. 2017].

Medium frequencies were e�ciently attained within the Variational Theory of Com-

plex Rays �VTCR� proposed by P. Ladeveze and intensively and successfully used

(the interested reader can refer to [Barbarulo et al. 2015] and the numerous refer-
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ences therein). Recently, a PGD-based dynamical integrator that takes as parameter

the �eld of initial conditions�conveniently expressed in a reduced basis�has also

been developed [González et al. 2014, Cueto et al. 2016].

As discussed in [Crandall 1970, Germoso et al. 2016, Malik et al. 2018a], prob-

lems become a bit more complex in the case of parameterized dynamics, and more

concretely when those parameters depend on frequency. In this case, frequency-

based modeling seems more appropriate than its time counterpart, as soon as

the functional forms expressing the parametric dependence on frequency are com-

patible with the use of a space-frequency-parameters separated representation

[Chinesta et al. 2013b, Chinesta et al. 2014a, Aguado et al. 2014].

We revisit in this second part of the chapter, for a sake of completeness, the

case of linear dynamics and the harmonic-modal hybrid approach developed in

[Malik et al. 2018b] and we extend it for treating nonlinear parametric dynamics.

However, the fully 3D solution computed employing the in-plane-out-of-plane

separated representation and whose computational complexity remains the one

characteristic of 2D plate or shell simulations presented in [Bognet et al. 2012,

Bognet et al. 2014] and extended in Chapter 3, appears to be too intrusive to be

implemented in structural mechanics commercial software that generally propose

di�erent plate and shell �nite elements, even in the case of multilayered composites

plates or shells. For this reason in Chapter 4 we propose methods which allows

integrating 3D descriptions in plate or shell models implemented in any software,

without a�ecting its computational complexity, that remains the one related to

standard 2D analyses.

As experience indicated that many times such enriched descriptions are only

compulsory locally, in some regions or structure components, the �rst part of the

chapter is devoted to propose an enrichment procedure able to address 3D local

behaviors, preserving the direct minimally-invasive coupling with existing plate and

shell discretizations. For that purpose, two di�erent enrichment routes are consid-

ered, the �rst based on the use of the separated representation and the second on

a simple condensation. The former methodology allows for very �ne 3D enriched

descriptions while the last is particularly well adapted to address inelastic and dy-

namical behaviors.

In order to deal with problems in which enriched descriptions are compulsory

in all the domain, the second part of the chapter proposes a more general method

which allows e�cient integration of fully 3D descriptions into existing plate software.

1.2.2 Scale of the mechanical process

The second part of the thesis concerns the scale of the mechanical process. It

begins in Chapter 5 by using the model order reduction concepts developed in the

previous chapters in order to deal with the evaluation of part distortion in additive

manufacturing processes. The motivation for this work was given by the fact that

adoption of Additive Manufacturing (AM) technologies at the industrial level has
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set out several challenges for the scienti�c community, ranging from the study of

the interactions at the scale of the particle to the prediction of the mechanical state

of the �nal part [Khairallah et al. 2016, Chiumenti et al. 2017].

Additive manufacturing processes have been extensively simulated by using the

Finite Element Method (FEM). In [Labudovic et al. 2003] a model for direct laser

metal powder deposition process and rapid prototyping was developed and simu-

lated. In [Kolossov et al. 2004] and [Dong et al. 2009] 3D FEM simulations of a

thermal model of selective laser sintering were performed for evaluating the temper-

ature evolution. In [Zekovic et al. 2005] a thermo-structural �nite element analysis

of direct laser metal deposited was proposed for evaluating residual stresses in thin-

walled structures. In [Chiumenti et al. 2010] the FEM was considered for simulat-

ing shaped metal deposition processes. In [Marimuthu et al. 2013] a �nite element

analysis was carried out to compute the temperature induced in aero-engine com-

ponent by the direct laser deposition process and the corresponding distortion and

in [Li & Gu 2014] and [Loh et al. 2015] the e�ects of laser power and scan speed on

the thermal behavior were investigated. FEM was also used in many other works, as

for example in [Heigel et al. 2015] to develop a thermo-mechanical model of additive

manufacturing of Ti-6Al-4V.

Other techniques have also been considered as for instance lat-

tice Boltzmann [Körner et al. 2011] [Körner et al. 2013], �nite di�erences

[Foteinopoulos et al. 2018], �nite volumes [Chen & Zhang 2004] [Dai & Gu 2014]

or discrete models [Kovaleva et al. 2014] for the processes involving selective laser

melting of powders.

A global process modeling and its associated e�cient solution remain nowa-

days out of reach because many challenges persist, concerning the multiple physics

and scales requiring �ne and rich models, well calibrated in extreme conditions (in

space, time and process conditions). These circumstances and the extremely long

process trajectory length compromise the e�ciency of well experienced numerical

simulations tools. These di�culties can be grouped in three categories:

• Geometric complexity. The �exibility of AM technologies allows for the use of

topology optimization in the design stage. This results typically in thin parts,

very sensitive to distortions. Complex geometries also require �ner meshes

and hence, large size numerical models.

• Strong dependence on the fabrication strategy. This is mainly due to the non-

linear and coupled models involved in phase transformations and inelastic

behaviors.

• The incremental nature of the process. A part is composed of thousands of

deposited layers each of them constituted of a succession of tapes less than

1mm thick.

These di�culties justify the fact that standard approaches (e.g. �nite elements

combined with the so-called born-dead-elements technique [Ding et al. 2011]) lead to
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prohibitive simulation times. Thus, well experienced simulation technologies cannot

be used for performing parametric analysis and e�ciently exploring the parametric

design space for optimizing processes or for performing simulation-based real-time

control.

Important e�orts are being deployed in order to propose new computational

strategies. Among them, mesh adaptivity approaches [Zeng et al. 2013], perform-

ing re�ning/coarsening, are widely considered to resolve the region in which the

spot applies. However, and despite the signi�cant progresses in mesh adaptation,

remeshing entails its own di�culties and motivated in the last decade the proposal

and development of meshless methods, that solved some issues and created many

others. In any case, coarsening is limited by �eld localization as well as by the

necessity to accurately describe extremely complex geometries. However, one of

the main obstacles to an e�cient simulation of AM processes for predicting part

distortions, independently of the model richness, is related to the numerical model

itself, by the fact of assembling and solving very large systems of equations at each

time step and in a geometry that is evolving in time. Thus, reduced order mod-

eling [Chinesta & Ladeveze 2014, Chinesta et al. 2015] was envisaged as a possible

remedy for attaining faster simulations without compromising the accuracy. Sim-

pli�ed models were proposed by observing that in many cases two regions can be

di�erentiated [Aguado et al. 2017a]. The �rst, near the spot and involving the most

recent deposited layers involves rich nonlinear behaviors, however outside, plastic

deformation becomes frozen and does not evolve anymore. These regions were called

respectively process and structure regions. This partition makes possible the use of

static condensation, such that all the degrees of freedom in the structure region are

condensed on the interface between both regions. However, such a condensation

requires, even in the linear case, the inversion of a sub-matrix (the one related to

the structure region) whose size is increasing with the number of deposited layers,

and consequently with the growing of the structure region. In [Aguado et al. 2017a]

authors proposed solving the process by assuming in the structure region a linear

elastic behavior with the residual stresses installed when each point now in the

structure region was located in the process zone (during its deposition). Thus, af-

ter evaluating the residual stress everywhere in the part at the end of the process,

a �nal calculation is performed in the �nite transformation framework (assuming

that larger deformations / displacements do not alter the installed residual stresses).

However, such a calculation allows only evaluating the part distortion but not the

distortion evolution during the process.

This chapter presents a simpli�ed parametric modeling and its subsequent

parametric solution for evaluating parametrically distortions occurring in parts

manufactured by additive manufacturing. The parameters taken into consideration

are the ones parametrizing the process trajectories (which depend on several

material and process parameters), the thermal shrinkage intensity and anisotropy

(which directly depend on the process trajectory) and the deposited layers (which

describe the process progression). The proposed simulation tool allows evaluating

in real-time the impact of the parameters just referred to the part distortion,
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to proceed to the required geometry compensation and to perform optimization,

sensitivity analysis and uncertainty propagation.

While chapter 5 deals with a problem set up in a standard simulation context

(digital twin), where MOR techniques are used to speed up the simulation pro-

cess, as previously anticipated, Chapter 6 presents a completely new concept: the

hybrid twin concept. Data-driven modeling are employed to �ll the gap between

the parametric deterministic solution computed by using the non-intrusive PGD

constructor (and whose parameters are determined by assimilating data) and the

measured �elds. The data-driven model allows making accurate predictions and

control strategies can thus be applied.

This concept is �rst applied to composite parts manufactured from RTM process.

RTM is a family of related processes in composite manufacturing, in which contin-

uous �bers, used as reinforcement (porous medium), are �rst placed in the bottom

part of a mold and then a polymer matrix is injected as liquid resin into the cavity.

After curing, the part is demolded [Kendall et al. 1992]. The resin impregnation

of the preform is governed by the Darcy's law [Darcy 1856], but the permeability

tensor is usually di�cult to determine. Then during the forming process, the hybrid

twin is used to insure correct numerical prediction for control purpose and for in-

troducing the accurate forming process information in the part life cycle prediction

in order to allow the predictive maintenance.

Then we apply the hybrid twin to a dismantling process of a nuclear central

[Laraia 2012]. The hybrid twin is used in order to help an operator moving in a

room with di�erent sources of emission (working points) located in di�erent places

to choose the safest trajectory thanks to the sensors he is doted with.

Finally, the conclusion chapter summarizes the main contributions of the thesis

and discusses some possibilities for future development.
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• G. Quaranta, B. Bognet, R. Ibañez, A. Tramecon, E. Haug, F. Chinesta, A
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the solution of dynamic problems de�ned in plate-like domains, Computers and

Structures, 210, 135-144, 2018.

• G. Quaranta, E. Lopez, E. Abisset-Chavanne, J.L. Duval, A. Huerta, F.

Chinesta, Structural health monitoring by combining machine learning and

dimensionality reduction techniques, RIMNI, 35:1, 2019.

• G. Quaranta, E. Haug, J.L. Duval, F. Chinesta, Parametric evaluation of

part distortion in additive manufacturing processes, International Journal of

Material Forming, 12:1, 2019.
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rendus Mecanique, 347:5, 2019.
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(submitted).

They also generated the following conference proceedings papers:
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Introduction Structural Health Monitoring of mechanical components is of major

interest in many areas of structural mechanics. This chapter presents a new approach

based on the combination of dimensionality reduction and data-mining techniques

able to di�erentiate damaged and undamaged regions in a given structure. Indeed,

existence, severity (size) and location of damage can be e�ciently estimated from

collected data at some locations from which the �elds of interest are completed before

the analysis, based on machine learning and dimensionality reduction techniques,

proceeds.

The �rst section of the chapter addresses the data generator based on the solution

of an elastodynamic model in a plate. Then, next section applies di�erent techniques

on the generated data in order to clusterize damaged and undamaged zones. Finally

the same procedure is repeated but on the completed data obtained from data

sparsely collected.

This chapter and all the results presented in it correspond to the following paper:

• G. Quaranta, E. Lopez, E. Abisset-Chavanne, J.L. Duval, A. Huerta, F.

Chinesta, Structural health monitoring by combining machine learning and

dimensionality reduction techniques, RIMNI, 35:1, 2018.
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Figure 2.1 � The 2D model.

2.1 Elastodynamic model

The problem taken into consideration is depicted in Fig. 2.1 and it's de�ned in a

rectangular domain Ω = [0, Lx]× [0, Ly] where an area is damaged. A linear elastic

behavior is assumed in the undamaged area, so that the relation between the stress

σ and the strain ε reads

σ = C ε, (2.1)

where C is the Hooke's fourth order tensor. The relation between strain ε and

displacement u writes

ε = ∇su, (2.2)

where ∇s• = 1
2(∇ •+∇T •) is the symmetric gradient operator.

On the right boundary of the domain an horizontal traction is enforced, F (t) =

A sin(ωt). Considering an isotropic material, plane stress conditions and using the

Voigt notation, the Hooke's tensor can be written as

C =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

 (2.3)

and the relation (2.1) asσxxσyy
σxy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

εxxεyy
γxy

 . (2.4)

The material is assumed homogeneous and isotropic everywhere, with degraded

mechanical properties in the damaged region, with the Young modulus reduced by

one order of magnitude, i.e. Ef = E/10. Moreover a nonlinear behavior is pre-

scribed in the damaged area. The particular choice of this nonlinear dependency is

irrelevant, the important point being the fact that nonlinearities generate frequen-
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cies di�erent to the one(s) involved in the loading of major relevance for identifying

damage. For this reason in the sequel we consider the simplest nonlinear behavior

in the damaged zones

σ = C(ε) ε. (2.5)

The displacement �eld evolution u(x, t) for x ∈ Ω and t ∈ I = [0, T ] is described

by the linear momentum balance equation

ρü(x, t) = ∇ · σ, (2.6)

where ρ is the density.

The boundary ∂Ω is partitioned into Dirichlet, ΓD, and Neumann, ΓN , bound-

aries, where displacement and tractions are enforced respectively, as sketched in Fig.

2.1. Without loss of generality homogeneous initial conditions u(x, t = 0) = 0 and

u̇(x, t = 0) = 0 are assumed.

The problem weak form associated with the strong form (2.6) lies in looking for

the displacement �eld u verifying the initial and Dirichlet boundary conditions such

that the weak form

ρ

∫
Ω

ü · v dx +

∫
Ω
ε(v) · (C(ε) ε(u)) dx =

∫
ΓN

F(t) · v dx (2.7)

applies for any test function v, with the trial and test �elds de�ned in appropriate

functional spaces.

For discretizing the weak form, we introduce a standard explicit time-marching

method in the time interval de�ned by T and a time step ∆t, with tk+1 = (k+ 1)∆t

ρ

∫
Ω

uk+1 − 2uk + uk−1

∆t2
·v dx +

∫
Ω
ε(v) ·

(
C(εk) ε(uk)

)
dx =

∫
ΓN

Fk ·v dx, (2.8)

where the notation u(x, tk) = uk has been used.

The displacement �eld u is then computed using a FEM space discretization

with linear element over a uniform triangular mesh composed of Nx × Ny nodes

such that the damaged area contains De elements. Using (2.2), (2.4) and (2.8), we

obtain the discrete system [Fish & Belytschko 2007]

M
uk+1 − 2uk + uk−1

∆t2
+ K(uk)uk = fk, (2.9)

where M is the mass matrix, K the sti�ness matrix and f(t) the force vector.

The parameters taken into consideration in the simulations of this chapter are

de�ned in Table 2.1
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Table 2.1 � Model parameters.

Lx: Length in the x direction (m) 1
Ly: Length in the y direction (m) 1
E: Young modulus (N/m2) 2 1011

ν: Poisson coe�cient 0.25
A: Traction's amplitude 106

ω: Traction's angular frequency 2π103

ρ: Density (kg/m3) 8000
T : Time interval (s) 0.005
∆t: Time step (s) 10−6

Nx: Number of nodes in the x direction 51
Ny: Number of nodes in the y direction 51
De: Number of damaged elements 128

2.2 Damage location via Machine Learning techniques

As discussed in the introduction, the main aim of this chapter is proposing a strategy

through the combination of model order reduction based on the Principal Compo-

nent Analysis (PCA), that extracts a reduced basis from undamaged snapshots (that

will serve for projecting any measured solution on it), with data-mining techniques.

Principal Components Analysis can be viewed as an information extractor from

a data set that attempts to �nd a linear subspace of lower dimensionality than the

original space. If the data have more complicated structures which cannot be well

represented in a linear subspace, standard PCA fails for performing dimensionality

reduction. In that case its nonlinear counterparts (kernel-based PCA or local-PCA)

could be valuable alternatives for de�ning reduced bases.

When projecting into this reduced basis the measured �eld, undamaged regions

are expected being better approximated than the ones in which damage occurs.

Thus, data-mining strategies could be then used to di�erentiate both regions (un-

damaged and damaged depicted in Fig. 2.1).

For that purpose, problem (2.7) is solved with the same geometrical and me-

chanical properties de�ned in Table 2.1 but without any damaged zone.

By solving the discrete equation (2.9) we obtain the undamaged displacement

�eld u(x, t) and from it the displacement �eld norm w(x, t) at the nodes xi of the

spatial mesh at times tm = m ·∆t, with i ∈ [1, . . . , N ] and m ∈ [0, . . . ,M ]. In the

sequel we use the notation w(xi, tm) ≡ wmi , and wm represents the vector of nodal

values wmi at time tm.

Then we apply the POD (equivalent to the PCA) to identify the most typical

structure φ(x) among these wm, ∀m.

For that purpose we �rst de�ne the matrix Qud (where the subscript •ud makes
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2.2. Damage location via Machine Learning techniques

reference to its undamaged nature) from

Qud =


w1

1 w2
1 . . . wM1

w1
2 w2

2 . . . wM2
...

...
. . .

...

w1
N w2

N . . . wMN

 (2.10)

and the two point correlation matrix C

Cij =

M∑
m=1

wm(xi)w
m(xj), (2.11)

or

C =

M∑
m=1

wm · (wm)T = Qud ·QT
ud, (2.12)

and then, within the usual POD framework, solve the resulting eigenvalue problem

for obtaining the searched modes,

Cφ = αφ, (2.13)

where the i-entry of vector φ corresponds to φ(xi).

In order to obtain a reduced-order model we select the P eigenvectors associated

with the P largest eigenvalues, for example the ones greater than α110−6 (where α1

is the highest eigenvalue). In many applications, the magnitude of the eigenvalues

decreases very fast, fact that reveals that the solution wm can be approximated ∀m
from a reduced number P (P � N) of modes (eigenvectors).

In what follows we consider only the �rst two eigenvectors, because, as explained

later, our goal is not to reconstruct the undamaged displacement but only di�erenti-

ate between damaged and undamaged solutions. Our feeling is that the undamaged

displacement is better represented in the reduced basis composed of the two modes

extracted from the undamaged structure than the displacement associated with

damaged zones.

For this purpose, we �rst select the �rsts eigenmodes that are expected better

representing solutions at the undamaged than at the damaged regions. Note that the

more eigenmodes are considered the less contrasted will be solutions in undamaged

and damaged zones. In our numerical experiments we select the �rst two modes and

we de�ne matrix B = [φ1,φ2]

B =


φ1(x1) φ2(x1)

φ1(x2) φ2(x2)
...

...

φ1(xN ) φ2(xN )

 . (2.14)

Now we repeat simulations, but including the damaged zone obtaining, as before,
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the matrix of displacement norms Qd as

Qd =


w1

1 w2
1 . . . wM1

w1
2 w2

2 . . . wM2
...

...
. . .

...

w1
N w2

N . . . wMN

 . (2.15)

Now, the damaged solutions are projected onto the two-modes basis B related

to the undamaged structure, that results in

β = BT Qd, (2.16)

from which the reconstructed damaged displacement norms result from

Qrec
d = Bβ. (2.17)

The residual between the real and reconstructed damaged displacement norms

reads

R = Qd −Qrec
d . (2.18)

At this point a clustering technique is applied on the absolute value of the

residual �eld R. In this work the k-means strategy has been used. It proceeds in

three steps:

1. an initial partition is done with two populations, i.e. k = 2. Many di�erent

methods could be used to choose initial centers of mass and a comparison of

them is described in [Peña et al. 1999];

2. each point is assigned to the cluster whose center of mass is closer;

3. centers of mass are updated.

The second and third steps repeat until reaching a stable position of both centers

of mass.

In order to reduce the dimensionality before applying the clustering, PCA is

applied on the absolute value of the residual vectors.

The results of the damaged zone predicted by the proposed method for di�erent

positions of the damage are presented in Figs. 2.2 and 2.3. We can see how it detects

quite precisely the position of damaged regions. Moreover in Fig. 2.4 one can see

how even if the reduction of dimension performed by the PCA is extreme (only the

three �rst principal components are taken) the zones (damaged and undamaged)

are perfectly di�erentiated.
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Figure 2.2 � Prediction versus reference damage location for the �rst three di�erent
positions of the damaged zone.
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Figure 2.3 � Prediction versus reference damage location for the last two di�erent
positions of the damaged zone.
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Figure 2.4 � First three principal components of the absolute value of the residual
�eld for case (b) of Figure 2.2. Red points belong to the damaged zone.
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Figure 2.5 � Domain division for the dictionary learning.

2.3 Data completion

The main di�culty when considering the approach discussed above is that the dis-

placement �eld is needed in as many locations as possible (e.g. the nodes considered

in the �nite element mesh). Having access to all this local information could be-

come prohibitive in practical applications. Thus, in this section, we consider data

acquisition in few locations, from which �elds are completed before applying the

rationale previously discussed.

For this purpose a dictionary of simulations is performed, that contains the

displacements and residuals �elds everywhere for the damage located in di�erent

zones and taking di�erent sizes (both perfectly known). In what follows we consider

a subdivision of the domain like the one depicted in Fig. 2.5.

We consider 102 scenarios to create our dictionary: the �rst 48 are given by

choosing as damaged zone one of the 16 areas depicted in Fig. 2.5 and assigning to

each area 3 di�erent sizes of the damaged zone. The others 54 scenarios are given by

choosing as damaged area the 9 intersections of the previous areas (the red points

in Fig. 2.5) and assigning to each point 6 possible di�erent sizes of the damaged

zone centered on it.

Obviously the dictionary can be enriched with many other locations and sizes of

the damaged zone, but the goal in this work is to show how the dictionary learning

technique can be used to perform data completion and, for this reason, the scenarios

previously described seem su�cient.

Once the dictionary has been created we suppose that a displacement �eld related

to an unknown damaged scenario is known at few locations, that is, at the positions

where sensors are placed. In this work we suppose displacements accessible at the

nodes of a 9 × 9 uniform grid. It is important to note that coarser dictionaries

require much less sensors, whereas rich dictionaries require many measurements in

order to identify the closest scenario. In practice we could proceed with coarser

representations for online monitoring and richer representations for maintenance

operations.

The displacement norms at those locations allow de�ning matrix Q̃d, where Q̃d

comes from Qd de�ned in Eq. (2.15) by taking the rows corresponding to the sensor
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points. Then we compute the residual at the sensor points using the same rationale

that was considered in Eqs. (2.16) and (2.18), but with the di�erence that now

coe�cients β are obtained in a least-squares sense from

β = arg min
β

||B̃β − Q̃d||2, (2.19)

where B̃ has been obtained from B de�ned in Eq. (2.14) by taking the rows corre-

sponding to the sensor points. Let's note that Eq. (2.19) can be solved because the

number of sensor points is greater than the number of functions in the basis B (two

in the present analysis). Then we reconstruct the damaged displacement norm �eld

at the sensor points by computing

Q̃rec
d = B̃β. (2.20)

The residual between the reference and the reconstructed damaged displacement

norm at the sensor points reads

R̃ = Q̃d − Q̃rec
d . (2.21)

Then, we compute the gaps between R̃ and the residual �eld at the sensor points

of all the simulations in the dictionary, and we select as reference simulation the one

that minimizes the norm of this error.

The complete residual �eld related to the reference simulation is noted by Rref .

The reduced base G used for data completion is then computed performing a POD

on Rref that results in

G =


ψ1(x1) ψ2(x1) . . . ψF (x1)

ψ1(x2) ψ2(x2) . . . ψF (x2)
...

...
. . .

...

ψ1(xN ) ψ2(xN ) . . . ψF (xN )

 , (2.22)

where F is the number of functions selected to compose the reduced base used for

the completion.

In order to compute the complete residual �eld Rcom we compute �rst

γ = arg min
γ

||G̃γ − R̃||2, (2.23)

where G̃ has been obtained from G de�ned in Eq. (2.22) by taking the rows corre-

sponding to the sensor points and where F is smaller than the number of sensors.

Thus, it results

Rcom = Gγ. (2.24)

As in the previous section the k-means technique is then applied on the absolute

value of the completed residual �eld Rcom. Again, in order to reduce the dimen-
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sionality of the problem, the PCA is applied on the absolute value of the completed

residual �eld before performing clusterization.

Results on the damaged zone detection by using the proposed methodology for

the di�erent positions of the damage considered in the previous section are presented

in Figs. 2.6 and 2.7. We can notice that results are in good agreement to the ones

presented in the previous section, with a quite good identi�cation of the damaged

zone.

2.4 Conclusions

In this chapter we proposed a new e�cient technique for real-time evaluation of

damage in structures based on their dynamical response. For that purpose few

POD modes associated with the undamaged structure were used for reconstructing

the �elds of interest. As expected, as soon as damage occurs, the projection onto the

undamaged modes allows di�erentiating, by using standard clustering techniques,

damaged and undamaged regions. Moreover, to avoid data collection on the whole

structure, a procedure for collecting data at few speci�ed locations was proposed.

Then from the collected data at these points, the �elds of interest where completed

everywhere, allowing for an accurate damage location.

The numerical test performed proved the validity and potential of the proposed

approach that should be now validated experimentally.
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Figure 2.6 � Results when using data completion for the �rst three di�erent positions
of the damaged zone.
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Figure 2.7 � Results when using data completion for the last two di�erent positions
of the damaged zone.
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In many applications, as the structural health monitoring presented in the pre-

vious chapter, it is needed to compute the dynamical response of a system. This

chapter presents di�erent techniques based on Model Order Reduction methods, in

particular on the Proper Generalized Decomposition, in order to treat dynamical

problems in structural mechanics in an e�cient way.

3.1 A new hybrid explicit/implicit in-plane-out-of-plane

separated representation for the solution of dynamic

problems de�ned in plate-like domains

Introduction The �rst part of the chapter extends in-plane-out-of-plane sepa-

rated representations, successfully used for addressing fully 3D model solutions de-
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�ned in plate-like domain, to dynamics. Common time integration are performed

using explicit or implicit strategies. Even if the implementation of implicit integra-

tion schemes into a 3D in-plane-out-of-plane separated representation does not imply

major di�culties, the use of explicit integration, preferable in many applications,

becomes a tricky issue. In fact the mesh employed for discretizing the out-of-plane

dimension (thickness) determines the maximum time-step ensuring stability. In this

section we introduce a new e�cient hybrid explicit/implicit in-plane-out-of-plane

separated representation for dynamic problems de�ned in plate-like domains, that

allows computing 3D solutions with the stability constraint exclusively determined

by the coarser in-plane discretization.

Next subsection revisits the main concepts related to the separated represen-

tations. Then, next subsection de�nes the elastodynamics problem and its in-

plane-out-of-plane separated representation, the next one addresses time integra-

tion within the separated representation framework and proposes an e�cient hybrid

explicit/implicit formulation. Finally the last subsection validates the proposed

methodology from some case studies.

This �rst part of the chapter and all the results presented in it correspond to

the following paper:

• G. Quaranta, B. Bognet, R. Ibañez, A. Tramecon, E. Haug, F. Chinesta, A

new hybrid explicit/implicit in-plane-out-of-plane separated representation for

the solution of dynamic problems de�ned in plate-like domains, Computers and

Structures, 210, 135-144, 2018.

3.1.1 An overview on separated representations

Separated representations, at the heart of the so-called Proper Generalized De-

composition � PGD � [Chinesta et al. 2011, Chinesta et al. 2015, Bur et al. 2016],

consists of expressing the unknown �eld depending on many coordinates (space,

time, parameters, ...) as a �nite sum decomposition in which each term in-

volved in the sum consists, at its turn, in the product of a series of unknown

functions, each one depending on one coordinate. Thus, when addressing a tran-

sient model involving the unknown �eld u(x, t), its separated representation reads

[Ladeveze 1985, Ladeveze 1989, Ladeveze 1996]

u(x, t) ≈
N∑
i=1

Xi(x) · Ti(t), (3.1)

where neither the time-dependent functions Ti(t) nor the space functions Xi(x) are

"a priori" known. Both will be computed on-the-�ight when solving the problem.

This rationale can be extended to the solution of any problem whose solu-

tion involves d generic coordinates u(x1, · · · , xd) according to [Ammar et al. 2006,
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Ammar et al. 2007, Ammar et al. 2008]

u(x1, x2, · · · , xd) ≈
N∑
i=1

X1
i (x1) ·X2

i (x1) · · ·Xd
i (xd), (3.2)

where the set of coordinates can include a series of parameters u(x, t, p1, · · · , pp)
according to [Chinesta et al. 2013b]

u(x, t, p1, · · · , pp) ≈
N∑
i=1

Xi(x) · Ti(t) ·
p∏

k=1

P ki (pk). (3.3)

In the present section we are mainly concerned by the space separation to address

the solution of mechanical problems de�ned in degenerated domain. Sometimes the

spatial domain Ω, assumed three-dimensional, can be fully or partially separated,

and consequently it can be expressed as Ω = Ωx × Ωy × Ωz or Ω = Ωxy × Ωz

respectively. The �rst decomposition is related to hexahedral domains whereas the

second one is related to plate, beams or extruded domains. We consider below both

scenarios:

• The spatial domain Ω is partially separable. In this case the separated repre-

sentation writes:

u(x, z) ≈
N∑
i=1

Xi(x) · Zi(z), (3.4)

where x = (x, y) ∈ Ωxy and z ∈ Ωz. This decomposition implies:

1. the solution in Ωxy of two-dimensional BVP's to obtain functions Xi,

2. the solution in Ωz of one-dimensional BVP's to obtain functions Zi.

The complexity of the PGD simulation scales with the two-dimensional mesh

used to solve the BVP's in Ωxy, regardless of the mesh used in the solution of

the BVP de�ned in Ωz for calculating Zi(z).

• The spatial domain Ω is fully separable. In this case the separated represen-

tation writes:

u(x, y, z) =

N∑
i=1

Xi(x) · Yi(y) · Zi(z), (3.5)

implying:

1. the solution in Ωx of one-dimensional BVP's to obtain functions Xi,

2. the solution in Ωy of one-dimensional BVP's to obtain functions Yi,

3. the solution in Ωz of one-dimensional BVP's to obtain functions Zi.
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The cost savings provided by the PGD are potentially phenomenal when the

spatial domain is fully separable. Indeed, the complexity of the PGD simula-

tion now scales with the one-dimensional meshes used to solve the BVP's in

Ωx, Ωy and Ωz.

Even when the domain is not fully separable, a fully separated representation

could be considered by using appropriate geometrical mappings or by immersing the

non-separable domain into a fully separable one. The interested reader can refer to

[González et al. 2010, Ghnatios et al. 2016b].

In-plane-out-of-plane separated representations are particularly useful for

addressing the solution of problems de�ned in plate [Bognet et al. 2012],

shell [Bognet et al. 2014], beams [Bordeu et al. 2015] or extruded domains

[Chinesta et al. 2013a]. The same approach was extensively considered in structural

plate and shell models in [Laurent et al. 2013, Vidal et al. 2012, Vidal et al. 2013,

Vidal et al. 2014a, Vidal et al. 2014b, Vidal et al. 2015, Prulière 2014]. Space sep-

arated representations where enriched with discontinuous functions for represent-

ing cracks in [Giner et al. 2013], delamination in [Metoui et al. 2014] and ther-

mal contact resistances in [Chinesta et al. 2014b]. Domain decomposition within

the separated space representation was accomplished in [Nazeer et al. 2014]. The

in-plane-out-of-plane decomposition was then extended to many other physics.

Thermal models were considered in [Chinesta et al. 2014b] and squeeze �ows

of Newtonian and non Newtonian �uids in laminates in [Ghnatios et al. 2015,

Ghnatios et al. 2016a, Ibáñez et al. 2017].

As soon as separated representations are considered, the solution of a multi-

dimensional problem reduces to the solution of a sequence of lower dimensional

problems with the consequent computing time savings. The solution procedure

has been extensively used, described and analyzed in many former works, many of

them referred in the present work. The interested reader can refer to the primer

[Chinesta et al. 2014a] and the numerous references therein.

3.1.2 Elastodynamics: Problem de�nition

We consider a physical domain Ω for which a linear elastic behavior is assumed,

according to

σ = C ε, (3.6)

where C is the fourth order sti�ness tensor, and the strain tensor ε derives from

the symmetric component of the gradient of displacements i.e. ε = ∇su, where ∇s
refers to the symmetric component.

From now on we consider Voigt notation, and for the sake of notational simplicity

we consider the same notation, σ, ε and C for expressing the stress and strain vectors

and the sti�ness matrix respectively.
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Thus, with

ε =



εxx
εyy
εzz
γyz
γxz
γxy


(3.7)

and

σ =



σxx
σyy
σzz
σyz
σxz
σxy


, (3.8)

the sti�ness matrix becomes

C =
E

(1 + ν)(1− 2ν)



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0 (1−2ν)
2 0 0

0 0 0 0 (1−2ν)
2 0

0 0 0 0 0 (1−2ν)
2


. (3.9)

The dynamic problem, in absence of damping and external forces, with the

displacement �eld u(x, t) for x ∈ Ω and t ∈ I = [0, T ], reads

ρü(x, t) = ∇ · σ, (3.10)

with ρ the material density and ü the second time derivative of the displacement

�eld, i.e. the acceleration.

The domain boundary Γ = ∂Ω is partitioned in Dirichlet and Neumann re-

gions, ΓD and ΓN , where respectively displacements and tractions are enforced,

with ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅. Dynamic problems require specifying the

initial displacement and velocity that without loss of generality in what follows are

assumed null, i.e. u̇(x, t = 0) = 0 and u(x, t = 0) = 0.

Assuming again the trial and test displacements belonging to appropriate func-

tional spaces, and considering an elastic constitutive equation, the weak form asso-

ciated with (3.10) reads

ρ

∫
Ω

u∗ · ü dx +

∫
Ω
ε(u∗) · (C ε(u)) dx =

∫
ΓN

u∗ · F dx, (3.11)

where the applied traction depends on time, i.e. F = F(t).

33



Chapter 3. Structural dynamics by using Model Order Reduction

3.1.2.1 In-plane-out-of-plane separated representation

As discussed in the previous section, with Ω having one dimension (the one related

to the thickness) much smaller than the others involving the in-plane coordinates, an

in-plane-out-of-plane separated representation seems again the most appealing route

for addressing 3D discretizations while keeping the computational complexity the

one characteristic of 2D discretizations. The domain is expressed from Ω = Ωxy×Ωz.

Even if, as also indicated, space-time separated discretizations were considered

many times in the past [Ladeveze 1985, Ammar et al. 2007], in the present work

time derivatives are discretized using standard schemes.

By considering the notation u(x, y, z, t = k∆t) = uk(x, y, z), with ∆t the time

step, the in-plane-out-of-plane separated representation of the displacement �eld at

time tk = k∆t, uk(x, y, z), reads

uk(x, y, z) =

uk(x, y, z)vk(x, y, z)

wk(x, y, z)

 ≈ ukN (x, y, z) =

N∑
i=1

ui,kxy (x, y) · ui,kz (z)

vi,kxy (x, y) · vi,kz (z)

wi,kxy (x, y) · wi,kz (z)

 =

N∑
i=1

Ui,k
xy (x, y) ◦Ui,k

z (z) (3.12)

where “ ◦ ” refers to the Hadamard product, and with

Ui,k
xy (x, y) =

u
i,k
xy (x, y)

vi,kxy (x, y)

wi,kxy (x, y)

 =

u
i,k
xy

vi,kxy

wi,kxy

 , (3.13)

Ui,k
z (z) =

u
i,k
z (z)

vi,kz (z)

wi,kz (z)

 =

u
i,k
z

vi,kz

wi,kz

 , (3.14)

where for alleviating the notation the coordinate dependences will be omitted.

From all them we can obtain the separated vector form of the strain tensor at

time tk, ε
k ≡ ε(uk):

ε(uk) ≈
N∑
i=1



∂ui,kxy
∂x · u

i,k
z

∂vi,kxy
∂y · v

i,k
z

wi,kxy · ∂w
i,k
z
∂z

∂wi,kxy
∂y · w

i,k
z + vi,kxy · ∂v

i,k
z
∂z

∂wi,kxy
∂x · w

i,k
z + ui,kxy · ∂u

i,k
z
∂z

∂ui,kxy
∂y · u

i,k
z +

∂vi,kxy
∂x · v

i,k
z


. (3.15)

The separated representation constructor proceeds by computing a term of the

sum at each iteration. Assuming that the �rst n − 1 modes (terms of the �nite
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sum) of the solution were already computed, ukn−1(x, y, z) with n ≥ 1, the solution

enrichment reads:

ukn(x, y, z) = ukn−1(x, y, z) + Un,k
xy (x, y) ◦Un,k

z (z) (3.16)

where both vectors Un,k
xy and Un,k

z are unknown at the present iteration de�ning a

nonlinear problem. The test function u∗ reads u∗ = U∗xy ◦Un,k
z + Un,k

xy ◦U∗z.

With both Un,k
xy and Un,k

z unknown the resulting problem becomes nonlinear. We

proceed by considering the simplest linearization strategy, an alternated directions

�xed point algorithm widely considered and described in the previously mentioned

works.

When Un,k
z is assumed known, we consider the test function u? given by U?

xy ◦
Un,k
z . By introducing the trial and test functions into the weak form and then

integrating in Ωz, because all the functions depending on the thickness coordinate

are known, we obtain a 2D weak formulation de�ned in Ωxy whose discretization

(by using a standard discretization strategy, e.g. �nite elements) allows computing

Un,k
xy .

Analogously, when Un,k
xy is assumed known, the test function u? is given by

Un,k
xy ◦ U?

z. By introducing the trial and test functions into the weak form and

then integrating in Ωxy, because all the functions depending on the in-plane coor-

dinates (x, y) are at present known, we obtain a 1D weak formulation de�ned in

Ωz whose discretization (using any technique for solving standard ODE equations)

allows computing Un,k
z .

Thus, the 3D computational cost is transformed into a sequence of 2D and 1D

solutions, with the associated computing time savings [Bognet et al. 2012].

3.1.3 Time discretization

Before introducing the hybrid strategy we consider at time tk+1 the standard im-

plicit and explicit formulations (two common time integration schemas among other

possibilities [Bathe 2006]), given respectively by

ρ

∫
Ω

u∗ · u
k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω
ε(u∗) ·

(
C ε

(
uk+1 + uk−1

2

))
dx =

∫
ΓN

u∗ · F
k+1 + Fk−1

2
dx, (3.17)

that as previously indicated is unconditionally stable, and the explicit one

ρ

∫
Ω

u∗ · u
k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω
ε(u∗) ·

(
C ε(uk)

)
dx =

∫
ΓN

u∗ · Fkdx, (3.18)
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that is conditionally stable, with the stability limit ∆tmax, de�ning the stability

domain ∆t < ∆tmax, given by

∆tmax =
L

c
, (3.19)

where L is the characteristic length of the spatial discretization and the dilatational

wave speed c is given by

c =

√
E
(
1− ν

)(
1 + ν

)(
1− 2ν

)
ρ
. (3.20)

As previously commented explicit strategies are employed in many commercial

codes. However, when applied to discretize 3D problems de�ned in degenerated

domains, like plates or shells, the extremely �ne meshes considered along the thick-

ness direction have an unfavorable impact on the time step that becomes extremely

small to ensure stability. The in-plane-out-of-plane separated representation cannot

escape to this important issue, being the mesh size along the out-of-plane coordinate

(much �ner than the one used in the plane) the one that determines the time step.

It is important emphasizing the main aim of the present work and the proposed

methodology for performing it. First, it is important to note that we are interested

in performing fully 3D simulations in degenerated geometries (e.g. plate domains)

while considering explicit time integrations.

In this context the following remarks can be addressed:

• When using 2D discrete models (considering for example plate elements), the

stability criterion related to explicit time integrations involves the size of the

elements, but as the mesh is the one related to the middle plane, the critical

time step remains reasonable in most of cases;

• However, as soon as 3D discretizations are considered, the characteristic size

of the �nite elements along the plate thickness becomes much smaller than

the in-plane characteristic length, and then when considering explicit time

integrations the time step needed for ensuring stability decreases with the

through-of-thickness characteristic element length;

• Increasing the resolution in the thickness direction implies the increase of the

number of elements involved in the discretization as well as the decrease of

the time step for ensuring stability, both having unfavorable consequences on

the computational cost;

• In previous works [Bognet et al. 2012, Bognet et al. 2014] authors considered,

in the framework of elastostatics, in-plane-out-of-plane separated representa-

tions that allowed reducing the computational complexity of solving a fully

3D problem to the one characteristic of 2D solutions;

• However, as just indicated, such a decomposition when combined with explicit

time integrations fails, because again the stability is associated to the smallest

discretization characteristic length, the one related to the through-of-thickness

discretization;
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• It is in that impasse that one is tempted of using, in the case of explicit time

integration, the in-plane-out-of-plane separated representation (that reduces

the computational complexity to the one characteristic of 2D models) com-

bined with an hybrid time integration, explicit in the plane (conditionally

stable but with the critical time-step scaling with the characteristic in-plane

discretization length) and implicit along the thickness (unconditionally stable),

that allows reducing the computational complexity while keeping as stability

constraint the one associated to the in-plane explicit time integration;

• Obviously fully implicit in-plane-out-of-plane decompositions are possible,

where the implicit time integration ensures unconditional stability while the

space separated representation reduces the computational complexity. Despite

of its intrinsic interest, it is not considered in the present work, and in all cases,

the associated solutions are the same as the ones obtained by using a fully 3D

�nite element discretization but reducing the solution computational com-

plexity. As previously commented fully explicit integrations fail because the

too stringent stability conditions induced by the too �ne through-of-thickness

discretization;

• Thus, in this work we analyze the intermediate procedure, the one in which

the �ne through-of-thickness representation is alleviated thanks to the use

of the in-plane-out-of-plane space separated representation and its associated

implicit unconditionally stable time integration. Thus, the stability of the

resulting discretization is expected being induced by the in-plane mesh in

which an explicit time integration is retained. The present work is intended

analyzing this hybrid methodology and proving that in the case of fully explicit

separated representations (as in the case of fully explicit 3D �nite elements)

the stability is dictated by the smallest characteristic discretization length

(the one along the domain thickness). On the contrary when considering the

hybrid scheme described in the next subsection, we expect the stability being

dictated by the characteristic in-plane discretization length (being the trough-

of-thinness discretization implicit).

In summary, the main goal is enriching explicit 2D plate and shell formulations

widely employed in industry and commercial codes, with a �ne through-of-thickness

description (3D) without a�ecting unfavorably the integration stability.

3.1.3.1 Explicit-in-plane / implicit-out-of-plane hybrid scheme

As just indicated, in order to circumvent the just referred stability issues, we propose

an out-of-plane implicit discretization (unconditionally stable) while the in-plane

discretization (implying coarser meshes) makes use of an explicit schema. Thus, the

stability is prescribed by the in-plane size mesh, several order of magnitude higher

than the one associated to the thickness.
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For that purpose we propose considering at time tk the strain de�ned by

εh(uk) =



uk,x
vk,y

wk+1
,z +wk−1

,z

2
vk+1
,z +vk−1

,z

2 + wk,y
uk+1
,z +uk−1

,z

2 + wk,x
uk,y + vk,x


≈



∑Nk
i=1 u

i,k
xy,x · ui,kz∑Nk

i=1 v
i,k
xy,y · vi,kz∑Nk+1

i=1 wi,k+1
xy ·wi,k+1

z,z +
∑Nk−1
i=1 wi,k−1

xy ·wi,k−1
z,z

2∑Nk+1
i=1 vi,k+1

xy ·vi,k+1
z,z +

∑Nk−1
i=1 vi,k−1

xy ·vi,k−1
z,z

2 +
∑Nk

i=1w
i,k
xy,y · wi,kz∑Nk+1

i=1 ui,k+1
xy ·ui,k+1

z,z +
∑Nk−1
i=1 ui,k−1

xy ·ui,k−1
z,z

2 +
∑Nk

i=1w
i,k
xy,x · wi,kz∑Nk

i=1 u
i,k
xy,y · ui,kz +

∑Nk
i=1 v

i,k
xy,x · vi,kz


(3.21)

where for the sake of notational simplicity the derivatives of function u• with respect

the coordinate x is noted by u•,x (and similarly for the other functions involved

in the displacement components with respect to any coordinate). Moreover, the

superscript •h refers to its hybrid nature and Nk+1, Nk, Nk−1 are the number of

products involved in the separated representation of the displacement at times steps

k + 1, k and k − 1 respectively.

It can be noticed that the derivatives involving the out-of-plane (thickness) co-

ordinate are treated using an implicit schema whereas an explicit one is retained for

the in-plane derivatives. Thus, the hybrid schema is some place in between standard

implicit and explicit techniques, taking pro�t of the advantages of both them.

When using the hybrid schema the weak form at time tk+1, consists of �nding

uk+1, verifying∫
Ω
ρu∗ · u

k+1 − 2uk + uk−1

∆t2
dx +

∫
Ω
ε(u∗) ·

(
C εh(u)

)
dx =

∫
ΓN

u∗ ·Fk dx. (3.22)

To construct the separated representation of the solution at time tk+1 we consider

the standard procedure, assuming that n−1 terms have been already computed and

that at the present iteration looks for the term n, according to

uk+1
n−1(x, y, z) =

uk+1
n−1(x, y, z)

vk+1
n−1(x, y, z)

wk+1
n−1(x, y, z)

 =

n−1∑
i=1

Ui,k+1
xy (x, y) ◦Ui,k+1

z (z), (3.23)

with

uk+1
n (x, y, z) = uk+1

n−1(x, y, z) + Pk+1(x, y) ◦Tk+1(z). (3.24)

where for the sake of notational simplicity the unknown �elds Un,k+1
xy and Un,k+1

z
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are referred by Pk+1(x, y) and Tk+1(z), with components

Pk+1(x, y) =

pk+1
u (x, y)

pk+1
v (x, y)

pk+1
w (x, y)

 , (3.25)

and

Tk+1(z) =

tk+1
u (z)

tk+1
v (z)

tk+1
w (z)

 . (3.26)

The linearity allows writing

εhn(x, y, z) = εhn−1(x, y, z) + εhPT (x, y, z) (3.27)

where

εhn−1(x, y, z) =



uk,x
vk,y

wk+1
n−1,z+wk−1

,z

2
vk+1
n−1,z+vk−1

,z

2 + wk,y
uk+1
n−1,z+uk−1

,z

2 + wk,x
uk,y + vk,x


=



∑Nk
i=1 u

i,k
xy,x · ui,kz∑Nk

i=1 v
i,k
xy,y · vi,kz∑n−1

i=1 w
i,k+1
xy ·wi,k+1

z,z +
∑Nk−1
i=1 wi,k−1

xy ·wi,k−1
z,z

2∑n−1
i=1 v

i,k+1
xy ·vi,k+1

z,z +
∑Nk−1
i=1 vi,k−1

xy ·vi,k−1
z,z

2 +
∑Nk

i=1w
i,k
xy,y · wi,kz∑n−1

i=1 u
i,k+1
xy ·ui,k+1

z,z +
∑Nk−1
i=1 ui,k−1

xy ·ui,k−1
z,z

2 +
∑Nk

i=1w
i,k
xy,x · wi,kz∑Nk

i=1 u
i,k
xy,y · ui,kz +

∑Nk
i=1 v

i,k
xy,x · vi,kz


, (3.28)

and

εhPT (x, y, z) =



0

0
pk+1
w ·tk+1

w,z

2
pk+1
v ·tk+1

v,z

2
pk+1
u ·tk+1

u,z

2

0


.

The test displacement reads

u∗(x, y, z) =

p∗u(x, y) · tk+1
u (z) + pk+1

u (x, y) · t∗u(z)

p∗v(x, y) · tk+1
v (z) + pk+1

v (x, y) · t∗v(z)
p∗w(x, y) · tk+1

w (z) + pk+1
w (x, y) · t∗w(z)

 =

P∗ ◦Tk+1 + Pk+1 ◦T∗, (3.29)
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and the associated strain

ε(u∗(x, y, z)) =



p∗u,x · tk+1
u + pk+1

u,x · t∗u
p∗v,y · tk+1

v + pk+1
v,y · t∗v

p∗w · tk+1
w,z + pk+1

w · t∗w,z
p∗w,y · tk+1

w + pk+1
w,y · t∗w + p∗v · tk+1

v,z + pk+1
v · t∗v,z

p∗w,x · tk+1
w + pk+1

w,x · t∗w + p∗u · tk+1
u,z + pk+1

u · t∗u,z
p∗v,x · tk+1

v + pk+1
v,x · t∗v + p∗u,y · tk+1

u + pk+1
u,y · t∗u


. (3.30)

For the sake of simplicity, and without loss of generality, we assume that the

applied traction F on ΓN , can be expressed from the single term separated repre-

sentation, i.e.

Fk(x, y, z) = Fk
x,y(x, y) ◦ Fk

z(z). (3.31)

Using the previous expressions, Eq. (3.22) reads∫
Ω
ρu∗ · P

k+1 ◦Tk+1

∆t2
dx +

∫
Ω
ε(u∗) ·

(
C εhPT

)
dx =

−
∫

Ω
ρu∗ ·

uk+1
n−1 − 2uk + uk−1

∆t2
dx−

∫
Ω
ε(u∗) ·

(
C εhn−1

)
dx+

∫
ΓN

u∗ ·Fk dx. (3.32)

As both Pk+1 and Tk+1 are unknown, problem (3.32) becomes nonlinear and

consequently requires an appropriate linearization strategy. An alternated directions

�xed point strategy is considered that by assuming Tk+1 known calculates Pk+1 and

from the last updates Tk+1. The process continues until reaching convergence (the

�xed point).

When assuming Tk+1 known the test displacement reads

u∗(x, y, z) =

p∗u(x, y) · tk+1
u (z)

p∗v(x, y) · tk+1
v (z)

p∗w(x, y) · tk+1
w (z)

 = P∗ ◦Tk+1, (3.33)

that introduced into the weak form (3.32) results in a 2D problem involving the

in-plane coordinates that allows calculating Pk+1. Now, assuming that last known,

the test displacement becomes

u∗(x, y, z) =

pk+1
u (x, y) · t∗u(z)

pk+1
v (x, y) · t∗v(z)
pk+1
w (x, y) · t∗w(z)

 = Pk+1 ◦T∗, (3.34)

that introduced at its turn into the weak form (3.32) results in a 1D problem in-

volving the thickness, whose solution results in Tk+1. As previously indicated the
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Figure 3.1 � Problem geometry.

iteration procedure continues until reaching the convergence characterized by(∫
Ω

(
Pk+1
p ◦Tk+1

p −Pk+1
p−1 ◦Tk+1

p−1

)2
dx
)1/2

(∫
Ω

(
Pk+1
p ◦Tk+1

p

)2
dx
)1/2

< ε, (3.35)

where p refers to the �xed point iteration and ε is a small enough threshold value.

Similarly the enrichment procedure stops when the criterion(∫
Ω

(
U
Nk+1,k+1
xy ◦U

Nk+1,k+1
z

)2
dx
)1/2

(∫
Ω

(
U1,k+1
xy ◦U1,k+1

z

)2
dx
)1/2

< ε̃, (3.36)

is ful�lled, with ε̃ another small enough threshold value.

3.1.4 Numerical validation

3.1.4.1 Dynamics of an homogeneous plate

We consider the problem de�ned in the domain Ω depicted in Fig. 3.1, with Hx =

Hy = 3m and Hz = 0.1m. In the �rst case study, the material occupying Ω is

assumed homogeneous.

Boundary conditions are given by: u =
(
0, 0, 0

)
on the face ADHE; u =(

free, 0, free
)
on the faces ABFE and DCGH; F(t) =

(
0, 0, A sin(ωt)

)
on face

BCGF, with A = 108, ω = 20π as depicted in Fig. 3.2.

The material properties are de�ned in Table 3.1, where E is the Young modulus,

ν the Poisson coe�cient and ρ the material density.

Figs. 3.3 and 3.4 compare the stability of standard explicit Q8-3D �nite ele-

ments (fully explicit separated representations with equivalent discretizations lead

to the same results) and the hybrid scheme just proposed, for di�erent values of the
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Table 3.1 � Material properties.

E (N/m2): 2 1011

ν: 0.25
ρ (kg/m3): 8000
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Figure 3.2 � Loading.

in-plane and out-of-plane mesh sizes, Lxy and Lz respectively. As it can noticed

computed results re�ect the stability conditions given by Eqs. (3.19) and (3.20).

It is important to note that when considering fully explicit schemes, the stabil-

ity is found being prescribed by the mesh size related to the thickness direction,

however, when considering the hybrid schema the stability becomes given by the

in-plane characteristic mesh size that, being much larger than the one related to the

thickness, makes integration more e�cient.

To validate the hybrid approach (only in what concerns accuracy and sta-

bility, because issues related to computing time savings were addressed in

[Bognet et al. 2012]), the computed solution is compared with both explicit and

implicit 3D �nite elements integration with a time step (in the explicit case) guaran-

teeing the integration stability. The simulation parameters are the ones introduced

previously concerning the material properties, and the ones concerning the remain-

ing simulation parameters are indicated in Table 3.2, where Nx, Ny and Nz refer to

the number of elements involved in the discretization of directions x, y and z.

Fig. 3.5 depicts the time evolution of the vertical displacement w at the central

point on segment FG when using di�erent integration schemes. The solution ob-

tained by using the hybrid strategy agrees in minute with the one obtained by using

the �nite element method and considered as reference for comparison purposes.
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Figure 3.3 � Stability analysis for a given in-plane characteristic mesh size Lxy.

Figure 3.4 � Stability analysis for a given out-of-plane characteristic mesh size Lz.

Table 3.2 � Simulation parameters.

Hx: 3m
Hy: 3m
Hz: 0.1m
Nx: 10
Ny: 2
Nz: 10
∆t: 10−6 s
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(s)

(m
)

Figure 3.5 � Vertical displacement at the central point of segment FG.

3.1.4.2 Considering richer out-of-plane approximations

In order to check the stability of the proposed technique for addressing richer out-

of-plane representations, we consider that the domain depicted in Fig. 3.1 consists

now in a laminated composed of 8 anisotropic plies [0, 45,−45, 90]S . The applied

force now writes again F(t) =
(
0, 0, A sin(ωt)

)
and applies on the face BCGF, with

A = 108 but now with ω = 200π, as depicted in Fig. 3.6.

The mechanical properties of the 0◦-ply are given in Table 3.3, where E is the

Young modulus, ν the Poisson coe�cient, G the shear modulus and ρ the density.

The subscripts indicate respectively the proprieties along the longitudinal direction

of the �bers (1), the in-plane transverse direction (2) and the out-of-plane direction

(3).

In the present case the elastic constitutive equation becomes orthotropic and

using again Voigt notation it reads

εxx
εyy
εzz
γyz
γxz
γxy


=



1

E1

−
ν12

E1

−
ν13

E1

0 0 0

−
ν12

E1

1

E2

−
ν23

E2

0 0 0

−
ν13

E1

−
ν23

E2

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G12





σxx
σyy
σzz
σyz
σxz
σxy


. (3.37)

We compared the solution obtained using the hybrid strategy with the one ob-

tained using implicit �nite elements. An explicit �nite element solution was not

envisaged because the too small time step induced by the extremely �ne through-

the-thickness mesh. The simulation parameters are reported in Tables 3.3 and 3.4.

Fig. 3.7 compares the time evolution of the vertical displacement at the middle
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Figure 3.6 � Loading applying in the composite laminate.

Table 3.3 � Mechanical properties of the 0◦-ply.

E1 (N/mm2): 120 · 103

E2 (N/mm2): 8.9 · 103

E3 (N/mm2): 8.9 · 103

ν12: 0.35
ν13: 0.35
ν23: 0.32
ν21: ν12

ν31: ν13

ν32: ν23

G12 (N/mm2): 4.5 · 103

G13 (N/mm2): 4.5 · 103

G23 (N/mm2): 5.3 · 103

ρ (kg/m3): 1750

Table 3.4 � Simulation parameters.

Hx: 250mm
Hy: 100mm
Hz: 4mm
Nx: 10
Ny: 2
Nz: 48 (6 elements per ply)
∆t: 10−6 s
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(s)

(m
)

Figure 3.7 � Vertical displacement at the middle of segment FG.

of segment FG. It can be noticed again that the hybrid strategy provides an excellent

solution compared with the implicit �nite element considered as reference.

Finally Fig. 3.8 compares the time evolution of the stress component σzz at the

same location calculated (middle of segment FG) using the �nite element method

and the implicit/explicit hybrid in-plane-out-of-plane decomposition. Again both

solutions match perfectly.

3.1.5 Analysis of computational performances

In order to investigate the performances of the proposed technique we perform in

this subsection di�erent analyses. Before, we would like advertising on two facts.

First, all computing times are referred to a Matlab implementation on a standard

laptop. Thus, computed results allow comparing approaches but not to conclude on

absolute performances. Second, for the sake of generality the problem linearity is

not taken into account in the sense that at each time step a linear system is solved

without taking advantage of the numerous computational pro�ts that linearity o�ers

in the �nite element framework. This conservative approach allows extending the

main conclusions to the nonlinear case.

We consider again the problem de�ned in the domain Ω depicted in Fig. 3.1,

with Hx = Hy = 3m, Hz = 0.1m and with the material properties de�ned in Table

3.1, considering the same boundary conditions than in Subsection 3.1.4.1 and the

same loading, the last illustrated in Fig. 3.2. In the analyses here addressed, the

PGD constructor stopping criterion is set to ε = ε̃ = 10−6.

First, we compare the hybrid PGD method with its fully implicit counterpart.

The three di�erent meshes de�ned in Table 3.5 are considered, where again Nx, Ny

and Nz refer to the number of elements involved in the discretization of directions

x, y and z respectively. For each mesh we compare the computing time employed by
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Figure 3.8 � Stress component σzz(t) at the central point of segment FG. Implicit
and hybrid-based solutions are almost superimposed.

Table 3.5 �Meshes considered in the analysis of computational performances depicted
in Fig. 3.9.

Mesh 1 Mesh 2 Mesh 3

Nx: 10 20 30
Ny: 10 20 30
Nz: 100 100 100

both the hybrid and the fully implicit PGD discretizations to solve the problem in

the time interval [0, 400∆t], with the time-step ∆t = 10−5

3 s for all the simulations.

Results presented in Fig. 3.9 prove that, as expected, when using the same time-

step the hybrid method proceeds faster than the implicit one. Later, in order to

take advantage of the superior stability of fully implicit discretizations, time steps

will be selected di�erently for ensuring an equivalent accuracy, in order to compare

computing costs in a more appropriate manner.

Now, we perform a comparison between the three PGD formulations (explicit,

hybrid and implicit) in the time interval [0, 400∆t], with ∆t = 10−7 s to ensure

the stability of the explicit time integration. Results for the three meshes in Table

3.6 are presented in Fig. 3.10. As expected the computational cost of the hybrid

formulation is in between the one of explicit and implicit time integrations.

We have already proved in Figs. 3.3 and 3.4 that the stability domain of the

47



Chapter 3. Structural dynamics by using Model Order Reduction
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Figure 3.9 � Hybrid versus implicit PGD formulations.

Table 3.6 �Meshes considered in the analysis of computational performances depicted
in 3.10.

Mesh 4 Mesh 5 Mesh 6

Nx: 10 20 30
Ny: 10 20 30
Nz: 50 50 50

Mesh 4 Mesh 5 Mesh 6
0
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Implicit PGD

Figure 3.10 � Comparing explicit, hybrid and implicit PGD formulations.
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Figure 3.11 � Hybrid versus explicit PGD formulations.

hybrid formulation does not depend on the mesh size associated with the thickness

direction, so that the hybrid simulation proceeds faster than the one performed using

a fully explicit formulation by using a larger time step in the hybrid integration.

In order to prove it, we perform a simulation using `Mesh 2" in Table 3.5, in

the time interval [0, 4]ms. We use as time steps for the explicit and the hybrid

methods respectively ∆tex = 10−7 s and ∆thy = 10−5 s, ensuring the stability of

both schemes. Results shown in Fig. 3.11 reveal as expected that the higher time

step considered in the hybrid integration induces signi�cant computing time savings.

The last analysis aims at taking advantage of the superior stability performances

of the implicit formulation, that a priori can use larger time-steps than the ones

of explicit and hybrid formulations that are only conditionally stables. However,

here not only stability issues are addressed but also the accuracy of the computed

solutions.

Thus, in the present numerical analysis we consider the mesh de�ned Table 3.7

and the time interval [0, T ] with T = 6ms, and consider as reference solution the

one computed using an explicit FEM scheme with a very �ne time-step ∆t = 10−7 s,

ensuring both stability and accuracy, both performances having been checked. Fig.

3.12 compares the computational cost related to FEM and PGD explicit time inte-

grations. As expected the separated representation involved in the PGD formulation

allows better performances.

Then the problem is solved using �rst the hybrid scheme with a time step ∆t =

2 · 10−5 s that ensures its stability and implicit (PGD and FEM) time integrations

using higher time steps. For each solution we consider the computational cost as

well as the error E with respect to the reference solution, computed from

E =

(∫ T
0

∫
Ω (u− uref )2 dxd t

) 1
2(∫ T

0

∫
Ω u2

refdxd t
) 1

2

. (3.38)

Table 3.8 compares the di�erent solutions, proving that: (i) implicit PGD and
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Table 3.7 � Mesh used in the results described in Fig. 3.12 and Table 3.8.

Mesh 7

Nx: 10
Ny: 10
Nz: 90

Mesh 7
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5
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tim
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)

104

Explicit PGD
Explicit FEM

Figure 3.12 � Explicit PGD versus explicit FEM.

FEM integrations lead to almost the same solutions, being the ones related to PGD

less computationally expensive; and (ii) implicit simulations related to the same

computational cost than hybrid simulation produce larger errors, for the analyzed

case.

3.1.6 Conclusions

This �rst part of the chapter proposed a new time discretization scheme for solving

3D dynamical problems de�ned in degenerated domains, that is, domains in which

one of its characteristic dimensions is much smaller than the other ones, as it is the

case when considering plates or shells.

A �rst complexity reduction is attained by considering an in-plane-out-of-plane

separated representation that allows reducing the original 3D complexity to the one

characteristic of 2D plate or shells models, even if the computed solution is fully 3D

and any hypothesis is introduced. Such separated representation allows the use of

extremely �ne descriptions along the thickness direction.

However, such decomposition when combined with explicit time integrations has

a major handicap, the too small size of the discretization involved in the thickness

direction implies an extremely small time step for ensuring stability. In this work we

circumvent such a drawback by using an implicit (unconditionally stable) through-

the-thickness discretization whereas a standard explicit scheme is considered for

treating the in-plane operators. Thus, the stability is dictated by the in-plane mesh
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Table 3.8 � Hybrid and implicit PGD integrations versus a standard implicit �nite
element formulation (using di�erent time-steps).

Time Error

∆t = 2 · 10−5 s Hybrid PGD: 65 s 8.3 · 10−3

Implicit PGD: 203 s 8.4 · 10−3

Implicit FEM: 746 s 8.4 · 10−3

∆t = 4 · 10−5 s Implicit PGD: 185 s 1.66 · 10−2

Implicit FEM: 363 s 1.66 · 10−2

∆t = 6 · 10−5 s Implicit PGD: 145 s 2.47 · 10−2

Implicit FEM: 236 s 2.47 · 10−2

∆t = 8 · 10−5 s Implicit PGD: 88 s 3.27 · 10−2

Implicit FEM: 174 s 3.27 · 10−2

∆t = 10−4 s Implicit PGD: 63 s 4.05 · 10−2

Implicit FEM: 146 s 4.05 · 10−2

size, much coarser than the one employed in the thickness direction. It is important

to note that, even if a part of the whole scheme remains implicit, it only a�ects one

dimension and then its solution is extremely fast and cheap.

The inclusion of progressive damage models combined with dynamical e�ects

constitutes a work in progress, where the separated representations seems an ap-

pealing option to better represent damage e�ects along the laminate thickness and

where explicit time integrations are usually employed in industrial applications.

3.2 From linear to nonlinear PGD-based parametric

structural dynamics

Introduction The second part of the chapter analyzes di�erent integration

schemes of solid dynamics in the frequency domain involving the Proper Gener-

alized Decomposition �PGD�. The last framework assumes for the solution a para-

metric dependency with respect to frequency. This procedure allowed introducing

other parametric dependences related to loading, geometry and material properties.

However, in these cases a�ne decompositions are required for an e�cient compu-

tation of separated representations. A possibility for circumventing such di�culty

consists in combining modal and harmonic analysis for de�ning an hybrid integra-

tion scheme. Moreover, such a procedure, as proved in the present work, can be

easily generalized to address nonlinear parametric dynamics.

We revisit in next subsection, for a sake of completeness, the case of linear dy-

namics and the harmonic-modal hybrid approach developed in [Malik et al. 2018b].

This second part of the chapter and all the results presented in it correspond to
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the following paper:

• G. Quaranta, C. Argerich Martin, R. Ibañez, J.L. Duval, E. Cueto, F.

Chinesta, From linear to nonlinear parametric structural dynamics, Comptes

rendus Mecanique, 347:5, 2019.

3.2.1 Classical linear dynamics in the time and frequency domains

The general, semi-discretized form of the linear solid dynamics equations, writes

M
d2U(t)

dt2
+ C

dU(t)

dt
+ KU(t) = F(t), (3.39)

where M, C and K are respectively the mass, damping and sti�ness matrices. Mass

and sti�ness matrices are usually positive de�nite. U represents the vector that

contains the nodal displacements and F the nodal excitations (forces). The problem

boundary conditions were incorporated when the space discretization leading to Eq.

(3.39) was performed. This equation can be obtained through any suitable mesh-

based discretization technique like, for instance, the Finite Element Method, and

can be solved as soon as the displacements and velocities are speci�ed at the initial

time.

By moving to the frequency-domain through the Fourier transform F(•)�
denoting F̂(ω) = F(F(t)) and Û(ω) = F(U(t))�, it results(

−ω2M + iωC + K
)
Û(ω) = F̂(ω). (3.40)

If damping vanishes, i.e., C = 0 (if it is not the case, it is usually assumed to be

proportional, C = a0M + a1K), and one focuses on the free response of the system,

F̂(ω) = 0, Eq. (3.40) reduces to:

KÛ = ω2MÛ. (3.41)

This de�nes an eigenproblem whose result is given by the eigenmodes Pi and the

associated eigenfrequencies ω2
i . The inverse transform allows coming back to the

time domain, U(t) = F−1(Û(ω)).

3.2.2 The hybrid harmonic-modal approach

When damping is neglected C = 0 (or when proportional damping is considered

C = a0M + a1K) the single-parameter (frequency) dynamic equation reads(
−ω2M + K

)
Û(ω) = F̂(ω). (3.42)

We now consider matrix P diagonalizing matrices M and K. In other words,{
PTMP = M
PTKP = K ,
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where Mij = miiδij and Kij = kiiδij . Here, δij represents the Kroenecker's delta,

i.e., M and K become diagonal with entries mii and kii, respectively.

Such a choice implies that the system is no longer described in terms of its nodal

degrees of freedom but rather in terms of the modal content. Both are formally

related through the linear transformation

Û(ω) = Pξ(ω). (3.43)

Thus, the dynamical problem reduces to [Malik et al. 2018b](
−ω2M + K

)
ξ(ω) = PT F̂(ω) = f̂(ω), (3.44)

that results in a system of Nn decoupled algebraic equations (Nn being the size of

matrices M and K)(
−ω2mii + kii

)
ξi(ω) = f̂i(ω), i = 1, 2, . . . , Nn, (3.45)

from which it results

ξi(ω) =
f̂i(ω)

(−ω2mii + kii)
, i = 1, 2, . . . , Nn, (3.46)

that allows calculating the nodal amplitudes from Eq. (3.43), i.e. Û(ω) = Pξ(ω).

Thus, the space-frequency separated representation reads

Û(ω) =

Nn∑
i=1

Ziξi(ω), (3.47)

where Zi is the i-column of matrix P.

The obtention of Û(ω) allows us to come back to the time domain U(t) by

applying an inverse Fourier transform,

U(t) = F−1(Û(ω)).

Remark. As it is usual when using harmonic analysis, the forced time response

can be recovered at any time, except during the transient regime.

It is important to highlight�this will be crucial later when addressing nonlinear

dynamics�that each term ξi(ω) involves transformed nodal forces, that is, nodal

forces a�ected by the transformation matrix P. Thus, Eq. (3.47) represents a

canonical space-frequency-loading separated representation, that only makes use of

a proportional damping assumption.
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3.2.3 Nonlinear dynamics

In the nonlinear case, the general semi-discretized equilibrium equation writes

M
d2U(t)

dt2
+ C

dU(t)

dt
+ KU(t)−H(U) = F(t),

where the nonlinear contribution is grouped in the vector H(U) and again a pro-

portional damping is assumed.

The simplest linearization of this equation consists in an explicit evaluation of

the nonlinear term H(U) at the last converged iteration. For the sake of notational

simplicity it will be denoted by U−(t). Thus, as soon as the nonlinear contribution

is assumed known, it can be moved to the right hand member, i.e.,

M
d2U(t)

dt2
+ C

dU(t)

dt
+ KU(t) = H(U−(t)) + F(t). (3.48)

An obvious possibility consists in computing the Fourier transform of the right-

hand member of Eq. (3.48),

F̂(ω) = F(H(U−(t)) + F(t)),

and then to proceed exactly in the same way as in the linear case. However, in order

to take bene�t of model order reduction, in what follows we present an alternative

but equivalent formulation, more adapted to the use of reduced bases.

By invoking the linearity of Fourier transform, we write

F̂(ω) = F
(
H(U−(t)) + F(t)

)
= F

(
H(U−(t))

)
+ F (F(t)) = F̂H(ω) + F̂F(ω),

that could be expressed using a piecewise linear approximation basis Nl(ω) (like the

usually considered one in linear �nite element analyses)

F̂H(ω) =
L∑
l=1

F̂H(ωl)Nl(ω),

or

f̂H(ω) = PT F̂H(ω).

In turn,

F̂F(ω) =

L∑
l=1

F̂F(ωl)Nl(ω),

or

f̂F(ω) = PT F̂F(ω),

each one contributing to the solution ξ(ω) according to

ξ(ω) = ξH(ω) + ξF(ω), (3.49)
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with

ξHi (ω) =

L∑
l=1

f̂Hi (ωl)Nl(ω)

(−ω2mii + kii)
, i = 1, 2, · · · , Nn, (3.50)

ξFi (ω) =

L∑
l=1

f̂Fi (ωl)Nl(ω)

(−ω2mii + kii)
, i = 1, 2, · · · , Nn. (3.51)

Thus, it �nally results

Û(ω) = Pξ(ω) = ÛH(ω) + ÛF (ω) = PξH(ω) + PξF (ω),

being its time-dependent counterpart

U(t) = UH(t) + UF(t) = F−1(PξH(ω)) + F−1(PξF(ω)).

It is important to highlight that the inverse transform involves terms Til, i =

1, . . . , Nn and l = 1, . . . , L, whose form reads

Til ≡ F−1

(
Nl(ω)

−ω2mii + kii

)
,

that can be computed o�ine and stored in memory.

Our numerical experiments reveal that this o�ine-online procedure does not

allow for signi�cant computing time savings when one considers a standard piece-

wise linear approximation bases. However, by considering reduced bases to ap-

proximate functions F̂H(ω) and F̂F(ω), the number of integrals to be performed

drastically reduces and the o�ine-online becomes valuable. These reduced ba-

sis are computed o�ine after an adequate training stage. Moreover, the com-

putational cost for the evaluation of the nonlinear term in the time domain,

H(U−(t)), can be drastically reduced by using empirical interpolation techniques

[Barrault et al. 2004, Chaturantabut & C. Sorensen 2010, Aguado et al. 2017b].

As soon as reduced bases are available in the frequency domain, their counterpart

in the time domain is easily computable, and from it, direct Fourier transform could

be also computed o�ine. The use of strategies based on the use of reduced bases

constitutes a work in progress.

3.2.4 Numerical results

In this section we use the proposed strategy to address 1D and 2D dynamics. The 1D

problem consists in a rod of length L, cross section A, clamped at its left boundary

and subjected to an axial load applied on its right boundary as depicted in Fig. 3.13,

subjected to homogeneous displacement and velocity initial conditions.

If a linear elastic behavior is assumed, the relation between the stress σ and the

strain ε reads

σ = E ε,
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Figure 3.13 � Simple 1D case study.

where E is the Young modulus. In the simulations we used L = 1m, E =

2 1011N/m2 and ρ = 8000kg/m3, where ρ is the density. When damping vanishes or

when proportional damping is assumed, the mechanical response is computed from

the discrete system

M
d2U(t)

dt2
+ KU(t) = F(t), (3.52)

whose expression in the frequency domain is given by Eq. (3.42). However when a

nonlinear elastic behavior is assumed, the stress-strain relation reads

σ = C(ε),

where C is a non-linear function of ε. In the numerical test here addressed it is

assumed that

σ = E (ε+ c ε3), (3.53)

where c can be considered as a parameter (obviously, when c = 0 the nonlinear case

reduces to the linear case).

Recalling the linearization described in Subsection 3.2.3, the mechanical response

is computed from the discrete system

M
d2U(t)

dt2
+ C

dU(t)

dt
+ KU(t) = cH(t) + F(t), (3.54)

where H(t) accounts for the nonlinear contribution.

Thus, using the notation introduced in the previous section, the frequency and

time domain solutions read

Û(ω; c) = ÛF(ω) + cÛH(ω), (3.55)

that can be seen as a parametric solution involving both the frequency ω and the

parameter c controlling the nonlinearity, with its time counterpart expressed from

U(t, c) = F−1(ÛF(ω)) + cF−1(ÛH(ω)). (3.56)

Both formulations, the one de�ned in the time domain and the harmonic-modal

hybrid formulations are solved in the time interval I = [0, T ] with T = 4s, the

�rst by using a standard Newmark time-stepping (with time step ∆t = 10−2s)
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Figure 3.14 � Displacement at the rod right border for two di�erent values of c: (top)
c = 0, that corresponds to the linear case and (bottom) c = 220.

[Newmark 1959].

Fig. 3.14 compares both solutions for two di�erent values of the parameter c: c =

0 that corresponds to the linear case and for c = 220 for the simple harmonic loading

F (t) = 1010 sin(2πt). The computed results agree perfectly, but when using the

hybrid solver signi�cant computing time savings are noticed. These are summarized

in Tables 3.9 and 3.10. Moreover, Table 3.9 also re�ects the fact that the computing

time saving remains almost independent of the considered mesh size.

We also consider a more complex loading scenario, as depicted in Fig. 3.15.

It contains a richer frequency spectrum, with c = 0 and c = 4000. The solutions

when using the Newmark (∆t = 10−3 s) versus the harmonic-modal hybrid schemes

are again in perfect agreement, as Fig. 3.16 reveals, with similar computing time

savings, reported in Tables 3.11 and 3.12.

Finally we consider the 2D dynamics of a plate Ω = [0, Lx]× [0, Ly], clamped at

its left boundary and subjected to an horizontal load applied on its right boundary

as depicted in Fig. 3.17, subjected to homogeneous displacement and velocity initial

conditions. When a linear elastic behavior is assumed the relation between the stress
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Table 3.9 � Hybrid vs Newmark methods, T = 4 s.

Hybrid Newmark

Nn = 100 1.34 s 5.97 s
Nn = 250 3.26 s 14.29 s
Nn = 500 7.19 s 39.08 s
Nn = 750 11.70 s 68.12 s
Nn = 1000 16.33 s 100.75 s

Table 3.10 � Hybrid vs Newmark method, Nn = 100.

Hybrid Newmark

T = 4 s: 1.34 s 5.97 s
T = 8 s: 2.44 s 12.20 s
T = 20 s: 6.32 s 29.75 s
T = 40 s: 13.54 s 59.30 s
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Figure 3.15 � Loading containing a richer frequency spectrum.

Table 3.11 � Hybrid vs Newmark method, T = 4 s.

Hybrid Newmark

Nn = 100: 2.49 s 9.68 s
Nn = 250: 6.90 s 23.38 s
Nn = 500: 14.28 s 48.26 s
Nn = 750: 21.90 s 69.72 s
Nn = 1000: 30.13 s 93.11 s
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Figure 3.16 � Displacement at the rod right border for two di�erent values of c: (top)
c = 0, that corresponds to the linear case and (bottom) c = 4000.

Table 3.12 � Hybrid vs Newmark method, Nn = 100.

Hybrid Newmark

T = 4 s: 2.49 s 9.68 s
T = 8 s: 4.95 s 21.32 s
T = 20 s: 13.57 s 59.48 s
T = 40 s: 28.29 s 122.23 s
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Figure 3.17 � Simple 2D case study.

σ and the strain ε reads, by using Voigt notation and plane stress conditions,σxxσyy
σxy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

εxxεyy
γxy

 . (3.57)

where E is the Young modulus and ν the Poisson coe�cient. In the simulations we

used Lx = Ly = 0.5m, E = 2 1011N/m2, ν = 0.3 and ρ = 8000kg/m3. Similarly

to the 1D case, when a nonlinear elastic behavior is assumed, in the numerical test

here addressed it is assumed thatσxxσyy
σxy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

εxx + c ε3
xx

εyy + c ε3
yy

γxy + c γ3
xy

 (3.58)

where c can be considered as a parameter (again when c = 0 the nonlinear case

reduces to the linear case).

As before, both formulations, the one de�ned in the time domain and the

harmonic-modal hybrid formulations are solved in the time interval I = [0, T ] with

T = 4s, the �rst by using a standard Newmark time-stepping (with time step

∆t = 10−2s).

Figs. 3.18 and 3.19 compares respectively the horizontal displacement along the

time at the domain bottom right hand corner and the 2D displacement at a �xed

time (t = 0.27s) of both solutions for two di�erent values of the parameter c: c = 0,

that corresponds to the linear case, and c = 1.5 for the simple horizontal harmonic

loading F (t) = 1011 sin(2πt). Again the computed results agree perfectly, but the

hybrid solver allows signi�cant computing time savings. These are summarized in

Tables 3.13 and 3.14.
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3.2. From linear to nonlinear PGD-based parametric structural dynamics

Figure 3.18 � Horizontal displacement at the domain bottom right hand corner for
two di�erent values of c: (top) c = 0, that corresponds to the linear case and (bottom)
c = 1.5.

Table 3.13 � Hybrid vs Newmark method, T = 4 s.

Hybrid Newmark

Nn = 2 · 62: 1.80 s 15.81 s
Nn = 2 · 122: 6.56 s 69.80 s
Nn = 2 · 182: 15.15 s 181.25 s
Nn = 2 · 242: 48.87 s 395.90 s

Table 3.14 � Hybrid vs Newmark method, Nn = 2 · 122.

Hybrid Newmark

T = 4 s: 6.56 s 69.80 s
T = 8 s: 9.34 s 127.77 s
T = 12 s: 12.45 s 192.63 s
T = 16 s: 17.54 s 256.60 s
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(a)

(b)

Figure 3.19 � Displacement �eld at t = 0.27s for two di�erent values of c: (a) c = 0,
that corresponds to the linear case and (b) c = 1.5.
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3.2.5 Conclusions

In this second part of the chapter we proposed an extension of the hybrid method-

ology combining harmonic and modal analyses for treating nonlinear parametric

dynamics.

The main contribution of the present work is the derivation of a parametric so-

lution in the frequency space. Apart from its natural dependence on the frequency,

the just developed method also accounts for other model parameters. More impor-

tantly, it explicitly decouples the dependence on the amplitude of nodal loading and

it makes possible the solution of nonlinear models combined with simple lineariza-

tions.

Preliminary numerical results evidence the potentialities of the proposed tech-

nique, while proving its computational e�ciency.
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As we said in the previous chapter most of mechanical systems and complex

structures exhibit plate and shell components. Therefore, 2D simulation, based on

plate and shell theory, appears as an appealing choice in structural analysis as it

allows reducing the computational complexity. Nevertheless, this 2D framework

fails for capturing rich physics compromising the usual hypotheses considered when

deriving standard plate and shell theories. To circumvent, or at least alleviate this

issue, the in-plane-out-of-plane separated representation can be used; that is able

to capture rich 3D behaviors while keeping the computational complexity of 2D

simulations. However, that procedure it was revealed to be too intrusive for being

introduced into existing commercial softwares that generally propose di�erent plate
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Figure 4.1 � Example of a plate domain.

and shell �nite elements, even in the case of multilayered composites plates or

shells. For this reason in this chapter we propose minimally-intrusive methods

which allow integrating 3D descriptions in plate or shell models implemented in

any software, without a�ecting its computational complexity that remains the one

related to standard 2D analyses.

4.1 On the coupling of local 3D solutions and global 2D

shell theory in structural mechanics

Introduction As experience indicated that in many situations the enriched de-

scriptions are only compulsory locally, in some regions or structure components, in

the �rst part of the chapter we propose an enrichment procedure able to address

3D local behaviors, preserving the direct minimally-invasive coupling with existing

plate and shell discretizations. The proposed strategy will be extended to inelastic

behaviors and structural dynamics.

This �rst part of the chapter and all the results presented in it correspond to

the following paper:

• G. Quaranta, M. Ziane, F. Daim, E. Abisset-Chavanne, J.L. Duval, F.

Chinesta, On the coupling of local 3D solutions and global 2D shell theory

in structural mechanics, Advanced Modeling and Simulation in Engineering

Sciences, 6:1, 2019.

4.1.1 Elastostatic problem de�nition

We consider the linear elastostatic problem de�ned in the plate domain depicted in

Fig. 4.1, Ω = Ωxy × Ωz, with Ωxy = [0, Hx]× [0, Hy] and Ωz = [0, Hz] in which the

thickness (out-of-plane) dimension is much lower than the other ones, i.e. Hz �
Hx, Hy.

As we have already seen in the previous chapters, the linear elastic behavior

relating the Cauchy's stress σ and the strain ε tensors reads

σ = C ε, (4.1)
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where C is the Hooke's fourth order tensor. The relation between strain ε and

displacement u (with components u = (u, v, w)) writes

ε = ∇su = Gu, (4.2)

where G = ∇s• is the symmetric gradient operator. Considering an homogeneous

and isotropic material and using the Voigt notation, the Hooke's tensor can be

written as

C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1−2ν)
2 0 0

0 0 0 0 (1−2ν)
2 0

0 0 0 0 0 (1−2ν)
2


. (4.3)

In absence of volumetric body forces, the displacement �eld evolution u(x) for

x ∈ Ω is described by the linear momentum balance equation

∇ · σ = 0. (4.4)

The domain boundary ∂Ω is partitioned into Dirichlet, ΓD, and Neumann, ΓN ,

boundaries, where displacement ug and tractions T are enforced respectively.

The problem weak form associated to the strong form (4.4) lies in looking for

the displacement �eld u verifying the Dirichlet boundary conditions such that the

weak form ∫
Ω
ε(u∗) · (C ε(u)) dx =

∫
ΓN

u∗ ·T dx (4.5)

ful�lls for any test function u∗, with the trial and test �elds de�ned in appropriate

functional spaces.

In this type of domains, plate theory is usually used in order to reduce

the general 3D mechanical problem to a 2D one involving the in-plane coordi-

nates only. Two kinds of theories exist: the thin plate theory proposed by Kir-

cho� [Kirchho� 1850] which establishes that the normal remains straight and or-

thogonal to the middle plane after deformation and the thick plate theory proposed

by Reissner [Reissner 1945] and Mindlin [Mindlin 1951] which assumes that normals

remain straight, but not necessarily orthogonal to the middle plane after deforma-

tion.

In both theories the middle plane is taken as the reference plane (z = 0) for

deriving the plane kinematic equations. In this work, we consider the Reissner-

Mindlin theory whose fundamental hypotheses are the following: (i) on the middle

plane (z = 0) the in-plane displacements vanish, i.e. u(x, y, z = 0) = v(x, y, z = 0) =

0, that implies that points located in the middle-plane only moves vertically; (iii) the

plate thickness remains unchanged; (iv) the plane stress assumption remains valid,
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i.e. σzz = 0 and (v) a straight line normal to the undeformed middle plane remains

straight but not necessarily orthogonal to the middle plane after deformation.

From these assumptions the displacement �eld can be written as:
u(x, y, z) = −zθx(x, y)

v(x, y, z) = −zθy(x, y)

w(x, y, z) = w(x, y)

(4.6)

where w is the vertical displacement (de�ection) of the points on the middle plane

and the rotations θx and θy coincide with the angles followed by the normal vectors

contained in the planes xz and yz respectively in their motions.

We de�ne the generalized displacement vector û

û = [θx, θy, w]T (4.7)

de�ned at any point on the middle plane.

Injecting plate theory assumptions into the 3D elastostatic problem weak form,

Eq. (4.5) reduces to the following 2D formulation [Oñate 2010]∫
Ωxy

ε̂(û∗) ·
(
Ĉ ε̂(û)

)
dx =

∫
∂NΩxy

û∗ · T̂ dx, (4.8)

whose standard �nite element discretization leads to

KU = F (4.9)

where, for notational simplicity, the hat symbol (•̂) is omitted. In the previous ex-

pression (4.9), K is the sti�ness matrix and U and F are the vector of the generalized

displacements and forces, the former containing nodal rotations and de�ections and

the last the dual quantities: the nodal moments and vertical nodal forces. The 3D

displacement �eld can be then recovered by using the relations (4.6).

In many cases, the complexity of the solution makes impossible the introduction

of pertinent hypotheses for reducing the dimensionality of the model from 3D to 2D.

In that case a fully 3D description seems compulsory and the in-plane-out-of-plane

separated representations become particularly suitable.

4.1.2 Enriched formulations

4.1.2.1 PGD-based enriched elements

We assume the 2D mesh de�ned on the middle plane of a plate geometry Ω, depicted

in Fig. 4.2. Our goal here is to address one element of the mesh, for example

the one whose boundary is highlighted in red and that is noted by Ωe, by using

a fully 3D description in order to extract its homogenized 9 × 9 element sti�ness

matrix corresponding to Ωe, and therefore fully compatible with the plate kinematics

enforced on the element boundary ∂Ωe.
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Figure 4.2 � Plate domain Ω and its associated mesh.

Figure 4.3 � 3D mesh of element Ωe.

For that purpose, Ωe is 3D resolved using the PGD-based in plane-out-of-plane

separated representation [Bognet et al. 2012, Bognet et al. 2014]

u(x, y, z) =

 ue(x, y, z)

ve(x, y, z)

we(x, y, z)

 ≈ N∑
i=1

 ue,ixy(x, y) · ue,iz (z)

ve,ixy(x, y) · ve,iz (z)

we,ixy(x, y) · we,iz (z)

. (4.10)

or, by using the Hadamard (component-to-component) product,

ue(x, y, z) ≈
N∑
i=1

Ue,i
xy(x, y) ◦Ue,i

z (z), (4.11)

while a kinematics compatible with the plate kinematics (4.6) is enforced on the

element boundary. All the other elements in Ω depicted in Fig. 4.2 are described

using the standard plate theory, the only 3D resolved is just the Ωe whose 3D mesh

is depicted in Fig. 4.3. The separated representation of the 3D displacement �eld

in Ωe is denoted by ue = (ue, ve, we), whose �rst mode consists of the standard plate
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Figure 4.4 � Nodal degrees of freedom de�ning the kinematics on ∂Ωe.

kinematics 

ue,1xy (x, y) = θx1N1(x, y) + θx2N2(x, y) + θx3N3(x, y)

ve,1xy (x, y) = θy1N1(x, y) + θy2N2(x, y) + θy3N3(x, y)

we,1xy (x, y) = ω1N1(x, y) + ω2N2(x, y) + ω3N3(x, y)

ue,1z (z) = −z
ve,1z (z) = −z
we,1z (z) = 1

(4.12)

where N1(x, y), N2(x, y) and N3(x, y) are the shape functions related to the 2D

linear triangular element Ωe, and

Ue = (ω1, θ
x
1 , θ

y
1 , ω2, θ

x
2 , θ

y
2 , ω3, θ

x
3 , θ

y
3) (4.13)

are the nine degrees of freedom associated to its three vertices, depicted in Fig. 4.4.

Once the �rst mode has been imposed, the following modes are constructed as

described in Chapter 3 while ensuring that they vanish on the element bound-

ary ∂Ωe. The last condition can be enforced by using the so-called bubble

function that results from the product of the three triangle shape functions

B(x, y) = N1(x, y)N2(x, y)N3(x, y) (even if other alternatives exist for that pur-

pose [Chinesta et al. 2014a]), i.e. ∀i > 1

ue,ixy(x, y) = B(x, y)P ix(x, y)

ve,ixy(x, y) = B(x, y)P iy(x, y)

we,ixy(x, y) = B(x, y)P iz(x, y)

ue,iz (z) = T ix(z)

ve,iz (z) = T iy(z)

we,iz (z) = T iz(z)

(4.14)

Thus, the solution on the triangle boundary ∂Ωe is given by the �rst mode, that

is the standard plate kinematics, whereas inside Ωe the solution becomes enriched

with models that can describe richer kinematics than the one related to standard

70



4.1. On the coupling of local 3D solutions and global 2D shell theory in structural
mechanics

plate kinematics.

In order to extract the e�ective enriched 9 × 9 element sti�ness Ke (related to

element Ωe) to be assembled into the global sti�ness matrix involved in the algebraic

system (4.9), we consider the element average

〈•〉 =

∫
Ωe

• dx, (4.15)

from which the element elastic energy Ue becomes

Ue =
〈
εe
T
σe
〉

=
〈
εe
T
Cεe

〉
. (4.16)

Now, with the strain de�ned from (4.2) we assume the existence of a localization

tensor L such that

ue = LUe, (4.17)

that using Eq. (4.2) results

εe = ∇sue = GLUe, (4.18)

where Ue, as previously indicated, represents the plate generalized displacement

degrees of freedom de�ned in (4.13).

Thus, the components of the localization tensor result from the elastic problem

solution in Ωe by prescribing the canonical boundary displacements, i.e. Ue
1 =

(1, 0, 0, 0, 0, 0, 0, 0, 0), Ue
2 = (0, 1, 0, 0, 0, 0, 0, 0, 0), and so on, with nine associated

3D elastic problems solved by using the PGD-based in-plane-out-of-plane separated

representation.

Then, by de�ning M = GL we obtain

Ue =
〈
UeTMTCMUe

〉
= UeT

〈
MTCM

〉
Ue, (4.19)

which allows de�ning the element sti�ness matrix Ke as

Ke =
〈
MTCM

〉
. (4.20)

In order to check the procedure, the sti�ness matrix Ke obtained using the �rst

mode of the displacement expansion is compared to that one corresponding to the

plate kinematics. In that case, the resulting sti�ness matrix is, as expected, the one

related to standard plate theory.

Of course, when considering more modes in the separated representation of

the 3D displacement �eld ue, the resulting sti�ness matrix Ke di�ers from the

one associated to standard plate theory by including eventual 3D e�ects ignored

in standard plate kinematics. However, in that case the expression of the ef-

fective enriched sti�ness matrix Ke depends on the element geometry. To avoid

the necessity of calculating online sti�ness matrices for each triangle, the PGD

rationale allows including di�erent parameters into the separated representation
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as mentioned in the previous chapters, [Chinesta et al. 2011, Chinesta et al. 2013b,

Chinesta et al. 2015, Bur et al. 2016, Chinesta et al. 2014b]. The interested reader

can refer to [Chinesta et al. 2014a] and [Borzacchiello et al. 2017] for an intrusive

and a non-intrusive approach, respectively (some details for the non-intrusive ap-

proach by using the Sparse Subspace Learning � SSL � method are given in Appendix

A). In the case here addressed, the natural choice consists of considering the triangle

geometry as parameters, and then as extra-coordinates within the PGD rationale.

4.1.2.2 Static condensation based enrichment

In this section, we consider an alternative procedure for computing the homogenized

element sti�ness matrix using static condensation [Wilson 1974].

We consider again the problem de�ned in the domain Ωe depicted in Fig. 4.3.

The nodal degrees of freedom used for discretizing the displacement �eld ue, Ue,
can be decomposed in the ones related to internal nodes Uei and the ones related to

nodes located on ∂Ωe, Ueb.
Thus, the standard 3D �nite element formulation

KeUe = Fe, (4.21)

with

Ke =

(
Ke
ii Ke

ib

Ke
bi Ke

bb

)
, (4.22)

(4.23)

can be expressed as (
Ke
ii Ke

ib

Ke
bi Ke

bb

)(
Uei
Ueb

)
=

(
Fei
Feb

)
. (4.24)

Now, by developing the �rst row of the previous system, the internal degrees of

freedom can be expressed from the ones on the element border,

Uei = Ke−1

ii (Fei −Ke
ibUeb) , (4.25)

that inserted in the second leads to

KebbUeb = Feb , (4.26)

with

Kebb = Ke
bb −Ke

biKe−1

ii Ke
ib (4.27)

Feb = Feb −Ke
biKe−1

ii Fei . (4.28)

Now we enforce on the element border a kinematic compatible with the one of the

plate theory, that is, the border nodal displacements Ueb are expressed from Ue
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Table 4.1 � Problem parameters.

Hx: Length in the x direction (mm) 250
Hy: Length in the y direction (mm) 50
Hz: Length in the z direction (mm) 2
E: Young modulus (N/m2) 2 · 1011

ν: Poisson coe�cient 0.25

(the plate theory degrees of freedom de�ned at the triangle vertices as expressed in

Eq. (4.13)), according to Eq. (4.6), relation that is expressed in matrix form from

Ueb = BUe.

Thus, Eq. (4.26) can be rewritten as

KebbBUe = Feb , (4.29)

that premultiplying by BT (looking for the Galerkin based discrete system) results

BTKebbBUe = BTFeb , (4.30)

that allows extracting the expression of the e�ective plate element sti�ness matrix

K̃e and the e�ective plate nodal forces F̃e

K̃e = BTKebbB (4.31)

F̃e = BTFe. (4.32)

Our numerical simulation allowed proving that the e�ective plate element sti�-

ness matrix K̃e obtained using the just described rationale based on the static

condensation coincides with the one previously obtained by using the PGD-based

separated representation Ke.

An additional advantage of this second route is the fact of deriving an expression

for the e�ective plate nodal forces that will be advantageously considered when

addressing inelastic and dynamic behaviors.

4.1.3 Numerical validation

We solve the elastic problem in the plate domain depicted in Fig. 4.5 and compare

the solutions obtained using 3D FEM, the standard plate theory and the enriched

formulations considered in the previous section. The domain geometry Ω = [0, Hx]×
[0, Hy] × [0, Hz] is de�ned in Table 4.1 whereas Table 4.2 speci�es the considered

mesh. On the domain right face (blue area in Fig. 4.5) a vertical traction is applied,

T = (0, 0, 10000)N/m2 whereas the displacement is prevented on the opposite face.

Fig. 4.6 compares the di�erent computed solutions. In that �gure "3D solution"

refers to the solution obtained using 3D elements according to the mesh speci�ed

in Table 4.2. As reference solution we consider a 3D �nite element solution using a
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Figure 4.5 � Elastic problem de�ned in a plate domain.

Table 4.2 � Parameters values used in the simulation.

Nx (number of elements in the x direction): 25
Ny (number of elements in the y direction): 5
Nz (number of elements in the z direction): 11

much �ner mesh (the one de�ned in Table 4.3).

The number of elements with enriched behavior (according to the procedures

described in the previous section) can be arbitrarily increased, and it was noted

that, as expected, by increasing it the solution approaches the reference one.

It is important to note that even when all the elements are enriched, the solution

exhibits a gap with respect to the reference solution. This gap can be explained by

the fact that, despite of the valuable enrichments introduced at the elements level,

at the elements boundaries standard plate kinematics is enforced with its consequent

impact on the resulting kinematics that continues to be too constrained with respect

to a fully 3D kinematics.

Thus one could conclude that the proposed technique could become advanta-

geous when used for enriching the mechanical description inside an element or patch

(as discussed later) but whose e�ects remain con�ned in the interior of that element

(or patch) and when approaching to the element border the plate kinematic is ac-

curate enough.

In the case here discussed plate theory and coarse 3D �nite element solutions

Table 4.3 � Parameters values used in the simulation for the reference solution.

Nx (number of elements in the x direction): 60
Ny (number of elements in the y direction): 12
Nz (number of elements in the z direction): 11
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are closer one to the other, whereas the enriched one is the closest to the reference

one (re�ned 3D �nite element solution).

We consider now the same problem as in the previous example but we suppose

that in the 3D element there is an hole as depicted in Fig. 4.7 (in the other elements

we consider the enrichment presented before in absence of holes).

Here, there is clearly a double advantage in using the enrichment methodol-

ogy. First, if the e�ect of the hole remains con�ned inside the element, vanishing

when approaching the element boundary, the element enriched su�ces and the plate

meshing can be alleviated because the hole only exists for the element that will be

accordingly enriched, but remains invisible at the plate level. On the other hand,

its local 3D e�ects will be described very accurately.

Once the holed element sti�ness matrix Ke is computed using the procedure

presented in the previous section, the problem is solved and the generalized dis-

placement �eld Ue can be extracted at the vertices of the holed triangle. Then the

3D solution inside the element can be easily computed by using (4.17). Fig. 4.8 de-

picts di�erent solutions. Even if Ωe accounts the hole presence (the PGD and static

condensation based enrichment proceed on a mesh that describe the hole presence),

the plate mesh becomes unaltered.

As discussed, after solving the problem at the plate level, using the enriched sti�-

ness matrices for the di�erent elements, 3D �elds can be reconstructed. Thus, Figs.

4.9, 4.10 and 4.11 represent the out-of-plane stress tensor components, including

the component σzz that is neglected when using standard plate theory. Moreover,

a parabolic evolution of the components σxz and σyz along the domain thickness,

typical of a 3D solution, can be noticed in Fig. 4.11.

4.1.4 Extension of the method to patches

In this section we extend the method previously presented to the construction of

an enriched patch (super-element). In fact a single triangle element is too small for

capturing rich events which can occur on a large area of the domain. Our goal is

to select the patch delimited by the red line in Fig. 4.12, Ωp, treat it using a 3D

description by employing one of the two procedures previously presented (the PGD

in-plane-out-of-plane separated representation or the static condensation procedure)

and then construct the (3Nb)×(3Nb) patch sti�ness matrix (being Nb the number of
nodes in the border of the enriched patch). In the case here addressed numerically,

the sti�ness matrix size will be 84× 84. In the construction procedure it is assumed

that on the patch border the kinematics is the standard plate kinematics applied in

the surrounding elements.

In the present case the generalized patch displacement reads

U = (θx1 , θ
y
1 , ω1, θ

x
2 , θ

y
2 , ω2, . . . , θ

x
Nb , θ

y
Nb , ωNb), (4.33)

with Nb = 28. Figs. 4.12, 4.13 and 4.14 depict respectively the patch location, its

3D representations and its connection with the surrounding plate elements.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6 � Displacement of the plate middle plane using plate theory (a), all plate
theory elements except the homogenized (enriched) element (b), half plate theory
elements (the triangles of the mesh in Fig. 4.2 with the right angle on the bottom)
and half homogenized (enriched) elements (the triangles of the mesh in Fig. 4.2 with
the right angle on the top) (c), all homogenized (enriched) elements (d), fully 3D
FEM on a coarse mesh (e), fully 3D FEM on �ne mesh (f).
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Figure 4.7 � Holed 3D triangular element and its associated mesh.

Table 4.4 � Model parameters.

Hx: Length in the x direction (mm) 250
Hy: Length in the y direction (mm) 250
Hz: Length in the z direction (mm) 2
E: Young modulus (N/m2) 2 1011

ν: Poisson coe�cient 0.25

In the numerical validation we consider again the problem depicted in Fig.

4.5, where the geometrical and mechanical properties are de�ned in Table 4.4.

On the right face (the blue area in Fig. 4.5) a vertical traction is applied,

T = (0, 0, 1100000)N/m2 whereas on the opposite face the displacement is pre-

vented.

Fig. 4.15 depicts the di�erent solutions, where 3D FEM coarse and re�ned (ref-

erence) solutions are related to the meshes speci�ed respectively in Tables 4.5 and

4.6. The solution referred as �with all patch elements" refers to the solution com-

puted replacing all the plate elements with the 9 patches (super-elements) depicted

in Fig. 4.16. The 3D reference solution has been computed using a mesh as �ne as

the one considered to describe the enriched solution at the patch level.

The solution involving the nine patches is the closest to the reference solution.

Table 4.5 � Coarse 3D FEM.

Nx (number of elements in the x direction): 21
Ny (number of elements in the y direction): 21
Nz (number of elements in the z direction): 5
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(a) (b)

(c) (d)

(e)

Figure 4.8 � Displacement of the plate middle plane using plate theory (a), all plate
theory elements except the homogenized (enriched) holed element (b), half plates
theory elements (the triangles of the mesh in Fig. 4.2 with the right angle on the
bottom) and half homogenized elements (the triangles of the mesh in Fig. 4.2 with
the right angle on the top), one of them holed (c), all homogenized elements, one of
them holed (d), fully 3D theory on the �ne mesh (e).
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Figure 4.9 � Out-of-plane components of the stress tensor around the hole.

Table 4.6 � Re�ned 3D FEM considered for de�ning the reference solution.

Nx (number of elements in the x direction): 63
Ny (number of elements in the y direction): 63
Nz (number of elements in the z direction): 5

79



Chapter 4. Minimally intrusive MOR techniques in computational structural
mechanics of plate geometries

Figure 4.10 � Out-of-plane components of the stress tensor on the plane z = 0.51
mm.
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Figure 4.11 � Out-of-plane components of the stress tensor through the domain thick-
ness in the hole neighborhood.
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Figure 4.12 � Plate mesh.

Figure 4.13 � 3D patch mesh.
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Figure 4.14 � Patch discretization.

However, since at the border of the patches the usual plate kinematics is enforced, a

gap between the nine-patches solution and the re�ned 3D FEM solution (reference

solution) persists. In any case, as the patches solution involved less constraints

(plate kinematics) than the one related to enriched elements, where the kinematic

constrains are applied to all the elements boundaries, its accuracy is superior.

Since it is not pretended that plates should be discretized using enriched super-

elements, our main interest is adopting accurate descriptions of rich behaviors that

could be assumed con�ned inside a region (our patch). This is the route retained

for replacing 3D FEM discretization in regions exhibiting rich behaviors by enriched

super-elements keeping its 2D computational complexity.

4.1.5 Extension of the method to plasticity

In this section we extend the method to problems in which plastic behavior can

occur. In fact localized plasticity phenomena can occur in several situation, as in

spot-welds during crash simulations.

In its general form the in�nitesimal relation between the stress increment dσ

and the elastic strain dεe increment reads [Owen & Hinton 1980]

dσ = Cdεe = C(dε− dεp), (4.34)

where C is the Hooke tensor, dε is total strain and dεp is the plastic strain.
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(a) (b)

(c) (d)

Figure 4.15 � Displacement using plate theory (a), all plate theory elements except
the patch super-element (b), all patches as depicted in Fig. 4.16 (c), fully 3D re�ned
FEM (d).

Figure 4.16 � Super-elements discretization.
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In plasticity yielding can occur only if the stresses satisfy a general yield crite-

rion; in the considered examples, for the sake of simplicity, we use the Von Mises

criterion [Mises 1913], assuming perfect plasticity. Ignoring volumetric body forces,

the weak form of the problem, in its �nite incremental form, associated to the

strong form (4.4) lies in looking for the displacement �eld increment ∆u verifying

the Dirichlet boundary conditions, verifying∫
Ω
ε(u∗) · (C (∆ε(∆u)−∆εp(∆u))) dx =

∫
ΓN

u∗ ·∆T dx (4.35)

for any test function u∗ in an appropriate functional space.

In order to solve the resulting nonlinear problem, various computa-

tional procedures have been proposed and extensively used, among them

[Zienkiewicz et al. 1969, Gallagher 1962, Argyris 1965, Swedlow et al. 1965,

Pope 1966, Reyes & Deere 1966, Marcal & King 1967, Popov et al. 1967].

In this work we consider a simple implicit approach [Zienkiewicz et al. 1969] that

at the n load step solves∫
Ω
ε(u∗) ·

(
C ∆1

nε
)
dx =

∫
ΓN

u∗ ·∆nT dx. (4.36)

From ∆1
nε, the stress increment ∆1

nσ results

∆1
nσ = C∆1

nε (4.37)

that allows updating the stress

σ1
n = σn−1 + ∆1

nσ, (4.38)

and from it computing the plastic strain increment ∆1
nε

p using well known proce-

dures (some details are given in Appendix B). Then, the stress is updated according

to

σ1
n = σ1

n −C∆1
nε

p. (4.39)

Then, ∆2
nε is calculated from∫

Ω
ε(u∗) ·

(
C ∆2

nε
)
dx =

∫
Ω
ε(u∗) ·

(
C ∆1

nε
p
)
dx, (4.40)

and the stress update from

σ2
n = σ1

n + ∆2
nσ, (4.41)

and from it computing the plastic strain increment ∆2
nε

p. Then, the stress is updated

according to

σ2
n = σ2

n −C∆2
nε

p. (4.42)
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At iteration j the problem to be solved reads∫
Ω
ε(u∗) ·

(
C ∆j

nε
)
dx =

∫
Ω
ε(u∗) ·

(
C ∆j−1

n εp
)
dx, (4.43)

where it can be noticed that the problem structure remains unaltered, with the

left-hand member encountered when addressing elastic behaviors and the inelastic

behavior appearing as a body force. Thus, the enrichment procedure based on the

static condensation seems specially suitable.

For validating the proposed strategy we consider the same problem as in the

previous section, sketched in Fig. 4.5, with geometrical and mechanical proper-

ties speci�ed in Table 4.4 and the considered mesh de�ned in Table 4.5. On

the right face of the domain (blue area in Fig. 4.5) a vertical traction is applied,

T = (0, 0, 1100000)N/m2, and on the opposite face displacement is prevented. The

considered uniaxial stress yield is σ̄0 = 250 · 106N/m2. Again, Fig. 4.17 depicts

the usual di�erent solutions. Again �all patch elements" refers to the case in which

the domain is composed by the nine super-elements shown in Fig. 4.16. The 3D

reference solution has been computed using a mesh as �ne as with the one used

in the patch description (Table 4.6). Again, the nine-patches solution is the most

accurate (when compared with the reference solution).

4.1.6 Extension to structural dynamics

In this section we address structural dynamics, again ignoring body forces without

loss of generality. Thus, the displacement �eld evolution u(x, t) in the domain Ω and

time interval t ∈ I = (0, T ] is described by the linear momentum balance equation

ρü(x, t) = ∇ · σ, (4.44)

where ρ is the density (kg/m3).

The boundary ∂Ω is decomposed according to ∂Ω = ∂DΩ∪∂NΩ where displace-

ment and tractions are prescribed.

In the elastic case the problem weak form associated with the strong form (4.44)

results in looking for the displacement �eld u verifying the initial and Dirichlet

boundary conditions, and ful�lling

ρ

∫
Ω

u∗ · ü dx +

∫
Ω
ε(u∗) · (C ε(u)) dx =

∫
ΓN

u∗ ·T(t) dx (4.45)

for any test function u∗ in an appropriate functional space.

The standard FEM space discretization reads

Ma(t) + Ku(t) = F(t), (4.46)

where a(t) represents the acceleration. The time stepping consists in calculating

the acceleration and displacement at each time step tj+1 = (j + 1)∆t from the ones
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(a) (b)

(c)

Figure 4.17 � Plate theory displacement (a), all patch elements according to Fig.
4.16 (b) and re�ned 3D FEM (reference solution) (c).
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Table 4.7 � Model parameters.

Hx: Length in the x direction (m) 3
Hy: Length in the y direction (m) 3
Hz: Length in the z direction (m) 0.1
E: Young modulus (N/m2) 2 1011

ν: Poisson coe�cient 0.25

existing at the previous time step tj = j∆t.

A widely considered choice consists of the Newmark method [Newmark 1959],

in which the velocity and the displacement �elds at time tj+1 read

vj+1 = vj + ∆t ((1− γ)aj + γaj+1) , (4.47)

and

uj+1 = uj + ∆tvj +
∆t2

2
((1− 2β)aj + 2βaj+1) , (4.48)

so that at each time step the acceleration �eld can be obtained by solving the linear

system

K∗aj+1 = p∗j+1 (4.49)

where

K∗ = M + β∆t2K (4.50)

and

p∗j+1 = Fj+1 −Kuj −∆tKvj −
∆t2

2
(1− 2β)Kaj . (4.51)

According to the values of β and γ the method can be explicit (conditionally

stable) or implicit (unconditionally stable). In our numerical examples we considered

β = 1/4 and γ = 1/2 de�ning an implicit method. As soon as the acceleration is

available, the velocity and displacement �eld can be computed using Eqs. 4.47 and

4.48 respectively.

An enriched sti�ness can be derived at the element or patch levels, where the use

of the procedure based on the condensation allows properly addressing the forces

p∗j+1, and therefore combining dynamics and plasticity.

For evaluating the performances of the proposed enrichment procedure, we con-

sider again the problem de�ned in Fig. 4.5 and Table 4.7.

On the right face (the blue area in Fig. 4.5) a vertical traction is enforced,

T(t) = (0, 0, 4.1 · 106 sin(2πωt))N/m2, whereas on the opposite face displacement

is prevented. Without loss of generality homogeneous initial conditions u(x, t =

0) = 0 and v(x, t = 0) = 0 are assumed. Table 4.8 reports the considered coarse

mesh whereas Table 4.9 de�ned the re�ned one from which the reference solution is

calculated.

Figs. 4.18 and 4.19 depict respectively the solutions computed using the di�erent
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Table 4.8 � Coarse FEM mesh.

Nx (number of elements in the x direction): 21
Ny (number of elements in the y direction): 21
Nz (number of elements in the z direction): 5

Table 4.9 � Re�ned FEM mesh considered for computing the reference solution.

Nx (number of elements in the x direction): 63
Ny (number of elements in the y direction): 63
Nz (number of elements in the z direction): 5

techniques at four di�erent times and the vertical displacement time evolution at

the right border. Figs. 4.20 and 4.21 present similar results but in a case where

plasticity takes place. Again the best solutions are the ones related to a nine-patches

discretization for the reasons widely exposed before.

4.1.7 Conclusions

This �rst part of the chapter proposed two di�erent procedures to capture local 3D

behaviors by enriching elements (or super-elements) connected to plate discretiza-

tion. This goal is performed by integrating, in a non-intrusive manner, 3D elements

(or patches) in plate or shell based commercial codes. In order to compute this en-

riched 2D element, two di�erent techniques were presented: one based on the PGD

in-plane-out-of-plane separated representation and the other on the static condensa-

tion. The method was �rstly developed in linear elastic settings and then successfully

extended to structures exhibiting inelastic behaviors or dynamics.

4.2 A minimally-intrusive fully 3D separated plate for-

mulation in computational structural mechanics

Introduction The second part of the chapter addresses problems in which en-

riched descriptions are compulsory in all the domain and it proposes a more general

method which allows e�cient integration of fully 3D descriptions into existing plate

softwares.

This second part of the chapter and all the results presented in it constitute a

submitted paper:

• G. Quaranta, M. Ziane, E. Haug, J.L. Duval, F. Chinesta, A minimally-

intrusive fully 3D separated plate formulation in computational structural me-

chanics, Advanced Modeling and Simulation in Engineering Sciences, (sub-

mitted).
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Figure 4.18 � Elastic displacement using plate theory, nine-patches and 3D FEM on
the re�ned mesh at four di�erent time-steps.
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Figure 4.19 � Vertical elastic displacement evolution in time at the right border.
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Figure 4.20 � Elasto-plastic displacement using plate theory, nine-patches and 3D
FEM on the re�ned mesh at four di�erent time-steps.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s) 104

-1.5

-1

-0.5

0

0.5

1

1.5

ve
rt

ic
al

 d
is

pl
ac

em
en

t (
m

)

Plasticity

Solution with plate elements
Solution with patches
3D reference solution

Figure 4.21 � Vertical elasto-plastic displacement evolution in time at the right bor-
der.
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4.2.1 Elastostatic problem de�nition

We consider, as in the �rst part of the chapter, the linear elastostatic problem de�ned

in the plate domain Ω = Ωxy × Ωz, with Ωxy = [0, Hx]× [0, Hy] and Ωz = [0, Hz].

The linear elastic behavior relating the Cauchy's stress σ and the strain ε reads

as (4.1) and the relation between strain ε and displacement u (with components

u = (u, v, w)) writes as (4.2). Considering an homogeneous and isotropic material

and using Voigt notation the behavior writes as (4.3).

With g(x) the body forces, the displacement �eld u(x) for x ∈ Ω is described

by the linear momentum balance equation

∇ · σ + g = 0. (4.52)

The domain boundary ∂Ω is partitioned into Dirichlet, ΓD, and Neumann, ΓN ,

boundaries, where displacement ug and tractions T are enforced respectively. For

the sake of simplicity, in what follows and without loss of generality we assume

T = 0

The problem weak form associated to the strong form (4.52) lies in looking for

the displacement �eld u verifying the Dirichlet boundary conditions such that the

weak form ∫
Ω
ε(u∗) · (C · ε(u)) dx =

∫
Ω

u∗ · g dx, (4.53)

ful�lls for any test function u∗, with the trial and test �elds de�ned in appropriate

functional spaces.

Using the Reissner-Mindlin theory the displacement �eld can be written as (4.6)

and the generalized displacement vector û as (4.7) at any point on the middle plane.

Injecting plate theory assumptions into the 3D elastostatic problem weak form,

Eq. (4.53) reduces to the following 2D formulation∫
Ωxy

ε̂(û∗) ·
(
Ĉε̂(û)

)
dx =

∫
Ωxy

û∗ · ĝ dx, (4.54)

whose standard �nite element discretization leads to

KxyU = Bxy (4.55)

where for notational simplicity the hat symbol (•̂) is omitted. In the previous

expression (4.55), Kxy is the sti�ness matrix and U and Bxy are the vector of

the generalized displacements and forces, the former containing nodal rotations and

de�ections and the last the dual quantities: the nodal moments and vertical nodal

forces.

As we have already said when the complexity of the solution makes impossible

the introduction of pertinent hypotheses for reducing the dimensionality of the model

from 3D to 2D, a fully 3D description seems compulsory and the in-plane-out-of-

plane separated representation (4.10) becomes particularly suitable.
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4.2.2 Enriched formulations

As reported in the previous section plate kinematics can be written as a single-term

separated decomposition 
u(x, y, z) = θx(x, y)fx(z)

v(x, y, z) = θy(x, y)fy(z)

w(x, y, z) = w(x, y)fz(z)

, (4.56)

with fx(z) = −z, fy(z) = −z and fz(z) = 1.

For the sake of generality we consider now generic functions fx(z), fy(z) and

fz(z) assumed known, but than can be di�erent to the ones related to the standard

Reissner-Mindlin plate theory, and its associated 3D kinematics given by Eq. (4.56).

Consequently θx, θy and w do not represent rotations and de�ection anymore.

The displacements gradient becomes

∇u =



∂u
∂x
∂u
∂y
∂u
∂z
∂v
∂x
∂v
∂y
∂v
∂z
∂w
∂x
∂w
∂y
∂w
∂z


=



∂θx

∂x
∂θx

∂y

θx

∂θy

∂x
∂θy

∂y

θy

∂w
∂x
∂w
∂x

w


◦



fx

fx

dfx(z)
dz

fy

fy

dfy(z)
dz

fz

fz

dfz

∂z

,


(4.57)

that allows de�ning the strain separated form, that, taking into account its symme-

try, reads

ε =



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂y + ∂v

∂y


=



∂θx

∂x
∂θy

∂y

w
∂θx

∂y

θx

θy


◦



fx

fy

dfz

dz

fx

dfx

dz
dfy

dz


+



0

0

0
∂θy

∂x
∂w
∂x
∂w
∂y


◦



0

0

0

fy

fz

fz


(4.58)

= Θ1(x, y) ◦ F1(z) + Θ2(x, y) ◦ F2(z). (4.59)

In the case of a general material the Hooke tensor can also be written as

C(x, y, z) =

M∑
i=1

Ci
xy(x, y) ◦Ci

z(z). (4.60)

For an homogeneous material we have simply

C = Ci
xy ◦Ci

z. (4.61)
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where Cz is given by (4.3) and Cxy is a tensor whose all the entries are 1,

Cxy =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


. (4.62)

Taking this into consideration the method that we are going to explain can be used

both for homogeneous and not homogeneous materials. For the sake of simplicity we

are going to present it in the case where in expression (4.60) only one term appears

in the sum, but it can be easily extended to involve more terms. The virtual work

principle, expressed using a matrix notation, involves the internal work

ε∗Tσ = ε∗TCε

= {Θ1∗(x, y) ◦ F1(z) + Θ2∗(x, y) ◦ F2(z)}T {Cxy(x, y) ◦Cz(z)}
{Θ1(x, y) ◦ F1(z) + Θ2(x, y) ◦ F2(z)}
= Θ1∗T (x, y){Cxy(x, y) ◦ Ĉ11

z (z)}Θ1(x, y) + Θ1∗T (x, y){Cxy(x, y) ◦ Ĉ12
z (z)}

Θ2(x, y) + Θ2∗T (x, y){Cxy(x, y) ◦ Ĉ21
z (z)}Θ1(x, y) + Θ2∗T (x, y)

{Cxy(x, y) ◦ Ĉ22
z (z)}Θ2(x, y). (4.63)

In the previous expression matrices Ĉij
z (z) results

Ĉij
zkl

(z) = Czkl(z)F
i
k(z)F

j
l (z), i, j ∈ [1, 2] & k, l ∈ [1, · · · , 6]. (4.64)

Now, the virtual work integral reads∫
Ωxy×Ωz

2∑
i=1

2∑
j=1

Θi∗T (x, y){Cxy(x, y) ◦ Ĉij
z (z)}Θj(x, y) dz dx dy

=

∫
Ωxy

2∑
i=1

2∑
j=1

Θi∗T (x, y)Dij(x, y)Θj(x, y) dx dy, (4.65)

where

Dij(x, y) = Cxy(x, y) ◦
∫

Ωz

Ĉij
z (z) dz. (4.66)

Now, if we assume an approximation based on a piecewise linear interpolation on a

triangular �nite element, related to an in-plane mesh of Ωxy = ∪Ee=1Ωe
xy, with the

shape functions de�ned by N e
i (x, y), i = 1, 2, 3; e = 1, · · · , E; it results

θx,e(x, y) = N e
1 (x, y)θx,e1 +N e

2 (x, y)θx,e2 +N e
3 (x, y)θx,e3

θy,e(x, y) = N e
1 (x, y)θy,e1 +N e

2 (x, y)θy,e2 +N e
3 (x, y)θy,e3

we(x, y) = N e
1 (x, y)we1 +N e

2 (x, y)we2 +N e
3 (x, y)we3

(4.67)
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Using that approximation we can express vectors Θi(x, y) in each element Ωe from

the generalized nodal displacements

UeT = (θx,e1 , θy,e1 , we1, θ
x,e
2 , θy,e2 , we2, θ

x,e
3 , θy,e3 , we3), (4.68)

from

Θi((x, y) ∈ Ωe
xy) = Bi,e(x, y)Ue, (4.69)

where Bi,e(x, y) contains the shape functions and theirs derivatives, according to

the expressions involved in the components of Θi(x, y), i = 1, 2. Thus, integral

(4.65) reads

E∑
e=1

Ue∗T


∫

Ωexy

2∑
i=1

2∑
j=1

Bi,eT (x, y)Dij(x, y)Bj,e(x, y) dx dy

Ue

=
E∑
e=1

Ue∗TKe
xyU

e = U∗TKxyU. (4.70)

Now, if we consider the virtual work of the body forces g(x), it involves

u∗Tg(x), (4.71)

where without loss of generality we assume

u(x, y, z) = V ◦W, (4.72)

with VT = (θx, θy, w) and WT = (fx(z), fy(z), fz(z)), and the single-mode decom-

position of the body forces given by

g(x, y, z) = G ◦H, (4.73)

with GT = (Mx(x, y),My(x, y), T (x, y)) and HT = (hx(z), hy(z), hz(z)). The fact

of considering a single mode in the decomposition of the body force is not restrictive

as discussed later. The virtual work (4.71) can be expressed as

u∗Tg(x) = V∗T (x, y)Ĵ(z)G(x, y), (4.74)

where matrix Ĵ reads

Ĵkl(z) = IklWk(z)Hl(z), (4.75)

with I the identity matrix. Now, the integral results∫
Ωxy×Ωz

u∗Tg(x) dz dx dy =

∫
Ωxy

V∗T (x, y)JG(x, y) dx dy, (4.76)
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with

J =

∫
Ωz

Ĵ(z) dz. (4.77)

Integrating in the mesh Ωxy = ∪Ee=1Ωe
xy,∫

Ωxy

V∗T (x, y)JG(x, y) dx dy =
E∑
e=1

∫
Ωexy

Ve∗T (x, y)JGe(x, y) dx dy, (4.78)

where Ve(x, y) and Ge(x, y) are approximated respectively from

Ve(x, y) = N(x, y)Ue, (4.79)

and

Ge(x, y) = N(x, y)Re, (4.80)

with Re containing the nodal values of G(x, y) and N(x, y) =

[N1(x, y) N2(x, y) N3(x, y)], and

Ni =

 N e
i (x, y) 0 0

0 N e
i (x, y) 0

0 0 N e
i (x, y)

 . (4.81)

Thus, it results

E∑
e=1

∫
Ωexy

Ve∗T (x, y)JGe(x, y) dx dy =
E∑
e=1

Ue∗T

{∫
Ωexy

NTJN dx dy

}
Re

=

E∑
e=1

Ue∗TAe
xyR

e =

E∑
e=1

Ue∗TBe
xy = U∗TBxy, (4.82)

from which, the principle of virtual works reads

U∗TKxyU = U∗TBxy. (4.83)

Remark 1. In general the displacement decomposition within the PGD rationale

involves more than a single mode, however, within the updating process, when

calculating the n mode, the n−1 already computed move to the right hand member,

acting as generalized body force.

Remark 2. Thus, the in-plane functions determining the kinematics can be ob-

tained from a standard plate theory software by using the elementary rigidity and

forces given respectively by Ke
xy and Be

xy considered in expression (4.70) and (4.82).

Remark 3. If traction T 6= 0 the same procedure can be applied to treat the

corresponding terms.
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4.2.3 Calculation of the out-of plane functions

The expression of the solution obtained in the previous section is given by

u(x, y, z) =

 u(x, y, z)

v(x, y, z)

w(x, y, z)

 =

 θx(x, y)fx(z)

θy(x, y)fy(z)

w(x, y)fz(z)

 = V(x, y) ◦W(z), (4.84)

where

V(x, y) =

 θx(x, y)

θy(x, y)

w(x, y)

 (4.85)

and

W(z) =

 fx(z)

fx(z)

fz(z)

. (4.86)

Now, we proceed to update the out-of-plane functions involved in W(z) from

the just calculated in-plane functions V(x, y) by considering again the principle of

virtual work ∫
Ωxy×Ωz

ε(u∗) · (C · ε(u) dx =

∫
Ωxy×Ωz

u∗ · f dx (4.87)

where now in Eq. (4.84) the in-plane functions are assumed known and we look for

the ones involved in the out-of-plane contribution W(z). Thus, Eq. (4.87) can be

integrated on Ωxy and it reduces to a one dimensional problem in Ωz involving as

unknown functions fx(z), fy(z) and fz(z).

The same rationale that was previously addressed when performing the in-plane

calculations is considered again but now with the test functions given by

ε∗ = Θ1(x, y) ◦ F1∗(z) + Θ2(x, y) ◦ F2∗(z), (4.88)

and

u∗(x, y, z) = V(x, y) ◦W∗(z). (4.89)

Now, from the updated out-of-plane functions in W(z), the in-plane functions in

V(x, y) are again updated and the procedure repeats until reaching the convergence

(�xed point). The procedure for computing the out-of-plane components in this

minimally-intrusive way is detailed in Appendix C.

4.2.4 Numerical results

The problem taken into consideration is depicted in Fig. 4.22. The geometrical

and mechanical properties of the plate domain Ω = [0, Hx] × [0, Hy] × [0, Hz] are

de�ned in Table 4.10 On the right boundary face of the domain (the blue zone in

Fig. 4.22) a vertical traction is enforced, T = (0, 0, 8 ·109)N/m2 and on the opposite

face homogeneous Dirichlet boundary conditions are imposed. No volumetric body
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Figure 4.22 � The problem taken into consideration

Table 4.10 � Model parameters.

Hx: Length in the x direction (mm) 250
Hy: Length in the y direction (mm) 250
Hz: Length in the z direction (mm) 250
E: Young modulus (N/m2) 2 · 1011

ν: Poisson coe�cient 0.25

forces are considered. As in the considered domain the thickness (out-of-plane)

dimension is not much lower than the other ones (in-plane dimensions), the linear

variation of the displacement �eld along the thickness described by (4.6) is not

more true as we can notice in Fig. 4.23. In this �gure the plate solution di�ers from

the fully 3D solution. However using the just proposed minimally-intrusive fully 3D

separated plate formulation we can notice how the solution is improved. In Fig. 4.24

it is also possible to see the error of the solution respect to the 3D FEM solution,

computed as

ξ(u) =

(∫
Ω (u− uFEM )2 dx

) 1
2(∫

Ω (uFEM )2 dx
) 1

2

, (4.90)

as a function of the number of modes. The error of the plate theory solution would

be ξ(uplate) = 0.0633.

We consider now the same problem as the previous example but this time we sup-

pose that there is an hole in the domain. As in the previous example, in Fig. 4.25

it is depicted the solution computed using the di�erent techniques. Moreover in

Figs. 4.26, 4.27 and 4.28 di�erent perspectives of the out-of-plane stress tensor com-

ponents are depicted. Let's note how the proposed method is able to take into

consideration the σzz components, which is considered negligible in the plate the-
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(a)

(b)

(c)

Figure 4.23 � Displacement �eld using: plate theory (a), minimally-intrusive fully
3D separated plate formulation (b), 3D FEM (c).
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Figure 4.24 � Error of the enriched solution respect to the 3D solution for di�erent
number of modes.

ory, and to obtain the parabolic evolution around the thickness for the σxz and σyz
typical of a 3D solution (Fig. 4.28).

In Figs. 4.29, 4.30 and 4.31 the same quantities are computed using a 3D �nite

element method, proving the good results of the proposed method.

Again, in Fig. 4.32 it is possible to see the error of the solution respect to the 3D

FEM solution as a function of the number of modes. The error of the plate theory

solution would be ξ(uplate) = 0.0638.

4.2.5 Extension of the method to elasto-plastic dynamics

In this section we extend the method to dynamics problem in which plastic behavior

can occur. With g(x, t) the body forces, the displacement �eld evolution u(x, t) in

the domain Ω and time interval t ∈ I = (0, T ] is described by the linear momentum

balance equation

ρü(x, t) = ∇ · σ + g, (4.91)

where ρ is the density (kg/m3).

The boundary ∂Ω is decomposed according to ∂Ω = ΓD∪ΓN where displacement

and tractions T(t) are prescribed.

The behavior relating the Cauchy's stress σ and the elastic strain εe reads

σ = Cεe = C(ε− εp), (4.92)

where C is the Hooke tensor, ε is total strain and εp is the plastic strain.

The problem weak form associated with the strong form (4.91) results in looking
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(a)

(b)

(c)

Figure 4.25 � Displacement �eld using: plate theory (a), minimally-intrusive fully
3D separated plate formulation (b), 3D FEM (c).
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Figure 4.26 � Out-of-plane stress tensor components around the hole using the
minimally-intrusive fully 3D separated plate formulation.
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Figure 4.27 � Out-of-plane stress tensor components in the z = 65mm plane using
the minimally-intrusive fully 3D separated plate formulation.
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Figure 4.28 � Out-of-plane stress tensor components around the hole for x = 146mm
and y = 97mm using the minimally-intrusive fully 3D separated plate formulation.
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Figure 4.29 � Out-of-plane stress tensor components around the hole using 3D FEM.
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Figure 4.30 � Out-of-plane stress tensor components in the z = 65mm plane using
3D FEM.
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Figure 4.31 � Out-of-plane stress tensor components around the hole for x = 146mm
and y = 97mm using 3D FEM.
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Figure 4.32 � Error of the enriched solution respect to the 3D solution for di�erent
number of modes.
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for the displacement �eld u verifying the initial and Dirichlet boundary conditions,

and ful�lling

ρ

∫
Ω

u∗ · ü dx +

∫
Ω
ε(u∗) · (C (ε(u)− εp(u))) dx =

∫
Ω

u∗ · g dx +

∫
ΓN

u∗ ·T(t) dx

(4.93)

for any test function u∗ in an appropriate functional space. We consider at time tj+1

the standard explicit time integration [Bathe 2006] (widely considered in commercial

codes) already presented in previous chapters and given by

ρ

∫
Ω

u∗ · u
j+1 − 2uj + uj−1

∆t2
dx +

∫
Ω
ε(u∗) ·

(
C
(
ε(uj)− εp(uj)

))
dx =∫

Ω
u∗ · gj dx +

∫
ΓN

u∗ ·Tjdx, (4.94)

or, by putting all the explicit terms at the right hand side,

ρ

∫
Ω

u∗ · uj+1dx = ρ

∫
Ω

u∗ ·
(
2uj − uj−1

)
dx−

∆t2
(∫

Ω
ε(u∗) ·

(
C
(
ε(uj)− εp(uj)

))
dx +

∫
Ω

u∗ · gj dx +

∫
ΓN

u∗ ·Tjdx
)
. (4.95)

Recalling (4.72) we can write

uj+1(x, y, z) = Vj+1 ◦Wj+1. (4.96)

Supposing the out-of-plane functions known, the left hand side term in (4.95) can

be expressed as

u∗Tuj+1(x) = Vj+1,∗T (x, y)Ĵj+1(z)Vj+1(x, y), (4.97)

where matrix Ĵj+1 reads

Ĵj+1
kl (z) = IklW

j+1
k (z)Wj+1

l (z), (4.98)

with I the identity matrix. Now, the integral results

ρ

∫
Ω

u∗ · uj+1 dz dx dy =

∫
Ωxy

Vj+1,∗T (x, y)Jj+1Vj+1(x, y) dx dy, (4.99)

with

Jj+1 =

∫
Ωz

Ĵj+1(z) dz, (4.100)

Integrating in the mesh Ωxy = ∪Ee=1Ωe
xy,∫

Ωxy

Vj+1,∗TJj+1Vj+1 dx dy =

E∑
e=1

∫
Ωexy

Vj+1,e∗TJj+1Vj+1,e dx dy, (4.101)
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Table 4.11 � Model parameters.

Hx: Length in the x direction (mm) 250
Hy: Length in the y direction (mm) 250
Hz: Length in the z direction (mm) 20
E: Young modulus (N/m2) 6.68 · 1010

ν: Poisson coe�cient 0.35
ρ: Density (kg/m3) 2700

where Vj+1,e(x, y) is approximated from

Vj+1,e(x, y) = N(x, y)Uj+1,e, (4.102)

with N(x, y) = [N1(x, y) N2(x, y) N3(x, y)], and

Ni =

 N e
i (x, y) 0 0

0 N e
i (x, y) 0

0 0 N e
i (x, y)

 . (4.103)

Thus, it results

E∑
e=1

∫
Ωexy

Vj+1,e∗TJj+1Vj+1,e dx dy =
E∑
e=1

Uj+1,e∗T

{∫
Ωexy

NTJj+1N dx dy

}
Uj+1,e

=

E∑
e=1

Uj+1,e∗TM j+1,e
xy Uj+1,e = Uj+1,∗TMj+1

xy Uj+1. (4.104)

The di�erent terms at the right hand side of (4.95) can be treated in a similar way,

as already explained for the static case, so that at each time step j the virtual work

principle reads

Uj+1,∗TMj+1
xy Uj+1 = Uj+1,∗TBj

xy. (4.105)

Remark 4. As for the static case, the in-plane functions determining the kinematics

can be obtained from a standard plate theory software by using the elementary mass

and forces given respectively by Mj+1,e
xy and Bj,e

xy .

Remark 5. Again the out-of-plane functions can be obtained in a similar manner

as already explained in the static case.

For evaluating the performances of the method we consider the problem de�ned

in Fig. 4.33. The geometrical and mechanical properties of the plate domain are

de�ned in Table 4.11 On the right boundary face of the domain (the blue zone in

Fig. 4.33) an horizontal traction is enforced, T = (2.7·108, 0, 0)N/m2 and on the op-
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Figure 4.33 � The elasto-plastic dynamical problem taken into consideration
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Figure 4.34 � Horizontal loading for the elasto-plastic dynamical problem.

posite face homogeneous Dirichlet boundary conditions are imposed. No volumetric

body forces are considered. For the sake of simplicity, we use the Von Mises crite-

rion [Mises 1913], assuming a Krupkowky isotropic hardening [Siser & Slota 2016]

given by the formula:

σ̄ = K
(
ε̄0 + ε̄p

)p
(4.106)

where ε̄0 = 0.008 is the initial equivalent plastic strain, ε̄p is the equivalent plastic

strain, K = 0.4619GPa is a strength coe�cient and p = 0.1 is the strain hardening

exponent [Wilkins et al. 1980]. The problem is solved in the time interval [0, 50]ms

with a time step ∆t = 10−4ms which ensures the stability of the explicit method. In

order to get the stationary solution, the traction is applied gradually as depicted in

Fig. 4.34 and a Rayleigh damping (proportional to the mass) is used. Figs. 4.35, 4.36

and 4.37 compares the solution obtained with the three methods at di�erent times.

For this problem the 2D solution is given by shell theory [Oñate 2010] as
u(x, y, z) = u0(x, y)− zθx(x, y)

v(x, y, z) = v0(x, y)− zθy(x, y)

w(x, y, z) = w0(x, y)

(4.107)
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Time = 0.1ms Time = 0.5ms

Figure 4.35 � Displacement �eld using the three methods for t = 0.1ms and t =
0.5ms.

where u0, v0 and w0 are the displacements of the points on the middle plane along x,

y and z respectively and the rotations θx and θy coincide with the angles followed by

the normal vectors contained in the planes xz and yz respectively in their motions.

Again the solution computed using the proposed method is able to get a 3D behavior

(as the one of the 3D FEM solution) with the striction along the thickness in the

zone with a smaller section, which is typical of a 3D plastic solution.

4.2.6 Conclusions

This second part of the chapter proposed a minimally intrusive formulation of me-

chanical problems (linear, elasto-plastic, static and dynamic) de�ned in separable

domains, enabling 3D solutions expressed as a �nite sum decomposition involving

the product of functions de�ned in the plane and in the thickness. The main contri-

bution of the present work is that the calculation of functions de�ned in the plane,

the most expensive computationally, can be ensured by a standard plate solver,
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Time = 1ms Time = 5ms

Figure 4.36 � Displacement �eld using the three methods for t = 1ms and t = 5ms.
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Time = 10ms Time = 30ms

Figure 4.37 � Displacement �eld using the three methods for t = 10ms and t =
30ms.
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whereas the solution of those de�ned in the thickness, de�ning 1D problems ex-

tremely simple and cheap, is externalized and ensured by a function called by the

plate solver.

The di�erent numerical examples prove the procedure e�ciency that allows com-

puting 3D solutions while keeping the computational cost the one characteristic of

standard 2D plate and shell calculations.
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Introduction Additive manufacturing is a mechanical process the more and more con-

sidered in industry, however e�cient simulation tools able to perform accurate predictions

are still quite limited. The main di�culties for an e�cient simulation are related to the

multiple scales, the multiple and complex physics involved, as well as the strong dependency

on the process trajectory. This chapter aims at proposing a simpli�ed parametric modeling

and its subsequent parametric solution for evaluating parametrically the manufactured part

distortion. The involved parameters are the ones parametrizing the process trajectories,

the thermal shrinkage intensity and anisotropy (the former depending on several material

and process parameters and the last directly depending on the process trajectory) and the

deposited layers. The resulting simulation tool allows evaluating in real-time the impact of

the parameters just referred on the part distortion, and proceed to the required geometrical

compensation. Moreover optimization, sensitivity analysis and uncertainty propagation can

also be performed.

This chapter and all the results presented in it correspond to the following paper:

• G. Quaranta, E. Haug, J.L. Duval, F. Chinesta, Parametric evaluation of part distor-

tion in additive manufacturing processes, International Journal of Material Forming,

12:1, 2019,

and to the following conference proceedings paper:

• G. Quaranta, E. Haug, J.L. Duval, E. Cueto, F. Chinesta, Parametric Numerical So-

lutions of Additive Manufacturing Processes, ESAFORM2019 Conference, AIP Con-

ference Proceedings, 2019 (in press).
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Figure 5.1 � One-parameter process trajectories

5.1 Parametrizing trajectories

Additive Manufacturing is an incremental process requiring the de�nition of the process

trajectory. In order to e�ciently evaluate the impact of the di�erent possible trajectories

on the part distortion, for optimizing or controlling the process, one should be able to

simulate in almost real-time the process, possibility that remains nowadays out of reach.

Alternatively one could create o�ine the parametric solution of the process, that is the

output of interest, the part distortion in our case, for any possible process trajectory. Thus,

the expensive o�ine calculation (the vademecum construction) will be largely compensated

by its online use in almost real-time, because only particularizations of the parametric

solutions are required.

In former works based on the Proper Generalized Decomposition method

[Chinesta et al. 2011, Chinesta et al. 2013b, Chinesta et al. 2014a, Chinesta et al. 2015,

Bur et al. 2016, Chinesta et al. 2014b] a panoply of di�erent type parameters µ1, . . . , µQ
were introduced as extra-coordinates in the model, leading to a parametric solution or

computational vademecums like

u(x, t, µ1, . . . , µQ) ≈
M∑

i=1

Xi(x)Ti(t)

Q∏
j=1

M j
i (µj), (5.1)

in order to compute parametric solutions of models representing complex processes, struc-

tures and systems. In that expression parameters µi can be material parameters, process

parameters (including initial and boundary conditions) and even parameters related to the

geometry.

Sometimes parameters are not discrete but continuous, for example material parame-

ters can evolve in space and/or time. In that case the solution retained was assuming an

appropriate parametrization of these �elds, and then including the coe�cients of those ap-

proximations as model parameters and consequently, within the PGD rationale, as problem

extra-coordinates.

This option was possible when the �eld describing the space and/or time evolution of

the parameters involved few terms, however in the case of a trajectory the situation is

radically di�erent because any two points P and Q, and independently on the distance

between them, can be joined by an in�nity of curves and then parametrizing a trajectory

has no sense. Thus, rather than looking for all possible trajectories, one must restrict to a

family of them.

To �x ideas we �rst consider the additive manufacturing process of a solid cuboid shape

and the addition of a new rectangular layer on its top surface. A family of trajectories, for

covering all its surface, could consist of straight lines parametrized by a single parameter,

e.g. the angle θ with respect to the rectangle base, as depicted in Fig. 5.1. However, such

a parametrization does not allow other usual process trajectories as the one illustrated in

Fig. 5.2.

A general approach consists in associating the trajectories to the iso-�eld curves φ = cte
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Figure 5.2 � Concentric-like trajectories

related to a certain parametrized partial di�erential equation involving the scalar �eld

φ(x, y). For that purpose we propose considering the Poisson equation de�ned in the rect-

angular domain Ω = (0, L)× (0, H)

∆φ(x, y) = s(x, y), (5.2)

with the parametrized Dirichlet boundary conditions
φ(x, y = 0) = µ1 + (µ2 − µ1) x

L

φ(x, y = H) = µ4 + (µ3 − µ4) x
L

φ(x = 0, y) = µ1 + (µ4 − µ1) y
H

φ(x = L, y) = µ2 + (µ3 − µ2) y
H

, (5.3)

that represent linear variations on each rectangle side, parametrized by the values at the

corners φ(0, 0) = µ1, φ(L, 0) = µ2, φ(L,H) = µ3 and φ(0, H) = µ4. When all these

parameters de�ning the boundary condition vanish, and the source term takes a unit value,

i.e. s(x, y) = 1, the solution iso-curves are expected representing concentric trajectories.

The parametric solution of this problem is easily computable because of its linearity,

and consequently the use of the standard constructor of PGD parametric solutions is not

compulsory. One must simply solve the following �ve boundary value problems:

∆φ1(x, y) = s(x, y), with s(x, y) = 0 & µ1 = 1, µ2 = µ3 = µ4 = 0, (5.4)

∆φ2(x, y) = s(x, y), with s(x, y) = 0 & µ2 = 1, µ1 = µ3 = µ4 = 0, (5.5)

∆φ3(x, y) = s(x, y), with s(x, y) = 0 & µ3 = 1, µ1 = µ2 = µ4 = 0, (5.6)

∆φ4(x, y) = s(x, y), with s(x, y) = 0 & µ4 = 1, µ1 = µ2 = µ3 = 0, (5.7)

and

∆φ5(x, y) = s(x, y), with s(x, y) = 1 & µ1 = µ2 = µ3 = µ4 = 0. (5.8)

Now, any other solution for any choice of parameters µ1, · · · , µ4 and µ5 = s(x, y) can

be obtained from

φ(x, y, µ1, · · · , µ5) = µ1φ
1(x, y) + · · ·+ µ5φ

5(x, y). (5.9)

Obviously richer parametrizations of the boundary conditions as well as of the source

term can be envisaged. Even other linear and nonlinear parametrized partial di�erential

equations could be adopted, where in the nonlinear case, where superposition fails, the usual

greedy PGD constructor should be considered for circumventing the curse of dimensionality.

Fig. 5.3 depicts di�erent scenarios, where parameters µ1, · · · , µ4 and µ5 = s(x, y)

are noted by P1, · · · , P5. The developed GUI application allows evaluating any possible

trajectory related to the problem de�ned above in almost real-time.
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Figure 5.3 � Trajectories for: (top-left) µ1 = 1, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 0;
(top-right) µ1 = 1, µ2 = 1, µ3 = 0, µ4 = 0, µ5 = 0; (middle-left) µ1 = 0, µ2 =
0, µ3 = 0, µ4 = 1, µ5 = 0; (middle-right) µ1 = 0.33, µ2 = 0, µ3 = 0.66, µ4 =
1, µ5 = 0; (bottom-left) µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0, µ5 = 1 and (bottom-right)
µ1 = 0, µ2 = 0.2, µ3 = 0.5, µ4 = 1, µ5 = 0.6. Dimensions: ×10cm.
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Figure 5.4 � Wired model for the installed residual stresses

5.2 A simpli�ed parametric thermo-mechanical model

In this section we address parametrized thermal shrinkage. Many simpli�ed AM simulators

consider that as soon as a layer or several layers are assumed deposited at a certain temper-

ature, from which the cooling process occurs, and being the thermal shrinkage constrained

by the already solid part, residuals stress are induced.

In this work, among the numerous possibilities we are assuming a wired model that

considers that thermal shrinkage follows the deposition trajectory as sketched in Fig. 5.4.

Thus, in the local system of coordinates, shrinkage strains are expected having the

expression

ε̃0(P) =

 λ 0 0

0 0 0

0 0 0

 . (5.10)

It is important to note that when the wired hypothesis is expected working inappro-

priately, one could consider a richer parametrization of the shrinkage strain tensor, coming

from an appropriate micro-to-macro upscaling modeling and assuming, in the most gen-

eral case, an expression containing six parameters (the six components of the symmetric

shrinkage strain tensor). In the general case the strain tensor could also depend on the

space coordinates. These spatial dependence will result from a micro-mechanical analysis

and will require a richer parametric expression by invoking the PGD rationale.

The global equilibrium requires expressing shrinkage strains, given at each point by

expression (5.10) in the local coordinate system related to the local trajectory, in the global

coordinate systems (x, y, z) depicted in Fig. 5.4. For that purpose we should consider the

rotation of it according to

ε0(P) = RT ε̃0(P)R, (5.11)

with R the rotation matrix. Shrinkage stresses would then be given by

σ0(P) = C ε0(P), (5.12)

where C is the Hooke's fourth order tensor.

It is expected that, when considering the model just described, shrinkage stresses depend

parametrically on the trajectory (that controls its anisotropy) and also eventually on space

from thermal couplings here ignored.

One could imagine the possibility of expressing the shrinkage tensor parametrically as

was the case for the trajectories. Thus, by noting σi(P) the shrinkage tensor related to the

parameters choice µj = δij , with δ the Kroneker delta, the thermal shrinkage tensor could

be expected expressing as
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Figure 5.5 � Shrinkage tensor interpolation issues

σ0(P;µ1, · · · , µ5) = µ1σ
1(P) + · · ·+ µ5σ

5(P). (5.13)

However, such a natural option fails because the limitations of tensor interpolations as

Fig. 5.5 illustrates.

For circumventing the just mentioned di�culties we proceed by expressing the rota-

tion matrix parametrically. For that purpose we proceed from the parametric trajectories

expression

φ(x, y, µ1, · · · , µ5) =

5∑
i=1

µiφ
i(x, y), (5.14)

whose normalized gradient de�nes the normal direction to the trajectory, according to

n =
∇φ
||∇φ||

, (5.15)

with

∇φ(x, y, µ1, · · · , µ5) =
5∑

i=1

µi∇φi(x, y), (5.16)

where the gradient of solutions φi(x, t) can be computed o�ine.

Now, the tangent vector t comes from the normality condition t · n = 0. These ex-

pressions allow determining the parametric expression of the rotation tensor and from it,

the one of the shrinkage tensor, by using the standard PGD technology, even if the com-

putation could be perfectly performed online in real-time without requiring precomputing

a parametric expression of expression (5.12).

Now, the virtual work principle, assuming without loss of generality small displacements

and strains, writes ∫
Ω

ε∗ : (σ − σ0) dx = 0, (5.17)

where without loss of generality surface and volume forces are neglected. This expression

applies for any kinematically admissible deformation ε∗, i.e. related to test displacements

vanishing in the part of the boundary of Ω where displacements are prescribed, in general

the bottom basis of the part.

It can be noticed from Eq. (5.17) that shrinkage acts as a volume force and consequently

in the resulting linear system (after discretization) it appears at the right-hand member,
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that can be expressed using the most usual notation as

KU = F(µ1, · · · , µ5). (5.18)

As soon as the problem is linear, K−1 can be computed and used for evaluating online the

parametric displacements according to

U(µ1, · · · , µ5) = K−1F(µ1, · · · , µ5). (5.19)

At this point it is important to make two observations:

• When considering nonlinear behaviors, in particular large strain / displacements,

the best option consists of applying directly the PGD rationale for computing the

parametric displacement �eld for each intermediate con�guration, i.e. number of

deposited layers, or applying the procedure just described operating at the discrete

level (Eqs. (5.18) and (5.19)) but decomposing the sti�ness matrix in a linear and

nonlinear parts, i.e. K = KL + KNL and proceeding until convergence within the

iteration scheme

Un(µ1, · · · , µ5) = K−1
L

(
−Kn−1

NL Un−1(µ) + F(µ1, · · · , µ5)
)
, (5.20)

with Un−1(µ) = Un−1(µ1, · · · , µ5).

• In all cases the linear and nonlinear matrices must be evaluated for di�erent stages of

the process, that is, for di�erent numbers of deposited layers. Thus, later, the number

of layers will be introduced as an extra-parameter in the parametric solution.

Fig. 5.6 depicts, for a given shrinkage intensity λ, for the �nal con�guration and for the

di�erent scenarios considered in Fig. 5.3, where parameters µ1, · · · , µ4 and µ5 = s(x, y) are

noted by P1, · · · , P5, the considered solid cuboid part distortion from its target geometry.

This GUI application allows evaluating distortions associated to any possible trajectory in

almost real-time.

5.3 Distortion compensation

As soon as the distortion is evaluated for a choice of the parameters, one could expect that

by applying that displacement �eld with opposite sign to the target con�guration, the �nal

geometry after shrinkage should almost correspond to the target geometry. For evaluating

this simple compensation procedure we consider again the part addressed in the previous

section and we evaluate its distortion for the parameters indicated in Fig. 5.7. Now, by

applying to the target geometry the opposite of the displacement �eld illustrated in Fig.

5.7, it results the geometry displayed in Fig. 5.8. Now, using the same process parameters,

the distorted part associated with the target geometry shown in Fig. 5.8 results in the one

displayed in Fig. 5.9.

In the just analyzed case the geometry ensured that the simplest compensation proce-

dure works perfectly, however this simple procedure could fail in more complex geometries.

In that case it is obvious that the fact of evaluating in real-time (almost instantaneously)

the displacement could allow to implement more sophisticated compensation algorithms

dialoging with our computational vademecum.
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Figure 5.6 � Parametric distortions for: (top-left) µ1 = 1, µ2 = 0, µ3 = 0, µ4 =
1, µ5 = 0; (top-right) µ1 = 1, µ2 = 1, µ3 = 0, µ4 = 0, µ5 = 0; (middle-left)
µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 0; (middle-right) µ1 = 0.33, µ2 = 0, µ3 =
0.66, µ4 = 1, µ5 = 0; (bottom-left) µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0, µ5 = 1
and (bottom-right) µ1 = 0, µ2 = 0.1, µ3 = 0.5, µ4 = 1, µ5 = 0.6. The depicted
mesh is only for visualization purposes, the one related to the calculations is �ner.
Dimensions: ×10cm. Displacements in cm.

Figure 5.7 � Distorted geometry for the indicated parameters de�ning the process
trajectory. Dimensions: ×10cm. Displacements in cm.
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Figure 5.8 � Compensated geometry. Dimensions: ×10cm. Displacements in cm.

Figure 5.9 � Distortion applying on the compensated geometry. Dimensions: ×10cm.
Displacements in cm.
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Figure 5.10 � Parametric distortions for µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0, µ5 =
1, λ = L = 0.5 and: (top-left) layers = 2; (top-right) layers = 4; (bottom-left)
layers = 7 and (bottom-right) layers = 11. Dimensions: ×10cm. Displacements in
cm.

5.4 Numerical results

In this section we are considering a quite more complex geometry and introducing two new

parameters into the parametric solution (computational vademecum): (i) the one related to

the thermal shrinkage intensity λ (noted in the GUI application shown later by L) and (ii)

the process progression, that is, the number of deposited layers.

Fig. 5.10 depicts the deformed geometry for four di�erent process stages where di�erent

number of layers were deposited. Here the only parameter that varies is the number of

layers. It can be noticed that the greater is the number of layers the higher is the distortion.

Fig. 5.11 shows the e�ect of the thermal shrinkage intensity, a certain value multiplied by

parameter L ≡ λ, from a null value for with distortions vanish to its highest value L = 1

exhibiting the largest distortions.

Moreover, in order to show how the PGD rationale can be used to compute the para-

metric solution, in Fig. 5.12 we compare the solution computed using the non-intrusive

PGD procedures, the Sparse Subspace Learning (SSL) method [Borzacchiello et al. 2017]

(some details about this method are given in Appendix A), and the solution computed using

3D �nite element for L = 1 and three di�erent combinations of the parameters related to

the deposition trajectories. The results between the two methods are in perfect agreement.

5.4.1 Geometry compensation

For evaluating in the present case study the compensation procedure, we evaluate its distor-

tion for the parameters indicated in Fig. 5.13. Now, by applying to the target geometry the

opposite of the displacement �eld illustrated in Fig. 5.13, it results the geometry displayed

in Fig. 5.14. Now, using te same process parameters, the distorted part associated with

the target geometry shown in Fig. 5.14 results in the one displayed in Fig. 5.15.
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Figure 5.11 � Parametric distortions for µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0, µ5 =
1, layers = 12 and: (top-left) L = λ = 0; (top-right) L = λ = 0.33; (bottom-left)
L = λ = 0.66 and (bottom-right) L = λ = 1. Dimensions: ×10cm. Displacements
in cm.

5.4.2 Optimization, sensitivity analysis and uncertainty propaga-

tion

We address now the use of the parametric solution with three di�erent purposes: (i) eval-

uating the parameters related to the deposition trajectories leading to the minimal part

distortion (in the range of parameters used for the parametrization); (ii) evaluating the

solution sensitivity to the di�erent parameters, and in particular to the ones related to

the deposition trajectory; and (iii) propagating the uncertainty related to the intensity of

the thermal shrinkage. The parameters µi, i = 1, · · · , 5, de�ning the deposition trajectory,

which de�ne the trajectory minimizing part distortion are computed with the Trust Region

Re�ective Algorithm [Branch et al. 1999]. That optimal solution is depicted in Fig. 5.16.

Fig. 5.17 depicts the derivative of the displacement with respect to parameters µ1 and µ5

for the parameters related to the optimal process leading to the part shown in Fig. 5.16.

Finally, if the thermal shrinkage intensity λ is assumed normally distributed (Fig. 5.18

(left)), the norm of the distortion becomes distributed as depicted in Fig. 5.18(right).

5.4.3 Qualitative validation

For a �rst qualitative validation we considered the deposition of a thin wall on a thin plate

with a prescribed null displacements at one of its lateral bases. Figs. 5.19-5.21 depict

the distorted structure for respectively di�erent shrinkage intensities, number of deposited

layers and process trajectories. Fig. 5.22 shows the experimental result when the process

is operated by using trajectories expressed by µ1 = µ2 = 1 and µ3 = µ4 = µ5 = 0.

5.5 Conclusions

This chapter presented a simpli�ed parametric modeling of distortions occurring in parts

manufactured by additive manufacturing. After having introduced a parametrization of the

process trajectories as the iso-values of a parametrized partial di�erential equation, thermal

shrinkage was expressed parametrically with respect to the process trajectory. Finally two
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(a)

(b)

(c)

Figure 5.12 � Comparison between FEM (left) and SSL (right) solutions for three
di�erent combinations of the parameters de�ning the trajectories.

Figure 5.13 � Distorted �nal geometry for the indicated parameters de�ning the pro-
cess trajectory. Dimensions: ×10cm. Displacements in cm.
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Figure 5.14 � Compensated geometry. Dimensions: ×10cm. Displacements in cm.

Figure 5.15 � Distortion applying on the compensated geometry. Dimensions:
×10cm. Displacements in cm.

Figure 5.16 � Optimal process minimizing part distortion.
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Figure 5.17 � Sensitivity analysis: Displacement derivative with respect parameter
µ1 (left) and µ5 (right).

Figure 5.18 � Uncertainty propagation related to the thermal shrinkage.

Figure 5.19 � Parametric distortions for µ1 = 1, µ2 = 1, µ3 = 0, µ4 = 0, µ5 =
0, layers = 8 and: (top-left) L = λ = 0; (top-right) L = λ = 0.33; (bottom-left)
L = λ = 0.66 and (bottom-right) L = λ = 1. Dimensions: ×10cm. Displacements:
×10cm.
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Dimensions: ×10cm. Displacements in ×10cm.

Figure 5.20 � Parametric distortions for µ1 = 1, µ2 = 1, µ3 = 0, µ4 = 0, µ5 =
0, λ = L = 1 and: (top-left) layers = 2; (top-right) layers = 4; (bottom-left)
layers = 6 and (bottom-right) layers = 8. Dimensions: ×10cm. Displacements:
×10cm.

Figure 5.21 � Parametric distortions for layers = 8, λ = L = 1 and: (top-left)
µ1 = 1, µ2 = 1, µ3 = 0, µ4 = 0, µ5 = 0; (top-right) µ1 = 1, µ2 = 0, µ3 = 0, µ4 =
0, µ5 = 0; (bottom-left) µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 0, µ5 = 0 and (bottom-right)
µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 0. Dimensions: ×10cm. Displacements:
×10cm.

Figure 5.22 � Experimental test (courtesy of J.Y. Hascoet at GeM Institute � Ecole
Centrale de Nantes)
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new parameters were introduced, the �rst controlling the shrinkage intensity and the second

the process progression, that is, the number of deposited layers.

The parametric solution was introduced into a GUI application able to evaluate the

e�ect of any parameter in almost real-time. Moreover, parametric solutions open an ap-

pealing route for geometry compensation. That parametric solution was also successfully

used with other three di�erent purposes: (i) evaluating the parameters leading to the min-

imal part distortion; (ii) evaluating the solution sensitivity to the di�erent parameters, and

in particular to the ones related to the deposition trajectory; and (iii) propagating the

uncertainty related to the intensity of the thermal shrinkage.

The numerical examples illustrate the e�ect of the di�erent parameters and even if

at present a quantitative validation requires additional e�orts (it constitutes a work in

progress), the �rst qualitative validation seems very promising.
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Introduction In this chapter a new concept for the simulation of mechanical processes

is proposed, a Cyber Physical System called Hybrid Twin, which is then applied to an RTM

process for the manufacturing of composite parts and to a dismantling process of a nuclear

central. The Hybrid Twin allows to introduce in the simulation of the process unexpected

events and evolutions induced by the real process and to use on line data collection for

predictive maintenance.

In the �rst section of the chapter the concept of Hybrid Twin is presented and in partic-

ular its two main components: the parametric physically-based model (whose parameters

will be updated on the �y from measurements) and the correction model. The next section

deals with the application of the Hybrid Twin to the two mentioned processes.

This chapter and some of the results presented in it correspond to the following confer-

ence proceedings paper:

• G. Quaranta, E. Abisset-Chavanne, F. Chinesta, J.L. Duval, A cyber physical system

approach for composite part: From smart manufacturing to predictive maintenance,

ESAFORM2018 Conference, AIP Conference Proceedings, 1960(1), 020025, 2018.

6.1 The Hybrid Twin system

A given physical system state can be characterized by a number of discrete (or discretized

continuous) variables X. Depending on the physics, X can contain temperature, velocities,

stresses, viscosity, etc. The system evolution is then described by the evolution of X from the

initial state X0 at time t0 to the current state X(t) at time t. In the numerical simulation,

this current state is predicted by integrating the rate of change Ẋ(τ), τ ∈ (0, t].

When the physics governing the physical system state evolution is well known and

established, the rate of change Ẋ(τ) can be expressed as

Ẋ(t,µ) = A(X, t;µ), (6.1)

where µ represents the set of parameters involved in the model and that have to be iden-

ti�ed o�ine or online by enforcing that the prediction �ts as much as possible to the

experimental measurements. Thus by integrating A(X, t;µ) predictions can be made. This
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integration can be performed by using standard numerical techniques (�nite elements, �-

nite di�erences, �nite volumes, spectral methods, meshless or meshfree techniques, ...).

However, as discussed in the previous chapters, these methods can not accommodate

real-time constraints required in many applications; in that cases model order reduction

techniques, in particular the Proper Generalized Decomposition, are used in order to pro-

vide real-time feedbacks and solve issues related to the parametric nature of the model

[Chinesta & Ladeveze 2014, Chinesta et al. 2015].

Moreover, in the context of process or system control, external actions are applied for

driving the model solution towards the given target. Thus, the state rate of change (when

ignoring noise) can be decomposed into two contributions:

Ẋ(t,µ) = A(X, t;µ) + C(t), (6.2)

where the term C(t) represents the control action.

A and C constitute the usual contributions of the numerical models used nowadays to

predict and control process and system evolution.

However, a non-negligible deviation is often noticed between the simulation predictions

and the real evolution acquired from collected data. The unbiased deviation contribution

is associated to modeling or measurement noise and is easily addressed by using adequate

�lters [González et al. 2017]. However, biased deviations express hidden physics and re-

quired a particular treatment. It is then proposed to introduce in the system evolution a

data-based deviation model, built on-the-�y directly from the deviation between the model

prediction X(t,µ) (with the optimal choice of the model parameters µ) and the collected

data. That allows then to write the fundamental system of an Hybrid Twin:
Ẋ(t,µ) = A(X, t,µ) + B(X, t) + C(X) + R

Y = D(X) + R′

Z = G(X) + R′′
(6.3)

expressing that the rate of change of the system state at time t contains the following main

contributions, that we sum up here:

1. A linear or nonlinear contribution, the so-called Parametric Reduced Model where

it is emphasized its parametric dependence on the set of parameters grouped

in vector µ, whose values result of the assimilated data Y. This contribu-

tion comes from the almost known physical mechanisms, described in a classi-

cal way (parametric partial di�erential equations) or in a data-driven framework

[Kirchdoerfer & Ortiz 2016, Ibáñez Pinillo et al. 2017]. In order to proceed fast (even

under real-time constraints) A(X, t,µ) can be expressed by a reduced model (within

the Proper Orthogonal Decomposition or Reduced Basis framework) or replaced by

a parametric solution within the PGD framework. In the last case the inclusion of

model parameters as extra-coordinates facilitates data-assimilation (i.e. online de-

termination of the model parameters from collected data) as well as data completion

(�eld reconstruction). This �rst-order contribution concerns an almost deterministic

model where eventually parameters could be stochastic. However, as soon as the

parametric solution is available, uncertainty can be e�ciently quanti�ed and propa-

gated.

2. A correction term B(X, t), that we called Data-Based Deviation Model, fully un-

known at the beginning, modeling the noticed gaps between prediction and mea-

surement. This term must be constructed on the �y from the collected data (mea-
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surements Z), by using for example machine learning techniques (data-mining, deep-

learning, manifold learning, ... for citing few) [Brunton et al. 2016, Kutz 2013] or

within a parametric form within the PGD framework by using the sparse-PGD

method [Ibáñez Pinillo et al. 2018].

3. Control actions are integrated in vector C(X) that mimics forcing inputs, depending

on the state X.

4. Finally, R represents a Brownian term that accounts for the remaining error in the

models or identi�ed parameters and that is usually described by Gaussian distribution

within the (linear or nonlinear) Kalman framework or a Bayesian/Fokker-Planck

framework.

As said, the �rst set of measures Y are useful to assess the validity of the �rst order term

and also to adapt dynamically the parameters that it involves, while the second set of

measures Z are needed to dynamically identify the adaptive term B (continuous learning).

Both measures should be collected at optimal locations (magic points when using the

terminology employed in the reduced basis community). Both measures are assumed to be

containing noise (usually Gaussian) contained in vectors R′ and R′′.

In the previous expression (6.3), the data-based contribution B(X, t) makes the di�er-

ence between digital twins (whose main characteristic is assimilating measurements provided

by sensors), and hybrid twins, the last combining a (well established and validated) physical

model and a data based model to represent the real system all along its life, adapting it to

any noticed deviation and keeping all its predictive capacity, necessary for control purposes

and real-time decision making.

6.2 Applications

In this section we present the construction and functioning of two simple hybrid twins:

the �rst one focuses on a Resin Transfer Moulding � RTM � process, the second one a

dismantling process of a a nuclear central. For the sake of simplicity, realistic complexity

has been sacri�ced in favour of description simplicity.

6.2.1 Hybrid Twin for an RTM process

The problem consists in �lling a square mold from its central point; an impermeable square

insert is placed in the right-upper zone in order to break the solution symmetry. The

experimental device is depicted in Fig. 6.1. The construction and the use of the two �rst

contributions of the hybrid twin - the physical (A) and the data-based (B) models - is now

described.

• First, the parametric solution of the �ow problem, related to the mold �lling pro-

cess, is computed o�ine. The chosen parameter is the preform permeability κ, that,

without loss of generality, is assumed constant and isotropic in the whole preform.

The parametric solution is constructed by coupling PAM-RTM (ESI Group, France)

and a non-intrusive formulation of the PGD constructor based on the Sparse Sub-

space Learning (SSL) method [Borzacchiello et al. 2017] (some details on the method

are given in Appendix A). Then, as soon as this parametric solution has been com-

puted o�ine, it can be particularized online almost in real-time, that is, all the �elds
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Figure 6.1 � Experimental set up. The square mold is �lled with an isotropic �brous
reinforcement and an impermeable square insert (black small square) is placed in the
right-upper corner.

(pressure, velocity, �lling factor, ...) are accessible for any possible value of the per-

meability. Fig. 6.2 depicts the �ow front at di�erent instants and for three di�erent

permeabilities.

• Then, by comparing the real �ow front (recorded with a camera) with the just

computed parametric solution, the e�ective permeability of the �brous preform

can be identi�ed. A classical inverse method, the Levenberg-Marquardt method

[Pujol 2007], has been used to compute the permeability that, inserted into the para-

metric model, allows the best �t between the predicted �ow front position and the

recorded one at di�erent �lling times. As soon as the permeability has been properly

identi�ed, and in absence of any perturbation, the simulated �lling process agrees in

minute to the one experimentally observed, as shown in Fig. 6.3.

• In the previous process stage, the permeability has been successfully identi�ed by

using the �rst images recorded by the camera. However, the simulations used to

build the parametric contribution assumes an homogeneous permeability, while, in

fact, a variation of permeability appears in the neighborhood of the mold boundary

due to the clamping system. Thus the simulation performed with A and the just

identi�ed permeability signi�cantly deviates from the measurement when �ow reaches

the regions where the permeability is reduced. Fig. 6.4(a) compares the predicted

solution with the one associated to the perturbed case. It can be noticed that, at the

beginning, predictions are in perfect agreement with measurements, but, when the

�ow reaches the region with lower permeability, signi�cant deviations occur.

• To tackle this issue, the data-based model B is introduced and constructed using, in

this example, dictionary learning (alternatively a PGD form of the correction could

be constructed by using the sparse-PGD method). To do so, a rich handbook of

snapshots is produced, called the dictionary. Then the identi�ed deviation, namely

the di�erence between the real �ow front position and the one predicted by A, is

projected on this dictionary. As soon as the dictionary contains elements able to

described the noticed �ow behavior, the deviation can be perfectly represented by
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Figure 6.2 � Particularizing the PGD-based mold �lling solution for three di�erent
permeabilities (low at the left, intermediate a the center and high at the right) at
three di�erent time steps (from top to bottom).
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Figure 6.3 � Identifying the �brous reinforcement permeability and comparing mea-
sured (left) and predicted (right) �ow front position at two time instants.

the data-based contribution B, as illustrated in Fig. 6.4(b), ensuring the model

predictability all along the �lling process.

6.2.2 Dismantling Hybrid Twin

The problem consists in the dismantling process of a nuclear central. An operator must

move in a room containing seven sources of emission (working points) located in di�erent

places, in order to reach one of the seven working points (target) by choosing the safest

trajectory (i.e. the trajectory in which he accumulates the least quantity of emissions), Fig.

6.5. The steps of the problem are now described.

• First, the parametric solution of the problem is computed o�ine. The solution is

composed of two parts: (i) any trajectory from the departure point (gate and 7

working points) to the destination (target) point, again the gate and the 7 working

points; (ii) any combination of intensities related to the 7 sources of emission. In

total a parametric solution (trajectories and the scalar �eld given by the sum of

all the emissions) involving 9 parameters is computed, Fig. 6.6. The trajectories

are computed as the streamlines of the scalar �eld solution φ(x, y) of the Poisson

equation de�ned in the domain Ω

∆φ(x, y) = s(x, y), (6.4)

with the condition ∫
Ω

φ(x, y) = 0, (6.5)
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(a) (b)

Figure 6.4 � Introducing a permeability reduction in the neighborhood of the mold
boundary and comparing measured (left) and predicted (right) �ow front position at
three time instants (top to bottom): (a) without introducing the data-based model
contribution and (b) introducing the data-based model contribution.

Figure 6.5 � The dismantling problem.
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Figure 6.6 � The parametric solution (trajectories and scalar �eld) involving 9 pa-
rameters: (i) any trajectory from the departure to the destination point, i.e. gate
and 7 working points (red box) (ii) any combination of intensities related to the 7
sources of emission (blue box).

(a) (b)

Figure 6.7 � Real-time particularization of the parametric solution: (a) change of
intensities of the sources of emission, (b) change of trajectories by changing the
destination point.

and where

s(x, y) =


1, if (x, y) = (xin, yin),

−1, if (x, y) = (xout, yout),

0, otherwise.

(6.6)

The solution streamlines are expected representing trajectories from the starting

point (xin, yin) to the destination point (xout, yout). The parametric scalar �eld

is constructed by coupling SYSTUS (ESI Group, France) and the SSL. Once this

parametric solution has been computed o�ine, it can be particularized online almost

in real-time, as shown in Fig. 6.7.

• As depicted in Fig. 6.8, the process starts when the operator (the green circle in the

�gure), who is equipped with sensors, enters into the room and from the expected

emissions (nominal data) he chooses the safest trajectory.
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Figure 6.8 � The Operator (greed circle) enters into the room, and from the nominal
data (expected emissions) trajectory 7 is selected (he does not know there is an
unexpected source, i.e. the value of the unexpected source is zero).

• However, after a while, he detects an unexpected high emission and he identi�es an

unexpected source (e.g. a pool of polluted water), Fig. 6.9. Here is where the hybrid

functionality comes out: the operator has to deal with a di�erent con�guration respect

to the expected one but he is able to construct a new model based on the di�erence

between the expected one and the measurements (data-driven model). Thus he selects

a safer trajectory, and he continues by moving along it, Fig. 6.10.

• However by collecting new data he discovers that the nominal data of the sources of

emission are not correct so that he updates the scalar �eld from the collected data,

Fig. 6.11. Here we can note the functionality of the parametric model which allows to

assimilate data and to update the parameters of the model from them (calibration).

Once the parameters have been updated the operators decides again to move to a

safer trajectory and he moves along it until reaching the destination point, Fig. 6.12.

The total accumulated dose is given by integrating the accumulate dose all along the

process.

6.3 Conclusions

In this work, a CPS called Hybrid Twin has been proposed and applied to composite

manufacturing and to a dismantling process. It is composed of these fundamental elements:

(i) a physically based model compressed as parametric solutions in order to achieve real

time parameters identi�cation, (ii) a dynamical correction constituted of a data-based model

built on the �y from the collected data, that allows to �ll the gap between the simulations

and the observations, (iii) measurements to calibrate the physically-based model and to

construct the data-driven model update, (iv) a control term able to lead the solution toward

the �nal target and (v) noise �lters.

The two applications show the e�cient of such a concept in order to detect discrepancies

between the measurements and the physical model based simulations and to correct them

on the �y.
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Figure 6.9 � An unexpected high emission is detected by the operator and an unex-
pected source (e.g. a pool of polluted water) identi�ed : Hybrid functionality (data-
based inverse identi�cation and construction of the model based on the data).

(a) (b)

Figure 6.10 � (a) A safer trajectory, trajectory 13, is selected by the operator. (b)
The operator moves along the new trajectory.
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Figure 6.11 � The collected data (the operator is equipped with sensors) allow cali-
brating the sources and the scalar �eld is updated from the collected data.

(a) (b)

Figure 6.12 � (a) By using the collected data the operator moves to a safer trajectory,
trajectory 18, further away from the hot region. (b) The operator moves along this
trajectory until reaching the destination point (pink circle).
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This thesis was devoted to the development of new techniques and simulation tools for real-

time monitoring and control by using model order reduction and data-driven techniques

with a twofold purpose.

First, model order reduction techniques, needed to manage with real-time constraints

compulsory in many applications, were used in order to improve existing digital twins.

The proposed simulation tools were developed at two di�erent scales: (i) the one of the

mechanical component, where, because of the importance the dynamical response has in

structural health monitoring, for which a new method was also presented in this thesis,

di�erent techniques to get parametric linear and nonlinear dynamical responses of metal

and composite plates were proposed; (ii) the one of the mechanical process, where the main

goal was to develop a simulation tool allowing real time calculation (and re-calculation) of

the predictions, optimization, parameters identi�cation, control and inverse analysis during

the process, which was then applied to an additive manufacturing process.

Second, we developed and applied the Hybrid-Twin concept at the scale of the

mechanical processes, where, by using data-driven modeling, we were able to �ll the gap

between the parametric deterministic solution, computed by using the digital twins, and

the measurements.

In Chapter 2 we proposed an e�cient technique for real-time evaluation of damage in

structures based on the combination of model order reduction with data-mining techniques.

Moreover, in order to avoid data collection on the whole structure, the methodology was

combined with a data-completion strategy based on the use of dictionary learning, allowing

for an accurate damage location. The numerical test performed proved the validity and

potential of the proposed approach that should be now validated experimentally.

In order to e�ciently compute the dynamical response of a system in Chapter 3 we

presented numerical techniques based on separated representation. First, we proposed a

new time discretization scheme for solving 3D dynamical problems de�ned in in plate-like

domains. The hybrid explicit/implicit in-plane-out-of-plane separated representation

computed e�ciently fully 3D solution without any kinematic hypothesis and where the

stability constraints were exclusively dictated by the coarser in-plane mesh size. Second, we

proposed an extension of the hybrid methodology combining harmonic and modal analyses

for treating nonlinear parametric dynamics. A parametric solution in the frequency

domain was derived which took into account di�erent model parameters. Preliminary

numerical results evidenced the potentialities of the proposed technique, while proving

its computational e�ciency. The inclusion of progressive damage models combined with

dynamical e�ects constitutes a work in progress, where the separated representations

seems an appealing option to better represent damage e�ects along the laminate thickness,

and where explicit time integrations are usually employed in industrial applications.

However, fully 3D solution computed employing the in-plane-out-of-plane separated

representation was revealed to be too intrusive for being introduced into existing commer-

cial software. For this reason in Chapter 4 we presented minimally-intrusive methods which
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allows integrating 3D descriptions in plate or shell models implemented in any software,

preserving the direct minimally-invasive coupling and without a�ecting its computational

2D complexity. First, an enrichment procedure able to address 3D local behaviors and

then a more general method able to deal with fully 3D descriptions were proposed. The

methods were �rstly developed in linear elastic settings and then successfully extended to

structures exhibiting inelastic behaviors and dynamics. Again the inclusion of damage

e�ects by using these non-intrusive methods constitutes a work in progress.

In Chapter 5 we proposed a simulation tool based on a simpli�ed parametric modeling

for evaluating parametrically distortions occurring in parts manufactured by additive

manufacturing. The computed parametric solution, which involves as parameters the ones

parametrizing the process trajectories, the thermal shrinkage intensity and anisotropy and

the deposited layers, was introduced into a GUI application able to evaluate the e�ect of

any parameter in almost real-time. Moreover the simulation tools also allowed to proceed

to the required geometry compensation and to perform optimization, sensitivity analysis

and uncertainty propagation. The �rst qualitative validation were very promising and the

works in progress consider a quantitative validation too.

Finally in Chapter 6 we introduced the new Hybrid Twin concept. By employing data-

driven modeling the gap between parametric deterministic solutions and the measured �elds

was �lled, opening new possibilities in the �eld of dynamic data-driven application systems.

The Hybrid Twin concept was successfully applied �rst to composite parts manufactured

from RTM process and second to a dismantling process of a nuclear central. Di�erent

methods for the construction of the data-driven model as well as for the data assimilation

can be employed and the exploration of these methods and the development of new ones

constitute an ongoing work as well as the application of the hybrid twin concept to structural

dynamics and additive manufacturing processes.
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Appendix A

The Sparse Subspace Learning

(SSL) method

When addressing a transient model involving the unknown �eld u(x, t) and a series of

parameters (p1, · · · , pp) , its separated representation reads

u(x, t, p1, · · · , pp) ≈
N∑
i=1

Xi(x) · Ti(t) ·
p∏

k=1

P k
i (pk). (A.1)

If we are only interested on the parametrical aspect of the unknown �eld the separated

representation can be written as

u(x, t, p1, · · · , pp) ≈
N∑
i=1

Xi(x, t) ·
p∏

k=1

P k
i (pk). (A.2)

The Sparse Subspace Learning (SSL) method [Borzacchiello et al. 2017] constructs the

parametric solution in the separated form A.2 in a non-intrusive way by using com-

mercial simulation softwares, circumventing the intrusivity of the standard PGD method

[Chinesta et al. 2014a]. We will suppose, for the sake of simplicity, that in the model there

is only one parameter µ ∈
[
µmin, µmax

]
so that A.2 reduces to

u(x, t, µ) ≈
N∑
i=1

Xi(x, t) ·Mi(µ). (A.3)

In the SSL method a hierarchical basis, providing nested collocation points and built-in

error estimators, is chosen for the parametric domain. In this work the Gauss-Chebychev-

Lobato points µj
i and the corresponding hierarchical Lagrangian interpolation polynomials

ψj
i (µ) are used where i and j indexes refer to the i-point and the j-hierarchical level. At

the �rst level, j = 0 the solution is computed, using for instance a commercial software, at

the two collocation points µ0
1 = µmin and µ0

2 = µmax, providing

u0
1(x, t) = u(x, t, µ = µ0

1), (A.4)

and

u0
2(x, t) = u(x, t, µ = µ0

2). (A.5)

The solution at level j = 0 is then approximated by using the two linear interpolation

functions

ψ0
1(µ) =

µ− µ0
2

µ0
1 − µ0

2

(A.6)

and

ψ0
2(µ) =

µ− µ0
1

µ0
2 − µ0

1

, (A.7)
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and it reads

u0(x, t, µ) = u0
1(x, t)ψ0

1(µ) + u0
2(x, t)ψ0

2(µ). (A.8)

At the next level, j = 1, the solution is computed at the collocation point µ1
1 = 0.5(µmin +

µmax) and it writes

u1
1(x, t) = u(x, t, µ = µ1

1). (A.9)

As the approximation at level j = 0 (A.8) computed in µ = µ1
1 already explained part of

the solution, we can de�ned the so-called surplus as

ū1
1(x, t) = u1

1(x, t)− u0(x, t, µ1
1). (A.10)

The surplus is the part of the solution for µ = µ1
1 not explained by the previous ap-

proximation, thus its norm is used as a local error indicator. Now de�ning the quadratic

interpolation function

ψ1
1(µ) =

(µ− µ0
1)(µ− µ0

2)

(µ1
1 − µ0

1)(µ1
1 − µ0

2)
, (A.11)

the approximation at level j = 1 reads

u1(x, t, µ) = u0(x, t, µ) + ū1
1(x, t)ψ1

1(µ). (A.12)

The process continues with the following hierarchical approximation levels by adding sur-

pluses until the norm of the surplus is small enough; this means that adding a new hier-

archical level would not contribute su�ciently to improve the solution and the process is

stopped. As it is possible to notice in (A.12) the solution computed using this method is

in the separated form (A.3), however it could contain too many terms. For this reason at

the end of the hierarchical process a post-compression is performed by applying the PGD

algorithm to the computed solution [Chinesta et al. 2014a]. So, if the SSL solution is given

by

u(x, t, µ) ≈
N∑
i=1

Xi(x, t) ·Mi(µ), (A.13)

the post-compression step computes a solution

ũ(x, t, µ) ≈
Ñ∑
i=1

X̃i(x, t) · M̃i(µ), (A.14)

with Ñ < N by solving the following equation with the PGD∫
Ωx×Ωt

∫
Ωµ

u∗(ũ(x, t, µ)− u(x, t, µ)) dµ dt dx. (A.15)

When more than one parameter is involved in the model, e.g. µ and θ, the j-level col-

location points and the corresponding hierarchical basis are given respectively by (µk
i , θ

l
e)

and ψk
i (µ)ξle(θ), with k+ l = j (Smolyak's rule). Here (µk

i , ψ
k
i (µ)) (respectively (θle, ξ

l
e(θ)))

correspond to the i (respectively e)-point of the k (respectively l)-hierarchical level for the

1D domain
[
µmin, µmax

]
(respectively

[
θmin, θmax

]
).
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Calculation of the plastic strain

increment

When a structure is loaded, elastic strains, ε, �rst appear and the relationship between

them and the stresses, σ, is given by the Hooke's law

σ = C ε, (B.1)

where C is the Hooke's fourth order tensor, or nonlinear elastic stress-strain relations.

Increasing the loading the material begins to yield and plastic strains develop. In plasticity

it is convenient to consider plastic strain in�nitesimal incremental dεp, so that the total

strain increment dε is assumed to be the sum of the elastic strains increment dεe and the

plastic strain increment dεp

dε = dεe + dεp. (B.2)

The plastic strain increment can be derived from a plastic potential g as

dεp = dλ
∂g

∂σ
. (B.3)

In the associated �ow rule, g is taken as the scalar yield function, that is de�ned as

f(σ,α) = 0, (B.4)

where σ contains the six independent stress components and α de�nes speci�c material

parameters. The yield function de�nes a surface in the stress space, so that when f < 0

the behavior is elastic and f = 0 de�nes the elastic limit. Thus, the state of stress is given

by a point either inside (elastic behavior) or on the yield surface (plastic behavior). In the

case of the Von Mises criterion and perfect plasticity we have

f(σ) = σe − σ0, (B.5)

where

σe =
[1

2
(σx − σy)2 +

1

2
(σy − σz)2 +

1

2
(σz − σx)2 + 3τ2

xy + 3τ2
yz + 3τ2

xz

] 1
2

(B.6)

and σ0 is the uniaxial stress at yield. Equation (B.3) can then be rewritten as

dεp = dλ
∂f

∂σ
= dλ∇f (B.7)

where

∇f =
[ ∂f
∂σx

, . . . ,
∂f

∂τxz

]T
(B.8)
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is the normal to the yield surface. As we said before, the yield surface de�nes the set of

maximal permissible stresses and the conditions for which plastic deformations can continue

to occur, that is as long as the stress point is located on the yield surface. These conditions

can be written as

f(σ + dσ) = f(σ) +∇fT dσ = 0, (B.9)

and as f(σ) = 0

df = ∇fT dσ = 0. (B.10)

This is the so-called consistency condition.

Now, from Hooke's law we have

dσ = Cdεe = C(dε− dεp) (B.11)

and by using (B.7)

dσ = Cdε− dλC∇f. (B.12)

Substituting (B.12) into the consistency condition (B.10) we get

∇fT
(
Cdε− dλC∇f) = 0, (B.13)

and solving for the scalar dλ one obtains

dλ =
∇fTCdε

∇fTC∇f
. (B.14)

In the case that isotropic hardening appears, the yield stress σ0 is a function of an equivalent

plastic strain εpeq and (B.14) reads as

dλ =
∇fTCdε

H +∇fTC∇f
, (B.15)

where H is de�ned as

H =
dσ0

dεpeq
. (B.16)

In the case of the Von Misses criterion we have that

dεpeq = dλ. (B.17)

The plastic strain in�nitesimal increment (B.7) is then computed as

dεp =
∇fTCdε

∇fTC∇f
∇f. (B.18)

and plastic strain �nite increment as

∆εp =
∇fTC∆ε

∇fTC∇f
∇f. (B.19)

More details about the plastic strain �nite increment computation can be found for example

in [Owen & Hinton 1980].
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Appendix C

Calculation of the out-of plane

functions in a minimally-intrusive

manner

We write the virtual work principle

ε∗Tσ = ε∗TCε

= {Θ1(x, y) ◦ F1∗(z) + Θ2(x, y) ◦ F2∗(z)}T {Cxy(x, y) ◦Cz(z)}
{Θ1(x, y) ◦ F1(z) + Θ2(x, y) ◦ F2(z)}

= F1∗T (x, y){Ĉ11
xy(x, y) ◦Cz(z)}F1(x, y) + F1∗T (x, y) {Ĉ12

xy(x, y) ◦Cz(z)}

F2(x, y) + F2∗T (x, y){Ĉ21
xy(x, y) ◦Cz(z)}F1(x, y) + F2∗T (x, y)

{Ĉ22
xy(x, y) ◦Cz(z)}F2(x, y). (C.1)

In the previous expression matrices Ĉij
xy(x, y) results

Ĉij
xykl

(x, y) = Cxykl(x, y)Θi
k(x, y)Θj

l (x, y), i, j ∈ [1, 2] & k, l ∈ [1, · · · , 6]. (C.2)

Now, the virtual work integral reads∫
Ωxy×Ωz

2∑
i=1

2∑
j=1

Fi∗T (z){Ĉij
xy(x, y) ◦Cz(z)}Fj(z) dz dx dy

=

∫
Ωz

2∑
i=1

2∑
j=1

Fi∗T (z)Pij(z)Fj(z) dz, (C.3)

where

Pij(z) = Cz(z) ◦
∫

Ωxy

Ĉij
xy(x, y) dx dy. (C.4)

Now, if we assume for instance an approximation based on piecewise linear interpola-

tions on the 1D �nite element mesh of Ωz = ∪Qq=1Ωq
z, with the shape functions de�ned by

Nq
i (z), i = 1, 2; q = 1, · · · , Q; it results

fx,q(z) = Nq
1 (z)fx,q1 +Nq

2 (z)fx,q2

fy,q(z) = Nq
1 (z)fy,q1 +Nq

2 (z)fy,q2

fz,q(z) = Nq
1 (z)fz,q1 +Nq

2 (z)fz,q2

(C.5)

Using that approximation we can express vectors Fi(z) in each element Ωq
z from

LqT = (fx,q1 , fy,q1 , fz,q1 , fx,q2 , fy,q2 , fz,q2 ), (C.6)
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and

Fi(z ∈ Ωq
z) = Ti,q(z)Lq, (C.7)

where Ti,q(z) contains the shape functions and theirs derivatives, according to the expres-

sions involved in the components of Fi(z), i = 1, 2. Thus, integral (C.3) reads

Q∑
q=1

Lq∗T


∫

Ωqz

2∑
i=1

2∑
j=1

Ti,qT (z)Pij(z)Tj,q(z) dz

Lq

=

Q∑
q=1

Lq∗TKq
zL

q = L∗TKzL. (C.8)

The virtual work (4.71) of the body forces can be expressed as

u∗Tg(x) = W∗T (z)Ô(x, y)H(z), (C.9)

where matrix Ô reads

Ôkl(x, y) = IklVk(x, y)Gl(x, y), (C.10)

with I the identity matrix. Now, the integral results∫
Ωxy×Ωz

u∗Tg(x) dz dx dy =

∫
Ωz

W∗T (z)OH(z) dz, (C.11)

with

O =

∫
Ωxy

Ô(x, y) dx dy, (C.12)

Integrating in the mesh Ωz = ∪Qq=1Ωq
z,∫

Ωz

W∗T (z)OH(z) dz =

Q∑
q=1

∫
Ωqz

Wq∗T (z)OHq(z) dz, (C.13)

where Wq(z) and Hq(z) are approximated respectively from

Wq(z) = S(z)Lq, (C.14)

and

Hq(z) = S(z)Mq, (C.15)

with Mq containing the nodal values of H(z) and S(z) = [N1(z) N2(z)], and

Ni =

(
Nq

i (z) 0

0 Nq
i (z)

)
. (C.16)

Thus, it results

Q∑
q=1

∫
Ωq

Wq∗T (z)OHq(z) dz =

Q∑
q=1

Lq∗T
{∫

Ωqz

STOS dz

}
Mq

=

Q∑
q=1

Lq∗TAq
zM

q =

Q∑
q=1

Lq∗TBq
z = L∗TBz, (C.17)
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from which, the principle of virtual works reads

L∗TKzL = L∗TBz. (C.18)

Thus, the out-of-plane functions determining the kinematics can be obtained from a stan-

dard 1D software by using the elementary rigidity and forces given respectively by Kq
z and

Bq
z considered in expression (C.8) and (C.17).
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