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Abstract
This thesis is dedicated to developing numerical methods to solve fluid–structure
interaction (FSI) problems. FSI features in a vast range of physical systems and has
a wide application in engineering. In the first chapter of this document we provide
a literature review on different numerical methods for FSI problems. The work of
this thesis is focused on the partitioned methods, mostly due to their modularity,
robustness and reliability. In a partitioned approach, separate solvers are used for
the fluid and structural sub–problem domains and a coupling method is devised
to account for their mutual interaction. Partitioned approach is preferred in this
work because it allows using the most adapted numerical methods for each sub–
problem domain, and also the use of previously–developed and optimized solver
codes. Moreover, the thesis is focused on FSI problems with strong added–mass effect,
which are more challenging to solve numerically. For such FSI problems, normally
an implicit partitioned method is used which enforces the coupling conditions on
the interface through coupling iterations between the fluid and structural solvers.
However, these methods are computationally expensive due to several coupling
iterations which require solving the fluid and structural problems several times per
time step. In this work we follow a semi–implicit approach to develop stable, efficient
and accurate numerical methods for FSI problems. In a semi–implicit method, the
fluid pressure term is segregated and strongly coupled to the structure via coupling
iterations. However, the remaining fluid terms and the geometrical nonlinearities are
treated explicitly. Strong coupling of the fluid pressure term provides for the stability
of the method in FSI problems with strong added–mass effect, while loose coupling
of the remaining terms reduces the computational cost of the simulations.

The work of this thesis could be divided into three major parts. In the first part,
we have developed a simple, efficient and robust semi–implicit coupling method for
FSI problems with strong added–mass effect. The proposed method is simple and
modular, as it is developed with the least possible mathematical and numerical com-
plications. An extensive set of numerical tests were carried out and the results were
compared both to literature data (numerical and experimental), as well as domestic
results obtained by using a fully–implicit coupling method. Results showed that the
proposed method considerably reduces the computational cost of the simulations
without degrading the stability or accuracy of the solution. Moreover, the robustness
of the method is demonstrated through numerical tests, as the method was shown to
remain stable, accurate and efficient for a wide range of FSI problems including ones
with very large deformations. Furthermore, in this part of the work, we have tried to
further analyze the semi–implicit methods in order to gain a better understanding of
several unaddressed issues concerning different aspects of these methods.

The second major part of this thesis is focused on the temporal accuracy of the
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semi–implicit coupling methods for FSI problems. The semi–implicit methods in
the literature appear to be only first–order in time. Most semi–implicit methods rely
on using a projection method for the fluid equations (in order to segregate the fluid
pressure term), while extending the temporal accuracy of the projection methods
is not straightforward. Moreover, mesh–conforming FSI solution methods require
solving the ALE form of the Navier–Stokes equations on a moving mesh, which
does not necessarily preserve the order of accuracy of the method on a fixed grid.
Furthermore, if the FSI coupling technique is not properly designed, the second-order
accuracy for the coupled problem is not guaranteed, even though each sub–problem
possessed such accuracy. In this work, we have proposed a second–order time
accurate semi–implicit method for FSI problems and demonstrated its second–order
accuracy through rigorous numerical tests. For this purpose we have taken four
steps; i) presented an incremental projection method and discretization in time that
actually yields second–order accuracy for fluid pressure and velocity, ii) derived
specific projection–consistent boundary conditions for all fluid boundaries including
the interface with the solid, iii) developed an ALE scheme on a moving grid and
evaluated the arisen geometrical terms with second–order accuracy and, iv) properly
coupled the fluid and structural solvers in order to retain the second–order accuracy
for a coupled nonlinear FSI problem. The resulting method was shown to deliver
second–order accuracy for all the variables of interest in realistic FSI test cases.

The last major part of this thesis is concerned with computational efficiency and
parallel scalability of the developed methods for numerical solution of complex FSI
problems on massively–parallel machines. We have presented a scalable parallel
framework for partitioned solution of FSI problems through multi–code coupling.
Following a partitioned approach, we have used preexisting solver codes for each
sub–problem and efficiently coupled them on the common interface. Two instances
of our in–house software is used to solve the fluid and structural sub–problems. The
communication between the single–physics solvers are carried out using an external
coupling library. The semi–implicit methods developed in the previous parts of
this thesis are used in the proposed framework. The parallel implementation of the
coupled framework, different levels of communication (intra-solver and inter-code),
and load balancing between the solvers are presented and analyzed. Both fluid and
structural solvers use distributed–memory parallelism and all the communications
are point–to–point and non–blocking. Inside each single–physics solver, the load is
balanced by dividing the computational domain into fairly equal blocks for each pro-
cess. In addition, a load balancing model is used in the inter–code level to minimize
the overall idle time of the processes. Practical test cases in the context of biological
flow (blood flow inside deformable vessels) are solved and the parallel efficiency and
scalability of the coupled framework are demonstrated.
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c fluid ALE convective velocity
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I the unity tensor
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J determinant of material deformation tensor
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2 Nomenclature

ρs structural density
µs Lamé’s parameter
λs Lamé’s parameter
ν Poisson ratio
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b related to boundary
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Introduction

This thesis is aimed at developing novel numerical methods to solve systems includ-
ing the interaction of a fluid flow and an structure. In this chapter we present an
introduction to fluid-structure interaction (FSI) problems and the numerical method
to solve them. The chapter includes an extensive literature review on different nu-
merical methods for FSI problems. The scope, objectives and the outline of the thesis
are presented at the end of this chapter.

1.1 Fluid-structure interaction problems

Fluid-structure interaction refers to problems with bilateral interaction between a
fluid flow and a moving or deforming structure. Fluid flow exerts surface forces on
the structure which causes its movement or deformation. The movement of the solid
boundary, in return, alters the flow field. Therefore, there is a mutual interaction
between the fluid and the structure which couples them on their common interface.

A very wide range of applications is cited for FSI, ranging from civil engineering
to biomechanics. An interesting example of FSI application in biomedical engineering
is simulation of blood flow inside deformable vessels in human arterial system
(e.g. [1–7], see figure 1.1(Left)). The simulations may help improving the quality
of artificial blood vessels and predicting the rupture of aneurysms during specific
medical treatments or surgeries. A thoracic aortic aneurysm, as an example, is a
weakened and dilated area in the upper part of the aorta above the diaphragm. It
grows by the patient’s age and its rupture could pose a life risk to the patient. The
condition is defined as the dilatation of the aorta by more than 50% [8]. The aneurysm
is normally treated by surgery or endovascular repair, depending on the level of
the rupture risk [9]. Therefore, understanding the process of formation, growth and
rupture of the aneurysms has a great clinical value. Considering the flexibility of the
vessels and the coupled FSI problem is necessary to accurately analyze the aneurysm
and predict its rupture risk. The FSI problem in aneurysm is studied, among others,

3



4 §1.1 Fluid-structure interaction problems

in [2–4, 6].
Another interesting example of FSI application in biomedical engineering is

simulation of blood flow passing through the heart valves (e.g. [10–17], see fig-
ure 1.1(Right)). The movement of the valve leaflets depend on the blood flow and the
pressure gradient over the leaflets, creating a coupled FSI problem. There are many
diseases that could affect the proper functioning of the heart valves (both aortic and
mitral valves). In severe cases, the heart valve might be completely replaced by an
artificial prostheses valve. Various mechanical heart valve designs have been devel-
oped in the past year. Evaluating the performance and reliability of such artificial
valves requires a proper understanding of the complex flow field and the interaction
of the leaflets with the flow.

Figure 1.1: Applications of FSI in biomedical engineering. Left: blood flow inside a cerebral
aneurysm (figure from [1]); Right: blood flow passing through the heart valve (figure from [13]).

Application of FSI in civil and marine engineering includes predicting the vortex-
induced vibration (VIV) of elastically mounted rigid bodies (e.g. [18–26], see fig-
ure 1.2). VIV is an important phenomena in submerged structures in offshore engi-
neering (e.g. pipes, risers, mooring lines, etc.). Structures subject to wind may also
experience VIV (e.g. chimneys, bridge suspension cables, power transmission lines,
etc.). Evaluating the life-time of such structures and the fatigue damage requires
understanding the undergoing VIV phenomenon. VIV effects must be considered in
the design of many offshore structures to assure their proper functioning.
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Figure 1.2: Vortex–induced vibration in submerged structures. Top: an schematic offshore
structure; Bottom: VIV of an elastically mounted cylinder (figure from [25]).

The vast application of FSI in different scientific and engineering disciplines
demonstrates the importance of this class of problems. A great effort has been
made by the research community during the last decades to better understand the
underlying phenomena in FSI problems and to be able to appropriately predict the
behavior of the systems involving such phenomena. Numerical studies account for
a significant part of the works aimed to understanding FSI problems, along with
experimental and analytical studies. In the following, a review of different numerical
methods used to solve FSI problems is presented.

1.2 Numerical methods for FSI problems

Numerical simulation is a strong tool to study physical systems and analyze and
improve engineering designs. They are often preferred to experimental analyses due
to their lower cost, simpler conduct and extensive testing possibilities. Numerical sim-
ulations have become even more popular thanks to the rapid growth in computational
power that permits studying increasingly larger and more complex systems.

Accurate mathematical models and reliable numerical methods are required in
order to simulate complex physical systems on a computer. The accuracy of the
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simulations would depend on the accuracy of the mathematical model used for
modeling the physical phenomena and the precision of the numerical methods used
to solve the mathematical equations. Moreover, numerical stability is another issue
that must be considered, as the accumulation of the computer round-off errors might
become unbounded and cause the instability of the solution. With all in mind,
developing stable and accurate numerical methods to solve complex physical systems,
e.g. FSI problems, is a challenging task which has been receiving an extensive attention
from the research community.

In an FSI problem, the physical laws governing the fluid flow and structural
displacement remain in force in their respective domains, along with new conditions
which are physical consistency and equilibrium on the interface. Therefore, any FSI
problem could be seen as a three-part problem, a fluid sub-problem domain where
the fluid equations govern, a solid sub-problem domain with the structural governing
equations, and a common boundary or interface where the equilibrium conditions
hold.

Broadly, there are two approaches to solve FSI problems which are called mono-
lithic and partitioned methods. In a monolithic approach the fluid and structural
equations are solved simultaneously as a single system of equations. Therefore, the
equilibrium conditions on the interface and the interaction of the domains are inher-
ently taken into account. Examples of monolithic methods could be found in [2,27,28].
Partitioned methods, on the other hand, use separate solvers for fluid and structural
equations and adopt a coupling scheme to account for the interaction of the domains.
The coupling scheme determines the order and frequency in which the fluid and struc-
tural equations should be solved. It also determines the manner of communication
and information exchange between the two solvers which is essentially restricted to
the fluid-structure interface. Examples of partitioned methods could found in [29–32].
Recent review articles on partitioned methods could be consulted in [33, 34].

The main advantage of the monolithic approach is the elimination of the need
for any further coupling technique at the fluid-structure interface, which reduces the
complexity of the problem. In contrast, coupling the fluid and structural solvers in a
partitioned approach introduces a new and challenging aspect to the problem with
many issues to consider. In some applications, this fact may give a great superiority
to the monolithic methods. On the other hand, partitioned approach allows using
the most-adapted and well-validated numerical numerical methods for each sub-
problem. These methods are previously tested and verified on diverse cases which
greatly increases the reliability of the FSI simulations. Conversely, the monolithic
approach normally requires using the same numerical methods to discretize and
solve the fluid and structural equations, while they possess different mathematical
properties and have their own specific considerations. This may cause monolithic
methods to be less reliable or less optimized in some applications [33, 34]. Another
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important advantage of the partitioned approach is its ability to use the heritage codes,
i.e. previously developed fluid and structural solvers, which saves a large software
development effort and increases modularity of the code. On the contrary, monolithic
approach generally requires a large software development effort and usually results
in a less modular solver [33, 34]. Based on the above discussion, it is evident that both
monolithic and partitioned methods have their own merits and drawbacks. In this
work we will focus on the partitioned methods as we would like to use specific (and
optimized) numerical methods for each sub-problem and we are eager to utilize our
previously-developed in-house solvers.

As explained above, the partitioned approach treats the FSI problem as two sub-
problems (the fluid and structural problems) which are coupled on the common
interface through equilibrium conditions (the kinematic and dynamic equilibrium).
In a partitioned method, the equilibrium conditions on the interface are applied
as boundary conditions on each sub-problem, through a decomposition method.
Dirichlet-Neumann decomposition is a classical and widely used method in parti-
tioned solution of FSI problems (see e.g. [35–37]). The name of the method indicates
that a Dirichlet boundary condition (coming from kinematic equilibrium) is used
for the fluid equations and a Neumann boundary condition (coming from dynamic
equilibrium) for the structure. Therefore, the fluid equations are solved for a known
displacement of the solid, while the structural equations are solved for a known stress
on the interface. This is a simple decomposition and it is consistent with the most
common numerical methods for fluid and structural equations. There is a more recent
class of Robin-based decomposition methods that use a Robin boundary condition for
the fluid and either a Robin or Neumann boundary condition for the structure [38–40].

Partitioned methods could be further divided into explicit (or loosely coupled)
and implicit (or strongly coupled) schemes. In an explicit coupling method, the
fluid and structural equations are solved in sequence and only once at every time
step. Consequently, explicit methods do not satisfy the exact coupling condition
at the fluid-structure interface. The most basic explicit scheme is the conventional
serial staggered method [41]. Implicit methods, in contrast, enforce the equilibrium
condition at the interface by means of coupling iterations between the fluid and
structural solvers at each time step. Fixed-point (Gauss-Seidel or Jacobi) iterations [30,
33] and Newton-based methods [36, 42–45] are the most commonly used techniques
to carry out the FSI coupling iterations. Vector extrapolation methods have also been
used for this purpose [46]. The execution of the fluid and structural solvers could
be staggered (sequential) or parallel (simultaneous). Staggered methods are very
common, although they have a very limited computational efficiency when used on
a multi–node cluster, due to a severe load imbalance [32, 47]. This is a very serous
drawback, considering that practical FSI problems are computationally demanding
and often need to be run on massively parallel machines. Parallel execution with
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fixed-point iterations normally does not show a good performance, while parallel
execution together with a quasi-Newton method result in a very efficient and robust
method [32, 45, 47].

Explicit methods work well for aeroelastic simulations and problems involving
compressible flows [29, 48]. However, used along with a classical Dirichlet-Neumann
decomposition, explicit methods are unstable for a wide range of problems, especially
ones with an incompressible flow, slender domain and low solid/fluid density ratios
(similar density of fluid and solid). The instability happens regardless of the time
step size or specific discretization of the equations at each sub-problem domain.
It is inherent to the coupling method and is often called added-mass effect or added-
mass instability. The instability rises due to the fact that fluid forces in the explicit
coupling depend upon a predicted displacement of the structure, rather than the
correct one. As the structure moves, it has to accelerate the bulk of the fluid around it
as well. Thus, part of the fluid acts as an extra mass in the structural dynamics system,
which has given rise to the name added-mass effect. This effect is particularly strong
when densities of the fluid and the structure are similar. For any loosely coupled
method there is a limiting density ratio, beyond which the method would suffer
from instability issues [49, 50]. While the added-mass effect causes instability in the
loosely coupled schemes, it deteriorates convergence of the strongly coupled methods.
Therefore, a FSI problem with strong added-mass effect is also challenging for implicit
methods, as it requires many coupling iterations to converge at each time step [49, 50].

Implicit methods provide stable solution for FSI problems with strong added-mass
effect, of which explicit methods are incapable. However, their computational cost is
generally high due to the repetitive solution of the governing equations at each time
step [33, 34]. The applicability of strongly-coupled methods are often limited by their
high cost. There has been many attempts to stabilize explicit coupling methods [51,52].
However, these stabilized explicit methods normally require solving a separate (and
new) set of equations on the interface which reduces the modularity and robustness
of the method and deteriorates the accuracy of the solution (particularly in the
vicinity of the common interface). Robin-based methods are gaining popularity as
they allow a loosely-coupled and yet added-mass-free FSI coupling. The structural
inertia term is usually included in the Robin boundary condition for fluid equations
which eliminates the added-mass instability (see e.g. [53, 54]). However, they require
using an especial fluid solver capable of handling such a Robin boundary condition.
Therefore, they might not be readily usable with some of the most common fluid
solvers.

A very interesting approach to tackle the problem of unstable-explicit or costly-
implicit coupling methods was proposed by Fernández et al. [55], and called semi-
implicit FSI coupling. In this technique, a fractional-step (projection) method was used
for fluid equations and only the projection step was strongly coupled to the structure.
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This way the fluid pressure term and the structural deformation were strongly coupled
while fluid convective and diffusive terms as well as the geometrical nonlinearities
(the moving mesh) were treated explicitly [55]. Therefore, the main aspect of a semi-
implicit coupling method is that the fluid pressure term is segregated and strongly
coupled to the structure, while the remaining fluid terms are only loosely coupled. It
is argued that the fluid pressure term is the main contributor to the added-mass effect
and its explicit coupling would cause instability issues [49]. Strong coupling of the
fluid pressure term in a semi-implicit method avoids added-mass instability while
loose coupling of the remaining fluid terms avoids excessive computational cost [55].
Thus, semi-implicit methods maintain the favorable stability of the implicit methods
while reducing the computational cost. Segregation of the pressure term could be
naturally achieved by using a classical Chorin-Temam projection method [56] or
potentially by any other pressure splitting scheme.

A similar semi-implicit method was proposed by Breuer et al. [57, 58] where the
geometrical nonlinearities are also coupled implicitly. Astorino et al. [59] improved the
stability of the method in [55] by using a specific Robin treatment of the explicit part
of the coupling derived from Nitsche’s method. An analogous idea is present in the
hybrid monolithic-partitioned method of Grétarsson et al. [60] for FSI problems with
compressible flow. It strongly couples the fluid pressure and solid velocity by solving
them implicitly in a monolithic manner, while the remaining terms are loosely coupled
in a partitioned manner [60]. Other similar semi-implicit methods are presented in [61–
63] which use a characteristic-based split (CBS) scheme instead of Chorin-Temam
projection method. Similar explicit-implicit splitting of the coupling is proposed
in [64,65] using algebraic splitting methods instead of differential ones. These methods
are based on inexact factorization of the matrix obtained after discretization of the
equations in space and time. Methods in [64, 65] permit using accurate algebraic
splitting methods that do not have differential counterparts (e.g. [66, 67]).

It should be noted that these semi-implicit methods are somehow different from
the methods in [68–70]–which are also sometimes called semi-implicit. In the methods
in [68–70], the location of the interface is treated explicitly (extrapolated in time)
and the fluid mesh is moved once in a time step, however, the fluid and structural
equations are solved completely at each coupling iteration (i.e. only the geometrical
nonlinearities are treated explicitly). In fact, these methods could be called strongly
coupled techniques on a frozen mesh.

1.3 Objectives of the thesis

Semi-implicit FSI coupling approach seems to be a promising technique for accurate
and cost-optimized solution of complex FSI problems. Despite receiving attention
from the research community, semi-implicit coupling techniques are far from perfect.
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Many of the reported methods in the literature lack modularity and simplicity. More-
over most of the reported methods are only tested in a specific type of FSI problems
and their robustness in dealing with different types of FSI problems is not evaluated.
Besides, there are many unaddressed questions concerning different aspects of the
semi-implicit coupling methods that require more work and attention. Moreover, the
semi-implicit methods in the literature all seem to be only first-order accurate in time.
Extending these methods to higher order accuracy seems a significant improvement
that was not accomplished. Furthermore, these methods have mostly been used
previously to solve small benchmark test cases, using very few processors or even in
serial configuration. Scalable and efficiently parallel methods for FSI problems using
semi–implicit coupling approach are missing from the literature.

In this Thesis, we focus on the semi–implicit partitioned approach to develop
accurate, robust and efficient techniques for numerical solution of FSI problems
with strong added-mass effect. We also try to address some of the open questions
concerning semi-implicit methods. The main aspects in which the present work
improves the existing methods are as following:

• Simplicity: The present methods are developed with the least possible mathe-
matical and numerical complications. This results in techniques which are easy
to follow and simple to implement.

• Modularity: Different components of the present methods could be flexibly
separated and recombined, offering a great degree of modularity.

• Accuracy: The present methods improve the accuracy of the existing semi–
implicit techniques. Particularly, we have extended the temporal accuracy of the
semi–implicit methods to second–order. Moreover, we have evaluated the effect
of different alterations on the overall accuracy of the semi–implicit methods.

• Robustness: We present methods that remain stable, accurate and efficient for a
wide range of FSI problems, including ones with very large deformations and
ones with very strong added–mass effect.

• Computational efficiency: The proposed coupling techniques along with the
choices for numerical schemes and discretization, result in fast and efficient
overall methodologies.

• Parallel scalability: We present a highly efficient and scalable framework to
solve complex FSI problems on massively–parallel machines.

We believe this thesis significantly contributes to the development of an important
class of numerical methods for fluid–structure interaction problems. It also helps
to better understand different numerical aspects of these methods and their effect
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on the accuracy and efficiency of the overall techniques. Moreover, we demonstrate
the capability of the proposed methods to solve real–life complex FSI systems on
massively–parallel machines.

1.4 Outline of the thesis

This thesis is organized in six chapters. The first chapter provides an introduction and
an extensive literature review on numerical methods to solve FSI problems. The main
contributions of this research work are presented in three main chapters (chapters 2-4).
These chapters are self–contained and could be read on their own, without the need to
read the complete document. Each chapter contains a short introduction that aims to
highlight the contribution of the chapter and put it in the right context by reviewing
related works in the literature. The content of each main chapter is published as
original research articles in international journals and presented in different scientific
conferences. The last two chapters provide, respectively, concluding remarks and
possible future works.

Chapters 2 to 4 present the main contributions of this thesis. Chapter 2 represents
a simple, efficient and robust semi-implicit method for FSI problems with strong
added-mass effect. A through numerical analysis is carried out to verify the accuracy
of the method by comparing its results against experimental data and other numerical
results from the literature. Numerical test cases are chosen to be widely distinct in
order to evaluate the robustness of the method. The accuracy and computational
cost of the method is also compared to a fully-implicit method. Moreover, the ef-
fect of implicit or explicit treatment of the geometrical nonlinearities on the overall
performance and accuracy of the developed method is studied. Besides, both fixed-
point and Newton methods are used to solve the coupled interface problem and a
comparison is made on their performance.

Chapter 3 represents a semi–implicit FSI method with second–order accuracy in
time. It includes presentation of an incremental projection method and temporal
discretization that actually yields second-order accuracy for fluid pressure, as well
as velocity. Specific projection–consistent boundary conditions are derived for fluid
boundaries including the interface with solid. An ALE scheme is developed on a
moving domain and the associated geometrical terms are evaluated with second–
order accuracy. The fluid and structural solvers are properly coupled in order to retain
the second–order accuracy for a coupled nonlinear FSI problem. The second–order
accuracy of the method for realistic FSI problems is demonstrated through rigorous
numerical tests.

Chapter 4 represents a scalable framework for partitioned solution of FSI problems
on massively–parallel machines. The framework is developed through multi–code
coupling, taking advantage of the previously–developed optimized solver codes
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for the single–physics domains. Semi–implicit methods developed in the previous
chapters are used for the proposed framework. The communication between the
single–physics solvers are carried out using an external coupling library. The parallel
implementation of the coupled framework, different levels of communication, and
load balancing between the solvers are described. Practical FSI test cases are studied
and the scalability of the coupled framework is evaluated.

Chapter 5 summarizes and concludes the thesis, while chapter 6 contains sugges-
tions for future works.

1.5 Background of the research group

This work was conducted in the Heat and Mass Transfer Technological Center (CTTC),
at the Universitat Politècnica de Catalunya. CTTC was created in the 1990s, with
research focus on mathematical modeling and numerical solution of fluid dynamics
and heat transfer phenomena, complemented with experimental research for their
validation. The main objective of the research work at CTTC is developing efficient
fluid and thermal systems and equipments.

In the early 2000s, the simulation tools developed within the group were joined
and generalized to create the CFD software package called TermoFluids [71]. Ter-
moFluids is a robust general–purpose software for fluid and heat transfer problems,
using state-of-the-art methods for turbulent flow [72,73], multiphase flow [74,75] and
complex thermal systems [76, 77], with a high computational efficiency and parallel
scalability [78–80].

The methods and tools developed in this thesis have been incorporated into the
TermoFluids software. Equally, many tools developed previously inside TermoFluids,
have been used for this work.

1.6 Related publications

The material of this thesis have appeared in the following publications:

• A. Naseri, I. Gonzalez, A. Amani, C. D. Pèrez-Segarra and A. Oliva, “A second-
order time accurate semi-implicit method for fluid-structure interaction prob-
lems,” Journal of Fluids and Structures, Vol. 86 (2019), 135–155.

• A. Naseri, O. Lehmkuhl, I. Gonzalez, E. Bartrons, C. D. Pèrez-Segarra and
A. Oliva, “A semi-implicit coupling technique for fluid-structure interaction
problems with strong added-mass effect,” Journal of Fluids and Structures, Vol.
80 (2018), 94–112.
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• A. Naseri, I. Gonzalez, A. Amani and C. D. Pèrez-Segarra, “Second-Order Semi-
Implicit Partitioned Method for Fluid-Structure Interaction Problems,” In 7th
European Conference on Computational Fluid Dynamics, Glasgow, UK, June
2018.

• A. Amani, A. Naseri, C. D. Pèrez-Segarra and A. Oliva, “A Method for Fluid-
Structure Interaction Problems with Non-Newtonian Fluid,” In 7th European
Conference on Computational Fluid Dynamics, Glasgow, UK, June 2018.

• I. Gonzalez, A. Naseri, J. Chiva, J. Rigola and C. D. Pèrez-Segarra, “An enhanced
finite volume based solver for thermoelastic materials in fluid-structure coupled
problems,” In 6th European Conference on Computational Mechanics, Glasgow,
UK, June 2018.

• I. Gonzalez, A. Naseri, J. Rigola, C. D. Pèrez-Segarra and A. Oliva, “A fluid-
structure interaction solver for the fluid flow through reed type valves,” In IOP
Conference Series: Materials Science and Engineering, vol. 232, no. 1, p. 012032.
IOP Publishing, 2017.

• I. Gonzalez, O. Lehmkuhl, A. Naseri, J. Rigola, and A. Oliva, “Fluid-structure
interaction of a reed type valve,” In 23rd International Compressor Engineering
Conference at Purdue, West Lafayette, USA, July 2016.

• A. Naseri, O. Lehmkuhl, I. Gonzalez and A. Oliva, “Partitioned semi-implicit
methods for simulation of biomechanical fluid–structure interaction problems,”
In Journal of Physics: Conference Series, vol. 745, no. 3 (2016), p. 032020.
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[46] U. KuÌttler and W. A. Wall. Vector extrapolation for strong coupling fluid-
structure interaction solvers. Journal of Applied Mechanics, 76(2):021205, 2009.

[47] Hans-Joachim Bungartz, Florian Lindner, Miriam Mehl, and Benjamin Ueker-
mann. A plug-and-play coupling approach for parallel multi-field simulations.
Computational Mechanics, 55(6):1119–1129, 2015.

[48] EH Van Brummelen. Added mass effects of compressible and incompressible
flows in fluid-structure interaction. Journal of Applied mechanics, 76(2):021206,
2009.

[49] P. Causin, J. F. Gerbeau, and F. Nobile. Added-mass effect in the design of
partitioned algorithms for fluid-structure problems. Computer Methods in Applied
Mechanics and Engineering, 194:4506–4527, 2005.

[50] C. Förster, W. A. Wall, and E. Ramm. Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible viscous
flows. Computer Methods in Applied Mechanics and Engineering, 196:1278–1293,
2007.

[51] Erik Burman and Miguel A. Fernández. Stabilization of explicit coupling in
fluid–structure interaction involving fluid incompressibility. Computer Methods
in Applied Mechanics and Engineering, 198:766–784, 2009.

[52] Erik Burman and Miguel A Fernández. Explicit strategies for incompressible
fluid-structure interaction problems: Nitsche type mortaring versus robin–robin
coupling. International Journal for Numerical Methods in Engineering, 97:739–758,
2014.

[53] Miguel A Fernández, Mikel Landajuela, and Marina Vidrascu. Fully decou-
pled time-marching schemes for incompressible fluid/thin-walled structure
interaction. Journal of Computational Physics, 297:156–181, 2015.

[54] Oyekola Oyekole, Catalin Trenchea, and Martina BukacÌ. A second-order in time
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An efficient and robust

semi-implicit method

Main content of this chapter has been published in:

A. Naseri, O. Lehmkuhl, I. Gonzalez, E. Bartrons, C. D. Pérez-Segarra, and A. Oliva. A semi-
implicit coupling technique for fluid–structure interaction problems with strong added-mass
effect. Journal of Fluids and Structures, 80:94–112, 2018.

Abstract. This chapter is concerned with the numerical simulation of fluid–structure
interaction problems involving an incompressible viscous flow and an elastic struc-
ture. A semi-implicit coupling technique is presented which strongly couples the
added-mass term of the fluid (pressure stress) to the structure, while the remaining
terms are only loosely coupled. A thorough numerical analysis is carried out to verify
the accuracy of the proposed method by comparing its results to experimental data
and other numerical results from the literature. The performance and accuracy of
the proposed method are also compared against a fully implicit coupling technique.
Numerical tests show that semi-implicit coupling significantly reduces the computa-
tional cost of the simulations without undermining either the stability or the accuracy
of the results. The question of implicit or explicit coupling of the dynamic mesh step
is addressed by evaluating its effect on the overall accuracy and performance of the
semi-implicit method. The implicit coupling of the dynamic mesh step is found to
slightly improve the accuracy, while significantly increasing the computational cost.
Moreover a comparison is made on the performance of the semi-implicit method with
different interface solvers.
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2.1 Background

Broadly, two different approaches could be used to solve FSI problems, called mono-
lithic and partitioned methods. In monolithic approach one uses a single solver to
solve fluid and structural governing equations simultaneously. As the equations are
solved together, the interaction between the domains is inherently taken into account.
The main advantage of the monolithic approach is the elimination of the need for any
further coupling technique at the fluid-structure interface, which reduces the com-
plexity of the problem. However, this approach requires using the same numerical
methods to discretize and solve the fluid and structural equations, while they are
different in nature and have their own considerations. This may cause monolithic
methods to be less efficient or reliable in some applications [1]. Another disadvantage
of the monolithic approach is its inability to exploit the already-developed fluid and
structural solvers. Therefore, it requires a large software development effort and
usually results in a less modular solver [1, 2].

Partitioned methods, on the other hand, use separate solvers for fluid and struc-
tural equations and adopt a coupling scheme to account for the interaction of the
domains. The coupling scheme determines the order and frequency in which the
fluid and structural equations should be solved. It also determines the manner of
communication and information exchange between the two solvers which is essen-
tially restricted to the fluid-structure interface. Partitioned approach alleviates both
disadvantages of the monolithic schemes. It allows using the most adapted numerical
methods for each sub-problem. These methods are previously tested and verified
on diverse cases which greatly increases the reliability of the FSI simulations. It also
enables the use of the previously developed solvers for fluid and structural equations
which saves a large development effort and increases modularity of the software.
However, partitioned approach introduces a new challenge to the problem, i.e. the
coupling between the two solvers [1, 2].

Partitioned methods are further divided into explicit (or loosely coupled) and
implicit (or strongly coupled) schemes. In an explicit coupling method, the fluid
and structural equations are solved in sequence and only once at every time step.
Consequently, explicit methods do not satisfy the exact coupling condition at the fluid-
structure interface. The most basic explicit scheme is the conventional serial staggered
method [3]. Implicit methods, in contrast, enforce the equilibrium condition at the
interface by means of coupling iterations between the fluid and structural solvers at
each time step. Fixed-point (Gauss-Seidel or Jacobi) iterations [1,4] and Newton-based
methods [5–7] are the most commonly used techniques to carry out the FSI coupling
iterations. Vector extrapolation methods have also been used for this purpose [8].

Explicit methods work well for aeroelastic simulations and problems involving
compressible flows [9, 10]. However they are unstable for a wide range of problems,
especially ones with incompressible flow and low solid/fluid density ratios (values
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close to one). The instability is regardless of the time step size or discretization
schemes for each domain. It is inherent to the coupling method and is often called
“added-mass effect”. The instability rises due to the fact that fluid forces in the explicit
coupling depend upon a predicted displacement of the structure, rather than the
correct one. As the structure moves, it has to accelerate the bulk of the fluid around
it as well. Thus, part of the fluid acts as an extra mass in the structural dynamics
system–given rise to the name added-mass effect. This effect is particularly strong
when densities of the fluid and the structure are similar. For any loosely coupled
method there is a density ratio limit that the method would suffer instability beyond
it [11, 12]. While added-mass effect causes instability in the loosely coupled schemes,
it deteriorates convergence of the strongly coupled methods. Thus, a FSI problem
with strong added-mass effect is also challenging for implicit methods, as it requires
many coupling iterations to converge at each time step [11, 12].

Implicit methods provide stable solution for FSI problems with strong added-
mass effect, of which explicit methods are incapable. However, performing several
coupling iterations, i.e. solving the complete system of governing equations several
times per time step, requires significantly higher computational resources. To alleviate
this, Fernandez et al. [13] proposed a semi-implicit coupling technique in which they
used a projection method to solve the fluid equations and only implicitly coupled
the projection step to the structure. Therefore the pressure stress term of the fluid
is strongly coupled to the structure. It is argued that the pressure stress term is
the main contributor to the added-mass effect and coupling this term explicitly
will cause numerical instability [11]. By implicit treatment of the added-mass term
(pressure stress), the semi-implicit method maintains the favorable stability of the
implicit schemes, while explicit treatment of the other terms helps avoiding excessive
computational cost [13]. A very similar method was also proposed by Breuer et
al. [14, 15] to solve FSI problems with turbulent flow. An analogous idea is present in
the hybrid monolithic-partitioned method of Grétarsson et al. [16] for FSI problems
with compressible flow. It strongly couples the fluid pressure and solid velocity by
solving them implicitly in a monolithic manner, while the remaining terms are loosely
coupled in a partitioned manner. Other semi-implicit methods are also reported in
the literature which share the same basic idea, e.g. [17, 18].

Despite receiving attention from researchers, semi-implicit coupling technique is
far from perfect. Many of the reported methods in the literature lack modularity and
simplicity. Moreover most of the reported methods are only tested in a specific type
of FSI problems and their robustness in dealing with different types of FSI problems
is not evaluated. Besides, there are many unaddressed questions concerning different
aspects of the semi-implicit coupling methods that require more work and attention.
Some semi-implicit methods in the literature implicitly couple the dynamic mesh
step of the fluid [14, 15], while others only explicitly couple it [13, 17, 18]. However, to
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the best of our knowledge, there has been no study that evaluates the effect of this
modification on the overall performance and accuracy of the semi-implicit coupling
method.

In this work, we follow a semi-implicit approach to develop an efficient coupling
technique for FSI problems with strong added-mass effect. We also try to address some
of the open questions concerning semi-implicit methods. The main improvements
and advantages of the proposed method are as following.

• It is simple, modular and matrix-free. The method is developed with the
least possible mathematical and numerical complications. This results in a
methodology which is easy to follow and simple to implement.

• It is robust. The method remains stable, accurate and efficient for a wide
range of FSI problems, including ones with very large deformations. It is
analyzed in three widely different test cases and has shown adequate stability
and performance.

• It is computationally efficient. The proposed coupling technique along with the
choices for numerical schemes and discretization, result in a fast and efficient
overall methodology.

• It is suitable for simulating FSI problems with turbulent flow. The fluid solver
and the coupling method are developed while special attention is paid to the
particular considerations of turbulent flows.

A thorough analysis is carried out to verify the accuracy of the proposed method
by comparing its results to experimental data as well as other numerical results
from the literature. Numerical test cases are chosen to be very distinct in order to
demonstrate the robustness of the method. Three test cases feature an internal flow
contained by a deformable membrane, an external flow over a blunt body with rigid-
body motion, and a cavity flow with a flexible bottom. Although the proposed method
has been tested in turbulent FSI problems [19,20], the attention is kept on laminar test
cases, where the characteristics of the FSI method could be better highlighted.

The accuracy and computational cost of the method is compared against a fully
implicit coupling technique. Moreover the effect of implicit or explicit coupling of
the dynamic mesh step on the overall performance and accuracy of the semi-implicit
method is evaluated. A modified version of the proposed method with implicitly
coupled dynamic mesh step is also used for the numerical tests and its accuracy and
performance are studied. Besides, both fixed-point and Newton-Krylov methods
are used to solve the coupling interface problem and a comparison is made on their
performance. Thus the main contributions of this chapter could be highlighted as:
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1. A simple, efficient and robust semi-implicit coupling method is proposed and
its accuracy and good performance demonstrated through numerical tests.

2. The effect of implicit or explicit coupling of the dynamic mesh step on overall
performance and accuracy of the semi-implicit scheme is evaluated.

3. Performance of fixed-point and Newton-Krylov interface solvers for semi-
implicit coupling method is studied.

The rest of this chapter is organized as follows. In section 2, the governing
equations for each sub-domain as well as the coupling conditions on the interface are
presented. The discretization methods and numerical schemes are also described in
this section. In section 3, the proposed semi-implicit coupling technique is elaborated.
Section 4 deals with the description of the methods used to solve the resulting interface
problem. Results of the numerical tests and comparisons are provided in section 4,
while section 5 summarizes and concludes the article.

2.2 Governing equations and numerical methods

In this section, the governing equations for each sub-problem domain and the cou-
pling conditions on the interface are presented. The fluid and structural domains are
referred to as Ω f (t) and Ωs(t) respectively, as they both vary in time. The interface of
the domains is denoted by Γ(t) = Ω f (t) ∩Ωs(t). An Arbitrary Lagrangian-Eulerian
(ALE) formulation together with a conforming mesh technique [21, 22] is used to
solve the fluid flow in a moving domain. A Lagrangian formulation is used for the
structural equations.

2.2.1 Fluid equations

The unsteady flow of an incompressible viscous fluid is governed by the Navier-
Stokes equations. An ALE formulation of these equations in a moving domain is
given by

∇ · u = 0 (2.1)

∂u
∂t

+ c · ∇u =
1
ρ f
∇ · σ f (2.2)

where u is the fluid velocity and ρ f the fluid density. Vector c is the ALE convective
velocity c = u−w, which is the fluid velocity relative to a domain moving with a
velocity w.

The stress tensor σ f is defined for a Newtonian fluid as
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σ f = −pI + 2µ fγ (2.3)

where p is the fluid pressure, I the unit tensor, µ f the dynamic viscosity of the fluid
and γ the strain rate tensor given by

γ =
1
2
(∇u +∇uT) (2.4)

2.2.2 Structural equations

The structural domain is governed by the nonlinear elastodynamics equation

ρs
D2d
Dt2 = ∇ · σs (2.5)

where d stands for the structural position with respect to the reference configuration,
and the structural density is shown by ρs. The Cauchy stress tensor σs is related to
the second Piola-Kirchhoff tensor Ss by

Ss = JF−1σsF
T (2.6)

where F is the deformation gradient F = ∇d and J is its determinant (J = det(F)).
The FSI coupling method is presented for a generic structural system at its full

extent, however, simpler structural models are used for the numerical tests. The
structural equations for each test case are explained in section 2.5.

2.2.3 Coupling conditions

The coupling conditions apply at the interface Γ and account for the interaction of the
domains. They are derived from the kinematic and dynamic equilibrium between the
domains, which yield to the following conditions on a non-slip type interface

uΓ =
∂dΓ

∂t
(2.7)

σs · nΓ = σ f · nΓ (2.8)

for any point x ∈ Γ, where nΓ is the unit normal vector on the interface. Equation 2.7
represents equality of the velocity of the fluid and the structure on the interface to
assure the kinematic equilibrium. Equation 2.8 represents equality of the traction on
the interface for dynamic equilibrium.
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2.2.4 Discretization and numerical methods

For fluid flow, a fractional-step projection method [23] along with an explicit time
advancement is used to solve the velocity-pressure coupling of the momentum equa-
tion. This leads to a three step solution of the fluid governing equations from time
step n to n + 1, with a time increment of ∆t

up = un − ∆t[(un −wn+1).∇un −
µ f

ρ f
∆un] (2.9)

∆t
ρf

∆pn+1 = ∇.up (2.10)

un+1 = up − ∆t
ρf
∇pn+1 (2.11)

for x ∈ Ωn+1
f . For the sake of having a simple notation, a first-order Euler explicit

time scheme is used for equation 2.9, but an extension to higher order schemes is
straightforward. The method begins with evaluation of a predicted velocity, up,
without considering the pressure gradient term (equation 2.9). A pressure field is
then evaluated by solving a Poisson’s equation (equation 2.10) that enforces the
incompressibility condition at the velocity correction step (equation 2.11).

In this work, the fractional-step method is used not only for solving the fluid
equations, but also as a framework for the overall FSI solution algorithm, making it
fundamental to the proposed FSI coupling method.

A finite-volume method is used for the spatial discretization of the fluid equations
on a collocated, unstructured mesh with second-order symmetry-preserving schemes.
Symmetry-preserving schemes conserve the kinetic energy of the flow in discrete
level [24]. Conservation of kinetic energy is extremely important while dealing with
turbulent flows [25]. A conjugate gradient solver with a diagonal preconditioner is
used to solve the Poisson’s equation. A modern review and comparative study of
advanced methods for solution of the Poisson’s equation can be found in [26]. More
details on the in-house flow solver code and the numerical methods can be found
in [25, 27]. Integral form of the governing equations and the spatial discretization are
described in Appendix A.

Structural equations are discretized in space using a finite-volume method along
with a second-order central difference scheme. A second-order temporal scheme is
used to discretize the second time derivative. More information on the numerical
methods for the structural equations is provided in section 2.5 for each test case.
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2.2.5 Mesh movement technique

Before equations 2.9-2.11 could be solved, the new fluid mesh in Ωn+1
f and the surface

velocities wn+1 are needed. A parallel moving mesh technique, based on radial basis
function interpolation method [28], is used to move the fluid grid in accordance to
the new location of the interface and update the discretized fluid domain.

The method uses values of scattered data, i.e. the known displacements of the
nodes on the FSI interface, to evaluate an interpolated value in a cloud of points, i.e.
the interior vertices of the fluid grid. Therefore, it does not need the connectivity of
the mesh elements and can be applied to both structured and unstructured grids. The
interpolated displacement δr at a point x is evaluated by:

δr(x) =
nv

∑
i=1

γi ϕ(||x− xi||) + h(x) (2.12)

where nv is the number of nodes on the FSI interface with known displacement and
ϕ indicates the radial basis function. The radial basis function has been chosen to
be the Wendland C2 [29] since it preserves good quality of the dynamic mesh and
allows to ignore the polynomial terms of the equation 2.12, h(x). The coefficients γi
are determined by imposing the known solution on the interface

δr(xi) = δd(xi) i = 1, 2, ..., nv (2.13)

for xi ∈ Γ, thus restricting the size of the system of equations to the number of known
points nv.

Surface velocities are evaluated according to the so-called space conservation law
(SCL). SCL states that the sum of the volumes swept by the surfaces of a control
volume must be equal to the time rate of change of its volume v

∂v
∂t
−
∫

s
w · dA = 0 (2.14)

where s is the boundary of the control volume and A is the area vector pointing out-
ward. For the discretized equations to be conservative in time, the surface velocities
should satisfy SCL which guarantees no volume is lost while moving the grid. To
satisfy the space conservation law exactly, surface velocities are evaluated by the
volume swept by each surface w f ace =

δv
A∆t n where A is the surface area, n surface

normal vector, ∆t time step and δv the volume swept by the face (see Figure 2.1).
The process of moving the fluid mesh and evaluating the surface velocities at a

new time step would be concisely denoted by the function M in the following sections

(Ωn+1
f , wn+1) = M(dn+1

Γ ) (2.15)

More details concerning the mesh movement technique can be found in [28].
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Figure 2.1: Volume swept by each face of an arbitrarily shaped polyhedral.

2.3 FSI coupling technique

A Dirichlet-Neumann (DN) decomposition of domains is used to solve the coupled
FSI problem. In DN decomposition, fluid equations are solved for a known location of
the interface and kinematic equilibrium (equation 2.7) is used as a Dirichlet boundary
condition for fluid flow. Structural equations are solved for a known traction on the
interface and are subject to Neumann boundary condition derived from dynamic
equilibrium (equation 2.8). Thus the discrete fluid and structural equations can be
represented as interface functions F and S so that

σΓ = F(dΓ) (2.16)

dΓ = S(σΓ) (2.17)

The discrete fluid function F includes equation 2.15 (mesh movement step) and
equations 2.9-2.11 (Navier-Stokes equations). Given the current location of the in-
terface, it moves the fluid mesh and solves the governing equations to obtain the
fluid velocity and pressure fields. In particular, the fluid velocity and pressure on the
interface are used to evaluate the fluid traction σΓ = σ f (p, u)Γ · nΓ. The evaluated
traction is then transferred to the structural function S, which solves the governing
equations of the structure to obtain the new location of the interface.

Therefore the discrete FSI equations can be represented as an interface problem of
the form

S ◦ F(dΓ) = dΓ (2.18)
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with vector dΓ and functions F and S, all in the same time step.
In an implicit FSI coupling method, equation 2.18 is solved iteratively at each

time step. These methods show adequate stability but are computationally expensive
because they require solving the fluid and structural equations several times at
every time step. In most of applications, the fluid solver takes considerably more
computational effort than the structural solver.

In this study we follow a semi-implicit approach in which only the pressure stress
term of the fluid equations is implicitly coupled to the structure. Pressure stress
term is the main contributor to the added-mass effect and must be coupled implic-
itly to avoid numerical instability [11, 13]. Using a fractional step method for fluid
equations allows us to split the pressure stress term of the fluid (equation 2.10) and
couple it implicitly to the structure. On the other hand, the rest of the fluid equations
(Eqs. 2.15, 2.9 and 2.11) are only explicitly coupled. The complete algorithm of solving
the FSI problem at time step n + 1 is as follows.

Semi-implicit FSI coupling method:
step 0: extrapolation of dΓ from previous time steps:

d̃n+1
Γ = 2.5dn

Γ − 2dn−1
Γ + 0.5dn−2

Γ (2.19)

step 1: moving the fluid mesh (explicitly coupled):

(Ωn+1
f , wn+1) = M(d̃n+1

Γ ) (2.20)

step 2: ALE convection-diffusion equation (explicitly coupled):

up = un − ∆t[(un −wn+1).∇un −
µ f

ρ f
∆un] in Ωn+1

f (2.21)

step 3: pressure equation and structural solver (implicitly coupled, solved iteratively):

up
Γ =

dΓ
n+1 − dn

Γ
∆t

on Γn+1 (2.22)

∆t
ρ f

∆pn+1 = ∇ · up in Ωn+1
f (2.23)

σΓ
n+1 = σ f (pn+1, up)Γ · nΓ on Γn+1 (2.24)

dΓ
n+1 = S(σΓ

n+1) on Γn+1 (2.25)
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step 4: velocity correction (explicitly coupled):

un+1 = up − ∆t
ρf
∇pn+1 in Ωn+1

f (2.26)

un+1
Γ =

dn+1
Γ − dn

Γ
∆t

on Γn+1 (2.27)

With this semi-implicit coupling approach, the FSI interface problem (equa-
tion 2.18) is modified into:

S ◦ f(dΓ) = dΓ (2.28)

or

R(dΓ) = S ◦ f(dΓ)− dΓ = 0 (2.29)

which stands for the step 3 of the above algorithm. In the new FSI equation, instead
of the complete fluid solver function F, only the pressure equation (denoted by f) is
coupled to the structure implicitly. Again, dΓ and the functions f and S are in the
same time step.

The proposed methodology is similar to the semi-implicit methods at [13, 15,
17, 18] in keeping the ALE convection-diffusion equation (steps 2) out of the FSI
coupling loop. Avoiding to iterate this equation at every time step significantly
reduces the computational cost of the simulations. Unlike the methods in [13,15,17,18],
the velocity correction step in the current method is outside the FSI coupling loop.
FSI boundary condition is applied to the intermediate predicted velocity (rather
than velocity itself) during the coupling iterations (equation 2.22), thus avoiding to
calculate the corrected velocity field at each iteration. When the FSI convergence is
reached, the final velocity field is evaluated using the final pressure field and the
final boundary displacement. Avoiding to iterate the velocity correction step further
reduces the computational cost of the simulations.

Moreover, by applying the boundary condition on the predicted velocity, the shear
stress term on the boundary (in equation 2.24) is evaluated using the updated values
of velocity. For example, in [13, 17] the shear stress term is similarly evaluated using
the predicted velocity field, however in their method the predicted velocity on the
boundary is evaluated once at each time step and is not updated during the coupling
iterations. It means methods in [13,17] use a constant velocity vector on the boundary
to evaluate the shear stress. In the present method we update the predicted velocity
on the interface at every iteration and evaluate the fluid traction using current values
of velocity.
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Unlike [13, 17] an explicit temporal discretization scheme is used for the ALE
convection-diffusion equation (equation 2.21). Explicit time-marching schemes are
mostly preferred for their simplicity and lower computational cost, especially in
the case of a turbulent flow where small time steps are inevitable. Keeping the
convection-diffusion step out of the FSI loop provides the opportunity to use an
explicit time-marching method which ought not to be missed.

In the semi-implicit coupling method proposed by Breuer [15], the mesh move-
ment step is implicitly coupled to the structure. Since the ALE convection-diffusion
step is out of the FSI loop, updating the fluid mesh and recalculating the geometri-
cal derivatives at each coupling iteration only reflects in the Poisson’s equation for
pressure. On the other hand, moving the computational grid is an expensive step and
including it in the coupling iterations would increase the computational cost of the
method. This leads to the question of whether it is necessary and worthy to include
the dynamic mesh step in the coupling iterations. No analysis to asses the extent of
necessity and effect of this modification on the accuracy of the results is provided
by Breuer et al. [15] or in other published works, to the best of our knowledge. In
this work we have studied the effect of implicit coupling of the dynamic mesh step
on the accuracy and performance of the semi-implicit method. For this purpose a
modified version of the proposed method (referred to as semi-implicit-M in the rest of
the text) is also used to solve the numerical test cases. The modified version is similar
to the original one, except for the mesh movement step (step 1) which is modified
into (Ωn+1

f , wn+1) = M(dn+1
Γ ) and is repeated at every coupling iteration.

Finally, it should be noted that although the proposed coupling method requires a
specific treatment of the fluid equations (using fractional-step method), it can be used
with an arbitrary structural solver. Thus less attention is paid to the structural solver
in this chapter. However, the total performance improvement -with respect to a fully
implicit coupling method- would indeed depend on the efficiency of the structural
solver too.

2.4 Interface solvers

In this section we discuss the iterative methods to solve the nonlinear interface
problem, arisen from the FSI coupling (equation 2.28 or 2.29). Fixed-point (FP) and
Newton-Krylov methods are two family of solvers that have been widely used for FSI
problems. In this study we have used both methods and compared their performance
in a semi-implicit coupling.
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2.4.1 Fixed-point solver

This is a class of iterative solvers that are popular mostly for their simplicity. They are
very easy to implement and have proved to be efficient and robust in many problems.
Jacobi and Gauss-Seidel iterations are the most basic and popular methods.

The fixed-point form of the interface problem is equation 2.28:

S ◦ f(dΓ) = dΓ

A block Gauss-Seidel method is used in this study with the extrapolated value of
dΓ (equation 2.19) as the initial guess. Each iteration begins with solving the coupled
system of equations

d̂Γk+1 = S ◦ f(dΓk) (2.30)

where k indicates the coupling iterations. The time step index is dropped for the sake
of simplicity, as all the parameters are at the same time step. The interface residual is
defined as

rΓk+1 = d̂Γk+1 − dΓk (2.31)

and the line search step to update the solution is

dΓk+1 = dΓk + ωkrΓk+1 (2.32)

where ωk is the relaxation factor. Relaxation is necessary for the stability of the
scheme. It has been shown in several studies that unrelaxed Gauss-Seidel method
either converges very slowly or does not converge at all for FSI problems involving an
incompressible flow [1, 4]. Our numerical tests found the unrelaxed method unstable
for the problems in hand. The relaxation factor is evaluated using Aitken’s ∆2 method.
For a vector equation, ωk could be obtained from:

ωk = −ωk−1
rΓ

T
k (rΓk+1 − rΓk)

(rΓk+1 − rΓk)T(rΓk+1 − rΓk)
(2.33)

with ω0 = 0.5 used in this work for the first iteration.
FSI convergence is achieved at every time step when the `2 norm of the interface

residual is small enough to meet the convergence criterion:

||rΓk||2
||rΓ0||2

< ε (2.34)

with a predefined tolerance of ε (ε = 10−5 is used in the numerical tests).
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2.4.2 Newton-Krylov solver

Newton-Krylov method consists of two levels of iterative solvers. The first level
is a Newton’s method to linearize the problem and the second level is a Krylov
subspace method to solve the resulting linear system of equations (see [30] for a
review). Newton-Krylov methods normally show a better performance than fixed-
point methods since the FSI problem is highly nonlinear.

The interface problem is of the form of equation 2.29:

R(dΓ) = S ◦ f(dΓ)− dΓ = 0

Applying Newton’s method we have

R′(dΓk)∆dΓk+1 = −R(dΓk) (2.35)

dΓk+1 = dΓk + ∆dΓk+1 (2.36)

where k is the coupling iteration index. The function R′ denotes the interface Jacobian

R′(dΓ) =
dR(dΓ)

ddΓ
(2.37)

Since the Jacobian matrix of the coupled system of fluid-structure equations is not
easily accessible, a matrix-free Krylov subspace solver is used to solve the Newton’s
equation (equation 2.35). The advantage of the Krylov solvers is that they only need
the product of the Jacobian matrix and a vector, rather than the Jacobian matrix
itself. A first order Taylor series expansion is used to approximate the product of the
Jacobian matrix and an arbitrary vector v

R′(dΓk)v =
R(dΓk + δv)− R(dΓk)

δ
(2.38)

with δ evaluated as δ = λ(λ + ||dΓk ||2
||R(dΓk)||2

), where λ is a sufficiently small number

(λ = 10−4 in this work), as suggested in [4]. Other approaches to choose δ could be
found in [30].

An unpreconditioned GMRES solver [31] is used in this study as the Krylov solver.
GMRES is chosen for its favorable convergence and robustness, considering that the
FSI problem is highly nonlinear. We have also tried the BiCGSTAB method [32] as the
Krylov solver but it showed convergence problems in some of the numerical tests.

FSI convergence criterion for Newton-Krylov solver is identical to that of the fixed-
point method (equation 2.34 with a tolerance ε = 10−5). However, its performance
also depends on the tolerance for convergence of its inner Krylov solver εk. In this
work we set a high tolerance for the Krylov solver so that Newton’s equation is solved
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with a rough accuracy. Therefore, Krylov solver takes less iterations to solve each
Newton step, but more Newton steps are required to reach FSI convergence. We have
seen that the overall efficiency of the method is improved in this arrangement, com-
paring to the case of an accurate Krylov solver. In order to optimize the performance
of the method, εk is evaluated dynamically at every Newton step by

εk = γ

(
||R(dΓk)||2
||R(dΓk−1)||2

)α

(2.39)

with γ = 1 and α = (1 +
√

5)/2 as suggested in [33]. A minimum limit, εk(min) =

10−3, is set to avoid smaller values.

2.5 Numerical tests

Three numerical test cases are studied to demonstrate the accuracy, stability and the
computational efficiency of the proposed methodology. The test cases are widely
distinct and are chosen to demonstrate the robustness of the method in dealing with
different types of FSI problems. All test cases are previously studied in the literature
and represent important and practical FSI problems. The first test case is a bio-inspired
FSI problem of incompressible flow inside a deformable vessel. The problem features
a very low solid/fluid density ratio, which signifies a very strong added-mass effect.
This test case is very challenging in terms of stability and convergence and is used
here to demonstrate the stability of the method and its higher efficiency. The second
test case is the vortex-induced vibration of an elastically mounted cylinder in low
Reynolds number external flow. Unlike the other two test cases, the structure is not
a thin-walled deformable membrane, but a rigid body moving inside the flow field.
The added-mass effect is smaller for this test case but it features larger displacements.
Moreover, there are available experimental data for this case that serve to validate the
method. The third test case is a driven cavity with a flexible bottom. This test case
features very large deformations and is used to further demonstrate the capability of
the method to deal with large displacements of the solid boundary.

2.5.1 3D flow inside a deformable tube

This benchmark problem was proposed by [34] and studied, among others, by [4,6,13].
The problem is a 3D flow inside a straight tube with a deformable wall, motivated
by the type of problems encountered in hemodynamics. The tube has a length of
l = 0.05m, an inner radius of R0 = 0.005m and a wall thickness of h = 0.001m. The
fluid density and viscosity are ρ f = 1000kg/m3 and µ f = 0.003Pa · s, respectively.
The structural density is ρs = 1200kg/m3, the Young modulus E = 3× 105N/m2, the
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Poisson ratio ν = 0.3, and the Timoshenko factor is k = 5/6. The density ratio is very
small (ρs/ρ f = 1.2) which means there is a very strong added-mass effect present.

A simplified form of the Navier equations for vascular walls [35] is used to model
the deformable structure. The model is derived from the theory of linear elasticity,
considering only the radial deformation of the vessel and neglecting the shear stress
terms in the structure. The governing equation of the structure reads

ρsh
∂2d
∂t2 − kGh

∂2d
∂z2 +

Eh
1− ν2

d
R2

0
= σΓ (2.40)

where d = [d1, 0, 0]T and σΓ = [σ1, 0, 0]T in a cylindrical coordinate (r, θ, z). A detailed
description of the model could be found in [35, 36].

The tube wall is considered a thin structure so a 2D grid in the cylindrical coor-
dinate is used for the structure. The structural grid nodes match the fluid mesh on
the interface so there is no need for interpolation of parameters between the domains.
Structural equation is discretized in space using a finite-volume method along with a
second-order central difference scheme. An implicit second-order finite difference
scheme is used to discretize the second time derivative.

The tube is clamped at both ends and the fluid is initially at rest. An overpressure
of 1333.2Pa is applied at the tube inlet during a period of 0.003s and a constant
pressure of 0Pa afterwards. Pressure at the outlet is 0Pa during the whole simulation.
Neumann boundary condition is used for velocity at both inlet and outlet boundaries.
Simulations are carried out during 0.01s with a constant time step of ∆t = 10−4s.

Propagation of the pressure wave with a finite velocity is observed inside the tube.
Figure 2.2 shows the pressure contour plots at three different time instants: t=0.0025,
0.005 and 0.0075 s. Deformation of the tube wall is magnified by a factor of 10 to be
visible more clearly.

Figure 2.2: Pressure wave propagation inside the deformable vessel: (a) t=0.0025s, (b) t=0.005s
and (c) t=0.0075s.
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The mesh-independency of the results is assessed by using three different grids
to solve the problem. Two parameters are used to evaluate the accuracy, namely the
inner radius of the mid-point of the tube at t = 0.005s, and the outlet mass flow rate
at t = 0.009s. The two parameters are chosen because they represent the physics of
the problem. The timing is also chosen to represent the instants of interest, i.e. the
instants when the peak of the wave is in the area of the target parameter. Table 2.1
contains the information of the grids and results of the simulation.

Table 2.1: Mesh-independency of the results for deformable tube test case.

Mesh name Grid size mid-point radius outlet mass flow
Fluid Structure t=0.005s (mm) t=0.009s (g/s)

M1 3742 1267 5.01 24.50
M2 8776 2760 5.05 25.38
M3 19156 4450 5.05 25.49

As noticeable in Table 2.1, results obtained by mesh M2 and M3 are very similar.
The M1 mesh gives good results for mid-point radius but the outlet mass flow is
about 4% different. Mesh M2 is used to carry out the rest of the simulations for the
sake of both accuracy and computational cost.

In order to verify the accuracy of the proposed method, the problem was also
solved using a fully implicit coupling technique to generate reference results. For
the implicit coupling, equation 2.18 is solved iteratively using the interface solvers
described in section 2.4. It means all fluid terms and the dynamic mesh step are
strongly coupled to the structure via coupling iterations. Table 2.2 represents the
results obtained by the implicit, semi-implicit and semi-implicit-M coupling methods.
Same parameters are used to evaluate the accuracy of the methods.

Table 2.2: Comparison of the accuracy of the implicit and semi-implicit methods for deformable
tube test case.

Coupling method mid-point radius outlet mass flow
t=0.005s (mm) t=0.009s (g/s)

Implicit 5.05 25.67
Semi-implicit 5.05 25.38

Semi-implicit-M 5.05 25.57

Results in Table 2.2 demonstrate the adequate accuracy of the proposed semi-
implicit coupling method. The maximum error in mid-point radius is less than 0.1%
while outlet mass flow rate has an error of 1.1% (with respect to results of the implicit
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method). The level of the error is very low which suggests the semi-implicit coupling
method does not degrade the accuracy of the solution, compared to a fully implicit
method. Including the mesh movement step in the coupling iterations (semi-implicit-
M method) further reduces the error to under 0.4%.

Moreover, Figure 2.3 compares the transient results obtained by the semi-implicit
method against those of the fully implicit scheme. The picture in the left shows the
radius at the mid-point of the tube while the picture in the right depicts the mass flow
rate at the outlet, during the simulation time. Results of the semi-implicit method
agree very well with those of implicit method at every time step which further verifies
the accuracy of the proposed method.
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Figure 2.3: Comparison of the transient results obtained by implicit and semi-implicit coupling
methods, left: inner radius of the mid-point of the tube, right: outlet mass flow rate.

Table 2.3 compares the performance of the implicit and semi-implicit coupling
methods. The performance criteria are the average number of coupling iterations at
each time step and the overall CPU time of the simulations. CPU times are presented
in non-dimensional form. They are normalized by the smallest value, which is that
of the semi-implicit method. All three coupling methods have been used with the
same interface solver (FP-Aitken). Simulations were carried out on a machine with
two Quad-Core AMD Opteron 2376 CPUs (8 cores in total) and 16GB of RAM. The
machine was used exclusively for the solution of each case with identical conditions
in order to attain comparable CPU times.

Data in Table 2.3 demonstrate the significantly lower computational cost of the
proposed semi-implicit coupling method with respect to implicit coupling technique.
Comparing the total CPU times of the implicit and semi-implicit methods shows
that semi-implicit coupling reduces the computational time by 92%. This significant
reduction in CPU time is because the semi-implicit method avoids iterating the
expensive steps of the solution procedure described in section 2.3.

The required CPU time for the semi-implicit-M method is significantly higher. It
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Table 2.3: Performance comparison of implicit and semi-implicit coupling methods in de-
formable tube test case.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 39.7 12.9
Semi-implicit 36.3 1.0

Semi-implicit-M 38.5 11.2

takes 11.2 times more computational time than the semi-implicit method, and it is
only 13% faster than the implicit coupling scheme. Including the mesh movement
step in the coupling iterations is the reason for such a high computational cost of
the modified semi-implicit method. Clearly the relative CPU time of this method
highly depends on the performance of the dynamic mesh technique. With a simple
and fast mesh movement tool, its performance would be closer to the semi-implicit
method. However, in many applications the quality of the mesh near the solid
surfaces is of utmost importance. Hence an advanced mesh movement technique
which guarantees the high quality of the mesh elements in vicinity of the moving
boundary is indispensable. Such advanced mesh movement techniques (like the
method used in this work) are normally very costly, which remarkably increases the
computational cost of the simulations.

Based on results in Table 2.2 and 2.3, including the mesh movement step in
the coupling iterations only slightly improves the accuracy of the results, while
significantly increasing the computational cost. As discussed in section 2.3, updating
the fluid mesh in the semi-implicit method only affects the coefficients of the Poisson’s
equation for pressure. We have seen in the present numerical test that the change
in the pressure field due to updating the mesh, and the subsequent changes in the
location of the interface and other flow parameters, are marginal. This could be partly
due to the relatively small deformation of the structure and small time step size in
the current test case. In the following subsections we would study this effect in FSI
problems with larger displacement of the interface boundary.

It is worth to note that the semi-implicit method reduces the computational cost
of each coupling iteration but does not particularly affect the number of coupling
iterations required for convergence. The average number of coupling iterations for
implicit and semi-implicit techniques are very similar (Table 2.3). The number of
iterations to reach convergence at each time step is mostly affected by the iterative
solver that is used to carry out the coupling iterations. Two basically different interface
solvers were used to solve the coupled interface problem, as explained in section 2.4.
The performance of these solvers are reflected in Table 2.4, using four criteria. The
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first criterion is the average number of coupling iterations at each time step. The
second criterion represents the number of times that the coupled equations (S ◦ f(dΓ))
are solved at each coupling iteration. This number is essentially equal to 1 for the
fixed-point solver but is higher for the Newton-Krylov method, because it undergoes
an inner loop inside every coupling iteration. The third criterion is the number of
times that the coupled equations are solved at each time step (the product of the first
and the second criteria). The last criterion is the overall CPU time of the simulations,
normalized by the smallest value which is that of the Newton-Krylov method.

Table 2.4: Performance comparison of different interface solvers for semi-implicit coupling
method in deformable tube test case.

Average No. of No. of S ◦ f(dΓ) Average No. of Normalized
Interface solver coupling iterations solutions per S ◦ f(dΓ) solutions CPU time

coupling iteration per time step
FP-Aitken 36.3 1 36.3 1.27

Newton-Krylov 4.0 4.6 (average) 18.4 1.00

It is seen in the data of Table 2.4 that the nonlinear Newton-Krylov method
outperforms the fixed-point method. It reduces the average number of solving the
coupled equations by almost half with respect to FP-Aitken method (third criterion in
Table 2.4). Comparing the CPU times, FP-Aitken takes 27% more computational time
than the Newton-Krylov solver. It should be noted that comparing the number of
coupling iterations for these two methods is not appropriate because Newton-Krylov
method takes considerably more computational time per coupling iteration.

The current test case is a FSI problem with a very strong added-mass effect that
takes many coupling iterations to satisfy the equilibrium condition on the interface.
The reduction in computational time by using the Newton-Krylov method is tangible.
It should be mentioned that although Newton-Krylov method outperforms the FP-
Aitken, it introduces more complexity to the problem due to evaluation of the Jacobian.
It is also worth to mention that an unpreconditioned Krylov solver has been used to
solve the Newton’s equation in this work. Using a preconditioner normally boosts
the performance of a Krylov solver, however, designing a preconditioner in FSI
applications is not straightforward due to the unavailability of the Jacobian matrix.
In the next subsection we will compare the performance of both interface solvers in
a FSI problem that is far less demanding in terms of required number of coupling
iterations.



43

2.5.2 Vortex-induced vibration of a circular cylinder

In this test case we solve the external flow over an elastically mounted circular cylinder
and study the vibrations induced by the flow vortices. Vortex-induced vibration
(VIV) is an important class of FSI problems with a wide range of applications in
aerodynamics and offshore engineering.

The cylinder is elastically mounted and oscillates due to the fluctuating fluid
forces that are originated from vortex shedding phenomenon. In a certain range
of Reynolds number, the vortex shedding frequency changes to match the natural
structural frequency of the cylinder motion. This range of Reynolds number is called
lock-in region since the vortex shedding no longer occurs in the Strouhal frequency,
but in the natural structural frequency of the cylinder.

In order to validate the proposed method, a series of VIV simulations in low
Reynolds numbers was carried out to numerically reproduce the experimental results
of Anagnostopoulos and Bearman [37]. The cylinder was constrained to oscillate
transversely only, as per the experiments. A sketch of the domain and problem setup
is shown in Figure 2.4. The domain size is chosen based on previous experience on
flow over a fixed cylinder and guidance from other VIV studies in the literature. A
uniform flow with a velocity U∞ enters the domain at the inlet boundary. Pressure is
set to zero at the outlet while a Neumann boundary condition is used for the velocity.
For the sake of computational efficiency, the dynamic mesh and ALE formulation is
restricted to a zone of 5D distance from the center of the cylinder. The computational
grid in the rest of the domain is fixed (not moving) and an Eulerian formulation is
applied.

The equation of motion of the cylinder is described by

m
∂2d
∂t2 + c

∂d
∂t

+ kd = q(t) (2.41)

where d = [0, y, 0]T , y being the vertical location of the center of the cylinder. The os-
cillation system parameters, m stands for the cylinder mass, c the damping coefficient
and k is the spring stiffness. The vertical component of the time-variant fluid force
(pressure and shear forces) on the cylinder is shown by L(t) so that q(t) = [0, L(t), 0]T .

The cylinder has a natural frequency of fn = 1
2π

√
k
m . Table 2.5 shows the definition

of the relevant non-dimensional numbers and their values. All non-dimensional
numbers equal those of the experiments [37]. The Reynolds number varies between
90 to 140 and the associated reduced velocity between 5.01 to 7.80. The variable l in
the definition of mass ratio is the length of the cylinder.

To evaluate the mesh-independency of the results, three fluid grids are used to
solve the problem at Re=100. Table 2.6 contains the information of the grids and
compares their results. Parameters in the table are mesh size, amplitude of the
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Figure 2.4: Schematic view of the domain and problem setup for the VIV test case.

Table 2.5: Relevant non-dimensional numbers of the VIV problem.

Name Definition Value
Reynolds (Re) ρ f U∞D/µ f 90-140
Reduced velocity (Ur) U∞/( fnD) 5.01-7.80
Mass ratio ρ f D2l/2m 0.00427
Damping ratio c/2

√
km 0.0012

vibrations A∗ = ymax/D, vortex shedding frequency f divided by natural frequency
of the cylinder fn, and the drag coefficient of the cylinder Cd.

Table 2.6: mesh-independency of VIV results at Re=100.

Mesh name No. of control volumes A∗ f / fn Cd
M1 7195 0.394 0.967 1.40
M2 13685 0.418 0.988 1.59
M3 27091 0.423 0.992 1.61

As results in Table 2.6 demonstrate, the grids M2 and M3 yield very similar results.
Considering both accuracy and computational cost, mesh M2 is used for the rest of the
simulations. Figure 2.5 shows the mesh M2 at its original condition (Figure 2.5-a) and
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when the cylinder is at the peak of its oscillation (displacement of 0.42D for Re=100),
in Figure 2.5-b. A closer zoom is also provided to better see the mesh elements around
the cylinder. It could be seen in the figure that the mesh movement technique has
preserved the quality of the mesh, particularly in the vicinity of the solid boundary.

Figure 2.5: Computational grid around the cylinder, a: original mesh when y=0, b: moved
mesh when y=-0.42D.

Figure 2.6 shows the results of the VIV simulations and compares them against
experimental data [37] and other numerical results [18, 38, 39]. Plotted data are the
amplitude of cylinder vibration and vortex shedding frequency for different Reynolds
numbers.

As seen in the Figure 2.6, the method has captured the lock-in phenomenon. For
Reynolds numbers Re < 95 and Re > 115 the vortex shedding occurs at the Strouhal
frequency, the cylinder is unlocked and the amplitude of the oscillations is small.
For 95 < Re < 115 the cylinder is locked-in and the amplitude of the oscillations is
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Figure 2.6: Amplitude of the cylinder vibration and vortex shedding frequency for different
Reynolds numbers.

significantly larger. The vortex shedding no longer occurs at the Strouhal frequency
but in the natural structural frequency of the cylinder. The present numerical results
are seen to agree fairly well with the experimental and other numerical data. The
large vibration amplitudes in the lock-in region and the change of vortex shedding
frequency to match the natural structural frequency of the cylinder are well captured.
However, the maximum displacements are smaller than the experiments but in
agreement with other numerical results. Moreover there is a slight shift in the lock-in
region, i. e. the beginning and end of the numerical lock-in region occur at lower
Reynolds numbers than their experimental counterparts. This shift happens for other
numerical results as well [18, 38, 39]. The discrepancies may originate from the 3-D
effects in the experiments that a 2-D simulation like this work can not capture. In
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the experimental study, the authors mention that no end plates were used on the
cylinder [37]. Moreover the Reynolds numbers are close to the region of transition to
3-D (around Re=180 for fixed cylinder). Thus it is possible that the Reynolds number
locally exceeded the transition range and some 3-D effects were introduced to the
flow.

Table 2.7 represents the VIV results obtained by the implicit, semi-implicit and
semi-implicit-M coupling methods at Re=100. Results demonstrate that the accuracy
of the proposed semi-implicit method is comparable to a fully implicit coupling tech-
nique. The discrepancies in maximum displacement, frequency and drag coefficient
obtained by the semi-implicit method (with respect to implicit scheme) are 2.1%, 0.5%
and 1.8% respectively. This clearly shows the capability of the proposed method
in producing accurate results. Results of the modified version of the method, the
semi-implicit-M, have a difference under 1% for all three parameters with respect
to the implicit method. Again we see that implicit coupling of the dynamic mesh
step (semi-implicit-M method) improves the accuracy of the results, however this
improvement is not significant. This observation is similar to the previous test case
where a slight improvement in the accuracy of the results were observed. This sug-
gests that even in a FSI case with large deformations, explicit coupling of the dynamic
mesh step does not noticeably reduce the accuracy of the results. This observation is
also examined in the next test case with much larger structural deformations.

Table 2.7: Comparison of the VIV results obtained by different coupling methods at Re=100.

Coupling method A∗ f / fn Cd
Implicit 0.427 0.993 1.62

Semi-implicit 0.418 0.988 1.59
Semi-implicit-M 0.424 0.990 1.60

Table 2.8 compares the performance of the implicit and semi-implicit coupling
methods for the VIV case at Re=100. The performance criteria are the average number
of coupling iterations and the overall CPU time of the simulations. All three coupling
methods have been used with the same interface solver (FP-Aitken).

First thing to note in Table 2.8 is the much lower average number of iterations,
comparing to the previous test case. While the previous test case required nearly
40 FSI coupling iterations per time step, the current problem only needs 2 or 3
iterations to converge. Since the density ratio for the current test case is relatively
large (ρs/ρ f = 149), the added-mass effect is much smaller than the previous problem.
Comparing Table 8 and Table 3 shows how strong added-mass effect makes a problem
challenging in terms of stability and convergence. Because of the much smaller
number of iterations, the CPU time ratio is also much smaller. The implicit method
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Table 2.8: Performance comparison of implicit and semi-implicit coupling methods for VIV
simulation at Re=100.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 3.2 2.9
Semi-implicit 2.1 1.0

Semi-implicit-M 3.0 2.6

takes 2.9 times more CPU time (comparing to 12.9 times in the previous test case).
Nevertheless, the superior performance of the semi-implicit method is still remarkable.
It reduces the computational time by 65% with respect to the implicit method, while
introducing a maximum of 2% error to the results. Again we see that the semi-implicit-
M method noticeably increases the CPU time and its performance is not significantly
better than the implicit scheme. Based on both test cases, we can conclude that
implicit coupling of the dynamic mesh step only slightly improves the accuracy while
significantly increasing the computational time.

Performance of different interface solvers for semi-implicit coupling method are
compared in Table 2.9, using four criteria similar to the previous test case.

Table 2.9: Performance comparison of different interface solvers for semi-implicit coupling
method for VIV case at Re=100.

Average No. of No. of S ◦ f(dΓ) Average No. of Normalized
Interface solver coupling iterations solutions per S ◦ f(dΓ) solutions CPU time

coupling iteration per time step
FP-Aitken 2.1 1 2.1 1.02

Newton-Krylov 1.4 1.1 (average) 1.5 1.00

As results in Table 2.9 show, the performance of the interface solvers are practi-
cally identical. The fixed-point method takes 2% more computational time which is
negligible. This could be understood based on the low number of coupling iterations
required for convergence in this test case. For such low number of iterations, a more
advanced nonlinear interface solver (the Newton-Krylov method) does not have a
practical advantage over a simpler fixed-point solver. Considering the simplicity of
the FP-Aitken method, it is actually a better candidate for this class of FSI problems.
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2.5.3 Driven cavity with a flexible bottom

A third test case is solved to further demonstrate the capability of the proposed
method to stably solve FSI problems with large deformation of the solid boundary.
The test case is a 2-D lid-driven cavity with a flexible bottom, as studied in [4, 8, 12].
The cavity is of a 1m× 1m dimension. The top boundary of the cavity is moving with
an oscillatory speed of u(t) = 1− cos(ωt) with ω = 2π/5. There are two openings of
0.1m length on the sidewalls that allow the fluid to enter to and exit from the domain.
The openings are devised to make sure the incompressibility of the fluid does not
constrain the structural deformation. Figure 2.7 shows a schematic description of
the problem. The fluid density and viscosity are ρ f = 1.0kg/m3 and µ f = 0.01Pa.s,
respectively. The flexible structure at the bottom has a thickness of h = 0.05m and
Young modulus E = 250N/m2. The problem is solved for two different structural
densities of ρs = 50 and 5kg/m3.

Figure 2.7: Schematic view of the problem setup for driven cavity with flexible bottom.

The flexible bottom is modeled as an Euler-Bernoulli beam, governed by the
following equation:

ρs A
∂2d
∂t2 + EI

∂4d
∂x4 = q(x, t) (2.42)

where d = [0, y, 0]T in a Cartesian coordinate (x,y,z), A is the cross section area of the
beam, I the second moment of area, and q is the load per unit length.
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Structural governing equation is discretized in space using a finite-volume method
along with a second-order central difference scheme. An implicit second-order finite
difference scheme is used to discretize the second time derivative. A classical 31× 31
grid is used to solve the problem. A 100× 100 mesh was also used to solve one case
with results changing less than 1%. A constant time step of ∆t = 0.001s is used for
the simulations.

Figure 2.8 shows the fluid domain with structural deformation at the bottom,
at t = 19s (near maximum deflection) for the case with ρs = 50kg/m3. Figure 2.9
and 2.10 compare the transient results obtained by the proposed semi-implicit method
against a fully implicit coupling scheme. The results of the semi-implicit-M method
are not shown in the figures for the sake of clarity of the pictures. As seen in the
figures, the semi-implicit method provides an excellent accuracy with reference to
an implicit method. The discrepancy for the case with ρs = 50 is very small (0.4%
max). The semi-implicit-M method reduces the discrepancy marginally by 0.1%. For
the case with ρs = 5, the semi-implicit method has a maximum of 2.5% error in the
peak and trough points, with respect to the implicit method. The semi-implicit-M
method reduces this discrepancy to 1.4%. It must be noted that the over-prediction
at the peak points by the semi-implicit method does not indicate a stability problem.
Although the peak values in Fig 10 are bigger for the semi-implicit method, the trough
points are higher as well. It means the semi-implicit method does not amplify the
oscillations artificially. The oscillation amplitude matches very well with that of the
implicit method (0.5% max. discrepancy) and only the center line is slightly shifted
upwards.

Table 2.10 contains the average number of coupling iterations and the overall
solution time for each method, normalized by the smaller one. All three coupling
methods have been used with the same interface solver (FP-Aitken). As results shows,
the semi-implicit method is significantly cheaper than the fully implicit scheme,
especially when higher number of coupling iterations are required. Again the semi-
implicit-M method has a significantly higher CPU time compared to the semi-implicit
method.
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Figure 2.8: Flow field inside the cavity with deformed bottom, t = 19s, ρs = 50kg/m3.
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Figure 2.9: Displacement of the mid-point of the structure over time, ρS = 50kg/m3.
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Figure 2.10: Displacement of the mid-point of the structure over time, ρS = 5kg/m3.

Table 2.10: Performance comparison of implicit and semi-implicit coupling methods for driven
cavity with flexible bottom.

Coupling technique Average No. of Normalized
coupling iterations CPU time

Implicit 2.5 2.2
ρs = 50 Semi-implicit 3.1 1.0

Semi-implicit-M 2.6 2.0

Implicit 7.8 5.9
ρs = 5 Semi-implicit 6.3 1.0

Semi-implicit-M 6.1 4.2

The results of the third test case support the conclusions drawn in the previous
sections. It shows that the semi-implicit method is capable of delivering a very good
accuracy, compared to a fully implicit scheme. It also shows that implicit coupling of
the dynamic mesh step (semi-implicit-M method) does not significantly improve the
accuracy of the results, even for a case with large structural deformations. However,
the semi-implicit-M method considerably increases the computational time.
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2.6 Conclusions

A semi-implicit coupling method is proposed for fluid-structure interaction problems
with strong added-mass effect. A fractional-step method is used to split the pressure
stress term of the fluid and implicitly couple it to the structure. The remaining
fluid terms are only explicitly coupled. An ALE formulation and conforming mesh
technique is used to solve the fluid flow in a moving domain. A parallel radial basis
function method is used to move the computational grid. The main advantages of the
proposed method are:

• It is very simple, modular and completely matrix-free.

• Its robustness is tested in different FSI problems.

• It is computationally efficient.

Numerical tests are performed on three widely different test cases, which demon-
strate adequate stability, accuracy and efficiency of the proposed method in different
types of FSI problems, including ones with large deformations. Results of the sim-
ulations are validated against experimental data and other numerical results from
the literature. A comparison is made between the accuracy and performance of the
proposed semi-implicit method and a fully implicit coupling technique. Results show
that the semi-implicit method significantly reduces the computational cost of the
simulations without undermining either stability or accuracy of the results.

Moreover the effect of implicit or explicit coupling of the dynamic mesh step on
overall performance and accuracy of the semi-implicit method is evaluated. Results
show that implicit coupling of the dynamic mesh step remarkably increases the
computational cost while only slightly improving the accuracy. This conclusion
stands even for problems with large structural deformation.

Furthermore, we have used both fixed-point and Newton-Krylov methods to solve
the interface problem. It is shown that the Newton-Krylov solver outperforms the
fixed-point method in a problem that requires many iterations to converge. However,
it also introduces extra complexity to the problem because of calculating the Jacobian.
In a FSI problem which does not require many coupling iterations, fixed-point method
with Aitken’s relaxation is a better candidate, considering its simplicity and good
performance.
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Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured grids. Journal of Computational Physics, 258:246–267, 2014.

[28] O. Estruch, O. Lehmkuhl, R. Borrell, C. D Pérez Segarra, and A. Oliva. A parallel
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3

A second-order time

accurate semi-implicit

method

Main content of this chapter has been published in:

A. Naseri, I. Gonzalez, A. Amani, C. D. Pérez-Segarra, and A. Oliva. A second–order time
accurate semi–implicit method for fluid–structure interaction problems. Journal of Fluids and
Structures, 86:135–155, 2019.

Abstract. This chapter is concerned with numerical solution of fluid-structure interac-
tion (FSI) problems involving an incompressible viscous flow and an elastic structure.
A semi-implicit partitioned method with second-order temporal accuracy is proposed.
The method separates the pressure term of the fluid equations and strongly couples it
to the structure, while the remaining fluid terms and the geometrical nonlinearities
are treated explicitly. A second-order projection method is used to solve the fluid
equations and also as a framework for the FSI coupling. Particular attention is paid to
the boundary conditions for fluid equations and the accuracy of the fluid pressure
on the common interface. The proposed coupling method retains the second-order
accuracy for fully-coupled nonlinear FSI problems. Extensive numerical tests are
carried out on a number of benchmark FSI problems and the second-order temporal
accuracy for all the variables of interest (fluid velocity and pressure, and structural
displacement) is demonstrated.

59
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3.1 Background

Partitioned methods for FSI problems are generally divided into explicit (or loosely
coupled) and implicit (or strongly coupled) techniques. Explicit partitioned methods
solve the fluid and structural equations in sequence and only once per time step. These
methods do not satisfy the exact equilibrium conditions on the interface, which causes
instability issues in a range of FSI problems (the so-called added-mass instability) [1,2].
Implicit methods, on the other hand, use coupling iterations between fluid and
structural solvers to enforce the equilibrium condition on the interface. These methods
are stable for problems with strong added-mass effect, however, their computational
cost is generally high due to the repetitive solution of the governing equations at each
time step [3, 4].

In a partitioned method, the equilibrium conditions on the interface are applied
as boundary conditions on each sub-problem, through a decomposition method.
Dirichlet-Neumann decomposition is a classical and widely used method in parti-
tioned solution of FSI problems (see e.g. [5–7]). The name of the method indicates
that a Dirichlet boundary condition is used for the fluid equations and a Neumann
boundary condition for the structure. Therefore, the fluid equations are solved for
a known displacement of the solid, while the structural equations are solved for a
known stress on the interface. This is a simple decomposition and it is consistent with
the most common numerical methods for fluid and structural equations. There is a
more recent class of Robin-based decomposition methods that use a Robin bound-
ary condition for the fluid and either a Robin or Neumann boundary condition for
the structure [8–10]. Robin-based methods are gaining popularity as they allow a
loosely-coupled and yet added-mass-free FSI coupling. However, they require using
an especial fluid solver capable of handling a Robin boundary condition. Thus they
might not be readily usable with some of the most common fluid solvers. In this
work we use a Dirichlet-Neumann decomposition for its advantages of simplicity
and consistency.

Instability in loosely coupled methods with Dirichlet-Neumann decomposition is
caused by the added-mass effect. The added-mass instability is, in principle, inde-
pendent of the time step size or the particular discretization method used for each
sub-problem solver. It is rather inherent to the coupling method and it has a particu-
larly strong effect in FSI problems with incompressible flow and similar densities of
fluid and solid [1, 2]. It is argued that the fluid pressure term is the main contributor
to the added-mass effect and its explicit coupling would cause instability issues [1].
This was the main motivation for a new category of partitioned methods, first pro-
posed by Fernandez et al. [11], and called semi-implicit methods. In a semi-implicit
coupling method, the fluid pressure term is segregated and strongly coupled to the
structure, while the remaining fluid terms are only loosely coupled. Segregation of
the pressure term could be naturally achieved by using a classical Chorin-Temam pro-
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jection method [12]. Strong coupling of the fluid pressure and structural deformation
eliminates the added-mass instability issue, while loose coupling of the remaining
fluid terms helps avoiding excessive computational cost [11].

A similar semi-implicit method was proposed by Breuer et al. [13] where the
geometrical nonlinearities are also coupled implicitly. Astorino et al. [14] improved
the stability of the method in [11] by using a specific Robin treatment of the explicit
part of the coupling derived from Nitsche’s method. An enhanced semi-implicit
method was proposed by Naseri et al. [15, 16]. Numerical tests showed that the
accuracy of the method in a practical problem is very similar to a fully implicit scheme
(monolithic solution), while its computational cost is remarkably smaller [16]. The
application of the method was extended to turbulent flow [17,18] and non-Newtonian
fluids [19]. Other similar semi-implicit methods are presented in [20, 21] which use a
characteristic-based split (CBS) scheme instead of Chorin-Temam projection method.
It should be noted that these semi-implicit methods are different from the methods
in [22–24]–which are also sometimes called semi-implicit. In the methods in [22–24],
the location of the interface is treated explicitly (extrapolated in time) and the fluid
mesh is moved once in a time step, however, the fluid and structural equations are
solved completely at each coupling iteration (i.e. only the geometrical nonlinearities
are treated explicitly).

Semi-implicit coupling techniques rely on a projection method to solve the fluid
equations and segregate the pressure term. The fluid pressure term is then strongly
coupled to the structure via coupling iterations. Thus, the projection method does
not only serve to solve the fluid equations but also as a framework for the FSI
coupling. The semi-implicit methods in [11, 14, 16] have used a first-order Chorin-
Temam projection method, while [20] have used a first-order CBS scheme for this
purpose. Therefore, the overall temporal accuracy of these methods is at most one.
Methods in [13, 21] have used apparently second-order pressure splitting schemes,
but no error analysis (neither analytical nor numerical) was presented to show that a
second-order temporal accuracy was actually achieved for a FSI solution. Extending
temporal accuracy of projection methods to higher orders is not straightforward, as
discussed in [25–27]. Although it is relatively easy to achieve second-order accuracy
for velocity, fluid pressure remains only first-order accurate for many projection
methods in the literature [25–27]. Considering that the fluid pressure is a main acting
force on the structure, second-order accuracy for pressure is essential to achieve
a second-order FSI solution. Moreover, mesh-conforming FSI solution methods
require solving the Arbitrary Lagrangian–Eulerian (ALE) form of the Navier-Stokes
equations on a moving mesh. A method for solving the fluid equations on a dynamic
grid and evaluating the geometrical terms arising from the ALE formulation does not
necessarily preserve the order of accuracy of the method on a fixed grid (see e.g. [28]).
Furthermore, if the FSI coupling technique is not properly designed, the second-order
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accuracy for the coupled problem is not guaranteed, even though each sub-problem
possessed such accuracy.

In point of fact, there are few second-order time accurate methods among other
types of implicit and explicit partitioned methods in the literature. Farhat et al. [29]
proposed a second-order loosely coupled partitioned method for FSI problems in
aeroelasticity. This method is explicit so it is not suitable for strong added-mass prob-
lems. Nobile et al. [23] reported up to fourth-order time-accurate implicit partitioned
methods. In some versions of the proposed method, the location of the interface is
extrapolated in time (explicit treatment of geometrical nonlinearities). Liu et al. [24]
proposed a second-order technique based on a combined field method with explicit
treatment of the interface location. The method was shown to be stable regardless of
the mass ratio. Oyekole et al. [30] proposed a second order partitioned method based
on a Robin boundary condition for the fluid. The structural inertia term is included in
the Robin boundary condition for the fluid which makes the scheme stable for strong
added-mass cases.

In this work, we propose a semi-implicit partitioned FSI method that is second-
order accurate in time. This is, to the best of our knowledge, the first semi-implicit
partitioned FSI method with a demonstrated second-order accuracy. A projection
method is used to segregate the fluid pressure term, which is then strongly coupled
to the structure via coupling iterations. In order to obtain second-order accuracy in a
FSI solution, four important steps are taken:

i) Presenting an incremental projection method and discretization in time that
actually yields second-order accuracy for fluid pressure, as well as velocity.

ii) Deriving specific projection-consistent boundary conditions for all fluid bound-
aries including the interface with the solid.

iii) Developing an ALE scheme on a moving grid and evaluating the arisen geo-
metrical terms with second-order accuracy.

iv) Properly coupling the fluid and structural solvers in order to retain the second-
order accuracy for a coupled nonlinear FSI problem.

The second-order accuracy of the method for realistic nonlinear FSI problems is
demonstrated through rigorous numerical tests. Three widely distinct FSI test cases
are studied and an analysis is made to show the second-order rate of convergence of
the error.

The remaining of this chapter is organized as follows. In section 2 the governing
equations for each sub-problem and the coupling conditions are presented. Section
3 describes the proposed numerical method, while numerical tests are presented in
section 4. Section 5 summarizes and concludes the article.
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3.2 Governing Equations

In this section, the governing equations for each sub-problem domain and the cou-
pling conditions on the interface are presented. The fluid and structural domains are
referred to as Ω f (t) ⊂ R3 × (0, T) and Ωs(t) ⊂ R3 × (0, T) respectively, as they both
vary in time t ∈ (0, T). The fluid-structure interface is the shared boundary of the
domains, denoted by Γ(t) = ∂Ω f (t) ∩ ∂Ωs(t).

3.2.1 Fluid equations

The unsteady flow of an incompressible viscous fluid is governed by the Navier-
Stokes equations. An Arbitrary Lagrangian-Eulerian (ALE) formulation of these
equations in a moving domain is given by:

∂u
∂t

+ c · ∇u =
1
ρ f
∇ · σ f (3.1)

∇ · u = 0 (3.2)

where u is the fluid velocity and ρ f the fluid density. Vector c is the ALE convective
velocity c = u−w, which is the fluid velocity relative to a domain moving with a
velocity w. The stress tensor σ f is defined for a Newtonian fluid as:

σ f = −pI + 2µ fγ (3.3)

where p is the fluid pressure, I the unit tensor, µ f the dynamic viscosity of the fluid
and γ the strain rate tensor given by:

γ =
1
2
(∇u +∇uT) (3.4)

3.2.2 Structural equations

The structural domain is governed by the nonlinear elastodynamics equation:

ρs
∂2d
∂t2 = ∇ · P (3.5)

where d stands for the structural position with respect to the reference configuration,
and the structural density is shown by ρs. The tensor P is the first Piola-Kirchhoff
tensor, which is related to the Cauchy stress tensor σs by:

P = JσsF−T (3.6)
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where F is the deformation gradient F = ∇d and J its determinant (J = det(F)).
The FSI method is presented for a general structure, however, for the numerical

tests, different simplified structural models are considered which are described for
each test case in section 3.4.

3.2.3 Coupling conditions

The coupling conditions apply at the interface Γ and account for the interaction of the
domains. They are derived from the kinematic and dynamic equilibrium between the
domains, which yield to the following conditions on a non-slip type interface:

uΓ =
∂dΓ

∂t
(3.7)

σsnΓ = σ f nΓ (3.8)

for any x ∈ Γ, where nΓ is the unit normal vector on the interface. Equation (3.7)
represents the equality of the velocities of the fluid and the structure on the interface
to assure the kinematic equilibrium. Equation (3.8) represents the equality of the
traction on the interface for dynamic equilibrium.

3.3 Numerical Method

In this section, the temporal discretization of the governing equations and the FSI
coupling method are presented. This time-discretized set of equations are indepen-
dent of the choice for spatial discretization, which could be carried out using either a
finite-volume or a finite-element method. The spatial discretization methods used in
this work are described in Appendix A.

3.3.1 Fluid solver

Using a second-order central difference scheme around the mid-time-step point tn+1/2

for the transient term of the momentum equation, a second-order time-discretized
form of the Eq. (3.1) and (3.2) reads:

un+1 − un

∆t
= −(c · ∇u)n+1/2 +

µ f

ρ f
∇2un+1/2 − 1

ρ f
∇pn+1/2 (3.9)

∇ · un+1 = 0 (3.10)

for any x ∈ Ωn+1
f , and a proper set of boundary conditions:
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un+1
Γ =

∂dn+1
Γ

∂t
on Γn+1

un+1
∂D

= ub on ∂DΩn+1
f

∂un+1

∂n
|∂N = 0 on ∂NΩn+1

f

(3.11)

where ∂D and ∂N represent, respectively, the Dirichlet and Neumann fluid bound-
aries, n is the normal unit vector and ub is the assigned velocity on the boundary. The
boundary condition on the fluid-structure interface Γn+1 comes from the kinematic
equilibrium condition and is applied as a Dirichlet boundary condition for the fluid
equations (Eq. (3.11)1).

We use an incremental pressure-correction projection method, similar to [31, 32],
to solve the momentum equation. Thus, an intermediate velocity is evaluated using
the last known pressure field. Unlike the original projection method of Chorin-
Temam [12], this method does not impose a formal first-order splitting error. We use
an explicit Adams-Bashforth method for the convective term and a Crank-Nicolson
method for the diffusive term. Therefore, the intermediate velocity field, u∗, is
evaluated as:

u∗ − un

∆t
= −[3

2
(c · ∇u)n − 1

2
(c · ∇u)n−1] +

µ f

2ρ f
(∇2u∗ +∇2un)− 1

ρ f
∇pn−1/2

(3.12)
This velocity field is then projected onto a space of divergence-free vector fields:

u∗ = un+1 +
∆t
ρ f
∇φn+1 (3.13)

∇ · un+1 = 0 (3.14)

where φn+1 is a scalar field obtained by:

∇2φn+1 =
ρ f

∆t
∇ · u∗ (3.15)

Substituting Eq. (3.13) into Eq. (3.12) and comparing it to Eq. (3.9), the equation to
recover the fluid pressure at the mid-time step is obtained as:
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pn+1/2 = pn−1/2 + φn+1 −
µ f ∆t
2ρ f
∇2φn+1 (3.16)

Pressure at the new time station tn+1 could be evaluated by a second-order extrap-
olation from half-time levels:

pn+1 =
3
2

pn+1/2 − 1
2

pn−1/2 (3.17)

Pressure at tn+1 is not used in the discretized fluid equations but it is needed to
evaluate the fluid force on the structure at the new time step.

Remark 1. The last term in the pressure recovery equation (Eq. (3.16)) was missed
in some projection methods, however, it is essential for retaining the second-order
accuracy for pressure up to the boundary. It was first introduced (in a slightly
different form) in [33]. A common practice in the literature is to use a uniform
Neumann boundary condition (zero normal gradient) for the Poisson’s equation for
φ (Eq. (3.15)). Without the last term of Eq. (3.16), the Neumann boundary condition
for the scalar field φ transmits to the pressure itself and creates an artificial boundary
layer which degrades the accuracy. Interested readers are advised to consult [25, 27]
for some analyses. The boundary conditions in the present work are further discussed
in the next section.

Remark 2. A common inaccuracy in many methods in the literature is omitting the
extrapolation of pressure (Eq. (3.17)) and evaluating pn+1 by Eq. (3.16). However, that
would not be consistent with the central time discretization at Eq. (3.9). If the pressure
at Eq. (3.16) were considered to be at time tn+1 instead of tn+1/2, it will always carry
a first-order error due to the time lag.

3.3.2 Boundary conditions

In this section the boundary conditions for the predicted velocity u∗ and the scalar
field φ are described in detail. We recognize three regions of the boundary with
different boundary conditions, as in Eq. (3.11). The first region is the fluid-structure
interface Γ. The boundary condition for velocity comes from the kinematic equilib-
rium on the interface (Eq. (3.11)1). Using a second-order backward difference scheme
it reads:

un+1
Γ =

∂dn+1
Γ

∂t
=

3dn+1
Γ − 4dn

Γ + dn−1
Γ

2∆t
on Γn+1 (3.18)
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which is a Dirichlet boundary condition for velocity. However, there is no specific
boundary condition for pressure. A common approach is to use a uniform Neumann
boundary condition (zero normal gradient on the boundary) for pressure. Such a
boundary condition would create an artificial boundary layer near the interface that
would degrade the accuracy. Numerical tests in [25, 27] demonstrate the artificial
boundary layer and the loss of accuracy on a wall boundary.

In this work we use a zero normal gradient boundary condition for the scalar field
φ:

n · ∇φn+1|Γ = 0 on Γn+1 (3.19)

which is a very convenient boundary condition for the Poisson equation (Eq. (3.15)).
However, because of the last term in the pressure recovery equation, Eq. (3.16), the
Neumann boundary condition is not transmitted to the pressure itself and the artificial
boundary layer is avoided. This is essential to achieve a second-order accuracy for
pressure up to the boundary.

For the predicted velocity field, we drive a boundary condition consistent with
Eq. (3.13):

u∗Γ = un+1
Γ +

∆t
ρ f
∇φn+1|Γ (3.20)

Dividing Eq. (3.20) into its components using the normal and tangential unit vectors
on the boundary, n and τ , we get:

n · u∗|Γ = n · un+1|Γ +
∆t
ρ f

n · ∇φn+1|Γ (3.21)

τ · u∗|Γ = τ · un+1|Γ +
∆t
ρ f

τ · ∇φn+1|Γ (3.22)

Considering boundary conditions (3.18) and (3.19), and using an explicit extrapolation
for the gradient term, the boundary conditions for predicted velocity are obtained as:


n · u∗|Γ = n ·

∂dn+1
Γ

∂t
|Γ

on Γn+1

τ · u∗|Γ = τ ·
∂dn+1

Γ
∂t
|Γ +

∆t
ρ f

τ · (2∇φn −∇φn−1)|Γ

(3.23)

Similar boundary conditions are used for other fluid boundary regions with a
Dirichlet boundary condition for velocity (∂DΩn+1

f in Eq. (3.11)), including stationary
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walls and flow inlets with a known velocity. Equations (3.23) are modified to use the
assigned velocity in place of the interface velocity (e.g. ub = 0 for stationary walls).

The third fluid boundary region is where a Neumann boundary condition is used
for velocity (referred to as ∂NΩn+1

f in Eq. (3.11)). Pressure on the boundary could be
specified by a Dirichlet boundary condition (e.g. an outlet with a known discharge
pressure) or left without any specific boundary condition (e.g in openings and vents
with unknown pressure). In case of a Dirichlet boundary condition for pressure,
an equivalent Dirichlet condition is applied on the scalar field φ. In the case that
no physical boundary condition is specified for pressure, a zero normal gradient
boundary condition is used for φ. Therefore, the set of boundary conditions are as
follows:


∂un+1

∂n
|∂N = 0

on ∂NΩn+1
f

φn+1 = φb or n · ∇φn+1|∂N = 0

(3.24)

Again a consistent boundary condition for the predicted velocity is derived. Get-
ting normal derivative of Eq. (3.13) and applying condition (3.24)1, it reads:

∂u∗

∂n
|∂N =

∆t
ρ f

∂

∂n
∇φn+1|∂N on ∂NΩn+1

f (3.25)

Depending on the type of boundary condition for φ (conditions (3.24)2), the normal
or tangential component of the right hand side term in Eq. (3.25) might be zero. The
non-zero components of the derivative of the gradient are evaluated on the boundary
and the consistent boundary condition (Eq. (3.25)) is applied on the predicted velocity
field.

Remark 3. It should be mentioned that similar consistent boundary conditions for
simpler boundary of an stationary wall (Dirichlet boundary condition for velocity)
were proposed in [25, 34].

3.3.3 Dynamic mesh

We use a conforming mesh technique, which means the fluid mesh moves to adapt to
the new location of the interface. A parallel moving mesh technique, based on radial
basis function interpolation method [35], is used to move the fluid grid in accordance
to the new location of the interface and define the discretized fluid domain at the new
time step Ωn+1

f .
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The method uses the known displacement on the interface to evaluate an interpo-
lated value for the interior vertices of the fluid grid. A great advantage of this method
is that it does not need the connectivity of the mesh elements and can be applied to
both structured and unstructured grids. The interpolated displacement δr at a grid
vertex xv is evaluated as:

δr(xv) =
nv

∑
i=1

γi ϕ(||xv − xi||) (3.26)

where nv is the number of nodes on the interface xi, and ϕ is the radial basis function.
The Wendland C2 function [36] is used for ϕ since it preserves good quality of the
dynamic mesh, specially near the moving interface. The weight coefficients γi are
evaluated using the known displacements on the interface nodes

δr(xi) = δd(xi) i = 1, 2, ..., nv (3.27)

for xi ∈ Γ. Therefore, the size of the system of equations to obtain the weight
coefficients is limited to the number of known points nv.

Surface velocities are evaluated according to the space conservation law (SCL)
which guarantees no volume is lost while moving the grid. For any control volume in
the fluid domain, the SCL is stated as:

∂v
∂t
−
∫

s
w · dA = 0 (3.28)

where v and s stand, respectively, for the volume and the boundary surface of a
control volume. As before, w is the domain velocity and A is the area vector pointing
outward.

Time rate of change of volume is equal to the sum of volumes swept by each face
of a control volume. In this work we evaluate the domain velocity at each face, w f ace,
based on the volume swept by that face. With a second-order backward discretization
it reads:

wn+1
f ace = 3(

δv
A∆t

n)n+1 − (
δv

A∆t
n)n (3.29)

where A is the surface area, n unit normal vector of the face, ∆t time step and δv the
volume swept by the face at one time step (see Figure 3.1).

More detailed description of the dynamic mesh method could be found in [16, 35].
In the remaining of this chapter, we will use the notation M to refer to the mesh
movement step:

(Ωn+1
f , wn+1) =M(dn+1

Γ ) (3.30)
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A

B
C

Face at tn

Face at tn+1

Control volume at tn

Volume
swept δvn+1

δr(A)

δr(B)

δr(C)

Figure 3.1: Volume swept (δv) by each face of an arbitrarily shaped polyhedral. The displace-
ment of each vertex is shown by δr.

3.3.4 Structural solver

Structural equations are discretized in time using a second-order Newmark method.
Defining the structural velocity v = ∂d

∂t , we update the velocity and displacement of
the structure as:

vn+1 = vn +
∆t
2ρs

[∇ · P(dn+1) +∇ · P(dn)] (3.31)

dn+1 = dn + ∆tvn +
∆t2

4ρs
[∇ · P(dn+1) +∇ · P(dn)] (3.32)

In this work we use the structural solver as a black-box module. Any structural
solver with a second order temporal accuracy could be used. In the remaining of this
chapter, we use the notation S to refer to the structural solver as a function of surface
stress on the interface:

dΓ = S(σΓ) (3.33)

where dΓ is the location of the interface and σΓ is the surface stress on the interface
exerted by the fluid σΓ = σ f (p, u)|ΓnΓ.
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3.3.5 Coupled problem

We present a semi-implicit FSI coupling method in which only the pressure term of
the fluid is strongly coupled to the structure. The remaining fluid terms as well as the
dynamic mesh step are evaluated only once per time step. Using a projection method
for fluid equations allows us to effectively segregate the pressure term and couple
it implicitly to the structure. Strong coupling of the fluid pressure and structural
deformation provides for the stability of the method for FSI problems with strong
added-mass effect. Loose coupling of the remaining terms helps to avoid excessive
computational cost.

The complete FSI solution method from time step tn to tn+1 is as follows:

step 0: extrapolation of dΓ from previous time steps:

d̃n+1
Γ = 2.5dn

Γ − 2dn−1
Γ + 0.5dn−2

Γ (3.34)

step 1: moving the fluid mesh (explicitly coupled):

(Ωn+1
f , wn+1) =M(d̃n+1

Γ ) (3.35)

step 2: ALE convection-diffusion equation (explicitly coupled):

u∗ − un

∆t
= −[3

2
(c · ∇u)n − 1

2
(c · ∇u)n−1] (3.36)

+
µ f

2ρ f
(∇2u∗ +∇2un)− 1

ρ f
∇pn−1/2 in Ωn+1

f

step 3: fluid pressure and structural equations (implicitly coupled, solved iteratively):

nΓ · u∗Γ = nΓ · (
3dn+1

Γ − 4dn
Γ + dn−1

Γ
2∆t

) on Γn+1 (3.37)

τΓ · u∗Γ = τΓ · (
3dn+1

Γ − 4dn
Γ + dn−1

Γ
2∆t

) +
∆t
ρ f

τΓ · (2∇φn −∇φn−1)|Γ on Γn+1

(3.38)

∇2φn+1 =
ρ f

∆t
∇ · u∗ in Ωn+1

f (3.39)

pn+1/2 = pn−1/2 + φn+1 −
µ f ∆t
2ρ f
∇2φn+1 in Ωn+1

f (3.40)
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pn+1 =
3
2

pn+1/2 − 1
2

pn−1/2 in Ωn+1
f (3.41)

σn+1
Γ = σ f (pn+1, u∗)|ΓnΓ on Γn+1 (3.42)

dn+1
Γ = S(σn+1

Γ ) on Γn+1 (3.43)

step 4: velocity correction (explicitly coupled):

un+1 = u∗ − ∆t
ρ f
∇φn+1 in Ωn+1

f (3.44)

un+1
Γ =

3dn+1
Γ − 4dn

Γ + dn−1
Γ

2∆t
on Γn+1 (3.45)

Every time step starts with predicting the location of the interface by means of an
extrapolation from previous time steps. The fluid mesh is then moved to adapt to the
predicted location of the interface (step 1). Therefore, the geometrical nonlinearities
are treated explicitly. The convection-diffusion equation in step 2 is also solved only
once per time step. Step 3 is the implicit part of the coupling in the above algorithm
where fluid pressure is strongly coupled to the structural deformation. Equations
in step 3 are solved together (iteratively). This step provides for the stability of
the method for FSI problems with strong added-mass effect. Note that the current
structural deformation dn+1

Γ is used in Eq. (3.37) and (3.38), while it is evaluated in
Eq. (3.43), which shows the implicit coupling between the equations in step 3. A
Newton-Krylov method with approximated Jacobian [16] is used to carry out the
coupling iterations in step 3.

As seen in the Eq. (3.37) and (3.38), the kinematic equilibrium on the interface is
applied on the predicted velocity field (in a corrected consistent manner) during the
coupling iterations. The predicted velocity is also used to evaluate the shear stress
term in Eq. (3.42). When the convergence is achieved for the iterative process in
step 3, the velocity field is corrected using the converged field φn+1 and the coupling
condition is applied on the final velocity (step 4).

3.3.6 Temporal accuracy

An error analysis is required to evaluate the temporal accuracy of the proposed
method in a FSI problem. Analytical and numerical analysis could be used for this
purpose. Analytical energy and error estimates have been used in some previous
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studies to evaluate stability and order of convergence of FSI methods (e.g. [10, 30]).
However, these analyses were limited to a simplified linear system of equations
(Stokes equations for fluid and a lower dimensional, linear elastic model for structure).
The non-linear term in fluid equations represents an important physical aspect and
also changes the mathematical characteristics of the governing equations. The non-
linear term in solid equations has a similar importance. Evaluating the error bound
and convergence rate of numerical methods applied to realistic FSI problems normally
rely on numerical experiments.

In this study numerical tests are carried out on three widely used FSI test cases to
demonstrate the second-order accuracy of the proposed method. For that purpose,
test solutions are carried out using increasingly larger time steps and their error is
evaluated at a certain point in time. The spatial grid is kept constant for all the test
solutions. In the lieu of an exact solution, reference numerical results are generated
for each test case, using a very small time step size and identical spatial grid. Test
solutions are compared to the reference solution to evaluate the error for each variable.
The errors with respect to the reference solution are evaluated at each spatial point and
presented in both L2 and L∞ norms. The temporal order of accuracy is determined by
evaluating the slope of the graph of error against time step size, in a logarithmic scale.

It should be noted that the global error contains both spatial and temporal com-
ponents and behaves, in general terms, as O(∆xa + ∆tb), where ∆x and ∆t are the
spatial grid size and time step, respectively. The powers a and b are, respectively,
the asymptotic orders of spatial and temporal accuracy. In order to evaluate the
asymptotic order of temporal accuracy, the spatial component of the error must be
kept considerably smaller than the temporal component to make sure it does not
affect the error analysis results. When the errors are evaluated with respect to an
exact (analytical) solution (Xe), it means the spatial grid should be sufficiently fine to
assure a small spatial error. Ideally one may have ∆x � ∆tb/a so that the error could
be approximated as O(∆tb). In our numerical tests, reference numerical results (Xr)
are used instead of an exact solution, due to the lack of exact solution for the realistic
problems considered. The reference solution is obtained using a certain spatial and
temporal grid size (∆xr and ∆tr), thus itself contains an error with respect to the exact
solution, εr = Xr −Xe. Test solutions (Xt) are obtained by using different (and in-
creasingly larger) time step sizes but an identical spatial grid. Therefore, In comparing
the test results to the reference results, the error due to the spatial discretization is
discarded since it is identical for the test and reference solutions.

To further clarify the aforementioned explanation, let us assume the global error
(with respect to the exact solution) to be of the form O(∆xa + ∆tb) = O1(∆xa) +
O2(∆tb). We expect a = b = 2 for the method in this work. The error of the reference
solution with respect to the exact solution is then εr = O1(∆xa

r ) + O2(∆tb
r ). Similarly,

the error (with respect to the exact solution) of the test solutions using test time step
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size ∆t and identical spatial grid is εt = O1(∆xa
r ) + O2(∆tb). When we compare the

test results to the reference results and evaluate the error with respect to the reference
solution, the error for each test solution becomes ε = Xt −Xr = O2(∆tb)−O2(∆tb

r ),
because the spatial error is identical for test and reference solutions. In the numerical
tests, we have used a much smaller time step size for the reference results (∆tr � ∆t).
Therefore, the error with respect to the reference solution becomes ε ≈ O2(∆tb). Thus,
by evaluating the error with respect to the reference solution, for different time step
sizes, one is able to appropriately asses the temporal accuracy of the method. In the
numerical tests, graphs of error against time step size (ε−∆t) are presented that show
a slope of two, which suggest a second-order temporal accuracy according to the
above explanation.

It should be also noted that our numerical tests would have revealed a mixed
error term of the form O(∆x∆t). If there existed such a term in the global error (in
this work it would be O1(∆x2) + O2(∆t2) + O3(∆x∆t)), the error with respect to the
reference solution would become ε = O2(∆tb)−O2(∆tb

r ) +O3(∆xr∆t)−O3(∆xr∆tr).
Since we have kept the spatial grid constant for the analysis, and the fact that lower
order error is the dominant term, we would have ε ≈ O3(∆t). This means the slope
of the error graphs in the numerical tests would become unity and reveal if a mixed
error term existed in the solution.

3.4 Numerical Tests

In this section, numerical results on benchmark FSI problems are presented to study
the accuracy of the proposed method. Three FSI test cases are considered, as well as
a test case that contains only fluid flow. The three FSI cases vary widely, featuring
an internal flow contained by a deformable membrane, an external flow over a blunt
body with rigid-body motion, and a cavity flow with a deformable bottom. Obtained
results are compared to experimental and numerical results from the literature in
order to validate the solution method. An error analysis is provided for each test case
that demonstrates second-order temporal accuracy of the solution.

3.4.1 Lid-driven cavity (only fluid flow)

As the first numerical test case, we study the flow inside a classical lid-driven cavity at
Re = 400. The problem is a 1m × 1m cavity with the lid moving at a constant velocity
of ux = 1m/s. The fluid density and viscosity are ρ f = 1.0 kg/m3 and µ f = 0.0025
Pa.s, respectively. All the walls are rigid and there is no fluid-structure interaction.

A classical 31× 31 mesh is used to solve the problem. A finer grid of 61× 61 is
also used for comparison. Spatial discretization is carried out using a finite volume
method with second-order central difference schemes. Figure 3.2 compares the steady
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state solution for horizontal velocity on the vertical mid-line (x = 0.5), against the
classical results of Kim and Moin (1985) [34]. The steady state was reached after
roughly 30 seconds (t > 30s). As seen in figure 3.2, the results obtained by the coarse
and fine mesh are almost indistinguishable and they agree very well with those of
Kim and Moin (1985) [34].

 0
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 0.6
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 1

-1 -0.5  0  0.5  1

y

u1

fine mesh

coarse mesh

Kim and Moin (1985)

Figure 3.2: Horizontal component of velocity on the vertical mid-line of a lid-driven cavity
(NO FSI) in the steady state.

To evaluate the temporal accuracy of the method, four different time step sizes are
used to solve the problem from t = 0 till t = 1s. The time step ranges from 5× 10−4

to 4× 10−3s. In the lieu of an exact solution, reference results are generated using a
much smaller time step size of ∆t = 5× 10−5s. The reference time step size is an order
of magnitude smaller than the smallest test time step. The spatial grid is kept constant
for the tests. The error with respect to the reference solution is evaluated at every grid
point and presented in both L2 and L∞ norms in figure 3.3, on a logarithmic scale. A
solid line with a slope of two (∆t2) is also plotted to compare the slope of the error
graphs. A slope of two of the error graphs means the rate of convergence of the error
by time step size is two, i.e. a second-order accuracy.

As seen in figure 3.3, both velocity and pressure are clearly second-order accurate.
To monitor closely the error of the pressure on the domain boundaries, the error on
the boundaries is evaluated separately and plotted in figure 3.3. It demonstrates that
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Figure 3.3: Variation of relative error inside the domain and on the boundaries by time step
size, driven cavity case (NO FSI). Left: L2 norm; Right: L∞ norm.

the proposed method solves the fluid equations with a second-order accuracy up to
the domain boundary.

3.4.2 Driven cavity with deformable bottom

Numerical tests are carried out on a benchmark problem studied in [2,37], among oth-
ers. The test case is a 2-D driven cavity of 1m× 1m with a flexible bottom wall. The top
boundary of the cavity is moving with an oscillatory speed of ux(t) = 1− cos(ωt) m/s,
with ω = 2π/5. There are two openings of 0.1m length on the sidewalls that allow
the fluid to enter to and exit from the domain. Figure 3.4(left) shows a schematic
description of the problem. The fluid density and viscosity are ρ f = 1.0 kg/m3 and
µ f = 0.01 Pa.s, respectively. The flexible structure at the bottom has a thickness of
h = 0.05m, the structural density is ρs = 5 kg/m3 and the Young modulus E = 250
N/m2.

The flexible bottom is modeled as an Euler-Bernoulli beam, governed by the
following equation:

ρs A
∂2d
∂t2 + EI

∂4d
∂x4 = q(x, t) (3.46)

where d = [0, y, 0]T in a Cartesian coordinate (x, y, z), A is the cross section area of
the beam, I the second moment of area, and q is the load per unit length.

A classical 31× 31 spatial grid is used to solve the problem. Spatial discretization
is carried out using a finite volume method with second-order central difference
schemes. The structure is a thin membrane so the fluid mesh elements on the interface
are also used as the computational grid for the structural equations. Thus, the
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Figure 3.4: Driven cavity with flexible bottom. Left: schematic view of the domain and problem
setup; Right: contour plot of horizontal velocity u1(m/s) inside the deformed domain at t = 7s.

structural grid nodes match the fluid mesh on the interface and there is no need for
interpolation of parameters between the domains. Figure 3.4(right) shows the flow
field inside the domain with structural deformation at the bottom, at t = 7s.

To evaluate the temporal accuracy of the method, the problem is solved using four
different time step sizes ranging from 5× 10−4 to 4× 10−3s. Reference results are
obtained using a much smaller time step of ∆t = 5× 10−5s. The spatial grid is kept
constant for the tests. The simulations are carried out from t = 0 until t = 1s, when
the results for different time steps are saved and compared to the reference solution.
The error is evaluated at every grid node and presented in both L2 and L∞ norms.

Figures 3.5 and 3.6 represent the variation of the relative error with time step size
∆t in logarithmic scales. Figure 3.5 represents the error of fluid velocity and pressure
inside the fluid domain, while Figure 3.6 represents the error of fluid pressure and
structural deformation on the fluid-structure interface. Results demonstrate a clear
second-order temporal accuracy for all the variables of interest in both L2 and L∞
norms.

3.4.3 Wave propagation in a 2-D deformable channel

This test case is to simulate the propagation of pressure waves inside a 2D straight
channel with elastic walls. The problem is similar to blood flow inside large arteries
and was studied, among others, in [10, 38–40]. The problem represents a strong
added-mass effect, as the densities of the fluid and the structure are very similar and
the domain is slender.
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Figure 3.5: Variation of relative error inside the fluid domain by time step size, driven cavity
with flexible bottom. Left: L2 norm; Right: L∞ norm.
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Figure 3.6: Variation of relative error on the fluid-structure interface by time step size, driven
cavity with flexible bottom. Left: L2 norm; Right: L∞ norm.

The initial fluid domain is [0, L] × [0, R0], where L = 6cm is the length of the
channel and R0 = 0.5cm is its height. The top boundary is an elastic wall interacting
with the fluid, while the bottom boundary is a slip wall (axis of symmetry). Fluid
pressure is specified at both inlet and outlet boundaries, while Neumann boundary
condition is used for velocity. Pressure at the outlet boundary is set to zero while the
inlet pressure represents a time-dependent pulse:

pinlet(t) =
{

Ppulsesin(πt/tpulse) 0 ≤ t ≤ tpulse
0 t > tpulse

where Ppulse = 2000Pa and tpulse = 0.005s are, respectively, the amplitude and
duration of the pressure pulse.
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The deformable wall is modeled using the generalized string model [41]:

ρsh
∂2d
∂t2 −

Eh
2(1 + ν)

∂2d
∂x2 +

Eh
1− ν2

d
R2

0
+ α0ρsh

∂d
∂t
− α1Eh

2(1 + ν)

∂3d
∂x2∂t

= q(x, t) (3.47)

where the solid density is ρs = 1100kg/m3, the Young modulus E = 7.5× 104N/m2,
the wall thickness h = 0.1cm, the Poisson ratio is ν = 0.5, and the damping parameters
α0 = 1 and α1 = 0.001. Fluid density and viscosity are ρ f = 1000kg/m3 and
µ f = 0.0035Pa.s, respectively. The system is at rest at t = 0 and the simulations are
carried out till t = 0.015s.

Three different spatial and temporal grid resolutions (table 3.1) are used to solve
the problem, in order to ensure the grid independency of the results. Fluid mesh
is refined near the top boundary (F-S interface) using a hyperbolic function. The
boundary nodes for the fluid mesh coincide with the grid nodes for the solid domain,
thus there is no need for further interpolations between the domains.

Table 3.1: Three grid resolutions used for deformable channel case.

Mesh name No. of nodes time step
length height ∆t (s)

coarse 100 20 2e-5
medium 150 30 1e-5

fine 200 40 5e-6

Figure 3.7 depicts the location of the interface at t = 0.015s, evaluated using the
three grid resolutions mentioned in table 3.1. As seen in the figure 3.7, the results
with medium and fine meshes are almost indistinguishable, which means the mesh
convergence is achieved.

Figure 3.8 contains contour plots of pressure at three different instants, demon-
strating the propagation of the wave inside the channel. The deformation of the
channel wall (although small) is also visible in the figure. Despite the fluid being
incompressible, the pressure wave propagates with a finite velocity, which is an
important feature of this problem.

To evaluate the accuracy of the results and verify the presented numerical method-
ology, a comparison to other numerical results in [39, 40] has been carried out. Fig-
ure 3.9 shows the location of the interface at t = 0.015s evaluated with the medium
mesh and ∆t = 1× 10−5s, together with the results from Fernandez et al. [39] and
Li et al. [40]. As seen in the figure, our results agree fairly well with those of the
other reports. There is a slight difference between the three sets of results which is
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Figure 3.7: Displacement of the elastic boundary at t = 0.015s, evaluated with different grid
resolutions.

Figure 3.8: Propagation of pressure wave inside the deformable channel, contour plots of
pressure at t = 0.005s, t = 0.01s and t = 0.015s.

acceptable considering they use different discretizations and FSI coupling techniques.
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It is worth to mention that results in [39] are evaluated using a first-order method and
a very small time step ∆t = 1× 10−6s. Results of simulations with different time step
sizes (and different spatial mesh) are also reported in [39] to show the convergence
to a limiting solution (similar to figure 3.7). These results show that convergence is
achieved at ∆t = 1× 10−6s and for larger time steps there is a considerable discrep-
ancy (see section 4.1 in [39]). However, our method provides time-step-independent
results for ∆t = 1× 10−5s (figure 3.7). This fact highlights the advantage of using
higher-order methods. Unfortunately in [40] the time step size for this test case is not
mentioned.
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Figure 3.9: Displacement of the elastic boundary at t = 0.015s, comparison with numerical
results at [39, 40].

To evaluate the temporal accuracy of the method, the problem was solved with
four different time step sizes between 5× 10−5 to 4× 10−4s. Reference results were
generated using ∆t = 5× 10−6s, which is an order of magnitude smaller than the
smallest test time step size. The spatial grid is kept constant for the analysis. The
error for each time step size was evaluated and is presented in figures 3.10 and 3.11.
These results demonstrate a clear second-order temporal accuracy for all the variables
of interest, in both L2 and L∞ norms.
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Figure 3.10: Variation of relative error in the fluid domain by time step size, elastic channel
case. Left: L2 norm; Right: L∞ norm.
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Figure 3.11: Variation of relative error on the fluid-structure interface by time step size, elastic
channel case. Left: L2 norm; Right: L∞ norm.

3.4.4 Vortex-induced vibration of a circular cylinder

For this test case, the fluid flow over an elastically-mounted cylinder is solved in order
to study the structural vibration due to the flow vortices. Vortex-induced vibration
(VIV) is an important class of FSI problems with a wide range application. The
cylinder is elastically mounted and it can move as a rigid-body around its reference
position. Due to the vortex-shedding over the blunt body, the flow exerts an oscillating
force on the cylinder, which causes it to vibrate. Generally, the vortex-shedding over
an elastically-mounted cylinder occurs at the same frequency as for a fixed cylinder
(the Strouhal frequency). However, there is a certain range of Reynolds number where
the vortex-shedding frequency changes to match the natural structural frequency of
the cylinder. This range of Reynolds number is called lock-in region as the vortex-
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shedding no longer occurs at the Strouhal frequency, but at the natural frequency of
the solid.

A series of VIV simulations are carried out to numerically reproduce the experi-
mental results of Anagnostopoulos and Bearman [42]. A rectangular fluid domain
is considered around a circular cylinder with a diameter D. The size of the domain
is chosen based on previous experience of the authors and guidance from other VIV
studies in the literature. Figure 3.12 depicts the layout of the domain and the problem
setup. The flow enters the domain with a uniform velocity U∞, while the pressure is
set to zero at the outlet. For the sake of computational efficiency, the ALE formula-
tion and the dynamic mesh is limited to a circular zone around the cylinder with a
diameter of 6D. The mesh is not moving at the rest of the domain and an Eulerian
formulation is used. The cylinder motion is constrained to the cross-flow direction
only, as per experiments.

k c

x

y

D 6D

12D 28D

10D

10D

ALE zone

∂u1/∂y = 0 , ∂u2/∂y = 0 , ∂p/∂y = 0

u1 = U∞

u2 = 0

∂p/∂x = 0

∂u1/∂x = 0

∂u2/∂x = 0

p = 0

Figure 3.12: Schematic view of the domain and problem setup for the VIV test case.

The rigid-body motion of the cylinder is modeled as a system of spring and
damper:

m
∂2d
∂t2 + c

∂d
∂t

+ kd = q(t) (3.48)

where d = [0, y, 0]T , y being the vertical location of the center of the cylinder. The
cylinder mass is shown by m, c is the damping coefficient, k the spring stiffness,
and q(t) stands for the vertical component of the time-variant forces exerted on
the cylinder by the fluid flow. The natural frequency of the vibration system is
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fn = 1
2π

√
k
m . Table 3.2 shows the definition of the relevant non-dimensional numbers

for this problem and their respective values. All non-dimensional numbers are equal
to those of the experiments [42]. The Reynolds number varies between 90 to 140 and
the associated reduced velocity between 5.01 to 7.80. The variable l in the definition
of mass ratio is the length of the cylinder.

Table 3.2: Relevant non-dimensional numbers of the VIV problem and their value.

Name Definition Value
Reynolds (Re) ρ f U∞D/µ f 90-140
Reduced velocity (Ur) U∞/( fnD) 5.01-7.80
Mass ratio ρ f D2l/2m 0.00427
Damping ratio c/2

√
km 0.0012

To assess the grid-independency of the results, three different grids are used to
solve the problem at Re=110, which lies in the lock-in zone as seen later. Table 3.3
contains the information of the mesh and three representative values of the results, i.e.
the normalized amplitude of the vibrations A∗ = ymax/D, vortex-shedding frequency
f , in non-dimensional form f D/U∞, and the drag coefficient Cd.

Table 3.3: mesh-independency of VIV results at Re=110.

Mesh name No. of cells A∗ f D/U∞ Cd
coarse 7195 0.417 0.165 1.43

medium 13685 0.408 0.163 1.53
fine 27091 0.410 0.163 1.56

Results in Table 3.3 show that the medium and fine grids yield similar results.
We have used the medium mesh to conduct further simulations, for the sake of both
accuracy and computational efficiency. Grid-independence study at one Reynolds
number is sufficient for this test case because the range of studied Reynolds number
is small (90≤ Re ≤140).

Figure 3.13 demonstrates contour plots for pressure inside the domain at two
different instants while the cylinder is locked-in (Re = 110) and undergoes large-
amplitude vibrations. The structure of the wakes and vortices could be seen at the
rear of the cylinder. Results of the simulations for the range of Reynolds number in
table 3.2 are presented in figure 3.14, along with experimental data from [42] and
other numerical results from [21, 43, 44]. The compared results are the normalized
amplitude of the vibrations (A∗), and the vortex-shedding frequency divided by the
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natural frequency of the structure ( f / fn).

Figure 3.13: Contour plots of pressure (color legend in Pa) inside the domain at two instants
while the cylinder undergoes large-amplitude vibration. a: cylinder approximately at the
equilibrium point (y = 0); b: cylinder approximately at the maximum displacement (y =
−0.4D)

It is seen in figure 3.14 that the lock-in phenomenon is well captured. For Reynolds
numbers Re < 95 and Re > 115 the vortex shedding occurs at the Strouhal frequency
(frequency of vortex-shedding over a fixed cylinder at the same Reynolds number).
In this range of Reynolds number, the amplitude of the vibration is small. The lock-in
region is at 95 < Re < 115, where the amplitude of the vibration is significantly larger.
In the lock-in zone, the vortex shedding no longer occurs at the Strouhal frequency,
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Figure 3.14: Comparison of the VIV simulation results against experimental and numerical
results from the literature. Up: normalized amplitude of vibration; Down: vortex-shedding
frequency divided by natural frequency of the cylinder.

but at the natural frequency of the cylinder.
Results in figure 3.14 agree fairly well with the experimental and numerical results

from the literature. Different numerical results in the figure differ fairly amongst
each other, which is due to the use of different numerical methods and complexity
of the problem. Assessing the present results, it is seen that the predicted amplitude
of vibration is smaller than the experiments but similar to other numerical results.
Moreover, there is a slight shift of the location of the lock-in zone, i. e. numerical
lock-in region starts and ends at lower Reynolds numbers than its experimental
counterpart. This shift is seen in other numerical results as well [21, 43, 44]. The
discrepancies may originate from the 3D effects in the experiments, as also noted
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in [43]. In the experimental study, the authors mention that no end plates were
used on the cylinder [42]. This would possibly introduce some 3-D effects that a
2-D simulation like the current work is not able to capture. Moreover, the Reynolds
number is close to the region of transition to 3-D (transition to 3-D occurs at about
Re=180 for a fixed cylinder). Therefore, it is possible that the Reynolds number locally
exceeded the transition range and some 3-D effects were introduced.

Similar to the previous test cases, we have used four time step sizes, ranging from
8× 10−3 to 1× 10−3s, and a much smaller time step of 1× 10−4s for the reference
results. The variation of the error by time step size is presented in figures 3.15 and 3.16.
These results are similar to the previous test cases and further confirm the second-
order accuracy of the method.
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Figure 3.15: Variation of relative error in the fluid domain by time step size, VIV case. Left: L2
norm; Right: L∞ norm.
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Figure 3.16: Variation of relative error on the fluid-structure interface by time step size, VIV
case. Left: L2 norm; Right: L∞ norm.
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3.5 Conclusions

A second-order semi-implicit method for partitioned solution of fluid-structure in-
teraction problems is proposed. The method uses a second-order projection method
to solve the fluid equations and also as a framework for the FSI coupling. The fluid
pressure term is effectively segregated using the projection method and is strongly
coupled to the structure via Newton iterations. Implicit treatment of the fluid pressure
provides for the stability of the method for FSI problems with strong added-mass
effect. The remaining fluid terms and the geometrical nonlinearities (moving mesh)
are treated explicitly and thus evaluated only once per time step.

An ALE formulation with a conforming mesh technique is used to solve the fluid
flow in a moving domain. A dynamic mesh technique based on radial basis function
interpolation method is used to adapt the fluid mesh to the structural displacement.
The geometrical terms arisen from the ALE formulation are evaluated with a second-
order temporal accuracy. Consistent boundary conditions are developed for the
intermediary fields encountered when solving the fluid equations with a projection
method. Particular attention is paid to second-order accuracy of the fluid pressure up
to the moving boundary.

Second-order accuracy of the method for fully coupled non-linear FSI problems is
demonstrated through rigorous numerical tests. Three FSI test cases are considered,
including internal flow contained by a deformable membrane, external flow over
an elastically-mounted blunt body, and cavity flow with deformable bottom wall.
Simulation results are validated against experimental and numerical results from
the literature. Different time step sizes are used to solve the problems and the error
is evaluated with respect to a reference numerical solution. Second-order temporal
accuracy for all the variables of interest (fluid velocity and pressure, and structural
displacement) is clearly demonstrated.
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4

A scalable framework for

solution of FSI problems

Main content of this chapter is being considered for publication in:

A. Naseri, A. Totounferoush, I. Gonzalez, M. Mehl and C. D. Pérez-Segarra. A Scalable
Framework for Partitioned Solution of Fluid-Structure Interaction Problems. preprint.

Abstract. In this chapter, we present a scalable and efficient parallel framework for the parti-
tioned solution of FSI problems through multi–code coupling. Two instances of an in–house
parallel software, TermoFluids, are used to solve the fluid and the structural sub–problems,
coupled together on the interface via the preCICE coupling library. For fluid flow, the ALE
form of the Navier-Stokes equations is solved on an unstructured grid using a finite–volume
discretization and second–order numerical schemes. A parallel dynamic mesh method for
unstructured meshes is used to track the moving boundary. For the structural problem, the
nonlinear elastodynamics equations are solved on an unstructured grid using a finite–volume
method and second–order numerical schemes. A semi–implicit FSI coupling method is used
which segregates the fluid pressure term and couples it strongly to the structure, while the
remaining fluid terms and the geometrical nonlinearities are only loosely coupled. A robust
and advanced multi–vector quasi–Newton method is used for the coupling iterations between
the solvers. Both fluid and structural solvers use distributed–memory parallelism. The intra–
solver communication required for data update in the solution process is carried out using
non–blocking point–to–point communicators. The inter–code communication is fully parallel
and point–to–point, avoiding any central communication unit. Inside each single–physics
solver, the load is balanced by dividing the computational domain into fairly equal blocks for
each process. Additionally, a load balancing model is used at the inter–code level to minimize
the overall idle time of the processes. Practical test cases in the context of biological flow
(blood flow inside deformable vessels) are studied and the scalability of the coupled solver is
evaluated. Results confirmed a very good scalability for up to 3920 cores.
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4.1 Background
In a partitioned approach to solve FSI problems, separate solvers are used for fluid and
structural sub-problems and a coupling technique is adopted to account for the interaction of
the domains. One of the big advantages of the partitioned methods is the possibility to use
the most adapted and well-validated numerical methods for each sub-problem. Moreover, it
allows using previously developed and optimized fluid and structural solver codes, thus saving
excessive software development effort [1, 2]. However, the partitioned approach introduces
a new challenge to the problem which is the coupling between the separate solvers. This
challenge has two different aspects. One aspect concerns the methodology, i.e., coupling
distinct sets of (discretized) partial differential equations and ensuring the physical equilibrium
conditions on the interface. The second aspect is related to the implementation, i.e., coupling
two parallel codes with different modules and structures, with the aim of achieving an efficient
and scalable overall software.

Modern scientific and engineering problems are often very complex and require a huge
computational effort. Therefore, any simulation software must be able to efficiently run on
massively parallel computers. The parallel efficiency of a solver code is crucial in order to be
able to use the available resources adequately and perform a complex calculation. During the
recent years, efficient parallel codes have been developed for many single-physics problems,
particularly fluid and structural systems. While the monolithic approach to solve FSI prob-
lems requires developing a new solver and implementing a software, following a partitioned
approach creates the opportunity to exploit the previously-developed efficient codes for FSI
simulations. As far as single-physics simulation codes are concerned, a great advancement has
been achieved in parallel efficiency. Nevertheless, using efficient single-physics codes does not
automatically guarantee achieving a good parallel efficiency for a coupled multi-physics simu-
lation. Multi-code coupling introduces several new challenges. One particular difficulty is the
data exchange between separate codes which often use different data structures and could even
be written in different languages. An efficiently parallel mechanism for data exchange between
the codes is crucial for achieving parallel efficiency on the coupled framework. Moreover, by
coupling two parallel codes, a new level of load balancing is introduced to the problem, as
each code would be responsible for a different amount of calculations on a different number of
CPUs.

Recent efforts have been made to develop efficient multi-physics simulation codes (particu-
larly for FSI problems) using either monolithic [3] or partitioned [4,5] approaches. In this work,
we focus on the partitioned approach in order to create a scalable and efficient framework
using existing single–physics solver codes.

In our multi-code coupled framework, the communication between the separate codes
is managed by using a communication library. The communication library receives the data
from each code via an adapter and contains functions to facilitate the exchange of data. It also
accelerates the coupling iterations between the solvers in the strongly–coupled configuration.
The adapter is used to readjust the data structure when transferring data from one solver,
through the communication library, to the other solver. This approach leads to a robust and
powerful scheme to couple different codes for multi-physics simulations. An immediate
advantage of this method is that one or both of the single-physics solvers could be replaced
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by other codes with relatively small changes in the code, which would be often limited to
the adapter. Examples of such communication libraries can be found in [4, 6–8]. Examples
of multi-physics simulation software using communication libraries can be found in [4, 9].
There are other examples in the literature where the data exchange is handled directly and the
communication functions are included in the single-physics codes themselves. This approach
is shown to be efficient when two instances of the same code are coupled (e.g. [5]). However
it is not as robust and powerful as the first approach, especially in cases where two different
codes are coupled.

At the coupling methodology level, partitioned methods are generally divided into explicit
(or loosely coupled) and implicit (or strongly coupled) schemes. Explicit methods solve the
fluid and structural equations only once per time step, using data from the previous solution of
the partner solver. Therefore, explicit methods do not satisfy the exact equilibrium conditions
on the interface, which causes instability issues in a range of FSI problems (the so-called
added-mass instability). The added-mass instability is particularly strong in FSI problems
with incompressible flow, a slender interface, and similar densities of fluid and solid [10, 11].
Implicit methods, on the other hand, enforce the equilibrium condition on the interface through
coupling iterations between fluid and structural solvers. These methods are stable for problems
with strong added-mass effect, however, their computational cost is generally high due to
the repetitive solution of the governing equations at each time step [1, 2]. In the recently
introduced semi-implicit coupling approach [12–15], the fluid pressure term is segregated and
strongly coupled to the structure, while the remaining fluid terms are only loosely coupled.
Strong coupling of the fluid pressure and structural deformation eliminates the added-mass
instability issue, while loose coupling of the remaining fluid terms helps avoiding excessive
computational cost [12, 14].

In this work, two instances of a parallel in-house code, TermoFluids [16], are used to solve
the fluid and the structural problem. TermoFluids is a robust general-purpose software for fluid
and structural problems, using state-of-the-art methods for turbulent flow [17, 18], multiphase
flow [19, 20] and complex thermal systems [21, 22], with a high computational efficiency and
parallel scalability [23–25]. It presents a conservative discretization of the governing equations
on unstructured grids based on a finite-volume method. It is also equipped with dynamic-mesh
schemes to track the moving boundary. The coupling of the codes is carried out using the
preCICE coupling library [8]. The preCICE library provides communication, data mapping
and equation coupling for surface coupled multi-physics applications in a modular manner. It
uses a fully parallel point-to-point communication, advanced quasi-Newton iterative coupling
scheme and various advanced mapping methods (both consistent and conservative). A semi-
implicit FSI coupling approach proposed in [14] is applied, which effectively segregates the
fluid pressure term and couples it strongly to the structure. The remaining fluid terms and
the geometrical non-linearities are treated explicitly, reducing the computational cost of the
numerical solution. Practical test cases in the context of biological flow (flow inside deformable
vessels) are studied and the scalability of the overall framework is evaluated.

The remainder of this chapter is organized as follows. In Section 2, the governing equations
for each sub-problem and the coupling conditions are presented. Section 3 describes the
proposed numerical methods. Section 4 presents the parallelization method for each single-
physics solver, as well as the inter-code communications. Numerical tests are presented in
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Section 5, while Section 6 summarizes and concludes the chapter.

4.2 Governing Equations
In this section, we present the fluid and structural governing equations and the coupling
conditions on their common interface. The fluid and the structural domain are referred to
as Ω f (t) ⊂ R3 × (0, T) and Ωs(t) ⊂ R3 × (0, T), respectively, where t ∈ (0, T) denotes
time. The fluid-structure interface is the common boundary of the domains, denoted by
Γ(t) = ∂Ω f (t) ∩ ∂Ωs(t). An Arbitrary Lagrangian-Eulerian (ALE) formulation together with a
conforming mesh technique is used to solve the fluid flow in a moving domain. A Lagrangian
formulation is used for the structural equations.

The unsteady flow of an incompressible viscous fluid is governed by the Navier-Stokes
equations. An ALE formulation of these equations in a moving domain is given by:

∂u
∂t

+ c · ∇u =
1
ρ f
∇ ·σ f (4.1)

∇ · u = 0 (4.2)

where u is the fluid velocity and ρ f the fluid density. Vector c is the ALE convective velocity
c = u−w, which is the fluid velocity relative to a domain moving with a velocity w. The stress
tensor σ f is defined for an incompressible Newtonian fluid as:

σ f = −pI + µ f (∇u +∇uT) (4.3)

where p is the fluid pressure, I the unit tensor and µ f is the dynamic viscosity of the fluid.
The structural domain is governed by the conservation laws of mass and momentum,

whose Lagrangian form is given by:

ρ0
s = ρs J (4.4)

∂

∂t

(
ρs

∂d
∂t

)
= ∇ ·σs (4.5)

where superscript 0 refers to the reference material configuration (undeformed) of the body,
ρs is the structural density and d is the displacement from the reference configuration. The
tensor σs is the Cauchy stress tensor, which can be related to the displacement field by the
hyperelastic constitutive model of Saint Venant-Kirchhoff:

σs =
B
2J

[2µs(B− I) + λstr(B− I)] (4.6)

where B is the left Cauchy-Green deformation tensor B = F · FT , and µs and λs are the Lamé’s
parameters. The material deformation tensor F is evaluated as F = I +∇d and its determinant
is shown by J = det(F).

The physical equilibrium on the fluid-solid common boundary (kinematic and dynamic
equilibrium) constitutes the coupling conditions on the interface. For a non-slip type interface
they read:
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uΓ =
∂dΓ
∂t

(4.7)

σsnΓ = σ f nΓ (4.8)

for any x ∈ Γ, where nΓ is the unit normal vector on the interface.

4.3 Numerical Methods
In this section we present the numerical methods for discretization and solution of the single-
physics problems, as well as the coupling method. Throughout the development of our coupled
framework and the single-physics solvers, an emphasis was made on making the software
simple, modular and, as much as possible, matrix-free. Moreover, the fluid solver was mainly
developed for turbulent flow simulations. Therefore, many aspects of the discretization and
the numerical methods correspond to the particular considerations of turbulent flows.

4.3.1 Fluid solver
For fluid flow, a fractional-step projection method along with an explicit time advancement is
used to solve the velocity-pressure coupling of the momentum equation. This leads to a three
step solution of the fluid governing equations from time step n to n + 1, with a time increment
of ∆t

up = un − ∆t[
3
2
(cn · ∇un −

µ f

ρ f
∆un)− 1

2
(cn−1 · ∇un−1 −

µ f

ρ f
∆un−1)] (4.9)

∆t
ρf

∆pn+1 = ∇ · up (4.10)

un+1 = up − ∆t
ρf
∇pn+1 (4.11)

for x ∈ Ωn+1
f , where up is a predicted velocity field which does not satisfy the incompressibility

condition (Eq. (4.2)). This intermediate velocity field is then projected onto a divergence-free
field through the correction at Eq. (4.11). An explicit Adams-Bashforth method is used for the
convective and diffusive terms in Eq. (4.9). Using an explicit method is particularly preferred
in turbulent flow simulations where small time steps are indispensable. From a computational
point of view, it avoids solving a nonlinear system for the fluid velocity field. It also offers
advantages in parallelization as only the information from the previous time step is required
(only one episode of data update between nodes is required at each time step).

A finite-volume method is used for the spatial discretization of the fluid equations on a
collocated, unstructured mesh with second-order symmetry-preserving schemes. Symmetry-
preserving schemes conserve the kinetic energy of the flow at the discrete level which is
crucially important in turbulent flow simulations [26, 27]. A Jacobi–preconditioned conjugate



100 §4.3 Numerical Methods

gradient solver is used to solve the Poisson equation for pressure. More details of the numerical
methods for fluid flow equations could be found in [27, 28].

We use a conforming mesh technique to track the moving boundary, thus the fluid mesh
needs to move in order to adapt to the new location of the interface. The translated mesh and
the evaluated domain velocity, w, must satisfy the Geometric Conservation Law (GCL) [29, 30].
The GCL guarantees that no volume is lost while moving the grid, and a constant field is
preserved by the ALE scheme. For any control volume (CV) in the fluid domain, the GCL is
stated as:

∂v
∂t
−
∫

s
w · dA = 0 (4.12)

where v and s stand for the volume and the boundary surface of the CV, respectively, and A is
the area vector pointing outward.

A parallel moving mesh technique based on the radial basis function interpolation method [31]
is used to move the fluid grid in accordance to the new location of the interface and define
the discretized fluid domain at the new time step Ωn+1

f . The method uses the known displace-
ment on the interface to evaluate an interpolated value for the interior vertices of the fluid
grid. A great advantage of this method is that it does not need the connectivity of the mesh
elements and can be applied to both structured and unstructured grids. Moreover, it only
requires solving a linear system of equations whose size is limited to the number of vertices on
the fluid-solid interface. A detailed description of the moving mesh method could be found
in [14, 31].

After the fluid mesh is moved, the domain velocity is evaluated at the surfaces of each
control volume. We evaluate the surface velocities based on the GCL law in order to exactly
satisfy it. Time rate of change of volume of a CV is equal to the sum of volumes swept by
its each face. In this work we evaluate the domain velocity at each face, w f ace, based on the
volume swept by that face. With a second-order backward discretization it reads:

wn+1
f ace =

3
2
(

δv
A∆t

n)n+1 − 1
2
(

δv
A∆t

n)n (4.13)

where A is the surface area, n the unit normal vector of the face, ∆t the time step and δv is the
volume swept by the face at one time step. A more detailed description of the evaluation of
the domain velocity field and satisfaction of the geometric conservation law could be found in
chapter 3 and Appendix A.

4.3.2 Solid solver
Aiming at flow-induced deformations and oscillations of the structure, the solid equations are
solved using an implicit time integration, where both the inertial and surface forces in Eq. (4.5)
are evaluated at the current time instant tn+1. A cell-centered finite volume formulation with a
total Lagrangian approach is used for the spatial discretization. The momentum equation is
integrated on the undeformed configuration. After applying the Gauss theorem on the stress
divergence and relating the undeformed and current area vectors with Nanson’s formula, the
momentum balance can be written as:
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∫
v0

ρ0
s

∂2d
∂t2 dv0 =

∫
s0
σs(JF−Tn0) ds0 (4.14)

The acceleration of the inertial term is computed according to the trapezoidal rule, as a
function of the new displacement dn+1 and past kinematics in the following manner:

∂2d
∂t2 =

4
∆t2 dn+1 − 4

∆t2 dn − 4
∆t

(
∂d
∂t

)n
−
(

∂2d
∂t2

)n

(4.15)

The dependencies between different directions of the displacement and the geometrical
and material non-linearities found in the right-hand side of Eq. (4.14) are deferred to the source
term of the system. Therefore, outer fixed-point iterations are needed to obtain a converged
solution. This segregated algorithm is typically adopted within finite volume procedures for
structures due to its robustness and low memory requirements [32]. It divides the surface force
into an implicit diffusive component and a deferred correction as:

∫
v0

ρ0
s

∂2d
∂t2 dv0 =

∫
s0
Kimp(∇d)n0 ds0

+
∫

s0
σs(JF−Tn0) ds0 −

∫
s0
Kimp(∇d)n0 ds0 (4.16)

The diffusive term is approximated by a central difference scheme with a non-orthogonal
correction, presented as the over-relaxed scheme in [33]. The convergence of the iterative
process is improved by selecting an optimal value of Kimp = (2µs + λs), and using an Aitken
∆2 acceleration technique for multidimensional problems [34].

Similar to the methods in [35, 36], the gradient of the displacement (and hence, the strain
and stress tensors) are evaluated directly on the cell face centers. To do so, the gradient is
decomposed into the normal and the tangential derivatives to the face surface, and a specific
numerical scheme is used for each one. The former uses the same central difference scheme
dedicated to the implicit term whereas the latter follows the surface Gauss theorem to express
the tangential derivative as a function of the displacement in the face vertices. Therefore, a
method to interpolate the displacement from the cell centers to the vertices of the grid has to be
defined. The second-order accurate interpolation technique described in [37] is used for this
purpose. Additional details on the numerical method for solid mechanics are presented in [38].

4.3.3 Fluid-structure coupling
A Dirichlet-Neumann (DN) domain decomposition method is used to solve the coupled FSI
problem. In the DN decomposition, the fluid equations are solved for a known location
of the interface and the kinematic equilibrium condition (Eq. (4.7)) is used as a Dirichlet
boundary condition for fluid flow. The structural equations are solved for a known traction
on the interface, thus subject to a Neumann boundary condition derived from the dynamic
equilibrium condition (Eq. (4.8)). A great advantage of the DN decomposition method is its
consistency with the most common solvers for fluid and structural equations.
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A semi-implicit coupling method similar to the ones proposed in [14, 15] is followed in
this work. The principal idea is to segregate the fluid pressure term and couple it strongly
to the structure. It is argued that fluid pressure term is the main contributor to the added
mass effect and coupling it loosely will cause numerical instabilities [10, 12]. Segregation of the
fluid pressure is naturally achieved by using a projection method to solve the fluid equations.
Therefore, only the Poisson equation for pressure in the discretized fluid equations (Eq. (4.10))
is strongly coupled to the structure. The remaining fluid equations (Eq. (4.9) and (4.11)) are
solved only once per time step. The geometrical nonlinearities are also treated explicitly and
the fluid mesh is only moved once per time step. The location of the interface for each time
step is evaluated as an extrapolation of the location in the previous instants. This semi-implicit
coupling strategy is concisely described in Algorithm 1. For a detailed description of the
method see [14, 15]. Therefore, the coupled problem on the interface could be represented as:

S ◦ P(dΓ) = dΓ (4.17)

where S represents the structural block solver as a function of the traction on the interface
S = S(σΓ) and P is the part of the fluid solver that is strongly coupled to the structure (the
pressure equation). Both S and P are nonlinear operators. Also note that the discretized
operators S and P , as well as the interface deformation field dΓ, are in the current time step
tn+1.

Algorithm 1 Semi-implicit FSI coupling method

start t = tn+1

1: Predict the location of the interface by extrapolating from previous time steps.
2: Move the mesh and evaluate the surface velocities.
3: Solve the fluid ALE convective-diffusive equation for the predicted velocity

field (Eq. (4.9)).

4: while coupling not converged do . S ◦ P(dΓ) = dΓ
5: Solve the Poisson’s equation for pressure (Eq. (4.10)).
6: Solve the structural equations for the deformation.
7: Update boundary values for predicted velocity using the new solid deforma-

tion.
8: end while

9: Evaluate the corrected velocity field using converged pressure field (Eq. (4.11)).
10: Apply the boundary condition on the corrected velocity using converged defor-

mation.

The coupled interface problem in Eq. (4.17) needs to be solved at each time step similar to the
interface problem in a fully implicit partitioned method. Fixed-point iterations with Aitken’s
relaxation (e.g. [1, 5, 39]) or Newton-based methods (e.g. [40–42]) are commonly used to solve
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the interface problem. The execution of the fluid and structural solvers could be carried out
sequentially (staggered solution) or simultaneously (parallel solution). In the staggered method,
the fluid and structural systems are solved sequentially (one after another), corresponding
to a Gauss-Seidel-type problem. On the other hand, in simultaneous or parallel solution, the
systems are solved at the same time (using different processors), corresponding to a Jacobi-
type problem. Staggered methods are commonly used, although they have a very limited
parallel efficiency due to a severe load imbalance [43, 44]. Although fixed-point iterations with
Aitken’s relaxation are seen to be efficient and robust in a staggered solution (see e.g. [39]),
they show poor performance in a parallel (simultaneous) solution method. On the other hand,
parallel execution together with a quasi-Newton method results in a very efficient and robust
method [43, 44].

In this work, we take a parallel solution approach where the fluid and structural systems
are solved at the same time (on different processors) using inputs from the previous iteration
of the partner solver. One iteration of this Jacobi-like fixed-point problem can be written in
matrix-like notation as: (

0 S
P 0

)(
dk

Γ
σk

Γ

)
=

(
d̃k+1

Γ
σ̃k+1

Γ

)
(4.18)

where k indicates the iteration count in the current time step tn → tn+1, and the tilde sign in
d̃k+1

Γ and σ̃k+1
Γ means these new values are yet to be modified in a subsequent Newton step.

In order to describe the quasi-Newton method, we denote the vector form of the underlying
fixed-point interface problem of Eq. (4.18) as:

H(x) = x (4.19)

where x =

(
dΓ
σΓ

)
. To solve Eq. (4.19), we accelerate the fixed-point iteration (Eq. (4.18)) by a

subsequent Newton step:

xk+1 = H(xk)−J −1R(xk) (4.20)

where k denotes the iteration count, R is the residual function R(xk) = H(xk)− xk, and J −1

is the inverse Jacobian of R. Since calculation of the inverse Jacobian is not feasible, it is
approximated based on secant equation:

Ĵ −1
k Vk =Wk (4.21)

in which the hat sign indicates the approximation and Vk andWk are two vectors which include
increments of x and the residual R in the previous iterations within the same time step:

Wk = [∆xk, ∆xk−1, ..., ∆x1] (4.22)

Vk = [∆Rk, ∆Rk−1, ..., ∆R1] (4.23)

In this work, we use a multi-vector quasi-Newton method (MVJ) as proposed in [8, 42]. In
this approach, instead of minimizing the Forbenius norm of the Jacobian, the distance between
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the current Ĵ −1
k and the previous time step approximated Jacobian Ĵ −1,(n) is minimized

(min(||Ĵ −1
k − Ĵ −1,(n)||). This results in the following approximation for the Jacobian inverse:

Ĵ −1
k = Ĵ −1,(n)(Wk − Ĵ −1,(n)Vk)(VT

k Vk)
−1VT

k (4.24)

where it should be noted that k indicates the iteration number at the current time step, while n
refers to the previous time step tn. The estimated Jacobian can be used to find the increment of
x. This process must be repeated until the convergence criterion is met and then we can move
to the next time step. This quasi–Newton method is part of the preCICE coupling library and
can be consulted in details in [8].

4.4 Parallelization
The current framework is based on multi-code coupling of separate solvers for the fluid and
the structural domain. Therefore, the parallelization aspects can be considered in two levels,
namely the parallelization of each single-physics solver, and the inter-code communication
level.

4.4.1 Single-physics solvers
Two instances of the same software are used for the single-physics sub-problem domains in
this work. Therefore, the fluid and the structural solver share the same parallelization methods
and programming model which are described in this chapter.

The overall computational efficiency of any code depends on both its sequential and parallel
performance. Computational fluid dynamics and solid mechanics are memory-bounded
applications, meaning that the sequential performance of the solver is limited by the cost of
fetching data from the memory rather than the cost of computations on the CPU. This is a
characteristic feature of these applications since their discretized systems of equations are
represented by sparse matrices and the computations have low arithmetic intensity. Therefore,
the single–core performance of the code in this work is optimized by minimizing memory
transfers and using SIMD operations whenever possible, depending on the operation and type
of data.

For parallelization of the computations at each single-physics solver, a distributed–memory
model is used and communication between processes are established using the Message Passing
Interface (MPI) standard. This configuration was seen in our previous tests to be equally or
more efficient than a hybrid MPI–openMP arrangement for many CFD applications on a
homogeneous CPU-only machine (see [45] for details). Moreover, it makes our code portable
across all the distributed-memory systems, enabling us to efficiently use different clusters
without the need to adapt the parallel implementation of the code to the specific architecture of
the machine. This distributed-memory parallelism is complemented by a vectorization (SIMD)
level within each core. The code also has a multi-threading option with CUDA or openCL to
use GPUs as co–processors on a hybrid machine [46–48]. This option was not activated in this
work since the system used for tests is a CPU-only cluster.
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The distributed-memory parallelization is carried out based on a spatial domain decomposi-
tion. The computational grid Ω (either Ω f or Ωs) is divided into n non-overlapping subdomain
blocks, Ω0, ..., Ωn−1, and each block is assigned to a different CPU core (MPI rank). Each block
contains many cells (control volumes) that are owned by the assigned core, and several halo
cells that represent the neighbours of the owned cells that are themselves owned by a different
process. Neighbour cells are defined based on the notion of shared vertices. Figure 4.1 schemat-
ically represents the discretized domain and its decomposition into two subdomain blocks. The
decomposition of the computational domain is carried out using the METIS library [49]. METIS
divides the computational mesh into roughly equal partitions using a parallel multilevel k-way
graph-partitioning method, minimizing the number of halo cells [49]. Roughly equal sizes of
the blocks results in a roughly balanced load on different processes and a minimized number
of halo cells means minimized required communications.

Computational domain Subdomain 1 Subdomain 2

.

Figure 4.1: Schematic illustration of a discretized domain (left) and its decomposition into
two subdomain blocks (right). Cell and boundary nodes are represented as filled circles and
vertices as empty circles. The owned elements (cells, nodes and vertices) of each process are
shown in blue while the halo elements are shown in red.

At the parallel level, the efficiency is mainly limited by the inter-process communications.
Two types of inter-process communication are present in our implementation:

(i) global reduction operations which are used in the evaluation of norms, dot products,
and for obtaining global extrema (e.g., in time step evaluation),

(ii) point-to-point communications between the processes in order to update the data in the
halo cells.

The first type of communication is not required very frequently in the code and is carried out
by simply calling the corresponding MPI collective operations. On the other hand, communi-
cation for data updates in the halo cells is carried out via non–blocking functions MPI Isend

and MPI Irecv in order to avoid unnecessary synchronization. The synchronization is deferred
to a later time when the MPI Waitall function is called. An efficient and sparse scheme is
implemented where each process stores the list of other processes with which it needs to
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communicate. This is carried out only once at the initialization stage. In the communication
episode, a loop is created over this small list to invoke the respective communication.

Another relevant aspect in computational performance of the code is the checkpointing
and input and output operations (IO). Checkpoints are saved instants of data which are used
for post-processing or to restart the simulations from an specific point. The IO operations in
this work are managed via the HDF5 library [50]. Our implementation of the IO operations for
checkpointing is seen in our previous tests to have a good parallel performance and to generate
a reasonably low overhead [25].

4.4.2 Inter-code communication
Efficient inter–code communication is a key element in parallel partitioned coupled simulations.
For this purpose, we use the preCICE coupling library [8]. Inter–code communication can
be either based on MPI ports (MPI-2.0) or on lower level TCP/IP sockets. In the current
work we have used TCP/IP sockets, because the MPI ports functionality is missing in the
implemented MPI versions on the supercomputer that we used for our tests (SuperMUC
supercomputer at the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences).
To establish communication channels between the participants’ ranks, the fluid and the solid
mesh partitions are initially analyzed to find logical connections between them. Once the
communication channels are established, data are exchanged in an asynchronous way to avoid
unnecessary blocking. Note that establishing the channels is carried out only once at the
initialization stage. For the rest of the run-time, the same channels are used for data exchange.
Since using a central communication instance can degrade the scalability of our framework,
we use a fully parallel point-to-point communication scheme and no central server–like unit is
used. This way, data exchange happens locally between the connected ranks. It is obvious that,
in case of having a big mesh or a high number of ranks and using a central communication
instance, a single master rank or server would be a severe bottleneck.

Figure 4.2 schematically shows the parallel structure of the coupled framework and the
different levels of communication.

4.4.3 Load balancing
Load imbalance can be a serious source of inefficiency in parallel simulation codes. Inside
each single–physics solver, the load is balanced by dividing the computational domain into
fairly equal blocks for each process, as explained in Section 4.4.1. However, in a partitioned FSI
simulation, there exists a new level of load balancing between the single–physics solvers. In
such simulations, the solvers need to communicate with each other and the output of one solver
is used as the input for the other. In this work with a simultaneous execution of the solvers
(Jacobi-type problem described in Section 4.3.3), both solvers must finish an iteration and send
the output to the partner solver before the next iteration. Therefore, until the fluid solver has
not received the data from the structural solver, it can not start the computations for the next
iteration (and vice versa). This means, in case the available CPUs are not distributed optimally
among the solvers, one solver will be waiting for the partner to finish its own computations. In
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Figure 4.2: Parallelization model of the coupled framework and the different levels of commu-
nications.

contrast to the load balancing within a single–physics solver, load balancing across the codes is
more difficult since we do not know a priori the relation between the work per cell of different
solvers.

In this work, we follow the approach proposed in [51] to address this issue. We first
model the solver performance against the number of ranks for each domain, and then solve
an integer optimization problem to find the appropriate pair of core numbers for the domains
that minimizes the waiting time. Since analytical modeling of the solvers’ performance is very
complex, we use an empirical approach instead, aiming to find an appropriate performance
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model.
Assuming we have a given set of m data points, consisting of pairs (n, fn) mapping the

number of ranks n to the run-time fn, we want to find a function f (n) for each solver, which
predicts the run-time for any n. We use the Performance Model Normal Form (PMNF) [52],
defined in Eq. (4.25), as a basis for our prediction model:

f (n) =
q

∑
k=1

cknik logjk
2 (n) (4.25)

where n is the number of ranks used by the solver, q is the number of terms used for the
empirical run-time approximation, ck is the weight of each term in the approximation function,
and ik and jk are empirical coefficients. Calotoiu et al. [52] suggest, that the search space given
by q = 2, ik ∈ { 0

4 , 1
4 , . . . , 12

4 } and jk ∈ {0, 1, 2} is suitable for many applications. To find the
optimal model, we simply check all the combinations within the search space, calculate a
cross-validation-based loss for each combination (the accumulative error on the validation data
set) and pick the combination with the smallest loss. By applying a PMNF regression, we are
able to generate performance models f (n) for each solver involved in the simulation.

As mentioned before, our goal is to find an optimal assignment of cores for each solver for a
limited number of total available cores P, such that the overall run-time F(n f , ns) is minimized
(n f and ns are number of ranks used by the fluid and the solid solver respectively). This can be
expressed by the following optimization problem:

minimize
n f ,ns

F(n f , ns) with F(n f , ns) = max( fs(ns), f f (n f ))

subject to n f + ns ≤ P.

If the functions fs and f f are approximated by the PMNF regression, this optimization
problem is a nonlinear, possibly non-convex integer optimization. We assume that fs and f f
are both monotonically decreasing, i.e., assigning more cores to a solver never increases the
run-time. With this, we can simplify the constraints to:

P = n f + ns. (4.26)

The optimization problem can then be solved by brute-force checking all possible values
for ns and n f in order to choose the pair that minimizes the total run-time. This pair of rank
counts is then used to divide the available processors between the fluid and the structural
solver for the FSI simulation. For more details, please refer to [51].

4.5 Numerical Tests
Numerical tests are provided in this section to demonstrate the parallel scalability of the
coupled framework in solving practically relevant FSI problems. The test cases are in the
context of hemodynamics. The first test case is a simplified benchmark problem representing
the propagation of pressure waves inside a 3D deformable tube. The second test case is the
blood flow inside a patient-specific aorta considering the elastic deformation of the aorta
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wall. The scalability tests are carried out on the SuperMUC supercomputer at the Leibniz
Supercomputing Centre of the Bavarian Academy of Sciences in Garching [53].

4.5.1 3D flow inside a deformable tube
This benchmark problem was proposed by [54] and studied, among others, by [12, 39, 55]. The
problem is a 3D incompressible flow inside a straight tube with a deformable wall, motivated
by the type of problems encountered in hemodynamics. The tube has a length of l = 0.05m,
an inner radius of R0 = 0.005m and a wall thickness of h = 0.001m. The fluid density and
viscosity are ρ f = 1000kg/m3 and µ f = 0.003Pa · s, respectively. The structural density is
ρs = 1200kg/m3, the Young modulus E = 3× 105N/m2 and the Poisson ratio ν = 0.3.

The tube is clamped at both ends and the fluid is initially at rest. An overpressure of
1333.2Pa is applied at the tube inlet during a period of 0.003s and a constant pressure of 0Pa
afterwards. Pressure at the outlet is 0Pa during the whole simulation. A Neumann boundary
condition is used for the velocity at both inlet and outlet boundaries.

Unstructured 3D meshes are used for both fluid and structural domains. Two meshes (M1
and M2) are used to solve the problem from t = 0 until t = 0.02s with constant time step sizes
of ∆t = 10−4 and ∆t = 5× 10−5s, respectively. The information of the meshes are provided
in Table 4.1. Figure 4.3 presents the radial displacement at the mid-length of the tube during
the simulation time. As seen in the figure, the results obtained by mesh M1 and M2 are fairly
close. Figure 4.4 shows the velocity vectors inside the deformed tube at two instants t = 0.005
and t = 0.01s. The color contour in the solid domain is the von Mises equivalent stress. The
deformation of the wall is magnified by a factor of 10 to be visible better. The propagation of
the pressure wave with a finite velocity inside the tube is seen in the figure.

Table 4.1: Computational grids used for the deformable tube test case.

Mesh name No. of cells
Fluid Structure

M1 60K 20K
M2 120K 40K
M3 9M 6M

For the scalability tests we used a much finer grid of M3 (Table 4.1). A complete simulation
is not carried out for these tests and only the first 10 time steps are solved. Figure 4.5 shows
the average run–time per time step for different numbers of CPU cores. The number of cores
indicates the total number of cores divided between the fluid and solid solvers. The division of
the available cores between the solvers is based on the load balancing model in Section 4.4.3.
As seen in the figure, a good reduction in computational time is achieved by increasing the
number of cores. Figure 4.6 shows the corresponding speed–ups in the calculation time and
compares them to the ideal (linear) speed–up. Results show a very good scalability for up to
1400 cores. For higher core numbers the parallel efficiency degrades. This limit appears to be
mostly determined by the size of the mesh used for the tests. The size of the computational
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Figure 4.3: Radial displacement at the mid-length of the tube with two different meshes and
time step sizes.

grid (total of 15M cells in mesh M3) is relatively small to be divided among over a thousand
processes. For instance, dividing the mesh among 1400 cores means each process owns roughly
10K cells, which is too few calculations and corresponds to a very low arithmetic intensity
(compared to communication). We believe, by repeating the scalability tests using finer grids,
a greater scalability is achievable on higher number of cores. Such extended tests are left for
expected future works.

At every time step, an average of roughly 17 coupling iterations were required to achieve
convergence on the coupled problem (using εFSI = 10−5). This number remained fairly con-
stant by increasing the number of processes, as seen in Table 4.2. This shows that the overall
methodology for the coupled FSI problem is mathematically scalable. Table 4.2 also contains
the data for the initialization time of the coupled framework. The reported time includes
the initialization times of the single–physics solvers, as well as the time for establishing the
inter–code communication channels and initializing the coupling library modules. The data in
Table 4.2 shows that the initialization time remains fairly constant and only slightly increases
by increasing the number of processes.
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Figure 4.4: Propagation of the pressure wave inside the deformable tube. Fluid velocity vectors
inside the deformed domain and the von Mises equivalent stress at the wall. Top: at t = 0.005s;
Bottom: at t = 0.01s. Deformations magnified by a factor of 10.

Table 4.2: Average number of coupling iterations per time step, and the total initialization time
of the coupled framework for test case 1 (deformable tube).

No. of cores 280 420 560 700 840 980 1120 1260 1400
coupling iterations 17.4 17.6 16.8 17.4 16.8 16.8 17.2 17.4 17.2

initialization time [s] 329.6 335.8 339.2 345.6 351.7 353.9 359.2 365.4 370.6
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Figure 4.5: Average run–time per time step for different numbers of cores for test case 1 (de-
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4.5.2 Patient–specific aorta
The second test case is simulation of blood flow inside a patient-specific aorta with a mild
thoracic aortic coarctation. The 3D geometry of the aorta is obtained by contrast agent magnetic
resonance angiography, provided by the 2nd CFD challenge of the STACOM 2013 confer-
ence [56]. Figure 4.7 shows the provided geometry and the location of the boundaries. The
thickness of the aorta wall and its mechanical properties were not provided in the challenge
data. Therefore, we assume values in the typical physiological range. A uniform thickness
of h = 2mm is assumed for the wall along with density ρs = 1200kg/m3, Young modulus
E = 3 × 105N/m2 and Poisson ratio ν = 0.3. The density and viscosity of the blood are
considered to be ρ f = 1000kg/m3 and µ f = 0.004Pa · s. These values for the wall thickness
and the properties of the wall and blood are similar to the values used in [57].

Figure 4.7: 3D geometry of a patient-specific aorta provided in [56].

For the inlet boundary of the aorta, a Dirichlet boundary condition is used for velocity,
using measured physiological flow rate data provided in [56] for the rest condition. A Neumann
boundary condition is used for the fluid pressure at the inlet. For the outlet boundaries, explicit
RCR Windkessel boundary conditions [58] are used to model the effect of the rest of the vascular
network. The Windkessel parameters are chosen as those reported in [59]. For the solid, a
zero–displacement (clamped) boundary condition is set at the inlet and at the outlets, while a
traction-free boundary condition is used on the outer surface of the wall.
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The objective of the current work is not a deep study of the biophysical phenomena featured
in this test case, but rather to show the capability of the developed framework to solve such
a complex problem on a massively-parallel configuration. Nevertheless, the obtained fluid
velocity and pressure fields, as well as the structural displacements were seen to be in the
reasonable physiological range. Figure 4.8 demonstrates the solution at two instants, t = 0.05s
and t = 0.1s. The figure contains the velocity vector plot inside the deformed aortic wall. The
color contours in the structural domain correspond to the von Mises equivalent stress.

Figure 4.8: Fluid velocity vectors inside the deformed aortic wall and the von Mises equivalent
stress at the wall. Left: at t = 0.05s; Right: at t = 0.1s.

The strong scalability of the developed framework is evaluated using the computational
grid M1 (Table 4.3). Both fluid and structural grids are unstructured tetrahedral meshes. The
first 10 time steps are solved for the scalability tests. Figure 4.9 shows the average run–time
per time step for different numbers of cores. Similar to the previous test case, the number of
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cores indicates the total number of processes of the fluid and solid solvers. The division of the
available cores between the solvers is based on the load balancing model in Section 4.4.3. As
seen in the figure, a very good reduction in computational time is achieved by increasing the
number of cores. Figure 4.10 presents the corresponding speed–ups and compares them to the
ideal speed–up. Results show a very good scalability for up to 3360 cores and still adequate
for up to 3920 processes. For higher core numbers the parallel efficiency degrades. Similar to
the previous test case, this limit appears to be mostly determined by the size of the mesh used
for the scalability tests. The size of the computational grid (total of 29M cells in mesh M1) is
not large enough to be divided among four thousand processes. We believe, by repeating the
scalability tests using finer grids, a greater scalability is achievable on higher number of cores.
Such extended tests are left for expected future works.

Table 4.3: Computational grid used for the patient-specific aorta test case.

Mesh name No. of cells
Fluid Structure

M1 20M 9M
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Figure 4.9: Average run–time per time step for different numbers of cores for test case 2 (patient–
specific aorta).
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Figure 4.10: Speed–up in the calculation time by increasing the number of cores for
test case 2 (patient–specific aorta).

At every time step, an average of roughly 11 coupling iterations were required to achieve
convergence on the coupled problem (using εFSI = 10−3). This number remained constant
by increasing the number of processes, as seen in Table 4.4. This shows that the overall
methodology for the coupled FSI problem is mathematically scalable. Table 4.4 also contains
the data for the initialization time of the coupled framework. Similar to the previous test case,
the reported time includes the initialization times of the single–physics solvers, as well as the
time for establishing the inter–code communication channels and initializing the coupling
library modules. The data in Table 4.4 shows that the initialization time remains fairly constant
and only slightly increases by increasing the number of processes.

Table 4.4: Average number of coupling iterations per time step, and the total initialization time
of the coupled framework for test case 2 (patient–specific aorta).

No. of cores 560 1120 1680 2240 2800 3360 3920
coupling iterations 10.6 10.6 10.6 10.6 10.6 10.6 10.6

Initialization time [s] 263.9 261.3 274.8 308.8 309.7 328.8 352.5
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4.6 Conclusions
An efficient and scalable parallel framework is presented for partitioned solution of fluid–
structure interaction problems. The framework is developed through multi–code coupling,
using separate fluid and structural solvers. Both single–physics solvers use distributed–memory
parallelism based on spatial domain decomposition. The intra–solver communications required
for data update in the solution process are carried out using non–blocking point–to–point
communicators. The inter–code communications are also fully parallel and point–to–point,
avoiding any central communication unit. Both the intra–solver and inter–code communi-
cation channels are established at the initialization stage, before the simulation begins. This
configuration is seen to produce very rapid and efficient communications.

Inside each single–physics solver the load is balanced by dividing the computational
domain into fairly equal blocks for each process. The available processor cores are divided
between the fluid and solid solvers based on a load balancing model that minimizes the total
idle time of the processes.

Both fluid and structural solvers discretize and solve the corresponding equations on
unstructured 3D meshes. A semi–implicit coupling method is used, in which the fluid pressure
term is segregated and strongly coupled to the structure. The remaining fluid terms and the
geometrical nonlinearities are only loosely coupled. Strong coupling of the fluid pressure and
structural deformation provides for the stability of the method in FSI problems with strong
added–mass effect. On the other hand, loose coupling of the remaining terms considerably
reduces the computational time of the simulations. An efficient multi–vector quasi–Newton
method is used to solve the coupled interface problem.

Two numerical test cases in the context of hemodynamics are considered and the strong
scalability of the coupled framework is evaluated. The first test case is a benchmark FSI
problem, solving an incompressible flow inside a deformable tube. The second test case solves
the blood flow inside a patient–specific aorta. Results confirmed a very good scalability for up
to 3920 cores. The test results also suggest that by using a finer mesh for the scalability tests, a
greater scalability on higher number of cores is achievable.
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5

Concluding remarks

This thesis was dedicated to developing numerical methods and tools for simulation of complex
fluid–structure interaction problems. In the first chapter of the thesis we have provided an
introduction to the FSI problems and an extensive literature review on the numerical methods
for their solution. The current work was focused on the semi–implicit partitioned approach,
due to its promising features. Moreover, the study was focused on complex and challenging
FSI problems, including ones with very strong added–mass effect and very large deformations.
The research work carried out in this thesis could be divided into three major parts which are
presented in the second, third and the fourth chapters of this document.

In the second chapter, a simple and robust semi–implicit coupling method is proposed
for FSI problems with strong added–mass effect. A projection method is used to split the
pressure stress term of the fluid and implicitly couple it to the structure. The remaining
fluid terms as well as the geometrical nonlinearities are only explicitly coupled. An ALE
formulation and conforming mesh technique is used to solve the fluid flow in a moving
domain. A parallel radial basis function method is used to move the computational grid.
The main advantages of the proposed method are its simplicity, modularity, robustness and
computational efficiency. Extensive numerical tests were carried out on three widely different
test cases, which demonstrated adequate stability, accuracy and computational efficiency of
the proposed method. Results of the simulations were validated against experimental data
and other numerical results from the literature, as well as domestic results obtained by using
a fully–implicit coupling method. Results demonstrated that the proposed semi–implicit
method significantly reduces the computational cost of the simulations without undermining
either stability or accuracy of the results. In this chapter we have also evaluated the effect
of implicit or explicit treatment of the geometrical nonlinearities on the overall performance
and accuracy of the semi–implicit method. Results showed that implicit treatment of the
geometrical nonlinearities considerably increases the computational cost while only slightly
improving the accuracy. This conclusion was shown to stand even for problems with large
structural deformations. Finally, we have compared the performance of fixed–point and
Newton–Krylov methods to solve the coupled interface problem. Results showed that the
Newton–Krylov solver outperforms the fixed–point method in a problem that requires many
iterations to converge. On the other hand, in a FSI problem which does not require many
coupling iterations, fixed–point method with Aitken’s relaxation is probably a better choice,
considering its simplicity and good performance.
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In the third chapter, a second–order time accurate semi–implicit method is proposed for
solution of FSI problems. The method uses a second–order projection method to solve the
fluid equations and also as a framework for the FSI coupling. The fluid pressure term is
effectively segregated using the projection method and is strongly coupled to the structure.
The remaining fluid terms and the geometrical nonlinearities are treated explicitly. An ALE
formulation with a conforming mesh technique was used to solve the fluid flow and the arisen
geometrical terms were evaluated with a second–order temporal accuracy. Consistent boundary
conditions were developed for the predicted velocity field which is encountered when solving
the fluid equations with a projection method. Particular attention was paid to second–order
accuracy of the fluid pressure, up to the moving boundary. Second–order accuracy of the
method for coupled nonlinear FSI problems was demonstrated through rigorous numerical
tests. Simulation results were validated against experimental and numerical results from the
literature. Different time step sizes were used to solve the problems and the error was evaluated
with respect to a reference numerical solution. Second–order temporal accuracy for all the
variables of interest was clearly demonstrated.

In the fourth chapter, an efficient and scalable parallel framework was presented for
partitioned solution of FSI problems, through multi–code coupling. Two instances of our in–
house software were used to solve the single–physics sub–problems and an external coupling
library was used for inter–code communications. Both fluid and structural solvers used
distributed–memory parallelism. The intra–solver communications required for data update in
the solution process were carried out using non–blocking point–to–point communicators. The
inter–code communications were also fully parallel and point–to–point, avoiding any central
communication unit. Both the intra–solver and inter–code communication channels were
established at the initialization stage, before the simulations began. This configuration was
seen to produce very rapid and efficient communications. Load balancing was considered in
two levels, inside each single–physics solver and in the inter–code level. The semi–implicit FSI
coupling methods developed in the previous chapters were used here. An efficient multi–vector
quasi–Newton method was used to solve the coupled interface problem. Parallel efficiency and
scalability of the coupled framework was demonstrated on practical FSI problems.

Overall, this thesis presents several original contributions to the field of numerical methods
for FSI problems. The proposed methods improve the existing methods of the literature in
many aspects, including accuracy and computational efficiency. These improvements directly
reflect in the application of the proposed methods to real–life engineering problems. Moreover,
the methods and tools developed in this work are capable of efficiently running on massively–
parallel machines, which is a crucial aspect in the modern computational engineering.



6

Future work

This work could be continued in different ways. The most interesting extension, in the opinion
of the author, is to use the developed methods and tools to study complex physical and
engineering systems that feature FSI. Since this work was mostly focused on developing new
methods, the numerical tests mainly served to demonstrate the capabilities of the proposed
methods rather than deep study of the physical problems. A very interesting application
of FSI is the blood flow analysis inside deformable vessels in human cardiovascular system.
The methods and tools in this study are particularly developed for such problems and their
capabilities are demonstrated. However, a deep study of the biophysical phenomena in such
systems was beyond the scope of the current work and could be a very interesting extension
for future.

Another possible extension is to improve the efficiency and accuracy of the developed
methods. More accurate, more robust, higher-order and more cost-efficient methods could be
achieved by carefully analyzing the current methods and detecting their potential weak points
to improve.

Moreover, the scalability tests of the developed coupled framework in chapter 4 could be
further extended. The tests in chapter 4 showed a very good strong scalability on thousands
of processors. However, they do not represent the limits of the scalability of the framework.
We believe by using finer meshes for the tests, a good scalability on even more cores could be
achieved and demonstrated. Also the weak scalability of the framework was not evaluated in
this work and could be studied in the future.
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Appendix A

Integral form of governing

equations and

discretization in space

Throughout this thesis the governing equations are presented in their differential form
and the semi-discretization of the equations in time is described, independent of the choice
for discretization in space. This time-discretized equations could then be used with different
spatial discretizations. For the sake of completeness, the spatial discretization method used
in this work and the integral form of the conservation equations are described here. We only
explain the discretization for the fluid equations in ALE form, as the structural equations are
used in their standard Lagrangian form. This annex is complementary to the main text and
follows the same notation and nomenclature. The subscript f used in the main text to refer to
the fluid properties is dropped here (e.g. ρ f in the main text is simply shown by ρ here).

We use a finite-volume method with collocated mesh arrangement for space discretization.
This method is based on the discretization of the computational domain into a finite number
of non-overlapping control volumes (CVs). Each CV has an associated grid node P located
at its centroid where the equations are solved. Each CV has a volume v, surrounded by a
control surface s, which consists of an arbitrary number of well-defined neighbouring faces.
Quantities associated to a grid node (or cell center) are indicated by capital subscripts (e.g. P
or N), while the values at the faces are indicated by lower-case subscripts (e.g. pn to refer to
the face located between cell nodes P and N). The area vector of a face is referred to as Apn
(Apn = Apnnpn where Apn is the surface area of the face and npn is the normal vector pointing
outwards). In this work we use an ALE method on a moving mesh which means the shape
and volume of the CVs are varying in time (v = v(t) and s = s(t)). Therefore, the equations of
conservation of mass and momentum are integrated over time-varying CVs. The integral form
of the governing equations are as follows:

d
dt

∫
v

ρdv +
∫

s
ρ(u−w) · dA = 0 (A.1)

127



128 Appendix: Integral form and spatial discretization

d
dt

∫
v

ρudv +
∫

s
ρu(u−w) · dA =

∫
s
σ · dA (A.2)

The time change of the CV is taken into account in both mass and momentum equations.
The change of volume of each CV is present in the transient terms (first term in both equations)
while the movement of the surface of the CV is reflected as additional mass and momentum
fluxes (second term in both equations).

This set of equations have an extra unknown which is the velocity of the domain (w).
Another conservation law to close the system is the space conservation law (see sections 2.2.5
and 3.3.3), which guarantees the conservation of space (volume) in the moving domain:

d
dt

∫
v

dv−
∫

s
w · dA = 0 (A.3)

Comparing Eq. (A.1) and (A.3) (and assuming incompressibility) we realize that the
equation of conservation of mass on the moving domain is identical to that equation in a fixed
domain: ∫

s
ρu · dA = ∑

pn∈s
ṁpn = 0 (A.4)

where ṁpn is the mass flux at the face pn and the summation ∑pn∈s is over all the faces of the
CV. Surface integrals at the faces are approximated using the mid-point rule, evaluating the
mass flux at a given face as ṁpn = ρpnupn ·Apn, where the density and velocity are evaluated
at the centroid of the face (here, the density is constant as we consider incompressible flow).

The momentum equation is solved using a projection method as described in sections 2.2.4
and 3.3.1. In chapter 3, the ALE convection-diffusion equation for the predicted velocity field is
discretized in time using the second-order method in Eq. (3.12). In the finite volume method
used in this work, the volume integrals are evaluated at their own associated time levels:

1
∆t

(
∫

vn+1
ρu∗dv−

∫
vn

ρundv) =

−[3
2

∫
sn

ρun(un −wn) · dA− 1
2

∫
sn−1

ρun−1(un−1 −wn−1) · dA]

+
µ

2
(
∫

sn+1
∇u∗ · dA +

∫
sn
∇un · dA)−

∫
sn−1/2

pn−1/2dA

(A.5)

which is a consistent second-order discretization of the ALE convective-diffusive equation on a
moving mesh. The intermediate mesh sn−1/2 for the pressure term is obtained as an average
between sn and sn−1:∫

sn−1/2
pn−1/2dA = ∑

pn∈s
pn−1/2

pn An−1/2
pn = ∑

pn∈s

1
2

pn−1/2
pn (An

pn + An−1
pn ) (A.6)

The convective term is evaluated as some of the fluxes on the faces:
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∫
s

ρu(u−w) · dA = ∑
pn∈s

(ṁpn − ṁmeshpn )upn (A.7)

where ṁmeshpn refers to the additional mass flux due to the movement of the face:

ṁmeshpn = ρpnwpn ·Apn (A.8)
which will be evaluated using the space conservation law. The velocity on the face centroid to
evaluate the mass flux is obtained using a distance-weighted average between the velocities at
the grid nodes on either side of the face:

ṁpn = ρ
uNδxP + uPδxN

δxP + δxN
·Apn (A.9)

where δxP and δxN are the distance between the face centroid and the grid nodes P and N,
respectively. The convected velocity on the face is evaluated using a symmetry-preserving
scheme which is a non-weighted central scheme

upn =
uP + uN

2
(A.10)

as in [1, 2]. The diffusive term is also evaluated on the faces as:∫
s
∇u · dA = ∑

pn∈s
∇upn ·Apn (A.11)

and the gradients are evaluated using the neighbouring grid node values. The approximations
in equations (A.9)–(A.11) and their relation with the overall discretization are similar to the
case of a constant domain problem (Eulerian form) and are described in more details in [2, 3].

The space conservation law (Eq. (A.3)) is used to evaluate the additional fluxes due to the
mesh velocity in order to be used in the momentum equation (Eq. (A.2), (A.5) and (A.7)). In
the discretized form, the change of volume of the CV could be represented by the sum of the
volumes swept by the faces of that CV. A first-order discretization of this equation reads:

vn+1 − vn

∆t
= ∑

pn∈s

δvn+1
pn

∆t
(A.12)

which is used in chapter 2. In this equation δvn+1
pn indicates the volume swept by the face

pn (as in figures 2.1 and 3.1). Thus, the additional flux in the momentum equation could be

approximated as ṁn+1
meshpn

= ρ
δvn+1

pn
∆t , which is first-order in time (as used in chapter 2).

Alternatively, a second-order discretization of this equation is used in chapter 3:

3vn+1 − 4vn + vn−1

2∆t
= ∑

pn∈s

3δvn+1
pn − δvn

pn

2∆t
(A.13)

which uses the information of the swept volume by face pn in the two consecutive time steps
to obtain second-order accuracy. Thus, the additional flux in the momentum equation is
approximated by:
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ṁn+1
meshpn

= ρ
3δvn+1

pn − δvn
pn

2∆t
(A.14)

to be used in Eq. (A.7). This second-order approximation is used in the methods in chap-
ters 3 and 4.
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