
WORD-PROCESSING-BASED ROUTING FOR
CAYLEY GRAPHS

Daniela Aguirre Guerrero

Per citar o enllaçar aquest document:
Para citar o enlazar este documento:
Use this url to cite or link to this publication:
http://hdl.handle.net/10803/667410

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

http://hdl.handle.net/10803/667410

Doctoral Thesis

W O R D - P R O C E S S I N G - B A S E D R O U T I N G
F O R C AY L E Y G R A P H S

daniela aguirre guerrero

2019

Doctoral Program in Technology

Supervised by:
Dr. Pere Vilà Talleda and Dr. Lluís Fàbrega Soler

Thesis submitted to the University of Girona in fulfillment of the
requirements for the degree of Doctor of Philosophy

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

C E RT I F I C AT D E D I R E C C I Ó D E T E S I

Dr. Pere Vilà Talleda, Dr. Lluís Fàbrega Soler, del Departament d’Arqui-
tectura i Tecnologia de Computadors de la Universitat de Girona,

DECLAREM:

Que el treball titulat Word-Processing-based Routing for Cayley Graphs, que
presenta Daniela Aguirre Guerrero per a l’obtenció del títol de doctor, ha
estat realitzat sota la nostra direcció i que compleix els requisits per poder
optar a Menció Internacional.

I, perquè així consti i tingui els efectes oportuns, signem aquest docu-
ment.

Girona, Gener 2019

Dr. Pere Vilà Talleda Dr. Lluís Fàbrega Soler

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

A C K N O W L E D G M E N T S

The work presented throughout this manuscript would not have been pos-
sible without the support of some people and institutions. I would like to
express my gratitude to all of them.

Firstly, I would like to acknowledge the financial support of the Mexican
Council for Science and Technology (CONACyT) for the award of the PhD
grant CONACyT-SENER 2015-409697. Also, I thank the Broadband Com-
munications and Distributed Systems (BCDS) group of the University of
Girona (UdG) for the financial support to attending different scientific
events and research stays.

I would like to express my gratitude to my advisors, Dr. Pere Vilà and
Dr. Lluís Fàbrega, for their continuous support, patience and motivation.
Their guidance helped me in all the time. I am deeply grateful to Professor.
Jose Luis Marzo, who gave me the opportunity to work in the BCDS group.

One of the most important experiences during my PhD was my research
stay at the Combinatorics, Optimization, and Algorithms for Telecommu-
nications (COATI) team of the French Institute for Research in Computer
Science and Automation (INRIA). I would like to thank Dr. David Coudert
and Dr. Guillaume Ducoffe, who host me at INRIA and provided rigorous
and valuable feedback not only during my research stay but also in the
last months. Also, I thank the valuable feedback that the anonymous re-
viewers of this manuscript (and the papers that resulted from this research
work) have provided throughout these years.

También me gustaría agradecer a mis amigos de México: Josué Martínez,
Salvador Peña, Fernando Guerrero e Ismael Robles, quienes en distintas
maneras me acompañaron y apoyaron durante este proceso. Por supuesto,
también tengo mucho que agradecer a las personas con quienes compartí
la vida en Girona. A Ana Mar Oropeza, Silvia Oviedo, Silvia Baldiris y
Oscar Azorin, gracias por su incondicional amistad y compañía, la cual
estoy segura continuará sin importar el lugar en donde nos encontremos.

Finalmente, quisiera expresar mi más profunda gratitud a mis padres
Juan Manuel y María Elena, y a mis hermanos Liz, Juan y Julio por su
incondicional amor y apoyo.

v

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

P U B L I C AT I O N S

The work developed in this Thesis led to the following publications:

journal articles

[DAM’18] D. Aguirre-Guerrero, G. Ducoffe, Ll. Fàbrega, P. Vilà and D.
Coudert, "Low Time Complexity Algorithms for Path Com-
putation in Cayley Graphs," in Discrete Applied Mathematics,
2018, ISSN: 0166-218X, DOI: 10.1016/j.dam.2018.12.005.

[TNET’18] D. Aguirre-Guerrero, M. Camelo, Ll. Fàbrega and P. Vilà,
"WMGR: A Generic and Compact Routing Scheme for Data
Center Networks," in IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 356-369. Feb. 2018. ISSN: 0166-218X, DOI:
10.1109/TNET.2017.2779866.

peer-reviewed conferences and workshops

[CITS’18] D. Aguirre-Guerrero, A. Mañosa, Ll. Fàbrega and P. Vilà,
"Evaluation of Cayley Graphs for Parallel Computer Systems,"
2018 International Conference on Computer, Information and Tele-
communication Systems (CITS 2018), Colmar, France, 2018. ISBN:
978-1-5386-4599-4, DOI: 10.1109/CITS.2018.8440157.

[WEN’16] D. Aguirre-Guerrero, Ll. Fàbrega, P. Vilà and M. Camelo,
"Compact Greedy Routing in Large-scale Networks using
Word-metric Spaces," 1st. International Workshop on Elastic Net-
works Design and Optimization, Cartagena, Spain, 2016.

other conferences and workshops

[SBC’17] D. Aguirre-Guerrero, Ll. Fàbrega, and P. Vilà, "Encaminami-
ento de Información en Redes de Comunicación de Gran Es-
cala," 6to. Simposio de Becarios CONACyT en Europa, Strasbourg,
Fran-ce 2017.

[CPRG’16] D. Aguirre-Guerrero, Ll. Fàbrega and P. Vilà, "Greedy Geo-
metric Routing in Word-metric Spaces," 1st. Conference of Pre-
doctorals Researches, Girona, Spain, 2016. ISBN: 978-8-48458-
502-2.

vii

[February 22, 2019 at 7:06 – classicthesis version 4.2]

https://doi.org/10.1016/j.dam.2018.12.005
https://doi.org/10.1109/TNET.2017.2779866
https://doi.org/10.1109/CITS.2018.8440157

[February 22, 2019 at 7:06 – classicthesis version 4.2]

L I S T O F TA B L E S

Table 1 Parameters of network topologies. 19

Table 2 Parameters of Cayley graphs used as network topolo-
gies. 23

Table 3 Symmetric properties of Cayley graphs 24

Table 4 State transition table for the word-difference automa-
ton of the Bubble-sort graph with 3 generators. . . . 36

Table 5 Summary of path computation algorithms for Cay-
ley graphs. 40

Table 6 Space complexity of path computation algorithms
on specific families of Cayley graphs. 42

Table 7 Time complexity of path computation algorithms
on specific families of Cayley graphs. 43

Table 8 Summary of routing schemes for Cayley graphs. . . 44

Table 9 Space complexity of routing schemes for Cayley graphs. 45

Table 10 Space complexity of node labels and message head-
ers defined by routing schemes on specific families
of Cayley graph. 46

Table 11 Space complexity of routing tables defined by rout-
ing schemes on specific families of Cayley graph . . 48

Table 12 Forwarding decision time of routing schemes for
Cayley graphs. 49

Table 13 Forwarding decision time of routing schemes on
specific families of Cayley graph. 49

Table 14 Notation of the Word-Processing-based Routing. . . 53

Table 15 Variables of the path computation algorithms. . . . 61

Table 16 Notation of the fault-tolerant mechanism. 73

Table 17 Estimate of the fellow-traveler constant and the car-
dinality of the set of word-differences. 90

Table 18 Space complexity of the Word-Processing-based Rout-
ing. 92

Table 19 Space complexity of the Word-Processing-based Rout-
ing on specific families of Cayley graphs. 93

Table 20 Time complexity of the path computation algorithms
of the Word-Processing-based Routing. 94

Table 21 Forwarding decision time complexity of the Word-
Processing-based Routing. 95

Table 22 Time complexity of the path computation algorithms
of the Word-Processing-based Routing on specific
families of Cayley graphs. 97

Table 23 Complexity measures of the distributed processes
used by the Word-Processing-based Routing. 98

Table 24 Paths computed by generic algorithms on Cayley
graphs. 98

ix

[February 22, 2019 at 7:06 – classicthesis version 4.2]

x List of Tables

Table 25 Generic path computation algorithms with best space
and time complexity on specific families of Cayley
graphs. 99

Table 26 Features of generic routing schemes for Cayley graphs.100

Table 27 Generic routing schemes with best space complex-
ity on specific families of Cayley graphs. 101

[February 22, 2019 at 7:06 – classicthesis version 4.2]

L I S T O F F I G U R E S

Figure 1 A Cayley graph of the additive group Z2p. 2

Figure 2 Network model. 3

Figure 3 Dependency among chapters and relation to publi-
cations. 8

Figure 4 Examples of graphs 14

Figure 5 A Cayley graph of the symmetric group Sp. 17

Figure 6 Maximum link load with respect to the number of
nodes. 24

Figure 7 Average distance with respect to the number of nodes. 25

Figure 8 Number of end points supported with respect to
the number of nodes. 26

Figure 9 Number of end points supported with respect to
the node radix. 26

Figure 10 A finite state automaton. 29

Figure 11 A 2-variable finite state automaton. 30

Figure 12 The Bubble-sort graph with edges and nodes labeled. 32

Figure 13 Geometric representation of two paths following the
k-fellow-traveler property. 34

Figure 14 Relation between the properties of the Word-Processing-
based Routing and their path computation algorithms 55

Figure 15 Geometric representation of words accepted by the
word-difference automaton 58

Figure 16 Illustration of the algorithm to compute paths rec-
ognized by the word-difference automaton. 59

Figure 17 Minimal paths between two nodes of a Cayley graph
of a ShortLex automatic group. 62

Figure 18 Process of node failure notification in the Bubble-
sort graph. 78

xi

[February 22, 2019 at 7:06 – classicthesis version 4.2]

L I S T O F A L G O R I T H M S

Algorithm 1 Compute the canonical form of a word. 38

Algorithm 2 Distributed assignment of node labels. 56

Algorithm 3 Compute paths recognized by the word-difference
automaton. 60

Algorithm 4 Compute the shortest path. 61

Algorithm 5 Compute the minimal paths. 63

Algorithm 6 Compute paths of bounded length. 65

Algorithm 7 Compute the K-shortest paths. 66

Algorithm 8 Compute the shortest link-disjoint paths. 67

Algorithm 9 Compute the shortest node-disjoint paths. 69

Algorithm 10 Compute the shortest paths avoiding a set of links
and nodes. 70

Algorithm 11 Update the faulty nodes record. 74

Algorithm 12 Update the faulty links record 76

Algorithm 13 Notification of a faulty node. 77

Algorithm 14 Notification of a faulty link. 79

Algorithm 15 Notification of a recovered node. 80

Algorithm 16 Notification of a recovered link. 80

Algorithm 17 Single-path forwarding in source nodes 84

Algorithm 18 Multi-path forwarding in source nodes 84

Algorithm 19 Forwarding in intermediate nodes 84

Algorithm 20 Fault-tolerant forwarding in source nodes 86

Algorithm 21 Fault-tolerant forwarding in intermediate nodes . . 87

Algorithm 22 Distributed assignment of port labels. 110

Algorithm 23 Discovery relators. 110

Algorithm 24 Label ports. 111

xii

[February 22, 2019 at 7:06 – classicthesis version 4.2]

A C R O N Y M S

AGT Automatic Group Theory

BCDS Broadband Communications and Distributed Systems

BFS Breadth-First Search

CG Cayley Graph

COATI Combinatorics, Optimization, and Algorithms for
Telecommunications

CONACyT Mexican Council for Science and Technology

DCN Data Center Network

FSA Finite State Automata

GCR Generalized Chordal Ring

GRWMS Geometric Routing with Word-Metric Spaces

HPC High Performance Computing

INRIA French Institute for Research in Computer Science and
Automation

KBMAG Knuth-Bendix on Monoids and Automatic Groups

MA Multiplier Automata

MWP Minimum Word Problem

PCAACG Path Computation Algorithm for Abelian Cayley Graphs

PIN Processor Interconnection Network

RCRR Routing based on Chordal Ring Representation

RPS Routing based on Permutation Sort

SAG ShortLex Automatic Group

SAS ShortLex Automatic Structure

SFA Sims Factoring Algorithm

UdG University of Girona

UGAL Universal Globally-Adaptive Load-balanced Routing

WA Word-Acceptor

WD Word-Difference

WDA Word-Difference Automaton

xiii

[February 22, 2019 at 7:06 – classicthesis version 4.2]

xiv acronyms

WPR Word-Processing-based Routing

WSN Wireless Sensor Network

2D 2-Dimensional

[February 22, 2019 at 7:06 – classicthesis version 4.2]

C O N T E N T S

Publications vii
List of Tables ix
List of Figures xi
List of Algorithms xii
Acronyms xiii
Abstract xix
Resumen xxi
Resum xxiii
1 introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.2.1 The network model . 3

1.2.2 Routing basics . 3

1.2.3 Complexity measures 5

1.2.4 Generic routing in Cayley graphs 6

1.3 Objectives . 7

1.4 Contributions . 7

1.5 Outline of the document . 8

1.5.1 Part I. Cayley graphs: networks and routing 8

1.5.2 Part II. Word-Processing-based Routing 9

I cayley graphs : networks and routing 11

2 theoretical framework 13

2.1 Graph theory . 13

2.1.1 Graphs and subgraphs 13

2.1.2 Paths, connectedness and trees 14

2.1.3 Weighted graphs, distances and neighborhoods . . . 14

2.1.4 Graph isomorphism 15

2.2 Group theory . 15

2.2.1 Groups and subgroups 15

2.2.2 Homomorphism . 16

2.2.3 Group presentations 16

2.2.4 Permutation Groups 16

2.2.5 Cayley graphs . 18

3 cayley graphs as network topologies 19

3.1 Topology model . 19

3.2 Topological properties of Cayley graphs 19

3.2.1 Symmetry . 19

3.2.2 Connectivity and fault-tolerance 20

3.2.3 Moore bound . 21

3.2.4 Load balancing . 21

3.3 Performance and robustness evaluation 22

3.3.1 Families of Cayley graphs evaluated 22

3.3.2 Fault-tolerance and load balancing 23

3.3.3 Average distance vs. number of end points 24

xv

[February 22, 2019 at 7:06 – classicthesis version 4.2]

xvi contents

4 word processing in cayley graphs 27

4.1 Languages and automata . 27

4.1.1 Words and languages 27

4.1.2 Finite State Automata 28

4.1.3 2-variable finite state automata 29

4.2 Groups as languages . 30

4.3 Words as paths and nodes . 31

4.4 ShortLex automatic groups 33

4.5 Solving the minimum word problem 37

5 state of the art on routing in cayley graphs 39

5.1 Path computation algorithms 39

5.1.1 Sims factoring algorithm 39

5.1.2 Path computation algorithm for abelian Cayley graphs 39

5.1.3 Comparison of path computation algorithms for Cay-
ley graphs . 40

5.2 Routing schemes . 41

5.2.1 Routing based on permutation sort 41

5.2.2 Routing based on chordal ring representations 41

5.2.3 Geometric routing with word-metric spaces 44

5.2.4 Comparison of routing schemes for Cayley graphs . 44

II word-processing-based routing 51

6 overview 53

6.1 Routing information . 54

6.1.1 Routing table . 54

6.1.2 Node label . 54

6.1.3 Word-difference automaton 54

6.2 General operation . 54

6.3 Node label assignment . 55

7 path computation algorithms 57

7.1 Preliminaries . 57

7.1.1 Paths recognized by the word-difference automaton 57

7.1.2 Computing the links and nodes of a path 59

7.1.3 Algorithm variables 60

7.2 Computing the minimal paths 61

7.2.1 Computing the shortest path 61

7.2.2 Computing the minimal paths 61

7.3 Computing the K-shortest paths 64

7.3.1 Computing paths of bounded length 64

7.3.2 Computing the K-shortest paths 65

7.4 Computing the disjoint paths 66

7.4.1 Computing the shortest link-disjoint paths 66

7.4.2 Computing the shortest node-disjoint paths 68

7.5 Computing the shortest paths avoiding a set of links and
nodes . 69

8 fault-tolerant mechanism 73

8.1 General operation . 73

8.2 Failures’ records . 73

8.2.1 Updating the faulty nodes record 74

8.2.2 Updating the faulty links record 75

[February 22, 2019 at 7:06 – classicthesis version 4.2]

contents xvii

8.3 Notifications of faulty nodes and links 76

8.4 Notification of recovered nodes and links 79

9 forwarding protocols 83

9.1 Deterministic routing . 83

9.2 Fault-tolerant routing . 85

10 complexity analysis 89

10.1 The word-difference automaton 89

10.2 Space complexity . 91

10.3 Time complexity . 91

10.4 Complexity of distributed processes 96

10.5 Comparison with the state of the art proposals 96

11 conclusions 103

11.1 Summary of completed work 103

11.2 Review of contributions . 105

11.3 Future work . 106

Appendix 107

a port label assignment 109

bibliography 113

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

A B S T R A C T

Cayley Graphs (CGs) are a geometric representation of algebraic groups
that have been used as topologies of a wide variety of communication
networks, e.g. Processor Interconnection Networks (PINs), Wireless Sen-
sor Networks (WSNs), Data Center Networks (DCNs), etc. The reason is
that their properties of node-transitivity, link-connectivity and low aver-
age distance between nodes enable high performance and robustness in
large-scale networks.

Most of communication networks, whose topologies are defined by CGs,
apply traditional routing schemes, such as the Valiant Routing and the
Universal Globally-Adaptive Load-balanced Routing (UGAL). These routing sch-
emes employ topology-agnostic algorithms for path computation, such as
the Bellman-Ford and Dijsktra algorithms. These algorithms receive the
whole graph as input, which results in high space and time complexity for
the routing schemes using them.

In contrast, routing schemes and path computation algorithms dedi-
cated to CGs have been designed to achieve low space and time complexity
taking advantage of the aforementioned properties of CGs. These propos-
als can be classified into: 1) generic, i.e. that works on several families of
CGs; and 2) specialized on a family of CGs. The challenge of achieving low
time and space complexity is major for generic proposals as they must
work on CGs with different topological structures.

Recent proposals in this direction include generic algorithms for com-
puting the shortest path, the minimal paths and the disjoint paths. How-
ever, a thorough search of the relevant literature did not yield any generic
algorithm for computing the K-shortest paths, which is fundamental to
design routing schemes that provide path diversity and fault-tolerance.
Thereby the state of the art on routing schemes includes deterministic pro-
posals and just only one fault-tolerant proposal, which does not provide
minimal routing and does not guarantee packet delivery.

This Thesis focuses on the problem of generic routing in CGs. The prob-
lem is analyzed from the Automatic Group Theory (AGT). The fundamen-
tal idea of the AGT is that the structure of every finite (and some infinite)
CG can be encoded in a set of Finite State Automata (FSA) called ShortLex
Automatic Structure (SAS). For a CG with diameter DΓ , it has been proved
that the shortest path problem can be solved in time O(D2Γ) using its re-
lated SAS.

In this research work, word-processing techniques are used together
with SASs to design low complexity algorithms for computing: the short-
est path, the minimal paths, the paths of bounded length, the K-shortest
paths, the disjoint paths, and the shortest path avoiding a set of nodes and
links. Based on these algorithms, it is proposed a generic routing scheme
that has low time and space complexity; guarantees packet delivery; and
provides minimal routing, path diversity and fault-tolerance.

The routing scheme and path computation algorithms proposed are
evaluated through a complexity analysis and a comparison with the state

xix

[February 22, 2019 at 7:06 – classicthesis version 4.2]

xx abstract

of the art on generic routing for CGs. The contributions of this Thesis also
include a theoretical framework to study and solve problems related to
path computation and routing in CGs from an approach of word process-
ing, and an analysis of the topological properties of CGs and their impact
on the performance and robustness of networks that use them as topology.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

R E S U M E N

Los grafos de Cayley (CG, por sus siglas en inglés) son una representación
geométrica de grupos algebraicos. Estos grafos han sido utilizados como
topologías de una gran variedad de redes de comunicaciones, tales como
redes de interconexión de procesadores, redes inalámbricas de sensores,
redes de centros de datos, etc. El motivo es que sus propiedades de tran-
sitividad de nodo, conectividad de enlace y baja distancia promedio entre
nodos hacen posible un alto desempeño y robustez en redes de gran es-
cala.

La mayoría de la redes de comunicación, cuyas topologías son definidas
por CGs, utilizan esquemas de encaminamiento tradicionales, tales como
el Encaminamiento Valiant y el Encaminamiento Universal, Globalmente Adap-
tativo y con Balance de Carga. Estos esquemas de encaminamiento emplean
algoritmos de búsqueda de caminos que son agnósticos a la topología,
tales como los algoritmos de Dijkstra y Bellman-Ford. Estos algoritmos
reciben todo el grafo como entrada, lo que resulta en una alta compleji-
dad de tiempo y espacio para los esquemas de encaminamiento que los
utilizan.

En contraste, se han diseñado esquemas de encaminamiento y algorit-
mos de búsqueda de caminos especificos para CGs, con el objetivo de lo-
grar baja complejidad espacial y temporal mediante el aprovechamiento
de las (antes mencionadas) propiedades topológicas de los CGs. Estas pro-
puestas pueden ser clasificadas en: 1) genéricas, es decir que funcionan en
varias familias de CGs; y 2) especializadas en una familia de CGs. El reto
de lograr baja complejidad espacial y temporal es mayor en el caso de pro-
puestas genéricas, debido a que estas propuestas deben funcionar en CGs

con estructuras topológicas diferentes.
Trabajos recientes en esta dirección incluyen algoritmos genéricos para

la búsqueda de: el camino más corto, los caminos mínimos y los caminos
disjuntos. Sin embargo, después de una búsqueda exhaustiva de la lite-
ratura relevante, no se encontró ningún algoritmo genérico para la búsque-
da de los K caminos más cortos, lo cual es fundamental para el diseño de
esquemas de encaminamiento que provean diversidad de caminos y to-
lerancia a fallos. En consecuencia, los de esquemas de encaminamiento
más modernos para CGs incluyen propuestas deterministas y sólo una
propuesta tolerante a fallos, la cual no provee encaminamiento mínimo
ni tampoco garantiza la entrega de paquetes.

Esta Tesis se enfoca en el problema de encaminamiento genérico en CGs.
El problema es analizado desde el punto de vista de la Teoría de Grupos
Automáticos (AGT, por sus siglas en inglés). La idea fundamental de la AGT

es que la estructura de todo CG finito (y algunos infinitos) puede ser co-
dificada en un conjunto de Autómatas de Estados Finitos, dicho conjunto es
llamado Estructura Automática Lexicográficamente más Corta (SAS, por sus si-
glas en inglés). Para un CG con diámetroDΓ se ha probado que el problema
de encontrar el camino más corto puede ser resuelto en tiempo O(D2Γ) si
se utiliza su respectiva SAS.

xxi

[February 22, 2019 at 7:06 – classicthesis version 4.2]

xxii resumen

En este trabajo de investigación se utilizan técnicas de procesamiento
de texto junto con SASs para diseñar algoritmos de baja complejidad que
encuentran: el camino más corto, los caminos mínimos, los caminos de
longitud limitada, los K caminos más cortos, los caminos disjuntos, y el
camino más corto que excluye un conjunto de nodos y enlaces. Con base en
estos algoritmos se ha propuesto un esquema de encaminamiento genérico
para CGs, el cual tiene baja complejidad espacial y temporal, garantiza la
entrega de paquetes, y provee: encaminamiento mínimo, diversidad de
caminos y tolerancia a fallos.

Tanto el esquema de encaminamiento como los algoritmos de búsqueda
de caminos propuestos son evaluados mediante un análisis de comple-
jidad y una comparación con las propuestas más modernas de encami-
namiento genérico para CGs. Las contribuciones de esta Tesis también in-
cluyen un marco teórico para estudiar y resolver problemas relacionados
con la búsqueda de caminos y encaminamiento en CGs desde un enfoque
de procesamiento de texto, y un análisis de las propiedades topológicas
de los CGs y su impacto en el desempeño y la robustez de las redes que
los utilizan como topología.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

R E S U M

Els grafs de Cayley (CG, per les seves sigles en anglès) són una repre-
sentació geomètrica de grups algebraics. Aquests grafs han estat utilitzats
com topologies d’una gran varietat de xarxes de comunicacions, com ara
xarxes d’interconnexió de processadors, xarxes inalàmbriques de sensors,
xarxes de centres de dades, etc. Això és principalment per les seves pro-
pietats de transitivitat de node, connectivitat d’enllaç i baixa distància mit-
jana entre nodes que fan que xarxes de mides molt grans tinguin un bon
rendiment i siguin robustes.

La majoria de xarxes de, comunicació amb topologies definides per
CGs, utilitzen esquemes d’encaminament tradicionals, com ara l’ Encami-
nament Valiant i l’Encaminament Universal, Globalment A-daptatiu i amb
Balanç de Càrrega. Aquests esquemes d’encaminament utilitzen algoritmes
de cerca de camins que són agnòstics a la topologia com ara els algoritmes
de Dijkstra i Bellman-Ford. Aquests reben tot el graf com a entrada, el
que resulta en una alta complexitat en temps i espai per als esquemes
d’encaminament que els utilitzen.

Per contra, s’han dissenyat esquemes d’encaminament i algoritmes de
cerca de camins específics per a CGs, amb l’objectiu d’aconseguir baixa
complexitat de espai i temporal mitjançant l’aprofitament de les (abans es-
mentades) propietats topològiques dels CGs. Aquestes propostes es poden
classificar en: 1) genèriques, és a dir, que funcionen en diverses famílies
de CGs; i 2) especialitzades en una família de CGs. El repte d’aconseguir
baixa complexitat de espai i temporal és més gran en el cas de propostes
genèriques, atès que aquestes propostes han de funcionar en CGs amb es-
tructures topològiques diferents.

Treballs recents en aquesta direcció inclouen algoritmes genèrics per a
la cerca de: el camí més curt, els camins mínims i els camins disjunts. No
obstant, després d’una recerca exhaustiva de la literatura rellevant, no es
va trobar cap algoritme genèric per a la recerca dels K camins més curts, la
qual cosa és fonamental per al disseny d’esquemes d’encaminament que
proveeixin diversitat de camins i tolerància a fallades. En conseqüència,
els esquemes d’encaminament més moderns inclouen propostes determin-
istes i tan sols una proposta tolerant a fallades, la qual no proveeix encam-
inament mínim ni tampoc garanteix el lliurament de paquets.

Aquesta Tesi està enfocada al problema d’encaminament genèric en CGs.
El problema és analitzat des del punt de vista de la Teoria de Grups Au-
tomàtics (AGT, per les seves sigles en anglès). La idea fonamental de la AGT

és que l’estructura de tot CG finit (i alguns infinits) pot ser codificada en
un conjunt d’Autòmats d’Estats Finits, aquest conjunt és anomenat Estruc-
tura Automàtica Lexicogràficament més Curta (SAS, per les seves sigles en
anglès). Per a un CG amb diàmetre DΓ s’ha provat que el problema de
trobar el camí més curt pot ser resolt en temps O(DΓ) si s’utilitza la seva
respectiva SAS.

En aquest treball d’investigació s’utilitzen tècniques de processament
de text junt amb SASs per a dissenyar algoritmes de baixa complexitat que

xxiii

[February 22, 2019 at 7:06 – classicthesis version 4.2]

xxiv resum

trobin: el camí més curt, els camins mínims, els camins de longitud limi-
tada, els K camins més curts, els camins disjunts, i el camí més curt que
exclou un conjunt de nodes i enllaços. Amb base a aquests algoritmes s’ha
proposat un esquema d’encaminament genèric per a CGs que té baixa com-
plexitat de espai i temporal, garanteix el lliurament de paquets, i proveeix:
encaminament mínim, diversitat de camins i tolerància a fallades.

Tant l’esquema d’encaminament com els algoritmes de cerca de camins
propossats són avaluats mitjançant una anàlisi de complexitat i una com-
paració amb les propostes més modernes en encaminament genèric per a
CGs. Les contribucions d’aquesta Tesi també inclouen un marc teòric per
estudiar i resoldre problemes relacionats amb la cerca de camins i encami-
nament en CGs, des d’un enfocament de processament de text, i una anàlisi
de les propietats topològiques dels CGs i el seu impacte en el rendiment i
la robustesa de xarxes que els utilitzen com a topologia.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

It is not only the question,
but the way you try to solve it.

— Maryam Mirzakhani

1
I N T R O D U C T I O N

1.1 motivation

Since S. Akers introduced a group theoretic model for interconnection net-
works [1], Cayley Graphs (CGs) have been used as topologies of a wide va-
riety of communication networks [2–6]. The reason is that the topological
properties of CGs enable high performance and robustness in large-scale
networks [7, 8]. Before proceeding to examine the topological properties
of CGs, it is necessary to give the formal definition of these graphs.

Let G be an algebraic group with a generating set S [9, Section 2.2]. Then
G has an associated CG, denoted by Γ(G,S). The set of vertices is given by
the set of group elements. Let g,h ∈ G, there is an edge from g to h if
and only if g · s = h for some s ∈ S. Cayley graphs can be classified into
families according to its related group and generating set. For instance,
consider the additive group Z2p = {(x,y) ∈ Z+ ×Z+ : 0 6 x,y < p}

with generating set S = {(1, 0), (0, 1)}. The group operation is the addition
module p. A member of the family of CGs of the additive group Z2p with
generating set S = {(1, 0), (0, 1)} is shown in Figure 1. Note that CGs are
regular graphs, i.e. nodes have the same number of edges.

The three key topological properties of CGs that enable high perfor-
mance and robustness in communication networks are:

1) Node-transitivity. Roughly speaking, all the nodes of a node-transiti-
ve graph have the same perspective of the whole graph. Then nodes
can not been distinguished each other with respect to their position
in the network, which allows the design of simple communication
protocols.

2) Link-connectivity. It is a consequence of the node-transitivity and
refers to the minimal number of links that must be removed to
disconnect the network. Then high link-connectivity allows fault-
tolerance for random link failures. Cayley graphs have the maxi-
mum possible value of link-connectivity for regular graphs. In ad-
dition, several CGs have also the maximum possible value of node-
connectivity [7].

3) Low average distance. An important issue in the design of network
topologies is to connect the maximum number of nodes while keep-
ing low average distance between them and thus low latency. For
regular networks, the well-known Moore bound states the minimum
value of average distance for a given number of nodes [10, Theorem
10.1]. Several CGs used as topologies of communication networks sat-
isfy such bound [7].

1

[February 22, 2019 at 7:06 – classicthesis version 4.2]

2 introduction

(0, 0)

(0, 1)

(2, 1)

(2, 2)

(1, 2)

(1, 0)

(1, 1)

(0, 2) (2, 0)

(1,0)

(0,1)

(1,0)(0,1)

(1,0)

(0,1)

(1,0)

(0,1)

(1,0) (0,1)

(1,0)

(0,1)

(1,0)

(0,1)

(0,1)

(1,0)

(1,0)

(0,1)

Figure 1: Cayley graph of the additive group Z23 with generating set S =

{(1, 0), (0, 1)}.

Most of communication networks, whose topology is a CG, apply tradi-
tional routing schemes [11, 12] that apply topology-agnostic algorithms for
path computation [13, 14]. It results in high space and time complexity due
to such algorithms take the whole graph as input. In contrast, routing pro-
posals dedicated to CGs can be designed to achieve low memory and time
requirements taking advantage of the topological properties of CGs. These
proposals can be classified into: 1) generic, and 2) specialized on a fam-
ily of CGs. The challenge of achieving low time and space requirements
is major for generic proposals as they must work on CGs with different
topological structure.

Recent generic proposals of routing in CGs include deterministic routing
schemes [1, 15] and a fault-tolerant routing scheme [16], which does not
guarantee packet delivery. In addition, algorithms for computing the min-
imal paths [17] and the vertex-disjoint [18] has been proposed. However,
a thorough search of the relevant literature did not yield any generic algo-
rithm for computing the K-shortest paths, which is fundamental to design
routing schemes that provide path diversity and fault-tolerance. This The-
sis focuses on the problem of generic routing in CG with the aim of design-
ing a routing scheme that guarantees packet delivery and provides path di-
versity and fault-tolerance by applying path computation algorithms with
low time and space requirements.

1.2 problem statement

This section presents basic definitions of routing in general and routing in
CGs. Further details about network and routing models can be found in
[19].

[February 22, 2019 at 7:06 – classicthesis version 4.2]

1.2 problem statement 3

1.2.1 The network model

Consider a point-to-point communication network, its arrangement of no-
des and links is called topology. A network topology can be described by a
graph G = (V ,E), where vertices V(G) represent the nodes of the network
and edges E(G) the links between nodes. Each node u ∈ V(G) has deg(u)
ports numbered from 1 to deg(u), which connect the links of u as it is
shown in Figure 2.

Figure 2: The node u and the links (u,w) and (u, v) that connect it to nodesw and
v, respectively. In undirected graphs, (u,w) = (w,u) for every (u,w) ∈
E(G)

.

1.2.2 Routing basics

1.2.2.1 The routing scheme model

The routing process consists in finding a path between a (source) node to
another (destination) node in order to deliver messages from the source
node to the destination node. In this Thesis, it is considered the routing
method called store and forward, which forwards messages from the source
node to the destination node through a chain of intermediate nodes. Each
of them stores the message and decides through which link each message
is forwarded.

In general, a routing scheme consists of:

1) Routing information. It can be routing tables that assign output
ports to destination nodes, and/or data structures storing details of
the state or structure of the network.

2) Forwarding protocols. They are mechanisms responsible for deliv-
ering and forwarding messages. They uses the routing information
and algorithms to compute the message headers and to decide which
is next node in the path.

The forwarding protocols work in source and intermediate nodes as
follows. First, a routing scheme requires that nodes had been labeled with
a unique identifier (label). Suppose that a source node v wants to deliver
a message MSG to a destination node u. The forwarding protocol must
execute the following steps:

1) Compute a header and attach it to MSG.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4 introduction

2) Decide the exit port and forward MSG to it.

Now, consider an intermediate node along the path of MSG. The forward-
ing protocol must perform the following steps:

1) Decide if the MSG has arrived to its final destination. If so, the for-
warding protocol finishes. Otherwise:

• Compute a header and attach it to MSG.

• Decide the exit port and forward MSG to it.

1.2.2.2 Objectives of routing schemes

The objectives of routing schemes depend on the kind of the communi-
cation network (e.g. Processor Interconnection Networks (PINs), Wireless
Sensor Networks (WSNs), Data Center Networks (DCNs), etc.) and its ap-
plication (e.g. storage, High Performance Computing (HPC), etc.). One or
more of the following objectives can be considered as primaries for several
communication networks:

• Path diversity. Exploit the path diversity of the network topology,
which include both minimal and non-minimal paths.

• Load balancing. Distribute the traffic between links in order to avoid
congestion and achieve high throughput.

• Fault-tolerance. Guarantee packet delivery in spite of failures of
nodes and links.

• Complexity efficiency. The forwarding protocols must be implemen-
ted efficiently, i.e. they must have low time and space requirements.

1.2.2.3 Features of routing schemes

Routing schemes can be classified according to the following features [20,
Chapter 5]:

• Topology:

– Topology-agnostic. The routing scheme has no assumptions
about the topology structure and then it can work on any topol-
ogy.

– Specialized. The routing scheme only works on specific topolo-
gies.

• Adaptability:

– Adaptive routing. The routing paths are computed taking into
account the state of the network, e.g. congested or failed nodes
and links.

– Deterministic routing. No network state is taken into account
to compute the routing paths. Then, the routing paths are al-
ways the same for a given source and destination nodes.

• Hop count:

[February 22, 2019 at 7:06 – classicthesis version 4.2]

1.2 problem statement 5

– Minimal routing. Messages are routed by the minimal paths.
Depending on the network topology, there might be multiple
minimal paths for a given pair of nodes.

– Non-minimal routing. Messages are not always sent by mini-
mal paths. Non-minimal routing allows adaptive routing taking
advantage of the path diversity.

• Routing decision:

– Source routing. The routing path is computed just once at the
source node.

– Hop-by-hop routing. Each node in the path takes a routing deci-
sion based on the destination label and the routing information.
Then, the routing path is built along all nodes in the path.

• Routing implementation:

– Algorithmic. Based on the routing information and destination
label, algorithms are used to compute the message header and
output port.

– Table-based routing. The routing information consists of a look-
up routing table that might assign the output port for a given
destination node.

1.2.2.4 Path computation algorithms

Path computation is a fundamental task of routing schemes. In general,
algorithms can be designed to compute the following paths between two
nodes: 1) the shortest path, 2) the K-shortest paths, 3) the disjoint paths,
i.e. paths that do not share nodes and/or links. Taking these algorithms as
base, new algorithms can be designed, in order to compute: the minimal
paths, the paths of bounded length, etc.1 The objectives reached by a rout-
ing scheme depend on the kind of path computation algorithms applied
and their implementation. In fact, the major challenge in the design of
routing schemes may consists in applying (or designing) the proper path
computation algorithms. For instance, path diversity and fault-tolerance
are provided by computing the K-shortest path; load balancing is provided
by computing the disjoint paths; complexity effectiveness highly depends
on the complexity of the path computation algorithms.

1.2.3 Complexity measures

Traditional complexity measures can be used to evaluate the performance
of both path computation algorithms and routing schemes [19, Chapter
2]. Regarding path computation algorithms, the common complexity mea-
sures are:

1 It is important to distinguish between the minimal paths and the K-shortest paths. A path
that has minimal length is called minimal path. For instance, if the 3-shortest paths be-
tween two nodes have length 4, 4 and 6, respectively, then the paths with length 4 are
minimal.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

6 introduction

• Space complexity. The amount of memory in bits used by the algo-
rithm in the worst case.

• Time complexity. The number of time units that the algorithm takes
to finish in the worst case.

Regarding routing schemes in the asynchronous communication model2 [19,
Section 1.3.4], the common complexity measures are:

• Memory space requirements per node. The amount of memory in
bits used by a node, in the worst case, to store its label, routing table
and forwarding algorithm.

• Forwarding decision time. The number of time units that the for-
warding algorithm takes to find the next node in the path in the
worst case.

• Packet delivery time. The number of time units that a packet takes
to reach its destination node from its source node in the worst case.

• Complexity of distributed processes. The majority of routing sche-
mes employ distributed processes to communicate the states of the
network, such as initial configuration or notification about any fail-
ure. These processes involve the exchange of messages among the
nodes of the network. The common complexity measures of dis-
tributed processes are:

– Convergence time. The number of time units from the begin-
ning of the execution of the process to its completion in the
worst case and assuming that each message incurs a delay of at
most one time unit.

– Message complexity. The total number of basic messages trans-
mitted during the execution of the process in worst case.

1.2.4 Generic routing in Cayley graphs

Generic routing proposals for CGs usually follow a similar strategy that
consists in obtaining a generic representation of different families of CGs,
and then the routing problem is solved on such representation. These rep-
resentations includes: permutations [21, 22] chordal rings graphs [23], Finite
State Automata (FSA) [24], etc.

This Thesis employs a representation of CGs as FSA, such approach arises
from the Automatic Group Theory (AGT). The fundamental idea of the
AGT states that CGs can be described by a linear recursion. Hence every
CG can be constructed from repetitions of a finite subgraph of it.A formal
definition of this linear recursion is given through FSA that encode the
structure of their related CG. The set of FSA related to a CG is called ShortLex
Automatic Structure (SAS)3.

2 In this communication model, there is no global clock signal and thus a message sent
from a node to one of its adjacent nodes arrive within some finite but unpredictable time.
Therefore, algorithms are event-driven.

3 Although all finite CG has an associated SAS, not all infinite CG has it.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

1.3 objectives 7

From the SAS of a CG, low complexity algorithms can be constructed.
For instance, it has been proved that the shortest path problem can be
solved in time O(D2Γ), where DΓ is the diameter of the CG [25, Theorem
2.3.10]. This result was applied in [15] to design a deterministic routing
scheme with low time and space complexity. This Thesis extends and en-
hances such work applying techniques of word processing to design a
set of path computation algorithms with low time and space requirements.
Then, these algorithms are used to support a routing scheme that provides
fault-tolerance.

1.3 objectives

This Thesis studies the routing problem in networks whose topology is
given by a CG. Its overall objective can be stated as follows:

To design a generic routing scheme for CGs that has low time and space require-
ments, guarantees packet delivery, and provides: minimal routing, path diversity
and fault-tolerance.

This objective can be divided into the following specific objectives:

• To conduct a review of generic routing proposals for CGs. It includes
path computation algorithms and routing schemes.

• To design a theoretical framework to study and solve problems re-
lated to path computation and routing in CGs from an approach of
AGT.

• To design a set of generic algorithms for path computation in CGs

that have low time and space complexity.

1.4 contributions

The main contributions of this research work are:

• An analysis of the topological properties of CGs and their impact
on the performance and robustness of networks that used them as
topology. It includes a comparison of a set of specific families of CGs.

• An state of the art on generic routing schemes and path computation
algorithms for CGs. It includes a complexity analysis and evaluation
of their time and space requirements on specific families of CGs.

• A theoretical framework to study and solve problems related to path
computation and routing in CGs from an approach of AGT.

• A set of generic algorithms for path computation in CGs. Specifically,
the proposed algorithms compute:

1. the shortest path,

2. the minimal paths,

3. the paths of bounded length,

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8 introduction

4. the K-shortest paths,

5. the disjoint paths, and

6. the shortest path avoiding a set of nodes and edges.

These algorithms work on any finite CG and several infinite CGs.

• A generic routing scheme for CGs that guarantees packet delivery
and provides: minimal routing, path diversity and fault-tolerance.

1.5 outline of the document

This document is divided into two parts. Part I analyzes the use of CGs as
topologies of communication networks, and the routing problem in such
networks. Part II focuses on the main contribution of this Thesis that is a
routing scheme for CGs called Word-Processing-based Routing (WPR).

Figure 3 summarizes the dependencies among the chapters of this doc-
ument and the relations between chapters and the Publications resulting
from this Thesis. Chapter 1, Chapter 6 and Chapter 11 are recommended
to have an overview of this research work. Part II is necessary to obtain a
depth understanding of the WPR.

Chapter 11
Conclusions

Chapter 1
Introduction

Chapter 2
Theoretical
framework

Chapter 6
Overview

Chapter 4
Word processing
in Cayley graphs

Chapter 3
Cayley graphs
as network
topologies

Chapter 8
Fault-tolerant
mechanism

Chapter 7
Path

computation
algorithms

Chapter 9
Forwarding
processing
protocols

Chapter 10
Complexity

analysis

Chapter 5
State of the art
on routing in
Cayley graphs

[DAM’18]

[TNET’18]

[CITS’18]

[SBC’17], [WEN’16], [CPRG’16]

Part I
Cayley Graphs: Networks and Routing

Part II
Word-processing-based Routing

Figure 3: Dependency among chapters and relation to publications.

1.5.1 Part I. Cayley graphs: networks and routing

Chapter 2 introduces the terminology of graph theory, regular languages
and group theory that supports this research work. Chapter 3 analyzes the
impact of the topological properties of CGs on the performance and robust-
ness of networks that use them as topology. This analysis contributes to
a better understanding of how routing proposals can be designed taking
advantage of the topological properties of CGs. In addition, the properties

[February 22, 2019 at 7:06 – classicthesis version 4.2]

1.5 outline of the document 9

of six well-known families of CGs are analyzed and evaluated. These re-
sults are used in Chapter 5 and Chapter 10 to evaluate the complexity of
the state of the art on routing proposals and the WPR, respectively. Chap-
ter 4 explains the word processing approach on which the WPR is based.
This approach arises from the AGT. Chapter 5 conducts the state of the art
on generic routing in CGs, which has been divided into path computation
algorithms and routing schemes. This chapter also includes a complexity
analysis of the routing proposals and an evaluation of their time and space
complexity on a set of specific families of CG.

1.5.2 Part II. Word-Processing-based Routing

Chapter 6 gives an overview of the operation of WPR, its features and the
the process of node label assignment. Chapter 7 presents the algorithms for
path computation used by the WPR. Chapter 8 explains the operation of the
fault-tolerant mechanism for both node and link failures. Chapter 9 intro-
duces the forwarding protocols for deterministic and fault-tolerant routing.
For deterministic routing, forwarding protocols for single and multi-path
routing are presented. Meanwhile, for fault-tolerant routing, only a for-
warding protocol for single-path routing is presented. Chapter 10 presents
a complexity analysis of the WPR and their path computation algorithms.
It is also included an evaluation of the space and time requirements on a
set of families of CG together with a comparison with the state of the art
on routing proposal for CGs. Finally, Chapter 11 discusses the concluding
remarks and directions for further research.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

Part I

C AY L E Y G R A P H S : N E T W O R K S A N D R O U T I N G

Cayley graphs provide a geometric representation of algebraic
groups. These graphs have been used in a wide variety of
communication networks as their topological properties enable
high performance and robustness. The following chapters ana-
lyze the use of Cayley graphs as topologies of communication
networks, and the routing problem in such networks.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

The mathematician’s patterns,
like the painter’s or the poet’s must be beautiful;

the ideas like the colours or the words,
must fit together in a harmonious way.

— Godfrey H. Hardy

2
T H E O R E T I C A L F R A M E W O R K

This Chapter introduces the terminology of graph theory, regular lan-
guages and group theory that supports the research presented in this The-
sis.

2.1 graph theory

This section introduces some basic notation and graph-theoretic terminol-
ogy that is frequently used in the description of routing in networks. Fur-
ther information about graph theory and its application in the study of
routing in networks can be found in [19, 21, 26].

2.1.1 Graphs and subgraphs

Definition 2.1.1 A graph, denoted by G = (V ,E), is an object consisting of two
sets called its vertex set V(G) and its edge set E(G). The elements of V(G) are
called vertices and the elements of E(G) are called edges. The number of vertices
are denoted by n = |V(G)| and the number of edges by m = |E(G)|.

Let (u, v) ∈ E(G) be an edge of G, then it is said that (u, v) joins the
vertices u, v ∈ V(G) and that u and v are adjacent. The edge (u, v) is
incident to each u and v, and each u and v is incident to (u, v). Two edges
incident to the same vertex are called incident edges. A vertex incident to
no edges is called isolated vertex.

Definition 2.1.2 The degree of a vertex v, denoted by deg(v), is the number of
edges incident to it. The degree of a graph G = (V ,E), denoted by ∆G, is the
maximum degree of a vertex, i.e. ∆G = max{deg(v) : v ∈ V(G)}.

Graphs are often illustrated by pictures on the plane. The vertices V(G)
are represented by points and the edges by lines connecting adjacent ver-
tices. Figure 4 show examples of the following graphs:

• A ∆G-regular graph, where every vertex has degree ∆G.

• A complete graph, denoted by Kn, which has n vertices, such that
every pair of vertices in V(Kn) are adjacent. Note that Kn is (n− 1)-
regular.

13

[February 22, 2019 at 7:06 – classicthesis version 4.2]

14 theoretical framework

K3 is a 2-regular graph K5 is a 4-regular graph

Figure 4: Examples of graphs

Definition 2.1.3 Let G = (V ,E) be a graph, and let V ′ and E ′ be subsets of
V and E, respectively. The graph G ′ = (V ′,E ′) is called a subgraph of G. The
graph G ′ is called induced subgraph of G if E ′ is given by all edges e ∈ E
whose incident vertices are in V ′. The graph G ′ is an spanning subgraph of G
if V ′ = V .

2.1.2 Paths, connectedness and trees

Definition 2.1.4 A sequence of edges e1, . . . , el joining two vertices v0, vl ∈
V(G) is called a walk. If v0 = vl, then it is called a closed walk. If all edges ei
in a walk are distinct, then it is called a trail.

Definition 2.1.5 Let v0, . . . vl a sequence of vertices such ei = (vi−1, vi) for
every ei in a trail. If every vj are distinct, then the trail is called a path. A closed
path for any l > 2 is called a cycle.

Definition 2.1.6 The length of a path is equal to its number of edges.

A path between two vertices V(G) is called minimal if its length is min-
imal, i.e. there is no path between the same two nodes that is shorter that
it. Two o more paths between any two vertices in V(G) are called edge-
disjoint if all their edges are distinct. In addition, they are called vertex-
disjoint if all their vertices are distinct except the first and last vertices.

Definition 2.1.7 A graph G is called connected if there exists a path between
any two vertices of G. A tree, denoted by T , is a connected graph such that the
following definitions are equivalent:

(i) T has no cycles.

(ii) There is only one path between any two vertices in V(T).

2.1.3 Weighted graphs, distances and neighborhoods

Definition 2.1.8 Let G = (ω,V ,E), where ω : E(G) → R+ is a function that
assigns a numerical weight to each edge e ∈ E(G). Then, G is called weighted
graph. For unweighted graphs, it is assumed that all edges have weight equal to
1.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

2.2 group theory 15

Definition 2.1.9 Let dG(u, v) denote the distance between any two vertices
u, v of a unweighted graph G, which is the length of the the shortest path between
them.

Definition 2.1.10 LetDG denote the diameter of a graph G = (V ,E), given by
the maximal distance between any two vertices in it, i.e. DG = max{dG(u, v) :
u, v ∈ V(G)}.

Definition 2.1.11 The neighborhood of a vertex v ∈ V(G), denoted by N(v),
is the set of its neighbors, i.e. the vertices adjacent to it, including v. The l-
neighborhood of a vertex v ∈ V(G), denoted by N(v, l), is the set of vertices at
distance at most l from v, i.e. N(v, l) = {u ∈ V(G) : dG(u, v) 6 l}.

2.1.4 Graph isomorphism

Definition 2.1.12 Let G = (V ,E) and G ′ = (V ′,E ′) be two graphs. Let π :

V(G) → V ′(G ′) be a bijective map such that for all (u, v) ∈ E(G), such that if
(u, v) ∈ E(G), then (π(u),π(v)) ∈ E ′(G ′). Thereby π defines a graph isomor-
phism and G and G ′ are said to be isomorphic, i.e. G ' G ′

Definition 2.1.13 Let π : V(G) → V ′(G ′) be a graph isomorphism such that
G = G ′, then π defines an automorphism of G.

2.2 group theory

2.2.1 Groups and subgroups

Definition 2.2.1 Let (G, ◦) be an ordered pair, where G is a non-empty set and ◦
is a binary operation on G. Consider now the following axioms for all f,g,h ∈ G:

(i) Closure
g ◦ h ∈ G.

(ii) Associativity
(f ◦ g) ◦ h = f ◦ (g ◦ h).

(iii) Identity element

∃ε ∈ G, such that g ◦ ε = ε ◦ g = g.

(iv) Inverse element

∃g−1 ∈ G, such that g ◦ g−1 = ε.

(v) Commutativity
g ◦ h = h ◦ g.

Then:

• If axioms (i) and (ii) hold, then (G, ◦) is a semigroup.

• If axioms (i), (ii) and (iii) hold, then (G, ◦) is a monoid.

• If axioms (i), (ii), (iii) and (iv) hold, then (G, ◦) is a group.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

16 theoretical framework

• If axioms (i), (ii), (iii), (iv) and (v) hold, then (G, ◦) is an abelian group.

To simplify notation, G denotes (G, ◦) and gh denotes g ◦ h, where g,h ∈ G.
The cardinality of G, i.e. |G|, is called the order of G.

Definition 2.2.2 A subset H of a group G is called subgroup of G, i.e. H < G, if
it forms a group under the same group operation as G.

2.2.2 Homomorphism

Definition 2.2.3 Let (G, ◦) and (H, ∗) be two groups and let π : G → H be a
map satisfying the following condition π(g ◦ h) = π(g) ∗ π(h), for all g,h ∈ G.
Then π defines an homomorphism from G to H, such that:

• If π is surjective, then π is an epimorphism.

• If π is injective, then π is a monomorphism.

• If π is bijective, then π is an isomorphism.

Definition 2.2.4 Let π : G → H be a homomorphism, there are two important
subgroups related to π:

Ker π = {g ∈ G : π(g) = ε}

and
Im π = {h ∈ H : h = π(g), such that g ∈ G}.

Then Ker π is a subgroup of G and is called kernel of π; Im π is a subgroup of H
and is called image of π.

2.2.3 Group presentations

Definition 2.2.5 Let S be a subset of a group G. The subgroup of G generated by
S is given by the intersection of all subgroups of G that contain S, such a subgroup
is denoted by 〈S〉. It is said that S generates G (or is a generating set for G) if
〈S〉 = G.

Definition 2.2.6 A group F is free over the subset A ⊂ F if for any group G and
any map α : A→ G, there is a unique group homomorphism, more concretely an
epimorphism, π : F → G. The free group on a set A is denoted by F(A), where
A generates F(A).

Definition 2.2.7 Let π as was defined in Definition 2.2.6. Then, π defines a
free presentation of G. Note that S = {s : s = π(a), ∀a ∈ A} generates G,
i.e. G = 〈S〉. In addition, if Y = Ker π and R = π(Y), then R is called the set of
relators of G. Both sets S and R define a presentation of G, denoted by G = 〈S|R〉.
If S is finite, it is said that G = 〈S|R〉 is a finitely presented group.

2.2.4 Permutation Groups

Definition 2.2.8 Let A be a finite set of elements, a permutation of A is a
bijection σ : X→ X. The set of all permutations of A is denoted by SX. Hereafter
it is assumed that X = {1, 2, . . . ,p}, then SX is denoted by Sp.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

2.2 group theory 17

1234 2134

1243 2143

1324 2314

1423 2413

3124 3214

4123 4213

1342 2341

1432 2431

3142 3241

4132 4231

34213412

43124321

Figure 5: Cayley graph of the symmetric group S4 with generators (2, 1, 3, 4),
(1, 3, 2, 4), (1, 2, 4, 3) represented by blue, green and red edges, respec-
tively. This Cayley graph is known as Bubble-sort graph.

A permutation σ ∈ Sp can be viewed as a rearrangement of all elements
from X = {1, 2, . . . ,p}, which can be written in two-line notation, i.e.

σ =

(
1 2 . . . p

σ(1) σ(2) . . . σ(p)

)
,

where the bottom row is a rearrangement of {1, 2, . . . ,p}. A more compact
notation is the cycle notation.

Definition 2.2.9 Let i ∈ X, then σ fixes i if σ(i) = i and moves i if σ(i) 6=
i. Let i1, i2, . . . , ir be distinct integers from X. If σ(i1) = i2, σ(i2) = i3, ...,
σ(ir−1) = ir, σ(ir) = i1 and σ fixes the remaining p− r integers from A, then
σ can be written in cycle notation as (i1i2 . . . ir).

Note that two permutations σ1,σ2 ∈ Sp can be multiplied under compo-
sition. For example, if σ1 = (13) and σ2 = (123) are permutations from S3.
The product σ1σ2 is computed as follow:

σ1σ2(1) = σ1(σ2(1)) = σ1(2) = 2,

σ1σ2(2) = σ1(σ2(2)) = σ1(3) = 1,

σ1σ2(3) = σ1(σ2(3)) = σ1(1) = 3.

Then, σ1σ2 can be written in cycle notation as (12).

Definition 2.2.10 A permutation group is a group whose elements are permuta-
tions of a given set X and the group operation is the composition of permutations.

Definition 2.2.11 The set of all permutations of a set X forms a group under the
composition of permutations, which is called the symmetric group and denoted
by Sp. This group has order p! and its identity element is (1 . . . p).

Corollary 2.2.1 Every permutation group is a subgroup of the symmetric group.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

18 theoretical framework

Theorem 2.2.1 (Cayley’s theorem) Every group is isomorphic to a subgroup of
the symmetric group, i.e. to a permutation group [9, Theorem 1.6.8].

From the Cayley’s theorem, results that are true for permutation groups,
are true for every group.

2.2.5 Cayley graphs

Definition 2.2.12 The graph Γ(G,S) is called the CG of the group G with respect
to its generating set S. Each group element in G corresponds to a node in V(Γ),
i.e. there is a bijective map

γ : G→ V(Γ), (1)

and two nodes u, v ∈ V(Γ), where u = γ(g) and v = γ(h), are adjacent if and
only if g and h are elements of G that satisfy g ◦ s = h for some s ∈ {S ∪ S−1},
where S−1 is the set of inverses of G.

Note that CGs have regular degree |S ∪ S−1|. For instance, consider the
symmetric group Sp, the family of CGs defined by Sp and the generating
set S = {(2, 1, 3, . . . ,p− 1,p), (1, 3, 2, . . . ,p− 1,p), . . . , (1, 2, 3, . . . ,p,p− 1)} is
called family of Bubble-sort graphs, i.e. BS(p). Figure 5 shows the Bubble-
sort graphs for S4, i.e. BS(4).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

Euler’s unintended message is very simple:
Graphs or networks have properties,

hidden in their construction,
that limit or enhance our ability

to do things with them.

— Albert-László Barabási

3
C AY L E Y G R A P H S A S N E T W O R K T O P O L O G I E S

3.1 topology model

Consider a point-to-point communication network, its arrangement of no-
des and links is called topology and can be defined by a connected graph
G = (V ,G). The vertices V(G) represent the nodes of the network, which
could be routers, computers, etc. The edges E(G) represent the link be-
tween nodes. Each node v ∈ V(G) has deg(v) (or ∆G, in the case of regular
graphs) ports numbered from 1 to deg(v) and connected to links. Here-
after the terms vertices and nodes will be used interchangeably as well
as the terms edges and links, and Γ(G,S) will be used instead of G to de-
note a network whose topology is defined by a CG. Table 1 presents the
parameters of the network topologies used throughout this Thesis.

Table 1: Parameters of network topologies.

Network topology
G = (V ,E) Γ(G,S)

Definition

V(G) V(Γ) Nodes in the network
E(G) E(Γ) Links between nodes.

n = |V(G)| n = |V(Γ)| Number of nodes (order of G).
m = |E(G)| m = |E(Γ)| Number of links (size of G).

∆G ∆Γ Network degree.
DG DΓ Diameter.

Pa
ra

m
et

er

Davg Average path length.

3.2 topological properties of cayley graphs

This section presents an analysis of the topological properties of CGs and
their impact on the performance and robustness of networks, whose topol-
ogy is defined by CGs.

3.2.1 Symmetry

There are two properties of symmetry in graphs: node and link-transitivity.
[7].

19

[February 22, 2019 at 7:06 – classicthesis version 4.2]

20 cayley graphs as network topologies

Definition 3.2.1 A graph G is node-transitive if for every pair of nodes u, v ∈
V(G), there is an automorphism π over G (Definition 2.1.13), such that u = π(v).

Roughly speaking, all the nodes of a node-transitive graph have the
same perspective of the whole graph and thus can not be distinguished
from any other based on their neighbourhoods (Definition 2.1.11). This
property enables to perform distributed processes using the same algo-
rithms in each node. For instance, distributed routing can be performed
using the same routing algorithms in each node.

Definition 3.2.2 A graph G is said to be link-transitive if for every pair of links
d, e ∈ E(G), there is an automorphism over links, i.e. π : E(G) → E(G), such
that d = π(e).

In this case, all the links have the same perspective of the whole graph
and thus can not be distinguished from any other based on the nodes
and links surrounding it. Graphs that are both node and link-transitive
are called symmetric graphs. Every CG is node-transitive but only some of
them are symmetric [27, Section 2.1].

Theorem 3.2.1 A group G is called minimally generated by a generating set S,
if and only if it is generated by S and can not be generated by any other subset of
S. Every CG of a minimally generated group is symmetric [28, Section 3.2].

Theorem 3.2.2 Cayley graphs with ∆Γ 6 4 or ∆Γ = 6 are symmetric [29].

3.2.2 Connectivity and fault-tolerance

There are two kinds of connectivity measures for graphs: node and link-
connectivity.

Definition 3.2.3 The node-connectivity of a graph G is the minimal number
cn, such that there are cn node-disjoint paths between any pair of nodes in V(G)
and thus at least cn nodes must be removed to disconnect G.

Definition 3.2.4 The link-connectivity of a graph G is the minimal number cl,
such that there are cl link-disjoint paths between any pair of nodes and thus at
least cl links must be removed to disconnect G.

For a ∆G-regular graph G, the maximum value of both node and link-
connectivity is ∆G. Thereby a ∆G-regular graph is optimally connected if
cn = cl = ∆G.

Theorem 3.2.3 (Theorem 3.7 of [28]) Every node-transitive graph G has cl =
∆G.

Corollary 3.2.1 Every CG has cl = ∆Γ .

Corollary 3.2.2 Every symmetric CG is optimally connected.

Graph connectivity determines the fault-tolerance in scenarios of ran-
dom node failures.

Definition 3.2.5 The fault-tolerance of a graph is the maximum number t,
such that if any t nodes are removed, the resulting graph is still connected thus
t = cn − 1 for any graph except by the complete graph, where t = cn. A ∆G-
regular graph G is called optimally fault-tolerant if t = ∆G − 1.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

3.2 topological properties of cayley graphs 21

Corollary 3.2.3 Optimally connected graphs are also optimally fault-tolerant.

Corollary 3.2.4 Every symmetric CG is optimally fault-tolerant.

3.2.3 Moore bound

An important issue in the design of network topologies is to connect the
maximum number of nodes while keeping small length of paths and con-
sidering that the number of ports per node is limited. The well-known
Moore bound states that for any ∆G-regular graph the number of nodes,

i.e. n, satisfies n 6
∆G(∆G − 1)DG − 2

∆G − 2
[10, Theorem 10.1]. Therefore

DG >
log(n− 1)

log(∆G)
. (2)

Graphs satisfying this lower-bound, for a given n and ∆G, are called
Moore graphs. In addition to low diameter, it is also important to achieve
low average distance, i.e. Davg, in order to keep low latency.

Theorem 3.2.4 (Theorem 5.2 of [7]) For any node-transitive graph, and thus
for any CG, it has that

nDG
2(n− 1)

6 Davg 6 DG. (3)

3.2.4 Load balancing

This section presents an analysis of the impact of graph symmetry on load
balancing. It is assumed a uniform traffic pattern and ideal routing. Thus,
a unit of traffic is exchanged per time unit between any pair of nodes in the
network; and the traffic is balanced equally across all the shortest paths.

The link load is the amount of traffic units traversing a link per time unit.
Under uniform traffic, the amount of traffic units per time unit is equal to
n(n− 1)Davg

2
. The average link load, i.e. lavg, is the ratio between the

amount of traffic units to the graph size, i.e. m, then lavg =
n(n− 1)Davg

2m
.

For regular graphs m =
n∆G
2

, then

lavg =
(n− 1)Davg

∆G
. (4)

A network reaches the saturation point when some link has the maxi-
mum link load, i.e. lmax. The average link utilization at the saturation
point, i.e. uavg, measures the percentage of use of links and is given by

uavg =
lavg

lmax
. (5)

A network is called well-balanced if uavg = 1. Therefore, at the satu-
ration point, links keep carrying the maximum link load. Assuming ideal
routing, in link-transitive networks lavg = lmax, then all links carry the
same load and uavg = 1.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

22 cayley graphs as network topologies

Corollary 3.2.5 Every symmetric CG is well-balanced.

Assuming that end points can be connected to nodes in the network. The
network may, for example, be a DCN, where the nodes are routers and the
end points are servers. Then total number of ports per node is called the
node radix and is given by R = ∆G+∆p, where ∆p denotes the number of
end points that can be connected to each node. The maximum value of ∆p
without reaching the saturation point is determined by the link utilization
[30], i.e.

∆p 6
∆Guavg

Davg
. (6)

For well-balanced networks uavg = 1 and thus

∆p 6
∆G
Davg

. (7)

3.3 performance and robustness evaluation

3.3.1 Families of Cayley graphs evaluated

According to the topological properties presented in the previous section,
this section presents a performance and robustness evaluation of the fol-
lowing families of CGs: 2-Dimensional (2D) Torus, Hypercube, Bubble-sort, Star,
Transposition and Butterfly. These families of CGs were selected for its wide
application as topologies of communication networks [2, 4, 6, 27, 31, 32].

Recall from Theorem 2.2.1 that every group, and thus CG, can be rep-
resented as a subgroup of the symmetric group Sp, where p is a positive
integer, see Definition 2.2.11. The evaluated families of CGs and its defini-
tion in terms of Sp are presented as follows:

• 2D Torus (T2(p)). It is the CG of the subgroup of Sp, where p is
even, with generating set S = {(1, 2, . . . , p2), (2,

p
2 , . . . , 1), (p2 + 1, p2 +

2, . . . ,p), (p2 + 2,p, . . . , p2 + 1)}.

• Hypercube (H(p)). It is the CG of the subgroup of Sp, where p is
even, with generating set S = {(i, i+ 1) : 1 6 i < p and i is }.

• Bubble-sort (BS(p)). It is the CG of Sp with generating set S = {(i, i+
1) : 1 < i 6 p}.

• Star (St(p)). It is the CG of Sp with generating set S = {(1, i) : 1 < i 6
p}.

• Transposition (Tr(p)). It is the CG of Sp with generating set S =

{(i, j) : 1 6 i < p, 1 < j 6 p and i < j}.

• Butterfly (B(p)). It is the CG of the subgroup of Sp with generating
set S = {(1, 2, . . . ,p)2, (1, 2, . . . ,p)2(1, 2)}.

Note that CGs can be recursively constructed applying the set of per-
mutations S to each node, beginning at the node representing the identity
element, i.e. (1, 2, . . . ,p).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

3.3 performance and robustness evaluation 23

The results presented in this section depends on the topological param-
eters presented in Table 1. The value of these parameters for the evaluated
families of CGs are summarized in Table 2.

Table 2: Parameters of Cayley graphs used as network topologies.

C
ay

le
y

gr
ap

h
N

um
be

r
of

no
de

s
D

ia
m

et
er

D
eg

re
e

fa
m

il
y

(n
)

(D
Γ
)

O
(D
Γ
)

(∆
Γ
)

O
(∆
Γ
)

2
D

To
ru

s
(T
2
(p
))

p 2

2
2
⌈ p 2

⌉
O
(n
1
/
2
)

4
O
(1
)

H
yp

er
cu

be
(H

(p
))

2
p
/
2

p 2
O
(l

og
(n

))
p 2

O
(l

og
(n

))
Bu

bb
le

-s
or

t
(B
S
(p
))

p
!

p
2
−
p

2
O
(l

og
(n

)2
)

p
−
1

St
ar

(S
t(
p
))

⌊ p2
−
p

2

⌋
O
(l

og
(n

))
Tr

an
sp

os
it

io
n
(T
r(
p
))

p
−
1

p
2
−
p

2
O
(l

og
(n

)2
)

Bu
tt

er
fly

(B
(p
))

2
p
/
2
⌊ p 2

⌋
⌊ 3p 4

⌋
4

O
(1
)

3.3.2 Fault-tolerance and load balancing

as it was explained in Section 3.2.1, every CG is node-transitive. More-
over, 2D Torus, Hypercube, Star and Transposition graphs are also link-
transitive, i.e. symmetric, which provides optimal connectivity, fault-tolerance
and load balancing, see Table 3.

From Section 3.2.4, in well-balanced networks, nodes keep carrying the
maximum value of link load, i.e. lmax. Figure 6 shows values of the max-
imum link load supported by the evaluated families of CGs. These values
were computed assuming uniform traffic and ideal routing.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

24 cayley graphs as network topologies

Table 3: Symmetric properties of Cayley graphs

Cayley graph

family
Connectivity Fault-tolerance Load balancing

2D Torus

Optimal node and

Optimal
Well-balanced

Hypercube

link connectivity
(uavg = 1)

Star (symmetric)

Transposition

Bubble-sort
Optimal

Non-optimal uavg ≈ 0.8
link connectivity

Butterfly

0 200 400 600 800 1,000
0

1,000

2,000

3,000

4,000

Number of nodes (n)

M
ax

im
um

lin
k

lo
ad

(l
m
a
x

)

2D-Torus Hypercube Bubble-sort
Star Transposition Butterfly

Figure 6: Maximum link load with respect to the number of nodes.

3.3.3 Average distance vs. number of end points

In the design of communication networks, it is important to find topolo-
gies close to the Moore bound (see Eq. (2) and Eq. (3)) in order to have low
latency and support a high number of end points for a given node radix
i.e. R. Figure 7 shows the average distance in the evaluated families of
CGs with respect to their order. As it is shown, the family of Transposition
graphs is the only one that satisfies the Moore bound, although the rest

[February 22, 2019 at 7:06 – classicthesis version 4.2]

3.3 performance and robustness evaluation 25

0 200 400 600 800 1,000
0

5

10

15

Number of nodes (n)

A
ve

ra
ge

di
st

an
ce

(D
a
v
g

)

2D-Torus Moore bound Hypercube
Bubble-sort Star Transposition
Butterfly

Figure 7: Average distance with respect to the number of nodes.

of CGs have logarithmic diameter except for 2D Torus graphs, which have
the largest average distance and diameter (see Table 2). Large CGs that are
close to the Moore bound can be found in [33, 34]

The Moore bound also determines the maximum number of nodes that
can be connected for a given ∆Γ . In addition, it is important to compute
the number of end points that can be supported by the network, which
is given by p = n∆p. Figure 8 show the number of end points supported
by each family of CGs with respect to their order. Comparing Figure 6 and
Figure 8, the number of end points supported is inversely proportional
to their maximum link load, which is congruent with Eq. (5) and Eq. (6).
Transposition graphs are the topologies with lowest link load and there-
fore it support the maximum number of end points for a given number
of nodes. Hypercube graphs supports 2n end point, then ∆p = 2. The re-
maining families of CGs supports the minimum number of end points, i.e.
n, and the ∆p = 1.

Finally, Figure 9 shows the number of end points supported for a given
node radix. Butterfly, Bubble sort and Star graphs support the largest num-
ber of end points with the lowest R. Actually, Butterfly graph has constant
R. Except for Butterfly graphs, CGs have an exponential growth in their
number of end points with respect to R. This feature poses an important
challenge in the design of network topologies based on CGs, which consists
in adding sequentially nodes without affecting the symmetric properties
of CGs.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

26 cayley graphs as network topologies

0 200 400 600 800 1,000
0

1,000

2,000

3,000

Number of nodes (n)

N
um

be
r

of
en

d
po

in
ts

(p
)

2D-Torus Hypercube Bubble-sort
Star Transposition Butterfly

Figure 8: Number of end points supported with respect to the number of nodes.

0 5 10 15 20 25
0

1

2

3

4

·104

Node radix (R)

N
um

be
r

of
en

d
po

in
ts

(p
)

2D-Torus Hypercube Bubble-sort
Star Transposition Butterfly

Figure 9: Number of end points supported with respect to the node radix.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

Ordinary language is totally unsuited
for expressing what physics really asserts,

since the words of everyday life are not sufficiently abstract.
Only mathematics and mathematical logic

can say as little as the physicist means to say.

— Bertrand Russell

4
W O R D P R O C E S S I N G I N C AY L E Y G R A P H S

This Thesis employs word processing techniques to solve the routing prob-
lem in CGs. This approach arises from the AGT, whose fundamental idea
states that CGs can be described by a linear recursion. Hence every CG

can be constructed from repetitions of a finite subgraph of it. A formal
definition of such recursion is given through a set of FSA that encode the
topological structure of its related CG. From these FSA, low complexity al-
gorithms can be constructed, e.g. path computation algorithms. This chap-
ter explains the necessary concepts and terminology of the AGT for solving
the shortest path problem in CGs. These concepts are the main theoretical
base of this research work. For further details about word processing in
CGs, refer to [25]

4.1 languages and automata

This section presents some basic material from language and automata
theory, which has connection with AGT. As a general reference on lan-
guages and automata theory, the reader can consult [35, 36]. Further mate-
rial about language theory applied to algorithms on algebraic groups can
be found in [24, 37].

4.1.1 Words and languages

Definition 4.1.1 Let A be a finite set of symbols, hereafter A is referred to as an
alphabet and its elements are referred to as letters. Any finite sequence of letters
x1x2 . . . xl, such that xi ∈ A, is called a word or string over A.

Definition 4.1.2 Let w = x1x2 . . . xl be a word over A, where the length of w,
i.e. |w|, is equal to l. Then:

• a substring of w, denoted by w(i), is given by the first i letters in w (if
i > |w|, w(i) = w), and

• the null string, denoted by eA /∈ A, represents the word of length 0, i.e.
|eA| = 0.

Definition 4.1.3 The set of all words over A, including eA, is denoted by A∗.

Definition 4.1.4 Any set of words L ⊆ A∗ is called a language over A.

27

[February 22, 2019 at 7:06 – classicthesis version 4.2]

28 word processing in cayley graphs

4.1.2 Finite State Automata

Definition 4.1.5 A FSA, also called automaton, is a quintuple (Q,A, δ,q0, F),
where Q is a finite set called the state set; A is an alphabet; δ : Q×A → Q

is a function called transition function; q0 ∈ Q is called the initial state;
and F is a subset of Q called the set of accept states. Here and subsequently,
(Q,A, δ,q0) denotes (Q,A, δ,q0, F) if F = Q; and qx denotes δ(q, x), where
q ∈ Q and x ∈ A.

An automaton can be represented by a state diagram. Figure 10 presents
an state diagram of the automaton M1 = (Q,A, δ,q0, F), where:

1) Q = {q0,q1,q2,q3,q4,q5,q6,q7,q8}.

2) A = {a,b, c}.

3) δ can be described by a state transition table as:

Transitions

a b c

q0 q1 q2 q3

q1 q7 q2 q3

q2 q4 q7 q3

q3 q8 q5 q8

q4 q7 q7 q3

q5 q6 q8 q8

q6 q8 q8 q8

q7 q7 q7 q7

St
at

es

q8 q8 q8 q8

An example of transition is δ(q3,b) = q5 that is denoted by qb3 = q5.

4) The start state, i.e. q0, is indicated by the arrow pointing at it from
nowhere.

5) The accept states, i.e. F = {q0,q1,q2,q3,q4,q5,q6}, are indicated by
a double circle. Note that the states q7 and q8 are non accept states
that go to themselves on every possible transition. These kind of
states are called dead states.

An automaton can be described through its state diagram or state tran-
sition table due to these elements contain the same information of the
automaton definition. An automaton with alphabet A is referred to as an
automaton over A, which can be seen as a machine that reads words over
A. The automaton starts in q0 and reads a tape on which the word to be
read is printed. The tape is read one letter at a time. After reading a letter,
the state of the automaton is changed in accordance with the transition
function, whose inputs are the existing state and the letter read. Then the
tapehead is moved one letter to the right on the tape. If after reading all
the string, the state of the automaton is in F, then the automaton answers
Yes; Otherwise it answers No. For instance, when the automaton M1, in
Figure 10, reads the string abac, the processing proceeds as follows:

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4.1 languages and automata 29

q1

q0

q3

q2

q5q6

q4

q7

q8a,b, c

a,b, c

a a

b

a,b

a,b, c b, c a, c

b

b

c

a

c

c

ba

c

Figure 10: A finite state automaton called M1. The language recognized by M1 is
L(M1) = {eA, a, b, c, ab, ac, ba, bc, cb, aba, abc, acb, bac, bcb, cba,
abac, abcb, acba, bacb, bcba, abacb, abcba, bacba, abacba}.

1) Start in state q0.

2) Read a, follow transition from q0 to q1.

3) Read b, follow transition from q1 to q2.

4) Read a, follow transition from q2 to q4.

5) Read c, follow transition from q4 to q3.

6) Yes because M1 is in an accept state q3 after reading all the string.

Definition 4.1.6 Let M = (Q,A, δ,q0, F) be a FSA. If after reading a word
w ∈ A∗, M answers Yes, it is said that w is recognized or accepted by M.
Otherwise, it is said that w is rejected by M. The set of words recognized by M
is called the language recognized by M, and is denoted by L(M).

Definition 4.1.7 A language is called regular language if some FSA recognizes
it.

The language recognized by the automaton M1 in Figure 10, i.e. L(M1),
is a regular language. This language includes the null string, i.e. eA, due
to the start state of M1 is in an accept state.

4.1.3 2-variable finite state automata

The application of language theory in the study of algebraic groups in-
volves automata that read simultaneously two words u, v ∈ A∗, i.e. au-
tomata over A×A. To dealt with words of unequal length, it is introduced
an extra letter $ /∈ A called padding symbol, which is interpreted as the
null string, i.e. eA.

Let A+ denote an alphabet given by A ∪ {$}. Let (u, v)+ denote a tuple
(x1x2 . . . xl,y1y2 . . . yl) ∈ (A+ ×A+)∗, where u, v ∈ A∗, |u| = i and |v| = j

then:

(i) If i = j, u = x1x2 . . . xl and v = y1y2 . . . yl. For example, if u = abc

and v = cba, then (u, v)+ = (abc, cba).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

30 word processing in cayley graphs

q1

q2

q3

q5

q4

q6

q0

($,a)

($,b)

($,c)
(b,a)

(x,x)

(a,b)

(b,c)

(a,b)
(c,b)

(c,a)

(a,c)

(b,c)

Figure 11: A 2-variable finite state automaton called M2.

(ii) If i < j, v = y1y2 . . . yl and x1x2 . . . xl results from adding l − i
symbols $ to u (in any position). For example, if u = ab and v = cba,
then (u, v)+ = (a$b, cba) = ($ab, cba) = (ab$, cba).

(iii) If i > j, u = x1x2 . . . xl and y1y2 . . . yl results from adding l − j
symbols $ to v (in any position). For example, if u = abc and v = c,
then (u, v)+ = (abc, $$c) = (abc, c) = (abc, c$$).

Definition 4.1.8 A 2-variable FSA over A is an automaton with alphabet A+ ×
A+, which recognizes tuples (u, v)+ ∈ (A+ ×A+)∗ except by ($, $).

Figure 11 presents a 2-variable automaton called M2. To simplify, only
transitions to accept states are shown due to the rest of transitions lead to
dead states. Examples of tuples recognized and rejected byM2 are (ac, ca)
and ($b, ca), respectively.

4.2 groups as languages

Let G = 〈S|R〉 be a finitely presented group and let A be an alphabet such
that |A| = |S∪ S−1|. Consider now a bijective map

φ : {S∪ S−1}→ A, (8)

which assigns each generator and its inverse to lowercase and uppercase
variants of the same letter. A letter X ∈ A is said to be the inverse of a
letter x ∈ A if and only if X = φ(s−1) and x = φ(s), where s−1 is the
inverse of s.

Definition 4.2.1 Let w ∈ A∗, the following words are defined:

• The inverse of w, denoted by w−1, is given by the reverse string of the
inverse letters of w, e.g. if w = aC, then w−1 = cA.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4.3 words as paths and nodes 31

• The reduced form of w, denoted by wred, results from removing the sub-
strings of the form uu−1 from w, e.g. if w = baCcAa and (aC)−1 = cA,
then wred = ba.

Definition 4.2.2 Let F(A) be the free group over A, which consists of the set of
all reduced words over A (including eA). The group operation is the string con-
catenation where substrings of the form ww−1 are canceled. The identity element
is eA.

By Definition 2.2.6, there is an epimorphism given by the map

π : F(A)→ G, (9)

that assigns a unique set of words in F(A) to each group element in G [25,
Section 2.1]. The symbol eA is assigned to the identity element, i.e. ε.

Definition 4.2.3 Let =G denote an equivalence relation on F(A), such thatw =G

v if and only if w and v represent the same group element under Eq. (9). The set
of words representing the same group element is defined by the equivalence class
[w], i.e. [w] = {v ∈ F(A) : π(w) = π(v)}.

In order to assign a unique word in F(A) to each element in G (and then
to each node in V(Γ)), a canonical form of the set of equivalence classes
[w] needs to be defined.

Definition 4.2.4 Let <A be a lexicographical order over A. Let w, v ∈ A∗, it is
said that w is ShortLex than v, if w is shorter than v, i.e. |w| < |v|, or w and v
have the same length but w comes before v in the order <A.

Definition 4.2.5 The language of the ShortLex words in F(A) representing a
unique group element in G is given by

L = {w ∈ F(A) : w <A v, ∀v ∈ F(A) s.t. w =G v}. (10)

This language is called the language of the ShortLex words.

Therefore, there is a bijective map

µ : G→ L (11)

that assigns each group element in G to its ShortLex representative word
in F(A). Language L defines a canonical form for the set of equivalence
classes of Definition 4.2.3.

4.3 words as paths and nodes

From the CG definition (Definition 2.2.12), it is clear that a sequence of
generators s0s1 . . ., where si ∈ {S ∪ S−1}, resulting in the group element
g ∈ G, represents a path in Γ(G,S) from the identity element, i.e. ε, to
g. For example, consider the symmetric group S4 with the generating set
S = {(2134), (1324), (1243)} see Definition 2.2.11. Figure 5 shows the CG

of S4, which is known as Bubble-sort graph and is denoted by BS(4), see
Section 3.3.1. The sequence (2134)(1324)(1243) results in the permutation
(2341), then it represents a path from (1234) to (2341), where (1234) is the
identity permutation, i.e. ε = (1234).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

32 word processing in cayley graphs

a

a

a

a

a

a

a

a

a

a

a ac c

c

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b
b

b

b b

1234 2134

1243 2143

1324 2314

1423 2413

3124 3214

4123 4213

1342 2341

1432 2431

3142
3241

4132 4231

34213412

43124321

(a) Edges labeled with letters represent-
ing its corresponding generator.

a

a

a

a

a

a

a

a

a

a

a ac c

c

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b
b

b

b b

eA a

c ac

b ab

cb acb

ba aba

cba acba

bc abc

bcb abcb

bac abac

bcba abcba

abacbbacb

abacbabacba

(b) Nodes labeled with words represent-
ing the ShortLex path from eA to each
of them.

Figure 12: The Bubble-sort graph BS(4) with edges and nodes labeled.

Assume now that edges of a CG are labeled according to Eq. (8). Thus
every path in the CG can be represented by a unique word w ∈ F(A),
which defines a sequence of edges, where the symbol eA represents the
empty path. In particular if w = π(g), then w represents a path from ε to
w, meanwhile w−1 represents a path from w to ε. Returning to BS(4), let
A = {a,b, c} be an alphabet and let φ denote the map:

φ : S → A

(2134) → a

(1324) → b

(1243) → c

(12)

Figure 12a shows BS(4) with their edges labeled according to Eq. (12).
The word abc represents the sequence of edges (2134)(1324)(1243) and
thus a path from (1234) to (2341). Meanwhile, (abc)−1 = cba1 represents
the sequence of edges (1243)(1324)(2134) and thus a path from (2341) to
(1234). The set of words in F(A) representing all the paths between two
nodes are defined as follows.

Lemma 4.3.1 Words in the same equivalence class, i.e. [w], represent all paths
between the same pair of nodes.

Proof. From Definition 4.2.3, words in an equivalence class [w] represent
the same group element under the group homomorphism defined by Eq. (9).
Let g ∈ G be the element represented by [w], then words in [w] represent
all paths from ε to g, where ε is the identity element (see Definition 2.2.1).
Since CGs are node-transitive, words [w] represent all paths between every
pair of nodes g1,g2 ∈ V(Γ), such that g2 = g · g1. �

In Figure 12a, the words abc and babca are in the same equivalence
class as they represent the same permutation and thus the same group el-
ement (2341). From Lemma 4.3.1, both words represent paths from (1234)

1 In the case of S4, S = S−1 and then the inverse each letter in A is itself, i.e. A = a, B = b

and C = c.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4.4 shortlex automatic groups 33

to (2341), from (2341) to (3412), and in general, from nodes g1 to g2 such
that g2 = (2341)g1.

Consider now a word w ∈ F(A) representing a group element g ∈ G,
i.e. π(w) = g according to Eq. (9), and then a path from ε to g in Γ(G,S).
Hereafter ŵ denotes a path represented by the word w, and w denotes
the node g, where eA is assigned to ε. Figure 12b shows BS(4) with each
node g labeled as w, where w is the shortest word, such that π(w) = g.
Note that ŵ can represent a path beginning in any node. In order to refer
a specific path in this notation, the first node in the path must be specified.
Hereafter ŵ(w1) denotes a path representing by w and beginning at node
w1, where ŵ(w1) is given by a list of nodes [w1, . . . ,wl]. In particular,
ŵ(eA) represents a path from eA to w. In Figure 12b, the path âbc(b) is
given by the list of nodes [b,ba,aba,abac], meanwhile the path âbc(eA)

is given by [eA,a,ab,abc].
From the above explanation, there is a path between any two nodes u

and v, denoted by the word u−1v. The path û−1v(u) goes from u to eA and
from eA to v. In Figure 12b, a path from cb to acb is given by b̂cacb(cb)
where bcacb = (cb)−1acb. Note that the problem of computing the short-
est path between u and v is equivalent to computing the shortest word
w ∈ F(A), such w =G u

−1v, which is the canonical form of u−1v. Recall
from the previous section that the canonical form of any word in F(A) is
in the language of the ShortLex words in F(A), see Definition 4.2.5. Then:

Corollary 4.3.1 The language of the ShortLex words, i.e. L, related to a group
G = (S|R), gives a unique representation for the shortest paths between any pair
of nodes in Γ(G,S). From now on, paths represented by words in L are called
ShortLex paths.

Continuing with BS(4), let a < b < c be a lexicographic order over the
alphabet A = {a,b, c}. From Definition 4.2.5, the language of the ShortLex
words of BS(4) is

L = {eA,a,b, c,ab,ac,ba,bc, cb,aba,abc,acb,

bac,bcb, cba,abac,abcb,acba,bacb,

bcba,abacb,abcba,bacba,abacba}

(13)

From Corollary 4.3.1, any of the shortest paths in BS(4) (Figure 12b)
can be represented by a word in Eq. (13). As it was mentioned above,
a path from cb to acb is given by b̂cacb(cb), where π(bcacb) = (3214).
However the ShortLex path from cb to acb is âba(cb), where aba ∈ L is the
canonical from of bcacb as aba is the ShortLex word representing (3214).
The problem of reducing any word u−1v ∈ F(A) to its canonical form
is called the Minimum Word Problem (MWP) and can be solved in time
O(|u−1v|2) for ShortLex Automatic Groups (SAGs) [25, Theorem 2.3.10].

4.4 shortlex automatic groups

Definition 4.4.1 (ShortLex automatic group) Let G = 〈S|R〉 be a finitely pre-
sented group, then G is a SAG if it admits a SAS, which consists of:

[February 22, 2019 at 7:06 – classicthesis version 4.2]

34 word processing in cayley graphs

eA

a

b

ab

ba

aba

bac

abac abacb

bacb

abacba

bacba

a a

b

ca

a

ac

c

c

b

bb

b

Figure 13: Geometric representation of paths ̂abacba(eA) (green) and b̂acba(eA)

(blue) in BS(4). Both paths follow the k-fellow-traveler property as their
uniform distance is 2.

(i) A lexicographically ordered alphabet A, such that S and A satisfy Eq. (8).

(ii) A FSA called Word-Acceptor (WA) and denoted by W, such that L(W) is
the language of the ShortLex words defined by Eq. (10).

(iii) A 2-variable FSA for each x ∈ A ∪ {eA} called Multiplier Automata (MA)
and denoted by Mx, such that (r, t)+ ∈ L(W)× L(W) is accepted by Mx

if and only if rx =G t.

Henceforth, the SAS of Γ(G,S) will be denoted by (A,L).

Examples of SAGs are the groups presented in Section 3.3.1. Taking the
CG in Figure 12b as example, its WA is presented in Figure 10. An impor-
tant feature of SAGs is that their associated CGs follow the k-fellow-traveler
property.

Lemma 4.4.1 (k-fellow-traveler property) Let G = 〈S|R〉 be a SAG and let r̂
and t̂ be two ShortLex paths in Γ(G,S) beginning at the same node and whose end
nodes are adjacent. The uniform distance between r̂ and t̂, denoted by dΓ (̂r, t̂),
is given the maximum value of dΓ (r(i), t(i)), see Definition 2.1.9, for all nodes
r(i) and t(i) in r̂ and t̂, respectively. Then, it is said that Γ(G,S) satisfies the
k-fellow-traveler property, if there exists a constant k (depending on G = 〈S|R〉),
such that the uniform distance between all ShortLex paths r̂ and t̂ is bounded by
k, i.e. dΓ (̂r, t̂) 6 k.

Note that distances between paths are bounded in any finite CGs. There-
fore, any finite group is a SAG. In the case of infinite groups, only groups
having the k-fellow-traveler property are SAGs. To illustrate the k-fellow-
traveler property, consider the paths ̂abacba(eA) and b̂acba(eA) in BS(4),
whose end nodes, i.e. abacba and bacba, are adjacent. Both paths are
ShortLex as they are represented by words in L, see Eq. (13). Figure 13

shows that the uniform distance between these paths is bounded by 2,
hence they follow the k-fellow-traveler property.

Definition 4.4.2 Let Γ(G,S) be a CG with fellow-traveler constant k and SAS

(A,L). Then, the set of Word-Differences (WDs) of Γ(G,S) is given by the set of
ShortLex words whose length is less or equal than k, i.e.

D = {w ∈ L : |w| 6 k}. (14)

Note that the words in D are the labels of nodes in the k-neighbourhood
of node eA, i.e. N(eA,k), see Definition 2.1.11. In the case of BS(4), k = 2

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4.4 shortlex automatic groups 35

and then D = {eA,a,b, c,ab,ac,ba,bc, cb}. From Lemma 4.4.1 and Defini-
tion 4.4.2, for every pair of paths r̂ and t̂ that have the k-fellow-traveler prop-
erty, the ShortLex path between any pair of nodes r(i) and t(i) is given by a
word in D. As it was mentioned above, paths ̂abacba(eA) and b̂acba(eA)

in BS(4) follow the k-fellow-traveler property. From Figure 13, the Short-
Lex paths from abacba(i) to bacba(i), for 1 6 i 6 6, are: âb(a), âb(ab),
b̂c(aba), b̂c(abac), âc(abacb), and ĉ(abacba), respectively. All of these
paths are represented by words in D.

A 2-variable FSA that recognizes words whose associated paths follow
the k-fellow-traveler property is defined as follows.

Definition 4.4.3 Let G = 〈S|R〉 be a SAG with SAS (A,L). The Word-Difference
Automaton (WDA) of G = 〈S|R〉 with respect to (A,L) is the 2-variable FSA over
A (Definition 4.1.8) consisting of:

(i) An alphabet B = A+ ×A+, where A+ = A ∪ {$} and the padded symbol
$ is interpreted as eA.

(ii) A set of states given by D∪ {qd}, where eA is the start state and qd denotes
a dead state. The set of accept states is D.

(iii) A transition function δ : D×B → D ∪ {qd}, such that q(x,y)
i = qj for

qj ∈ D if and only if qj =G Xqiy, where X = x−1.

This automaton is denoted by Diff = (D,B, δ, eA). The automaton accepts tuples
(r, t)+, where r, t ∈ A∗, if and only if the canonical form of any word r(i)−1t(i)
is in D. The state after reading (r(i), t(i))+, denoted by q(r(i),t(i)), is given by
the canonical form of r(i)−1t(i), i.e. q(r(i),t(i)) =G r(i)

−1t(i).

From a geometric point of view, if (r, t) is accepted by Diff , then ̂q(r(i),t(i))

is the ShortLex path between end nodes of paths r̂(i) and t̂(i) beginning at
the same node. Table 4 presents the WDA of BS(4). When this automaton
reads the tuple (abacba,bacba$), each transition result in a state repre-
senting a path as follows:

1. Start in state eA. Then words to be read represent path beginning in
the same node.

2. Read (a,b), follow transition from eA to ab. Then âb is the ShortLex
path between the end nodes of â and b̂.

3. Read (b,a), follow transition from ab to ab. Then âb is the ShortLex
path between the end nodes of âb and b̂a.

4. Read (a, c), follow transition from ab to bc. Then b̂c is the ShortLex
path between the end nodes of âba and b̂ac.

5. Read (c,b), follow transition from bc to bc. Then b̂c is the ShortLex
path between the end nodes of âbac and b̂acb.

6. Read (b,a), follow transition from bc to ac. Then âc is the ShortLex
path between the end nodes of âbacb and b̂acba.

7. Read (a, $), follow transition from ab to c. Then ĉ is the ShortLex
path between the end nodes of ̂abacba and b̂acba.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

36 word processing in cayley graphs

Table 4: State transition table for the word-difference automaton of BS(4). The
start state is eA. All states are accepted except for the dead state qd.

Tr
an

si
ti

on
s

(a
,a

)
(a

,b
)

(a
,c
)

($
,a

)
(b

,a
)

(b
,b

)
(b

,c
)

($
,b

)
(c

,a
)

(c
,b

)
(c

,c
)

($
,c
)

(a
,$
)

(b
,$
)

(c
,$
)

e
A

e
A

a
b

a
c

a
b
a

e
A

b
c

b
a
c

c
b

e
A

c
a

b
c

a
a

b
c

e
A

b
q
d

q
d

b
a

c
q
d

a
a
c

e
A

a
b

a
c

b
q
d

a
q
d

a
b

a
b

c
a

q
d

c
q
d

c
b

b
a

e
A

b
c

c
c

q
d

a
a
c

q
d

q
d

b
b
c

a
b

c
a

a
c

c
b

a

b
a

a
b

b
a

q
d

q
d

e
A

a
b

a
c

a
c
b

q
d

q
d

q
d

b
q
d

q
d

a
c

a
c

c
b

e
A

c
b
c

q
d

b
a

q
d

e
A

a
b

a
c

a
c

q
d

a

c
b

q
d

a
c

q
d

q
d

q
d

b
c

c
b

q
d

b
a

e
A

b
c

b
q
d

c
q
d

a
b

b
a

e
A

b
c

b
a
b

b
a

q
d

q
d

q
d

a
c

q
d

q
d

q
d

a
q
d

States

b
c

q
d

q
d

a
b

q
d

a
c

c
b

e
A

c
q
d

b
c

c
b

q
d

q
d

q
d

b

[February 22, 2019 at 7:06 – classicthesis version 4.2]

4.5 solving the minimum word problem 37

These paths are illustrated in Figure 13 for ̂abacba and b̂acba beginning
at eA2. The WDA is of major importance in the solution of the MWP, thereby
it is necessary to compute it. Given a group presentation of a SAG, i.e. G =

〈S|R〉, and a lexicographically ordered alphabet A satisfying Eq. (8), the
Knuth-Bendix completion algorithm [38] is able to compute the SAS of G =

〈S|R〉 and the WDA. The software package Knuth-Bendix on Monoids and
Automatic Groups (KBMAG) [39] implements the Knuth-Bendix completion
algorithm, details of its time requirements can be found in [37, Section
13.3.6].

A note of caution is required here as for some SAGs it is not possible
to compute its SAS for any lexicographic order [37, Section 13.2.1]. For in-
stance Coxeter groups, such as the group related to the Bubble-sort graph,
are ShortLex automatic only with some lexicographic orders. On the other
hand, SASs of word hyperbolic groups [40] can be computed for any lexico-
graphic order.

4.5 solving the minimum word problem

The problem of reducing a word to its canonical form is known as the MWP.
The computation of the canonical form of a word consists in applying a set
of rewriting rules to it. These rules have the form r → t, where r, t ∈ A∗,
r =G t and r <A t. From Definition 4.4.3, the rewriting rules of a SAG are
encoded in its WDA.

Given the automaton Diff and a word z ∈ A∗, Algorithm 1 presents the
steps to reduce z to its canonical form w ∈ L. First, w is initialized to zred,
see Definition 4.2.1, (line 1). Then while loop (at line 2) is executed while
w is not in canonical form, i.e. when w has a substring w(i) that is not in
canonical form. Recall that if w(i) is not in canonical form, then it exists
r ∈ L, such that q(r,w(i))+ = eA. The word r can be search by exploring
transitions of Diff , see [37, Section 13.1.7]. In this case, w(i) is replaced by
its canonical form r in w (if/else conditional at line 3). The resulting w is
reduced (line 7) and the loop is repeated until every w(i) is in canonical
form and thus w is also in canonical form.

Example 4.5.1 Consider the word z = abcababacba and the WDA defined by
the state transition table presented in Table 4. To reduce z to its canonical form
w ∈ L, Algorithm 1 proceeds as follows:

1) w← abcababacba.

2) w(4) = abca is not in canonical form and q(r,w(4)) = eA for r = abac ∈
L, then:

a) Replace w(4) by r in abcababacba, i.e. w← abacbabacba.

b) w is in reduced form.

3) w(7) = abacbab is not in canonical form and q(r$$,w(7)) = eA for
r = abcba ∈ L, then:

a) Replace w(7) by r in abacbabacba, i.e. w← abcbaacba.

2 The resulting paths are valid for ̂abacba and b̂acba beginning in any other node.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

38 word processing in cayley graphs

b) w is not in reduced form, then remove aa fromw, i.e.w← abcbcba.

4) w(5) = abcbc is not in canonical form and q(r$$,w(5)) = eA for r =

acb ∈ L, then:

a) Replace w(5) by r in abcbcba, i.e. w← acbba.

b) w is not in reduced form, then remove bb from w, i.e. w← aca.

5) w(3) = aca is not in canonical form and q(r$$,w(3)) = eA for r = c ∈ L,
then:

a) Replace w(3) by r in aca, i.e. w← c.

b) w is in reduced form.

6) w = c is in canonical form.

7) Return w.

Algorithm 1 Compute the canonical form of a word.

Input: The automaton Diff = (D,B, δ, eA).
Input: A word z ∈ A∗.
Output: The word w ∈ L such that w =G z.

1: w← zred.
2: while w has a substring w(i) such that q(r,w(i)) = eA and r <A w(i)

for some r ∈ L do
3: if r = eA then
4: Remove w(i) from w.
5: else
6: Replace w(i) with r in w.
7: w← wred.
8: return w.

Lemma 4.5.1 Algorithm 1 computes the canonical form of a word z ∈ A∗ in time
O(|D|∆Γ |z|

2).

Proof. The while loop is executed for each substring w(i) that is not in
canonical form, i.e. O(|z|) times. For each w(i), the search of a word r ∈
L such that q(r,w(i)) = eA can be done by traversing each state in D

at most |w(i)| 6 |z|, i.e. O(|D|∆Γ |z|) times [37, Section 13.1.7]. Therefore,
Algorithm 1 computes the canonical form of z in time O(|D|∆Γ |z|

2|). �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5
S TAT E O F T H E A RT O N R O U T I N G I N C AY L E Y G R A P H S

This Thesis proposes a generic routing scheme for CGs, i.e. a scheme that
works on several families of CGs. Thereby this chapter summarizes and
compares the main proposals of generic routing for CGs, which are clas-
sified into path computation algorithms and routing schemes, see Sec-
tion 1.2.2.1. It is important to mention that there are several routing pro-
posals specialized in a family of CGs, such that the routing scheme for the
family of Pancake graphs [41].

The path computation algorithms analyzed are the Sims Factoring Al-
gorithm (SFA) [17], which works on any CG; and the Path Computation
Algorithm for Abelian Cayley Graphs (PCAACG) [18]. The routing schemes
analyzed are the Routing based on Permutation Sort (RPS) [1], the Routing
based on Chordal Ring Representation (RCRR) [16] and the Geometric Rout-
ing with Word-Metric Spaces (GRWMS) [15], which is extended and en-
hanced in this Thesis. These proposals are described following the topol-
ogy model and notation presented in Section 3.1. Their performance have
been evaluated on the families of CGs introduced in Table 2 according to
the complexity metrics presented in Section 1.2.3.

5.1 path computation algorithms

5.1.1 Sims factoring algorithm

The SFA computes not only the shortest path in CGs, but also the minimal
paths (see Section 2.1.2). The algorithm applies concepts of word process-
ing in CGs presented in Section 4.2 and Section 4.3. Thereby nodes and
paths are represented by words in L and to compute the shortest path be-
tween any pair of nodes u, v ∈ L is equivalent to factorize, i.e. to reduce,
the word u−1v to a wordwwith minimal length, such thatw =G u

−1v. For
reducing words, the algorithm takes as base the Schreier–Sims algorithm
[42], where the factorization rules are encoded in arrays called Schreier
vectors. The size of a Schreier vector is O(∆Γ log(∆Γ)) bits. The shortest
path is computed using O(∆2Γ) vectors, whereas the minimal paths are
computed using O(∆3Γ) vectors. In both cases, the algorithm runs in time
O(∆5Γ).

5.1.2 Path computation algorithm for abelian Cayley graphs

The PCAACG computes the node-disjoint paths from a source node to
K 6 ∆Γ (not necessarily different) destination nodes in CGs of abelian
groups, i.e. abelian CGs. The strategy followed is to map the destination
nodes in the abelian CG to nodes in the ∆Γ -dimensional hypercube and
then to compute the node-disjoint paths from the identity node to each
node in the ∆Γ -dimensional hypercube. Then the searched paths are de-

39

[February 22, 2019 at 7:06 – classicthesis version 4.2]

40 state of the art on routing in cayley graphs

rived from the paths computed in the ∆Γ -dimensional hypercube. The
PCAACG consists of three algorithms for: 1) proving the existence of the
node-disjoint paths to be computed, which takes O(K∆3/2Γ) time units;
2) computing the shortest paths in hypercubes, which takes O(K∆3/2Γ), and
3) deriving paths in abelian CGs from paths in hypercubes, which takes
O(K∆Γ) time units. The space complexity of these algorithms, and thus of
the PCAACG is O(K∆Γ).

5.1.3 Comparison of path computation algorithms for Cayley graphs

This section presents a comparison of the algorithms previously presented.
The main difference between them is that the SFA works on any CG; men-
while, the PCAACG is limited to families of abelian CGs. Regarding the com-
puted paths, both algorithms compute the shortest path. In addition, the
PCAACG is able to compute the node-disjoint paths from a source node to K

destination nodes, which can be the same or different. On the other hand,
the SFA is able to compute just the minimal paths between two nodes. Note
that if the node-disjoint paths are not minimal (see Section 2.1.2), then the
SFA is not able to compute them. Regarding to the time complexity, the
PCAACG is faster than SFA and also has lower space complexity. Table 5

summarizes the main features of these algorithms. As it is shown both
space and time complexities depends just on the node degree.

Table 5: Summary of path computation algorithms for Cayley graphs.

Group Computed Space Time
Algorithm

family paths complexity complexity

SFA

The shortest
O(∆3Γ log(∆Γ))

O(∆5Γ)
Any path

group The minimal
O(∆4Γ log(∆Γ))

paths

PCAACG
Abelian

The shortest
O(∆Γ) O(∆

3/2
Γ)

groups

path

The node-
O(∆2Γ) O(∆

5/2
Γ)

disjoint paths

Table 6 and Table 7 show the space and time complexities, respectively,
of the SFA and the PCAACG running on the CGs presented in Table 2. These
results are given in terms of the number of nodes, i.e. n, substituting the
values of ∆Γ presented in Table 2 into the expressions of the time and
complexity presented in Table 5. The complexities of the PCAACG were
computed just for 2D Torus and Hypercube graphs as these CGs are the
only abelian among the evaluated CGs.

As it is expected both algorithms have constant space and time com-
plexities when running on CGs with constant degree, such as 2D Torus
and Butterfly graphs. Conversely, the SFA has the highest space and time
complexities in Transposition graphs, which also have the highest value of
node degree among the evaluated CGs, i.e. O(log(n)2). Finally, the space

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5.2 routing schemes 41

and time complexities are the same when the algorithms runs in Hyper-
cube, Bubble-sort and Star graphs due to the value of the node degree in
these graphs grows at the same ratio, i.e. O(log(n)).

5.2 routing schemes

5.2.1 Routing based on permutation sort

The RPS is supported on the Cayley’s theorem, which states that every
group is isomorphic to a subgroup of the symmetric group (Theorem 2.2.1).
From Definition 2.2.11, the symmetric group, i.e. Sp, consists of a set of
permutations of an array of p integers and the group operation is the
composition of permutations. In this scheme, nodes are labeled with ar-
rays (representing permutations), hence a node label can be represented
by O(p log(p)) bits. The connection rules between nodes are given by the
set of permutations representing the generating set, thereby the shortest
path problem being equivalent to finding an optimal set of permutations
that lead from a source node to a destination node [1].

Usually this scheme follows a greedy routing strategy, where message
headers include the label of the destination node, and the routing table of a
node consists of the labels of its adjacent nodes. To forward packets, nodes
compute the distance (in terms of the number of permutations) from each
of its adjacent nodes to the destination node. Then, packets are forwarded
to the nearest node to the destination node. Assuming that comparing
two node labels takes a total amount of time proportional to the label size,
the forwarding decision takes O(∆Γplog(p)) time units. As examples of
RPS, it can mention the schemes designed to work on Pancake, Star [1],
Hypercube and Butterfly graphs [22], respectively.

5.2.2 Routing based on chordal ring representations

Authors in [16] prove that CGs of Borel subgroups, also called Borel CGs

[5, 23, 43, 44], can be represented by Generalized Chordal Rings (GCRs). In
a GCR, nodes can be labeled with integers from 0 to n− 1, and there is a
divisor q of n such that every two nodes i and j are connected if node
i+ q module n is connected to node j+ q module n. In the RCRR, nodes
of a Borel CG are mapped to nodes of a GCR. Then static routing tables are
constructed following the connection rules of the GCR. The routing table
of a node i consists of an entry of ∆Γ bits for each destination node, where
the j-th entry indicates the links that lead to the minimal paths from i to j.
Routing is achieved identifying outgoing links for any incoming message,
whose header consists of the destination label.

This routing scheme was extended in [45] to support link failures. In
the new version, the j-th entry in the static routing table (of a node i) in-
dicates the distance between j and each node adjacent to i. In addition,
nodes incorporate a dynamic routing table, which indicates the distances
to destination nodes taking into account link failures. The routing process
consists of two stages, the first one proceeds as explained above. The sec-
ond stage begins when a node can no longer forward a packet due to

[February 22, 2019 at 7:06 – classicthesis version 4.2]

42 state of the art on routing in cayley graphs

Table 6: Space complexity of path computation algorithms on specific families of
Cayley graphs.

C
om

pu
ti

ng
th

e
sh

or
te

st
pa

th
C

om
pu

ti
ng

th
e

m
in

im
al

pa
th

s
C

om
pu

ti
ng

th
e

no
de

-d
is

jo
in

t
pa

th
s

C
ay

le
y

gr
ap

h

fa
m

il
y

SF
A

PC
A

A
C

G
SF

A
PC

A
A

C
G

2
D

To
ru

s
O
(1
)

O
(1
)

O
(1
)

O
(1
)

H
yp

er
cu

be

O
(l

og
(n

)3
lo

g
(l

og
(n

))
)

O
(l

og
(n

))

O
(l

og
(n

)4
lo

g
(l

og
(n

))
)

O
(l

og
(n

)2
)

Bu
bb

le
-s

or
t

St
ar

N
/A

N
/A

Tr
an

sp
os

it
io

n
O
(l

og
(n

)6
lo

g
(l

og
(n

))
)

O
(l

og
(n

)8
lo

g
(l

og
(n

))
)

Bu
tt

er
fly

O
(1
)

O
(1
)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5.2 routing schemes 43

Table 7: Time complexity of path computation algorithms on specific families of
Cayley graphs.

C
om

pu
ti

ng
th

e
sh

or
te

st
pa

th
C

om
pu

ti
ng

th
e

m
in

im
al

pa
th

s
C

om
pu

ti
ng

th
e

no
de

-d
is

jo
in

t
pa

th
s

C
ay

le
y

gr
ap

h

fa
m

il
y

SF
A

PC
A

A
C

G
SF

A
PC

A
A

C
G

2
D

To
ru

s
O
(1
)

O
(1
)

O
(1
)

O
(1
)

H
yp

er
cu

be

O
(l

og
(n

)5
)

O
(l

og
(n

)3
/
2
)

O
(l

og
(n

)5
)

O
(l

og
(n

)5
/
2
)

Bu
bb

le
-s

or
t

St
ar

N
/A

N
/A

Tr
an

sp
os

it
io

n
O
(l

og
(n

)1
0
)

O
(l

og
(n

)1
0
)

Bu
tt

er
fly

O
(1
)

O
(1
)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

44 state of the art on routing in cayley graphs

failures. Then, the packet is returned to the source node, which forwards
it to links that lead to paths without link failures. Hence the forwarding
decision takes O(DΓ) time units. In this case, message headers consists of
the source and destination labels and the path history of nodes traversed
by the packet being routed, thus it can be represented by O(DΓ log(n))
bits.

The scheme was evaluated through computer simulations on a Borel CG

of 1081 nodes in a random failure scenario, where the percentage of link
failures increases from 5% to 35% [45]. Results show that the scheme is not
shortest path and packet delivery is not guaranteed in the range of 1% to
32% of all pairs of source-destination nodes.

5.2.3 Geometric routing with word-metric spaces

The GRWMS applies techniques of word processing in groups presented in
Chapter 4. Thus node labels are given by words in L, which can be repre-
sented by O(DΓ log(∆Γ)) bits. The GRWMS follows a greedy routing strat-
egy similar to the RPS, where message headers consist of the label of the
destination node and the routing table of a node consists of the labels of
its adjacent nodes. To forward packets, nodes computes the shortest paths
from each of its adjacent nodes to the destination node. Then, packets are
forwarded to the nearest node to the destination. The shortest paths are
computed solving the MWP. As it is explained in Section 4.5, the MWP can
be solved using the WD automaton, i.e. Diff , in time O(|D|∆Γ |z|

2), where
z 6 2DΓ and D is the set of states of Diff . Therefore, the forwarding deci-
sions are taken in time O(|D|∆2ΓD

2
Γ) and the space complexity is given by

the size of Diff , i.e. |Diff |.

5.2.4 Comparison of routing schemes for Cayley graphs

This section presents a comparison between the analyzed routing schemes
working on the families of CGs presented in Table 2. As common features,
the RPS and the GRWMS are deterministic and do not provide path diversity.
In addition, they route packets through the shortest paths and guarantee
the packet delivery. Conversely, the RCRR is fault-tolerant, do not compute
the shortest path and do not guarantee packet delivery. These features are
summarized in Table 8.

Table 8: Summary of routing schemes for Cayley graphs.

Routing Shortest Path Fault- Packet delivery

scheme path diversity tolerant is guaranteed

RPS Yes

No

No Yes

RCRR No Yes No

GRWMS Yes No Yes

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5.2 routing schemes 45

5.2.4.1 Memory space requirements

Table 9 presents the memory space requirements of the routing schemes
previously presented. The table shows the space complexity of node la-
bels, message headers, routing tables and extra information that would
be required in the routing process. As it is explained above, the RCRR has
the highest memory space requirements as it provides fault-tolerance and
then requires further information about the global state of the network.

Table 9: Space complexity of routing schemes for Cayley graphs.
R

ou
ti

ng
O

th
er

ro
ut

in
g

sc
he

m
e

N
od

e
la

be
l

M
es

sa
ge

he
ad

er
R

ou
ti

ng
ta

bl
e

in
fo

rm
at

io
n

R
PS

O
(p

lo
g(
p
))

O
(p

lo
g(
p
))

O
(∆
Γ
p

lo
g(
p
))

N
/A

R
C

R
R

O
(l

og
(n

))
O
(D
Γ

lo
g(
n
))

O
(n
∆
Γ
)

D
yn

am
ic

ro
ut

in
g

ta
bl

e

O
(n
∆
Γ

lo
g(
D
Γ
))

G
R

W
M

S
O
(D
Γ

lo
g(
∆
Γ
))

O
(D
Γ

lo
g(
∆
Γ
))

O
(∆
Γ
D
Γ

lo
g(
∆
Γ
))

W
or

d-
di

ff
er

en
ce

au
to

m
at

on

O
(|

D
iff
|)

Regarding to the size of node labels and message headers, the RPS and
GRWMS use the destination label as message headers, thereby both mes-
sage headers and node label have the same space complexity. On the other
hand, the RCRR adds the path history in the message header in order to pro-
vide fault-tolerance. Therefore, its message headers have size proportional
toDΓ . Table 10 compares the space complexity of node labels and message

[February 22, 2019 at 7:06 – classicthesis version 4.2]

46 state of the art on routing in cayley graphs

headers defined by each routing scheme working on the evaluated CG. In
all of them, the RCRR defines the smallest node labels as they consist of
numbers from 0 to n− 1. In contrast, the message headers defined by the
RCRR are the largest ones due the message headers incorporate the path
history. In the case of the RPS and the GRWMS, their node labels (and thus
message headers) have the same size in Hypercube, Star and Transposi-
tion graphs. In Bubble-sort graphs, the node labels defined by the RPS are
smaller than those defined by the GRWMS. Meanwhile in Butterfly graphs,
the node labels defined by the GRWMS are smaller than those defined by
the RPS.

Table 10: Space complexity of node labels and message headers defined by rout-
ing schemes on specific families of Cayley graph.

N
od

e
la

be
l

/m
es

sa
ge

he
ad

er
N

od
e

la
be

l
M

es
sa

ge
he

ad
er

C
ay

le
y

gr
ap

h

fa
m

il
y

R
PS

G
R

W
M

S
R

C
R

R
R

C
R

R

2
D

To
ru

s
O
(n
1
/
2

lo
g(
n
))

O
(n
1
/
2
)

O
(l

og
(n

))

O
(n
1
/
2

lo
g(
n
))

H
yp

er
cu

be

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)2
)

Bu
bb

le
-s

or
t

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)3
)

St
ar

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)2
)

Tr
an

sp
os

it
io

n

Bu
tt

er
fly

O
(l

og
(n

))

Turning now to the size of routing tables, the RPS and the GRWMS define
routing tables consisting of the label of adjacent nodes, thereby their size

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5.2 routing schemes 47

is proportional to the node degree. Conversely, the RCRR uses full routing
tables, i.e. they contain an entry for each node in the CG, then their size is
proportional to the number of nodes. In addition to the routing table, the
RCRR and GRWMS use extra routing information. The RCRR uses a dynamic
routing table to provide fault-tolerance and the GRWMS uses the automaton
Diff to compute the shortest paths, see Section 4.5.

Table 11 compares the space complexity of the routing tables and extra
routing information used by each routing scheme working on the evalu-
ated families of CGs. Since the WPR extends the GRWMS, the values the size
of Diff were empirically computed to evaluate the performance of the WPR.
These values are presented in Table 19 and employed in Table 11. Con-
sidering the space requirements of both routing tables and extra routing
information, the RPS has the lowest space complexity in all the evaluated
CGs except by the 2D Torus graphs, where the GRWMS has the lowest space
complexity. Conversely, the RCRR has the highest space complexity in all
the evaluated CGs due to it uses full routing tables.

5.2.4.2 Forwarding decision time

Table 12 presents the forwarding decision time of the routing schemes in-
troduced. In the case of the GRWMS, it depends on the values |D|, which
also determines the complexity of the WPR. An empirical estimation of
|D| is presented in Table 17 and employed in Table 12. As it was men-
tioned, these schemes are deterministic and do not provide path diversity;
in addition, the RCRR is fault-tolerant. According to this features, the for-
warding decision time in deterministic mode of the three routing schemes
was computed, meanwhile in fault-tolerant mode, the forwarding decision
time was computed only for the RCRR.

In deterministic routing, the RCRR takes forwarding decisions making
just a query to the routing table. Hence the forwarding decision is taken
in constant time. In Fault-tolerant routing, the RCRR takes forwarding deci-
sion in time proportional to DΓ when a packet that can not be forwarded
due to failures, it is returned to the source node. In the worst case, said
packet traversesO(DΓ) nodes before being forwarded through a path with-
out failures.

On the other hand, the forwarding decision time in the RPS and the
GRWMS is proportional to ∆Γ as these schemes follows a greedy routing
strategy, where the shortest path is computed ∆Γ times. The computation
of a shortest path takes time proportional to the size of a node label in
the case of the RPS; and time proportional to the square of the size of a
node label in the case of the GRWMS. Therefore the RPS takes forwarding
decision faster than the GRWMS.

Table 13 compares the forwarding decision time of each routing scheme
in specific families of CG. As it is expected, the GRWMS takes the slower
forwarding decisions and the RCRR the fastest ones. On the other hand,
the forwarding decisions are slow in the 2D Torus graphs than in the rest
of the evaluated CG as its diameter grows faster than in the rest of CG.
Conversely, the fastest forwarding decisions are taken in Butterfly graphs
because of its diameter and node degree grow slower than in the rest of
CG.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

48 state of the art on routing in cayley graphs

Table 11: Space complexity of routing tables (and other routing information) de-
fined by routing schemes on specific families of Cayley graph.

R
ou

ti
ng

ta
bl

e
D

yn
am

ic
ro

ut
in

g
ta

bl
e

W
or

d-
di

ff
er

en
ce

au
to

m
at

on
C

ay
le

y
gr

ap
h

fa
m

il
y

R
PS

R
C

R
R

G
R

W
M

S
R

C
R

R
G

R
W

M
S

2
D

To
ru

s
O
(n
1
/
2

lo
g(
n
))

O
(n

)
O
(n
1
/
2
)

O
(n

lo
g(
n
))

O
(1
)

H
yp

er
cu

be

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
))

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)

lo
g(

lo
g(
n
))

O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

Bu
bb

le
-s

or
t

O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)5
lo

g(
lo

g(
n
))
)

St
ar

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)2

lo
g(

lo
g(
n
))
)

Tr
an

sp
os

it
io

n
O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)2
)

O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)2

lo
g(

lo
g(
n
))

O
(l

og
(n

)6
lo

g(
lo

g(
n
))
)

Bu
tt

er
fly

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(n

)
O
(l

og
(n

))
O
(n

lo
g(

lo
g(
n
))
)

O
(n

)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

5.2 routing schemes 49

Table 12: Forwarding decision time of routing schemes for Cayley graphs.

Routing Deterministic Fault-tolerant

scheme routing routing

RPS O(∆Γp log(p)) N/A

RCRR O(1) O(DΓ)

GRWMS O(|D|∆2ΓD
2
Γ) N/A

Table 13: Forwarding decision time of routing schemes on specific families of Cay-
ley graph.

D
et

er
m

in
is

ti
c

ro
ut

in
g

Fa
ul

t-
to

le
ra

nt
ro

ut
in

g
C

ay
le

y
gr

ap
h

fa
m

il
y

R
PS

R
C

R
R

G
R

W
M

S
R

C
R

R

2
D

To
ru

s
O
(n
1
/
2

lo
g(
n
))

O
(1
)

O
(n

)
O
(n
1
/
2
)

H
yp

er
cu

be

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)5
)

O
(l

og
(n

))

Bu
bb

le
-s

or
t

O
(l

og
(n

)9
)

O
(l

og
(n

)2
)

St
ar

O
(n

lo
g(
n
)4
)

O
(l

og
(n

))
Tr

an
sp

os
it

io
n

O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)7
)

Bu
tt

er
fly

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)2
)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

Part II

W O R D - P R O C E S S I N G - B A S E D R O U T I N G

The Word-Processing-based Routing is a generic routing scheme
for Cayley graphs, which applies word processing techniques
for computing paths. The scheme has low time and space re-
quirements, guarantees packet delivery, and provides: minimal
routing, path diversity and fault-tolerance. The following chap-
ters present the detailed definition of this routing scheme and
its complexity analysis.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

What though and care to determine the
exact site for a bridge, or for a fountain, and

to give a mountain road that perfect curve
which is at the same time the shortest...

— Marguerite Yourcenar

6
O V E RV I E W

The WPR is a routing scheme designed to work on networks whose topol-
ogy is defined by CGs of SAGs. It is considered the topology model pre-
sented Section 3.1, which works under the asynchronous communication
model [19, Section 1.3.4]. The routing scheme is defined according to
the model presented in Section 1.2.2.1, which applies the routing method
called store and forward and operates from an approach of word process-
ing in CGs presented in Chapter 4. Table 14 summarizes the basic notation
used in the definition of the WPR.

Table 14: Notation of the Word-Processing-based Routing.

Parameter Definition

G = 〈S|R〉 Finitely presented group with generating set S and

set of relators R.

Γ(G,S) Cayley graph of G = 〈S|R〉 whose vertices V(Γ)

represent the nodes of a network and its edges

E(Γ) represent the links between nodes.

n Number of nodes in Γ(G,S).

∆Γ Regular degree of Γ(G,S).

DΓ Diameter of Γ(G,S).

A A lexicographically ordered alphabet, which

satisfies Eq. (8) and defines the set of port labels

in each node.

L A language over A, which satisfies Eq. (11) and

defines the set of nodes labels.

w A node in V(Γ) labeled as w ∈ L.

ŵ A path in Γ(G,S), where wred ∈ F(A) denotes a

sequence of output ports.

ŵ(u) A path in Γ(G,S), where u denotes the initial node

and wred ∈ F(A) denotes a sequence of output

ports.

Diff = (D,B, δ, eA) The WDA of Γ(G,S) with respect to (A,L),

see Definition 4.4.3.

53

[February 22, 2019 at 7:06 – classicthesis version 4.2]

54 overview

The WPR is composed of routing information, path computation algo-
rithms, a fault-tolerant mechanism and forwarding protocols, which are
presented in Chapter 7, Chapter 8 and Chapter 9, respectively. In addition,
Chapter 10 presents a complexity analysis of the WPR. This chapter intro-
duces the routing information used in each node and describes the general
operation of the WPR and its process of node label assignment.

6.1 routing information

This section describes the routing information required in each node for
maintaining the WPR.

6.1.1 Routing table

Nodes store a routing table that consists of only the port labels. Each port
is labeled with a letter in A according to Eq. (8), then:

Preposition 6.1.1 Every port label can be represented by O(log (∆Γ)) bits.

6.1.2 Node label

Nodes are labeled with their ShortLex representative word in L according
to Eq. (11). Every node in V(Γ) labeled with w ∈ L is referred to as w.

Preposition 6.1.2 For every node w, its label w represents the ShortLex path
from eA to w, where w denotes a sequence of output ports.

Lemma 6.1.1 A node label consists of at most DΓ letters in A, thereby it can be
represented by O(DΓ log (∆Γ)) bits.

Proof. It follows form Preposition 6.1.1 and Preposition 6.1.2. �

6.1.3 Word-difference automaton

This automaton is used by the path computation algorithms due to it en-
codes the topological structure of the network, see Definition 4.4.3.

6.2 general operation

The WPR allows the following properties:

1) Minimal routing.

2) Source routing.

3) Hop-by-hop routing.

4) Fault-tolerance.

5) Path diversity.

Further details about these properties can be found in Section 1.2.2. To
support these properties the following path computation algorithms have
been proposed:

[February 22, 2019 at 7:06 – classicthesis version 4.2]

6.3 node label assignment 55

• Algorithm 4: Compute the shortest path.

• Algorithm 5: Compute the minimal paths.

• Algorithm 6: Compute the paths of bounded length.

• Algorithm 7: Compute the K-shortest path.

• Algorithm 8: Compute the shortest link-disjoint paths.

• Algorithm 9: Compute the shortest node-disjoint paths.

• Algorithm 10: Compute the shortest paths avoiding a set of link and
nodes.

These algorithms are formally presented in Chapter 7. Figure 14 shows
which algorithms are used to provide each property of the WPR.

Figure 14: Relation between the properties of the WPR and their path computation
algorithms. The arrows indicate algorithms supporting property and
dependency between algorithms.

6.3 node label assignment

This section describes the process to perform a node label assignment in a
distributed way. First of all, ports of each node must be labeled with their
corresponding letter in A according to Eq. (8). If its is unknown which
generator is associated to each link, then an exploration technique such (as
the one presented in Appendix A) must be performed in order to discover
the path associated to the set of relators and derive the corresponding
generator of each link.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

56 overview

After ports have been labeled, nodes must be labeled with their corre-
sponding word in L according to Eq. (11). Algorithm 2 presents the steps
to carry out the node label assignment in a distributed way. The label as-
signment begins in an arbitrary node r. This node is labeled with a special
symbol eA, while the rest of nodes are labeled with Null (step 2). Then, r
sends a message LABEL(eA) to its adjacent nodes. A node g has its turn to
be labeled, when it receives a message LABEL for the first time, said mes-
sage contains the label of the node h that sent the message. The label of
g is the canonical form of the word resulting from concatenating the label
of h with the label of the port that connects g with h. After g has been
labeled, it sends a message LABEL to its adjacent nodes except to h. This
message containing the label of g.

Algorithm 2 Distributed assignment of node labels.

1: Select an arbitrary node r of V(Γ).
2: Initially, node r sets label← eA. All other nodes set label← Null.
3: Every other node reacts to incoming messages as follows:

Upon receiving a message LABEL(label_parent) through its port x

do:
1: if label = Null then
2: label← the canonical form of label_parent · a (Algorithm 1).
3: Send out the message LABEL(label) through all its ports in A \ {x}.

Lemma 6.3.1 The process of node label assignment for the WPR takesO(|D|∆ΓD
3
Γ)

time units and requires n(∆Γ − 1) + 1 messages.

Proof. Regarding to the time complexity. A node takes its turn to be labeled
when it receives a message LABEL. Every node at distance l from node r
receives a message LABEL(label_parent), such that: |label_parent| = l− 1
for l > 1, and |label_parent| = 1 for l = 1. Then nodes at distance l from r

take O(|D|∆Γ l
2) time units in compute its node label due to Lemma 4.5.1.

In addition, it is assumed that each message LABEL incurs in a delay of
at most one time unit. Therefore, all nodes will have received a message
LABEL and they have been labeled after O(

∑DΓ
l=2 |D|∆Γ l

2) = O(|D|∆ΓD
3
Γ)

time units from the beginning of the execution. Turning now to the mes-
sage complexity. Each node sends ∆Γ + 1 messages, except by r that sends
∆Γ messages. Then the total number of messages transmitted during the
execution of Algorithm 2 is n(∆Γ − 1) + 1. �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

How beautiful the world would be if
there were a rule for getting around in labyrinths.

— Umberto Eco

7
PAT H C O M P U TAT I O N A L G O R I T H M S

This chapter presents the path computation algorithms used by the WPR.
Assuming that the routing information has been configured as it was ex-
plained in Section 6.3, the path computation algorithms can be executed
by any node.

7.1 preliminaries

Before presenting the path computation algorithms, it is necessary to ex-
plain how to compute: 1) paths recognized by the WDA and 2) the nodes
and links of a path. These procedures are the base of the algorithms pre-
sented in this chapter.

7.1.1 Paths recognized by the word-difference automaton

From Definition 4.4.3, it follows immediately that:

Preposition 7.1.1 If the WDA accepts (r, t), such that r <A t and q(r,t) ∈ D,
then the following conditions holds:

1 |̂r| 6 |̂t|,

2 paths r̂ and t̂, beginning at the same node, are at uniform distance at most
k, i.e. dΓ (̂r, t̂) 6 k (Lemma 4.4.1), and

3 the ShortLex path between the end nodes of r̂ and t̂ is q̂(r,t).

These condition are illustrated in Figure 13, which shows two paths, in
BS(4), represented by a tuple of words accepted by the WDA.

Preposition 7.1.2 If the WDA accepts (r, t) and q(r,t), then r̂ and ̂t(q(r,t))−1

(beginning at the same node) are paths between the same pair of nodes due to
r =G t(q

(r,t))−1.
Recall from Lemma 4.3.1 that words in the same equivalence class represent

paths between the same pair of nodes, then:

Preposition 7.1.3 If the WDA accepts (r, t) and q(r,t) = eA, thenr and t are in
the same equivalence class, i.e. r =G t, and r̂ and t̂ are paths between the same
pair of nodes.

Figure 15 illustrates the paths r̂, t̂ and q̂(r,t), where the tuple of words
(r, t) is recognized by the WDA and the final state is q(r,t).

In the algorithms presented in this chapter, for a given path r̂, some-
times it is necessary to compute the set of words t ∈ A∗ such that (r, t) is

57

[February 22, 2019 at 7:06 – classicthesis version 4.2]

58 path computation algorithms

t

r

t̂

r̂

q̂(r,t)

Figure 15: Geometric representation of a tuple of words (r, t) recognized by the
word-difference automaton, such that the final state is q(r,t). The Short-
Lex path between the end nodes of paths r̂ and t̂ is given by q̂(r,t).

recognized by WDA. Moreover, it is also useful to know the output state
after reading each tuple (r, t), i.e. q(r,t). The following function gives this
information.

T(r) = {(q,T) ∈ D×A∗ : q = q(r,t) iff t ∈ T}, (15)

this equation can be seen as a dictionary, where the keys are given by D.
The values of a key q ∈ D are the set of words T such that q is the state
after reading any tuple in r× T.

From Preposition 7.1.2 and Preposition 7.1.3, every t̂q−1, such that (q,T) ∈
T(r) and t ∈ T, is a path between the same nodes as r̂. For example, let
r = ac be a word representing a path in BS(4). According to the WDA of
BS(4) (Table 4),

T(ac) = {(ac, {$}), (c, {a}), (a, {c}), (cb, {ab}), (eA, {ac, ca}), (ab, {cb})}, (16)

and then words in the form tq−1 are given by the set

{ac$−1, ca−1,ac−1, cb(ab)−1, eA(ac)−1, eA(ca)−1,ab(bc)−1}. (17)

These words represent paths between the same nodes as âc. Recall that
for any w ∈ A∗, ŵ is the path represented by the reduced form of w,
i.e. wred (see Definition 4.2.1). Hence words in Eq. (17) must be reduced
by removing substrings of the form uu−1 and symbols eA and $, which
represent the empty path. After reducing words, it is necessary to replace
words of the form u−1 with words representing the inverse of u1. After
reducing words, the resulting set is {ac, ca} and thus paths âc and ĉa join
the same pair of nodes.

Algorithm 3 computes T(r) implementing Eq. (15). The set T(r(i)) is
computed in each iteration of the for loop at line 2. The computation of
T(r(i)) is done by exploring all transitions (xi,y) in BS(4), for r = x1 . . . xl
and y ∈ A+, and keeping a track of words t(i) = y1 . . . yi, such that
q(r(i),t(i)) ∈ D. Figure 16 provides an illustration of Algorithm 3 with the
WDA of BS(4) and r = ac as inputs.

Lemma 7.1.1 Algorithm 3 computes the set of tuples T(r) in time O(|D|∆Γ |r|).

1 Recall that u−1 is given by the reverse string of the inverse letters in u, see Definition 4.2.1.
For Bubble-sort graphs, the inverse of any letter x ∈ A is itself, i.e. x−1 = x

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.1 preliminaries 59

eA

a ab eA ac

a c ac cb eA ab

(a, $) (a, c)
(a,a) (a,b)

(c, $)(c,a)

(c, c)

(c,b)
(c, $)

(c,b)
(c,a)

(c, $)

(c,a)(c, c)

(c, $)

(c,b)

T(a)

T(ac)

for i in [1, 2]

end for

(a,y)

(c,y)

Figure 16: Illustration of the algorithm to compute paths recognized by the WDA

(Algorithm 3). The inputs are the WDA of BS(4) (Table 4) and the word
r = ac. The output is T(ac) (Eq. (16)).

Proof. For each (qold,Told) ∈ Told, the set of transitions {q
(xi,y)
old :∈ A+}

are computed. Since |Told| 6 |D|, at most |D|(∆Γ + 1) transition are com-
puted. This process is repeated for each xi in r = x1 . . . xl, then Algo-
rithm 3 computes T(r) in time O(|D|∆Γ |r|). �

For a given word r ∈ A∗ and state q ∈ D, the set T is denoted by T(r,q),
i.e.

T(r,q) = {t ∈ A∗ : q = q(r,t) and q ∈ D}. (18)

Then t̂q−1, for t ∈ T(r,q), are paths between the first and last nodes in
r̂. For example, T(bacb, cb) = {abac,babc} according to Eq. (16). Then
words in {abac(cb)−1,babc(cb)−1} represent paths between the first and
last nodes in b̂acb. After reducing the words, the resulting set is {abacbc,
babcbc} and then ̂abacbc and ̂babcbc are paths between the first and last
nodes in b̂acb, see Figure 12b.

7.1.2 Computing the links and nodes of a path

Lemma 7.1.2 Let Er̂(u) ⊂ L× L denote the set of links in the path r̂(u), i.e.

Er̂(u) = {(e, f) ∈ L× L : e =G ur(i) and f =G ur(i+ 1),

for 0 < i < |r|}.
(19)

The set Er̂(u) can be computed in time O(|D|∆Γ |r|
3).

Proof. Recall from Lemma 4.5.1 that the canonical form a word ur(i) is
computed in time O(|D|∆Γ (|u|+ i)

2). Therefore, the canonical form of the
words ur(i) for 0 < i < |r| is computed in timeO(

∑|r|
i=1 (|D|∆Γ (|u|+ i)

2)) =

O(|D|∆Γ |r|
3). �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

60 path computation algorithms

Algorithm 3 Compute paths recognized by the word-difference automa-
ton.
Input: The automaton Diff = (D,B, δ, eA).
Input: A word r = x1 . . . xl ∈ A∗.
Output: The set of tuples T(r) representing words (r, t), where t ∈ T,

recognized by Diff .
1: Told = ∅, T = {(eA, ∅)}.
2: for i in [1 . . . l] do
3: Told ← T.
4: T← ∅.
5: for each (qold,Told) ∈ Told do
6: for y ∈ A+ do
7: qnew ← q

(xi,y)
old

8: if qnew ∈ D then
9: if Told = ∅ OR Told = {$} then

10: Tnew ← {y}.
11: else
12: Tnew ← {t · y : t ∈ Told}.
13: if ∃(q,T) ∈ T such that q = qnew then
14: Replace (q,T) by (q,T ∪ Tnew) in T.
15: else
16: Add (qnew,Tnew) to T.
17: return T.

Lemma 7.1.3 Let Vr̂(u) ⊂ L denote the set of intermediate nodes in the path
r̂(u), where the first and last nodes in the path are excluded, i.e.

Vr̂(u) = {e ∈ L : e =G ur(i), for 1 < i < |r|}. (20)

The set Vr̂(u) can be computed in time O(|D|∆Γ |r|
3).

Proof. This proof is analogous to the proof of Lemma 7.1.2. �

Taking path âc(b) in BS(4) as example, Eâc(b) = {(b,ba), (ba,bac)} and
Vâc(b) = {ba}, see Figure 12b.

7.1.3 Algorithm variables

In addition to the notation introduced in Table 14, the path computation
algorithms of the WPR employ the variables presented in Table 15.

Recall from Chapter 4 that:

• If A is an alphabet. Then A∗ denotes all the words over A, F(A) ⊂ A∗

denotes all the reduced words over A, and L ⊂ F(A) denotes the
ShortLex words over A.

• If w ∈ L. Then w denotes a node labeled as w, and ŵ denotes a
ShortLex path defined by wred.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.2 computing the minimal paths 61

Table 15: Variables of the path computation algorithms.

Variable Definition

k ∈ Z+ The fellow-traveler constant of Γ(G,S).

K ∈ Z+ Number of computed paths.

l ∈ Z+ Length of the largest path computed.

u, v Two nodes in V(Γ).

ŵ Word representing the ShortLex path from u to v.

D Set of WD of Γ(G,S) given by Eq. (14).

7.2 computing the minimal paths

7.2.1 Computing the shortest path

From Section 4.5, the problem of computing the shortest path between u
and v is equivalent to computing the canonical form of the word u−1v,
i.e. w ∈ L such that w =G u

−1v. The resulting word represents the Short-
Lex path between u and v. For example, consider the nodes abacba and
bacba in BS(4). As it is shown in Example 4.5.1, the canonical form of the
word (abacba)−1bacba =G abcababacba is c ∈ L Eq. (13). Then ĉ is the
ShortLex path from abacba to bacba. Algorithm 4 computes the ShortLex
path between u and v by computing the canonical form of u−1v.

Algorithm 4 Compute the shortest path.

Input: The automaton Diff = (D,B, δ, eA).
Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.
Output: The word w ∈ L representing the ShortLex path between u and v.

1: z← u−1v.
2: Compute the canonical form w of z (Algorithm 1).
3: return w.

Lemma 7.2.1 Algorithm 4 computes the shortest path between two nodes of a CG

in time O(|D|∆ΓD
2
Γ).

Proof. The canonical form of the word u−1v is computed once, which takes
O(|D|∆Γ |u

−1v|2) time units, see Lemma 4.5.1. The length of words u and v
is O(DΓ) due to Lemma 6.1.1, then Algorithm 4 runs in time O(|D|∆ΓD

2
Γ).
�

7.2.2 Computing the minimal paths

An important consequence of the k-fellow-traveler property (Lemma 4.4.1)
is that minimal paths in CGs of SAGs are separated uniformly at distance at
most k [25, Lemma 3.2.3]. From this results, this section presents a method
to compute all minimal paths between two nodes. The method consists in

[February 22, 2019 at 7:06 – classicthesis version 4.2]

62 path computation algorithms

v

u

ŵŵ1 ŵ2

ŵ3 ŵ4

k kk k

P0 = {w}

P1 = {w,w1,w2}

P2 = {w,w1,w2,w3,w4}

Figure 17: Minimal paths between two nodes of a Cayley graph of a ShortLex
automatic group. The set Pj(w) (Eq. (21)) is given by the words at
distance at most ik from the ShortLex path ŵ.

computing ShortLex path first, and then the paths at uniform distance at
most ik, for 1 6 i 6 DΓ , from the ShortLex path.

Definition 7.2.1 Let Pj(w) ⊂ F(A) be the set of words representing the minimal
paths between u and v that are at distance at most jk from ŵ, i.e.

Pj(w) = {t ∈ F(A) : t =G w, |t| = |w| and dΓ (̂t, ŵ) 6 jk}, (21)

where j > 0.

Figure 17 provides a geometric representation of paths defined by words
in Eq. (21). As it is shown, for any path ŵ, where w ∈ Pj, it exists a path
r̂, where r ∈ Pj−1, such that ŵ and r̂ follow the k-fellow-traveler property
and then they are accepted by the WDA, where the output state is eA, i.e.
q(r,t) = eA. Therefore:

Lemma 7.2.2 The set Pj(w) can be built recursively as follows:

Pj(w) = {t ∈ F(A) : ∃r ∈ Pj−1(w) s.t. q(r,t) = eA}, (22)

where j > 0 and P0(w) = {w}.

Proof. The proof is by induction on Pj(w). Clearly, two paths are at dis-
tance 0 if and only if they are the same path. So, P0(w) = {w}. Assuming
Eq. (22) holds for Pj−1(w), it must be proved it for Pj(w). Eq. (22) im-
plies that: 1) t =G w due to t =G r (by Preposition 7.1.3) and r =G w

(by the induction hypothesis); 2) |t| = |w| due to |t| = |r| (by Defini-
tion 4.4.3) and |r| = |w| (by the induction hypothesis); and 3) by the tri-
angle inequality dΓ (̂t, ŵ) 6 jk due to dΓ (̂r, t̂) 6 k (by Preposition 7.1.1)
and dΓ (̂r, ŵ) 6 (j− 1)k (by the induction hypothesis). Therefore Eq. (22)
defines the shortest paths between u and v that are at distance at most jk
from ŵ and Lemma 7.2.2 holds for j > 0. �

Example 7.2.1 Consider the nodes aba and cb in BS(4) (Figure 12b). From the
previous section, the ShortLex path from aba to cb is defined by the canonical
form of (aba)−1cb, i.e. abacb ∈ L (Eq. (13)). According to Eq. (22) and the
WDA of BS(4) (Table 4), P0(abacb) = {abacb} and:

P1(abacb) = {abacb,abcab,bacbc},

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.2 computing the minimal paths 63

P2(abacb) = {abacb,abcab,bacbc,bcabc},

P3(abacb) = {abacb,abcab,bacbc,bcabc}.

Note that P3(abacb) = P2(abacb), then Pi(abacb) = P2(abacb), for any
i > 2. Therefore, words in P2(abacb) represent all the minimal paths from aba

to cb. In addition, words in P3(abacb) represent paths at distance 6 from âbacb
as k = 2 for BS(4). Since DΓ = 6 for BS(4), words in P3(abacb) represent all
the minimal paths from aba to cb.

Corollary 7.2.1 Words in PdDΓ/ke(w) represent all the minimal paths between
u and v due to dΓ (ŵ, p̂) 6 DΓ for any path p̂ from u to v.

Given the labels of two nodes u, v ∈ L, Algorithm 5 computes a set of
the minimal paths from u to v. First, the ShortLex path is computed (line
2). Then, the set Pj(w) is sequentially computed implementing Eq. (22)
for j > 1 as follows: for each word r ∈ Pj(w) \ Pj−1(w), the set of words
t ∈ F(A) such that q(r,t) = eA, i.e. Tred, is computed (lines 6-7). The set
Pj(w) results from the union of all Tred (lines 8-9). This process is repeated
until all the minimal paths have been computed, i.e. j = dDΓk e, (while loop
at line 4).

Algorithm 5 Compute the minimal paths.

Input: The automaton Diff = (D,B, δ, eA).
Input: Label of the source node u ∈ L.
Input: Label of the destination node node v ∈ L.
Input: Value of the network diameter DΓ .
Input: Value of the fellow-traveler constant k.
Output: The set of words Pj(w) ⊂ F(A) representing a set of the minimal

paths between from u to v.
1: z← u−1v, j← 1, Pi−1 ← ∅, Ptemp ← ∅.
2: Computes the canonical form w of z (Algorithm 1).
3: Pi ← {w}.
4: while Pi 6= Pi−1 AND j 6

⌈
DΓ
k

⌉
do

5: for r ∈ Pi \ Pi−1 do
6: Compute T(r) (Algorithm 3).
7: Tred ← {tred ∈ F(A) : t ∈ T(r, eA)}.
8: Ptemp ← Ptemp ∪ Tred.
9: j← j+ 1, Pi−1 ← Pi, Pi ← Pi ∪Ptemp.

10: return Pi.

Lemma 7.2.3 Algorithm 5 computes the set of the minimal paths Pj(w) between
any two nodes of a CG in time O(max{|Pj−1(w)|,DΓ }|D|∆ΓDΓ).

Proof. The canonical form of u−1v is computed in timeO(|D|∆ΓD
2
Γ) due to

Lemma 4.5.1. Then the set Pj(w) is computed for 0 < j <
⌈
DΓ
k

⌉
. It implies

that the set T(r) is computed |Pj−1(w)| times. The computation of T(r)

takes O(|D|∆Γ |r|) time units due to Lemma 7.1.1. Since |r| = |w| and |ŵ| 6
DΓ , Algorithm 5 computes Pj(w) in time O(max{|Pj−1(w)|,DΓ }|D|∆ΓDΓ).

�

[February 22, 2019 at 7:06 – classicthesis version 4.2]

64 path computation algorithms

7.3 computing the k-shortest paths

7.3.1 Computing paths of bounded length

Definition 7.3.1 Let [w]i ⊂ F(A) be the set of words representing the paths
between u and v whose length is at most |w|+ ik, i.e.

[w]i = {p ∈ F(A) : p =G w and |p̂| 6 |ŵ|+ ik}, (23)

where i > 0.

Theorem 7.3.1 The set [w]i can be built recursively as follows:

[w]i = {p ∈ F(A) : p = (t(q(r,t))−1)red,

∃r ∈ [w]i−1 and t ∈ F(A) s.t. q(r,t) ∈ D},
(24)

where i > 0 and [w]0 = PdDΓ/ke(w).

Proof. The proof is by induction on [w]i. By Corollary 7.2.1, [w]0 =
PdDΓ/ke(w). Assuming Eq. (24) to hold for [w]i−1, it must be proved it for
[w]i. Eq. (24) implies that: 1) p =G w due to p =G r (by Preposition 7.1.2)
and r =G w (by the induction hypothesis); and 2) |p̂| 6 |ŵ| + ik due to
|p| = |t|+ |q(u,v)|, where |q(u,v)| 6 k, |t| = |r| (by Definition 4.4.3), and |r| 6
|w|+ (i− 1)k (by the induction hypothesis). Therefore, Eq. (24) defines the
set of paths p̂ between u and v that satisfy |p̂| 6 |ŵ|+ ik and Theorem 7.3.1
holds for i > 0. �

Corollary 7.3.1 Let i be the smallest positive integer such that [w]i = [w]i−1.
Then, words in [w]i−1 represent all paths between u and v.

Corollary 7.3.2 The set of words p representing the paths between u and v such
that |ŵ|+ (i− 2)k < |p̂| 6 |ŵ|+ ik is given by:

[w]i \ [w]i−2 = {p ∈ F(A) : p = (t(q(r,t))−1)red,

∃ r ∈ [w]i−1 \ [w]i−2 and t ∈ F(A) s.t. q(r,t) ∈ D}.
(25)

Given the set [w]i−1, Algorithm 6 computes [w]i. First, [w]i−2 is com-
puted (line 1). Then, [w]i is initialized to [w]i−2 (line 2). Finally, Eq. (25)
is implemented (for loop at line 3). The set [w]i results from the union of
[w]i−2 and [w]i \ [w]i−2.

Lemma 7.3.1 Given the set [w]i−1, Algorithm 6 computes the paths of length
bounded by l = |w|+ ik, i.e. [w]i, in time O(|D|∆Γ l|[w]i−1 \ [w]i−2|).

Proof. The set T(r) is computed |[w]i−1 \ [w]i−2| times. The computation of
T(r) takes O(|D|∆Γ |r|) time units due to Lemma 7.1.1. From Eq. (21), |r| 6
|w|+ ik = l. Therefore, Algorithm 6 computes [w]i in timeO(|D|∆Γ l|[w]i−1 \

[w]i−2|). �

Example 7.3.1 Consider the set of words [bac]0 = {bac,bca} and the WDA of
BS(4) (Table 4). To compute [bac]1, Algorithm 6 proceeds as follows:

1) [bac]−1 ← ∅.

2) [bac]1 ← ∅.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.3 computing the k-shortest paths 65

Algorithm 6 Compute paths of bounded length.

Input: The automaton Diff = (D,B, δ, eA).
Input: The set of words [w]i−1 ⊂ F(A).
Output: The set of words [w]i ⊂ F(A) representing the paths of length

bounded by |w|+ ik between any pair of nodes u and v.
1: [w]i−2 ← {r ∈ [w]i−1 : |r| 6 |w|+ (i− 2)k}.
2: [w]i ← [w]i−2.
3: for r ∈ [w]i−1 \ [w]i−2 do
4: Compute T(r) (Algorithm 3).
5: Ur ← {(t(q)−1)red ∈ F(A) : t ∈ T, ∀(q,T) ∈ T(r)}.
6: [w]i ← [w]i ∪Ur.
7: return [w]i.

3) r← bac

a) T(r)← {(eA, {bca}), (cb, {aba})}.

b) Ur ← {bca,ababc}.

c) [bac]1 ← ∅∪ {bca,ababc}.

4) r← bca

a) T(r)← {(eA, {bac}), (ab, {cbc})}.

b) Ur ← {bac, cbcba}.

c) [bca]1 ← {bca,ababc}∪ {bac, cbcba}.

5) Return [bca]1.

Therefore, b̂ac, b̂ca, âbabc and ĉbcba are all the paths in BS(4) (see Fig-
ure 12b) satisfying the following conditions: 1) they join the same nodes as b̂ac,
and 2) their length bounded by ik+ |bac|, where i = 1 and k = 2.

7.3.2 Computing the K-shortest paths

Algorithm 7 computes the K-shortest paths between two nodes u and v.
First, the set of the minimal paths PdDΓ/ke is computed (line 2). Then, the
set of paths [w]i is sequentially computed for i > 2 and stored in [w]new
(line 12-13). The algorithm finishes when the K-shortest paths have been
computed, i.e. |[w]new| > K (if condition at line 5) or when all possible
paths haven computed, i.e. [w]new = [w]old (while loop at line 4).

Lemma 7.3.2 Algorithm 7 computes the K-shortest paths, where K > 1, between
two nodes of a CG in time O(max{Kl,D2Γ }|D|∆Γ), where l is the length of the K-th
shortest path.

Proof. The set of the minimal paths is computed in timeO(max{|PdDΓ/ke−1,
DΓ }|D|∆ΓDΓ) due to Lemma 7.2.3. Then the set [w]i is computed for
1 6 i 6 K. It takes O(|D|∆Γ l|[w]i−1|) time units due to Lemma 7.3.1.
Since PdDΓ/ke−1 ⊂ [w]i−1 and K ≈ |[w]i−1|, the algorithm finishes in time
O(max{Kl,D2Γ }|D|∆Γ). �

Example 7.3.2 Consider the nodes ac and abcba in BS(4) (Figure 12b), and the
integer K = 3. To compute the 3-shortest paths, Algorithm 7 proceeds as follows:

[February 22, 2019 at 7:06 – classicthesis version 4.2]

66 path computation algorithms

Algorithm 7 Compute the K-shortest paths.

Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.
Input: A positive integer K.
Input: Value of the network diameter DΓ .
Input: Value of the fellow-traveler constant k.
Output: A set of words P ⊂ F(A) representing the K-shortest paths from

u to v.
1: i← 1, [w]old ← ∅, P← ∅.
2: Compute the minimal paths PdDΓ/ke(w) (Algorithm 5).
3: [w]new ← PdDΓ/ke(w).
4: while ([w]new 6= [w]old) do
5: if |[w]new| > K then
6: P← Set of the first K-ShortLex words in [w]new.
7: return P.
8: else
9: Compute [w]i (Algorithm 6).

10: [w]old ← [w]new, [w]new ← [w]i, P← [w]i, i← i+ 1.
11: return P.

1) i← 1, [w]old ← ∅, P← ∅.

2) P3(w)← {bac,bca} (in BS(4), k = 2 and DΓ = 6).

3) [w]new ← {bac,bca}.

4) [w]new = {bac,bca} and [w]old = ∅, then

a) |[w]new| = 2 is less than K = 3, then

i. [w]1 ← {bac,bca,ababc, cbcba}.

ii. [w]old ← {bac,bca}, [w]new ← {bac,bca,ababc, cbcba},
P← {bac,bca,ababc, cbcba}, i← 2.

5) [w]new = {bac,bca,ababc, } and [w]old = {bac,bca}, then

a) |[w]new| = 4 is greater than K = 3, then

i. P← {bac,bca,ababc}.

ii. Return P.

Therefore, the 3-shortest paths from ac to abcba are b̂ac(ac), b̂ca(ac) and
̂abacbc(ac).

7.4 computing the disjoint paths

7.4.1 Computing the shortest link-disjoint paths

Algorithm 8 computes the shortest link-disjoint paths two nodes u and v,
i.e. DE(u, v), where |DE(u, v)| = ∆Γ as CG are node-transitive [28, Theorem
3.7]. First, the set of the minimal paths PdDΓ/ke is computed (line 2). Then,
the set of paths [w]i is sequentially computed for i > 2 and stored in
[w]new (line 12-13). The shortest link-disjoint path from paths in DE(u, v)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.4 computing the disjoint paths 67

is searched in [w]i \ [w]i−1 (for loop at line 5). The strategy to identify link-
disjoint paths is to keep a record of the links of paths in DE(u, v), which is
given by the set ED(u). For each r ∈ [w]i \ [w]i−1, the intermediate links in
the path r̂(u) are computed, i.e. Er̂(u) (line 6). If ED(u) ∩ Er̂(u) = ∅, then
r̂ is link-disjoint from paths in DE(u, v) (if condition at line 7). Thereby
r is added to DE(u, v) and ED(u) is updated (lines 8-9). In addition, it
is checked if all link-disjoint paths have been computed, if so DE(u, v) is
returned (if condition at line 10). Otherwise, this process is repeated for
i+ 1, and so on until |DE(u, v)| = ∆Γ (while loop at line 4).

Algorithm 8 Compute the shortest link-disjoint paths.

Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.
Input: Value of the network degree ∆Γ .
Input: Value of the network diameter DΓ .
Input: Value of the fellow-traveler constant k.
Output: A set of words DE ⊂ F(A) representing the shortest link-disjoint

paths from u to v.
1: i← 1, [w]old ← ∅, DE ← ∅, ED ← ∅.
2: Compute the minimal paths PdDΓ/ke(w) (Algorithm 5).
3: [w]new ← PdDΓ/ke(w).
4: while ([w]new 6= [w]old) do
5: for r ∈ [w]new \ [w]old do
6: Compute Er̂ (Lemma 7.1.2).
7: if ED ∩ Er̂ = ∅ then
8: Add r to DE.
9: ED ← ED ∪ Er̂.

10: if |DE| = ∆Γ then
11: return DE.
12: Compute [w]i (Algorithm 6).
13: [w]old ← [w]new, [w]new ← [w]i, i← i+ 1.
14: return DE.

Lemma 7.4.1 Algorithm 8 computes the shortest link-disjoint paths between any
two nodes of a CG in time O(K|D|∆Γ l

3), where the longest path computed has
length l and is the K-th shortest path.

Proof. The set of the minimal paths is computed in timeO(max{|PdDΓ/ke−1,
DΓ }|D|∆ΓDΓ) due to Lemma 7.2.3. Then the set [w]i is computed for
1 6 i 6 K. It takes O(|D|∆Γ l|[w]i−1|) time units due to Lemma 7.3.1. In ad-
dition, for each r ∈ [w]i, the set Er̂(u) is computed in time O(|D|∆Γ l

3) due
to Lemma 7.1.2. Since K ≈ |[w]i|, Algorithm 8 finishes in time O(K|D|∆Γ l

3).
�

Example 7.4.1 To compute the shortest link-disjoint paths from c to ac in BS(4)
(Figure 12b), Algorithm 8 proceeds as follows:

1) i← 1, [w]old ← ∅, DE ← ∅, ED ← ∅.

2) P3(w)← {a} (in BS(4), k = 2 and DΓ = 6).

3) [w]new ← {a}.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

68 path computation algorithms

4) [w]new = {a} and [w]old = ∅, then

a) r← a

i. Eâ(c)← [(c,ac)].

ii. ED ∩ Eĉ(a) = ∅, then

• DE ← {a}.

• ED ← [(c,ac).

• |DE| = 1 is less than ∆Γ = 3.

b) [w]1 ← {a, cac}.

c) [w]old ← {a}, [w]new ← {a, cac}, i← 2.

d) r← cac.

i. Eĉac(c)← {(c, eA), (eA,a), (a,ac)}.

ii. ED ∩ Eĉac(c) = ∅, then

• DE ← {a, cac}.

• ED ← {(c,ac), (c, eA), (eA,a), (a,ac)}.

• |DE| = 2 is less than ∆Γ = 3.

e) [w]2 ← {a, cac,babab}.

f) [w]old ← {a, cac}, [w]new ← {a, cac,babab}, i← 3.

g) r← babab.

i. E
b̂abab

(c)← {(c, cb), (cb, cba), (cba,acba), (acba,acb),
(acb,ac)}.

ii. ED ∩ Eb̂abab = ∅, then

• DE ← {a, cac,babab}.

• ED ← {(c,ac), (c, eA), (eA,a), (a,ac), (c, cb), (cb, cba),
(cba,acba), (acba,acb), (acb,ac)}.

• |DE| = ∆Γ , then

– Return DE = {a, cac,babab}.

Therefore, the shortest link-disjoint paths from a to ac are â(a), ĉac(a) and
b̂abab(a).

7.4.2 Computing the shortest node-disjoint paths

Similarly to Algorithm 8, Algorithm 9 computes the set of node-disjoint
paths between any pair of nodes u and v, i.e. DV(u, v), where 2

3(∆+ 1) 6
|DV | 6 ∆Γ since CG are node-transitive [28, Theorem 3.7].

Lemma 7.4.2 Algorithm 9 computes the shortest node-disjoint paths between
any two nodes of a CG in time O(K|D|∆Γ l

3), where the longest path computed
has length l and is the K-th shortest path.

Proof. This proof is analogous to the proof of Lemma 7.4.1. �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.5 computing the shortest paths avoiding a set of links and nodes 69

Algorithm 9 Compute the shortest node-disjoint paths.

Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.
Input: Value of the network degree ∆Γ .
Input: Value of the network diameter DΓ .
Input: Value of the fellow-traveler constant k.
Output: A set of words DV(u, v) ⊂ F(A) representing the shortest node-

disjoint paths from u to v.
1: i← 1, [w]old ← ∅, DV ← ∅, VD ← ∅.
2: Compute the minimal paths PdDΓ/ke(w) (Algorithm 5).
3: [w]new ← PdDΓ/ke(w).
4: while ([w]new 6= [w]old) do
5: for r ∈ [w]new \ [w]old do
6: Compute Vr̂ (Lemma 7.1.3).
7: if VD ∩ Vr̂ = ∅ then
8: Add r to DV .
9: VD ← VD ∪ Vr̂.

10: if |DV | = ∆Γ then
11: return DV .
12: Compute [w]i (Algorithm 6).
13: [w]old ← [w]new, [w]new ← [w]i, i← i+ 1.
14: return DV .

7.5 computing the shortest paths avoiding a set of links

and nodes

Let Ef ⊂ L× L represent a set of links in E(Γ) and let Vf ⊂ L represent a
set of nodes in V(Γ). Given Ef, Vf and the labels of two nodes u, v ∈ L \Vf,
Algorithm 10 computes the shortest path from u to v containing neither
link in Ef nor nodes in Vf, if it exists. Otherwise, it returns Null. Similarly
to Algorithm 8 and Algorithm 9, the set of the minimal paths PdDΓ/ke is
computed (line 2); and then the set of paths [w]i is sequentially computed
for i > 0 (lines 12-13). For each r ∈ [w]i \ [w]i−1, the links and intermediate
nodes in r̂(u) are computed (lines 6-7). If r̂(u) does not contain neither
links in Ef nor nodes in Vf, then r is returned (if condition at line 8).
Otherwise, the process is repeated for i + 1, and so on until the path is
found, if it exists (while loop at line 4).

Lemma 7.5.1 Algorithm 10 computes the shortest paths between any two nodes
of a CG, such that the computed paths avoid a set of links and nodes. The algorithm
runs in time O(K|D|∆Γ l

3), where the longest path computed has length l and is
the K-th shortest path.

Proof. This proof is analogous to the proof of Lemma 7.4.1. �

Example 7.5.1 Consider the set of tuples Ef = {(aba,ba), (b,bc)}, the set of
words Vf = {bac,b}, and the nodes aba, bc in BS(4). To compute the shortest
path from bac to b that avoids avoiding links in Ef and nodes in Vf, Algorithm 10
proceeds as follows:

1) i← 1, [w]old ← ∅.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

70 path computation algorithms

Algorithm 10 Compute the shortest paths avoiding a set of links and
nodes.
Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.
Input: A set of tuples Ef ⊂ L× L representing a set of links in E(Γ).
Input: A set of words Vf ⊂ L representing a set of nodes in V(Γ), such

that u, v /∈ Vf.
Input: Value of the network diameter DΓ .
Input: Value of the fellow-traveler constant k.
Output: A word r ∈ F(A) representing the shortest path from u and v

containing neither links in Ef nor nodes in Vf. Null, if such a path
does not exist.

1: i← 1, [w]old ← ∅.
2: Compute the minimal paths PdDΓ/ke(w) (Algorithm 5).
3: [w]new ← PdDΓ/ke(w).
4: while ([w]new 6= [w]old) do
5: for r ∈ [w]new \ [w]old do
6: Compute Er̂(u) (Lemma 7.1.2).
7: Compute Vr̂(u) (Lemma 7.1.3).
8: if (Ef ∩ Er̂(u) = ∅) AND (Vf ∩Vr̂(u) = ∅) then
9: return r.

10: Compute [w]i (Algorithm 6).
11: [w]old ← [w]new, [w]new ← [w]i, i← i+ 1.
12: return Null.

2) P3(w)← {bac,bca} (in BS(4), k = 2 and DΓ = 6).

3) [w]new ← {bac,bca}.

4) [w]new = {a} and [w]old = ∅, then

a) r← bac

i. E
b̂ac

(aba)← [(aba,ba), (ba,b), (b,bc)].

ii. V
b̂ac

(aba)← [(ba,b].

iii. Ef ∩ Eb̂ac(aba) = {(aba,ba), (b,bc)} and Vf ∩Vb̂ac(aba) =
{b}.

b) r← bca.

i. E
b̂ca

(aba)← [(aba,ba), (ba,bac), (bac,bc)].

ii. V
b̂ca

(aba)← [(ba,bac].

iii. Ef ∩ Eb̂ca(aba) = {(aba,ba)} and Vf ∩ Vb̂ca(aba) = {bac}.

c) [w]1 ← {bac,bca,ababc, cbcba}.

d) [w]old ← {bac,bca}, [w]new ← {bac,bca,ababc, cbcba}, i← 2

e) r← ababc.

i. E
âbabc

(aba)← {(aba,ab), (ab,a), (a, eA), (eA,b), (b,bc)}.

ii. V
âbabc

(aba)← {ab,a, eA,b}.

iii. Ef ∩ Eâbabc(aba) = {(b,bc)} and Vf ∩ Vâbabc(aba) = {b}.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

7.5 computing the shortest paths avoiding a set of links and nodes 71

f) r← cbcba.

i. E
ĉbcba

(aba)← {(aba,abac), (abac,abacb), (abacb,bacb),
(bacb,bac), (bac,bc)}.

ii. V
ĉbcba

(aba)← {abac,abacb,bacbbac}.

iii. Ef ∩ Eĉbcba(aba) = ∅ and Vf ∩ Vĉbcba(aba) = ∅, then

• Return r = cbcba.

Therefore, the shortest path from aba to bc that avoids links in Ef and paths in
Vf is ĉbcba.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8
FA U LT- T O L E R A N T M E C H A N I S M

The WPR supports multiple failures of both nodes and links. In addition,
it provides minimal routing paths in spite of nodes do not keep a global
record of failures. This chapter presents the fault-tolerant mechanism of
the WPR. First, the general operation of this mechanism is described. Then,
it is explained how nodes keep and update its local records of failures.
Finally, the processes of notification of failures and recovery from failures,
respectively, are presented.

8.1 general operation

To provide fault-tolerance, every node in the network keeps partial records
of faulty nodes and links. Then nodes use Algorithm 10 to compute the
routing paths avoiding the recorded failures. Since the computed paths
could contains failures that were not recorded, the fault-tolerant mecha-
nism applies hop-by-hop routing in mode single-path. Recall from Sec-
tion 1.2.2.3 that in hop-by-hop routing, the routing path is computed by
each node in the path. Then, it does not matter that the computed path
contains failures, provided that the next node in such a path is correct.
Table 16 introduces the notation used for defining the fault-tolerant mech-
anism. Recall from Table 14 that the network topology is defined by Γ(G,S).

Table 16: Notation of the fault-tolerant mechanism.

Parameter Definition

VF ⊂ L Labels of all faulty nodes in the network.

EF ⊂ L× L Labels of all faulty links in the network.

Vu ⊆ VF Faulty nodes recorded at node u.

Eu ⊆ EF Faulty links recorded at node u.

f ∈ VF Label of a faulty node.

(e, f) ∈ EF Label of a faulty link.

r ∈ VΓ Label of a recovered node.

(r, t) ∈ EΓ Label of a recovered link.

8.2 failures’ records

As it is shown in Table 16, every node u in the network keeps partial
records of faulty nodes and links, which are denoted by Vu and Eu, re-
spectively. This section focuses on the criterion to determine whether a
node u notified of a failure must update Vu and/or Eu. It is important
to mention that updating a record of failures refers to adding or remov-

73

[February 22, 2019 at 7:06 – classicthesis version 4.2]

74 fault-tolerant mechanism

ing elements from it. The process of failure notification is presented in
Section 8.3.

8.2.1 Updating the faulty nodes record

Algorithm 11 Update the faulty nodes record Vu with the faulty node f.

Input: Label of node u ∈ L.
Input: Label of the faulty node f ∈ L.
Input: Faulty nodes record Vu ⊂ L.
Input: Faulty links record Eu ⊂ L× L.
Output: True, if Vu is updated. Otherwise, False.

1: update← False.
2: for (d, e) ∈ Eu do
3: if f ∈ (d, e) then
4: Remove (d, e) from Eu.
5: update← True.
6: if update then
7: Add f to Vu.
8: return True.
9: for v ∈ {f · x : x ∈ A} \ {Vu ∪ {f}} do

10: w1 ← the shortLex path from u to v avoiding nodes in Vu ∪ {f} and
links in Eu (Algorithm 10).

11: w2 ← the shortLex path from u to v avoiding nodes in Vu \ {f} and
links in Eu (Algorithm 10).

12: if (w1 = Null AND f /∈ Vu) OR (w1(1) 6= w2(1) AND f /∈ Vu) then
13: Add f to Vu.
14: return True.
15: if f ∈ Vu then
16: Remove f from Vu.
17: return True.
18: return False.

Algorithm 11 presents the steps to determine whether a node u notified
about the failure of a node f must update Vu. If f is recorded in Vu, then
it is not necessary to record its incident links in Eu. The algorithm returns
True if Vu is updated. Otherwise, it returns False. First, links in Eu that are
adjacent to f are searched and removed from Eu (for loop at line 2). If some
element was removed from Eu, then f is added to Vu and the algorithm
returns True (if condition at line 6). Otherwise, the algorithm proceeds as
follows. For each node v adjacent to f (for loop at line 9), the following
paths from u to v are computed:

• The shortLex path avoiding failures in Vu ∪ {f} and Eu, said path is
denoted by ŵ1 (line 10).

• The shortLex path avoiding failures in Vu and Eu, said path is de-
noted by ŵ2 (line 11).

The label f is recorded in Vu if f /∈ Vu and for some v (if condition at line
12):

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8.2 failures’ records 75

1) it is not possible to compute ŵ1, i.e. w1 = Null, or

2) paths ŵ1 and ŵ2 begin at different links, i.e. w1(1) 6= w2(1).

Conversely, if f ∈ Vu and for every v, the paths ŵ1 and ŵ2 begin at the
same link (if condition at line 15), then the next nodes in the computed
paths are the same whether f is recorded or not. Therefore, the label f is
removed from Vu. The algorithm returns True whether f has been added
in or removed from Vu. Otherwise, it returns False. The following corollary
results from this process:

Corollary 8.2.1 Upon failing a node f, every node u will add f to Vu if: 1) after
node f fails, the network is disconnected, or 2) before node f fails, u and f were in
a chordless cycle.

Lemma 8.2.1 Let u be a node notified about the failure of a node f. Let ŵ be the
longest path among the shortest paths (avoiding failures) from u to the adjacent
nodes to f. Let l denote the length of ŵ and let K be an integer, such that ŵ is
the K-th shortest path in the network without failures, i.e. Γ(G,S), from u to f.
Algorithm 11 updates the record of node failures of u in time O(K|D|∆2Γ l

3).

Proof. The paths avoiding failures from u to each node adjacent to f are
computed. Each path is computed in timeO(K|D|∆Γ l

3) due to Lemma 7.5.1.
Therefore Algorithm 11 runs in time O(K|D|∆2Γ l

3). �

8.2.2 Updating the faulty links record

Algorithm 12 determines whether a node u notified about the failure of
a link (e, f) must update Eu. Similarly to Algorithm 11, for each node v
incident to (e, f) (for loop at line 1), the following paths are computed:

• The shortLex path from u to v avoiding the recorded failures and the
faulty link (e, f), i.e. ŵ1 (line 2).

• The shortLex path from u to v avoiding the recorded failures except
the faulty link (e, f), i.e. ŵ2 (line 3).

The tuple (e, f) is recorded in Eu if (e, f) /∈ Eu and for some v (if condition
at line 4):

1) it is not possible to compute ŵ1, i.e. w1 = Null, or

2) paths ŵ1 and ŵ2 begin at different links, i.e. w1(1) 6= w2(1).

Conversely, if (e, f) ∈ Eu and for every v, paths ŵ1 and ŵ2 begin at the
same link (if condition at line 7), then the next nodes in the computed
paths are the same whether f is recorded or not. Therefore, the tuple (e, f)
is removed from Eu. The algorithm returns True whether (e, f) has been
added in or removed from Eu. Otherwise, it returns False. The following
corollary results from this process:

Corollary 8.2.2 Upon failing a link (e, f), every node u will add (e, f) to Eu if:
1) after link (e, f) fails, the network is disconnected, or 2) before link (e, f) fails, u
and (e, f) were in a chordless cycle.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

76 fault-tolerant mechanism

Algorithm 12 Update the faulty links record Eu with the faulty link (e, f).

Input: Label of node u ∈ L.
Input: Label of a faulty link (e, f) ∈ L× L.
Input: Faulty nodes record Vu ⊂ L.
Input: Faulty links record Eu ⊂ L× L.
Output: True, if Eu is updated. Otherwise, False.

1: for v ∈ {e, f} \ Vu do
2: w1 ← the shortLex path from u to v avoiding nodes in Vu and links

in Eu ∪ {(e, f)} (Algorithm 10).
3: w2 ← the shortLex path from u to v avoiding nodes in Vu and links

in Eu \ {(e, f)} (Algorithm 10).
4: if (w1 = Null AND (e, f) /∈ Eu) OR (w1(1) 6= w2(1) AND (e, f) /∈

Eu) then
5: Add (e, f) to Eu.
6: return True.
7: if (e, f) ∈ Eu then
8: Remove (e, f) from Eu.
9: return True.

10: return False.

Lemma 8.2.2 Let u be a node notified about the failure of a link (e, f). Let ŵ
be the longest path among the shortest paths (avoiding failures) from u to each
node in {e, f}. Let l denote the length of ŵ and let K be an integer, such that ŵ is
the K-th shortest path in the network (without failures), i.e. Γ(G,S). Algorithm 12
updates the record of link failures of u in time O(K|D|∆Γ l

3).

Proof. The paths avoiding failures from u to each node in {e, f} are com-
puted. Each path is computed in time O(K|D|∆Γ l

3) due to Lemma 7.5.1.
Therefore Algorithm 12 runs in time O(K|D|∆Γ l

3). �

8.3 notifications of faulty nodes and links

The notification processes of faulty nodes and links are presented in Al-
gorithm 13 and Algorithm 14, respectively. When a node or link fails, the
failure notification beginss at each node z adjacent to the faulty node or
incident to the faulty link. This process proceeds as follows. First, the label
of the faulty node or link is computed by concatenating the label of node
z and the port connected to the faulty element. Then, the resulting label is
added to the corresponding record of failures. Finally, whether the failure
corresponds to a node or link, a message FAULTY_NODE or FAULTY_LINK is
sent through the active ports of z. This message contains the label of the
faulty element and the failure records of z.

Each node u receiving a failure notification message (from a node v)
updates its record of failures (if it is necessary) executing whether Algo-
rithm 11 or Algorithm 12 according to the kind of message. If the failures
records are not updated, node u ends its process of failure notification.
Otherwise, for each failure recorded in v but not in u, the corresponding
faulty record is updated. Note that recording a new failure could involve
recording some failures in Vv. Finally, a new message of failure notifica-

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8.3 notifications of faulty nodes and links 77

tion is sent through the active ports of u except for the one connected to v.
Figure 18 illustrates the process of node failure notification in BS(4).

Algorithm 13 Notification of a faulty node.

Upon failing a node f, each node z adjacent to f do:
1: f ← the canonical form of z · x, where x is the port connected to the

faulty node f.
2: Add f to Vz.
3: Send out the message FAULTY_NODE(f,Vz,Ez) through its active ports.

Every node u receiving a message FAULTY_NODE(f,Vv,Ev) through its port
x do:

1: update← update Vu with f (Algorithm 11).
2: if update then
3: for f ∈ Vv \ Vu do
4: Update Vu with f (Algorithm 11).
5: for (e, f) ∈ Ev \ Eu do
6: Update Eu with (e, f) (Algorithm 12).
7: Send out a message FAULTY_NODE(f,Vu,Eu) through its active ports

except x.

Lemma 8.3.1 Let f be a new faulty node, such that the largest chordless that in-
cludes f (after node f fails) has length c. Then the notification of the faulty node f
takesO(max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉4
) time units and requiresO(∆Γ |N(f,

⌈
c
2

⌉
)|)

messages applying Algorithm 13.

Proof. Regarding to the time complexity. When a node u at distance l from
node f receives a message NODE_FAILURE from a node v, it tries to update its
record of node failures on the new failure, i.e. f, which takes O(K|D|∆2Γ l

3)

due to Lemma 8.2.1. If the record of node failures was updated, then it is
again updated on the new node and link failures recorded by v, i.e |Vv \

Vu|+ |Ev \Eu| times. In the worst case, |Vv \Vu|+ |Ev \Eu| = |VΓ |+ |EΓ |, and
hence u updates its records of failures in timeO(max{1, |VΓ |, |EΓ |}K|D|∆2Γ l

3)

due to Lemma 8.2.1 and Lemma 8.2.2. By Corollary 8.2.1, the last noti-
fied node is at distance

⌈
c
2

⌉
from f. Then assuming that each message

NODE_FAILURE incurs in a delay of at most one time unit, the process of
notification of a faulty node takes

1+
∑d c2e
l=1 (max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉3
) ≈ O(max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉4
)

time units from the beginning of the execution. Turning now to the mes-
sage complexity. All notified nodes are in the

⌈
c
2

⌉
-neighborhood of f, i.e.

N(f,
⌈
c
2

⌉
), see Definition 2.1.11, due to Corollary 8.2.1. Since each notified

node sends at most ∆Γ − 1 messages, the total number of messages trans-
mitted during the notification of a faulty node is O(∆Γ |N(f,

⌈
c
2

⌉
)|). �

Lemma 8.3.2 Let (e, f) be a new faulty link, such that largest chordless that
includes (e, f) (after link (e, f) fails) has length c. Then the notification of the
faulty link (e, f) takes O(max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉4
) time units and requires

O(∆Γ |N(f,
⌈
c
2

⌉
)|) messages applying Algorithm 14.

Proof. This proof proceeds as the proof of Lemma 8.3.1. �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

78 fault-tolerant mechanism

a

a

a

a

a

a

a

a

a

a

a ac c

c

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b
b

b

b b

eA a

c ac

b ab

cb acb

ba aba

cba acba

bc abc

bcb abcb

bac abac

bcba abcba

abacbbacb

abacbabacba

(a) Node bac fails and their adjacent
nodes ba, bc and bacb add bac to
their failures records, and then notify
their adjacent nodes (gray nodes).

a

a

a

a

a

a

a

a

a

a

a ac c

c

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b
b

b

b b

eA a

c ac

b ab

cb acb

ba aba

cba acba

bc abc

bcb abcb

bac abac

bcba abcba

abacbbacb

abacbabacba

(b) Nodes aba, abac and bacba add bac
to their failures records, and then no-
tify their adjacent nodes (gray nodes).

a

a

a

a

a

a

a

a

a

a

a ac c

c

c

c

c

c

c

c

c

c

c

b

b

b

b

b

b

b

b
b

b

b b

eA a

c ac

b ab

cb acb

ba aba

cba acba

bc abc

bcb abcb

bac abac

bcba abcba

abacbbacb

abacbabacba

(c) Nodes abac and abacba add bac to
their failures records, and then notify
their adjacent nodes (gray nodes).

a

a

a

a

a

a

a

a

a

a ac c

c

c

c c

c

c

c

c

c

b

b

b

b

b

b

b
b

b

b b

eA a

c ac

b ab

cb acb

ba aba

cba acba

bc abc

bcb abcb

abac

bcba abcba

abacbbacb

abacbabacba

(d) Final state of the network. The blue
nodes have updated their failures
records.

Notified Nodes adjacent to bac

nodes ba bc bacba

(u) ŵ1 ŵ2 ŵ1 ŵ2 ŵ1 ŵ2 V ′u Vu

bcb b̂ca b̂ac b̂ b̂ âba âba ∅ ∅
b â â ĉ ĉ âbcbc âcb ∅ ∅

bacba b̂abca âbc b̂ab âba â â ∅ {bac}

abacb b̂cb b̂cb ĉba b̂cbac ĉ ĉ ∅ {bac}

aba b̂ b̂ b̂ac b̂ac b̂cb ĉbc ∅ ∅
ab âb âb âbac âbac âcbc âbcb ∅ ∅
abac ĉb ĉb ĉbac b̂cba b̂c b̂c ∅ {bac}

abacba âbcb âbcb ĉbab âcba âc âc ∅ {bac}

bcba âbca âbac âb âb b̂c b̂c ∅ ∅
abc âcb âcb âbcba âcbac âbc âbc ∅ ∅
abcba âbacb âbacb b̂cbab b̂acba b̂ac b̂ac ∅ ∅

(e) Paths computed by notified nodes. If paths begin at different letters, the failure is
recorded. Sets V ′u and Vu denote the record after and before notification, respectively.

Figure 18: Process of node failure notification in BS(4).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8.4 notification of recovered nodes and links 79

Algorithm 14 Notification of a faulty link.
Upon failing a link (e,f), each node z incident to (e,f) do:

1: f ← the canonical form of z · x, where x is the port connected to the
faulty link (e, f).

2: Add (e, f) to Ez, where e = z.
3: Send out the message FAULTY_LINK((e, f),Vz,Ez) through its active

ports.
Every node u receiving a message FAULTY_LINK((e, f),Vv,Ev) through its
port x do:

1: update← update Eu with (v, f) (Algorithm 12).
2: if update then
3: for f ∈ Vv \ Vu do
4: Update Vu with f (Algorithm 11).
5: for (v, f) ∈ Ev \ Eu do
6: Update Eu with (e, f) (Algorithm 12).
7: Send out a message FAULTY_LINK((e, f),Vu,Eu) through its active

ports except x.

8.4 notification of recovered nodes and links

The notification processes of nodes and links recovered from a failure are
presented in Algorithm 15 and Algorithm 16. Similarly to a failure noti-
fication, a recovery notification is initiated in each node z adjacent to the
recovered node or incident to the recovered link. First, the label of the re-
covered element is computed and removed from the corresponding record
of failures. Then, for each failure recorded in u, the corresponding faulty
record is updated, which could involve remove other elements from the
records of failures. Finally, whether the recovered element is a node or a
link, a message RECOVERED_NODE or RECOVERED_LINK is sent through the ac-
tive ports of z except for the one connected to the recovered element. This
message contains the label of the recovered element.

Each node u receiving a recovery notification message (from a node v)
checks if the recovered element is in the record of failures. If not, node
u ends the process of recovery notification. Otherwise, the label of the
recovered element is removed from the corresponding record of failures.
Then, for each failure recorded in u, the records of failures are updated.
Finally, a new message of recovery notification is sent through the active
ports of u except for the one connected to v.

Lemma 8.4.1 Let r be a new recovered node, such that largest chordless that
includes r (after recovering node r) has length c. Then the notification of the re-
covered node r takes OO(max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉4
) time units and requires

O(∆Γ |N(f,
⌈
c
2

⌉
)|) messages applying Algorithm 15.

Proof. This proof proceeds as the proof of Lemma 8.3.1. �

Lemma 8.4.2 Let (r, t) be a new recovered link, such that largest chordless that
includes (r, t) (after recovering link (r, t)) has length c. Then the notification of
the recovered link (r, t) takes O(max{1, |VΓ |, |EΓ |}K|D|∆2Γ

⌈
c
2

⌉4
) time units and

requires O(∆Γ |N(f,
⌈
c
2

⌉
)|) messages applying Algorithm 16.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

80 fault-tolerant mechanism

Algorithm 15 Notification of a recovered node.
Upon recovering a node r after failing, each node z adjacent to r do:

1: r ← the canonical form of z · x, where x is the port connected to the
recovered node r.

2: Remove r from Vz.
3: for f ∈ Vz do
4: Update Vz with f (Algorithm 11).
5: for (e, f) ∈ Ez do
6: Update Ez with (e, f) (Algorithm 12).
7: Send out the message RECOVERED_NODE(r) through its active ports ex-

cept x.
Every node u receiving a message RECOVERED_NODE(r) through its port x
do:

1: if r ∈ Vu then
2: Remove r from Vu.
3: for f ∈ Vu do
4: Update Vu with f (Algorithm 11).
5: for (e, f) ∈ Eu do
6: Update Eu with (e, f) (Algorithm 12).
7: Send out the message RECOVERED_NODE(r) through its active ports

except x.

Algorithm 16 Notification of a recovered link.
Upon recovering a link (r, t) after failing, each node z incident to (r, t) do:

1: t ← the canonical form of z · x, where x is the port connected to the
recovered link (r, t).

2: Remove (r, t) from Ez, where r = z.
3: for f ∈ Vz do
4: Update Vz with f (Algorithm 11).
5: for (e, f) ∈ Ez do
6: Update Ez with (e, f) (Algorithm 12).
7: Send out the message RECOVERED_LINK(r, t) through its active ports

except x.
Every node u receiving a message RECOVERED_LINK(r, t) through its port x
do:

1: if (r, t) ∈ Eu then
2: Remove (r, t) from Vu.
3: for f ∈ Ez do
4: Update Vz with f (Algorithm 11).
5: for (e, f) ∈ Ez do
6: Update Ez with (e, f) (Algorithm 12).
7: Send out the message RECOVERED_LINK(r, t) through its active ports

except x.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

8.4 notification of recovered nodes and links 81

Proof. This proof proceeds as the proof of Lemma 8.3.1. �

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

Everything flows.

— Heraclitus

9
F O RWA R D I N G P R O T O C O L S

The forwarding protocols operate according to the kind of routing that is
working. Further details about the kinds of routing and their general op-
eration are presented in Section 1.2.2.3. This chapter presents the forward-
ing protocols for: 1) deterministic routing, which applies source routing
in modes single-path and multi-path; and 2) fault-tolerant routing, which
applies hop-by-hop routing in mode single-path.

9.1 deterministic routing

In the WPR, each node is able to compute the shortest paths for a given
destination, such paths are represented by words denoting a sequence of
ports, see Section 4.3. Thereby, deterministic routing applies source rout-
ing, where the routing paths are computed only once for each message.
When a source node computes a routing path w = x1x2 . . . xl, the first
letter in the path corresponds to the output port. The remaining substring
denotes the rest of the path, which is used as the new message header.

Lemma 9.1.1 A message header defined by the WPR, in deterministic mode, can
be represented with O(DΓ log (∆Γ)) bits.

Proof. A header in deterministic mode is given by the word representing
the ShortLex path from the next node in the routing path to the destination
node, thereby this proof is analogous to the proof of Lemma 6.1.1. �

Algorithm 17 and Algorithm 18 present the steps for single-path and
multi-path forwarding in source nodes. Note that when the next node in
the path is the destination node, i.e. l = 1, the header consists of just
the symbol $ representing the empty path. as it is shown in Figure 14,
Algorithm 7, Algorithm 8 and Algorithm 9 provide the necessary path
diversity for multi-path. Depending on the routing requirements, any of
them can be used in the step 1 of Algorithm 18. Finally, Algorithm 19

presents the steps for forwarding in intermediate nodes, which is the same
for both modes single-path and multi-path.

Lemma 9.1.2 The forwarding decision in deterministic single-path mode of the
WPR is taken by source nodes using Algorithm 17, which runs in timeO(|D|∆ΓD

2
Γ)

due to Lemma 7.2.1.

Lemma 9.1.3 The forwarding decision in deterministic multi-path mode of the
WPR is taken by source nodes using Algorithm 18, which runs in timeO(K|D|∆Γ l

3),
where the K- shortest paths are computed and the largest one has length l, due to
Lemma 7.3.2, Lemma 7.4.1 and Lemma 7.4.2.

83

[February 22, 2019 at 7:06 – classicthesis version 4.2]

84 forwarding protocols

Algorithm 17 Single-path forwarding in source nodes

Input: A message MSG.
Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.

1: Compute the shortest path ŵ from u to v, where w = x1x2 . . . xl (Al-
gorithm 4).

2: if l = 1 then
3: Prepare a header h← $.
4: else
5: Prepare a header h← x2 . . . xl.
6: Attach h to MSG.
7: Set the output p← x1.
8: Forward MSG through p.

Algorithm 18 Multi-path forwarding in source nodes

Input: A set of messages messages MSG1, MSG2, . . ., MSGm.
Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.

1: Compute a set of m paths ŵ1, ŵ2, . . . ŵm from u to v, where wi =

xi,1xi,2 . . . xi,li (Algorithm 7 / Algorithm 8 / Algorithm 9).
2: for each MSGi do
3: if li = 1 then
4: Prepare a header hi ← $.
5: else
6: Prepare a header hi ← xi,2 . . . xi,li .
7: Attach each hi to MSGi.
8: Set the output port pi ← xi,1.
9: Forward MSGi through pi.

Algorithm 19 Forwarding in intermediate nodes

Input: A message MSG.
1: Read the header h ′ = y1y2 . . . yj of MSG.
2: if h ′ = $ then
3: Finish.
4: if j > 1 then
5: Prepare a new header h← y2 . . . yj.
6: else
7: Prepare a new header h← $.
8: Replace the old header h ′ by the new one h in MSG.
9: Set the output p← y1.

10: Forward MSG through p.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

9.2 fault-tolerant routing 85

Lemma 9.1.4 The forwarding decision in mode deterministic of the WPR is taken
by intermediate nodes using Algorithm 19, which runs in time O(1) due to the
next node in the path is encoded in the message header and thus no path is com-
puted.

9.2 fault-tolerant routing

To provide fault-tolerance, the WPR applies hop-by-hop routing in mode
single-path. The routing path is computed at the source node and if it
is necessary also at some intermediate nodes. Every node keeps records
of link and node failures, and uses Algorithm 10 to compute the routing
path avoiding the recorded failures. Since nodes keep a partial record of
failures, it is possible that the computed path contains failures that were
not recorded. However, what it is important in hop-by-hop routing is that
the next node in the computed path is correct.

Before explaining the forwarding protocol, let us present the types of
message headers. A header consists of a string with at most DΓ + 1 sym-
bols. The first symbol in the header must be ĥ or h. For headers beginning
with ĥ, the remaining substring denotes the path from the node receiving
the message to the destination node. For headers beginning with h, the
remaining substring denotes the label of the destination node.

Lemma 9.2.1 A message header defined by the WPR, in fault-tolerant mode, can
be represented with O(DΓ log (∆Γ)) bits.

Proof. In fault-tolerant mode, the WPR defines two kinds of headers. The
first one is given by a word representing a path of length less o equal to the
network diameter. The second one is given by the label of the destination
node. Both headers can be represented with O(DΓ log (∆Γ)) bits. The proof
is analogous to the proof of Lemma 6.1.1. �

Let us now present Algorithm 20, which describe the process of fault-
tolerant forwarding in source nodes. Consider a source node u that wants
to send a message MSG to another node v. First, the shortest path to v
avoiding the recorded failures is computed, i.e. w = x1x2 . . . xl, (line 1). If
there is no path to v, the algorithm ends (if condition at line 2). Otherwise,
a header is prepared according to the size of the computed path according
to the following cases:

Case 1: The computed path has length 1 (line 4).
In this case, the header is h · $. It indicates to the next node in the path that
is the destination node.

Case 2: The computed path is larger than 1 but shorter than the network
diameter (line 6).
In this case, the header is ĥ · x2 . . . xl. The next in the path may or may not
compute the remaining routing path to the destination node depending
on whether there are failures in the network or not.

Case 3: The computed path is larger than the network diameter (line 8).
In this case, the header is h · v. It avoid to have headers with more that
DΓ + 1 symbols However, the next node in the path must compute the
remaining routing path to the destination node.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

86 forwarding protocols

Finally, the header is attached to MSG and it is forwarded towards the
next node in the path (lines 10-12).

Algorithm 20 Fault-tolerant forwarding in source nodes

Input: A message MSG.
Input: Label of the source node u ∈ L.
Input: Label of the destination node v ∈ L.

1: Compute the shortest path ŵ from u to v avoiding nodes in Vu and
links Eu, where w = x1x2 . . . xl (Algorithm 10).

2: if w = Null then
3: Finish.
4: if l = 1 then
5: Prepare a header h← ĥ · $.
6: else if 1 < l 6 DΓ then
7: Prepare a header h← ĥ · x2 . . . xl.
8: else if l > DΓ then
9: Prepare a header h← h · v.

10: Attach h to MSG.
11: Set the output p← x1.
12: Forward MSG through p.

Lemma 9.2.2 The forwarding decision in fault-tolerant mode of the WPR is taken
by source nodes employing Algorithm 20, which execute Algorithm 10 to compute
the routing path. Then Algorithm 20 runs in time O(K|D|∆Γ l

3), where the short-
est path avoiding failures is the K-th shortest path in the network without failures
and has length l, due to Lemma 7.5.1.

Turning now to present Algorithm 21, which describe the process of
fault-tolerant forwarding in intermediate nodes, consider an intermediate
node u that receives a message MSG with header h ′. First, it is checked
whether u is the destination node. If so, the routing process ends (if con-
dition at line 2). Otherwise, a new header is prepared and the output port
is identified according to the following two cases:

Case 1: h ′ consists of the routing path and there is no failures recorded
(line 4).
In this case, the routing path and output port are given by h ′.

Case 2: h ′ consists of the label of the destination node or there are failures
recorded (line 10).
In this case, the label of the destination node is computed (if conditions at
lines 11 and 13) and the algorithm proceeds similarly to Algorithm 20.

Finally, the old header h ′ is replaced by the new one h in MSG and it is
forwarded towards the next node in the path (lines 25-26).

Lemma 9.2.3 The forwarding decision in fault-tolerant mode of the WPR is taken
by intermediate nodes employing Algorithm 21. If the routing path is given by
the message header, then no path is computed and thus the algorithm runs in time
O(1). If the routing path needs to be computed, then it is executed Algorithm 10
to compute it. Therefore, the algorithm runs in time O(K|D|∆Γ l

3), where the

[February 22, 2019 at 7:06 – classicthesis version 4.2]

9.2 fault-tolerant routing 87

Algorithm 21 Fault-tolerant forwarding in intermediate nodes

Input: A message MSG.
Input: Label of the intermediate node u ∈ L.

1: Read the header h ′ = y1y2 . . . yj from MSG.
2: if h ′ = ĥ · $ then
3: Finish.
4: if y1 = ĥ AND Vu = ∅ AND Eu = ∅ then
5: if j = 2 then
6: Prepare a new header h← ĥ · $.
7: else if j > 2 then
8: Prepare a new header h← ĥ · y3 . . . yj.
9: Set the output p← y2.

10: else if y1 = h OR Vu 6= ∅ OR Eu 6= ∅ then
11: if y1 = h then
12: v← y2 . . . yj.
13: else if y1 = ĥ then
14: v← the canonical form of u · y3 . . . yj (Algorithm 1).
15: Compute the shortest path ŵ from u to v avoiding nodes in Vu and

links Eu, where w = x1x2 . . . xl (Algorithm 10).
16: if w = Null then
17: Finish.
18: if l = 1 then
19: Prepare a new header h← ĥ · $.
20: else if 1 < l 6 DΓ then
21: Prepare a new header h← ĥ · x2 . . . xl.
22: else if l > DΓ then
23: Prepare a new header h← h · v.
24: Set the output p← x1.
25: Replace the old header h ′ by the new one h in MSG.
26: Forward MSG through p.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

88 forwarding protocols

shortest path avoiding failures is the K-th shortest path in the network without
failures and has length l, due to Lemma 7.5.1.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

What need you flow so fast?

— Anonymous

10
C O M P L E X I T Y A N A LY S I S

This chapter presents a complexity analysis of the WPR. The analysis is
based on the complexity measures presented in Section 1.2.3 and follows
the notation presented in Table 14. This chapter proceeds as follow. First,
a space complexity analysis of the WD automaton is presented. These re-
sults determine the space and time complexity of the WPR. After that, the
analyses regarding space and time complexity of the WPR are presented. It
involves an evaluation on the families of CGs introduced in Table 2. Then,
complexities of the distributed processes employed by the WPR are sum-
marized. Finally, it is presented a comparison between the WPR and the
state of the art on routing in CGs that is presented in Chapter 5.

10.1 the word-difference automaton

This section presents a space complexity analysis of the WD automaton, i.e.
Diff . This automaton is of major importance in the operation of the WPR

and their path computation algorithms as it encodes the structure of its
related CG (see Section 6.1.3). as it is shown in the following subsections,
the space and time complexity of the WPR depends on the space complexity
of Diff and its number of states, i.e. |D|.

Lemma 10.1.1 The space complexity of the WD automaton, i.e. Diff, depends
on the value of the fellow-traveler constant of its related CG, i.e. k, as follows:
1)O(∆3Γ log(∆Γ)) if k = 1, 2)O(∆k+1Γ log(∆Γ)) if 1 < k < DΓ , and 3)O(n∆2Γ log(∆Γ))
if k ≈ O(DΓ).

Proof. From Definition 4.4.3, the set of states of Diff is given by D and its
set of transitions is given by tuples in B. In the worst case, the number of
transitions of Diff is |D||B|, where |B| ≈ O(∆2Γ). Since each transition can be
represented by O(log(∆Γ)) bits, the set of transitions can be represented
by O(|D|∆2Γ log(∆Γ)) bits. From Definition 4.4.2, D is given by the labels of
nodes in the k-neighbourhood of node $, i.e. N($,k), see Definition 2.1.11.
Thereby the space complexity of Diff depends on the value of k as follows:

1) If k = 1, then D = A ∪ {$} and |D| = ∆Γ + 1. Thus D can be repre-
sented by O(∆Γ log(∆Γ)) bits and the set of transitions can be repre-
sented by O(∆3Γ log(∆Γ)) bits. Therefore, the space complexity of Diff
is O(∆3Γ log(∆Γ)).

2) If 1 < k < DΓ , then, in the worst case, |D| ≈ O(
∑k
l=0∆

l
Γ) = O(∆

k−1
Γ).

Thus D can be represented byO(
∑k
l=0 l∆

l
Γ log(∆Γ)) = O(k∆kΓ log(∆))

bits and the set of transitions can be represented by O(∆k+1Γ log(∆Γ))
bits. Therefore, the space complexity of Diff is O(∆k+1Γ log(∆Γ)).

89

[February 22, 2019 at 7:06 – classicthesis version 4.2]

90 complexity analysis

3) If k ≈ O(DΓ), then D = L and |D| ≈ O(n). Thus D can be repre-
sented by O(DΓ log (∆Γ)

∑DΓ
l=1 l) = O(D3Γ log (∆Γ)) bits and the set

of transitions can be represented by O(n∆2Γ log(∆Γ)) bits. Therefore,
the space complexity of Diff is O(n∆2Γ log(∆Γ)).

�

From Lemma 10.1.1, the size of Diff depends on the value of k and the
cadinality of D. More concretely, it depends just on the value of k as D

is defined in terms of k, i.e. D is given by the labels of nodes in N($, k).
In [32], it is shown that the value of k is bounded by the hyperbolicity, i.e.

δ of the CG, according to the relation δ >
k

2
, where δ 6

DΓ
2

, then k 6
DΓ . as it is explained in Lemma 10.1.1, if k = DΓ , then D represents the
whole network graph. Nevertheless, the value of k was calculated through
computer simulations for the families of CGs introduced in Table 2. Table 17

shows the upper-bounds of the value of k and the cardinality of D for
evaluated families of CGs. as it is shown, the value of k is bounded in
the 2D Torus, Hypercube, Transposition and Bubble-sort graphs, whereas
in the Star and Butterfly graphs, k grows proportionally in terms of DΓ .
Actually the value of k for Butterfly graphs is very close to DΓ .

It is important to mention that different lexicographic orders may result
in Diff of different sizes (see [37] Section 13.2.1). It is unknown which lexi-
cographic order leads to the smallest Diff . The results presented in Table 17

were obtained by using the lexicographic order given by the definitions of
the generating sets of CGs introduced in Section 3.3.1.

Table 17: Estimate of the fellow-traveler constant and the cardinality of the set of
word-differences.

Cayley graph

family
k |D|

2D Torus

2

O(1)

Hypercube O(log(n))

Bubble-sort 4 O(log(n)3)

Star O(DΓ) O(n)

Transposition 2 O(log(n))

Butterfly O(DΓ) O(n)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.2 space complexity 91

10.2 space complexity

This section presents results about space complexity of the WPR. In order to
compare the WPR and its path computation algorithms with the state of the
art on routing for CG, the results are organized as follows: memory space
requirements per node to maintain the WPR, space complexity of the path
computation algorithms (which runs in each node) and space complexity
of message headers.

From Section 6.1, the routing information required by each node to
maintain the WPR consists of: 1) a unique node label; 2) a routing table;
and 3) the WD automaton. Among these information, the path computa-
tion algorithms require only the WD automaton. Regarding to message
headers, they consist of: a word representing a ShortLex path if the routing
process is deterministic, or a word representing either a shortest path or a
node label if the routing process is fault-tolerant. Table 18 summarizes the
memory space requirements of the WPR. as it is shown, node labels and
message headers have the same size, which is determined by ∆Γ and DΓ .
The size of routing tables depends only on ∆Γ . Finally, the size of the WD

automaton depends on ∆Γ and k.
Table 19 summarizes the space complexity of the WPR working on the

families of CGs introduced in Table 2. Note that the information presented
in Table 19 is organized according to the routing information introduced
in Table 18. Regarding the memory space requirements per node, Hyper-
cube graphs have the lowest ones as they have the lowest values of ∆Γ , DΓ
and k. Conversely, the Star and Butterfly graphs have the highest mem-
ory space requirements per node and the highest space complexity for the
path computation algorithms algorithms. The reason is that these families
of CGs have a value of k that grows proportionally to DΓ and then the size
of the WD automaton is close to the size of the whole CG. Turning now to
2D Torus graphs, these CGs also have high memory space requirements per
node, i.e. O(n1/2), which is determined by their value of DΓ . However, the
space complexity of the path computation algorithms on 2D Torus graphs
is constant as its values of k and ∆Γ are constant. Finally, in Bubble-sort
and Transposition graphs, the memory space requirements per node and
space complexity of the path computation algorithms are polylogarithmic
due to their values of ∆Γ and DΓ are also polylogarithmic and their values
of k are constant. Regarding to the space complexity of the message head-
ers (and node labels), it is polylogarithmic in all the analyzed families of
CGs except 2D Torus graphs, which have the largest message headers.

10.3 time complexity

This section presents a summary of the forwarding decision time com-
plexity of the WPR, and time complexity of their path computation algo-
rithms. These algorithms and their time complexity analysis are presented
in Chapter 7. The forwarding protocols and their time complexity analysis
are presented in Chapter 9. Table 20 summarizes the time complexity of
the path computation algorithms. The value of K indicates the number of
paths that are computed, meanwhile l indicates the length of the largest

[February 22, 2019 at 7:06 – classicthesis version 4.2]

92 complexity analysis

Table 18: Space complexity of the Word-Processing-based Routing.

R
ou

ti
ng

Sp
ac

e
En

ti
ty

in
fo

rm
at

io
n

co
m

pl
ex

it
y

Pr
oo

f

N
od

e
la

be
l

O
(D
Γ

lo
g
(∆
Γ
))

Le
m

m
a

6
.1

.1

R
ou

ti
ng

ta
bl

e
O
(∆
Γ

lo
g
(∆
Γ
))

Pr
ep

os
it

io
n

6
.1

.1
N

od
e

W
or

d-
O
(∆
3 Γ

lo
g(
∆
Γ
))

,i
f
k
=
1

Le
m

m
a

1
0
.1

.1
Pa

th
co

m
pu

ta
ti

on
di

ff
er

en
ce

O
(∆
k
+
1

Γ
lo

g(
∆
Γ
))

,i
f
1
<
k
<
D
Γ

al
go

ri
th

m
s

au
to

m
at

on
O
(n
∆
2 Γ

lo
g(
∆
Γ
))

,i
f
k
≈
O
(D
Γ
)

M
es

sa
ge

O
(D
Γ

lo
g
(∆
Γ
))

Le
m

m
a

9
.1

.1
,

M
es

sa
ge

he
ad

er
Le

m
m

a
9
.2

.1

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.3 time complexity 93

Table 19: Space complexity of the Word-Processing-based Routing on specific fam-
ilies of Cayley graphs.

C
ay

le
y

gr
ap

h
N

od
e

la
be

l
W

or
d-

di
ff

er
en

ce
au

to
m

at
on

fa
m

il
y

/m
es

sa
ge

he
ad

er
R

ou
ti

ng
ta

bl
e

(p
at

h
co

m
pu

ta
ti

on
al

go
ri

th
m

s)

2
D

To
ru

s
O
(n
1
/
2
)

O
(1
)

O
(1
)

H
yp

er
cu

be
O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)3
lo

g(
lo

g(
n
))
)

Bu
bb

le
-s

or
t

O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)5
lo

g(
lo

g(
n
))
)

St
ar

O
(l

og
(n

)
lo

g(
lo

g(
n
))
)

O
(n

lo
g(
n
)2

lo
g(

lo
g(
n
))
)

Tr
an

sp
os

it
io

n
O
(l

og
(n

)2
lo

g(
lo

g(
n
))
)

O
(l

og
(n

)6
lo

g(
lo

g(
n
))
)

Bu
tt

er
fly

O
(l

og
(n

))
O
(1
)

O
(n

)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

94 complexity analysis

path that is computed (sometimes l = DΓ). Recall from Chapter 7 that
paths are sequentially computed from the shortest path until all the re-
quired paths are computed. Therefore, the shortest path is computed at
the beginning of all the path computation algorithms, and then the time
complexity of the shortest path algorithm (Algorithm 4) is included into
the time complexity of the remaining algorithms. In addition to K, l and
DΓ , the time complexity depends on |D| and ∆Γ . The reason is that paths
are searched by exploring the WD automaton, whose states and transitions
are given by D and ∆Γ , respectively.

Table 20: Time complexity of the path computation algorithms of the Word-
Processing-based Routing.

Computed Time
Algorithm

paths complexity
Proof

Algorithm 4

The shortest
O(|D|∆ΓD

2
Γ) Lemma 7.2.1

path

Algorithm 5

The minimal
O(max{K,DΓ }|D|∆ΓDΓ) Lemma 7.2.3

paths

Algorithm 7

The K-shortest
O(max{Kl,D2Γ }|D|∆Γ) Lemma 7.3.2

paths

Algorithm 8

The link-

O(K|D|∆Γ l
3)

Lemma 7.4.1
disjoint paths

Algorithm 9

The node-
Lemma 7.4.2

disjoint paths

Algorithm 10

The shortest

Lemma 7.5.1
path avoiding

a set of nodes

and links

Table 21 presents the forwarding decision time complexity of the WPR.
Recall from Section 1.2.2.3 that in source routing, routing paths are com-
puted just in source nodes, hence the forwarding decision time is constant
in intermediate nodes. Conversely, in hop-by-hop routing, routing paths
are computed along all nodes in the path. If the forwarding decision in-
volves the computation of routing paths, then some of the algorithms pre-
sented in Table 20 are employed. The selection of the algorithm depends
on the adaptability and path diversity required.

Table 22 presents the time complexity of the path computation algo-
rithms running in the families of CGs presented in Table 2. Then, this table
also provides the complexity of the forwarding decision time as it is de-
fined by the path computation algorithms. The 2D Torus, Star and Butterfly
graphs have the highest time complexity in all the algorithms. In the case
of 2D Torus graphs, the high time complexity is a consequence of their
high value of DΓ . In the case of Star and Butterfly graphs, their high value
of k results in a large |D| and thus in high time complexity. Regarding Hy-
percube, Bubble-sort and Transposition graphs, the time complexity of all

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.3 time complexity 95

Table 21: Forwarding decision time complexity of the Word-Processing-based
Routing.

R
ou

ti
ng

Pa
th

Pa
th

co
m

pu
ta

ti
on

Ti
m

e

de
ci

si
on

N
od

e
A

da
pt

ab
il

it
y

di
ve

rs
it

y
al

go
ri

th
m

co
m

pl
ex

it
y

Pr
oo

f

So
ur

ce

Si
ng

le
-p

at
h

A
lg

or
it

hm
4

O
(|

D
|∆
Γ
D
2 Γ
)

Le
m

m
a

9
.1

.2

So
ur

ce
D

et
er

m
in

is
ti

c

Li
nk

-d
is

jo
in

t
pa

th
s

A
lg

or
it

hm
8

O
(K
|D

|∆
Γ
l3
)

Le
m

m
a

9
.1

.3

ro
ut

in
g

N
od

e-
di

sj
oi

nt
pa

th
s

A
lg

or
it

hm
9

In
te

rm
ed

ia
te

Si
ng

le
-p

at
h

N
/A

O
(1
)

Le
m

m
a

9
.1

.4
Li

nk
-d

is
jo

in
t

pa
th

s

N
od

e-
di

sj
oi

nt
pa

th
s

H
op

-b
y-

ho
p

So
ur

ce
an

d
Fa

ul
t-

to
le

ra
nt

Si
ng

le
-p

at
h

A
lg

or
it

hm
1
0

O
(K
|D

|∆
Γ
l3
)

Le
m

m
a

9
.2

.2
,

ro
ut

in
g

in
te

rm
ed

ia
te

Le
m

m
a

9
.2

.3

[February 22, 2019 at 7:06 – classicthesis version 4.2]

96 complexity analysis

the algorithms is polylogarithmic due to ∆Γ and DΓ have polylogarithmic
growth, and the value of k is constant and then |D| also have polylogarith-
mic growth. All the path computation algorithms have their lowest time
complexity in Hypercube graphs due to their low values of ∆Γ , DΓ and k.

10.4 complexity of distributed processes

The WPR uses the following distributed processes: 1) node label assign-
ment (Section 6.3), 2) (node/link) failure notification (Section 8.3), and
3) (node/link) recovery notification (Section 8.4). Table 23 summarizes the
convergence time and message complexity of these processes. In the pro-
cess of node label assignment, the CG is explored through Breadth-First
Search (BFS). When a node is visited, it computes its label, which involves
the computation of a shortest path (Algorithm 4). Then, the convergence
time is proportional to DΓ and to the time complexity of the Algorithm 4.
After a node computes its label, it forwards ∆Γ − 1 messages (except the
root node, which sends ∆Γ messages) to continue the exploration.

Regarding the processes of failure and recovery notification, the noti-
fied nodes are those in the neighbourhood of the faulty or recovery node
f given by N(f,

⌈
c
2

⌉
) (see Lemma 8.3.1, Lemma 8.3.2, Lemma 8.4.1 and

Lemma 8.4.2). Then message complexity is proportional to the cardinality
of this neighbourhood. Each notified node decides if update its records
of failures, which involves to execute the algorithm for computing paths
avoiding nodes and links (Algorithm 10). In the worst case, each noti-
fied node executes Algorithm 10 once by each failure in the network, i.e.
|Vu|+ |Eu|.

10.5 comparison with the state of the art proposals

This section presents a comparison between the WPR and the state of the
art on routing in CGs presented in Chapter 5. First, the path computation
algorithms of the WPR (summarized in Table 20) are compared with the
algorithms introduced in Section 5.1. Then the WPR is compared with the
routing schemes presented in Section 5.2.

Table 24 compares the paths computed by the analyzed algorithms. as it
is shown, all the algorithms compute the shortest path. In addition the SFA

computes the minimal paths, and the PCAACG computes the disjoint paths.
Regarding the algorithms of the WPR, they not only compute the aforemen-
tioned paths but also the K-shortest paths. It is important to mention that
a thorough search of the relevant literature did not yield any generic algo-
rithm for computing the K-shortest paths, which is fundamental to design
routing schemes that provide path diversity and fault-tolerance.

Table 25 indicates which of the analyzed algorithms have the best space
and time complexity when working on the families of CG presented in
Table 2. These results are obtained from a comparison of the space and
time complexity of the SFA, the PCAACG (see Table 6 and Table 7) and the
algorithms of WPR (see Table 19 and Table 20). The PCAACG is considered
just in 2D Torus and Hypercube graphs as these are the only abelian CGs

among the evaluated CGs.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.5 comparison with the state of the art proposals 97

Table 22: Time complexity of the path computation algorithms of the Word-
Processing-based Routing on specific families of Cayley graphs.

C
om

pu
te

d
pa

th
s

C
ay

le
y

gr
ap

h
T

he
sh

or
te

st
D

is
jo

in
t

pa
th

s
/T

he
sh

or
te

st

fa
m

il
y

pa
th

T
he

m
in

im
al

pa
th

s
T

he
K

-s
ho

rt
es

t
pa

th
s

pa
th

av
oi

di
ng

no
de

s
an

d
li

nk
s

2
D

To
ru

s
O
(n

)
O
(m

ax
{K

,n
1
/
2
}n
1
/
2
)

O
(m

ax
{K
l,
n
})

O
(K
l3
)

H
yp

er
cu

be
O
(l

og
(n

)4
)

O
(m

ax
{K

,l
og

(n
)}

lo
g(
n
)3
)

O
(m

ax
{K
l,

lo
g(
n
)2
}
lo

g(
n
)2
)

O
(K

lo
g(
n
)2
l3
)

Bu
bb

le
-s

or
t

O
(l

og
(n

)8
)

O
(m

ax
{K

,l
og

(n
)2
}
lo

g(
n
)6
)

O
(m

ax
{K
l,

lo
g(
n
)4
}
lo

g(
n
)4
)

O
(K

lo
g(
n
)4
l3
)

St
ar

O
(n

lo
g(
n
)3
)

O
(m

ax
{K

,l
og

(n
)}
n

lo
g(
n
)2
)

O
(m

ax
{K
l,

lo
g(
n
)2
}n

lo
g(
n
))

O
(K
n

lo
g(
n
)l
3
)

Tr
an

sp
os

it
io

n
O
(l

og
(n

)5
)

O
(m

ax
{K

,l
og

(n
)}

lo
g(
n
)4
)

O
(m

ax
{K
l,

lo
g(
n
)2
}
lo

g(
n
)3
)

O
(K

lo
g(
n
)3
l3
)

Bu
tt

er
fly

O
(n

lo
g(
n
)2
)

O
(m

ax
{K

,l
og

(n
)}
n

lo
g(
n
))

O
(m

ax
{K
l,

lo
g(
n
)2
}n
)

O
(K
n
l3
)

[February 22, 2019 at 7:06 – classicthesis version 4.2]

98 complexity analysis

Table 23: Complexity measures of the distributed processes used by the Word-
Processing-based Routing.

Distributed Convergence Message

process time complexity
Proof

Node label
O(|D|∆ΓD

3
Γ) n(∆Γ − 1) + 1 Lemma 6.3.1

assignment

Failure /
O(max{1, |VΓ |, |EΓ |}

O(∆Γ |N(f,
⌈
c
2

⌉
)|)

Lemma 8.3.1,

recovery
K|D|∆2Γ

⌈
c
2

⌉4
)

Lemma 8.3.2,

notification
Lemma 8.4.1,

Lemma 8.4.2

Table 24: Paths computed by generic algorithms on Cayley graphs.

G
ro

up
T

he
sh

or
te

st
T

he
m

in
im

al
T

he
K

-s
ho

rt
es

t
T

he
di

sj
oi

nt
A

lg
or

it
hm

fa
m

il
y

pa
th

pa
th

s
pa

th
s

pa
th

s

A
lg

or
it

hm
s

A
ut

om
at

ic

of
th

e
W

PR
gr

ou
ps

Ye
s

Ye
s

Ye
s

Ye
s

SF
A

A
ny

N
o

N
o

gr
ou

p
Ye

s
Ye

s

PC
A

A
C

G
A

be
lia

n
N

o
N

o
gr

ou
ps

Ye
s

Ye
s

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.5 comparison with the state of the art proposals 99

From Table 25, the PCAACG has the best space and time complexity in
the cases, where it can be applied. i.e. in the computation of the shortest
path and the disjoint paths on 2D Torus and Hypercube graphs. Regarding
SFA, it can work on all the evaluated families of CGs to compute the short-
est path and the minimal paths. In these cases, the SFA has the best space
complexity in three of the six evaluated families of CGs, and reaches the
best time complexity in four of them. Regarding the algorithms of the WPR,
they outperform the space complexity of SFA in Bubble-sort and Transpo-
sition graphs; outperform the time complexity in the computation of the
shortest path in Transposition graphs; and outperform the time complexity
in the computation of the minimal paths in Hypercubes and Transposition
graphs. Finally, among the evaluated algorithms, the algorithms of the
WPR are the only ones able to compute the K-shortest paths (Algorithm 5)
and the disjoint paths (Algorithm 9, Algorithm 8) in non-abelian CGs.

Table 25: Generic path computation algorithms with best space and time complex-
ity on specific families of Cayley graphs.

B
es

t
sp

ac
e

B
es

t
ti

m
e

co
m

pl
ex

it
y

C
ay

le
y

gr
ap

h
co

m
pl

ex
it

y
T

he
sh

or
te

st
T

he
m

in
im

al
T

he
K

-s
ho

rt
es

t
T

he
di

sj
oi

nt

fa
m

il
y

pa
th

pa
th

s
pa

th
s

pa
th

s

2
D

To
ru

s
SF

A
/

SF
A

/
SF

A

PC
A

A
C

G
PC

A
A

C
G

PC
A

A
C

G

H
yp

er
cu

be
A

lg
or

it
hm

s
PC

A
A

C
G

PC
A

A
C

G
of

th
e

W
PR

Bu
bb

le
-s

or
t

A
lg

or
it

hm
s

SF
A

SF
A

of
th

e
W

PR
A

lg
or

it
hm

s

St
ar

SF
A

of
th

e
W

PR

A
lg

or
it

hm
s

Tr
an

sp
os

it
io

n
A

lg
or

it
hm

s
A

lg
or

it
hm

s
A

lg
or

it
hm

s
of

th
e

W
PR

W
PR

W
PR

W
PR

Bu
tt

er
fly

SF
A

SF
A

SF
A

[February 22, 2019 at 7:06 – classicthesis version 4.2]

100 complexity analysis

Based on the objectives and features of routing, which are presented in
Section 1.2.2.2 and Section 1.2.2.1, Table 26 presents a comparison of the
analized routing schemes.The RPS and the GRWMS are deterministic and
do not provide path diversity. However, these routing schemes provide
minimal routing and guarantee packet delivery. The WPR and the RCRR are
fault-tolerant. In addition, the WPR provides minimal routing and guaran-
tees packet delivery, while the RCRR, in contrast, does not. Hence, the WPR

is the most robust routing scheme among the analyzed schemes.

Table 26: Features of generic routing schemes for Cayley graphs.

Routing Minimal Path Fault- Packet delivery

scheme routing diversity tolerant is guaranteed

WPR Yes Yes

RPS
Yes

No

No
Yes

RCRR No Yes No

GRWMS Yes No Yes

Table 27 indicates which of the analyzed routing algorithms have the
best space complexity when working on the families of CGs introduced
in Table 2. These results are obtained from the comparison of the space
complexity of RPS, the RCRR, the GRWMS (see Table 10, Table 11) and the
WPR (see Table 19). Regarding message header, the WPR and GRWMS have
the best space complexity in all the evaluated families of CGs except for
Bubble-sort graphs. On the other hand, the RPS has the best space com-
plexity in four of the six evaluated families of CGs. Turning now to the
routing information per nodes, the RPS has the best space complexity per
node in all the evaluated families of CGs except for 2D Torus. Finally, the
WPR has the best space complexity per node in 2D Torus and Star graphs.
Note that the RCRR is not in Table 27 as it has the highest space complexity.

Regarding the forwarding decision time, the RCRR has the best time com-
plexity in both deterministic and fault-tolerant routing. In contrast, it has
the worst space complexity as it employs full routing tables. As result, its
time complexity is constant in deterministic routing and polylogarithmic
in fault-tolerant routing (see Table 13). The WPR also has polylogarithmic
time in fault-tolerant routing when work on four of the six evaluated fam-
ilies of CGs (see Table 22) and, in contrast to the RCRR, the WPR guarantees
the packet delivery. In deterministic routing, the WPR outperforms the for-
warding decision time of the GRWMS.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

10.5 comparison with the state of the art proposals 101

Table 27: Generic routing schemes with best space complexity on specific families
of Cayley graphs.

Cayley graph Message Routing information

family header per node

2D Torus
WPR /

GRWMS
WPR

Hypercube
WPR / RPS /

RPS
GRWMS

Bubble-sort RPS

Star WPR / RPS

Transposition

WPR / RPS /

RPS

GRWMS

Butterfly WPR / GRWMS

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

11
C O N C L U S I O N S

11.1 summary of completed work

This Thesis has addressed the problem of routing in CGs, which can be
classified into generic routing, i.e. that works on several families of CGs,
and routing specialized on a family of CGs. The problem was focused
on generic routing, which involves a major challenge as generic routing
schemes must work on CGs with different topological structure. In addi-
tion to routing schemes, path computation algorithms are considered as
routing proposals due to they are a fundamental part of the routing pro-
cess. After providing an overview of the general problem and the pro-
posed objectives to tackle it, Part I presented an analysis of CGs which is
divided into four chapters. Chapter 2 provided the necessary mathemati-
cal tools for analyzing CGs from an approach of Graph Theory and Group
Theory. This latter part puts special emphasis on permutation groups as
they provide an homogeneous representation of CGs to study them.

In Chapter 3, the topological properties of CGs were analyzed in order to
understand how these properties enable high performance and robustness
on communication networks that use CGs as topology. Specifically, it was
shown that: node-transitivity allows the use of the same communication
algorithms in each node; link-connectivity allows load balancing, tolerance
for random link failures; and low average distance enable low latency and
support for a high number of end points. Then, it was presented a analysis
of performance and robustness of six well-known families of CGs that has
been widely used as network topologies. This analysis was employed in
Chapter 5 and Chapter 10 to compare the impact of CGs with different
topological structures on the performance of routing schemes and path
computation algorithms.

Chapter 4 presented a theoretical framework to solve the shortest path
problem in CGs from the point of view of the AGT. This approach consists
in representing CGs as regular languages that are defined by FSAs, and
then word processing techniques are applied on such FSAs to solving the
shortest path problem. The AGT approach was applied in the GRWMS to
propose a deterministic routing scheme that computes the shortest paths.
This dissertation has extended and enhanced the GRWMS At the end of
Part I, Chapter 5 presented the state of the art for generic routing in CGs,
which includes routing schemes and path computation algorithms. This
review provides a complexity analysis of the routing proposals together
with a comparison of them working on six well-known families of CGs.

Through five chapters, Part II introduced the WPR, which is the main
contribution of this research work. Chapter 6 gave an overview of the
WPR. First, it was presented the necessary routing information per node
for the operation of the WPR, which consists of 1) a unique label given by
a word, 2) a routing table given by an alphabet that identifies the output
ports, and 3) an automaton that encodes topological structure of CG and is

103

[February 22, 2019 at 7:06 – classicthesis version 4.2]

104 conclusions

manipulated by the path computation algorithms. Then, it was explained
relation between the features of the WPR and its path computation algo-
rithms. These features of the WPR are: minimal routing, source routing,
hop-by-hop routing, fault-tolerance and path diversity. Finally, it was pre-
sented a distributed process for node label assignment together with its
complexity analysis. It is the only configuration process required by the
WPR.

Chapter 7 presented the set of path computation algorithms of the WPR

together with their complexity analysis. These algorithms can be named
according to the paths that compute, as follows: 1) the shortest path, 2) the
minimal paths, 3) the K-shortest paths, 4) the link-disjoint paths, 5) the
node-disjoint paths, and 6) the shortest path avoiding a set of nodes and
links. The shortest path algorithm results from solving the MWP, which
arises from AGT and is equivalent to the shortest problem in CGs. This ap-
proach is also applied by the GRWMS, where the MWP is referred but it is no
provided an algorithm to solve it. The algorithms to compute the minimal
paths, the K-shortest paths, and the link/node disjoint paths allows path
diversity. Fault-tolerance is enabled by the algorithm to compute the short-
est path avoiding a set of nodes and links. All the algorithms compute
the shortest paths and give as results word(s) representing the computed
path(s). It enables minimal and source routing.

Chapter 8 introduced the mechanism of fault-tolerance, which supports
multiple failures of both nodes and links. In addition, it provides minimal
routing paths in spite of nodes do not keep a global record of failures.
According to this mechanism, every node in the network keeps partial
records of faulty nodes and links. Then, nodes compute routing paths
avoiding the recorded failures. Since a routing path could contain failures
that were not recorded, the fault-tolerant mechanism applies hop-by-hop
routing in mode single-path. This chapter presents the detailed definition
of the following process: failure record, notification of faulty nodes/links,
and notification of recovery node/links. This chapter presented the de-
tailed definition of these processes together with their complexity analysis.

Chapter 9 presented the forwarding protocols of the WPR, which are di-
vided into deterministic and fault-tolerant. Regarding deterministic rout-
ing, there were introduced forwarding protocols for single-path and multi-
path in modes source routing and hop-by-hop routing. Regarding fault-
tolerant routing, there was presented a forwarding protocol for single-
path in mode hop-by-hop routing. All the forwarding protocols employ
message header whose size is the same as node labels. The forwarding
protocols were presented together with their complexity analysis.

In order to completely validate the WPR, Chapter 10 provided a complex-
ity analysis. It included an evaluation on six well-known families of CGs

and a comparison with the state of the art on routing proposals for CGs,
which is presented in Chapter 5. The results show that the algorithms for
computing disjoint paths outperform the state of the art on generic algo-
rithms. For some families of CG, the algorithms for computing the shortest
path and minimal paths also enhance the state of the art. Regarding to the
WPR it stays competitive with respect to the state of the art.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

11.2 review of contributions 105

11.2 review of contributions

This Thesis has proposed a generic routing scheme for CGs, which led to
develop new strategies of path computation and fault-tolerance in CGs that
contribute to the current state of the art on routing in CGs. Such contribu-
tions have been presented and peer-reviewed along different Publications,
and they can be summarized as follows:

An analysis of the topological properties of CG. This Thesis provides
a study of the impact of topological properties of CGs on the per-
formance and robustness of networks that used them as topology
[CITS’18]. It contributed to the performance evaluation of the pro-
posed routing scheme on specific families of CGs.

A theoretical framework to study and solve problems related to path
computation and routing in CGs from an approach of AGT. A funda-
mental idea of the AGT states that CGs can be represented by regular
languages, which are encoded into FSA. The developed framework
allows to study and solve problems related to routing in CGs by rep-
resenting CGs as languages and employing techniques of word pro-
cessing. A first version of this framework was applied to develop a
deterministic single path routing scheme for DCNs whose topologies
could be defined by CGs [TNET’18]. This framework was extended
to face the multi-path problem and was employed to develop new
generic path computation algorithms for CGs [DAM’18].

A set of generic algorithms for path computation in CGs. Employing the
theoretical framework above described, this Thesis has proved that
all the paths in a CG of a SAG can be sequentially computed from the
shortest to the largest one. Following this approach, a set of generic
path computation algorithms were developed [DAM’18]. Specifically,
the proposed algorithms compute: 1) the shortest path, 2) the min-
imal paths, 3) the paths of bounded length, 4) the K-shortest paths,
5) the disjoint paths, and 6) the shortest path avoiding a set of nodes
and edges. Through a complexity analysis, it was proved that the
algorithms for computing disjoint paths outperform the state of the
art on generic algorithms. For some families of CG, the algorithms
for computing the shortest path and minimal paths also enhance the
state of the art on generic algorithms. Finally, a thorough search of
the relevant literature suggests it was proposed the first generic algo-
rithm for computing K-shortest in CG.

The Word-Processing-based Routing (WPR). It is a generic routing scheme
for CGs that guarantees packet delivery and provides: minimal rout-
ing, path diversity and fault-tolerance. As far as this author known,
the WPR if the first generic with these features. The core of the WPR

are the path computation algorithms described above and a novel
mechanism of fault-tolerance, which support multiple failures and
provides minimal routing in spite of nodes do not keep a global
record of failures. Through a space and time complexity analysis, it
was shown that the WPR stays competitive with respect to the state
of the art on generic routing in CGs.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

106 conclusions

11.3 future work

There are several future research lines on which this Thesis can be taken
as a base. The future work can be gathered in three main aspects

Designing new network architectures based on CGs and the WPR. It
involves:

• Proposing a formal definition of the WPR as a routing protocol.

• Analyzing CGs that are link-transitive and satisfy the Moore
bound in order to design high performance topologies.

• Evaluate the throughput of CGs under different traffic scenarios.

• Evaluate the robustness of CGs under different failure scenarios.

• Proposing methods for incremental expansion of nodes in CGs.

Deploy the WPR in WSN. It involves to propose network embeddings of
random regular graphs in CGs.

Applying the approach of AGT to design distributed algorithms for CGs

that solve problems different from the routing problem, e.g. cluster-
ing, leader election etc.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

A P P E N D I X

107

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

A
P O RT L A B E L A S S I G N M E N T

From the definition of CG (Definition 2.2.12), edges in every Γ(G,S) repre-
sent generators in S. In the process of node label assignment of the WPR

(Section 6.3), ports of each node are required to be label with a letter repre-
senting their corresponding generator. This section describes the process
of port label assignment in a distributed way.

This process consists in discovering the cycles in Γ(G,S) corresponding
to each relator in R, and then deriving the corresponding generator of
each link. Recall from Section 2.2.3 that the relators R of a group G = 〈S,R〉
represent sequences of generators that are equivalent to the identity ele-
ment. Therefore, relators can be described by words representing cycles in
Γ(G,S). Algorithm 22 presents the steps to carry out the port label assign-
ment in a distributed way. This process consists of the following phases:
1) discovering cycles, 2) reporting cycles, and 3) labelling links.

The phase of discovering cycles begins at an arbitrary node r, which
sends a message DSVR_RELATORS through each of its ports i (see Algo-
rithm 23). These messages are propagated at distance d from r, where
d is half the length of the largest relator. At the end of this phase, mes-
sages DSRV_RELATORS will have traversed all the paths beginning at r and
representing each relator. Each of these messages keeps its path history,
which is saved at nodes receiving a message DSRV_RELATORS for the first
time.

The phase of reporting cycles begins at nodes v receiving a message
DSRV_RELATORS by second time. A discovered cycle consists of the path
histories of the first and second messages DSRV_RELATORS that arrive to v.
Each node v sends a message RPT_CYCLE to r, which contains the sequence
of port numbers associated to the discovered cycle.

The phase of labelling nodes begins at node r, when it receives a number
of messages RPT_CYCLE equal to the number of relators (Algorithm 22).
Then, node r must identify each reported cycle to each relator and label its
ports according to this relation. For each relator, node r sends a message
LABEL_PORTS through the port corresponding to such relator. Messages
LABEL_PORTS contain the representations of a relator as a word and as a
sequence of ports. Each message is propagated along the cycle associated
to its relator. Then nodes receiving a message LABEL_PORTS label their ports
according to the relator contained in the message.

109

[February 22, 2019 at 7:06 – classicthesis version 4.2]

110 port label assignment

Algorithm 22 Distributed assignment of port labels.

1: Select an arbitrary node r of V(Γ).
2: Node r sets letter ← ε and path ← ε. All other nodes set letter ←

Null and path← Null.
3: Node r initializes the process to discover relators (Algorithm 23).
4: Every other node reacts to incoming messages as follows:

Upon receiving a message DSVR_RELATORS(depth,
path_history) through its port j do:

1: if path_to_r = Null then
2: path_to_r← reverse(path_history).
3: else
4: relator← concatente(path_history,path).
5: index← |path_history|− 1.
6: Send out the message RPT_CYCLE(relator, index) through port j.
7: if |path_history| < depth then
8: for each port i except for j do
9: path_history.append(i).

10: Send out the message DSVR_RELATORS(depth,path_history)
through port i.

Upon receiving a message RPT_CYCLE(relator, index) through its port j
do:

1: if index == 0 then
2: Initialize the process of labelling ports (Algorithm 24).
3: else
4: i← relator[index].
5: Send out the message RPT_CYCLE(generators, index − 1) through

port i.
Upon receiving a message LABEL_PORTS(relator_port, relator_word, index)
through its port j do:

1: Label port j as relator_word[index].
2: if index < |relator_port|− 1 then
3: index← index+ 1.
4: Label port relatoy_port[index] as relator_word[index].
5: Send out the message LABEL_PORTS(relator_port, relator_word, index,A)

through port relator_port[index].
6: if there is one port without label then
7: Label the remaining port i with the remaining letter a ∈ A.
8: Send out the message LABEL_PORTS([i], [a], 0) through port i.

Algorithm 23 Discovery relators.

Input: A set of words relators_words representing the relators of Γ(G,S).

1: d← length of the largest relator in relators_words.
2: depth←

⌈
d
2

⌉
.

3: for each port i do
4: path_history← [i].
5: Send out the message DSVR_RELATORS(depth, i,path_history)

through port i.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

port label assignment 111

Algorithm 24 Label ports.

Input: An tuple of letters (gen1,gen2).
Input: A bijective map φ that assigns each port to a letter in A.
Input: A set of words over A that represents the relators of Γ(G,S) and is

denoted by relators_words.
1: relators_ports← relators_ports∪ {relator}.
2: if |relators_words| = |relators_ports| then
3: Correlate relators_words to relators_ports.
4: for each correlated pair (relator_port, relator_word) do
5: Label port relator_port[0] as relator_word[0].
6: Send out the message LABEL_PORTS(relator_port, relator_word, 1)

through port relator_port[0].

[February 22, 2019 at 7:06 – classicthesis version 4.2]

[February 22, 2019 at 7:06 – classicthesis version 4.2]

B I B L I O G R A P H Y

[1] S. B. Akers and B. Krishnamurthy. “A group-theoretic model for
symmetric interconnection networks.” In: IEEE Transactions on Com-
puters 38.4 (Apr. 1989), pp. 555–566. issn: 0018-9340. doi: 10.1109/1
2.21148.

[2] M. C. Heydemann. Cayley graphs and interconnection networks. Ed. by
Geňa Hahn and Gert Sabidussi. Dordrecht: Springer Netherlands,
1997, pp. 167–224. isbn: 978-94-015-8937-6. doi: 10.1007/978-94-01
5-8937-6.

[3] Chuanxiong Guo et al. “BCube: A High Performance, Server-centric
Network Architecture for Modular Data Centers.” In: ACM SIG-
COMM Conference on Data Communication. Barcelona, Spain: ACM,
2009, pp. 63–74. isbn: 978-1-60558-594-9.

[4] J. Kim, J. Balfour, and W. J. Dally. “Flattened Butterfly Topology for
On-Chip Networks.” In: IEEE Computer Architecture Letters 6.2 (2007),
pp. 37–40. issn: 1556-6056. doi: 10.1109/L-CA.2007.10.

[5] Jaewook Yu, Eric Noel, and K. Wendy Tang. “A graph theoretic ap-
proach to ultrafast information distribution: Borel Cayley graph re-
sizing algorithm.” In: Computer Communications 33.17 (2010), pp. 2093

–2104. issn: 0140-3664. doi: 10.1016/j.comcom.2010.07.013.

[6] J. X. Zhou, Z. L. Wu, S. C. Yang, and K. W. Yuan. “Symmetric Prop-
erty and Reliability of Balanced Hypercube.” In: IEEE Transactions
on Computers 64.3 (Mar. 2015), pp. 876–881. issn: 0018-9340. doi: 10
.1109/TC.2014.2304391.

[7] Anthony H. Dekker and Bernard D. Colbert. “Network Robustness
and Graph Topology.” In: 27th Australasian Conference on Computer
Science. Vol. 26. ACSC. Dunedin, New Zealand: Australian Com-
puter Society, Inc., 2004, pp. 359–368.

[8] Iain A. Stewart and Alejandro Erickson. “The influence of datacenter
usage on symmetry in datacenter network design.” In: The Journal of
Supercomputing (2017). issn: 1573-0484. doi: 10.1007/s11227-017-2
217-1.

[9] Derek Robinson. A Course in the Theory of Groups. Graduate Texts in
Mathematics 80. Second edition, 1996. Springer-Verlag, 1982. isbn:
0-38790-600-2.

[10] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[11] L. G. Valiant. “A Scheme for Fast Parallel Communication.” In: SIAM
Journal on Computing 11.2 (1982), pp. 350–361. doi: 10.1137/0211027.

[12] A. Singh. “Load-balanced Routing in Interconnection Networks.”
PhD thesis. Stanford University - Department of Electrical Engineer-
ing, 2005.

113

[February 22, 2019 at 7:06 – classicthesis version 4.2]

http://dx.doi.org/10.1109/12.21148
http://dx.doi.org/10.1109/12.21148
http://dx.doi.org/10.1007/978-94-015-8937-6
http://dx.doi.org/10.1007/978-94-015-8937-6
http://dx.doi.org/10.1109/L-CA.2007.10
http://dx.doi.org/10.1016/j.comcom.2010.07.013
http://dx.doi.org/10.1109/TC.2014.2304391
http://dx.doi.org/10.1109/TC.2014.2304391
http://dx.doi.org/10.1007/s11227-017-2217-1
http://dx.doi.org/10.1007/s11227-017-2217-1
http://dx.doi.org/10.1137/0211027

114 Bibliography

[13] David B. A. Eppstein. “Finding the k Shortest Paths.” In: SIAM Jour-
nal on Computing 28.2 (1998), pp. 652–673. doi: 10.1137/S009753979
5290477.

[14] Jin Y. Yen. “Finding the K Shortest Loopless Paths in a Network.” In:
Management Science 17.11 (1971), pp. 712–716. doi: 10.1287/mnsc.17
.11.712.

[15] M. Camelo, D. Papadimitriou, L. Fàbrega, and P. Vilà. “Geometric
Routing With Word-Metric Spaces.” In: Communications Letters, IEEE
18.12 (2014), pp. 2125–2128. issn: 1089-7798. doi: 10.1109/LCOMM.20
14.2364213.

[16] K. Wendy Tang and Bruce W. Arden. “Vertex-transitivity and Rout-
ing for Cayley Graphs in GCR Representations.” In: Proceedings of
the 1992 ACM/SIGAPP Symposium on Applied Computing: Technolog-
ical Challenges. SAC ’92. Kansas City, Missouri, USA: ACM, 1992,
pp. 1180–1187. isbn: 0-89791-502-X.

[17] Stephen T. Schibell and Richard M. Stafford. “Processor interconnec-
tion networks from Cayley graphs.” In: Discrete Applied Mathematics
40.3 (1992), pp. 333 –357. issn: 0166-218X.

[18] Cheng Lai. “On the construction of all shortest vertex-disjoint paths
in Cayley graphs of abelian groups.” In: Theoretical Computer Science
571 (2015), pp. 10 –20. issn: 0304-3975. doi: 10.1016/j.tcs.2014.12
.023.

[19] David Peleg. Distributed Computing: A Locality-sensitive Approach. Phila-
delphia, PA, USA: Society for Industrial and Applied Mathematics,
2000. isbn: 0-89871-464-8.

[20] Dennis Abts and John Kim. High Performance Datacenter Networks:
Architectures, Algorithms, and Opportunities. Morgan & Claypool Pub-
lishers, 2011. isbn: 978-1-608-45402-0.

[21] Dieter Jungnickel. Graphs, Networks and Algorithms. 3rd. Springer
Publishing Company, Incorporated, 2007. isbn: 3-540-72779-5.

[22] G. D. Stamoulis and J. N. Tsitsiklis. “The efficiency of greedy routing
in hypercubes and butterflies.” In: IEEE Transactions on Communica-
tions 42.11 (1994), pp. 3051–3061. issn: 0090-6778. doi: 10.1109/26.3
28987.

[23] K. Tang and B. Arden. “Representations of Borel Cayley Graphs.”
In: SIAM Journal on Discrete Mathematics 6.4 (1993), pp. 655–676. doi:
10.1137/0406050.

[24] Derek F. Holt, Sarah Rees, and Claas E. Röver. Groups, Languages and
Automata. London Mathematical Society Student Texts. Cambridge
University Press, 2017. doi: 10.1017/9781316588246.

[25] David B. A. Epstein et al. Word Processing in Groups. Natick, MA,
USA: A. K. Peters, Ltd., 1992. isbn: 0-86720-244-0.

[26] Richard J Trudeau. Introduction to graph theory. Dover Books on Math-
ematics. Mineola, NY: Dover, 1994.

[27] Ashwin Ganesan. “Cayley graphs and symmetric interconnection
networks.” In: CoRR abs/1703.08109 (2017).

[February 22, 2019 at 7:06 – classicthesis version 4.2]

http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1287/mnsc.17.11.712
http://dx.doi.org/10.1287/mnsc.17.11.712
http://dx.doi.org/10.1109/LCOMM.2014.2364213
http://dx.doi.org/10.1109/LCOMM.2014.2364213
http://dx.doi.org/10.1016/j.tcs.2014.12.023
http://dx.doi.org/10.1016/j.tcs.2014.12.023
http://dx.doi.org/10.1109/26.328987
http://dx.doi.org/10.1109/26.328987
http://dx.doi.org/10.1137/0406050
http://dx.doi.org/10.1017/9781316588246

Bibliography 115

[28] László Babai. Handbook of Combinatorics (Vol. 2). Ed. by R. L. Gra-
ham, M. Grötschel, and L. Lovász. Cambridge, MA, USA: MIT Press,
1995. Chap. Automorphism Groups, Isomorphism, Reconstruction,
pp. 1447–1540. isbn: 0-262-07171-1.

[29] B. Alspach. “Cayley graphs with optimal fault tolerance.” In: IEEE
Transactions on Computers 41.10 (1992), pp. 1337–1339. issn: 0018-9340.
doi: 10.1109/12.166612.

[30] C. Camarero, C. Martínez, E. Vallejo, and R. Beivide. “Projective Net-
works: Topologies for Large Parallel Computer Systems.” In: IEEE
Transactions on Parallel and Distributed Systems 28.7 (2017), pp. 2003–
2016. issn: 1045-9219. doi: 10.1109/TPDS.2016.2635640.

[31] F. J. Andújar-Muñoz, J. A. Villar-Ortiz, J. L. Sánchez, F. J. Alfaro, and
J. Duato. “N-Dimensional Twin Torus Topology.” In: IEEE Transac-
tions on Computers 64.10 (2015), pp. 2847–2861. issn: 0018-9340.

[32] David Coudert and Guillaume Ducoffe. “Data center interconnec-
tion networks are not hyperbolic.” In: Theoretical Computer Science
639 (2016), pp. 72 –90. issn: 0304-3975. doi: http://dx.doi.org/10
.1016/j.tcs.2016.05.025.

[33] Paul R. Hafner. “Large Cayley Graphs and Digraphs with Small De-
gree and Diameter.” In: Computational Algebra and Number Theory.
Ed. by Wieb Bosma and Alf van der Poorten. Dordrecht: Springer
Netherlands, 1995, pp. 291–302. isbn: 978-94-017-1108-1. doi: 10.10
07/978-94-017-1108-1_21.

[34] M. Abas. “Cayley graphs of diameter two in interconnection net-
works.” In: Proceedings of 15th International Conference MECHATRON-
IKA. 2012, pp. 1–3.

[35] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006. isbn: 0321455363.

[36] Michael Sipser. Introduction to the Theory of Computation. 1st. Interna-
tional Thomson Publishing, 1996. isbn: 053494728X.

[37] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of
computational group theory. Discrete mathematics and its applications.
Boca Raton: Chapman & Hall/CRC, 2005. isbn: 1-584-88372-3.

[38] D.E. Knuth and P.B. Bendix. “Simple Word Problems in Universal Al-
gebras.” English. In: Automation of Reasoning. Ed. by J. Siekmann and
G. Wrightson. Symbolic Computation. Springer Berlin, 1983, pp. 342–
376. isbn: 978-3-642-81957-5.

[39] Derek F. Holt. KBMAG Package: A Knuth-Bendix on Monoids, and Auto-
matic Groups. https://www.gap-system.org/Packages/kbmag.html.
Accessed: 2018-02-23. 2017.

[40] M. Gromov. “Hyperbolic groups.” In: Essays in group theory. Vol. 8.
Math. Sci. Res. Inst. Publ. Springer, New York, 1987, pp. 75–263. doi:
10.1007/978-1-4613-9586-7_3.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

http://dx.doi.org/10.1109/12.166612
http://dx.doi.org/10.1109/TPDS.2016.2635640
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2016.05.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2016.05.025
http://dx.doi.org/10.1007/978-94-017-1108-1_21
http://dx.doi.org/10.1007/978-94-017-1108-1_21
https://www.gap-system.org/Packages/kbmag.html
http://dx.doi.org/10.1007/978-1-4613-9586-7_3

116 Bibliography

[41] M. Tokuda, Y. Hirai, and K. Kaneko. “An Algorithm for k-Pairwise
Cluster-Fault-Tolerant Disjoint Paths in a Burnt Pancake Graph.” In:
2015 International Conference on Computational Science and Computa-
tional Intelligence (CSCI). 2015, pp. 651–655. doi: 10.1109/CSCI.2015
.117.

[42] CHARLES C. SIMS. “Computational methods in the study of per-
mutation groups.” In: Computational Problems in Abstract Algebra. El-
sevier, 1970, pp. 169–183. doi: 10.1016/b978-0-08-012975-4.50020
-5.

[43] Junghun Ryu, Jaewook Yu, Eric Noel, and K. Wendy Tang. “Borel
Cayley Graph-Based Topology Control for Consensus Protocol in
Wireless Sensor Networks.” In: ISRN Sensor Networks 2013 (2013),
p. 15. doi: http://dx.doi.org/10.1155/2013/805635.

[44] Dongsoo Kim, Eric Noel, and K. Wendy Tang. “Expanded Borel Cay-
ley Graphs (Ex-BCGs): A novel communication topology for multi-
agent systems.” In: Journal of Network and Computer Applications 37

(2014), pp. 47 –61. issn: 1084-8045. doi: https://doi.org/10.1016
/j.jnca.2012.12.014.

[45] J. Ryu, E. Noel, and K. W. Tang. “Fault-tolerant routing on Borel
Cayley graph.” In: IEEE International Conference on Communications
(ICC). June 2012, pp. 2872–2877. doi: 10.1109/ICC.2012.6364037.

[February 22, 2019 at 7:06 – classicthesis version 4.2]

http://dx.doi.org/10.1109/CSCI.2015.117
http://dx.doi.org/10.1109/CSCI.2015.117
http://dx.doi.org/10.1016/b978-0-08-012975-4.50020-5
http://dx.doi.org/10.1016/b978-0-08-012975-4.50020-5
http://dx.doi.org/http://dx.doi.org/10.1155/2013/805635
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.12.014
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.12.014
http://dx.doi.org/10.1109/ICC.2012.6364037

	CERTIFICAT DE DIRECCIO DE TESI
	Acknowledgments

	Publications
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	Contents
	Abstract
	Resumen
	Resum
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.2.1 The network model
	1.2.2 Routing basics
	1.2.3 Complexity measures
	1.2.4 Generic routing in Cayley graphs

	1.3 Objectives
	1.4 Contributions
	1.5 Outline of the document
	1.5.1 Part I. Cayley graphs: networks and routing
	1.5.2 Part II. Word-Processing-based Routing

	Cayley Graphs: Networks and Routing
	2 Theoretical Framework
	2.1 Graph theory
	2.1.1 Graphs and subgraphs
	2.1.2 Paths, connectedness and trees
	2.1.3 Weighted graphs, distances and neighborhoods
	2.1.4 Graph isomorphism

	2.2 Group theory
	2.2.1 Groups and subgroups
	2.2.2 Homomorphism
	2.2.3 Group presentations
	2.2.4 Permutation Groups
	2.2.5 Cayley graphs

	3 Cayley Graphs as Network Topologies
	3.1 Topology model
	3.2 Topological properties of Cayley graphs
	3.2.1 Symmetry
	3.2.2 Connectivity and fault-tolerance
	3.2.3 Moore bound
	3.2.4 Load balancing

	3.3 Performance and robustness evaluation
	3.3.1 Families of Cayley graphs evaluated
	3.3.2 Fault-tolerance and load balancing
	3.3.3 Average distance vs. number of end points

	4 Word processing in Cayley graphs
	4.1 Languages and automata
	4.1.1 Words and languages
	4.1.2 Finite State Automata
	4.1.3 2-variable finite state automata

	4.2 Groups as languages
	4.3 Words as paths and nodes
	4.4 ShortLex automatic groups
	4.5 Solving the minimum word problem

	5 State of the Art on Routing in Cayley Graphs
	5.1 Path computation algorithms
	5.1.1 Sims factoring algorithm
	5.1.2 Path computation algorithm for abelian Cayley graphs
	5.1.3 Comparison of path computation algorithms for Cayley graphs

	5.2 Routing schemes
	5.2.1 Routing based on permutation sort
	5.2.2 Routing based on chordal ring representations
	5.2.3 Geometric routing with word-metric spaces
	5.2.4 Comparison of routing schemes for Cayley graphs

	Word-Processing-based Routing
	6 Overview
	6.1 Routing information
	6.1.1 Routing table
	6.1.2 Node label
	6.1.3 Word-difference automaton

	6.2 General operation
	6.3 Node label assignment

	7 Path Computation Algorithms
	7.1 Preliminaries
	7.1.1 Paths recognized by the word-difference automaton
	7.1.2 Computing the links and nodes of a path
	7.1.3 Algorithm variables

	7.2 Computing the minimal paths
	7.2.1 Computing the shortest path
	7.2.2 Computing the minimal paths

	7.3 Computing the K-shortest paths
	7.3.1 Computing paths of bounded length
	7.3.2 Computing the K-shortest paths

	7.4 Computing the disjoint paths
	7.4.1 Computing the shortest link-disjoint paths
	7.4.2 Computing the shortest node-disjoint paths

	7.5 Computing the shortest paths avoiding a set of links and nodes

	8 Fault-tolerant Mechanism
	8.1 General operation
	8.2 Failures' records
	8.2.1 Updating the faulty nodes record
	8.2.2 Updating the faulty links record

	8.3 Notifications of faulty nodes and links
	8.4 Notification of recovered nodes and links

	9 Forwarding Protocols
	9.1 Deterministic routing
	9.2 Fault-tolerant routing

	10 Complexity analysis
	10.1 The word-difference automaton
	10.2 Space complexity
	10.3 Time complexity
	10.4 Complexity of distributed processes
	10.5 Comparison with the state of the art proposals

	11 Conclusions
	11.1 Summary of completed work
	11.2 Review of contributions
	11.3 Future work
	Appendix
	A Port label assignment
	Bibliography

	Appendix
	Port label assignment

	Bibliography

