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Abstract

Despite the unstoppable trend towards a fully digital paperless world, there is
still an abundance of totally or partially handwritten documents that need to
be automatically processed, from historical demographic records to more recent
form-like documents. The most common approach to leverage current technology
is by applying Document Image Analysis and Recognition techniques on the digital
images of those documents acquired with scanners or digital cameras.

Over the years, as the technology advances, different approaches have been
proposed to be able to access to the information contained in document images.
In this thesis we explore the whole process of information extraction, with different
examples of document types.

The first step towards extracting information from any document is actually
understanding the document and the most common techniques required to process
it. For that reason, on the first chapter of this thesis after the introduction, we
provide an in depth study of electoral documents, that had not yet drawn much
attention from the community. We discuss how the interpretation of document
images is never as simple as it seems; even deciding if a mark is present or not in a
given position can be challenging, depending on legal requirements for our system.
In this chapter we also make a quick overview of some of the most common DIAR
techniques that can be applied to different kind of electoral documents. In the end,
electoral documents can be seen as a special kind of form documents, where the
position in the form determines the semantics of each element of the document.
For example the word ’John’ could be the name of a candidate or the name of an
officer certifying the results for a particular polling place.

If, in the most simple case, the semantic entities are determined by the spatial
position, we should devote some of our efforts to the transcription, as in “read-
ing” the information on each field. We also devote a chapter to explore two new
approaches to handwriting recognition. Both assume that the handwriting can
be modeled as a series of features sequentially extracted from the images. In the
first approach, we use variational autoencoders to derive descriptive features from
unlabeled text images and whereas in the second approach we use attribute em-
beddings, that allow us to derive a much more discriminative set of features by
making use of the transcription information.

After learning about the factors to take into consideration when interpreting
documents and the techniques required to transcribe handwritten text, we can
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now extract information from highly structured types of documents, like forms,
but we are interested in going one step further. A good challenge are historical
handwritten birth or marriage records. This kind of documents are not exactly
a form, but they share a similar structure. We can think of them as divided
in records with a given set of fields whose position is not fixed in a particular
location. We are interested in processing those documents as if they were a form.
In order to study that problem, we elaborated a new benchmark and organized
an international competition for the community. We devote another chapter to
describing all the details of the dataset, required tasks and the metric.

Finally, in the last chapter, we propose a full information extraction approach,
with two variants, based on a combination of Convolutional and Recurrent Neu-
ral Networks, that can deal with loosely structured documents as the ones in our
proposed benchmark. This approach uses the better performing of our HTR ap-
proaches described in the chapter devoted to HTR to get the transcriptions, while
deriving the semantic information directly from the word images. As a first step,
we prove that classification of isolated handwritten word images into semantic
classes is feasible and later we explore two alternatives to leverage contextual in-
formation to be able to use record level information to improve the accuracy of
the system.



Resum

Tot i la imparable tendència cap a un mon digital, abandonant el suport paper,
encara són abundants els documents total o parcialment manuscrits que neces-
siten processar-se automàticament, des de registres demogràfics històrics fins a
documents més recents tipus formulari. L’aproximació més habitual per a aprof-
itar la tecnologia actual és aplicar tècniques d’Anàlisi i Reconeixement d’Imatges
de Documents a les imatges digitals d’aquests documents, prèviament adquirits
mitjançant escànners o càmeres digitals.

Amb el pas dels anys i els avenços de la tecnologia, s’han anat proposant
diferents aproximacions per a accedir a la informació continguda a imatges de
documents. En aquesta tesi explorem tot el procés d’extracció d’informació amb
diferents tipus de documents com a exemple.

El primer pas per a extreure informació de qualsevol tipus de document és
entendre realment el document així com les tècniques més comuns que calen per
processar-lo. Per aquest motiu, en el primer capítol de la tesi, realitzem un estudi
en profunditat dels documents electorals, que encara no han rebut prou interès per
part de la comunitat. Argumentem que la interpretació d’imatges de documents
mai és tan simple com por semblar: fins i tot decidir si hi ha una marca en una
posició determinada, pot ser un repte, depenent, per exemple, dels requisits legals
que tingui el nostre sistema.

En aquest primer capítol donem també unes pinzellades sobre com algunes de
les tècniques més comuns de l’Anàlisi de Documents es poden aplicar a les diferents
problemàtiques dels documents electorals. Al cap i a la fi, els documents electorals
es poden veure com a un tipus especial de formularis, on la posició de cada element
dins del formulari és el que determina el seu significat. Per exemple, la paraula
“John” pot ser el nom d’un candidat o d’un membre de la mesa electoral certificant
el resultats d’una elecció concreta.

Si, com hem vist, en el cas mes simple, les entitats semàntiques queden deter-
minades per la seva posició espacial, hauríem de dedicar part dels nostres esforços
a la transcripció, es a dir, a “llegir” la informació de cada camps. En el segon capí-
tol explorem dues aproximacions al reconeixement de textos manuscrits. Ambdós
es basen en la idea que l’escriptura manuscrita es pot modelar com una sèrie de
característiques seqüencials que es poden extreure de les imatges. En concret, per
al primer mètode fem servir Variational Autoencoders per a derivar caracterís-
tiques descriptives des d’imatges de text manuscrit sense transcriure, mentre que
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en el segon mètode fem servir una codificació basada en atributs, que ens permet
derivar una serie de característiques molt mes discriminatives, gràcies a fer servir
la informació de la transcripció.

Un cop sabem quins factors cal tenir en compte al interpretar diferents ti-
pus de documents, així com les tècniques necessàries per a poder transcriure text
manuscrit podem extreure informació de documents altament estructurats con for-
mularis. No obstant, estem interessats en anar un pas més enllà. Un bon repte son
els registres històrics manuscrits de naixements i matrimonis. Aquests documents,
tot i no ser exactament un formulari, comparteixen amb ells una estructura simi-
lar. Estan dividits en registres, cadascun dels quals es pot veure com un conjunt
de camps que no tenen una posició fixa. Ens agradaria poder processar aquest
tipus de documents como si es tractés d’un formulari. Amb l’objectiu d’estudiar
aquesta problemàtica, hem elaborat un benchmark i organitzat una competició
internacional per a la comunitat. Dediquem un capítol d’aquesta tesi a descriure
els detalls del dataset, les tasques a realitzar així com la mètrica emprada.

Finalment, a l’ultim capítol, proposem un mètode complet d’extracció d’informació
de documents manuscrits, basat en una combinació de Xarxes Neuronals Recur-
rents i Convolucionals, que pot tractar documents amb una estructura flexible
com els proposats en el nostre benchmark. Aquesta aproximació fa servir el més
potent dels mètodes descrits al capítol dedicat a reconeixement de text manuscrit
per a realitzar les transcripcions , mentre que deriva la informació semàntica di-
rectament de les imatges de paraules retallades del document. Com a primer pas,
demostrem que es possible classificar imatges aïllades de paraules manuscrites
en classes semàntiques per a després explorar dues alternatives que en permetin
aprofitar la informació contextual a nivell de registre per a millorar dràsticament
la precisió del nostre sistema.



Resumen

A pesar de la imparable tendencia hacia un mundo digital abandonando el so-
porte papel, aún abundan documentos total o parcialmente manuscritos que es
necesario procesar automáticamente, desde registros demográficos históricos hasta
los documentos tipo formulario más recientes. La aproximación más común para
aprovechar la tecnología actual, es aplicar técnicas de Análisis y Reconocimiento
de Imágenes de Documentos a las imágenes digitales de dichos documentos, pre-
viamente adquiridas a través de escáneres o cámaras digitales.

Con el paso de los años y el avance de la tecnología, se han ido proponiendo
diferentes aproximaciones para acceder a la información contenida en las imágenes
de documentos. En esta tesis exploramos todo el proceso de extracción de infor-
mación, con diferentes tipos de documentos a modo de ejemplo.

El primer paso para extraer información de cualquier tipo de documento, es
realmente entender dicho documento así como las técnicas más comunes que se
necesitan para procesarlo. Por ese motivo, en el primer capítulo de la tesis, re-
alizamos un estudio en profundidad de los documentos electorales, que aún no
habían recibido el suficiente interés por parte de la comunidad. Argumentamos
que la interpretación de imágenes de documentos nunca es tan simple como parece;
incluso decidir si hay una marca en una posición determinada puede ser un desafío,
dependiendo, por ejemplo, de los requerimientos legales que tenga nuestro sistema.

En este primer capítulo, damos también unas pinceladas sobre como algunas
de las técnicas más comunes del Análisis de Documentos se pueden aplicar a las
diferentes problemáticas de los documentos electorales. Al fin y al cabo, los doc-
umentos electorales se pueden ver como un tipo especial de formularios, donde
la posición de cada elemento dentro del formulario es lo que determina su signifi-
cado. Por ejemplo, la palabra “John” podría ser el nombre de un candidato o de un
miembro de la mesa electoral certificando los resultados de una elección particular.

Si, como hemos visto, en el caso más simple, las entidades semánticas quedan
determinadas por su posición espacial, deberíamos dedicar al menos parte de nue-
stros esfuerzos a la transcripción, es decir, a “leer” la información de cada campo.
En el segundo capítulo exploramos dos aproximaciones al reconocimiento de tex-
tos manuscritos. Ambos asumen que la escritura manuscrita se puede modelar
como una serie de características secuenciales que se pueden extraer de las imá-
genes. En concreto, para el primer método usamos Variational Autoencoders para
derivar características descriptivas a partir de imágenes de texto manuscrito sin
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transcribir mientras que en el segundo método usamos una codificación basada en
atributos, que nos permite derivar una serie de características mucho más discrim-
inativas, gracias al uso de la información de la transcripción.

Tras ver qué factores hay que tener en cuenta al interpretar distintos docu-
mentos así como las técnicas necesarias para transcribir texto manuscrito somos
capaces de extraer información de documentos altamente estructurados como for-
mularios. Sin embargo estamos interesados en ir un paso más allá. Un buen
desafío son los registros históricos manuscritos de nacimientos o matrimonios. Es-
tos documentos, pese a no ser exactamente un formulario, comparten con ellos una
estructura similar. Están divididos en registros, cada uno de los cuales se puede
ver como un conjunto de campos que no tienen una posición fija. Nos gustaría
poder procesar este tipo de documentos como si fuesen un formulario.

Con el objetivo de estudiar esta problemática, hemos elaborado un benchmark
y organizado una competición internacional para la comunidad. Dedicamos un
capítulo de esta tesis a describir los detalles del dataset, las tareas a realizar así
como la métrica empleada.

Finalmente, en el último capítulo, proponemos un método completo de ex-
tracción de información de documentos manuscritos, basado en una combinación
de Redes Neuronales Recurrentes y Convolucionales, que es capaz de tratar doc-
umentos ligeramente estructurados como los propuestos en nuestro benchmark.
Esta aproximación utiliza el más potente de los métodos descritos en el capítulo
dedicado a reconocimiento de texto para realizar las transcripciones, mientras
que deriva la información semántica directamente de las imágenes de palabras
recordadas del documento. Como primer paso, demostramos que es posible la
clasificación de imágenes aisladas de palabras manuscritas en clases semánticas
para luego explorar dos alternativas que nos permitan aprovechar la información
contextual a nivel de registro mejorando drásticamente la precisión de nuestro
sistema.
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Chapter 1

Introduction

In this chapter we will introduce our motivation to work in information ex-
traction. We will provide a brief overlook of the context of information extraction
from handwritten documents and present the contributions of the thesis.

1.1 Context

The Document Image Analysis and Recognition (DIAR) field has the ultimate
goal of achieving an understanding of document contents by the means of analyz-
ing and recognizing its scanned or camera-captured images. One could argue that
understanding a document, or in fact anything, is the process through which we
are able to find a way to map pieces of information to a structured set of predefined
categories. We call this general process Information Extraction. The term "In-
formation Extraction" was originally coined by the Natural Language Processing
(NLP) community, although it has been extending recently to other domains. For
the document analysis domain, we see it, as stated earlier, as a general process
that includes all the steps required to go from document images to a meaningful
high-level representation of the information contained in it.

To be able to gain an understanding on documents contents, an obvious first
step is being able to retrieve such contents. This process is known as Information
Retrieval. It is the case in the DIAR community, that Information Retrieval has
been, and continues to be, a challenging problem and great efforts have been made
to simply be able to access document contents. There are some common techniques
that are frequently used in most kind of documents to help us in this task. These
tasks would fall into what we call pre-processing, whose goal is precisely to make

1



2 INTRODUCTION

the processing easier.

Usually preprocessing tasks are headed towards dealing with the variability of
the physical support of the document or the acquisition technique. For instance,
binarization techniques to segment background and foreground or perspective re-
moval in the case of camera-based acquisition. These techniques can range from
a simple operation to a research area inside the community. The aforementioned
case of binarization can range from a simple thresholding operation in an ideal
scenario to Fully Convolutional Neural Networks [106] in degraded paper with the
presence of show-through. In the case of handwritten text, common preprocessing
steps also include some degree of text-content segmentation be it at paragraph,
text-line or word level. Once we have images with only handwritten text, we can
proceed to retrieve the information contained in it.

The first technique that comes into mind when attempting to retrieve the con-
tents of a handwritten document image is handwritten text recognition (HTR).
Contrary to Optical Character Recognition where one could just segment the text
into characters and perform a character level classification, handwriting recogni-
tion is still today an active research field. Apparently, to be able to recognize
handwritten text, one should be able to segment the individual characters, how-
ever, a good character segmentation requires recognizing those characters. In order
to deal with this paradox, most of the techniques usually used in HTR try to per-
form both tasks at the same time. There is also the question on how much higher
level information we humans use when reading handwritten text. Certainly know-
ing the language you are reading helps you assign a priori probabilities on words
and characters. In a HTR system we can do so by the means of language models,
assuming we have enough data in that language to get trustworthy estimations.
Although great advances have been made in the area in the recent years, there is
still room for improvement specially for scenarios with multiple writers, degraded
documents or ancient languages.

In those kind of scenarios, where handwriting recognition is specially challeng-
ing, the DIAR community has developed Information Retrieval techniques like
word spotting. In word spotting, the goal is trying to find instances of a given
word in a document or collection of documents. Word-spotting approaches can
be roughly divided in two great families, query-by-example, which can be seen as
a special kind of image matching where we want to find parts of the document
that are similar to a word image that is provided as a query and query-by string
where we try to find words that match a given transcription. Although very useful
for scholars in the digital humanities, word spotting can be seen as a very lim-
ited information retrieval approach, where we can only discover the presence and
location of instances of a given keyword in our corpus.

Certainly handwriting recognition is an important step in being able to access
the information of handwritten documents. It supersedes word spotting in allow-
ing a quick access to relevant keywords in the corpus and opens the possibility of
processing the transcription to build higher level representations of the informa-



1.2. Motivation 3

tion thus allowing for real Information Extraction. While handwriting recognition
could also be seen as a means of Information Extraction itself, we must note that
its output is just plain text, without any semantic knowledge of the document.

In this thesis we are interested in going one step beyond handwriting recogni-
tion and be able to assign meaning to these transcriptions. In the most general
case, applying Natural Language Processing (NLP) techniques on top of the tran-
scription is the only possible solution to assign a semantic value to each word.
Usually these techniques rely on stemmers or lemmatizers, vocabularies or ontolo-
gies and Part-of-Speech (POS) tagging developed specifically for a language.

However, there are a big number of documents where the semantic value can
be clearly derived from the document structure. The most extreme case would be
a form or tabular document where the semantic value of each word is determined
by its position in the document. A more interesting case is the one of documents
like birth records, where we know what kind of information we should find in each
record. Moreover, all records will share a similar structure that can be leveraged
to extract the relevant pieces of information from each record. It is worth noting
that this structure is a direct consequence of the information contained in the
records, therefore, techniques that leverage the structure to assign meaning can
work without modification to documents in other languages.

1.2 Motivation

There is a huge amount of information stored in totally or partially handwritten
documents that needs to be accessed. Examples range from historical handwritten
birth or marriage records to modern form-like documents like electoral documents
or invoices. Even today, there are still some challenges to perform handwriting
text recognition as we briefly described above: different writing styles, degraded
documents, language models, etc. Moreover, when we do HTR, that is not usually
our final goal, even though it might appear so: we want to be able to understand
the contents of the documents and extract their information. This is an interesting
and challenging high level application within the DIAR field that had only been
shallowly explored. This is certainly the major focus of this thesis, we want to
be able to process document images extracting relevant information that could
potentially be useful. So, the material we are presenting in this thesis is meant
to be both a layer above previous works that were on the border between infor-
mation retrieval and extraction and future works that might rely on a semantic
interpretation of documents.

When we started working on this thesis Deep Learning was just taking off. It
had yet to become the major mainstream research technique that could be applied
to any problem. It was certainly widely known to Computer Vision scholars as that
promising technology that impressively boosted object recognition performance.
But most scholars, initially doubtful of its potential, where just starting to study
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its applicability in their specific domain. None of the most popular Deep Learning
frameworks in use today existed (TensorFlow, Pytorch, Keras,...) neither was the
web teeming with code and tutorials. We believed that these new techniques would
allow us to tackle information extraction from handwritten documents. At that
moment it was not a completely obvious decision, even though it might appear as
so in hindsight seeing the recent widespread use of Deep Learning techniques.

Thus, we have an interesting challenge with several applications to real world
problems and we have a promising set of tools that might enable us to tackle these
challenge. I had to summarize the motivation of this thesis in a single sentence
that would be: The motivation of this thesis is exploring different deep learning
approaches and developing new information extraction techniques that can be
applied to loosely structured handwritten documents. We decide to put our focus
on electoral documents and historical handwritten records for several reasons that
we discuss below.

1.2.1 Electoral Documents

This thesis started as an Industrial PhD with the collaboration of the electronic
voting company Scytl and the Document Analysis group of the CVC. Scytl is
a world leader in providing secure electronic online voting solutions based on the
use of advanced cryptographic protocols and an implementation of strict computer
security policies. Thus, one of the goals of the thesis was, in a broad sense, to study
different Document Image Analysis and Recognition (DIAR) techniques that could
be applied to electoral documents. The use of such techniques would allow Scytl
the possiblity to offer a wider set of solutions to its potential customers that were
willing to modernize their elections tally and results consolidation without moving
to electronic online voting.

Over 300 nationwide elections are held yearly. This sums up to approximately
3600 million registered voters per year, with an average spending of 5 USD per
voter, elections constitute a potential market of 18 billion dollars per year. While
remote or poll-site electronic voting is gaining more and more acceptance world-
wide, many elections are still paper based. Be it for tradition, for its simplicity,
because it leaves a physical evidence of the vote or because of a restrictive elec-
toral law, there are several countries that are not willing to abandon paper based
elections yet. However, this does not mean that they are not willing to use modern
technology in elections.

Modern online voting technology has obvious advantages over traditional paper
based solutions: voters can cast their vote whenever they want and wherever
they are as long as they have an internet connection, formal mathematical proofs
that the results have not been altered can be provided, accessibility measures for
disabled voters are easier to implement, the cost of the election is reduced, etc.

However, traditional paper based voting has its strengths, which lie in its sim-
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plicity. One of those advantages is the ease of use for both voters and officials.
Virtually everyone grew up using pen and paper while only a portion of that peo-
ple is comfortable browsing the internet. Moreover, everyone can understand all
the steps of a paper based election and how they ensure voters privacy and correct
results. This is not the case with online voting where, even among computer liter-
ate people, many are still expressing concerns for their privacy, results correctness,
and the fact that only a few cryptographers can really understand why the system
is secure. Finally, there are also some countries where the specific wording of the
electoral law requires paper based elections.

However, this ease of use and widespread acceptance of paper based elections
has its counterpart. This free interaction of humans with handwritten documents
results in a considerable variance that makes it difficult to understand their con-
tents. For instance, two ’e’ letters, even from the same writer, will never be truly
identical, text-lines might have different slopes, corrections marks can be made,
etc. This freedom of the user transforms an apparently straightforward problem
into a real challenge for any computer system.

Countries with complex electoral systems, like the US, have been exploring how
to automate the tally for paper based elections for decades. Mark sense scanners,
first developed for educational testing, have been used for ballot processing since
the 1950’s. They were based on a ballot printed with a special ink, that was
invisible to the sensor, and the use of index marks to define the position of the
voting targets. In the 1990’s, devices using imaging technology were developed.
They used fiducial marks that allowed the scanner to interpolate the voting targets
and counted the number of dark pixels in each area. More recently, in 2006, a
patent was granted to a device based on edge detection, which could detect empty
voting targets (ovals) and filled voting targets.

We can see a trend moving from solutions requiring specific hardware to more
generic hardware-independent solutions using computer vision techniques. How-
ever, there are still a lot of challenges to be able to support more complex elections.
In the document analysis field, techniques have been developed to process different
kind of documents. To our knowledge, the work specifically applied to electoral
documents has mainly dealt with Optical Mark Recognition. We are interested
in different Pattern Recognition techniques that can help us understand the con-
tents of such document images. Optical Character Recognition (OCR), Invoice
Recognition, Optical Mark Recognition (lotery ticket), Optical Music Recogni-
tion, Barcode reader,etc. are examples of wide known mature techniques that are
already used in commercial software. By using this kind of techniques in combi-
nation with other to be developed during the thesis we want to allow Scytl the
possibility of offering new commercial products for those customers that are not
ready to move away from paper based elections to online electronic voting.

It is worth noting that in paper based elections, and due to the great diver-
sity in electoral laws, there are several different electoral activities that produce
huge amount of documents potentially suitable for automatic processing. Prior to
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the election day, there are some countries that require you to register before the
election. In the election day we have a spectre of voting schemes from partisan
systems where all you have to do is cast a vote for a party, to preferential voting
where you can rank order candidates with a preference value, or even write-in
a candidate name that is not present in the ballot. There are also tally sheet
documents, to perform the results consolidation once the election is over. It is
thus, not surprising, that the techniques developed during this thesis, designed for
handwritten documents with some level of structure, can be suitable for some sort
of electoral document.

1.2.2 Historical Documents

Since the UNESCO World Heritage Convention in 1972 [110], the identification,
protection and preservation of cultural and natural heritage around the world is
considered to be of outstanding value to humanity. It is true that there have
been huge efforts so far in preservation, but there is a long way to go. Just as an
example, there are 300 billion cultural objects in Europe (e.g.books, photographs,
statues, etc.), but Europeana [27] estimates that only the 10% of them (around
300 million resources) have been digitized [8], and from this amount, only the third
part is digitally available online [44]. Moreover, in the specific case of historical
documents, only a very small fraction of them are properly indexed, making the
information contained really useful and accessible. Therefore, for the preservation
and spread of cultural heritage, more efforts are needed not only in digitization
but also in terms of indexation and access.

The first attempts to make available the contents of handwritten documents
were based on handwritten text recognition and handwritten word spotting [85,
66]. Although converting a digitized document image into machine readable text
is obviously a good step forward, the final goal is to extract the information con-
tained to allow the access and search by contents. For this purpose, some level of
semantic recognition and understanding is required. In fact, there is an increas-
ing interest within the research community regarding information extraction and
document understanding, with the aim to allow meaningful semantic access to the
information contained in document collections [18, 24, 70, 100].

As stated before, when indexing historical documents, the extraction of their
contents is of paramount relevance. Until quite recently in historical terms, most
information was stored through handwritten documents. For practical reasons, the
most common way to record information was using structured documents, such
as the ones shown in Fig. 1.1. These examples, used in this work as application
use cases, illustrate different records on individual people information (health,
demography, etc.). Citizen-centered documents contain a complete, factual and
reliable memory of the communities of the past. These manuscripts could either
have the form of a table, where each row represents a record and each column
contains a specific piece of information or just as a set of individual records in the
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form of paragraphs. In both cases, each record will always contain information
from a very restricted domain. For example, medical records contain information
about the patient and the disease, whereas marriage records have information
about husbands and wives like their names, surnames, occupations, birthplaces,
their parents’ names and occupations, etc. The goal of an information extraction
system is to retrieve this information (i.e. named entities or proper nouns) from
those historical handwritten sources, allowing to generate structured, indexable
and semantically accessible databases. Thus, the knowledge is made available to
scholars and citizens in general.

Figure 1.1: Samples of records from structured documents. Baptism registers
from the Absdorf collection, 1853 (top). Death records from Wien, 1720 (left).
Medical records from Sant Pau Hospital, Barcelona 1604 (right). Marriage records
from the Barcelona Cathedral, 1619 (bottom).
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1.3 Contributions

The main contributions of this thesis are the following:

• An in-depth case study of electoral documents, the challenges and the avail-
able options in their automatic processing with Document Image Analysis
techniques.

• A system that is able to automatically process handwritten electoral tally
sheets, reducing the operational costs and greatly speeding up the results
consolidation process, with preprocessing, cropping, digit recognition and
handwriting recognition.

• Two handwriting recognition methods. The first based on a combination of
unsupervised feature learning with Variational Autoencoders and a Bidirec-
tional Long Short Term Memory (BLSTM) recurrent neural network. And
the second one based on Pyramidal Histogram of Characters (PHOC) at-
tribute embedding and a Bidirectional Long Short Term Memory (BLSTM)
recurrent neural network.

• A benchmark composed of a dataset and a set of metrics for the evalua-
tion of Information Extraction approaches, that allowed us to organize a
competition in an international conference.

• A method able to detect and semantically categorize entities from word im-
ages, without requiring any handwriting recognition system.

• Two variants of an information extraction approach for loosely structured
handwritten documents with two components: a PHOC-BLSTM based hand-
writing recognition pipeline and and sequential word-images categorizer to
detect and tag the relevant entities.

1.4 Outline

In the next chapter we present an in depth review of electoral documents. We
present the most common challenges we face when trying to automatically process
them and the most useful Document Analysis techniques that can be used to
extract its information. We also present a system to process electoral tally sheets
we developed for at the electronic voting company Scytl.

In the third chapter, we focus on Handwriting Text Recognition. We present
two different approaches. The first one is based on the unsupervised training of
a Variational Autoencoder to reconstruct small patches of unlabeled text. The
hidden representation of the autoencoder can then serve as features to train a
BLSTM+CTC network. On the second model, we adapt the attribute embedding
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technique to be used in sequences by training a network to predict the PHOC
representation of a word and then using it instead to predict the embeddings of
small patches that are used to generate a sequence that will serve as the input to
a BLSTM+CTC neural network.

In Chapter 4 we present a benchmark to evaluate Information Extraction ap-
proaches in loosely structured handwritten documents. We describe the dataset,
the tasks to be done and the metric we designed to evaluate the performance
of different approaches. This benchmark was also presented as an international
Competition.

In Chapter 5 we present, in our opinion, the most important contributions of
this thesis. First, a Convolutional Neural Network that is able to predict semantic
categories of word images. Taking this CNN as a base, we propose to methods to
model the contextual information at record level. The first one is based on adding
the predicted label of the previous word to the current word image. The second
method is a more general method that encapsulates the original CNN into a RNN
that can leverage information from all the words in the current record and can
predict, both a semantic label as well as the person in this record to whom that
information relates to.

Finally, in the last chapter, we present the conclusions of the thesis and give
an outline of possible future work related to the contributions made in this thesis.
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Chapter 2

Electoral Documents

2.1 Introduction

As we stated in the introduction of this thesis, we are interested in electoral doc-
uments and forms is the most common type of election documents.

There are mainly two different approaches to electronically produce election
results in paper based elections. The first approach is to directly retrieve the
voters choices made to each individual ballot (See Fig. 2.2). The second one
consists in automatically processing the tally sheets to retrieve ly results at polling
station level. After performing the tally manually, election officers at each polling
station must fill in and sign a form-like document, the tally sheet. The information
contained in the tally sheet that will then be the base for the results consolidation
process.

2.2 Preprocessing

In image processing, before trying to understand a document image, we can try
to simplify the problem by removing some sources of variance. The same intensity
value can sometimes represent a black pixel or white (background pixel) depending
on the acquisition device. It is also very common to find different skews on each
scan, due to small misalignments when feeding the paper sheet into the scanner.
Finally the image can be noisy. We will discuss techniques to address each of these
problems.

A key preprocessing step in most document analysis tasks is image binarization.
That is, determining if a pixel of the image should be considered “black/foreground”
or “white/background” depending on whether its darker or brighter than a certain

11
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Figure 2.1: The original ballot image acquired with a camera (left). The image
thresholded with Otsu’s Method (center) and with Sauvola’s Method (right). We
can see how using Otsu’s method the darker areas of the ballot become black while
voting targets in the lighter areas disappear, showing the limitations of setting a
global threshold.

threshold value. If the image acquisition is done in a very controlled environment,
a global threshold value can be predefined. This is the less flexible approach and
it can result in issues if you have diversity of ink in your documents or you have to
use scanners from different manufacturers with different contrast response. There
are also several different methods to automatically find optimum global thresholds.
One of the most widely used method is Otsu’s method [74]. This method is based
on iterating through the 256 possible threshold values of a typical 8-bit gray level
image finding the value that minimizes the intra-class variance (which is equiva-
lent to maximizing the inter-class variance). This kind of methods would allow us
more flexibility in the requirements of a particular scanner configuration. However
this methods based on a global threshold will present problems if the scanning en-
vironment is not fully controlled and there are lighting variations throughout the
page.

There are also adaptive threshold methods like Niblack [72], Bernsen [12] or
Sauvola [90]. In this kind of methods, instead of selecting a single threshold value
for the whole image, the threshold value is determined for each individual pixel,
taking into account its neighbors in a local area of a predefined size. In the case
of Sauvola, a widely used method for documents, the mean and the standard
deviation in the local area are calculated. Then each pixel is classified as dark, if
it is at least k times (a parameter) the standard deviation darker than the mean in
that area. This kind of binarization methods are specially interesting if there are
illumination changes (as for instance when the ballot images are acquired using
a camera), noise in the image, or stains or folding marks in the ballot. A very
interesting survey on both global and local thresholding algorithms can be found
in [92, 81] showing that despite being a mature research area, there is still interest
in the community for binarization techniques. See Fig. 2.1.
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Another key preprocessing step is the removal of the skew; there are also several
approaches to do this. One of the most common approaches [60], is based on
rotating the document in all allowed skews (i.e, from -10 to 10 degrees with a
precision of 1 degree), trying to find the right orientation. There are several ways
to find out the correct orientation. Assuming an horizontal writing, the document
will have the correct orientation when the horizontal projection histogram has a
higher variance. Also, if there is a long horizontal line separating two areas, the
correct orientation would be the one that produces the highest peak value for a
specific line in the horizontal projection histogram. Another common approach
would be to use the Hough Transform [46, 6, 94]. Using the Hough Transform
we get the equation of all the lines y = ax + b that we can find in a document,
making it trivial to find the skew of the document. Nevertheless, mainly because of
the computational cost of the Hough Transform, methods based on the horizontal
projection are more commonly used.

In some cases, after thresholding and skew correction, some noise removing
algorithms can be applied. For instance, the median filter can be useful to remove
“salt and pepper” noise (isolated black or white pixels). Mathematical morphology
operators [91] (opening, closing, erosion, etc.) can also be used in case we need to
remove artifacts with a specific shape/size or connect some broken shapes.

2.2.1 Ballots

The most common election document is the ballot. Ballot design can have a high
variability depending on the electoral system of each country or state. We can
identify three big different scenarios: mark voting, preferential voting and write-
ins. We will review each of them in the following subsections.

Mark Recognition

The ballots used in most of the elections consist of a grid where a voter selects k
out of n candidates for each contest by filling in empty voting targets in predefined
locations. In the most simple case, there will only be one ballot model. In this
case, the recognition software will only require a mapping from a filled voting
target (dark pixels in a certain area) to a candidate name.

However, in most complex elections we usually have to deal with different ballot
models (in different languages, or different districts with different contests). In this
scenario, the first step (after the preprocessing step) is to identify the ballot model.
The most popular solutions use QR-codes or barcodes to identify each model. After
reading the barcode and identifying the ballot model, the configuration for that
particular model can be loaded, that is, the position of the pixels of each voting
target and the candidate it is associated to and proceed to detect marks. But,
sometimes detecting marks is not the same as detecting votes and we need to know
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Figure 2.2: An example of a ballot to be processed with OMR technology.

what is the relation between marks and votes.

According to [51], any mark near a voting target can be classified as either legal
votes (if the law accepts them as indicating votes) or legally ignored (if the law
considers them not to be votes). In addition, as shown on Fig. 2.3, independently
of whether the mark is or is not considered a vote by the law, it may be classified



2.2. Preprocessing 15

according to how the detector interprets it as reliably sensed (if every time that
mark is seen it is counted as a vote), reliably ignored (if it is never seen by the
scanner) and marginal marks (marks that may or may not be sensed).

Figure 2.3: Different types of marks classified according to how a scanner inter-
prets it [51].

There are in some states laws that enumerate the types of markings that are
legal votes. For example, Michigan’s rules do not distinguish between the sensitive
area and the voting target. They declare some markings to be legal votes that a
scanner may miss, while declaring other marks to be legally ignored even though
a scanner might count them, as illustrated in Fig. 2.4.

Figure 2.4: Different types of marks classified according to how the law inter-
prets it [51].

In other states, as for example Minnesota, the definition of a vote is based
on the voter intent. According to these rules, any kind of mark where the voter
intent is clear, is a legal vote. On Fig. 2.5 an example of a legal vote that requires
some interpretation. Voter intent is sometimes very hard to interpret, as several
examples show in [1]. In any case, markings that appear to reflect a voter’s desires
should not be disqualified for purely technical reasons [67]

That being said, we can safely detect most of the votes by being able to detect
the most reliable marks, and we have been doing it for decades. Mark sense scan-
ners, first developed for educational testing, have been used for ballot processing
since the 1950’s. They were based on a ballot printed with a special ink, that is
invisible to the sensor, and index marks to define the position of the voting targets.
Infrared sensors were a common choice in these devices and voters couldn’t easily
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Figure 2.5: Voter intent is clear, according to some states this vote should be
counted.

know if the ink of their pen would be visible to the infrared light; other devices
required using a pencil. In most of these devices the sensible area does not have a
sharp edge, that is, the sensor is more sensible in the center and less sensible near
the edges of a target location.

In the 1990’s, devices using imaging technology were developed. They used
fiducial marks that allowed the scanner to interpolate the voting targets and
counted the number of dark pixels in that area. A scanner based in this tech-
nology may fail to sense a mark if it is not big or dark enough. More recently, in
2006 a patent was granted to a device based on edge detection, that could detect
empty voting targets (ovals) and filled voting targets. This kind of scanner would
not be able to detect marks like X or checks, which are allowed in most electoral
laws.

In general, Optical Mark Recognition can be considered a solved problem if we
know where to look for the mark and users are required to use a prescribed mark.
That is the case of educational testing. Few academic articles are being published
on this subject nowadays, most of them focusing on building low cost alternatives
with non-dedicated devices. For instance, in [88] they propose a threshold on the
average greylevel of each target area to decide if it’s filled or empty. However,
since as we already discussed, most electoral laws allow different kind of marks
besides the prescribed mark (like X or check marks), Optical Mark Recognition
becomes more challenging.

A more recent approach to detect marks [98, 95] allow us to perform both the
ballot model and mark detection at the same time, avoiding the need of barcodes.
To do that, we need a template image of an empty ballot of each ballot model.
The process would consist in computing the difference of the ballot and each of
the templates, after preprocessing and carefully aligning them. The actual ballot
model will have the smaller difference, and that difference would be the marks
made by the voter. However, this difference will usually have an amount of noise
due to small misalignments, dust or different scanning conditions. In order to deal
with that noise, several approaches are discussed by the same author in [96, 98],
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Figure 2.6: Three different marking styles: check, ex, and filled, and their
corresponding noisy inputs generated by the voter attempting to erase a mark.
Extracted from [118].

like using a distance transform to detect safe and unsafe zones, depending on
their distance to black pixels, using Gaussian filters to smooth the images before
performing the subtraction or using morphological filters. Another option to avoid
false positives, would be to try to detect a grid for possible positions of marks by
analyzing the geometry of the ballot [97], and restrict the mark detection to those
areas.

One drawback of the approaches described above is that they mainly rely on
the size of the mark. Usually, some voters do not follow exactly the instructions
to completely fill the voting target area, and use marks like X or X(See Fig. 2.6).
Since most electoral laws define a vote in terms of voter intent, we have to be able
to detect these marks. A possibility suggested in [118], assuming that the voter
makes consistent marks, is to train classifiers taking into account the style of the
marks, improving mark detection.

A vote count system should also be able to detect cases of overvote ( selection
of more than allowed number of candidates) or undervote (selection of less than
allowed candidates). Overvotes invalidate all the voter choices in a particular
race, while undervotes are allowed. In some cases, a blank ballot (an special case
of undervote) could be the result of the voter using an ink that the scanner fails
to detect (red ink on infrared scanners for instance). Nowadays, most commercial
scanners are able to detect completely blank ballots and overvotes in the moment
of casting the vote, giving the voter a second chance [51]. This is easily dealt
with in systems that work with a predefined set of rules. However it could require
some level of understanding of the ballot document itself if we wanted to build a
completely automatic system.

Finally, there is yet another kind of mark you might find on a ballot: identifi-
cation marks. An identification mark is a mark made by a voter with the solely
intent of making his voted ballot identifiable. To avoid coercion or vote-buying, if
an identification mark is detected on a ballot, the whole ballot should be discarded.
Since the definition of an identification mark is, once again, based on the intention
of the voter, it is usually hard to decide if a mark or handwritten text on a ballot
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Figure 2.7: An example of undervote and overvote

is really an identification mark. Therefore, one advantage of systems based in the
difference of marked ballots over ballot models over systems where we just look for
a mark in a predefined area, is the ability to detect possible identification marks.

Another interesting use of OMR-like software is performing audits without
requiring a predefined position of the voting targets. There has been some research
on how to detect the position of the voting targets. Some authors propose detecting
a grid for possible positions of marks by analyzing the geometry of the ballot [97].
Others simply require user collaboration to tag a blank voting target and then
locate the rest using pattern matching techniques like Lucas-Kanade; after knowing
where voting targets are, they sort them by the number of dark pixels and ask the
user to select a boundary [114, 54].

Preferential Voting

In some elections the voter is allowed to perform preferential voting. In that
scenario detecting a mark in a voting target is not enough. In preferential voting,
the voter assigns a number to each candidate indicating their preference. In this
case so we need to classify the marks we detect as belonging to a particular class
(i.e. “1”, “2”, etc.).

The problem of identifying the particular class of an image among a possible
set of classes is one of the classic challenges in computer vision, and specifically for
handwritten numbers lots of work has been put since the 1980’s. In handwritten
numbers the number of different classes is small (usually only ten different classes)
and there have been free datasets available for years. The main challenge here is
the huge difference in writing styles. Classifying handwritten isolated digits has
been tackled by computer vision for the last three decades and there is now a
wide variety of techniques that allow us to perform the recognition of individual
digits with reliably [65] on the popular MNIST dataset [64]. See Fig. 2.8 for some
examples.

Recently, a multicolumn convolutional deep neural network trained for weeks
with several GPU has surpassed human performance in this task, achieving an error
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Figure 2.8: Some examples from the MNIST dataset. It’s a common benchmark
for isolated handwritten digit recognition consisting of 60,000 digit images from
approximately 250 different writers.

Figure 2.9: The architecture of one column of the convolutional neural network
that achieved the best scores so far in handwritten digit recognition on the MNIST
dataset. The response for each neuron to the input image is also shown as an
image. Extracted from [22]

rate of 0.23% [22]. Convolutional neural networks combine the ability to learn low
level features (convolutional layers) with the invariance to traslation and scale
given by max-pooling layers. Deep neural networks try to emulate the hierarchical
representations of the human brain, where the first layers learn low level features,
and the layers above learn higher level features (non-linear combination of the low
level ones). The last layer is the actual classifier (a non-linear multiclass logistic
regression) that outputs the probability of each class given that particular input
image. See Fig. 2.9
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In practice, these “deep learning” systems are sometimes difficult to train be-
cause they require longer training times, huge amounts of data and careful tuning
of network hyperparameters. For that reason, traditional systems using hand-
crafted features like Histogram of Oriented Gradients (HOG) [53] and classifiers
like Support Vector Machines (SVM), which are also slightly faster in inference
time, are still a very popular approach [25]. Most of these classifiers can also
output the probability of the observation belonging to each specific class. This
confidence level can be used to discard an ambiguous ballot and ask for a hu-
man decision if the confidence is below a certain threshold. This approach of
combining Intelligent Character Recognition techniques with human inspection of
dubious ballots has been used successfully in several elections in the Australian
Capital Territory [3]. This is another important drawback of deep learning sys-
tems, that, as a consequence of the minimization of their loss function, they tend
to produce overconfident predictions.

In preferential voting there is additional context information that can be used
to further reduce the error rate. Usually a number cannot be repeated within
the same contest (there cannot be two candidates with the same preference in the
same contest) and usually they have to be correlative (i.e a voter cannot assign
a preference “3” without previously assigning preferences “1”, and “2”). Instead
of individual classifications, we are facing a problem of a set of observations with
some restrictions that can help us lower our error rate even more. Finally, the
number of preferences a single voter can choose is in most cases less than ten, that
would reduce the number of classes (which has a great impact in error rates). For
example, usually the digit 1 is mistaken by a 7, or the digit 3 with a 5 or an 8, so if
we have less than 7 preferences to assign, the error rate would drastically decrease.

2.2.2 Write-in

Besides voting marks and preferential voting, we can find yet another different kind
of vote in paper ballots. We are talking about the write-in areas (See Fig. 2.10).
Write-in areas allow a voter to write in the name of their desired candidate, thus
being able to cast a vote for candidates even if they are not listed as a voting
option. A common way to implement it is in combination with a voting marks,
requiring the voter to fill in a specific write-in voting target, and writing the name
of the desired candidate to its right.

Recognizing the text in write-in areas is one of the most difficult problem
we can find in electoral documents. Handwriting recognition can be performed
with online or offline information. In online systems, the temporal sequence of
the handwriting is available whereas in offline scenarios, we only have an scanned
image available. While the recognition rate is better in the online scenario, we
discarded its usage in our systems because: 1) it requires special hardware (a
digital pen or digitizing board that records the (x,y) position of the pentip at each
timestep) and 2) it has security implications because it detaches the voter input
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Figure 2.10: A write in vote where the voter did not fill in the oval as prescribed.

Figure 2.11: The “sliding window”. Extracted from [30]

from the ballot background, forcing to perform audits on the physical ballots to
avoid ballot tampering.

Offline cursive handwriting recognition, with open vocabularies in a multi-
writer scenario is still an open problem. One of the reasons why it is a much
harder problem than printed text recognition (OCR) is ’Sayre’s Paradox’. This
paradox states that handwriting recognition is a “chicken-egg” problem because in
order to properly segment a cursive word into characters you need to recognize
the characters first, but to properly recognize the characters you first need to
segment them out. A way to circumvent this problem is to use segmentation-free
techniques. Another reason is the huge variability of cursive handwriting. Until
recently most of the approaches include preprocessing steps trying to normalize
the slant, horizontal and vertical size of the characters and, in some cases, even
the stroke width.

One of the most popular approaches is to model the handwritten text line or
as a temporal series of observations with a “sliding window approach”. See the
example of the sliding window approach on a previously normalized handwritten
text line in Fig. 2.11. That is, we focus our attention only in a column of a few
pixels wide at a time and extract some representative features in that window.
There are different set of features that are used in the literature, like statistical
moments, the slope of the upper and lower contour, image derivatives, the number
of black and white transitions, etc. Once we have the handwritten text represented
as a series of features, the correct alignment with the ground truth character
sequence has to be found. Since the character sequence and the feature sequence
have different lengths the alignment is not trivial.
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Figure 2.12: In Hidden Markov Models, the data is modeled as a series of
observations generated by a hidden state that is only dependent on the state at
the previous time step.

Since the 90s, technologies like Hidden Markov Models [82, 30] have been used
to address this problem [78]. Hidden Markov Models are generative models that
have been adapted from the speech recognition area. According to this model,
each observation(xt) in every timestep is conditionally dependent only from a
latent unobserved variable (hidden state xt), which in turn depends only on the
hidden state of the previous timestep (Markov process). Given a number of states
(x), a matrix T of allowed transitions among them p(xt|xt−1), and a parametric
probability distribution P for p(y|x), the Baum-Welch algorithm can be used to
train the system, that is, finding the parameters for T and P that better fit our
observations. A graphical representation of the HMM can bee seen on Fig. 2.12

In 2009 a new algorithm was developed that allows us to use neural networks for
segmentation free handwriting recognition. The algorithm, called Connectionist
Temporal Classification (CTC) allows us to align two sequences of different lengths
and return a differentiable error for each timestep. With the output from the CTC
algorithm, and using the traditional backpropagation algorithm, it is possible to
train a recurrent neural network to map the image feature representation with the
character sequence. However, traditional recurrent neural networks have problems
learning long sequences, because of a problem known as the vanishing gradient.
After several timesteps, because the activation function of each neuron is smaller
than 1, the error gradient fades into the network, making it unable to learn long
range dependencies. This problem can be solved with the Long Short-Term Mem-
ory (LSTM) cells (Fig. 2.13), that incorporate input, output and forget gates, that
the cell can learn to open or close depending on the input and the current state,
thus allowing the network to learn arbitrarily long sequences.

The easier way to dramatically improve the recognition rate would be to change
the write-in areas so that they are expected to be filled with a set of isolated cap-
ital letters. Also, in electoral documents we can assume that the content of the
write-in area will be a name. We can then use a reduced vocabulary, consist-
ing of the K most common surnames in that country, to improve the accuracy
of the system in both the original connected handwriting and isolated character
recognition scenarios. Finally, since the number of voters who actually use the
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Figure 2.13: A Long Short Term Memory Cell with multiplicative input, output
and forget gates. Extracted from [73]

write-ins area is usually low, there is also the option to simply detect the presence
of write-in text, and mark the ballot for human inspection. This approach would
still be better than current optical scan technologies, since they require the voter
to fill in a mark associated to the write-in in order to process it. Requiring to
fill-in that mark does not seem intuitive since, according to a study performed
by Ji [50] conducted in Leon County elections with approximately 368.000 voters
showed that 49% of voters who wrote something in the write-in region did not fill
in the corresponding oval

2.2.3 Tally sheets

In some elections, with very simple ballot designs (e.g Partisan Ballot), processing
the ballot is extremely easy, you just have to identify the party corresponding to
each ballot. In that case, human tally at precinct level is feasible. After performing
the tally, the electoral officials have to fill in a report, ballot statement or “tally
sheet” with the election results for that precinct. We can see an example of such
a document in Fig. 2.14.

These ballot statements usually contain handwritten numbers that represent
the number of votes for a specific party, the number of eligible voters, etc. Intelli-
gent Character Recognition techniques as the one described above for “Preferential
Voting” in ballots can be used. In the case of ballot statements, some integrity
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Figure 2.14: Example of a ballot statement. Extracted from [2]

checks could also be performed when recognizing the digits that can help to reduce
even more the classification errors (or even help to detect election official errors).
Spatial grammars can be defined for a ballot statement document, that is, numbers
recognized in a certain area must meet some requirements. For instance, the sum
of the recognized votes of all the parties and blank votes must match the number
recognized as total votes cast, which in turn has to match the number recognized
as number of voters, which has to be smaller than the number of eligible voters,
etc.

Some ballot statements or tally sheets can also contain connected handwriting.
Usually the numbers are also written in text form (like the courtesy amount in
cheques). It is possible recognize this text with higher accuracy because of the
very restricted vocabulary and syntax. Since recognizing the text “thirty four”
and the number ’34’ use different techniques to analyze different data, they can be
considered independent probabilities, which can be easily combined to boost the
confidence of the recognition.

To finish, usually, there is also an “observations” field, where the election of-
ficers can write free text to explain some anomaly during the election. As we
explained above, unconstrained offline handwriting recognition is still an open
problem. Since that field is usually empty, simply detecting if there are any obser-
vations, and asking a human operator for a transcription seems the best option.
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2.3 Our approach for tally sheet processing

In this section, we present a system for tally sheet processing, reducing the opera-
tional costs and greatly speeding up the results consolidation process. A tally sheet
is a form-like document combining printed information such as text, barcodes or
ROI marks with handwritten text or digits. Several electoral commissions from
different countries have shown interest in a system that can reduce the time re-
quired to process all the tally sheets that can seamlessly integrated into their
traditional election processes. To our knowledge, a document analysis system spe-
cially designed to process handwritten tally sheets has not been described in the
literature, so we decided to design one. Such a system should be able to deal
with an extreme multi-writer scenario, given that each tally sheet will be written
by a different writer we might have to deal with tens of thousands of different
writers, on a country-wide election. In addition, the system should also be able
to work with different scripts. We focused on documents like the one described
in Fig. 2.15, where aach tally sheet page is uniquely identified by a bar code,
this allows us to retrieve from a database the candidates corresponding to each
line of the tally sheet. From a document analysis perspective, it is only needed to
extract all the lines in each tally sheet, since we already have the mapping to the
candidates from the database. Finally, for each line, the goal is to recognize both
the handwritten text and the digits.

2.3.1 Preprocessing

The preprocessing process consists of skew removal and the extraction of the differ-
ent lines corresponding to each one of the different candidates. In order to perform
the skew correction we will look at the different fiducial marks on the document
(See Fig. 2.15. The location of the biggest fiducial mark allows us to tell if the
page was scanned with the right orientation, while the smaller marks are used to
correct rotations. In our case, we did not need to binarize the image.

Orientation and skew removal

The first thing to check is the size of the image. Since we are working with vertical
tally sheets, we expect the height of our image to be larger than its width. If this
is not the case (possibly due to wrong scanner configuration), the image has to
be rotated by 90 degrees. Once we have a vertical image we perform a template
matching with a black rectangle of a predefined size (244x64 pixels) in order to
detect the biggest fiducial mark. If it is found on the first quadrant of the image
we already have the correct orientation while if it is found on the fourth quadrant,
we must rotate our image by 180 degrees. This step is required because images
scanned upside-down are a fairly common.

The next step is finding the smaller marks in order to fix the skew. Using a
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Figure 2.15: The fiducial marks in a tally sheet (highlighted in red) used to
detect the orientation and skew also allow us to segment the Region of Interest
for later handwriting and digit recognition steps.

convolution of the negated image and models of the different fiducial marks we
can detect them. If we can not find all of the fiducial marks (usually due to the
paper being misplaced on the scanner or partially folded) an error is raised. Using
the Hough transform on the image containing only the detected fiducial marks we
can find the skew and correct it if necessary.
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Figure 2.16: Some examples of digits from the CVL dataset.

Region of interest extraction and noise removal

Once we have corrected the orientation and the skew of the image, we can select the
area delimited by the big fiducial mark and the ones on the lower part of the sheet.
This area will be then divided in several lines using a predefined height parameter.
And each line will be again divided into different fields. This predefined height
is slightly bigger than an actual line in order to correctly capture the possible
descenders that fall into the lower line.

Noise removal based on morphological operations is then applied on each one
of the negated images of these regions. First we perform an opening with a 3x3
square structuring element, in order to remove noise from the image. On the result
we apply a dilation with a rectangular structuring element to obtain the minimum
number of connected components of 23 pixels height and width depending on the
region. Finally we perform an opening with a 31x31 structuring element to remove
regions that can not be considered digits or characters. Finally we will keep the
regions with height bigger than a threshold t1=40 pixels and a width bigger than
one fifth of the region. These parameters have been determined empirically.

The Intelligent Character Recognition subsystem receives an individual char-
acter image from the cropping module and computes a description of the image
based on Histogram of Oriented Gradients (HOG) features [53]. The feature de-
scription is then fed into a Support Vector Machine (SVM) based classifier that
predicts the most likely digit with a confidence measure on that prediction.

2.3.2 Intelligent Character Recognition

We performed several experiments with support vector machine (SVM) on his-
togram of gradients (HOG) descriptor based digit recognition. First we trained



28 ELECTORAL DOCUMENTS

Training Data MNIST Tally Sheets

MNIST 1.00% 33.45%
MNIST+ CVL 1.92% 10.38%

Table 2.1: Average digit error rate on MNIST and TallySheets datasets.

with the MNIST dataset [64] using the proposed division of 50.000 digits for train-
ing and 10.000 for testing. We got an accuracy of 99% on the MNIST test set. We
tested it on our internal dataset from electoral tally sheets, using the process de-
scribed earlier on the paper to segment the 64596 individual digits from over 1000
different writers. On this dataset we got a 66.55% accuracy, with high percentage
of the errors being on the number seven.

After some examination, we noticed that those errors where due to the exis-
tence of two very different types of number 7(See Fig. 2.17). We found an alter-
native, less popular but more recent dataset from an International Competition in
Handwriting Digit Recognition from 2013 that had more images of type A number
seven, the CVL dataset [23].We can see some samples in Fig. 2.16.

We performed then performed several experiments using all of the images from
both the MNIST and CVL datasets, the performance was slightly reduced if evalu-
ated only on the MNIST dataset getting a 98.08%, but when we tested this model
on the dataset of real electoral tally sheets the accuracy went up to 89.32%. The
results are summarized on Table 2.1. We also performed some experiments to
determine if we could further increase the accuracy by splitting the class “number
seven” into two independent classes, but the increase in performance was negli-
gible. For all handwritten digits experiments, the size of the images was 28x28
pixels, and the descriptor had a bin size of 4.

Figure 2.17: Samples for type A number seven (left) from the CVL dataset [23]
and type B number seven (right) from the MNIST datasets [64]

Even after increasing our training data with the samples from the CVL dataset,
we can see that there is still a significant performance gap when compared to the
MNIST results. We believe that the main reason for the difference in accuracy is
probably due to the fact that the area assigned to digits in the tally sheet is usually
much bigger than the digit itself, generating a variation in size and position that
was not present in the original training datasets where the segmentation of the
digits completely fill the image size.

We were also interested in evaluating the performance of this SVM+HOG ap-
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proach on isolated handwritten characters. We decided to use the NIST Special
Database 19. This database contains isolated handwritten letters both in its up-
percase and lowercase form. The database is divided into three main folders. Two
of them are used as train set and the other one as test, resulting in 47611 instances
for training and 24684 instances to test. We evaluated two different scenarios: In
the first scenario, we independently train the uppercase and lowercase characters
(52 Classes), but we perform a case insensitive evaluation. For this scenario we
get an average recognition rate of 86.53%. In the second scenario, we merge the
uppercase and lowercase form of the letters during the training. That is, “p” and
“P” are joined together as a unique class during the training. Consequently, during
the test, they are considered the same. In this second scenario we got a recognition
rate of 86%. For both handwritten character experiments, the size of the images
was 64x64 pixels, and the descriptor had a bin size of 4.

2.3.3 Handwritten text recognition

For our tally processing system we designed a novel HTR subsystem based on
automatic feature extraction and with BLSTM+CTC classifier. Since there is
a special chapter in this thesis devoted to HTR, the details of this systems are
discussed in the next chapter.

2.4 Conclusions

In this chapter we have done a review of different electoral documents and the
challenges involved in their interpretation. We have also discussed the different
processing techniques that have been used and pointed out a few simple state of the
art techniques that could be use to leverage some specific characteristics of these
documents. We have also described a simple system to process a specific type of
document, the Tally Sheet. Electoral documents, as we already discussed, are a set
of very structured documents where the semantics of each piece of information can
be known from their position in the document be it a mark, a digit or handwritten
text.

In electoral document processing, as in virtually all computer vision tasks,
our final goal is to minimize the amount of human work required to perform
a task. This automation should allow us to provide more consistent, fast and
economically efficient results. However, after carefully exploring the subject, we
notice that there is little room for substantial improvements in the methodologies
used to process electoral documents. In modern paper-based election processing
systems, human intervention is required mostly in two steps: First, defining the
layout of the templates that will allow us to assign the semantics to each piece of
information and second, make the final decision in some borderline cases where
the interpretation by the automatic systems is doubtful.
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Take the example of Optical Mark Recognition. Nowadays state of the art
technologies can correctly interpret the huge majority of the ballots, but in the
few borderline cases where the interpretation is uncertain, even humans have a
hard time deciding and their decision has to be grounded in legal factors different
depending on the specific election. Obviously some minor improvements in process-
ing accuracy can be expected by incorporating state of the art techniques, however,
this will not completely eliminate the need for human intervention but rather just
slightly reduce it. Human intervention cannot be completely eliminated, in the
general case, without legal changes that dictate strict rules for interpreting the
ballots.

Automating the layout detection in order to build a system that could process
different electoral documents without preconfiguration would be an ambitious and
interesting line of research. However, this major rethinking of the whole process
seems economically sound for these highly structured documents where the layout
is always known a priori and the performance of traditional systems sets such a
high standard.

Of course, building a real world system combines theoretical and practical
issues that can make an apparently easy task challenging. Even something as sim-
ple as cropping from an strictly formatted page requires some level of tuning and
tolerance, and even images scanned in a supposedly perfectly controlled scenario
require denoising. There is also the degraded performance in switching from one
dataset to another, even in a limited domain such as digit classification, which
were due mainly to regional variations in the way to write the number 7 and the
different margin areas around the digits.

After exploring the challenges in these kind of documents, we decide that in
order to build Information Extraction systems from handwriting documents, it
makes more sense to focus precisely in recognizing the contents of the different
fields. In our case, the most challenging content we can find, from a research
perspective, is handwritten text. For that reason we decided to focus on exploring
new handwriting recognition techniques. Also, after studying electoral documents
in depth, we decided to focus on historical handwritten text, specially marriage
records. Although the change may seem huge, the reality is that the challenges are
similar, since we are talking about recognizing text with a limited semantic scope
and some level of structure, with the advantage that there are publicly available
historical records and a bigger research community.



Chapter 3

Handritten Text Recognition

In this chapter we review the state of the art in Handwriting recognition and
present two new approaches. The first approach consists in an unsupervised tran-
ing of a Variational Autoencoders, in order to extract low dimmensional, descrip-
tive features. The second approach is based instead, in training a Convolutional
Neural Network to detect specific attributes of text patches. Finally, both ap-
proaches share the use of Bidirectional Long Short-Term Memory netwroks with
Connectionist Temporal Classification loss for the sequence modelling of the dif-
ferent series of features.

3.1 Introduction

Offline Handwriting Text Recognition (HTR) is the task of converting a digital
image of handwritten text into its textual transcription. This task has been a
central challenge of the pattern recognition community for decades.

First attempts to recognize text did not made a distinction between printed,
isolated characters or handwritten text. These methods were based in the seg-
mentation of individual characters and their posterior recognition using Optical
Character Recognition (OCR). In fact, the recognition of isolated handwritten dig-
its was one of the first applications of convolutional neural networks back in the
nineties [61]. But, recognizing individual characters and cursive text recognition
are two completely different problems. This is because, for cursive handwriting,
segmentation is a truly difficult problem, and Sayre’s Paradox arises; that is, in
order to be able to perform a good recognition you need to segment first, but to
perform a good segmentation you need to recognize first.

31
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In order to tackle this problem, segmentation free methods were proposed such
as Hidden Markov Models (HMM) or, more recently, Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNN) with Connectionist Temporal Classifi-
cation (CTC) loss [41, 113]. In these methods the recognition and segmentation
are done at the same time, allowing to evolve from isolated character recognition
to word and text line recognition. HMM-based approaches were the first ones
to be successfully applied to sequences and have had substantial research efforts
over the years resulting in quite reasonable performance levels [26]. Bianne et
al. [13] built a handwriting recognizer based on HMM, decision tree and a set
of expert-based questions. Bluche et al. [17] proposed a method of the combina-
tion of hidden Markov models (HMM) and convolutional neural networks (CNN)
for handwritten word recognition. Gimenez et al. [37] provided a method using
windowed Bernoulli mixture HMMs.

Two major problems were holding back the research in RNN. The first one was
the vanishing gradient problem, that is, the fact that due to the internal working
of the network cells, after several timesteps the gradient tended towards zero.
This problem was produced because the activation functions used at the time,
were either sigmoids in the range (0,1) or hyperbolic tangents in the range (-1,1)
which caused a troubles in backpropagating the error after a few timesteps. This
problem was addressed with Long Short-Term Memory networks [48] in 1997 by
incorporating multiplicative input, output and forget gates, that allow the cells to
ignore unimportant inputs keeping their internal state unchanged, making them
specially suited for learning over long sequences.

However, there was still a second major problem, and that was the lack of a dif-
ferentiable loss that could allow the traning of RNNs in scenarios where the lengths
of the input and the output had different lengths making it impossible to use tradi-
tional losses at each timestep. It was not until 2006 that Connectionist Temporal
Classification (CTC) loss [42] was proposed to tackle this issue. In 2009, the same
author poposed a model based in a combination of Bidirectional Long Short-Term
Memory (BLSTM), processing the sequence forwards and backwards, and CTC
loss for HTR [41] which outperformed the state-of-the-art HMM-based models.
The use of LSTM with CTC became the state of the art in handwriting recog-
nition and several different variantion based on these technologies were proposed
in the following years. The work of Krishnan et al. [58] performs word spotting
and recognition by employing a Spatial Transformer Network (STN), BLSTM and
CTC networks. Stuner et al. [101] provide a BLSTM cascade model using a lexicon
verification operator and a CTC loss. Wigington et al. [115] perform word and
line-level recognition by applying their normalization and augmentation to both
training and test images using a CNN-LSTM-CTC network. One of the limitations
of CTC is that it requires the output sequence cannot to have fewer time steps
than the input, which is not usually not a problem in HTR tasks. Also it is a quite
complex loss, difficult to parallelize for its execution in GPU. In fact it took until
2016, ten years from the original paper, until a successful GPU implementation
was published by Baidu. Until then, CTC models required heavy trafic between
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GPU and CPU to be able to train.

Recently, attention-based models have become of interest for the HTR commu-
nity. This is in part motivated by the nuisances of CTC and their success in similar
sequence related tasks like machine translation [104, 9], image captioning [119] or
speech recognition [21, 10] .Some of these methods based on attention-models
and LSTMs have been proposed to evolve from text line recognition to paragraph
recognition, and thus performing a joint transcription and segmentation of text
lines [16, 14]. With these new methods we see a trend opening towards end-to-end
HTR. Exploring end-to-end HTR is of course a much harder problem, that requires
much bigger and complex systems to be tackled but in return we can leverage in-
formation from a wider context, potentially resulting in a better accuracy.

As we see, handwritten Text Recognition is still today an important field of
study within the DIAR community. Although impressive advances have been
made in the recent years, there are some scenarios where HTR is not still able to
produce satisfactory results. One of those challenging scenarios is that of Historical
Documents. We have previously discussed in this thesis some of the difficulties
in HTR, all of those are specially present in Historical Documents: Degraded
and damaged paper with bleed-through that can make it difficult to segment the
writing from the background, different handwriting styles, not just from different
writers but also changing over the centuries, the scarcity of transcribed data to
train systems or estimate good language models for different historical times, etc..

Given these difficulties of HTR, Word Spotting has been raised as an alternative
to HTR.Word Spotting [38] is defined as the task of searching words in a document,
where the query is a word image (query-by-example) or a text string (query-by-
string). Thus, documents are not transcribed, but the information contained can
be made accessible in retrieval scenarios.

Lately, a new family of Word Spotting methods have also shown their ability to
recognize words. These methods are based on embedding the word image and its
transcription into a common attribute space. In these approaches, word spotting
consists in finding the nearest neighbors of a textual query in that space. This
approach has been adapted to perform recognition by doing a reversed query-by-
example word spotting into a given lexicon. That is, to embed the whole lexicon
of words into the attribute space, and then, given a word image, embed it to
find the closest word in the lexicon. Using a fixed length and low dimensional at-
tribute representation known as PHOC as the common attribute space is a popular
choice [5, 102] while a more recent work [57] proposed to learn such embeddings
using a deep convolutional representation.

Recently, this embeddings have been integrated into a deep learning architec-
ture, producing impressive results for handwritten word recognition [79]. However,
these methods present several disadvantages when compared to traditional HTR.
Since they are implicitly performing word classification, the main drawback is the
requirement of a lexicon and their inability to deal with out of vocabulary (OOV)
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words. This might seem a minor drawback for modern languages where huge lex-
icons are available, but it can be a problem in some scenarios. For instance, in
historical documents, the amount of OOV words is usually high, and building a
full lexicon might not be feasible. In addition, these methods are recognizing the
word as a whole, so, by design, they depend on a good segmentation, and they
cannot be extended to text lines.

In this chapter we present two contributions, relying on BLSTM+CTC net-
works. Since BLSTM and CTC are techniques that have shown their power in
different sequence prediction tasks, we aim our efforts in the feature representa-
tion. The first contribution is a study of the use of Variational Autoencoders as a
means to automatically discover features representative of handwritten text that
should allow for an easier classification. One of the strengths of these approach is
that unlabeled data can be used to train the feature extractor.

Our second contribution is a deep learning HTR method that adapts the at-
tribute embedding to sequence learning. Concretely, we perform the attribute
embedding of small pieces of text with a convolutional neural network (PHOC-
Net) and then we construct a sequence of embeddings that are recognized by Long
Short-Term Memory Recurrent Neural Networks with Connectionist Temporal
Classification loss (BLSTM+CTC). Therefore, we benefit from the advantages of
the attribute embedding, sequence learning and deep learning. As far as we know,
this is the first work that attempts to combine both approaches by extending the
attribute embedding to sequential recognition.

3.2 Unsupervised Feature Discovery based HTR

The work in [41] opened the way for neural network based approaches for HTR. In
that work, a set of manually handcrafted features was extracted for each column
column of pixels of the text, and the resulting sequence of features was then fed
to perform the sequence alignment and recognition with Bidirectional Long Short-
Term Memory (BLSTM) recurrent neural network coupled with a Connectionist
Temporal Classification (CTC)loss. After that the output of the recognizer is
mapped to the word of the dictionary with smallest string edit distance. We believe
that the Handcrafted feature extraction is the weak link in the chain because
these features are usually designed for a specific alphabet and they lack a clear
justification.

We propose a handwriting recognition approach inspired in the work of Graves [41]
but incorporating a step of unsupervised feature discovery with variational au-
toencoders. A similar approach using unsupervised feature learning was recently
published for alphabet independent OCR [89] with promising results. Besides
the obvious differences between OCR and HTR, in their case they use Restricted
Boltzman Machines, while we propose the use of Variational Autoencoders. Both
perform similar feature discovery tasks but following quite different approaches.
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Figure 3.1: A sequence of image patches is passed through the encoder of a
Variational Autoencoder to get a latent variable representation. This represen-
tation is then fed into a bidirectional long short term memory neural network to
perform the final recognition.

The approach of Variational Autoencoders allows a faster and simpler training,
with traditional backpropagation and has also shown to achieve lower reconstruc-
tion error. Figure 3.1 shows a schematic view of our handwriting recognition
approach, which is described in more detail in the next section.

3.2.1 Unsupervised Feature Learning

Autoencoders are neural networks trained to reproduce its inputs at the output
layer. In their most basic implementation, they consist of two layers, the encoder
that takes us from image space into an internal representation and the decoder
that does the opposite. In the most common scenario we want to learn an internal
representation that is a lower dimensional representation of our data. This process
can be seen as a feature extraction process [111] and has also been used in deep
learning as an "unsupervised pretraining". Different architechtures for autoen-
coders have been proposed recently, denoising autoencoders, sparse autoencoders,
convolutional autoencoders, etc. One of the most promising at the moment is the
Variational Autoencoder [55, 83] which has yielded impressively low reconstruction
error with a really fast training times.
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3.2.2 Variational Autoencoders

In order to learn about the underlying structure of our data x, in Variational
Autoencoders we assume that it was generated by an unobserved random variable
z. Since the marginal likelihood p(x) =

∫
p(z)p(x|z)dz is generally intractable,

we can use variational inference in order to learn an approximation qφ(z|x) of the
true posterior p(z|x).

The log-likelihood of each datapoint (example) can then be expressed as

log pφ(x) = KL(qz‖pz|x) + L(θ, φ;x),

where

L(θ, φ;x) =
∫
qφ(z)(log pθ(x, z)− log qφ(z))dz

= Eqφ(z|x) [log pθ(x,z)− log qφ(z|x))]

That is, a sum of the KL divergence term between the true posterior p(z|x) and
our approximation qφ(z|x) , which is always positive, and L(θ, φ;x) a lower bound
of the log likelihood of our data. Thus our goal will be maximizing this L(θ, φ;x).
We can do this with standard gradient ascent algorithm using backpropagation
thanks to the “reparametrization trick” proposed by the author in the orignal
paper [55].

This “reparametrization trick” consists in modeling q(z|x) ∼ N (µ(x), σ(x)2),
and generating random perturbation ε ∼ N (0, I). By doing so, we are able to
sample from z = µ(x) + σ(x)ε in a way that is efficient and appropiate for differ-
entiation with respect to our parameters.

In other words, we use Variational Autoencoders to learn a generative model of
character parts or pseudo strokes. And we use the representation of those character
parts in the latent variable space z as our features.

From a practical point of view, we perform a height normalization on all the
text lines of our training dataset, and then use a sliding window approach with
a step to extract 20 pixel width, 120 pixel high, image patches from our dataset
ignoring all label information. We then feed them to a Variational Autoencoder
in order to find a lower dimensional latent representation. Once the autoencoder
is trained, we can use the encoder weights to move from image space to this
generative latent space that will constitute our features. It is worth noting that
in this step, each image patch is treated as an independent sample, or datapoint,
of the posterior distribution of a handwriting pseudo stroke image space.
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3.2.3 Sequence Alignment and Recognition

After the unsupervised training has finished we use the same sliding window ap-
proach that we used to train the autoencoder to get an ordered sequence of image
patches that represents each text line. Each of the image patches is then fed to our
encoder to perform forward propagation in order to get a sequence of observations
in the latent space. Each sequence, along with its transcription is now fed to a
Bidirectional Long Short Term Memory (BLSTM) network with a Connectionist
Temporal Classification (CTC) output layer [41] in order to get the transcription.

3.2.4 Experiments

We performed experiments with our Handwriting Recognition process on the
George Washington database [117] composed of binarized and normalized text
line images written in 18th century English language with two different writers
splitting the dataset into train, validation and test. We decided to use the George
Washington dataset because it is a standard database that allows us an easy com-
parison of the results with other state of the art works. The text lines were already
normalized to a height of 120 pixels, we extracted individual patches of 20 pixels
width with a step size of 4 pixels. Theses patches were used to train a Variational
Autoencoder with an internal latent representation of 40 and 80 dimensions for a
fixed amount of 100 iterations, which empirically showed to provide a good recon-
struction error. The same patches of 120 pixels height and 20 pixels width were
presented as a sequence of observations, with their labels to a standard BLSTM
network with 100 cells that was trained until no improvement was observed on
the validation set for 20 iterations. The experiments were repeated five times in
order to reduce the impact of the random initializations of the neural networks.
The network hyperparameters were selected to match those used by Fischer [29]
obtainning very similar results.

The results shown in Table 3.1 were similar to the state of the art approach
with Marti features using a descriptor of 40 dimensions and slightly better when
using an 80 dimensions descriptor. In both cases the uncertainty due to random
initializations was greatly reduced. The convergence time improved dramatically
both in number of iterations and duration of the iterations, as shown in Table 3.2.
The faster convergence is due to the reduction of the length of the sequences, by
using one observation every 4 columns instead of each column. With regards to the
convergence speed, the impact of the dimensionality of the features is negligible
when compared to the length of the sequence.
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Features Avg CER std

Marti Features 26.45% 2.12
VAE (40 dim) 26.66% 0.50
VAE (80 dim) 25.58% 0.97

Table 3.1: Average character error rate and standard deviation over five different
experiments for each set of hyperparameters.

Features Epochs std Epoch time

Marti Features 123.40 15.09 15 min
VAE (40 dim) 59.60 6.41 4 min
VAE (80 dim) 64.40 8.40 4.5min

Table 3.2: Average number of iterations required for convergence and standard
deviation over five different experiments for each set of hyperparameters.
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Figure 3.2: System architecture. After training a PHOCNet for word attribute
embedding, we embed patches of word images into the attribute space. From these
points in the attribute space we create a sequence that is passed to a two-layer
BLSTM+CTC recurrent neural network that performs the transcription.

3.3 Attribute Embedding Based HTR

In this section we describe our two stage attribute based approach for handwriting
word recognition. The first stage is based in attribute embedding, followed by the
proper sequence transcription, which is performed over embedded text patches.
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3.3.1 Attribute Embedding

The Pyramidal Histogram of Characters (PHOC) [5] is used to embed words into
an attribute space. In this space, words and word images are characterized by a set
of binary attributes. In the case of PHOC, each attribute represents the presence or
absence of a character in a part of the word. Since the position of the characters is
also important, the PHOC descriptor is built with a pyramidal structure as follows.
In a scenario with n different characters, the first level of the pyramid will have 2n
dimensions. The first n represent the presence or absence of each character in the
first half of the word while the last n represent the presence or absence of a given
character in the second half of the word. Each subsequent level of the pyramid
will divide the word into smaller portions 1/3, 1/4 and 1/5. The final level of the
pyramid contains a selection of the k most common bigrams for that language.
The final dimensionality of the PHOC descriptor will be (2 + 3 + 4 + 5)n+ k.

While computing the PHOC embedding is trivial for text words, the embedding
of word images requires learning. The original approach [5] consists in extracting
SIFT features from the word-image, performing a Fischer Vector based clustering
and finally training an individual SVM classifier for each attribute that outputs a
likelihood of that word image containing a particular character in a given spatial
position. Another possibility for PHOC embedding is to use PHOCNet, a deep
convolutional network [102] that is trained to predict the PHOC representation of
a given word image.

3.3.2 Extension to sequences

This kind of attribute embedding has shown to be a reliable representation of
words. It has been effectively used for word spotting [5, 102] and recognition [5,
79] by comparing the predicted attribute representation of word images with the
computed PHOC of all text words in a given known vocabulary. In our case
we are interested in the evolution to sequence recognition, towards a lexicon free
approach. The key observation is that a word image can be sometimes a prefix or a
suffix of another word image. This means that this attribute embedding approach
should also be able to correctly embed smaller patches of words. Then, if we can
reliably produce attribute embeddings of arbitrary image patches, that we can
extract, for instance, with a sliding window approach, we could use a sequence
learning technique in order to learn to transcribe handwriting text.

To test our hypothesis we propose a method based on a modern deep neural
network architecture. We start by training a PHOCNet as our attribute embedding
choice for word images. Once the training is completed, we do a forward propa-
gation of image patches in this network in order to build a sequence of PHOCs
that is then fed to a two layer bidirectional LSTM recurrent neural network with
CTC loss. A graphical representation of our proposed architecture can be seen in
Fig. 3.2.
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Figure 3.3: The architecture of PHOCNet. Best viewed in electronic format.
Extracted from [102].

3.4 Network Architecture

In this section we describe the architecture of the two neural networks that take
part in our method. We will discuss the most important characteristics of both the
CNN for attribute embedding (PHOCNet) and the Bidirectional Long Short-Term
Memory Recurrent Neural Networks with Connectionist Temporal Classification
loss that is used for transcription (BLSTM+CTC). We will also provide facts that
justify their performance.

3.4.1 PHOCNet

The PHOCNet [102] (Fig. 3.3) is a convolutional neural network architecture
(CNN) used for word attribute embedding that has shown impressive results in
word spotting. We use the PHOCNet not only because of its good performance
but also because it is backed by a carefully thought and theoretically sound design.

Convolutional Neural Networks general layout can be split up in a convolutional
and a fully connected part. The convolutional layers can be seen as a feature
extractor while the fully connected layers act as a classifier.

Each one of the convolutional layers can be seen as a set of filters that are con-
volved with its input and followed by a non-linear activation function. These small
kernels allow sharing weights for different spatial locations thus considerably reduc-
ing the number of parameters and helping in generalization [63]. Convolutional
layers are combined with pooling layers in order to introduce a certain amount
of translation invariance. In these layers, activations across their receptive field
are pooled, and a single activation (usually the one with the maximum value) is
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forwarded to the next layer [59, 93].

When stacking layers of convolutional and pooling layers, the first layers learn
edge detectors that are gradually combined into more abstract features [120].
PHOCNet uses a low number of filters in the lower layers and an increasing num-
ber in the higher layers. This leads to the network learning fewer low-level features
for smaller receptive fields that gradually combined into more diverse high-level
abstract features. Also, all the convolutional layers in PHOCNet utilize filters of
size 3x3, since they have shown to achieve better results compared to those with
a bigger receptive field as they impose a regularization on the filter kernels [93].

One of the problems that arise when stacking a big amount of layers with tradi-
tional activations such as sigmoid or hyperbolic tangent functions is the Vanishing
Gradient Problem [76]. This problem has been solved by using Rectified Linear
Units (ReLU) as activation function [39]. This function is defined as the truncated
linear function f(x) = max(0, x). By using the ReLU deep CNN architectures be-
came effectively trainable as shown by [59].

The large number of parameters in fully connected layers make them prone to
overfitting; even for larger training sets, co-adaptation is a common problem in
the fully connected layers [47]. To counter this, various regularization measures
have been proposed with Dropout [99] being one of the most prominent. Here,
the output of each neuron has a probability (usually 0.5) to be set to 0 during
training. Thus, a neuron in a given layer cannot rely on any single specific neuron
activation from the preceding layer. This forces the network to learn alternative
paths of activations leading to more robust representations and can be seen as an
ensemble within the CNN model.

One of the key aspects of PHOCNet is the use of the Spatial Pyramid Pooling
(SPP) Layer [45] over the last convolutional layer. This allows the network to
process differently sized input images and output a fixed size representation avoid-
ing the need of a potentially anisotropic rescaling or a cropping. This is crucial
when working with word images where cropping is not an option, and, due to
the important variability in size and aspect ratio, resizing would result in strong
artificial distortions in character shapes and stroke width. In PHOCNet a 3-level
Spatial Pyramid max pooling with 4x4,2x2 and 1x1 bin sizes is used. This allows
capturing meaningful features at different locations and scales within the word
image.

Finally, it is worth mentioning that the network was trained for multi-label
classification using the sigmoid activation function in its final layer with cross
entropy loss, in contrast to the common single class classification with softmax
and categorical cross entropy.
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3.4.2 BLSTM+CTC

A natural way to deal with sequence learning in neural networks is with Recurrent
Neural Networks. In fact, if we consider the resulting network after unfolding for a
long sequence, RNNs can be seen as an extreme example of Deep Neural Network.
Thus, for RNNs the vanishing gradient problem was known to be a showstopper
since the early days of neural networks.

In order to deal with the vanishing gradient problem Long Short Term Memory
networks [48] were designed in the late nineties incorporating multiplicative input,
output and forget gates. These gates allow the cells to learn to ignore unimportant
inputs while keeping their internal state unchanged, and decide when to produce
an output, making them specially suited for learning over long sequences.

However, there was still the problem of sequence alignment when the input
sequence and the target output were of different lengths. In the late 2000’s an
algorithm named Connectionist Temporal Classification [43] was invented. By in-
troducing a blank "no-output" symbol and a simple algorithm to map network
outputs to target sequences and vice-versa, this new algorithm allows the network
to perform sequence alignment with differentiable errors. Thus, it allows the train-
ing with backpropagation for target sequences with equal or shorter length than
the input sequences. Since then, this loss function has been successfully used in
tasks like Speech Recognition [43] and Handwriting Recognition [41].

For a better robustness, two LSTM layers, processing the sequence forwards
and backwards, are stacked forming a Bidirectional LSTM [41] layer. This kind
of bidirectional layer is very useful for offline handwriting recognition where the
full sequence is available from the first time-step. In our approach we stack two
of these BLSTM layers, resulting in a total of 4 LSTM layers.

However, given the large number of parameters involved in the learning, RNNs
are prone to overfitting. Given the success of Dropout [99] for deep neural net-
works, it is natural to try to use it for RNNs. But, if we use a special architecture
like LSTM to keep an internal state for long time, we have to be careful when ap-
plying the dropout. One of the first successful attempts to use dropout in RNNs
was done in [77] by applying dropout only to the non-recurrent weights. Recent
advances in recurrent neural networks [34] allow us to use dropout in all of the
connections of an RNNs in a theoretically sound by applying it to the same units
at each time step, randomly dropping inputs, outputs, and recurrent connections.

Finally there are also some tricks, discovered empirically, that help to improve
the training of LSTM networks [52] like initializing the bias of forget gates to 1
instead of 0 like the rest of the biases.

In this approach we rely on all these advances to design a two layer BLSTMwith
dropout applied to all its connections, followed by a mandatory Fully Connected
layer to match the dimensionality of our output space.



3.5. Experiments 43

Figure 3.4: Some examples of word images in the George Washington dataset.
The available images are normalized and binarized.

Figure 3.5: Some examples of word images in the Esposalles dataset. We see a
high degree of variability both in image size and aspect ratio.

3.5 Experiments

In this section we describe the experimental validation of our proposal. We will
first explain in detail the datasets used as well as some practical details relative
to our training. We will then show and discuss the results.

3.5.1 Datasets

For our experiments we used two historical handwritten datasets, both in latin
script. Next, we briefly describe them and show some examples below.

Washington Dataset

The George Washington (GW) dataset for handwriting recognition [31] is com-
posed of 4894 word images written in 18th century English language with two
different writers. The available word images were already normalized to a height
of 120 pixels and binarized. We can see several examples of word images in Fig. 3.4.
We use the first of the four different proposed partitions of the dataset which re-
sults in 2433 word images for training, 1293 for validation and 1168 for testing.
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Esposalles Dataset

The Esposalles (BCN) dataset [28, 85] consists of historical handwritten mar-
riages records stored in the archives of Barcelona cathedral. The book was written
between 1617 and 1619 by a single writer in old Catalan. The data we used corre-
sponds to 125 pages, with a total of 39527 word images and their transcriptions.
The training set contains 100 pages (31501 word images) and the test set contains
25 pages (8026 word images). From the training set, we subtract the last 10 pages
(3155 word images) to use them as validation. We can see several examples of
word images in Fig. 5.3.

3.5.2 Experimental Setup

For each dataset, we trained the attribute embedding network PHOCNet with
the hyperparameter values recommended in [102] for 30.000 iterations. For each
experiment, the train, validation and test partitions are the same in all the stages
(that is, the PHOCNet and BLSTM+CTC). This means that we train the PHOC-
Net with and only with the train samples that will later be used when training
the BLSTM+CTC.

We used the network to precompute the PHOC of windows of 64 pixel width,
with a step size of 8. Each word image was previously padded with 32 pixels of
uniform background to the left and to the right to ensure a minimum sequence
length for narrower images.

The sequence of precomputed PHOCs was then fed into a recurrent neural net-
work consisting of two bidirectional LSTM layers with 250 neurons with Dropout
probability 0.5 in all its connections, followed by a fully connected layer with the
required number of neurons for each dataset (82+blank for GW and 59+blank
BCN). The loss function was CTC loss, which requires the extra blank symbol.

For training the recurrent neural network, we used early stopping with a tol-
erance of 30 epochs, and the optimization technique was done with Stochastic
Gradient Descent with Nesterov momentum 0.9, a learning rate of 1e−4 and a
decay factor of 1e−6.

The decoding of the network output was done by selecting the most likely
prediction for each timestep and performing the CTC collapse operation, which
consists in removing consecutive activations of the same character and the blank
symbol.

For test evaluation, as well as for the early stopping in the validation set, we
use the character error rate (CER) metric.

CER =
S +D + I

N

The CER is calculated as the sum of the character substitutions, insertions and
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deletions required to transform one string into the other, divided by the total
number of characters of the longest string, resulting in a score between 0 and 1
for any pair of words.

3.5.3 Results discussion

Table 3.3 shows our results. We achieve a CER of 7.32% in the George Washington
dataset and an impressive 0.83% in the Esposalles dataset. We observe a significant
difference in the performance between both datasets. There are several factors that
make these datasets different, starting by the amount of data which is crucial when
training with neural networks. There is also the fact that the George Washington
dataset is normalized an binarized. We hypothesize that these normalizations
might remove some useful information. In fact, for humans, the images from the
Esposalles Dataset (Fig. 5.3) are far more legible than the images from the George
Washington dataset (Fig. 3.4). Finally we would like to remark that the Esposalles
dataset consists in marriage records, which usually contain several instances of each
unique word. Contrary, the George Washington dataset is a small size free text,
and there are only a few instances of each unique word.

Trying to compare our method with other methods is not an straight-forward
task. Both works in [5, 79] are based on attribute embeddings. From them, we
chose the work from Almazan et al. [5] because it utilizes the original attribute em-
bedding and its source code is publicly available. However the the original method
and our approach have important differences, the main one is the requirement of a
dictionary. For that reason we consider two different scenarios. In the first (worst
case) scenario a lexicon is automatically built from the training examples, thus we
will have a minimum lexicon that is always available. In the second (best case)
scenario, the transcriptions from the test will also be included in the lexicon, rep-
resenting a perfect lexicon, so all words can be found in the lexicon. In any case,
in both scenarios our method outperforms the original approach by a big margin.

It is also worth noting that when training with the method from [5] only low-
ercase characters and digits are taken into consideration when building the PHOC
representation. Contrary, in our method, all the characters present in the dataset
are used, including uppercase, ’ç’ and ’#’ (symbol that denotes crossed out words
or characters) symbols for the Esposalles and punctuation marks for the George
Washington dataset. Ignoring special characters like ’.’ or ’,’ makes the problem
easier, whereas transforming all transcriptions to lowercase can help in some ex-
amples and damage in others. As a result, the comparison of these methods is
even more difficult.

In order to minimize the penalization of the method described in [5] for not
using special characters, we removed all punctuation marks from the ground truth,
merged the ordinals (1st,2nd) with their corresponding digit and the special char-
acter for the initials GW was split into a ’G’ and a ’W’. This is a strong simplifi-
cation, since in the evaluation of our own method, we model and take into account
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Method Esposalles GW

Almazan et al. [5] (Train Lexicon)* 6.18% 22.15%
Almazan et al. [5] (Full Lexicon)* 4.28% 17.40%
Fischer [29] - ≈ 20%

Our approach 0.83% 7.32%

Table 3.3: Comparative with other methods CER.

the commas, dots, left and right parenthesis, etc. Even dealing with a much harder
task, our method outperforms previous reports by a great margin.

A more direct comparison can be made with the traditional single layer 100
neuron BLSTM+CTC recurrent neural network like the one described in [41, 29].
This method does not require any kind of language model and trains the network
from a sequence of a 9-dimensional handcrafted feature based on statistical and
shape information. Results for word-level recognition for the George Washington
dataset are reported in a plot in [29] showing a result slightly above the 20% level.
In this case we are not certain if punctuation symbols were taken in consideration
when calculating the CER.

In case of the Esposalles dataset, the comparison with other existing methods
is even more difficult, because most of them perform the recognition at line or
record level. The best approach so far is from Romero et al. [84] reporting a WER
of 10.1% at line level using a lexicon and a language model. Our method achieves
a 2.95% WER in Esposalles without any kind of lexicon or language model but,
since we are working at word level, we can not make word insertions or deletions
errors but only substitutions. These values, despite not being fully comparable
might give a hint of the performance level of our approach.

3.6 Conclusions

In this chapter we presented two new handwriting recognition methods: A first
method with unsupervised feature learning using variational autoencoders, and
a second one based on an attribute embedding of patches of word images by
a convolutional neural network. In both cases, those feature representations of
handwritten text patches are then presented as a sequence to a recurrent neural
network that produces the transcription. We showed that our first method could
slightly improve the state of the art, held at that time by Marti Features in the
character error rate, while also greatly reducing both the number of epochs needed
to convergence and their duration. The uncertainty due to the random initializa-
tion of the network is also greatly reduced, therefore producing a more reliable
system.
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We think that there is still room for improvement in the use of autoencoders
for handwriting recognition, we would like to explore different autoencoder archi-
tectures. However, for the specific case of handwriting recoginition we came to
the conclusion that we need to find a way to get more discriminative features.
That is, autoencoders are trained with the objective of minimizing reconstruction
error and can be discover very useful features for general images, but in the case
of handwriting recognition, some very small differences in images can produce a
different character label. For example, two images of lowercase letter “b” written
in different cursive styles can have a huge difference while still representing the
same character, while just a small stroke can make an “F” turn into an “E”. There-
fore, we came to the conclusion that better feature discovery should be done by
somehow incorporating information from the transcriptions that would force the
features to become more discriminative. With our second approach to handwrit-
ing recognition we overcome the limitation of requiring a lexicon that attribute
based models had, effectively moving the focus away from word-classification to
a real handwriting text recognition. By incorporating information from the tran-
scription into the training of the feature extractor we achieved very competitive
results becoming the state of the art results in both of the historical handwriting
datasets benchmarked. The most evident future research lines opened by this work
are the extension to text lines (something that previous works based on attribute
embedding where unable to do by design). In our case this should be possible if we
are able to model the white space character between words either at the attribute
embedding level or at the RNN sequence transcription level. A second possible
improvement would be to make use of language models or lexicon information
when available (but not as a requirement of the model).

By making this contributions to HTR we are now able to extract information
when the semantic information is given, as it is the case, for instance, in form
documents, where the location of a given word or set of words inside the form
determines the meaning. However, we are interested in exploring beyond that,
and going into less structured formats. We can think of some administrative
handwritten documents, that have are loosely structured as a step forward from
simple forms towards completely free text. For that reason in the next chapters
of this thesis will be devoted to that goal. But before exploring how to derive
meaning from handwritten word images, we need to have a dataset, with clearly
defined tasks and metrics. In the next chapter we will discuss a new benchmark we
proposed to the community for this kind of experiments, that will help us evaluate
our final contribution.
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Chapter 4

A benchmark for Information
Extraction

In this chapter we present a new benchmark for Information Extraction from
loosely structured handwritten documents. In this case, we use a marriage records
dataset. We will discuss the details of the dataset, how we adapted it to be used
as a benchmark and presented it in an international competition, that remains
open. We justify why we think this is an interesting problem to the community,
explain the different tasks we propose, the metrics we designed and show some
results from the participants in the competition.

4.1 Introduction

The extraction of relevant information from historical handwritten document col-
lections is one of the key steps in order to make these manuscripts available for
access and searches. In this context, instead of handwriting recognition [33], un-
derstood as pure transcription, the objective is to move towards document under-
standing. Concretely, the aim is to detect the named entities and assign each of
them a semantic category, such as family names, places, occupations, etc. Lately,
the interest of the document image analysis community in document understand-
ing, named entity recognition and semantic categorization is awaking, and sev-
eral techniques based on Hidden Markov Models (HMMs) [84],Bidirectional Long
Short-Term Memory Recurrent Neural Networks (LSTM-RNN) [4] and Convolu-
tional Neural Networks (CNNs)[109] have been proposed.

A typical application scenario of named entity recognition in historical hand-
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written documents is demographic documents, since they contain people’s names,
birthplaces, occupations, etc. In this scenario, the extraction of the key contents
and its storage in databases allows the access to their contents and envision innova-
tive services based in genealogical, social or demographic searches. With the aim to
foster the research in this field and offer a benchmark for the research community
we organized an international competition during the International Conference for
Document Analysis and Recognition (ICDAR) 2017. After the conference, the
competition remained and will remain open and continuous, so that researchers
can upload their new results at any time.

To be able to develop this benchmark and organize a competition we based
on a previously available dataset [85, 28] of handwritten marriage records that
had been used for evaluating handwriting recognition. This dataset had been
previously transcribed and semantically labeled, but the transcription was done
to meet the needs of the humanities scholars studying these data, therefore it was
not convenient for its use in machine learning problems.

Adapting the dataset to its use in a information extraction competition in-
volved manually checking the transcriptions ensuring its consistency in both the
semantic labelings and the transcriptions. Some effort was also invested in reduc-
ing the number of categories and persons labels by merging some of them and in
simplifying the transcription by transforming superscript characters into regular
characters. We also designed a relatively simple file structure to supply the data
at both line and word level.

A key component of any competition is its metric. Our goal was to prioritize the
semantic labeling while also taking into account the accuracy of the transcription.
We designed our metric trying to make it fair and general enough so that it can
be applied unchanged to different tracks, and both at word or line level.

In Sect. 4.2 we discuss the details of the Esposalles Dataset and in Sect. 4.3 we
give some insight to the particularities of the version we published for the com-
petition. In Sect. 4.4 we explain the different tasks that the participants in the
competition are required to perform. In Sect. 4.5 we give a detailed explanation
of the metric designed for the competition and in Sect. 4.6 we describe the dif-
ferent methods that the participants in the competition have submitted so far.
Finally in Sect. 4.7 we draw some conclusions about the lessons leaned during this
competition.

4.2 The "Esposalles" Marriage Records

The "Esposalles" Marriage Records [85, 28] consists of 291 books stored in the
archives of Barcelona Cathedral with information of approximately 600,000 unions
celebrated in 250 parishes between 1451 and 1905. In addition to the marriage
licenses, each book includes an index with all the husband’s family names and
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the page number where the marriage information appear. Each marriage record
contains information about the husband’s occupation, husband’s and wife’s former
marital status, socioeconomic position signaled by the fee imposed on them, and
in some cases, fathers’ occupations, place of residence or geographical origin.

The structure of a marriage record tends to loosely follow a specific ”grammar“.
Some anchor words (in bold) separate the different persons, as follows:

<husband> (son of) <husband’s father>y (and) <husband’s mother> ab
(with) <wife> filla de (daughter of) <wife’s father>y (and) <wife’s mother>.

In some cases, other persons may appear in the record. For example, when a
widow is married again, the record may include information on the former hus-
band. In those cases, the information of the wife’s parents usually disappears:
<husband> fill de (son of) <husband’s father> y (and) <husband’s mother>
ab (with) <wife>viuda (widow) <wife’s former husband>.

It must be noted that the above structures are generally loosely followed, but it
is quite common that they present variations, specially omitting some information
or in some cases adding extra information.

4.3 The IEHHR Competition Dataset

The Information Extraction in Historical Handwritten Records (IEHHR) Com-
petition Dataset consists of handwritten records extracted from a volume of the
Esposalles Marriage Records Database written between 1617 and 1619 by a single
writer in old Catalan language. The data used for this competition corresponds
to 125 pages, with a total of 1221 marriage records, with their transcriptions,
semantic categories and person labels. See Fig. 5.7.

The training and test sets are composed of:

• Training set: 100 pages with a total of 968 marriage records divided in 3070
text line images or 31501 word images.

• Test set: 25 pages with a total of 253 marriage records divided in 757 text
line images or 8026 word images.

For each marriage record, we provide:

• Images of segmented text lines.

• Images of segmented words.

• Text files with the corresponding transcriptions at word and line level.
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Figure 4.1: A marriage record information can be divided in pieces of informa-
tion related to a specific person(top). Also, we can identify different “semantic
categories” related to a specific person that are likely to appear in most marriage
records(bot).
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• Text files with the corresponding categories at word and line level: name,
surname, occupation, location, civil state or other (for grammatical connec-
tors and other irrelevant words).

• Text files with the corresponding person at word and line level: husband,
husband’s father, husband’s mother, wife, wife’s father, wife’s mother, other-
person (a different person from the ones mentioned before, for example, a
former husband) and none (for grammatical connectors and other irrelevant
words).

• A CSV file with the list of transcriptions, categories and associated persons
of all relevant words.

Both train and test datasets are organized at record level. That is, there is one
folder per record, containing the two folders with information at line and words
level, and the corresponding CSV file. Since the final goal is to simulate the filling
in of a knowledge database, as mentioned earlier, the CSV file only contains the
relevant words of that record, i.e. the named entities. This means that only words
with an associated category (e.g. names, locations, etc.) will appear in the CSV
file.

Each word in the marriage record will have associated its transcription, person
and category (one per word). However, take into account that some names and
locations can be composed of several words, therefore in those cases, there can
be more than one word per person/category. For those non-relevant words (e.g.
conjunctions, prepositions, verbs, etc.) the category will be other and the person
will be none. The transcription of these non-relevant words is also provided to
facilitate training, but will not be taken into account during the evaluation. An
example of the provided ground-truth is shown in Figure 2.

4.4 Task

The goal in the IEHHR competition is to extract information from the records.
Concretely, the task is to recognize and transcribe the named entities, such as
names, surnames, places, occupations, etc. In order to foster the participation
in this competition, we simplified the number of semantic classes existing in the
database. For example, the place of residence, geographical origin, etc. have been
simplified to the same semantic class location.

As a result, relevant words can belong to five different categories: “Name”,
“Surname”, “Occupation”, “Location” and “Civil state”. These semantic categories
are associated to seven different people relationships or "person":“Wife”, “Hus-
band”, “Wife’s father”, “Wife’s mother”, “Husband’s father”, “Husband’s mother”
and “Other person” (usually the former husband of the wife in case she is a widow).
Non-relevant words are labeled as “Other” and assigned to the person “None”.
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For this benchmark, we have manually labelled the marriage records with se-
mantic information at word level. The lines and the records in this dataset have
been also manually annotated. In this way, each line is associated to its corre-
sponding record.

Figure 4.2: An example of the IEHHR Competition Dataset:“Esposalles”
at word-image level, showing word images and their corresponding, transcrip-
tion (black), category label (blue) and person label (orange).

Participants are required to provide, for each test record, a CSV file following
the format of the ones provided in the training set. That is, including the tran-
scription of the relevant words (i.e. named entities) and their semantic category.
Providing the person associated to each category is optional. That is, there are
two different tracks for the competition that the participants can follow:

• Track Basic. The CSV should include the transcription and the semantic
category (name, surname, occupation, etc.).

• Track Complete. The CSV should include the transcription, the semantic
category and the person (husband, wife, wife’s father, etc.).

4.5 Metrics

The evaluation is done at marriage record level. Since the focus of the benchmark
is on information extraction, the semantic label is prioritized. This means that
irrelevant words are not taken into account and a perfect transcription of a word
with an incorrect semantic label does not score any points. Contrary, if the seman-
tic label is correct, then the Character Error Rate (CER) will be used to evaluate
the quality of the transcription. Concretelly, for each semantically labeled word:

• Track Basic. If the category is incorrect, then the score is 0. Otherwise, the
score is a normalized accuracy metric on the transcription.

• Track Complete. If the category or the person are incorrect, then the score is
0. Otherwise, the score is a normalized accuracy metric on the transcription.
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Note that the score at category level in both tracks is the same, so these values
are directly comparable, allowing that participants in the Complete track to be
automatically qualified to participate also in the Basic track.

More precisely, the evaluation procedure is the following. First, we check that
the submissions are syntactically correct, that is, that one and only one CSV file is
provided for each record, that it has the right number of comma separated values
and that all the categories, person and record id’s are valid.

We define the concept of “semantic label” as category in the basic track and the
concatenation of the category and person in the complete track. Then, for each
semantic label in each record, we retrieve two lists of word transcriptions: one from
the submission (S) and another one from the groundtruth(T). The Character Error
Rate (CER) is then calculated for each pair of submission and ground-truth words
as the Levenshtein Distance between the two words, normalized by the length of
the longest transcription in order to have a value between 0 and 1. Afterwards, the
best word alignment for each “semantic label” is determined with Dynamic Time
Warping, and the average CER for that labeling is computed. The accuracy score
for each labeling is then defined as one minus that average CER (See Eq. (4.1))
Finally, we calculate the record accuracy as the average of the all the labeling
accuracies found in the record. If the participant found a “semantic label” not
present in the record or failed to find one that is actually present a score of 0 will
be assigned to that labeling in order to compute the average.

ACC(S, T ) = 1− DTW(S, T )

max(n,m)
, where

DTW(S, T ) =



0 if S = T = ∅
1 if S = ∅ or T = ∅

CER(s0, t0) + min


DTW([s1 . . . sn], T )

DTW(S, [t1 . . . tm])

DTW([s1 . . . sn], [t1 . . . tm])

, and

CER(si, tj) =
D(si, tj)

max(len(si), len(tj))
(4.1)

The final score is the average of all the record accuracies. In addition to this
final score, the average scores for each one of the categories are also computed and
published. For better visualization, all these values are normalized between 0-100.



56 A BENCHMARK FOR INFORMATION EXTRACTION

Method Segmentation Basic Score Complete Score

Context-aware Neural Model Word 94.62 94.02
Resnet based uni-gram Word 94.18 91.99

CNN based Bi-gram Word 87.58 85.74
Baseline CNN Word 79.42 70.20

Naver Labs Line 95.46 95.03
CITlab ARGUS (OOV) Line 91.94 91.58

CITlab ARGUS2 (OOV) Line 91.63 91.19
Joint HTR + NER Line 90.59 89.40

CITlab ARGUS (no OOV) Line 89.54 89.17
Baseline HMM Line 80.28 63.11

Table 4.1: Results of the different methods

4.6 Results

Up to the moment of writing the thesis, the competition has received eight public
submissions adding to the two baselines proposed by the organizers. Three meth-
ods work at word level and six work at line level. All of the methods opted for
the Complete track, that is, providing transcription, category and person labels
for each relevant word in each record. In Table 4.1 we show the competition score
for the different methods. Despite solving the same problem and being evaluated
with the same metric, one could argue that word and line level approaches are not
directly comparable. For that reason we highlight the higher score for both image
segmentation choices.

In Table 4.2 we show the average scores computed at category level, that is,
instead of averaging all of the categories at record level and performing the global
average, we compute a global average for each category individually.

It can be observed that the categories with fewer number of different words (i.e.
vocabulary size) tend to have a higher performance. For example, the civil state
has very few different words to describe it, therefore, making it easy to detect.
Contrary, categories with large vocabulary, or even with many out of vocabulary
words (such as surnames), tend to obtain a lower performance. The number of
samples is also an important factor. For instance, names consistently show a higher
performance than surnames because they are always present while surnames are
quite commonly omitted when several members of the same family appear in a
record.
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Method Name Surname Location Occupation State

Context-aware Neural Model 95.49 91.32 95.18 93.89 97.21
Resnet based uni-gram 95.68 91.23 94.93 93.77 95.35

CNN based Bi-gram 91.82 69.19 89.36 91.04 97.82
Baseline CNN 83.01 65.25 66.31 86.26 97.68

Naver Labs 97.01 92.73 95.03 96.43 96.41
CITlab ARGUS (OOV) 95.14 85.78 88.43 93.08 97.54
CITlab ARGUS2 (OOV) 95.09 85.84 87.32 92.96 97.19

Joint HTR + NER 89.94 84.07 90.71 92.10 96.59
CITlab ARGUS3 (no OOV) 94.37 76.54 87.65 92.66 97.43

Baseline HMM 81.06 60.15 78.90 90.23 93.79

Table 4.2: Table of results iehhr.

4.7 Conclusions

We designed a benchmark for Information Extraction from historical documents,
aiming to raise the interest in semantic recognition and categorization, as a first
step towards the understanding of handwritten documents. This benchmark was
presented to the community as an international competition co-hosted with the
ICDAR conference.

We kept the competition open and continuous since then and, even after the
initial period, researchers have continued to upload new results to the competition
web platform. This good reception by the community proves our initial hypothesis
that Information Extraction is indeed an interesting problem for the community.
It seems obvious to us that, in order to produce more intelligent reading systems,
able to understand and extract the information contained in handwritten docu-
ments, we need to go beyond pure transcription. Therefore we believe that this
competition/benchmark goes in the right direction and has been a good contribu-
tion to the community.

As future work, we would like to expand the dataset with more pages, if pos-
sible from other tomes of the collection. Using data from another tome from one
century later, for example, would be interesting. As time goes by, new occupa-
tions arise or new names and surnames appear due to migrations. These new
words would increase the ratio of out-of-vocabulary words in the test set making
the Information Extraction task more challenging. Of course it would also be in-
teresting to collaborate with other groups in designing similar benchmarks from
completely different collections.
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Chapter 5

Information Extraction from
handwritten documents

With all the tools that we have acquired so far, in this chapter, we face the
challenge of extracting information from a loosely structured purely handwrit-
ten documents. We have already covered the transcription in previous chapters,
so we need to assign semantic value to each word. At first, we propose a novel
method based on Convolutional Neural Networks that is able to semantically clas-
sify individual word images, that is later modified to be able to capture contextual
information from its neighbouring word images at record level.

5.1 Introduction

We have already previously argued that the identification, protection and preser-
vation of cultural and natural heritage around the world is considered to be of
outstanding value to humanity since the UNESCO World Heritage Convention
in 1972 [110]. There have been huge efforts so far in preservation by means of
digitization. However, at least in the specific case of historical documents, most
of them are only available as scanned images. Only a small fraction of them are
properly indexed, making the information contained therein really accessible and
therefore usable. Therefore, the extraction of relevant information from histor-
ical document collections is a key steps in order to make the contents of those
documents available for access and searches.

Document Image Analysis and Recognition (DIAR) is the pattern recognition
research field devoted to the analysis, recognition and understanding of images of
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documents. Within this field, one of the most challenging tasks is handwriting
recognition [33, 41], defined as the task of converting the text contained in a doc-
ument image into a machine readable format. Indeed, after decades of research,
this task is still considered an open problem, specially when dealing with histor-
ical manuscripts. The main difficulties are: paper degradation, differences in the
handwriting style across centuries, and old vocabulary and syntax.

Generally speaking, handwriting recognition relies on the combination of two
models, the optical model and the linguistic model. The former is able to recog-
nize the visual shape of characters or graphemes, and the second interprets them
in their context based on some structural rules. The linguistic model can range
from simple n-grams (probabilities of character or word sequences), to sophisti-
cated syntactic formalisms enriched with semantic information. In this paper we
focus in this last concept. Our proposed hipothesis is that in certain conditions
where the text can be roughly described by a grammatical structure, the identi-
fication of named entities can boost the recognition in a parsing process. Named
entity recognition is an information extraction problem consisting in detecting and
classifying the text terms into pre-defined categories such as the names of people,
streets, organizations, dates, etc. It can also be seen as the semantic annotation
of text elements.

Converting a digitized document images into machine readable text is obviously
a good step forward. For that reason, the first attempts to make those handwritten
documents contents available were based on handwritten text recognition and
handwritten word spotting [85, 66]. The fact that Historical Documents is one
of the most challenging scenarios for handwritten text recognition, with degraded
and damaged paper, bleed-through, different handwriting styles, the scarcity of
transcribed data, made word Spotting [38] raise as a simpler alternative to HTR.

However, we should keep in mind that a mere transcription is not the final
goal, but a means to achieve the understanding of the manuscript that allows
us to extract the information contained in those documents, allowing us to ac-
cess it and search by contents. For document collections in archives, museums
and libraries, there is a growing interest in making the information available for
accessing, searching, browsing, etc. A typical example can be demographic docu-
ments containing people’s names, birthplaces, occupations, etc. In this application
scenario, the extraction of the key contents and its storage in structured databases
allows to envision innovative services based in genealogical, social or demographic
searches.

Now that HTR is reaching a reliable level of performance in most documents,
the research community is starting to show more interest in higher level tasks
such as information extraction and document understanding, with the aim to
allow meaningful semantic access to the information contained in document col-
lections [18, 24, 70, 100].

A traditional approach to information extraction would be to mimic the hu-
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man behaviour, i.e. to try to transcribe each record, and then to match each of the
words with a set of field specific vocabularies (dictionaries of male/female names,
surnames, etc), with the help of grammars or some other NLP (Natural Language
Processing) techniques to detect named entities. This seemingly simple approach
has several drawbacks. Moreover in historical handwritten documents, handwrit-
ing recognition the transcription itself can be problematic. While it is true that
the transcription of modern printed text can be considered a solved problem this
is not the case for historical handwritten text due to difficulties like variability of
writing styles through centuries, specific vocabularies, paper degradation, show-
through, etc. The second issue is Named entity detection [69] by the means of
using vocabularies to cluster these sometimes unreliable transcriptions, because
these methods usually have problems to deal with out of vocabulary words, spe-
cially if, like in our case, one wants to detect entities that do not start with a
capital letter (e.g. occupations).

An alternative strategy follows the principles of cognitive reading. It con-
sists in classifying handwritten text word images into different semantic categories
(like names, surnames, locations etc.). The transcription is performed afterwards,
predicting the text constrained to the word categories. This seemingly counter-
intuitive approach is in fact also used by humans when trying to understand doc-
uments that are difficult to read. Indeed, it is known that the human cognitive
system is able to make sense out of distorted information when context informa-
tion can be used. Moreover, we humans are able to integrate information from
different sources using different strategies [11] to make sure that we are correctly
understanding a text. In our case, a possible example would be that, if at a certain
position in a sentence it makes sense to read a male name, then its transcription
is most likely "John" instead of "born", although the word shape can be indeed
closer in appearance to "born".

Another option is to transcribe and detect the named entities at the same
time. The method described in [87] uses Hidden Markov Models and category n-
grams to transcribe and detect categories in demographic documents, obtaining a
quite good accuracy. However, the method is following a handwriting recognition
architecture, and thus it depends on the performance of the optical model, it
needs sufficient training data, and it is unable to detect or recognize OOV words.
Recently a new method based on Recurrent Neural Networks tries to following a
similar approach was presented in [18].

A third alternative is to directly detect the named entities from the document
image, avoiding the transcription step was recently published [4]. They use a tradi-
tional handwriting recognition approach, composed of a preprocessing step for bi-
narization and slant normalization, and then extracting handcrafted features that
are then fed into a BLSTM [48] (Bi-directional Long Short-Term Memory Blocks)
neural network classifier. Afterwards, they use some post-processing heuristics
to reduce false positives. For example, discarding short words or words starting
by “Wh” or “Th” because they are more likely to be capitalized because they are
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the first word in a sentence . The performance of the method is quite good, but
its goal is only detecting named entities in uppercase and not categorizing these
words. Moreover the post-processing heuristics of this method are specific for the
English language.

Figure 5.1: Samples of records from structured documents. Baptism registers
from the Absdorf collection, 1853 (top). Death records from Wien, 1720 (left).
Medical records from Sant Pau Hospital, Barcelona 1604 (right). Marriage records
from the Barcelona Cathedral, 1619 (bottom).

In this chapter, we describe a new method to obtain word categories directly
from non-preprocessed handwritten word images. The method can be used to
directly extract information, being an alternative to the transcription. Thus it
can be used as a first step in any kind of syntactical analysis. The approach is
based on Convolutional Neural Networks with a Spatial Pyramid Pooling layer to
deal with the different shapes of the input images. We performed the experiments
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on a historical marriage record dataset, obtaining promising results.

Our approach has several advantages. First, it is able to detect entities no
matter if they start with an uppercase or lowercase letters. Secondly, it can cat-
egorize these entities semantically. This means that the detected entity is also
classified as belonging to a semantic category, such as name, surname, occupation,
etc. The information of the semantic category of a word is a useful information
in the parsing process. Third, the effort in the creation of training data is lower
than the one needed for handwriting recognition (the word is not transcribed, just
classified in several categories). Finally, the method does not have any problem
with OOV words because it is not based on transcription or dictionaries. Even in
scenarios where transcription would later be required, our method can be helpful
by allowing us to use category specific models or dictionaries [87]. It can also be
used to simply reduce the transcription cost by using the categorization as a way
to select only relevant words to transcribe.

However, this method has a noticeable limitation, it does not leverage context
information to learn to predict the semantic class of the word image. Therefore,
we go further and propose the integration of syntactic context into that previous
model, and also, the incorporation of a handwritten recognition module. This
results in a significant increase in the classification performance, and also, it allows
us to perform full information extraction directly from document images.

To solve that limitation we also propose two variants of language models to
represent the context. The first variant is inspired on bigrams. The second variant
is a sequential approach, able to predict the word categories and semantic relations
(in our application use case, person relations) adding a Bidirectional Long Short-
Term Memory Network (BLSTM) to our CNN model. Thus, having information
about the semantic categories of the previous and upcoming words in a record,
the prediction of each word category can be more accurate. The use of BLSTM
as language model involves a second contribution. The model allows to infer
relations between the named entities and consequently infer semantic patterns.
Thus, the named entities can be assigned to individual concepts (in the context of
the document topic) and therefore a knowledge database can be populated.

We also demonstrate that it is possible to skip the likely error in the step
between recognition and semantic classification by using a single integrated model
to identify word categories without transcription in a sequential way, so that we
can benefit of context information. Thus, it contributes to reduce the semantic gap
in the interpretation process of historical manuscripts. The proposed method can
be used to extract information from paragraph-structured historical manuscripts
with any kind of calligraphy, such as birth, marriage, death or census records.
Experimentally, we have evaluated the proposed methodology with the protocol
proposed in the ICDAR2017 competition on Information Extraction in Historical
Handwritten Records [32], described in the previous chapter, demonstrating that
our proposed methodology outperforms the state of the art methods.
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The rest of the paper is organized as follows. In Sect. 5.2 we review the state
of the art in this field.In Sect. 5.3 we will describe the most simple method for
isolated images, with details of the architecture of the neural network we built,
explaining the function of each of the different layers. In Sect. 5.4 we will explain
the technical details of the dataset used, the training of our neural network and
also discuss the results of the experiments. Sect. 5.5 is devoted to describe the
two approaches we propose to incorporate the context information and how it was
modeled. The experimental results are shown and analyzed in Sect. 5.6. Finally,
in Sect. 5.7 we draw the conclusions and outline the future work.

5.2 State of the art

Information extraction from structured historical manuscripts usually includes lay-
out analysis, handwritten text recognition (HTR) and sequence labeling. As de-
scribed earlier, in cases where text is structured in paragraphs the traditional
approach is to first carry out HTR, and then parse the output labeling each tran-
scribed word with Natural Language Processing (NLP) techniques. Another op-
tion would be to directly perform semantic analysis from the visual information,
leaving the transcription as the last step in order to leverage the information from
the semantic structure of the paragraphs. Here we take a look at state of the art
work in the different parts of the process.

The handwritten text recognition process can also be split up in sub processes
like text region detection, line/word segmentation, and transcription. In each of
them, the use of artificial neural networks (ANNs) has brought many improve-
ments, but not yet achieving human level accuracy [80, 116, 86]. There have
also been recent attempts to perform a fully end to end recognition in [15] with
promising results but still behind the established pre-segmented text-line based
recognizer. An advantage of joining sub processes in a single model that tran-
scribes full paragraphs or full pages is that errors are not accumulated due to
process concatenation. The counterpart is the "black box" effect, which makes it
harder to develop better models because it is difficult to know which part of the
model is causing the error.

After transcribing the handwritten text images, one can apply NLP techniques
designed for computer readable textual documents (e.g. ASCII text) to perform
the information extraction. An ideal information extraction model would first
gather the human capabilities of finding named entities and other words consid-
ered relevant; and second, it would find relations among them based on the text
context and even previous background from other sources. An example of this
kind of problem is the CoNLL2003 task [107] which consists of recognizing named
entities and their dependencies on a large text corpus. For this task a combination
of conditional random fields (CRFs) and BLSTMs achieved state-of-the-art perfor-
mance in [49]. An interesting reinforcement learning method to acquire external
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evidence, which yields significant improvement for information extraction on In-
ternet news datasets is proposed in [71]. A disadvantage of this method in our
case would be that it is not easy to find external evidence of structured historical
handwritten manuscripts on the web, so our method should make use as much as
possible of the information in the selected manuscript database. Yet another pos-
sible approach is the one shown in [7] where dependencies are parsed into triples,
allowing this way the information to be stored in short clauses containing the re-
lationships among words in text sentences. One of the challenges in named entity
recognition for textual documents is dealing with words that have never been seen
in training, namely out-of-vocabulary words and there are works in the literature
trying to address this specific issue like in [19].

There are also some works in the literature dealing with information extraction
directly from images. For instance in [56] a combination of document physical
structure recognition, linguistic rules, and text corpus knowledge is used to perform
entity recognition. Also a very interesting work is presented in [75] that is able
to extract information from invoices in a template free approach using BLSTM.
However, these approaches are designed to work with modern clean and structured
printed documents.

There are also some works trying to extract information from handwritten
sources. For example, a system based on connected components detection and
analysis to perform numeral recognition from chemistry documents is presented
in [36]. In other cases, where there are tabular structures that will give information
about the entity distributions, it is possible to label an entity based on separator
distribution and text content, as shown once again for chemistry documents in [35].
These approaches look very task-specific and do not seem suitable to be applied
to a paragraph-structured document in which information is stored in much more
variable and complex sequence of symbols.

Finally, there are also a few works that deal with the problem of name entity
recognition or information extraction from general handwritten text directly from
the image. For instance, exploring the possibility of directly detect named entities
from handwritten text images [4], or even classifying word images into the seman-
tic category [109]. These, despite their obvious limitations, open a new possibility
for information extraction on handwritten documents. A possibility that in our
opinion was worth further research. Another interesting recent work in a related
area was proposed by Gordo et al. in [40]. In this work, the authors show that
it is possible to extract semantic word embeddings directly from artificially gener-
ated word images. They show that the network can even learn possible semantic
categories of OOV words by reusing information from prefixes or suffixes of known
words. However the training in this dataset required datasets of several millions
of synthetically generated word images, that is a very different scenario from the
typical handwritten dataset where the annotations are scarce.

As explained earlier, the most commonly used procedure for information ex-
traction from handwritten documents is based on performing an HTR and then a
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Figure 5.2: Outline of our CNN architecture

sequence labeling tasks subsequently. Following the inspiration of these last two
works, we aim to develop a new method to leverage record level information to
perform information extraction directly from handwritten text images. Once that
we have semantic information about text images, the HTR process would be eas-
ier, because it would allow restricting the recognition to a class-specific recognizer.
Also by working at image level, there is no concept of out-of-vocabulary words for
the information extraction part, thus ruling out by design, one of the challenges
of text based models.

5.3 CNN Based Word Image Categorization

In order to classify word images into semantic categories, we propose a CNN based
method, inspired by [102](See Figure 5.2). The network is divided into three
different parts: the convolutional layers, that can be seen as feature extractors;
the fully connected layers that act as a classifier and the Spatial Pyramid Pooling
layer that serves as a bridge between features and the classifier, by ensuring a fixed
size representation. We will describe each of these different parts in this section.

5.3.1 Convolutional Neural Networks

Although Convolutional Neural Networks (CNN) were known since at least the
early 1990’s [63], it has only been recently that they gained major attention due to
their high performance in virtually all fields of computer vision. The main building
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block of these artificial neural networks are the convolutional layers. These layers
can be seen as a certain amount of filters. The output of a convolutional layer
is generated by a discrete convolution of these filters with the input to the layer.
Furthermore, an activation function is applied to the result of the convolution in
order to make the layer able to learn non-linear functions. Compared to a standard
perceptron, the filters allow sharing weights for different spatial locations thus
considerably reducing the number of parameters in general [63].

Convolutional layers serve as feature detectors where each individual filter
learns to detect certain features of the input image. In order to introduce a certain
amount of translation invariance with respect to these detected features, CNNs
usually make use of so called Pooling Layers. In these layers, activations across a
certain receptive field are pooled and a single activation is forwarded to the next
layer. In most cases this pooling is performed by taking the maximum value seen
in the receptive field [59, 93].

When stacking layers of convolutional and pooling layers, the filters in the indi-
vidual convolutional layers learn edge features in the lower layers and more abstract
features such as textures and object parts in the higher layers [120]. However,
stacking a large amount of layers results in the so called Vanishing Gradient Prob-
lem [76] when using traditional activations such as sigmoid or hyperbolic tangent
functions. Thus up until the early 2010’s, neural network architectures where still
fairly shallow [62]. The Vanishing Gradient Problem could first be tackled with
the advent of using Rectified Linear Units (ReLU) as activation function [39]. This
function is defined as the truncated linear function f(x) = max(0, x). Using the
ReLU, deep CNN architectures are effectively trainable which was first successfully
demonstrated in [59].

All of the convolutional layers in our architecture are a set of 3x3 Rectified
Linear Units. The size of the filter was chosen to be 3x3 because they have shown
to achieve better results compared to those with a bigger receptive field as they
impose a regularization on the filter kernels [93]. Similar to the design presented
in [93, 102], we select a low number of filters in the lower layers and an increasing
number in the higher layers. This leads to the neural network learning fewer low-
level features for smaller receptive fields that gradually combine into more diverse
high-level abstract features.

5.3.2 Fully Connected Layers

The general layout of CNNs can be split up in a convolutional and a fully connected
part. While the convolutional and max pooling layers constitute the former, the
latter is a standard Multilayer Perceptron (MLP). Thus, the convolutional part
can be seen as a feature extractor while the MLP serves as a classifier. The layers
of the MLP are often referred to as Fully Connected Layers (FC) in this context.
Just as convolutional layers, the use of ReLU as activation function has shown
itself to be effective across various architectures [59, 93].
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The large amount of free parameters in fully connected layers leads to the
problem of the MLP learning the training set “by heart” if the amount of training
samples is low. But even for larger training sets, co-adaptation is a common
problem in the fully connected layers [47].

In order to counter this, various regularization measures have been proposed
with Dropout [99] being one of the most prominent. Here, the output of a neuron
has a probability (usually 0.5) to be set to 0 during training. A neuron in the
following layer can now no longer rely on a specific neuron in the preceding layer
to always be active for the same input image. Thus, the CNN has to learn multiple
paths through the neural network for a single input image. This leads to more
robust representations and can be seen as an ensemble within the CNN model.

The size of the different layers is a hyperparameter to tune experimentally,
except for the final layer whose size has to match the number of classes we want to
classify. This final layer usually uses a “softmax” activation function that outputs
a probability distribution over the possible semantic categories in our experiment
for each input image.

5.3.3 Spatial Pyramid Pooling

In general, the input to a CNN has to be of a fixed size (defined before training
the network). For input images bigger or smaller than this defined size, the usual
approach is to perform a (potentially anisotropic) rescale or crop from the image.
For word images, with an important degree of variability in size and aspect ratio,
cropping is of course not an option and resizing might introduce too strong artificial
distortions in character shapes and stroke width. Thus it is important in our case
that we allow our CNN to accept differently sized input images.

The key observation is that, while convolutional layers can deal with inputs
of arbitrary shape and produce an output of variable shape, the fully connected
layers demand a fixed size representation. Thus, the critical part is the connection
between the convolutional and the fully connected part. In order to alleviate this
problem, the authors in [45] propose a pooling strategy reminiscent of the spatial
pyramid paradigm.

The pooling strategy performed over the last layer in the convolutional part
is a pyramidal pooling over the entire receptive field. This way, the output of
this Spatial Pyramid Pooling layer (SPP) is a representation with fixed dimension
which can then serve as input for the ensuing MLP. It was also shown by the
authors that this pooling strategy not only enables the CNN to accept differently
sized input images, but it also increases the overall performance. In our method,
we use a 3-level Spatial Pyramid max pooling with 4x4,2x2 and 1x1 bin sizes. This
allows us to capture meaningful features at different locations and scales whithin
the word image.
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Figure 5.3: Several examples of word images in the Esposalles Dataset. The big
degree of variability both in size and aspect ratio of the images makes impractical
the common approach of resizing images to a common size.

5.4 Experimental Validation

In this section we will describe the experimental validation of our proposal. We
will first explain iin detail the dataset used as well as some practical details relative
to our training. We will then show the results achieved and discuss them.

5.4.1 Esposalles Dataset

For our experiments we used the Esposalles dataset [28, 85]. This dataset consists
of historical handwritten marriages records stored in the archives of Barcelona
cathedral. The data we used corresponds to the volume 69, which contains 174
handwritten pages. This book was written between 1617 and 1619 by a single
writer in old Catalan.

For our purpose the datasets consist of 55632 word images tagged with six dif-
ferent categories:“male name”,“female name”, “surname”, “location”, “occupation”
and “other”. From this total we reserve 300 images of each class for testing, up to
a total of 1800 images. After discarding word images smaller than 30x30pixels we
end up with 53568 training examples for training and 1791 for test. In the training
dataset there is a big class imbalance, with 31077 examples of the class “other”,
3636 “female name”, 4565 “male name”, 2854 “surname”, 6581 “location” and 4855
“occupation”. No normalization or preprocessing was done to word images besides
remapping them to grayscale in the interval [0-1] (0: background, 1 foreground).
It is worth noting that there are words with the same transcription that could po-
tentially belong to different classes. This is specially significant for the “surname”
class, since it is quite common for surnames to be related to a location (i.e a city
name), an occupation or even a male name. We can see several examples of word
images in Figure 5.3. The dataset is available upon request to the authors.
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Precision Recall F1-
Measure

Classification
Accuracy

Adak et al. [4]* 68.42 92.66 78.61 -
Romero et al. [87]** 69.1 69.2 69.15 -
Our approach 84.23 75.48 79.61 78.11

Table 5.1: Comparative with other methods.

True Class

Predicted
Class Other Surname

Female
Name

Male
Name Location Occupation

Other 272 52 21 9 61 38
Surname 5 153 19 2 21 3

Female Name 2 34 247 9 4 4
Male Name 2 14 5 274 7 1

Location 14 33 6 4 203 4
Occupation 3 10 1 0 4 250

Table 5.2: Confusion Matrix for our CNN architecture, with a global accuracy
78.11%.

5.4.2 Experiments and Results

The network was trained using standard backpropagation with stochastic gradient
descent with a learning rate of 10−4 Nesterov momentum 0.9 and a decay rate of
10−6 for 100 epochs, which proved enough to obtain a training accuracy of over
99% in all the experiments. Since we are working with images of different size,
each example had to be processed individually (batch size 1), that is the reason
for the low value for the decay rate.

We used the standard categorical cross entropy as loss function. In order to
deal with the class imbalance problem, we introduced a “class weight” parameter
in the loss function to relatively increase the impact of misclassifying the classes
with less examples. The weight for each class is calculated by dividing the number
of samples of the most populated class by the number of samples of each class.

wi =
max(ni)

ni
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We performed several experiments with slightly different network architectures,
to empirically calibrate the hyperparameters. After having fixed the learning and
decay rates and the number of epochs we noticed that even drastically changing
the number of parameters in our architecture the results were similar.

The proposed network architecture, as depicted in Figure 5.2 achieved an accu-
racy of 78.11% in our dataset. An alternative network with the similar architecture
but, halving the number of parameters of all the layers of the network (half of the
channels in each of the convolutional layers and half of the neurons in each of the
fully connected layers, and keeping the same 3-level pyramid pooling) produced
an accuracy of 77.33%.

In Table 5.2 we see that the errors are not evenly distributed. Despite the
introduced class weights, the network is still more likely to mistakenly assign the
class “other”. We can also see that examples corresponding to the “surname” class
are harder to classify. This may be due to several reasons since, as discussed
earlier, surnames are usually derived from names, places or occupations. It is also
worth noting that the “surname” class is the one with fewer samples, thus having
seen less examples the model is more likely to overfit this particular class.

The comparison of our method with similar methods in the literature is not
an easy task, because this is a relatively recent area of research and there are
few publications addressing similar issues. Even the most similar methods have
big differences, for instance none of the methods provides a classification accuracy
metric. In [87] they address the classification as an aid to transcription, and they
work with the Esposalles dataset but with a different labeling with a different
number of classes. In the case of [4] the aim is a named entity detection, with
a binary output. They provide results with different datasets, so we selected the
best result they achieved, usingn the IAM dataset.

We calculated our precision/recall metrics following the approach described
in [87], and defined as: “Let R be the number of relevant words contained in the
document, let D be the number of relevant words that the system has detected,
and let C be the number of the relevant words correctly detected by the system.
Precision (π) and recall (ρ) are computed as”:

π =
C

D
ρ =

C

R

In order to compare our results with the state of the art we can see the class
“Other ” as non-relevant words. Then, for “relevant words” we understand words
with a “True Class” other than “Other ” and for “relevant detected word” we under-
stand word-images assigned with a label other than “Other ”. Finally for “correctly
detected” we understand examples where the system correctly assigned a label
other than “Other ”. That means we do not consider a word as “correctly detected”
unless it is also assigned to the correct category.
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5.5 A full Information Extraction System

In this section we present two new architectures for extracting information in hand-
written structured documents. These architectures are able not only to extract
the named entities, but also to model the relation among words in a record (e.g.
relations among name entities appearing in the documents). We start by reviewing
our previous work on isolated words. Then, we describe how we have extended
this previous method to model full information records using an integrated archi-
tecture.

5.5.1 Semantic categorization of isolated word images

The most straightforward way to perform a semantic categorization of isolated
word images is to frame it as a traditional object classification framework. The
supporting hypothesis is that if deep neural networks are able to grasp a concept
like "dog" from images of dog races as different as a doberman and a yorkshire
terrier from different viewpoints they can probably capture the variations in sur-
names, city names or occupations by looking at some visual clues like capital
letters, some characteristic suffixes or prefixes. For example, -ia is a typical suffix
of spanish female names (e.g. Maria, Lucia) , -son and -ström are typical suf-
fixes of nordic surnames (e.g. Jacobson, Nyström), and Ober- is one of the typical
prefixes of german locations (Oberhausen, Oberwesel).

In [109] we proposed a relatively shallow and simple Convolutional Neural
Network for semantic classification of word images. The network is designed to
start with a small number of low-level features that gradually combine into a bigger
number of higher level features with some pooling layers to add some degree of
scale and translation invariance. Besides the specific choice of number of layers
and features it differs from the standard CNN in the fact that uses a Spatial
Pyramidal Pooling layer [45] to deal with the variability in shape and aspect ratio.
This SPP layer produces a fixed size pyramidal representation that further helps
in developing scale invariance and also allows to bridge the variable size output
of the feature map with the fixed size of fully connected layers that serve as the
classifier.

However, as stated in the introduction, this approach has a very obvious limi-
tation: the lack of context information or language model. By dealing with each
word as a single example we are ignoring a very valuable source of information.
It is very common that the very same word could perfectly fit into two or more
semantic categories (i.e. homographs) and it is only through context that one can
decide. This is specially true in structured documents, where the records loosely
follow a predefined structure or grammar. For example, in most documents, la-
belling a capitalized word right after a name as a surname is a safe bet.

Next we will describe two different ways to leverage context information. The
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two architectures jointly learn both the visual model (like the architecture de-
scribed above) and the language model. This language model has to be under-
stood as the specific language rules encoded in the structure of each collection of
structured documents.

5.5.2 Incorporating language models

As we move away from the limited framework of isolated word images we can use
language models to incorporate contextual information at record level. Two of the
most widely used language models in the literature are n-grams [112, 121] (usually
in its most cost-effective case of bigrams) or a language model estimated with a
recurrent neural network [103, 68]. In our work, the language model refers to the
specific context of type of structured document. Therefore, when we apply our
method to, for instance a dataset of medieval birth records, we are not modeling
Latin language, but the specific syntax of birth records.

Bigram inspired language model

In this first approach, we modify the original architecture described in [109] to
incorporate bigram estimation. Bigrams estimate the probability of a given word
given its predecessor. In our case, we are interested in the category of a word image,
given its predecessor. Concretely, we propose a new architecture that accepts two
inputs: the word image, and the labeling of the previous image. The word image
would go through the same convolutional layers and spatial pyramid pooling, while
the label was passed through three fully connected layers before being merged to
the output of the spatial pyramid pooling. This combination of visual information
and the label of the previous word is now fed to the usual fully connected layers
that output the semantic category. In this new architecture we need a new special
label to represent the starting of a record, that will be fed as the previous label of
the first word in each record. The architecture is shown in Fig. 5.4.

We also incorporate label smoothing [105, 20] on target categories. That is, we
modify the target distribution of the output by randomly assigning a small amount
of the energy among incorrect labelings. This has proved to benefit generalization
by reducing the network overconfidence in its predictions. The intuition is that,
after enough training, the only way of a network to reduce the loss is by getting
closer to a one-hot distribution. In sequences, this means that a wrong prediction
in a given time-step is unlikely to be reconsidered in the next one, because the
probability of alternative labelings is close to zero.

Formally, for each example x with correct label y our model computes the
probability of each possible label k ∈ {1...K}, where K is the number of classes.
Usually we would have a normalized ground truth distribution q such that q(k) =
δk,y where δk,y is the Dirac delta, δk,y = 1 when k = y and 0 otherwise. We
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Figure 5.4: Bigram inspired architecture. This architecture models the relation
of words by accepting two inputs: the current word image, and the predicted
label from the previous word image.

will then use the following smoothed label distribution with parameters µ =
0.25/K and σ = µ/5 instead:

q(k) = δk,y

1−
∑

i∈1,...,K
Xi

+Xk

where Xi ∼ p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

(5.1)

It must be noted that while bigrams are one of the most cost-effective language
models, they have some drawbacks, like the inability to capture long range rela-
tions among words. Indeed, in our bigram-based approach, each word image is
considered as an individual example. Even if it has extra information regarding
the previous prediction, a relatively “simple” CNN could perform the task. Conse-
quently, this architecture cannot remember long word dependencies, unless higher
n-grams are used. But of course, this has a limit. Higher-order n-grams have
the problem of sparsity, requiring larger amounts of training data. Unluckily, the
availability of annotated structured historical manuscripts is very limited. Also,
mainly due to that same sparsity problem, higher order n-grams do not generalize
well and end up producing very small improvements in accuracy.
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This inability to capture long word dependencies is one of the main reasons
why language models based on Recurrent Neural Networks [103, 68] (and specially
BLSTMs) have become popular, and why we propose the second approach.

BLSTM based language model

In this second approach, we capture longer relations among words in a sentence
or record with variable number of words by incorporating a Recurrent Neural
Network (RNN). In this case, each record represents a time-series example, and
each word-image represents a time-step.

Figure 5.5: The inner workings of an LSTM network. [73]

RNN suffer the problem of the vanishing gradient, that can be alleviated by the
use of Long Short-Term Memory (LSTM) units [73], shown in Figure 5.5. These
units are designed to allow the neuron to keep its state value unchanged along
time-steps. In order to leverage information from future and past time-steps, the
sequence can be processed forwards and backwards with a Bidirectional-LSTM.

The proposed model, shown in Fig. 5.6, is composed of a convolutional part that
extracts the visual features of each individual word images, combining stacks of
convolutional, pooling and fully connected layers. These features are then fed to a
BLSTM layer that models the relations among the words in each register. Contrary
to the bigram-inspired approach, where the model integrated visual information
and labels, in this model all the information is extracted from the visual features
of the word images, and the relation among these visual features is represented
as the hidden state of the BLSTM layer. Finally, from the output of the BLSTM
softmax can be applied to reduce the output to the required number of categories
in the document.

We are capturing relations among word images with the BLSTM, which means
that we can now extract more information than just the semantic category. For
instance, we may want to associate the category to a person or role in the record
i.e.: husband or wife in a marriage record, father or newborn in baptism records,
etc. With our integrated architecture, we can jointly output all this information
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by adding additional softmax outputs. For example, in Fig. 5.6, the model has
two outputs for each word image: the semantic category and the person to whom
this word is referring (e.g. a certain word is the surname of the father). Finally,
for each output, we minimize a separated cross-entropy cost function using SGD:

C(b) = − 1

n

∑
x∈b

[p(x) log q(x)] (5.2)

being p(x) the output of the softmax for the example x and q(x) the smoothed
ground-truth label distribution described in Equation 1. And the sum is considered
over the current minibatch B.
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Figure 5.6: BLSTM-based architecture. This architecture models the relation
among words in a record with the hidden state of a BLSTM layer. In this case we
can see that the architecture has two softmax outputs because we are interested
in extracting both the category and the person it relates to.

5.6 Experiments

In this section we describe the dataset, the evaluation protocol and we analyze the
experimental results.
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5.6.1 Dataset

Our methodology can be applied to any kind of structured document in which the
information is written in sentences or paragraphs. In particular, we have tested
our information extraction approaches using the dataset from the ICDAR compe-
tition on Information Extraction in Historical Handwritten Records (IEHHR) [32]
because the dataset and ground-truth are publicly available and the website of the
competition 1 allows us to easily compare our work with other methods.

The dataset consists of historical handwritten marriages records [85, 28] stored
in the archives of Barcelona Cathedral. The records were extracted from a book
written between 1617 and 1619 by a single writer in old Catalan language. The
data used in the competition corresponds to 125 pages, with a total of 1221 mar-
riage records (39527 word images), with their transcriptions, semantic categories
and person labels. See Fig. 5.7.

Figure 5.7: An example of the IEHHR Competition Dataset:“Esposalles”
at word-image level, showing word images and their corresponding, transcrip-
tion (black), category label (blue) and person label (orange).

The IEHHR competition consists in finding relevant words in marriage records,
transcribe them and tag them with a semantic category and the person who they
relate to. Relevant words can belong to five different categories: “Name”, “Sur-
name”, “Occupation”, “Location” and “Civil state”. These semantic categories are
associated to seven different people relationship:“Wife”, “Husband”, “Wife’s fa-
ther”, “Wife’s mother”, “Husband’s father”, “Husband’s mother” and “Other per-
son” (usually the former husband of the wife in case she is a widow). Non-relevant
words are labeled as “Other” and assigned to the person “None”.

The provided data is divided into training and test sets. The training set
contains 100 pages (968 records with 31501 word images) and the test set contains
25 pages (253 records with 8026 word images). In our work, from the proposed
training set, we subtract the last 10 pages (96 records with 3155 word images) to
use them as validation.

1http://www.cvc.uab.es/5cofm/competition/
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5.6.2 Performance Evaluation

We evaluate our approach with the metrics used in the IEHHR competition [32].
The competition had two different tracks: in the basic track, the system has to
provide the transcription and the semantic category (e.g. surname, location, etc.)
of the relevant words. In the complete track, the system must also provide the
person relation (e.g. husband, wife, etc.).

In the evaluation, the semantic label is prioritized. This means that if the
semantic category is incorrect, the transcription is not taken into account. In case
the semantic category is correct, then the Character Error Rate (CER) is used to
evaluate the transcription. The CER is calculated for each pair of submission and
ground-truth words, and computed as the Levenshtein Distance between the two
words, normalized by the length of the longest transcription in order to have a
value between 0 and 1.

The accuracy score for each labeling is calculated as 1-CER, and the record
accuracy is the average of the labeling accuracies of the relevant words found in
the record. The final score is the average of all the record accuracies. For better
visualization, all values are normalized between 0-100.

5.6.3 Experimental Details

Next we detail the experimental setup, including the semantic labeling and the
description of the method that has been used for word recognition.

Semantic labeling

We performed experiments with the two proposed neural architectures. The convo-
lutional part of both models consists of a series of convolutional and max pooling
layers increasing the number of channels followed by a spatial pyramid pooling
layer and fully connected layers. For more details in the architectures see Sect. 5.5
or Figures 5.4 and 5.6.

Since the BLSTM language model works at record level, we were forced by
the limitations of current deep learning frameworks, to normalize each word image
to have the same size. Therefore, word images are resized, preserving the aspect
ratio, to fit in an image size of 80x125 (approximate average height and width of
the images in the dataset). The resized image is then placed in the center of a
new image of the aforementioned size, and the empty regions are filled with the
average pixel intensity of each image. In order to make the comparison easier,
we also used normalized image size for the bigram model. Using aspect ratio
preserving image size normalization would allow us to drop the SPP layer, as it
is no longer required to produce a fixed size representation. However, having an
Spatial Pyramid architecture helps in dealing with size variations from the content
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of the images (which were introduced by the normalization we used), and as shown
in the original paper of SPP, this layer helps to improve the performance even with
fixed size images [45].

The output labels of our models are trained to predict their outputs “indepen-
dently”. This means that we need to remove words labeled with category “other”
even if the predicted person is not “none”, and also words labeled with the person
“none” regardless of their semantic category. This simple “post-processing” ensures
that impossible labelings never occur, because, according to the dataset ground-
truth, all non-relevant words are labeled with category “other” and person “none”.
Indeed, these two labels are never used for any relevant word. We could have de-
signed the models to produce a single output formed by the cartesian product of
all available classes, however we chose to have independent outputs because of two
main reasons: first, because we believe that our architecture can be more general
in this way (the fact that some combinations of classes are not possible is just for
the particular of this dataset); and secondly, because we take inspiration from the
attribute representations, which allow a more meaningful use of information (i.e.
some words sharing some attributes will share some activations whereas if we used
a single softmax output, their activation could be completely different [5, 102].
This re-use of information also helps in speeding up the training because having
more positive examples for each class compared to the unique softmax output,
results in requiring less epochs to converge. Finally, there is yet another minor
advantage in using models with multiple outputs, and that is that it would scale
better in more complex scenarios, (i.e three outputs of 10 classes versus one output
of 1000 combined classes)

It is worth mentioning that no data augmentation was used for the semantic
labeling networks. In fact a study on how to produce a useful and realistic data
augmentation for this task would probably be an interesting future research as we
discuss on the conclusions.

Handwritten word recognition

Any information extraction approach for handwritten documents needs to perform
handwriting recognition. Although the contribution of this paper is not in hand-
writing recognition, we will describe the method used for the sake of completeness.
In both approaches we use the handwriting recognition method described in [108].
This method is based on two neural networks with two different stages of learn-
ing. The first stage uses a CNN to learn to embed word images in the PHOC
(Pyramidal Histogram of Characters) space as described in [102]. Once trained,
this CNN is used to embed, not full word images, but a set of handwritten patches
into this PHOC space. These sets of patches are presented as a sequence of partial
embeddings to a two-layered BLSTM, that produces the transcription. We chose
this method because it is a lexicon free approach (and consequently, it can rec-
ognize out of vocabulary words), and because, as far as we know, it has the best
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published performance on transcription at word level for this specific dataset.

Bigram inspired language model

This model was trained with a learning rate of 1e−3 with an early stopping thresh-
old of 20 epochs without improvement on the category accuracy in the validation
set. The “person” label was obtained using a simple grammar, based on finding the
keywords that separate the persons in the marriage record (e.g. "son of", "daugh-
ter of"). It must be said that we also tried to model two outputs, “category” and
“person”, but the person label was very unreliable, dropping the complete score to
a 38%. The reason is that labeling the person requires more context than just the
prediction of the previous word.

One crucial aspect for a successful training is that when feeding the category
of the previous word, it must be the predicted one from the network, instead of
the correct value from the groundtruth. We found out that if, during training, the
network was always receiving the correct category of the previous word, then it did
not pay enough attention to the current image and, consequently, the performance
in test time dropped significantly. The intuition is that, by using the predicted
previous category both in train and test time, this makes both training and test
more similar and also allow the model to learn during training that the category
of the previous word is not always reliable, and it learns it with the exact same
error distribution that it will produce in test time. The size and number of fully
connected layers for the branch incorporating the previous category information
was determined empirically.

BLSTM inspired language model

This model was trained with a learning rate of 1e−2 with an early stopping thresh-
old of 20 epochs without improvement on the average of category and person ac-
curacies in the validation set. The learning rate in this case is higher than in the
previous model. The reason is that the input is a full record in contrast to a single
image and the label of the previous one. This fact greatly reduces the number of
examples per epoch and also affects the loss value. In the bigram model, we include
as input of a word i, the features of this word image, but also the predicted label
of the previous word i− 1. Conceptually, we aimed to do something similar with
a BLSTM on top, but having one softmax layer before the BLSTM only resulted
into an excessive reduction of information harming the performance. Therefore,
the BLSTM is now an integrated part of the network, dealing with visual features
rather than a traditional language model working at semantic label level.
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5.6.4 Results and Discussions

In Table 5.3 we can see a comparison of our approaches with other methods from
the literature that participated in the competition [32]. The method labeled as
HMM+MGGI is based on Hidden Markov Models and a Morphic Generator Gram-
matical Inference [86]. The methods labeled as CITlab-ARGUS are different vari-
ants of methods based on LSTMs. The method Hitsz-ICRC-1 is a CNN based
bi-gram method, whereas Hitsz-ICRC-2 corresponds to a Resnet based uni-gram
method; but both methods have a postprocessing step combined with a CRF se-
quence tagging method. The method labeled as Word level CNN corresponds to
our previous work based on CNNs [109]. We included results at line level for the
sake of completeness. Although not directly comparable, we can see that there is
not a significant gap in performance from line level to word level approaches, so
these results can help in providing a bigger picture of the difficulty of this task.

Method Level
Basic
Score

Complete
Score

HMM+MGGI [86] Line 80.28 63.11
CITlab-ARGUS-1 [32] Line 89.53 89.16
CITlab-ARGUS-2 [32] Line 91.93 91.56
CITlab-ARGUS-3 [32] Line 91.61 91.17

Word Level CNN [109] Word 79.42 70.20
Hitsz-ICRC-1 [32] Word 87.56 85.72
Hitsz-ICRC-2 [32] Word 94.16 91.97
Our Bigram Model Word 87.98 79.68
Our BLSTM Model Word 94.62 94.02

Table 5.3: Competition Score

From the results, we can observe that we outperform our previous isolated word
categorization approach [109] in all scenarios, confirming the seemingly obvious
hypothesis that contextual information (i.e analyzing more than one word at a
time) is very important in an information extraction problem, and being able to
measure this importance. We also prove that, incorporating this context, the
semantic categorization of handwritten word images can be done without the need
of an intermediate step of transcription.

With our bigram model, we achieve a 87.98% score on the basic track and a
79.68% score on the complete track. On the basic track, our approach would get
the second position on the competition, behind the much more complex system
Hitsz-ICRC-2, which is based on CNNs+Postprocessing+CRF. On the complete
track, the score is hindered by the use of a very simple grammar.

With our BLSTM based language model, we score a 94.59% in the basic track
and 94% in the complete one, outperforming the state of the art in both cases.
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Predicted
Category

True Category

Other Surname Name Location Occupation State

Other 3754 16 7 10 15 5
Surname 8 648 22 1 15 1

Name 12 13 1278 6 1 3
Location 29 6 3 1061 13 0

Occupation 12 11 2 9 753 2
State 2 0 0 0 0 308

Table 5.4: Confusion matrix for the BLSTM based model for the category label.

Predicted
Person

True Person

None
Other
Person Husband Wife

Husband’s
Father

Husband’s
Mother

Wife’s
Mother

Wife’s
Father

None 3734 2 12 12 5 0 1 11
Other Person 0 126 0 2 0 0 0 0

Husband 30 0 1544 0 0 0 0 0
Wife 17 9 1 737 0 0 0 0

Husband’s Father 6 0 0 1 509 0 0 0
Husband’s Mother 4 0 0 0 0 154 0 0

Wife’s Mother 3 0 0 6 0 0 183 0
Wife’s Father 20 1 0 3 0 0 2 891

Table 5.5: Confusion matrix for the BLSTM based model for the person label.

This score, combined with the fact that the metric of the competition is designed to
emphasize the category and person labelings rather than the transcription, allows
us to claim that determining the semantic category (and person) of a word image
can be done skipping the intermediate step of the transcription and outperform
the traditional two-step pipelines (i.e. first transcription, then semantic labeling).

In Table 5.4 and Table 5.5 we can see the confusion matrices for categories
and person for the BLSTM based model, the best performing of our two models.
Trying to find parallelisms with the traditional two-step detection and classification
approaches, we can see detection as a single classifier of the non-relevant class
(“other” in the category case and “none” in the person case) versus all the other
classes.

For both the person and category cases, we see that numerically, most of the
mistakes are false positives followed by false negatives in the detection. Obviously
the numbers are affected by the fact that the non-relevant class is the most com-
mon class and most likely by the greater inner variability of this class. Since in
the dataset there was this enforcement that non-relevant words were labeled as
“other”,“none”, we discard all words with either of those labelings. This “postpro-
cessing” fixes some false positives and creates new false negatives. In the end we
wend up with 83 false positives and 58 false negatives out of 8026 words, which
means a detection accuracy of 98.24%.
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In the confusion matrix for the person label (Table 5.5) we see that the con-
fusion among relevant classes is minimal. In relative terms the most common
mistake is to attribute information relative to “other person” to the wife. It is a
quite understandable error because, in many cases, this “other person” is in fact
the former husband of the bride, in other words, when a widow is getting mar-
ried again, the record also contains information about the deceased person. An
example of this kind of mistake can be seen in Fig. 5.8.

habitat en Bara ab Antonia viuda de jaume Roger de Bara
Ground-Truth

none none husband none wife wife none
other
person

other
person none wife

other other location other name state other name surname other location
Prediction

none none husband none wife wife none
other
person wife none wife

other other location other name state other name surname other location

Figure 5.8: Example of a prediction where one word was incorrectly assigned.
The surname of the former husband of the bride is incorrectly assigned to her
(shown in red color).

The relative scarcity of examples and maybe even some natural language am-
biguities may play an important role. In the category side (see Table 5.4), we
can see other kind of errors. Note that the most “difficult” class is the surname.
Once again, this is the category with fewer examples, because the writer usually
avoided writing the same surname for all the family members. In addition, many
Catalan surnames can have the exact same spelling as a name or an occupation.
Some confusions with surname-occupations can be discarded by benefiting from
the sentence structure. However, since the sentence structure has some degree of
variability from record to record, the contextual model must be flexible, otherwise,
unseen structures could never be accepted. As a consequence, confusions such as
surname-occupations may still appear. In addition, extreme cases would even re-
quire expert level knowledge beyond our system (i.e. the son of a carpenter was
unlikely to become a farmer in the XVII century Barcelona). In case of names-
surnames confusions might be even harder in the presence of compound names and
surnames. Indeed, even human annotators might make mistakes in such cases.

5.7 Conclusions and further work

This chapter, being the final chapter of the thesis, leaves quite a few of open paths
for future research. We have presented a simple approach to word categorization
using convolutional neural networks. The spatial pyramid pooling layer allows us
to deal with the important variability in aspect ratio of word images without ar-
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tificially distorting our image. The results were specially promising given that we
were classifying just isolated words images with no transcription, context informa-
tion or language model of any kind. Thus, it encouraged us to explore the addition
of context information or simple language models, that should significantly boost
the performance, specially in the mentioned case of surnames.

An interesting future work with this model would be to to perform some new
experiments in order to determine if the network is actually learning heuristic
similar to what a human would use. For instance, names, surnames and locations
usually start with a capital letter whereas occupations and other words usually do
not and some word endings have a much higher likelihood on a particular class.

We have also proposed two neural architectures to extract semantic informa-
tion from historical handwritten documents using context information. Contrary
to traditional two-step pipelines, which first transcribe the text and then label it
into semantic tags, we propose to extract the semantic categories without an in-
termediate transcription step. These approaches have two advantages: first, they
do not have to rely on a good transcription for a correct semantic labelling, and
secondly, they can naturally deal with out of vocabulary words. Moreover, our sec-
ond architecture, which integrates a CNN with a BLSTM-based language model,
is able to extract the semantic categories and associate them to individuals in the
record (i.e. semantic relations between terms). As a result, it is able to populate
a knowledge database with the document contents.

The experimental results have shown that our hypothesis and methodology
is valid, while outperforming the existing approaches. We believe that the good
performance of this new kind of approaches encourages further research. Recently,
fully end-to-end neural methods have shown to outperform other approaches in
a wide range of tasks. Moving in this direction, a logical next step would be
to reformulate the task in order to be able to work at line or paragraph/record
level, avoiding the need of segmenting into word images. In that sense, it would
be interesting to study the possibility of adapting techniques like content based
attention (often used in image captioning).

Developing useful and realistic data augmentation techniques for this kind of
problems is also an interesting challenge. Probably the easiest approach would be
generating new records by randomly selecting a record semantic labeling from the
ground-truth and filling it with random examples of relevant word images for the
corresponding semantic class. To do so we would have to find a way to deal with
multi-word entities. It would also be interesting for the sake of generalization to
produce new realistic semantic labelings rather than just randomly selecting them
from the ground-truth. For some documents, for example tabular documents where
each field is a set of paragraphs, expanding the scope beyond the paragraph level
would allow us to further exploit the context and explore complex relationships
among words located in different regions or cells.

Another possible future line of research is exploring how this semantic labeling
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can be used to improve the transcription. One of the most obvious ones is by
building category specific models for transcription, be it dictionaries or simply
probabilistic analysis of common prefixes/suffixes. Yet another possible line of
research is building new semantic based applications, such as semantic query-by-
example word spotting, which could be used to search instances of a surname with
spelling variations.

Finally, since extracting the semantic information directly from the image is sig-
nificantly different from traditional transcription based methods, it can probably
be expected that ensembles of both approaches can result in significant perfor-
mance improvements.
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Chapter 6

Conclusions and Future Work

In this last chapter of the thesis, we summarize the contributions and discuss
the performance of the proposed methods as well as their limitations and, finally,
we present possible lines of future work.

In this thesis we have studied different ways to access the information contained
in totally or partially handwritten documents. We call this process Information
Extraction, and it can require very different techniques depending on the type
of document. In this thesis we explored two big types of documents. The first
type are modern, highly structured form like documents, and the second type are
historical handwritten documents that were commonly used before the widespread
use of pre-printed forms.

6.1 Summary and Discussion

After an introduction to the topic of information extraction and the motivation
behind this thesis we start by analyzing an application scenario of Information Ex-
traction from electoral documents. Electoral documents usually combine printed
and handwritten information. They are very similar to forms in the sense that we,
in order to extract a specific piece of information, the easiest way to do it is just to
analyze a fixed position of the document image. It is worth noting the astonishing
variety of electoral documents. Most people only have the experience of voting in
a single country, therefore might have a wrong impression of the general problem.
The variability in electoral documents is not only due to differences in appearance
but rather a deep difference in the kind of information that can be contained in
those documents. Different electoral laws require a very different set of information

87
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from voters. There are countries like Spain, where the most common elections are
at Party level, and the only action from the voter is to choose from a set of fully
printed ballots. The next level of complexity would be candidate level elections,
where the voters are required to select k out of N candidates. Finally, we have
preferential voting where voters are required to rank-order the candidates. These
are just three examples to show different information that can be required from
voters, but devil is in the details. Concretely, how this information is supposed to
be reflected on the documents and how should the corner cases be interpreted.

It is quite common that, as researchers, we just focus on how to solve a general
case, oversimplifying the problem. In the first contribution of this thesis we made
an effort to describe some of the challenges that can be found when trying to
process electoral documents. We tried to link those challenges with document
analysis techniques that could be used to solve those issues. One of the goals of
making this study of electoral documents was to understand the whole process so
that we could find possible ways to improve current techniques. However, since
these modern kind of documents, have been already designed to be automatically
processed, huge efforts would be required to beat the traditional techniques that
were taken into account when designing those documents.

Therefore, if the best way to get the semantics of a given piece of information
is just to crop a predefined area of the image, we have to focus on improving our
handwriting recognition abilities. Analyzing the most well known state of the art
techniques at the time, we noticed that very powerful sequence processing neural
networks were being trained on top of handcrafted features, specific to a given
script and without a clear justification. Trying to improve the feature extraction
part seemed an obvious choice. Autoencoders are a popular dimmensionality re-
duction technique, and some of them have proven to produce meaningful hidden
representations for other problems. Using the reconstruction error metric allowed
us to use unlabeled data for training, which is a very good plus for handwritten
text, where manually anotated data is scarce. We could successfully use Varia-
tional Autoencoders to learn a feature representation useful to perform handwrit-
ing recognition. However, the improvement over traditional handcrafted features
was very modest, apparently, despite not having a clear justification to us, those
handcrafted features were quite robust. After careful consideration we noticed
that, autoencoders, despite producing remarkably meaningful features and discov-
ering a lower dimmensionality projection that could almost completely retain all
information, were not specifically required to be discriminative for the final goal
of transcription.

A second attempt at finding discriminative features for HTR came from at-
tribute embeddings. Attribute embeddings had been very successful in word spot-
ting, and were adapted to word recognition with dictionaries. Being able to tell
one word apart from another will somehow require features able to discriminate
between different characters. In the case of PHOC this was explicitly true, be-
cause the attributes were precisely, the presence or absence of a given character
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in the word. By using a network trained to perform attribute embedding on
full words, and sequentially applying it to patches of text, we can generate a se-
quence of observations that can be fed to a BLSTM+CTC. This means that we
get the discriminative power of attribute embedding approaches, avoiding their
limitations for recognition that were, mainly, that they are unable to deal with
out-of-vocabulary words and cannot be extended beyond word level. We had very
good results with this approach, however, one could argue that the complexity
of having to train two components independently can be considered a drawback,
specially now that the trend is to go towards end to end systems.

While working our HTR systems on marriage records datasets, we knew that
the final goal was to be able to deal with those documents as if we were processing a
form. We wanted to know the role of each word in a record. Therefore we adapted
the dataset to this new task by simplifying some transcriptions and unifying some
semantic classes to make everything more consistent. Finally we carefully thought
of a metric that could be fair for a task with two different levels of complexity
and that could be computed fairly for word and line level approaches. This bench-
mark was presented as a competition in the International Conference of Document
Analysis and Recognition. To further encourage research in this interesting area,
the competition was made permanent and the benchmark is available in an online
platform.

In order to build an information extraction approach fro fully handwritten
documents we need to transcribe and tag the sequence of words with semantic
labels. If Convolutional Neural Networks can learn to identify images of classes
like “dog” that have an amazing internal variability, would it be possible to classify
word images into semantic classes? We designed a CNN taking into consideration
the specific case of word images, and performed several experiments to tune the
network hyperparameters until we were finally able to get good results. But that
first system had obvious limitations, first of all, it was not leveraging any contextual
information. We tried to add contextual information to the system, at first we
tried to feed, not only the current word image, but also the predicted label of the
previous word. This greatly improved the performance for semantic categories, but
still did not allow us to capture long range dependencies among words. Finally we
adapted the network to process full, record level sequences with BLSTM achieving
state of the art results in the benchmark.

6.2 Future Work

We have been already highlighted several possible lines of future works throughout
the thesis. The final approach of this thesis to information extraction works at
word level, thus, it would require a reliable automatic word segmentation to be able
to work directly at other levels of segmentation (line, paragraph/record or page).
Therefore, an interesting line of research would be trying to find ways to extend
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this approach beyond word level, one possible way to do it would be the uses of
content based attention models, that have become quite popular recently. Another
line of research would be to adapt some of the newest object detection techniques
to detect handwritten words, these detectors could in fact use the predictions of
our model as an extra source of information to be able to detect relevant words. It
would also be very interesting to check how far this approaches can go in documents
with an even less rigid structure. It would also be very interesting to find ways to
leverage that semantic information to improve the transcription.

Regarding the Handwriting Recognition by attribute embedding approach, it
would be interesting to actually bring them to line level, checking for the best
way to model the inter word space. Two options come to mind, to model it
as an attribute by training the attribute embedding network with pairs of words
including the space as an extra attribute or to let the BLSTM to model it implicitly.
A future line of research with autoencoders seems harder, I would like to explore
how to add label information to the reconstruction loss. Of course, finding different
approaches that allow for a better performance for handwriting recognition would
be interesting. In particular, one approach that I think could be interesting is
training triplets to decide if two handwritten words share the same transcription.
Then we could embed a handwritten word into that space, and use that embedding
as a seed to a BLSTM based decoder that could generate the transcription.

In the field of form documents, the most interesting and challenging future line
of research, in my opinion, is towards being able to have really reliable systems
that can learn to understand the form, without the need of predefining the location
of the fields. Since, our final approach does precisely that, for documents that can
be described as a sequence of words, a possibly interesting line of research would
be to try a similar approach, adapted to work at page level, with form documents.



List of Publications

Journals

• J.Ignacio Toledo, Manuel Carbonell, Alicia Fornés and Josep Lladós. (2019)
Information Extraction from Historical Handwritten Document Images with
a Context-aware Neural Model, Pattern Recognition, (Q1)

International Conferences

• J.Ignacio Toledo, Jordi Cucurull, Jordi Puiggalí, Alicia Fornés and Josep
Lladós. (2015) Document Analysis Techniques for Automatic Electoral Doc-
ument Processing: A Survey. In "E-voting and Identity". 5th International
Conference on VoteID

• J.Ignacio Toledo, Alicia Fornés, Jordi Cucurull and Josep Lladós. (2016)
Election Tally Sheets Processing System. In 12th IAPR International Work-
shop on Document Analysis Systems (DAS)

• J.Ignacio Toledo, Sebastian Sudholt, Alicia Fornés, Jordi Cucurull, Gernot
Fink and Josep Lladós. (2016) Handwritten Word Image Categorization
with Convolutional Neural Networks and Spatial Pyramid Pooling. In IAPR
International Workshops on Structural and Syntactic Pattern Recognition
and Statistical Techniques in Pattern Recognition (S+SSPR)

• J.Ignacio Toledo, Sounak Dey, Alicia Fornés and Josep Lladós. (2017) Hand-
writing Recognition by Attribute embedding and Recurrent Neural Net-
works. In 14th International Conference on Document Analysis and Recog-
nition (ICDAR)

• Lei Kang, J.Ignacio Toledo, Pau Riba, Mauricio Villegas, Alicia Fornés and
Marçal Rusinol. (2018) Convolve, Attend and Spell: An Attention-based
Sequence-to-Sequence Model for Handwritten Word Recognition. In German
Conference on Pattern Recognition (GCPR)

91



92 CONCLUSIONS AND FUTURE WORK

• A.Fornés, V.Romero, A.Baró, J.I.Toledo, J.A. Sánchez, E.Vidal, J.Lladós.
(2017) Competition on Information Extraction in Historical Handwritten
Records. In 14th International Conference on Document Analysis and Recog-
nition (ICDAR)

arXiv

• Sounak Dey, Anjan Dutta, J.Ignacio Toledo, Suman Ghosh, Josep Lladós and
Umapada Pal (2017) Signet: Convolutional siamese network for writer inde-
pendent offline signature verification. In arXiv preprint arXiv:1707.02131

Awards

• First Prize Digitus II at 5th Edition of Generación de Ideas at Universitat
Autònoma de Barcelona.



Bibliography

[1] Minnesota senate recount: Challenged ballots: You be the
judge. http://minnesota.publicradio.org/features/2008/11/19_
challenged_ballots/, 2008.

[2] Citizen’s oversight projects. www.copswiki.org/Cops/BallotStatements,
2009.

[3] Elections ACT: Scanning of ballot papers. http://www.elections.
act.gov.au\mbox{/elections\_and\_voting/scanning\_of\_ballot\
_papers}, 2015.

[4] C. Adak, B. B. Chaudhuri, and M. Blumenstein. Named entity recognition
from unstructured handwritten document images. In 2016 12th IAPR Work-
shop on Document Analysis Systems (DAS), pages 375–380, April 2016.

[5] J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Word spotting and recog-
nition with embedded attributes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(12):2552–2566, 2014.

[6] Adnan Amin and Stephen Fischer. A document skew detection method using
the hough transform. Pattern Analysis & Applications, 3(3):243–253, 2000.

[7] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Man-
ning. Leveraging linguistic structure for open domain information extraction.
In ACL (1), pages 344–354. The Association for Computer Linguistics, 2015.

[8] Valentina Bachi, Antonella Fresa, Claudia Pierotti, and Claudio Prandoni.
The digitization age: Mass culture is quality culture. challenges for cultural
heritage and society. In Digital Heritage: Progress in Cultural Heritage.
Documentation, Preservation, and Protection. 5th International Conference,
EuroMed 2014. Lecture Notes in Computer Science, volume 8740, pages 786–
801. Springer, 2014.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

93



94 BIBLIOGRAPHY

[10] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and
Yoshua Bengio. End-to-end attention-based large vocabulary speech recog-
nition. In Proc. of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 4945–4949, 2016.

[11] Linda Baker and Ann L Brown. Metacognitive skills and reading. Handbook
of reading research, 1(353):V394, 1984.

[12] John Bernsen. Dynamic thresholding of grey-level images. In International
Conference on Pattern Recognition (ICPR), pages 1251–1255, 1986.

[13] Anne-Laure Bianne-Bernard, Fares Menasri, Rami Al-Hajj Mohamad,
Chafic Mokbel, Christopher Kermorvant, and Laurence Likforman-Sulem.
Dynamic and contextual information in HMM modeling for handwritten
word recognition. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 33(10):2066–2080, 2011.

[14] Théodore Bluche. Joint line segmentation and transcription for end-to-end
handwritten paragraph recognition. In Advances in Neural Information Pro-
cessing Systems, pages 838–846, 2016.

[15] Theodore Bluche. Joint Line Segmentation and Transcription for End-to-
End Handwritten Paragraph Recognition. In D D Lee, M Sugiyama, U V
Luxburg, I Guyon, and R Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 838–846. Curran Associates, Inc., 2016.

[16] Théodore Bluche, Jérôme Louradour, and Ronaldo Messina. Scan, attend
and read: End-to-end handwritten paragraph recognition with mdlstm at-
tention. arXiv preprint arXiv:1604.03286, 2016.

[17] Theodore Bluche, Hermann Ney, and Christopher Kermorvant. Tandem
HMM with convolutional neural network for handwritten word recognition.
In Proc. of the IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 2390–2394, 2013.

[18] Manuel Carbonell, Mauricio Villegas, Alicia Fornés, and Josep Lladós. Joint
recognition of handwritten text and named entities with a neural end-to-end
model. In 2018 13th IAPR Workshop on Document Analysis Systems (DAS),
March 2018.

[19] Wei Chen, Sankaranarayanan Ananthakrishnan, Rohit Prasad, and Prem
Natarajan. Variable-span out-of-vocabulary named entity detection. In IN-
TERSPEECH, pages 3761–3765, 2013.

[20] Jan Chorowski and Navdeep Jaitly. Towards better decoding and lan-
guage model integration in sequence to sequence models. arXiv preprint
arXiv:1612.02695, 2016.



BIBLIOGRAPHY 95

[21] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho,
and Yoshua Bengio. Attention-based models for speech recognition. In Proc.
of the International Conference on Neural Information Processing Systems,
pages 577–585, 2015.

[22] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural net-
works for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition CVPR 2012, 2012. Long preprint arXiv:1202.2745v1
[cs.CV].

[23] Markus Diem, Stefan Fiel, Angelika Garz, Manuel Keglevic, Florian Kleber,
and Robert Sablatnig. Icdar 2013 competition on handwritten digit recog-
nition (hdrc 2013). In Document Analysis and Recognition (ICDAR), 2013
12th International Conference on, pages 1422–1427. IEEE, 2013.

[24] Hervé Déjean, Stéphane Clinchant, Jean-Luc Meunier, and Florian Lang,
Eva Maria Kleber. Comparing machine learning approaches for table recog-
nition in historical register books. In 2018 13th IAPR Workshop on Docu-
ment Analysis Systems (DAS), March 2018.

[25] Reza Ebrahimzadeh and Mahdi Jampour. Efficient handwritten digit recog-
nition based on histogram of oriented gradients and svm. International Jour-
nal of Computer Applications, 104(9):10–13, October 2014.

[26] Salvador España-Boquera, Maria Jose Castro-Bleda, Jorge Gorbe-Moya, and
Francisco Zamora-Martinez. Improving offline handwritten text recognition
with hybrid HMM/ANN models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(4):767–779, 2011.

[27] Europeana. European digital cultural heritage platform.

[28] David Fernández-Mota, Jon Almazán, Núria Cirera, Alicia Fornés, and Josep
Lladós. Bh2m: The barcelona historical, handwritten marriages database. In
22nd International Conference on Pattern Recognition (ICPR), 2014, pages
256–261. IEEE, 2014.

[29] Andreas Fischer. Handwriting recognition in historical documents. PhD
thesis, University of Bern, 2012.

[30] Andreas Fischer, Volkmar Frinken, and Horst Bunke. Hidden markov models
for off-line cursive handwriting recognition. Handbook of Statistics: Machine
Learning: Theory and Applications, 31:421, 2013.

[31] Andreas Fischer, Andreas Keller, Volkmar Frinken, and Horst Bunke.
Lexicon-free handwritten word spotting using character hmms. Pattern
Recognition Letters, 33(7):934–942, 2012.



96 BIBLIOGRAPHY

[32] Alicia Fornés, Veronica Romero, Arnau Baró, J Ignacio Toledo, Joan Andreu
Sanchez, Enrique Vidal, and Josep Lladós. Competition on information
extraction in historical handwritten records. In International Conference on
Document Analysis and Recognition (ICDAR), pages 1389–1394, 2017.

[33] Volkmar Frinken and Horst Bunke. Continuous handwritten script recog-
nition. In Handbook of Document Image Processing and Recognition, pages
391–425. Springer, 2014.

[34] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In Advances in Neural Information
Processing Systems, pages 1019–1027, 2016.

[35] Nabil Ghanmi and Abdel Belaid. Separator and content based approach for
table extraction in handwritten chemistry documents. In Document Analysis
and Recognition (ICDAR), 2015 13th International Conference on, pages
296–300. IEEE, 2015.

[36] Nabil Ghanmi and Abdel Belaïd. Recognition-based approach of numeral
extraction in handwritten chemistry documents using contextual knowledge.
In Document Analysis Systems (DAS), 2016 12th IAPR Workshop on, pages
251–256. IEEE, 2016.

[37] Adrià Giménez, Ihab Khoury, Jesús Andrés-Ferrer, and Alfons Juan. Hand-
writing word recognition using windowed bernoulli HMMs. Pattern Recog-
nition Letters, 35:149–156, 2014.

[38] Angelos P Giotis, Giorgos Sfikas, Basilis Gatos, and Christophoros Nikou.
A survey of document image word spotting techniques. Pattern Recognition,
2017.

[39] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In International Conference on Artificial Intelligence and
Statistics, pages 315–323, 2011.

[40] Albert Gordo, Jon Almazan, Naila Murray, and Florent Perronin. Lewis:
Latent embeddings for word images and their semantics. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1242–1250,
2015.

[41] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmid-
huber. A novel connectionist system for unconstrained handwriting recogni-
tion. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI),
31(5):855–868, 2009.

[42] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhu-
ber. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proc. of the International Confer-
ence on Machine Learning, pages 369–376, 2006.



BIBLIOGRAPHY 97

[43] Alex Graves, Santiago Fernández, and Faustino Gomez. Connectionist tem-
poral classification: Labelling unsegmented sequence data with recurrent
neural networks. In In Proceedings of the International Conference on Ma-
chine Learning, ICML 2006, pages 369–376, 2006.

[44] Gill Hamilton and Fred Saunderson. Open Licensing for Cultural Heritage.
Facet Publishing, 2017.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE
Trans. on Pattern Analysis and Machine Intelligence (PAMI), 37(9):1904–
1916, 2015.

[46] Stuart C Hinds, James L Fisher, and Donald P D’Amato. A document skew
detection method using run-length encoding and the hough transform. In
10th International Conference on Pattern Recognition (ICPR), 1990, vol-
ume 1, pages 464–468. IEEE, 1990.

[47] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[49] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for
sequence tagging. CoRR, abs/1508.01991, 2015.

[50] Theron Ji, Eric Kim, Raji Srikantan, Alan Tsai, Arel Cordero, and David
Wagner. An analysis of write-in marks on optical scan ballots. In Proceed-
ings of the 2011 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections, EVT/WOTE’11, Berkeley, CA, USA, 2011. USENIX
Association.

[51] Douglas W. Jones. On optical mark-sense scanning. In David Chaum,
Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh,
Miroslaw Kutylowski, and Ben Adida, editors, Towards Trustworthy Elec-
tions, volume 6000 of Lecture Notes in Computer Science, pages 175–190.
Springer, 2010.

[52] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical ex-
ploration of recurrent network architectures. Journal of Machine Learning
Research, 2015.

[53] Daniel Keysers, Christian Gollan, and Hermann Ney. Local context in non-
linear deformation models for handwritten character recognition. In 17th
International Conference on Pattern Recognition (ICPR), 2004., volume 4,
pages 511–514. IEEE, 2004.



98 BIBLIOGRAPHY

[54] Eric Kim, Nicholas Carlini, Andrew Chang, George Yiu, Kai Wang, and
David Wagner. Improved support for machine-assisted ballot-level au-
dits. In Presented as part of the 2013 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections, Berkeley, CA, 2013. USENIX.

[55] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In
International Conference on Learning Representations (ICLR), 2014, page 1,
2014.

[56] N. Kooli and A. Belaïd. Inexact graph matching for entity recognition in
ocred documents. In 2016 23rd International Conference on Pattern Recog-
nition (ICPR), pages 4071–4076, Dec 2016.

[57] Praveen Krishnan, Kartik Dutta, and CV Jawahar. Deep feature embedding
for accurate recognition and retrieval of handwritten text. In Proc. of the
International Conference on Frontiers in Handwriting Recognition, pages
289–294, 2016.

[58] Praveen Krishnan, Kartik Dutta, and CV Jawahar. Word spotting and recog-
nition using deep embedding. In Proc. of the IAPR International Workshop
on Document Analysis, 2018.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In F Pereira, C J C
Burges, L Bottou, and K Q Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1097–1105. 2012.

[60] Daniel S Le, George R Thoma, and Harry Wechsler. Automated page ori-
entation and skew angle detection for binary document images. Pattern
Recognition, 27(10):1325–1344, 1994.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[62] Y LeCun, L Bottou, Y Bengio, and P Haffner. Gradient Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[63] Yann LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Handwritten Digit Recognition with a Back-
Propagation Network. NIPS, pages 396–404, 1990.

[64] Yann Lecun and Corinna Cortes. The MNIST database of handwritten
digits.

[65] Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako, and Hiromichi Fujisawa.
Handwritten digit recognition: benchmarking of state-of-the-art techniques.
Pattern Recognition, 36(10):2271–2285, 2003.



BIBLIOGRAPHY 99

[66] Josep Lladós, Marçal Rusinol, Alicia Fornés, David Fernández, and Anjan
Dutta. On the influence of word representations for handwritten word spot-
ting in historical documents. International journal of pattern recognition and
artificial intelligence, 26(05):1263002, 2012.

[67] Daniel P. Lopresti, George Nagy, and Elisa H. Barney Smith. Document
analysis issues in reading optical scan ballots. In David S. Doermann, Venu
Govindaraju, Daniel P. Lopresti, and Premkumar Natarajan, editors, Doc-
ument Analysis Systems, ACM International Conference Proceeding Series,
pages 105–112. ACM, 2010.

[68] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
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