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If we have chosen the position in life

in which we can most of all work for

mankind, no burdens can bow us

down, because they are sacrifices for

the benefit of all; then we shall

experience no petty, limited, selfish

joy, but our happiness will belong to

millions, our deeds will live on quietly

but perpetually at work, and over our

ashes will be shed the hot tears of

noble people.

Karl Marx
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Abstract

Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa

Department of Mechanical Engineering

by Dhananjay Ghangale

This thesis presents a methodology for assessing induced ground-borne vibration due

to underground railway infrastructures in the context of an urban environment. The

methodology is based on a comprehensive numerical approach for modelling track/tun-

nel/soil systems considering a full-space model of the ground. This approach is formu-

lated in the wavenumber-frequency domain and it is based on coupled finite element-

boundary element method. An axisymmetric formulation to deal with circular under-

ground railway tunnels is included in the approach in order to improve the computational

speed of the methodology. This formulation can also be used for other types of railway

tunnels if a circular boundary of the boundary element mesh is considered. The de-

veloped approach also includes asymptotic solutions of the Green’s functions for large

wavenumbers which results in an improvement of the accuracy of the overall methodol-

ogy. A hybrid methodology which uses semi-analytical solutions of a cavity in a full-space

in conjunction with the previously described approach has been developed with the aim

of computing the energy flow radiated upwards by underground railway tunnels. Since

this methodology uses finite elements to model the tunnel structure, its modelling detail

is higher than the previously developed methodologies based on semi-analytical mod-

elling of the tunnel structure. This hybrid methodology has been specifically designed

for the study the vibration radiation of railway tunnels, the comparison between them

and for the study of the insertion loss of mitigation measures at the sources, as soft

rail-pads, under-ballast or under-slab mats, dynamics vibration absorbers, etc. In this

thesis, this hybrid methodology is used to perform a comparison of the energy flow ra-

diated upwards by various types of underground railway tunnels. Finally, a modelling

approach for the re-radiated noise induced by a train passage inside railway tunnels is

presented. This approach is based on the weak coupling between the comprehensive

numerical approach for modelling track/tunnel/soil previously described and a two-and-

a-half-dimensional boundary element method model for interior acoustics. Using this

modelling approach, the influence of the fastener stiffness on the noise and vibration

levels inside a simple tunnel as well as the relation between the noise emitted by the

rails or the tunnel structure is investigated and discussed.
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This chapter begins with a brief introduction to railway-induced ground-borne vibration

and noise problems and justifies the main reasons that led to the development of the

present work. The chapter concludes with a brief outline of the contents of each of the

chapters in the thesis.

1.1 Justification of the work

Noise and vibration pollution in urban areas is a major issue of concern for governments

and administrations due to the increasing preoccupation by the general population about

the effects on their comfort and quality of life. One of the most important sources

that cause this contamination is railway traffic. In the past, when infrastructures were

constructed in urban areas, the concern was focused on the airborne noise emitted

by at-grade railway infrastructures, mainly due to the rolling noise: noise radiated by

the rail and wheel due to their vibrations induced by the wheel/rail contact excitation

mechanism. Nowadays, in contrast, as most of the urban railway lines are underground,

the focus is placed on the ground-borne railway-induced vibration and noise in buildings.

Ground-borne vibration is perceived as mechanical vibration of the human body in a

relevant frequency range from 1 Hz to 80 Hz and ground-borne noise (also known as

re-radiated noise) is perceived as a sound emitted by the building structure in a relevant

frequency range from 16 Hz to 250 Hz [1].

Since almost all developed regions of the world have laws to regulate the maximum levels

of noise and vibration to which the population is exposed, predictions of these levels

must be carried out in designing new railway infrastructures or when new buildings

are planned to be located near existing ones. The operation of underground railway

infrastructures could affect the quality of life of the inhabitants in the buildings and

could also affect the structural health of nearby buildings (mostly old and historical),

facilities or other infrastructures. Also, the noise generated from these underground

railway infrastructures affects the comfort of the passengers inside the vehicle as well as

the commuters on the train station [2, 3, 4].

In the literature, three models dedicated to studying the ground-borne vibration induced

by railway infrastructures are encountered: empirical models, semi-analytical models and

numerical models. Empirical models are based only on statistically treated experimental

measurements data and cannot accurately represent particular cases. Semi-analytical

models describe the dynamic behaviour of the system using in the basis of the com-

bination of simple systems, like beams, plates, shells and half-spaces. They allow to

deeply understand the mechanics of the considered problems. These models are much
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more adaptive to particular cases than empirical models and computationally less taxing

as compared to the numerical model. These analytical models are good models in the

initial design stages of a new railway line project or to cover a large number of different

situations in an efficient way. However, one of the disadvantages of these models is that

they can only model the system in terms of geometrically simple systems, which means

that they can not be used for detailed studies. Thus, when the detailed prediction of

a particular system is required, numerical models are the most suitable solution, since

they ensure higher accuracy.

Most of the numerical methods are based on some kind of discretisation of either the

domain or the boundary of the domain. Specifically speaking about two of the most used

methods in the field, the finite element method (FEM) is based on the discretization

of the domain or boundary element method (BEM) is based on the discretization of

only the boundary. However, these numerical methods are slow. Meshless methods,

like the method of the fundamental solutions (MFS) are also being used to improve the

computational speed by numerical modelling. However, these meshless methods are not

quite as robust as mesh-based ones. As the railway infrastructures are mostly assumed

to be invariant in one direction, a two-and-a-half dimensional approach (2.5D) can be

used. In the present work, the numerical methodology presented is based on a 2.5D

FEM and 2.5D BEM approaches.

In order to increase the efficiency on the prediction of railway-induced ground-borne

or structural-borne vibration and noise, fast methods based on coupled finite element-

boundary element method in two and a half-domain (2.5D FEM-BEM) to study the

railway-induced ground-borne vibration are developed in this thesis. Moreover, this

thesis presents a methodology to assess the efficiency of a vibration mitigation coun-

termeasures used in underground infrastructures by computing the vibration energy

radiated upwards that has been developed and applied for realistic study cases. In or-

der to perform analysis of noise radiation due to train pass in closed domains, a 2.5D

acoustic BEM is also developed. The main highlights of this thesis are summarised as

follows:

1. A numerical methodology based on a 2.5D FEM-BEM approach and on the semi-

analytical solutions of a cavity in a full-space for the computation of the vibration

energy flow in the soil radiated by underground railway infrastructures is estab-

lished.

2. A decoupled methodology based on a coupled 2.5D FEM-BEM approach and a

2.5D acoustic BEM for the computation of re-radiated noise in underground rail-

way infrastructures is presented.
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3. A 2.5D acoustic BEM with regularised integral for computation of sound radiations

has been developed in the context of this thesis.

4. An efficient wavenumber-frequency sampling strategy for obtaining an accurate

response of the system due to a train pass-by excitation is presented.

5. Fast methods for obtaining the 2.5D BEM matrices required in the overall method-

ology have been derived and implemented in the context of this thesis.

6. Application examples of realistic study cases of the methodologies developed in

this thesis are presented. Specifically, a study of the validity of the assessment of

vibration reducing countermeasures by one accelerometer on the tunnel wall.

1.2 Thesis outline

The thesis is organised in six chapters. In this chapter, the justification and organisation

of the thesis are presented. Chapter 2 focuses on the review of the literature relevant

to the thesis topic. Chapter 3 presents the theoretical framework concerning the 2.5D

FEM-BEM. It also presents the new developments that have been incorporated in the

2.5D FEM-BEM that results in improving the computational cost of the 2.5D FEM-

BEM. Chapter 4 focuses on the development of a computation scheme for energy flow

radiated by underground railway tunnels on account of train passage. Chapter 5 is an

extension of Chapter 4 and focuses on the study of the validity of the assessment of

vibration reducing countermeasures by one accelerometer on the tunnel wall. Chapter

6 focuses on developing a decoupled computation scheme for the re-radiated noise gen-

erated inside an underground railway tunnel by train passage. In this chapter, a 2.5D

BEM approach for acoustic problems is presented together with a study on the influence

of the stiffness of the fasteners as vibration reducing countermeasures on the noise and

vibration response of existing underground infrastructure. Finally, the conclusions of

this thesis are presented in chapter 7, where some recommendations and considerations

for future research in this area are presented.
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In this chapter, the literature review of the publications relevant to the thesis is pre-

sented. The chapter presents a summary of the semi-analytical and numerical models

encountered in the literature that are used in the analysis of problems in elastodynamic

and acoustic. As the thesis presents a methodology that has been specifically designed to

be used in general assessment studies about ground-borne underground railway-induced

vibrations where decisions on the type of track and/or the application of mitigation

measures at the sources, as soft rail-pads, under-ballast or under-slab mats have to be

made, an overview of isolation countermeasures used for mitigating of vibration radiated

by railway infrastructures is also presented.

2.1 Introduction

Several approaches have been developed in the past two decades to achieve railway-

induced ground-borne noise and vibration predictions. Fundamentally, these prediction

approaches are of three kinds: empirical, analytical and numerical [5]. Empirical models

are based on measurements performed on specific sites and, thus, in the majority of

cases, are not usually suitable for predictions of new infrastructures. A detailed review

of railway-induced ground-borne vibration can be found in [6, 7, 8]. In general, analytical

and numerical approaches are the most commonly used methodologies nowadays. They

are all based on at least one of the main excitation mechanisms [9]:

• The quasi-static excitation, which is induced by the the static component of the

train axle loads moving along the track. In general, it has a low-frequency content

(<20 Hz), which shifts to lower frequencies with increasing distance from the

track and to higher frequencies with increasing train speed [10]. This excitation

dominates the ground-borne vibration in the case of high-speed trains with running

speeds close to the Rayleigh phase velocity of the ground (trans-Rayleigh trains).

In contrast, for typical urban train speeds (sub-Rayleigh trains), this excitation

only dominates the track response [11].

• The dynamic excitation, which is induced by the dynamic component of the wheel-

rail contact forces generated, basically, by the spatial variation of the support

stiffness and track roughness. It has a high-frequency content in general: between

20 Hz and 250 Hz. In the case of sub-Rayleigh trains, this excitation mainly

dominates the ground-borne vibration.
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2.2 Semi-analytical models

Hunt et al. [12, 13] presented an analytical-stochastic methodology to calculate ground-

borne vibration in buildings due to underground railway traffic from a three-dimensional

(3D) point of view. In this model, the building is assumed to be an infinitely long

structure composed of beams, columns and a piled foundation, in which a homogeneous

half-space model for the ground is assumed. Also assumed in that work was a weak

coupling between the incident wave field due to the railway traffic and the building

structure, which means that the free field displacements of the ground are assumed to

be the excitation of the ground/building structure model uncoupled with the railway

infrastructure. This incident wave field was calculated using a stochastic modelling of

the vibration generation and propagation mechanisms [14].

Recently a theoretical model was formulated in a moving coordinate system to evaluate

the propagation constants and the localisation factors of a periodic jointed tunnel by

[15]. The periodic tunnel was approximated as a pipe-beam model with periodic joints

on elastic foundations. Timoshenko beam theory was utilised for the tunnel segment,

while the segment joints were simplified as linearly elastic springs. A three-dimensional

analytical model for the prediction of ground vibrations from two parallel tunnels embed-

ded in a full-space was presented by [16]. The two tunnels were modelled as cylindrical

shells of infinite length, and the surrounding soil was modelled as a full-space with two

cylindrical cavities. Closed-form semi-analytical solution for the vibrations due to a

moving point load in a tunnel embedded in a half-space by [17]. An analytical method

to calculate ground vibrations from a tunnel in a multi-layered half-space was presented

in [18].

The most recognised semi-analytical model for underground ground-borne vibrations is

probably the Pipe-in-Pipe (PiP) model, developed by Forrest and Hunt [19, 20]. The

initial formulation has been later improved and used for obtaining a wide variety of

results. Hussein and Hunt [21] coupled the tunnel-soil model to a floating-slab track

model. Moreover, Gupta et al. [22] compared the PiP model results to those obtained

using a coupled FEM-BEM periodic model of the superstructure/tunnel/soil system,

and they highlighted the advantages and limitations of both models as well. Hussein et

al. [23] extended the initial full-space formulation to a half-space one using the full and

half-space 2.5D elastodynamic Green’s functions obtained by Tadeu and Kausel [24, 25].

The extension to a layered half-space using a fictitious force method has been recently

presented by Hussein et al. [26]. On the other hand, it should be mentioned that the PiP

model is unable to deal with alternative construction geometries such as the mentioned

double-deck tunnel.
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2.3 Numerical models

Regarding the modelling, the complete system related to underground railway-induced

vibration problems, a model that accounts for the vehicle, the track, the tunnel, the

ground and the building has to be constructed. The first predictive methodology that

works with the complete system, which consists of the vehicle, the superstructure, the

tunnel, the ground and the building, was developed by [27]. This methodology uses a

two-dimensional (2D) finite element (FE) model to compare the train-induced vibration

in a building for two superstructure systems: direct fixation fasteners (DFF) and floating

slab track (FST). Both FE models for DFF and FST superstructures are excited by a

pair of unit harmonic loads applied on the rail-heads, in order to determine the steady-

state responses. Later, [28] extended the previous model to take into account quasi-static

and dynamic excitation by making an equivalency for the case of non-moving wheel/rail

contact forces. In another paper, Balendra et al. [29] developed a 2D analytical model

of the same complete system by using a sub-structuring technique. However, 2D models

do not take into account the wave propagation in the direction of the track and, even

more important, they cannot account for the train motion along the track [30].

Stamos and Beskos [31] have used the three dimensional (3D) boundary element method

(BEM) in determining the response of underground elastic structures. 3D BEM has

also been used in the analysis of noise radiation, for example for the study of acoustic

scattering [32] and in the analysis of acoustic barriers [33]. A disadvantage of the BEM

is its instability on modelling thin geometries, as pointed out by Tadeu et al. [34].

Coupled formulations usually based on the finite element method (FEM) and BEM are

proposed to address the disadvantage of using only BEM or FEM. These formulations

have been proposed to study soil-structure interaction problems using a sub-domain

decomposition where, in most of the cases, the structure is modelled with a domain

discretisation method, like FEM, and the soil is modelled with a boundary discretisation

method, like BEM. Bordon et al [35] have used a combined FEM-BEM approach to study

the fluid-structure interaction of thin elastic bodies in his model the fluid is modelled

using BEM while FEM is used to model the elastic body. Appropriate boundary and

compatibility condition are utilised to couple the FEM and BEM equations. 3D BEM-

FEM coupled models have also been used by Padron [36] in the analysis of piles and pile

group embedded in the elastic medium.

In the context of railway-induced noise and vibration problems, Anderson and Jones [37]

presented a comparison of 3D and two dimensional (2D) FEM-BEM methods for the

analysis of vibration from railway tunnels. In these comparisons, it was found that a fully
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3D model should be used in order to obtain correct predictions of the wave propagation,

at least in the near field. However, the computational cost of 3D methodologies is always

higher than the 2D ones. Coupled 3D FEM-BEM was used by Everstine et al. [38] to

study fluid-structure interaction. In this method, FEM was used to model structure and

the surrounding fluid was model with BEM. An edge-based smooth FEM (ES-FEM) was

proposed in [39, 40] to solve 3D acoustic problems in mid-frequency, as ES-FEM reduces

the numerical dispersion error in low to mid-frequency range. The proposed method

showed better accuracy than FEM-BEM based on quadrilateral boundary elements.

Fiala et al.[41] developed a 3D methodology to calculate the ground-borne vibration

and re-radiated noise on buildings for the case of at-grade infrastructures, based on

an FE model of the building structure coupled with a boundary element (BE) model

of the layered ground [42]. To compute the incident wave field induced by the train

excitation, a weak coupling between this incident wave field and the building structure

is also assumed. A longitudinally invariant track is assumed to calculate the free field

ground surface displacements of the vehicle/superstructure/ground system, where the

ground is modelled in the wavenumber-frequency domain by means of a BE methodology

using the Green’s functions of a layered half-space.

In order to reduce the required computational time for 3D models, two important

methodologies appear: the 3D periodic approach [43, 22, 44] and the 2.5D approach

[30, 45, 46] Fiala et al. [47] have used a methodology for analysis of vibrations of un-

derground trains where, in order to take into account, the track longitudinal variability,

they have used the well-established 3D periodic FEM-BEM model, previously devel-

oped by [43], for the computation of the free field ground surface displacements of the

vehicle/superstructure/tunnel/ground system. This 3D periodic FEM-BEM approach

has been extensively validated with analytical models, such as the ”Pipe-in-Pipe”(PiP)

model [22], and with experimental measurements [44].

Another relevant approach that is able to calculate the incident wave field due to railway

traffic in a 3D is the 2.5D approach [42, 48, 49, 50, 9]. The methodology is applied to 3D

cases, where the geometry is invariant (or assumed to be) in one direction. It involves

taking Fourier transform of the coordinate of invariant direction and solving a set of

2D problems which are then Fourier anti-transformed to obtain the 3D solution. The

advantage of this methodology is the reduction of the mesh dimensions by one. This

methodology is being widely used nowadays, giving good results in the prediction of

ground-borne vibration [30, 9, 51].

2.5D FEM was used for the simulation of wave propagation in the ground by high-speed

train passage by Bian et al. [52]. Wave dissipation in the far field was taken into account
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with absorbing boundaries constructed with frequency dependent dash-pots. However,

the disadvantage of the using FEM combined with absorbing boundaries is the low

computational speed and accuracy associated with the methodology.

Coupled formulation based on FEM and BEM in 2.5D was proposed by Sheng et al.

[53, 30]. In this method the soil was modelled with BEM, the tunnel structure with

FEM and the rails are assumed to be Euler beams. The BEM in that formulation used

full-space Green’s functions and, as a result, mesh truncation and meshing of layer in-

terfaces is required in order to model layered half-spaces. Moreover, the singular terms

appearing in BEM are explicitly computed in that methodology. Jin et al [54] validated

the 2.5D FEM-BEM with experimental measurements. The method is based on [30] in

this method the tunnel structure and the track are modelled using solid and beam finite

elements while the ground is modelled using boundary elements. Recent investigations

[50, 55] propose significant improvements of this methodology by using a regularised

boundary integral as an alternative to the evaluation of the singular integrals which

appear in the 2.5D BE formulation. Moreover, the direct stiffness matrix method for

layered half-spaces [24] is used instead of the 2.5D fundamental solution of a homoge-

neous full-space, achieving very significant simplifications of the meshing problem. [56]

has proposed a more efficient method to compute these Green’s functions.

Lopes et al. [57] proposed a methodology for simulating the vibrations induced by traf-

fic from the tunnel to the building in which the solution for the tunnel ground system

is developed using a 2.5D technique based on the finite element method, and adopt-

ing perfectly matched layers (PML’s) to model the waves in the soil. An alternative

methodology was proposed by [58] which uses a mesh-less method of fundamental solu-

tion (MFS) instead of PML to model soil-structure interactions. MFS is preferred over

PML for its computational efficiency of modelling large domains. In another approach.

However, despite the computational advantages of MFS, significant errors can be in-

troduced as the correctness of the MFS results is dependent on the number of virtual

sources and on the distance between virtual sources and collocation points [59]. Tadeu

et al. [60] found that the accuracy of MFS along with the domain strongly depends on

the accuracy of the pre-calculated boundary conditions.

A hybrid model that used BEM to model the propagation of waves in the soil and cavity

solution to model the tunnel was used to study the dynamic interaction between the

Central line tunnels and those of Crossrail by Brooks et al. [61]. Germonpre et al. [62]

proposed a model based on the wave analysis technique and PML to model a track that

varies in the longitudinal direction and can be used to model parametric excitation due

to any type of track stiffness variation. [45] proposed a method based on finite element
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coupled with scaled boundary finite-element (SBFM), to study the ground vibration of

underground railways. In this method, the unbounded domain is simulated by SBFEM.

In the context of modelling noise radiated by a structure in railway-induced ground-borne

noise and vibration problems, Romero et al. Romero et al. [63] proposed a methodology

based on coupled FEM-BEM where BEM was used to model unbounded solid domains

and solid and/or fluid bounded domains were modelled with FEM. In this paper, a 2.5D

FEM was developed to model interior acoustics assuming a strong coupling with the

structural system. Subsequent improvements were made to this method by incorporating

in BEM approach the Green’s functions of a fluid-solid medium to represent a solid half-

space flattened by a fluid medium [64]. This allows for modelling exterior acoustics in

soil-structure interaction problems.

A 3D FEM-BEM methodology has also been used by Fiala et al. [41, 47] to model the re-

radiated noise in buildings arising from ground-borne vibrations induced by underground

railway traffic. In this model, the track/tunnel/soil system is modelled using the method

presented in [9], which is based in a 2.5D FEM-BEM approach, and the structural

building/soil system is modelled by means a 3D FEM-BEM, assuming a weak coupling

between this two systems. The building interior acoustics is computed by means of

a spectral FEM, also considering a weak coupling between the acoustic field and the

structural vibration. Colaço et al. [65] also proposed a decoupled approach for the

computation of the re-radiated noise in buildings generated by railway-induced ground-

borne vibration that, in this case, uses MFS to study the interior acoustics problem.

Sheng et al. [66] have used a decoupled BEM approach in the analysis of noise radiated

in at-grade railway tracks.

2.4 Isolation countermeasures

The analysis of the vibration from the source to the receiver allows designing better

vibration reducing countermeasures. A comprehensive overview of the state of the art on

railway-induced ground vibration concerning governing physical mechanisms, prediction

methods, and mitigation measures has been presented by [67]. A continuous row of heavy

masses forming a wall next to the track was studied as a mitigation measure for railway

induced ground-borne vibration by [68]. The effectiveness of this countermeasure was

determined by means of a 2.5D FEM-BEM method. It was found that the masses were

effective at a site which has soft soil and the performance of the masses was dependent

on the height and width of the wall of the masses. Another countermeasure similar to

the one just described is the use of sheet pile [69].
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Vibration isolation at the source is the most common practice in control of railway-

induced vibrations. It is achieved by changing the dynamic behaviour of the track

through the insertion of resilient elements or additional masses to the track structure.

The former includes using resilient elements beneath the rails or the sleepers, such as

rail pads or under sleeper pads and the latter achieved by the use of floating slab and

ballast mats in the slab and ballasted tracks, respectively [70]. Sub-grade stiffening is

also used as vibration reducing countermeasure [71].

Rail pads are elastic polyurethane mats which are installed directly under the foot of the

rail. The effectiveness of railpads stiffness is evaluated in the work of [72] which shows by

decreasing the railpads stiffness, the power radiation at high frequencies (above 70Hz)

will be decreased by an average of 14 dB. Under sleeper-pads are special pads which are

placed between the sleepers and the ballast. By using under sleeper pads not only the

force of the train is expected to be distributed to more sleepers but also it is expected

that vibrations in the ballast and in the ground are reduced.

Ballast mats were also used as vibration reducing countermeasure by Costa et al. [70].

It was found that the ballast mat has a dual effect, focusing on the train–track dynamic

behaviour and on the reduction of high-frequency vibrations that are transmitted to the

ground. Furthermore, it was found that global efficiency can be reached by placing the

mat beneath the sub-ballast instead of below the ballast layer. A set of inclusions buried

in the soil has been investigated as a possible countermeasure by [73].

A floating-slab track is widely known as an effective measure for railway-induced ground-

borne vibration from underground tunnels. Rubber bearings or steel springs are mounted

between the tunnel bed and the slab, which can be continuous or discontinuous. In par-

ticular, vibration isolation efficiency of continuous and discontinuous floating slab tracks

are analysed and compared in the work of [10]. They concluded that both continuous

and discontinuous floating slab tracks have a similar efficiency in the frequency range

well above the isolation frequency of the slabs while because of the importance of the

parametric excitation in discontinuous case, it has poorer efficiency at low frequencies.

In the middle frequency range, ballast mats are an efficient way to reduce vibrations.
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The chapter presents the elastodynamic 2.5D FEM-BEM methodology used in the thesis

for analysis of vibration and noise problems generated/induced by railway infrastruc-

tures. The chapter is divided into three sections. Sec. 3.1 presents the theoretical

framework of the method used in thesis, Sec. 3.2 presents the novelties of the coupled

2.5D FEM-BEM developed in the thesis. The chapter concludes with the verification of

the numerical methodology.

3.1 2.5D FEM-BEM

In this thesis, the 2.5D FEM-BEM methodology for modelling the track/tunnel/soil

system is based on the formulation presented in [50], which uses a regularisation of the

Green’s function. The advantage of this methodology is the avoidance of explicit compu-

tation of singular terms on account of global regularisation of boundary element matrices.

The simplicity of its implementation being its other advantage. In this method, the re-

sponse is obtained by constructing a global stiffness matrix in a FEM framework. The

structure/soil problem (tunnel/soil system in chapter 4 and track/tunnel/soil system in

chapter 6) is modelled with the coupled 2.5D FEM-BEM and the equation for solving

it is given by

[K0 − ikxK1 + k2
xK2 + K̄s − ω2M]Ū = F̄ , (3.1)

where kx is the wavenumber associated to the x coordinate (the Fourier image in x

direction), ω is the angular frequency which takes into account the effect shift property

of Fourier transform and

ω = ω̃ + kxvt. (3.2)

K0, K1 and K2 are the stiffness matrices related to the domain modelled with 2.5D

FEM, M is the mass matrix of the structure and K̄s is the dynamic stiffness matrix

of the soil obtained from the 2.5D BEM model. The stiffness and mass matrices of

the structure are independent of the wavenumber and the frequency, while the stiffness

matrix of the soil is a function of them. Moreover, F̄ represents the vector of external

forces and Ū is the vector of displacements, both defined in the 2.5D domain.

The stiffness matrix of the soil appearing in Eq. (3.1) is obtained by

K̄s = TmŪ−1
b [T̄b + I], (3.3)

where, T̄b, Ūb are matrices related to the Green’s tractions and displacements computed

on the boundary, respectively, I represents the identity matrix and Tm is the transfor-

mation matrix that converts the unknown nodal tractions on the boundary to nodal
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forces. The later is given as Tm =
∫

NTNdS, where N is the matrix of nodal shape

functions of the boundary element discretisation. The unknown nodal tractions T̄b on

the boundary can be found by solving the following boundary integral equation:

[T̄b + I]Ūb = ŪbT̄b, (3.4)

where Ūb is the vector of nodal displacements on the boundary and it is obtained by

solving of Eq. (3.1). For the regularisation process applied in this approach, 2D static

Green’s function presented in App. A has been employed. Using this 2.5D FEM-BEM

approach the structural velocity along the structure-acoustic interface can be obtained

and, then, used as the input excitation for the acoustic model, with the assumption

that the acoustic response does not affect the elastodynamic response of the building.

This procedure is also adopted in Colaço et al. [65], who also describe the suitability

of this approach. In this approach, structural damping is considered for the structures

involved, treating the special case of the soil with the damping model presented at [74].

In this thesis, vectors are denoted by upper case bold italic letters and matrices and

tensors are represented by upper case upright bold letters. Variable in wavenumber-

frequency domain are denoted with a bar notation, variables in wavenumber-moving

frequency domain are denoted with tilde notation while variables in frequency domain

are denoted by capital letters. In this thesis a double Fourier transform is defined as

Ḡ(kx, ω) =

∫ +∞

−∞

∫ +∞

−∞
g(x, t)ei(kxx−ωt)dxdt, (3.5)

for the transformation from the space-time domain to wavenumber-frequency domain

and the anti-transform is defined as

g(x, t) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
G̃(kx, ω)e-i(kxx−ωt)dkxdω. (3.6)

3.2 Fast computation of elastodynamic BEM matrices

The computation of the stiffness matrix of soil involves the computation of the BEM

matrices related to traction and displacement. In order to obtain these matrices, the

computation of traction and displacement Green’s functions for a set of source and

evaluation points is required. For a BEM mesh, the source points are placed on the

BE nodes and the evaluators are given by the Gaussian integration points along all the

BE. Thus, the computation of BEM matrices involves the computation of the Green’s

function for all combinations of source/evaluation points. It is important to note that
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the more the amount of BE is, the larger the amount of source points and evaluators is

and the higher the computational time for computing the BEM matrices becomes. In the

method of François et al. [50] the Green’s functions are computed on a grid of points and

then an interpolation procedure is used to obtain the response at the required evaluators.

However, interpolation could induce inaccurate results (with a sparse grid) or become

computationally expensive (with a dense grid). In the present work, Green’s functions

are computed without the need for interpolation and in a computationally efficient way.

Two strategies are discussed here which enables to accomplish this. The first strategy can

be applied to any problem geometry. It involves fast computation of Green’s function

discussed in Sec. 3.2.1. The next strategy, discussed in Sec. 3.2.2, is only valid for a

special class of problems encountered in underground railway infrastructures, specifically

underground circular tunnels where the geometry of the system is axisymmetric,.

3.2.1 Fast computation of the Green’s functions in a full-space

As discussed previously, the computational time associated to the calculation of the

tractions and displacements Green’s functions depends on the amount of source and

evaluation points and on the number of discrete values for the wavenumber and the

frequency. In a homogeneous full-space, the Green’s functions are not a function of

particular locations of the source and the evaluator: they are only a function of the

relative distance between source and evaluation points. Relative distances between all

source/evaluator combinations are contained in a smaller set of unique source/evaluator

relative distances. Exploiting this fact, the fast computation of Green’s functions is

accomplished by computing the Green’s function for this unique set of source/evaluator

relative distances and then mapping them in order to obtain the Green’s function for the

complete set of source/evaluator combinations. This mapping also requires multiplying

the Green’s function with a transformation matrix that is described below. If all the BE

of the BEM mesh have the same length, the unique set of source/evaluator combinations

distances is the smallest. Exploiting this fact, the present methodology proposes to

design the BEM mesh ensuring that all the elements have the same length.

In order to compute the Green’s functions for displacement and traction for unique

source/evaluator relative distances in the full-space, it should be noted that the depen-

dency of the Green’s functions for displacement and tractions on radial and angular

coordinates can be separated into two functions: one only dependent on the relative ra-

dial distance and the other one only on the relative angle. The procedure to obtain the

Green’s function for any source/collocation point from the ones obtained at the unique

source collocation point is as follows:
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• Initially, the relative angles of all the source/evaluator combinations θ and the

angles of the normals associated to all the evaluators φ are computed by

φ = arctan(ny/nz), θ = arctan(y/z), (3.7)

where ny and nz are the normals and y and z are the relative distance in y and z

directions.

• The normal are redefined as:

ny = cos (φ− θ), nz = sin (φ− θ), (3.8)

• The displacement and traction Green’s functions for the unique set source/eval-

uator relative distances, which are represent by H̄us and T̄us, respectively, are

obtained using the Green’s function provided in [25] considering z = 0.

• The displacement Green’s functions at the required source/evaluators can be ob-

tained as:

H̄ = T−1
θ M(H̄us)Tθ (3.9)

where Tθ is defined in Eq. (3.11) andM(.) represents the operation of the mapping

from the unique set of source/evaluator relative distances to the required set of

source/evaluator combinations.

• Similarly, the traction Green’s functions can be obtained as

T̄ = T−1
θ (M(T̄us) ◦Tφ)Tθ (3.10)

where

Tφ =


ny ny nz

ny ny nz

nz nz ny

 Tθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (3.11)

and where ◦ represents the Hadamard product. In this chapter, the Cartesian

coordinates system that is used is referred in Fig. 3.1. The method presented in

this section is derived in this coordinates system.

3.2.2 Axisymmetric formulation

The axisymmetric nature of circular tunnels can be used to take advantage in reducing

the computation cost related to the calculation of the BEM traction and displacements

matrices. To exploit the axisymmetry of the geometry, the boundary elements of the
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BEM mesh must have the same length. In this case, the elements of the BEM matrices

associated with all combinations of the sources and evaluators can be obtained from

elements associated with only one source. This is possible because each source sees the

same pattern of evaluators locations, with relative rotation between them. Thus, if the

elements associated to a reference source are computed, the response for all the other

combinations of source/evaluator distances can be easily obtained by multiplying these

reference elements with a transformation matrix that takes into account the rotation

between this reference source and the other ones. After this, appropriate mapping of

the resulting elements should be performed. The transformation matrix having the

relative rotation of the load points with respect to the axis of axisymmetry has the same

form as Tθ (mentioned in section 3.2.1) with angles θ that in this case are defined as

the relative rotation between the required source points and the reference source point

with respect to the axis of axisymmetry. The axisymmetric formulation is summarised

as:

1. In a first step, all the elements for the reference source position and all the evaluator

locations are computed.

2. The elements for other source/evaluator locations for all wavenumbers are obtained

from the elements obtained in the first step by multiplying the elements with a

transformation matrix.

3. The transformation matrix is Tθ in Eq. (3.11) with angles θ defined as the relative

rotation between the required source points and the reference source point with

respect to the axis of axisymmetry.

4. In the final step, appropriate mapping and assembly of the elements is performed

to obtain the final required BEM matrices of tractions and displacements.

Note: In cases of axisymetric geometries the displacements and tractions Green’s func-

tions are required to be computed only for the source points located on just one element,

and then the mapping introduced in the Eq. (3.9) and Eq. (3.10) is required to performed

once. Thus, the benefit of axisymteric formulation is further reducing the computation

time.

3.3 Verification of the numerical methods

In this section, the verification of the numerical method developed in the thesis is pre-

sented. First, the verification of 2.5D BEM is presented followed by verification of 2.5D
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FEM-BEM. The 2.5D FEM-BEM methodology is verified for the case of full-space and

half-space.

3.3.1 Verification of 2.5D BEM

The boundary element method is validated by comparing the response of a cylindrical

cavity in a full-space subjected to a unit 2.5D pressure load (Fig. 3.1). The cavity

modelled by 2.5D BEM and semi-analytical solution of a cavity in a full-space provided

by Gazis [75], has a radius of 1 m and the full-space is characterised by shear wave

velocity Cs = 150 m/s and dilatational wave velocity Cs = 300 m/s and a material

damping ratio Dp = Ds = 0.025. The pressure loading results in radial displacements

in the full-space that is axisymmetric around the x-axis. The response of the cavity

modelled by both method is computed for a frequency range of 80 Hz and wavenumber

kx = k′xCs/ω where k′x is dimensionless wavenumber. Figure 3.2 shows the comparison

of radial Green’s displacements obtained by both methods at the boundary. Figure

3.3 shows the comparison of radial Green’s displacements obtained by both methods

at evaluator located at a radial distance of 10 m. The figures show a good agreement

between both the methods thereby confirming the validation of 2.5D BEM.

rt



er

e

ex



x

y
z

Figure 3.1: Cylindrical cavity in a full-space. Definition of the Cartesian and cylin-
drical coordinate systems for both semi-analytical and 2.5D FEM-BEM models.

3.3.2 Verification of 2.5D FEM-BEM

For validating of elastodynamic 2.5D FEM-BEM, a comparison is made with the semi-

analytical solution of a cavity in a full-space provided by Gazis [75]. Cavity radius rt of 1

m is considered. On the other hand, an equivalent 2.5D FEM-BEM model of this cavity
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Figure 3.2: Green’s function of displacement on the boundary, solid line represents
the real part of Green’s displacement by analytical method, ’o’ markers the real part of
Green’s displacement by 2.5D BEM, dashed-dot line represents the imaginary part of
Green’s displacement by analytical method, ’x’ markers represent the imaginary part

of Green’s displacement by 2.5D BEM.
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Figure 3.3: Green’s function of displacement on the a point located at a radial dis-
tance of 10 m, solid line represents the real part of Green’s displacement by analytical
method, ’o’ markers the real part of Green’s displacement by 2.5D BEM, dashed-dot
line represents the imaginary part of Green’s displacement by analytical method,’x’

markers represent the imaginary part of Green’s displacement by 2.5D BEM.

in a full-space system has been constructed. In order to test the correctness of 2.5D

FEM and 2.5D BEM implementations, the model is constructed by meshing a region

close to the cavity with finite elements and the rest with boundary elements. Specifically,

the region considered for the 2.5D FEM mesh is a circular ring of 0.2 m of thickness.

The outer boundary of the circular ring is meshed with 80 linear boundary elements,

while the 2.5D FEM mesh is based on linear triangular finite elements. An illustrative

representation of the Cartesian and cylindrical coordinate systems associated with both

models is presented in Fig. 3.1.

In both models, the cavity system is excited by a vertical unitary 2.5D load, which is
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a point load in the y-z plane harmonically distributed in time and in x, applied at the

inner boundary at θ = 0. The properties of the medium that surrounds the cavity are

summarized in the Table 3.1. For both models, the cavity response is computed for the

frequencies up to 100 Hz and for the wavenumbers between −2π rad/m to 2π rad/m.

The cavity displacement in the medium are computed for evaluators located at radial

distance of 2 m from the center of the cavity and placed at angular locations θ of 0, π/2

rad, π rad and 3π/2 rad.

Parameters Notation Units Value

Young’s modulus E [MPa] 108

Poisson ratio ν [−] 0.334

Density ρ [kg/m3] 1800

Damping Dp = Ds [−] 0.025

Table 3.1: Properties of full-space used in the verification.

Figure 3.4 shows the results of the radial displacement in the full-space obtained for

both models at all evaluators previously defined. From this results, it can be concluded

that there is a very good agreement between the results obtained with 2.5D FEM-BEM

and the semi-analytical solution of the cavity. This implies that the 2.5D elastodynamic

FEM-BEM approach used in the framework of this article is properly verified. There

is, however, a very slight mismatch in the results between the two methods at certain

frequencies. Apart from the intrinsic errors related to the nature of mesh, the slight

mismatch comes from the amount of ring modes considered [19] and the approximated

model of a point load associated to the FEM approach.

In order to validate the model of the 2.5D FEM-BEM for half-space a comparison of the

response of half-space modelled by EDT toolbox with an equivalent model modelled by

2.5D FEM-BEM. The equivalent model of half-space modelled by 2.5D FEM-BEM is

modelled by rectangular geometry with a length of 1 m and a height of 1 m. Its surface

modelled by linear triangular finite elements and the boundary is modelled with linear

boundary elements.

The half-space modelled by both EDT and 2.5D FEM-BEM has the properties as given

in Table 3.1. Both the EDT model and the 2.5D FEM-BEM model was excited by

a vertical 2.5D point load. The response of both the models were obtained at two

evaluators at ground surface one located at 2 m and the other located at 10 m from the

centre of the geometry, in the frequency ranges of 80 Hz and wavenumber in the range

of (0 to 1) rad/m.
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Figure 3.4: Green’s functions of the radial displacement at specific wavenumbers
obtained by the 2.5D FEM-BEM (dashed black line) and the semi-analytical cavity
solution (grey solid line). The results are obtained at evaluators placed at a radial
location of 2 m and at angular locations of 0 rad (i) π/2 rad (ii) π degrees (iii) and
3π/2 rad (iv). (a) is referred to the response for kx = 0, (b) to the response for kx =

π/2 rad/m and (c) to the response for kx = π rad/m.
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Figure 3.5: Imaginary part of vertical Green’s displacements at 2m on ground surface
obtained by EDT solution denoted by dashed-dotted line and by 2.5D FEM-BEM

denoted by solid grey line, for kx = 0 (a), kx = 0.5 (a) and kx = 1 (c).
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Figure 3.6: Real part of vertical Green’s displacements at 2m on ground surface
obtained by EDT solution denoted by dashed-dotted line and by 2.5D FEM-BEM

denoted by solid grey line, for kx = 0 (a), kx = 0.5 (a) and kx = 1 (c).

Figure 3.8 shows real and Fig. 3.7 shows the imaginary part of vertical Green’s displace-

ment at a receiver located on ground surface. Figure 3.6 shows real and Fig. 3.5 shows

the imaginary part of vertical Green’s displacement at a receiver located on the ground

surface obtained by both methods for kx = (0, 0.5, 1) in frequency range of 80 Hz. From

the figure it can be said that there is a good agreement between the methods. Thus it

can be said that the 2.5D FEM-BEM for half-space is also verified.
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Figure 3.7: Imaginary part of vertical Green’s displacements at 10m on ground surface
obtained by EDT solution denoted by dashed-dotted line and by 2.5D FEM-BEM

denoted by solid grey line, for kx = 0 (a), kx = 0.5 (a) and kx = 1 (c).
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Figure 3.8: Real part of vertical Green’s displacements at 10m on ground surface
obtained by EDT solution denoted by dashed-dotted line and by 2.5D FEM-BEM

denoted by solid grey line, for kx = 0 (a), kx = 0.5 (a) and kx = 1 (c).
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Considering only a model for the vehicle/track/tunnel/soil system that accounts for the

surrounding soil as a full-space is a computationally efficient approach for the evaluation

of vibration mitigation measures applied on the source, rather than accounting for the

complete system. In this regard, vibration energy flow is a tool that can be used in

designing effective countermeasures for reducing the vibration generated by underground

railway infrastructures.

Hussein et al [76] proposed a power-flow study based on the PiP model of [19, 21]. The

model was later improved by [26], who replaced the initial full-space with a layered

half-space. In order to obtain power-flow from double-deck tunnel [77, 78] proposed

some modification to the PiP model. By coupling a plate which models the upper

floor in a double-deck tunnel, with the PiP model, the case of the double-deck tunnel

was approximated. Thus allowing for computation of vibration energy flow from the

double-deck tunnel.

Limitation of the above methodologies is that power-flow from only simple geometrical

configurations of underground tunnel infrastructures can be analysed, in reality, under-

ground tunnel infrastructures are more complex and as such, there is a need to develop

tools that can facilitate the computation of vibration energy flow from these infrastruc-

tures. Thus in this chapter, a methodology to compute vibration energy flow radiated

by underground infrastructures is proposed.

4.1 Numerical method

As previously stated, the aim of this chapter is to present a new methodology for the

computation of vibration energy flow radiated in the soil from underground infrastruc-

ture by train traffic. The global computation scheme of the methodology is shown in

Fig. 4.1. This computation scheme consists of four different models: the track/tunnel/-

soil model, the train/track interaction model, the train pass-by response model and the

vibration energy flow computation.
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’

Figure 4.1: Schematic description of the methodology.

By its side, the track/tunnel/soil system consists of three models: a semi-analytical

model of the track, a model based on a 2.5D FEM-BEM approach for the tunnel/soil

system and the semi-analytical solutions of a cylindrical cavity in a full-space as a

model of the vibration propagation in the soil. In the semi-analytical model of the

track, the rails are modelled as Euler-Bernoulli beams and the fasteners as longitudinally

distributed linear viscous springs. Tunnel/soil modelling is accomplished in the basis

of a 2.5D FEM-BEM wherein the tunnel structure is modelled by FE and the local

surrounding soil is modelled with BE. The connection between to tunnel/soil model and

the semi-analytical solutions of the cylindrical cavity is done through the displacements

on the tunnel/soil interface, which are obtained with the 2.5D FEM-BEM model of the

tunnel/soil system and then they are used as boundary conditions in the semi-analytical

solutions of the cavity in order to obtain the displacements and the tractions at arbitrary

points in the soil.

As shown in Fig. 4.1, the coupled model of the train/track/tunnel/soil system is solved

in two steps. In the initial step, the track receptances in the moving frame of reference

obtained by the 2.5D FEM-BEM model are used together with the train/track interac-

tion model to compute the wheel/rail interaction forces in the frequency domain. The

train/interaction model mainly consists of a rigid multibody model of the vehicle and a

wheel/rail contact model based on Hertz contact theory. In the next step, the wheel/rail

interaction forces and the Green’s function of the system between the rails and the soil

(or other points on the system where the vibration response due to a train pass-by is
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desired to be computed) are used together in the train pass-by response model to obtain

the vibration and/or tractions response in selected evaluators. Finally, the vibration

energy flow can be obtained in the soil by using velocity and traction responses in a

set of points located in the soil around the tunnel. The details of each model used for

obtaining the vibration response or the vibration energy flow in the soil are described

in the following sections.

4.2 Modelling of the track/tunnel/soil system

As previously introduced, the response of the track/tunnel/soil system is obtained with

the numerical methodology that consists of a 2.5D FEM-BEM approach to model the

tunnel and the local surrounding soil, a semi-analytical model of the track and a semi-

analytical model of a cylindrical cavity in a full-space used for the vibration propagation

in the soil. These models are explained in subsections 3.1, 4.2.1 and 4.2.2, respectively.

The 2.5D FEM-BEM coupled with the track model is used to obtain the Green’s func-

tions of the track/tunnel/soil system in the tunnel/soil interface due to vertical forces

applied at the rails, while the semi-analytical solutions of the cavity are used to ob-

tain the displacements and traction in the soil using the displacements obtained at the

tunnel/soil interface as input boundary conditions. Being more specific, the track/tun-

nel/soil model presented in this work is constructed carrying out the following steps:

• Initially, the displacement Green’s functions at the tunnel/soil interface (and other

desired evaluators) due to a set of vertical forces applied at the FE nodes to be in

contact with the rails are computed using the 2.5D FEM-BEM approach described

in subsection 3.1.

• The rails are then coupled to the tunnel/soil model to obtain the Green’s functions

of the coupled track/tunnel/soil system at all the desired evaluators due to vertical

forces on the rails.

• The tunnel/soil interface displacement Green’s functions obtained in Cartesian

coordinates are transformed into a cylindrical coordinates system.

• Using these tunnel/soil interface displacement Green’s functions, the Fourier co-

efficients of the semi-analytical solutions of a cylindrical cavity in a full-space can

be found.

• Using these coefficients, the tractions and displacement Green’s functions at all

the evaluators in the soil due to vertical forces on the rails are computed.
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4.2.1 Track model and its coupling with the tunnel structure

In the methodology used in this thesis, it is proposed to use a semi-analytical model of

the track coupled the 2.5D FEM-BEM model of the tunnel/soil system. In this semi-

analytical model of the track, the rails are modelled as two identical Euler- Bernoulli

beams of infinite length and the fasteners are modelled as continuously distributed linear

massless viscous springs. Both rails and the fasteners are considered to have the same

mechanical parameters, being Er the Young’s modulus of the rail material, Ir the second

moment of inertia of the rail cross section, ρr the density of the rail material, Sr the rail

cross-sectional area and kf and cf are the stiffness and viscous damping of the fasteners,

respectively. Thus, the expression that defines the dynamic behaviour of the rails excited

by moving harmonic vertical point loads with the same excitation frequency ω̃ and the

same speed vt can be expressed in the wavenumber-frequency domain as

[ErIrk
4
x − ρrSrω2]Z̄r + (kf + iωcf )(Z̄r − Z̄tr) = 2πδ(ω̃ − (ω + kxvt))F̄r, (4.1)

where Z̄r = {Z̄r1 Z̄r2}T are the vertical displacements of the first and second rails and

Z̄tr = {Z̄tr1 Z̄tr2}T are the equivalent vertical displacements of tunnel below the first

and second rails. These equivalent vertical displacements are obtained by averaging the

responses at the FE nodes of the tunnel that should be in contact with the rails induced

by the set of vertical forces applied at these nodes. The response of the tunnel below

the rails is given by

Z̄tr = H̄tr
trF̄tr, (4.2)

where F̄tr = {F̄tr1 F̄tr2}T are the equivalent vertical forces applied on the system below

first and second rails and H̄tr
tr are the Green’s functions that relates the equivalent vertical

displacements of the tunnel below the rails with the equivalent vertical forces applied

also there, which can be obtained by the 2.5D FEM-BEM model of the tunnel/soil

described in the previous section. Moreover, the forces F̄tr can be expressed in terms

of the displacements of the rails and the equivalent vertical displacements of the tunnel

below the rails as shown in Eq. (4.1) as

F̄tr = (kf + iωcf )(Z̄r − Z̄tr). (4.3)

Combining Eqs. (4.2) and (4.3), the relation the displacements of the rails and the

equivalent vertical displacements of the tunnel below the rails can be written as

Z̄tr =

(
1

kf + iωcf
I + H̄tr

tr

)−1

H̄tr
trZ̄r. (4.4)



Chapter 4 - Methodology for the vibration energy flow computation 30

Inserting Eq. (4.4) in Eq. (4.1), the response of the rails can be written as

[
(ErIrk

4
x − ρrSrω2)I + K̄ft

]
Z̄r = 2πδ(ω̃ − (ω − kxv))F̄r, (4.5)

where,

K̄ft = (kf + iωcf )

[
I−

(
1

kf + iωcf
I + H̄tr

tr

)−1

H̄tr
tr

]
. (4.6)

Thus, the Green’s functions of the vertical displacements of the rails due vertical forces

on them in the moving frame of reference H̃r
r are given by

H̃r
r =

[[
ErIrk

4
x − ρrSr (ω̃ + kxvt)

2
]

I + K̃ft

]−1
, (4.7)

where K̃ft = K̃ft(kx, ω̃) = K̄ft(kx, ω̃ + kxvt).

Then, the Green’s functions that relate the response of the tunnel/soil system coupled

with rails due to the vertical forces on the rails in the moving frame of reference H̃r
s are

given by

H̃r
s = H̃tr

s K̃ftH̃
r
r, (4.8)

being

H̃r
s =

{
H̃r1
s H̃r2

s

}
, H̃tr

s =
{

H̃tr1
s H̃tr2

s

}
, (4.9)

where H̃tr
s are the Green’s functions of the tunnel/soil system due to forces applied

below the rails, which can be obtained using the 2.5D FEM-BEM approach presented

in the previous section considering that H̃tr
s = H̃tr

s (kx, ω̃) = H̄tr
s (kx, ω̃ + kxvt). In case

that external mitigation measures are desired to be applied on the system, they can be

coupled to the tunnel/soil system in the same way that rails are. For these cases, the

Green’s function of the system due to external forces applied at any arbitrary position

of the tunnel/soil in the presence of the rails H̄er
s can be written as

H̄er
s = H̄e

s + keftH̄
tr
s H̄e

tr, (4.10)

where the sub-index or super-index e represents the external loading and

keft = (kf + iωcf )

(
kf + iωcf

ErIrk4
x − ρrSrω2 + kf + iωcf

− 1

)
, (4.11)

and where H̄e
s are the Green’s functions of the tunnel/soil system due to external forces

in the absence of the rails and H̄e
tr are the Green’s functions of the response of the tunnel

below the rails due to the external loads in the absence of the rails. Finally, the Green’s

functions associated to the response of the rails due to external loading can be written
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as

H̄e
r = kefrH̄

e
tr, (4.12)

where

kefr =
kf + iωcf

ErIrk4
x − ρrSrω2 + kf + iωcf

. (4.13)

Eqs. (4.10) and (4.12) are not defined in the moving frame of reference because the

external loads are not usually moving with the train. Again, the Green’s functions H̄tr
s ,

H̄e
s and H̄e

tr can be computed using the 2.5D FEM-BEM approach presented in the

previous section.

4.2.2 Model for the vibration propagation in the soil

The proposed 2.5D FEM-BEM approach used for modelling the tunnel/soil system can-

not be used to obtain the tractions in the soil. For this reason, the semi-analytical

solutions of a circular cavity in a full-space [75, 19] are used to relate displacements

in the tunnel/soil interface with displacements and tractions at arbitrary points in the

soil. In this model, the displacements in the soil at an arbitrary radial distance from the

center of the tunnel r can be expressed as

Ūs(kx, ω, r, θ) =
∞∑
n=0

[Ssn(θ)Ū s
n(kx, ω, r) + San(θ)Ūa

n(kx, ω, r)], (4.14)

where

Ūs =
{
Ūsr Ūsθ Ūsx

}T
, Ū i

n =
{
Ū inr Ū inθ Ū inx

}T
, (4.15)

where i = s for the symmetric case and i = a for the anti-symmetric case (this definition

holds all along the present subsection), and

Ssn =


cosnθ 0 0

0 sinnθ 0

0 0 cosnθ

 , San =


sinnθ 0 0

0 cosnθ 0

0 0 sinnθ

 , (4.16)

where Ū s
n and Ūa

n are the symmetric and anti-symmetric contributions to n-th ring mode

of the displacements Ūs. In Fig. 3.1, the Cartesian and cylindrical coordinate systems

for both semi-analytical and 2.5D FEM-BEM models are defined.
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At a generic radius r, the n = 0 component of the displacement Ūs(kx, ω, r, θ) can be

computed at the tunnel/soil interface as

Ū s0r(kx, ω, r) =
1

2π

∫ 2π

0
Ūsr(kx, ω, r, θ)dθ,

Ū s0θ(kx, ω, r) = 0,

Ū s0x(kx, ω, r) =
1

2π

∫ 2π

0
Ūsx(kx, ω, r, θ)dθ,

(4.17)

Ūa0r(kx, ω, r) = 0,

Ūa0θ(kx, ω, r) =
1

2π

∫ 2π

0
Ūsθ(kx, ω, r, θ)dθ,

Ūa0x(kx, ω, r) = 0.

(4.18)

For the case of a generic ring mode n > 0, these expressions become

Ū snr(kx, ω, r) =
1

π

∫ 2π

0
Ūsr(kx, ω, r, θ) cos (nθ)dθ,

Ū snθ(kx, ω, r) =
1

π

∫ 2π

0
Ūsθ(kx, ω, r, θ) sin (nθ)dθ,

Ū snx(kx, ω, r) =
1

π

∫ 2π

0
Ūsx(kx, ω, r, θ) cos (nθ)dθ,

(4.19)

Ūanr(kx, ω, r) =
1

π

∫ 2π

0
Ūsr(kx, ω, r, θ) sin (nθ)dθ,

Ūanθ(kx, ω, r) =
1

π

∫ 2π

0
Ūsθ(kx, ω, r, θ) cos (nθ)dθ,

Ūanx(kx, ω, r) =
1

π

∫ 2π

0
Ūsx(kx, ω, r, θ) sin (nθ)dθ,

(4.20)

Consider the soil/tunnel interface, which is located at a radius rb from the centre of the

tunnel. For this radius, one can write the expressions

Ū i
n(kx, ω, rb) = Ūi

cn(kx, ω, rb)C̄
i
n, (4.21)

where Ūs
cn is the matrix U defined by [19], Ūa

cn can be obtained from Ūs
cn using the

transformation proposed at the appendix of [21] and C̄s
n and C̄a

n are the unknown Fourier

coefficients. Since the displacements at soil/tunnel interface are known, Eqs. (4.17) to

(4.20) can be used to obtain Ū s
n(kx, ω, rb) and Ūa

n(kx, ω, rb). Then, the unknown Fourier

coefficients can be found by inverting Eq. (4.21).

After obtaining the Fourier coefficients C̄s
n and C̄a

n, the symmetric and anti-symmetric

terms for displacements and tractions at any radial location in the soil rf can be found
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by

Ū i
n(kx, ω, rf ) = Ūi

cn(kx, ω, rf )C̄i
n, (4.22)

and

T̄ in(kx, ω, rf ) = T̄i
cn(kx, ω, rf )C̄i

n, (4.23)

where T̄s
cn and T̄a

cn are the matrices T defined in [19, 21] and the contribution T̄ sn(kx, ω, rf )

and T̄ an (kx, ω, rf ) can be found following an analogous process to the one performed for

the displacements. Then, the displacements in the soil can be obtained by applying

Eq. (4.14) for r = rf . The equivalent expression can be used for the tractions, being

T̄s(kx, ω, rf , θ) =

∞∑
n=0

[Ssn(θ)T̄ sn(kx, ω, rf ) + San(θ)T̄ an (kx, ω, rf )]. (4.24)

4.2.3 Verification of the tunnel/soil model

In this section, the verification of the numerical methodology to obtain the tractions in

the soil is presented. The verification is done on the basis of a system consisting of a

cylindrical cavity in a homogeneous full-space. A cavity radius rt of 1 m is considered and

the mechanical parameters of the full-space are presented in Table 3.1. Two models of

this system are compared in this verification: on one hand, the semi-analytical solutions

of a cylindrical cavity in a full-space provided by [75] constitute the reference solution;

on the other hand, an equivalent 2.5D FEM-BEM model of this cavity in a full-space

system has been constructed meshing a region close to the cavity with finite elements and

the rest with boundary elements. The region considered for 2.5D FEM mesh is a circular

ring of 0.2 m thickness meshed with linear triangular elements. The outer boundary of

the circular ring has been meshed by 80 linear boundary elements. Displacements at

the nodes of the boundary elements are used as boundary conditions for the vibration

propagation model presented in subsection 4.2.2.

For both the models, the traction Green’s functions due to a vertical force applied at the

inner boundary of the cavity and at θ = 0 are computed for frequencies up to 100 Hz

and for wavenumbers from −2π rad/m to 2π rad/m. Tractions are computed by both

models for evaluators located at a radial distance of 2 m from the centre of the cavity

and placed at angular locations θ of 0, π/2 rad, π rad and 3π/2 rad. Figure 4.2 shows

the results of the radial tractions obtained by both models at all evaluators previously

defined. From this results, it can be concluded that there is a very good agreement

between the results obtained with the proposed numerical methodology and the reference

theoretical solution. This implies that the numerical methodology used in the framework

of this thesis is properly verified. There is, however, a very slight mismatch in the
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results between the two methods at certain frequencies. Apart from the intrinsic errors

related to the nature of mesh, the slight mismatch comes from the number of ring modes

considered [19] and the approximation done in the context of the 2.5D FEM model of

the tunnel to approach a theoretical point load.

4.3 Train/track interaction and train pass-by response mod-

els

For modelling the train/track interaction, two components of load are considered. The

quasi-static loads, that results from the movement of the static loads corresponding to

the weight of the train and the dynamic loads due to the dynamic interaction between

the train and the track. The train/track dynamic interaction used assumes that the

wheel/rail contact can be modelled as a linearised Hertzian contact between two crossed

cylinders of different radius, as models of the wheel and the rail in the point of view of the

contact. The classical Hertzian contact expression for this problems is linearised around

the static load, obtaining an expression that linearly relates the vertical displacement

of the wheel zw, the vertical displacement of the rail zr, the rail unevenness εr and the

wheel/rail contact dynamic load fw/r

fw/r = kH (zw − zr + εr) , (4.25)

where kH is the stiffness of the linearised Hertzian contact. Performing the train/track

interaction in the framework of a moving frame of reference associated to a train motion,

the frequency associated to this problem is ω̃ [9], in accordance with the derivation in

subsection 4.2.1. Thus, all the variables represented in the frequency domain in the

present section are associated to the frequency ω̃, except when it is specifically mentioned

otherwise. Transforming Eq. (4.25) to the frequency domain, grouping all the wheel/rail

contacts in one expression and operating, the train/track interaction problem can be

solved in the frequency domain by

{
F
w/r
r1

F
w/r
r2

}
=

([
H
w/r
v

H
w/r
v

]
+

[
H
w/r
r1r1 H

w/r
r1r2

H
w/r
r2r1 H

w/r
r2r2

]
+ k−1

H I

)−1{
Er1

Er2

}
, (4.26)

where F
w/r
ri is the vector of the train/track dynamic interaction loads associated to the

i-th rail, H
w/r
v is receptance matrix of a 2D vehicle model at the contact points with the

track for one rail, H
w/r
rirj is the receptance matrix of the i-th at the interaction points with

the vehicle due to forces applied in the interaction points of the j-th rails, kH is linearised
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Figure 4.2: Green’s functions of the radial tractions obtained by the numerical
methodology presented in this thesis (dashed black line) and the semi-analytical model
of a cavity in a full-space (grey solid line). The results are obtained at evaluators placed
at a radius of 2 m and at angular positions of 0 rad (i) π/2 rad (ii) π degrees (iii) and
3π/2 rad (iv). The results are associated to the wavenumbers of 0 (a), π/2 rad/m (b)

and π rad/m (c).
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Hertzian spring considered to be the same in all the contacts, I is identity matrix and Eri

is the vector of frequency spectra of the track unevenness at all the wheel/rail interaction

points associated to the i-th rail. Assuming completely symmetric problems, where the

response of both rails is the same and the unevenness profiles of both rails are considered

completely correlated, the wheel/rail interaction force vectors F
w/r
r1 and F

w/r
r2 are equal.

Then, Eq. (4.26) can be written as

Fw/r =
(
Hw/r
v + Hw/r

r + k−1
H I
)−1

Er, (4.27)

where the term H
w/r
r is equal to H

w/r
r1r1 + H

w/r
r1r2 and can be obtained applying vertical

unitary forces at both railheads on the a model of the track/tunnel/soil system based

on the methodology presented in previous sections. Specifically, the elements of the

receptance matrix H
w/r
r can be computed by

Hw/r
r,nm =

1

2π

∫ +∞

−∞
H̃r
r e
−ikx(x̃n−x̃m)dkx, (4.28)

where H
w/r
r,nm is the (n,m) element of the matrix H

w/r
r , x̃n and x̃m are the longitudinal

coordinates of the n-th and m-th axles, respectively, seen from the point of view of the

moving frame of reference, and H̃r
r is the 2.5D Green’s function of the vertical response

of one of the rails (as the problem is completely symmetric, the response of both rails is

the same) due to vertical forces applied at both rails. The 2D model of the vehicle that

is used in this chapter is presented in B.1.

Once the wheel/rail interaction forces are computed, the displacement response in the

time domain at any position of the railway infrastructure system due to the passage of

the train can be found using the expression

u(x̃, t) =
1

4π2

∫ +∞

−∞

Na∑
n=1

[ ∫ +∞

−∞
H̃r
sF

w/r
n e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃, (4.29)

where u(x̃, t) is the response in the time domain t in an arbitrary position of the railway

infrastructure system, H̃r
s is the 2.5D Green’s function in the wavenumber-frequency

domain that relates the response of the system at that arbitrary position with a force

applied at the rails, x̃ is the longitudinal coordinates associated to the moving frame of

reference, x̃n is the longitudinal coordinatess of the n-th seen from the point of view of

the moving frame of reference, vt is the speed of the train, Na is the number of train axles

and F
w/r
n is the wheel/rail interaction force associated to the n-th axle. An equivalent

expression for the soil tractions can be obtained by simply replacing the displacement

Green’s functions with those for the tractions in Eq. (4.29). Similarly, the velocity and
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acceleration responses can be obtained, respectively, using

v(x̃, t) =
1

4π2

∫ +∞

−∞

Na∑
n=1

[ ∫ +∞

−∞
i(ω̃ + kxvt)H̃

r
sF

w/r
n e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃, (4.30)

a(x̃, t) =
1

4π2

∫ +∞

−∞

Na∑
n=1

[ ∫ +∞

−∞
−(ω̃ + kxvt)

2H̃r
sF

w/r
n e−ikx(x̃−x̃n)dkx

]
eiω̃tdω̃. (4.31)

4.3.1 Wavenumber-frequency sampling strategy

The accuracy of the train pass-by response simulated in the basis of the present method-

ology is strongly dependent on how the Green’s functions of the system are sampled in

the wavenumber and frequency domain. In the present section, a sampling scheme is

proposed in order to get a more accurate response of the system on account of the train

pass-by. This sampling scheme proposes a linear sampling on moving frequencies and

a non-uniform sampling scheme along the wavenumber that varies with the frequency.

Note that, in this section, the frequency is seen from the fixed frame of reference ω is

called static frequency and the frequency seen from the moving frame of reference ω̃ is

called moving frequency.

As a first step of the sampling strategy, the moving frequencies of the system are deter-

mined. This is accomplished in the following way:

• The required maximum static frequency ωmax and the length of the sampling vector

for frequency Nω are defined.

• The maximum moving frequency ω̃max is computed using the relation ω̃max =

ωmax(1 + vt/cmin) [9], where vt is the train speed and cmin is the minimum wave

speed of the system. Theoretical wave speeds of ideal systems are used to obtain

an approximation of cmin for the specific model studied.

• The sampling on moving frequency is then obtained by considering a linear distri-

bution of Nw discrete values of the frequency from 0 to ω̃max.

In the second step of the sampling strategy, the sampling on wavenumber kx is deter-

mined. This is accomplished by the following steps:

• Initally, a pre-sampling process is perform, where the Green’s functions of the

system are obtained for two moving frequencies: π/2 rad/s and ω̃max. Dense sam-

pling vectors of Nps
kx

samples for the wavenumber are used for this two frequencies.

These vectors are constructed by performing the following steps:
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– Considering those two frequencies and the approximated wave speeds used

in the cmin evaluation, a wavenumber limit for each of those two frequencies

and for the i-th subsystem can be computed as klim
xi = ω̃/ci, where ci is the

approximated wave speed of the i-th subsystem. The number of sub-systems

existing in the model is Nss.

– For each sub-system and each frequency, a wavenumber sampling vector of

Nps
kx
/Nss samples is constructed. Half of this samples are linearly distributed

from −2klim
xi to 2klim

xi (always considering the 0), and the rest are logarithmi-

cally distributed from 2klim
xi to 105 rad/m and from −2klim

xi to −105 rad/m.

– Then, all sampling vectors associated to the same frequency are combined in

only one pre-sampling vector of Nps
kx

samples.

– Finally, the two pre-sampling vectors obtained are used to compute the

Green’s functions of the system at both frequencies.

• The wavenumber limit until where most of the spectral content is confined is

obtained for the each pre-sampling frequencies and each evaluator in the system.

Then, for a specific evaluators, four wavenumber limits are computed: two with

a tolerance of 10%, klimu
xlin

and klimd
xlin

, and another one with a tolerance of 0.1%

klimu
xlog

and klimd
xlog

. Subscripts u and d are referred to the maximum and minimum

frequencies used in the pre-sampling.

• The wavenumber limits klimu
xlin

, klimd
xlin

, klimu
xlog

and klimd
xlog

of only three evaluators are

considered. These evaluators should be selected ensuring that they are representing

high, medium and low wavenumber limits of all the evaluators of the system.

• It is assumed that the wavenumber limits klim
xlin

and klim
xlog

vary linearly along the

moving frequency and, therefore, they can be expressed as a function of ω̃ as

klim
xlin

(ω̃) =

(
ω̃ − π/2

ω̃max − π/2

)(
klimu
xlin
− klimd

xlin

)
+ klimu

xlin
(4.32)

and

klim
xlog

(ω̃) =

(
ω̃ − π/2

ω̃max − π/2

)(
klimu
xlog
− klimd

xlog

)
+ klimu

xlog
(4.33)

• For each selected evaluator, a wavenumber sampling vector with a linear distri-

bution of samples between −klim
xlin

and klim
xlin

(always considering the 0) and a log-

arithmic distribution from klim
xlin

to klim
xlog

and from −klim
xlin

to −klim
xlog

is constructed

for each frequency. Half of the N s
kx
/3 samples of this sampling vector (since Nkx

is the sampling vector length for the three evaluators combined) are used in the

linear distribution and the other half in the logarithmic one.



Chapter 4 - Methodology for the vibration energy flow computation 39

• Finally, the non-uniform wavenumber sampling is obtained by combining the

wavenumber samplings of the three selected evaluators.

4.4 Computation of vibration energy flow

The methodology described in previous sections define a method to simulate the response

of the soil due to a train pass-by in the context of circular tunnels. Using this response,

the vibration energy flow radiated upwards by the railway underground infrastructure

under consideration can be computed. The vibration energy flow E can be computed

from the power flow P as

E =

∫ ∞
−∞

P (t)dt, (4.34)

where the power flow is defined as

P (t) =

∫
S
v(x, t) · τ (x, t)dS, (4.35)

being S the surface through where the energy flow wants to be evaluated and v(x, t)

and τ (x, t) are the vibration velocity and traction fields in the coordinate system x.

Since the tunnel is assumed to be embedded in a full-space and, therefore, no wave

reflections in the homogeneous full-space are expected, the only vibration energy that

needs to be considered is the one radiated upwards. Thus, the vibration energy radi-

ated upwards by a tunnel infrastructure is proposed to be computed by considering an

integration surface that is a cylindrical strip of radius rm, angular section defined by

the angles θ1 and θ2 and width of one meter. Although the present modelling approach

considers the system to be longitudinal invariant, the time domain response of the sys-

tem due to a train pass-by is not. However, the response in the frequency domain is

constant along the longitudinal direction. This allows considering only one sample of the

vibration velocity and traction fields in the longitudinal direction in order to perform

the integration along x. For the sake of simplicity, the response is evaluated at x = 0.

Thus, the total energy per meter radiated across the surface is given by:

E = rm

∫ θ2

θ1

∫ ∞
−∞

v(0, θ, t) · τ (0, θ, t)dtdθ. (4.36)

In order to use the previous expression, the velocity response in the soil is obtained using

Eq. (4.30), while the traction response is obtained by using Eq. (4.29) by replacing the

displacement Green’s function in the soil with the traction Green’s function.
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4.5 Applications

In this section, the methodology described in the chapter is applied with the aim of

comparing the vibration energy flow radiated by two different underground tunnel in-

frastructures. The underground railway infrastructures considered in this chapter are

a simple tunnel with a single track where the rails are directly attached to the tunnel

invert (direct fastening system) and a simple tunnel with a floating slab track. For the

sake of simplicity, the first tunnel system is called DFF and the second FST. A schematic

of the DFF and FST models developed in this case study are shown in Figs. 4.3 and 4.4,

respectively. The mechanical properties of these system are summarised in Table 4.1,

for the DFF, and in Table 4.2, for the FST. For both models, the rails and the fasteners

are modelled as proposed in section 4.2.1 and the properties for these systems used in

the present case study are shown in Table 4.3.

1

Figure 4.3: Schematic of the DFF system modelled by 2.5D FE (tunnel) and BE
(soil). Red solid markers represent the BE nodes, blue star markers are the points
where forces are applied and pink circular markers denote the evaluators, where the

evaluator in the tunnel wall is denoted by 1.

The soil is modelled as a homogeneous full-space and tunnels are embedded in it. Both

the tunnels have an inner radius of 3 m and a wall thickness of 0.25 m. The tunnels are

excited by vertical points loads at the points shown in blue star markers. These points are

the points where the rails are coupled to the tunnel/soil system. The Green’s functions
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1

Figure 4.4: Schematic of the FST system modelled by 2.5D FE (floating slab track
and tunnel) and BE (soil). Red solid markers represent the BE nodes, blue star markers
are the points where forces are applied and pink circular markers denote the evaluators,

where the evaluator in the tunnel wall is denoted by 1.

Subsystem Parameters Units Value

Tunnel Young’s modulus [GPa] 3.5
Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Table 4.1: Properties of DFF system.

of the track/tunnel/soil system for these point loads are obtained at the tunnel/soil

interface (points shown in red) and evaluators locations (points shown in pink) using

the track/tunnel/soil method previously presented. Then, the semi-analytical solutions

of a cylindrical cavity in a full-space are used to relate the displacement Green’s functions

in the tunnel/soil interface with the displacement and traction Green’s functions in a set

of evaluators in the soil used later for energy flow computations. The properties of soil

are summarised in the Table 4.4. The evaluators in the soil are located at radial distances

of 5 m and 15 M from the outer wall of the tunnels (which represent radial distances of

8.25 m and 18.25 m from the centre of the tunnels, respectively) and placed at angular

locations from θ = π/2 rad to θ = π rad, and with 19 discrete points. Since the systems

studied in this application study are symmetric, the vibration energy radiated upwards
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Subsystem Parameters Units Value

Tunnel Young’s modulus [GPa] 3.5
Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Floating slab Young’s modulus [GPa] 3.5
Poisson ratio [−] 0.15
Density [kg/m3] 2500
Damping [−] 0.01

Elastomeric mat Young’s modulus [MPa] 2.73
Poisson ratio [−] 0.35
Density [kg/m3] 1328
Damping [−] 0.05

Table 4.2: Properties of FST.

Subsystem Parameters Units Value

Rails Density [kg/m3] 7850
Young’s modulus [GPa] 207
Cross-sectional area [m2] 23.5 · 10−6

Second moment of inertia [kg/m2] 6930 · 10−6

Fasteners Stiffness [MN/m] 35
Damping [−] 35·103

Table 4.3: Properties of the rails and fasteners used in DFF and FST.

can be computed multiplying by two the energy flow in the cylindrical strip defined

θ1 = π/2 rad and θ2 = π rad.

Parameters Units Value

Density [kg/m3] 2191
Young’s modulus [MPa] 180
Poisson ratio [−] 0.3
Damping [−] 0.025

Table 4.4: Properties of soil.

The sampling strategy mentioned in section 4.3.1 is followed to obtain the response of

the system modelled with the numerical methodology. A total of 29 samples of ω̃ and

211 samples of kx are considered for both infrastructures. Once the required Green’s

functions of the system are obtained, the train/track interaction and the train pass-by

models described in section 4.3 are applied to obtain the response in the evaluator at

the tunnel wall 1 and at the evaluators of the soil. The train is composed of 5 cars,

while the properties of each car are summarised in Table D.1. The linearised Hertz

contact stiffness is computed for the present case, obtaining a value of 1.23 · 109 N/m.

It is assumed that rails have the same unevenness profile. The train speed in these
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simulations is assumed to be 25 m/s, which is a common speed of operation of metro

trains.

4.5.1 Vibration analysis

In this section, the analysis of the vibration response of both tunnel systems due to train

passage is performed. The response of the rail and tunnel is obtained in the railhead

(vertical response) and at evaluator 1 in the tunnel wall, respectively. Figure 4.5 shows

the vibration acceleration response of the rails and evaluator 1 in the time domain

for DFF and FST systems. Figure 4.6 shows the frequency content for the vertical

component of the vibration acceleration of rail and evaluator on the tunnel wall in one-

third octave bands for DFF and FST. The octave bands are normalised with respect to

train pass time, which is computed as (x̃Na − x̃1)/vt.
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Figure 4.5: Acceleration response in the time domain of the rail for the FST (a) and
DFF (b) systems and on the evaluator 1 for the FST (c) and DFF (d) systems.
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Figure 4.6: One-third octave bands of the vertical acceleration spectrum of the rail
(a) and the evaluator 1 (b). The solid black line represents the response of the FST
system and solid grey line represents the DFF system response. The reference for the

dB is 10−6 m/s2.

As shown in Fig. 4.6, it can be seen that, in general, the level of vibration of rail for

the FST system is larger than the one for the DFF system, mostly for the bands of

20 Hz, 25 Hz and 31.5 Hz. In contrast, it is shown that the level of vibration on the

evaluator 1 for the FST system is smaller and the frequency content is shifted to lower

frequencies, inducing to large differences between the frequency responses of the FST

and DFF systems at high frequencies, where the FST is reducing drastically the levels

of vibration as compared with the DFF system.

4.5.2 Vibration energy flow analysis

In this section, a detailed analysis of the vibration energy flow radiated by both infras-

tructures considered in this application study is performed. For the vibration energy

flow analysis, the total vibration energy flow, the mean power flow, the energy spectral

density and the energy radiation pattern radiated by both infrastructures are obtained.

The vibration energy flow analysis is performed on the evaluators in soil previous men-

tioned.

Using Eq. (4.36), the total energy flow per meter radiated by both DFF and FST tunnel

systems at distances of 5 m and 15 m away from the outer tunnel wall is obtained. The

results of this are shown in the Table 4.5. From the table it is observed that FST is

radiating slightly more energy as compared to DFF at 15 m away from the outer wall
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of the tunnel. As expected, the total vibration energy flow radiated upwards decreases

with the radial distance of the soil evaluators due to the structural damping of the soil.

Track type 5 m 15 m

DFF 0.2547 J/m 0.1691 J/m

FST 0.2227 J/m 0.1711 J/m

Table 4.5: Total energy flow from DFF and FST

The mean power flow radiated through the defined cylindrical strip can be computed

using the expression

P (t) = rm

∫ θ2

θ1

v(0, θ, t) · τ (0, θ, t)dθ, (4.37)

where this expression can be deduced from using Eq. (4.36).

In order to investigate which are the causes of the higher energy radiated by FST as

compared with DFF system at 15 m away from the outer wall of the tunnel, the energy

spectral density (ESD) per unit of longitudinal length is obtained. Equation (4.36) is

used to obtain the ESD of all the evaluators located in the soil. Figure 4.7 shows the

energy spectral density radiated by DFF and FST systems. In a similar way as the

vibration analysis of the previous section pointed out, Figs. 4.7 and4.8 show that the

FST system is shifting the frequency content to lower frequencies. Moreover, in light

of the total energy flow results previously obtained, one can deduced the this shift on

frequency does not imply a change on the energy radiated, as the results at 5 meters,

show. As the damping in the soil is affecting more the high frequency components of

the vibration, the total energy loss between 5 m and 15 m for the DFF system is higher

than the one for FST system at 15 m away from the outer wall of the tunnel.
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Figure 4.7: ESD of the vibration energy flow radiated upwards for the evaluators in
soil located at a distance of 5 m (a) and at 15 m (b) from the outer tunnel wall for the

cases of the DFF system (solid grey line) and FST system (solid black line).
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Figure 4.8: Energy spectra (ES) in one-third octave bands bands of the vibration
energy flow radiated upwards for the evaluators in soil located at a distance of 5 m (a)
and at 15 m (b) from the outer tunnel wall for the cases of the DFF system (solid grey
line) and FST system (solid black line). The dB are computed with a reference of 1

J/m.

Next, the radiation pattern of the vibration energy flow by both the infrastructures

is studied. In order to study the radiation pattern of the vibration energy flow, the
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radiated energy through the cylindrical strip has been computed as a function of θ

E(θ) = rm

∫ ∞
−∞

v(0, θ, t) · τ (0, θ, t)dt. (4.38)

Figure 4.9 shows the radiation pattern of the vibration energy flow by both tunnel

system. From Fig. 4.9 it can be observed that more vibration energy is radiated vertically

upwards by DFF as compared to FST, especially closer to the tunnel.

0

/6

/3

/2

2 /3

5 /6

0 0.05 0.1

Figure 4.9: Radiation pattern of vibration energy flow radiated upwards (in (J/m))
at 5 meters as a function of θ (in (rad)) by DFF (solid red line) and FST (solid black

line) systems.
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This chapter is intended to give insights into practical considerations in the use of one

accelerometer for railway-induced ground-borne vibration assessment of underground

railway infrastructures. The methodology developed in Chapter 4 is used in this regard.

A preliminary assessment of the validity of using one accelerometer is presented. The

chapter also contains an assessment and comparative study of the vibration generated

and the energy flow radiated upwards by DFF and FST systems for two types of soils.

5.1 Study cases

In this section, the systems to be studied in this chapter are described. The underground

railway infrastructures considered in this chapter are the same as presented in chapter 4:

a simple tunnel with a single track where the rails are directly attached to the tunnel

invert (direct fastening system) and a simple tunnel with a floating slab track. These

systems are referred to as DFF and FST, respectively. In this chapter, the response

is obtained at three evaluators in the tunnel wall. These evaluated are highlighted in

pink and the identified as evaluators 1, 2 and 3, as shown in the figures. In this study,

1

2

3

Figure 5.1: Schematic of the DFF system modelled by 2.5D FE (tunnel) and BE
(soil). Red solid markers represent the BE nodes, blue star markers are the points
where forces are applied and pink circular markers denote the evaluators, where the

evaluator in the tunnel wall is denoted by 1, 2 and 3.
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1

2

3

Figure 5.2: Schematic of the FST system modelled by 2.5D FE (floating slab track
and tunnel) and BE (soil). Red solid markers represent the BE nodes, blue star markers
are the points where forces are applied and pink circular markers denote the evaluators,

where the evaluator in the tunnel wall is denoted by 1, 2 and 3.

two soil cases are considered: a soft soil and a hard soil. The properties of the soft soil

used here are the same as considered in chapter 4 and are presented in Table 4.4, while

the properties of the hard soil are presented in Table 5.1. The rest of the parameters

used to perform the simulations in this chapter are the same than the ones presented in

chapter 4.

Parameters Units Value

Density [kg/m3] 2191

Young’s modulus [MPa] 480

Damping [−] 0.025

Poisson ratio [−] 0.3

Table 5.1: Properties of hard soil.
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5.2 Effect of soil stiffness on the tunnel wall response

In this section, the vibration response in the tunnel and the radiated energy flow in DFF

and FST systems is performed for the two types of soil already defined: a soft soil and

hard soil cases. The vibration response of the tunnel is obtained in terms of the radial

acceleration of vibration in evaluator 2 for the two cases of soil stiffness. On one hand,

Figure 5.3 shows the comparison of vibration acceleration spectra in one-third octave

bands between DFF and FST systems, for soft soil (right) and hard soil (left) cases.

In the other hand, Figure 5.4 shows the comparison of vibration acceleration spectra in

one-third octave bands between soft and hard soil cases, for the DFF system (left) and

the FST system (right). From Fig 5.3 and Fig. 5.4 it can be seen that the FST is able

to reduce the high-frequency component of the vibration in the tunnel wall irrespective

of soil stiffness. It is also shown that the soil stiffness has a significant effect on the level

of vibration of the tunnel wall, being the vibration levels in the evaluator 2 in hard soil

is less as compared to soft soil.
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Figure 5.3: One-third octave bands of the radial acceleration spectrum of evaluator
2 hard soil (a) and soft soil (b) cases. Solid black lines represent the response in the
case of the FST system and solid grey lines represent the DFF case. The reference for

the dB is 10−6 m/s2.
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Figure 5.4: One-third octave bands of the radial acceleration spectrum of evaluator
2 for the case of the DFF system (a) and for the FST system (b). Solid black lines
represent the hard soil case and solid grey lines represent the soft soil case. The reference

for the dB is 10−6 m/s2.

Moreover, and study of the vibration energy flow radiated upwards by both DFF and

FST for the two types of soil studied is performed. All the computations are done

considering the evaluators in the soil located at a distance of 5 m from the outer tunnel

wall. Figures 5.5 and 5.6 shows the frequency response of the radiated vibration energy

by DFF and FST systems for the soft soil and hard soil cases. In a similar way as the

vibration analysis of the previous section pointed out, Figs. 5.5 and 5.6 show that the

FST system is shifting the frequency content to lower frequencies. As expected, it can

be said that the frequency content of the vibration energy flow changes significantly with

the type of soil as seen in Fig. 5.6 (a) and Fig. 5.6 (b).
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Figure 5.5: ESD of the vibration energy flow radiated upwards for hard soil (a) and
in soft soil (b) cases and for the cases of the DFF system (solid grey line) and FST

system (solid black line).
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Figure 5.6: Energy spectra (ES) in one-third octave bands of the vibration energy
flow radiated upwards for hard soil (a) and in soft soil (b) cases and for the cases of
the DFF system (solid grey line) and FST system (solid black line). The reference for

the dB is 1 J/m.
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5.3 Validity of using one accelerometer in the tunnel wall

for railway-induced ground-borne vibration assessment

of underground railway infrastructures

In this section, the validity of using one accelerometer placed in the tunnel wall to assess

the effectiveness of vibration mitigation countermeasures is studied. In order to study

the validity of using one accelerometer, the insertion loss between the DFF and FST

systems is taken as a reference. Two types of insertion loss are obtained: the one that

comes from the comparison between the ESD associated with the vibration energy flow,

which can be computed with the expression

ILESD = 10 log10

(
ESDFST

ESDDFF

)
; (5.1)

and the other associated to the acceleration in the y direction, which can be computed

as

ILa = 20 log10

(
aFST

aDFF

)
. (5.2)

In Eqs. (5.1) and (5.2), ESDFST represents the ESD associated to the FST system,

ESDDFF represents the ESD related to the DFF system, aFST represents the acceleration

in y or z directions at the tunnel wall of the FST system while aDFF represents the

acceleration in y and z directions at the tunnel wall of the FST system. In the following,

the insertion loss obtained by ESD ILESD is compared with insertion loss obtained by

the one obtained using the acceleration response ILa at the three evaluators of the tunnel

wall with the aim of obtaining insights in the use of one accelerometer for the assessment

of the train pass-by overall induced vibration.

In Fig. 5.7 and 5.8, the insertion loss ILa for y and z directions, respectively, and for

all three evaluators on the tunnel wall is compared with the insertion loss ILESD for

the soft and hard soil cases. In these figures, it can be seen that ILa approximately

follows the ILESD at frequencies between 10 and 50 Hz. For frequencies above 50 Hz, the

ILa associated to the three studied evaluators is overestimated with respect to ILESD.

Moreover, a large difference between ILa and ILESD appears at 6.3 Hz for the case of

hard soil. No feasible explanation of this phenomenon has been found yet.

In order to accurately determine the effectiveness of using one accelerometer for the

assessment of underground railway-induced vibrations, the difference between ILESD

and ILa is obtained and plotted in Fig. 5.9 for the case of the vibration of the evaluator

in the y direction and in Fig. 5.10 for the case of the vibration of the evaluator in the

a direction. As shown in the figures, the differences in insertion loss are very significant
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Figure 5.7: Insertion loss in dB for the evaluator 1 in y direction (solid blue line),
the evaluator 2 in y direction (solid red line), the evaluator in y direction (solid green
line) and for the vibration energy flow (solid black line) for hard soil (a) and soft soil

(b) cases.
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Figure 5.8: Insertion loss in dB for the evaluator 1 in z direction (solid blue line),
the evaluator 2 in z direction (solid red line), the evaluator in z direction (solid green
line) and for the vibration energy flow (solid black line) for hard soil (a) and soft soil

(b) cases.

at 63 Hz for the case of the hard soil (arriving to values of 7 dB) and at 80 Hz and 100

Hz for the soft soil (also arriving to almost 8 dB).
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Figure 5.9: Difference between ILESD and ILa for the evaluator 1 in y direction (solid
blue line), for the evaluator 2 in y direction (solid red line) and the evaluator 3 in y

direction (solid green line) and for hard soil (a) soft soil (b) cases.
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Figure 5.10: Difference between ILESD and ILa for the evaluator 1 in z direction
(solid blue line), for the evaluator 2 in z direction (solid red line) and the evaluator 3

in z direction (solid green line) and for hard soil (a) soft soil (b) cases.

The variability of the insertion loss at different points of the tunnel wall is studied by

taking into account the three evaluators used in the calculation. To better understand

this variability, the differences in ILa between evaluator 2 and 3 with respect to evaluator

1 are plotted in Figs. 5.11 and 5.12, where Fig. 5.11 is related to the acceleration in the

y direction and Fig. 5.12 to the z direction. These figures show that the differences

between the selected evaluators are smaller than 2 dB. This implies that at least for the
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evaluators selected, when an accelerometer is placed in the tunnel wall with the aim of

assessing the vibration levels induced by a train passage in the particular tunnel studied,

the decision of the point is not of great importance. This can be also clearly seen in

Figs. 5.9 and 5.10, where it is shown that the differences between the ILESD and ILa

are much larger than the differences between the insertion losses associated to the three

evaluators. Figs. 5.11 and 5.12 also shown that the difference between the ILa is slightly

smaller in the hard soil case than in the soft soil case. Fig. 5.12 (a).
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Figure 5.11: Difference between ILESD and ILa for the evaluator 2 (solid red line)
and 3 (solid green line) with respect to evaluator 1 for hard soil (a) soft soil (b) cases.

Results for the y direction.
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Figure 5.12: Difference between ILESD and ILa for the evaluator 2 (solid red line)
and 3 (solid green line) with respect to evaluator 1 for hard soil (a) soft soil (b) cases.

Results for the z direction.

From the analysis of the insertion loss in Figs. 5.7 and 5.8, the difference in insertion loss

between ESD and acceleration in Figs. 5.9 and 5.10 and relative difference of insertion

loss Fig. 5.11 and 5.12, three important conclusions are found:

• It is found that the differences between the insertion loss that comes from the vibra-

tion energy flow with respect to the insertion loss coming from one accelerometer

in the tunnel wall are up to 8 dB at frequencies of 63 Hz, 80 Hz and 100 Hz. Then,

using one accelerometer in the tunnel wall in order to assess the efficiency of a

vibration mitigation countermeasure applied in a railway tunnel overestimates its

IL. On the other hand.

• The variations in the IL associated with the vibration acceleration are found to be

small, implying that the location of the accelerometer is not of great importance.

• It is found that the IL of a mitigation measure could be significantly dependent

on the local subsoil surrounding the tunnel infrastructure.

In this study, the variability of parameters such as train speed, soil stiffness, fasteners

stiffness, track type and type of tunnel infrastructure is small. In order to achieve more

rigorous conclusions about the validity of using one accelerometer in the tunnel for the

assessment ground-borne railway-induced vibration in tunnels, more studies need to be

carried out accounting for a much more representative set of parameters of the system.
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This chapter focuses on the analysis of noise and vibration generated in underground

railway tunnels due to train traffic. Specifically, an analysis of noise and vibration gen-

erated by train passage in an underground simple tunnel in a homogeneous full-space

is presented. In this chapter, a methodology based on decoupled 2.5D elastodynamic

FEM-BEM along with 2.5D acoustic BEM is presented to model the re-radiated noise

generated inside the tunnels due to train passage. The 2.5D FEM BEM used to model

soil-structure interaction problems. The noise analysis inside the tunnel is performed

using a 2.5D acoustic BEM considering a weak coupling. The method of fundamental

solutions (MFS) is used to validate the acoustic BEM methodology. The influence of

fastener stiffness on vibration and noise characteristic inside a simple tunnel is investi-

gated.

6.1 Numerical methodology

A global computational scheme has been developed to study the re-radiated noise ra-

diated on account of train-pass. A schematic of this computational scheme is shown

in Fig. 6.1. It consists of three different models: the train/track interaction, the elas-

todynamic model that represents the track/tunnel/soil system and the model for the

interior acoustics. As shown in the scheme, the coupled train/track/tunnel/soil system

is solved in the two initial steps. In the first one, the track response, obtained from the

2.5D elastodynamic FEM-BEM model, and the vehicle response are used to obtain the

wheel/rail interaction forces. In the second step, these forces are applied to the 2.5D

elastodynamic FEM-BEM model of the track/tunnel/soil system to obtain the structural

response. Then, the re-radiated noise generated by this structural response is computed

by means a 2.5D acoustic BEM.
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Figure 6.1: Schematic description of the methodology for computing re-radiated noise.

6.2 Acoustic analysis

The presented methodology utilising MFS and BEM for analysis of acoustics space

in conjunction with 2.5D FEM-BEM method for analysis of elastodynamics is called

decoupled approach, as it treats each domain separately and only the compatibility

between both the domains is respected. This compatibility is guaranteed by prescribing

the field of normal velocities obtained from the elastodynamic problem to the boundary

of the acoustic domain. Since a decoupled approach is followed, the results computed in

terms of structural velocity are used boundary conditions for computation of pressure

levels in the acoustic domain. The acoustic pressure levels are computed by means of

acoustics BEM and MFS. The collocation points for MFS are chosen to be the nodal

points of FEM-BEM element mesh which bounds the acoustic domain and are also the

nodes of BEM mesh used for obtaining the solution using BEM. The normal velocity V̄n

used as a boundary condition on the collocation points are computed from the normal

displacement Ūn obtained from the dynamic response of the structure as:

V̄n = iωŪn, (6.1)

The procedure for obtaining the sound pressure levels using MFS and BEM is described

in the succeeding sub-subsections. In both methodologies, the hysteretic damping model

for the air is considered.
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6.2.1 2.5D interior acoustics BEM approach

The pressure field in the acoustic space is obtained in a two-step procedure by BEM. In

the first step unknown pressures on the boundary are obtained by using the known nor-

mal velocities on the boundary. From the pressure and velocities known on the boundary

the pressure in the evaluation points are subsequently obtained. The velocity obtained

from Eq. 6.1 is used as a boundary condition to obtain the pressure on the boundary of

acoustic domain. The BEM used in acoustics also uses globally regularised integrals and

there by avoids explicit computation of singular terms. The 2.5D regularised boundary

integral equation for acoustics is obtained by following the standard regularisation pro-

cedure outlined in [79] on the integral representation equation Eq. (B5) of [66]. As a

result, the regularised boundary integral equation in 2.5D is given by:∫
S

[
p̄(y)H̄(x,y)− p̄(x)H̄0(x,y)

]
dS = iρω

∫
S
v̄(y)Ḡ(x,y)dS, (6.2)

where the boundary integral equation is defined over an bounded domain defined by

boundary S, x is the vector of coordinates of the source point, y is the vector of coor-

dinates of the receiver locations, H̄ is the Green’s functions associated to the velocity

in wavenumber frequency domain, H̄0 is the static Green’s functions associated to the

velocity (ω = 0, kx = 0) and Ḡ is the matrix of Green’s functions associated to the

pressure, p̄ is the pressure and v̄ is the velocity and ρ is the density of medium. Thus,

the boundary integral equation used for obtaining the pressure on the boundary nodes,

in matrix form is given by

H̄bP̄nb
= iρωḠbV̄nb

, (6.3)

where, H̄b, Ḡb are matrices related to Green’s velocity and pressure computed on bound-

ary, P̄nb
and V̄nb

are nodal pressures and velocities on the boundary, respectively. After

obtaining the boundary unknowns the pressure in the acoustic space is obtained as:

P̄nf
= −(H̄f P̄nb

+ iρωḠf V̄nb
), (6.4)

where, P̄nf
is the vector of pressure in the acoustic space, H̄f , Ḡf are matrices related

to Green’s velocities and pressures computed in on evaluation points in acoustic space.

The derivation of the above equation can be found in [79, 66]. The Green’s functions of

velocity and pressure are given in Appendix B.1 The speed of computation of BEM is

improved by using the computation scheme similar to the one mentioned in Sec 3.2.1.
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6.2.2 2.5D MFS approach applied to interior acoustics

The MFS approximates the pressure field within a given domain with a linear com-

bination of fundamental solutions (Green’s functions) of the governing differential i.e.

the Helmholtz equation. The acoustic response at a generic point x is then reproduced

considering the effects of NS virtual sources located outside the analysis domain, as

expressed by

P̄ (x) =

NS∑
m=1

AmḠmfs(x, x
m
0 ), (6.5)

where, Ḡmfs(x, x
m
0 ) is the to the Green’s function of the sound pressure, xm0 represents

the coordinates of the virtual source m and (m = 1, 2, · · · , NS), Am is the unknown

amplitudes of the virtual sources. In order to obtain the unknown amplitudes of the

sources continuity of normal velocity at the collocation points is imposed i.e.

NS∑
m=1

AmH̄mfs(x
i
p, x

m
0 ) = V̄n, (6.6)

where, H̄mfs(x
i
p, x

m
0 ) is Green’s functions for particle velocity and xip are the coordinates

of the collocation point i and i = (1, 2, · · · , n). The 2.5D Green’s functions to be used in

this 2.5D MFS approach are the same that the ones employed in the 2.5D acoustic BEM,

which are shown in Appendix B.1 The validation of this MFS methodology together with

more details regarding the method can be found in [65, 80].

6.2.3 Verification of the 2.5D acoustic BEM

At first, the proposed 2.5D acoustic BEM is verified by comparing with the analytical

solution of the pressure response due to a 2.5D pulsating cylinder. This analytical

solution is given in Appendix B.1 For the comparison, it is considered a cylinder of unit

radius and an evaluation point located 10 m away from the centre of the cylinder. A

0.01 damping is considered for the air. BEM meshes of 60 and 180 elements are used for

the comparison. Figure 6.2 shows the comparison of this response for a frequency range

of 0− 250 Hz and for kx = (0, 0.5, 1) rad/m. As shown in the figure, a good agreement

between the response of the 2.5D BEM and the analytical solution is found. Moreover,

it is shown that the slight errors associated with the mesh of 60 elements can be avoided

increasing the mesh density.

Next, the proposed 2.5D acoustic BEM method for interior acoustics is verified using

the 2.5D MFS approach presented in Sec. 6.2.2. The verification is accomplished by

comparing the pressure field inside a rectangular tube subjected to external excitation.
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Figure 6.2: Pressure response obtained at a point located at a radial distance of 10 m
for kx = 0 rad/m (a), kx = 0.5 rad/m (b) and kx = 1 rad/m (c). The cases considered
are: 2.5D acoustic BEM with 60 elements (dashed line), 2.5D acoustic BEM with 180

elements (dotted line) and analytical solution (solid grey line).

Figure 6.3: Rectangular tube used for the verification of the 2.5D acoustic BEM
considering an 88-element mesh. The collocation points are represented by hollow
markers, the source points by solid markers, the evaluators by star markers and the

loaded collocation points by plus markers.

Figure 6.3 shows the schematic of the rectangular tube used for this verification. For

kx = 0, the pressure response inside the tube due to external excitation has an analytical

solution. This analytical solution is also given in Appendix B.1. A velocity boundary

condition is assumed at points shown by plus markers in Fig. 6.3 of the tube. A damping

factor of 0.01 is considered for the air. BEM meshes of 88 elements and 220 elements

are used for comparison. The pressure field is obtained at the points located at the star

markers in Fig. 6.3. For this case, the collocation points in MFS are the nodes of the

BEM mesh of 88 2-node elements.

Figure 6.4 shows the pressure obtained by MFS, BEM and analytical solution (in this

case, only for kx = 0) at the evaluator shown by circle star marker in Fig. 6.3. The

results at the rest of the evaluators also present a good match between the methods.

The figure shows good agreement between the methods. Also, it is shown that the slight

errors associated with the mesh 88 elements can be avoided increasing the mesh density.
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Figure 6.4: Pressure response computed in the wavenumber-frequency domain at the
evaluator located at the centre of the tube. Sub-figure (a) shows the comparison of
MFS (dotted line), BEM (dash-dotted line for the 88-element mesh and dashed line for
the 220-element one) and analytical solution (solid grey line) for kx = 0; Sub-figures (b)
and (c) show a comparison of MFS and BEM for kx = 0.5 rad/m and kx = 1 rad/m,

respectively.

6.3 Application

The present methodology is applied in the investigation of the re-radiated noise gen-

erated by train traffic inside underground tunnels. Although this methodology can be

used for a wide range of studies related to noise and vibration analysis associated to rail-

way infrastructures, this methodology is applied in the context of the present chapter to

study the effects on the re-radiated noise in already constructed tunnels due to vibration

abatement solutions. The coupled 2.5D elastodynamic FEM-BEM defined in Sec. 3.1

is used for computing the track and the tunnel structure response. The acoustic anal-

ysis inside the tunnel is performed using the 2.5D acoustic BEM defined in Sec. 6.2.1.

Accounting for that substituting the rail pads of the fasteners by softer ones is one of

the most common vibration abatement solutions applied to the existing railway track,

a study of the effect that the fasteners stiffness has on noise radiation deserve consider-

ation and it is also presented in this chapter. For this study, two cases of fasteners with

different stiffness properties and a case where rails are directly fastened to the tunnel

floor are analysed.

The model of the underground tunnel is shown in Fig. 6.5. The structure, consisting of

the tunnel, the fasteners and the rails, is modelled with linear triangular finite elements,

while the soil is modelled using the 2.5D elastodynamic BEM, being its associated nodes

shown in red. The boundary element is a linear element having two nodes per element.
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A nodal collocation scheme is followed to obtain the BEM matrices. Assuming a weak

coupling between elastodynamic and acoustics systems, the structural response obtained

at the purple points is used as the input to the acoustic model in terms of structural

velocities. The tunnel has an inner radius of 3 m and a thickness of 0.25 m. The me-

chanical parameters of the rails, tunnel and soil as isotropic elastic media are presented

in Table 6.1. The rail fasteners that attach the rails to the tunnel invert consist of a top

elastomer just below the rails and a bottom elastomer sandwiched between two metallic

plates under the top elastomer. Thus, the fasteners are modelled as a sandwiched system

consisting of four layers meshed with 2.5D finite elements. The equivalent properties to

be used in the 2.5D FEM model of the fasteners for the two cases previously mentioned

are presented in Tables 6.2 and 6.3. These equivalent properties are obtained by con-

sidering that the vertical stiffness of the rails fastening system should not be modified

when a continuously distributed fasteners are assumed instead of the typical periodic

distribution of them. The thicknesses of the top and bottom elastomers are considered

to be 0.007 m and 0.012 m, respectively, and those of the metallic plates are 0.016 m

and 0.012 m, respectively for the top and the bottom. On Fig. 6.5, evaluators A, B and

C are considered to show the vibration response of the structure, while evaluators a, b

and c are used to present the noise response in following sections.

E [MPa] ρ [kg/m3] ν Dp Ds

Rails 207 7850 0.15 0.01 0.01

Tunnel 35 2500 0.15 0.01 0.01

Soil 0.18 2191 0.3 0.025 0.015

Table 6.1: Parameters of superstructure

E [MPa] ρ [kg/m3] ν Dp = Ds

Top elastomer 1.15 1329 0.45 0.05

Top plate 207 · 103 7850 0.30 0.01

Bot. elastomer 2.7 1329 0.35 0.05

Bottom plate 207 · 103 7850 0.30 0.01

Table 6.2: Fasteners properties for case 1.
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Figure 6.5: Geometry of the simple tunnel studied in this article. Considering the
centre of the tunnel inner circumference at (y = 0, z = 0), vibration response evaluators
A, B and C are located at (y = 0.5, z = −2.96) m, (y = −1.79, z = 2.14) m and
(y = 0.05, z = 2.14) m, respectively; the rail response is obtained at the evaluators R,
placed on top of each of the rails; acoustic response evaluators a, b and c are located
at (y = −1.7, z = −2.14) m, (y = −0.34, z = −1.07) m and (y = 1.02, z = 1) m,

respectively.

E [MPa] ρ [kg/m3] ν Dp = Ds

Top elastomer 0.3 1200 0.45 0.05

Top plate 207 · 103 7850 0.30 0.01

Bot. elastomer 0.7 1200 0.35 0.05

Bottom plate 207 · 103 7850 0.30 0.01

Table 6.3: Fasteners properties for case 2.

In order to couple this 2.5D elastodynamic FEM-BEM model with a train pass-by model,

it is excited by a 2.5D vertical load applied on the top of the rails (point R on Fig. 6.5)

in order to obtain the track receptances required for the train/track interaction, as ex-

plained in Sec. 4.3. A synthetic unevenness profile based on a track class 3 of the Federal

Railroad Administration (FRA) classification is considered in the present calculations

[81]. The train speed is assumed to be 25 m/s. The adopted rail unevenness profile
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excites the train in the frequency range between 0 Hz and 250 Hz which is also the

range of frequencies considered to be important for the study of ground-borne vibration

and re-radiated noise induced by railway traffic. Uniformly distributed samples of 212

points in the range of -10 rad/m to 10 rad/m have been used as a sampling vector of

the wavenumber, as most of the spectral information of the system is contained in this

range. The properties and model of the train as well as the stiffness of wheel/rail contact

kH used for this simulation can be found in Costa et al. [51].

6.3.1 Vibration analysis

Figure 6.6 shows the time histories of the vertical rail velocities for the three cases of

fastener stiffness. Sub-figure (a) is the time history for the stiffest fastener in this study

(case 1: Table 6.2) followed by the one which is a softer fastener (case 2: Table 6.3) in

subfigure (b) and subfigure (c) represents the case which the rails are directly attached

to the tunnel floor (case 3). Figure 6.7 shows the frequency content for the vertical

component of the vibration velocity of rail and tunnel evaluators in one-third octave

bands for the three cases of the fasteners stiffness. The octave bands are normalised

with the length of the time signal, which is 13 seconds all along the present chapter.

From the figures, it can be seen that the application of rail pads in the rails fastening

system (cases 1 and 2) implies a reduction of the vibration in the tunnel invert as well

as an increasing of the rails vibration. This behaviour cannot be clearly seen in the

tunnel evaluator A, because of the specific combination of tunnel ring modes. Focusing

on the cases with rail pads, it is shown that the track with softer fasteners (case 2) is

a more efficient solution than the track with stiffer ones (case 1) in order to reduce the

vibration in the tunnel. In general, the track in case 2 is shifting the vibration spectra

in the tunnel and the rails to lower frequencies. For the case where the rail is directly

fixed with the tunnel invert (case 3), the rail and tunnel behave as one solid. As a result,

most of the vibration is transferred to the tunnel. Also, the vibration response of the

rail and tunnel is similar for this case.

6.3.2 Noise analysis

In this section, an analysis of the noise-induced inside the tunnel due to train traffic is

presented. The effect of fasteners in noise radiation fields is also discussed. A comparison

is provided for the sound pressure levels in the tunnel for two cases: the noise is radiated

only from the tunnel structure and the noise is radiated by the tunnel structure and the

rails. A comparison of the sound pressure level obtained by the 2.5D MFS approach and
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Figure 6.6: Time histories of the rail velocity for case 1 (a), case 2 (b) and case 3 (c).
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Figure 6.7: Vertical component of the velocity levels in dB (dB reference 10−8 m/s) in
one-third octave bands for the rail (a), the tunnel evaluator A (b), the tunnel evaluator
B (c) and the tunnel evaluator C (d). Black lines represent case 1, grey lines represent

case 2 and the dash-dotted line represents case 3.
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the 2.5D acoustic BEM, neglecting in both cases the contribution of the rails, is made

in order to further validate the presented 2.5D acoustic BEM methodology.

Therefore, the acoustic space considered in this analysis is the interior of the tunnel. As

said before, the evaluator locations in the acoustics space, where the pressure field is

computed, are a, b and c in Fig. 6.5. The BEM nodes for the 2.5D acoustic BEM are

denoted in purple in Fig. 6.5 and the normal velocities on all these nodes obtained from

the structural response computed in previously are used as a boundary condition for this

2.5D acoustic BEM. For the case when rails are not considered, the nodes in the tunnel

invert just below the rails are used as nodes in 2.5D acoustic BEM. Zero velocity is

ascribed to these nodes. The collocation points required in the 2.5D MFS modelling are

the same points as the nodes used by the 2.5D acoustic BEM. The boundary condition at

these collocation points are the same normal velocities that are used for the 2.5D acoustic

BEM. The MFS sources are placed outside the domain. The distance between source

collocation points is optimised to get a proper solution from the 2.5D MFS approach.

A small damping ratio of 0.025 is considered for both modelling strategies.

Noise pressure field in the wavenumber-frequency domain at all the acoustic evaluator

locations for case 1 is obtained by the 2.5D acoustic BEM and the 2.5D MFS approach.

The noise pressure field is computed without considering the contribution of rails. Fig-

ure 6.8 shows that both methods are showing a good agreement capturing the nature of

the noise pressure field inside the tunnel.

The rail contribution to the noise levels inside the tunnel is studied by comparing noise

pressure levels obtained with and without considering the rails for all the cases of rail

fastening systems considered. In order to better understand the effect of fastener stiff-

ness in the noise field, mean pressure levels of both cases are compared. These mean

pressure levels are obtained by averaging the noise pressure levels over a grid of evalu-

ators inside the acoustic space. Figure 6.9 the spectra in one-third octave bands of the

mean pressure levels of noise radiation in each case obtained by neglecting rail and con-

sidering rails. From this figure, it is observed that the noise field in the tunnel radiated

only because of the tunnel structure (Fig.6.9a) is affected by the fasteners stiffness in a

similar way than the vibration response is affected. In contrast, the noise field is affected

in a completely different way than the vibration response when the rail contribution is

considered (Fig.6.9b). Thus, one can generally conclude from this results that the noise

level inside the tunnel when the rail contribution is considered increases as the fasteners

stiffness decreases.

Figure 6.10 shows the pressure levels obtained inside the tunnel for the acoustics evalu-

ator a, b and c for each of the three cases of rail fastening systems. The most important
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Figure 6.8: Noise pressure in the wavenumber-frequency domain obtained from the
2.5D MFS approach (grey line) and the 2.5D acoustic BEM (dashed black line) at acous-
tic evaluator a (a), acoustic evaluator b (b) and acoustic evaluator c (c), at frequencies

of 44 Hz (i), 70 Hz (ii), 157 Hz (iii).
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Figure 6.9: Mean pressure levels in dB (dB ref 20 µPa) obtained by neglecting the
rail contribution (a) and considering rail contribution (b), for the case 1 (black line), 2

(grey line), and 3 (dash-dotted line) of rail fastening systems.

conclusion that one can take from this figure is that when the rail fastening system

considers rail pads, the noise field inside the tunnel is completely controlled at all fre-

quencies by the rail noise radiation, as shown at sub-figures 6.10a and 6.10b. In the

case where the rail is directly attached to the tunnel, the rail contribution is similar

to the one coming from the tunnel structure. From the point of view of the different

rail fastening systems studied, the frequency content of the noise behaves in similar way

than the vibration response previously described.
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Figure 6.10: Pressure levels considering the rail contribution (grey line) and without
the rail contribution (black line) for the acoustic evaluators a (a), b (b) and c (c) and

for the cases 1 (i), 2 (ii) and 3 (iii).
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7.1 Conclusions

In this thesis, a methodology for assessing railway-induced ground-borne vibration due

to underground railway infrastructures in the context of urban environments has been

presented. The methodology is based on a comprehensive numerical approach for mod-

elling track/tunnel/soil systems considering a full-space model of the ground. This

approach is formulated in the wavenumber-frequency domain (2.5D) and it is based on

coupled FEM-BEM approach combined with the semi-analytical solutions of a cavity in

a full-space and a semi-analytical model of the track. Regarding the 2.5D FEM-BEM

approach developed in this thesis, two strategies have been proposed in order to increase

the computational efficiency of the methodology. The first strategy proposes a method

for computing the Green’s functions of a full-space that avoids interpolation and reduces

the number of operations of the process. The second strategy is based on an axisym-

metric formulation to deal with circular underground railway tunnels. This formulation

can also be used for other types of railway tunnels if a circular boundary of the bound-

ary element mesh is considered. A semi-analytical model of the track, coupled with

the 2.5D FEM-BEM model of the tunnel/soil system, has been established. It is based

on Euler-Bernoulli beams as a model of the rails and continuously distributed viscous

springs as a model of the fasteners is coupled to the tunnel/soil system. A methodology

which uses the semi-analytical solutions of a cavity in a full-space in conjunction with

the previously described approach has been developed with the aim of computing the

energy flow radiated upwards by underground railway tunnels. A non-uniform sampling

scheme for the wavenumber-frequency sampling to accurately capture the behaviour of

the track/tunnel/soil system on account of train pass-by has been proposed.

Since this comprehensive methodology for modelling the track/tunnel/soil system uses

finite elements to model the tunnel structure, its modelling detail is higher than the

previously developed methodologies based on semi-analytical modelling of the tunnel

structure, as the PiP method. The present methodology has been specifically designed to

be used in general assessment studies about ground-borne underground railway-induced

vibrations where decisions on the type of track and/or the application of mitigation

measures at the sources, as soft rail-pads, under-ballast or under-slab mats have to be

made. Moreover, this methodology can be used for the study of the vibration radiation

patterns of railway tunnels.

The developed methodology has been used to perform a comparison of the energy flow

radiated upwards by DFF and FST systems for two kinds of soil: a soft soil (180 MPa of

Young’s modulus) and a hard soil (480 MPa of Young’s modulus). From this comparison,
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the following conclusions have been obtained in the context of the vibration response in

the tunnel structure:

• In general, the level of vibration of the rail is larger in FST as compared to DFF

for almost all frequencies below 100 Hz.

• The level of vibration on the evaluator placed in the tunnel wall for the FST system

is smaller than the one associated with the DFF system.

• It is found that for the FST case, the frequency content is shifted to lower frequen-

cies, inducing to large differences between the frequency responses of the FST and

DFF systems at high frequencies, where the FST is reducing drastically the levels

of vibration as compared with the DFF system.

• FST is able to reduce the level of vibrations in the tunnel wall at frequencies above

31.5Hz for both kinds of soil studied.

From the analysis of the vibration energy flow radiated by both these infrastructures, it

can be concluded that:

• The total vibration energy flow radiated by FST and DFF systems is practically

the same.

• The vibration energy flow radiated by infrastructures decreases with distance away

from the tunnel due to the damping of the soil. The reduction observed for the

DFF system is larger than the one for the FST system because the frequency

content of the vibration energy in the FST is shifted to lower frequencies with

respect to the DFF, in the same way, that it has been observed for the vibration

in the tunnel wall.

• Taking into account that the total vibration energy flow is almost the same in

both cases, one can deduce that the shift on frequency is done by the FST does

not imply a change on the energy radiated.

• As expected, the vibration energy flow is affected by the soil stiffness. It is found

that stiffer soil results in a reduction of the vibration energy radiated upwards and

a very significant modification of the vibration energy flow radiation pattern.

The developed approach has been also used for a preliminary study on the validity of

using one accelerometer for assessing the efficiency of vibration mitigation countermea-

sures in the framework of railway tunnels. In order to check the validity of using one
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accelerometer, three evaluators placed at the tunnel wall are considered. The acceler-

ation on the evaluators on the tunnel wall and the vibration energy spectral density

were then used to compute the insertion loss between DFF and FST systems in order to

get insights of the validity of using one accelerometer for assessing the effectiveness of

this track systems. The main conclusions that are obtained from the vibration energy

radiated upwards and the computed insertion loss are summarised as:

• It is found that the differences between the insertion loss that comes from the vibra-

tion energy flow with respect to the insertion loss coming from one accelerometer

in the tunnel wall are up to 8 dB at frequencies of 63 Hz, 80 Hz and 100 Hz. Then,

using one accelerometer in the tunnel wall in order to assess the efficiency of a

vibration mitigation countermeasure applied in a railway tunnel overestimates its

IL. On the other hand.

• The variations in the IL associated with the vibration acceleration are found to be

small, implying that the location of the accelerometer is not of great importance.

• It is found that the IL of a mitigation measure could be significantly dependent

on the local subsoil surrounding the tunnel infrastructure.

A modelling approach for the re-radiated noise induced by a train passage inside rail-

way tunnels was also presented. This approach has been based on the weak coupling

between the comprehensive numerical approach for modelling track/tunnel/soil previ-

ously described and a 2.5D BEM model for interior acoustics. Using this modelling

approach, the influence of the fastener stiffness on the noise and vibration levels inside a

simple tunnel as well as the relation between the noise emitted by the rails or the tunnel

structure is investigated and discussed. The results of the application of this method in

a simple tunnel case are obtained for three cases of rail fastening systems. Moreover,

the results of the noise field inside the tunnel cavity are obtained with and without the

contribution of the rails.

From these results, the main conclusions of the study were:

• Rail fastening system consisting of rail pads imply a reduction of the vibration

levels in the tunnel structure as well as an increasing of the rails vibration.

• Softer rail pads are, in general, a more efficient solution than stiffer ones in terms

of vibration reduction in the tunnel.

• The noise field inside the tunnel induced only by the tunnel structure (without the

rails contribution) is affected by the stiffness of the fastener in a similar way that
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the vibration response is affected. In contrast, when the rail contribution is con-

sidered, the noise level in the tunnel increases as the fasteners stiffness decreases,

which is completely inverse general behaviour than the tunnel vibration level with

respect to the fastener stiffness.

• If train vehicle and wheels are not considered, it is observed that the noise field

inside the tunnel is completely controlled at all frequencies by the rail noise radi-

ation.

7.2 Further work

The methodology presented in this thesis can be improved in various aspects. Im-

provements on the computational efficiency of the methodology are being investigated

these days in LEAM-UPC. More research in order to extend the application field of

the methodology is also expected to be carried out in the near future. Studies related

to the efficiency of vibration mitigation countermeasures applied in the tunnel will be

performed. A summary of the detailed ideas for future works is presented below.

Generalised energy flow computations

In the thesis, a methodology to compute the energy flow radiated by underground rail-

way infrastructures has been proposed. The computation of energy flow requires the

computation of tractions and displacements in the soil. Although the 2.5D FEM-BEM

approach is capable of computing displacements in the soil, it cannot compute the trac-

tions field. In this thesis, the tractions and displacements are proposed to be computed

by using semi-analytical solutions of the cavity in a full-space, results that can be used for

the computation of the vibration energy flow. Although this semi-analytical model is a

relatively robust solution, its accuracy depends on the number of ring modes considered,

which makes this solution more computationally demanding that other semi-analytical

models of the ground response. Moreover, it can be used only for circular geometries

in a homogeneous full-space. It is therefore proposed as a future work of the thesis to

develop a faster, accurate and more general method to compute energy flow. The com-

bination of the 2.5D FEM-BEM approach with the method of fundamental solutions or

the singular boundary method is research lines in progress in the LEAM-UPC research

centre.
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Validity of using one accelerometer

In this thesis, a preliminary study on the validity of using one accelerometer to assess

the efficiency of a FST system as a vibration mitigation countermeasure against a DFF

system has been presented. Two cases of soil were considered for this preliminary study.

In order to obtain a better understanding of this issue, a much more representative

study that takes into account the variability of parameters such as the train speed, the

stiffness of the soil, the track type, the tunnel infrastructure, the vehicle, etc... should

be performed.

2.5D FEM-BEM with half-space

In this thesis, the developed 2.5D FEM-BEM can be used in the analysis of railway-

induced ground-borne vibration considering full-space and half-space models of the soil.

However, the thesis focused only on the general assessment studies about ground-borne

underground railway-induced vibrations considering a full-space model of the ground.

It is therefore proposed, as a further continuation of the 2.5D FEM-BEM developed

in this thesis, to study railway-induced ground-borne vibration of the complete system

consisting of train/track/tunnel/soil/building, where the soil will be modelled as a half-

space. Regarding the use of the 2.5D FEM-BEM approach for the case of the half-space

model of the soil it is further proposed the following:

• Use the method to obtain the half-space Green’s functions given by [56] instead

of using the ones of EDT toolbox [82], since the solution proposed in [56] is more

computationally efficient and can be adapted easily to the sampling strategies

required by the methodology presented in this thesis.

• Speed optimisation to 2.5D FEM-BEM methodology specific to the use of half-

space solutions in 2.5D BEM.

• Detailed investigation on the nature of coupling load between the track and the

subgrade. A preliminary study is presented on this issue in [83].

Experimental validation

The experimental validation of the present methodology for the vibration energy flow

radiated by an underground railway infrastructure is a challenging task. A scale model

that the LEAM-UPC have will be used in order to construct a small tunnel for the

validation of this behaviour.
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Hybrid methodology

In cases where the railway track is already constructed and new vibration mitigation

measures are desired to be installed, it is proposed to develop a hybrid methodology

model of the global system, which models the tunnel-building response using experi-

mental measurements [84] and the other subsystems (track/track/tunnel/soil) with the

methodology proposed in the thesis.





Appendix A

2.5D static Green’s functions for

displacements and tractions for a

homogeneous full-space

The full-space elastodynamic Green’s functions for tractions and displacements for nonzero

frequency can be found in [25]. In this section, analytical solutions of Green’s displace-

ments and stress are given for two cases: (ω = 0, kx 6= 0) and (ω = 0, kx = 0). The

tractions Green’s functions can be found from the stress Green’s functions σ, which can

be obtained from strains Green’s functions using the relation σki,j = λεkvolδi,j + 2µεki,j ,

where i, j, k = {x, y, z}. In this section, H
(2)
n are n-th order Hankel’s functions of the

second kind, λ is the first Lamé constant, µ is the second Lamé constant, β is the S-wave

speed, α is the P-wave speed, ρ is the density of the medium, r =
√
y2 + z2 and ν is the

Poisson ratio of the medium.
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A.1 Expressions of the displacements Green’s functions for

kx 6= 0 and ω = 0
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H
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A.2 Expressions of the displacements Green’s functions for

kx = 0 and ω = 0

Gxx =
1

8π(1− ν)µ
(3− 4ν) ln

1

r
,
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1
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A.3 Expressions of the strains Green’s functions for kx 6= 0

and ω = 0

In order to get obtain the strains for the case of kx 6= 0 and ω = 0, the terms presented

in Eq. A.3 are derived for that case. Substituting this terms in the original equations

presented by [25], it is possible to find the strains for the case of kx 6= 0 and ω = 0.

A ·B0 =
r

16µ(1− ν)

H
(2)
1 (ikxr)

kx
,

A ·B1 =
−ir

16µ(1− ν)
H

(2)
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A ·B2 =
kxr

16µ(1− ν)
H

(2)
1 (ikxr),

A ·B3 =
ik2
xr

16µ(1− ν)
H

(2)
2 (ikxr),

(A.3)
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A.4 Expressions of the strains Green’s functions for kx = 0

and ω = 0
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Boundary Integral Equation

B.1 Boundary integral equation for acoustics

The boundary integral equation for acoustics in 2.5D is derived similarly following the

procedure followed by François et. al. for deriving the integral equation for elastody-

namics. The boundary integral representation equation for acoustic is in 2.5D is derived

from the 3D boundary integral representation equation for acoustics

P (x0, y0, z0) = −
∫

Γ
[P (x, y, z)

∂G(r)

∂n
+ iρωG(r)Vn(x, y, z)]dΓ, (B.1)

where P (x0, y0, z0) denotes sound pressure in acoustic domain, Vn(x0, y0, z0) denotes air

particle velocity amplitude in normal direction of boundary domain, (x0, y0, z0) is the

location of source point and (x, y, z) is the location of the receiver point. G(r) = eik0r

4πr

is the Green’s function for sound pressure in 3D. ∂G(r)
∂n = H̄(r) is the normal derivative

of Green’s function for pressure. r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2, k0 = ω
c0

and

c0 the speed of sound in air.

For 2.5D it is assumed that the domain is invariant in x-direction, thus the normal vector

n is independent of x coordinate. So the integral equation on a cross-section denoted by

Γ of the boundary can be written as

P (x0, y0, z0) = −
∫ −∞
−∞

[ ∫
Γ
P (x, y, z)

∂G(r)

∂n
+ iρωG(r)Vn(x, y, z)dΓ

]
dx. (B.2)
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It is also assumed that the sound field is spatially harmonic in the x-direction with

wavenumber kx

P (x, y, z) = P (kx, y, z)e
−ikxx, Vn(x, y, z) = Vn(kx, y, z)e

−ikxx, (B.3)

Equation (B.2) is then written as

P (kx, y0, z0) = −
∫ −∞
−∞

[ ∫
Γ
P (kx, y, z)e

−ikxx∂G(r)

∂n
+ iρωG(r)Vn(kx, y, z)e

−ikxxdΓ

]
dx

= −e−ikxx

∫
Γ

[ ∫ −∞
−∞

P (kx, y, z)
∂G(r)

∂n
e−ikx(x−x0)d(x− x0)

+ iρωG(r)e−ikx(x−x0)

∫ −∞
−∞

Vn(kx, y, z)d(x− x0)

]
dΓ,

(B.4)

after rearranging and operating Eq. (B.4) becomes

P̄ (x) = −
∫

Γ

[
P̄ (y)H̄(r) + iρωV̄n(y)Ḡ(r)

]
dΓ, (B.5)

where x = (y0, z0) is the vector of source location and y = (y, z) is the vector of receiver

location in this case the boundary. Thus the equation relates the pressure and normal

velocity on the boundary to the pressure in the domain. This equation is not valid

on the boundary. In order to obtain the equation valid on the boundary, the source

point is moved on the boundary and a limiting process is followed which results in the

regularisation of the integral equation. Details of this procedure are established in the

Marc Bonnet. Here the final form of the boundary integral equation for the bounded

and unbounded domain is given.

The regularised boundary integral equation for bounded domains is

∫
Γ

[
P̄ (y)H̄(x,y)− P̄ (x)H̄0(x,y)

]
dΓ = iρω

∫
Γ
V̄n(y)Ḡ(x,y)dΓ, (B.6)

and for unbounded domains

P̄ (x) =

∫
Γ

[
P̄ (y)H̄(x,y)− P̄ (x)H̄0(x,y)

]
dΓ− iρω

∫
Γ
V̄n(y)Ḡ(x,y)dΓ, (B.7)
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B.2 2.5D Green’s functions for the 2.5D acoustic BEM

approach

The Green’s function for the pressure is given by

G(kx, r) =
1

2π
K0(kar), (B.8)

while velocity Green’s function is given by

H(kx, r) = − ka
2π
K1(kar)

(
y − y0

r
ny +

z − z0

r
nz

)
, (B.9)

where, ka =
√
k2
x − k2

0, k0 = ω/c0 and r =
√

(y − y0)2 + (z − z0)2, (y, z) is the location

of the receiver point and (y0, z0) is the location of source point, K0 and K1 are modified

Bessel functions of the second kind of order zero and one, respectively, ny and nz are

the y−, z− component of unit normal, respectively, and c0 is the speed of sound.

B.3 Analytical solutions related to the acoustic field radi-

ated by a 2.5D pulsating cylinder and inside a rectan-

gular tube

The analytical solution for pressure field generated by a 2.5D pulsating cylinder [66] is

given by

P̄ (r) =
iρωvnK0(kar)

kaK1(kar)
, (B.10)

where vn is the velocity amplitude in radial direction.

The analytical solution for pressure field inside the rectangular tube [85] is given by

P (x) = ρc0ωun

(
sin

ωx

c0
+

cos ωxc0
tan ωLx

c0

)
, (B.11)

where un is the displacement amplitude normal to the surface, x is the horizontal coor-

dinate of the evaluation points which are located on the center line of the tube and Lx

is the width of the tube.





Appendix C

Finite element method

The differential equation of the elastic domain is given by

∇ · σ + b = ρ
d2u

dt2
, (C.1)

where σ is the stress tensor that acts on the infinitesimal volume, b is the matrix of

forces, ρ is the density of the elastic volume and u is the vector of displacement. The

weak form of the problem is derived by applying to the previous expression a field of

virtual displacements v and integrating on a generic volume Ω with boundary Γ.∫
Ω

vT∇ · σ dΩ−
∫

Ω
vTρ

d2u

dt2
dΩ +

∫
Ω

vTρb dΩ = 0, (C.2)

The application of the divergence theorem to the first integral on the left side of Eq. (C.2)

allows establish ∫
Ω

vT∇ · σ dΩ =

∫
Γ

(
vTσ

)
n dΓ−

∫
Ω

(∇v)T : σ dΩ. (C.3)

where n is the outward normal to boundary Γ. This allows to write Eq. (C.2) as:

∫
Ω

(∇v)T : σ dΩ +

∫
Ω

vTρ
d2u

dt2
dΩ =

∫
Ω

vTρb dΩ +

∫
Γ

vTg dΓ, (C.4)

where g is defined as the vector of tensions, applied at the volume boundary, in the

direction of normal vector.

The equilibrium condition imposed implies that the stress tensor σ is symmetric and

thus, (
∇vT

)
: σ = (∇v) : σ =

1

2

(
∇vT +∇v

)
: σ. (C.5)
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The displacements are related to strain ε by

ε(u) =
1

2

(
∇uT +∇u

)
. (C.6)

The stress tensor is related to the strain tensor as:

σ = Cε, (C.7)

where the tensor C, which relates the tensors σ and ε under linear a linear transforma-

tion. The response of the system is assumed to be harmonic with frequency ω in time

and so the displacements can be written as:

u(x, t) = u(x)eiωt, (C.8)

where x is the cordinate system, which leads to transformation of Eq. (C.4) as∫
Ω
ε(v) : σ(u) dΩ− ω2

∫
Ω

vTρu dΩ =

∫
Ω

vTρb dΩ +

∫
Γ

vTg dΓ. (C.9)

An alternative vector notation for the symmetrical stress tensor is used where the com-

ponents are collected in the vector σ and analogously, the vector ε collects the com-

ponents of the symmetrical strain tensor where, σ = (σxx, σyy, σzz, σxy, σyx, σzx)T and

ε = (εxx, εyy, εzz, γxy, γyz, γzx, )
T and γij = 2εij , i 6= j. As the domain is assumed to be

invariant in the x direction, the displacements are then a function of cordinates y and

z. Introducing the finite element discretisation, the displacement can be written as:

u(x, ω) = N(y, z)ũ(x, ω) (C.10)

where, ũ(x, ω) is the nodal displacement which is a function of ω and the cordinate x.

N is the matrix of the finite element shape functions. The strain vector can then be

derived from the discritised displacements as

ε = Du = DNũ = D1Nũ + D2N
∂ ũ

∂x
(C.11)
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where D1 and D2 are given as:

D1 =



∂
∂x 0 0

0 0 0

0 0 ∂
∂z

0 ∂
∂x 0

0 ∂
∂z 0

∂
∂z 0 ∂

∂x


, D2 =



0 0 0

0 1 0

0 0 0

1 0 0

0 0 1

0 0 0


, (C.12)

for simplicity, L1 = D1N and L2 = D2N. Inserting the finite element discretisation and

using the constitutive relationship mentioned in Eq. (C.7), allows to write Eq. (C.9) as:

∫
Ω

(
L1ṽ + L2

∂ ṽ

∂x

)T
C

(
L1ũ + L2

∂ ũ

∂x

)
dΩ

−ω2

∫
Ω

(Nṽ)T ρ (Nũ) dΩ =

∫
Ω

(Nṽ)T ρb dΩ +

∫
Γ

(Nṽ)T g dΓ.

(C.13)

Simplifying the equation by rewriting the volume integrals as an integral over the lon-

gitudinal coordinate x and the cross section A∫ +∞

−∞

∂ ṽ

∂x

T

K21ũ dx+

∫ +∞

−∞

∂ ṽ

∂x

T

K2
∂ ũ

∂x
dx+

∫ +∞

−∞
ṽTK0ũ dx

+

∫ +∞

−∞
ṽTK12

∂ ũ

∂x
dx− ω2

∫ +∞

−∞
ṽTMũ dx =

=

∫ +∞

−∞
ṽT
(∫

A
NTρb dA

)
dx+

∫ +∞

−∞
ṽT
(∫

l
NTg dl

)
dx,

(C.14)

where

K0 =

∫
A

LT1 CL1 dA, K12 =

∫
A

LT1 CL2 dA,

K21 =

∫
A

LT2 CL1 dA, K2 =

∫
A

LT2 CL2 dA,

M =

∫
A

NTρN dA.

(C.15)

From integration of parts in the above equation one can find that∫ +∞

−∞

∂ ṽ

∂x

T

K21ũ dx = vTK21u
∣∣∞
−∞ −

∫ +∞

−∞
ṽTK21

∂ ũ

∂x
dx,∫ +∞

−∞

∂ ṽ

∂x

T

K2
∂ ũ

∂x
dx = vTK2

∂ ũ

∂x

∣∣∣∣∞
−∞
−
∫ +∞

−∞
ṽTK2

∂2ũ

∂x2 dx.

(C.16)
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Equation C.14 can then be simplified as

−
∫ +∞

−∞
ṽTK2

∂2ũ

∂x2 dx+

∫ +∞

−∞
ṽTK0ũ dx

+

∫ +∞

−∞
ṽTK1

∂ ũ

∂x
dx− ω2

∫ +∞

−∞
ṽTMũ dx =

=

∫ +∞

−∞
ṽT
(∫

A
NTρb dA

)
dx+

∫ +∞

−∞
ṽT
(∫

l
NTg dl

)
dx,

(C.17)

where K1 = K12 −K21. Since the initial formulation has been proposed for any virtual

displacement field all integrals over the longitudinal coordinate x vanish and the equation

is equivalent to

K0ũ(y, ω) + K1
∂ ũ(y, ω)

∂x
−K2

∂2ũ(y, ω)

∂x2 − ω2Mũ(y, ω) = f(y, ω), (C.18)

and the external load vector is

f(y, ω) =

∫
l
NTg dl +

∫
A

NTρb dA. (C.19)

The Fourier transform property that allows to convert differential equations to linear

one is given as

F
[
∂h(y)

∂x
, ky

]
= −ikxh(x). (C.20)

Taking into account the above property of the Fourier transform Eq. (C.18) is rewritten

as, (
K0 − ω2M− ikxK1 + k2

xK2

)
U = F , (C.21)

which represent the 2.5D finite element equation and where K0, K1, K2 are the stiffness

matrices and M is the mass matrix of the finite element domain which are independent

of wavenumber ky and the frequency ω.



Appendix D

Vehicle Model

Fig. D.1 shows a visual description of the vehicle model, which is a system of 10

DOF. These are the car body vertical displacement zc, the car body pitch, the vertical

displacements of both bogies, the pitch of both bogies and the vertical displacements

of the four wheels, which are all represented by the variables zc, ϕc, z
(1)
bog, z

(2)
bog, ϕ

(1)
bog,

ϕ
(2)
bog, z

(1)
w , z

(2)
w , z

(3)
w and z

(4)
w , respectively. Regarding to the other variables illustrated

in Fig. D.1, mc is the car body mass, Jc is the car body mass inertia, m
s(i)
bog is the sprung

mass of the ith bogie, k
(i)
ss is the stiffness of the ith bogie secondary suspension, η

(i)
ss

is the structural damping coefficient of the ith bogie secondary suspension, c
(i)
ss is the

viscous damping of the ith bogie secondary suspension, m
(i)
bog is the unsprung mass of

the ith bogie, J
(i)
bog is the unsprung mass inertia of the ith bogie, k

(j)
ps is the stiffness of

the jth wheelset primary suspension, η
(j)
ps is the structural damping coefficient of the jth

wheelset primary suspension, c
(j)
ps is the viscous damping of the jth wheelset primary

suspension, m
(j)
ps is the mass of the jth wheelset primary suspension, m

(j)
w is the mass of

the jth wheelset, dsc is the distance between bogies of the same car, ddc is the distance

between bogies of the different cars and dw is the distance between wheelsets of the same

bogie.
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Figure D.1: Vehicle model.

Considering a vector of DOF organized as{
zc ϕc z

(1)
bog ϕ

(1)
bog z

(2)
bog ϕ

(2)
bog z

(1)
w z

(2)
w z

(3)
w z

(4)
w

}T
, (D.1)
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the nonzero terms of the upper triangular part of the stiffness matrix of this vehicle

model are

K1,1 = k∗(1)
ss + k∗(2)

ss + iω
(
c(1)
ss + c(2)

ss

)
− ω2

(
mc +m

s(1)
bog +m

s(2)
bog

)
,

K1,2 =
[
k∗(1)
ss − k∗(2)

ss + iω
(
c(1)
ss − c(2)

ss

)] dsc
2
,

K2,2 =
[
k∗(1)
ss + k∗(2)

ss + iω
(
c(1)
ss + c(2)

ss

)] d2
sc

4
− ω2Jsc+bog,

K1,1+2i = −
(
k∗(i)ss + iωc(i)

ss

)
,

K2,3 = −
(
k∗(1)
ss + iωc(1)

ss

) dsc
2
,

K2,5 =
(
k∗(2)
ss + iωc(2)

ss

) dsc
2
,

K1+2i,1+2i = k∗(i)ss + k∗∗(2i−1)
ps c2i−1 + k∗∗(2i)ps c2i + iωc(i)

ss − ω2m
(i)
bog,

K1+2i,2+2i =
[
k∗∗(2i−1)
ps c2i−1 − k∗∗(2i)ps c2i

] d (i)
w

2
,

K2+2i,2+2i =
[
k∗∗(2i−1)
ps s2i−1 + k∗∗(2i)ps s2i

] d 2(i)
w

4
− ω2J

(i)
bog,

K1+2i,6+j = −k∗∗(j)ps cj ,

K2+2i,5+2i = −
(
k∗∗(2i−1)
ps c2i−1

) d (i)
w

2
,

K2+2i,6+2i =
(
k∗∗(2i−1)
ps c2i−1

) d (i)
w

2
,

K6+j,6+j = k∗∗(j)ps cj − ω2m(j)
w (D.2)

where Jsc+bog = Jc + (d2
sc/4)(m

s(1)
bog + m

s(2)
bog ) and where i = 1, 2 and j = 1, 2, 3, 4, taking

into account that the expressions containing both i and j are restricted to the following

conditions: j = 1, 2 when i = 1 and j = 3, 4 when i = 2. The single asterisk notation

denotes a complex stiffness defined with the general expression k∗ = k(1 + i sign(ω)η)

and the double asterisk also denotes a complex stiffness with the general expression

k∗ = k(1 + i sign(ω)η) + iωc). Finally, the sj and cj associated to the j-th primary

suspension are defined as

sj =
1

sinc

(
π

ω

ω
(j)
0

) , cj =

cos

(
π

ω

ω
(j)
0

)

sinc

(
π

ω

ω
(j)
0

) , (D.3)

where

ω
(j)
0 =

√√√√k
(j)
ps

∗∗

m
(j)
ps

. (D.4)
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A summary of the parameters of this vehicle model, the values taken in the present

paper and the units of each parameter are shown in Table D.1. As shown, the massive

parameters are divided by two since the values required of the half-vehicle. The stiffness

of the secondary and primary suspension are already given for of vehicle system.

Vehicle parameters Notation Units Value

Car body mass mc [kg] 41923/2

Car body mass inertia Jc [kg m−2] (9.17/2)·105

Sprung mass of the ith bogie m
s(i)
bog [kg] 720/2

Stiffness of the ith bogie’s secondary suspension k
(i)
ss [N m−1] 8.14·105

Structural damping coefficient of the ith bogie’s

secondary suspension

η
(i)
ss [−] 0

Viscous damping of the ith bogie’s secondary

suspension

c
(i)
ss [N s m−1] 15·103

Unsprung mass of the ith bogie m
(i)
bog [kg] 1730/2

Unsprung mass inertia of the ith bogie J
(i)

bog [kg m−2] 824/2

Stiffness of the jth wheelset’s primary suspen-

sion

k
(j)
ps [N m−1] 1.24·106

Structural damping coefficient of the jth

wheelset’s primary suspension

η
(j)
ps [−] 0

Viscous damping of the jth wheelset’s primary

suspension

c
(j)
ps [N s m−1] ·104

Mass of the jth wheelset’s primary suspension m
(j)
ps [kg] 0

Mass of the jth wheelset m
(j)
w [kg] 1410/2

Distance between bogies of the same car dsc [m] 11.368

Distance between bogies of different cars ddc [m] 4.97

Distance between wheelsets of the ith bogie d
(i)
w [m] 2

Table D.1: Vehicle model parameters and data.
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tion of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive

Hybrid Model Based on a Finite Element Method and Method of Fundamental

Solutions Approach. Journal of Vibration and Acoustics, 139(6):061009, 2017.

[66] X. Sheng, T. Zhong, and Y. Li. Vibration and sound radiation of slab high-speed

railway tracks subject to a moving harmonic load. Journal of Sound and Vibration,

395:160 – 186, 2017.

[67] G Lombaert, G Degrande, S François, and D J Thompson. Ground-Borne Vibration

due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods

and Mitigation Measures. In Noise and Vibration Mitigation for Rail Transportation

Systems SE - 33, volume 126, pages 253–287. Springer Berlin Heidelberg, 2015.

[68] A. Dijckmans, P. Coulier, J. Jiang, M. G.R. Toward, D. J. Thompson, G. Degrande,

and G. Lombaert. Mitigation of railway induced ground vibration by heavy masses

next to the track. Soil Dynamics and Earthquake Engineering, 75:158–170, 2015.

[69] A. Dijckmans, A. Ekblad, A. Smekal, G. Degrande, and G. Lombaert. Efficacy

of a sheet pile wall as a wave barrier for railway induced ground vibration. Soil

Dynamics and Earthquake Engineering, 84:55–69, 2016.
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Lúıs Godinho. Experimental validation of a FEM-MFS hybrid numerical approach

for vibro-acoustic prediction. Applied Acoustics, 141(January):79–92, 2018.

[81] C. E. Hanson, P. E. Jason, C. Ross, and D. A. Towers. High-speed ground trans-

portation noise and vibration impact assessment. Technical report, U.S. Depart-

ment of Transportation. Federal Railroad Administration Office, Washington, 2012.

[82] M. Schevenels, S. François, and G. Degrande. EDT: An ElastoDynamics Toolbox

for MATLAB. Computers and Geosciences, 35(8):1752–1754, 2009.

[83] D. Ghangale, J. Romeu, R. Arcos, B. Noori, A. Clot, and J. Cayero. Study of

the validity of a rectangular strip track/soil coupling in railway semi-analytical



Bibliography 109

prediction models. In Numerical Methods in Geotechnical Engineering IX, volume 1,

pages 407–414, 2018.

[84] R. Arcos, D. Ghangale, A. Clot, B. Noori, and J. Romeu. Hybrid model for rail fas-

teners stiffness optimization in railway-induced ground-borne vibration problems.

In Proceedings of the 6th conference on Noise and Vibration Emerging Methods

(NOVEM), pages 1–11, 2018.

[85] W. Desmet and D. Vandepitte. Finite Element Modeling for Acoustics. In

ISAAC13-International Seminar on Applied Acoustics, Leuven, pages 37–85, 2005.


	Abstract
	Acknowledgements
	Declaration
	List of Figures
	List of Tables
	1 Introduction
	1.1 Justification of the work
	1.2 Thesis outline

	2 State of the art
	2.1 Introduction
	2.2 Semi-analytical models
	2.3 Numerical models
	2.4 Isolation countermeasures

	3 Fast coupled 2.5D FEM-BEM 2.5D FEM-BEM
	3.1 2.5D FEM-BEM
	3.2 Fast computation of elastodynamic BEM matrices
	3.2.1 Fast computation of the Green's functions in a full-space
	3.2.2 Axisymmetric formulation

	3.3 Verification of the numerical methods
	3.3.1 Verification of 2.5D BEM
	3.3.2 Verification of 2.5D FEM-BEM


	4 Methodology for the vibration energy flow computation
	4.1 Numerical method
	4.2 Modelling of the track/tunnel/soil system
	4.2.1 Track model and its coupling with the tunnel structure
	4.2.2 Model for the vibration propagation in the soil
	4.2.3 Verification of the tunnel/soil model

	4.3 Train/track interaction and train pass-by response models
	4.3.1 Wavenumber-frequency sampling strategy

	4.4 Computation of vibration energy flow
	4.5 Applications
	4.5.1 Vibration analysis
	4.5.2 Vibration energy flow analysis


	5 Validity of using only one accelerometer
	5.1 Study cases
	5.2 Effect of soil stiffness on the tunnel wall response
	5.3 Validity of using one accelerometer in the tunnel wall for railway-induced ground-borne vibration assessment of underground railway infrastructures

	6 Methodology for the computation of the re-radiated noise
	6.1 Numerical methodology
	6.2 Acoustic analysis
	6.2.1 2.5D interior acoustics BEM approach
	6.2.2 2.5D MFS approach applied to interior acoustics
	6.2.3 Verification of the 2.5D acoustic BEM

	6.3 Application
	6.3.1 Vibration analysis
	6.3.2 Noise analysis


	7 Conclusions and further work
	7.1 Conclusions
	7.2 Further work

	A 2.5D static Green's functions for displacements and tractions for a homogeneous full-space
	A.1 Expressions of the displacements Green's functions for kx=0 and =0
	A.2 Expressions of the displacements Green's functions for kx=0 and =0
	A.3 Expressions of the strains Green's functions for kx=0 and =0
	A.4 Expressions of the strains Green's functions for kx=0 and =0

	B Boundary Integral Equation
	B.1 Boundary integral equation for acoustics
	B.2 2.5D Green's functions for the 2.5D acoustic BEM approach
	B.3 Analytical solutions related to the acoustic field radiated by a 2.5D pulsating cylinder and inside a rectangular tube

	C Finite element method
	D Vehicle Model
	Bibliography

