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Chapter 1

Introduction

The limited supply of today's main energy sources in the form of oil, coal, natural gas and

uranium and their adverse e�ects on the environment have focused research attention on alter-

native, renewable energy sources. The burning of fossil fuels by humans is the largest source of

emissions of carbon dioxide and has dramatic contribution to global warming. Nuclear energy

- an alternative to fossil fuels - besides the issue of waste management, has severe dangers as-

sociated with the nuclear radiation, highlighted by the disaster at Three Mile Island in 1979,

Chernobyl in 1986, at the Fukushima power plants in 2011.

Reducing the reliance on both fossil fuels and nuclear energy by replacing them with renew-

able energy sources is therefore necessary to provide the future generations a habitable planet.

Among all the renewable energy sources, solar energy is a promising alternative as it is by far

the most abundant energy source. Sun delivers in fact more energy than the whole mankind

needs. The net solar power input to the earth is more than 10000 times humanity's current rate

of use of fossil and nuclear fuels [1].

Indeed, with a daily solar radiation in the order of 1.74 Ö 1017Watt [1], this amounts roughly

to the global energy consumption in a whole year.

Photovoltaic solar cells are thus a promising way for addressing these key energy challenges.

Currently, the record laboratory solar cells e�ciency are obtained with the multijunction cells

with e�ciency up to 46%, however the preparation of such devices is still too expensive as the

input energy used for the preparation is higher than the energy obtained from them during their

lifetime , limiting their applicability.

The photovoltaics market is still dominated by the single junction silicon solar cells, with

demonstrated e�ciency up to 25%, due to the excellent charge transport properties and envi-

ronmental stability of high purity silicon. Si-based PV technology accounted for about 94% of

the total production in 2016, shared between mono- and poly-crystaline Silicon technology. If

mono-crystalline Si dominated the market for the last few decades, the share of multi-crystalline

technology has now reached about 70% of total production [2].

Although the latest monocrystalline silicon PV modules are highly e�cient, they are also
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4 CHAPTER 1. INTRODUCTION

expensive because the manufacturing processes are slow, require highly skilled operators, and

are labour- and energy- intensive.

As a result, numerous approaches to reduce the cost of crystalline silicon PV cells, or in-

creasing their e�ciency, have been under development during the past 20 years.

As alternative to the crystalline silicon (c-Si) devices, thin-�lm silicon devices have been

largely studied and together with the other thin-�lm technologies based on cadmium-telluride

(Cd-Te), copper-indium-gallium-selenide (CIGS), copper-indium-diselenide (CIS), are the lead-

ing contenders for large-scale production, taking around 6% of the market [2].Thin �lm CIGS

cells have attained the highest laboratory e�ciencies of all thin �lm devices, around 20% [3].

Thin-�lm silicon devices are based on either amorphous silicon (a-Si:H) or microcrystalline

(also called nanocrystalline) silicon (µc-Si:H). Amorphous silicon cells are much cheaper to pro-

duce than those made from crystalline silicon. a-Si:H is also a better absorber of light, so thinner

and thus cheaper �lms can be used.

Modules based on all of these technologies have reached the production stage, but production

volumes are small [1].

A radical di�erent, photoelectrochemical approach to produce cheaper technologies, has led

to the development of the Dye-sensitized solar cells (DSSC).

The actual version of a dye solar cell was originally invented in 1988 by Brian O'Regan

and Michael Grätzel and this work was further optimized until the publication of the �rst high

e�ciency DSSC in 1991[4].

In contrast to the conventional system where the semiconductor assumes both the task of

light absorption and charge carrier transport, in the DSSC these two functions are separated. In

these solar cells, the contacting phase of the semiconductor is replaced by an electrolyte, liquid,

gel or solid, forming a photo-electrochemical cell.

The light is absorbed by a sensitizer and charge separation takes place at the interface via

photo-induced electron injection from the dye into the conduction band of the solid.
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5

Figure 1.1 Reported timeline of solar cell energy conversion e�ciencies since 1976, NREL [3].

Further research for low cost solar cells has led researcher to organic semiconductors as

possible alternative candidates.

From the late 90' these two technologies have been widely investigated, but from 2012 DSSCs

have lost interest in the PVs research �eld, leaving the organic semiconductors as one of the

most investigated technologies to date.

The use of organic semiconductor materials opens, in fact, the possibility for a further de-

crease of solar cell production costs. After the discovery of polymer with both conductive and

semiconductor properties in 1906 [5] such materials have been intensively studied for di�erent

PV applications. Extensive research over the last 5 years has produced increases in the e�ciency

of OPV devices. The current certi�ed record of power conversion e�ciency is 13.2% as reported

by the National Renewable Energy Laboratory [3].

Organic photovoltaics (OPV) has been developed rapidly in the past decade because the

semiconductor materials are earth-abundant and because they can be produced using solution

phase techniques, such as ink jet printing or coating using roll-to-roll (R2R) machinery, thus al-

lowing for fast, simple, low-cost and large-volume processing. The potential speed and simplicity

of OPV processing is unmatched by other current technologies.

Additionally, organic semiconductors have very high absorption coe�cients, which allow

very thin �lms to be used, whilst still absorbing a su�cient portion of the solar spectrum. This

property allows OPV devices to be �exible and thus be used in many situations where inorganic

cells cannot, such as in complex surfaces.

The key issue for the commercialization of �exibles and low cost organic devices and for the

further progress in the OPV �eld is the deposition process of each material.

In recent years much research have focused on the perovskite solar cells, another emerging

thin �lm technology which includes a perovskite structured compound, most commonly a hybrid

organic-inorganic lead or tin halide-based material, as the light-harvesting active layer. Solar cell
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6 CHAPTER 1. INTRODUCTION

Figure 1.2 General energy band diagram of the heterojunction formed in a hybrid solar cell[6].

e�ciencies of these devices have increased in the last years, making them the fastest-advancing

solar technology to date.

1.1 Organic solar cell operating principles

The main di�erence in the working principle between organic and inorganic PV lies in the

manner in which charges are generated under illumination. In the inorganic material, when

the photon is absorbed, free charge carriers are created. For example, in a silicon solar cell,

upon photo excitation an electron from the valence band is promoted to the conduction band,

thus forming an electron-hole pair. Due to the crystalline nature of the silicon lattice, these

charge carriers experience only a small force of interaction, that is, absorption in silicon leads

to e�ectively free charge carriers.

Whereas, in organic semiconductors there exists a large electrostatic force between electrons

and holes, due the much lower relative dielectric constant in comparison to inorganic semicon-

ductors. This di�erence strongly dictates the charge generation mechanism for each type of

devices.

The operating mechanism of an OSC is therefore a multi-step process. When a photon is

absorbed in the organic material, an excited electron-hole pair is formed, where the electron

and hole are coulombically bound. This excited state is referred to as an �exciton�. A force

is needed to overcome this excitonic binding energy so that free charge carriers can be created

and transported throughout the device and to the electrodes. The force needed to overcome the

exciton binding energy is given by the di�erences between the highest occupied molecular orbital

(HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor.

This energy o�set used to dissociate excitons is denoted as Δ ES in �gure 1.2, which is the

excited state energy o�set.

The photoelectric conversion process in OPV can be described in 4 steps:

1) Exciton generation: absorption of a photon and generation of an exciton: Ehen a photon

is absorbed in the donor material an electron is �promoted� to the LUMO, while leaving the
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1.1. ORGANIC SOLAR CELL OPERATING PRINCIPLES 7

Figure 1.3 Energy band diagram illustrating the �ve steps in the charge transfer process. The e�ciency of these steps
determines the EQE of the hybrid device [6].

positive charge in the HOMO. This excited pair is still bound by coloumb attraction forces,

forming an exciton.

2) Excition di�usion: migration of the exciton to the interface of the donor and acceptor

material through di�usion.

3) Exciton dissociation: the excited electron on the donor is transferred to the LUMO of the

acceptor at the donor-acceptor interface, forming a charge transfer state (CTS). The electron

transfer process follows Markus theory and the thermodynamics of it are linked to the energy

di�erence between the highest occupied molecular orbital (HOMO) of the donor and the lowest

unoccupied molecular orbital (LUMO) of the acceptor [7].This energy o�set is denoted as Δ ES

in �gure 1.2. This hole-electron pair is still bound by coloumbic attraction forces.

4) Charge separation: the CTS undergoes charge separation to free charge carriers (or charge

separated state (CST)) whose kinetics are described by Onsager's model [8]. The electron is

transported to the cathode for charge collection through acceptor domains. The hole produced

in the donor material travels throughout the donor fraction and is collected at the anode. This

mechanism is displayed in �gure 1.3. The free charge collection at opposite electrodes is achieved

by the asymmetric ionization energy or work function of the electrodes, that means a discrepancy

between the work function of the anode and the cathode electrode material is required to provide

a direction for the photocurrent. The same process also occurs for the acceptor, albeit that the

acceptor donates a hole to the donor.

There are competing processes that also occur during the abovementioned steps that can

lead to losses in e�ciency, they can be summarized as follows:

� Exciton recombination occurs because the exciton has a limited lifetime. The kinetics of

recombination are generally slow compared to exciton di�usion and exciton dissociation.

� The lack of injection: if the o�set between the excited state energy of the donor and

electron a�nity of the acceptor is not su�cient the injection will be limited, leaving the electron

to decay to its ground state.
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8 CHAPTER 1. INTRODUCTION

� Geminate recombination: occurs when after charge separation the bound electron recom-

bine with the hole it originated from.

� Non-geminate recombination occurs after charge separation, when a hole and an electron

which have escaped the coulombic attraction recombine at the donor-acceptor interface. During

transport, if the �lm has any defects or traps states the free charges may combine with them. It

is well established in fact that the charge transport in organic materials occurs via a process of

hopping between energy states and is a�ected by traps and recombination sites in the photoactive

�lm.

� Surface recombination: depending on the device architecture and �lm nanostructure

charges may recombine at the wrong electrode.

1.2 Device architecture

The common structure of the organic solar cells comprises a multilayer stack. Usually the

active layer, which is a combination of donor and acceptor materials, is sandwiched between two

electrodes. A discrepancy between the work function of the anode and the cathode electrode

material is required to provide a direction for the photocurrent. One of the electrodes needs to

be transparent for illumination of the cell. Bu�er layers are applied between the electrodes and

the active layer to ensure charge-selective transport.

In the above description of the operating principles of OSC a very simple bilayer structure

has been presented, which has the advantage that the photogenerated exciton can migrate to the

interface in a facile manner, can undergo charge separation and the electron can be transported

through a pure acceptor domain to the cathode, leaving very few problems in charge generation

or collection. However bi-layers structures are limited in excitonic dissociation, as there exist

only one interface, that is, only the photons absorbed by a very thin layer next to the interface

can contribute to the photocurrent while the rest is lost through recombination mechanisms. In

fact, the typical exciton di�usion length of an organic molecule is extremely low, being on the

order of 10 nm. This is signi�cantly lower than the thickness required for an organic �lm to

absorb all of the sun's photons, typically 1 µm.

That means that any exciton generated more than 10 nm away from the donor-acceptor

interface will not reach the interface and separate into free charge carriers.

Increasing the interfacial area should allow improved free charge generation and higher pho-

tocurrents. In order to increase the heterointerfacial area, the donor and acceptor material

can be mixed in a bulk, forming a nanoscale morphology, called a bulk heterojunction device

structure.

In this way, the interface is extended throughout the whole active layer, and the device

requires smaller exciton di�usion length, providing more e�cient charge separation and separate

paths for the transport of free carriers.

Bulk heterojunction (BHJ) devices are most commonly solution processed, as in this thesis,

but they can also be processed through co-evaporation [9].
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1.2. DEVICE ARCHITECTURE 9

Figure 1.4 Schematic diagram of (i) bi layer heterojunction, and (ii) bulk heterojunction photoactive layers.

In the solution processed BHJs several parameters must be optimized during the fabrication

process. As molecules are processed together they must both be compatible and have similar

solubility in a given solvent. Furthermore, the solvent must allow for good phase separation

between the two materials so that donor-rich domains and acceptor-rich domains are formed.

The dimensions of the domains should ideally be on the same order of the exciton di�usion

length, so that every exciton can reach the donor-acceptor interface. Also, the morphology of

each layer must provide good pathways between each domain. This allows the use of thicker �lms

than those used in the bilayers devices, which allows more light to be absorbed and therefore

higher photocurrents.

An important issue for BHJ devices is surface recombination, so the use of bu�er layer such as

electron transport layer (ETL) and hole transport layer (HTL) is of great importance. The role

of those bu�er layers is to act as a barrier or selective membrane to prevent unwanted charges

reaching the wrong electrode. The most common HTLs are either a polymeric binary mixture

composed of poly(3,4-ethylenedioxythiophene) and sodium polystyrene sulfonate (PEDOT:PSS)

or transition metal oxides. The optimization of BHJ blend morphologies is critical in order to

achieve high performance in OPV devices.

Several parameters must be optimized such as solvent, concentration, processing methods, as

well as the post deposition techniques such as annealing via thermal or solvent vapour method.

Thermal and solvent annealing have shown to be necessary for improving BHJ morphologies and

performance. Thermal annealing consists in heating the �lm or the complete device to allow the

components to arrange in a more favourable con�guration.

The molecules may adopt di�erent packing geometries, domain sizes can grow and the surface
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10 CHAPTER 1. INTRODUCTION

energy can change. Applying heat can in fact increase the amount of free energy and improve

the electronic properties. Solvent vapour annealing (SVA) induces similar e�ects and consists

in immersing the �lms in a vessel saturated with solvent vapour. Another BHJ structure is

the interdigitated ordered morphology. Ordered structures are generally made by in�ltrating

polymers into nanostructured oxides, which are used as a template. Previous work from the

Marsal's group, focused on fabricating nanopillars BHJ solar cells, where the pillars should

have the optimum width to maximize the photogeneration, and the maximum length to ensure

all charge carriers can be transported along their length to reach the electrodes. Aluminum

oxides templates have been used in previous work to create the nanopillars structure with pore

diameter of up to 100 nm The characterization of the nanopillar morphology is key factor to

fully understand these type of devices This overview on the di�erent device architectures has

illustrated that there are many factors to consider when designing and optimizing a device.

Studying all these aspects in more detail is the key to further improve the OSCs characteristics

to their full potential.

1.3 Photovoltaic performance characteristics

In this work complete solar cells have been characterized by means of current density-voltage

J(V) measurements. Current density-voltage measurements are the most common tool for solar

cell evaluation and characterization. These measurements are obtained when photocurrent is

measured as the applied potential is varied. To obtain the I-V curve the photocurrent is scanned

over a range of voltages under a certain illumination intensity.

To allow for valid comparison of device performance, an international standard intensity for

input power is used. This standard is an incident spectrum of AM 1.5 G, which imitates the

solar spectrum and is also called 1 sun 1.5 Air Mass Global, which refers to the radiation of

the sun at 48.2° from the zenith at sea level. This standard can be approached by commercial

solar simulators, which consist of a lamp with stabilized light density �ux, the appropriate set

of �lters to emulate the 1.5 AM G described above, with an intensity of 1000 W/m2, whilst the

cell is at a standard temperature of 25°C.

1.3.1 Electrical model

Fig. X shows an equivalent circuit model which is commonly used to interpret the characteristic

of PV devices. The circuit is typically used for inorganic solar cells, but although the speci�c

physical processes in organic semiconductors may be di�erent and therefore lead to other param-

eters, the principal loss mechanism are the same and the same circuit can be applied. The solar

cell in the dark acts as a simple diode: the current-voltage relationship follows the exponential

relation of the pn-junction, the Shockley equation:

J(V ) = J0(e
qV/AkT − 1)
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1.3. PHOTOVOLTAIC PERFORMANCE CHARACTERISTICS 11

Figure 1.5: The equivalent circuit of a solar cell.

Eq.1.1

Where k is the Boltzmann constant, T the absolute temperature, V is the voltage across the

terminals, J(V) the current density, A the diode quality factor and q the elementary electric

charge. J(V) is obtained by dividing the current to the device area [9].

For a better description of a real device, resistive losses need to be added into this equation: A

series resistance Rs and a shunt resistance Rsh. Additionally, a photo-generated current

density JL has to be introduced into the equation to describe the device mechanism under

illumination (in the dark JL=0). In thin �lm solar cells, JL may depend on the applied bias

voltage. The so called 1-diode model describing the current-voltage characteristic of a solar

cell is given by the following equation:

J(V ) = J0

[
exp(

q(V −RsJ(V ))

AkT
)− 1

]
+
V −RsJ(V )

Rp
− JL

Eq. 1.2

Where J(V) accounts for the current density �owing through the device which is the sum of

the current density �owing through the diode (�rst term), the current density �owing through

the parallel resistance (second term) and the photo-generated current density (last term) [10].

The illuminated cell behaviour can be related to that of a diode parallel connected with a

current source RS, these connected in series with a shunt resistance RSH.

� The diode D takes into account the current losses due to recombination in the interior of

the cell. D has an ideality factor n and a saturation current I0 (current in the dark at reverse

bias);

� The current source is equivalent to the photo generated current due to the PV e�ect IL;

� RS considers all the resistances at interface in the layers, the conductivity of the semicon-

ductors, and the electrodes;

� RSH takes into account the recombination of charge carriers near the dissociation site (e.g.

D/A interface). Low shunt resistance causes power losses in solar cells by providing an alternate

current path for the light-generated current. This reduces the amount of current �owing through
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12 CHAPTER 1. INTRODUCTION

the solar cell junction and reduces the voltage from the solar cell. The e�ect of a shunt resistance

is particularly severe at low light levels, since there will be less light-generated current. So, for

good performance of the OPV device, RS needs to be low and RSH to be high);

� Solar cell voltage V: the cell can generate a voltage between 0 and VOC depending on the

size of the load resistor. In order to obtain IV curve data in the other voltage ranges in the IV

curve an external voltage source is required [10].

We note that also the voltage drops across a load resistor - the range between 0 and VOC -

can be simulated by the same voltage source so that the entire range can be scanned by applying

an external voltage. These are the components of a ECD with which we can associate the most

important e�ects in solar cells of all types. However a more comprehensive ECD for organic

devices may comprise other extra components, such as another diode D2 , a capacitor C and an

extra shunt resistor RSH2 [9].

The I-V characteristic for a typical solar cell, when light is shone on the device, becomes

a superposition of the dark J-V with the light-generated current with the curve shifted by a

quantity equal to the current that is generated by the cell. The characteristic curve of an

illuminated solar cell can be presented by considering only the fourth quarter of the graph and

with an inverted current verse. This facilitates the determination of the basic parameters. The

J-V characterization means the determination of the basic parameters: the open circuit voltage

VOC, the short-circuit current JSC, the �ll factor FF, and e�ciency η which are determined by

only three points on the J-V curve and are brie�y described below.

1.3.2 Power conversion e�ciency

The power conversion e�ciency (PCE) of a solar cell is de�ned with the following formula:

PCE =
JSC × VOC × FF

Pin

Eq. 1.3

Where JSC is the short circuit current density, VOC , is the open circuit voltage, FF is the

�ll factor and Pin is the incident power of the lamp [9].

1.3.3 Fill factor

The �ll factor describes the �squareness� of the J-V curve. It is the ratio between the maximum

product of J and V and the product Voc and Isc.

FF =
Jm × Vm
JSC × VOC

Eq. 1.4
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1.3. PHOTOVOLTAIC PERFORMANCE CHARACTERISTICS 13

Thus

Pmax(JV ) = VOC × JSC×FF

Eq. 1.5

Where Jm and Vm are the current density and voltage at the maximum power point [9].The

maximum power point (Pm) determines the operating point where the delivered power to the

load resistance will be the highest possible. The higher the FF the more the J-V characteristics

resembles a constant current source with a maximum voltage and the higher is the electric power

that can be extracted. The voltage-current (Vp, Ip) combination that gives the largest power

rectangle is called the maximum power point. Due to physical constraint on diode quality,

the practical limit to the FF is less than the ideal value of 1 [6]. The FF can be limited by

several reasons, such as a miss-match in charge carrier mobilities of the donor and acceptor

material, large series resistance (RS) or low parallel shunt resistance (RSH), poor contacts or

recombination (geminate and/or non-geminate).

1.3.4 Open circuit voltage

VOC can be derived quantitatively using:

VOC =
nkT

q
ln

(
IL
I0

+ 1

)
Eq. 1.6

In contrast to inorganic solar cells, the origin of the VOC in OSCs is still under discussion.

Multiple reports have investigated this property for OPV devices and have shown that most likely

the origin of the VOC is determined by the potential energy di�erences at the donor/acceptor

interface, and by the recombination kinetics of the charge carriers [11]. The potential energy at

the donor/acceptor interface derives from the di�erences between the HOMO level of the donor

and the LUMO level of the acceptor. In 2006 a report studied the relationship between the

energy levels of the donor-acceptor blend and the Voc for bulk heterojunction devices [12]. It

was found that there exists a linear relationship between the HOMO position, which is related

to the band gap of the heterojunction, and the Voc. This relationship between the HOMO of

the donor material and the VOC of the device was found:

VOC =
1

e
(| EDonorHOMO | − | EAcceptorLUMO |)− 0.3V

Eq. 1.7 [6]

By de�nition the VOC is the voltage at which no current �ows between the terminals (I=0

A) but there is of course current being generated within the device, but this photocurrent is

being balanced by recombination current in the device. The recombination rate scales with the
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14 CHAPTER 1. INTRODUCTION

equilibrium charge carrier concentrations and therefore exponentially with the energy levels,

with changes in energetics having a large in�uence on VOC. The more charges are generated,

the faster the charges recombine. Increasing applied bias, leads to an increase in potential

energy within the device and thus an increase in the recombination current. So the VOC can

be estimated by taking into account the �ux of photogenerated charges and the �ux of charge

recombining non-geminately:

Jtot = Jgen + Jloss

Eq. 1.8 [9]

Where Jgen is the generation current density, which in a device with neglible �eld dependent

generation can be assumed to be JSC and Jloss is the current density lost to non-geminate

recombination. Jloss is obtained by considering the ratio between the charge carrier density, n,

and the charge carrier lifetime τn:

Jloss =
edn

τn

Eq. 1.9

Where e is the elementary charge and d is the active layer thickness. This approximation is

key to understand the importance of charge carrier kinetics in controlling the VOC.

1.3.5 Short circuit current density

The short circuit current density JSC is the maximum photocurrent density which can be ex-

tracted from the device at short circuit conditions, that is when no voltage is applied.

It is the point where the J-V curve crosses the y-axis. The JSC is directly related to the

external quantum e�ciency (EQE), which is de�ned as the ratio between the number of electrons

on the external circuit and the number of incident photons at a speci�c wavelength.

JSC can be expressed as [6]:

JSC =
q

hc

∑ˆ λmax

λmin

EQE × Pin(λ)λ× dλ

Eq. 2.0

For the operation of a hybrid solar cell, EQE is dependent on �ve major steps, each of which

has some associated e�ciency. Thus is can be expressed as:

EQE = ηabs × ηdiff × ηtr × ηcc

Eq. 2.1
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1.3. PHOTOVOLTAIC PERFORMANCE CHARACTERISTICS 15

The parameter ηabs describes the absorption yield of the device. The absorption spectrum

of the material is determined by both the band gap and absorption coe�cient of the material,

whilst the thickness of the photoactive layer will also a�ect the absorption yield [13].

The parameter ηdi�, describes the ability of an exciton to di�use to a donor-acceptor interface.

This parameter depends on both the exciton di�usion length, which is a material property, and

the distance between excitation and the nearest interface, which is related to the nanoscale

design of the photoactive layer. As the excitonic di�usion length in conjugated polymers is

very low, control over the D-A morphology is important for successful exciton di�usion. The

parameter ηdi� is the exciton dissociation yield. The energy o�set, required to allow conduction

to occur, must be larger than the excitonic binding energy in the material to facilitate charge

transfer. This energy is typically in the range of 0.1-0.5 eV [14].

The parameter ηtr describes the e�ciency of charge carrier transport throughout the device.

The parameter ηcc describes the e�ciency of charge collection at the electrodes. This rep-

resents the ability of the charge carriers to be injected into the electrodes from the photoactive

layer. The success of this step is dependent on the electronic composition of the device.
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Chapter 2

Organic solar cells overview

Since the discovery of high conductivity in perylene-iodine complex in 1954 [15],organic semicon-

ductors have been under intense research. Organic semiconductors are carbon-based materials

possessing semiconductor characteristics. Atoms within an organic semiconductor molecule are

bonded by conjugated π-bonds, while molecules are bonded to one another by Van der Waal's

forces or hydrogen bonds, considerably weaker compared to the covalent bonds linking atoms in

inorganic semiconductors. An organic photovoltaic cell is composed of a �lm of organic photo-

voltaic active layer, �sandwiched� between a transparent electrode and a metal electrode. There

are two major classes of organic semiconductors: low-molecular weight materials and polymers.

Polymer solar cells (PSCs) have attracted much more attention due to the early discov-

ery of the semiconducting properties of conjugated polymers. Indeed, carbon- based polymers

were known to be insulators until 1977 when Alan J. Heeger, Alan G. MacDiarmid and Hideki

Shirakawa accidentally discovered that conjugated polymers can gain high conductivity upon

doping. They were awarded with Nobel Prize in chemistry �for the discovery and development

of electrically conductive polymers� in the year 2000 [16].

The doping process can be done by insertion or removal of electrons from the polymer

backbone, corresponding to the reduction or the oxidation, respectively. Shirakawa et. al.

doped polyacetylene (PA) with iodine: As iodine is a strong electron acceptor, it disrupted

the electron delocalization of PA and enabled the polymer to conduct electricity billion folds

more than undoped PA [17]. This breakthrough caused intense research of the other conjugated

polymers, such as polyparaphenylene (PPP) and polythiophene (PT) [18].

To allow such R2R technique to be used and thus obtaining �exibles solar cells, it is impor-

tant that each layer is deposited from a solvent solution. While this requisite has often been met

for the electron blocking layer and the absorber layer, the hole blocking layer is been most often

produced with water sensitive metals such as Ca, or Metal oxides and is virtually always de-

posited from vacuum deposition methods. In this work we investigated the use of bathocuproine,

a low cost organic molecule, as a hole blocking later deposited from solution processing on poly-

mer based organic solar cells. Another way to further progress in the solution-processed OPV

17
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18 CHAPTER 2. ORGANIC SOLAR CELLS OVERVIEW

�eld, is the implement of low synthetically demanding acceptors to replace the fullerene deriva-

tives. Nowadays fullerene-based acceptors have infact received extensive attention and have led

to PCE superior to 10%. They present however di�cult synthesis methods and complicated

puri�cation processes thus leading to higher production costs. The need of more versatile and

less synthetically demanding acceptors, has focused the attention on small molecules acceptors.

In this work we present and study alternative acceptor materials, the perilenediimide (PDI)

family. We present the synthesis and characterization of new PDI derivatives together with a

study of X-Ray and AFM to determine the morphology of these devices. Further experimental

techniques, such as current-voltage, EQE analysis and charge extraction measurements are used

to better characterize the interface.

2.1 Active layer materials for organic solar cells

Many di�erent donor materials, including polymers and small molecule compounds, have been

developed in the past decades. The donor material in the solar cell has beenthe light absorbing

material, a polymer or small molecule, in which an electron is excited and transferred to the

acceptor. Conjugated polymers based on cyanated poly(phenylenevinylene) (PPV) backbones

were the �rst investigated independently by Friend and Heeger [19].

Both teams demonstrated that photogenerated excitons in the polymer layer can be e�ciently

dissociated into free carriers at the photoactive blend interface. Friend and co-workers used a

mixture of two PPV polymers, donor poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene)

(MEH-PPV)and acceptor C6-Cyano-polyphenylene (C6-CN-PPV) to fabricate solar cells, while

Heeger and co-workers used the same donor polymer but MEH-CN-PPV as the acceptor.

Further research on the active layer polymers led Arias et al.to investigate the phase sep-

aration and photovoltaic properties of PF8BT in combination with the donor polymer PFB.

PF8BT is a highly luminescent polymer with a high electron a�nity (3.53 eV) whereas PFB is a

triarylamine-based hole transporting polymer. Bradley and co-workers [12] employed the same

acceptor (PF8BT) but Poly(3-hexylthiophene) P3HT as the donor polymer [19].

P3HT (Figure 2.1) gained wide popularity as a donor material in OSCs, after it was found

to give improved e�ciency when blended with PCBM as an acceptor. The polymer/fullerene

blend scheme as since dominated the �eld of BHJ OSCs for almost a decade. P3HT is still to

date the most studied polymer for polymer solar cells. The e�ciency of a P3HT/PCBM solar

cell is typically 4-5 %, which is close to the optimal performance for this system [20].

The structures of a conjugated polymer play an important role in determining the physical and

chemical properties of donor and acceptor materials and further in�uence the performance of

solar cells. Materials with a delocalized π electron system can absorb sunlight and create and

transport photogenerated charge carriers.

Most donor polymer or co-polymer structures are obtained from monomers such as thiophene,

�uorine and carbazole. These low band gap polymer donors contribute to a wide spectrum
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2.1. ACTIVE LAYER MATERIALS FOR ORGANIC SOLAR CELLS 19

response and serve as an excellent charge transporter with a high hole mobility.

2.1.1 Donor materials

Polymers

Polythiophene and its derivatives Poly(3-alkylthiophene) (P3AT) have been used as active ma-

terial for optoelectronic devices, especially for photovoltaic cells. P3HT is the most used and

best one in P3ATs as photovoltaic material.

Solar cells with optimized performance have been developed using P3HT/PCBM blends, and

these cells feature nearly ideal photon-to-current quantum e�ciency (IPCE) in the mid-visible

reagion. By using P3HT as a donor material blending with PCBM as acceptor, over 4 % PCE has

been reported by di�erent research groups and P3HT has attracted much attention in the OPV

�eld. The high e�ciency of P3HT/PCBM devices may result from a unique microcrystalline

lamellar stacking in the blends.

The photovoltaic properties of P3HT/PCM system are very sensitive to the morphology

of the active layer, this lead researcher to develop processing techniques to control the nano-

morphology of the active layer and consequently to improve device performance. It has been

demonstrated that device performance can be enhanced by careful selecting the processing sol-

vent, solvent and thermal annealing, and additives.

Further improvement of PCSs in P3HT/PCBM is hindered by its large bandgap (-2.0 eV)

[21].

It became therefore important to design polymers that can harvest more photons from the

available sunlight. It also important to consider that narrowing the bandgap will cause a decrease

in open circuit voltage and thus a decrease in PCE. Through a careful estimation, an optical

bandgap of 1.4 eV will be ideal for conjugated polymer as the active absorbing materials blended

with PCBM in BHJ solar cells [12].

A few examples are reported below with the description of the most used polymers. PCPDTBT

is a donor and acceptor alternating conjugated polymer (Figure 2.1). It possesses an optical

bandgap of 1.4 eV (absorption onset 890 nm) and an electrochemical bandgap of 1.7 eV with a

HOMO level of -5.3 eV and a LUMO level of -36 eV[22].

This polymer is the �rst low bandgap polymer with a highly e�cient photovoltaic re-

sponse in the near IR region and has a PCE of 3.2 % blended with PC71BM. Another type of

donor polymer is the PsiF-DBT, which is a 2,7-sila�uorene (SiF) and a 4,7-di(2'-thienyl)-2,1,3-

benzothiadiazole (DBT) alternating polymer with an optical bandgap of 1.8 eV. The HOMO

level from electrochemical measurements was -5.4 eV [22].

In a blend with PC60BM the device exhibited a PCE up to 5,4%. This combination is the

�rst low band gap polymer with a PCE over 5%.

A silo-contained polymer, PSPTPB, with similar molecular structure as PCPDTBT was

synthesized and also exhibuted excellent photovoltaic properties. In PSBTBT, an Si atom was

introduces to the bridge point (3, 3' positions) on the bithiophene unit [23].
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20 CHAPTER 2. ORGANIC SOLAR CELLS OVERVIEW

Figure 2.1 Representative donor conjugated polymers.

The silicon atom of PSBTBT can also be replaced by a nitrogen atom, and the polymer

PDTPBT was obtained.

PBDTTBT is di�erent from most of linear donor-acceptor type conjugated polymers as it

possesses a cross-conjugation segment in its donor. This polymer has three absorption bands,

and therefore absorbs widely from 300 to 700 nm with an optical bandgao of 1.75 eV. PBDTTBT

presents HOMO and LUMO levels of -5.6 eV and -3.7 eV respectively [24].

Good stability and e�ciency were shown by devices fabricated with PTPT as donor together

with PC71BM as acceptor, with a PCE of 4.4% [25].

Another class of donor materials which play an important role in the polymer-fullerene

solar cells are the DPP-based polymers. Their low bandgap property leads to absorption up

to 900 nm, which covers the near-IR energy in the solar spectrum. Various aromatic spacers

are copolymerized with the DPP unit, and excellent solar cell performances are achieved [26].

Relatively high hole mobilities of DPP polymer also suppressed the carrier recombination, which

ensured a high FF.

A promising donor material in BHJ OPVs recording the remarkable PCE because of its supe-

rior optoelectronic properties is the poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b´]dithiophene-

2,6-diyl-alt-3-�uoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophene-4,6-diyl) (PTB7) [14]. The

low-band gap polymer PTB7 is well-suited to [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)

which absorbs a broad range of light [27].
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Small molecules

Small molecular organic semiconductors with appropriate properties can also be used as electron

donor materials in OPV devices.

Although polymers have led to high e�ciencies, they present some disadvantages related

to their molecular structure. They can present batch-to-batch variations, as well as variations

in the molecular weight, polydispersity and purity, which could lead to limited reproducibility.

Whereas, the small molecules present better de�ned structures and are less a�ected by batch

to batch variations. Compared to the polymers they have more versatile molecular structure

and can be easier synthetically modi�ed. Recent results in the use of small organic molecules

in solution-processed devices have demonstrated a record e�ciency of 10 % [28].Various di�er-

ent small molecules have been studied leading to di�erent parameters such as charge carrier

mobility, absorption coe�cients, �lm morphology, bad-gap and energy level alignment, a new

class of donor materials have been developed. One of the most successful examples are the

phtalocyanines (Pc), porphyrins (PQR), the merocyanines (MC), polyacenes, squaraines (SQ),

diketopyrrolopyrrole (DPP) and donor-acceptor (D-A) structures based on oligothiophenes.

The DPPs based molecules present some advantages compared to other small molecules, as

they are easier to synthesized and they present the possibility to control the morphology using

solvent annealing process [29].They present as well good solubility and are thus desirable for

solution processed systems. The device performance of the devices made from these donors,

is somehow limited by the high HOMO energy level and the imbalance of carrier mobility

compromising the FF of the devices [30].

The donor-acceptor (D-A) structures based on oligothiophenes have been recently developed

and show some great features [30]. Due to the presence of the thiophenes they present a high

absorption coe�cient. The concept of these devices is to alternate electron-reach donors and

electron-de�cient acceptors in the same molecular framework resulting in a reduced bandgap via

molecular orbitals hybridization and intramolecular charge transfer. Controlling the molecule

energy levels is essential for an e�ective material development. Choosing a wrong donor or

acceptor moieties could lead in fact to a reduction of the absorption capability of the overall

molecule, deterioration of the hole mobilities and a bad charge dissociation. The design of the

π-bridge molecular backbone is also very important to determine the properties of the molecules.

2.1.2 Electron acceptor materials

Fullerene and derivatives

Fullerene and its derivatives have been widely used as electron acceptor materials in OPVs until

the recent surge of non-fullerene acceptors with e�ciencies overtaking those of fullerene-based

devices.

Sariciftci et al reported the e�cient photoinduced electron transfer (PET) in a conjugated
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22 CHAPTER 2. ORGANIC SOLAR CELLS OVERVIEW

polymer-fullerene (Buckminsterfullerene, C60) composite as early as 1992 [14].

In this report, a very fast PET was observed- in the order of femtoseconds- from a conjugated

polymer to a fullerene, which is several orders of magnitude faster than any photoexcitation

radiative decay or back electron transfer process. Thus, this was a demonstration that the

quantum e�ciency of charge separation in such a composite can approach the unity.

The tendency of fullerenes (e.g C60, C70) to crystallize in organic solvent and on surfaces,

however, leads to unfavourable phase separation in thin �lm composites. This implies that

charge carriers lack the necessary channels to reach the electrodes. To address this drawback,

di�erent substituents were introduced on fullerene conjugated core.

In 1995, Hummelen and Wudl �rst reported an approach to synthesize a 6,6]-phenyl-C61-

butyric acid methyl ester functionalized C60 (PC61BM). Heeger et al. �rst described PC61BM

as an acceptor blended with a conjugated polymer (MEH-PPV) as donor, and achieved much

higher e�ciency compared with C60-based photovoltaic devices.

PC61BM later became one of the most used fullerene derivative in OPVs, exhibiting excellent

photovoltaic properties as electron acceptor material and excellent solubility in various organic

solvents. The replacement of C60 with the more soluble and less symmetrical PC61BM decreases

the formation of large fullerene clusters and therefore, increases the possibility to form a D-A

interpenetrating network materials in the active layer [31].

This network, with a large conjugated polymer:fullerene interfacial area and the appropriate

phase domain size, �ts the required compromise between optical length and exciton di�usion

length. Since then, many e�orts have been put forth to design new soluble π-conjugated polymers

as donor material for BHJ solar cells when fullerene derivatives are primarily used as an electron

acceptor, for example PC61BM, PC71BM.

Based on these results, a variety of other PCBM-analogous fullerene derivatives have been

synthesized to improve the device e�ciency through enhancing the solubility, thermal stability,

and light-harvesting ability of the fullerene acceptor. Novel fullerene derivatives such as sily-

methyl[60] fullerenes (SIMEFs), methano indene fullerenes (MIFs), fullerenyl esters, and lithium

ion-encapsulated fullerene derivatives have been developed [32, 33].

The search for novel alternative acceptors led to the fabrication of novel fullerene derivatives,

the azafullerenes, which are a class of heterofullerenes in which the element substituting for

carbon is nitrogen [32].

Wudl at al reported the �rst bulk preparation of structurally de�ned azafullerenes C59N2

and RC59N [34].

While von Delius and co-workers pioneered their application to OSC devices.

In addition to PC61BM there are many other types of fullerenes, some examples are shown

in Figure 2.3. PC71BM, the C70 equivalent of PC61BM, was synthesised but is based on C70.

Researchers have studied several derivative of fullerenes in order to tune the energy levels of the

compounds, e.g. the LUMO level of ICBA is 0.17 eV higher compared to PC61BM, this means

that the VOC and thus the e�ciency is increased when using ICBA instead of PC61BM in a

P3HT based solar cell [31].
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Figure 2.2 Illustrations of C60 and PC61BM.

Figure 2.3: Other types of fullerene, PC71BM and indene/bis/C61/adduct (ICBA).

2.1.3 Non fullerene acceptor (NFA)-based solar cells

The dominance of fullerene derivatives in the OPV research landscape stems from advantageous

properties such as (I) the ability to e�cient transfer charges due to a LUMO that is delocalized

over the whole surface of the molecule, (ii) high electron mobilities, (iii) multiple reversible

electrochemical reductions, and (iv) the ability to aggregate in bulk heterojunctions to form

both pure and mixed domains of the appropriate length scale for charge separation, that is good

blend morphology with the donor material. Nevertheless, fullerene-based acceptors have some

signi�cant limitations including (I) poor absorption in the solar spectrum range, which limit their

ability to harvest photocurrent and limit the performance of the device (ii) synthetic in�exibility

, i.e. limited tunability in terms of spectral absorption, (iii) high synthetic cost, which limit the

large-scale application of this type of acceptors. Furthermore, fullerene acceptors have (iv)

morphological instability due to fullerene di�usion and aggregation in the thin �lm over time,

resulting in device instability[35].

In the last years, much research has been focused on developing donor materials optimized

speci�cally for these fullerene acceptors materials and thus accommodating these limitations in

terms of absorption pro�le and electronic properties. The study and research of new donor ma-

terials using this approach has undoubtedly advanced the OPV �eld signi�cantly. However, the

�ne-tuning of molecular and electronic properties of the electron donor to ful�l the requirements

dictated by the fullerenes is a rigid design strategy. So, another approach to further improve the

OPV device performance focuses on the development of new non-fullerene acceptors (NFAs) to
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Figure 2.4 Four possible organic-donor-to-organic-acceptor combinations arising for non-fullerene solar cells:
the combination of polymer donor to polymer acceptor gives rise to the so-called all polymer organic solar cells
(all PSCs);52 the combination of small-molecule donor to small-molecule acceptor gives rise to the so-called all

smallmolecule organic solar cells (all SMSCs) [36].

Figure 2.5 Examples of small molecules and pokymers used as acceptors.

be used in conjunction with the vast number of small molecule and polymeric donor materials

that have been widely developed over the past decade. The PCEs of the non fullerene solar cells

have been busted to more than 14% during the last years and this rapid increase in performance

started the new development cycle in this area.

Like donor materials, of which there are polymer and small-molecule types, organic acceptor

materials can also be classi�ed into small-molecule and polymer types. There are therefore four

possible donor-to-acceptor combinations, from polymer donor and acceptor as well as small-

molecule donor and acceptor, giving rise to four kinds of NF-OSCs, as Figure 2.4 shows.

Polymer non-fullerene acceptors

Polymers have also been studied as acceptors in order to prepare all-polymer solar cells [19].

The advantage of the polymer acceptor is that it is easier to tune the band gap of the polymers

and thus ensure e�cient charge transport between the donor and acceptor in the active layer.

Some examples of small molecules and polymers used as acceptors in organic solar cells can be

seen in Figure 2.5.
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Similarly to the small molecules, the perylene diimide based systems are widely investigated

polymer acceptors. Bao, Zhao and coworkers reported 4.21% e�ciency from a PDI-thiophene

based polymer acceptor, P1. When using P3HT as the donor, the PDI bithiophene based

polymer (P2) had a PCE of 2.17% [37].

NDI based polymers are another interesting class of polymer acceptors. NDI-2T is one of

the most famous electron-transporting polymer due to its high electron mobility. The perfor-

mance of all polymer OPV cells do not yet compete with those of polymer donor/molecular

acceptor devices. The origin of this e�ciency discrepancy has often been attributed to the lower

electron mobility of most conjugated polymers compared to fullerenes and inappropriate elec-

tronic coupling between the donor/acceptor components To date, less polymeric acceptors have

been synthesized when compared to the donor counterpart. However, momentum toward the

development of new electron depleted building blocks is increasing due to the recent promising

results in electron-transporting materials for OLED, OLETs, and OTFTs. Furthermore, the

recent �rst certi�ed all-polymer cell achieving PCE up to 106% indicates that there are no fun-

damental reasons as to why all-polymer blends cannot achieve e�ciencies of fullerene-polymer

devices [19].

Small molecule acceptors

In recent years, small molecule non-fullerene acceptor materials have attracted more and more

attentions due to their adjustable energy level, easy synthesis, low production cost and

excellent solubility. More importantly, this kind of materials have a broader absorption range

in the visible solar spectrum than fullerenes and their derivatives [38].

One of the most studied small molecules NFAs are the ones based on the 2-(3-oxo-2,3-

dihydroinden-1-ylidene)malononitrile (IC) electronwithdrawing group; they have been the most

e�cient molecular system until now 80�84 The representative molecular structures for the IC

family are shown in Figure . Most of these molecules are low band gap materials with an optical

band gap (Eoptg ) of 1.6 eV, and hence commonly show intense light absorption in the long

wavelength range.

The most e�cient molecules of this family are the ITIC, IT-M and m-ITIC which have

shown e�ciency of 10,7% and 11,5% respectively [39]. Latest results on an IC derivative showed

a record e�ciency of 13 % [40].

Other small-molecule non-fullerene acceptors which have been well investigate are molecules

built around the corannulene, truxene, subphtalocyanine, perylenediimide cores or linear alter-

nating donor/acceptor-shaped molecules.

Naphtaldiimde (NDI) acceptors have a similar structure to Perylene-diimide. They have

high thermal and oxidative stability, as well as high electron a�nity, and have been considered

as promising fullerene alternative. Compared with PDI, NDI has a wide band gap, which is

di�cult to reach the visible range in spectral absorption. Therefore, relatively few studies have

been applied to these molecules. However, there are some methods to extend absorption in
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to the visible range, such as extending the conjugation of NDI through the core and using

electron-donating substituients [40].

Fused ring (indacenodithiophene, IDT and indacenodithieno[3,2-b]-thiophene, IDTT) have

been used as electron acceptors. IDT and IDTT have large and rigid planar conjugated struc-

tures, which bene�ts the delocalization of π electrons and interaction between aromatic rings.

Thereby high carrier transport mobility can be obtained [41]

PDI based small molecules

The optimal optoelectronic properties of the Perylene-diimide units, such as good absorption, the

electron mobility, stability and chemical ease of synthesis among others, make them a potential

candidate for constructing organic acceptors. However, molecular self-assembly studies on PDI

derivatives have clearly demonstrated that the large planar p-system of the PDI chromophore

often leads to the formation of hundreds of nanometric crystalline aggregates due to the presence

of strong π- π stacking interactions [42]. These domains are too large and prevent a suitable

interfacial area between the donor and acceptor material for an e�cient exciton splitting. At

the same time this π- π stacking tendency can be an attractive feature as it forms crystal motifs

that can be suitable for charge transport and thus give the PDI a suitable transport ability. In

order to avoid the formation of these large PDI domains, without decreasing the good transport

ability, several functionalization design have been proposed to change the molecular structure

of the PDI. From here the need to functionalize the PDI units. The functionalization consists

in introducing some bridges between the PDI units via their lateral ortho or bay positions. The

steric hindrance caused by the functional groups induces a change in conformation of the PDIs

which is the key to avoid the formation of large aggregates in the solid state. In this thesis we

have studied three di�erentPDIs: PDI 1, PDI 2 and PDI 3 with di�erent linker between the

PDI units.
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Figure 2.6 Functional positions of PDI.

Figure 2.7 Molecular structure of (a) PDI 1, (b) PDI 2 and (c) PDI 3.
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Chapter 3

The intermediate layer

It is known that the potential loss due to the energy level o�set between the donor and acceptor

materials in OSCs makes the electrode contacts crucial parameters to derive the net potential

out of the BHJs [43].

Therefore, the formation of a good Ohmic contact at the interfaces between the active layer

and electrodes for e�cient charge extraction and transportation.

A signi�cant step for the achievement of high e�ciency OSCs is providing a driving force

for extraction of holes and electrons to their respective electric contacts. This requires the

optimization of the absorber/electrode interfaces which can be obtained either by electrode

surface treatments or, as in this work, by insertion of an intermediate or bu�er layer as charge-

extracting or charge-blocking layers.

The intermediate layer has the function to (i) selectively transport only one type of charge,

electron or hole e, while simultaneously blocking the opposite charge, decreasing in this way the

probability of charge recombination.

Furthermore, intermediate layers are used (ii) to tune the energy level alignment between

the active layer and an electrode. The intermediate layer can, in some cases, as well (iii)

compensates for the roughness that electrodes have and that might result in shunts in the �lm.

Another functions of the interface material are (iv) to determine the polarity of the device and

(v) to prohibit a chemical or physical reaction between the polymer and electrode.

The intermediate layers materials mainly include inorganic metal oxides, polymers and small

molecules, carbon-based materials, metal salts complexes, organic-inorganic hybrids/composites

and other alternatives.

The most widely used electron blocking layer material has been polyethylenedioxythiophene:p

olystyrenesulfonate (PEDOT:PSS).

29
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3.1 Hole blocking layers

3.1.1 Semiconducting layers: Metal Oxides

Metal oxides can be p-type and n-type, depending on the position of the valence band and

conduction band. n-type like transition metal oxides have been successfully introduced in OPV

as hole blocking layer.

OSCs based on metal oxide intermediate layers exhibit high performance which can be at-

tributed to the fact that the metal oxide layers have salient features of ambient stability, good

solution processability, high optical transparency and excellent capability to extract/transport

electron carriers. To date, e�ective materials for OSCs include binary oxides (such as ZnOx,

TiOx, Nb2O5, and SnOx) [44], and newly emerged ternary oxides (such as Al-doped ZnO, Mg-

doped ZnO, and Cs-doped metal oxides) [45].

These materials are transparent in the visible light spectrum but absorb ultraviolet (UV)

light. The layer thickness of the interfacial layer is tuneable without absorption losses in the

visible (VIS) light and thus can additionally act as optical spacer [46].

The design of 3-dimensional structures of metal oxides is another approach to improve the

PCE and many groups compare 2-dimensional ZnO layers with 3-dimensional nanostructures

[47]. The increased interface acceptor/interfacial layer improves the electron transport and is

expected to allow for thicker active layers.

Mor at al. presented a vertically oriented TiO2 nanotube �lm with P3HT:PCBM in�ltrated

into the nanotubes [48].

Zinc Oxide

As an inorganic n-type semiconductor, ZnO is one of the most used choices in metal oxide

intermediate layers materials due to its features such as low cost, easy synthesis, non-toxicity,

high stability, and unique optical/electronic properties [49].

Titatium oxide

Titanium oxide (TiO2 or TiOx) is another n-type metal oxide used as intermediate layer material

because it has good optical transparency, relatively high electron mobility, and environmental

stability.

By solution processing from a sol�gel precursor or from TiOx nanoparticles (NPs), TiOx

�lms were fabricated as e�ective intermediate layers for both conventional and inverted OSCs

[50]. When incorporated into conventional OSCs, titanium oxide can serve as an optical spacer

to redistribute the light intensity within the active layer to enhance light absorption, and can

act as an electron-transporting/hole-blocking layer to improve charge collection [51].

As a result, the conventional PCDTBT:PC71BM-based device using the sol�gel TiOx inter-

mediate layers showed increased PCE of 6.1% with an internal quantum e�ciency approaching

100% [46].
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Niobium Oxide

Similar to ZnO and TiOx, wide-bandgap niobium oxide (Nb2O5 or NbOx) materials have high

transparency at visible wavelengths and inherently n-type characteristics. Thereby they can act

as electron-transporting layers for OSCs [52].

Tin Oxide

Tin oxide (SnO2 or SnOx) is another promising wide-bandgap metal oxide. The higher intrinsic

mobility of tin oxide compared to other n-type oxides, o�ers its advantages in the e�cient carrier

transport. Recently, solution-processed SnOx �lms and SnO2 NPs were developed as CILs for

inverted OSCs [53].

Ternary Metal Oxides

Using n-type doping in binary oxides, a series of ternary metal oxide electron-transporting

materials were developed as intermediate layers [54]. When they served as intermediate layers

in inverted OSCs, improved PCEs and device stability were demonstrated, providing a very

promising strategy to develop high performance OSCs toward practical utilization. Recently,

bandgap tunable Zn1�xMgxO (ZMO) metal oxides were proposed by Yin et al. as a novel class

of CILs for enhancing e�ciency and stability of OSCs [54]. By Mg doping in ZnO, solution-

processed ZMO intermediate layers showed tuneable bandgaps, WFs and energy levels depending

on the amount of Mg doping, thereby enabling to tune their transmittance, charge-collection,

and interfacial properties for a better device performance.

Semiconducting layers: Polymers and Small-Molecules

In recent years, to avoid thermal annealing of interlayers and improve their compatibility with

organic active layer, solution-processable polymers and small-molecules are often used as inter-

face materials for improving solar cell performance. The structures of organic molecules can

be easily modi�ed towards suitable energy levels and optical/electronic properties. Owing to

the intermolecular dipole moment and the ability to form self-assembled monolayers, organic

intermediate layers can induce an interface dipole pointing from the cathode to the active layer,

thereby e�ectively reducing the WF of cathodes and increasing the built-in potential of OSCs

[54]. The progress of polymer CILs for both conventional and inverted OSCs has been discussed

in a recent review [55].

Water/alcohol soluble conjugated polymers are e�ective intermediate layers for OSC appli-

cations.

Due to their ambient solution processability, several water/alcohol soluble conjugated poly-

mers were designed as intermediate layers for e�cient electron injection/transport in OSCs.

A representative example is poly[(9,9-bis(3´-(N,N-dimethylamino)propyl)-2,7-�uorene)-alt-2,7-

(9,9-dioctyl�uorene)] PFN, shown in Figure 3.1
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Figure 3.1: Molecular structures of some representative polymers and small molecules for intermediate layers.

In addition to the polymeric intermediate layers, small-molecule layers can also be used for

OPV applications due to their attractive characteristics such as well-de�ned chemical structures

and ease synthesis with high purity.

Thermally deposited or water/alcohol-processable small-molecules, such as bathocuproine

(BCP in Figure 3.1), bathophenanthroline (Bphen in Figure 3.1), pyridinium salt-based molecules,

triazine- and pyridinium-based small molecules, zwitterions, amino acids or peptides, and self-

assembled ionic liquid, have been reported as e�ective intermediate layers for OSCs.

BPhen and BCP are good electron transport layers and good hole blocking layer.

In this thesis we investigated the use of Bathocuproine, a low cost organic molecule, as a

hole-blocking layer deposited from solution processing on top of the PTB7:PCBM active layer.

Despite the fact that BCP has mostly been used in vacuum processed devices, we found that

is very well suited for solution processing. Contrary to vacuum deposition, where extremely

high purity sublimed materials are needed, in the solution processing a simple recrystallization

is required.

In small molecule OPVs, which are comprised of a multilayers structure, it is well known that

the insertion of an exciton blocking layer having a large band gap improves the PCE signi�cantly

by conveying the excitons to the interface of a donor and an acceptor.

The requirements for e�cient exciton blocking layer are (i) a larger band gap than the

photoactive layer which blocks the excitons but does not dissociate them, and (ii) no charge

injection barrier from a photoactive layer to an exciton blocking layer.
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Conducting layers: Metals

Besides the mostly used metal oxides and organic materials for intermediate layers, metals have

also been developed as electron-transport materials for OSCs.

Metals can be thermally evaporated in optical thick and thin layers to form a non-transparent

or transparent electrode or/and interfacial layer [56].

A combination of a low work function metal such as Ca, Mg, Ba with Ag or Al is a common

way to decrease the work function of cathodes to make ohmic contacts with fullerene for e�cient

electron extraction and to prevent Ag and Al atoms from di�using into the polymeric layer [57].

Salts

Solution-processable metal salts are another prominent approach to improve the device perfor-

mance of OPV and broaden the available choices of intermediate layer materials. The incorpo-

ration of metal salt CILs in OSCs can improve the wettability between the electrode and the

hydrophobic organic mactive layer surface, resulting in better interfacial contacts and reduced

contact resistances [58].

Among the salts Cs2CO3 has drawn considerable attentions due to its capability of dissolving

in highly polar solvent. Cs2CO3 has excellent electron transport properties, but su�ers from

poor hole blocking properties. LiF is another commonly used in OPV which can signi�cantly

enhance the energy-level alignment and stability of the cathode interface. Other versatile metal

salts such as alkali carbonates (e.g., Li2CO3, Na2CO3, etc.) cesium acetate, cesium or sodium

halides (i.e., CsI, CsCl, CsF, NaI), cesium stearate (CsSt), and disodium edentate have been

designed as intermediate layers for OPV applications [59]. These materials exhibited facile

solution processability and low WFs, which favor the formation of interfacial dipoles between

the active layer and electrode, and increase charge collection [60].

Additionally, several classes of metal complexes, including copper chelates [61], such as zinc

chelates [62], titanium chelates and zirconium chelates [63] were used to improve the e�ciency

and/or stability of OSCs.

Carbon-based materials

Carbonaceous materials are a promising class of candidates for intermediate layers materials

due to their high conductivity, good structural stability and tuneable functionality. To date,

fullerene, carbon nanotube and graphene as well as their derivatives have been developed as

e�ective CIL components [64].

Graphene and its derivatives have a unique 2D structure, high transparency, and their WFs

can be tuned through simple chemical modi�cations [28].Solution-processed graphene quantum

dots were adopted as intermediate layer to facilitate charge transfer and reduce charge recom-

bination in inverted OSCs due to their low WFs and unique optical/electronic properties [65].
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Inorganic-organic hybrids and composites

Combining inorganic, organic and other useful components the hybrid/composite electron-

transporting layer materials can be fabricated and they are excellent candidates to engineer

the interfaces of OSCs because they combine merits of both inorganic and organic parts. There

is a growing interest to develop these hybrid/composite interface materials toward OSCs with

high e�ciency and good stability [67].

Among various hybrid/composite intermediate layers materials, organic/inorganic materials

are a major family of electron-transporting materials for OSCs applications. Lots of organic

materials such as polymers and small-molecules can be used to dope inorganic metal oxides or

other inorganic compounds.
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Chapter 4

Organic solar cells fabrication and

characterization

4.1 Solar cells preparation

4.1.1 Substrate cleaning

Prepatterned Indium Tin Oxide (ITO) on sodalime glass substrates with nominal sheet resis-

tance of 5 and 15 Ohm/square (purchased from PSiOTec, Ltd., UK) were �rst rinsed with

acetone to remove the residual photoresist layer. The substrates were then placed in a te�on

holder and sequentially sonicated in acetone, methanol and isopropanol for 10 minutes and �-

nally dried under �ow of Nitrogen. The ITO substrates where ozone-treated in a UV-ozone

cleaner for 30 min in ambient atmosphere to eliminate organic residues.

4.1.2 General remarks on experimental data

Poly-(Ethylene dioxythiophene) doped with Poly-(styrene sulphonic acid) (PEDOT:PSS), PTB7

(Mw: 22900 g mol-1) and PC71BM (Mw: 1030.99 g mol-1) were purchased from One-material

and Solenne, respectively. DPP(TBfu)2 was purchased from Lumtech and further puri�ed by

column chromatography, using a reported procedure. BCP (96%) was purchased from Aldrich

and further recrystallized from boiling toluene, and sublimed twice. All solvents and additives

were purchased Sigma�Aldrich and used without further puri�cation. High-purity (99.99%)

silver (Ag) wires were obtained from Testbourne Ltd., and high-purity calcium (Ca) pellets

(99.5%) was purchased from Sigma-Aldrich. High purity (HPLC gradient grade, 99.9 %) CHCl3
was used for the active layer deposition. The solvent was dried with activated molecular sieves

and kept in a sealed bottle with silver foil prior to use.

BCP puri�cation:

BCP was placed in round bottom �ask mounted with a re�ux condenser. A minimum amount

35
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of toluene was added and the mixture was brought to re�ux (110°C). Toluene was further

added dropwise, slowly enough to maintain the re�ux, until all the BCP had dissolved. At

this point the re�ux condenser was removed, the �ask was stoppered and left to cool down to

room temperature undisturbed over night. The resulting light yellow solid was �ltered and dried

under high vacuum overnight, after which time it was used directly for the deposition of BCP

layers. A a batch of the recrystallized BCP was sublimed twice in a row in a sublimation tube

(DSU-20, Creaphys, GmbH). The purest fraction of the �rst sublimation step was resublimed

in the same conditions as the �rst step (5Ö10-7 mBar, 120-150ºC).

4.1.3 Device preparation

The ITO substrates were coated in air with a layer of �ltered (0.45 μm, cellulose acetate) solution

of Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS, HC Starck Baytron

P).

PEDOT:PSS (30-40 nm thickness) was spin coated onto the ITO surface at 4500 rpm 30

seconds followed by 3500 rpm 30 seconds. The PEDOT:PSS �lms were dried at 120 ºC under

inert atmosphere for 15 min and transferred into a nitrogen-�lled glove box (< 0.1 ppm O2 and

H2O).

In the case of the BCP solar cells, the blend solution of PTB7 and PC71BM (1:1.5, w/w) was

prepared in CB : DIO (3% w/w) and stirred for 24 h at 40°C in an inert atmosphere glove box.

The total concentration of solids was 25 mg/ml. The blend solution was left to cool down to

room temperature and stirred for a further 48 h, after which the active layers were spin-coated

over the PEDOT:PSS layer.

For the PDI solar cells the blend layers were spin coated at 1900 to 2600 rpm from a 25 or

15 mg/ml (total concentration) solution of the PTB7 and the PDI electron donor.

For the BCP, the PTB7:PC71BM active layers (ca.100 nm thick) were deposited by spin

coating at 800 rpm for 30 s on the ITO/PEDOT:PSS substrate without further treatments.
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Figure 4.1 Pictures of (a) the Spin coating used for PEDOT:PSS and active layer deposition and (b) the inert
atmosphere Glove box used for device fabrication.

Figure 4.2 (a) Pictures and (b) scheme of the evaporator chamber used to deposit the metal contacts.

The BCP spin coating solution was prepared from a stock solution of BCP (5mg/mL) in

toluene/methanol (1:9) and was left under stirring at 50ºC in an inert atmosphere glove box

over night. The solution was subsequently diluted 10 folds in pure methanol and used straight

after. Solution processed BCP was deposited at 4000 rpm for 1 min. Thermally evaporated

BCP (5 nm; 0.2 A/s) was thermally evaporated under high vacuum of 1 Ö10-6 mbar.

Subsequently the samples were transferred into a ultra high vacuum chamber (1·10-6 mbar)

located in the same glovebox, for the thermal evaporation of the cathode.

A 20 nm Ca layer and an 100 nm Ag layer were deposited in sequence under the vacuum of

1·10-6 mbar. Metals were evaporated through a shadow mask leading to devices with an area of

9 mm2 at a rate of 0.1 Å/s and 0.5-1 Å/s, respectively.

Following fabrication, the �lms were maintained under a Nitrogen atmosphere and stored in

the dark until used.
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Figure 4.3 Schematical representation of the solar cells with (a) the solution processed BCP layer and (b) the
PDI acceptor.

Figure 4.4 Pictures of the solar cell samples.

4.2 Materials characterization

4.2.1 Atomic force microscopy

Atomic force microscopy (AFM) topographic and phase images of the sample were performed

in the acoustic mode using Agilent 5500 SPM. Samples were measured on ambient conditions

using Budget Sensors s with a typical force constant of 1�7 nN/m and at resonant frequency of

75 kHz.

4.2.2 X-Ray di�raction

Conventional XRD measurements on thin �lms were carried out on a Bruker-AXS D8-Discover

di�ractometer with parallel incident beam (Göbel mirror), a vertical theta-theta goniometer, a

XYZ motorized stage mounted on an Eulerian cradle, an incident and di�racted beam Soller

slits, a 0.02º receiving slit and a scintillation counter as a detector. Di�raction pattern were

recorded over an angular 2theta range of 1º to 15º. The data were collected with an angular

step of 0.05º at 10 sec per step. Cukα radiation was obtained from a copper X-ray tube operated

at 40 kV and 40 mA.

2D XRD measurements were performed with the same di�ractometer equipped with an

HI-STAR area detector (multiwire proportional counter of 30x30 cm with 1024x1024 pixel)

and GADDS software (General Area Di�raction System). Samples were placed directly on the

sample holder and the area of interest was selected with the aid of a video-laser focusing system.

An X-ray collimator system allows to analyze areas of 500 μm wide. 2D XRD patterns (one
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frame) were collected covering 1.2-22.3º 2θ from at a distance of 15 cm from the sample. The

exposition time was 600 sec per frame.

4.2.3 Di�erential pulse voltammetry

DPV measurements were performed for the PDI in a conventional three-electrode cell using a

μ-AUTOLAB type III potentiostat/galvanostat at 298 K, over CHCl3 and deaerated sample

solutions (~0.5 mM), containing 0.10 M tetrabutylammonium hexa�uorophosphate (TBAPF6)

as supporting electrolyte. A carbon working electrode, Ag/AgNO3 reference electrode and a

platinum wire counter electrode were employed. Ferrocene/ferrocenium couple was used as an

internal standard for all measurements.

4.3 Solar cells characterization

4.3.1 Hole and electron mobilities

Mobility measurements were performed on hole-only and electron-only devices using the Mott-

Gurney equation from the J-V characteristics measured in the dark. Mobility values were

obtained by �tting the J-V plots in the SCLC region to a Mott-Gurney equation (1) with the

static permittivity of the active layer (ε) �xed to 3, μ0 being the zero-�eld mobility.

J =
9

8
(εµ0)/L

3xV 2

Eq. 2.2

Mobility measurements were repeated at least three times (using di�erent devices) to con�rm

the reproducibility of the results.

4.3.2 Current density-voltage characteristics

The J-V characteristics of the devices were measured in the dark and under AM 1.5G conditions

using a Sun 2000 solar simulator (150 W, ABET Technologies model 11000 class type A, Xenon

arc.).

The applied potential and cell current were recorded using a Keithley 2400 digital source

meter. A home built Labview© interface was used to control the source meter and record the J-

V curves. The solar radiation standard conditions or 1 Sun conditions (AM 1.5 G, 1000 W/m2)

were obtained uing a calibrated silicon diode (NREL) and lower light conditions were simulated

using appropriate �lters. All devices were measured in a sealed holder using a N2 atmosphere.
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Figure
4.5: Schematic diagram of the CE setup.

4.3.3 External Quantum E�ciency

The External Quantum E�ciency (EQE) was measured using a home built system consisting

of a 150 W Oriel Xenon lamp, connected to a motorized Spectral Products cm100 monochro-

mator (CM100) and a Keithley 2400 digital source meter to record the current at each speci�c

wavelength. The photocurrent and irradiated light intensity were measured simultaneously and

processed with a home built Labview© software.

4.3.4 Charge extraction

In this work we used Charge extraction (CE) measurements to estimate the average charge

density within the active layer under open circuit conditions using a home built system. Devices

were held at open circuit by applying bias from a focused array of LEDs. Once the device reached

steady state it was then short-circuited with the LEDs switched o� simultaneously (switch-o�

time / relay = 300 ns), leaving the charge stored in the active layer to decay through a small

50 Ω resistor.

A Yokogawa 2052 digital oscilloscope was used to record the voltage decay across the resistor.

Using Ohm's law the voltage transient could be turned into a current transient, which was

subsequently integrated to calculate the total charge in the active layer at each light applied

bias. In general the device is measured from open circuit voltage values corresponding to >1

Sun conditions to 0 V.
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Figure 4.6 Schematic diagram of the TPV setup.

4.3.5 Transient Photovoltage

Transient photovoltage (TPV) measurements were carried out on working devices through ap-

plying a light bias (the same ring of LEDs used in CE) and holding the device at steady state in

open circuit conditions. Once the device reached steady state conditions, a low-intensity laser

pulse (PTI GL-3300 Nitrogen Laser) irradiated the sample to allow a small excess number of

charge carriers to be generated. As the device is being held at open-circuit, the excess charge

generated has no choice but to recombine. The transient decay of the charge carriers is recorded

using a Yokogawa 2052 digital oscilloscope. Sweeping from high-applied bias (high illumination)

to low-applied bias (low illumination) allows a correlation between charge carrier lifetime and

voltage to be made. The irradiation wavelength was chosen to be close to but not at the maxi-

mum of the donor absorption spectrum. . A graded neutral density �lter was used to control the

intensity of the small perturbation, so that the approximation Δn<�<n is held (usually keeping

the value between 5 and 10 mV).
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Chapter 5

Conclusions

This thesis presents an investigation of di�erent types of bulkheterojunction organic solar cells.

We optimized the fabrication processes and studied their device mechanism through di�erent

characterization procedures.

In particular, two di�erent types of organic solar cells have been fabricated and characterized:

A novel type of solar cell with a non fullerene acceptor material from the Perylene-diimide family

and one with a new solution processed hole blocking layer to replace the vacuum-processed

calcium, the Bathocuproine.

In the work of the PDI, three new perylenediimide, PDI1, PDI2, PDI3 have been prepared

and applied as electron acceptors instead of PC70BM to produce solution-processed bulk het-

erojunction solar cells.

We reported on a library PDI molecules substituted at bay position with diphenylphenoxy

groups. It has been shown that the perpendicular arrangement of the diphenylphenoxy group

with respect to the perylene core impedes intermolecular - stacking between the conjugated

cores and e�ectively reduce the aggregation of the perylene derivatives in solution and leads to

completely amorphous active layers.

We then synthesized and characterised two new PDI dimers bridged through the bay position

with one and two thiophene units.

The new PDI were used to fabricate bulk-heterojunction solar cells.

We optimized the fabrication procedure, studying the donor-acceptor ratio, the annealing

type and additive content and studied the impact of the PDI on the device performance via

optical and electronical studies. To assess the impact of the PDIs in avoiding the formation of

over-sized crystalline domains we conducted a morphological study using X-Ray di�raction and

AFM microscopy techniques and link the morphology data with the photophysical properties

of the devices, we carried out electron mobility measurements on hole-only and electron-only

devices fabricated under identical conditions as in OSC devices.

In order to understand how the non-geminate recombination contributes to VOC, a qualita-

tive recombination study was carried out using a well-established charge extraction (CE) and

43
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transient photovoltage (TPV) method and we found out that non-geminate recombination plays

a major role in determining the VOC of the devices.

We found out that the PDI-based devices exhibit a signi�cantly higher VOC than PCBM-

based devices.

In the work regarding the solution processed bathocuproine we replaced the conventional

calcium hole-blocking layer by a solution processed bathocuproine (BCP).

To best best demonstrate the applicability of BCP to solution processing methods, we based

the study on state of the art polymer-based OSCs, and devices with active layers composed

PTB7/PC71BM have been fabricated.

The devices comprising solution processed BCP as the hole-blocking layer were compared to

devices where the BCP layer was thermally evaporated and with reference devices comprising a

standard Ca/Ag cathode.

We optimizated the fabrication processes studying di�erent fabrication parameters, partic-

ularly the concentration parameters and annealing processes. Contrary to vacuum-processed

devices, where extremely pure BCP (doubly or triply sublimed) is usually necessary, in our case

lower purity BCP has been used and showed similar performance than e-BCP-based devices.

We have characterized the solar cells via J-V characteristics. The EQE (External Quantum

E�ciency) was measured as well using a home made set up.

We demonstrated how the BCP-processed devices show superior stability than their respec-

tive reference devices in all aspects of their characteristics and how devices comprising a thin

layer of BCP as hole blocking layer led to similar performance than standard devices made from

either vacuum-processed calcium or evaporated BCP and furthemore they showed much higher

stability in air than calcium based or thermally evaporated BCP devices.

While extremely pure BCP is usually necessary for vacuum-processed devices, for our solution-

processed devices, lower purity BCP showed to lead to similar performance than evaporated

BCP-based devices.

We showed with this work how BCP can be a very economical alternative to the commonly

vacuum-processed hole blocking materials in OPV.
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Appendices
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Solution Processed Bathocuproine for
Organic Solar Cells

Caterina Stenta, Marı́a Pilar Montero-Rama, Aurelien Viterisi, Werther Cambarau,
Emilio Palomares, and Lluis F. Marsal , Senior Member, IEEE

Abstract—PTB7/PC71 BM bulk heterojunction solar cell devices
where the conventional calcium hole-blocking layer has been re-
placed by a solution processed bathocuproine (BCP) layer is de-
scribed. The BCP thin film was deposited via spin coating from a
dilute solution of BCP in a mixture of toluene and methanol directly
on the top of the active layer. The silver cathode was subsequently
deposited via thermal evaporation. The study shows that solar cells
devices comprising solution-processed BCP show similar perfor-
mance than devices made from either calcium or evaporated BCP.
Moreover, the devices made from solution-processed BCP show
superior stability in air than calcium and evaporated BCP-based
devices. This is to the best of our knowledge, the first report of the
use of solution processed BCP in organic solar cells.

Index Terms—Photovoltaics, polymer solar cells, small molecule
solar cells, bulk heterojuntion, bathocuproine.

I. INTRODUCTION

THE advent of organic solar cells has brought great hopes
for the future of electrical energy generation. With labo-

ratory power conversion efficiency (PCE) now exceeding 10 %
either in polymer-based or small molecule-based bulkhetero-
junction solar cells, or multiple junction vacuum processed
solar cells, [1]–[4] the technology is deemed mature for the
manufacture of commercial products. Indeed, numerous com-
panies (BeElectric, Heliatek, PVinfinity) have invested consid-
erably in manufacturing plants (vacuum processing, roll to roll),
and prototypes are now available on the market. However, the
recent stark decrease in the market price of monocrystalline
and polycrystalline Silicon-based solar cells (typically below
1 $/watt) [5] imposes a tremendous financial pressure on these
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new technologies. Indeed, given that the efficiency of organic
solar cells in modules is still well below that of commercial
silicon-based solar panels (6–8 % PCE for organic solar cell
modules of 100 cm2 compared to up to 19 % for state of the art
Si-Monocrystalline solar panels of 1.5 m2) [6] to be competitive
with the Silicon technology, the price of OSCs will need to drop
well below 1 $/watt. [7], [8] This objective will require on one
hand the use of low-cost light absorbing materials and on the
other hand the possibility to manufacture with the highest possi-
ble turn over yields. As such, Roll-to-Roll solution processing is
the method of choice as it allows for extremely fast deposition
rates, however it imposes very stringent requirements on the
materials to be deposited. Indeed, since the films are deposited
successively from materials in solution, it is imperative that each
material is deposited from a solvent orthogonal to the layer it is
deposited onto. [9], [10] While this requisite has been met for
the electron blocking layer (PEDOT:PSS deposited from aque-
ous solution) and the absorber layer (deposited from an apolar
organic solvent), the hole blocking layer–most often water sen-
sitive metals such as Ca, or Metal oxides– is virtually always
deposited from vacuum deposition methods in the laboratory.

With these requisites in mind, we investigated the use of
bathocuproine (BCP), a low cost organic molecule, as a hole-
blocking layer deposited from solution processing on polymer-
based organic solar cells. Although several phenantroline deriva-
tives are available for PV applications [26], [27], BCP has been
the most commonly used derivative in organic solar cells. Until
recently, BCP had only been used in vacuum-processed de-
vices, apart from a recent report in which it was deposited from
an ethanol solution on top of a lead-halide perovskite film. [22]
In the study herein, we found that BCP is very well suited for
solution-processing on organic solar cell devices’ active layers.
Contrary to vacuum deposition, where extremely high purity
materials are needed, obtained via low-yielding sublimation, a
simple recrystallization is required (from commercially avail-
able 96 % pure BCP). The devices fabricated with BCP were
compared with state of the art polymer BHJ devices, and were
found to lead to similar performance than respective reference
devices, as well as higher stability towards humidity and oxygen.

This is the first example, to the best of our knowledge, where
BCP was used via wet deposition methods in organic solar cell
devices. The ease of fabrication, associated with the lower cost
of the material, with respect to conventional vacuum deposi-
tion methods, will certainly grant it widespread application in
industrial processes.

1536-125X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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II. EXPERIMENTAL

Materials and solution preparation: indium tin oxide (ITO)
coated glass substrates (with nominal sheet resistance of
15 Ohm/square and 120 nm of thickness) were purchased
from PsiOTec Ltd. Poly-(Ethylene dioxythiophene) doped
with Poly-(styrene sulphonic acid) (PEDOT:PSS), PTB7 (Mw:
22900 g mol−1) and PC71BM (Mw: 1030.99 g mol−1)
were purchased from One-material and Solenne, respectively.
DPP(TBfu)2 was purchased from Lumtech and further purified
by column chromatography, using a reported procedure. BCP
(96 %) was purchased from Aldrich and further recrystallized
from boiling toluene, and sublimed twice (see below). All sol-
vents and additives were purchased Sigma–Aldrich and used
without further purification. High-purity (99.99 %) silver (Ag)
wires were obtained from Testbourne Ltd., and high-purity cal-
cium (Ca) pellets (99.5 %) was purchased from Sigma-Aldrich.

The blend solution of PTB7 and PC71BM (1:1.5 w/w) was
prepared in CB:DIO (3 % w/w) and stirred for 24 h at 40 °C in
an inert atmosphere glove box. The total concentration of solids
was 25 mg/ml. The blend solution was left to cool down to room
temperature and stirred for a further 48 h. [11], [12].

Purification of BCP: BCP was placed in round bottom flask
mounted with a reflux condenser. A minimum amount of toluene
was added and the mixture was brought to reflux (110 °C).
Toluene is further added dropwise, slowly enough to maintain
the reflux, until all the BCP had dissolved. At this point the
reflux condenser was removed, the flask was stoppered and left
to cool down to room temperature undisturbed over night. The
resulting light yellow solid was filtered and dried under high
vacuum overnight, after which time it was used directly for the
deposition of sp-BCP.

For e-BCP a batch of the recrystallized BCP was sub-
limed twice in a row in a sublimation tube (DSU-20, Crea-
phys, GmbH). The purest fraction of the first sublimation
step was resublimed in the same conditions as the first step
(5 × 10−7 mBar, 120–150 ◦C).

Preparation of solar cells: The ITO substrate were cleaned
by ultrasonication in detergent, water, acetone and isopropyl
alcohol and subsequently dried in a stream of Nitrogen. PE-
DOT:PSS (30–40 nm thickness) was spin-coated on top of the
pre-treated ITO surface (ultraviolet-ozone for 15 min in ambi-
ent conditions) and subsequently annealed at 120 °C for 20 min
in an inert atmosphere glove box (<0.1 ppm O2 and H2O).
PTB7:PC71BM active layers (ca.100 nm thick) were deposited
by spin coating at 800 rpm for 30 s on the ITO/PEDOT:PSS sub-
strate without further treatments. The BCP spin coating solution
was prepared as follows: a stock solution of BCP (5 mg/mL)
in toluene/methanol (1:9) was left under stirring at 50 °C in an
inert atmosphere glove box over night. The solution was sub-
sequently diluted 10 folds in pure methanol and used straight
after. Sp-BCP was deposited at 4000 rpm for 1 min. e-BCP
(5 nm; 0.2 A/s) was thermally evaporated under high vacuum
of 1 × 10−6 mbar. The Ca layer (20 nm; 0.3 A/s) and an Ag
layer (100 nm; 1 A/s) were deposited in sequence under high
vacuum of 1 × 10−6 mbar. The effective area of the device was
0.09 cm2.

Fig. 1. (a) Structure of the reference and BCP-based solar cell devices
(b) Chemical structure of BCP.

Solar cells characterization: The J-V characteristics of the
devices were recorded using a Sun 2000 Solar Simulator
(150 W, ABET Technologies). The illumination intensity was
measured to be 100 mW/cm2 with a calibrated silicon photo-
diode (NREL). The appropriate filters were utilised to faith-
fully simulate the AM 1.5 G spectrum. The applied potential
and cell current were measured with a Keithley 2400 digital
source meter. The current to voltage characteristics (J-V curve)
were plotted automatically with a home-built Labview software.
The EQE (External Quantum Efficiency) was measured using a
home made set up consisting of a 150 W Oriel Xenon lamp, a
motorized monochromator and a Keithley 2400 digital source
meter. The photocurrent and irradiated light intensity were mea-
sured simultaneously and processed with a home-built Labview
software.

III. RESULTS AND DISCUSSION

To best demonstrate the applicability of BCP to solution pro-
cessing methods, we based our study on state of the art polymer-
based OSCs. As such, devices with active layers composed of
a PTB7/PC71BM blend have been chosen, since they have led
to record efficiencies in the field. The devices comprising solu-
tion processed BCP (sp–BCP) as the hole-blocking layer were
compared with devices where the BCP layer was thermally
evaporated (e–BCP) and with reference devices comprising a
standard Ca/Ag cathode (Fig. 1). The structure of the reference
devices was identical to previous reports, and the structure of
the BCP-based devices only differs from the reference by their
hole-blocking layer.

Interestingly, although extremely pure BCP (doubly or triply
sublimed) is usually necessary for vacuum-processed devices,
[17]–[21] for our solution-processed devices, lower purity BCP
showed to lead to similar performance than e-BCP-based de-
vices. BCP with a purity of 96 % was purchased from commer-
cial sources and simply recrystallized from boiling toluene, and
dried under high vacuum prior to deposition (see experimental
section). The BCP layer was deposited on top of the active layer
via spin coating, in an inert atmosphere glove box, from a solu-
tion of toluene/methanol (0.5 mg/mL conc.). The concentration
of BCP was finely tuned in order to produce BCP thin films
with the optimum properties. The concentration leading to the
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Fig. 2. J-V characteristics of devices with BCP layer deposited from different
concentration solutions.

Fig. 3. Histogram of the PCE given by a statistically relevant batch of solar
cell devices made with Ca, sp-BCP and e-BCP buffer layers. Average PCE: Ca:
7.6%; sp-BCP: 6.8%; e-BCP: 6.9%.

Fig. 4. J-V characteristics of best-performing reference and BCP-based solar
cell devices.

best performing devices was found to be 0.5 mg/mL as seen in
Fig. 2.

The devices made from the optimum BCP concentration show
very similar performance to either the devices made from e-
BCP or to the reference devices. Fig. 3 depicts the efficiency
of statistically relevant devices made from each type of buffer
layer. The plot clearly shows a trend where Ca-based devices
lead to slightly higher PCE than those made from either sp-BCP
or e-BCP. However, the difference in PCE is on average not
superior to 10 %.

Fig. 5. EQE spectra of Ca-based reference device and sp-BCP and e-BCP-
based devices.

Fig. 6. (a) and (b) AFM topography images of sp-BCP and e-BCP thin films
on glass substrates taken 2 hours after deposition. (a’) and (b’) Topography
profile curve corresponding to the blue line on the images.

Fig. 7. (a) and (b) AFM topography images of sp-BCP and e-BCP thin films
on glass substrates taken 7 days after deposition. (a’) and (b’) Topography profile
curve corresponding to the blue line on the images.

The J-V characteristics of the best-performing devices made
from the different buffer layers is shown in Fig. 4. Their charac-
teristics vary slightly, mostly by their FF and series resistance;
nevertheless the devices show a very similar JSC and compara-
ble PCE (Fig. 4).
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Fig. 8. Decomposition study: plots of the evolution of PCE, JSC , VOC and FF vs. time.

As expected, the EQE spectra of all three devices have virtu-
ally identical features and overall intensity (Fig. 5). Nonetheless,
a slight difference in shape between the spectra– presumably due
to a difference in light reflection properties of the buffer layers–
can be observed. The difference is very likely the result of the
pattern formed by the BCP protrusions and voids, as seen by
AFM images of the BCP layers (see discussion below), which
would induce a difference in light reflectance.

AFM topography images of films deposited on glass sub-
strates in identical conditions as in devices show that BCP does
not form homogeneous layers, neither when solution processed
nor when thermally evaporated (Fig. 6). Interestingly, while the
sp-BCP is seen to aggregate into rather well distributed protru-
sions, the e-BCP shows the opposite trend where voids form
from a rather leveled thin film. In the case of sp-BCP the pro-
trusions are as high as 20 nm, while the height of the “plateaus”
in e-BCP is c.a. 10 nm, as seen in the profiles in Fig. 6(a’)
and (b’).

Interestingly, when left in air, both sp-BCP and e-BCP layers
are seen to evolve with time, where material is seen to aggregate
further to an extreme extent. As seen in Fig. 7(a) and (b), the sp-
BCP evolves to protrusions of up to 80 nm in height and c.a. 1 um
width, while e-BCP layer evolves to extremely large domains
of up to 200 nm height and several microns width, leaving most
of the bottom surface “naked”. This can be rationalized in the
framework of a nucleation a growth mechanism, in which the
very small aggregates will grow to larger aggregates to minimize
surface tension. Such a process might be accelerated by humidity

similarly to when a solvent annealing process is applied to an
organic layer [23]–[25].

To further demonstrate the usefulness of the process, we car-
ried out a broad stability study on the devices. That is, reference
Ca-based devices and both e-BCP- and sp-BCP-made devices
were left in air for a prolonged period of time and their char-
acteristics were recorded regularly. The evolution of the key
parameters of the devices (VOC , JSC , FF, PCE) was plotted vs.
time, and the results are reported on Fig. 8.

As seen in the plots, the BCP-processed devices show superior
stability than their respective reference devices in all aspects of
their characteristics. As expected, JSC , FF, and PCE all show a
steady decrease with time in both the reference Ca-based devices
and BCP-based devices. However the kinetics of the decrease
are significantly slower in sp-BCP-based devices. Indeed, after
160 hours, the JSC of BCP-based devices is still twice as high as
the Ca-based device, showing a PCE close to 3 % while that of
the reference devices dropped to close to 1 %. This difference in
decomposition kinetics is as well demonstrated by the evolution
of the FF, which is seen to drop to 25 % in the reference devices
while remaining above 35 % in the BCP-based devices over the
same period of time. Similarly the VOC in the Ca-based devices
is seen to fall abruptly after 20 hours of monitoring reaching a
final value just above 400 mV after 160 h, while the BCP-based
devices still show a VOC superior to 600 mV after the same
time.

Surprisingly, devices made from e-BCP showed faster ki-
netics of degradation than those made from sp-BCP. Although
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this was rather unexpected, it can be related to the fact that the
formation of voids and protrusions in both BCP films is a dy-
namic process. As seen in the AFM images of the BCP layers,
the evolution of the buffer layer morphology is faster in the
case of e-BCP. This analysis indicates that the degradation of
the characteristics of the BCP-based devices is likely related
to morphological factors. On the contrary, the degradation of
Ca-based device is purely of a chemical nature, as calcium hy-
drolyses rapidly in air, forming an insulating barrier of calcium
hydroxide.

The difference in VOC , and series resistance in the BCP-based
devices is likely the result of the difference in morphology be-
tween the BCP layers. Indeed, the surface recombination kinet-
ics of the sp-BCP are expected to be faster than those of the
e-BCP, since the former has a visually lower area coverage than
the e-BCP. This is consistent with the fact that devices made
from sp-BCP lead to lower VOC than those made from e-BCP.
The higher series resistance in e-BCP, on the other hand, is pre-
sumably due to a reduced hole-injection rate consistent with the
higher area coverage of the e-BCP.

Finally, the dynamic evolution of the BCP layer is likely
to be responsible for the slight increase in JSC observed after
monitoring the devices for 24 hours (Fig. 8).

IV. CONCLUSION

In the present study we demonstrated that BCP is well suited
for solution processing in polymer-based solar cells, particularly
those composed of a PTB7/PC71BM blend. We demonstrated
that devices comprising a thin layer of BCP as hole block-
ing layer, spin coated from a dilute toluene/methanol solution
directly on top of the active layer, led to similar PCEs than stan-
dard devices with vacuum-processed calcium as hole blocking
layer. Additionally, BCP-based devices showed to have much
higher stability in air than either Ca-based devices or thermally
evaporated BCP. We have shown that in the case of BCP, the
degradation of the devices’ characteristics is likely due to a mor-
phological evolution of the BCP layer as opposed to calcium,
which is widely known to undergo chemical decomposition in
air. All in all, these results provide for a very economical alterna-
tive to the commonly vacuum-processed hole blocking materials
in OPV. The solution processed BCP has a wide range of appli-
cations either in academic research (solution processed single
junction and multiple junction organic and hybrid solar cells) or
in industry for the manufacture of organic solar cell modules.
Work is currently under way to further slow down the kinetics
of the sp-BCP evolution over time.
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Abstract: Two new perylenediimides (PDIs) have been developed for use as electron acceptors in
solution-processed bulk heterojunction solar cells. The compounds were designed to exhibit maximal
solubility in organic solvents, and reduced aggregation in the solid state. In order to achieve this,
diphenylphenoxy groups were used to functionalize a monomeric PDI core, and two PDI dimers were
bridged with either one or two thiophene units. In photovoltaic devices prepared using PDI dimers
and a monomer in conjunction with PTB7, it was found that the formation of crystalline domains in
either the acceptor or donor was completely suppressed. Atomic force microscopy, X-ray diffraction,
charge carrier mobility measurements and recombination kinetics studies all suggest that the lack
of crystallinity in the active layer induces a significant drop in electron mobility. Significant surface
recombination losses associated with a lack of segregation in the material were also identified as a
significant loss mechanism. Finally, the monomeric PDI was found to have sub-optimum LUMO
energy matching the cathode contact, thus limiting charge carrier extraction. Despite these setbacks,
all PDIs produced high open circuit voltages, reaching almost 1 V in one particular case.

Keywords: organic solar cells; photovoltaics; perylenediimide; non-fullerene acceptor; PTB7;
bulkheterojunction

1. Introduction

The power conversion efficiency (PCE) of organic solar cells (OSCs) has surged in the last decade.
Particularly, those made from bulk heterojunction solution-processed active layers have shown the
most potential for practical applications [1]. In this respect, polymer and small molecule donors have
both been the focus of significant research, leading to PCEs of over 10% when blends containing a
fullerene-based acceptor [2–5] perylenediimide are used. Fullerenes such as PC60BM and PC70BM
have traditionally dominated the field of solution-processed OPV. However, the high costs associated
with their use have driven the quest for less synthetically-demanding acceptors. In addition to cost,
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the poor light absorption properties of fullerenes in the visible region of the solar spectrum limit
the efficiency of the active layer to that of the donor’s fraction. Consequently, both polymers [6–9]
and small molecules [10–17] have been considered as alternatives. Although polymers showed
promising results initially, small-molecule non-fullerene acceptors ultimately became the most
studied entities. Among them, molecules built around the coranulene, truxene, subphtalocyanine,
perylenediimide cores, or linear alternating donor/acceptor-shaped molecules, have yielded the best
results to date. Although the PCEs were typically lower than those of similar devices fabricated
with [6,6]-phenyl-butyric acid methyl ester (PCBM), polymer/non-fullerene acceptor OSC devices
have surpassed all reported records of polymer solar cells in recent tests, thus demonstrating that
fullerenes are no longer an essential component in OPV [18–24]. Despite these encouraging results,
non-fullerene acceptor materials are still yielding inconsistent results. The perylenediimide family,
however, has shown more balanced performance, with several acceptors showing PCEs of over
5% [25–32], and recently, PDI-based dimers with a twisted configuration have produced a PCE of more
than 8% [33]. Moreover, the important mechanisms underlying suboptimum microstructure formation
in perylene-based active layers have been identified [34,35]; namely, extensive conjugation in perylene
cores induces intense π–π stacking, leading to the formation of micrometer-sized acceptor domains as
well as excimers in the excited state [36], both of which are detrimental to J–V characteristics of OSC
devices. To overcome these problems, it was found that bridging two or more perylenediimide cores
via their lateral ortho- or bay-positions reduced the propensity for aggregation, thus leading to the
formation of an active layer with crystallites of moderate size [26,30,37–40].

In an attempt to tune the aggregation properties of PDI acceptors, herein we report on a library
of PDI molecules substituted at the bay position with diphenylphenoxy groups. The perpendicular
arrangement of the diphenylphenoxy group with respect to the perylene core was shown to effectively
reduce the aggregation of the perylene derivatives in solution [41,42]. We extended this concept to the
solid state by applying diphenylphenoxy-substituted PDIs to OSCs. We carried out the synthesis and
characterization of two new PDI dimers bridged through the bay position with one and two thiophene
units and applied them to bulk-heterojunction solar cells. The impact of the PDIs on the active layer
microstructure was studied via X-ray and atomic force microscopy (AFM). Additionally, the optical
and electronic properties of the active layers of all the PDIs were assessed via a study of non-geminate
recombination kinetics, using the charge extraction/transient photovoltage (CE/TPV) method and
electron and hole mobility measurements.

2. Results

2.1. Synthesis and Characterization of the PDI-Acceptors

PDI 1 was synthesized using methods reported in the literature [42]. PDI 2 was synthesized
via Suzuki–Miyaura coupling from monobrominated intermediate PDI-Br (see ESI) and 2,5-bis(4,4,5,
5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophene in a 66% yield. PDI 3 was also synthesized from
PDI-Br; however, in this case, via Stille coupling with 5,5′-bis(tributylstannyl)-2,2′-bithiophene in a
70% yield. All derivatives were purified via flash column chromatography, and were obtained in high
purity (Scheme 1).
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Scheme 1. Chemical structure of PDI 1 and synthesis of PDI 2 and PDI 3. Reaction conditions:
(i) Pd2(dba)3, (C8H17)4NBr, THF/H2O, 66%; (ii) Pd2(dba)3, (o-MeOPh)3P, Toluene, 70%.

In solution, all three PDIs show two intense absorption bands well centered in the visible region of
the absorption spectrum, with a maximum absorption coefficient in the 104 range (Figure 1). Although
these bands display a peak situated at an almost identical wavelength, their relative intensity varies
in each PDI. The bands become broader with increasing conjugation, as seen with PDI 2 and PDI 3.
When blended with PTB7 and deposited into an active layer, the PDIs are shown to extend the
absorption of the active layer well in the visible region of the solar spectrum. The characteristic
absorption features of both materials can be clearly seen from the absorption spectra, with absorption
bands of the polymer located from 600 nm, and those of the PDIs below that value. Interestingly,
with respect to the spectra, the bands belonging to the PDIs are almost unchanged when in solution.
This is evidence of reduced aggregation, since a broadening of the absorption bands is usually observed
in the solid state. The experimental HOMO–LUMO levels, measured via differential pulse voltammetry
(see ESI) are within a similar range to those of PCBM acceptors. The LUMO levels are almost identical
to those of PC70BM for PDI 2 and PDI 3, but significantly lower for PDI 1. The HOMO levels are
slightly shifted upwards with respect to PC70BM (Figure 2).

Figure 1. UV-Vis spectra of the PDI acceptors in chloroform (dotted line, right axis); UV-Vis spectra
of active layers (PTB7:PDI) processed using deposition parameters from the fabrication of optimized
devices (solid line, left axis).
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Figure 2. (a) HOMO and LUMO energy levels of the three PDIs; (b) Solar cell device architecture.

2.2. Solar Cell Devices Fabrication and Characterization

In order to assess the photovoltaic properties of our diphenylphenoxy-substituted PDIs,
we fabricated solar cell devices following standard polymer-based architectures, as shown in Figure 2.

We chose PTB7 as a candidate for the polymer donor since the benzodithiophene
–thienothiophenediyl copolymer family has shown the best results in devices fabricated with PDI
acceptors [26–30]. The three PDIs were optimized for the donor/acceptor (D/A) ratio, annealing type
and additive content. PDI 2 and PDI 3 showed high solubility in chlorobenzene at the concentration
used for high PCEs PTB7/PC70BM solar cell devices. PDI 1 had poorer solubility, and the solution of
the blend was therefore diluted down to 15 mg/mL. The J–V characteristics of the best-performing
devices are shown in Figure 3a; the main properties are shown in Table 1.

Figure 3. (a) J–V characteristics of the best performing PTB7:PDI devices recorded at 1 SUN A.M
1.5 illumination; (b) external quantum efficiency (EQE) spectrum of devices made from PTB7:PDI
active layers.

Table 1. Organic solar cell (OSC) device parameters.

Acceptor AL Thickness (nm) JSC (mA/cm2) VOC (mV) FF PCE (%)

PDI 1 100 4.20 0.960 0.29 1.20
PDI 2 90 5.98 0.784 0.35 1.61
PDI 3 85 5.04 0.814 0.36 1.54

Interestingly, the best-performing devices were obtained when no annealing was applied,
nor additive added, to the processing blend. Both thermal or solvent vapor annealing were found to
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have a detrimental effect on J–V characteristics, while the addition of diiodooctane (DIO) additive was
found to have no positive effect. The J–V characteristics show modest PCEs, with limited JSC and an
unusually low fill factor (FF). The VOC, however, is seen to be higher than that of typical devices made
from PCBM, approaching 1 V for PDI 1. The JSC is higher with dimers than with the mono-adduct,
while the VOC is lower. Amongst the two dimers, the monothiophene-bridged PDI 2 was shown to
yield the highest efficiency, although that of PDI 3 was very similar.

The JSC trend is corroborated by the external quantum efficiency (EQE) spectrum of PDI-made
devices, as seen in Figure 3b. Importantly, the PDI acceptors are seen to contribute significantly to
photon conversion efficiency at lower wavelengths (500 to 600 nm). The EQE over the 350–500 range
is, however, slightly lower than that of the remaining wavelengths as a result of the limited absorption
of the active layers in that region of the spectrum (Figure 1).

2.3. Morphologival Characterization

To assess the impact of the PDIs whereby the formation of over-sized crystalline domains
is avoided, we conducted a morphological study using X-ray diffraction and AFM microscopy
techniques. Thin films of active layers were deposited on Pedot:PSS-covered glass substrates
and monocrystalline Silicon (001) substrates in identical conditions to those of solar cell devices.
Bragg–Brentano (theta–theta) diffractograms and grazing incidence X-ray diffraction (GIXRD) 2D area
images of active layers made from each PDI were recorded in identical conditions as those previously
described for PTB7/PCBM blends (see ESI) [43,44]. Unfortunately, no diffraction peaks could be
detected using either technique, indicating that the PDI does not form crystalline domains in the active
layer, and that it does not promote the formation of crystalline domains of polymer.

The AFM images recorded on active layers from each PDI are shown in Figure 4. As shown,
all PDIs demonstrate a marked tendency to form very smooth surfaces. This corroborates the results
from XRD, in which all PDIs were shown to form amorphous layers when deposited onto thin films.
This is further exemplified by the RMS roughness values of the active layers, as well as the peak-to-peak
height, both of which are below the average of standard PTB7-based OSCs (Table S3, ESI). The rather
featureless phase images corroborate the lack of phase segregation which could be deduced from the
topography images (Figure S8, ESI).

Figure 4. AFM images of the active layers made from PTB7 and PDI blends in conditions of optimized
solar cell devices. (a,a’) PTB7:PDI 1 (1:1); (b,b’) PTB7:PDI 2 (1:1); (c,c’) PTB7:PDI 3 (1:1). Scale bar
corresponds to 1 µm in the top pictures, and 200 nm in the bottom pictures.
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2.4. Electrical and Photophysical Characterization

To link the morphology data with the photophysical properties of the devices, we carried out
electron mobility measurements on hole-only and electron-only devices fabricated under identical
conditions as those of OSC devices. We used the Mott–Gurney equation on the space charge-limited
current (SCLC) region of the hole- and electron-only devices. The J–V characteristics were measured
in the dark to calculate the zero-field electron mobility of the devices (see ESI) [45,46]. Our analysis
shows that hole mobility is very similar in devices made from any of the PDIs ranging from 3.4 to
4.3 × 10−4 cm2/V·s. However, electron mobility is up to three orders of magnitude lower that of
hole mobility in all cases, creating a strong imbalance in carrier mobility. The effect on devices’
characteristics is expounded in the section below.

The large difference in VOC between PDI 1 and the other two PDIs cannot be attributed solely to
frontier energy orbital energetics (the difference between the LUMO energy level of the acceptor and
the HOMO level of the donor). However, as previously shown with similar devices, the experimental
difference in VOC is more likely to be attributable to non-geminate recombination kinetics [47–49].
In order to identify how the latter contributes to VOC, and to some extent to the shape of the
J–V characteristics, a qualitative recombination study was carried out using a well-established
charge extraction and transient photovoltage method (see ESI for experimental details). We used
CE measurements to estimate the average charge density under open circuit conditions. Figure 5a
shows the plot of the charge density (n) vs. open circuit voltage obtained from CE for all the devices,
where n was corrected for electrode capacitance. The data is consistent with a charge density of similar
magnitude in all measurements, reaching about 2× 1016 charges per cm3, similar to what was reported
earlier for such devices. [50–53] The total charge is seen to increase exponentially with the applied bias,
a feature linked to an accumulation of charges in the bulk of the device. The plots were fitted to single
exponentials according to Equation (1), and were analogous to the splitting of the quasi-Fermi levels in
intrinsic semiconductors, where the value of γ (see Table 2) is indicative of an exponential tail of trap
states extending into the band gap of the active layer [54–57].

n = n0eγVoc (1)

dn
dt

= −knφ (2)

τ∆n = τ∆n0 n−λ (3)

The plots in Figure 5a and Figure S14 were combined, as shown in Figure 5b, and used to
determine the overall order of recombination, defined by Equation (2); this can be approximated
to ϕ = λ + 1 under our TPV experimental conditions (∆n << n) [58]. The parameter λ is obtained
experimentally by fitting the curve of the small perturbation carrier life time τ∆n vs. n to a power law
according to Equation (3).

Interestingly, the recombination order is seen to vary very significantly from device to device.
For PDI 1 in particular, it shows an extremely high value (ϕ = 16.5). Such values, as opposed to a value
of 2 (which would be expected in a strictly bimolecular recombination process), have been measured
several times in earlier studies [56–64]. Importantly, recombination life times measured through
CE/TPV correspond to total charge carrier recombination; therefore, it is difficult to attribute the
experimental reaction order (ϕ), obtained using this method, to a specific recombination mechanism.
Indeed, it has been shown that, especially in thin active layers as in our case, surface recombination or
doping can have a very significant influence on the apparent recombination order [65].
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Table 2. Values of recombination parameters and hole and electron mobility derived from charge
extraction/transient photovoltage (CE/TPV) measurements and SCLC.

Acceptor n0 γ β ϕ µh (cm2/V) µe (cm2/Vs) RS (Ω/cm2) Rshunt (Ω/cm2)

PDI 1 5.7 × 1015 1.47 25.7 16.4 3.4 × 10−4 2.75 × 10−7 28.3 311.6
PDI 2 3.0 × 1015 2.21 13.7 8.8 4.3 × 10−4 6.02 × 10−7 7.5 255.7
PDI 3 3.8 × 1014 2.14 5.2 4.0 4.1 × 10−4 9.53 × 10−7 7.05 327.9

Figure 5. (a) Charge density (n) as a function of the open circuit voltage determined from CE
measurement. The curves are fitted to an exponential growth of the form n = n0e(γVoc) (dotted line)
whose parameters are reported in Table 2; (b) Carriers’ lifetime measured using TPV as a function
of device open circuit voltage. The curves are fitted to a power decay of the form τ∆n = τ∆n0·n−λ

(dotted line), whose parameters are reported in Table 2.

To gain more insight into this matter, we calculated the ideality factor (nid) of all devices by fitting
the VOC vs. light bias plot to a logarithmic function as depicted in Figure 6a. The data for nid is in
the range of expected values for thin devices (thickness < 100 nm) where surface recombination is
significant. This is consistent with the rather high recombination orders observed experimentally.
The case of the extremely high recombination order in PDI 1 is consistent with the presence of a stronger
inhomogeneity of carrier concentration across the thickness of the active layer [65]. This is confirmed
both by the lower nid than the other two PDIs, and the JSC vs. Light intensity plots (Figure 6b),
which shows a sub-unity power law dependency for PDI 1.

Figure 6. (a) Open circuit voltage vs. light intensity plot for all PDIs; (b) Short circuit current density
vs. light intensity plot for all PDIs.
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This non-linear behavior is indicative of the formation of a space charge region which is
consistent with carrier dynamics dominated by surface recombination. This space charge region
likely originates from the carrier mobility imbalance to a large extent, as well as from the sub-optimum
HOMO energy level of PDI 1, −3.5 eV vs. −3.7 eV for PCBM, which creates a barrier to electron
extraction at the cathode. Finally, despite these additional losses, the recombination coefficient
Krec, corresponding to a charge-dependent non-geminate recombination coefficient as defined by
Equations (4) and (5) [47,54,58], follows the trend observed with the VOC, indicating that non-geminate
recombination plays a major role in determining the VOC of the devices (Figure 7).

Figure 7. Recombination coefficient, Krec, as a function of charge density.

dn
dt

= −krec(n)n2 (4)

krec(n) =
nλ−1

(λ + 1)τ∆n0 nλ
0

(5)

The small perturbations in recombination kinetics exhibited by devices made from our PDIs are
seen to be up to one order of magnitude slower than those reported for similar devices made from
PCBM as an acceptor [43,50,53]. As a result, in devices made from PDIs, the VOC reached a value up to
250 mV higher than that of devices made from PC70BM, despite the fact that the latter has an almost
identical LUMO energy level to that of PDI 2 and PDI 3.

Despite the fact that PDIs lead to higher VOC than state-of-the-art devices, the JSC and shunt
resistance are lower than average (Table 2). It is likely that the amorphous nature of the active layers
induces the formation of highly mixed D/A domains with poor phase segregation. This, in turn,
presumably results in a high rate of geminate recombination limiting the JSC, and a slow rate of charge
transport (as seen by the low electron mobility), resulting in a low shunt resistance.

3. Conclusions

In the present study, we have demonstrated that the functionalization of PDI cores at the bay
position with diphenylphenoxy groups leads to completely amorphous active layers when blended
with PTB7. The perpendicular arrangement of the diphenylphenoxy groups with respect to the
perylenediimide’s plane likely impedes intermolecular π–π stacking between the conjugated cores to
such an extent that the formation of crystalline domains in the solid state is suppressed. This results
in devices with lower-than-average electron mobility when PDIs are used as acceptors instead of
PC70BM, as well as to significantly slower recombination kinetics. Consequently, these devices exhibit a
significantly higher VOC than PCBM-based devices. However, additional losses occur due to the lack of
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phase segregation between donor and acceptor phases. Surface recombination becomes significant and
the electron and hole mobility imbalance induce a decrease in charge extraction efficiency. This leads
to J–V characteristics with moderate JSC, and a typically low fill factor. Work is underway involving
the substitution of the diphenylphenoxy at bay position for less sterically demanding groups.

Supplementary Materials: Detailed experimental procedures and additional characterization data are available
online at http://www.mdpi.com/2079-4991/8/4/211/s1.
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Supporting Information 

General Remarks on Experimental Data 

Synthetic Procedures: All chemicals were reagent-grade, purchased from commercial 

sources, and used as received, unless otherwise specified. Column chromatography: SiO 2 

(40-63 μm) TLC plates coated with SiO2 60F254 were visualized by UV light. NMR 

spectra were measured with a Bruker AC 300. UV-vis spectra were recorded with a Helios 

Gamma spectometer at 298 K in CHCl3, and IR spectra and a Nicolet Impact 400D 

spectrophotomete in a KI matrix. Fluorescence spectra were recorded with a Perkin Elmer 

LS 55. Mass spectra were obtained from a Bruker Microflex matrix-assisted 

laserdesorption/ionization time of flight (MALDI-TOF). 

 

Synthesis Procedures and Characterisation Data 

PDI 2: In a 100 ml round-bottom flask were introduced PDI 4 (513 mg, 0.60 mmol), 

bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophene (124 mg, 0.37 mmol), 

Pd2(dba)3 (36 g, 0.04 mmol) and tetraoctylammonium bromide (21 mg, 0.04 mmol). Then 

the solvents were added subsequently, THF (40 mL) and K2CO3 2M (2 ml). The reaction 

mixture was stirred for 3 h at 80 ºC under argon atmosphere. After cooling to room 

temperature, the crude was extracted with dichloromethane and washed with water. The 

solvent was removed under reduced pressure and the crude product was purified by silica 

gel column chromatography (SiO2, dichloromethane:acetone 25:1) to yield PDI 2 (398 

mg, 66 %) as a purple solid. 1H NMR (300 MHz, CDCl3, 300 K, δ): δ = 9.11 (2H, d, J=8.4 

Hz, 2xPDI-H), 8.74 (2H, s, 2xPDI-H), 8.59 (2H, d, J=8.4 Hz, 2xPDI-H), 8.42 (2H, d, 

J=8.1 Hz, 2xPDI-H), 8.13 (2H, d, J=8.1 Hz, 1xPDI-H), 7.86 (2H, s, 2xPDI-H), 7.50 (6H, 

s, 6xAr-H), 7.39-7.35 (10H, m, 8xAr-H+2xthiophene-H), 6.99-6.88 (12H, m, 12xAr-H), 

5.17-5.06 (2H, m, 2xPDI-CH(CH2CH3)2), 4.87-4.77 (2H, m, 2xPDI-CH(CH2CH3)2), 2.39-
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2.24 (4H, m, 2xPDI-CH(CHHCH3)2), 2.11-1.92 (8H, m, 4xPDI-CH(CHHCH3)2), 1.84-

1.73 (4H, m, 2xPDI-CH(CHHCH3)2), 0.97 (12H, t, J=7.5 Hz, 2xPDI-CH(CH2CH3)2), 0.73 

ppm (12H, t, J=7.5 Hz, 2xPDI-CH(CH2CH3)2); 13C NMR (75 MHz, CDCl2-CDCl2): δ = 

164.0, 163.9, 163.6, 163.2, 155.7, 148.0, 146.5, 137.2, 135.8, 135.1, 133.7, 133.3, 132.6, 

131.2, 131.0, 129.8, 128.8, 128.7, 128.4, 128.3, 128.0, 127.8, 127.3, 126.4, 123.9, 123.3, 

122.4, 122.2, 121.8, 121.0, 120.7, 57.7, 57.5, 25.0, 24.8, 11.4, 11.1 ppm; IR (KBr) ν: 

3442, 3056, 2961, 2874, 1698, 1658, 1589, 1505, 1458, 1405, 1327, 1261, 1191, 1073, 

903, 859, 811, 754, 699, 582, 408 cm-1; UV/Vis (chloroform), λmax (log ε): 408 (4.22), 562 

nm (4.64); MS (MALDI-TOF): m/z: calcd for C108H84N4O10S: 1626.591 [M]-; found: m/z: 

1628.543 [M]-.  

PDI 3: In a dry 25 ml round-bottom flask were introduced PDI 4 (100 mg, 0.12 mmol), 5,5′-

bis(tributylstannyl)-2,2′-bithiophene (36 mg, 0.05 mmol), 

tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (4.3 mg, 4.7x10-3 mmol) and tris(2-

methoxyphenyl)phosphine ((o-MeOPh)3P) (6.6 mg, 0.02 mmol) was stirred in dry toluene (1 

mL) under argon for 48 h at 110 ºC. The solvent was removed under reduced pressure and the 

crude product was purified by silica gel column chromatography (SiO2, chloroform) to yield 

PDI 3 (60 mg, 70 %) as a shiny purple solid. 1H NMR (300 MHz, CDCl3, 300 K, δ): δ = 9.16 

(2H, d, J=8.4 Hz, 2xPDI-H), 8.70 (2H, s, 2xPDI-H), 8.58 (2H, d, J=8.4 Hz, 2xPDI-H), 8.35 

(2H, d, J=8.2 Hz, 2xPDI-H), 8.14 (2H, d, J=8.2 Hz, 1xPDI-H), 7.92 (2H, s, 2xPDI-H), 7.55-

7.52 (6H, m, 6xAr-H), 7.45-7.42 (8H, m, 8xAr-H), 7.21 (2H, d, J=3.7 Hz, 2xthiophene-H), 

7.16 (2H, d, J=3.7 Hz, 2xthiophene-H), 7.09-7.01 (12H, m, 12xAr-H), 5.14-5.04 (2H, m, 

2xPDI-CH(CH2CH3)2), 4.98-4.87 (2H, m, 2xPDI-CH(CH2CH3)2), 2.37-2.22 (4H, m, 2xPDI-

CH(CHHCH3)2), 2.20-2.07 (4H, m, 2xPDI-CH(CHHCH3)2), 2.03-1.79 (8H, m, 2xPDI-

CH(CHHCH3)2), 0.95 (12H, t, J=7.4 Hz, 2xPDI-CH(CH2CH3)2), 0.86 ppm (12H, t, J=7.4 Hz, 

2xPDI-CH(CH2CH3)2).; 13C NMR (75 MHz, CDCl2-CDCl2): δ = 164.3, 164.2, 164.0, 163.5, 
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155.9, 148.0, 143.9, 139.0, 137.5, 136.0, 134.0, 133.7, 133.1, 131.7, 131.3, 129.9, 129.1, 

128.6, 128.4, 128.1, 127.5, 126.7, 125.9, 124.2, 123.5, 122.4, 122.2, 122.0, 121.0, 120.9, 57.9, 

57.7, 25.2, 25.1, 11.6, 11.4 ppm; IR (KBr) ν: 3432, 2961, 2928, 2874, 1698, 1659, 1596, 1505, 

1459, 1405, 1327, 1261, 1193, 1074, 903, 860, 812, 754, 700, 408 cm-1; UV/Vis (chloroform), 

max (log ε): 358 (4.48), 392 (4.48), 514 (4.62), 562 nm (4.62); MS (MALDI-TOF): m/z: 

calcd for C112H86N4O10S2: 1709.571 [M-H]-; found: m/z: 1709.524 [M-H]-. 
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Figure S1. 1H-RMN (CHCl3, 25°C) spectrum for PDI 2. 

 

 

 
Figure S2. 13C-RMN (CDCl2-CDCl2, 25°C) spectrum for PDI 2. 
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Figure S3. 1H-RMN (CHCl3, 25°C) spectrum for PDI 3.  

 

Figure S4. 13C-RMN (CDCl2-CDCl2, 50°C) spectrum for PDI 3. 
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Figure S5. MALDI-TOF spectrum of PDI 2. 

 

 
Figure S6. MALDI-TOF spectrum of PDI 3. 
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Solar cell fabrication 

PC71BM was purchased from Solenne (Solenne BV, the Netherlands). High purity (HPLC 

gradient grade, 99.9 %) CHCl3 was used for the active layer deposition. The solvent was 

dried with activated molecular sieves and kept in a sealed bottle with silver foil prior to 

use. Aluminium (99.999 %) and LiF (99.995 %) were purchased from Sigma-Aldrich. 

Prepatterned Indium Tin Oxide (ITO) 5 Ohm/square (PSiOTec, Ltd., UK) sodalime glass 

substrates were first rinsed with acetone to remove the residual photoresist layer. The 

substrates were placed in a teflon holder and sequentially sonicated in acetone (1 × 10 

min) and isopropanol (2 × 10 min), and finally dryed under flow of Nitrogen. The ITO 

substrates where ozone-treated in a UV-ozone cleaner for 30 min in ambient atmosphere, 

and subsequently coated in air with a layer of filtered (0.45 μm, cellulose acetate) solution 

of Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS, HC Starck 

Baytron P) (4500 rpm 30 seconds followed by 3500 rpm 30 seconds). The PEDOT:PSS 

film was dried at 120 ºC under inert atmosphere for 15 min. Active layers were spin-

coated (1900 to 2600 rpm) in air over the PEDOT:PSS layer from a 25 or 15 mg/ml (total 

concentration) solution of the PTB7 and the corresponding PDI. The ratio between Donor 

and acceptor is reported in table S1. The cathode layer was deposited by thermal 

evaporation in an ultra high vacuum chamber (1·10-6 mbar). Metals were evaporated 

through a shadow mask leading to devices with an area of 9 mm2. LiF (0.6 nm) and Al 

(100 nm) were deposited at a rate of 0.1 Å/s and 0.5-1 Å/s respectively. 

Following fabrication, the films were maintained under a Nitrogen atmosphere and stored 

in the dark until used. 
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Table S1. Active layers deposition parameters 

Device active layer Ratio Solvent  
Conc. 
(total) 

speed 
(rpm) 

DIO (%)  

PTB7:PDI 1 1:1 Chloroform 15 1900 0 

PTB7:PDI 2 1:1 Chloroform 25 2200 0 

PTB7:PDI 3 1:1 Chloroform 25 2600 0 

 

 

 

Differential pulse voltammetry 

DPV measurements were performed in a conventional three-electrode cell using a μ-

AUTOLAB type III potentiostat/galvanostat at 298 K, over CHCl3 and deaerated sample 

solutions (~0.5 mM), containing 0.10 M tetrabutylammonium hexafluorophosphate 

(TBAPF6) as supporting electrolyte. A carbon working electrode, Ag/AgNO3 reference 

electrode and a platinum wire counter electrode were employed. Ferrocene/ferrocenium 

couple was used as an internal standard for all measurements.  

 

Figure S7. Differential pulse voltammetry of the PDI derivatives, recorded in Chloroform with Ferrocene 

as internal standard. 
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Table S2. Summary of the optical features derived from Absorption-emission spectroscopy and cyclic 

voltammetry. 

Derivative PDI 1 PDI 2 PDI 3 

EHOMO (eV) -5.75 -5.71 -5.57 

ELUMO (eV) -3.55 -3.71 -3.74 

Band gap (eV) 2.20 2.00 1.83 

 

 

Film and device characterisation 

The UV-Vis absorption of films was measured using a Shimadzu UV-1700 

spectrophotometer. The J-V characteristics of the devices were measured in a sealed 

capsule under inert atmosphere using a Sun 2000 Solar Simulator (150 W, ABET 

Technologies). The appropriate filters were utilised to faithfully simulate the AM 1.5G 

spectrum. The illumination intensity was measured to be 100 mW m2 with a calibrated 

silicon photodiode (NREL). The applied potential and cell current were measured with a 

Keithley 2400 digital source meter. The current to voltage (J–V curve) was ploted 

automatically with a home-built Labview© software. The IPCE (Incident Photon to 

Current conversion Efficiency) was measured using a home made set up consisting of a 

150 W Oriel Xenon lamp, a motorized monochromator and a Keithley 2400 digital source 

meter. The photocurrent and irradiated light intensity were measured simultaneously and 

processed with a home-built Labview© software. 

The thickness of the films was measured with a stylus profilometer Ambios Tech. XP-1, 

from a scratch made on the film. 
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AFM and X-Ray diffraction  

AFM: 

Atomic Force Microscopy (AFM) of the samples was performed in tapping mode on a 

Molecular Imaging model Pico SPM II (pico +). Images were collected in air using silicon 

probes with a typical spring constant of 1–5 nN/m and at resonant frequency of 75 kHz. 

  

Table S3. Summary of the roughness values from the AFM topography micrographs from Figure 4. 

  PDI1 PDI2 PDI3 

Image size PEAK TO PEAK RMS PEAK TO PEAK RMS PEAK TO PEAK RMS 

1x1 m 2,86 0,38 3,01 0,39 3,20 0,42 

5x5 m 6,52 0,44 8,38 0,43 4,72 0,44 

 

 

 

Figure S8. AFM phase images of the active layers made from PTB7 and PDI blends in conditions of 

optimized solar cell devices. a) and a’) PTB7:PDI 1 (1:1); b) and b’) PTB7:PDI 2 (1:1); c) and c’) 

PTB7:PDI 3 (1:1).  
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XRD: 

Conventional XRD measurements on thin films were carried out on a Bruker-AXS D8-

Discover diffractometer with parallel incident beam (Göbel mirror), a vertical theta-theta 

goniometer, a XYZ motorized stage mounted on an Eulerian cradle, an incident and 

diffracted beam Soller slits, a 0.02º receiving slit and a scintillation counter as a detector. 

Diffraction pattern were recorded over an angular 2theta range of 1º to 15º. The data were 

collected with an angular step of 0.05º at 10 sec per step. Cukα radiation was obtained 

from a copper X-ray tube operated at 40 kV and 40 mA. 

2D XRD measurements were performed with the same diffractometer equipped with an 

HI-STAR area detector (multiwire proportional counter of 30x30 cm with 1024x1024 

pixel) and GADDS software (General Area Diffraction System). Samples were placed 

directly on the sample holder and the area of interest was selected with the aid of a video-

laser focusing system. An X-ray collimator system allows to analyze areas of 500 μm 

wide. 2D XRD patterns (one frame) were collected covering 1.2-22.3º 2θ from at a 

distance of 15 cm from the sample. The exposition time was 600 sec per frame. 
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Figure S9. a) Bragg-Brentano point detector diffractograms of active layers deposited in identical conditions as 

in optimized OSC devices. Bragg-Brentano point detector diffractograms of of thin films of pristine PDIs 

acceptors deposited from chloroform (15mL/mg).  

 

 

 

 

b) 
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Figure S10. Out of plane GIXRD images of active layers.  Recorded at a 30 cm distance from the samples with 
ω =0.5º, the incident beam angle with respect to the substrate, a) PTB7:PDI 1 b) PTB7:PDI 2 c) PTB7:PDI 3. 

Hole and electron mobility: 

Mobility measurements were performed using electron only devices which had an 

ITO/ZnO/PTB7:Azafullerene/Al structure (Figure S11). Thicker metal cathodes (150 nm) 

were used to aid in cooling to prevent damage associated with device heating when measuring 

at high voltages. Mobility values were obtained by fitting the obtained J-V plots in the SCLC 

region to a Mott-Gurney as in equation (1) with the static permittivity of the active layer (ε) 

fixed to 3, μ0 being the zero-field mobility.  

 

J=9/8 (εμ0)/L3 x V2                        (1) 

 

Mobility measurements were repeated at least three times (using different devices) to confirm 

the reproducibility of the results. High electron mobility Zinc Oxide was deposited via a sol-

gel. 
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Figure S11. Device architecture used for the electron-only devices. 

 

 

 

 

 

 

 

 

 

 

Figure S12. Hole-only devices J-V characteristics measured in the dark. 
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Figure S13. Electron-only devices J-V characteristics measured in the dark. 

 

CE/TPV analysis 

Charge extraction (CE) was employed to probe the charge density within the active layer of 

the device under working conditions using a homebuilt system. Devices were held at open 

circuit by applying bias from a focused array of LEDs. Once the device reached steady state it 

was then short-circuited with the LEDs switched off simultaneously (switch-off time / relay = 

300 ns), leaving the charge stored in the active layer to decay through a small 50 Ω resistor. A 

Yokogawa 2052 digital oscilloscope was used to record the voltage decay across the resistor. 

Using Ohm’s law the voltage transient could be turned into a current transient, which was 

subsequently integrated to calculate the total charge in the active layer at each light applied 

bias. In general the device is measured from open circuit voltage values corresponding to >1 

Sun conditions to 0 V.  

Transient photovoltage (TPV) measurements were carried out on working devices through 

applying a light bias (the same ring of LEDs used in CE) and holding the device at steady 

state in open circuit conditions. Once the device reached steady state conditions, a low-
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intensity laser pulse (PTI GL-3300 Nitrogen Laser) irradiated the sample to allow a small 

excess number of charge carriers to be generated. As the device is being held at open-circuit, 

the excess charge generated has no choice but to recombine. The transient decay of the charge 

carriers is recorded using a Yokogawa 2052 digital oscilloscope. Sweeping from high-applied 

bias (high illumination) to low-applied bias (low illumination) allows a correlation between 

charge carrier lifetime and voltage to be made. The irradiation wavelength was chosen to be 

close to but not at the maximum of the donor absorption spectrum. A graded neutral density 

filter was used to control the intensity of the small perturbation, usually keeping the value 

between 5 and 10 mV. 

 

 
Figure S14. Carriers life time (n) versus open circuit voltage (VOC) plot. Curves are fitted to 

exponential decays of the form τΔn=e-βVoc. 
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PTB7/PC70BM solar cell 

 

 
Figure S15: J-V characteristics of a typical PTB7:PC70BM solar cells fabricated in identical conditions as those 

used for PDI-based devices (ITO/PEDOT:PSS/PTB7:PC70BM/Ca/Ag). 
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Understanding the Limiting Factors of Solvent-Annealed
Small-Molecule Bulk-Heterojunction Organic Solar Cells
from a Chemical Perspective
Daniel Fernandez,[a] Aurelien Viterisi,*[b] Vijay Challuri,[a] James W. Ryan,[c] Eugenia Martinez-
Ferrero,[d] Francesc Gispert-Guirado,[e] Marta Martinez,[a] Eduardo Escudero,[a]

Caterina Stenta,[b] Lluis F. Marsal,[b] and Emilio Palomares*[a]

Introduction

Small-molecule semiconductors have attracted increasing inter-
est for bulk-heterojunction (BHJ) solar cell devices. Recent re-

cords of power conversion efficiency (PCE) values of over 10 %
have demonstrated that small molecules (SMs), if designed

suitably, can match and even exceed the performance of poly-
mer-based BHJ organic solar cells (OSCs).[1] This is of para-

mount importance as SMs have the advantage over polymers
in that they can be synthesised easily and isolated as discrete

entities rather than as poly-disperse mixtures of molecules
with various chain lengths. However, the extensive use of poly-

mers in OSCs until recently lies in that they benefit from their
long conjugated backbone to pack in an ordered manner,
which enhances carrier transport. SMs, however, can only rely

on weak inter-molecular interactions to produce highly crystal-
line active layers. As such, it has been widely demonstrated
that even the subtlest change in the molecular structure of
a SM donor can influence the performance of SM-BHJ devices

greatly, and thus donors with very similar photophysical prop-
erties often show very different photovoltaic conversion char-

acteristics.[2–5] Several studies have attempted to draw a trend

between the molecular structure of the donor and device char-
acteristics by varying the chemical structure of the donor. Al-

though the change in structure has generally be shown to
affect the overall crystallinity of the active layer,[2, 5] little is

known about the mechanisms that govern crystallite growth in
the active layers of SM-BHJ devices and how the resulting

nano-/micro-structure limits the overall efficiency of the devi-

ces. Consequently, to date, SMs have shown mixed results, and
highly efficient SM donors are often discovered serendipitously

rather than through rational design. Despite considerable work
published on SM-BHJs, no precise relationship has been estab-

lished between the donor structure and the J–V characteris-
tics.[6]

A detailed account of the limiting factors of solvent-annealed

bulk-heterojunction small-molecule organic solar cells is given.
This account is based on the extensive characterisation of solar
cell devices made from a library of five diketopyrolopyrole

(DPP) donor dyes. Their chemical structure is designed in such
a way as to provide insights into the energetics of solar cell

active layer micro-structure formation. Numerous chemical and
physical properties of the active layers are assessed and inter-

related such as light absorption, molecular packing in the solid
state, crystal-forming properties in thin films, charge carrier

mobility and charge carrier recombination kinetics. A myriad of

characterisation techniques are used such as UV/Vis absorption

spectroscopy, photoluminescence spectroscopy, XRD, AFM and

photo-induced transient measurements, which provide infor-
mation on the optical properties of the active layers, morphol-
ogy and recombination kinetics. Consequently, a mechanism

for the solvent-vapour-annealing-assisted formation of crystal-
line domains of donor molecules in the active layer is pro-

posed, and the micro-structural features are related to the J–V
characteristics of the devices. According to this model, the

crystalline phase in which the donor crystallise in the active
layer is the key determinant to direct the formation of the

micro-structure.
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Therefore, the aim of this study is to design a small library
of diketopyrrolopyrole (DPP) derivatives rationally to shine

a light on the energetics of micro-structure formation and to
demonstrate how the changes induced by the chemical struc-

ture of the donor impact all aspects of the J–V characteristics
indirectly in a very significant manner. The donors employed in

this study were designed in such way as to induce changes in
the morphology of the active layer and to induce as little

change as possible in the optical properties [i.e. , frontier orbi-

tals (HOMO–LUMO) and band gap energies] . To obtain a better
understanding of the key parameters responsible for the

device performance and of the evolution of the J–V character-
istics of SM-BHJ devices, the largest possible variables were

taken into account. Amongst these variables, band gaps,
HOMO–LUMO levels, light absorption, molecular packing in
the solid state, crystal-forming properties in thin films, charge

carrier mobility and charge carrier recombination kinetics were
assessed and inter-related. To provide for the best comparison

possible, we based our study on the benchmark 3,6-bis[5-(ben-
zofuran-2-yl)thiophen-2-yl]-2,5-bis(2-ethylhexyl)pyrrolo[3,4-
c]pyrrole-1,4(2H,5H)-dione (DPP(TBFu)2) donor, first described
by Walker et al. ,[7] which has been characterised extensively

previously. The library of donors includes five close parents of

the original molecule that comprise the main diketopyrrolopyr-
role (DPP) core in their structure with different end groups.

The devices were fabricated as a standard structure; howev-
er, a post-active layer deposition solvent vapour annealing

(SVA) procedure was applied instead of the common thermal
annealing procedure, as SVA provides a better control of the

crystallinity of the active layer. In the first instance, the short-

circuit current density (JSC) evolution of the devices upon the
modification of the chemical structure was related to the ab-

sorption properties of the active layer, using the original
DPP(TBFu)2 as a reference. This highlighted how parameters,

such as the molecular weight, absorption coefficient and
active layer thickness, are the major limiters of the JSC (with re-

spect to that of the DPP(TBFu)2 reference).

The open-circuit voltage (VOC) and fill factor (FF) of the devi-
ces, and their deviation from the theoretical values expected
from the frontier orbital energy levels, were linked to recombi-
nation kinetics using a well-established methodology de-

scribed by Clarke and Durrant in which the VOC is described as
a combination of frontier orbital energies and the quasi-Fermi

level splitting magnitude that results from non-geminate re-
combination kinetics.[8]

Finally, all the physical properties of the devices were linked

ultimately to the nano-/micro-structure of the active layers and
to the arrangement of the molecules in the solid state. XRD,

both in Bragg–Brentano and grazing-incidence configurations,
is the method of choice to investigate this structure as it pro-

vides extensive information on the key parameters that govern

device function such as phase segregation, crystalline volume,
crystallite size and molecular packing. The results obtained by

using XRD and additional microscopy techniques allow us to
propose a mechanism for the SVA-assisted formation of crystal-

line domains of donor molecules in the active layer and to
relate these features with the J–V characteristics of the devices.

Results

The five derivatives were designed as follows: subtle structural
changes were introduced in the original DPP(TBFu)2 structure,

by first removing the phenyl group of the benzofuran moiety
(structure 1) and substituting the O atom for S (structure 2)[4, 5]

to assess the effect of conjugation length and weak interac-
tions on the solid-state packing. Derivative 3 incorporates
a large tetragonal triarylamine group with long alkyl chains

with the aim to disrupt p–p stacking interactions in the solid
state and to assess their effect on the morphology. Finally,

a third class of derivatives incorporate electron-withdrawing
groups (4 and 5) to assess the effect of weakly polarisable
atoms on crystalline growth in the active layers (Figure 1 a).

The derivatives were synthesised by two different methods.

Compounds 3, 4 and 5 were synthesised by the Pd-mediated
Suzuki coupling of a commercially available dibrominated DPP
intermediate, and 1 and 2 were synthesised by the direct alky-
lation of the respective DPP cores (see the Supporting Informa-
tion). Importantly, all the derivatives were purified extensively

though repeated column chromatography and at least two re-
crystallisation processes.

Solar cell devices were fabricated using a reported structure

(Figure 1 b).[9] The active layer was made of a blend of donor
derivative and [6,6]-phenyl-C71-butyric acid methyl ester

(PC70BM) dissolved in CHCl3. The active layer of each do-
nor:PC70BM blend was deposited by spin coating from CHCl3

and submitted subsequently to a SVA step in CH2Cl2 before the
deposition of the cathode (LiF/Al). SVA was chosen over ther-

mal annealing as it has demonstrated a superior ability to con-

trol the crystallisation process of these types of donor mole-
cules in SM-BHJ-based devices.[9–13] Devices were optimised

with regard to the PC70BM:donor ratio, active layer thickness
and SVA time (see the Supporting Information).

Photophysical properties

The optical properties of all the donors were characterised by
using UV/Vis absorption and emission spectroscopy. HOMO

and LUMO energy levels were calculated from the cyclic vol-
tammetry results (see the Supporting Information). The
HOMO–LUMO energy levels of each DPP derivative and
PC70BM are shown in Figure 1 a. The donors have a similar

band gap of (2.0:0.1) eV. The UV/Vis absorption spectra of all
the derivatives show very similar features with maximum ab-
sorption in the range of l= 590 and 650 nm and onsets of ab-

sorption located at approximately l= 700 nm, except for 3 the
absorption onset of which extends slightly towards the infra-

red (see Figure S4 for the UV/Vis spectra of all derivatives in
solution).

Interestingly, the active layers of all the derivatives show

similar features to the original DPP(TBFu)2 donor, that is, three
well-defined absorption bands of different relative intensities

with the middle band centred at approximately l= 600 nm
(Figure 2 a). The relative intensity of these bands changes sig-

nificantly upon SVA for DPP(TBFu)2, a trend attributed previ-
ously to an increase in aggregation that is followed by all de-
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rivatives (Figure 2 b).[9] Derivatives 1 and 4 show a similar in-

crease of the blue-shifted bands, presumably caused by the
formation of a similar type of aggregates. Derivatives 2, 3 and

4 display less significant changes upon annealing. Contrary to
the other derivatives, the intensity of the absorption band in

the annealed active layer films remains similar to but signifi-

cantly sharper than that of the non-annealed films. Such
changes in the absorption properties in the films induce a no-

ticeable colour change particularly for derivatives 2, 4 and 5. It
is important to note the very significant change in the absorp-

tion intensity between the active layers, the effect of which is
of importance to limit the JSC of the working devices. A quan-
tification of the effect of the absorption of the active layer on

the JSC of the devices is provided in the next section.

Photovoltaic properties

Solar cell devices were fabricated in an identical structure for

all the DPP derivatives (ITO/PEDOT:PSS/DPP:PC70BMLiF/Al; Fig-
ure 1 b). The donor/acceptor (D/A) ratio, active layer thickness

and solvent annealing time were optimised for each device.

The evolution of the J–V characteristics of the devices upon
solvent annealing follows a similar trend as observed previous-

ly with DPP(TBFu)2, in which JSC increases with the annealing
time up to a maximum value and decreases with a longer an-

nealing time.[9, 12] Concomitant with this decrease of JSC, an in-
crease in the FF is usually observed. Notably, the FFs are fairly
low in all of the optimised devices with values of 40–55 %.

However, devices made from derivative 2, similar to
DPP(TBFu)2,[9] show an improvement of the FF to 66 % if longer

Figure 1. a) Chemical structure of DPP derivatives and their HOMO–LUMO and band gap energy derived from cyclic voltammetry measurements and UV/Vis/
emission measurements. The LUMO and band gap of PC70BM measured under the same conditions is shown for comparison. b) Solar cell architecture used in
this study.

Figure 2. UV/Vis absorption spectra of active layers made of the DPP derivative and PC70BM blends under optimum device conditions. a) Non-annealed films,
b) CH2Cl2-SVA films.
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annealing times were applied. This is not without a very signifi-
cant decrease in JSC, which brings the overall efficiency well

below 1 %. Interestingly, the VOC of the devices does not follow
a trend and does not relate accurately to the HOMO levels of

the derivatives (see Table 3 for experimental and theoretical
VOC values).[14] The JSC values range from 1 to almost 5 mA cm@2

for the new derivatives, which is lower than the 9 mA cm@2 ob-
tained with the commercial DPP(TBFu)2 reference donor. The
JSC values are corroborated by the external quantum efficiency

(EQE) measurements (Figure 3).
A comparison of the optical parameters of the active layers

is presented in Table 1. This provides an estimation of the frac-
tion of the losses in JSC that are related directly to the absorp-

tion of the active layers.
On the basis of a seminal study from Heeger and co-work-

ers,[15] we reasoned that if the active layers experience similar

D/A electron transfer kinetics and geminate recombination ki-
netics (the dominant loss mechanisms at short circuit) to the

reference DPP(TBFu)2 blend, the JSC would be proportional to
the fraction of the active layer absorption integral in the visible

range. To test this, the absorptance[16] spectra of all the active
layers were integrated with respect to the wavelength (400–

900 nm). Accordingly, the integrated value of the absorptance

for optimised active layers (column 6) and their percentage
value with respect to the DPP(TBFu)2 reference active layer

(column 7) are shown in Table . The theoretical JSC, which corre-

sponds to the highest attainable JSC based on the absorption
capacity of the active layers, is equivalent to the percentage

fraction of the JSC of the DPP(TBu)2 device (column 9). Conse-
quently, the experimental JSC values of devices made from de-

rivatives 1 and 3 are consistent with that calculated from the
absorption integral of their respective active layers. The JSC

values of devices of derivatives 2, 4 and 5 are, however, not
consistent with the calculated value.

To understand the origin of such a discrepancy, relative in-

ternal quantum efficiency (rIQE) values were measured to ap-
proximate the efficiency with which each active layer converts

photons into electrical charges.[17] Devices of derivatives 1 and
3 show a similar overall value of rIQE to that of the reference

DPP(TBFu)2 device (&70 % on average), which implies that all
three active layers convert photons to free charge carriers with

comparable efficiencies (Figure 4). This confirms that the JSC

produced by derivatives 1 and 3 is limited mostly by the ab-
sorption ability of the active layers relative to the DPP(TBFu)2

reference. The difference between the calculated and experi-
mental JSC could be attributed to a slight difference in gemi-

nate recombination kinetics and exciton diffusion length with
respect to the reference DPP(TBFu)2 device. However, deriva-

tives 4 and 5 show a much lower rIQE than the other deriva-

tives, which corroborates the larger differences in the experi-
mental and theoretical JSC values (Table 1). Additional losses

must be responsible for the lower experimental JSC than ex-

Figure 3. a) J–V characteristics of solar cell devices fabricated with DPP-series donors and PC70BM. These curves represent the average performance of devices
made under the optimised conditions. b) Corresponding EQE spectra.

Table 1. Properties of DPP derivatives in solution, properties of the active layers made from derivative:PC70BM blends under conditions optimised for the
solar cell devices.<

Derivative D/A ratio Annealing time Absorption coefficient Active layer Integrated area[a] Percentage[b] with JSC [mA cm@2]
[min] [L mol@1 cm@1] thickness [nm] (absorptance) respect to DPP theoretical experimental

1 1:1 1 55 220:394 110 138 63 5.7 4.8
2 2:3 1.25 49 825:625 85 120 55 4.9 2.8
3 1:1 4 96 617:717 95 129 59 5.3 4.8
4 3:2 6 49 240:315 95 130 60 5.3 2.8
5 3:2 1.5 20 869:305 80 110 50 4.5 1.1
DPP(TBFu)2 3:2 1 65 964:301 75 218 100 9.0 9.0

[a] Integrated area of the absorptance spectra. [b] Percentage fraction of the absorptance spectra’s integrated area with respect to that of DPP(TBFu)2.
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pected from the absorption properties of the active layer. De-

rivative 2 shows an intermediate behaviour in which the rIQE

reaches that of the reference DPP(TBFu)2 device at two wave-
lengths (600 and 660 nm) but decreases below 50 % rIQE for

the rest of the spectrum.
Consequently, these results indicate that a large part of the

losses in JSC compared to that of DPP(TBFu)2 are caused by the
poorer absorption capability of the active layers. However, the

absorption of the active layers cannot be related directly to

the chemical structure of the donors. Indeed, the absorption
coefficients (molar absorptivity) of donors 1, 2 and 4 are situat-

ed in a similar range to that of DPP(TBFu)2, which gives these
donors an almost identical absorption capability as the refer-

ence DPP(TBFu)2 in solar cell devices. The absorbance of the
active layer is limited, to a significant extent, by the active
layer thickness (Table 1)[18] and, indirectly, by the molar ratio in

the blend composition. The latter statement is exemplified by
donor 3, which has a molecular weight that is approximately
double that of DPP(TBFu)2. Indeed, despite its higher absorp-
tion coefficient, 3 makes up a smaller percentage of the blend

composition compared to DPP(TBFu)2 as seen by the D/A
molar ratio, which shows that 3 provides less absorption in the

active layer than DPP(TBFu)2.

Morphological characterisation

The optimum active layer thickness relies on obtaining the

best trade off between charge generation (maximisation of the
thickness for complete photon absorption) and charge extrac-

tion (to ensure all charges generated percolate to the con-

tacts). Although these two parameters are often seen as two
separate physical properties, we demonstrate herein that they

are inter-related. That is, if the charge extraction properties are
determined by morphological parameters (phase segregation,

D–A interfacial area and crystallinity of the active layer in
a broad sense), the resulting morphology will lead indirectly to

a limit of the active layer thickness. The molecular structure of
the donor and the manner of which it arranges in the solid

state will dictate the morphology of the active layer. These fea-
tures will be described in the sections below, however, the for-

mation of the D–A interface is a parameter that can be moni-
tored qualitatively by using photoluminescence (PL) spectros-

copy.[8] The PL spectra of active layer films of the donor:PC70BM
blends deposited on quartz substrates using the same condi-
tions as those used for the fabrication of OSC devices are

shown in Figure 5. A relative increase in emission is observed

in most cases upon annealing, which is indicative of the forma-
tion of segregated donor and acceptor domains and, therefore,

of a modification of the D–A interfacial area. Although quantifi-
cation between blends is not possible, both fluorinated deriva-

tives 4 and 5 show a significant PL intensity even if the layers
are not annealed, which indicates that there is some type of

segregation present in the non-annealed state. Importantly,

the very significant increase in the PL of the active layers of de-
rivatives 4 and 5 is consistent with the lower than expected JSC

(vide supra) in working devices. Indeed, the extent of phase
segregation is presumably overwhelming and diminishes the

exciton separation yield (excitons do no reach the interface;
see the Discussion).

In SM-BHJ, phase segregation, and therefore, the formation
of the D/A area, results from the growth of crystallites of
donors in the active layers. The extent of crystalline growth

(size, shape and quantity of crystallites) determines the per-
formance of the devices strongly. To measure the values of

these parameters, we performed an extensive crystallographic
characterisation. As such, conventional XRD and grazing-inci-

dence X-ray diffraction (GIXRD) measurements were performed

on the active layers of each donor:PC70BM blend. First, conven-
tional diffractograms in the Bragg–Brentano configuration

were recorded in the out-of-plane direction. The diffractograms
of each DPP:PCBM active layer with a) no annealing, b) solvent

annealed using the same conditions as their respective device
and c) solvent annealed for 10 min (considerably longer than

Figure 4. rIQE spectra of devices made with the DPP derivatives. The rIQE
spectra were calculated from the EQE and absorptance spectra of the devi-
ces as rIQE = EQE/absorptance.

Figure 5. PL spectra of active layers made of DPP derivatives and PC70BM.
The spectra of the non-annealed layers are shown in dotted lines, and those
of the annealed active layers are in solid lines.
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the optimum annealing time) are presented in Figure 6. All
donors show a propensity to form crystalline domains upon

annealing, as seen by the presence of a diffraction peak at
a low 2 q angle for all the annealed layers and an additional

weak peak from the same family of diffraction plane in the
case of derivative 3. These peaks at small 2 q values are charac-

teristic of pure DPP donor crystallites and,[2f, 5, 9, 19] as demon-
strated previously, cannot be attributed to PC70BM crystallites.
Although PCBM has been shown to form crystalline domains

in some solvent-annealed active layers,[13] those domains were
extremely small (<2 nm) and PCBM generally remains amor-
phous in blends of SM-BHJ solvent-annealed active layers, at
least under our measurement conditions (low-energy X-ray in-

cident beam).[9] The shape and size of the diffraction peaks,
however, indicate different crystallisation kinetics between the

donors. Scherer analysis (see Supporting Information for de-

tails) of the full width at half maximum (FWHM) of the peaks
revealed that donors 3 and 4 have the ability to grow crystalli-

tes of a considerably greater size, at least in the out-of-plane
direction, with respect to the other derivatives. The greatest at-

tainable crystallite size (after 10 min annealing) in the active
layers of 3 and 4 is in the same range as the layer thickness

(67 and 90 nm, respectively), whereas it is in the range of
10 nm for derivatives 1, 2 and 5. In most cases both the size of

the crystallites (given by the FWHM) and the total crystalline
volume (given by the integral area of the peak) is seen to in-

crease with annealing time as observed previously in SM-BHJ
devices.[9, 12] However, the increase is almost insignificant in the
case of derivatives 2 and 5. Derivative 1 is the only derivative

that shows the opposite trend on the size evolution of the
crystallites over the annealing time,[20] however, the crystalline
volume is seen to increase greatly upon longer annealing
times.

Additional 2 D diffraction patterns recorded in GIXRD mode
reveal that the crystallites have a high degree of orientation

with respect to the substrate surface as seen by the presence

of very narrow diffraction rings (Figure 7). Derivative 3 shows
the lowest degree of texture, whereas all the other derivatives

are highly oriented. Additionally, we can extrapolate that crys-
tallites of derivatives 2 and 4 have an extremely high degree

Figure 6. Bragg–Brentano point detector diffractograms of SVA (CH2Cl2) and non-annealed active layers.
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of orientation, in the out-of-plane direction (Qz) as well, as
seen by the apparent weak signal intensity at lower grazing

angles compared to that of the specular (q–q) 1 D diffracto-

grams. Additional GIXRD patterns (Figure S11) further demon-
strate this as the intensity of the diffraction spot increases

sharply at higher grazing angles.[21]

To gain additional evidence on the distribution and shape of

the crystallites, AFM analysis of the active layers was per-
formed. Images were recorded of as-cast and of annealed

active layers from optimised devices. First, the change of mor-

phology, derived from the root mean squared (RMS) roughness
between the non-annealed and annealed devices confirms the

trend observed by using XRD. That is, an increase in roughness
upon SVA, characteristic of crystallite growth within the active

layer,[9,11, 12] is observed for active layers of derivatives 1, 2 and
3 (Figures 8 and 9). In the case of derivatives 4 and 5, the non-
annealed active layers show an unexpectedly high overall

roughness value and a granular relief pattern, which likely
stem from the fast drying conditions of the spin coating pro-

cess. The domains remain amorphous as seen in the XRD dif-
fractograms, however, the strong contrast difference in the

phase images (Figure 8 i and j) suggests that the granular pat-

tern is consistent with segregated domains of donor and ac-
ceptor materials. This further confirms the unusually high PL

emission intensity of non-annealed active layers of 4 and 5
(Figure 4).

Upon the exposure of the active layers to solvent vapour of
CH2Cl2, a clear change is noticed in the topography images

consistent with the XRD measurements in which donor mole-

cules are seen to rearrange into pure crystalline donor do-
mains.

This rearrangement of donor molecules into crystalline do-
mains is seen to occur in most active layers but leads to very

different morphologies. Notably, derivatives 4 and 5, although
they have similar chemical structures, have a very different

impact on crystal growth. The unusual formation of microme-

tre-size sheet-like domains attributed to crystalline domains of
pristine donor can be seen in Figure 9 d. The crystalline nature

Figure 7. Out-of-plane GIXRD images of active layers. Recorded at a 30 cm distance from the sample with w = 0.58 as the incident beam angle with respect to
the substrate: a) 1:PC70BM, b) 2 :PC70BM, c) 3 :PC70BM, d) 4 :PC70BM, e) 5 :PC70BM.

Figure 8. AFM topography (top) and phase (bottom) images of non-annealed active layers of devices made from each donor derivative: a) 1:PC70BM,
b) 2 :PC70BM, c) 3 :PC70BM, d) 4 :PC70BM, e) 5 :PC70BM. The RMS roughness value for each film is given above its respective topography.
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of the domains is deduced from the XRD data, whereas the

size of the crystallites observed on the micrographs is consis-
tent with the size calculated by using XRD in the out-of-plane

direction (in the order of magnitude of the active layer’s thick-

ness). The contrast difference in the AFM phase image con-
firms the pristine nature of the crystallites (Figure 9 d, bottom

image). Moreover, the orientation of the crystallites with re-
spect to the substrate normal is consistent with the low inten-

sity of the diffraction spot in the GIXRD images at lower graz-
ing angles (Figure 7 d). Conversely, the fluorinated analogue 5
shows no clear morphological change upon SVA, neither by

using AFM or XRD, and shows a very limited crystalline volume
as seen by the weak diffraction peak in Figure 6 e. The case of

derivatives 1, 2 and 3 is rather different from that of the fluori-
nated derivatives. Derivatives 1 and 2, although they form crys-

tallites of a moderate size, as seen by using XRD, show a homo-
genous distribution within the active layer. Crystallites are pre-

sumably embedded in the donor/PC70BM amorphous fraction

as demonstrated by the featureless phase images (Figure 9 a
and b, bottom images). Films of derivative 3 show a much
higher roughness than films of 1 and 2 consistent with the
presence of larger crystallites as measured by using XRD. The

difference in behaviour towards crystallite growth between the
different derivatives is rationalised in the section on crystallite

growth and in the Discussion.

Molecular packing in donor crystallites

If we used conventional XRD and GIXRD measurements in

combination with AFM images we could obtain a detailed un-
derstanding of the active layer morphology at the nanoscopic

scale and gain some insights into the kinetics of SM donor

crystallisation in the blended films. Although the above mor-
phological features are important to understand the formation

of the D–A interface and charge transport, the actual arrange-
ment of the donor molecules in the crystallite is determinant

to enhance the hole mobility. The characterisation of such an
arrangement (the crystalline phase in which the donor packs)

has been performed rarely because of the limitation imposed

by the nanoscopic scale of the crystallites. Previously, we re-
ported a method that allows for the accurate characterisation

of the crystalline phase of crystallites that form the active layer.

It relies on the comparison of diffractograms of “powdered”
active layers with single-crystal structures obtained from their

respective donor.[22] The powdered active layer method con-
sists of the deposition of active layers on large-area glass sub-

strates, annealing them for an extended period of time to pro-
mote crystalline growth and recording a powder diffractogram

(transmission Bragg–Brentano geometry) of the solid that re-

sults from scrapping off the film, hence a powdered film. This
allows us to determine the crystalline phase in which the

donors are packed in thin films accurately because of the
higher amount of peaks present in the diffractogram with re-

spect to that if a diffractogram is recorded directly from the
film on the substrate. The lack of diffraction peaks in the latter

case is both the result of the limited crystallite size and the

high degree of texture (orientated crystalline domains). The
crystalline phase assignment, which relies on diffractogram

comparison using least-square profile refinement routines, con-
firmed that molecules of derivatives 1 and 2 pack in crystalline
domains of active layers in the same crystalline phases as that
of their respective single crystals. The calculated diffractograms
of the corresponding single-crystal structures fit well to allow

unambiguous phase assignment (Figures 10 and 11).
Contrary to that of 1 and 2, the diffractograms of powdered

active layers of derivatives 3, 4 and 5 did not match those cal-
culated from their respective single-crystal data. This confirms
that, in active layers, the donors crystallise in a different phase
than that of the single crystal (Figure S14). Although single

crystals of each donor were grown under a range of different
conditions to obtain as many polymorphic structures as possi-
ble for each derivative, no additional polymorph that could
provide for a better match was obtained. Nonetheless, the
above analysis for derivatives 1 and 2 combined with the
GIXRD data led to the deduction that crystallites of derivative 1
are oriented with their (0 0 1) diffraction plane (from the P1̄

Figure 9. AFM topography (top) and phase (bottom) images of annealed active layers of devices made from each donor derivative: a) 1:PC70BM, b) 2 :PC70BM,
c) 3 :PC70BM, d) 4 :PC70BM, e) 5 :PC70BM. The RMS roughness values for each film are given above its respective topography.
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phase) parallel to the substrate surface (Figure 10 a). The same

analysis applies to derivative 2, which is oriented with its (0 2 0)
plane parallel to the substrate surface (Figure 11 a). Importantly,
the profile refinement of diffractograms from the powdered

film of derivative 2 required the addition of anisotropic peak
broadening parameters to provide a better profile shape re-
finement (see the Supporting Information for details). This re-
sulted in the assumption that the crystallites of 2 grow with

unit cell parameters b and c that are significantly larger than a.
The implications of this feature will be expanded on in the Dis-

cussion. The main morphological features derived from the

XRD and AFM measurements are illustrated in Figure 12.

Crystallite growth

The mechanism of crystal formation in SM-BHJ has, to the best
of our knowledge, not yet been studied in detail. Although

some studies have drawn parallels between polymers and SMs

it is very unlikely that crystallites form by similar mechanisms.
Indeed, phase segregation in some polymer-PC70BM has been

suggested to occur through a spinodal decomposition (demix-
ing) mechanism;[24–27] however, the poorly inter-mixed mor-

phologies (largely segregated) formed in some of our solvent-
vapour-annealed SM-PCBM active layers (especially 3 and 4)

suggest a different crystallite growth mechanism. Spinodal de-
composition may occur with SM-based blends in the early

stages of active layer drying during spin coating to result in
uniformly segregated but amorphous domains of the donor
and acceptor, as exemplified by non-annealed active layers of

4 and 5 (see AFM images in Figure 8).[27, 28] The low miscibility
of the donors with the fullerene is presumably enhanced by
the F atoms of 4 and 5 and allow the system to enter a spino-
dal region under the fast drying conditions of the spin coating

process. In the subsequent SVA step, the crystallisation of
donor molecules from the amorphous active layer would then

occur by a homogeneous or heterogeneous[29, 30] nucleation
and growth mechanism as suggested previously.[25]

The free energy change for a homogenous process that im-

plies spherical nuclei of radius r is described by Equation (1).

DGðrÞ ¼ 1
3

pr3DGV þ
4
3

pr3DGE þ 4pr2g ð1Þ

Accordingly, DG(r) depends on three energy parameters:
DGV, which corresponds to the bulk free energy difference of

crystal formation [energy/unit volume] intrinsic to each poly-
morphic crystalline phase, g, which corresponds to the interfa-

cial energy (i.e. , the energy that arises from the interface be-
tween the nucleus composed of pure donor molecules and

Figure 10. X-ray crystal structure of 1; Space group P1̄. a) Unit cell depicted
for the side view of the (0 0 1) plane. b) Top and c) side view of the molecule
stacks. d) active layer point detector diffractogram, e) diffractogram of the
powdered active layer and superimposed refined diffractogram from the
single-crystal XRD structure, f) calculated diffractogram (at 100 K) from the
single-crystal XRD structure.

Figure 11. X-ray crystal structure of 2 (H atoms omitted for clarity) ; Space
group P21/c. a) Unit cell depicted for the side view of the (0 2 0) plane. b) Top
and c) side view of the molecule stacks. d) active layer point detector diffrac-
togram, e) diffractogram of the powdered active layer and superimposed re-
fined diffractogram from the single-crystal XRD structure, f) calculated dif-
fractogram (at 100 K) from the single-crystal XRD structure.
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the D/A amorphous matrix that the nucleus grows from), and
DGE, which is the elastic free energy change caused by the

strain that arises from the growth of a particle in the solid

matrix. The latter two energy terms act as a barrier to nuclea-
tion. The profile shape of the free energy change of the trans-

formation for a given system proceeds through a maximum
value (activation energy) that determines the critical nucleus

size (r*) to be achieved for crystallite growth to become fa-
vourable (if dDG(r)/dr = 0; DG*).[31]

Consequently, for a given active layer, r* and DG* will be de-

termined by the intrinsic ability of the donor molecule to ar-
range in a thermodynamically stable crystalline phase (which
maximises DGC and minimises g) in the amorphous D/A blend.
The interfacial contribution to nucleus growth dominates at

small nucleus sizes, whereas the volumetric ones (DGV++DGE)
dominate at a large nucleus size. It is suggested that SVA de-

creases the GE contribution to result presumably in a lower G*
than that obtained by thermal annealing methods. This is sup-
ported by the fact that crystallisation occurs at low tempera-

tures (typically room temperature) as opposed to the thermal
annealing process and that crystals of a macroscopic size are

grown commonly from thin layers through SVA;[32] the solvent-
saturated atmosphere allows molecule dislocation over macro-

scopic distances (which implies a negligible strain contribu-

tion).
Once nuclei with a size larger than r* have formed, the rate

of crystallite growth is limited by the diffusion of donor mole-
cules from the bulk (the mixed D/A amorphous phase) to the

interface and transfer of a donor molecule from the vicinity of
the nucleus to the interface.[33]

To provide an insight into the energetics of crystallite
growth, we first measured the surface free energy (SFE) of

non-annealed active layers made from each derivative under

identical conditions of OSC device fabrication. To determine
the SFE, we employed the Owens–Wendt–Rabel–Kaelble

(OWRK) method by measuring the contact angle between
three solvents of different polarity and the active layer surface

(see the Supporting Information for details). The SFE measured
by using this technique provides a relative quantification of

the interfacial energy g of the amorphous fraction of the

active layers in the early stage of crystalline growth (r = 0;
Figure 13). The polar and dispersive fractions of the SFE are re-

ported in Table 2. As expected, the polar fraction shows a very
similar contribution for all derivatives because of the highly
apolar nature of the components of the active layer. However,
the dispersive component of the SFE, which is assumed to
model the interaction between the amorphous active layer

matrix and the donor molecules satisfactorily, varies significant-
ly between the derivatives. Active layers of 2 display the high-
est value of SFE, and that of 4 displays the lowest value.

Thereafter, to provide a qualitative analysis of the DGV con-

tribution, we derived the free energy change of crystallisation
DcrysG for 1 and 2 from the enthalpy of fusion (DfusH) of crystal-

line powder samples of 1 and 2, which could be isolated as

pure P1̄ and P21/c phases, respectively. The DfusH of the pow-
ders was derived from the specific heat capacity of the materi-

als measured by using differential scanning calorimetry (DSC;
see the Supporting Information for powder characterisation,

DSC curves and DfusH and DGV calculation). The calculated
values of DcrysG show that the formation of crystallites of 2 in

Figure 12. Schematic representation of active layers cross-sections under optimised conditions (side view) of a) 1 that shows partially oriented crystallites of
1 in the P1̄ phase (the direction of the arrangement is represented with respect to the reciprocal lattice the a* and c* direction of which are represented by
the red and blue arrows), b) 2 that shows uniformly oriented with anisotropic dimensions crystallites of 2 in the P21/c phase (the direction of the arrangement
is represented with respect to the crystal lattice the b and c directions of which are represented by the green and blue arrows), c) 3 that shows partially ori-
ented large crystallites of 3, d) 4 that shows highly oriented out-sized crystallites of 4 and e) 5 that shows scarce oriented crystallites of 5 embedded in a seg-
regated amorphous region of 5 resulting from spin-coating-induced demixing.[23] .
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the P21/c phase is thermodynamically more favourable

[(DcrysG(2-P21/c)<DcrysG(1-P1̄)] than the formation of crystallites
of 1 in a P1̄ phase (Table 2). However, the values of DcrysG must

be converted to their volumetric counterpart (DGV) to have
a sensible meaning for our crystallite growth analysis. To do

this, the unit cell volume calculated from each of the crystal-
line phases from the single-crystal XRD structure is used (see

Supporting Information for details). The volumetric values of
the free energies are reported in Table 2.

We then use these values as a relative indicator to draw a hy-

pothetical energy profile of the nucleation process. That is, if
we neglect the DGE contribution, the experimental SFE and

DGV show that the interfacial energy (g) for nuclei formation in
an active layer of 1 and 2 and their associated bulk crystalline

free energy change profile (DGV) are likely to adopt the shape

of that in Figure 13. The higher DGV contribution compensates
for the higher interfacial energy experienced by nuclei of 2
during crystalline growth in the amorphous matrix of the
active layer. As a result, r*2 is inferior to r*1 and the formation

of nuclei of 1 is favoured kinetically over that of 2 (DG*1<

DG*2).

This model is in good agreement with the experimental evi-
dence obtained by using XRD (Figure 6). First, the rate of nu-
cleation is relatively slow for 2, for which there is virtually no
increase in overall crystalline volume (peak integral) after

10 min of SVA, whereas nucleation proceeds faster in the case
of 1 to show a great increase in crystalline volume after 10 min

of SVA (Figure 6 a and b). This increase in the crystalline
volume is almost exclusively the result of a predominant rate

of nucleation with respect to growth as no concomitant in-
crease in crystallite size is observed.[34] The opposite trend is
seen for 2. Consequently, in active layers of 1 growth is the
rate-limiting step, whereas in active layers of 2 nucleation is
the rate-limiting step, although the rate of growth is relatively

slow in this case as well. The fact that small crystallites are pro-
duced in active layers of 2 and larger ones in the case of 1 fol-

lows the assumption of r*2< r*1 and further corroborates that

the rate of growth is relatively slow (with respect to nuclea-
tion) in both cases.

Unfortunately, the energy profile of crystallite formation in
active layers of 3, 4 and 5 was not obtainable because the

crystalline phase of the donor crystallites in the case
of 3, 4 and 5 is not known. However, following the

above observations, it can be estimated by using

XRD and AFM (vide supra) that the rates of nuclea-
tion and growth are rather balanced in the case of 3.

That is, the observed increase in the crystalline
volume and crystallite size confirms that both nuclea-

tion and growth are favoured kinetically.
The case of derivative 4 exemplifies the trend in

which, contrary to that of 1, the growth rate is faster

than the nucleation rate as seen by the presence of
a small number of very large crystallites. However,

derivative 5 shows slow rates of both nucleation and
growth. The rather extreme difference in behaviour

between derivatives 1 and 5 is most probably be-
cause of the bulk free energy change (DGV) dissimi-

larity between 4 and 5. That is, it is very likely that the solid-

state packing energetics of 5 will be affected greatly by the
presence of six very weakly polarisable atoms distributed ho-
mogeneously around its conjugated core to lead to a lower
free energy change of crystallisation unable to cope with the

higher interfacial free energy contribution in the nucleation
process. Additionally, the behaviour of 1 and 5 indicates the

impact of the donor chemical structure on the initial demixing
step to provide active layers with different SFEs. The low SFE
inherited from the spin-coating parameters (speed, spinning

time and acceleration) as well as the D/A ratio are both ac-
countable in the case of 4 for the growth of extremely large

crystallites.
In addition to the influence of the interface energy on the

crystallite growth, there is a propensity for crystallites to grow

along a specific crystallographic direction. This is exemplified
by 2 the powdered layer diffractogram of which advocates

that the growth occurs preferentially along the (0 1 0) direction,
which implies that the largest side of the crystallites is oriented

perpendicularly to the substrate surface as demonstrated by
using GIXRD.

Figure 13. Hypothetical energy profile of donor nucleation in active layers of
1 and 2.

Table 2. Average surface free energy of the non-annealed active layers and crystallisa-
tion free energy change of powders of 1 (P1̄) and 2 (P21/c). The blend composition of
the active layers and the deposition conditions of the active layer are identical to
those of optimised devices (see Table 1 and the Supporting Information).

Derivative Surface free energy [J] Free-energy change (crystalline phase)
average
disperse

average
polar

total
average

DcrysG
[kJ mol@1]

DGV

[J cm@3]

1 20.8 3.4 24.2 @23.6 @46.6
2 29.2 1.7 30.9 @42.9 @72.7
3 22.7 1.9 24.6 – –
4 16.1 1.8 18.0 – –
5 24.2 1.1 25.3 – –
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Non-geminate recombination

A previous study showed unambiguously that the VOC of devi-
ces can differ greatly from the expected VOC calculated from

the frontier orbital energies. This has been attributed to the
impact of morphological features on non-geminate recombina-

tion. Indeed, the D–A interfacial area and carrier mobility
govern the kinetics of non-geminate recombination and, con-
sequently, the quasi-Fermi level energetics. Durrant et al. quan-

tified with great accuracy the extent to which non-geminate
recombination induces a voltage drop with respect to that cal-

culated theoretically on both polymer- and SM-based solar
cells.[8, 35, 36] To identify how the morphological features contrib-

ute to the VOC, and to some extent to the shape of the J–V
characteristics, a qualitative recombination study was per-

formed using transient optoelectronic methods, namely,

charge extraction (CE) and transient photovoltage (TPV), popu-
larised by Durrant and co-workers (see the Supporting Infor-

mation for experimental details).[37–40] The link between recom-
bination kinetics and morphology will be discussed below. To

probe the recombination dynamics in OSCs it is important to
measure the charge carrier dynamics of devices under working

conditions. CE can be used to measure the average charge

density at open circuit in the devices from light intensities
>1 Sun to dark conditions. The corresponding plots of the

charge density (n) versus VOC of all the devices are shown in
Figure 14 a. The data are in good agreement with a charge

density of similar magnitude in all measurements, which reach-
es approximately 2 V 1016 charges cm@3 at values close to VOC,

similar to that reported earlier for such types of devices.[40] For

all the devices, the total charge fits an exponential increase,
which is evidence of charge accumulation in the bulk of the

device (as opposed to at the contacts). The plots of n versus
VOC were fitted to single exponentials [Eq. (2)] consistent with

an exponential tail of trap states that extends into the band
gap of the active layer.[41, 42]

n ¼ n0egVOC ð2Þ
tDn ¼ t0ebVOC ð3Þ

The carrier lifetime (tDn) versus VOC plot for all the devices is

shown in Figure S24, and the the curves were fitted to single
exponential decays in the form of Equation (3). The overall

order of recombination f [Eq. (4)] can be approximated to f=

l+ 1 in our TPV experimental conditions (Dn ! n).[39] The pa-
rameter l is obtained experimentally by fitting the curve of

the small perturbation carrier lifetime tDn versus n to a power
law in the form of Equation (5).

dn
dt
¼ @kn@ ð4Þ

tDn ¼ tDn0
n@l ð5Þ

First, the overall small perturbation life times are in good
agreement with the trend of experimental VOC for all devices.

That is, devices from 4 and 5 have a higher VOC and display an
overall longer carrier lifetime, whereas devices from 1, 2 and 3
show much shorter lifetimes. The lifetimes of devices from 2
are the shortest, which follows the trend of the VOC.

Interestingly, the recombination order (f) varies significantly

from device to device, with unexpectedly high values (f=

11.8). High values of f, as opposed to a value of 2, which is to
be expected in a strictly bimolecular recombination process in
the case of Langevin-type recombination, have been recorded
several times in earlier studies[39, 42, 43] and were attributed to re-
combination through trap states in the band gap of the active

layer materials.[43] Therefore, the non-geminate recombination

process is described as an essentially bimolecular process in
which the recombination coefficient is allowed to be charge

dependent according to the presence of trap states in the
band gap.[38, 39] Recently, it has been demonstrated that ex-

tremely high values of f are likely the result of predominant

Figure 14. a) Comparison of the charge density (n) as a function of VOC determined by using CE. The curves are fitted to an exponential growth of the form
N = N0 eðg VOCÞ (dotted line) the parameters of which are reported in Table 3. b) Small perturbation carrier lifetime versus charge carrier density plot. The charge
carrier density was calculated from the exponential fitting of a. Curves are fitted to power law decays of the form tDn =tDn0 n@l the parameters of which are
reported in Table 3.
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surface recombination as expected for very thin (<100 nm)
active layers.[44] This is in very good agreement with the mor-

phological data expounded above, whereby devices made out
of derivative 4, which display an abnormally high recombina-

tion order, have extremely large domains of pure donor in
direct contact with the top metal cathode that induces in-

creased surface recombination kinetics. The consequence of
the morphology-induced high recombination order is further

illustrated in Figure S9, in which the VOC of the device is practi-

cally independent of light illumination. Hence, the fast de-
crease in charge carrier lifetime with respect to charge carrier
density (i.e. , light illumination), expressed by f, is consistent
with a limited hole and electron quasi-Fermi level splitting at
stronger light biases. A high recombination order is observed
for 2, although to a lesser magnitude than for 4. However, in

this case, rather than being caused by donor domains in direct

contact with the cathode, it may be the result of an inhomoge-
neity of the electrons and holes concentration along the active

layer thickness[44] as crystallites of donors in devices of 2 have
grown preferentially along the surface normal.

Devices made of 1 and 3 show a similar recombination
order, whereas devices of 5 show a much lower recombination

order of 2, consistent with very-low-mobility semiconductors

in which recombination is limited by the probability of the en-
counter of electrons and holes. Importantly, the recombination

data are in good agreement with the trend of VOC, whereby
the experimental VOC in each device is decreased with respect

to the theoretical value from a magnitude roughly proportion-
al to the mean recombination lifetimes around 1 Sun illumina-

tion light bias. That is, devices in which charge carrier lifetimes

are shorter at a high charge carrier density (which corresponds
to &1 Sun illumination) show the smallest difference between

their theoretical VOC and the experimental value (DVOC [%];
Table 3) and vice versa. Accordingly, devices made of 2, which

display the fastest kinetics under 1 Sun illumination bias as
a result of the high recombination order, show the largest

DVOC. However, devices made of 4 and 5 show the opposite

trend for which DVOC is the smallest although devices made of
4 have a very high recombination order.

Overall, the mean small perturbation lifetime at low light
bias is consistent with the trend of the D–A interfacial area de-

rived from the crystallite size and hole mobility values. That is,
charge carriers in devices made of 2 exhibit a significantly

longer lifetime at low illumination biases than devices made of
1, although 1 and 2 have similar morphological features (simi-
lar crystallite size). The difference in the mean lifetime at a low

bias may then be related to the difference in hole mobility,
which is more than one order of magnitude higher in devices

made of 1. Conversely, the extremely low mobility in devices
made of 5 is responsible for the slow recombination lifetimes

at low light bias regardless of the presence of fairly inter-
mixed D/A domains. The slow recombination lifetimes at low
light bias of devices made of 4 could, on the contrary, be at-
tributed to the reduced D–A interfacial area occasioned by the
extremely large crystallites of donor.

The case for 3 is rather difficult to rationalise solely by con-
sidering morphological aspects. The small DVOC is presumably
because of a narrower density of states (DoS) distribution as
extrapolated from the charge extraction measurements (i.e. ,

the position of the CE curve from devices made of 3 ; Fig-
ure 14 a).

Discussion

In the above sections, several key structural parameters have

been related to the solar cell device performance of each de-
rivative. First of all, a very simple quantitative analysis of the
absorption properties of each derivative active layer demon-
strated how thin SM-BHJ active layers limit light absorption

and thus photocurrent generation. Therefore, the slight de-
crease in the absorption coefficient of the donor derivatives 1,
2 and 4 with respect to the reference DPP(TBFu)2 does not ac-
count for the decrease in the absorption intensity of the active
layers. Instead, the active layer thickness, D/A ratio and molec-

ular weight of the donor play a significant role to determine
the absorption capability of the final active layer. The main

challenge resides in the fact that none of these parameters
can be controlled selectively as the optimum D/A ratio and op-
timum active layer thickness are found experimentally during

the device optimisation process. That is, the optimum D/A
ratio of each material is determined by a set of electrical prop-

erties, which will eventually limit the active layer to a thickness
that provides the best compromise between strong absorp-

tion, fast transport and slow recombination kinetics. This effect

is exemplified in our study in which several devices that had
undergone D/A ratio and thickness optimisation resulted in

a similar hole mobility although it spanned a range of different
thicknesses and active layer crystallinity features. Finally, the

molecular weight impacts directly on the actual quantity of
donor present in the active layer. For a given weight ratio of

D/A, the absorption depends directly on the molar quantity of

donor with respect to that of the acceptor (and the absorption

Table 3. J–V characteristics and electrical properties of all devices. The theoretical VOC is calculated from: VOC = 1/e [(LUMOdonor@HOMOacceptor)@0.3 eV].

Derivative VOC (theoretical)
[V]

VOC (experimental)
[V]

DVOC

[V]
DVOC, offset

[%]
JSC

[mA cm@2]
FF
[%]

PCE [%] f Hole mobility
[cm2 V@1 s@1]

1 1.0 0.702 0.298 30 4.77 45 1.52 2.5 1.25 V 10@6

2 1.1 0.608 0.492 44 2.78 55 0.93 5.8 1.28 V 10@8

3 0.8 0.628 0.172 21 4.80 44 1.32 3.2 8.5 V 10@8

4 1.3 1.060 0.240 18 2.84 45 1.34 11.8 6.3 V 10@8

5 1.2 0.964 0.236 19 1.11 25 0.27 2.0 6.9 V 10@10

DPP(TBFu)2 1.1 0.858 0.242 22 8.97 48 3.64 – 5.3 V 10@4–2 V 10@5
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of fullerene being negligible in the visible region). Consequent-
ly, donor 3, the absorption coefficient of which is almost twice

as high as that of donor 1, does not provide the expected
stronger absorption in active layer films (at a similar D/A ratio

and a similar thickness) because the molecular weight of 3 is
more than twice that of 1.

The charge separation and charge transport properties are
acquired upon the formation of crystalline domains from the

amorphous D/A matrix. Therefore, the kinetics of crystallite

growth is of the greatest importance to establish a link be-
tween the structure of the donor and the J–V characteristics.

An insight into the thermodynamics that govern the process
has been obtained. The ability of the donor to crystallise in the

active layer is governed principally (at least in SVA-treated
active layers) by DGV and g. Both factors are intrinsic to the

structure of the donor and are affected greatly by subtle

changes in its chemical structure. As such, donors with subtle
differences in their structures, such as 4 and 5, provide active

layers with extremely different crystallisation energetics that
impact on the overall crystallinity. In this particular case, the

presence of the highly electronegative F atoms distributed in
a different manner on the DPP core might induce a difference

in London dispersion forces between 4 and 5, which impacts

directly on both DGV and g. Generally, any change in the donor
structure will have a significant impact on DGV as seen from

the experimental values of DcrysG(2-P21/c) and DcrysG(1-P1̄),
which thus induces a tremendous change in the crystallisation

kinetics.
The miscibility of the donor with the acceptor in the solid

state is presumably important to determine the energetics of

the active layer (the interfacial energy g) before the nucleation
and growth process. That is, the magnitude of the D/A demix-

ing that occurs in the early stages of the active layer deposi-
tion is of capital importance to the following crystallite growth

that occurs during the annealing step as the latter is linked di-
rectly to the surface energy that results from the earlier D/A

demixing.[25, 26] This phenomenon certainly explains the differ-

ences in the morphology and crystallinity observed upon
changes in deposition conditions (spin coating solvent, speed
and acceleration) in earlier studies.[22, 45] Subsequent to the dep-
osition, the optimisation of the SVA time, which allows crystalli-

tes to grow to a determined size, establishes a trade off be-
tween high hole mobility and a high D–A interface. Important-

ly, the SVA, thickness and D/A ratio are related indirectly as
changes in the D/A ratio will impact the energetics of crystal-
lite growth, which in turn will impose a limitation on the maxi-
mum attainable thickness, itself determined by the maximum
attainable hole mobility in a given crystalline state.

Provided that mobility is sufficiently high, the final active
layer D–A interfacial area that results from these optimisation

processes will further limit the device characteristics. A low in-
terfacial area will limit the JSC but provide less VOC losses
through reduced non-geminate recombination kinetics, as ex-

emplified by donor 4. Conversely, the higher interfacial area in
devices of 1 corroborates the higher experimental losses in

VOC, whereas the JSC losses (with respect to the absorption
properties of the active layers) are minimal. Derivatives 2 and 3

show a more balanced behaviour, where subtle morphological
parameters (such as the crystallite shape anisotropy and pre-
sumed narrow DoS distribution) induce additional losses (high
VOC losses for 2) or unexpected loss compensation (lower-than-

expected VOC losses from recombination kinetics for 3). The
rather low JSC in 2 that arises from the low photon-to-charge

conversion efficiency at lower wavelengths might stem from
a low hole mobility. Derivative 5 illustrates the case for which
crystallite growth is not seen to occur with sufficient magni-

tude and leads to very low hole mobility that limits the JSC

even further than that of 2.
If the experimental lifetime correlates the loss in VOC with re-

spect to the theoretical maximum, the expected correlation

between recombination and FF is not observed herein. The
negligible field dependency on charge generation displayed

by polymer-based devices[36, 37c,f, 39, 42a, 46] is usually not as insignif-

icant in SM-BHJ devices[40b] because of charge delocalisation
(especially holes) that occurs over short distances and mostly

in crystalline domains. Thus, it makes sense to assume that the
higher FF observed in devices of 2, is the result of a larger

hole delocalisation distance in the direction of charge extrac-
tion that results from donor crystallite shape anisotropy, and

the non-geminate recombination kinetics have little influence

on the shape of the J–V curve (FF) in this case.[40b] This is fur-
ther supported by the fact that FF increases up to 66 % (with

no significant concomitant increase in VOC) with the increasing
crystallite size promoted by longer SVA times (data not

shown), which favours charge extraction at a low internal field.
Finally, the packing pattern of donor molecules in the crys-

talline domains is expected to have a significant influence on

the transport properties. The powdered layer method provided
precise information on the crystalline phase of the crystalline

domains for active layers of 1 and 2. In the case of 1, mole-
cules pack in a low-symmetry P1̄ space group with molecules

stacked uniformly over a long range. Derivative 2 packs in the
P21/c space group in a herringbone fashion. A significantly

higher transfer integral could be expected in crystals of 1 in

the direction perpendicular to the p-delocalised backbone
plane because of apparent greater p–p overlap and slightly
shorter stacking distances than that in crystals of 2 (Figures 10
and 11). The lower-symmetry packing of 1 induces continuous

stacking in the three directions of space, whereas the herring-
bone arrangement in the case of 2 implies a discontinuity in

the arrangement.
As demonstrated previously, mobility in organic materials

often displays a high degree of anisotropy, which is related di-

rectly to the packing pattern in the solid state.[47] As such, the
orientation of the solid-state packing arrangement with re-

spect to the substrate is likely to play a very important role in
the hole mobility properties in the bulk. Low-symmetry “slip-

ped stacked” patterns, such as that of 1, lead to highly aniso-

tropic mobility with the highest value perpendicular to the p–
p stacks. Herringbone arrangements usually lead to less aniso-

tropy as “hopping” is allowed in different directions of space.
Our experimental observations are consistent with these as-

sumptions. Indeed, derivative 1, which forms highly oriented
crystallites with respect to the out-of-plane direction with their
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p–p stacked backbone oriented, to a fair extent, perpendicular
to the direction of charge collection, gives rise to the highest

space-charge-limited current (SCLC) mobility (Table 3).

Conclusions

We employed a myriad of characterisation techniques to relate

the device characteristics of small-molecule bulk-heterojunc-
tions (SM-BHJ) with the morphological features of the active

layers induced by the donor structure. We demonstrated that
subtle changes in the donor structure have a significant
impact on the device characteristics. As such, the prediction of
the characteristics of SM-BHJ devices from the chemical struc-
ture of the donor remains a challenging task. However, our

study indicated some basic requirements to be taken into ac-
count in the design of new donors for SM-BHJ. Importantly, it

is imperative that the donor is able to grow numerous mono-
disperse nanometre-sized crystallites of donors inside the
donor/acceptor amorphous matrix. Additionally, the strong
propensity of small-molecule donor crystallites to adopt a uni-

form orientation in active layers of organic solar cell devices
seen in this study and others is a key parameter to determine
the transport properties in the bulk. That is, crystallites with

a uniform orientation lead to a higher mobility in the organic
material because of faster intra-grain charge hopping.[48] How-

ever, to have a positive impact, the orientation has to match
the direction of fast transport in the crystallites. In this respect

the solid-state packing of the donor molecule plays a major

role. Although p–p-stacked units could provide fast charge
hopping in the direction perpendicular to the stacks, it usually

implies that hopping is reduced in the remaining directions of
space. This anisotropy feature is usually decreased in higher-

symmetry packing patterns. Consequently, if a donor is seen to
pack in a low-symmetry crystalline phase, it is essential that

the crystallite is oriented in the direction of higher mobility. A

higher-symmetry arrangement could be more forgiving.
All these inter-related properties are extremely difficult to

predict as the crystallisation of small molecules stems from
weak inter-molecular interactions between donors, which are

disrupted easily in the complex environment of SM-BHJ active
layers (e.g. , in the presence of fullerene, solvents and addi-

tives). As a first step towards the understanding of crystallite
formation in small-molecule active layers, we propose that the

crystalline growth through a nucleation and growth mecha-

nism, at least if the solvent-vapour-annealing post-deposition
treatment is applied, and as such a balance between the bulk

energy of the growing crystallite and the interface energy is
necessary to favour the growth of homogenous crystallites. Ac-

cording to this model, it is apparent that the crystalline phase
in which the donor packs in the active layer is the key to direct
the formation of the micro-structure. Such a property is chal-

lenging to predict, but advanced methods to control the pack-
ing of donor molecules could be imagined, for instance, by the

use of supramolecular binding motifs[49] or through extensive
computational simulations.[50, 51]

Some aspects of the absorption properties of the donor
have been clarified. We showed that the main factor that limits

the absorption of the active layers is the active layer thickness,
the maximum of which is limited indirectly by the transport
and recombination properties given by the film nano-/micro-
structure. Although no concrete design rules could be identi-
fied, the maximisation of the absorption coefficient of the
donor as its molecular weight is kept as low as possible is

a requisite to maximise the dye molar content of the active
layer, and thus maximise the absorption of the latter.

Finally, it appears that the power conversion efficiency im-
provement in SM-BHJ from rational design is rather limited
and may rely on empirical design unless some supramolecular

interactions could be used to control the crystallisation of the
donor in the active layers.
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Abstract Four new azafullerene monoadducts (DPS-C59N, HDP-C59N,
DBOP-C59N, DHOP-C59N) have been prepared and applied as electron
acceptors in solution-processed bulk heterojunction solar cells. The four
compounds were designed so that their solubility in organic solvents
was maximized and that structure–property comparisons could be
drawn with a previously synthesized azafullerene electron acceptor.
With the photovoltaic devices that were prepared from the four aza-
fullerenes and polymeric electron donor PTB7 we found that only one
of the four new electron acceptors resulted in a power conversion effi-
ciency that exceeded the one observed with a previously reported aza-
fullerene monoadduct. Atomic force microscopy and electron mobility
measurements suggest that azafullerenes bearing two alkyl chains lead
to non-optimal film morphologies as well as electron mobilities and
that future efforts should focus on single n-alkyl substitution.

Key words fullerenes, azafullerenes, electrophilic aromatic substitu-
tion, organic photovoltaics, structure-property relationships

Azafullerenes, in which one carbon atom in the fuller-
ene framework is replaced by a trivalent nitrogen atom,
continue to be the only heterofullerenes that can be pre-
pared in bulk quantities.1 Since the first successful synthe-
sis of the azafullerene dimer (C59N)2 in 1995,2 dozens of
azafullerene derivatives have been prepared, characterized,
and applied in catalysis or organic electronics.1a,3 Aza-
fullerene monoadducts4 are particularly attractive synthe-
sis targets, because, in contrast to fullerene monoadducts,
they can be prepared without competing multiple addition
reactions.5

Fullerene monoadducts, such as the prototypical exam-
ple PCBM,6,7 are still the most widely used electron accep-
tors in bulk heterojunction organic solar cells (BHJ-OSCs),8
even though the importance of non-fullerene electron ac-
ceptors is currently increasing.9 From a molecular perspec-
tive, azafullerenes exhibit an advantage for organic photo-
voltaics (OPV): in contrast to fullerenes, azafullerenes pos-
sess an absorbance maximum at around 440 nm, which
should lead to more efficient light harvesting and thus a
higher short circuit current (JSC). Indeed, we were recently
able to demonstrate that an n-dodecyloxyphenyl-substitut-
ed azafullerene monoadduct (DP-C59N, Figure 1),10 leads to
an increased JSC in BHJ-OSCs in comparison to PCBM. Gan
and coworkers had previously reported azafullerene bis-ad-
duct OQTh-C59N (Figure 1),11 which due to the typical in-
crease of the LUMO level in bisadducts8n outperformed
PCBM with respect to the observed open circuit voltage
(VOC). BHJ-OSCs based on four azafullerene pentaadducts
were studied by Hirsch and Wessendorf and a promising
VOC was observed along with a low JSC.12

Here we report the synthesis and optoelectronic charac-
terization of four azafullerene monoadducts (Scheme 1),
which were designed so that varying the alkyl side chains
should improve the blend morphology8j,13 and ideally lead
to increased JSC and VOC in comparison with PCBM. We test-
ed the performance of these new electron acceptors in BHJ-
OSCs in conjunction with electron donor PTB714,15 and we
rationalized the observed performance parameters on the
basis of atomic force microscopy (AFM) and electron mobil-
ity measurements.
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, 764–771
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Our syntheses of azafullerenes DPS-C59N, HDP-C59N,
DBOP-C59N and DHOP-C59N followed a procedure previous-
ly reported by Wudl (Scheme 1).4a–e Cycloaddition of 2-meth-
oxyethoxymethyl azide (MEM-N3; 1) with C60 furnished a
triazoline intermediate, which, upon loss of dinitrogen, in a
photooxygenation reaction was converted into C60-N-MEM-
ketolactam 2 (1.86 g prepared during the course of this
study). In a complex reaction sequence, compound 2 rear-
ranges into the azafulleronium ion (C59N+), which is moder-
ately reactive in electrophilic aromatic substitution reac-

tions. Hence, when using a tenfold excess of electron-rich
aromatic substrates 3–6, we were able to obtain the desired
azafullerene monoadducts in isolated yields ranging from
11% to 43% (Scheme 1).

Even though the four compounds were obtained in rea-
sonable purity after regular silica gel chromatography (ca.
95–97% pure by 1H NMR and HPLC), we decided to re-purify
by HPLC, because small amounts of organic impurities are
known to have a significant impact on photovoltaic perfor-
mance.16 In order to minimize losses in yields, and to avoid
potential agglomeration, we subjected the crude aza-
fullerenes directly to preparative HPLC. Finally, the samples
were dissolved in a minute amount of CS2 and precipitated
from n-pentane to remove residual grease. After this purifi-
cation procedure, compounds DPS-C59N, HDP-C59N, DBOP-
C59N and DHOP-C59N were obtained in excellent purity (see
Supporting Information).

With the four new azafullerenes in hand, we turned our
attention towards their optoelectronic characterization. As
shown in Figure 2 (a), the UV-vis spectra of the four aza-
fullerenes differ only minimally, which is not a surprising
result in light of their similar structures. The comparison
with PCBM, however, reveals the enhanced absorbance in
the visible range of the spectrum, from which one could ex-
pect an additional contribution to JSC in photovoltaic devic-
es.

Figure 1  Comparison of previously published azafullerene electron ac-
ceptors10,11 with the four azafullerene monoadducts reported herein

N

XR1

N

OC12H25

DP-C59N
von Delius 2015

JSC = 8.4; VOC = 0.58
2.4% PCE (P3HT)

XR2

N

S

OQTh-C59N
Gan 2014

JSC = 7.6; VOC = 0.78
4.1% PCE (P3HT)

4 examples
this work

up to JSC = 8.4; VOC = 0.73
up to 3.0% PCE (PTB7)

X = O, S
R1, R2 = alkyl

Scheme 1  Synthesis of C60-N-MEM-ketolactam 2 and azafullerene monoadducts DPS-C59N, HDP-C59N, DBOP-C59N and DHOP-C59N. Reagents and con-
ditions: (i) C60 (6.94 mmol, 2.0 equiv), MEM-azide 1 (3.52 mmol, 1.0 equiv), 1,2-dichlorobenzene, 150 °C, 1 h (ii) hν, O2, 1,2-dichlorobenzene, 150 °C, 
5–7 h, 13% yield (over two steps); (iii) C60-N-MEM-ketolactam 2 (70 μmol, 1 equiv), n-dodecyl phenyl sulfide (3; 700 μmol, 10 equiv), [(2-hexylde-
cyl)oxy]benzene (4; 700 μmol, 10 equiv), 1,2-di(butyloxy)benzene (5; 700 μmol, 10 equiv), or 1,2-di(hexyloxy)benzene (6; 700 μmol, 10 equiv), p-TsOH 
(700 μmol, 10 equiv), 1,2-dichlorobenzene, 150 °C, 15–30 min; yields: DPS-C59N: 43%, HDP-C59N: 42%, DBOP-C59N: 34%, DHOP-C59N: 11%.
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Figure 2  (a) Qualitative UV-vis absorption spectra of PCBM and the 
four new azafullerenes (CH2Cl2, normalized to peaks at ca. 260 nm); (b) 
cyclic voltammograms (1,2-dichlorobenzene,  NBu4PF6, 0.1 M, c ≈ 10–3 
mol·L–1, 298 K, scan rate = 50 mV·s–1, vs. Fc/Fc+); a.u. = arbitrary units

Cyclic voltammetry was carried out to determine the re-
duction potentials of the new compounds (Figure 2, b). All
four azafullerenes (first E1/2 ca. –1.1 V vs. ferrocene/ferroce-
nium couple) are slightly easier to reduce than PCBM (E1/2 –
1.21 V), and the first three reduction steps were found to be
fully reversible. From the reduction potentials, we calculat-
ed the LUMO levels, which are in the range from –3.65 to –
3.68 eV (Table 1). These LUMO levels are very similar to the
LUMO level we calculated for PCBM (–3.62 eV) and should
in principle allow efficient charge transfer in combination
with standard electron donors in organic solar cells.

To assess the suitability of our compounds in OPV, we
fabricated BHJ-OSCs based on the small azafullerene li-
brary. PTB7 was chosen as the donor polymer, as it has a
proven record of efficiency, and has shown a good adapt-
ability to different types of acceptors.15 A standard device
architecture was used, including PEDOT:PSS as an electron
blocking layer and a typical Ca/Ag cathode as depicted in
Figure 3 (insert). Devices were initially optimized for do-
nor/acceptor (D/A) ratio, active layer thickness, and additive

(DIO) concentration. Several solvent systems were assessed
in the active layer processing optimization, resulting in
chloroform offering the best solubility and film homogene-
ity properties. While azafullerene DPS-C59N was found to
be soluble at 10 mg/mL concentrations, the remaining three
azafullerenes, however, showed lower solubility even after
stirring overnight at 50 °C followed by prolonged sonica-
tion.

Figure 3  J-V characteristics of best-performing devices (insert shows 
device structure employed in this study)

The J-V characteristics of the best-performing devices
are shown in Figure 3 and summarized in Table 1. It is strik-
ing at first glance that except for DPS-C59N, all the other
azafullerenes show rather poorer J-V characteristics. Specif-
ically, HDP-C59N and DHOP-C59N show very low JSC values
and high shunt resistance. Although devices made from
DBOP-C59N show a great improvement in shunt resistance,
they still have a limited JSC. DPS-C59N-containing devices,
however, show a great improvement in all aspects of their
J-V characteristics. Most importantly, the JSC is much higher
than in the other devices, approaching 8.5 mA/cm2, while
the fill factor (FF) reaches 49%. The VOC is also significantly
higher than in the lower-performing azafullerenes.

As shown in Figure 4 (a), the UV-vis spectra of the active
layers made from the four azafullerenes show no notable
differences in absorption features. All spectra exhibit an in-
tense absorption band centered at around 700 nm, which
can be attributed to the PTB7 fraction of the active layer.
The overall absorption intensity is significantly higher in
devices made from DHOP-C59N. This increase in absorption
is likely the result of a higher donor fraction together with a
significantly thicker active layer than in devices made from
the other azafullerenes (see Table 1). The slight difference
in absorption intensity between these four devices does
however not account for the strong difference in JSC. This is
further corroborated by the EQE spectra of the devices (Fig-
ure 4, b), in which the incident photon-to-current efficiency
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, 764–771
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is shown to be proportional to the JSC of the corresponding
devices (DPS-C59N outperforms the other three aza-
fullerenes over the entire spectral range).

It is reasonable to assume that a non-optimum film
morphology is likely the cause of the modest J-V character-
istics, especially for compounds DBOP-C59N, DHOP-C59N,
and HDP-C59N. To shed light on the morphological charac-
teristics of the active layers, we recorded AFM micrographs
of active layers deposited under the conditions that were
used to prepare solar cell devices (Figure 5). Interestingly,
the topography of the active layers shows rather distinct
features. DBOP-C59N, DPS-C59N, and DHOP-C59N exhibit a
strikingly high surface roughness, whereas HDP-C59N as the
lowest performing azafullerene exhibits a rather flat topog-
raphy, as indicated by the RMS (root mean square) surface
roughness values, and maximum peak-to-peak height (Ta-
ble 1). The high roughness in DBOP-C59N, DPS-C59N, and
DHOP-C59N devices is indicative of the material’s segrega-
tion in the bulk of the active layer, however to a different
extent for each azafullerene. Indeed, the protruding do-
mains and valleys in DHOP-C59N are much larger than in all
the other derivatives, while the corresponding phase imag-

es show little phase shift, which is indicative of poor mate-
rials’ segregation (Figure 5, a/a′). In contrast, in the case of
DBOP-C59N and DPS-C59N, the phase images clearly show a
greater phase shift matching the regions of higher peak
height (Figure 5, b/b′ and c/c′). The phase shifts observed in
the active layers made from HDP-C59N are, as well, indica-
tive of some phase segregation, but to a reduced magni-
tude. In summary, our AFM studies suggest that segregation
of donor and acceptor phases, a strict requirement for ob-
taining high performance devices,17 has occurred to some
extent only in films made from azafullerenes DBOP-C59N
and DPS-C59N.

Finally, to link the morphology data with the photo-
physical properties of the devices, we carried out electron
mobility measurements on electron-only devices fabricated
under identical conditions as in OSC devices. We used the
Mott–Gurney equation on the space charge–limited current
region of the electron-only devices J-V characteristics mea-
sured in the dark to calculate the zero-field electron mobil-
ity of the devices in the bulk (see Supporting Informa-
tion).18

Table 1  Overview of Key Spectroscopic and Optoelectronic Properties of Previously Published Azafullerene DP-C59N10 and the Four New Azafullerenes 
DPS-C59N, HDP-C59N, DBOP-C59N, and DHOP-C59N, as well as Photovoltaic, AFM, and Electron Mobility Parameters

E1/2
red1 (V)a –1.17 –1.09 –1.13 –1.14 –1.16

LUMO (eV) –3.62 –3.68 –3.67 –3.65 –3.65

JSC (mA·cm–2)b 8.39 8.43 0.92 2.40 0.55

VOC (V)b 0.568 0.728 0.655 0.666 0.632

FF (%)b 50 49 28 32 25

PCE (%)b 2.42 3.03 0.19 0.55 0.09

Donor/acceptor ratio 2:3 2:3 1:1 1:1

1,8-Diiodooctane (DIO) 
content (%)

2 2 3 3

Active layer thickness (nm) 60 69 46 41

Peak-to-peak height (nm) 36 7 30 35

RMS roughness (nm)c 4.8 0.8 4.2 5.7

Electron mobility (cm2·Vs–1) 2.3 × 10–5 9.3 × 10–8 1.2 × 10–7

a E vs. Fc/Fc+.
b Values of best-performing devices measured at 1 SUN A.M. 1.5 illumination (100 mW cm–2); solvent = CHCl3; FF = fill factor; PCE = power conversion efficiency; 
see Supporting Information for further details.
c RMS = root mean square.
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, 764–771
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Our analysis showed that the electron mobility follows a
trend in which DPS-C59N possesses the highest mobility,
while DBOP-C59N and DHOP-C59N exhibit mobilities about
two and four orders of magnitude lower than DPS-C59N, re-
spectively (Table 1). The electron mobility of HDP-C59N
could unfortunately not be calculated, due to the fact that
no space charge region formed in the electron-only devices.

In conclusion, our studies indicate that (thio)phenol-
functionalized azafullerenes substituted with single n-alkyl
chains lead to favorable J-V characteristics. Although it can
be difficult to draw clear structure–property relationships
in OPV, it is reasonable to deduce from our studies that two-
fold n-alkyl-substituted and branched-alkyl-substituted de-
rivatives lead to poorer characteristics. This poor device
performance can be attributed to some extent to the intrin-
sically lower electron mobilities in bis-functionalized aza-
fullerenes, which is associated with the fullerenes’ packing
in the solid state and poorer film-forming properties. The
low mobility of the fullerenes restricts the thickness of the
active layer to very thin layers, limiting the absorption of
the active layer to a great extent and therefore the JSC. More-
over, the extremely rough nature of the active layer surface,
as shown from the AFM images, is likely to induce increased
surface recombination, leading to deteriorated J-V charac-
teristics, i.e. low FF and suboptimum shunt and series resis-
tance. Finally, poor segregation (either too large, e.g. DHOP-
C59N, or too small domains, e.g. DBOP-C59N and HDP-C59N)
is likely to impose a limit on the exciton splitting yield, fur-
ther limiting the JSC. Further studies on azafullerene-based
OSCs should thus focus on single n-alkyl chain functional-
ization.

Figure 4  (a) UV-vis spectra of active layers deposited under optimum 
device conditions; (b) EQE spectra of best performing devices made 
from each azafullerene

Figure 5  Topography and phase images of active layers made from PTB7 and the corresponding azafullerene: DHOP-C59N (a/a′); DBOP-C59N (b/b′); 
DPS-C59N (c/c′); HDP-C59N (d/d′) (scale bar: 200 nm)
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, 764–771
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Unless otherwise stated, all reagents were purchased from commer-
cial sources and used without further purification. C60 and PCBM
were purchased from IoLiTec Ionic Liquids Technologies GmbH. HPLC
grade solvents were used for reactions with fullerenes. 1H and 13C
NMR spectra were recorded on Bruker Avance 300 (1H: 300 MHz, 13C:
75 MHz), Bruker Avance 400 (1H: 400 MHz, 13C: 100 MHz), and Jeol
EX400 (1H: 400 MHz, 13C: 100 MHz) instruments at room tempera-
ture. Chemical shifts are given in parts per million and referenced to
residual solvent (1H: CDCl3, 7.24 ppm; 13C: CDCl3: 77 ppm). Qualita-
tive UV-vis measurements were carried out on a Varian Cary 5000
UV-vis-NIR spectrophotometer of samples in dichloromethane at
room temperature. Mass spectra were obtained on Bruker Maxis 4G
(HRMS-APPI, toluene) and Thermo Scientific ISQ LT (EI) instruments.
Cyclic voltammograms were recorded under nitrogen or argon atmo-
sphere by using a BAS CV-50W potentiostat and a three electrode set-
up (working electrode: Pt disk, auxiliary electrode: Pt wire, reference
electrode: Ag/AgNO3 or silver wire, supporting electrolyte: tetrabu-
tylammonium hexafluorophosphate (0.1 mol/L), solvent: 1,2-dichlo-
robenzene, scan rate: 50 mV/sec). Potentials are referenced to the fer-
rocene/ferrocenium couple as internal standard (Fc/Fc+). Approximate
LUMO energy levels vs. vacuum were calculated according to the
equation ELUMO = –(4.8 + E1/2

red1) eV with E1/2
red1 = (Ep,c + Ep,a)/2. Analyt-

ical HPLC was conducted on a Shimadzu LCMS 2020 (column: Cosmo-
sil Buckyprep, toluene, 1.0 mL/min). Crude azafullerenes were puri-
fied by means of preparative HPLC (Cosmosil Buckyprep, toluene, 18
mL/min). Precursor compounds n-dodecyl phenyl sulfide (3),19 7-
(bromomethyl)pentadecane,20 1,2-di(butyloxy)benzene (5),21 1,2-
di(hexyloxy)benzene (6),21 2-methoxyethoxymethyl azide (1),4e and
C60-N-MEM-ketolactam (2)4e were synthesized according to pub-
lished procedures. The preparation of solar cells is described in the
Supporting Information.

[(2-Hexyldecyl)oxy]benzene (4)
In an oven-dried two-neck round-bottom flask, Cs2CO3 (15.6 g,
48.0 mmol) was dissolved in anhydrous DMF (100 mL) and the mix-
ture was heated to reflux under a nitrogen atmosphere. After 15 min,
phenol (3.76 g, 40.0 mmol), and, after an additional 40 min, 7-(bro-
momethyl)pentadecane (S1) (202 g, 66.3 mmol) were added. The
progress of the reaction was monitored via TLC and after complete
conversion of phenol, the reaction mixture was cooled to r.t. and the
solvent was removed under reduced pressure. The residue was taken
up in CH2Cl2, filtered, and washed with water and brine. Purification
by column chromatography (silica gel, hexanes) afforded the title
compound as a colorless oil.
Yield: 10.8 g (33.9 mmol, 85%).
1H NMR (400 MHz, 298 K, CDCl3): δ = 7.37–7.33 (m, 2 H), 7.02–6.98
(m, 3 H), 3.92 (d, 3J = 5.7 Hz, 2 H), 1.91–1.86 (m, 1 H), 1.61–1.31 (m,
24 H), 1.02–0.99 (m, 6 H).
13C NMR (100 MHz, 298 K, CDCl3): δ = 159.4, 129.3, 120.3, 114.5, 70.7,
38.0, 32.0, 31.9, 31.5, 31.4, 30.1, 29.8, 29.6, 29.4, 26.9, 26.9, 22.7, 14.1.
MS (EI): m/z calcd for C22H38O+: 318.3; found: 318.3 [M+], 225.2 [M –
OC6H5]+.

Azafullerene Monoadducts; General Procedure
The syntheses were carried out in parallel, because we observed sig-
nificantly reduced yields upon scale-up. In four oven-dried round-
bottom flasks (50 mL), 2 (4 × 60 mg, 4 × 70 μmol) was dissolved in
1,2-dichlorobenzene (4 × 15 mL, analytical purity). Subsequently, 3 (4
× 195 mg, 4 × 700 μmol) or 4 (4 × 223 mg, 4 × 700 μmol) or 5 (4 ×

156 mg, 4 × 700 μmol) or 6 (4 × 198 mg, 4 × 700 μmol) and TsOH (4 ×
133 mg, 700 μmol) were added and the reaction mixtures were
stirred at 150 °C on a preheated heat-on block until no C60-N-MEM-
ketolactam 2 could be detected by TLC (ca. 15–30 min). Alternatively,
the reaction progress can be monitored by analytical HPLC (Cosmosil,
toluene, 1 mL/min). After quick cooling to r.t. by means of an ice bath,
the reaction mixtures were combined and directly subjected to flash
column chromatography (silica gel, toluene, HPLC grade). The solvent
was removed under reduced pressure and the residues were purified
by preparative HPLC (Cosmosil, toluene, 18 mL/min). The crude prod-
uct should never be completely dried prior to HPLC purification in or-
der to reduce losses caused by filtration by syringe filter. Finally, the
product was dissolved in a minute amount of CS2 and reprecipitated
from n-pentane. All target compounds were isolated as dark brown
solids.

n-Dodecyl Phenyl Sulfide Azafullerene (DPS-C59N)
Yield: 119 mg (119 μmol, 43%).
1H NMR (400 MHz, 298 K, CDCl3): δ = 8.76 (d, 3J = 8.2 Hz, 2 H), 7.79 (d,
3J = 8.2 Hz, 2 H), 3.12 (t, 3J = 7.4 Hz, 2 H), 1.81 (quint, 2 H), 1.56–1.49
(m, 2 H), 1.42–1.19 (m, 16 H), 0.88 (m, 3 H).
13C NMR (100 MHz, 298 K, CDCl3/CS2 2:1): δ = 154.4, 148.6, 147.8,
147.6, 147.6, 147.3, 147.2, 146.6, 146.4, 146.2, 145.9, 145.7, 145.0,
145.0, 144.5, 144.3, 144.0, 143.1, 142.8, 142.1, 141.8, 141.5, 141.4,
141.0, 140.9, 140.0, 139.8, 138.1, 137.5, 133.0, 129.1, 127.7, 124.1,
82.7, 33.2, 32.0, 29.8, 29.8, 29.7, 29.5, 29.4, 29.2, 29.2, 22.8, 14.2.
HRMS (APPI): calcd for C77H29NS: 999.2015; found: 999.2007.

[(2-Hexyldecyl)oxy]benzene Azafullerene (HDP-C59N)
Yield: 121 mg (116 μmol, 42%).
1H NMR (400 MHz, 298 K, CDCl3/CS2 2:1): δ = 8.69 (d, 3J = 8.8 Hz, 2 H),
7.33 (d, 3J = 8.8 Hz, 2 H), 4.03 (d, 3J = 5.6 Hz, 2 H), 1.95–1.86 (m, 1 H),
1.61–1.28 (m, 24 H), 0.94–0.89 (m, 6 H).
13C NMR (100 MHz, 298 K, CDCl3/CS2 2:1): δ = 160.4, 154.4, 149.0,
147.8, 147.6, 147.6, 147.2, 146.6, 146.4, 146.2, 145.9, 145.8, 145.7,
145.0, 145.0, 144.5, 144.3, 144.0, 143.1, 142.7, 142.0, 141.8, 141.5,
141.4, 141.0, 140.9, 139.7, 137.5, 133.0, 133.0, 128.6, 124.1, 115.8,
82.6, 71.2, 38.1, 32.0, 32.0, 31.5, 31.5, 30.2, 29.9, 29.8, 29.5, 27.1, 27.0,
22.9, 22.8, 14.3, 14.3.
HRMS (APPI): calcd for C81H37NO: 1039.2870; found: 1039.2867.

1,2-Di(butyloxy)benzene Azafullerene (DBOP-C59N)
Yield: 91 mg (96 μmol, 34%).
1H NMR (400 MHz, 298 K, CDCl3/CS2, 2:1): δ = 8.30 (m, 2 H), 7.30 (m,
1 H), 4.31 (t, 3J = 6.4 Hz, 2 H), 4.21 (t, 3J = 6.4 Hz, 2 H), 1.99–1.91 (m,
4 H), 1.68–1.58 (m, 4 H), 1.09–1.04 (m, 6 H).
13C NMR (100 MHz, 298 K, CDCl3/CS2 2:1): δ = 154.4, 150.5, 150.4,
148.9, 147.8, 147.7, 147.6, 147.2, 146.6, 146.6, 146.4, 146.2, 146.2,
145.9, 145.8, 145.7, 145.7, 145.0, 145.0, 144.5, 144.3, 144.0, 143.1,
142.8, 142.1, 141.8, 141.6, 141.4, 141.0, 140.9, 139.8, 137.6, 133.7,
132.9, 128.9, 128.1, 125.2, 124.1, 120.1, 114.2, 112.8, 82.8, 69.4, 69.0,
31.6, 31.4, 19.5, 19.5, 14.1, 14.0.
HRMS (APPI): calcd for C73H21NO2: 943.1567; found: 943.1562.

1,2-Di(hexyloxy)benzene Azafullerene (DHOP-C59N)
Yield: 30 mg (30 μmol, 11%).
© Georg Thieme Verlag  Stuttgart · New York — Synthesis 2018, 50, 764–771



770

M. Bothe et al. PaperSyn  thesis

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f U

tr
ec

ht
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.

UNIVERSITAT ROVIRA I VIRGILI 
NOVEL ELECTRON ACCEPTORS AND NEW SOLUTION PROCESSED HOLE BLOCKING LAYER FOR ORGANIC SOLAR CELLS 
Caterina Stenta 
 

1H NMR (400 MHz, 298 K, CDCl3/CS2 2:1): δ = 8.31 (m, 2 H), 7.32 (m,
1 H), 4.31 (t, 3J = 6.5 Hz, 2 H), 4.21 (t, 3J = 6.5 Hz, 2 H), 2.01–1.92 (m,
4 H), 1.64–1.57 (m, 4 H), 1.44–1.39 (m, 8 H), 0.96 (t, 3J = 7.0 Hz, 3 H),
0.93 (t, 3J = 7.0 Hz, 3 H).
13C NMR (100 MHz, 298 K, CDCl3/CS2 2:1): δ = 154.5, 150.6, 150.4,
149.0, 147.9, 147.7, 147.7, 147.3, 146.7, 146.5, 146.3, 145.9, 145.9,
145.7, 145.1, 145.1, 144.6, 144.4, 144.1, 143.2, 142.8, 142.2, 141.9,
141.6, 141.5, 141.0, 140.9, 139.8, 137.6, 133.7, 133.0, 129.0, 128.5,
128.2, 125.2, 124.1, 120.0, 144.3, 112.9, 82.8, 69.7, 69.4, 32.0, 31.7,
31.7, 31.4, 29.8, 29.7, 29.5, 29.4, 29.4, 25.9, 25.9, 22.8, 14.2, 14.1.
HRMS (APPI): calcd for C77H29NO2: 999.2193; found: 999.2192.
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