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Chapter 1: Introduction 
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1. Enzymes 

 

In a general point of view, enzymes are biological macromolecules capable to 

perform catalytic reactions and return to the original state once the products are 

released. Almost all metabolic processes in cells require a biological catalyst and 

they play a crucial role in the life cycle.  

 

Regarding the composition, enzymes are chains of amino acids, which are 

organic compounds containing amine and carboxyl functional groups, alongside 

a ramification chain specific for each amino acid. From around 500 naturally 

occurring amino acids currently known, only 20 are present in the genetic code. 

There are different classification levels such as core structural-functional groups, 

polarity or pH, but classification by side chain group type is the most common 

(Fig. 1.1). 
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Figure 1.1: The 21 proteinogenic α-amino acids found in eukaryotes (including 

the selenocysteine), grouped according to their side chains' pKa values and 

charges carried at physiological pH (7.4). 

 

From a structural point of view, most enzymes are globular proteins. It is worthy 

to notice the ribozyme exception, RNA molecules that are capable of catalyzing 

specific biochemical reactions, similar to the action of protein enzymes. 

Previous 21 natural amino acids (and the unnatural ones as well) can fold 

together achieving four different complexity levels. Amino acids can form 
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“polymers” through the peptide bond, this level is known as protein primary 

structure. Protein “polymers” can adopt higher organizations levels. This folding 

level is the protein secondary structure, regularly repeating local structures 

stabilized by hydrogen bonds. The most common examples are the alpha-helix, 

beta -sheet and turns. Because secondary structures are local, many regions of 

different secondary structure can be present in the same protein molecule. When 

different secondary structures from the same amino acids “polymer” pack 

together, the protein is assuming a new organization level, the tertiary structure. 

Tertiary structure is generally stabilized by nonlocal interactions, most 

commonly the formation of a hydrophobic core, but also through salt bridges, 

hydrogen bonds, disulfide bonds, and even posttranslational modifications. The 

term "tertiary structure" is often used as synonymous with the term fold. The 

tertiary structure is what controls the basic function of a protein. When several 

protein units pack together forming bigger complexes, this level is called 

quaternary structure (Fig. 1.2). 

 

 

Figure 1.2: Protein different levels of structural organization (modification of 

work by the National Human Genome Research Institute). 

 

Many enzymatic families have ions, like copper, zinc, magnesium or iron, and 

other cofactors, such as heme groups, flavins or nicotinamides, in their structure. 

These elements are usually playing a key role in the catalysis and sometimes in 

the enzyme folding too.        
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Most biochemical reactions take place inside a specific place called binding or 

active site (Singh, Kumar, Mittal, & Mehta, 2016), usually shared through 

enzymatic families and with common elements and geometrical disposition. 

From an energetic point of view, enzymes reduce activation energies, speeding 

up the reaction to happen (Fig. 1.3).    

 

 

Figure 1.3: Reaction activation energy differences with and without a catalyst. 

 

Enzymatic presence in nature is really large, it is possible to find them 

everywhere, from the human body to submarine volcanoes. The extensive 

distribution range has favored enzymatic evolution, allowing the appearance of 

many functions for enzymes.   

 

 

   

https://paperpile.com/c/6SW6g6/iTqG
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1.1. Enzymes for industrial and technological purposes: 

applications and properties 

 

Enzymes have been used by humans since the beginning of civilization, three 

thousand years ago. It is reported beer, bread, and winemaking by ancient 

Sumerians and Egyptians (Sewell, 2014), all these products required of yeast 

fermentation to be done from cereals or fruits. These firsts (and rudimentary) 

fermentation attempts were, through the centuries, slowly improved and 

standardized, starting the original “biotechnological companies”. Despite the 

fact that they didn’t know it, they were enzymology pioneers and put the seeds 

for future investigations and research areas. 

    

But (and moving extremely fast through centuries of human history) (Fig. 1.4), 

molecular biology’s last decade's expansion pushed forward the use of enzymes 

for several and more complex industrial and technological purposes (Singh et al., 

2016). Currently, industrial enzymes are a growing market of more than 5 billion 

dollars (Chapman, Ismail, & Dinu, 2018), and it keeps growing every year.  

 

 

https://paperpile.com/c/6SW6g6/sSB3
https://paperpile.com/c/6SW6g6/iTqG
https://paperpile.com/c/6SW6g6/iTqG
https://paperpile.com/c/6SW6g6/T5Cy
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Figure 1.4: Enzymology last two centuries milestones (Robinson, 2015).  

 

During the 20th century, we have learned that enzymes can be cultured, 

modified and produced largely by gene manipulation and these allowing the 

extensive use in an enormous variety of applications, from waste treatment to 

pharmaceutical applications, enzymes are present in almost all industries (Table 

1.1). 

 

 

 

 

 

 

 

 

https://paperpile.com/c/6SW6g6/exxa
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Table 1.1: Industrial applications of enzymes (Choi, Han, & Kim, 2015). 

Application field Enzyme examples Properties 

 

 

Fine and bulk chemistry 

industry 

Dehydratases Remove water molecules 

Nitrilases Remove nitrile groups 

Transferases Transfer molecules 

Isomerases Convert one isomer to 

another 

 

 

Pharmaceutical industry 

Dehalogenases Catalyzes the removal of a 

halogen atom 

Hydrolases Use water to break a 

chemical bond 

Keto-reductases Transfer of electrons from 

one molecule, the 

reductant to another, the 

oxidant 

 

Food industry 

and 

Cosmetic industry 

Glycoside hydrolase Catalyze the hydrolysis of 

glycosidic bonds in 

complex sugars 

Glycosyltransferases Establish natural 

glycosidic linkages 

Hydrolases Use water to break a 

chemical bond 

 

Textile industry 

and 

Pulp and paper industry 

Cellulases Decomposition of 

cellulose and of some 

related polysaccharides 

Proteases Helps proteolysis by 

hydrolysis of peptide 

bonds 

Oxidoreductases Transfer of electrons from 

one molecule, the 

reductant to another, the 

oxidant 

https://paperpile.com/c/6SW6g6/pdNm
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Enzymatic presence in different industrial areas is really relevant, reducing 

waste generation and creating new possible production paths, being a key player 

in the biotechnology world. 

 

Of many enzymatic properties, one of the most interesting for industrial 

purposes is substrate promiscuity or the capability to react with several ligands. 

Substrate promiscuity implies that enzymes are able to catalyze the same 

reaction over different substrates from natural activity performance. This aspect 

is remarkably important in hydrolases for which many practical promiscuous 

applications have been studied (Beloqui, de María, Golyshin, & Ferrer, 2008; 

Carboni-Oerlemans et al., 2006; Hult & Berglund, 2007). 

 

Serine-hydrolases, one of the main focus of this thesis, accept a wide range of 

esters and are extensively used in the resolution of racemic acids and alcohols; 

they are also active towards fatty acids (of different lengths and types). Lipases, 

for example, can accommodate a large variety of substrates, other than just fatty 

acids or esters, like alicyclic, bicyclic, and aromatic esters and even esters based 

on organometallic sandwich compounds (C.-S. Chen & Sih, 1989; Ghanem, 

2007; Kapoor & Gupta, 2012; Schmid & Verger, 1998). Laccases can also 

accepted a wide range of substrates, such as phenols, polyphenols or aromatic 

amines (Alcalde, 2015).  

 

Nevertheless, the extensive industrial use of enzymes is limited. Classical 

chemistry protocols are in many aspects the selected choice, due to the 

associated implementation expenses and the catalytic versatility of the 

heterogeneous reactivity (Tanimu, Jaenicke, & Alhooshani, 2017; Wang et al., 

2017).  Alongside, one of the biggest biocatalysis challenges is the 

competitiveness against functionalized surfaces to perform heterogeneous 

catalysis (Wittstock, Biener, & Bäumer, 2010), where small microchips (or 

reactors) can host thousands of immobilized reactive sites (Fig. 1.5). The 

https://paperpile.com/c/6SW6g6/ZhnI+oEzo+OnXf
https://paperpile.com/c/6SW6g6/ZhnI+oEzo+OnXf
https://paperpile.com/c/6SW6g6/RqGV+9Mds+DNJe+gshT
https://paperpile.com/c/6SW6g6/RqGV+9Mds+DNJe+gshT
https://paperpile.com/c/6SW6g6/Zx4v
https://paperpile.com/c/6SW6g6/QNbO+i2Tz
https://paperpile.com/c/6SW6g6/QNbO+i2Tz
https://paperpile.com/c/6SW6g6/1esa
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overcoming of these limitations, as we will discuss in the following chapters, is 

the enzymatic improvement and development.  

 

  

Figure 1.5: Hydrogenation of ethene on a catalytic solid surface, (1) adsorption, 

(2) Reaction, and (3) desorption.  
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1.2.  Laccases 

 

1.2.1. General aspects 

 

Oxidoreductases (EC 1) are enzymes capable to catalyze redox reactions by 

using cofactors like metal ions, flavins or hemes (Martínez et al., 2017). Due to 

the enormous amount of reactions catalyzed by oxidoreductases the industrial 

interest for this superfamily has increased exponentially. 

 

It is a big enzymatic family with many biologically relevant groups inside, 

heme-dependent proteins (like peroxidases), flavoproteins, oxygenases (like lytic 

polysaccharide monooxygenases - LPMOs) or laccases (Fig. 1.6) (Lomize, 

Hage, & Pogozheva, 2018; Lomize, Lomize, Krolicki, & Pogozheva, 2017).  

 

 

 

 

https://paperpile.com/c/6SW6g6/Xr4A
https://paperpile.com/c/6SW6g6/bLy3+FRzp
https://paperpile.com/c/6SW6g6/bLy3+FRzp
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Figure 1.6: Oxidoreductases classification (Blank, Ebert, Buehler, & Bühler, 

2010). 

 

Inside oxidoreductase family, laccases are one of the most promising members 

from a biotechnological point of view. Laccases (EC 1.10.3.2) are oxidases with 

four coppers: a trinuclear cluster buried in the structure, where molecular oxygen 

will be reduced to water, and a single copper molecule close to the surface, 

where the substrate oxidation will take place (Claus, 2004). After the oxidation 

happens, the enzyme re-generates in the trinuclear cluster reducing molecular 

oxygen to water (Fig 1.7).  

 

https://paperpile.com/c/6SW6g6/yKDK
https://paperpile.com/c/6SW6g6/yKDK
https://paperpile.com/c/6SW6g6/3wtN
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Figure 1.7: Laccases reaction mechanism simplified scheme (Rodríguez-

Delgado & Ornelas-Soto, 2017). 

 

The broad ranges of possible reactions and the absence of external cofactors, 

with water as the only by-product, increase the industrial potential of laccases. 

Originally, laccases were located in eukaryotic organisms, but more recently 

they have been described in bacteria as well (Claus, 2003). 

 

 

1.2.2. Structure 

 

Laccases often are expressed as isozymes, forming large and stable multimeric 

complexes. The high stability is probably due to the glicolisation rate (10-45%). 

Buried inside the structure, as stated  before, laccases have four different 

coppers, distributed in three different types (Fig. 1.8).  

https://paperpile.com/c/6SW6g6/bG2L
https://paperpile.com/c/6SW6g6/bG2L
https://paperpile.com/c/6SW6g6/QgPx
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Figure 1.8: Laccase three-dimensional overview (Elouarzaki, Cheng, Fisher, & 

Lee, 2018). 

 

Type 1 copper has trigonal coordination, with a cysteine (methionine in bacteria) 

and two histidines. The cysteine-copper covalent bond is also responsible for the 

typical laccase blue color in solution. Type 2 and 3 are forming the trinuclear 

cluster, where reduction of molecular oxygen to water takes place. Type 2 holds 

two histidine coordinations and type 3 holds four (Fig. 1.9). These multiple 

copper centers drive electrons without releasing toxic peroxide intermediates, 

accomplished by four mono-electronic oxidations of the substrate catalyzed by 

the type 1 copper.  

 

https://paperpile.com/c/6SW6g6/wsCO
https://paperpile.com/c/6SW6g6/wsCO
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Figure 1.9: Laccase copper first coordination sphere (Santhanam, Vivanco, 

Decker, & Reardon, 2011). 

 

There are many examples of laccases catalytic potential, polymer formation 

(Fodor et al., 2016), aromatic compounds oxidations (Zeng, Zhu, Wu, & Lin, 

2016), etc. 

 

 

 

https://paperpile.com/c/6SW6g6/DkQp
https://paperpile.com/c/6SW6g6/DkQp
https://paperpile.com/c/6SW6g6/6sPQ
https://paperpile.com/c/6SW6g6/IWs9
https://paperpile.com/c/6SW6g6/IWs9
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1.2.3. Applicability and engineering strategies 

 

Laccases have a broad range of applications in several fields, food industry, pulp 

and paper industry, textile industry, soil remediation, synthetic chemistry or 

cosmetic industry. Their effectiveness in persistent organic pollutants 

degradation has received considerable attention in bioremediation related fields 

(Catherine, Penninckx, & Frédéric, 2016; Gasser, Ammann, Shahgaldian, & -X. 

Corvini, 2014; Majeau, Brar, & Tyagi, 2010; Strong & Claus, 2011; Viswanath, 

Rajesh, Janardhan, Kumar, & Narasimha, 2014), for example, biosensors for 

environmental pollution detection and monitoring (Rao, Scelza, Acevedo, Diez, 

& Gianfreda, 2014). Laccases are useful for tracking down pollutants such as 

dyes (Sen, Raut, Bandyopadhyay, & Raut, 2016), polycyclic aromatic 

hydrocarbons (Librando & Pappalardo, 2013), endocrine disruptors (Husain & 

Qayyum, 2013) or even antibiotics. Antibiotics are among the most used classes 

of drugs by our society, and the non-metabolized one end up in the environment 

(Larsson & Joakim Larsson, 2014). For this purpose, common water treatment is 

totally useless and cannot remove antibiotics (Oulton, Kohn, & Cwiertny, 2010), 

while other potential treatments came out with undesirable secondary effects like 

high implementation costs or extra pollutants formation (Y. Chen, Stemple, 

Kumar, & Wei, 2016).  

    

Laccases can be successfully applied for bioremediation of hard chemicals or 

organic compounds, such as antibiotics or polycyclic aromatic hydrocarbons 

(PAH). Importantly, their catalytic performance and applicability can be 

expanded by raising T1-copper redox potential by using the laccase-mediator 

system (Ding et al., 2016; Shi, Ma, Han, Zhang, & Yu, 2014; Suda, Hata, 

Kawai, Okamura, & Nishida, 2012). By using intermediate molecules - with 

high redox potential-, laccases can react over difficult substrates, such as the 

already mentioned antibiotics and PAHs or complex polymers lignin or cellulose 

fibers (Bourbonnais & Paice, 1990) (Fig. 1.10); a laccase-mediator system is 

https://paperpile.com/c/6SW6g6/4XEJ+DWzB+BH5y+PxpD+X4HE
https://paperpile.com/c/6SW6g6/4XEJ+DWzB+BH5y+PxpD+X4HE
https://paperpile.com/c/6SW6g6/4XEJ+DWzB+BH5y+PxpD+X4HE
https://paperpile.com/c/6SW6g6/H3wX
https://paperpile.com/c/6SW6g6/H3wX
https://paperpile.com/c/6SW6g6/ijla
https://paperpile.com/c/6SW6g6/qhcL
https://paperpile.com/c/6SW6g6/Sax5
https://paperpile.com/c/6SW6g6/Sax5
https://paperpile.com/c/6SW6g6/qk5Z
https://paperpile.com/c/6SW6g6/eY4H
https://paperpile.com/c/6SW6g6/okfp
https://paperpile.com/c/6SW6g6/okfp
https://paperpile.com/c/6SW6g6/Bm2I+8tXW+mGRV
https://paperpile.com/c/6SW6g6/Bm2I+8tXW+mGRV
https://paperpile.com/c/6SW6g6/cYSN
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then efficiently expanding enzyme substrate range (Morozova, Shumakovich, 

Shleev, & Iaropolov, 2007).  

 

 

Figure 1.10: Laccase mediator system scheme (Christopher, Yao, & Ji, 2014). 

 

Pulp and paper industry has also been taking advantage of laccase catalysis. 

Chlorine and oxygen-based chemical oxidants are used for the preparation of 

paper at an industrial level, specifically for the separation and degradation of 

lignin fibers. This classical chemical approach came out with several problems 

such as recycling, cost, and toxicity, which remain unsolved. However, in the 

existing bleaching process, the previously mentioned laccase-mediator system 

could be easily implemented, leading to a partial replacement of chlorine and 

oxygen-based chemical on this industry (Rodríguez-Couto, 2019).  

 

Laccases have also been used in food processing for the elimination of 

undesirable phenolic compound in baking, juice processing or wine stabilization 

(Rodríguez Couto, Couto, & Herrera, 2006). The application of laccases over 

these products modulates flavors and aromas giving taste and color to them. 

Notice that color and aroma can change due to polymerization of phenolic 

molecules (Ribeiro, Henrique, Oliveira, Macedo, & Fleuri, 2010).  

 

As mentioned before, laccases have many interesting applications and, due to 

potential industrial uses, they have been targeted by many enzyme engineering 

efforts. The first engineering bottleneck was a crystallographic structure 

determination and since 1998, with Ducros et al. work (Ducros et al., 1998), a 

https://paperpile.com/c/6SW6g6/trzd
https://paperpile.com/c/6SW6g6/trzd
https://paperpile.com/c/6SW6g6/4090
https://paperpile.com/c/6SW6g6/Xb2p
https://paperpile.com/c/6SW6g6/2Q8p
https://paperpile.com/c/6SW6g6/yr99
https://paperpile.com/c/6SW6g6/kPOx
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few active laccase structures have been obtained (Hakulinen & Rouvinen, 2015). 

Using this structural information, mutations around the copper could be done, 

studying the importance of different residues for laccase activity (Durão et al., 

2008)(Z. Chen et al., 2010)(Gupta et al., 2012). Once initial key residues were 

identified, two main engineering approaches have been applied on laccases: 

 

1) Raising T1 copper redox potential  

2) Improving substrate-enzyme interaction  

 

In 1999, Solomon and collaborators developed a laccase variant with an 

increased T1 redox potential (Xu et al., 1999), these enhanced variants were 

obtained through site-directed mutagenesis. Similar results were obtained 

through directed evolution protocols (Maté et al., 2010) and T1 copper redox 

potential was raised as well.  But increasing redox potential has shown to be 

significantly difficult. This bottleneck partially shifted the research to improve 

substrate-enzyme interaction. In literature, there are many examples of this type 

of research with many different methodologies (even a database (Sirim, Wagner, 

Wang, Schmid, & Pleiss, 2011)), from site-directed mutagenesis to directed 

evolution and the recent addition of molecular modeling and bioinformatics 

(Mate & Alcalde, 2015; Mateljak et al., 2019). This addition has proved to be a 

successful sinergy. Mutations in the binding event can shift the ligand into a 

more buried position and provide a more favorable electrostatic environment for 

the oxidation to happen (Monza et al., 2015). 

 

 

 

 

 

 

    

https://paperpile.com/c/6SW6g6/XPkF
https://paperpile.com/c/6SW6g6/j8Gh
https://paperpile.com/c/6SW6g6/j8Gh
https://paperpile.com/c/6SW6g6/SIkT
https://paperpile.com/c/6SW6g6/SIkT
https://paperpile.com/c/6SW6g6/guCA
https://paperpile.com/c/6SW6g6/3gkp
https://paperpile.com/c/6SW6g6/FmIu
https://paperpile.com/c/6SW6g6/FmIu
https://paperpile.com/c/6SW6g6/MjxB+2uv0
https://paperpile.com/c/6SW6g6/4FyT
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1.3. Serine Esterases 

 

1.3.1. General aspects 

 

Carboxylesterases or serine hydrolases (EC 3.1.1.1) constitute part of the 

enzymes capable to cleave the carboxyl ester bond and release the corresponding 

carboxylic acid and alcohol. This reaction happens via a proton transfer lead by 

a serine part of a catalytic triad, which includes an additional histidine and 

aspartic acid, with the formation of two tetrahedral intermediate states and an 

acyl-enzyme phase (J. Aranda et al., 2014) (Fig. 1.11). The reaction only 

requires the catalytic triad and water. 

 

 

Figure 1.11: A catalytic triad general system as commonly found in serine 

hydrolases and hydrolysis steps. The acid residue (commonly glutamate or 

aspartate) aligns and polarises the base (usually histidine) which activates the 

nucleophile (often serine or cysteine, occasionally threonine) (Armendáriz-Ruiz, 

Rodríguez-González, Camacho-Ruíz, & Mateos-Díaz, 2018).  

 

https://paperpile.com/c/6SW6g6/zJN7
https://paperpile.com/c/6SW6g6/9i3f
https://paperpile.com/c/6SW6g6/9i3f
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Serine esterases are widely distributed in the environment, even in extreme 

locations, and take part in important cellular physiological functions. Besides, 

they are among one of the most important industrial enzymes. Closely related to 

esterases we find widely used and important enzyme families, such as the lipases 

or proteases, which share catalysis and structural features. 

 

1.3.2. Structure 

 

Several high-resolution three-dimensional structures have been solved by X-ray 

crystallography and other methods (Akoh, Lee, Liaw, Huang, & Shaw, 2004). 

Based on this research some common structural features of these enzymes can 

be described (Fig. 1.12): 

 

1) Serine esterases have the classical alpha/beta folding (Claus, 2004; 

Lenfant et al., 2013). This type of tertiary structure is composed of a 

main core formed of predominantly parallel beta-strands surrounded by 

alpha-helices (Nardini & Dijkstra, 1999; Ollis et al., 1992; Schrag & 

Cygler, 1997). 

2) The nucleophilic serine of the catalytic triad rests at a hairpin turn 

between a  beta-strand and an alpha-helix, in an extremely conserved 

peptide sequence: Gly-X-Ser-X-Gly, forming a characteristic sequence 

motif commonly named the ‘nucleophilic elbow’. There is one 

exception, Lipase B from Candida Antarctica (usually known as CALB) 

does not present this sequence motif (Uppenberg, Hansen, Patkar, & 

Alwyn Jones, 1994).  

3) Serine hydrolases’ active site is formed by three residues called the 

catalytic triad consisting of serine, histidine and aspartic acid or 

glutamic acid (Brady et al., 1990; Winkler, D’Arcy, & Hunziker, 1990). 

Despite identical chemical composition, lipases and proteases (two 

serine hydrolases) structurally differ by having different orientations, 
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resulting in inverted stereochemistry of the catalytic triad (Dodson, Guy 

Dodson, Lawson, & Winkler, 1992).       

4) Substrate binding is aided by two amino groups C terminal neighbors of 

the catalytic serine forming the oxyanion hole (Lang & Dijkstra, 1998; 

Lang, Mannesse, De Haas, Verheij, & Dijkstra, 1998). 

 

 

Figure 1.12: Schematic diagram of α/β-hydrolase folding and serine hydrolases 

main elements. Oxyanion: residues that stabilize oxyanion, Nu: nucleophilic 

residue; for lipase esterases, and proteases this is a serine; α-helices are shown as 

rectangles, β-sheets as arrows (Uwe T. Bornscheuer & Kazlauskas, 2005). 

 

1.3.3. Applicability and engineering strategies 

 

Lipases, esterases or proteases are among the most used industrial enzymes, with 

several industrial applications in many different fields (Fig. 1.13), even though 

they, especially lipases, do not express easily in classical bacterial expression 

systems  (Valero, 2012).  For example in food processing, beverages or perfume 

industries molecules like ferulic, sinapic, caffeic, and coumaric acids are widely 

https://paperpile.com/c/6SW6g6/pjrt
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used (Karra-Chaabouni, Pulvin, Touraud, & Thomas, 1996). The esters of these 

acids are easily found in cereals, agro-industrial residues, and biopulp (Asther et 

al., 2002). Using feruloyl and cinnamoyl esterases of Aspergillus niger (among 

other possible candidates) the hydroxycinnamic acids can be released from those 

scratch materials. Other esterases, such as the one obtained from Fusarium 

oxysporum, play an important role producing flavoring and fragrance 

compounds from geraniol and fatty acids (Asther et al., 2002; Christakopoulos et 

al., 1998).  

 

 

 

Figure 1.13: Esterases most relevant industrial applications (Panda & 

Gowrishankar, 2005). 

 

Esterases and lipases are extensively employed in the dairy industry, and for 

production of wine, beer or juice fruits. They are used for transesterification 

purposes, where low-value oils and fats are transformed into more valuable ones. 

As an example, Lactobacillus casei CL96 esterases and lipases are significantly 

used to hydrolyzed milk fat for flavor improvement in cheese-related products 

(Y.-J., -J., & B., 2001). Pseudomonas fragi serine hydrolases were submitted to 

different physical and chemical treatments to stimulate strawberry flavor 

https://paperpile.com/c/6SW6g6/Yarf
https://paperpile.com/c/6SW6g6/2Bsi
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production (Kermasha, Bisakowski, Ismail, & Morin, 2000). In general, 

esterases play an important role in the flavor industry (Fukuda et al., 2000).  

 

More recently, serine hydrolases are being used for plastic polymer degradation. 

To degrade such problematic components, cholesterol esterase and 

polyurethanes (and others) are widely used (Howard, Crother, & Vicknair, 2001; 

Jahangir et al., 2003). Recently, a serine hydrolase with polyethylene 

terephthalate (PET) as natural substrate was isolated from Ideonella sakaiensis, 

crystallized (Yoshida et al., 2016) and further rationally designed to obtain 

improved binding affinities (Austin et al., 2018). Since PET is one of the most 

abundant plastics in the world, this finding presents a new opportunity for serine 

hydrolases.  

 

Esterases and other serine hydrolases have also applications in the 

pharmaceutical industry. They play a major role in, for example, chiral 

synthesis, an important process in some drug refinement step (Uwe T. 

Bornscheuer, 2002b). An example of this relevance, is an esterase from 

Trichosporon brassicae. This particular enzyme can produce optically pure (S)-

and/or (R)-ketoprofen [2-(3-benzoylphenyl) propionic acid], which is very 

effective in the reduction of inflammation and relief of pain resulting from 

arthritis, sunburn, menstruation, and fever (Shen, Xu, Wu, & Liu, 2002). As 

well, commercially available anti-inflammatory drug (NSAID), ibuprofen (R, 

S)-2-(4-isobutylphenyl) propionic acid is produced with an esterase from 

Pseudomonas sp. S34 (G.-J. Kim et al., 2002; Y.-H. Kim, Cha, & Cerniglia, 

2002). 

 

Agriculture is also an application field for esterases. Phosphodiesters are 

synthetic organophosphorus compounds, with broad applications as insecticides 

and nematicides. But after use, remaining residues of these compounds are 

extremely toxic, causing crop contamination. To fix this problematic, 

https://paperpile.com/c/6SW6g6/krQ6
https://paperpile.com/c/6SW6g6/10lk
https://paperpile.com/c/6SW6g6/yLN4+hRns
https://paperpile.com/c/6SW6g6/yLN4+hRns
https://paperpile.com/c/6SW6g6/VV89
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https://paperpile.com/c/6SW6g6/ELXp
https://paperpile.com/c/6SW6g6/JjYL
https://paperpile.com/c/6SW6g6/xJnD+oo8Q
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phosphodiesterases from Brevundimonas diminuta and Alteromonas sp. have 

been extensively used in land detoxification by degrading these 

organophosphorus compounds (Horne, Harcourt, Sutherland, Russell, & 

Oakeshott, 2002). Further research has been carried out in this particular field 

and, currently, many different esterases have been identified as potential 

candidates to be used in land detoxification (Manco, Porzio, & Suzumoto, 2018). 

 

Esterases are extensively applied in other industrial fields, such as the pulp and 

paper, textile, leather, and baking industries. Steryl esterase and cholesteryl 

esterase from Pseudomonas sp., Chromobacterium viscosum and Candida 

rugosa are playing a significant role in reducing pitch problems during paper 

production (Kontkanen, Tenkanen, Fagerström, & Reinikainen, 2004). 

 

Due to all the previous applications, esterases have been an important target for 

enzyme engineering. Improvement of the catalytic performances using directed 

evolution and/or rational design has been the main goal in the development of 

esterases as enantioselective biocatalysts (U. T. Bornscheuer, Bottcher, & 

Schmidt, 2009; Uwe T. Bornscheuer, 2002a). Furthermore, the development of 

complementary techniques (like bioinformatics, protein crystallography or 

molecular modeling) for deeply analyzing the mechanisms of enzymatic activity, 

makes possible today an extensive use of rational, semi-rational and random 

protein mutation of esterases (Jochens et al., 2011).  

 

An example of enzyme engineering in esterases, involved 3-buten-2-yl acetate 

racemic resolution. From the numerous wild-type ester hydrolases tested, the 

best performance was obtained with an esterase from Pseudomonas fluorescens 

(Baumann, Hauer, & Bornscheuer, 2000). When directed evolution was carried 

over this enzyme, a double mutant was found, improving enantioselectivity and 

obtaining higher reaction rates (Schmidt et al., 2006). In this same esterase, four 

positions were recognized using the 3DM database (Kuipers et al., 2010), and 
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subjected to saturation mutagenesis for improving the enantioselectivity on 3-

phenyl butyric acid esters and a tailored variant was obtained in terms of 

improved reaction rates and enantioselectivity (Cheeseman, Tocilj, Park, Schrag, 

& Kazlauskas, 2004; Jochens & Bornscheuer, 2010). 

  

1.4. Enzyme Engineering  

 

As it has been noticed in previous subchapters, enzymes have multiple 

applications; this industrial interest has been key for driving improving efforts. 

Enzyme engineering has grown alongside the technology improvement and 

business increasing. Novel enzymes have appeared in the last years through the 

new methodologies, like directed evolution (Arnold & Volkov, 1999) or “de 

novo” designs (Jiang et al., 2008). This new generation has increased by 

thousands the industrial enzymatic relevance.  

 

Following an “historical” path, enzyme engineering started by developing point 

mutations on the primary structure of a protein using the first crystal structures. 

The previous irruption of genetic editing molecular techniques, like site-directed 

mutagenesis (a polymerase chain reaction (PCR) variation), opened such a 

possibility. This rational design, introduced through site-directed mutagenesis, 

mandates a  detailed knowledge of the protein structure, its function and 

mechanism (Ridong Chen, 1999) (Fig. 1.14). The power of this type of designs  

has been shown on several occasions by the generation of an enhanced 

superoxide dismutase (an already fast enzyme) (Getzoff et al., 1992) or the 

complete inversion of coenzyme specificities for both isocitrate and 

isopropylmalate dehydrogenases (R. Chen, Greer, & Dean, 1996; Ridong Chen, 

1999; Hurley, Chen, & Dean, 1996), as some relevant examples, where 

individual substitutions generated new and improved enzyme variants. 
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Figure 1.14: Rational design protocol summary (Eriksen, Lian, & Zhao, 2014). 

 

Directed evolution is an opposite concept to rational design, it does not require 

any information about enzyme structure or how it relates to catalytic function 

(Kushner & Arnold, 1997; Stemmer, 1994). Directed evolution techniques 

mimic natural evolution but with a “human touch”: it is laboratory accelerated 

by focusing on individual genes expressed in fast-growing microorganisms (Fig 

1.15). Already existing proteins (from natural or engineered sources) are 

selected as the starting point, then mutations are randomly introduced and the 

progeny screening reveals (or not) enhanced variants. These new variants can 

then act as parent types in further evolution protocols (Arnold, 2018). 

 

 

https://paperpile.com/c/6SW6g6/ZxZL
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Figure 1.15: General directed evolution pipeline (Clark & Pazdernik, 2016).  

 

There are many different well-settled protocols to mimic natural evolution, one 

of the firsts was “error-prone” PCR, where through different media conditions, 

polymerase are forced to introduce mutations in the expanding sequence 

(McCullum, Williams, Zhang, & Chaput, 2010). An alternative initial procedure 

involved using chemical and physical agents to randomly damage DNA (Bridges 

& Woodgate, 1985; Freese, 1959; Lai, Huang, Wang, Li, & Wu, 2004). 

Following these approaches, new techniques appeared that require genetic 

recombination, like DNA shuffling, where two genes are combined using 

endonucleases to generate gene fragments and then combining them through a 

DNA ligase (Zhao, 1997). Also genetic recombination dependent, Mutagenic 

Organized Recombination Process by Homologous IN vivo Grouping 

(MORPHING) is a random mutagenic method for short protein regions, where 

libraries can be prepared with different mutational loads in DNA segments of 

less than 30 amino acids so that they can be reassembled into the remaining 

https://paperpile.com/c/6SW6g6/4ZNz
https://paperpile.com/c/6SW6g6/fost
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unaltered DNA regions (Gonzalez-Perez, Molina-Espeja, Garcia-Ruiz, & 

Alcalde, 2014). 

 

 Since directed evolution is based on random mutagenesis or genetic 

recombination, there is limited control over resulting outputs. This is connected 

with directed evolution high throughput screening needs, aiming to explore as 

much mutagenesis space as possible. It is precisely this limitation (one of ) the 

bridgehead for “in silico” protein engineering.  

 

The addition of computational power and algorithm developments has added a 

new dimension to enzyme engineering and, these recent years have witnessed 

new advances in silico aided protein design. From one site, they help us in the 

understanding of mutagenesis/directed evolution outputs that randomly appears 

due to the protocols behavior (C. Aranda et al., 2019; Carro et al., 2018; Pardo et 

al., 2016). The study of enzymatic reactivity has required from first 

understanding how reactants reach the active site and second how they become 

products. The description of each step has different theory levels (Marti et al., 

2008).  

 

The understanding of how reactants reach the active site, or ligand diffusion, can 

be investigated at the molecular mechanics (MM) theory level. MM treats atoms 

as rigid spheres and the bonds between them as strings of variable strength and 

distance, building all-atoms systems. Using this approach it is possible to 

simulate complex molecular systems like enzymes. There are many different 

computational methods using MM, such as molecular dynamics (MD) (Karplus 

& Petsko, 1990), docking  or Monte-Carlo (MC)  based algorithms.  

 

MD allows the study of the protein dynamics by the iterative resolution of 

Newton’s equation (Karplus, 2002). At each iteration, the calculation propagates 

positions and velocities from the potential energy gradients.  

https://paperpile.com/c/6SW6g6/JFVL
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Docking simulations involve the prediction of the best bound orientation 

between two biomolecules. These techniques has been mostly used in the 

prediction protein-ligand and protein-protein interactions. First, exploration 

methods provide with several bounding conformations that are then ranked by 

scoring functions (from MM, empirical data or knowledge-based functions) 

(Kitchen, Decornez, Furr, & Bajorath, 2004). 

 

MC based methods use the random motion of the system to explore the 

conformational space, resulting in a non-time dependent trajectory. However, 

the limitation on proposing collective moves with proper acceptance rates has 

delay the use of MC techniques in biological systems. Protein Energy Landscape 

Exploration (PELE) software address this gap through the combination of MC 

with protein structure prediction, being capable of modeling, as we will see in 

this thesis, protein-ligand dynamics in enzymology studies (Borrelli, Vitalis, 

Alcantara, & Guallar, 2005; Sancho, Santiago, Amengual-Rigo, & Guallar, n.d.). 

 

With the application of all these methods its possible to study complex events 

like protein dynamics or ligand-receptor interactions (Huang, Kalyanaraman, 

Bernacki, & Jacobson, 2006; Laurent, Breslmayr, Tunega, Ludwig, & 

Oostenbrink, 2019; Spyrakis et al., 2013).   

 

Reactivity description can be deeply studied with quantum mechanics (QM). 

The use of this theory level is now capable of describing the reactivity of 

systems involving several hundreds of atoms with significant accuracy. The 

application of this theory level in large biological systems like proteins, 

however, is not yet computationally feasible. For this reason,  the modelling of 

enzymatic reaction is often studied using limited parts of the active site (Lind & 

Himo, 2013; Siegbahn & Himo, 2009, 2011) or by hybrid methods like 

QM/MM. The latter method treats with QM the active site region and with MM 
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the rest of the system, defining a border between both theory levels in the 

protein. There are many examples of QM/MM approaches to study enzymatic 

reactivity in for example P450 or  chorismate mutase (Senn & Thiel, 2007; 

Shaik et al., 2010), but it can be applied to understand all reactivities (M. A. 

Martí et al., 2008). For more complex reaction systems, ranging from reactions 

of large molecules to chemical processes in solutions, like enzymes, one might 

use a method like the empirical valence bond, which  can be understood as an 

extension of force‐field approaches to chemical reactivity and it is related here to 

other QM/MM methods (Warshel & Florián, 2004). 

 

Furthermore, all these methodologies can be used to boost enzyme engineering 

by attempting to change/enhance the activity of existing enzymes and to create 

new enzymes (Kiss, Çelebi-Ölçüm, Moretti, Baker, & Houk, 2013; S. Martí et 

al., 2008).  

 

The prediction of mutational effects on the overall of the protein’s behavior is a 

difficult topic. To overcome current and future challenges, computational tools 

have been developed to predict the consequences of mutations on protein 

stability, binding affinity or ligand diffusion (Potapov, Cohen, & Schreiber, 

2009). It is possible to argue then that the future of enzyme engineering should 

be based on the ability to better predict all these (not always related) factors. 

 

At this point a new idea has to be introduced, de novo enzyme engineering. 

Then, where there are not natural enzymes, new ones have to be created 

(Vaissier Welborn & Head-Gordon, 2018). Computational tools allow the design 

of catalytic active sites based on a transition states generating the theozyme and 

then dock it in a protein scaffold (Hellinga & Richards, 1991; Malisi, 

Kohlbacher, & Höcker, 2009; Tantillo, Jiangang, & Houk, 1998; Zanghellini et 

al., 2006). The following steps will be improving the binding mode of the active 

site and further characterization and optimization (Fig. 1.16). These protocols 
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introduce new problems that have to be faced and solved to successfully answer 

this challenge, being the most important the protein folding or the need to find 

amino acid sequences that fold into the desired three-dimensional structures. The 

first attempts on this field reduced the complexity of the problem by focusing 

their efforts on α-helical barrels, with a tertiary structure of helices organized 

around a central channel with a metal center (Thomson et al., 2014).  

 

 

Figure 1.16: Computational de novo design simplified steps (Kries, Blomberg, 

& Hilvert, 2013). 

 

The initial success encourages more challenging research, increasing design 

complexity. Mimicking hydrolytic enzymes active sites (based on amino acids) 

is one example (Bolon & Mayo, 2001). More complex catalytic active sites 

consisting of a nucleophilic cysteine–histidine dyad and amides groups 

(backbones preferably) for oxyanion stabilization was de novo designed. The 
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resulting proteins were found to cleave activated ester substrates by a two-step 

acylation/deacylation mechanism as reported (Richter et al., 2012). 

  

The main computational de novo design limitation is the development from 

scratch of the required protein folding which presents several problems in the 

following in vitro validations. 
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Chapter 2: Objectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

Along Chapter 1, we have discussed the enzyme engineering potential over 

laccases and esterases.  Motivated by recent advances in computer-aided enzyme 

design and the scientific collaboration network in our lab, the main aim of this 

thesis is: the development of enhanced enzyme variants for industrial and 

technological applications. Our aim is that such biocatalysts will be achieved 

through the application of state-of-the-art “in silico” techniques, with further 

experimental validation. To achieve such a goal, we performed several 

characterizations and engineering studies. The thesis is presented as a 

“compendium” of research articles that define particular (specific)  objectives: 

 

1) Elucidate the basic principles of enzymatic promiscuity: Why an 

enzyme can accept more substrates than another? Can we predict it? The 

first objective aims to answer these questions. To achieve this goal a 

large serine-esterases promiscuity dataset has been used to extract 

enzymatic structural parameters. These parameters have to be 

rationalized to reach the expected answer. Furthermore, this 

rationalization will be expanded to another enzyme family, aiming for a 

general rule for enzymatic promiscuity. 

 

2) Computer-aided rational enzyme design: Despite natural (or wild-

type) enzymes can catalyze a biotechnology-relevant reaction, they often 

are not fitted for its direct industrial use. On chosen reactions, and 

through “in silico” methods, we aim to design new mutations whose 

effects can improve the overall enzyme performance, and help in their 

industrial implementation. 

 

3) Designing of novel enzymes: This particular objective aims for the 

development of a “new class” of enzymes, seeking the introduction of 

additional artificial active sites in currently functional enzymes. Our 

goal is to boost the overall performance of the enzyme by increasing the 
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substrate range, activity and, as a long term goal, complementary active 

sites reactivities (towards cascade reactions).  
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Chapter 3: Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

In this chapter, we will present the results as article compendia. Each article 

present genuine investigations carried out during the thesis, where molecular 

modelling has played a major role in the study of enzymatic properties and in the 

design of tailored biocatalyst. 

 

Article I: Gerard Santiago et al. Determinants and prediction of esterase 

substrate promiscuity patterns. ACS Chemical Biology (November 2017). 

Article II: Gerard Santiago et al. Computer-Aided Laccase Engineering: 

Toward Biological Oxidation of Arylamines. ACS Catalysis (July 2016). 

Article III: Gerard Santiago et al. Rational engineering of multiple active sites 

in an ester hydrolase. Biochemistry (March 2018). 

Article IV: Gerard Santiago et al. PluriZyme: catalytic and structural advantages 

of having two active sites in an enzyme (work in revision). 

 

Publications not included in the thesis: 

 

Article V: Isabel Pardo et al. Re-designing the substrate binding pocket of 

laccase for enhanced oxidation of sinapic acid. Catalysis Science and 

Technology (December 2015) 

Article VI: Cristina Coscolín et al. Controlled manipulation of enzyme 

selectivity through immobilization-induced flexibility constraints. Applied 

Catalysis A: General (August 2018). 

Article VII: Felipe de Salas et al. Structural and biochemical characterization of 

high-redox potential laccase engineered in the lab and comparison with the 

fungal wild-type (work in revision).  

Book chapter I: O2-dependent heme enzyme. Modeling O2-dependent heme 

enzymes: a quick guide for non-experts (October 2018). 
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3.1. Determinants and Prediction of Esterase Substrate Promiscuity 

Patterns 
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In Chapter 3: Results a very accurate and complete description of different 

enzyme-related studies has been presented, with both computational and 

experimental work. In an attempt to facilitate comprehension, the work has been 

summarized in the current chapter.  

 

4.1. Determinants and Prediction of Esterase Substrate 

Promiscuity Patterns 

 

Promiscuity is an enzymatic characteristic which defines the substrate scope of a 

biocatalyst and it has a potential industrial interest. The prediction of substrate 

promiscuity from sequence and structural data remains to be elucidated, existing 

only experimental alternatives which are expensive in terms of costs and 

resources and time-consuming. To address this gap, we have used the substrate 

specificity of a set of 145 diverse microbial esterases against a library of 96 

substrates. 

 

To rationalize enzymatic substrate ranges, we performed ligand migration 

studies with PELE (Borrelli et al., 2005) in order to study the behavior of two 

(crystallized) esterases with very different substrate promiscuity values (5JD4: 

77 substrates and 5JD3: 10 substrates), present in the data set and isolated from 

the same environment. Substrate migration simulations with PELE (Fig. 4.1) 

reveals two major facts: a significantly better binding profile and a reduction in 

the solvent accessible surface area (SASA) for 5JD4. These differences in 

enzyme-ligand interaction can be explained by the catalytic triad structural 

environment:  5JD4 has a wide buried active site, while, 5JD3 has a surface-

exposed catalytic triad. 

 

https://paperpile.com/c/6SW6g6/M8Oy
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Figure 4.1: Substrate migration with PELE for 5JD4 (red) and 5JD3 (blue). 

Panel A plots binding energy vs. serine-substrate distance and panel B substrate 

SASA vs. serine-substrate distance. 

 

These results and the previous crystal inspection drive us to the following first 

assumptions about promiscuity: 

 

1) Promiscuous enzymes require “large” buried hidden cavities. 

2) Solvent exposure of key residues leads to low promiscuity values. 

 

The previous two assumptions can be translated into two major concepts, cavity 

area and catalytic residues SASA. In order to look for a correlation between 

these two values and enzymatic promiscuity, we started evaluating the crystal 

structures present in the set (10 crystals). Cavity volume was calculated using 

Fpocket (Le Guilloux, Schmidtke, & Tuffery, 2009) and catalytic residues 

SASA with GetArea web-server (Fraczkiewicz & Braun, 1998). Importantly, 

with the ratio of these two values (cavity volume/SASA) it is possible to classify 

between promiscuous and non-promiscuous enzymes with high accuracy (100 

%): when this value (called Effective Volume) is higher than 62.5 Å
3 
the enzyme 

hydrolyze 20 or more different substrates, considering the enzyme promiscuous 

(Fig. 4.2).    

 

https://paperpile.com/c/6SW6g6/zZ3N
https://paperpile.com/c/6SW6g6/iTXz
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Figure 4.2: Cavity volume divided SASA ratio for dataset crystals (promiscuous 

in red non-promiscuous in blue). The inner plot is a zoom of the non-

promiscuous region.   

 

With this information, the analysis was extended to the remaining 135 esterases 

without a crystal structure. Homology modeling was used for structure 

prediction, followed by cavity volume and SASA calculation, and a general 

workflow was established (Fig. 4.3). Again the combination of both parameters 

classifies promiscuous enzymes with high accuracy (96%) (Fig. 4.4).  

 

 

Figure 4.3: Effective Volume calculation workflow. 
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Figure 4.4: Effective volume relation with the number of compounds 

hydrolyzed for all dataset esterases (promiscuous in red non-promiscuous in 

blue).  

 

The analysis was extended to another enzymatic family, haloacid dehalogenase 

phosphatases (HAD-phosphatases) C2 cap members, with similar success ratios 

(Fig. 4.5). Although a threshold could not be unambiguously established, 

sequences with the top 10 effective volumes belong to moderate-high to high 

promiscuity enzymes. 
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Figure 4.5: Effective volume for HAD-phosphatases dataset (promiscuous in 

red non-promiscuous in blue). 

 

4.2. Computer-Aided Laccase Engineering: Toward Biological 

Oxidation of Arylamines 

 

In Chapter 3.2, we introduced the rational design of laccase for arylamines 

oxidation. Those compounds, like aniline, have many industrial applications 

(paints, isolating layers, etc.) and the oxidation relies on harmful chemical 

compounds. Laccases are multicopper enzymes capable to oxidize a broad 

variety of molecules (including aniline) with soft-acids as the buffer, but the 

production of conductive polyaniline (PANI) remains a major issue for those 

enzymes.  

 

The production of conductive polyaniline requires the presence of strong 

oxidation agents and a very low pH (around 3), where aniline monomers are 

protonated  (Fig. 4.6). Laccases have activity in acidic pH, but the tests with 

wild-type enzymes (like PM1L) and chimeric variants (like 7D5) hold a really 
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low activity over aniline, making the biocatalysis not a suitable option for 

industrial purposes. 

 

 

 

 

Figure 4.6: Chemical conductive polyaniline production (Mentus, Cirić-

Marjanović, Trchová, & Stejskal, 2009). 

 

Combining classical mechanics, PELE, and quantum methods (QM/MM), we 

developed a new 7D5 variant doubling PANI production. At pH 3 aniline 

monomers are protonated, thus the ligand diffusion in PM1L and 7D5 

significantly difficult due to the presence of the T1-copper, also positive charge.  

Although, the introduction of two mutations (N236D and N207S) modifies the 

binding site electrostatic environment to the ligand special needs, favoring the 

electron transfer of the substrate. This was also translated into improved 

interactions energies, reduced donor-acceptor distance and SASA (Fig. 4.7). 

QM/MM calculations (Qsite (Murphy, Philipp, & Friesner, 2000; Philipp & 

Friesner, 1999)) revealed improved spin densities for the mutant variant 

compared to 7D5 and PM1L (Table 4.1). 

https://paperpile.com/c/6SW6g6/SVfr
https://paperpile.com/c/6SW6g6/SVfr
https://paperpile.com/c/6SW6g6/bKB0+KQ86
https://paperpile.com/c/6SW6g6/bKB0+KQ86
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Figure 4.7: Binding energy profiles with aniline monomer for 7D5 (panel A) 

and the double mutant (DM) (panel B).  

 

Table 4.1: Spin density and kinetic values for arylamines oxidation for 7D5 and 

DM. 

System SP (%) Kcat (s
-1

) Km (mM) 

7D5 + ANL 12 10.1 28 

DM + ANL 26 22.6 59.3 

7D5 + DMPD 39 459 1.7 

DM + DMPD 68 741 1.2 

7D5 + PPD 32 14.7 3.7 

DM + PPD 46 20.8 3.5 

7D5 + ABTS 23 291 0.0042 

DM + ABTS 40 570 0.01 
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Experimental validation was successful, the new mutant had an enhanced 

activity over aniline and other arylamines, like Dimethyl-4-phenylenediamine 

(DPMD) or p-Phenylenediamine (PPD), and over a classical laccase redox 

mediators like 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 

following “in silico” cross-validation of these molecules lead to improved spin 

densities, as was previously observed for aniline monomers (Table 4.1). The 

computational hypothesis is that a better ligand placement in the binding site 

induced by the electrostatic environment modification caused by the introduced 

mutations is leading to the enhanced activity. As observed in Figure 4.8, the 

aniline monomer placement towards the T1-copper is far improved in DM 

variant. Moreover, the improvement of aniline oxidation leads to two times 

increasing PANI production (Fig. 4.9).  

 

 

Figure 4.8: Aniline monomer placement in 7D5 (panel A) and DM (panel B) 

active site. 
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Figure 4.9: 7D5 and DM polyaniline production comparison. 

 

4.3. Rational Engineering of Multiple Active Sites in an Ester 

Hydrolase 

 

In previous chapters, we have discussed the advantages of computational 

modeling in enzyme engineering. After our laccase design, we challenge our 

methods with more complex ideas. Previous investigations in “de novo” design 

have proved possible the creation of artificial active sites in non-catalytic protein 

scaffolds (Kiss et al., 2013). Instead of this already tested approach, in this 

project, a disruptive idea (with few similar successful attempts, where 

incomplete enzyme family motif were functionalized through rational design 

(Shu et al., 2016)) was developed: the introduction of an artificial active site 

inside a currently functional enzyme to enhanced catalytic performance due to 

two fully functional active sites (Fig. 4.10). 

 

https://paperpile.com/c/6SW6g6/ila7
https://paperpile.com/c/6SW6g6/PSbH
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Figure 4.10: Two active site concept from a structural point of view. 

 

As mentioned in Chapter 1, serine-hydrolases are extensively used enzymes for 

different industrial purposes. The catalysis is based in three amino acids, the 

catalytic triad, and requires water as the only cofactor.  We hypothesized that 

this kind of catalytic site could be replicated in other protein areas, producing an 

artificial active site inside the existent enzymatic scaffold. 

 

In previous research (Chapter 3.1), we worked with a huge variety of esterases 

and from this dataset, we selected one with a solved crystal structure and 

industrial potential, following these two criteria EH1 was selected (PDB code: 

5JD4). EH1 is a high activity serine-esterase with a broad substrate scope.  
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By applying PELE we explored the complete protein surface space looking for 

non-catalytic binding regions where a general esterase ligand presents a good 

interaction profile. Applying general modeling software of visualization, these 

regions can be functionalized and turned into proper active sites (Fig. 4.11) 

introducing two mutations (E25D and L214H). 

 

  

Figure 4.11: General workflow to generate PluriZymes. 

 

Further substrate migration reevaluation, proved this new active site capable of 

holding catalytic positions (Fig 4.12) mimicking the binding modes present in 

wild-type serine-hydrolases. Finally, the experimental validation has shown 

activity over 24 different esters in the engineered active site.   
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Figure 4.12: Artificial active site interaction with an ester molecule. 

 

Table 4.2: Kinetic values for the native EH1 and the engineered forms, with 

only the artificial active site active (EH1B ) or both, activated (EH1AB).
 

  

Enzyme variant KM (μM) kcat (min
-1

) kcat/KM (s
-1

M
-1

) 

EH1A (for pNPP) 146 ± 27 3853 ± 23 4.4 x10
5
 

EH1B (for pNPP) 267± 20 263 ± 16 x 10
-3

 16.4 

EH1AB (for pNPP) 485 ± 21 211 ± 8 7250 

EH1A (for phenylpropionate) 964 ± 24 2797± 98 4.8 x10
4
 

EH1B (for phenylpropionate) 752± 20 1.49 ± 0.93 33.0 

EH1AB (for phenylpropionate) 942 ± 17 267 ± 15 4720 

 

Despite the success, the overall catalytic activity was really low (Table 4.2) and 

with a negative effect when both sites were working at the same time. Probably, 

this undesired effect is due to the proximity of both active sites.   
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4.4. PluriZyme: catalytic advantages of having two active sites 

in an enzyme  

 

In the previous sub-chapter 4.3, we have discussed the design of an enzyme with 

multiple active sites and, despite the initial success, the final enzyme didn’t 

introduce any catalytic advantage. Thus, new strategies were designed in order 

to improve the performance of the engineered active site: 

 

1) Improving the first design (Chapters 3.3 and 4.3) by computer-aided 

enzyme engineering. 

2) Moving the engineered active site as far as possible of the original one 

in another esterase model. 

  

Looking into the previous design molecular dynamics output, a potential 

mutation spot was identified. Arginine 23 (see Fig. 4.13A) is really close to the 

engineered catalytic triad, reducing the effective volume and kidnapping the acid 

residue. The position was mutated for all possible short amino acids and the 

resulting enzyme-ligand interaction evaluated.  

 

Mutation R23G was the most promising because it produced the best binding 

energies, opening the available reaction space, increasing substrate promiscuity 

(Chapter 3.1) and avoiding all interaction between residues 23 and 25 (Fig. 

4.13). Further, 250 ns molecular dynamics revealed an improvement of distances 

between the three catalytic residues (Table 4.3) caused by the introduced R23G 

mutation. 

 



206 

 

Figure 4.13: Two representative snapshots of EH1B (A) and EH1B1 (B) 

catalytic triads from the molecular dynamics simulations, where we clearly 

observe the movement in Asp 25 as a result of the R23G mutation.  

 

Table 4.3: The lower panel indicates the average distances between key catalytic 

amino acids obtained for both species along 250 ns molecular dynamics for the 

original PluriZyme (AB) or the one including R23G mutation (AB1). 

 EH1AB EH1AB1 

Ser 211-His 214 Distance 

(Å)  

5.2 ± 1.8 3.4 ± 1.5 

Ser 211-His 214 Distance 

(Å) 

8.4 ± 1.6 5.5 ± 1.4 

 

In silico results were experimentally tested, the new enzyme variant was far 

more efficient than the wild-type, enhancing the activity of the artificial catalytic 

triad 5000-fold, maintaining wild-type substrate scope, and gaining additivity 

when both active sites are working at the same time. Furthermore, the obtention 

of the crystal structure, with and without ligand (PDB codes: 6I8D, 6I8F), 

proved the performance of the designed enzyme. 
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Moreover, the design was extended to another ester hydrolase, EH102 (PDB 

code: 5JD3), proving the reproducibility of the multiple active site addition. To 

avoid competition between active sites, the engineered one was placed as far as 

possible of the original. Following the same protocol applied in Chapter 3.3, a 

non-catalytic binding site was identified, activated introducing two mutations 

(the required histidine was already there) and retested aiming for catalytic 

positions in the engineered place (Fig. 4.14).  
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Figure 4.13: EH102 PluriZyme computational design steps. First (top left) 

looking for a non-catalytic active site and then create (down) and evaluate (top 

right) the artificial catalytic triad. 

 

The following experimental validation showed activity for the engineered active 

site over 19 substrates, expanding total enzyme substrate scope up to 26 different 

esters, obtaining activity over 7 new substrates. Moreover, enhancing catalytic 

performance through additivity when both active sites are working at the same 
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time was also obtained in this ester hydrolase. As an interesting effect, the new 

enzyme gains S-enantioselectivity, exclusively hydrolyzing ethyl-S-lactate.          
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Chapter 5: Conclusions 
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In conclusion, this thesis has been driven to the fulfilment of previously 

presented aims (Chapter 2). Applying state-of-the-art computational modeling 

methods, our results successfully represent the importance of “in silico” research 

in enzyme engineering efforts and enzymology studies in general. The 

increasing computational power available and the effectiveness of the provided 

results make computer-aided enzyme design a promising tool for industrial 

applications.  

 

Besides, the main conclusions of this thesis are: 

 

1) Elucidate the basic principles of enzymatic promiscuity in esterases: 

The study of esterases structural parameters has successfully lead to the 

effective volume definition. This new structural parameter results from 

the combination of active site cavity volume and the solvent accessible 

surface area (SASA) of the catalytic residues. The effective volume 

allows a very accurate (> 96%) substrate promiscuity separation in 

serine hydrolases. 

 

Furthermore, the calculation has been extended to another enzymatic 

family, HAD-phosphatases, with similar qualitative results to separate 

between promiscuous and non-promiscuous enzymes.    

 

2) Computer-aided rational enzyme design: we “in silico” engineered a 

laccase to obtain an enhanced mutant variant. The resulting tailored 

enzyme was “in vitro” tested and validated. The laccase variant obtained 

was  more active for different types of arylamines and reaction 

mediators, specifically  a two fold enhanced production of conductive 

polyaniline (a high-value polymer of costly and harmful production) was 

observed.  
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3) Designing of novel enzymes: During the thesis, we successfully 

developed, for the first time, an esterase PluriZyme. These new unique 

enzymes hold two fully functional catalytic triads. A computational 

protocol was set up and tested with an esterase. The resulting variant 

was “in vitro” tested and lead to a functional PluriZyme, with two 

working catalytic triads. 

 

After the first attempt, the original PluriZyme was improved with 

computer-aided rational design. A single point mutation was “in silico” 

tested and the resulting variant was really promising. The final 

PluriZyme appears to be additive (enhancing catalytic performance 

several thousands of times), enantioselective and with broader optimal 

working temperature. Moreover, the concept was reproduced in another 

esterase with very promising results.     
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