UNIVERSITAT POLITECNICA
n: DE CATALUNYA

UNIVERSITAT POLITECNICA DE CATALUNYA
TEORIA DEL SENYAL I COMUNICACIONS

This thesis is submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy (PhD)

COMPUTER VISION BEYOND THE VISIBLE:
IMAGE UNDERSTANDING THROUGH LANGUAGE

by AMAIA SALVADOR AGUILERA

Advisor: Xavier Giré-i-Nieto
Co-advisor: Ferran Marqués Acosta
Barcelona, May 2019

Abstract

In the past decade, deep neural networks have revolutionized computer vision. High
performing deep neural architectures trained for visual recognition tasks have pushed the
field towards methods relying on learned image representations instead of hand-crafted
ones, in the seek of designing end-to-end learning methods to solve challenging tasks,
ranging from long-lasting ones such as image classification to newly emerging tasks like
image captioning.

As this thesis is framed in the context of the rapid evolution of computer vision, we
present contributions that are aligned with three major changes in paradigm that the
field has recently experienced, namely 1) the power of re-utilizing deep features from
pre-trained neural networks for different tasks, 2) the advantage of formulating problems
with end-to-end solutions given enough training data, and 3) the growing interest of
describing visual data with natural language rather than pre-defined categorical label
spaces, which can in turn enable visual understanding beyond scene recognition.

The first part of the thesis is dedicated to the problem of visual instance search, where
we particularly focus on obtaining meaningful and discriminative image representations
which allow efficient and effective retrieval of similar images given a visual query. Contri-
butions in this part of the thesis involve the construction of sparse Bag-of-Words image
representations from convolutional features from a pre-trained image classification neural
network, and an analysis of the advantages of fine-tuning a pre-trained object detection
network using query images as training data.

The second part of the thesis presents contributions to the problem of image-to-set pre-
diction, understood as the task of predicting a variable-sized collection of unordered
elements for an input image. We conduct a thorough analysis of current methods for
multi-label image classification, which are able to solve the task in an end-to-end manner
by simultaneously estimating both the label distribution and the set cardinality. Further,
we extend the analysis of set prediction methods to semantic instance segmentation, and
present an end-to-end recurrent model that is able to predict sets of objects (binary
masks and categorical labels) in a sequential manner.

Finally, the third part of the dissertation takes insights learned in the previous two parts
in order to present deep learning solutions to connect images with natural language in the
context of cooking recipes and food images. First, we propose a retrieval-based solution
in which the written recipe and the image are encoded into compact representations that
allow the retrieval of one given the other. Second, as an alternative to the retrieval
approach, we propose a generative model to predict recipes directly from food images,
which first predicts ingredients as sets and subsequently generates the rest of the recipe
one word at a time by conditioning both on the image and the predicted ingredients.

Acknowledgments

This thesis has come into being thanks to the contributions and the support of many
people, who I can only but thank for accompanying me along this journey.

First, I must thank my advisor Xavier Gir6 for all these years of unconditional support,
and for believing in me from the very first day. I am thankful to him for peaking my
curiosity for computer vision almost seven years ago now, and for his patience in teaching
me how to do research since then. I am grateful to him for his contagious enthusiasm
and for always seeing the bright side, no matter what. I sincerely want to thank him for
encouraging me to do things and go places I could have never imagined. I am certain
that in many ways, these experiences have shaped me into the person I am today.

I would also like to express my most sincere gratitude to my co-advisor Ferran Marqués,
for his wisdom and for the consistently valuable advise he has given me along the years.

I wish to broadly acknowledge all the colleagues that I have crossed paths with at UPC-
from the ones who have come and gone to the ones that remain here still, thank you for
making work enjoyable even in the most nerve-racking moments. A special thanks goes
to Santi, for squeezing my brain with your crazy thoughts and for sharing your ideas
with no filters. To Miriam and Victor, thank you for showing up one day and staying—
you made the bumpy road a little easier to handle. And to Miriam in particular, thank
you for getting me so well, and for our countless never ending chatters I can’t seem to
get enough of. Finally, to Eva: I am thankful that I got to go through this adventure by
your side, from the early days when we clearly didn’t know what we were doing, until
today. I hereby follow your steps.

I acknowledge that this thesis would not have been possible without the financial assis-
tance of the Image Processing Group (GPI) at UPC and the Spanish Government through
the FPI grant and the projects TEC2013-43935-R and TEC2016-75976-R. I must also
acknowledge Albert Gil and Josep Pujal, for setting up and maintaining the computing
server at GPI, and also for the high-quality technical support they steadily provide us
with. It is thanks to them that we get to only think about research.

I would like to extend thanks to colleagues, advisors and friends that I met and learned
from during my internships at INP-ENSEEIHT, Insight-DCU, NII, MIT-CSAIL and
FAIR. T must specially thank Vincent Charvillat, Axel Carlier, Oge Marques, Kevin
McGuinness and Noel O’Connor, for showing me the wonders of collaborative research
before I even started the Phd. I sincerely want to thank Shin’ichi Satoh and Antonio
Torralba, for welcoming me to join their labs for a few months and providing me with
wonderful learning experiences. Finally, my deepest gratitude goes to Adriana Romero
and Michal Drozdzal for sharing their knowledge with me, and most importantly for
guiding me on the right path when I most needed it.

iv

I also want to thank my friends, who make me enjoy life at its finest and whose support
has kept me afloat through hard times. Thanks to Helena, for always listening to all my
monologues, but mostly for seeing the world as I do. To Mireia, thank you for always
being there when I need you, and for your inexplicable ability to still make me have
fun, laugh and even sometimes behave like a teenager. A big thanks goes to Antonio,
Ricard and Dani, for all the trips together and those that will come. I also wish to thank
Guillem, Sergi, Xavi, Tamara, Marti, Mireia, Marina and Quique, for making me feel at
home when I’'m around you.

Last but not least, I would like to thank my family, for putting up with me and supporting
me in every sense of the word. I want to thank my brother Emili, for all the silliness
and the five-year-old jokes that luckily nobody else understands. To my father Emilio,
thank you for silently looking out for me, and for always having the solution to all my
problems. Finally, I thank my mother Josefa, for being the source of all the inspiration
I ever needed in life, and for teaching me everything that matters.

Contents

0.1 Motivation e e 2
0.2 Deep Learning e 6
I Visual Instance Search 17
1 Introduction 19
1.1 Content-based image retrieval o o0 19
1.2 Imstance Search 20
1.3 Related Work 21
1.4 Datasets e e 23
1.5 Metrics oL 23
2 Bags of Deep Visual Words 25
2.1 Bags of Deep Local Features. 26
2.2 Image Retrieval Pipeline Lo 27
2.3 Experiments. 28
2.4 Conclusion e 34
3 Object Detectors for Instance Search 35
3.1 ConvNets for Object Detection 36
3.2 Deep Representations for Images and Regions 37
3.3 Fine-tuning Faster R-CNN 38
3.4 Image Retrieval Pipeline oL, 38
3.5 Experiments. L 39
3.6 Conclusion 45
Summary 47
IT Image-to-Set Prediction 49
4 Introduction 51
5 Multi-label Image Classification 53
5.1 Related Work 54
5.2 Image-to-Set Prediction Methods 55
5.3 Experiments. e 59
5.4 Conclusion e 64
6 Recurrent Instance Segmentation 65

6.1 Related Work e 66

vi

6.2 Model e 67
6.3 Experiments. e 70
6.4 Conclusion e 78
Summary 79
IIT Image-to-Recipe Prediction 81
7 Introduction 83
7.1 Food Understanding 84
7.2 RecipelM Dataset 85
7.3 Language Modeling 86
7.4 Text Representations 88
7.5 Language and Vision Lo oo 89
8 Recipe Retrieval 93
8.1 Methodology 93
8.2 Experiments. 97
8.3 Conclusion 103
9 Recipe Generation 105
9.1 Methodology e 106
9.2 Experiments. 109
9.3 Conclusion 115
Summary 117
Conclusions 119
Publications 121

Bibliography 123

Introduction

Vision (or visual perception) is the process of discovering from images what is present
in the world, and where it is located [132]. As humans, we are able to seamlessly un-
derstand what we see: we identify objects and their relationships, which allows us to
infer knowledge from what we perceive and interact with. Vision has been studied for
centuries [148] with the goal of understanding how the visual system works and even
mimic its behavior with computer programs.

Computer vision is the scientific field that studies the theory behind artificial systems
that are able to extract relevant information from images. The foundations of computer
vision started in 1963, with the first attempt to extract edge-like 3D structures from 2D
views of polyhedrons [171]. In 1966, researchers from MIT wrote a project proposal [154]
where the goal was to construct an artificial visual system that could identify objects
in images. This project was intended to be solved over the course of a single summer.
Their optimism can perhaps be explained by the numerous computer programs involving
logical and algebraic operations that succeeded at the time. Paradoxically, it turned
out that the most difficult human skills to reverse engineer are those that we perform
unconsciously [142]. What started as a short-term project in the 1960s later evolved into
an entire research field that has been studied for decades and, despite great progress has
been made, it still remains unsolved.

Early research in computer vision in the 1970s focused on extracting 3D geometrical
information from images with the purpose of understanding their contents. Low-level
computer vision algorithms such as edge and corner detection were extensively studied
in that decade. One of the revolutionary ideas in computer vision was the bottom-up
representation of images [132], in which lower-level image representations served as in-
termediate steps to compose a 3D model representation of the scene. Insights from [132]
shifted the field of computer vision towards hierarchical image representations in the
1980s [126, 23]. Since the 1990s, the computer vision field significantly moved towards
the design of algorithms that aimed at recognizing objects directly from 2D image repre-
sentations, thus bypassing the previously mandatory step of obtaining 3D object models.
Instead, objects and their parts were encoded with engineered representations extracted
from still images [202, 127, 44, 58]. In the 2000s, the emergence of curated image datasets
[54, 177] allowed the benchmarking of computer vision algorithms.

Computer vision witnessed a breakthrough in 2012, when Krizhevsky et al. [102] won
the ImageNet classification benchmark with a deep neural network trained on a GPU.
The neural network, which is commonly referred to as AlexNet, reduced the top-5 error
from 26% to 15.3%, a substantial improvement with respect to previous methods based
on hand-crafted features. Although neural networks had already been applied to image
classification tasks [106], AlexNet is known to be one the most influential works in com-

Who is wearing glasses? Where is the child sitting?
man woman fridge arms

The man at bat readies to swing at the
pitch while the umpire looks on.

Is the umbrella upside down? How many children are in the bed?
yes no 2

A horse carrying alarge load of hay and Bunk bed with a narrow shelf sitting
it underneath it.

two people sitting on it.

(a) MS COCO Captions [116] (b) VQA 2.0 [71]

Figure 0.1: Samples from (a) MS COCO Captions and (b) VQA 2.0 datasets. Figures
taken from [35] and [71], respectively.

puter vision, which led to a change in paradigm to move away from hand-crafted image
representations [127, 202] towards learned ones. Since then, deep learning algorithms
have vastly dominated the computer vision field, allowing astonishing improvements in
traditional applications such as image categorization [182, 81], image detection [64, 167],
or image segmentation [125, 79], but also opened the doors to new challenges such as
text-conditioned image generation [20, 224] image captioning [201, 215] or visual dialog
systems [45]. These new challenges have brought computer vision closer to research com-
munities studying other data modalities, such as natural language or audio and speech
signal processing, in the seek of intelligent systems that can simultaneously reason about
different modalities and infer knowledge from them.

Motivation

The concept of modality refers to the type of representation in which a certain informa-
tion is encoded, i.e. the way in which something occurs or is experienced. The human
experience of the world is inherently multimodal. As humans, we learn concepts by natu-
rally aligning the cues that we perceive, which allows us to use multiple sensors to extract
the same unit of information (e.g., we can tell a storm is coming from both a dark sky
and the sound of thunder strikes). Although we learn from exploring the world on our
own, we also acquire knowledge through communication with others. Human language
allows us to describe complex ideas, events or things that we observe in the world to
others. Humans can also imagine unseen concepts when described to them, and describe
what they see with words at different degrees of detail. While human language can be
expressed in multiple modalities (e.g., spoken language uses the auditive modality, sign
languages and writing use the visual modality, braille writing uses the tactile modality),
for the purposes of this thesis we refer to language in its written modality (text).

In the past few decades, computer vision has largely focused on designing algorithms to
recognize what is visible in images (i.e. naming and locating object entities in images),
being image classification [102, 182, 177, 81], object detection [64, 63, 167] or object
segmentation [125, 79] some of the tasks that have received most of the attention in
the research community. However, there is a lot more to a picture than meets the eye.

0.1 Motivation 3

% E Why is [person4a] pointing at [person1]’.7
] i [personail] that [person1 &Y] ordered the pancakes.
.

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things? i she plays music.

(a) CLEVR [92] (b) VCR [223]

Figure 0.2: Samples from (a) CLEVR and (b) VCR datasets. Figures taken from [92]
and [223], respectively.

Despite the great advances in fundamental tasks such as single-label image classification
to more challenging tasks such as semantic instance segmentation [79], while current state
of the art algorithms have been demonstrated to be useful for practical applications, they
only begin to scratch the surface of all the knowledge that can be derived from an image.

Achieving true visual understanding of complex scenes goes far beyond object recognition.
In this direction, the computer vision community recently witnessed the emergence of
new datasets and benchmarks to accommodate research in the intersection of vision
and language [116, 71]. Since then, tasks such as image captioning [201, 215, 128] and
visual question answering [129, 180] have gained attention in the community. While
these tasks require some degree of higher level reasoning in order to be solved, most
image captioning or visual question answering benchmarks are composed of samples in
which textual information is still heavily tied to the visual appearance of objects. Most
captions in the MS COCO dataset [116] simply enumerate the objects and describe their
surroundings, and many of the questions in the VQA 2.0 dataset [71] are related to object
appearance (see Figure 0.1 for examples). Thus, the performance of such methods is still
broadly bounded to the ability of current image recognition systems to name, locate
and count objects in images. Only recently, a few datasets requiring a higher degree of
reasoning have been released. Visual reasoning has been studied in controlled rendered
scenarios with the CLEVR dataset [92], which challenges computer vision algorithms
to answer questions requiring counting, comparing and logical reasoning capabilities.
One step further is the newly released Visual Commonsense Reasoning (VCR) dataset
[223], including questions related to real world objects and their relationships, which also
require higher level understanding of the scene in order to be answered. Figure 0.2 shows
examples of samples included in the CLEVR and VCR datasets.

The appearance of large scale datasets linking images with language [116, 3, 71, 223] aided
the development of methods that can generate sentences describing images [201, 128], or
answer questions about them [129]. Although these datasets introduce many intrinsic
challenges that push the boundaries of visual learning methods, these are constrained
to model interactions between language and vision involving short sentences (e.g., the
average caption in MS COCO contains 11.3 words). While recent works have attempted
at generating longer paragraphs (> 60 words) describing image contents [101], we argue
that language can be used for a lot more than just describing what is visible.

Visual and textual data naturally co-exist in the web: articles are often supported with
visual elements in digital newspapers, and social networks enable human interactions
about visual data in forum threads or comment sections. In these cases, the language
may not be necessarily describing the visual contents (e.g., opinions, jokes or topic discus-
sions often emerge from or are supported with images). Notably, all the aforementioned
datasets including paired image and textual data are either artificially generated [92] or
require the collection of human annotations [116, 3, 71, 223], which can be expensive
to obtain and are constrained by the limitations of the annotation tool and the anno-
tator. In contrast to human-curated datasets, web-based datasets [38, 151, 179] can be
obtained by crawling online resources, which make them cheaper to collect and can be
more representative of real world interactions of vision and language in different domains.

In this context, the research presented in this thesis closely follows and is influenced by
the evolution trends of the computer vision field over the past decade. The first two
parts of the thesis largely focus on both extracting and optimizing representations from
pre-trained neural networks for visual recognition tasks, which ultimately lead to the
development of methodologies that connect vision with language in the domain of food
images and cooking recipes.

Single-label Multi-label Description Recipe
pzi;v;e’fo‘i“ A pepperoni pizza Pepperoni Mushroom Pizza
mushrooms sitting on top of a Preheat oven to 475 degrees F. Spread sauce all over the

pizza cheese table olive_oil dough. Bake 10 minutes.

dough pepperoni

garlic mushrooms In 12-inch skillet, heat oil on medium. Add mushrooms and
tomato_sauce cheese garlic; cook 5 minutes, stirring.
dough
garlic Transfer to pizza. Top with pepperoni and cheeses
tomato_sauce

Bake 15 to 20 minutes or until crust is deep golden brown.

Sprinkle with oregano and red pepper, then drizzle with
honey.

Figure 0.3: Examples of language-based outputs for an input image.

The vast availability of online recipe collections along with example images presents the
possibility of training machines to link images and language directly from raw data.
Food data also offers new perspectives on topical challenges in computer vision like
finding representations that are robust to occlusion and deformation (as occur during
ingredient processing). As entities, images and language are connected with many-to-
many relationships. Just as there are many sentences that can be used to describe the
same image, different images can be described using the same words. In the context
of food images and cooking recipes, visual ambiguities caused by ingredient processing
during cooking frame the task of intuiting recipes from images as one that seeks to find a
plausible recipe rather than the true one (i.e. the one that was originally followed to obtain
the cooked dish in the image). Inferring a recipe from a picture is a task that pushes
machine algorithms beyond recognizing image contents and requires visual reasoning to
infer probable recipes that are coherent with image contents.

This dissertation is framed in the intersection of vision and language for cross-modal
learning, i.e. designing representations that extract common knowledge from the two
aforementioned modalities, which allow the recovery of one given the other. Cross-modal
learning is not to be confused with multi-modal learning, which involves processing and
relating information from multiple modalities for a common task (e.g., video classifica-
tion with audiovisual features). Figure 0.3 shows examples of possible language-based
information that can be obtained from an image. One can provide a single word that

0.1 Motivation 5

represents its broad semantics (single-label classification), a set of labels that are present
in the image (multi-label classification), a broad description of the image (image caption-
ing), or long structured text (e.g., a paragraph, a story or a cooking recipe).

The goal of this thesis is to design solutions that accomplish the latter, particularly in
the context of food data, i.e. learning cross-modal representations that allow obtaining
cooking recipes directly from food images. This thesis tackles the image-to-recipe problem
with two different strategies. The first one considers a retrieval solution, where the
challenge lies in obtaining compact representation of images and recipes that enable the
retrieval of one given the other. The second one takes a generation-based approach and
aims to predict a cooking recipe (the title, its ingredients and the cooking instructions)
directly from a food image.

Cooking recipes are structured long textual documents which are non-trivial to encode,
model or generate. For this reason, the first two parts of this thesis take intermediate steps
in both directions (i.e. retrieval- and generation-based approaches), which then lead to
the proposed solutions to the practical image-to-recipe application. All the contributions
of this thesis have their foundations on deep neural networks. For the sake of completion,
the technical background on deep neural networks is provided in Section 0.2. The expert
reader can choose to skip this section.

Part I Part IT Part III
Image Retrieval Image-to-Set Prediction Image-to-Recipe Prediction
Chapter 2 Chapter 5 Chapter 8
Off-the-shelf representations Multi-Label Image Classification Recipe Retrieval
Chapter 3 Chapter 6 Chapter 9
Query-optimized representations Instance Segmentation Recipe Generation

Table 0.1: Thesis structure.

Table 0.1 illustrates the structure of the remainder of this thesis. First, Part I is dedicated
to explore the suitability of using features extracted from hidden layers of deep neural
networks as image representations for content-based image retrieval. Both off-the-shelf
and query-specific deep representations are explored in Chapters 2 and 3, respectively.
Insights learned in this part of the thesis will be the basis of the retrieval-based image-
to-recipe approach (introduced in Chapter 8). Analogously, generating recipes directly
from images requires systems that predict textual documents as structured sentences,
which have been largely explored in the literature [190, 196, 128]. However, recipe gen-
eration also requires estimating ingredients, which may naturally be represented as a
sets (i.e. a variable-length collections of unique and interrelated constituents). With this
purpose, Part II of the thesis is dedicated to set prediction using deep neural networks,
exploring two different tasks, namely multi-label classification (Chapter 5) and semantic
instance segmentation (Chapter 6). Finally, transitional steps taken in Parts I and II lead
to Part III of this thesis, where the design and comparison of the two aforementioned
retrieval-based (Chapter 8) and generation-based (Chapter 9) image-to-recipe approaches
are presented.

Deep Learning

In the field of artificial intelligence, the study of algorithms that are capable of performing
a specific task by relying on patterns from data instead of hard-coded instructions is
known as machine learning. Machine learning enabled computers to tackle problems
which require the extraction of knowledge from the real world to make decisions given
raw data. Although there is a vast family of models in machine learning, such as support
vector machines, decision trees and bayesian networks, the best performing machine
learning solutions to many applications in vision, speech and natural language processing
are nowadays based on deep neural networks.

This section briefly introduces the necessary background on deep neural networks, in-
cluding common architectures that will be used in the three main parts of this thesis.

The Perceptron

The basic unit in a deep neural network is the neuron, also called the perceptron [174].
A perceptron takes several inputs {x1,...,z,} and produces a single output o;. Figure
0.4(a) provides an illustration of the perceptron model. The perceptron associates a
weight w; to each input, which together constitute the parameters of the function. The
output of the neuron is given by a linear combination of weighted inputs followed by a
non-linear activation function ¢:

oj:g0<2wi-$i+bj>, (1)
i=1

where b; denotes the bias term for the neuron j, which is a separate weight applied
to a constant xg input permanently set to 1. The variables w; and b; constitute the
parameters that define the behavior of the neuron. The bias term will be dropped from
future equations for simplicity.

The activation function ¢ usually takes the form of a sigmoid, hyperbolic tangent (tanh)
or rectified Linear unit (ReLU) [145], which are compared in Figure 0.4(b). In a binary
classification problem, the output of the neuron after a sigmoid activation o; € {0,1}
can be interpreted as a linear decision boundary classifier, which can be thresholded to
obtain the final decision y;:

1 ifo; >th;
Yyj = LT (2)
0 1f0j<thj

Multi-class classification problems can be handled with multiple neurons operating on
the same input. In this scenario, it is common to use the softmax non-linearity to obtain
a probability distribution over C' classes:

enet j

C net;’
Zj:l e

3)

05 =

where net; is the output of the 4% neuron before the activation function.

0.2 Deep Learning 7

weights
inputs 2

XI L Sigmoid
activation @~ 7|t Tanh
functon ni

X @\ net |ntput s -
ner;
] >
> @ 0 Zo
X @ activation
transfer [P DU et
: : function
- - -15
e R I
X
(a) (b)

Figure 0.4: 0.4(a): The Artificial Neuron (Source: Chrislb, Wikipedia). 0.4(b): Examples
of activation functions (taken from [204]).

In this case, the output O = {01, ...,0¢} is calculated by several neurons that operate on
the same input. Arrays of neurons operating on the same input are commonly referred to
as layers. In the multi-class classification problem described in this section, the network
is composed of two layers: the input layer (composed of values x) and the output layer
(composed of weights w).

Neural Networks

While linear classifiers are suitable when the input data is linearly separable, real world
data (e.g., image pixels), very rarely falls into this category, and instead requires more
complex functions that can tackle high-level decisions (e.g., object classification) from
raw inputs.

Neural networks are based on a collection of connected neurons, which are arranged in
layers. They are composed of an input layer and an output layer, which are connected
by a variable number of hidden layers. Neural networks can approximate complicated
functions mapping inputs to outputs by decomposing them into a series of simple trans-
formations learned in the parameters of each hidden layer. Increasing the number of
layers in a neural network is also referred to as increasing its depth, which is the reason
we conventionally refer to these models as deep neural networks, and we understand deep
learning as the field that studies the design and optimization of deep neural networks.

The arrangement of neurons in multiple layers leads to learned hierarchical representa-
tions of the input data, which is transformed in each layer with the purpose of becoming
linearly separable at the output layer. Once trained, these networks have been demon-
strated to learn data representations at different levels of abstraction (from edges and
corners to object parts) in each of their hidden layers [222].

Given a set of M training samples consisting of input and label pairs {(x(*, y(i))}f\io, a
deep neural network can estimate a mapping from inputs x to outputs y by adjusting
its weights 6 (weights w; and biases bj) according to a loss function £(y,y) using an
optimization algorithm, such as gradient descent. Given the loss function associated to
the outputs of a neural network, gradient descent updates the weights in the opposite

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

direction of the gradient:

Oir1 =0; — A\VL(Y,y), (4)

where) is the learning rate, which determines the magnitude of the step taken. Other
popular optimization algorithms that are often used instead of gradient descent are Adam
[99] or RMSProp [72]. The weights of any intermediate layer in a deep neural network
can be updated by using the chain rule to propagate the gradient of the loss back to
the first layer (known as the backpropagation algorithm [176]). In practice, obtaining
the gradients for a loss function computed on all training samples M is computation-
ally intractable for large-scale datasets. For this reason, mini-batch Stochastic Gradient
Descent [170] is used instead, where the gradient is estimated on a batch of N training
samples. The process of updating the weights of the model so that it gets better at a
particular task, whose performance is evaluated with a loss function £(g,y), is what we
understand as learning.

Feed-forward Neural Networks

The simplest neural network is the multi-layer perceptron (MLP), in which each layer
is composed of several neurons, each of them connected to all neurons in the previous
layer. Layers that fulfill this property are commonly called fully connected layers. Given
the output of its previous layer in a neural network: hg_q € RDi-1 (where Dj_; denotes
the number of neurons in layer i — 1), the output of the the next fully connected layer
hi € RPk, in matrix notation, is given by:

hi =Wl hy_q, (5)

where W;, € RPx-1%DPk are the weights of the &k fully connected layer.

As more hidden layers are added to an MLP, the amount of weights of the neural network
increases very quickly, which leads to high-capacity models that exhibit poor generaliza-
tion capabilities. Further, fully connected layers do not exploit the structure of the input
data in any way (all inputs are connected to all outputs), which may not be the optimal
approach when dealing with structured data such as images.

Convolutional Neural Networks

Convolutional Neural Networks, also known as Convolutional Networks, ConvNets, or
CNNs, are a particular kind of neural network especially suitable for processing data
with grid-like structure, such as images (an image is commonly represented as a 2-D grid
of pixel values). ConvNets can be understood as neural networks that use the convolution
operation in place of general matrix multiplication in their layers.

Given a one-dimensonal input x = {z1,...z4}, we can define a convolutional kernel with
an array of weights Wy, of size K, which can be applied to the input x with the following

0.2 Deep Learning 9

equation:

K
hie(i) = (We s 2) (i) = > a(i —m) - Wi(m), (6)

m=1

where * denotes the convolution operation.

RHXW)

In the case of two-dimensional inputs (e.g., a grayscale image I € , a convolutional

kernel defined by a matrix of weights W;, of size K; x K, is applied as:

K Ky

hi(i, §) = (Wi D) (i, §) = > Y 1(i—m,j —n) - Wi(m,n) (7)

m=1n=1

The convolutional layer is the generalization of applying multiple convolutional kernels
to an input of arbitrary dimensionality. As an example, a color image can be expressed
as I € REXWXC where C denotes the dimensionality, which equals to 3 for RGB images.
A convolutional layer with multiple kernels that can operate on top of image I is defined
by a matrix of weights Wy, of size K} x K, x C' x Dy, and is applied to image I with the
following equation:

K, K, C

hi(i,j,d) = Wy = I)(i, j,c) = Z ZZI(Z —m,j—n,c) Wi(m,n,c,d) (8)

m=1n=1 c=1

ONONONORO

Figure 0.5: Sparse vs Dense Connectivity. Figure from [69]. Neuron s3 is only affected
by inputs x4 in a convolutional layer (top), while it is affected by all inputs in a
fully-connected layer (bottom).

Since the kernel size is usually set to be smaller than the input size, replacing matrix mul-
tiplication operations with convolutions transforms fully connected layers into sparsely

10

connected ones, where neurons in an arbitrary layer are only connected to a few neurons
in its preceding layer. Figure 0.5 illustrates this property. Sparse connectivity also affects
the receptive field of a neuron, which is defined as the portion of the input that is visible
to each neuron in the network. While the receptive field of neurons in fully-connected lay-
ers corresponds to the full input, neurons in convolutional layers have a limited receptive
field, which increases with layer depth.

Further, convolutional layers use the same kernel weights at different locations in the
input. This can be observed in Equation 8, where the same kernel weight Wy (m,n) is
used to obtain the output of the convolutional layer in all positions (7, 7). Intuitively,
this is a desirable property to have when dealing with images as inputs, since a learned
feature extractor (e.g., an edge detector) can be useful in all image locations.

ConvNets have been successfully used in applications in computer vision. The first deep
convolutional neural network trained on the large-scale ImageNet dataset was AlexNet,
consisting of seven convolutional hidden layers (see Figure 0.6). Convolutional layers
are usually applied on zero-padded inputs in order to maintain the spatial dimension of
the input features. However, training a deep ConvNet on images of size 224 x 224 x 3
would require large amounts of memory. For this reason, max-pooling operations are
commonly applied between convolutional layers of deep ConvNets, which reduce the
spatial dimensionality of the convolutional feature maps as depth increases. Max-pooling
operations also increase the receptive field of neurons in subsequent layers.

Subsequent works proposed deeper architectures such as VGG [182] or ResNet [81], which
outperformed AlexNet by using more convolutional layers with smaller kernels [182] and
incorporating residual connections [81]. While originally trained for the ImageNet clas-
sification benchmark, these models have been widely used as feature extractors for other
image classification tasks, as well as for different computer vision applications (e.g., object
detection or segmentation).

The process of solving a task A by adapting or reusing a model that has been trained
for a task B is called transfer learning. Usually, transfer learning is conducted by fine
tuning a model, which is understood as the process of slightly modifying the weights of a
previously trained model, so that it can solve a different task. Depending on the amount
of available data, one can choose to change the weights of only a few or many layers of
the network.

Pre-trained deep neural networks are also used as feature extractors to encode images
into descriptive representations useful for other tasks whose outputs cannot directly be
modeled with a neural network (e.g., image retrieval). Altogether, transfer learning
strategies make it possible to use deep neural networks for applications for which large
amounts of data are not available for training. All methods presented in this thesis use
transfer learning, as they are built on top of neural architectures such as VGG16 [182] or
ResNet-50 [81], which have been pretrained for image classification on ImageNet [177].

Neural Networks for Structured Outputs

The previous sections have covered the basics of neural networks applied to classification,
where the desired output is a single categorical label. However, current deep neural
networks can be trained to perform more complex computer vision tasks, which require

0.2 Deep Learning 11

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8
£ - Pt - —
13x 13 x 384 13x 13 x 384 13x% 13 x 256
27x 27 x 256
55x% 55 %X 96 L
|| L | || 1000
227%x 227 X 3 4096 4096

Figure 0.6: The AlexNet architecture. Figure from [75].

output structures that go beyond one-dimensional vectors.

Structured output tasks involve the prediction of tensors containing multiple values which
are related to one another. Examples of computer vision applications that require struc-
tured outputs include semantic segmentation, where the goal is to provide a categorical
output to every pixel in an image, or image captioning, where a textual description must
be provided for an image. In semantic segmentation, decisions for neighboring pixels are
heavily correlated; in image captioning, the different words in the description must form
a valid sentence.

In this section, we review the particularities of two computer vision problems with struc-
tured outputs, namely dense prediction and sequence prediction. We highlight common
neural network models that are used to solve each of them, which are the main building
blocks in the contributions presented in this thesis.

Dense Prediction

In general terms, dense prediction refers to the process of providing an output for each
element in the input. In computer vision, input elements are image pixels, which turns
the dense prediction task into one that requires providing a decision (e.g., a scalar, or
a categorical probability distribution) for each pixel in the image. Dense prediction
in ConvNets was initially achieved by transforming fully connected layers from image
classification architectures into convolutional ones by re-arranging the weights of the
fully connected layer into those of a 1 x 1 convolutional layer. We illustrate this process
with an example on the AlexNet architecture [102]. In AlexNet, the first fully-connected
layer fc6 receives the output of the fifth convolutional layer convb, which corresponds
to a feature volume of size 13 x 13 x 5256. Layer fc6 outputs a vector of D = 4096,
which is achieved with a matrix of weights Wy € R9216x4096 Conversely, the same
output can be obtained with a convolutional layer with weights W onp6 € R6*6x256x4096
which has the same number of parameters as Wy.. Since the height and width of the
convolutional filter are set to be exactly the same as the input volume’s, the output would
be of dimension 1 x 1 x 4096. The same process is applied to subsequent fully connected
layers in the ConvNet. After this conversion, one can feed an image of higher resolution
to AlexNet, or remove pooling layers in order to obtain a bigger feature map in conv5.
Then, the output of converted layers applied to convbd would be a dense prediction.

12

“tabby cat”
E X '5%&'5‘6& 1‘)63(09%‘09@\000
2 Il

1

convolutionalization

v

0 00 Q0
7/6,0 &Qq &09 »\QQ

tabby cat heatmap
E
-

Figure 0.7: Convolutionalization of fully-connected layers. Figure from [125].

Figure 0.7 illustrates the convolutionalization process for fully-connected layers. Dense
prediction architectures are often designed to make use of convolutional features from
several layers to predict their output. This procedure is referred to as skip connections
(illustrated in Figure 0.8), which allow to recover lower level features from preceding
layers to refine the final prediction. The final output heatmap can be upscaled to image
resolution with bilinear interpolation or through a learnable upsampling (also known as
deconvolution or transposed convolution). ConvNets trained for the dense prediction task
are often called fully-convolutional neural networks. Dense prediction architectures will
be used in Chapter 6 of this thesis to predict object segments as elements of a set for
semantic instance segmentation.

32x upsampled
image convl pooll convZ pool2 conv3d pool3 conv4 poold conv poold conv6-7 prediction (FCN-32s)

16x upsampled

23 T
DOOMXIEI_ predici ('-165)
8x upsampled
4x conv’ prediction (FCN-8s)
2x poold []
pool3 | | |

Figure 0.8: Skip connections for dense prediction. Figure from [125].

Sequence Prediction

Fully-convolutional neural networks exploit the grid-like structure from images in order
to make a coherent dense predictions in their output. However, elements in structured
outputs can require different relationship patterns. One important family of structured
outputs are sequences. Although many problems in computer vision require dealing

0.2 Deep Learning 13

with input sequences (e.g., video analytics), for the purposes of this thesis we will focus
on computer vision problems in which the input is a still image, and the output is a
sequence. As previously introduced, one common problem in computer vision is image
captioning, where the task is to provide a textual natural language sentence for the
input image. Language is inherently sequential, since valid sentences are constructed in
particular word arrangements which make them meaningful. Modeling sequences with
neural networks is a challenging task, since it requires to retain information about past
predictions to infer subsequent ones. Models that enable such kind of feedback in their
input are known as auto-regressive neural networks. In this section, we briefly review two
kinds of auto-regressive neural networks that will be used in this thesis, namely recurrent
neural networks (RNNs) and attention-based models.

RNNs [53] can be understood as fully-connected networks that take two elements as
inputs: the current input at time-step ¢, and their own output at the previous time-step
t — 1. Thus, the output of a vanilla RNN for time-step ¢ is computed as:

A = g(U-2® 4 W hED) = g(U -2 + W g(..(U- 20D + W-hED), (9)

where W and U are the learnable parameters of the network. The same function g
with the same parameters U and W is applied at every time-step, which allows RNNs
to operate on sequences of any arbitrary length. RNNs are optimized with gradient-
based approaches using back-propagation to calculate the gradient of recurrent neurons.
The back-propagation algorithm applied to an unfolded RNN is called back-propagation
through time (BPTT). Figure 0.9(a) depicts the side and unfolded views of the compu-
tational graph for an RNN. Given the hidden state of an RNN at time-step ¢, a third
matrix of weights V is used to transform it into an output o), which is used to compute
the loss L) = L(y®,0®)), where y*) is the ground truth at time-step ¢ and £ is the
loss function (e.g., cross-entropy loss in the case of classification). While information
from previous time-steps is preserved in the hidden state, one common practice is to
use the actual output ol!=1) from the previous time-step as an additional input to the
RNN. Models that include such recurrent feedback from their outputs can be trained
with teacher forcing, a procedure in which the output o*=1) is replaced with the ground
truth =1 to be used as feedback at time-step ¢ during training. At test time, since the
correct output y*~1) is not available, it is approximated with o(*) instead. Figure 0.9(b)
illustrates the teacher forcing procedure.

One of the most critical problems with vanilla RNNs is that they are prompt to suffer
from vanishing or exploding gradients when unrolled for long sequences, due to their
recursive multiplicative operation in Equation 9. Variations of the vanilla RNN such as
the LSTM [82] and GRU [37] have been proposed in order to mitigate this problem.

Long Short Term Memory Networks (LSTM) [82] are a kind of RNNs specially
designed to better model long-term dependencies. LSTMs are composed of four functions
(also called gates) that interact with each other in a particular way in order to obtain
the " output h(*) given the input z(!) and the previous output A¢=1:

14

o = o(g(Ug - 2® + W, - ht=1)Y)
h®) = o® . tanh(C®)

LSTMs keep a cell state C*) which is transformed with the forget f®) and input i
gates, whose output is in the [0,1] range thanks to a sigmoid non-linearity. The forget
gate £ determines how much of the previous state C*~ we keep, while the input gate
i®) determines how much of the input will be added to the new state C*). Then, the
output gate o is applied to the new cell state to compute h®). Intuitively, LSTMs
decide whether the current time-step information matters or not, while the forget gate
decides what can be discarded from the previous cell state.

Gated Recurrent Unit (GRU) [37] often exhibits similar performance as the LSTM
but has fewer parameters, which is achieved by combining the input and forget gates into
a single update gate 2, and merging the hidden state and the cell state:

20 = o(g(U, - <>+W - REDY)
r® = o(g(Uy - 2® + W, . B0
A = tanh(g(Uy - 2 + Wy, ht D0y
RO = (1 — 2. plt= 1>+z<>.,;<t>

As it can be seen in their respective equations, LSTM and GRU compute their outputs
h®) mostly using additive operations between their gates and previous states, which

0.2 Deep Learning 15

contrasts with the multiplicative computation in vanilla RNNs (see Equation 9). Such
property allows LSTM and GRU to alleviate the problem with vanishing and exploding
gradients in RNNs. Figure 0.10(a) depicts the computation flow of vanilla RNN, LSTM
and GRU.

RNNs have been successfully applied to many natural language processing and com-
puter vision tasks, such as image captioning [201], video classification [51] or machine
translation[190]. Although LSTMs and GRUs were designed to work with long sequences,
they are still known to struggle with them, since a single embedding A®) stores the whole
history of previous outputs. RNNs are also slow to train due to their auto-regressive na-
ture both in training and inference (i.e. the output at time-step ¢ can only be computed
after all previous time-steps ¢ = {1, ...,t—1} have been obtained). In this direction, recent
works have proposed to replace RNNs with models using attention [196] or convolutions
[62] to capture temporal relationships, which speed-up training and achieve comparable
results. For the purposes of this thesis, we focus on the former, which will be used as a
major component for models developed in Chapters 5 and 9.

Attention mechanisms allow neural networks to focus on portions of the input in order
to predict an output. Given a set of inputs = of size n (which can represent n local
features extracted from an image), and the hidden state h®) of an RNN at time-step ¢,
the attention mechanism assigns a weight to each input vector x; as follows:

) g,
ot — elo(h) i)

DI RY UL

(10)

The function fg computes a similarity score between pairs of vectors (in the example
above, the similarity is computed between h(Y) and each local feature x;). This similarity
function can take multiple forms, although the most common are additive attention
fs(h® 2;) = vl - tanh(W, - [h®);2;]) [201, 215, 128] (where v, and W, are learnable
parameters), and dot-product attention fs(h®), z;) = % [196]. Finally, the output

vector ¢ is obtained by computing a weighted sum of input vectors using the attention
coefficients a:

) = Zaz(t) -1 (11)
i=1

While the same input representation z; is often used both to compute and apply attention
weights, it is possible to have separate representations of the same input data for each
operation. To accommodate for this, the nomenclature for attention mechanisms refers
to vectors x; used in Equation 10 as keys, and vectors x; in Equation 11 are called values.
The condition vector h(Y) used in Equation 10 is known as the query. Thus, attention
mechanisms operate on triplets of queries, keys and values: first, similarity scores are
computed between the query and the keys, which are then used to obtain ¢® as weighted
sum of the wvalues. Attention mechanisms have been widely used in the deep learning
literature, particularly for machine translation (where attention is computed over words
in the input sentence in order to decode each word in the output sentence) or image
captioning (where certain image regions are picked in order to predict each word in the
output description).

16

The term of self-attention refers to an attention mechanism that relates different positions
of the same data source (e.g., a sequence) to obtain a representation of its own elements.
Self-attention can be used as a replacement to recurrent neural networks, where instead
of keeping track of a hidden state along a sequence, each element to be predicted in the
sequence is represented as a weighted combination of its preceding ones. Self-attention is
used in a popular attention-based auto-regressive neural network called the Transformer
[196]. Given a source sentence x = (1, ..., %), the Transformer decoder conditions the
prediction of each word y; in the target sentence y = (y1,...,ym) by applying attention
over 1) previously predicted words <, and 2) context vectors e = {eq, ..., ex} extracted
from words in z. First, self-attention is computed by taking ¢;_1 as query vector, and
<t—1 as keys and values. After applying self-attention, attention over words in the
input sentence is computed by using the output of self-attention as query and c¢; as
keys and values. This process is repeated B times, where B is a hyperparameter and
denotes the number of transformer layers of the architecture. Figure 0.10(b) illustrates

the Transformer decoder architecture.
Output probabilities

Feed-forward

xN

GRU

(Add&Norm }
Attention

(Add&Norm }
Self-Attention

Add & Norm

Positional encoding

Embedding

Outputs (shifted right)

Figure 0.10: (b): Recurrent Architectures: RNN, LSTM and GRU. Figure from [152].
(b): The Transformer Decoder [196].

To achieve parallelization during training, the Transformer is trained with teacher forcing,
i.e. during training § = (start,yi, ..., Ym—1), which removes the dependency to previous
outputs and allows faster training times. Further, in order for the attention mechanism
to account for the word order in the sequence, each word token is augmented with an
indicator of the position it occupies (known as positional encoding). The Transformer
will be used in Chapters 5 and 9 as one of the model architectures to predict image labels,
ingredients and cooking instructions from still images.

Part 1

Visual Instance Search

17

Introduction

With the proliferation of ubiquitous cameras and Internet technology advances, billions
of people are nowadays immersed in the Web sharing and browsing photos and videos.
Visual media is currently the most common type of content in social media channels. As
of 2019, 300 million photos are uploaded daily on Facebook, and 300 hours of video are
uploaded every minute on YouTube!. Large scale data collections such as these ones are
nontrivial to organize in order to efficiently provide relevant results for a user query. For
this reason, and even though image search has been broadly explored since the early 90s
[175], it has become an important research area in the multimedia and computer vision
communities in the past decade. This part of the thesis is dedicated to the problem of
content-based image retrieval (CBIR), and proposes strategies that rely in representations
extracted from deep neural networks. This chapter introduces the aforementioned task,
presents datasets and evaluation metrics and reviews the related work.

Content-based image retrieval

Traditional image search engines typically index visual data based on its surrounding
metadata (e.g., titles, descriptions or tags). Metadata is, however, usually provided by
the user who uploaded the visual content, thus it may not always be available. Further,
textual information may be inconsistent with the visual content, or might not be com-
pletely describing its semantics. Such limitations of text-based image retrieval led to the
emergence of content-based image retrieval systems, which have greatly advanced in the
recent years.

Content-based image retrieval (CBIR) [185] aims at organizing and structuring image
datasets based on their content rather than their associated metadata. The most common
query technique in CBIR is the Query by example [237], in which the user provides an
example image or an image region to base the search upon. Methods presented in this
part of the thesis are developed assuming the query is always an image, an image region
(i.e. delimited with a bounding box), or a group of images representing the concept of
interest. Since the visual query is (in most cases) unknown beforehand, CBIR systems
must index database images in such a way that enables their retrieval given any visual
query. The representation of content is typically extracted from the image using computer
vision techniques, which condense the relevant information in the image into a fix-sized
representations that facilitate their indexing.

Early CBIR approaches described image contents using global features based on
color [191], shape [153] or texture [44]. Later on, methods relying on the aggregation of
local features [127] extracted from regions of interest in the image were proven to be more

"https://dustn.tv/social-media-statistics/ (Accessed on February 2019)

https://dustn.tv/social-media-statistics/

20 Introduction

effective for CBIR. Recently, since the emergence of deep learning in computer vision,
many works in the literature [11, 12, 192, 93, 178, 213] have replaced hand-crafted descrip-
tors with solutions based on off-the-shelf features extracted from a ConvNet, improving
performance in retrieval benchmarks. The typical image retrieval engine is composed of
two states: (a) an initial highly-scalable ranking mechanism on the full image database
and (b) a more computational demanding yet higher-precision reranking mechanism ap-
plied to the top retrieved items obtained in the first stage. This reranking mechanism
often takes the form of geometric verification and spatial analysis [88, 229, 134, 228],
after which the best matching results can be used for query expansion (pseudo-relevance
feedback) [7, 39].

Instance Search

Given a CBIR system, the user formulates a visual query for which the system must
return a list of images, ranked according to their similarity to the query. Now, what
does similarity mean? The notion of similarity is application dependent, and should
align with the user’s intention. Figure 1.1 shows examples of possible outcomes given
the same visual query. While system A seems to be focusing in the main object category
(“dog”) that is present in the query image, system B returns images of different breeds of
herding dogs, and system C is returning images including this specific dog (the fictional
character, Lassie). None of the three ranked lists is better than the other, in the sense that
all results are relevant to the query, at different semantic degrees. However, most works
on CBIR focus on the latter case, which illustrates the problem of instance-level image
retrieval (or instance search), which specifically constraints the search to the particular
instance of the query (e.g., a particular object, person or location).

Ranklng A:"dog"

o
Fal). i

Rankmg B herdmg dog"

Figure 1.1: Query similarity. Retrieved items for the same visual query using three
different search engines.

This part of the thesis presents two instance search methods which use deep neural
networks as the source to extract representations describing image contents. Chapter 2
proposes an efficient and scalable solution based on Bag of Words from activations of
a ConvNet pre-trained for image classification, and Chapter 3 explores the benefits of
using features from a ConvNet trained for object detection, which is fine-tuned for each
specific query.

1.3 Related Work 21

Related Work

This section reviews previous works on instance search, with a focus on aggregation
strategies based on hand-crafted features (Section 1.3.1), deep representations (Section
1.3.2) and reranking and query expansion strategies (Section 1.3.3).

Hand-crafted representations

Before the emergence of ConvNets in computer vision, state-of-the-art instance search
systems relied on representations based on the aggregation of local hand-crafted fea-
tures. The most common algorithm for local hand-crafted feature extraction is the
Scale-Invariant Feature Transform (SIFT [127]), which was designed to be invariant to
image translation, scaling and rotation. This representation encodes the orientation of
the image gradient at each keypoint location, which aggregates gradient orientations at
different grid locations surrounding the keypoint. Most retrieval pipelines rely on the
Hessian Affine keypoint detector [138] to provide relevant locations, and extract fea-
tures at each of location with SIFT [127] or its improved variant RootSIFT [7]. Then,
representations extracted from all keypoints are subsequently aggregated to obtain a fix-
length representation. The most widely used aggregation method is the Bag of Words
(BoW) [183], which has been subsequently enhanced with sophisticated techniques such
as query foreground/background weighting [227], asymmetric distances [234], or larger
vocabularies [158, 235]. While BoW only encodes the occurrences of each centroid in
the image, other aggregation techniques such as VLAD [89] and Fisher Vectors [157]
encode distances between centroid and assigned point coordinates in the quantization
space. These result in more informative but dense high-dimensional descriptors, which
must be combined with compression methods [235] for fast retrieval. In Chapter 2, we
revisit the Bag of Words encoding strategy and demonstrate its suitability to aggregate
CNN features instead of hand-crafted ones.

Deep Representations

Several authors have adopted deep representations for image retrieval. The first attempts
focused on replacing traditional aggregated hand-crafted local descriptors with features
from fully connected layers of a ConvNet pre-trained for image classification. In this
context, Babenko et al. [12] showed how such features can reach similar performance
to hand-crafted features encoded with Fisher Vectors for image retrieval. Razavian et
al. [164] later outperformed the state-of-the-art of ConvNet representations for retrieval
using several image sub-patches as input to a pretrained ConvNet to extract features from
fully connected layers at different locations of the image. Similarly, Liu et al. [124] used
features from fully connected layers evaluated on image sub patches to encode images
using Bag of Words.

A second generation of works reported significant gains in performance when switching
from fully connected to convolutional layers. Razavian et al. [178] performed spatial max
pooling on the feature maps of a convolutional layer of a pre-trained ConvNet to produce
a descriptor of the same dimension as the number of filters of the layer. Babenko and
Lempitsky [11] proposed a compact descriptor based on sum pooling of convolutional
feature maps preprocessed with a Gaussian center prior. Tolias et al. [192] introduce a
feature representation based on the integral image to quickly max pool features from local

22 Introduction

patches of the image and encode them in a compact representation. The recent work
by Kalantidis et al. [93] proposed non-parametric spatial and channel-wise weighting
schemes, which were applied directly to the convolutional features before sum pooling.

Several authors have tried to exploit local information in images by passing multiple
image sub patches through a ConvNet to obtain local features from either fully con-
nected [164, 124] or convolutional [68] layers, which are in turn aggregated using tech-
niques like average pooling [164], BoW [124], or VLAD [68]. Although many of these
methods perform well in retrieval benchmarks, they are significantly more computa-
tionally costly since they require an independent ConvNet forward pass for each of the
considered image patches, which slows down indexing and feature extraction at retrieval
time. An alternative approach is to extract convolutional features for the full image and
treat the activations of the different neuron arrays across all feature maps as local fea-
tures. This way, a single forward pass of the entire image through the ConvNet is enough
to obtain the activations of its local patches. Following this approach, Ng et al. [149]
propose to use VLAD [89] encoding of features from convolutional layers to produce a
single image descriptor. Arandjelovic et al. [6] choose to adapt a ConvNet with a layer
especially trained to learn the VLAD parameters.

The contributions presented in this part of the thesis also use convolutional features
extracted from a pre-trained ConvNet. In Chapter 2, we propose using a sparse, high-
dimensional encoding that better represents local image features, particularly in chal-
lenging instance search scenarios where the target object is not the primary focus of
the image. Chapter 3 proposes the use of an object detection ConvNet, to extract both
global and local convolutional features in a single forward pass.

Reranking Strategies

State of the art retrieval solutions often rely on an initial search over the entire database,
combined with a posterior reranking stage over the top-K elements retrieved in the first
step. The reranking stage usually involves methodologies based on spatial verification.
Zhou et al. [233] propose a fast spatial verification technique which benefits from the
BoW encoding to choose tentative matching feature pairs between the query and the
target image. Zhang et al. [228] introduce an elastic spatial verification step based on
triangulated graph model. Nguyen et al. [150] propose a solution based on deformable
parts models (DPM) [58] to rerank a BoW-based baseline. They train a neural network
on several query features to learn the weights to fuse the DPM and BoW scores.

Methods relying on deep representations have also explored spatial verification stages.
Razavian et al. [178] achieve a remarkable increase in performance by applying a spatial
search strategy over an arbitrary grid of windows at different scales. Although they
report high performance in several retrieval benchmarks, their proposed approach is very
computationally costly and does not scale well to larger datasets and real-time search
scenarios. Tolias et al. [192] introduce a local analysis of multiple image patches, which
is only applied to the top elements of an initial ranking. They propose an efficient
workaround for sub patch feature pooling based on integral images, which allows them to
quickly evaluate many image windows. Their approach improves their baseline ranking
and also provides approximate object localizations. They apply query expansion using
images from the top of the ranking after the reranking stage, although they do not use
the obtained object locations in any way to improve retrieval performance.

1.4 Datasets 23

In this direction, in Chapter 2 we take advantage of the BoW vocabulary to obtain
representations for image patches, which allow fast spatial search for reranking. For the
same purpose, in Chapter 3 we use representations from object proposals obtained with
an object detector.

Datasets

We use the following datasets to evaluate the performance of our algorithms:

Oxford Buildings [158] contains 5,063 still images, including 55 query images of 11
different buildings in Oxford. A bounding box surrounding the target object is provided
for query images. An additional 100,000 distractor images are also available for the
dataset. We refer to the original and extended versions of the dataset as Oxford 5k and
Oxford 105k, respectively.

Paris Buildings [159] contains 6,412 still images collected from Flickr including query
images of 12 different Paris landmarks with associated bounding box annotations. A set
of 100,000 images is added to the original dataset (Paris 6k) to form its extended version
(Paris 106k).

TRECVid Instance Search 2013 [184] contains 244 video files (464 hours in total),
each containing a week’s worth of BBC EastEnders programs. Each video is divided in
different shots of short duration (between 5 seconds and 2 minutes). We perform uniform
keyframe extraction at 1/4 fps. The dataset also includes 30 queries and provides 4
still images for each of them (including a binary mask of the object location). In our
experiments, we use a subset of this dataset that contains only those keyframes that are
positively annotated for at least one of the queries. The dataset, which we will refer to
as the TRECVid INS subset, is composed of 23,614 keyframes.

Figure 1.2 includes three examples of query objects from each of the three datasets.
While the three datasets are curated for the task of instance search, query objects from
both Oxford and Paris Buildings are roughly located in the center of the image, and are
much larger in proportion to the image size than those in TRECVid. Further, the context
surrounding an object to be found can significantly vary across videos in TRECVid (a
wooden bench or a no-smoking sign can be found in many scenarios), while it rarely does
in Oxford and Paris (buildings do not move). The particularities of the different datasets
must be taken into account when designing retrieval methods that are suitable for them.
As we will see in the remainder of this chapter, high-performing approaches for Oxford
and Paris can fail when directly applied to TRECVid due to the nature of the datasets.

Metrics

We evaluate the obtained rankings with the mean Average Precision (mAP) metric,
commonly used in information retrieval:

& AP(q)

mAP =
Q

(1.1)

24 Introduction

Figure 1.2: Retrieval datasets. Query examples from Paris buildings (top, 1-3), Oxford
buildings (top, 4-6) and TRECVid INS 2013 (bottom).

where AP(q) is the Average Precision for each query ¢, which is calculated as:

_ Sk P(k) x rel(k)

AP(q) N

Bags of Deep Visual Words

Before the consolidation of ConvNets as powerful feature extractors for computer vi-
sion tasks, most of the best performing instance search systems [150, 228, 233, 235]
were based on aggregating local hand-crafted features (e.g., SIFT) using bag of words
encoding [183] to produce very high-dimensional sparse image representations. Such
high-dimensional sparse representations have several benefits over their dense counter-
parts. High-dimensionality means they are more likely to be linearly separable, while
having relatively few non-zero elements makes them efficient both in terms of storage
(only non-zero elements need to be stored), and computation (only non-zero elements
need to be visited). Sparse representations can handle varying information content, and
are less likely to interfere with one another when pooled. From an information retrieval
perspective, sparse representations can be stored in inverted indices, which facilitates
efficient selection of images that share features with a query. Furthermore, there is con-
siderable evidence that biological systems make extensive use of sparse representations
for sensory information [107, 197]. Empirically, sparse representations have repeatedly
demonstrated to be effective in a wide-range of vision and machine learning tasks.

In this chapter, inspired by advances in ConvNet-based descriptors for image retrieval, yet
still focusing on instance search, we revisit the Bag of Words encoding scheme using local
features from convolutional layers of a ConvNet. This work presents three contributions:

e We propose a sparse visual descriptor based on a Bag of Local Convolutional Fea-
tures (BLCF), which allows fast image retrieval by means of an inverted index.

e We introduce the assignment map as a new compact representation of the image,
which maps pixels in the image to their corresponding visual words. The assignment
map allows fast composition of a BoW descriptor for any region of the image.

o We take advantage of the scalability properties of the assignment map to perform
a local analysis of multiple regions of the image for reranking, followed by a query
expansion stage using the obtained object localizations.

Using this approach, we present an image retrieval system that achieves competitive
performance in CBIR benchmarks and outperforms current state-of-the-art ConvNet
descriptors at the task of instance search.

The remainder of this chapter is structured as follows. Section 2.1 introduces the proposed
framework for BoW encoding of deep local features. Section 2.2 explains the details of our
retrieval system, including the local reranking and query expansion stages. Section 2.3
presents experimental results on three different retrieval benchmarks (Oxford Buildings,

26 Bags of Deep Visual Words

Paris Buildings, and a subset of TRECVid INS 2013), as well as a comparison to five
other state-of-the-art approaches. Section 2.4 presents the conclusion of this work.

Bags of Deep Local Features

The proposed pipeline for feature extraction uses the activations at different locations of
a convolutional layer in a pre-trained ConvNet as local features. A ConvNet trained for
a classification task is typically composed of a series of convolutional layers, followed by
a series of fully connected layers, connected to a softmax layer that produces the inferred
class probabilities. To obtain a fixed-sized output, the input image to a ConvNet is
usually resized to be square. However, several authors using ConvNets for retrieval [192,
93] have reported performance gains by retaining the aspect ratio of the original images.
We therefore discard the softmax and fully connected layers of the architecture and
extract ConvNet features maintaining the original image aspect ratio.

= 4 = K-Mea.ns = :>
4 Clustering

Image Conv layer i Local CNN Features Assignment Map BoW encoding

Figure 2.1: The Bag of Local Convolutional Features pipeline (BLCF).

Each convolutional layer in the network has D different N x M feature maps, which
can be viewed as N x M descriptors of dimension D. Each of these descriptors contains
the activations of all neurons in the convolutional layer sharing the same receptive field.
This way, these D-dimensional features can be seen as local descriptors computed over
the region corresponding to the receptive field of an array of neurons. With this interpre-
tation, we can treat the ConvNet as a dense local feature extractor and use any existing
aggregation technique to build a single image representation.

We propose to use the Bag of Words model to encode the local convolutional features of
an image into a single vector. Although more elaborate aggregation strategies have been
shown to outperform BoW-based approaches for some tasks in the literature [89, 157], Bag
of Words encodings produce sparse high-dimensional codes that can be stored in inverted
indices, which are beneficial for fast retrieval. Moreover, BoW-based representations are
faster to compute, easier to interpret, more compact, and provide all the benefits of
sparse high-dimensional representations.

Bag of Words models require constructing a visual codebook to map vectors to their
nearest centroid. We use k-means on local ConvNet features to fit this codebook. Each
local feature in the convolutional layer is then assigned its closest visual word in the
learned codebook. This procedure generates the assignment map, i.e. a 2D array of size
N x M that relates each local convolutional feature with a visual word. The assignment
map is therefore a compact representation of the image which relates each pixel of the
original image with its visual word with a precision of (%, %) pixels, where W and H are
the width and height of the original image. This property allows us to quickly generate
the BoW vectors of not only the full image, but also its local patches. We describe the

use of this property in our work in Section 2.2.

2.2 Image Retrieval Pipeline 27

Figure 2.1 shows the pipeline of the proposed approach. The described method encodes
the image into a sparse high dimensional descriptor, which will be used as the image
representation for retrieval.

Image Retrieval Pipeline

This section describes the image retrieval pipeline, which consists of an initial ranking
stage, followed by a local reranking, and query expansion.

(a) Initial search: The initial ranking is obtained using the cosine similarity be-
tween the BoW vector of the query image and the BoW vectors of the images in the
database. We use a sparse matrix based inverted index and GPU-based sparse matrix
multiplications to allow fast retrieval. The image list is then sorted based on the cosine
similarity of its elements to the query. We use two types of image search based on the
query information that is used:

e Global search (GS): The BoW vector of the query is built with the visual words of
all the local features in the convolutional layer extracted for the query image.

e Local search (LS): The BoW vector of the query contains only the visual words of
the features that fall inside the bounding box that is provided for each of the query
images.

(b) Local reranking (R): After the initial search, the top K images in the ranking
are locally analyzed and reranked based on a localization score. The local reranking is
based on computing a similarity score between the query bounding box and a set of image
locations S extracted from each the K images. We construct S with sliding windows with
50% of overlap of sizes comprising all possible combinations of width w € {W, %, %
and height h € {H, %, % , where W and H are the width and height of the assignment
map. We use a sliding window strategy directly on the assignment map to build the
BoW vector for each image region in S.

We perform a first filtering strategy to discard those windows whose aspect ratio is too
different to the aspect ratio of the query. Let the aspect ratio of the query bounding box
be AR, = % and AR, = % be the aspect ratio of the window. The score for window

w 18 defined as score,, = %. All windows with a score lower than a threshold
Wy q

th are discarded.

For each of the remaining windows, we construct the BoW vector representation and
compare it with the query representation using cosine similarity. The window with the
highest cosine similarity is assigned as the new similarity score for the image (max pooling
of scores).

We also enhance the BoW window representation with spatial pyramid matching [104]
with L = 2 resolution levels (i.e. the full window and its 4 sub regions). We construct the
BoW representation of all sub regions at the 2 levels, and weight their contribution to the
similarity score with inverse proportion to the resolution level of the region. The cosine
similarity of a sub region r to the corresponding query sub region is therefore weighted

28 Bags of Deep Visual Words

1(w=1/2) 2(w=1) 3(w=1) 4(w=1) 5(w=1)

Figure 2.2: Spatial Pyramid representation of an object region, highlighted with a green
bounding box.

by w, = Q(L%lr), where [, is the resolution level of the region r. Figure 2.2 depicts the
described approach.

With this procedure, the top K elements of the initial ranking are sorted based on the
cosine similarity of their regions with respect to the query region, and also provides the
region with the highest score as a rough localization of the object.

(c¢) Query expansion. We investigate two query expansion strategies based on global
and local BoW descriptors, where the top IV images of the ranking are used to augment
the query:

e Global query expansion (GQE): The BoW vectors of the N images at the top of
the ranking are averaged together with the BoW of the query to form an updated
representation for the query. GQE can be applied either before or after the local
reranking stage.

e Local query expansion (LQE): Locations obtained in the local reranking step are
used to mask out the background and build the BoW descriptor of only the region
of interest of the NN images at the top of the ranking. These BoW vectors are
averaged together with the BoW of the query bounding box.

In both cases, the updated BoW vector is used to perform a second search.

Experiments

In this section, we describe the implementation details of our method, including an
analysis of each of its components and a comparison with state-of-the-art image retrieval
methods.

Preliminary experiments

Feature extraction was performed using Caffe [91] and the VGG16 network [182] pre-
trained with ImageNet [177]. We extracted features from the last three convolutional

2.3 Experiments 29

convd_1 convb_2 convd_3

N x M raw 0.641 0.626 0.498
2N x 2M interpolated 0.653 0.638 0.536
2N x 2M raw 0.620 0.660 0.540

Table 2.1: Layer Comparison. Mean average precision (mAP) on Oxford 5k using dif-
ferent convolutional layers of VGG16, comparing the performance of different feature
map resolutions (both raw and interpolated). The size of the codebook is 25,000 in all
experiments.

layers (conv5_1, conv5_2 and conv5_3) and compared their performance on the Oxford
5k dataset. We experimented on different image input sizes: 1/3 and 2/3 of the original
image. Following several other authors [11, 93], we lo-normalize all local features, followed
by PCA, whitening, and a second round of /s-normalization. The PCA models were fit
on the same dataset as the test data in all cases.

Unless stated otherwise, all experiments used a visual codebook of 25,000 centroids fit
using the (L2-PCA-L? transformed) local convolutional features of all images in the
same dataset (1.7M and 2.15M for Oxford 5k and Paris 6k, respectively). We tested
three different codebook sizes (25,000; 50,000 and 100,000) on the Oxford 5k dataset,
and chose the 25,000 centroids one because of its higher performance.

Table 2.1 shows the mean average precision on Oxford 5k for the three different layers and
image sizes. The combination of the layers by concatenation did not provide any gain.
We also consider the effect of applying bilinear interpolation of the feature maps prior to
the BoW construction, as a fast alternative to using a larger input to the ConvNet. Our
experiments show that all layers benefit from feature map interpolation. Our best result
was achieved using convb_2 with full size images as input. However, we discarded this
configuration due to its memory requirements: on a Nvidia GeForce GTX 970, we found
that feature extraction on images rescaled with a factor of 1/3 was 25 times faster than
on images twice that size. For this reason, we resize all images to 1/3 of their original
size and use conv5_1 interpolated feature maps.

Inspired by the boost in performance of the Gaussian center prior in SPoC features [11],
we also apply a weighting scheme on the visual words of an image to provide more
importance to those belonging to the central part of the image. All results in Table
2.1 are obtained using features weighted with a normalized inverse distance map to the
image center which, for conv5_1 in Oxford 5k, increases mAP from 0.626 to 0.653.

Query augmentation

Previous works [7, 194] demonstrated how simple data augmentation strategies can im-
prove the performance of an instance search system. Some of these apply augmentation
strategies at the database side, which can be prohibitively costly for large datasets. For
this reason, we use data augmentation on the query side only. We explore two different
strategies to enrich the query before visual search: a horizontal flip (or mirroring) and
a zoomed central crop (ZCC) on an image enlarged by 50%. The feature vectors they
produce are added together to form a single BoW descriptor. Table 2.2 shows the impact
of incrementally augmenting the query with each one of these transformations.

30 Bags of Deep Visual Words

+ Flip
+ ZCC

GS 0.653 0.662 0.695 0.697
LS 0.738 0.746 0.758 0.758

Query + Flip + ZCC

Table 2.2: Query Augmentation Results. mAP on Oxford 5k for the two different types
of query augmentation: the flip and the zoomed central crop (ZCC). 2x interpolated
convb_1 features are used in all cases.

Oxford 5k Paris 6k

+Qaug +Qaug
GS 0.653 0.697 0.699 0.754
LS 0.738 0.758 0.820 0.832
GS+R 0.701 0.713 0.719 0.752
LS + R 0.734 0.760 0.815 0.828
GS + GQE 0.702 0.730 0.774 0.792
LS + GQE 0.773 0.780 0.814 0.832

GS+R+GQE 0771 0772 0.801 0.798
LS+ R+ GQE 0.769 0.793 0.807 0.828
GS+R+LQE 0782 0.757 0.835 0.795
LS+R+LQE 0.788 0.786 0.848 0.833

Table 2.3: mAP on Oxford 5k and Paris 5k for the different stages in the pipeline
introduced in Section 2.2. The Q4,4 additional columns indicate the results when the
query is augmented with the transformations introduced in Section 2.3.2.

We find that all the studied types of query augmentation consistently improve the results,
for both global and local search. ZCC provides a higher gain in performance compared
to flipping alone. ZCC generates an image of the same resolution as the original, which
contains the center crop at a higher resolution. Objects from the Oxford dataset tend to
be centered, which explains the performance gain when applying ZCC.

Reranking and query expansion

We apply the local reranking (R) stage on the top K = 100 images in the initial ranking,
using the sliding window approach described in Section 2.2. The presented aspect ratio
filtering is applied with a threshold th = 0.4, which was chosen based on a visual inspec-
tion of results on a subset of Oxford 5k. Query expansion is later applied considering the
top-10 images of the resulting ranking. This section evaluates the impact in performance
of both reranking and query expansion stages. Table 2.3 contains the results for the
different stages in the pipeline for both simple and augmented queries (referred to as
Qaug in the table).

The results indicate that the local reranking is only beneficial when applied to a ranking
obtained from a search using the global BoW descriptor of the query image (GS). This
is consistent with the work by Tolias et al. [192], who also apply a spatial reranking

2.3 Experiments 31

Figure 2.3: BLCF Ranking examples. Examples of the top-ranked images and local-
izations based on local CNN features encoded with BoW. Top row: The Christ Church
from the Oxford Buildings dataset; middle row: The Sacre Coeur from Paris Buildings;
bottom row: query 9098 (a parking sign) from TRECVid INS 2013.

followed by query expansion to a ranking obtained with a search using descriptors of
full images. They achieve a mAP of 0.66 in Oxford 5k, which is increased to 0.77 after
spatial reranking and query expansion, while we reach similar results (e.g., from 0.652
to 0.769). However, our results indicate that a ranking originating from a local search
(LS) does not benefit from local reranking. Since the BoW representation allows us to
effectively perform a local search (LS) in a database of full indexed images, we find the
local reranking stage applied to LS to be redundant in terms of the achieved quality of the
ranking. However, the local reranking stage does provide with a rough localization of the
object in the images of the ranking, as depicted in Figure 2.3. We use this information
to perform query expansion based on local features (LQE).

Results indicate that query expansion stages greatly improve performance in Oxford 5k.
We do not observe significant gains after reranking and QE in the Paris 6k dataset,
although we achieve our best result with LS + R + LQE.

In the case of augmented queries (+Qqug), We find query expansion to be less helpful in
all cases, which suggests that the information gained with query augmentation and the
one obtained by means of query expansion strategies are not complementary.

Figure 2.3 shows examples of some of the rankings produced by our system on the three
different datasets.
Comparison with the state-of-the-art

We compare our approach with other works using ConvNet-based representations on
the Oxford and Paris datasets. Table 2.4 includes the best result for each approach
in the literature. Our performance using global search (GS) is comparable to that of

32 Bags of Deep Visual Words

Oxford Paris

5k 105k 6k 106k
Ng et al. [149] 0.649 - 0694 -
Razavian et al. [178] 0.844 - 0.853 -
SPoC [11] 0.657 0.642 - ;
R-MAC [192] 0.668 0.616 0.830 0.757
CroW [93] 0.682 0.632 0.796 0.710
uCroW [93] 0.666 0.629 0.767 0.695
GS 0.652 0.510 0.698 0.421
LS 0.739 0.593 0.820 0.648
LS + Qaug 0.758 0.622 0.832 0.673
CroW + GQE [93] 0.722 0.678 0.855 0.797
R-MAC + R + GQE [192] 0.770 0.726 0.877 0.817
LS + GQE 0.773 0.602 0.814 0.632
LS + R + LQE 0.788 0.651 0.848 0.641

LS+ R 4+ GQE + Qauy 0.793 0.666 0.828 0.683

Table 2.4: Comparison to state-of-the-art ConvNet representations (mAP). Results in
the lower section consider reranking and/or query expansion.

Ng et al. [149], which is the one that most resembles our approach. However, they
achieve this result using raw VLAD features, which are more expensive to compute and,
being a dense high-dimensional representation, do not scale as well to larger datasets.
Similarly, Razavian et al. [178] achieve the highest performance of all approaches in both
the Oxford and Paris benchmarks by applying a spatial search at different scales for
all images in the database. Such approach is prohibitively costly when dealing with
larger datasets, especially for real-time search scenarios. Our BoW-based representation
is highly sparse, allowing for fast retrieval in large datasets using inverted indices, and
achieves consistently high mAP in all tested datasets.

We find the usage of the query bounding box to be extremely beneficial in our case for
both datasets. The authors of SPoC [11] are the only ones who report results using
the query bounding box for search, finding a decrease in performance from 0.589 to
0.531 using raw SPoC features (without center prior). This suggests that sum pooled
convolutional features [11] are less suitable for instance level search in datasets where
images are represented with global descriptors.

We also compare our local reranking and query expansion results with similar approaches
in the state-of-the-art. The authors of R-MAC [192] apply a spatial search for reranking,
followed by a query expansion stage, while the authors of CroW [93] only apply query
expansion after the initial search. Our proposed approach also achieves competitive
results in this section, achieving the best result for Oxford 5k.

Experiments on TRECVid INS

In this section, we compare the Bag of Local Convolutional Features (BLCF) with the
sum pooled convolutional features proposed in several works in the literature. We use
our own implementation of the uCroW descriptor from [93] and compare it with BLCF
for the TRECVid INS subset. For the sake of comparison, we test our implementation

2.3 Experiments 33

of sum pooling using both our chosen ConvNet layer and input size (conv5_1 and 1/3
image size), and the ones reported in [93] (pools and full image resolution). For the BoW
representation, we train a visual codebook of 25,000 centroids using 3M local features
chosen randomly from the INS subset. Since the nature of the TRECVid INS dataset
significantly differs from that of the other ones used so far (see Figure 1.2), we do not
apply center prior to the features in any case, to avoid down weighting local features from
image areas where the objects might appear. Table 2.5 compares sum pooling with BoW
in Oxford, Paris, and TRECVid subset datasets. As stated in earlier sections, sum pool-
ing and BoW have similar performance in Oxford and Paris datasets. For the TRECVid
INS subset, however, Bag of Words significantly outperforms sum pooling, which demon-
strates its suitability for challenging instance search datasets, in which queries are not
centered and have variable size and appearance. We also observe a different behavior
when using the provided query object locations (LS) to search, which was highly ben-
eficial in Oxford and Paris datasets, but does not provide any gain in TRECVid INS.
We hypothesize that the fact that the size of the instances is much smaller in TRECVid
than in Paris and Oxford datasets causes this drop in performance. Global search (GS)
achieves better results on TRECVid INS, which suggests that query instances are in
many cases correctly retrieved due to their context. Figure 2.4 shows examples of the
queries for which the local search outperforms the global search. Interestingly, we find
these particular objects to appear in different contexts in the database. In these cases,
the usage of the local information is crucial to find the query instance in unseen environ-
ments. For this reason, we compute the distance map of the binary mask of the query,
and assign a weight to each position of the assignment map with inverse proportion to
its value in the distance map. This way, higher weights are assigned to the visual words
of local features near the object.

We find this scheme, referred to as weighted search (WS), to be beneficial for most
of the queries, suggesting that, although context is necessary, emphasizing the object
information in the BoW descriptor is beneficial.

Figure 2.4: TRECVid Ranking Examples. Top 5 rankings for queries 9072 (top) and
9081 (bottom) of the TRECVid INS 2013 dataset.

We finally apply the local reranking and query expansion stages introduced in Section 2.2
to the baseline rankings obtained for the TRECVid INS subset. Since in this dataset we
are dealing with objects whose appearance can significantly change in different keyframes,
we decided not to filter out windows based on aspect ratio similarity. Additionally, we
do not apply the spatial pyramid matching, since some of the query instances are too

34 Bags of Deep Visual Words

small to be divided in sub regions. After reranking, we apply the distance map weighting
scheme to the locations obtained for the top 10 images of the ranking and use them to
do weighted query expansion (WQE).

Results are consistent with those obtained in the experiments in Oxford and Paris
datasets: although the local reranking does not provide significant improvements (WS:
0.350, WS + R: 0.348 mAP), the query expansion stage is beneficial when applied after
WS (WS + GQE: 0.391 mAP), and provides significant gains in performance after local
reranking (WS + R + GQE: 0.442 mAP) and after local reranking using the obtained
localizations (WS + R + WQE: 0.452 mAP).

Oxford 5k Paris 6k INS 23k
GS 0.650 0.698 0.323

BoW WS 0.693 0.742 0.350
LS 0.739 0.819 0.295

Sum voofine O 0-606 0712 0.156
(asiurs)g WS 0.638 0.745 0.150
LS 0.583 0.742 0.097

S bocling G5 0672 0.774 0.139
(as > [()‘%])g WS 0707 0789 0.146
v LS 0.683 0.763 0.120

Table 2.5: Sum pooling vs BoW on Oxford, Paris and TRECVid INS subset.

Conclusion

In this chapter, we proposed an aggregation strategy based on Bag of Words to encode
features from convolutional neural networks into a sparse representations for instance
search. We demonstrated the suitability of these bags of local convolutional features,
achieving competitive performance with respect to other ConvNet-based representations
in Oxford and Paris benchmarks, while being more scalable in terms of index size, cost
of indexing, and search time. We also compared our BoW encoding scheme with sum
pooling of ConvNet features for instance search in the far more complex and challenging
TRECVid instance search task, and demonstrated that our method consistently and
significantly performs better. This encouraging result suggests that the BoW encoding,
as a virtue of being high dimensional and sparse, is more robust to scenarios where only
a small number of features in the target images are relevant to the query. Our method
does, however, appear to be more sensitive to large numbers of distractor images than
methods based on sum and max pooling (SPoC, R-MAC, and CroW). We speculate that
this may be because the distractor images are drawn from a different distribution to the
original dataset, and may therefore require a larger codebook to better represent the
diversity in the visual words.

Object Detectors for Instance Search

In both the previous chapter and [178, 192], local image features are extracted for a prede-
fined arbitrary set of bounding boxes of different scales and aspect ratios. Deep features
for these regions are extracted by cropping the image [178], the convolutional features
[192], or the previously constructed assignment map, proposed in Chapter 2. These fea-
tures can be aggregated together to compose a global image representation [192] or can
be used for spatial search, where each bounding box representation is compared to that
of the query instance in order to find the optimal location in the image that contains
the query (Chapter 2). In this chapter, we investigate whether better representations
for image regions can be obtained from ConvNets trained for the task of object detec-
tion instead of classification. Modern object detection architectures [167] are trained in
an end-to-end manner to simultaneously learn prominent object locations and category
scores. Once trained, the output of the model is a list of object locations ranked by both
objectness and category scores. Simply using a threshold on the scores of elements in the
ranklist results in a small set of regions that are likely to contain objects of interest in the
image. The set of highly scored regions typically covers the relevant objects in the image,
thus it can significantly change from one image to the other. In this chapter, we argue
that these object locations can replace the arbitrary set of bounding boxes used both in
[178, 192] and the previous chapter in order to extract region descriptors. Further, we
hypothesize that features learned in a network trained for object detection are suitable to
the instance search task, since they have been specifically optimized to recognize object
instances. Further, we quantify the benefits of fine tuning the object detection network
to build a specialized instance search system trained to recognize a fixed known set of
queries.

This work explores the suitability of both off-the-shelf and fine-tuned features from an
object detection ConvNet for the task of instance retrieval. We make the following three
contributions:

e We propose to use a pre-trained ConvINet for object detection to extract convolu-
tional features both at global and local scale in a single forward pass of the image
through the network.

e We explore simple spatial reranking strategies, which take advantage of the lo-
cations learned by a Region Proposal Network (RPN) to provide a rough object
localization for the top retrieved images of the ranking.

e We analyze the impact of fine-tuning an object detection CNN for the same in-
stances one wants to query in the future. We find such a strategy to be suitable
for learning better image representations.

36 Object Detectors for Instance Search

The remainder of this chapter is structured as follows. Section 3.1 gives an overview on
the state of the art for object detection with neural networks. Section 3.2 introduces
the representations for images and regions given a trained object detector. Section 3.3
describes the details involved in the fine tuning of an object detector for instance search.
Section 3.4 explains the retrieval pipeline that we followed, and Section 3.5 includes
the performed experiments on three different image retrieval benchmarks as well as the
comparison to other state of the art ConvINet-based instance search systems. Finally,
Section 3.6 draws the conclusions of this work.

ConvNets for Object Detection

Many works in the literature have proposed ConvNet-based object detection pipelines.
This section reviews the most common methods object detection, which we classify in
two categories: two-stage and one-stage.

Two-stage detectors first extract a reduced set of prominent object locations (com-
monly refered to as object proposals), which are subsequently classified among the C'
possibles labels in the dataset. Girshick et al. presented R-CNN [64], a version of
Krizhevsky’s AlexNet [102], fine-tuned for the Pascal VOC Detection dataset [54]. In-
stead of full images, the regions of an object proposal algorithm [195] were used as inputs
to the network. At test time, fully connected layers for all windows were extracted and
used to train a bounding box regressor and classifier. Since then, R-CNN has witnessed
great improvements, both in terms of accuracy and speed. He et al. proposed SPP-net
[80], which used a Spatial Pyramid based pooling layer to improve classification and de-
tection performance. Additionally, they significantly decreased computational time by
pooling region features from convolutional features instead of forward passing each re-
gion crop through all layers in the ConvNet. This way, the computation of convolutional
features is shared for all regions in an image. Girshick later proposed Fast R-CNN [63],
which used the same speed strategy as SPP-net but also replaced the post-hoc train-
ing of SVM classifiers and box regressors with an end-to-end training solution. Ren et
al. introduced Faster R-CNN [167], which removed the object proposal dependency of
former object detection ConvNets by introducing a Region Proposal Network (RPN).
In Faster R-CNN, the RPN shares features with the object detection network in [63] to
simultaneously learn prominent object proposals and their associated class probabilities.

One-stage detectors do not rely on object proposal extraction. Instead, they directly
score a dense grid of overlapping bounding boxes. One-stage architectures such as SSD
[121] and YOLO [165] were proposed in the literature, which achieve significantly faster
runtimes with respect to their two-stage counterparts, at the expense of a drop in accu-
racy. Until recently, two-stage detectors have dominated the state of the art in object
detection. A novel loss that accounts for class imbalance in one-stage detectors [115] has
been shown to surpass the performance of two-stage methods [167], while matching the
speed of previous one-stage detectors[121, 165].

In this work, we take advantage of the end-to-end two-stage object detection architecture
of Faster R-CNN to extract both image and region features for instance search.

3.2 Deep Representations for Images and Regions 37

RPN
\O >~
Rol
Poo?ing %_‘) E

Figure 3.1: Image- and region-wise descriptor pooling Faster R-CNN.

Deep Representations for Images and Regions

This chapter explores the suitability of using features from an object detection ConvNet
for the task of instance search. In our setup, query instances are defined by a bounding
box over the query images. We choose the architecture and pre-trained models of Faster
R-CNN [167] and use it as a feature extractor at both global and local scales. Faster
R-CNN is composed of two branches that share convolutional layers. The first branch is
a Region Proposal Network that learns a set of window locations, and the second one is
a classifier that learns to label each window as one of the classes in the training set.

Similarly to other works [11, 192, 93] our goal is to extract a compact image representation
built from the activations of a convolutional layer in a ConvNet. Since Faster R-CNN
operates at both global and local scales, we propose the following strategies of feature
pooling:

Image-wise pooling of activations (IPA). In order to construct a global image de-
scriptor from Faster R-CNN layer activations, one can choose to ignore all layers in the
network that operate with object proposals and extract features from the last convolu-
tional layer. Given the activations of a convolutional layer extracted for an image, we
aggregate the activations of each filter response to construct an image descriptor of the
same dimension as the number of filters in the convolutional layer. Both max and sum
pooling strategies are considered and compared in Section 3.5.2.

Region-wise pooling of activations (RPA). After the last convolutional layer, Faster
R-CNN implements a region pooling layer that extracts representations for each of the
object proposals learned by the RPN. This way, for each one of the window proposals, it
is possible to compose a descriptor by aggregating the activations of that window in the
Rol pooling layer, giving raise to the region-wise descriptors. For the region descriptor,
both max and sum pooling strategies are tested as well.

Figure 3.1 shows a schematic of the Faster R-CNN architecture and the two types of
descriptor pooling described above.

As in the previous chapter, and following several other authors [11, 93], sum-pooled
features are [y-normalized, followed by whitening and a second round of ls-normalization,
while max-pooled features are just l3-normalized once (no whitening).

38 Object Detectors for Instance Search

Fine-tuning Faster R-CNN

This chapter explores the suitability of fine-tuning Faster R-CNN to 1) obtain better
feature representations for image retrieval and 2) improve the performance of spatial
analysis and reranking. To achieve this, we choose to fine tune Faster R-CNN to detect
the query objects to be retrieved by our system. This way, we modify the architecture
of Faster R-CNN to output the regressed bounding box coordinates and the class scores
for each one of the query instances of the tested datasets.

In our experiments, we explore two modalities of fine-tuning:

e Fully-Connected only (F7}.): Only the weights of the fully connected layers in
the classification branch are updated (i.e. the convolutional layers and the RPN
are left unchanged).

e All layers after conv_2 (FT,;): Weights of all layers after the first two convo-
lutional layers are updated. This way, convolutional features, RPN proposals and
fully connected layers are modified and adapted to the query instances.

In the case of Oxford and Paris, we modify the last classification layer in the network
to return 12 class probabilities (11 buildings in the dataset, plus an extra class for the
background). We also modify the bounding box regression layer to output coordinate
offsets for objects belonging to each of the output categories. We use the 5 images
provided for each one of the buildings and their bounding box locations as training data.
Additionally, we augment the training set by performing a horizontal flip on the training
images (11 x 5 x 2 = 110 training images in total). For INS 13, we have 30 different
query instances, with 4 images each, giving raise to 30 x 4 x 2 = 240 training examples.
The number of output classes for INS 13 is 31 (30 queries plus the background class).

The original Faster R-CNN training parameters described in [167] are kept for fine-tuning,
except for the number of iterations, which we decreased to 5.000 considering our small
number of training samples. We train a separate network for each one of the tested
datasets, using the two different fine-tuning modalities described in Section 3.3. Fine-
tuning was performed on a Nvidia Titan X GPU and took around 30 and 45 minutes for
finetuning strategies F'Ty. and F'Tg, respectively.

The resulting fine-tuned networks are used to extract better image and region represen-
tations as well as performing spatial reranking based on class scores instead of feature
similarities.

Image Retrieval Pipeline

The three stages of the proposed instance retrieval pipeline are described in this section:
filtering stage, spatial reranking and query expansion.

Filtering Stage. The Image-wise pooling (IPA) strategy is used to build image de-
scriptors for both query and database images. At test time, the descriptor of the query
image is compared to all the elements in the database, which are then ranked based on
the cosine similarity. At this stage, the whole image is considered as the query.

3.5 Experiments 39

Spatial Reranking. After the Filtering Stage, the top K elements are locally analyzed
and reranked. We explore two reranking strategies:

e Class-Agnostic Spatial Reranking (CA-SR). For every image in the top K ranking,
the region-wise descriptors (RPA) for the top 300 RPN proposals are compared
to the region descriptor of the query bounding box. The region-wise descriptors
of RPN proposals are pooled from the Rol pooling layer of Faster R-CNN (see
Figure 3.1). To obtain the region-wise descriptor of the query object, we warp its
bounding box to the size of the feature maps in the last convolutional layer and
pool the activations within its area. The region with maximum cosine similarity
for every image in the top N ranking gives the object localization, and its score is
kept for ranking.

e Class-Specific Spatial Reranking (CS-SR). Using a network that has been fine-tuned
with the same instances one wishes to retrieve, it is possible to use the direct clas-
sification scores for each RPN proposal as the similarity score to the query object.
Similarly to CA-SR, the region with maximum score is kept for visualization, and
the score is used to rank the image list.

Query Expasion (QE). The image descriptors of the top N elements of the ranking
are averaged together with the query descriptor to perform a new search. See Section
2.2 in the previous chapter for further details.

Experiments

This section presents the implementation details of our approach, ablation studies of each
of the described components, and comparison with current state of the art methods.
Finally, we describe the details of the submission to TRECVid Instance Search 2015,
which used the model described in Section 3.3 in the reranking stage.

Experimental Setup

We use both the VGG16 [182] and ZF [222] architectures of Faster R-CNN to extract
image and region features. In both cases, we use the last convolutional layer (convb and
convb_3 for ZF and VGG16, respectively) to build the image descriptors introduced in
Section 3.2, which are of dimension 256 and 512 for the ZF and VGGI16 architectures,
respectively. Region-wise features are pooled from the Rol pooling layer of Faster R-
CNN. Images are re-scaled such that their shortest side is 600 pixels. All experiments
were run in an Nvidia Titan X GPU.

Off-the-shelf Faster R-CNN features

In this section, we assess the performance of using off-the-shelf features from the Faster
R-CNN network for instance retrieval.

First, we compare the sum and max pooling strategies of image- and region-wise descrip-
tors. Table 3.1 summarizes the results. According to our experiments, sum pooling is
significantly superior to max pooling for the filtering stage. Such behaviour is consistent

40 Object Detectors for Instance Search

with other works in the literature [11, 93]. Sum pooling is, however, consistently outper-
formed by max pooling when reranking using region-wise features for all three datasets.
Specifically for the Oxford and Paris datasets, we find the spatial reranking with max
pooling to be beneficial after filtering (gain of 0.10 and 0.03 mAP points for Oxford and
Paris, respectively). However, the spatial reranking (either with max or sum pooling)
has little or no effect for the INS13 dataset. To further interpret these results, we quali-
tatively evaluate the two pooling strategies. Figure 3.2 shows examples of top rankings
for INS13 queries, spatially reranked with region-wise max and sum pooled descriptors.
These examples indicate that, although mAP is similar, the object locations obtained
with max pooling are more accurate. According to this analysis, we set IPA-sum de-
scriptors for the filtering stage and RPA-max descriptors for the spatial reranking in all
the upcoming experiments of this chapter.

Table 3.2 shows the performance of different Faster R-CNN architectures (ZF and
VGG16) trained on two datasets (Pascal VOC and COCO [116]), including experiments
with query expansion with the NV = 5 top retrieved images as well. As expected, features
pooled from the deeper VGG16 network perform better in most cases, which is consis-
tent with previous works in the literature showing that features from deeper networks
reach better performance. Query expansion applied after the spatial reranking achieves
significant gains for all tested datasets. Such behaviour was expected in particular with
Oxford and Paris datasets, for which the spatial reranking already provided a significant
gain. Interestingly, query expansion is also most beneficial after spatial reranking for the
INS13 dataset, which suggests that, although in this case the spatial reranking does not
provide any gain in mAP, the images that fall on the very top of the ranking are more
useful to expand the query than the ones in the top of the first ranking.

Figure 3.2: Sum/max comparison on TRECVid. Top 4 rankings and object locations
obtained for queries 9098: a P (parking automat) sign and 9076: this monochrome bust
of Queen Victoria from the INS 2013 dataset (query images surrounded in blue). Com-
parison between the rankings generated using RPA-sum (top) and RPA-max (bottom),
after the filtering stage with IPA-sum. Regressed bounding box coordinates have been
disabled for visualization.

Fine-tuned Faster R-CNN

In this section, we assess the impact in retrieval performance of fine-tuning a pretrained
network with the query objects to be retrieved. We choose to fine-tune the VGG16 Faster
R-CNN model, pretrained with the objects of the Microsoft COCO dataset.

We first take the networks fine-tuned with strategy F'T. and run the retrieval pipeline
from scratch. Table 3.3 shows the obtained results (F'Tf. columns). Results of the
filtering and CA-SR stages are the same as those obtained with the original Faster R-

3.5 Experiments 41

Figure 3.3: Ranking examples and object locations obtained by our proposed retrieval
system for query objects (left, depicted with a blue contour) of three different datasets:
TRECVid INS 2013, Paris Buildings and Oxford Buildings.

CNN model, which is because the weights for the convolutional layers were not modified
during fine-tuning. Results indicate that, although mAP is not always improved after
CS-SR (e.g., from 0.588 to 0.543 for Oxford 5k), it is significantly better than CA-SR for
Oxford and Paris when followed with query expansion. In case of the INS 13 dataset, we
do not find significant improvements when using CS-SR, which suggests that only fine-
tuning fully connected layers might not be sufficient to effectively detect the challenging
query objects in this dataset.

The second experiment in this section involves fine-tuning a higher number of layers in
the Faster R-CNN architecture (Fine-tuning Strategy F'T,;). Using this modality, the
weights in the last convolutional layer are modified. Figure 3.4 shows the difference in
the activations in convb_3 after fine-tuning it for the query instances in each dataset.
These visualizations indicate that, after fine-tuning, more neurons in the convolutional
layer positively react to the visual patterns that are present in the query objects of the
dataset.

We then use the fine-tuned networks of the Fine-tuning Strategy F'T,; for each one of the
datasets to extract image- and region-wise descriptors to perform instance search. Table

42 Object Detectors for Instance Search

Filtering Reranking Oxford 5k Paris 6k INS 13

None 0.505 0.612 0.215

IPA-sum RPA-sum 0.501 0.621 0.196
RPA-max 0.602 0.641 0.206

None 0.478 0.540 0.131

IPA-max RPA-sum 0.508 0.565 0.135
RPA-max 0.559 0.561 0.138

Table 3.1: Sum/max pooling comparison. Mean Average Precision (mAP) comparison
between sum and max pooling strategies for both filtering and reranking stages using
convd features from the ZF Faster R-CNN model.

ConvNet CA-SR QE Oxford 5k Paris 6k INS 13
No No 0.505 0.612 0.215

Yes 0.515 0.671 0.246

ZF (VOC) Yes No 0.602 0.640 0.206
Yes 0.622 0.707 0.261

No No 0.588 0.657 0.172

Yes 0.614 0.706 0.201

VGGI6 (VOC) Yes No 0.641 0.683 0.171
Yes 0.679 0.729 0.242

No No 0.588 0.656 0.216

Yes 0.600 0.695 0.250

VGGI6 (COCO) Yos No 0.573 0.663 0.192
Yes 0.647 0.732 0.241

Table 3.2: mAP of pre-trained Faster R-CNN models with ZF and VGG16 architectures.
In all cases, IPA-sum descriptors are used for the filtering stage. The CA-SR column
specifies whether Class-Agnostic Spatial Reranking with RPA-max is applied to the top
K =100 elements of the ranking. When indicated, QE is applied with N = 5.

3.3 presents the results (F'T,; columns). As expected, fine-tuned features significantly
outperform raw Faster R-CNN features for all datasets (mAP is ~ 20% higher for Oxford
and Paris, and 8% higher for INS 13). Results indicate that, for Oxford and Paris
datasets, the gain of CA-SR + QE is higher with raw features (10% and 11% mAP
increase for Oxford and Paris, respectively) than with fine-tuned ones (8% and 3% mAP
increase, respectively). This suggests that fine-tuned features are already discriminant
enough to correctly retrieve the objects in these two datasets. However, results for
the INS 13 dataset show that CA-SR + QE is most beneficial when using fine-tuned
features (11% and 41% mAP increase for raw and fine-tuned features, respectively). This
difference between the performance for Oxford/Paris and INS13 suggests that queries
from the latter are more challenging and therefore benefit from fine-tuned features and
spatial reranking the most. A similar behaviour is observed for CS-SR which, for Oxfod
and Paris, is most beneficial when applied to a ranking obtained with raw features.
For INS 13, however, the gain is greater when using fine-tuned features. Overall, the
performance of reranking + query expansion is higher for CS-SR than CA-SR. Figure
3.3 shows examples of rankings for queries of the three different datasets after applying

3.5 Experiments 43

Figure 3.4: Activations after fine-tuning. Difference between conv5_-3 features (sum
pooled over feature maps) extracted from the original Faster R-CNN model pretrained
with MS COCO with conv5_3 features from the same model fine-tuned for INS13 (bot-
tom), Oxford and Paris (top) queries.

CS-SR. For visualization, we disable the regressed bounding box coordinates predicted
by Faster R-CNN and choose to display those that are directly returned by the RPN.
We find that the locations returned by the regression layer are innacurate in most cases,
which we hypothesize is caused by the lack of training data.

Finally, in Figure 3.5 we qualitatively evaluate the object detections after CS-SR using the
fine-tuned strategies F'Ty. and F'T,;. The comparison reveals that locations obtained
with the latter are more accurate and tight to the objects. The Fine-tuning Strategy
FTy; allows the RPN layers to adapt to the query objects, which causes the network to
produce object proposals that are more suitable for the objects in the test datasets.

44 Object Detectors for Instance Search

R QE Oxford 5k Paris 6k INS 13

FTy. FToaw FTpe FTur FType Flay

No No 0.588 0.710 0.656 0.798 0.216 0.234
No Yes 0.600 0.748 0.695 0.813 0.250 0.259
CA-SR No 0573 0.739 0.663 0.801 0.192 0.248
CA-SR Yes 0.647 0.772 0.732 0.824 0.241 0.330
CS-SR No 0.543 0.751 0.793 0.807 0.181 0.250
CS-SR Yes 0.678 0.786 0.784 0.842 0.250 0.339

Table 3.3: Comparison of fine-tuning strategies I'Ty. and F'T,; on the three datasets.
Spatial Reranking (R) is applied to the N = 100 top elements of the ranking. QE is
performed with M = 5.

Figure 3.5: Ranking examples after CS-SR with fine-tuned strategies F'Tt. (left) and
FTyy (right).

Comparison with state-of-the-art

In this section, we compare our results with several instance search works in the literature.
Table 3.4 shows the results of this comparison.

Our proposed pipeline using Faster R-CNN features shows competitive results with re-
spect to the state of the art. However, other works [93, 192] achieve a very high perfor-
mance without any reranking nor query expansion strategies using similar feature pooling
strategies. We hypothesize that the difference in input image size (600px wide in our case
vs. full resolution in [93, 192]) can explain the gap in performance. Our proposed rerank-
ing strategy CA-SR followed by query expansion is demonstrated to provide similar mAP
gains compared to the one proposed in [192]. While CA-SR + QE gives us a gain in mAP
of ~ 10% both for Oxford and Paris (using raw Faster R-CNN features), Tolias et al.
[192] use their reranking strategy to raise their mAP by 5 and 15% for the two datasets,
respectively.

As expected, results obtained with fine-tuned features (F'Ty;;) achieve very competitive
results compared to those in the state of the art, which suggests that fine-tuning the
network for the object queries is an effective solution when time is not a constraint and
query objects are known beforehand. However, the BLCF method introduced in Chapter
2 is able to achieve comparable results with no need of fine tuning the network with
query images. That being said, the reranking strategy presented in Chapter 2 provide
less significant gains to the performance w.r.t the initial ranking. For Faster R-CNN
(FTuy), mAP increases from 0.71 to 0.786, and from 0.798 to 0.842 for Oxford and Paris,
respectively, while reranking with BLCF boosts mAP from 0.739 to 0.788 and from 0.82

3.6 Conclusion 45

Oxford 5k Paris 6k

Razavian et al. [164] 0.556 0.697
R-MAC et al. [192] 0.668 0.830
CroW et al. [93] 0.682 0.796
SPoC [11] 0.657 .

IPA-sum (off-the-shelf) 0.588 0.656
IPA-sum (FT) 0.710 0.798
R-MAC (+ R + QE) [192] 0.770 0.877
CroW (+ QE) [03] 0.722 0.855
IPA-sum (+ IPA-max CA-SR + QE) 0.647 0.732
IPA-sum (FTy.) (+ RPA-max CS-SR + QE) 0.678 0.784

IPA-sum (F'T;) (+ RPA-max CS-SR + QE) 0.786 0.842

Table 3.4: Comparison with state-of-the-art works using deep representations instance
retrieval.

to 0.848. These results suggest that, while a BoW-based encoding is more powerful than
sum-pooling of convolutional features (adopted in this chapter for the filtering stage), a
spatial reranking based on features from an object detector trained for the image queries
is more effective, and the obtained object locations obtained after reranking are also
more accurate (see Figures 2.3 and 3.3 for a qualitative comparison between the two
methods). The design choices of the retrieval system will depend on the application
requirements. Fine tuning a neural network is prohibitive for generic instance search
systems where queries are not known. In these cases, building powerful representations
that can encode discriminative information for all possible queries is key to the success
of the method. However, results obtained in this chapter indicate that one can reach
very similar performance to that of state-of-the art instance search methods by simply
training an object detector with a few examples of each query instance.

Finally, the proposed Faster R-CNN fine tuning strategy (F'T};;) using augmented image
queries as training data was used as part of a submission to the TRECVid Instance Search
challenge in 2015, in which we obtained the second best result. The approach included
an initial ranking stage based on BoW aggregated hand-crafted features, followed by a
spatial verification stage relying on the outputs of the fine-tuned Faster R-CNN model.

Conclusion

This chapter has presented different strategies to make use of features from an object
detection ConvNet. It provides a simple baseline that uses off-the-shelf Faster R-CNN
features to describe both images and their sub-parts. We have shown that is possible to
greatly improve the performance of an off-the-shelf based system, at the cost of fine tuning
the network for the query images that include objects that one wants to retrieve. The
proposed reranking strategy based on fine tuning Faster R-CNN was part of a submission
to TRECVid Instance Search 2015 which obtained the 2nd best result in the benchmark.

Summary

This part of the thesis presented two methods based on leveraging features from deep
convolutional neural networks for visual instance retrieval. Chapter 2 introduced a BoW-
based aggregation of off-the-shelf convolutional features (BLCF), allowing the encoding
of the image and its parts for fast retrieval. Chapter 3 presented a retrieval pipeline
based on both global and local features extracted from a Faster R-CNN model fine tuned
on query images. The two aforementioned strategies achieved competitive results on the
Oxford and Paris benchmarks.

Both methods were also evaluated on the challenging TRECVid Instance Search bench-
mark. In Chapter 2 we demonstrated that BLCF greatly outperforms sum-pooled convo-
lutional features on this benchmark. Chapter 3 presented a reranking based on features
from Faster R-CNN fine tuned for query images which improves the results of a strong
baseline.

Subsequent to the development of this part of the thesis, several works highlighted the
benefits of training ConvNets with ranking-based losses for general-purpose visual in-
stance retrieval [70, 15, 161, 162]. The capabilities of such methodologies will be further
explored in Chapter 8 of this thesis, where we learn deep representations for images and
text to allow the retrieval of one given the other.

Part 11

Image-to-Set Prediction

49

Introduction

Among all image understanding tasks [102, 182, 81, 167, 165, 125, 90, 79, 25], image
classification has arguably received most of the attention in computer vision, leading to
the development of neural network architectures that reach superhuman performance on
some datasets (e.g., the classification test error on the ImageNet dataset [177] is now
far below 5% [81]). However, images taken in-the-wild rarely contain a single object,
as everyday life pictures are typically complex scenes, which are inherently multi-label.
Figure 4.1 shows examples of images in the MS COCO dataset [116] together with their
object-level annotations. In contrast to their single-label counterparts, multi-label image
annotations present two distinct properties:

e The number of annotation elements is variable across images. In Figure 4.1, the
number of category-level labels per image ranges from 1 to 5, while the number of
instance-level annotations ranges from 1 to > 20.

e Annotation elements are unordered, i.e. permuting their positions does not al-
ter their meaning. In the first column in Figure 4.1, the annotation elements
for the image can be equivalently represented both as {person, skateboard} and
{skateboard, person}.

These two properties make multi-label annotations elegible to be characterized as sets. A
set is a variable-sized collection of unique elements which is invariant under permutation.
In contrast to sequences, sets do not have a predefined order among its items and, while
elements in a set can be dependent to one another and exhibit relationships (e.g., a
skateboard is more likely to appear next to a person than to a horse), this information

“

[LESEh
HEEC 4 |=[a

Figure 4.1: Image examples (top) and their object-level annotations (bottom). Samples
from MS COCO [116].

52 Introduction

Figure 4.2: NMS for Object Detection. Figure from [165].

is not given explicitly. In computer vision, well-studied problems such as multi-label
classification, object detection and instance segmentation can be framed as set prediction
tasks, since they require variable-length outputs composed of unordered elements.

Traditional convolutional neural architectures require their outputs to be formulated
as fix-sized tensors, e.g., vectors for single-label classification or matrices for pixel-level
classification. Since set prediction tasks require variable-sized outputs, most works have
tackled them by training deep neural networks with proxy loss functions, whose outputs
are then post-processed in order to obtain the final results. In the case of object detection,
common methods [64, 63, 167, 165] use convolutional neural networks trained to classify
thousands of bounding box locations for the input image. Typically, the number of
selected locations is much greater than the actual number of objects that appear in
the image, meaning that post-processing is needed to select the set of predictions that
better covers all the objects and discard the rest. Although in most recent works the
two different stages (i.e. proposal generation and scoring) are optimized jointly [167, 79],
the objective function still does not directly model the target task, but a surrogate one
which is easier to handle at the cost of an additional filtering step based on non-maximum
suppression (NMS), illustrated in Figure 4.2.

While successful, current object detection pipelines present some limitations. First, the
number of objects (i.e. the set cardinality) is not explicitly modeled within the network
and is estimated in post-processing instead. Although in most cases well optimized, this
procedure leads to a waste of computation of scores for thousands of object locations
that are eventually discarded. Further, these methods assume that objects in images
are independent; although convolutional features are shared for all image locations, each
of them is scored independently from its neighbors. Similarly, multi-label classification
methods [29, 28, 236] often assume independence among labels in the set, and determine
the set cardinality during post-processing (e.g., by thresholding label scores).

Given enough training data and computational power, a great variety of automatic tasks
such as object recognition [102], machine translation [190] or speech recognition [73]
have seen a boost of performance thanks to models trained end-to-end, i.e. not imposing
intermediate representations and directly learning to map the input to the desired output.
In this part of the thesis, we explore methods to solve the set prediction task end-to-
end, by directly modeling both 1) the likelihood of presence for each element in the set
and 2) the set cardinality. In Chapter 5, we extensively evaluate and compare different
neural architectures for multi-label classification. Chapter 6 proposes a recurrent neural
network to tackle semantic instance segmentation as a set prediction task.

Multi-label Image Classification

Multi-label annotation is a go-to standard in many social networks platforms (e.g., hash-
tags) [130], which equips the research community with large amounts of weak annotations
of numerous concepts. Multi-label classification can be naturally framed as an image-
to-set prediction problem, since image labels may exhibit relevant dependencies and
the number of labels per image is variable. However, many of the existing multi-label
classification approaches assume constant set cardinality across images in the dataset
(67,225, 33,207,203, 108, 119] and /or are oblivious to label co-occurrences [236, 168, 169];
only a few works model both characteristics of the image-to-set prediction task [112].
Therefore, in this chapter we argue that there is a need to systematically inquire about
the importance of modeling co-occurrences among set elements as well as predicting set
cardinality.

Another important question is the image-to-set dataset choice, as different datasets are
characterized by different levels of label dependencies and different set cardinality dis-
tributions. The most widely used datasets for this task are adapted versions of object
detection datasets (Pascal VOC [54], MS COCO [116]) or hashtag prediction datasets
(NUS-WIDE [38]). Object detection-based datasets contain fully or partially visible
object classes exclusively (e.g., dog, table), whereas hashtag prediction datasets may
contain classes with higher degree of abstraction (e.g., soccer, party). Moreover, all these
datasets have a rather limited number of possible classes (below 100) and a small number
of annotations per image (less than 3 on average). Therefore, there is a need to consider
more challenging datasets in terms of: (1) class abstraction, (2) number of classes, and
(3) number of labels per image. In addition to that, there seems to be no clear consensus
among researchers on the metrics to report. On the one hand, some works report perfor-
mance in terms of mean average precision [208, 209, 218] (reminiscent of object detection)
while, on the other hand, others consider intersection-over-union based metrics such as
F1 score [67, 112, 225, 33, 32, 207, 203, 236, 168, 169].

The lack of benchmarks with well defined metrics and the rather constrained datasets
may hinder the fair comparison between existing methods and slow down advances in the
field. Therefore, in this chapter, we argue for a standardized approach to the problem
of image-to-set of labels prediction, and present an extensive study of neural network
architectures (including feed forward and auto-regressive ones) as well as loss functions
(covering binary cross-entropy, soft intersection-over-union, target distribution and cross-
entropy) for multi-label classification. We explore different ways of explicitly accounting
for class co-occurrences (either through the model architecture or specific loss functions)
as well as determining the set cardinality. We compare all tested approaches on five
datasets of increasing task complexity, namely Pascal VOC 2007 [54], MS COCO 2014
[116], ADE20k [232] and NUS-WIDE [38] and benchmark all methods in terms of a
unified evaluation framework, while ensuring proper and efficient hyperparemeter search

54 Multi-label Image Classification

through the Hyperband algorithm [109].

The contributions of this chapter can be summarized as:

e We provide an in-depth analysis of the current landscape of image-to-set predic-
tion models, in terms of architectures, loss functions, and their treatment of co-
occurrences and set cardinality predicition.

e We evaluate these models using a unified set of metrics on 4 datasets of varying
degrees of complexity. Moreover, by carrying extensive hyperparameter tuning for
all models, we ensure that differences in performance can be attributed to modeling
choices, rather than incomplete hyperparameter optimization.

e Our analysis leads to models that reach state-of-the-art performance on the datasets
for which a fair comparison to previous methods is possible.

Our results indicate that auto-regressive models outperform feed-forward ones, with the
former models consistently being among the top performers on all of the datasets. This
suggests that accounting jointly for both co-occurrences and set cardinality is beneficial.
Interestingly, a simple feed-forward network trained with binary cross-entropy loss is
also a reasonably good performer in most datasets, reinforcing the importance of proper
hyperparameter tuning of baseline models.

Related Work

Multi-label classification has been a long lasting problem in computer vision [226, 85,
230, 212]. Traditionally, the problem has been tackled from many different perspectives,
from decomposing the problem into independent binary predictions [146, 226] or model-
ing label correlations [4, 181, 122], to exploiting priors such as label noise and sparsity
[85, 94, 188, 212, 230, 17]. More recently, significant effort has been devoted to lever-
aging deep neural networks for multi-label classification. Approaches in the deep learn-
ing realm often use pre-trained (single-label) image classification models (such as VGG
[182] or ResNet [81]) as image feature extractors. Then, they decompose the multi-label
classification problem into independent single-label classification problems, by either in-
dependently classifying features extracted locally from object proposals [218, 209, 123]
or by considering global image features and finetuning the pre-trained models with a
binary logistic loss [29, 28, 236]. By considering object proposals separately, the former
approaches fail to consider potentially relevant object co-occurrence information. How-
ever, the latter approaches could implicitly exploit object co-occurrences from the image
global features when deciding on each individual class. Yet, by using a per-class binary
logistic loss, these models inherently assume independence among labels.

In order to explicitly capture label co-occurrences, powersets [193] and methods learning
the joint probability distribution of labels have been introduced in the literature. Al-
though effective, such methods consider all possible label combinations, and thus can
quickly become intractable. To overcome the scalability shortcoming while still modeling
label co-occurrences, probabilistic classifier chains [48] and recurrent neural network-
based approaches [203, 147, 108, 119] decompose the joint distribution into condition-
als at the expense of introducing intrinsic label ordering during training. Therefore,

5.2 Image-to-Set Prediction Methods 55

Model #outputs Loss Dependencies Cardinality

FF 1 BCE - prob. th
FF 1 sloU L prob. th
FF 1 TD L cum. prob. th
FF 2 BCE - DC dist.
FF 2 BCE - C dist.
FF 2 sloU L C dist.
FF 2 TD L C dist.
LSTM K CE 0 eos token
LSTM ¢ K BCE 0 eos token
TF K CE 0 eos token
TFet K BCE 0 eos token

Table 5.1: Models summary. Loss-based modeling of label co-ocurrences is denoted
with £, while explicitly modeling dependencies in the architecture is represented by
0. Notation: FF (feed-forward), LSTM (long short-term memory), TF (transformer),
BCE (binary cross-entropy), sloU (soft intersection-over-union), TD (target distribution),
CE (categorical cross-entropy), DC dist. (Dirichlet-Categorial) and C dist. (Categorial
distribution.)

recent works propose to train recurrent neural network-based models either by apply-
ing a category-wise max-pooling across the time dimension prior to computing the loss
[207, 33, 225] or by optimizing for the most likely ground truth label at each time step
[32], effectively getting rid of any enforced order. Other solutions to capture label co-
occurrences include learning joint input and label embeddings with ranking-based losses
[210, 117, 220, 112, 67] as well as designing loss functions such as target distribution
mean squared error [208] or target distribution cross-entropy [67, 130], which directly
account for those.

Finally, most state-of-the-art methods are not concerned with estimating the number of
labels to be predicted (set cardinality). Instead, they care about evaluating their top-k
predictions [67, 225, 33, 207, 203], by manually fixing k for all samples, or apply a fixed
threshold to label probabilities [236, 29] (allowing for different number of images per
sample). Only recently, multi-label classification has been explicitly addressed as a set
prediction problem, where both labels and cardinality are predicted. This is the case of
[168, 169, 112], which model set cardinality as a categorical distribution and [112], which
learn class-specific probability thresholds.

Image-to-Set Prediction Methods

In image-to-set prediction, we are given a dataset of image and set of labels pairs, with
the goal of learning to produce the correct set of labels given an image. The set of
labels is an unordered collection of unique elements, which may have variable size. Let
D = {d;}¥ | be a dictionary of labels of size N, from which we can obtain the set of
labels S for an image x by selecting K > 0 elements from D. If K = 0, no elements are
selected and S = {}; otherwise S = {s;}X . Thus, our training data consists of M image
and label pairs {(x®, S))}M

56 Multi-label Image Classification

Table 5.1 gives an overview of the image-to-set prediction models considered in this study.
A comprehensive overview of set prediction models is out of the scope of this work; we
limit the scope of our study to approaches based on feed forward (FF) architectures as well
as auto-regressive ones, since they are currently the state-of-the-art for this task. Overall,
the models we consider can be categorized according to: (1) whether they model co-
occurrences of elements in the set, and (2) whether they explicitly model set cardinality.
All models are composed of an image representation module, followed by a set prediction
module, which are stacked together and trained end-to-end.

Image Representation. We choose ResNet-50 [81] as image encoder, initialized with
pre-trained ImageNet [177] weights, given its ubiquitous role in the literature. The en-
coder transforms an input image x € RW*H*3 into a representation r = fe(x) of dimen-
sions w X h x 2048, where w and h are the width and height of the convolutional features,
respectively.

Set Prediction. In this work, we consider feed-forward and auto-regressive architectures
for image-to-set prediction, which are described in the following subsections.

Feed-forward Models

Notation: We represent S as a binary vector s of dimension NV, where s; = 1 ifs; € S
and 0 otherwise !. The goal is to estimate the label probabilities § from an image x.
Training data consists of M image and set pairs.

Architectures: Feed-forward models take image features r as input and output § =
go(r). These models are composed of (1) an optional 1 x 1 convolutional block to change
the feature dimensionality of the input features, (2) a global average pooling operation to
collapse the spatial dimensions, and (3) one or more fully connected layers. Intermediate
fully connected layers are followed by dropout, batch normalization and a ReLU non-
linearity. The last fully connected layer serves as classifier, and thus, is followed by a
sigmoid non-linearity to obtain the vector of estimated probabilities. The architecture
used for all feed-forward models is depicted in Figure 5.1(a).

Loss functions: The model’s parameters are trained by maximizing the following ob-
jective over the dataset:

M
arg maleogp(é(i) = s x®; ¢, 0). (5.1)
&0 2o

where ¢ and 6 are the image representation and set predictor parameters, respectively.
Most state-of-the-art feed-forward methods assume independence among labels, factoriz-
ing p(8(= s|x(") as Z;V:o logp(égl) = s§1)|x(i)) and using binary cross-entropy (BCE)
as training loss. However, the elements in the set are not necessarily independent. There-
fore, we can borrow from the semantic segmentation literature and train the feed-forward
set predictor with a soft structured prediction loss, such as the soft intersection-over-union
(sIoU), in order to take into account dependencies among elements in the set: Alterna-
tively, we can use the target distribution p(s(®|x()) = s(i)/zj ng) [67, 130] to model the
joint distribution of set elements and train a model by minimizing the cross-entropy loss
between p(s¥|x(?) and the model’s output distribution p(8(|x()). Hereinafter, we refer

'Recall that N represents the size of the label dictionary

5.2 Image-to-Set Prediction Methods 57

to the feed-forward model trained with BCE as FFgcg, the one trained with sloU as
FFgou, and the one trained with target distribution as FFpp.

Set cardinality: Given the estimated probabilities § obtained with any of the aforemen-
tioned approaches, a set of labels S must be recovered. For both FFpcg and FFgoyu, one
simple solution is to apply a threshold th to §, keeping all labels for which §; > th. Typ-
ically, this threshold is set to 0.5. Nonetheless, in the case of the FFtp, we recover the
label set by greedily sampling elements from a cumulative distribution of sorted output
probabilities p(8W|x(?) and stop the sampling once the sum of probabilities of selected
elements is above a threshold th = 0.5. Alternatively, the set cardinality K may be
explicitly predicted by the feed-forward model through a second output K = go(r),
where K represents the categorical distribution over possible set cardinalities. At infer-
ence time, the top—f(labels with highest probability are included in the predicted set.
For completeness, in our experiments we also use a variant of FFgcg where the set car-
dinality is modeled with Dirichlet-Categorial distribution, following the model described
in [169].

Empty set prediction: Images with missing labels (i.e., S = {}) can be naturally
handled by models that assume label independence (e.g., FFpcr and FFgo,uy, whose
output is a probability distribution for each label). At inference time, the set cardinality
is predicted implicitly by applying a threshold value th to each output probability. The
set cardinality can be also modeled explicitly (through a second output), where the output
of cardinality 0 corresponds to empty set. From the feed-forward models considered, only
FF1p cannot handle empty sets, since a vector with all zeros is not a valid (categorical)
probability distribution.

Auto-regressive Models

Notation: When using auto-regressive models, we represent S as a binary matrix S of
dimensions K x N. 2 We set S;; = liflabel d; is selected at i-th position and 0 otherwise
(in other words, each row in S contains the one-hot-code representation of one label).

Architectures: We explore two auto-regressive architectures, namely a Long Short-
Term Memory (LSTM) [82] with spatial attention-based model [128] and a transformer-
based (TF) one [196]. Both LSTM and TF take image features r as input and output
S = gp(r). These models are composed of (1) an optional 1 x 1 convolutional block to
change the feature dimensionality of the input features, and (2) either a single LSTM
layer (following [128]) or several transformer layers (following [196]). The output layer
of the model is used as classifier and has a softmax non-linearity. These models predict
one element of the set at each time-step. The LSTM and Transformer architectures are
depicted in Figures 5.1(b) and 5.1(c), respectively.

Loss functions: In this scenario, the goal is to predict S from an image x by maximizing
the following objective.

M
arg maleogp(S(i) = SWx®. ¢, 0), (5.2)
0 =0

To ensure that labels in S are selected without repetition, we force the pre-activation

?Recall that K defines the set cardinality and N the size of the dictionary of possible labels.

58 Multi-label Image Classification

A

5 K §

4 4
[Classifier J[Classifier | Classifier |}«
3

A A

—>| Attention

.‘

, ¥

i Convixi Block
[

A o

| FC Block (xB) | & xB

..........]---..---—- r 295 o

o -2
Vgroo i
[AvgPoot] :
‘ LSTM S
} \ o

Embedding Embedding

r Sk-1 S<k
(a) FF (b) LSTM [128] (¢) Transformer [196]

Figure 5.1: Set prediction architectures. (a) Feed-forward (FF), (b) LSTM and (c).
Dashed lines denote optional blocks.

of p(S,(;) \x(i), S(gc) to be —oo for all previously selected labels at time-steps < k. One
characteristic of the formulation in Equation 5.2 is that it inherently penalizes for order,
which might not necessarily be relevant for the set prediction task. In order to ignore the
order in which labels are predicted, we aggregate the outputs across different time-steps
by means of a max pooling operation. In this case, instead of minimizing the cross-
entropy error at each time step, we minimize the BCE between the pooled predicted
labels and the ground truth. Hereinafter, we refer to the LSTM and TF models trained
with pooled time-steps as LSTMge and TFye, respectively. It is worth noting that, in all
cases, at inference time, we directly sample from the auto-regressive predictor’s output.

Set cardinality: Most auto-regressive set predictors in the literature are not concerned
with cardinality prediction, and predict a fixed number of elements by default [33, 203].
However, we argue that those models inherently have the mechanism to learn when to
stop. Therefore, as commonly done in tasks such as image captioning and machine
translation, we introduce an end-of-sequence eos token to the dictionary of labels, which
has to be predicted in the last sequence step. Thus, in our case, the eos token’s role is
to estimate the cardinality of the set. In the case of LSTMge and TFg, we learn the
stopping criteria with an additional loss accounting for it. The eos loss is defined as the
BCE loss between the predicted eos probability at all time-steps and the ground truth
(represented as a unit step function, whose value is 0 for the time-steps corresponding to
labels and 1 otherwise). In addition to that, we incorporate a cardinality ¢; penalty. In
this last case, we weight the contribution of the eos-loss and cardinality penality terms
with hyperparameters A¢ps and Ao p, respectively.

Empty set prediction: We handle images with missing labels by setting the eos token
as the first element to be predicted in the sequence.

5.3 Experiments 59

VOC COCO NUS-WIDE ADE20k
Train 4509 74503 145610 18176
Val 502 8280 16179 2020
Test 4952 40504 107859 2000
N 20 80 81 150

K 1.57+0.77 291+184 186+1.71 817+4.14

Table 5.2: Splits, dictionary size (IV), and cardinality (K), reported as mean (+std) for
each dataset.

Experiments

Datasets and Metrics

We train and evaluate our models on five different image datasets, which provide multi-
label annotations. The dataset details are presented in Table 5.2, while the distribution
of the training set cardinality is depicted in Figure 5.2.

Pascal VOC 2007 [54] is a popular benchmark for image classification, object detection
and segmentation tasks. It is composed of 9963 images containing objects from 20
distinct categories. Images are divided in 2501, 2510 and 4952 for train, validation
and test splits, respectively. We train with 90% of the trainval images, keeping 10% for
validation. Models are evaluated on the test set, for which annotations are available.

MS COCO 2014 [116] is a popular benchmark for object detection and segmentation
on natural images, containing annotations for objects of 80 different categories. It is
composed of 82 783 images for training and 40 504 for validation. Since evaluation on the
test set can only be done through the benchmark server, which currently does not support
the set prediction task, we use 10% of the training set for validation, and evaluate on the
full validation set. Note that in our experiments we include images with no annotations
as empty sets.

NUS-WIDE [38] is a web image database composed of 161 789 images for training and
107 859 for testing, annotated with 81 unique tags collected from Flickr. While VOC and
MS COCO are annotated with visually grounded object tags (e.g., dog, train or person),
NUS-WIDE includes a wider variety of tags referring to activities (e.g., wedding, soccer),
scenes (e.g., snow, airport) and objects (e.g., car, computer, dog). As in COCO, this
dataset includes images with empty sets annotations.

ADE20k [232] is a scene parsing dataset, containing 20210 training, 2000 validation
samples, annotated with a dictionary of 150 labels. Since the test set server evaluation
is not suited for image to set prediction, we use validation set as a test set and separate
a new validation set from the training set. As a result we obtain 18 176, 2020 and 2 000
images for train, validation and test splits, respectively.

Metrics. We evaluate all methods by means of F1 score calculated per-class (C-F1), per-
image (I-F1) and overall (O-F1). Note that O-F1 and C-F1 are also commonly referred
to as macro- and micro-F1, respectively.

60 Multi-label Image Classification

0.6-
— VOC
0.4- coco
—— NUS-WIDE
s —— ADE20k
0.0- ' ' ' ' j T T
0 5 10 15 20 25 30

Cardinality

Figure 5.2: Dataset cardinality distribution.

Implementation details

We resize all images to 448 pixels in their shortest side and take random crops of 448 x 448
for training. We randomly flip (p = 0.5), translate (within a range of £10% of the image
size on each axis) and rotate images (£10°) for data augmentation during training. All
models are trained with the Adam optimizer [99] for a maximum of 200 epochs, or until
early-stopping criteria is met (monitoring the O-F1 metric and using patience of 50 epochs
for VOC and 10 epochs for the remaining datasets). All models are implemented with
PyTorch 2 [155]. For autoregressive models, we train on two variants of annotations: (1)
we keep the dataset order (e. g. LSTM and TF), and (2) we randomly shuffle the labels
each time we load an image (e. g. LSTMgpume and TFgpusme). For hyperparameter tuning,
we allowed Hyperband to sample values from a set of mutually independent categorical
distributions, one for each hyperparameter.

Model selection

To tune all model hyperparameters, we used HYPERBAND [109], a bandit-based algo-
rithm that speeds up random search via an aggressive form of early-stopping called
SUCCESSIVEHALVING [87]. In SUCCESSIVEHALVING, a set of n different hyperparame-
ter combinations is sampled, each of which is initially allowed to run using r “resources”
(e.g., training time, some number of epochs, size used for dataset subsampling). The best
n/n of these are kept (according to best O-F1 over validation set observed after using r
resources) and subsequently run with nr resources, where 7 is a parameter controlling the
rate at which values are discarded; this elimination process is repeated until a single best
configuration is chosen. However, since SUCCESSIVEHALVING might be too aggressive
(i.e., it can discard potentially good configurations in early steps), HYPERBAND hedges
by repeating the process multiple times. Each repetition—or “bracket”— uses different
hyperparameters n and resource limits r to control the level of aggressiveness; moreover,
these values are chosen so that the total resource usage across all runs in each bracket
is approximately uniform. This approach has theoretical guarantees that do not rely on
strong assumptions about the function to be optimized (in our case best O-F1 over vali-
dation set). Moreover, it has been shown to result in substantial computational savings
with respect to a random search that does not use SUCCESSIVEHALVING [109]. In our
experiments, we used n = 3, and a maximum value of r equal to R = 600, where each
resource unit is equivalent to 0.15 training epochs for most datasets, rounding up when
necessary (for VOC, equivalent to 0.2 epochs). This translates to roughly 410 hyper-

Shttp://pytorch.org/

http://pytorch.org/

5.3 Experiments 61

voC Coco NUS-WIDE ADE20k
Rank Model O-F1 C-F1 [IF1 | O-F1 C-F1 IF1 | OF1 CF1 IF1 | F1 CF1 IF1
. TF 86.59 8548 8842 | 77.07 73.72 79.96 | 6873 53.62 6581 | 70.28 4611 69.61
shuffle (0.27) (0.33) (0.28) | (0.04) (0.06) (0.03) | (0.24) (0.22) (0.48) | (0.17) (0.46) (0.15)
) LSTM 86.33 8510 88.14 | 76.66 73.04 7948 | 70.54 5425 67.96 | 70.50 48.82 69.82
(0.08) (0.14) (0.08) | (0.03) (0.03) (0.05) | (0.08) (0.17) (0.48) | (0.24) (0.58) (0.23)
3 LSTM 87.27 8575 8898 | 77.13 73.61 80.03 | 67.69 50.19 62.02 | 69.54 43.23 68.96
shuffie (9.21) (0.33) (0.17) | (0.07) (0.10) (0.07) | (0.08) (0.18) (0.11) | (0.24) (0.82) (0.29)
A - 85.85 84.27 87.84 | 7691 73.70 79.68 | 70.77 55.63 69.41 | 69.94 47.76 68.86
(0.18) (0.21) (0.16) | (0.05) (0.10) (0.05) | (0.03) (0.20) (0.06) | (0.24) (0.57) (0.34)
5 FF 86.57 85.31 88.41 | 76.56 72.79 78.65 | 68.87 53.32 56.22 | 70.15 4831 68.67
BCE (0.10) (0.12) (0.11) | (0.03) (0.11) (0.03) | (0.10) (0.15) (0.13) | (0.17) (0.31) (0.13)
6 LSTM 86.23 85.26 83.14 | 76.17 7278 79.15 | 69.66 55.74 67.31 | 70.25 4747 69.51
set (0.07) (0.14) (0.08) | (0.14) (0.15) (0.09) | (0.08) (0.09) (0.06) | (0.66) (2.50) (0.56)
. FF . 8555 8377 87.69 | 75.92 7186 77.98 | 6819 5259 55.38 | 70.62 46.04 69.90
BCEDC (0.43) (0.55) (0.42) | (0.04) (0.11) (0.07) | (0.07) (0.34) (0.07) | (0.18) (0.75) (0.17)
s FF 84.76 84.22 86.90 | 69.76 68.10 68.30 | 61.29 47.25 4875 | 70.15 43.94 69.09
BCE,C (0.07) (0.16) (0.08) | (0.11) (0.09) (0.12) | (0.30) (0.24) (0.17) | (0.08) (0.40) (0.07)
0 —— 84.69 83.52 86.90 | 70.66 68.81 69.43 | 63.56 48.19 49.83 | 69.29 4857 68.32
e (0.14) (0.10) (0.11) | (0.07) (0.10) (0.07) | (0.09) (0.08) (0.09) | (0.12) (0.55) (0.17)
10 — 87.21 85.97 89.19 | 73.23 59.96 7457 | 62.39 1285 51.22 | 67.61 20.79 66.99
sloU (0.12) (0.13) (0.08) | (0.65) (1.43) (0.76) | (0.38) (0.56) (0.17) | (0.23) (0.44) (0.24)
I TR 86.24 85.18 88.08 | 52.30 43.94 53.63 | 57.07 44.16 54.67 | 50.25 31.22 49.76
set (0.24) (0.21) (0.23) | (32.19) (38.93) (34.34) | (25.82) (23.75) (24.98) | (27.47) (25.60) (26.90)
1o PR 85.99 84.67 8811 | 65.54 5277 6380 | 54.05 9.77 41.53 | 65.85 20.14 64.97
sloU,C (0.23) (0.30) (0.23) | (0.50) (1.00) (0.52) | (0.74) (0.50) (0.58) | (0.21) (0.41) (0.22)
FF 79.30 78.50 82.98 63.99 3947 63.86
TD (0.21) (0.47) (0.21) .))))) (0.20) (0.67) (0.24)

Table 5.3: Results on VOC, COCO, NUS-WIDE and ADE20k (test set). We report C-
F1, O-F1 and I-F1 computed for each model. Models are trained 5 times using different
random seeds. We report mean (std) for each metric, model and dataset. The models
are ordered according to mean ranking computed over all five tested datasets. Note that
FFrp is not considered to obtain the mean ranking, since it is not used for datasets

including empty sets (COCO and NUS-WIDE).

parameter configurations evaluated per model, and a maximum budget of 3200 epochs
(4400 for VOC) for the complete tuning process (with at most 90 training epochs per
model); note that we also used patience for monitoring the O-F1 metric during tuning, so
this budget is an upper bound. We used the same random seed for all models instantiated
during the tuning process.

Analysis

Set label prediction. Table 5.3 reports results for all models and datasets in terms of
O-F1, C-F1 and I-F1 metrics. Note that each experiment was run with 5 different seeds
(different from the one used for hyper-parameter selection), and thus we report the mean
and standard deviation results of each model. Models appear following their average
ranking across datasets. According to the ranking, auto-regressive models outperform
feed-forward ones. This suggests that explicitly considering both label co-occurrences and
set cardinality while training is favorable. Surprisingly, a well tuned very simple baseline
(FFpcE) achieves a reasonably high ranking, beating all other feed-forward models.

For VOC dataset, FF4,u achieves the best performance among feed-forward models,
reaching 87.21 O-F1, and closely followed by FFpcg (86.57 O-F1). Interestingly, their

62 Multi-label Image Classification

, . STMae
0.85- . - T
[
0.80- B FFoce oc
LSTMzhuffie 0.75- :w.c
. - s
b e T 0.70- -
. FFecE. oo ® 0.65- .
FFrp,c g !
- ' o 0.60-
FFsiou
- 0.55-
- H+ H}’ 0.50-
b 0.45°
VéC COICO NUS-W\DE ADEIZOK 0.40- VOC

1
coco NUS-WIDE ADE20k
(a) (b)

Figure 5.3: (a): Cardinality error. (b): O-F1 per dataset (mean and standard deviation).
We compare the best models for each tested dataset as well as two standard feed forward
models FFBCE and FFsIoU-

- - > -

Cardinality error

o B N W oa U -

feed-forward counterparts predicting set cardinality achieve slightly worse performance.
When it comes to auto-regressive set predictors, LSTMgpume trained with shuffled labels
achieves the best performance with an O-F1 score of 87.27, whereas the rest of these
models obtain performances within 1.5 points of LSTMgnume. In the case of COCO
dataset, LSTMghufe is the best performing model (77.13 O-F1), followed by TF and
TFgshume- The best feed-forward model for this dataset is FFpcg (76.56 O-F1). Con-
trary to VOC, auto-regressive models generally outperform feed-forward ones on COCO
and, once again, we observe a drop in performance when predicting cardinality in feed-
forward models. In the case of NUS-WIDE, auto-regressive models (TF and LSTM) lead
the results. It is worth noting that models trained to exploit the dataset order of labels
perform better than those trained with shuffled ones. This is not surprising since the
label’s order in NUS-WIDE is consistent across all data points (it follows alphabetical
order). Similarly to COCO dataset, FFpcg is the best performing feed-forward model,
and most of the feed-forward models which predict cardinality are among the least per-
forming ones. When it comes to ADE20k, FFpcg pc achieves the best performance,
with an O-F1 of 70.62 O-F1. In contrast to the previous datasets, endowing feed-forward
models with a cardinality prediction path tends to have a rather positive effect. Most
auto-regressive models also exhibit good performance in this dataset. While FFpcg pc
and LSTM perform comparably in terms of O-F1, LSTM reaches better C-F1 (48.82 vs
46.04) than FFpcppc. It is worth mentioning that, as in NUS-WIDE, label order is
consistent across samples, and thus can be exploited.

Figure 5.3 presents the test O-F1 metric and cardinality prediction errors for the baseline
models FFpcg and FFg,u as well as the models leading to the best performance for each
dataset. As shown in the figure, object detection-based datasets appear to be among
the easiest ones, achieving higher overall performance and lower cardinality error, with
VOC being the easiest dataset and ADE20k the hardest among them. As for the model
architectures, auto-regressive ones seem to be rather consistent across datasets, exhibiting
close to top performances and lower cardinality errors. While FFioy and FFpcg achieve
top performance for VOC, these models are outperformed by auto-regressive or feed-
forward ones predicting cardinality on all other datasets. This difference can be explained
by the higher degree of complexity in COCO, NUS-WIDE and ADE20k compared to VOC
(higher dimensionality output space and higher set cardinality). The performance drop

5.3 Experiments 63

N~
N,
N,
N
0.8 e e
N o I RS .
R v
~ 0.6
by
v
o
ud
204
<L
0.2] === VOC
f coco
NUS-WIDE
0.0 e ADE20K
0 5 10 15 20 25

Cardinality

Figure 5.4: I-F1 as a function of cardinality. We report mean I-F1 and 95% confidence
intervals for the best models for each dataset at different cardinality values.

can thus be attributed to either a higher set cardinality error or wrong label predictions.
Finally, top performing models in terms of O-F1 do not necessarily have lower cardinality
prediction error; and similarly, the least performing ones may not correspond to the ones
with the highest cardinality error.

Cardinality Prediction. We compare the best models for each dataset in terms of
their performance under different set cardinalities in Figure 5.4. The x-axis represents
the test set annotation cardinality, while y-axis reports the mean I-F1 that corresponds
to each given cardinality value. As shown in the figure, predicting empty sets is hard,
e.g., for both COCO and NUS-WIDE, the mean I-F1 is significantly lower for images with
cardinality 0 than for images of cardinality 1, a pattern that was consistently observed
with other models in these datasets. Moreover, for the datasets that require high level
reasoning in order to predict labels, we observe that I-F1 rises with the set cardinality.
We hypothesize that this behavior could be attributed to exploiting co-occurences that
improve label predictions (e.g., the more labels we have, the easier it is to predict a label
via reasoning about the co-ocurrences).

Figure 5.5 shows qualitative results from the best performing model for each dataset.

Comparison to state-of-the-art

In this subsection, we compare our best models to the state-of-the-art. Table 5.4 reports
the results in terms of O-F1 for VOC and COCO. Note that state-of-the-art results for
NUS-WIDE ignore empty annotations and/or randomly rearrange their splits [32, 236,
112, 119, 123, 108, 225, 67], and thus are not comparable to the results presented in
this study. Moreover, to the best of our knowledge, ADE20k has not been used for
image-to-set of labels predictions in the past. As shown in the table, we are able to
achieve state-of-the-art results in both datasets, even though we challenge our models to
predict both the correct labels and set cardinality. This is not the case for the majority
of methods evaluated on VOC and COCO. Moreover, a well tuned simple baseline such
as FFpcE is able to outperform previous state-of-the art, achieving 86.57 O-F1 on VOC
and 76.56 on COCO, showcasing the importance of proper hyperparameter tuning.

64 Multi-label Image Classification

ADE20k NUSWIDE

chair, sofa tvmonitor, cat person, banana, wall, bathtub, floor, road, building, sky,
boat, bird, handbag, toilet, shower, screen sidewalk, car,
bowl door, ceiling, person, streetlight,

clouds, ocean, sky,
water, lake, rocks

person, protest,
sky

person, motorbike, tvmonitor, person, person, umbrella, sandwich, spoon, wall, floor, chair, wall, bed, ceiling, animal, cat clouds, grass,

car chair handbag, bottle bowl, cup, fork, painting, table, floor, pillow, lamp, mountain, rocks,
knife, bottle, ceiling, plant, door, table, windowpane, sky, valley
broccoli, dining windowpane, curtain, painting, cushion,
table flower, bottle, light, sky, tree, door,
radiator, glass curtain, mirror,

railing, ottoman,
clock

person, horse person, bicycle person, suitcase, stop sign, person, building, sky, car, wall, floor, shelf, airport, clouds, beach, ocean, sky,

backpack, handbag, suitcase, road, sidewalk, trade book, box, ceiling, plane, road, sky, water, grass
handbag, tv backpack name, awning, desk, cabinet, vehicle
person, streetlight stairs, bottle, bag,

microwave

Figure 5.5: Qualitative results. Each column includes two examples for each dataset.
True positives, false positives and false negatives are highlighted in blue, red and black,
respectively.

[112) [236] [123] [168] [169] [225] [33] [32] [207) [203] [108] [119] Ours

vVOoC 79.1 - - 78.6 815 62.9 - - - - - - 87.3
COCO 629 758 740 69.0 70.7 665 71.1 677 720 67.8 71.8 752 77.1

Table 5.4: Comparison to state-of-the-art on COCO and VOC.

Conclusion

In this chapter, we presented a comprehensive analysis of methods suitable for image-
to-set prediction, evaluating their performance in 5 diverse datasets, using a uniform
set of metrics and budgets for hyperparameter tuning. Our work reviews the current
landscape of image-to-set prediction, and helps elucidate the most promising directions
for future research. In particular, our analysis suggests that auto-regressive models are
better choices than feed-forward models for the task, performing consistently well across
all considered datasets. Moreover, we found that, by exploiting standard ideas of one-
to-many sequence models, we can inherently handle set cardinality prediction, label co-
occurrences and images without annotations. Additionally, our work emphasizes the
importance of thorough hyperparameter tuning, showing that even simple baselines can
achieve close to state-of-the-art performance when properly tuned.

Recurrent Instance Segmentation

The previous chapter discussed set prediction neural networks for multi-label classifica-
tion, where each element to be predicted in the set is a categorical label. This chapter
takes one step further and presents a set prediction method to solve the task of semantic
instance segmentation.

Semantic instance segmentation is defined as the task of assigning a binary mask and a
categorical label to each object in an image. In this case, each element in the output
set is an object represented by its location in the image (encoded as a binary mask) and
its categorical label. Semantic instance segmentation is often understood as an exten-
sion of object detection where, instead of bounding boxes, accurate binary masks must
be predicted. Both object detection and instance segmentation can be framed as set
prediction tasks, since they require variable size outputs containing unordered, yet inter-
related elements. Current state of the art methods for semantic instance segmentation
[77, 78, 114, 111, 43, 79] extend object detection pipelines based on object proposals
[167] by incorporating an additional module that is trained to generate a binary mask
for each object proposal. Such architectures follow a two-stage procedure, i.e. a set of
object-prominent proposal locations are selected first, and then each of them is given a
score, a categorical label and a binary mask.

While most computer vision systems analyze images in a single step, the human ex-
ploration of static visual inputs is actually a sequential process [160, 1] that involves
reasoning about objects that compose the scene and their relationships. Inspired by this
behavior, we design a model that performs a sequential analysis of the scene to deal with
complex object distributions and make predictions that are coherent with each other.
We take advantage of the capability of Recurrent Neural Networks to generate sequences
out of a single input [201, 189] and cast semantic instance segmentation as a sequence
prediction task. The model is trained to freely choose the scanpath over the image that
maximizes the quality of the segmented instances, which allows us to conduct a detailed
study about how it learns to explore images. The object discovery patterns we find are
consistent and related to the relative layout of objects in the scene.

Recent works [172, 166] have also proposed sequential solutions for instance segmenta-
tion. These are, however, trained to produce a set of class-agnostic masks and must be
either evaluated on single-class benchmarks or require a separate method to provide a
categorical label for each predicted object. Both [172, 166] impose intermediate repre-
sentations by using a pre-processed input consisting of a foreground/background mask
and instance-level angle information [166] or using an encoder pre-trained for semantic
instance segmentation [172]. Based on these works, we develop a true end-to-end re-
current system that provides a set of semantic instances as an output (i.e. both binary
masks and categorical labels for all objects in the image) directly from image pixels.

66 Recurrent Instance Segmentation

The contributions of this work are threefold:

e We present the first end-to-end recurrent model for semantic instance segmentation,
trained to predict object instance sets in its output with no required post-processing
steps.

e We show its competitive performance against previous sequential methods on three
instance segmentation benchmarks, namely Pascal VOC 2012, Cityscapes and
CVPPP Plant Leaf Segmentation datasets.

e We provide a thorough analysis of its behavior in terms of the object discovery
patterns that it follows once trained.

The remainder of this chapter is structured as follows: Section 6.1 reviews the related
work on semantic instance segmentation. Section 6.2 presents our proposed recurrent
architecture and describes the training procedure. Section 6.3 discusses the results ob-
tained on single-class and multi-class instance segmentation benchmarks and studies the
behavior of the model in terms of the order in which it finds objects. Finally, Section 6.4
draws the conclusions.

Related Work

Most works on semantic instance segmentation inherit their foundations from object
detection solutions, augmenting them to segment object proposals [77, 78] and adding
post-processing stages to refine the predictions [36]. More recent works build on top of
Faster R-CNN [167] by adding a cascade of predictors [43, 42] and iterative refinement of
masks [114]. In contrast with cascade-based methods [43, 114, 42], He et al. [79] design
an architecture that predicts bounding boxes, segments and class scores in parallel given
the output of a fully convolutional network (hence, no chain reliance is imposed). Other
works have presented alternative methods to the proposal-based pipelines by treating the
image holistically. These include combining object detection and semantic segmentation
pipelines with Conditional Random Fields [9], learning a watershed transform on top of
a semantic segmentation [14] or clustering object pixels with metric learning [47].

Our model is closer to recent works that formulate the problem of instance segmentation
with sequential methods, which predict different object instances one at a time. Ren &
Zemel [166] propose a complex multi-task pipeline for instance segmentation that predicts
the box coordinates for a different object at each time step using recurrent attention.
These bounding boxes are then used to select the image location and predict a binary
mask for the object. Their model uses an additional input consisting of a canvas that is
composed of the union of the binary masks that have been previously predicted. This
architecture resembles two-stage proposal-based ones [77, 114, 79] in the sense that it is
also composed of two separate modules, one predicting location coordinates and one to
produce a binary mask within this location. The main difference between these works and
[166] is that objects are predicted one at a time and are dependent on each other. Romera-
Paredes & Torr [172] choose to use a recurrent decoder that stores information about
previously found objects in its hidden state. Their model is composed of Convolutional
LSTMs [214] that receive features from a pretrained model for semantic segmentation
[125] and outputs the separate object segments for the image.

6.2 Model 67

While proposal-based methods have shown impressive performance, they generate an ex-
cessive number of predictions and rely on an external post-processing step for filtering
them out, e.g., non-maximum suppression. Our proposed recurrent model optimizes an
objective which better matches the conditions at inference time, as it is trained to predict
the final semantic instance segmentation directly from image pixels. All previous sequen-
tial methods [172, 166] are class-agnostic and, although [166] reports results for semantic
instance segmentation benchmarks, class probabilities for their predicted segments are
obtained from the output of a separate model trained for semantic segmentation. To
the best of our knowledge, our proposed method is the first to directly tackle semantic
instance segmentation with a fully end-to-end recurrent approach that maps image pixels
to a variable length set of objects represented with binary masks and categorical labels.

Model

Given an input image z, the goal of semantic instance segmentation is to provide a set
of masks and their corresponding class labels, y = {y1,...,yn}. The cardinality of the
output set, i.e. the number of instances, depends on the input image and thus the model
needs to be able to handle variable length outputs. This poses a challenge for feedforward
architectures, which emit outputs of fixed size. Similarly to previous works involving sets
[200, 199, 172], we propose a recurrent architecture that outputs a sequence of masks
and labels, § = (91,...,95). At any given time step t € {1,...,7}, the prediction is
of the form 9 = {9, Ub, Je, Js}, where §, € [0,1]"*™ is the binary mask, 9, € [0,1]*
are the bounding box coordinates normalized by the image dimensions, ¢. € |0, l]C are
the probabilities for the C' different categories, and g5 € [0, 1] represents the objectness
score, which is the stopping criterion at test time. Obtaining bounding box annotations
from the segmentation masks is straightforward and it adds an additional training signal,
which resulted in better performing models in our experiments.

We design an encoder-decoder architecture that resembles typical ones from semantic
segmentation works [125, 173], where skip connections from the layers in the encoder are
used to recover low level features that are helpful to obtain accurate segmentation out-
puts. The main difference between these works and ours is that our decoder is recurrent,
enabling the prediction of one instance at a time instead of a single semantic segmenta-
tion map where all objects are present, thus allowing to naturally handle variable length
outputs.

Encoder

We use a ResNet-101 [81] model pretrained on ImageNet [177] for image classification
as an encoder. We truncate the network at the last convolutional layer, thus removing
the last pooling layer and the final classification layer. The encoder takes an RGB image
x € RMXWX3 and extracts features from the different convolutional blocks of the base
network F' = encoder(z). F contains the output of each block F' = [fo, f1, fo, f3, f4],
where fy corresponds to the output of the deepest block, and f4 is the output of the
block whose input is the image (i.e. fi. o correspond to the output of ResBlock; 5 in
ResNet-101, respectively).

68 Recurrent Instance Segmentation

W,
lown 2x c
conv 2
up 2x 85
— conv m conv 5 S
Conv =
H - LSTM - 5°
9]
64 down2x D/4 Di4 D/8
3 1 conv 1 up 2x) 1
7 Pooling
conv @ é S
~ LSTM Pooling 3 &
N
down 2x D/2 D/2 D/4 4
256 1 conv T up 2x
conv m]
Conv ;
ﬁ @ @ il poo"ng 5
down 2x g6
512 | conv ' up 2 = §
[e}
conv ©
@ Pooling L o
LST™M Cc
1024 down 2x D
! conv I up 2x ad
=
f@@?@ 5-3-0949 0i:
2048 D D D/2 D/4 D/8 1

Figure 6.1: Our proposed recurrent architecture for semantic instance segmentation.

Decoder

The decoder receives as input the convolutional features F' and outputs a set of 7 predic-
tions, being n variable for each input image. Similarly to [172], we use the Convolutional
LSTMs [214] as the basic block of our decoder, in order to naturally handle 3-dimensional
convolutional features as input and preserve spatial information. A ConvLSTM unit can
be written with the following equations:

fe=o(x* Wy +hi1 Uy + by)
it =o(zyx Wi+ hy—1 x Uy + by)
or =0(xyx Wy + hy—1 x U, + by) (6.1)
ct = fr ® ci_1 + iy © tanh(xy * We + hy_1 x U, + b.)
ht = o; ® tanh(ct)

where o is the sigmoid activation, ® represents the point-wise multiplication and * rep-
resents the convolutional operator. i, f;, 0; are the input, forget and output gates, ¢; is
the cell state and h; is the hidden state. W and U terms are convolutional kernels and
b represents the bias term.

While [172] uses a two-layer Convolutional LSTM module that receives the output of
the last layer of their encoder, we design a hierarchical recurrent architecture that can
leverage features from the encoder at different abstraction levels. We design an upsam-
pling network composed of a series of ConvLLSTM layers, whose outputs are subsequently
merged with the side outputs F from the encoder. This merging can be seen as a form
of skip connection that bypasses the previous recurrent layers. Such architecture allows
the decoder to reuse low level features from the encoder to refine the final segmentation.
Additionally, since we are using a recurrent decoder, the reliance on these features can
change across different time steps.

The output of the i ConvLSTM layer in time step t, hi ¢, depends on both (a) the input

6.2 Model 69

it receives from the encoder and its preceding ConvLSTM layer and (b) its hidden state
representation in the previous time step h;;—1:

hit = ConvLSTM;([Ba(hi—1,t) | Si], hig—1) (6.2)

where B is the bilinear upsampling operator by a factor of 2, h;_;; is the hidden state
of the previous ConvLSTM layer and S; is the result of projecting f; to have lower
dimensionality via a convolutional layer.

Equation 6.2 is applied in chain for i € {1,...,n}, being n; the number of convolutional
blocks in the encoder (n, = 5 in ResNet). hg,; is obtained by a ConvLSTM with Sy as
input (i.e. no skip connection):

h(),t = COHVLSTM()(S(), hO,t—l) (63)

We set the first two ConvLSTM layers to have dimension D, and set the dimension of
the remaining ones to be the one in the previous layer divided by a factor of 2. All
ConvLSTM layers use 3 x 3 kernels which, compared to 1 x 1 ConvLSTM units used
in [172], have a larger receptive field which can model instances that are far apart more
easily. Finally, a single-kernel 1 x 1 convolutional layer with sigmoid activation is used
to obtain a binary mask of the same resolution as the input image.

The bounding box, class and stop prediction branches consist of three separate fully
connected layers to predict the 4 box coordinates, the category of the segmented object
and the objectness score at time step t. These three layers receive the same input hy,
which is obtained by concatenating the max-pooled hidden states of all ConvLLSTM layers
in the network. Figure 6.1 shows the details of the recurrent decoder for a single time
step.

Training

The parameters of our model are estimated by optimizing a multi-task objective com-
posed of four different terms:

Segmentation loss (Ly,): similarly to other works [172, 166], we use the soft intersec-
tion over union loss (sloU) as the cost function between the predicted mask ¢y and the

ground truth mask y, sloU(g,y) =1 — m

In order to treat the outputs of our model as sets, we do not impose any specific instance
order to match the predictions of our model with the objects in the ground truth. Instead,
we let the model decide which output permutation is the best and sort the ground truth
accordingly'. We assign a prediction to each of the ground truth masks by means of the
Hungarian algorithm, using sloU as the cost function. Given a sequence of predicted
masks Um = (Um,1;- -, Um,n) and the set of ground truth masks ym = {Ym,1,---, Ymmn},

"We also experimented with forcing the output sequence to follow hand-designed patterns, but it
resulted in low-performing models.

70 Recurrent Instance Segmentation

the segmentation loss L,, can be expressed as:

n n
Lo (s Yy) = D > 8T0U (Gim,t Y)Ot.p (6.4)
=1 ¢=1

where ¢ is the matrix of assignments. ;s is 1 when the predicted and ground truth
masks 9 and y,, » are matched and 0 otherwise. In the case where fi > n, gradients
for predictions at t > n are ignored.

Classification loss (L¢): our network outputs class probabilities for each of the pre-
dicted masks. Given the sequence of class probabilities g = (Jc1, - - -, Jc,n) and the set of
ground truth one-hot class vectors y. = {yc.1, - .., Yen }, the classification loss is computed
as the categorical cross entropy between the matched pairs determined by 4.

Detection loss (Lp): given the sequence of predicted bounding box coordinates
9 = (U1, --,Un) and the ground truth v, = {yp1,...,ysn}, the penalty term L; for
bounding box regression is given by the mean squared error between the box coordinates
of matched pairs determined by 4.

Stop loss (Ls): the model emits an objectness score at each time step, ¥s¢. It is
optimized with a loss term defined as the binary cross entropy between ¢, and 1;<y,
where n is the number of instances in the image.

The total loss is the weighted sum of the four terms: L,, + aLp + AL, + vLs, where loss
terms are subsequently added as training progresses. When training for datasets with
a high number of objects per image (i.e. Cityscapes and CVPPP) we use curriculum
learning [16] to guide the optimization process, where we begin optimizing the model to
predict only two objects and increase this value by one once the validation loss plateaus.

Experiments

In this section, we describe the experimental setup, including the datasets and evaluation
metrics. We compare our model with other sequential methods for semantic instance
segmentation, and provide an analysis of the object order learned by the network.

Datasets and metrics

We evaluate our models on three benchmarks previously used for semantic instance seg-
mentation that differ from each other in terms of the average amount of objects per
image. This diversity in datasets will allow assessing our model based on the length of
the sequence to be generated.

Pascal VOC 2012 [54] contains objects of 20 different categories and an average of 2.3
objects per image. Despite having a small number of objects on average, images in this
dataset are complex and substantially different from each other in terms of the objects
spatial arrangement, scale and pose. Following standard practices in [114, 47, 120], we
train with the additional annotations from [76] and evaluate on the original validation
set, composed of 1,449 images.

CVPPP Plant Leaf Segmentation [141] is a small dataset of images of different

6.3 Experiments 71

Rec Cls Pascal VOC CVPPP Cityscapes
APperson,5O SBD T DiC »L AP AP50 APcaT APcar,50
[166] X X — 84.9(+4.8) 0.8(+1.0) 9.5 189 275 41.9
[172] v X 46.6 56.8(+8.2) 1.1(+0.9) — — — —
[172] + CRF v X 50.1 66.6(+8.7) 1.1(+£0.9) — — — —
Ours v v 60.7 74.7(£5.9) 1.1(£09) 78 170 25.8 45.7

Table 6.1: Comparison against state of the art sequential methods for semantic instance
segmentation. We specify whether the method is recurrent (Rec) and produces categorical
probabilities (Cls).

plants. We follow the same scheme as in [172, 166], using only 128 images from the
A1 subset for training. The number of leaves per image ranges from 11 to 20, with an
average of 16.2. Results are evaluated on 33 test images. While the number of objects
per image is significantly higher than in Pascal VOC, this dataset only contains objects
from a single category and images present structural similarities that facilitate the task.

Cityscapes [40] contains 5,000 street-view images containing objects of 8 different cat-
egories. The dataset is split in 2,975 images for training, 500 for validation and 1,525
for testing. There are, on average, 17.5 objects per image in the training set, with the
number of objects ranging from 0 to 120. The large number of instances per image makes
this dataset particularly challenging for our model.

We resize images to 256 x 256 pixels for Pascal VOC, 256 x 512 for Cityscapes and
500 x 500 for CVPPP. We evaluate the CVPPP dataset with the symmetric best dice
(SBD) and the difference in count (DiC) as in [141]. For Cityscapes and Pascal VOC we
report the average precision AP at different IoU thresholds.

Experimental setup

We use the Adam optimizer [99] with a learning rate of 1072 for all layers in the decoder,
1076 for the layers in the encoder. We set D = 128 for Pascal and Cityscapes, and
D = 64 for CVPPP.

We train our model by subsequently adding penalty terms to the loss function one at a
time as training progresses. In our experiments we observe that while the penalty term
for instance classification L. quickly converges, the task of segmenting and detecting one
object at a time is much more challenging to learn. We hypothesize that this is mainly
due to the fact that the encoder we use is pretrained for image classification and not
segmentation. To facilitate convergence, we first train the network for 20 epochs with the
objective: L; = L, +aLy for 20 epochs (« is set to 10) and add the classification penalty
afterwards with A = 0.1 . Similarly, the penalty term L also converges quickly, therefore
we set it to 0 and activate it after the model converges for Ly = L,,, + 10Ly + 0.1L.. At
this point we add the stopping loss term Lg to the cost function with v = 0.5 for Pascal
VOC and Cityscapes and v = 0.1 for CVPPP, and resume training until convergence.

We use typical data augmentation strategies during training: we apply a random rotation
with a degree in the range [—10,10] ([—180,180] for CVPPP), random translation in
both horizontal and vertical axes within a range of 10% of the pixel width and height,
respectively. We apply a random shear in a range of 10%, we zoom in and out of the

72 Recurrent Instance Segmentation

image within a range of [0.7,1.5] and randomly flip images with a 0.5 probability.

At inference time, we use a threshold of 0.5 to generate binary masks from the mask
output of the network after the sigmoid activation, and stop making predictions for an
image once the stopping score goes below 0.5 for Pascal VOC and Cityscapes, and 0.3
for CVPPP.

Comparison with sequential methods

We compare our results against other sequential models for instance segmentation [172,
166]. Table 6.1 summarizes the results.

We first train and evaluate our model with the Pascal VOC dataset. In Table 6.1 we
compare our method with the recurrent model in [172], whose approach is the most
similar to ours. However, since they train and evaluate their method on the person
category only, we report the results for this category separately despite that our model is
trained for all 20 categories. We outperform their results by a significant margin (APs
of 46.6 vs. 60.7), even in the case in which they use a post processing based on CRF's,
reaching an APs of 50.1. Figure 6.2(a) shows examples of predicted object sequences for
Pascal VOC images. Table 6.2b compares our approach with non-sequential methods.
We outperform early proposal-based ones [77, 36] by a significant margin across all IoU
thresholds. Compared to more recent works [114, 8, 113, 9], our method falls behind
for lower thresholds, but remains competitive and even superior in some cases for higher
thresholds.

In the case of the CVPPP dataset, our method also outperforms the one in [172] by a
significant margin. However, the sequential model in [166] obtains better results in this
benchmark. Their method incorporates an input pre-processing stage and involves multi-
stage training with different levels of supervision. In contrast with [166], our method
directly predicts binary masks from image pixels without imposing any constraints re-
garding the intermediate feature representation. In Figure 6.2(b) we show examples of
predictions obtained by our model for this dataset. Although the number of objects is
much higher in this benchmark than in Pascal VOC, our model is able to accurately
output one object at a time.

Our performance on Cityscapes is comparable to the results of the only sequential method
previously evaluated on this dataset [166], but does not meet state of the art results
obtained by non-sequential methods, which reach APs figures of 58.1 [79], 35.9 [47] and
35.3 [14]. Figure 6.2(c) depicts some sample predictions of our model for this dataset.
While our approach is competitive or even better than [166] for simpler and frequent
objects (e.g., AP5o figures of 45.7 vs. 41.9 for car, and 20.5 vs. 21.2 for person), it
obtains lower scores for less frequent and commonly smaller instances (e.g., 2.8 vs. 10.5
for bike and 6.8 vs. 14.7 for motorbike). We hypothesize that, as the segmentation module
in [166] extracts features at a local scale once the detection module predicts a bounding
box, their model can accurately predict binary masks for small instances. In contrast, our
method operates at global scale for all instances, generating one binary mask at a time
considering all pixels in the image. Working with images at higher resolution would allow
us to improve our metrics (specially for small objects), which would come at a cost of
higher computational requirements. It is also worth noting that the classification scores
in [166] are provided by a separate module trained for the task of semantic segmentation,

6.3 Experiments 73

Color sequence: 1 I I 10 I N 0 [1 .
(a) Pascal VOC 2012

(c) Cityscapes

Figure 6.2: Examples of generated output sequences for the three datasets.

74 Recurrent Instance Segmentation

while our method predicts them together with the binary masks. To the best of our
knowledge, ours is the first recurrent model used as a solution for Cityscapes.

Ablation studies

In this section, we quantify the effect of each of the components in our network (encoder,
skip-connections and number of recurrent layers). Table 6.2a presents the results of
these experiments for Pascal VOC. First, we compare the performance of different image
encoders. We find that a deeper encoder yields better performance, with a 23.87%
relative increase from VGG-16 to ResNet-101. Further, we analyze the effect of using
different skip connection modes (i.e. summation, concatenation and multiplication), as
well as removing them completely. While there is little difference between the different
skip connection modes, concatenation has better performance. Completely removing skip
connections causes a drop of performance of 6.6%, which demonstrates the effectiveness
of using them to obtain accurate segmentation masks. We also quantify the effect of
reducing the number of ConvLSTM layers in the decoder. To remove ConvLSTM layers,
we simply truncate the decoder chain and the output of the last ConvLSTM is upsampled
to match the image dimensions. This becomes the input to the last convolutional layer
that outputs the final mask. Removing a ConvLSTM layer also means removing the
corresponding skip connection. (e.g., if we remove the last ConvLSTM layer, the features
from the first convolutional block in the encoder are never used in the decoder). Results
in table 6.2a show a decrease in performance as we remove layers from the decoder,
which indicates that both the depth of the decoder and the skip connections coming
from the encoder contribute to the result. Notably, keeping the original five ConvLLSTM
layers in the decoder but removing the skip connections provides a similar performance
as using a single ConvLSTM layer without skip-connections (AP of 53.3 against 53.2).
This indicates that a deeper recurrent module can only improve performance if the side
outputs from the encoder are used as additional inputs.

Encoder skip N APs59 APperson50

VGG16 concat 5 46.5 51.7
R50 concat 5 53.0 53.9
R101 concat b5 57.0 60.7 Model APs59 APgo AP79 APy
R101 sum 5 56.7 57.8 SDS [77] 43.8 34.5 21.3 8.7
R101 mult 5 56.1 59.2 Chen et al. [36] 46.3 382 27.0 13.5
R101 none 5 53.8 51.3 PFEN [113] 58.7 51.3 42.5 31.2

R2-I0S [114] 66.7 581 46.2 -
R101 concat 4 56.0 59.0 Arnab et al. [8] 583 524 454 349
R101 concat 3 56.1 59.5 Arnabet al. [9] 61.7 555 486 39.5
R101 concat 2 54.5 54.0 MPA [120] 60.3 54.6 45.9 34.3
R101 - 1 53.3 50.6 Ours 57.0 51.8 41.5 37.8
(a) (b)

Table 6.2: Results for Pascal VOC 2012 validation set. (a) Ablation studies. (b) Com-
parison with the state of the art for different IoU thresholds.

Error analysis

Following standard error diagnosis studies for object detectors [83], we show the distri-
bution of false positive (FP) errors, considering the following types: localization errors

6.3 Experiments 75

Pascal VOC Cityscapes 0.8
/’ '/% 0.6
(A

0
B Loc M Bg [Dup M Cls M Loc+Cls 12345678 9101112131415

(a) (b)
100 1os
0.6
50 04
0.2

0
5 1 3 5 10 15 5 1 3 51015 20 25 30 35 40 45 50
(c) ()

Figure 6.3: (a) False positive distribution. (b-d) Error analysis on Pascal VOC (blue)
and Cityscapes (green): (b) IoU vs time step, (c) False negative size distribution, (d)
IoU vs object size (object size given as the image % it covers). Reported values in (a)
and (d) are constrained to the particularities of each dataset (object sequences for Pascal
VOC are shorter and objects in Cityscapes are smaller).

(Loc), confusions with the background (Bg), duplicates (Dup), miss-classifications (Cls),
and double localization and classification errors (Loc+Cls). Figure 6.3(a) shows that
most FPs are caused by inaccurate localization. Further, in Figure 6.3(b) we show the
mask quality in terms of IoU depending on the time step when it was predicted. It can
be observed that the quality of the masks degrades as the number of time steps increases.
We believe that, as features extracted from the encoder are fixed for any output sequence
length, more information has to be encoded in the same feature size for long sequences,
acting as a bottleneck. The same applies to the decoder, that must retain more infor-
mation for longer sequences in order to decide what to output next. These intrinsic
properties of a recurrent model may lead to poor mask localization for the last masks of
the output prediction. A performance drop for longer sequences when using RNNs has
already been demonstrated in other works [13]. Further, we analyze the distribution of
false negatives in terms of their size with respect to the image dimensions. We cluster
objects in different bins according to the image percentage they cover. Figure 6.3(c)
shows that, for both datasets, most of the false negatives (97% and 38% for Cityscapes
and Pascal VOC, respectively) are small objects that cover less than 1% of the image.
Figure 6.3(d) shows the average IoU for objects of different sizes. Both figures indicate
that our method achieves higher IoU values for big objects and struggles with small ones.

Object Sorting Patterns

We observe that the outputs of the model follow a consistent order across images in
CVPPP, as depicted in Figure 6.2(b). The complexity and scale of Pascal VOC and

76 Recurrent Instance Segmentation

Cityscapes make this qualitative analysis unfeasible, so we analyze the sorting patterns
learned by the network by computing their correlation with three predefined sorting
strategies: right to left (r2l), bottom to top (b2¢) and large to small (I2s). We take the
center of mass of each object to represent its location and its area as the measure for its
size.

We sort the sequence of predicted masks according to one of the strategies and compare
the resulting permutation indices with the original ones using the Kendall tau correlation
metric: 7 = %. Given a sequence of masks = € (z1,...,xn) and its permutation
y € (y1,...,yn), P is the number of concordant pairs (i.e. pairs that appear in the same
order in the two lists) and @ is the number of discordant pairs. 7 € [—1,1], where 1
indicates complete correlation, -1 inverse correlation and 0 means there is no correlation
between sequences. Table 6.3a presents the results for this experiment. For simplicity,
we do not show the results for the opposite sorting criteria in the table (i.e. left to right,
small to large and top to bottom), since their 7 value would be the same but with the
opposite sign. We observe strong correlation with a horizontal sorting strategy for both
datasets (right to left in Pascal VOC and left to right in Cityscapes), as well as with
bottom to top and large to small patterns.

Pascal VOC CVPPP Cityscapes
before after before after before after
Pascal VOC Cityscapes fi —0.048 —0.062 —0.129 0.232 —0.127 —0.162
f30.014 —0.005 0.032 0.135 0.279 0.194
r2l 0.4916 -0.4428 fo —0.088 —0.125 —-0.317 —0.141 —-0.111 0.144
b2t 0.2788 0.2712 fi 0008 0286 0.184 0.505 0.010 0.188
12s 0.2739 0.1700 fo 0274 0634 —0.054 0.147 -0.125 0.209
(a) (b)

Table 6.3: Analysis of object sorting patterns. Correlation values are given by the Kendall
tau coefficient 7. (a) Correlation with predefined patterns. (b) Correlation with con-
volutional activations. f4. o correspond to the output of ResBlock; 5 in ResNet-101,
respectively.

Figure 6.4 shows images in Pascal VOC that present high correlation with each of the
three sorting strategies. Interestingly, the model adapts its scanning pattern based on the
image contents, choosing to start from one side when objects are next to each other, or
starting from the largest one when the remaining objects are much smaller. The pattern
in Cityscapes is more consistent, which we attribute to the similar structure present in
all the images in the dataset. First, the objects in both sides of an image are predicted,
starting with the left side; then the model segments the objects in the middle while
following similar patterns to the ones in Pascal VOC. This pattern can be observed in
Figure 6.2(c).

Further, we quantify the number of object pairs in Pascal VOC images that are predicted
in each of the predefined orders. For a pair of objects 01 and o9 that are predicted
consecutively, we can say they are sorted in a particular order if their difference in the
axis of interest is greater than 15% (e.g., a pair of consecutive objects follows a right to
left pattern if the second object is to the left of the first by more than 0.15W pixels,
being W the image width). Figure 6.5 shows the results for object pairs separated by
category. For clarity, only pairs of objects that are predicted together at least 20 times
are displayed. We observe a substantial difference between pairs of instances from the

6.3 Experiments 7

Figure 6.4: Examples of predicted object sequences for images in Pascal VOC 2012
validation set that highly correlate with the different sorting strategies.

Bar21f b2t Bnizs
0.8
0.6]
04
0.2
0
L P EFTF ST S S S S
>20 Q >Zo *Qo X O & 6\0 X “00 & X & & & Xé} &
& F & F SIS FTHIE SIS GRS
° © &\0& & & & e®® & rz»\ N & ® & & \;‘g’o O
Q .
& AN < X & < &

Figure 6.5: Percentage of consecutive object pairs of different categories following a
particular sorting pattern.

same category and pairs of objects of different classes. While same-class pairs seem to be
consistently predicted following a horizontal pattern (right to left), pairs of objects from
different categories are found following other patterns reflecting the relationships between
them. For example, the pairs motorcycle + person, bicycle + person or horse + person
are often predicted following the vertical axis, from the bottom to the top of the image,
which is coherent with the usual spatial distribution of objects of these categories in
Pascal VOC images.

We also check whether the order of the predicted object sequences correlates with the
features from the encoder. Since these are the inputs to the recurrent layers in the decoder
(which do not change across different time steps), the network must learn to encode the
information of the object order in these activations. To test whether this is true, we
permute the object sequence based on the activations in each of the convolutional layers
in the encoder and check the correlation with the original sequence. Table 6.3b shows the
Kendall tau correlation values of predicted sequences with these activations, before and

78 Recurrent Instance Segmentation

Most active Least active Most active | east active Most active Least active

sl | |-
10 = M

Pascal VOC Cityscapes CVPPP

before

after

Figure 6.6: Most and least active objects in last (Pascal VOC and Cityscapes) and second
to last (CVPPP) block in the encoder before and after training.

after training the model. We observe that correlation increases after training the model
for our task. The predicted sequences correlate the most with the activations in the last
block in the encoder both for Pascal VOC and Cityscapes. This is a reasonable behavior,
since those features are the input to the first ConvLSTM layer in the decoder. In the
case of images from the CVPPP dataset, we find that the predicted object sequences
correlate with the activations in the second to last convolutional layer in the encoder.
We hypothesize that the semantics in the last layer of the encoder, which is pretrained
on ImageNet, are not as informative for this task. In Figure 6.6 we display the most
and least active object in the most correlated block in the encoder for each dataset. We
show figures for features before and after training the model. For Pascal VOC images,
we observe a shift of the most active objects from the center of the image to the bottom-
right part of the image, while the least active objects are located in the left part of the
image. In the case of Cityscapes, the most active objects move from the center to right-
most and left-most part of the image after training. Regarding CVPPP, we observe that
the network learns a specific route to predict leaves which is consistent across different
images, starting in the top-most part of the image.

Conclusion

We have presented a recurrent method for end-to-end semantic instance segmentation,
which can naturally handle variable length outputs by construction. Unlike proposal-
based methods, which generate an excessive number of predictions and rely on an external
post-processing step for filtering them out, our model is able to directly map pixels to
the final instance segmentation masks. This allows our model to be optimized for an
objective which better matches the conditions of the target task at inference time than
those in proposal-based methods. We observed coherent patterns in the order of the
predictions that depend on the input image, suggesting that the model makes use of its
previous predictions to reason about the next object to be detected. In contrast with
other sequential methods that use direct feedback from their output, the choice of a
multi-layer recurrent network also has the advantage of being more parallelizable across
time steps on modern hardware [5].

Summary

The second part of the thesis has presented methods for set prediction in two different
computer vision applications. Chapter 5 presented an overview of existing architectures
suitable for multi-label image classification as a set prediction task. Extensive exper-
imentation was conducted on 4 different datasets, which pointed at the superiority of
auto-regressive methods for this task. Chapter 6 explores semantic instance segmenta-
tion as a set prediction task, proposing an auto-regressive order-agnostic architecture
which, in contrast with proposal-based methods, allows to model sets of object masks
directly at its output.

In Part IIT of this thesis, insights gained from Chapter 5 for multi-label image classifi-
cation will serve as foundations for the ingredient prediction task, which is part of the
recipe generation pipeline presented in Chapter 9.

Part 111

Image-to-Recipe Prediction

81

Introduction

There are few things so fundamental to the human experience as food. Its consumption
is intricately linked to our health, our feelings and our culture [59, 140]. Even migrants
starting a new life in a foreign country often hold on to their ethnic food longer than to
their native language.

Food culture has been spreading more than ever in the current digital era, with many
people sharing pictures of food they are eating across social media [133]. Querying
Instagram for #food leads to at least 300M posts; similarly, searching for #foodie results
in at least 100M posts, highlighting the unquestionable value that food has in our society.
Moreover, eating patterns and cooking culture have been evolving over time. In the past,
food was mostly prepared at home, but nowadays we frequently consume food prepared
by third-parties (e.g., takeaways, catering and restaurants). Thus, the access to detailed
information about prepared food is limited and, as a consequence, it is hard to know
precisely what we eat. This creates barriers if one wanted to modify a dish to satisfy
constraints such as a sparse pantry or dietary restrictions.

The last few years have witnessed outstanding improvements in visual recognition tasks
such as natural image classification [182, 81], object detection [167, 165] and semantic
segmentation [125, 90]. However, when comparing to natural image understanding, which
has been the focus in the previous chapters of this thesis, food recognition poses additional
challenges, since food and its components have high intra-class variability and present
heavy deformations that occur during the cooking process. Ingredients are frequently
occluded in a cooked dish and come in a variety of colors, shapes and textures. Further,
visual ingredient detection requires high level reasoning and prior knowledge (e.g., cake
will likely contain sugar and not salt, while croissant will presumably include butter).
Hence, food recognition challenges current computer vision systems to go beyond the
merely visible, and to incorporate prior knowledge to enable high-quality structured food
preparation descriptions.

The profusion of online recipe collections with user-submitted photos presents the pos-
sibility of training machines to automatically understand food preparation by jointly
analyzing ingredient lists, cooking instructions and food images. Having such a multi-
modal understanding of food dishes and their preparation can lead to a sort of personal
chef that can intuit a recipe from a picture or a list of ingredients. Far beyond applica-
tions solely in the realm of culinary arts, such a tool may also be applied to the plethora
of food images shared on social media to achieve insight into the significance of food and
its preparation on public health [61] and cultural heritage [135].

This part of the thesis is organized in three chapters. The remainder of this chapter is
structured as follows. Section 7.1 reviews previous works on food understanding, while

84 Introduction

Section 7.2 introduces the large-scale RecipelM dataset which will be used to train and
evaluate methods presented in this part of the thesis. Basic concepts and state of the
art for language modeling, text representations and cross modal applications between
language and vision are introduced in sections 7.3, 7.4 and 7.5, respectively. Then,
Chapter 8 introduces the image-to-recipe task, and proposes a retrieval-based solution
by training a joint neural embedding for images and recipes. In Chapter 9, we pose
the image-to-recipe task as conditional long-text generation, in which the recipe (title,
ingredients and instructions) is generated directly from the input image.

Food Understanding

The introduction of large scale food datasets, such as Food-101 [19], together with a
recently held iFood challenge! has enabled significant advancements in visual food recog-
nition, by providing reference benchmarks to train and compare machine learning ap-
proaches. As a result, there is currently a vast literature in computer vision dealing with
a variety of food related tasks.

Virtually all of the readily available food-related datasets contain only categorized images
[136, 19, 97, 216]. For this reason, most works on food understanding focus on image
classification [118, 151, 137, 34, 217], by fine-tuning models trained for natural image
classification on food recognition datasets annotated with course-level categories [19, 97,
34]. Subsequent works tackled more challenging tasks such as estimating the number of
calories given a food image [136] or estimating food quantities [31].

Only recently have a few datasets been released that include both recipes and images.
The first of which [205] has 101k images divided equally among 101 categories; the
recipes for each are however raw HTML. A later work [29] presented a dataset containing
110,241 images annotated with 353 ingredient labels and 65,284 recipes, each with a brief
introduction, ingredient list, and preparation instructions. Of note is that the dataset
only contains recipes for Chinese cuisine.

With the release of multi-modal food datasets, several works attempted to solve more
challenging tasks such as predicting the list of present ingredients in an image [219,
29, 30] and finding the recipe for a given image [205, 29, 30]. Similarly to [29, 30],
Chapter 8 presents a joint neural embedding that allows recipe retrieval from food images.
While [29, 30] first predict ingredients and cooking attributes to obtain an intermediate
representation used for recipe retrieval, our method is able to directly retrieve both
ingredients and instructions using an image embedding. Further, our formulation also
allows image retrieval given a recipe.

It is also worth mentioning that food related tasks have also been considered in the
natural language processing literature, where recipe generation has been studied in the
context of generating procedural text from either flow graphs [74, 144, 143] or ingredients’
checklists [98]. In Chapter 9, we propose a method to generate recipes (title, ingredients
and instructions) directly from food images.

Despite not being the main focus of this part of the thesis, images and cooking recipes
have been utilized beyond the tasks of ingredient prediction and recipe retrieval. Min

"https://www.kaggle.com/c/if00d2018

https://www.kaggle.com/c/ifood2018

7.2 RecipelM Dataset 85

Partition = # Recipes # Images

Training 720,639 619,508
Validation 155,036 133,860
Test 154,045 134,338

Total 1,029,720 887,706

Table 7.1: RecipelM dataset. Number of samples in training, validation and test sets.

et al. [140] provided a detailed cross-region analysis of food recipes, considering images,
attributes (e.g., style and course) and recipe ingredients. Recently, Bar El et al. [52]
tackle image generation from long structured text in the context of cooking recipes and
food images.

RecipelM Dataset

RecipelM is the largest dataset of structured recipe data, including over 1M recipes and
800k images. In comparison to the current largest dataset in this domain, RecipelM
includes twice as many recipes as [103] and eight times as many images as [29]. Table
7.1 includes the number of samples included in each of the predefined dataset partitions.

As the ability to learn effective representations is largely a function of the quantity and
quality of the available data, this part of the thesis presents methods that are optimized
and evaluated on RecipelM data.

The contents of the RecipelM dataset may logically be grouped into two layers. The
first contains basic information including title, a list of ingredients, and a sequence of
instructions for preparing the dish; all of these data are provided as free text. The
second layer builds upon the first and includes any images with which the recipe is
associated—these are provided as RGB in JPEG format. Additionally, a subset of recipes
are annotated with course labels (e.g., appetizer, side dish, dessert), the prevalence of
which are summarized in Figure 7.1.

80000
60000

main course

] % 60000 31%
=3 =9 dessert
3 40000 3 22%
~ &~ 40000
; g {%‘ snack
Z 20000 Z 20000 5;4 beverage
side dish 1% soup/stew
0 0 . bread
0 10 20 30 40 0 10 20 appetizer salad
Num. Instructions Num. Ingredients

Figure 7.1: Dataset statistics. Prevalence of course categories and number of instructions
and ingredients per recipe.

The average recipe in the dataset consists of 9 ingredients which are transformed over
the course of 10 instructions. Approximately half of the recipes have images which, due
to the nature of the data sources, depict the fully prepared dish. RecipelM includes
approximately 0.4% duplicate recipes and 2% duplicate images (different recipes may
share same image). Excluding those 0.4% recipes, 20% of recipes have non-unique titles

86 Introduction

but symmetrically differ by a median of 16 ingredients. 0.2% of recipes share the same
ingredients but are relatively simple (e.g., spaghetti, granola), having a median of six
ingredients. Regarding our experiments, we carefully removed any exact duplicates or
recipes sharing the same image in order to avoid overlapping between training and test
subsets. As detailed in Table 7.1, around 70% of the data is labeled as training, and the
remainder is split equally between the validation and test sets.

In Figure 7.1, one can easily observe that the distributions of data are heavy tailed. For
instance, of the 16k unique ingredients that have been identified, only 4,000 account for
95% of occurrences. At the low end of instruction count—particularly those with one step—
one will find the dreaded Combine all ingredients. At the other end are lengthy recipes
and ingredient lists associated with recipes that include sub-recipes. A similar issue of
outliers exists also for images: as several of the included recipe collections curate user-
submitted images, popular recipes like chocolate chip cookies have orders of magnitude
more images than the average. Notably, 25% of images are associated with 1% of recipes
while half of all images belong to 10% of recipes; the size of the second layer in number
of unique recipes is 333k.

For all the experiments presented in chapters 8 and 9, we use only the recipes containing
images, and remove recipes with less than 2 ingredients or 2 instructions, resulting in
252547 training, 54 255 validation and 54 506 test samples.

Language Modeling

Language Modeling is the task of assigning a probability to sentences in a language,
where the likelihood of a given word is estimated based on the words that preceded it
[65]. In the field of natural language processing, language models have played a key role
in many tasks such as speech recognition, machine translation, text summarization or
conversational systems.

Formally, a language model is a probability distribution over a sequence of words:

p(wla'--awm) (71)

which is modeled as a conditional probability of words given their context (e.g., its
preceding words):

m

p(wi, .oy wy,) = Hp(wi\wh ey Wim1) (7.2)
i=1

In practice, neural language models estimate the probability distribution in the loga-
rithmic space, which transforms [[;%, p(w;|wi, ..., wi—1) into > 7" log p(w;|wi, ..., wi—1).
Therefore, the goal is to predict w; by maximizing the following objective:

arg max = Zlogp(ﬁ)i = w;|wy, ..., wi—1,0) (7.3)
0 i=1

7.3 Language Modeling 87

|

[N S B S

<EOS>

T

T
]
!

T

z

—
s—> |—>x
x—3 <

A B C <EOS>

Figure 7.2: Sequence-to-sequence model. Figure from [190].

where 6 are the model parameters.

One common metric to measure the quality of a language model is perplexity (ppl), which
is defined as:

ppl = 277 @) (7.4)

where H (p) is the cross-entropy loss for the sentence: H(p) = — 3 ", log p(w;). In plain
words, perplexity measures the uncertainty of the language model when predicting a
word given the previous words (lower perplexity indicates a better language model).

While language models are often trained to generate text conditioned only on preced-
ing words, one can easily accommodate the objective function to consider an external
condition, represented by c:

m
argénax = Zlogp(u)i = w;|wy, ..., wi—1,¢,0) (7.5)
i=1

One example of conditional text generation is the machine translation problem, where a
sentence in a source language (e.g., English) needs to be translated into a target language
(e.g., French). In order to optimize the objective function above to predict a sentence
in the target language, one must first encode the sentence in the source language into a
representation c¢. Models trained for this task are commonly referred to as sequence-to-
sequence models [190], which first encode the source sentence into a fix-length represen-
tation used to subsequently decode the target sequence. Figure 7.2 shows an overview of
the sequence-to-sequence model. More recently, sequence-to-sequence models have been
applied to more open-ended generation tasks, such as poetry [206] and story generation
[101, 56].

Neural language models are often based on recurrent neural network architectures, which
are auto-regressive models by definition (i.e. the output at time-step i depends on its
previous outputs ¢ = {1,...,i—1}). However, several works have recently proposed causal
convolutions [62] and attention-based models [196] for language modeling, achieving com-
parable performance and faster training times than their recurrent-based counterparts.

In the spirit of obtaining more realistic text samples, several works have attempted to
use generative adversarial networks [41, 57, 221] for text generation.

88 Introduction

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) L w(t-2)

wit-1) T w(t-1)
\SUM
J—b w(t) w(t) L—b
T/ w(t+1)

w(t+2) T w(t+2)

cBOW Skip-gram

Figure 7.3: Word2vec architectures. Figure taken from [139].

Text Representations

In the field of natural language processing, the most basic representation for text is the
one-hot word encoding. Given a vocabulary of words of fixed size D = {d;}}Y,, we
represent the j** word with a vector L of size N, where L; =1 and L;»; = 0.

Although the one-hot encoding is commonly used to represent text as an output (where
the vocabulary of words is modeled as a categorical distribution), it has some limitations,
such as its large dimensionality, which becomes intractable for large-scale vocabularies
of millions of words. It is also highly sparse (most elements are 0) and arbitrary (it does
not encode word relationships). To overcome these limitations, learning compact word
embeddings has been a dominant research topic in natural language processing in the
last years [139, 18, 156].

Word embedding models represent words in a continuous vector space in which seman-
tically similar words are mapped to points that are nearby in the embedding space.
Word2vec [139] is one of the most popular word embedding models, which is based on the
intuition that words appearing in similar contexts within a corpus are semantically sim-
ilar. Word2vec has two variants, namely the Continuous Bag-of-Words model (CBOW)
and the Skip-Gram model. While CBOW is trained to predict a target word (e.g., flying)
from context words (the bird is), the skip-gram model is trained in the opposite direction
(i.e. to predict the context words given the target). Both CBOW and Skip-Gram are
neural language models, which learn to predict a probability distribution over possible
words given some context. Figure 7.3 shows the architectures for both models.

Once trained, the learned projections for input words are used as representations to
encode them. These representations capture general semantic information about words

7.5 Language and Vision 89

S \
Italy

\Hndrid
Germany .._________________-_ Rome
walked Berlin
@ Turkey _‘1_-_'—“'-—‘-_.___
: Ankara
O S Russia —owu = R
walking @ Canada ——— Ottawa

J —_—
spsn Tokyo

O Vietnam ————Hou___ ganoi
swimming china = Beijing
Male-Female Verb tense Country-Capital

Figure 7.4: Embedding visualization. Figure taken from: https://www.tensorflow.
org/tutorials/representation/word2vec

| got back home <eos>

got back home

...... was strange <eos>
<eos> This was strange

Figure 7.5: Skip thoughts model. Figure from [100].

and their relationships, which has been learned in an unsupervised manner. Figure 7.4
shows examples of visualizations of learned vectors, which exhibit certain properties (e.g.,
the distance and the direction of the difference vector between female-male word pairs
such as man-woman and king-queen is similar), that explain the semantic-aware nature
of these vectors for many tasks e.g., machine translation [190], sentiment analysis [187],
or retrieval [10].

One step beyond compact and semantic representations for text (where the encoded
unit is a single word), is the skip-thoughts model [100], which extended the skip-gram
architecture from [139] to learn sentence embeddings. The model is an LSTM-based
encoder-decoder architecture. The LSTM encoder “reads” the input sentence and ex-
tracts a representation of fixed size (the hidden state at the last time-step). This hidden
state is fed to an LSTM decoder, which predicts the context sentence(s) one word at a
time. Figure 7.5 depicts the skip-thoughts model, which is trained on triplets of con-
secutive sentences in the corpus. Given the middle sentence as an input, the model is
optimized to predict the first and the last sentence. Once trained, the representation
obtained from the encoder is used to encode sentences, which has been proven useful in
a variety of tasks such as sentence classification, image-sentence ranking or paraphrase
detection [100].

Language and Vision

Language and vision are two fundamental and complementary modalities through which
humans learn and communicate, yet their respective research communities have advanced
separately for a long time. Although knowledge has been occasionally transferred from
one community to the other (e.g., the bag-of-words model, originally designed to encode
text documents, has been widely adopted in computer vision), the intersection between

https://www.tensorflow.org/tutorials/representation/word2vec
https://www.tensorflow.org/tutorials/representation/word2vec

90 Introduction

the two has significantly strengthen in the past decade, thanks to the change in paradigm
from hand-crafted to learned representations, and the release of multi-modal datasets
[116, 3]. Applications such as visual question answering [3]|, image captioning [201, 215,
128], visual dialog [45], visual grounding [49], or text-conditioned image generation [131,
224, 84] have emerged and already witnessed remarkable progress in the recent years.

This Section is dedicated to review existing approaches to connect images and language
using neural networks. First, Section 7.5.1 reviews joint embedding architectures and
loss functions, which will be exploited for recipe retrieval in Chapter 8. Second, Section
7.5.2 reviews existing approaches for image conditioned text generation which will be
used in Chapter 9 to generate recipes from images.

Joint Embeddings

Given two sets of data from different modalities 1 and x9, the goal is to obtain a latent
representation for each modality fi(z1), f2(z2) that is suitable for the retrieval of one
given the other.

A popular approach for mapping paired sets of vectors into a latent space is the Canonical
Correlation Analysis (CCA) [66], which finds a linear projection of the input data by
maximizing their correlation:

corr(f1(x o)) = _Sov(fi(z1), fo(z2)) 76
P B = e e var () o

Several works have trained deep neural networks with the CCA objective function [2, 27],
in order to find non-linear latent spaces to embed input data. However, since correlation
is a population objective, gradients must be computed on the full training set, thus
prohibiting very deep architectures or big training sets. While recent works have proposed
surrogate objectives to train deep CCA models [27], most works currently train joint
neural embeddings using paired annotated data.

Joint neural embeddings are optimized with cost functions that minimize the distance
between pairs of samples:

ming, 1, D(f1(z\), fo(a3))) (7.7)

where D is the distance function (e.g., cosine or euclidean). Typically, joint neural
embeddings are not only optimized to minimize the distance between positive pairs, but
also to maximize the distance between negative pairs.

Popular neural architectures for joint neural embeddings are siamese and triplet networks.
Siamese networks [21] are architectures composed of two identical paths that share both
their structure and parameters. These networks are trained on paired data x = {z;,z;},
annotated with Y;; € {0,1} representing the binary label that indicates whether the

7.5 Language and Vision 91

input pair is positive or negative. For each data pair, the contrastive loss is defined as:

D(Ii,ﬂfj), le] =1

Lp; T, Ti),Y;i) = ’ 7.8

el (22035 {max<o7a ~ Dlasa), i Yig =0 i

where D(z;, z;) = ||z; — ;|2 and « is the margin. Instead of the Euclidean distance,
several works choose to use the cosine similarity as an alternative metric:
1 —cos(x;,x;), ify;, =1

Lcos((xiaxj)yy;l,j> = (’]) . " (79)
max (0, cos(z;, z;) —a), ifY;; =0

where cos(.) is the normalized cosine similarity.

Using the contrastive loss, given a reference data point x;, a positive example (z; subject
to Y; ; = 1) will be pushed closer to x;, while a negative example (x; subject to Y; ; = 0)
will be pushed further apart up to a certain margin « (i.e. a negative data pair does not
contribute to the loss if D(z;, z;) >).

A generalization of the contrastive loss is the triplet loss, which minimizes relative sim-
ilarities among triplets of data. Each triplet is composed of a reference example x,, a
positive example x, and a negative example x,. In this case, the loss function can be
defined as:

Liyipiet(Tas Tn, xp) = max (0, D(xq, xp) — D(xq, zn) + @) (7.10)

Figure 7.6 illustrates the optimized embedding space for both contrastive and triplet
losses.

While originally introduced to optimize siamese and triplet networks on data pairs and
triplets from the same modality (e.g., images), these loss functions can be used to optimize
joint embeddings in cases where the two network branches are not identical. Several works
have trained joint embeddings for images and text for zero-shot image classification [186,
60], sentiment analysis [22] and image captioning [24, 96, 95, 55]. Related to these works,
Chapter 8 of this thesis presents a joint embedding that embeds food images and cooking
recipes into a common latent space suitable for retrieval. The retrieval performance of
the obtained joint embeddings is compared to that of a CCA-based approach, showing
their superiority.

Image-conditioned Text Generation

As previously introduced in Section 7.3, conditional text generation with auto-regressive
models has been widely studied in the literature for neural machine translation [190, 62,
196, 56]. In these cases, the sentence in the source language is encoded in a context
vector ¢ to optimize the objective function in Equation 7.5. The context vector ¢ can be
obtained using different strategies, e.g., it can be represented by the hidden state of the
encoder LSTM [190] or be obtained using an attention layer [196].

92 Introduction

Easy Negatives Easy Negatives

Semi-hard Negatives

Hard Negatives

Hard Negatives

Contrastive Loss Triplet Loss

Figure 7.6: Ranking Losses. In the contrastive loss (left), the margin « determines
whether a data point is a hard negative relatively to its distance to the anchor x;. Easy
negatives satisfy the condition: D(x;,x;) > o, for which the loss becomes 0. In the triplet
loss (right), the negative point is classified relatively to the position of the anchor and
positive points. The triplet loss becomes 0 for easy negatives, which satisfy D(zq,z,) +
a> D(zq,).

Inspired by the success of sequence-to-sequence models for machine translation, several
works attempted to generate text with image-based conditionings [201, 215, 128, 95,
101, 41, 179] by extracting the context vector c¢ using convolutional neural networks
[102, 182, 81]. While early attempts used the activations in fully connected layers to
encode the image into a fix-length context vector [201, 95], more recent approaches have
highlighted the potential of using attention models on top of local convolutional features
[215, 128], which give the model the capability of relating image locations with words in
the output sequence.

Altogether, auto-regressive models have exhibited promising performance in image cap-
tioning [201, 215, 128, 95, 179, 41], where the goal is to provide a short description of
the image contents, opening the doors to less constrained problems such as generating
descriptive paragraphs [101] or visual storytelling [86]. In this context, Chapter 9 of
this thesis presents a novel method to generate cooking recipes (title, ingredients, and
instructions) solely from the input food image.

Recipe Retrieval

Previously, Chapters 2 and 3 of this thesis have explored image retrieval pipelines based
on both off-the-shelf and fine-tuned convolutional features. However, as discussed in
the previous chapter (Section 7.5.1) subsequent works in the literature of instance [70],
cross-view [110] and text [95] retrieval have highlighted the effectiveness of siamese and
triplet losses to train joint embeddings for retrieval. Following insights from these works,
yet focusing in the particularities of food images and cooking recipes, in this chapter we
present the image-to-recipe (im2recipe) retrieval task, which leverages the full RecipelM
dataset—images and text—to solve the practical and socially relevant problem of demysti-
fying the creation of a dish that can be seen but not necessarily described. To this end,
we have developed a deep neural model which jointly learns to embed images and recipes
in a common space which is semantically regularized by the addition of a high-level clas-
sification task. The performance of the resulting embeddings is thoroughly evaluated
against baselines and humans, showing remarkable improvement over the former while
faring comparably to the latter. The contributions of this chapter can be summarized as
follows:

e We propose a joint neural embedding for cooking recipes and food images, which al-
lows the subsequent retrieval of one given the other. We conduct thorough ablation
studies to verify the suitability of our design choices and training procedures.

e We evalute the learned embeddings on the novel of image-to-recipe retrieval task,
achieving state of the art against competitive baselines.

e We thoroughly analyze the learned embeddings, discovering aligned semantic con-
cepts that emerge across modalities after training the model for the im2recipe task.

The remainder of this chapter is structured as follows. Section 8.1 presents the compo-
nents of our proposed method, including the representations used to encode input data
(namely ingredients, instructions and images), the joint neural embedding architecture,
and the objective function and training details. Section 8.2 presents the experiments,
including ablation studies, comparison with baselines and human performance, and a
qualitative embedding analysis. Section 8.3 draws the conclusions.

Methodology

In this section we introduce our neural joint embedding model. Here we utilize the
paired (recipe and image) data in order to learn a common embedding space as sketched
in Figure 8.1. Next, we discuss recipe and image representations and then we introduce
our neural joint embedding model that builds upon recipe and image representations.

94 Recipe Retrieval

Ingredients ~

« 3 Ibs salmon -
« 1 teaspoon cajun seasoning P ~h
« 1 tablespoon olive oil

Cooking instructions /

1. Rinse off salmon and pat dry with paper towel. I

2. Drizzle cookie sheet with olive oil. joint
3. Place salmon (skin side down) on cookie sheet embeddding
and drizzle more oil on top. ==

4. Shake Cajun seasoning on salmon to taste.
. Broil 15-20 minutes or until center of salmon is
done.

w

Figure 8.1: Learning cross-modal embeddings from recipe-image pairs collected from
online resources. These enable us to achieve in-depth understanding of food from its
ingredients to its preparation.

Representation of recipes

There are two major components of a recipe: its ingredients and its cooking instructions.
We develop a suitable representation for each of these two components.

Ingredients. Each recipe contains a set of ingredients, where each ingredient is repre-
sented with a short sentence (see Figure 8.1). For each ingredient we learn an ingredient
level word2vec [139] representation (see Section 7.4 for a review of word2vec). In order to
do so, the actual ingredient names are extracted from each ingredient text. For instance
in “2 thsp of olive 0il” the olive_oil is extracted as the ingredient name and treated as
a single word for word2vec computation. The initial ingredient name extraction task is
solved by a bi-directional LSTM that performs logistic regression on each word in the
ingredient text. Training is performed on a small subset of our training set for which
we have the annotation for actual ingredient names. Ingredient name extraction module
works with 99.5% accuracy tested on a held-out set. Given a a sample in the RecipelM
dataset, the input to the joint embedding model on the ingredient side is composed with
the word2vec representation of each ingredient in the set.

Cooking Instructions. Each recipe also has a list of cooking instructions. As the
instructions are quite lengthy (averaging 208 words) a single LSTM is not well suited to
their representation as gradients are diminished over the many time steps. Instead, we
propose to encode a recipe as a sequence of sequences, where the first step is to encode
each instruction in the recipe into fixed-size representation. Our cooking instruction
representation, referred as skip-instructions, is the product of a sequence-to-sequence
model [190]. Specifically, we build upon the technique of skip-thoughts [100] (explained
in Section 7.4) which encodes a sentence and uses that encoding as context when decod-
ing/predicting the previous and next sentences. We train the skip-thoughts model on
the training set of RecipelM and use the output of the encoder as the representation for

8.1 Methodology 95

ingredients-encoder:
cosine
fully similarity "
connected loss T
connected

ingr, | ingr, - ingr, ingr, weights weights
ingr, ingr A ingr ingr

—l r ~k.
p

(]
=)
3 instructions-encoder: P [iririrrivry)
4 /’ fully
— — - —— s it)|V |\ connected
= semantic
- . . 5 :
3 2 K™ 2 regularization
8 8 8 S loss
c c =
w LICJ [} w
inst, inst, RPN inst, inst,

Figure 8.2: Joint neural embedding model with semantic regularization. Our model
learns a joint embedding space for food images and cooking recipes.

each instruction in the recipe. These representations are used as inputs to our embedding
model (see instructions-encoder in Figure 8.2).

Representation of food images

For the image representation we adopt two major state-of-the-art deep convolutional
networks, namely VGG-16 [182] and ResNet-50 [81] models. We integrate these models
in our joint embedding by removing the last softmax classification layer and connecting
the rest to our joint embedding model as shown in the right side of Figure 8.2. We train
VGG-16 and ResNet-50 versions of our model and compare them in Section 8.2.1.

Joint Neural Embedding

Building upon the previously described recipe and image representations, we now intro-
duce our joint embedding method. The recipe model, displayed in Figure 8.2, includes
two encoders: one for ingredients and one for instructions, the combination of which are
designed to learn a recipe level representation.

The goal is to learn transformations to make the embeddings for a given recipe-image
pair “close.” Formally, assume that we are given a set of the recipe-image pairs,
(Rg,vg) in which Ry is the kth recipe and vy is the associated image. Further, let
R = ({si}i*1, {9l vk), where {s}}*, is the sequence of ny cooking instructions,
{g,i}?i’“l is the sequence of my, ingredient tokens. The objective is to maximize the cosine
similarity between positive recipe-image pairs, and minimize it between all non-matching
recipe-image pairs, up to a specified margin.

The ingredients encoder is implemented using a bi-directional LSTM: at each time step
it takes two ingredient-word2vec representations of gl and g,?_tﬂ, and eventually it
produces the fixed-length representation hi for ingredients. The instructions encoder
is implemented through a regular LSTM. At each time step it receives an instruction
representation from the skip-instructions encoder, and finally it produces the fixed-length
representation hj. hi and hj are concatenated in order to obtain the recipe representation

hkR. Then the recipe and image representations are mapped into the joint embedding

96 Recipe Retrieval

space as: ¢ff = WRhf + % and ¢¥ = W, + bY, respectively. W and W? are
embedding matrices which are also learned. Finally the complete model is trained end-
to-end with positive and negative recipe-image pairs (¢, ¢¥) using the cosine similarity
loss with margin (defined in Section 7.5.1).

im2recipe recipe2im
medR R@1 R@5 R@I0 medR R@l R@5 RQ@10
random ranking 500 0.001 0.005 0.01 500 0.001 0.005 0.01

CCA w/ skip-thoughts + w2v (GoogleNews) + image features 25.2 0.11 0.26 0.35 37.0 0.07 0.20 0.29
CCA w/ skip-instructions + ingredient w2v + image features 15.7 0.14 0.32 0.43 24.8 0.09 0.24 0.35

joint emb. only 72 020 045 058 69 020 046 0.58
joint emb. + sem. 52 024 051 0.65 51 0.25 0.52 0.65

Table 8.1: im2recipe retrieval comparisons. Median ranks and recall rate at top K are
reported for baselines and our method. Note that the joint neural embedding models
consistently outperform all the baseline methods.

Joint emb. methods im2recipe recipe2im
medR-1K medR-5K medR-10K medR-1K medR-5K medR-10K
fixed vision 15.3 71.8 143.6 16.4 76.8 152.8
VGG-16 finetuning (ft) 12.1 56.1 1114 10.5 51.0 1014
ft + semantic reg. 8.2 36.4 724 7.3 33.4 64.9
fixed vision 7.9 35.7 71.2 9.3 41.9 83.1
ResNet-50 finetuning (ft) 7.2 31.5 62.8 6.9 29.8 58.8
ft + semantic reg. 5.2 21.2 41.9 5.1 20.2 39.2

Table 8.2: Ablation studies. Effect of the different model components to the median rank
(the lower is better).

Semantic Regularization

We incorporate additional regularization on our embedding through solving the same
high-level classification problem in multiple modalities with shared high-level weights.
We refer to this method as semantic regularization. The key idea is that if high-level
discriminative weights are shared, then both of the modalities (recipe and image embed-
dings) should utilize these weights in a similar way which brings another level of alignment
based on discrimination. We optimize this objective together with our joint embedding
loss. Essentially the model also learns to classify any image or recipe embedding into one
of the food-related semantic categories.

We start by assigning Food-101 categories to those recipes that contain them in their
title. However, after this procedure we are only able to annotate 13% of our dataset,
which we argue is not enough labeled data for a good regularization. Hence, we compose
a larger set of semantic categories purely extracted from recipe titles. We first obtain
the top 2,000 most frequent bigrams in recipe titles from our training set. We manually
remove those that contain unwanted characters (e.g., n’, ! or ¢) and those that do
not have discriminative food properties (e.g., best pizza, super easy or 5 minutes). We
then assign each of the remaining bigrams as the semantic category to all recipes that
include it in their title. By using bigrams and Food-101 categories together we obtain a
total of 1,047 categories, which cover 50% of the dataset. chicken salad, grilled vegetable,

8.2 Experiments 97

chocolate cake and fried fish are some examples among the categories we collect using this
procedure. All those recipes without a semantic category are assigned to an additional
background class. Although there is some overlap in the generated categories, 73% of
the recipes in our dataset (excluding those in the background class) belong to a single
category (i.e., only one of the generated classes appears in their title). For recipes where
two or more categories appear in the title, the category with highest frequency rate in
the dataset is chosen.

To incorporate semantic regularization to the joint embedding we use a single fully con-
nected layer. Given the embeddings ¢V and ¢", class probabilities are obtained with
pr = W¢" and p, = W€ followed by a softmax activation. W€ is the matrix of
learned weights, which are shared between image and recipe embeddings to promote se-
mantic alignment between them. Formally, we express the semantic regularization loss
as Lyeg(¢", ¢Y, cr, cy) Where ¢,,c, are the semantic category labels for recipe and image,
respectively. Note that ¢, and ¢, are the same if (¢", ¢") is a positive pair. Then we can
write the final objective as:

L(¢T7¢v7cmcvay) = Lcos((¢r7¢v)ay)+
Alﬁfg(¢r7¢vacracv)

Training Details

We follow a two-stage optimization procedure while learning the model. If we update
both the recipe encoding and image network at the same time, optimization becomes
oscillatory and even divergent. Previous work on cross-modality training [26] suggests
training models for different modalities separately and fine tuning them jointly after-
wards to allow alignment. Following this insight, we adopt a similar procedure when
training our model. We first fix the weights of the image network, which are found from
pre-training on the ImageNet object classification task, and learn the recipe encodings.
This way the recipe network learns to align itself to the image representations and also
learns semantic regularization parameters (/W¢). Then we freeze the recipe encoding and
semantic regularization weights, and learn the image network. This two-stage process is
crucial for successful optimization of the objective function. After this initial alignment
stage, we release all the weights to be learned. However, the results do not change much
in this final, joint optimization.

All the neural models are implemented using the Torch7 framework'. The margin o for
the cosine loss Equation 7.9 is set as 0.1 in joint neural embedding models. The regu-
larization hyperparameter from Equation 8.1.4 is set as A = 0.02 in all our experiments.
While optimizing the cosine loss we pick a positive recipe-image pairs with 20% proba-
bility and a random negative recipe-image pair with 80% probability from the training
set. The models are trained on 4 NVIDIA Titan X with 12GB of memory for three days.

Experiments

We begin with the evaluation of our learned embeddings for the im2recipe retrieval task.
We then study the effect of each component of our model and compare our final system

"http://torch.ch/

http://torch.ch/

98 Recipe Retrieval

against human performance. We also analyze the properties of our learned embeddings
through unit visualizations and vector arithmetics in the embedding space.

im2recipe retrieval

We evaluate all the recipe representations for im2recipe retrieval. Given a food image, the
task is to retrieve its recipe from a collection of test recipes. We also perform recipe2im
retrieval using the same setting. All results are reported for the test set.

Comparison with the baselines. We compare our joint embedding with a Canonical
Correlation Analysis (CCA) baseline (introduced in Section 7.5.1). CCA embeddings are
learned using recipe-image pairs from the training data. In each recipe, the ingredients
are represented with the mean word2vec across all its ingredients in the manner of [105].
The cooking instructions are represented with mean skip-thoughts vectors [100] across
the cooking instructions. A recipe is then represented as concatenation of these two
features. We also evaluate CCA over mean ingredient word2vec and skip-instructions
features as another baseline. The image features utilized in the CCA baselines are the
ResNet-50 features before the softmax layer. Although they are learned for visual object
categorization tasks on ImageNet dataset, these features are widely adopted by the com-
puter vision community, and they have been shown to generalize well to different visual
recognition tasks [50].

For evaluation, given a test query image, we use cosine similarity in the common space
for ranking the relevant recipes and perform im2recipe retrieval. The recipe2im retrieval
setting is evaluated likewise. We adopt the test procedure from image2caption retrieval
task [95, 201]. We report results on a subset of randomly selected 1,000 recipe-image pairs
from the test set. We evaluate on 10 subsets of randomly selected 1000 recipe-image pairs
from the test set and report the mean results. We report median rank (MedR), and recall
rate at top K (RQK) for all the retrieval experiments. To clarify, R@Q5 in the im2recipe
task represents the percentage of all the image queries where the corresponding recipe
is retrieved in the top 5, hence higher is better. The quantitative results for im2recipe
retrieval are shown in Table 8.1.

Our model greatly outperforms the CCA baselines in all measures. As expected, CCA
over ingredient word2vec and skip-instructions perform better than CCA over word2vec
trained on GoogleNews [139] and skip-thoughts vectors are learned over a large-scale
book corpus [100]. In 65% of all evaluated queries, our method can retrieve the correct
recipe given a food image. The semantic regularization notably improves the quality of
our embedding for im2recipe task which is quantified with the medR drop from 7.2 to
5.2 in Table 8.1. The results for recipe2im task are also similar to those in the im2recipe
retrieval setting. Figure 8.4 compares the ingredients from the original recipes (true
recipes) with the retrieved recipes (coupled with their corresponding image) for different
image queries. We observe that our embeddings generalize well and allow particular
recipe retrieval (e.g., smoothie, lasagna and sushi or hamburger in the figure). However,
in some cases our model retrieves recipes missing ingredients due to the lack of fine grained
features (e.g., confusion between shrimp sushi and salmon sushi, missing mayonnaise or
carrots in a hamburger recipe) or due to the ambiguity coming from the task itself,
which can be specially challenging when ingredients are not visible in the query image
of a cooked dish (e.g., beef in a lasagna or blueberries in a smoothie). In Figure 8.3
we provide more examples of im2recipe and recipe2m retrieval scenarios, including full

8.2 Experiments 99

image query retrieved recipe
sour_cream Preheat an oven to 350 degrees F (175 degrees C).
white_sugar Wrap the exterior of an 8-inch springform pan with aluminum foil, then spray the interior with cooking
cream_of_tartar Spread the vanilla wafer crumbs over the bottom and sides of the pan, pressing firmly to adhere.
vanilla_wafers Cream together the egg yolks and sugar in a large bowl.
vanilla_extract Stir in the cream cheese, sour cream, and vanilla extract until smooth.
cream_cheese Beat egg whites until foamy in a large glass or metal mixing bowl.
beer Mix a 2 quart lemonade powder mix with less than 2 quarts of water (strong lemonade).
lemonade Add beer and vodka and mix.
vodka Serve with ice and enjoy!
onion Crumble the ground beef into a large skillet over medium heat.
eggs Add onions and garlic; cook and stir until evenly browned.
cream Drain off excess fat.
brown_sugar Stir in the red wine, tomatces, oregano, red pepper flakes and sea salt.
garlic Bring to a boil, then reduce heat to low, and simmer for 20 minutes.

chicken_broth Preheat the oven to 350 degrees F (175 degrees C).

raw_shrimp Cook noodles according to package directions.

pea_pods Drain.

butter Keep warm, set aside.

sliced_mushrooms While noodles are cocking, pour mushroom and orange liguids into a measuring cup add water to equal 1
orange_sections Blend in cornstarch and set aside.

Soy_sauce In a large skillet, melt butter and saute mushrooms, shrimp, pea pods, green onions, and garlic powder
canola_oil Heat the grill to high.

poblano_chiles Brush the chiles with oil and season with salt and pepper.

buns Grill until blistered on all sides and soft, about 12 minutes.

ground_chuck Remove the chiles from the grill, place in a bowl, cover with plastic wrap and let sit 15 minutes.
provolone_cheese Peel, stem and seed the chiles.

black_pepper Slice the chiles and set aside.

(a) im2recipe

recipe query (ingredients + instructions) top 4 retrieved images

plums. Preheat oven te 425 F. o
cinnamon Mix dry ingredients, then cut in butter with pastry blender. ’
butter Beat 1 egg in cup, add vanilla then fill the rest of the way to the 1 cup mark with milk and add to dr

vanilla_extract Grease pan and pat dough into pan

salt assort 3-4 cups of sliced plums on top of dough in a spiral pattern.

milk sprinkle top with 1 cup sugar mixed together with 2 i and 3 melted butter

kosher_salt Chipatle Chile Salt Prep:,

grapefruit_juice In a small bowl, combine the kosher salt, chile powder and lime zest.

lime_juice Moisten the rim of two glasses with a lime wedge.

chipatle_powder Gently dip the rim of each glass in the chile salt and twist to coat.

tequila Briefly set aside while you whip up your margaritas.

lime_zest Margaratias:

carrots Preheat oven to 375 degrees F (190 degrees C).

fresh_spinach Lightly grease one 9x13 inch baking dish.
lasagna_ncodles Place a layer of tomatoes in the bottom of the baking dish, followed by a layer of naodles, spinach, ¢
ricotta_cheese Season to taste with oregano, salt and pepper.

zucchini Repeat layering of ingredients until all are used up.

salt If using cheeses sprinkle cver broccoli layers and on top of dish.

anion saute onion, garlic and chilli with half the cil in frying pan

asparagus Meanwhile, cut broccoli inte small flerrets, cut asparagus inte pieces roughly an inch in size, and ch
stock meanwhile boil stock in a separate pan and add pasta

alive_oil add broceoli florrets and chopped asparagus to frying pan and fry for 5 mimutes.

garlic then add haloumi and fry for a furthur 5-10 minutes depending on personal taste

broccoli when pasta coeked, drain and return to pan with clive oil.

beef Heat a griddle medium hot.

jalapena Using your hands, form the beef into a 1/4-inch-thick patty, trying not to press the patty too much or
tomate Brush some butter on both sides of the patty, season with salt and pepper and cook on the griddle for
gquacamole Flip the burger, place the cheese on top and continue griddling for 2 to 3 minutes for medium rare,
lettuce_|eaf Meanwhile, brush softened butter on both slices of the bun and place on the griddle until toasted.
avocados To assemble, place the hamburger on the bottem slice of the bun, and the lettuce, tomato and pickle on

(b) recipe2im

Figure 8.3: Retrieval examples.

recipes (ingredients and instructions).

Ablation studies. We also analyze the effect of each component in our our model in
several optimization stages. The results are reported in Table 8.2. Note that here we
also report medR with 1K, 5K and 10K random selections to show how the results scale
in larger retrieval problems. As expected, visual features from the ResNet-50 model

100 Recipe Retrieval

Query Image True ingrs. Retrieved ingrs. Retrieved Image
>) whole milk berries
o half - and - half cr strawberry yogurt
white sugar banana
lemon extract milk
round cinnamon white sugar

rozen blueberries
vanilla wafers

ice cubes

butter 1 box any pasta you
garlic cloves ground bee

all - purpose flour 1 envelope taco seas
kosher salt water

milk 1/2 packages cream c
chicken broth cheese

mozzarella cheese
pa_rmesan cheese
onion

cooked white rice sushi rice

salt salmon
shrimp avocado
Broccolini cream cheese
mayonnaise nori

nori

mayonnaise yellow onion
ohion coarse salt
cider vinegar ground pepper
suPar round chuck
celery seeds uns

green cabbage eggs

carrot ketchu

salt & freshly groun canned beets
ground chuck lettuce leaves

Figure 8.4: Retrieval examples. From left to right: (1) the query image, (2) its true
ingredients, (3) the retrieved ingredients and (4) the image from the retrieved recipe.

show a substantial improvement in retrieval performance when compared to VGG-16
features. Even with “fixed vision” networks (i.e. trained freezing the weights of the
image encoder), the joint embedding achieved 7.9 medR using ResNet-50 architecture
(see Table 8.2). Further “finetuning” of vision networks slightly improves the results.
Although it becomes a lot harder to decrease the medR in small numbers, additional
“semantic regularization” improves the medR in both cases.

Comparison with human performance

In order to better assess the quality of our embeddings we also evaluate the performance
of humans on the im2recipe task. The experiments are performed through Amazon
Mechanical Turk (AMT) service?. For quality purposes, we require each AMT worker
to have at least 97% approval rate and have performed at least 500 tasks before our
experiment. In a single evaluation batch, we first randomly choose 10 recipes and their
corresponding images. We then ask an AMT worker to choose the correct recipe, out
of the 10 provided recipes, for the given food image. This multiple choice selection task
is performed 10 times for each food image in the batch. The accuracy of an evaluation
batch is the percentage of image queries correctly assigned to their corresponding recipe.

The evaluations are performed for three levels of difficulty. The batches (of 10 recipes)
are randomly chosen from either all the test recipes (easy), recipes sharing the same
course (e.g., soup, salad, or beverage; medium), or recipes sharing the name of the dish
(e.g., salmon, pizza, or ravioli; hard). As expected—for our model as well as the AMT
workers—the accuracies decrease as tasks become more specific. In both coarse and fine-

2http://mturk. com

http://mturk.com

8.2 Experiments 101
all recipes course-specific recipes dish-specific recipes
dessert salad bread drink soup mean pasta pizza steak salmon smoothie burger ravioli sushi mean
human 81.6 + 8.9 52.0 70.0 34.0 58.0 56.0 54.0 £ 13.0 54.0 48.0 58.0 52.0 48.0 46.0 54.0 58.0 52.2 + 04.6
joint-emb. only 83.6 + 3.0 76.0 68.0 38.0 24.0 62.0 53.6 + 21.8 58.0 58.0 58.0 64.0 38.0 58.0 62.0 42.0 54.8 £ 09.4
joint-emb.+sem. 84.8 + 2.7 74.0 82.0 56.0 30.0 62.0 60.8 + 20.0 52.0 60.0 62.0 68.0 42.0 68.0 62.0 44.0 57.2 £ 10.1

Table 8.3: Comparison with human performance on im2recipe task. The mean results
are highlighted as bold for better visualization. Note that on average our method with

semantic regularization performs better than average AMT worker.

Top 2

sugar

coconut_milk

ingredients

vanilla_extract nutmeg

all_-_purpose._flour

garlic_cloves
chunks

Black_pepper

Top 2 instructions

Start with bowl and beaters cold!

Beat in van|

GRS R A I T N X SRS TR
D nat averbeat!

Put flour and salt in a mixing bowl (or use a food p...
Add half the butter and mix well, until mixture re<e. .
e s ehinks shd the waker snd T Uz

B
g
o
2
o
&
H

kly form each piece into a ball, then press down. -
Wrap and refrigerate for at least an hour.

matoe [carrots| Coat pan with cosking oil and pan fry Mahi Mahi fill.. In 8 medium saucepan combine the sugar and water and...

garlic cashaws To prepare sauce, saute garlic and shallots in pan. (The length of time will vary depending on the stove.
fillets dates Stir in chicken stock and simmer until sauce thickens. Remove from the heat and carefully add the butter
leat milk Remove from heat and add basil. the mixture will splatter and bubble up,
vinegar sugar Remove from the heat and stir in the nuts.
ftomata_paste| apretty eaf or bunch of I... [Leticool for 15 to 20 minutes. then transfer toa fo..|
onlan anion Fry bacen in a Dutch oven until almost done. 1. heat the slive oil in a large skillet,
mung_beans. Add oniens and garlic and saute until the onions are... 2. add mushrooms and onions and cook UNESEIEGRUL
[EHSRANEEIEE mushroom Cover the bacon, enions and garlic with 4 cups water... 3. add black pepper and soy sauce and mix well.

p | chlipepper - olive oll 4. last add spinach, its will cook very fast, so kee...
vegetable_oil say_sauce Return to a boil and simmer for 1 hour. 5. enjoy, a healthy side with dinner with an Asian t

butter pudding Preheat oven to 350F. Heat oven to 350F.
milk almond_extract Beat butter and sugar in large bowl with electric mi... Beat all ingredients except sugar with mixer until b...
vaniila water Add eggs, one at a time, beating well after each add.. [ESURIRGOIgreased g oured 1SScuputSduBEpanm
blend Add cheese and sour cream; mix well. Bake 50 to 55 min,

oll or until toothpick inserted near center comes out cl...
sugar powdered_sugar 00l completely. Cool cake completely.

green_pepper Heat grill to medium heat. Sprinkle generously with salt and pepper on both sides
garlic_powder Swiss_cheese Add the onian and apples.
brown_sugar (SR Grill 6 to 8 min. Saute until the anion slices are lightly caramelized. .
onlon_powder Rallan_dressing Remove from grill. Cook until the park is tender, about 15 mare minutes. ..
roast tomate_paste Let stand 5 min, If the apple mixture needs a littia thickening, tran...
black pepper _beef broth before serving. ‘Serve the chops over ice or mashed potatoes with 5

Figure 8.5: Localized unit activations. We find that ingredient detectors emerge in

different units in our embeddings, which are aligned across modalities (e.g., unit 352:
“cream”, unit 22: “sponge cake” or unit 571: “steak”).

grained tests, our method performs comparably to or better than the AMT workers. As
hypothesized, semantic regularization further improves the results (see Table 8.3).

In the “all recipes” condition, 25 random evaluation batches (25 x 10 individual tasks in
total) are selected from the entire test set. Joint embedding with semantic regularization
performs the best with 3.2 percentage points improvement over average human accuracy.
For the course-specific tests, 5 batches are randomly selected within each given meal
course. Although, on average, our joint embedding’s performance is slightly lower than
the humans’, with semantic regularization our joint embedding surpasses humans’ perfor-
mance by 6.8 percentage points. In dish-specific tests, five random batches are selected
if they have the dish name (e.g., pizza) in their title. With slightly lower accuracies in
general, dish-specific results also show similar behavior. Particularly for the “beverage”
and “smoothie” results, human performance is better than our method, possibly because
detailed analysis is needed to elicit the homogenized ingredients in drinks. Similar be-
havior is also observed for the “sushi” results where fine-grained features of the sushi
roll’s center are crucial to identify the correct sushi recipe.

Analysis of the learned embedding

To gain further insight into our neural embedding, we perform a series of qualitative
analysis experiments. We explore whether any semantic concepts emerge in the neuron
activations and whether the embedding space has certain arithmetic properties.

102 Recipe Retrieval

(b) Recipe

Figure 8.6: Arithmetics using image embeddings (top) and recipe embeddings (bottom).
We represent the average vector of a query with the images from its 4 nearest neighbors.
In the case of the arithmetic result, we show the nearest neighbor only.

Neuron Visualizations. Through neural activation visualization we investigate if any
semantic concepts emerge in the neurons in our embedding vector despite not being
explicitly trained for that purpose. We pick the top activating images, ingredient lists,
and cooking instructions for a given neuron. Then we use the methodology introduced
by Zhou et al. [231] to visualize image regions that contribute the most to the activation
of specific units in our learned visual embeddings. We apply the same procedure on
the recipe side to also obtain those ingredients and recipe instructions to which certain
units react the most. Figure 8.5 shows the results for the same unit in both the image
and recipe embedding. We find that certain units display localized semantic alignment
between the embeddings of the two modalities.

Semantic Vector Arithmetic. Different works in the literature [139, 163] have
used simple arithmetic operations to demonstrate the capabilities of their learned
representations. In the context of food recipes, one would expect that wv(“chicken
pizza”) — v(“pizza”) + v(“salad”) = wv(“chicken salad”), where v represents the map

8.3 Conclusion 103

into the embedding space. We investigate whether our learned embeddings have such
properties by applying the previous equation template to the averaged vectors of recipes
that contain the queried words in their title. We apply this procedure in the image and
recipe embedding spaces and show results in Figures 8.6(a) and 8.6(b), respectively. Our
findings suggest that the learned embeddings have semantic properties that translate to
simple geometric transformations in the learned space.

Conclusion

In this chapter, we presented the im2recipe problem, and neural embedding models with
semantic regularization which achieve impressive results for the im2recipe task. More
generally, the methods presented here could be gainfully applied to other “recipes” like
assembly instructions, tutorials, and industrial processes. Further, we hope that our con-
tributions will support the creation of automated tools for food and recipe understanding
and open doors for many less explored aspects of learning such as compositional creativity
and predicting visual outcomes of action sequences.

Recipe (Generation

In the previous chapter, the image-to-recipe problem was formulated as a retrieval task
[205, 29, 30], where a recipe is retrieved from a fixed dataset based on the image simi-
larity score in an embedding space. However, the performance of retrieval-based systems
highly depends on the dataset size and diversity, as well as on the quality of the learned
embedding. Not surprisingly, these systems fail when a matching recipe for the image
query does not exist in the static dataset.

An alternative to overcome the dataset constraints of retrieval systems is to formulate
the image-to-recipe problem as a conditional generation one. Therefore, in this chapter,
we present a system that gemerates a cooking recipe containing a title, ingredients and
cooking instructions directly from an image. To the best of our knowledge, our system is
the first to generate cooking recipes directly from food images. We pose the instruction
generation problem as a sequence generation one conditioned on two modalities simul-
taneously, namely an image and its predicted ingredients. We formulate the ingredient
prediction problem as a set prediction, exploiting their underlying structure. We model
ingredient dependencies while not penalizing for prediction order, thus revising the ques-
tion of whether order matters [198]. We extensively evaluate our system on the Recipel M
dataset that contains images, ingredients and cooking instructions, showing satisfactory
results. More precisely, in a human evaluation study, we show that our inverse cooking
system outperforms previously introduced image-to-recipe retrieval approaches by a large
margin. Moreover, using a small set of images, we show that food image-to-ingredient
prediction is a hard task for humans and that our approach is able to surpass them.

The contributions of this chapter can be summarized as:

e We present an inverse cooking system, which generates cooking instructions condi-
tioned on an image and its ingredients, exploring different attention strategies to
reason about both modalities simultaneously.

o We exhaustively study ingredients as both a list and a set, and propose a new archi-
tecture for ingredient prediction that exploits co-dependencies among ingredients
without imposing order.

e By means of a user study we show that ingredient prediction is indeed a difficult
task and demonstrate the superiority of our proposed system against image-to-
recipe retrieval approaches.

The remainder of this chapter is structured as follows. Section 9.1 describes the com-
ponents of our method, namely the cooking instructions decoder (Section 9.1.1), the
ingredient prediction module (Section 9.1.2), and optimization details (Section 9.1.3).

106 Recipe Generation

Add onion and cook until tender
r‘B r!

r
Image 1 2 4 5

Encoder Ingredient Ingredient
e

- e Decoder Encoder L
: : — beef S|
: I onion [
| O [tomao ™ (|
T beans [

Figure 9.1: Recipe generation model. We extract image features e; with the image
encoder, parametrized by ;. Ingredients are predicted by 67, and encoded into ingredient
embeddings e;, with #.. The cooking instruction decoder, parametrized by #r generates
a recipe title and a sequence of cooking steps by attending to image embeddings ey,
ingredient embeddings ey, and previously predicted words (rg, ..., 7¢—1).

Instruction Decoder

Section 9.2 presents the experiments, including an analysis of each of the components,
comparison with retrieval baselines and user studies. Section 9.3 draws the conclusions
of this chapter.

Methodology

Generating a recipe (title, ingredients and instructions) from an image is a challenging
task, which requires a simultaneous understanding of the ingredients composing the dish
as well as the transformations they went through, e.g., slicing, blending or mixing with
other ingredients. Instead of obtaining the recipe from an image directly, we argue
that a recipe generation pipeline would benefit from an intermediate step predicting the
ingredients list. The sequence of instructions would then be generated conditioned on
both the image and its corresponding list of ingredients, where the interplay between
image and ingredients could provide additional insights on how the latter were processed
to produce the resulting dish.

Figure 9.1 illustrates our approach. Our recipe generation system takes a food image as
an input and outputs a sequence of cooking instructions, which are generated by means
of an instruction decoder that takes as input two embeddings. The first one represents
visual features extracted from an image, while the second one encodes the ingredients
extracted from the image. We start by introducing our transfomer-based instruction
decoder in Subsection 9.1.1. This allows us to formally review the transformer, which we
then study and modify to predict ingredients in an orderless manner in Subsection 9.1.2.
Finally, we review the optimization details in Subsection 9.1.3.

Cooking Instruction Transformer

Given an input image with associated ingredients, we aim to produce a sequence of
instructions R = (71, ...,rr) (where r; denotes a word in the sequence) by means of an
instruction transformer [196]. Note that the title is predicted as the first instruction.
This transformer is conditioned jointly on two inputs: the image representation ey and
the ingredient embedding er. We extract the image representation with a ResNet-50
[81] encoder and obtain the ingredient embedding ey, by means of a decoder architecture
to predict ingredients (see Section 9.1.2), followed by a single embedding layer mapping
each ingredient into a fixed-size vector.

9.1 Methodology 107

Output probabilities

Add & Norm
—Attention

Add & Norm
Attention

Add & Norm

1 1
[Attention] [Attention]
P 1 F 1

Positional encoding

Outputs (shifted right

(a) Transformer [196] (b) Concatenated (¢) Independent (d) Sequential

Figure 9.2: Attention strategies for the instruction decoder. In our experiments, we re-
place the attention module in the transformer (a), with three different attention modules
(b-d) for cooking instruction generation using multiple conditions.

The instruction decoder is composed of transformer blocks, each of them containing
two attention layers followed by a linear layer [196]. The first attention layer applies
self-attention over previously generated outputs, whereas the second one attends to the
model conditioning in order to refine the self-attention output. The transformer model
is composed of multiple transformer blocks followed by a linear layer and a softmax
nonlinearity that provides a distribution over recipe words for each time step t. Figure
9.2(a) illustrates the transformer model, which traditionally is conditioned on a single
modality. However, our recipe generator is conditioned on two sources: image features
e; € RPXd and ingredients embeddings e, € RX*9 (P and K denote the number
of image and ingredient features, respectively, and d. is the embedding dimensionality).
Thus, we want our attention to reason about both modalities simultaneously, guiding the
instruction generation process. To that end, we explore three different fusion strategies
(depicted in Figure 9.2):

e Concatenated attention. This strategy first concatenates both image e; and
ingredients ey, embeddings over the first dimension €copcat € RE+P)xde Then,
attention is applied over the combined embeddings. Figure 9.2(b) illustrates the
concatenation strategy.

e Independent attention. This strategy incorporates two attention layers to deal
with the bi-modal conditioning. In this case, one layer attends over the image
embedding ey, whereas the other attends over the ingredient embeddings e;. The
output of both attention layers is combined via summation operation. Figure 9.2(c)
depicts the independent attention flow.

e Sequential attention. This strategy sequentially attends over the two condition-
ing modalities. In our design, we consider two orderings: (1) image first where
the attention is first computed over image embeddings e; and then over ingredient
embeddings er; and (2) ingredients first where the order is flipped and we first
attend over ingredient embeddings e;, followed by image embeddings e;. Figure
9.2(d) shows the sequential attention module.

108 Recipe Generation

Ingredient Decoder

Which is the best structure to represent ingredients? On the one hand, it seems clear that
ingredients are a set, since permuting them does not alter the outcome of the cooking
recipe. On the other hand, we colloquially refer to ingredients as a list (e.g., list of
ingredients), implying some order. Moreover, it would be reasonable to think that there
is some information in the order in which humans write down the ingredients in a recipe.
Therefore, in this subsection we consider both scenarios and introduce models that work
either with a list of ingredients or with a set of ingredients. Assigning a variable number
of ingredients to an image can be achieved with multi-label image classification methods,
which have been extensively studied in Chapter 5 of this thesis. For this reason, we
revisit several architectures presented in Chapter 5 and evaluate them for the ingredient
prediction task.

A list of ingredients is a variable sized, ordered collection of unique meal constituents.
More precisely, let us define a dictionary of ingredients of size N as D = {di}f\;o, from
which we can obtain a list of ingredients L by selecting K elements from D: L = [lz]fi 0
We encode L as a binary matrix L of dimensions K x N, with L;; = 1 if d; € D is
selected and 0 otherwise (one-hot-code representation). Thus, our training data consists
of M image and ingredient list pairs {(x®), L®))}M . In this scenario, the goal is to
predict L from an image x by maximizing the following objective:

M
argmaleogp(i(i) = L(i)|x(i);<91,0L), (9.1)

01:9L i=0
where 6 and 0f, represent the learnable parameters of the image encoder and ingredient
decoder, respectively. Since L denotes a list, we can factorize p(L®) = L®|x(®) into

K conditionals: Zf:o logp(]i,(;) = L,(;)|x(i),L(<ZL) ! and parametrize p(f;,(;)|x(i), L(gf) as a
categorical distribution. We model this distribution with the Transformer auto-regressive
decoder (TF) presented in Chapter 5. Note that, for simplicity, auto-regressive LSTM
decoders are not considered in this chapter since they achieve comparable performance
to Transformer-based ones, but require more parameters. However, as highlighted in
Chapter 5, this formulation inherently penalizes for ingredient order, which might not

necessarily be relevant to predict ingredients.

On the other hand, a set of ingredients is a variable sized, unordered collection of unique
meal constituents. We can obtain a set of ingredients S by selecting K ingredients from
the dictionary D: S = {s;}X£,. We represent S as a binary vector s of dimension N,
where s; = 1 if s; € S and 0 otherwise. Thus, our training data consists of M image and
ingredient set pairs: {(x(*),s®)}M Tn this case, the goal is to predict 8 from an image
X by maximizing the following objective:

M
arg maleogp(é(i) =sOxD:0;7,0p). (9.2)
0,00 =

Assuming independence among set elements, we can factorize:

N
P8 = sVxD) = 3o p(s;” = s x) (93)
=0

! < k denotes all elements up to, but not including, k

9.2 Experiments 109

In this case, we revisit models from Chapter 5 that model this formulation, namely
FFpcr and its variant that incorporates cardinality prediction FFpcg pc. However, the
ingredients in the set are not necessarily independent, e.g., salt and pepper frequently ap-
pear together. For this reason, we also consider fully connected models trained with loss
functions that account for ingredient co-occurrences instead of treating ingredients inde-
pendently, namely FFtp and FFg,uy. We also consider to model element dependencies
with the auto-regressive model TF.;, which is optimized with a permutation-invariant
loss function. Note that most feed-forward methods incorporating cardinality (FFpcE, c,
FFgou,c and FFrp) have not been considered in this study, since their gain w.r.t. the
same architectures without cardinality prediction was marginal in many cases.

Optimization

We train our recipe transfomer in two stages. In the first stage, we pre-train the image
encoder and ingredients decoder as presented in Subsection 9.1.2. Then, in the second
stage, we train the ingredient encoder and instruction decoder (following Subsection
9.1.1) by minimizing the negative log-likelihood and adjusting #r and 0g. Note that,
while training, the instruction decoder takes as input the ground truth ingredients. All
transformer models are trained with teacher forcing [211] except for the set transformer.

Experiments

This section is devoted to the dataset and the description of implementation details,
followed by an exhaustive analysis of the proposed attention strategies for the cooking
instruction transformer. Further, we quantitatively compare the proposed ingredient
prediction models to previously introduced baselines. Finally, a comparison of our inverse
cooking system with retrieval-based models as well as a comprehensive user study is
provided.

Dataset preprocessing

We train and evaluate our models on the RecipelM dataset (described in Section 7.2).
Since the dataset was obtained by scraping cooking websites, the resulting recipes are
highly unstructured and contain frequently redundant or very narrowly defined cooking
ingredients (e.g., olive oil, virgin olive oil and spanish olive oil are separate ingredients).
Moreover, the ingredient vocabulary contains more than 400 different types of cheese,
and more than 300 types of pepper. As a result, the original dataset contains 16 823
unique ingredients, which we preprocess to reduce its size and complexity. First, we
merge ingredients if they share the first or last two words (e.g., bacon cheddar cheese is
merged into cheddar cheese); then, we cluster the ingredients that have same word in the
first or in the last position (e.g., gorgonzola cheese or cheese blend are clustered together
into the cheese category); finally we remove plurals and discard ingredients that appear
less than 10 times in the dataset. Altogether, we reduce the ingredient vocabulary from
over 16k to 1488 unique ingredients.

For the cooking instructions, we tokenize the raw text and remove words that appear less
than 10 times in the dataset, and replace them with unknown word token. Moreover, we
add special tokens for the start and the end of recipe as well as the end of instruction
(indicating the end of a sentence in a recipe). This process results in a recipe vocabulary

110 Recipe Generation

of 25828 unique words.

Implementation Details

We resize images to 256 pixels in their shortest side and take random crops of 224 x 224
for training and we select central 224 x 224 pixels for evaluation. During training we
randomly flip (p = 0.5), rotate (£10 degrees) and translate images (£10% image size on
each axis) for augmentation.

Ingredient Prediction. Feed-forward models FFgcg, FF1p and FFq,u were trained
with a mini-batch size of 300, whereas FFpcg,pc was trained with a mini-batch size of
256. All of them were trained with a learning rate of 0.001. The learning rate for pre-
trained ResNet layers was scaled for each model as follows: 0.01x for FFpcg, FFsou and
FFpcppc and 0.1x for FFpp. Transformer list-based models (TF) were trained with
mini-batch size 300 and learning rate 0.001, scaling the learning rate of ResNet layers with
a factor of 0.1x. Similarly, the set transformer TF¢ was trained with mini-batch size of
300 and a learning rate of 0.0001, scaling the learning rate of pre-trained ResNet layers
with a factor of 1.0x. The optimization of TFg minimizes a cost function composed
of three terms, namely the ingredient prediction loss L;,g and the end-of-sequence loss
Leos and the cardinality penalty L..-4. We set the contribution of each term with weights
1000.0 and 1.0 and 1.0, respectively. We use a label smoothing factor of 0.1 for all models
trained with BCE loss (FFpcg, FFpcE DO, TFset), which we found experimentally useful.

Instruction Generation. For the instruction decoder, we use a transformer with 8
blocks and 16 multi-head attentions, each one with dimensionality 32. For the ingredient
decoder, we use a transformer with 2 blocks and 4 multi-head attentions, each one with
dimensionality of 128. To obtain image embeddings we use the last convolutional layer of
ResNet-50 model. Both image and ingredients embedings are of dimension 512. We use
a batch size of 256 and learning rate of 0.001. Parameters of the image encoder module
are taken from the ingredient prediction model and frozen during training for instruction
generation.

We keep a maximum of 20 ingredients per recipe and truncate instructions to a maximum
of 150 words both for training and evaluation.

All models are trained with Adam optimizer [99] (81 = 0.9, 51 = 0.99 and e =1e-8)
[99], exponential decay of 0.99 after each epoch, dropout probability 0.3 and a maximum
number of 400 epochs, or until early-stopping criteria is met (using patience of 50 and
monitoring validation loss). All models are implemented with PyTorch 2 [155].

Recipe Generation

In this section, we compare the proposed multi-modal attention architectures described
in Section 9.1.1. Table 9.1 (left) reports the results in terms of perplexity on the vali-
dation set. We observe that independent attention exhibits the lowest results, followed
by both sequential attentions. While the latter have the capability to refine the out-
put with either ingredient or image information consecutively, independent attention can
only do it in one step. This is also the case of concatenated attention, which achieves the
best performance. However, concatenated attention is flexible enough to decide whether

2http://pytorch.org/

http://pytorch.org/

9.2 Experiments 111

Model ToU F1

FFgcE 17.85 30.30

FFgsou 26.25 41.58
Model ppl FFBCE,DC 27.22 42.80
Independent 8.59 FFrp 28.84 44.11
Seq. img. first 8.53 TF 29.48 45.55
Seq. ing. first 8.61 TF + shuffle 27.86 43.58
Concatenated 8.50 TFget 31.80 48.26

Table 9.1: Model selection (validation set). Left: Recipe perplexity (ppl). Right: Global
ingredient IoU & F1 metrics.

00— .. Froc

X FFgce e
= = 80 ~.-\ FFiou
3\01 5 FF[’d
[=] = 60 —_— TF
o) .
S a —— TF+ shuffle
D g 40 "'.: TFset
[} . \
& 5 R

joR 20 : "‘..

i .

[r, N

0

1 3 10 32 100 316 1000
Ingredient IDs (sorted)

Figure 9.3: Ingredient prediction results: PQK and F1 per ingredient.

to give more focus to one modality, at the expense of the other, whereas independent
attention is forced to include information from both modalities. Therefore, we use the
concatenated attention model to report results on the test set. We compare it to a sys-
tem going directly from image-to-sequence of instructions without predicting ingredients
(I2R). Moreover, to assess the influence of visual features on recipe quality, we adapt
our model by removing visual features and predicting instructions directly from ingredi-
ents (L2R). Our system achieves a test set perplexity of 8.51, improving both I2R and
L2R baselines, and highlighting the benefits of using both image and ingredients when
generating recipes. L2R surpasses I2R with a perplexity of 8.67 vs. 9.66, demonstrating
the usefulness of having access to concepts (ingredients) that are essential to the cooking
instructions. Finally, we greedily sample instructions from our model and analyze the re-
sults. We notice that generated instructions have an average of 9.21 sentences containing
9 words each, whereas real, ground truth instructions have an average of 9.08 sentences
of length 12.79.

Ingredient Prediction

In this section, we compare the proposed ingredient prediction approaches to previously
introduced models, with the goal of assessing whether ingredients should be treated as
lists or sets. We consider models from the multilabel classification literature as baselines,
and tune them for our purposes. On the one hand, we have models based on feed forward
convolutional networks, which are trained to predict sets of ingredients. We experiment

112

Card. error

pred. ingrs

FFpcE 5.67+£3.10 2.37+1.58
FFBCEDC 2.68£2.07 9.18 £ 2.06
FFaou 246+1.95 7.86+1.72
FFrp 3.02+£250 8.02+3.24
TF 2.49+211 7.05+£2.77
TF + shuffle 3.24 +£250 5.06 + 1.85
TFeet 2.56 £1.93 9.43+2.35

Recipe Generation

Table 9.2: Ingredient Cardinality.

with several losses to train these models, namely binary cross-entropy, soft intersection
over union as well as target distribution cross-entropy. Note that binary cross-entropy
is the only one not taking into account dependencies among elements in the set. On the
other hand, we have sequential models that predict lists, imposing order and exploiting
dependencies among elements. Finally, we consider recently proposed set prediction
models, which couple the set prediction with a cardinality prediction to determine which
elements to include in the set [169]. The latter method assumes independence of elements
in the set.

Table 9.1 (right) reports the results on the validation set for the state-of-the-art baselines
as well as the proposed approaches. We evaluate the models in terms of Intersection over
Union (IoU) and F1 score, computed for accumulated counts of TP, FN and F'P over
the entire dataset split (following Pascal VOC convention). As shown in the table, the
feed forward model trained with binary cross-entropy [29] (FFpcg) exhibits the lowest
performance on both metrics, which could be explained by the assumed independence
among ingredients. These results are already notably improved by the method that learns
to predict the set cardinality (FFpcgpc). Similarly, the performance increases when
training the model with structured losses such as soft IoU (FFy,u). Our feed forward
model trained with target distribution (FFrp) and sampled by thresholding (th = 0.5)
the sum of probabilities of selected ingredients outperforms all feed forward baselines,
including recently proposed alternatives for set prediction such as [169] (FFpcg pc). Note
that target distribution models dependencies among elements in a set and implicitly
captures cardinality information. Following recent literature modeling sets as lists [147],
we train a transformer network to predict ingredients given an image by minimizing the
negative log-likelihood loss (TF). Moreover, we train the same transformer by randomly
shuffling the ingredients (thus, removing order from the data). Both models exhibit
competitive results when compared to feed forward models, highlighting the importance
of modeling dependencies among ingredients. Finally, our proposed set transformer TF g,
which models ingredient co-occurrences exploiting the auto-regressive nature of the model
yet satisfying order invariance, achieves the best results, emphasizing the importance of
modeling dependencies, while not penalizing for any given order.

The average number of ingredients per sample in RecipelM is 7.99 4+ 3.21 after pre-
processing. We report the cardinality prediction errors as well as the average number of
predicted ingredients for each of the tested models in Table 9.2. TFge is the third best
method in terms of cardinality error (after FFg,uy and TF), while being superior to all
methods in terms of F1 and IoU. Further, Figure 9.3 (left) shows the precision score at

9.2 Experiments 113

IoU F1
Rrar 18.92 31.83
Rrarr 19.85 33.13 Rec. Prec.

FFrp (ours) 29.82 45.94 Rieor 31.92 28.94
TFge: (ours) 32.11 48.61 Ours 75.47 7713

Table 9.3: Test performance against retrieval. Left: Global ingredient IoU and F1 scores.
Right: Precision and Recall of ingredients in cooking instructions.

IoU F1 Success %
Human 21.36 35.20 Real 80.33
Retrieved 18.03 30.55 Retrieved 48.81
Ours 32.52 49.08 Ours 55.47

Table 9.4: User studies. Left: ToU & F1 scores for ingredients obtained by retrieval
system, our approach and humans. Right: Recipe success rate according to human
judgment.

different values of K. As observed, the plot follows similar trends as Table 9.1 (right), with
FF1p being among the most competitive models and TFy outperforming all previous
baselines for most values of K. Figure 9.3 (right) shows the F1 per ingredient, where
the ingredients in the horizontal axes are sorted by score. Again, we see that models
that exploit dependencies consistently improve ingredient’s F1 scores, strengthening the
importance of modeling ingredient co-occurrences.

Generation vs Retrieval

Ingredient prediction evaluation. We use the retrieval model from Chapter8 as a
baseline and compare it with our best ingredient predictions models, namely FF1p and
TFget- The retrieval model, which we refer to as Rjsrp, learns joint embeddings of
images and recipes (title, ingredients and instructions). Therefore, for the ingredient
prediction task, we use the image embeddings to retrieve the closest recipe and report
metrics for the ingredients of the retrieved recipe. We further consider an alternative
retrieval architecture, which learns joint embeddings between images and ingredients list
(ignoring title and instructions). We refer to this model as Ryor,. Table 9.3 (left) reports
the obtained results on the RecipelM test set. The Rjorr model outperforms the Ryof,
one, which indicates that instructions contain complementary information that is useful
when learning effective embeddings. Furthermore, both of our proposed methods outper-
form the retrieval-baselines by a significant margin (e.g., TFge outperforms the Rrorr
retrieval baseline by 12.26 IoU points and 15.48 F1 score points), which demonstrates
the superiority of our models. Finally, Figure 9.4 presents some qualitative results for
image-to-ingredient prediction for our model as well as for the retrieval based system. We
use blue to highlight the ingredients that are present in the ground truth annotation and
red otherwise. Interestingly, ingredients predicted by our model often seem plausible.

Recipe generation evaluation. We compare our proposed instruction decoder (which
generates instructions given an image and ingredients) with a retrieval variant. For a
fair comparison, we retrain the retrieval system to find the cooking instructions given
both image and ingredients. In our evaluation, we consider the ground truth ingredients

114

Recipe Generation

Ours Retrieved Real
cheese onion potato butter milk water
pepper soup soup cheese butter potato

cream salt milk onion corn cheese
butter cream corn onion

shrimp butter
garlic zucchini
pepper soy_sauce
juice

lemon salt clove
catfish seasoning
carrot parsley

lemon zucchini oil
pepper shrimp
juice salt garlic
parsley onion

sugar
strawberries juice
water raspberries

tart_shell sugar
cornstarch juice
strawberries

butter vanilla
strawberries sugar
wine vinegar
cream

cream
cheese cheese
muffin
tomato cracker cheese
- cracker miracle_whip broceoli
- ./ broccoli lettuce tomato
a5 muffin tomato

Figure 9.4: Ingredient prediction examples. We compare obtained ingredients with our
method and the retrieval baseline. Ingredients are displayed in blue if they are present
in the real sample and red otherwise. Best viewed in color.

as reference and compute recall and precision w.r.t. the ingredients that appear in the
obtained instructions. Thus, recall computes the percentage of ingredients in the refer-
ence that appear in the output instructions, whereas precision measures the percentage
of ingredients appearing in the instructions that also appear in the reference. Table 9.3
(right) displays comparison between our model and the retrieval system. Results show
that the ingredients appearing in the cooking instructions obtained with our model have
better recall and precision scores than the ingredients in retrieved instructions.

User Studies

In this section, we quantify the quality of predicted ingredients and generated instructions
with user studies. In the first study, we compare the performance of our model against
human performance in the task of recipe generation. We randomly select 15 images
from the test set, and ask users to select up to 20 distinct ingredients as well as write a
recipe that would correspond with the provided image. To reduce the complexity of the
task for humans, we reduced the ingredient vocabulary from 1488 to 323, by increasing
the frequency threshold from 10 to 1k. We collected answers from 31 different users,
altogether collecting an average of 5.5 answers for each image. For fair comparison, we
re-train our best ingredient prediction model on the reduced vocabulary of ingredients.
We compute IoU and F1 ingredient scores obtained by humans, the retrieval baseline and
our method. Results are included in Table 9.4 (left), underlining the complexity of the
task. As shown in the table, humans outperform the retrieval baseline (F1 of 35.20% vs
30.55%, respectively). Furthermore, our method outperforms both human baseline and
retrieval based systems obtaining F1 of 49.08%.

9.3 Conclusion

- Title: Cinnamon muffins

Ingredients

- Flour, sugar, egg, salt, baking powder, baking soda,

" milk, butter, vanilla and cinnamon

'r' Instructions

- Preheat oven to 400 degrees.

- Grease muffin tins.

_ - Inalarge bowl, cream butter and sugar.

- Add eggs, milk and vanilla.

- Ina separate bowl, combine flour, baking powder,
baking soda, salt and cinnamon.

- Add dry ingredients to creamed mixture
alternately with milk.

- Stir in cinnamon.

- Fill muffin cups 2/3 full.

- Bake for 20 minutes.

115

Title: Avocado soup
Ingredients
Pepper, salt, avocado, yogurt, clove, onion, cream,
parsley, water
Instructions
- Inalarge pot, combine the avocado, onion, garlic,
parsley, salt, pepper and water.
- Bring to a boil, reduce heat and simmer for 15
minutes.
- Remove from heat and let cool.
- Inablender, puree the avocado mixture until
smooth.
- Stir in yogurt and sour cream.
- Serve immediately.

Title: Antipasto pasta salad

Ingredients

Olive, pasta, cheese, pepper, onion, salami, artichoke,

tomato, cucumber, salt, mayonnaise, vinegar, mustard

~ Instructions

- Cook pasta according to package directions.

- Drain and rinse with cold water.

- Inalarge bowl, combine pasta, salami, artichoke
hearts, red onion, olives, tomatoes and cheese.

- In a small bowl, whisk together mayonnaise,
vinegar, mustard, salt and pepper.

- Pour dressing over pasta mixture and toss to coat.

- Cover and refrigerate for at least | hour before
serving.

Title: Stuffed mushrooms
Ingredients
Mushroom, cheese, oil, pepper, clove, onion, tomato,
basil, thyme, parsley
Instructions
- Preheat oven to 350 degrees f.
- Heatolive oil in a large skillet over medium heat.
- Add onion and garlic and saute until soft, about 5 minutes.
- Add mushrooms and saute until tender, about 5 minutes.
- Add thyme, basil, parsley, salt and pepper.
- Remove from heat and set aside.
- Ina medium bowl, combine ricotta, parmesan, parsley and thyme.
- Add the sauteed mushroom mixture to the ricotta mixture and stir to
combine.

- Fill mushroom caps with the ricotta mixture.
- Place mushrooms on a baking sheet and bake for about 20 minutes.

Figure 9.5: Examples of generated recipes, composed of a title, ingredients and cooking
instructions.

The second study aims at quantifying the quality of the generated recipes (ingredients
and instructions) with respect to (1) the real recipes in the dataset, and (2) the ones
obtained with the retrieval baseline from Chapter 8. With this purpose, we randomly
select 150 recipes with their associated images from the test set and, for each image,
we collect the corresponding real recipe, the top-1 retrieved recipe and our generated
recipe. We present the users with 15 image-recipe pairs (randomly chosen among the
real, retrieved and generated ones) asking them to indicate whether the recipe matches
the image. In the study, we collected answers from 105 different users, resulting in an
average of 10 responses for each image. Table 9.4 (right) presents the results of this
study, reporting the success rate of each recipe type. As it can be observed, the success
rate of generated recipes is higher than the success rate of retrieved recipes, stressing the
benefits of our approach w.r.t. retrieval.

Examples of recipes (title, ingredients and instructions) generated with our method are
included in Figure 9.5.

Conclusion

In this chapter, we introduced an image-to-recipe generation system, which takes a food
image and produces a recipe consisting of a title, ingredients and sequence of cooking
instructions. We first predicted sets of ingredients from food images, showing that mod-
eling dependencies matters. Then, we explored instruction generation conditioned on
images and inferred ingredients, highlighting the importance of reasoning about both
modalities at the same time. Finally, user study results confirm the difficulty of the task,
and demonstrate the superiority of our system against state-of-the-art image-to-recipe
retrieval approaches.

Summary

The last part of the thesis presented two solutions to the task of obtaining a cooking recipe
given a food image. The first one (Chapter 8) posed the problem as a retrieval task, in
which the recipe is retrieved as a whole (ingredients and instructions) given the input
image. A joint neural network was trained to project a recipe and image representations
into the same embedding space which, once trained, allowed the retrieval of one given
the other. The proposed model was evaluated against strong baselines, including human
performance. The second one (Chapter 9) posed the problem as a conditional generation
one, where the ingredients are first predicted for the input image, and used together
with image features to condition the title and cooking instruction decoder. According to
human judgment, the recipe generation pipeline from Chapter 9 provided better recipes
for input images than the retrieval system from Chapter 8.

Conclusions

We have seen extraordinary progress in computer vision over the past decade. Deep neu-
ral networks have narrowed down the gap between human and computer performance
on long studied computer vision problems [81]. Virtually all computer vision tasks ex-
perienced boosts in performance by re-utilizing representations from pre-trained neural
networks [164]. Later on, the design and training of end-to-end neural network solutions
optimized for the task in hand became the go-to approach for most computer vision
tasks, given enough training data [81, 125, 167, 79]. This thesis has presented contribu-
tions within these paradigms, namely the extraction and optimization of deep features
from convolutional neural networks for visual retrieval in Part I, and the end-to-end
formulation of image-to-set prediction tasks with neural networks in Part II.

Rapid advances in core tasks such as image classification or object detection have opened
the frontiers of computer vision to replace output categorical labels with natural language
to explain the visual world. We have witnessed the first neural networks to mimic human
behavior to generate image descriptions [201, 128] or answer questions about images
[3, 129]. In this context, Part III of this thesis has presented two approaches to tackle
the challenging problem of image-to-recipe prediction. Despite great progress, current
deep learning methods (including those presented in this dissertation) are known to
exploit patterns from large datasets as a sort of distant proxy to commonsense knowledge,
which often times leads to the illusion of human-like performance of image captioning,
question answering or, as studied in this thesis, recipe generation methods. True visual
understanding algorithms in the future must involve commonsense reasoning about how
the world works in order to be reliable for people to use. While recent works [223] have
attempted to collect annotations for new datasets to push research towards explainable
and contextualized outputs of deep neural networks, here we argue that the image-to-
recipe prediction problem offers a vast ground to base research upon this direction.

Figure 9.6 illustrates the complexity of the image-to-recipe prediction task with an ex-
ample in the RecipelM dataset. Notice that the recipe starts with an instruction to heat
the oven, which one may acknowledge to be a reasonable choice given that the input
images shows a lasagna. Notably, the 18.58% of all the recipes in the training set of
RecipelM include some version of the heat oven instruction as the first sentence in the
recipe. If we only consider recipes including the word lasagna in their title, the percent-
age increases to 36.88%, and further reaches 49.25% when searching over all sentences in
the recipe and not only the first one. Thus, it is almost straight-forward for a neural net-
work with enough capacity and training data to cluster lasagna-like images together and
accurately instruct to preheat the oven for all of them. However, the human explanation
for this instruction choice goes way beyond the simple association the neural network has
learned (i.e. all lasagnas require heating the oven). First, anyone with a relative cooking
experience is aware of the different cooking methods, and likely knows that lasagnas fall

120 Recipe Generation

ﬁl’itle: Spinach-mushroom lasagna with red pepper marinara \

Ingredients: Instructions:
- pasta_sauce - Heat oven to 350 degrees f.
red_peppers - Blend pasta sauce and peppers in blender until smooth.
egg - Combine egg, ricotta, 1-1/4 cups mozzarella, spinach, 1/4 cup
ricotta_cheese parmesan and nutmeg.

Cook lasagna noodles as directed on package, omitting salt.
Meanwhile, heat oil in large nonstick skillet on medium heat.

Add onions; cook and stir 5 min. or until crisp-tender.

Stir in mushrooms; cook 10 min. or until tender and browned, stirring

mozarella_cheese
frozen_chopped_spinach
kraft_grated_parmesan_cheese
ground_nutmeg

lasagna_noodles frequently.
olive_oil - Spread 3/4 cup sauce onto bottom of 13x9-inch baking dish; top with
fresh_mushrooms layers of 3 lasagna noodles, 1/3 each of the ricotta and mushroom

mixtures, and 3/4 cup sauce.

Repeat layers twice.

Top with remaining noodles, sauce, mozzarella and parmesan.
Cover with foil sprayed with cooking spray.

Bake 1 hour or until heated through, uncovering after 45 min. J

Let stand 15 min. before cutting to serve.

-

Figure 9.6: A sample in the RecipelM dataset.

into the category of baked food, for which an oven is required. We also know that food
cooks better in a warm oven (we might have experienced this ourselves, or we might
have learned this from someone else). Second, humans understand the concept of time
— cooking requires time, but some steps are faster to complete than others (e.g., baking
a cake takes more time than chopping a few tomatoes). Further, we understand that
different cooking instructions require different amounts of human intervention (beating
an egg is a more human-involved task than boiling water or heating an oven). Finally,
both from the laws of thermodynamics and our previous cooking experiences we get that
warming up an oven until it reaches a certain temperature takes time. Thus, all this
contextualized knowledge eventually leads to the decision of preheating the oven as one
of the first steps to cook a lasagna, while more human-involved tasks such as mixing in-
gredients are performed in the meantime in order to minimize the wait time. In contrast,
the ability of the model presented in Chapter 9 to correctly instruct to preheat the oven
given a lasagna image does not involve any explicit reasoning, and instead relies on the
complex statistical function learned from training data to map image pixels to sentences.

Beyond the previous example, in order for an intelligent system to predict a recipe from
an image, it must overcome a series of other challenges, such as inferring ingredients
subject to heavy deformations, occlusions or even invisibility. Understanding the raw
form of ingredients and their physical properties is also crucial to generate a recipe, and
the level of detail in ingredients also plays a critical role. For example, tomato sauce
(referred to as pasta_sauce in the figure) can both be purchased in a store or made from
raw tomatoes, and the choice of one over the other should significantly alter the resulting
recipe. Further, the cooking process requires an understanding of ingredient quantities
and food portions, which must be estimated from still images.

Altogether, challenges in the image-to-recipe generation problem align well with those
in automating commonsense reasoning [46]. Actions that seem straight-forward such as
the preheat oven example above require awareness of time, anticipation and planning.
Commonsense reasoning involves taking decisions based on assumptions over incomplete
data, and adapting to infrequent situations using knowledge from similar previous expe-
riences. How to encode such types of information in a way that is understandable for a
computer, and how to teach computers to acquire this knowledge from data to support
their decisions are the challenges that shall drive future research in the field.

Publications

Publications derived from this thesis

Submitted

Luis Pineda®, Amaia Salvador*, Michal Drozdzal, Adriana Romero. Elucidating
image-to-set prediction: An analysis of models, losses and datasets. (Submitted).

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,Amaia Salvador, Yusuf
Aytar, Ingmar Weber, Antonio Toralba. RecipelM: A Dataset for Learning Cross-
Modal Embeddings for Cooking Recipes and Food Images. (Submitted).

In Proceedings

Amaia Salvador, Michal Drozdzal, Xavier Giro-i-Nieto, Adriana Romero. Inverse
Cooking: Recipe Generation from Food Images. In CVPR 2019.

Amaia Salvador*, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ing-
mar Weber and Antonio Torralba. Learning Cross-modal Embeddings for Cooking
Recipes and Food Images. In CVPR 2017.

Amaia Salvador, Xavier Giro-i-Nieto, Ferran Marques, Shin’ichi Satoh. Faster
R-CNN Features for Instance Search. In CVPR Workshops 2016.

Eva Mohedano*, Amaia Salvador*, Kevin McGuinness, Xavier Giro-i-Nieto, Noel
OConnor, Ferran Marques. Bags of Local Convolutional Features for Scalable In-
stance Search. In ICMR 2016.

Vinh-Tiep Nguyen, Duy-Dinh Le, Amaia Salvador, Caizhi Zu, Dinh-Luan
Nguyen, Minh-Triet Tran, Thanh-Ngo Duc, Duc-Anh Duong, Shin’ichi Satoh,
Xavier Giro-i-Nieto. NII-HITACHI-UIT at TRECVID 2015 instance search. In
TRECVid Workshop 2015.

Kevin McGuinness, Eva Mohedano, Amaia Salvador, Zhenxing Zhang, Mark
Marsden, Peng Wang, Iveel Jargalsaikhan, Joseph Antony, Xavier Giro-i-Nieto,
Shinichi Satoh, Noel E. OConnor, Alan Smeaton. Insight DCU at TRECVid 2015.
In TRECVid Workshop 2015.

Other publications

e Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Salvador, Ferran Mar-
ques and Xavier Giro-i-Nieto. End-to-End Recurrent Net for Video Object Seg-
mentation. In CVPR 2019.

e Amanda Duarte, Francisco Roldan, Miquel Tubau, Janna Escur, Santiago Pascual,
Amaia Salvador, Eva Mohedano, Kevin McGuinness, Jordi Torres and Xavier
Giro-i-Nieto. Wav2Pix: Speech-conditioned Face Generation using Generative Ad-
versarial Networks. In ICASSP 2019.

e Eva Mohedano, Amaia Salvador, Kevin McGuinness, Xavier Giro-i-Nieto, Noel
O’Connor, Ferran Marques. Object Retrieval with Deep Convolutional Features.
In Deep Learning for Image Processing Applications 2017 (Book Chapter).

e Alberto Montes, Amaia Salvador, Santiago Pascual and Xavier Giro-i-Nieto.
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Net-
works. In NIPS Workshops 2016.

e Victor Campos, Amaia Salvador, Xavier Giro-i-Nieto and Brendan Jou. Div-
ing Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment
Prediction. In ACM Multimedia Workshops 2015.

e Eva Mohedano, Amaia Salvador, Sergi Porta, Xavier Giro-i-Nieto, Kevin
McGuinness, Graham Healy, Noel OConnor and Alan Smeaton. Exploring EEG
for Object Detection and Retrieval. In ICMR 2015.

e Amaia Salvador, Matthias Zeppelzauer, Daniel Manchon, Andrea Calafell and
Xavier Giro-i-Nieto. Cultural Event Recognition with Visual ConvNets and Tem-
poral Models. In CVPR Workshops 2015.

e Kevin McGuinness, Eva Mohedano, ZhenXing Zhang, Feiyan Hu, Rami Albatal,
Cathal Gurrin, Noel OConnor, Alan Smeaton, Amaia Salvador, Xavier Giro-
i-Nieto, Carles Ventura. Insight Centre for Data Analytics (DCU) at TRECVid
2014: Instance Search and Semantic Indexing Tasks. In TRECVid Workshop 2014.

e Axel Carlier, Amaia Salvador, Ferran Cabezas, Xavier Giro-i-Nieto, Vincent
Charvillat and Oge Marques. Assessment of Crowdsourcing and Gamification Loss
in User-Assisted Object Segmentation. In MTAP 2016.

e Ferran Cabezas, Axel Carlier, Amaia Salvador, Xavier Giro-i-Nieto and Vincent
Charvillat. Quality Control in Crowdsourced Object Segmentation. In ICIP 2015.

e Axel Carlier, Amaia Salvador, Xavier Giro-i-Nieto, Oge Marques and Vincent
Charvillat. Click'n’Cut: Crowdsourced Interactive Segmentation with Object Can-
didates. In ACM Multimedia Workshops 2014.

e Amaia Salvador, Axel Carlier, Xavier Giro-i-Nieto, Oge Marques and Vincent
Charvillat. Crowdsourced Object Segmentation with a Game. In ACM Multimedia
Workshops 2013.

122

Bibliography

Tatiana A Amor, Saulo DS Reis, Daniel Campos, Hans J Herrmann, and José S
Andrade Jr. Persistence in eye movement during visual search. Scientific reports,
2016. 65

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical
correlation analysis. In ICLR, 2013. 90

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In CVPR,
2015. 3, 4, 90, 119

Alessandro Antonucci, Giorgio Corani, Denis Deratani Maué, and Sandra Gabaglio.
An ensemble of bayesian networks for multilabel classification. In IJCAI 2013. 54

Jeremy Appleyard. Optimizing Recurrent Neural Networks in cuDNN 5. https:
//devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/,
2016. [Online; accessed 13-March-2016]. 78

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
Netvlad: Cnn architecture for weakly supervised place recognition. In CVPR,
2016. 22

Relja Arandjelovi¢ and Andrew Zisserman. Three things everyone should know to
improve object retrieval. In CVPR, 2012. 20, 21, 29

Anurag Arnab and Philip HS Torr. Bottom-up instance segmentation using deep
higher-order crfs. In BMVC, 2016. 72, 74

Anurag Arnab and Philip HS Torr. Pixelwise instance segmentation with a dynam-
ically instantiated network. In CVPR, 2017. 66, 72, 74

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline
for sentence embeddings. ICLR, 2017. 89

Artem Babenko and Victor Lempitsky. Aggregating local deep features for image
retrieval. In ICCV, 2015. 20, 21, 29, 32, 37, 40, 45

Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural
codes for image retrieval. In ECCV, 2014. 20, 21

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014. 75

https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/
https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/

[14]

[15]

[20]

[21]

[22]

Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation.
In CVPR, 2017. 66, 72

Sean Bell and Kavita Bala. Learning visual similarity for product design with
convolutional neural networks. ACM Transactions on Graphics (TOG), 34(4):98,
2015. 47

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curricu-
lum learning. In ICML, 2009. 70

Wei Bi and James T. Kwok. Efficient multi-label classification with many labels.
In ICML, 2013. 54

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the Association for
Computational Linguistics, 2017. 88

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining dis-
criminative components with random forests. In ECCV, 2014. 84

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for
high fidelity natural image synthesis. ICLR, 2018. 2

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sackinger, and Roopak Shah.
Signature verification using a” siamese” time delay neural network. In NeurIPS,
1994. 90

Victor Campos, Xavier Giro-i Nieto, Brendan Jou, Jordi Torres, and Shih-Fu
Chang. Sentiment concept embedding for visual affect recognition. In Multimodal
Behavior Analysis in the Wild, pages 349-367. Elsevier, 2019. 91

John Canny. A computational approach to edge detection. In Readings in computer
vision, pages 184-203. Elsevier, 1987. 1

Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and Philip S Yu. Deep
visual-semantic hashing for cross-modal retrieval. In ACM SIGKDD, 2016. 91

Arantxa Casanova, Guillem Cucurull, Michal Drozdzal, Adriana Romero, and
Yoshua Bengio. On the iterative refinement of densely connected representation
levels for semantic segmentation. In CVPR-W, 2018. 51

Lluis Castrejon, Yusuf Aytar, Carl Vondrick, Hamed Pirsiavash, and Antonio Tor-
ralba. Learning aligned cross-modal representations from weakly aligned data. In
CVPR, 2016. 97

Xiaobin Chang, Tao Xiang, and Timothy M Hospedales. Scalable and effective
deep cca via soft decorrelation. In C'VPR, 2018. 90

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return
of the devil in the details: Delving deep into convolutional nets. BMVC, 2014. 52,
54

Jing-Jing Chen and Chong-Wah Ngo. Deep-based ingredient recognition for cooking
recipe retrieval. In ACM Multimedia. ACM, 2016. 52, 54, 55, 84, 85, 105, 112

124

[30]

31]

[38]

[39]

Jing-Jing Chen, Chong-Wah Ngo, and Tat-Seng Chua. Cross-modal recipe retrieval
with rich food attributes. In ACM Multimedia. ACM, 2017. 84, 105

Mei-Yun Chen, Yung-Hsiang Yang, Chia-Ju Ho, Shih-Han Wang, Shane-Ming Liu,
Eugene Chang, Che-Hua Yeh, and Ming Ouhyoung. Automatic chinese food identi-
fication and quantity estimation. In SIGGRAPH Asia 2012 Technical Briefs, 2012.
84

Shang-Fu Chen, Yi-Chen Chen, Chih-Kuan Yeh, and Yu-Chiang Frank Wang.
Order-free rnn with visual attention for multi-label classification. In AAAI 2018.
53, 55, 63, 64

Tianshui Chen, Zhouxia Wang, Guanbin Li, and Liang Lin. Recurrent attentional
reinforcement learning for multi-label image recognition. In AAAI 2018. 53, 55,
58, 64

Xin Chen, Hua Zhou, and Liang Diao. Chinesefoodnet: A large-scale image dataset
for chinese food recognition. CoRR, abs/1705.02743, 2017. 84

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO captions: Data collection
and evaluation server. CoRR, abs/1504.00325, 2015. 2

Yi-Ting Chen, Xiaokai Liu, and Ming-Hsuan Yang. Multi-instance object segmen-
tation with occlusion handling. In CVPR, 2015. 66, 72, 74

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. AMNLP, 2014.
13, 14

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. Nus-wide: a real-world web image database from national university of
singapore. In ACM Conference on Image and Video Retrieval, 2009. 4, 53, 59

Ondfiej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman.
Total recall: Automatic query expansion with a generative feature model for object
retrieval. In ICCV, 2007. 20

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. 71

Bo Dai, Dahua Lin, Raquel Urtasun, and Sanja Fidler. Towards diverse and natural
image descriptions via a conditional gan. ICCV, 2017. 87, 92

Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun. Instance-sensitive
fully convolutional networks. In ECCV, 2016. 66

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via
multi-task network cascades. In CVPR, 2016. 65, 66

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In CVPR, 2005. 1, 19

125

(48]

[49]

[50]

[51]

[61]

[62]

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F.
Moura, Devi Parikh, and Dhruv Batra. Visual Dialog. In CVPR, 2017. 2, 90

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowl-
edge in artificial intelligence. Commun. ACM, 2015. 120

Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic instance segmen-
tation with a discriminative loss function. In CVPRW, 2017. 66, 70, 72

Krzysztof Dembczyniski, Weiwei Cheng, and Eyke Hiillermeier. Bayes optimal mul-
tilabel classification via probabilistic classifier chains. In ICML, 2010. 54

Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, and Mingkui Tan. Visual
grounding via accumulated attention. In CVPR, 2018. 90

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. In ICML, 2014. 98

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In CVPR, 2015. 15

Ori Bar El, Ori Licht, and Netanel Yosephian. GILT: generating images from long
text. CoRR, abs/1901.02404, 2019. 85

Jeffrey L Elman. Finding structure in time. Cognitive science, 1990. 13

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge. IJCV, 2010. 1, 36, 53, 59, 70

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. Vse++: Im-
proved visual-semantic embeddings. BMVC, 2018. 91

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
In ACL, 2018. 87, 91

William Fedus, lan Goodfellow, and Andrew M Dai. Maskgan: Better text gener-
ation via filling in the_. ICLR, 2018. 87

Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008. 1, 22

Claude Fischler. Food, self and identity. Information (International Social Science
Council), 1988. 83

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas
Mikolov, et al. Devise: A deep visual-semantic embedding model. In NeurIPS,
2013. 91

Venkata Rama Kiran Garimella, Abdulrahman Alfayad, and Ingmar Weber. Social
media image analysis for public health. In CHI, 2016. 83

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. CoRR, abs/1705.03122, 2017. 15, 87,
91

126

[63]

[64]

[65]

[66]

[76]

[77]

[78]

Ross Girshick. Fast R-CNN. In ICCV, 2015. 2, 36, 52

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In CVPR,
2014. 2, 36, 52

Yoav Goldberg. Neural network methods for natural language processing. Synthesis
Lectures on Human Language Technologies, 10(1):105, 2017. 86

Gene H Golub and Hongyuan Zha. The canonical correlations of matrix pairs and
their numerical computation. In Linear algebra for signal processing, pages 27—49.
Springer, 1995. 90

Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey loffe.
Deep convolutional ranking for multilabel image annotation. CoRR, abs/1312.4894,
2013. 53, 55, 56, 63

Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale order-
less pooling of deep convolutional activation features. In ECCV, 2014. 22

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org. 9, 14

Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. Deep image re-
trieval: Learning global representations for image search. In ECCYV, 2016. 47,
93

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
Making the V in VQA matter: Elevating the role of image understanding in Visual
Question Answering. In CVPR, 2017. 2, 3, 4

Alex Graves. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013. 8

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with
recurrent neural networks. In ICML, 2014. 52

Kristian J. Hammond. CHEF: A model of case-based planning. In AAAIL Morgan
Kaufmann, 1986. 84

Xiaobing Han, Yanfei Zhong, Ligin Cao, and Liangpei Zhang. Pre-trained alexnet
architecture with pyramid pooling and supervision for high spatial resolution re-
mote sensing image scene classification. Remote Sensing, 2017. 11

Bharath Hariharan, Pablo Arbeldez, Lubomir Bourdev, Subhransu Maji, and Ji-
tendra Malik. Semantic contours from inverse detectors. In ICCV, 2011. 70

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. Simulta-
neous detection and segmentation. In ECCV, 2014. 65, 66, 72, 74

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. Hyper-
columns for object segmentation and fine-grained localization. In CVPR, 2015. 65,
66

127

http://www.deeplearningbook.org

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
ICCV, 2017. 2, 3, 51, 52, 65, 66, 72, 119

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. TPAMI, 2015. 36

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016. 2, 10, 51, 54, 56, 67, 83, 92, 95, 106, 119

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Com-
putation, 1997. 13, 57

Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. Diagnosing error in
object detectors. ECCYV, 2012. 74

Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. Inferring
semantic layout for hierarchical text-to-image synthesis. In CVPR, 2018. 90

Daniel J Hsu, Sham M Kakade, John Langford, and Tong Zhang. Multi-label
prediction via compressed sensing. In Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, editors, NeurIPS. Curran Associates, Inc., 2009.
54

Qiuyuan Huang, Zhe Gan, Asli Celikyilmaz, Dapeng Oliver Wu, Jianfeng Wang,
and Xiaodong He. Hierarchically structured reinforcement learning for topically
coherent visual story generation. CoRR, abs/1805.08191, 2018. 92

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and
hyperparameter optimization. In AISTATS, pages 240-248, 2016. 60

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-features for
large scale image search. IJCV, 2010. 20

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating
local descriptors into a compact image representation. In CVPR, 2010. 21, 22, 26

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Ben-
gio. The one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation. In CVPR-W, 2017. 51, 83

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. In ACM Multimedia, 2014. 28

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning. In CVPR, 2017. 3, 4

Yannis Kalantidis, Clayton Mellina, and Simon Osindero. Cross-dimensional
weighting for aggregated deep convolutional features. In ECCYV, 2016. 20, 22,
26, 29, 32, 33, 34, 37, 40, 44, 45

Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. Multilabel classification
using bayesian compressed sensing. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, NeurIPS. Curran Associates, Inc., 2012. 54

128

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]

109

[110]

[111]

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In CVPR, 2015. 91, 92, 93, 98

Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. Deep fragment embeddings for
bidirectional image sentence mapping. In NeurIPS, 2014. 91

Yoshiyuki Kawano and Keiji Yanai. Foodcam: A real-time food recognition system
on a smartphone. MTAP, 2015. 84

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. Globally coherent text gener-
ation with neural checklist models. In FMNLP. Association for Computational
Linguistics, 2016. 84

Diederik P Kingma and Jimmy Lei Ba. Adam: Amethod for stochastic optimiza-
tion. In ICLR, 2014. 8, 60, 71, 110

R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, A. Torralba, R. Urtasun, and S. Fi-
dler. Skip-thought vectors. In NeurIPS, 2015. 89, 94, 98

Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. A hierarchical
approach for generating descriptive image paragraphs. In CVPR, 2017. 3, 87, 92

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In NeurIPS, 2012. 1, 2, 11, 36, 51, 52, 92

Tomasz Kusmierczyk, Christoph Trattner, and Kjetil Norvag. Understanding and
predicting online food recipe production patterns. In HyperText, 2016. 85

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
27

Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. In ICML, 2014. 98

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998. 1

Peter Lennie. The cost of cortical computation. Current biology, 2003. 25

Liang Li, Shuhui Wang, Shugiang Jiang, and Qingming Huang. Attentive recur-
rent neural network for weak-supervised multi-label image classification. In ACM
Multimedia, 2018. 53, 54, 63, 64

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion. JMLR, 18(185):1-52, 2018. 54, 60

Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and
Leonidas J Guibas. Joint embeddings of shapes and images via cnn image purifi-
cation. ACM Transactions on Graphics (TOG), 34(6):234, 2015. 93

Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional
instance-aware semantic segmentation. In CVPR, 2017. 65

129

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Yuncheng Li, Yale Song, and Jiebo Luo. Improving pairwise ranking for multi-label
image classification. In CVPR, 2017. 53, 55, 63, 64

Xiaodan Liang, Liang Lin, Yunchao Wei, Xiaohui Shen, Jianchao Yang, and
Shuicheng Yan. Proposal-free network for instance-level object segmentation.
TPAMI, 2018. 72, 74

Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Zequn Jie, Jiashi Feng, Liang Lin,
and Shuicheng Yan. Reversible recursive instance-level object segmentation. In
CVPR, 2016. 65, 66, 70, 72, 74

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal
loss for dense object detection. In ICCV, 2017. 36

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In EFCCV, 2014. 2, 3, 4, 40, 51, 53, 59, 90

Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. Multi-label classifi-
cation via feature-aware implicit label space encoding. In ICML, 2014. 55

Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and Yunsheng
Ma. Deepfood: Deep learning-based food image recognition for computer-aided
dietary assessment. In ICOST, 2016. 84

Feng Liu, Tao Xiang, Timothy M Hospedales, Wankou Yang, and Changyin Sun.
Semantic regularisation for recurrent image annotation. In CVPR, 2017. 53, 54,
63, 64

Shu Liu, Xiaojuan Qi, Jianping Shi, Hong Zhang, and Jiaya Jia. Multi-scale patch
aggregation (mpa) for simultaneous detection and segmentation. In CVPR, 2016.
70, 74

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
ECCYV, 2016. 36

Weiwei Liu and Ivor W. Tsang. Large margin metric learning for multi-label pre-
diction. In AAAI 2015. 54

Yongcheng Liu, Lu Sheng, Jing Shao, Junjie Yan, Shiming Xiang, and Chun-
hong Pan. Multi-label image classification via knowledge distillation from weakly-
supervised detection. In ACM Multimedia, 2018. 54, 63, 64

Yu Liu, Yanming Guo, Song Wu, and Michael S Lew. Deepindex for accurate and
efficient image retrieval. In ICMR, 2015. 21, 22

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In CVPR, 2015. 2, 12, 51, 66, 67, 83, 119

David G Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial intelligence, 31(3):355-395, 1987. 1

David G Lowe. Object recognition from local scale-invariant features. In ICCYV,
1999. 1, 2, 19, 21

130

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing when to
look: Adaptive attention via a visual sentinel for image captioning. In CVPR, 2017.
3, 5, 15, 57, 58, 90, 92, 119

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In NeurIPS, 2016. 3, 119

Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the
limits of weakly supervised pretraining. CoRR, abs/1805.00932, 2018. 53, 55, 56

Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov.
Generating images from captions with attention. ICLR, 2016. 90

David Marr. Vision. W. H. Freeman and Company, 1982. 1

Sara McGuire. Food Photo Frenzy: Inside the Instagram
Craze and Travel Trend. https://www.business.com/articles/
food-photo-frenzy-inside-the-instagram-craze-and-travel-trend/,
2017. [Online; accessed Nov-2018]. 83

Tao Mei, Yong Rui, Shipeng Li, and Qi Tian. Multimedia search reranking: A
literature survey. ACM Computing Surveys (CSUR), 2014. 20

Yelena Mejova, Sofiane Abbar, and Hamed Haddadi. Fetishizing food in digital
age: #foodporn around the world. In ICWSM, 2016. 83

Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban,
Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang, and
Kevin P Murphy. Im2calories: towards an automated mobile vision food diary. In

ICCV, 2015. 84

Simon Mezgec and Barbara Koroui Seljak. Nutrinet: A deep learning food and
drink image recognition system for dietary assessment. Nutrients, 9(7), 2017. 84

Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. IJCV, 2004. 21

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013. 88, 89, 94,
98, 102

Weiqing Min, Bing-Kun Bao, Shuhuan Mei, Yaohui Zhu, Yong Rui, and Shugiang
Jiang. You are what you eat: Exploring rich recipe information for cross-region
food analysis. IEFE Transactions on Multimedia, 2018. 83, 85

Massimo Minervini, Andreas Fischbach, Hanno Scharr, and Sotirios A Tsaftaris.
Finely-grained annotated datasets for image-based plant phenotyping. Pattern
recognition letters, 2016. 70, 71

Hans Moravec. Mind children: The future of robot and human intelligence. Harvard
University Press, 1988. 1

131

https://www.business.com/articles/food-photo-frenzy-inside-the-instagram-craze-and-travel-trend/
https://www.business.com/articles/food-photo-frenzy-inside-the-instagram-craze-and-travel-trend/

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

153

[154]
[155]

[156]

[157]

Shinsuke Mori, Hirokuni Maeta, Tetsuro Sasada, Koichiro Yoshino, Atsushi
Hashimoto, Takuya Funatomi, and Yoko Yamakata. Flowgraph2text: Automatic
sentence skeleton compilation for procedural text generation. In INLG. The Asso-
ciation for Computer Linguistics, 2014. 84

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and Tetsuro Sasada. Flow graph
corpus from recipe texts. In LREC, 2014. 84

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In ICML, pages 807-814, 2010. 6

Jinseok Nam, Jungi Kim, Eneldo Loza Mencia, Iryna Gurevych, and Johannes
Firnkranz. Large-scale multi-label text classification — revisiting neural networks.
In ECMLPKDD, 2014. 54

Jinseok Nam, Eneldo Loza Mencia, Hyunwoo J Kim, and Johannes Firnkranz.
Maximizing subset accuracy with recurrent neural networks in multi-label classifi-
cation. In NeurIPS, 2017. 54, 112

Isaac Newton. Opticks, or, a treatise of the reflections, refractions, inflections €
colours of light. 1704. 1

Joe Ng, Fan Yang, and Larry Davis. Exploiting local features from deep networks
for image retrieval. In CVPR Workshops, 2015. 22, 32

Vinh-Tiep Nguyen, Dinh-Luan Nguyen, Minh-Triet Tran, Duy-Dinh Le, Duc Anh
Duong, and Shin’ichi Satoh. Query-adaptive late fusion with neural network

for instance search. In International Workshop on Multimedia Signal Processing
(MMSP), 2015. 22, 25

Ferda Ofli, Yusuf Aytar, Ingmar Weber, Raggi Al Hammouri, and Antonio Tor-
ralba. Is saki #delicious? the food perception gap on instagram and its relation to
health. In Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 2017. 4, 84

Christopher Olah. Understanding LSTM Networks. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/, 2015. [Online; accessed 13-March-2018|.
16

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. IJCV, 2001. 19

Seymour A Papert. The summer vision project. 1966. 1

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NeurIPS-W, 2017. 60, 110

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2014. 88

Florent Perronnin, Yan Liu, Jorge Sanchez, and Hervé Poirier. Large-scale image
retrieval with compressed fisher vectors. In CVPR, 2010. 21, 26

132

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[158]

[159]

160

[161]

[162]

[163]

[164]

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

[173]

James Philbin, Ondiej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
21, 23

James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
Lost in quantization: Improving particular object retrieval in large scale image
databases. In CVPR, 2008. 23

Gillian Porter, Tom Troscianko, and Iain D Gilchrist. Effort during visual search

and counting: Insights from pupillometry. The Quarterly Journal of Fxperimental
Psychology, 2007. 65

F. Radenovi¢, G. Tolias, and O. Chum. CNN image retrieval learns from BoW:
Unsupervised fine-tuning with hard examples. In ECCYV, 2016. 47

F. Radenovi¢, G. Tolias, and O. Chum. Fine-tuning CNN image retrieval with no
human annotation. TPAMI, 2018. 47

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. CoRR,
abs/1511.06434, 2015. 102

Ali S Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
features off-the-shelf: an astounding baseline for recognition. In CVPR Workshops,
2014. 21, 22, 45, 119

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In C'VPR, 2016. 36, 51, 52, 83

Mengye Ren and Richard S. Zemel. End-to-end instance segmentation with recur-
rent attention. In CVPR, 2017. 65, 66, 67, 69, 71, 72

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. In NeurIPS, 2015. 2, 35,
36, 37, 38, 51, 52, 65, 66, 83, 119

S Hamid Rezatofighi, Anton Milan, Ehsan Abbasnejad, Anthony Dick, Ian Reid,
et al. Deepsetnet: Predicting sets with deep neural networks. In ICCYV, 2017. 53,
55, 64

S Hamid Rezatofighi, Anton Milan, Qinfeng Shi, Anthony Dick, and Tan Reid. Joint
learning of set cardinality and state distribution. AAAI 2018. 53, 55, 57, 64, 112

Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, 1951. 8

Lawrence G Roberts. Machine perception of three-dimensional solids. PhD thesis,
Massachusetts Institute of Technology, 1963. 1

Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent instance seg-
mentation. In FCCV, 2016. 65, 66, 67, 68, 69, 71, 72

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In MICCAI 2015. 67

133

[174]

[175]

[176]

[177)

178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC
BUFFALO NY, 1961. 6

Yong Rui, Thomas S Huang, Michael Ortega, and Sharad Mehrotra. Relevance
feedback: a power tool for interactive content-based image retrieval. IEEE Trans-
actions on circuits and systems for video technology, 1998. 19

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Neurocomput-
ing: Foundations of research. chapter learning internal representations by error
propagation, 1988. 8

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
1JCV, 2015. 1, 2, 10, 28, 51, 56, 67

Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan Carlsson. A
baseline for visual instance retrieval with deep convolutional networks. In ICLR.
ICLR, 2015. 20, 21, 22, 32, 35

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual
captions: A cleaned, hypernymed, image alt-text dataset for automatic image cap-
tioning. In ACL, 2018. 4, 92

Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to look: Focus regions for
visual question answering. In CVPR, 2016. 3

Xin Shu, Darong Lai, Huanliang Xu, and Liang Tao. Learning shared subspace for
multi-label dimensionality reduction via dependence maximization. Neurocomput-
ing, 2015. 54

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015. 2, 10, 28, 39, 51, 54, 83, 92, 95

Josef Sivic and Andrew Zisserman. Efficient visual search of videos cast as text
retrieval. TPAMI, 2009. 21, 25

Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and trecvid.
In International Workshop on Multimedia Information Retrieval (MIR), 2006. 23

Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and
Ramesh Jain. Content-based image retrieval at the end of the early years. TPAMI,
2000. 19

Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-
shot learning through cross-modal transfer. In NeurIPS, 2013. 91

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In EMNLP, 2013. 89

Yale Song, Daniel McDuff, Deepak Vasisht, and Ashish Kapoor. Exploiting sparsity
and co-occurrence structure for action unit recognition. In FG. IEEE Computer
Society, 2015. 54

134

[189]

[190]

[191]

[192]

[193]

[194]

195

196

[197]

[198]

[199]

200]

201]

[202]

203

[204]

Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people de-
tection in crowded scenes. In CVPR, 2016. 65

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In NeurIPS, 2014. 5, 15, 52, 87, 89, 91, 94

Michael J Swain and Dana H Ballard. Color indexing. International journal of
computer vision, 7(1):11-32, 1991. 19

Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object retrieval with
integral max-pooling of cnn activations. In ICLR, 2016. 20, 21, 22, 26, 30, 32, 35,
37, 44, 45

Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble
method for multilabel classification. In Joost N. Kok, Jacek Koronacki, Raomon
Lopez de Mantaras, Stan Matwin, Dunja Mladeni¢, and Andrzej Skowron, editors,
ECML, 2007. 54

Panu Turcot and D Lowe. Better matching with fewer features: The selection of
useful features in large database recognition problems. In ICCV Workshops, 2009.
29

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. IJCV, 2013. 36

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
NeurIPS, 2017. 5, 15, 16, 57, 58, 87, 91, 106, 107

William E Vinje and Jack L Gallant. Sparse coding and decorrelation in primary
visual cortex during natural vision. Science, 2000. 25

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets. ICLR, 2015. 105

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching
networks for one shot learning. In NeurIPS, 2016. 67

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS,
2015. 67

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In CVPR, 2015. 2, 3, 15, 65, 90, 92, 98,
119

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In CVPR, 2001. 1, 2

Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu.
CNN-RNN: A unified framework for multi-label image classification. In CVPR,
2016. 53, 54, 55, 58, 64

Xin Wang, Zhigiang Hou, Wangsheng Yu, Yang Xue, Zefenfen Jin, and Bo Dai.
Robust visual tracking via multiscale deep sparse networks. Optical Engineering,
56(4):043107, 2017. 7

135

[205]

206]

207]

208]

209

[210]

[211]

[212]

213]

[214]

[215]

[216]

217]

[218]

[219]

Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frédéric Pre-
cioso. Recipe recognition with large multimodal food dataset. In ICME Workshops,
2015. 84, 105

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li, Haifeng Wang, and Enhong
Chen. Chinese poetry generation with planning based neural network. CoRR,
abs/1610.09889, 2016. 87

Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, and Liang Lin. Multi-label
image recognition by recurrently discovering attentional regions. In ICCV, 2017.
53, b5, 64

Yunchao Wei, Wei Xia, Junshi Huang, Bingbing Ni, Jian Dong, Yao Zhao, and
Shuicheng Yan. CNN: single-label to multi-label. CoRR, abs/1406.5726, 2014. 53,
55

Yunchao Wei, Wei Xia, Min Lin, Junshi Huang, Bingbing Ni, Jian Dong, Yao
Zhao, and Shuicheng Yan. Hcp: A flexible cnn framework for multi-label image
classification. TPAMI, 2016. 53, 54

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large
vocabulary image annotation. In IJCAI 2011. 55

Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1989. 109

Baoyuan Wu, Fan Jia, Wei Liu, Bernard Ghanem, and Siwei Lyu. Multi-label
learning with missing labels using mixed dependency graphs. IJCV, 2018. 54

Lingxi Xie, Q Tian, R Hong, and B Zhang. Image classification and retrieval are
one. In ICMR, 2015. 20

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. Convolutional LSTM network: A machine learning approach for
precipitation. In NeurIPS, 2015. 66, 68

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML, 2015. 2, 3, 15, 90, 92

Ruihan Xu, Luis Herranz, Shuqiang Jiang, Shuang Wang, Xinhang Song, and
Ramesh Jain. Geolocalized modeling for dish recognition. IEEE Transactions
on Multimedia, 2015. 84

Keiji Yanai and Yoshiyuki Kawano. Food image recognition using deep convolu-
tional network with pre-training and fine-tuning. In ICMEW, 2015. 84

Hao Yang, Joey Tianyi Zhou, Yu Zhang, Bin-Bin Gao, Jianxin Wu, and Jianfei Cai.
Exploit bounding box annotations for multi-label object recognition. In CVPR,
2016. 53, 54

Shulin Yang, Mei Chen, Dean Pomerleau, and Rahul Sukthankar. Food recognition
using statistics of pairwise local features. In CVPR, 2010. 84

136

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. Learn-
ing deep latent spaces for multi-label classification. CoRR, abs/1707.00418, 2017.
55

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In AAAI 2017. 87

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In ECCV, 2014. 7, 39

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to
cognition: Visual commonsense reasoning. CVPR, 2019. 3, 4, 119

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image syn-
thesis with stacked generative adversarial networks. In ICCV, 2017. 2, 90

Junjie Zhang, Qi Wu, Chunhua Shen, Jian Zhang, and Jianfeng Lu. Multilabel
image classification with regional latent semantic dependencies. IEEE Transactions
on Multimedia, 2018. 53, 55, 63, 64

Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-
label learning. Pattern Recogn., 40(7), July 2007. 54

Wei Zhang and Chong-Wah Ngo. Searching visual instances with topology checking
and context modeling. In ICMR, 2013. 21

Wei Zhang and Chong-Wah Ngo. Topological spatial verification for instance
search. IEEE Transactions on Multimedia, 2015. 20, 22, 25

Yimeng Zhang, Zhaoyin Jia, and Tsuhan Chen. Image retrieval with geometry-
preserving visual phrases. In CVPR, 2011. 20

Feipeng Zhao and Yuhong Guo. Semi-supervised multi-label learning with incom-
plete labels. In IJCAI 2015. 54

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Object detectors emerge in deep scene CNNs. ICLR, 2015. 102

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Scene parsing through ade20k dataset. In CVPR, 2017. 53, 59

Xiao Zhou, Cai-Zhi Zhu, Qiang Zhu, Shinichi Satoh, and Yu-Tang Guo. A practical
spatial re-ranking method for instance search from videos. In ICIP, 2014. 22, 25

Cai-Zhi Zhu, Hervé Jégou, and Shinlchi Satoh. Query-adaptive asymmetrical dis-
similarities for visual object retrieval. In ICCV, 2013. 21

Cai-Zhi Zhu and Shin’ichi Satoh. Large vocabulary quantization for searching
instances from videos. In ICMR, 2012. 21, 25

Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and Xiaogang Wang. Learn-
ing spatial regularization with image-level supervisions for multi-label image clas-
sification. In CVPR, 2017. 52, 53, 54, 55, 63, 64

137

[237] Moshe M. Zloof. Query-by-example: A data base language. IBM systems Journal,
1977. 19

138

	0.1 Motivation
	0.2 Deep Learning
	I Visual Instance Search
	1 Introduction
	1.1 Content-based image retrieval
	1.2 Instance Search
	1.3 Related Work
	1.4 Datasets
	1.5 Metrics

	2 Bags of Deep Visual Words
	2.1 Bags of Deep Local Features
	2.2 Image Retrieval Pipeline
	2.3 Experiments
	2.4 Conclusion

	3 Object Detectors for Instance Search
	3.1 ConvNets for Object Detection
	3.2 Deep Representations for Images and Regions
	3.3 Fine-tuning Faster R-CNN
	3.4 Image Retrieval Pipeline
	3.5 Experiments
	3.6 Conclusion

	Summary

	II Image-to-Set Prediction
	4 Introduction
	5 Multi-label Image Classification
	5.1 Related Work
	5.2 Image-to-Set Prediction Methods
	5.3 Experiments
	5.4 Conclusion

	6 Recurrent Instance Segmentation
	6.1 Related Work
	6.2 Model
	6.3 Experiments
	6.4 Conclusion

	Summary

	III Image-to-Recipe Prediction
	7 Introduction
	7.1 Food Understanding
	7.2 Recipe1M Dataset
	7.3 Language Modeling
	7.4 Text Representations
	7.5 Language and Vision

	8 Recipe Retrieval
	8.1 Methodology
	8.2 Experiments
	8.3 Conclusion

	9 Recipe Generation
	9.1 Methodology
	9.2 Experiments
	9.3 Conclusion

	Summary

	Conclusions
	Publications
	Bibliography

