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Doctorate program in Aerospace Science and Technology
Department of Physics – Aeronautics Division

Technical University of Catalonia – BarcelonaTech

A dissertation submitted for the degree of
International Doctor of Philosophy

May 2019



Optimal trajectory management for aircraft descent operations subject to time constraints

Author
Ramon Dalmau Codina

Advisor
Dr. Xavier Prats i Menéndez

Reviewers
Dr. Daniel Delahaye
Dr. Erik-Jan van Kampen

Thesis committee
Dr. Daniel Delahaye
Dr. Erik-Jan van Kampen
Dr. Manuel Soler

Doctorate program in Aerospace Science and Technology
Technical University of Catalonia – BarcelonaTech
May 2019

This dissertation is available on-line at the Theses and Dissertations On-line (TDX) repository, which is managed by
the Consortium of University Libraries of Catalonia (CBUC) and the Supercomputing Centre of Catalonia (CESCA),
and sponsored by the Generalitat (government) of Catalonia. The TDX repository is a member of the Networked
Digital Library of Theses and Dissertations (NDLTD) which is an international organisation dedicated to promoting the
adoption, creation, use, dissemination and preservation of electronic analogues to the traditional paper-based theses
and dissertations http://www.tdx.cat

This is an electronic version of the original document and has been re-edited in order to fit an A4 paper.

PhD. Thesis made in:
Department of Physics – Aeronautics Division
Esteve Terradas, 5.
08860 Castelldefels
Catalonia (Spain)

This work is licensed under the Creative Commons Attribution-Non-commercial-No Derivative
Work 3.0 Spain License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-nd/3.0/es/deed.en_GB or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://www.tdx.cat
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB


Als meus pares i al meu germà
Olga, Ramon i Ferran





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Agraı̈ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Resum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

CHAPTER I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.1 Environmental impact of descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.2 Predictability of descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.3 New concepts to enable CDOs in busy TMAs . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I.4 Motivation of this PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I.5 Objectives of this PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I.6 Scope and limitations of this PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I.7 Outline of this PhD thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER II Framework on trajectory management . . . . . . . . . . . . . . . . . . . . . . . . . 17
II.1 Models needed for trajectory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
II.2 Optimal trajectory planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
II.3 Trajectory guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER III The energy-neutral time window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
III.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III.2 Setup of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
III.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



CHAPTER IV Comparison of guidance strategies to meet time constraints in optimal de-
scents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

IV.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
IV.2 Setup of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
IV.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
IV.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER V Model predictive control to meet time constraints in optimal descents . . . . . 75
V.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
V.2 Setup of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
V.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
V.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER VI Wind-networking to improve time predictability and fuel efficiency of descents 97
VI.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
VI.2 Setup of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
VI.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
VI.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

CHAPTER VII Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
VII.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
VII.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



List of Figures

I-1 Comparison between a CDO and a current descent operation . . . . . . . . . . . . . . . . . . 2
I-2 Comparison between two CDOs with different mass and CI . . . . . . . . . . . . . . . . . . 4
I-3 Vectoring instructions used by the ATC at Barcelona-El Prat airport . . . . . . . . . . . . . . 5
I-4 Scheme of the three-degrees deceleration approach concept . . . . . . . . . . . . . . . . . . . 7
I-5 Scheme of the 3D-path arrival management concept . . . . . . . . . . . . . . . . . . . . . . . 8

II-1 Theoretical and empirical weather models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
II-2 Methods to solve optimal control problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
II-3 Discretisation process for a generic optimal control problem . . . . . . . . . . . . . . . . . . 27
II-4 Comparison between interpolating and smoothing spline approximation for the maximum

thrust of an A320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
II-5 Jacobian matrix for a generic NLP optimisation problem . . . . . . . . . . . . . . . . . . . . 33
II-6 Tactical and strategic behaviour in a 180 degree turn . . . . . . . . . . . . . . . . . . . . . . . 35

III-1 Scenario to investigate the feasible time window of energy-neutral descents . . . . . . . . . 43
III-2 Smoothing spline approximating aircraft performance data obtained from PEP . . . . . . . 45
III-3 Definition of the phases and constraints for an energy-neutral descent . . . . . . . . . . . . 47
III-4 Examples of earliest and latest energy-neutral trajectories . . . . . . . . . . . . . . . . . . . . 50
III-5 Baseline scenario: earliest and latest times of arrival at the metering fix . . . . . . . . . . . . 51
III-6 Baseline scenario: feasible time window at the metering fix . . . . . . . . . . . . . . . . . . . 51
III-7 Baseline scenario: fuel consumption at the metering fix . . . . . . . . . . . . . . . . . . . . . 52
III-8 Baseline scenario: extra fuel consumption with respect to the minimum fuel . . . . . . . . . 53
III-9 Effects of aircraft mass on the feasible time window at the metering fix . . . . . . . . . . . . 53
III-10 Effects of longitudinal wind on the feasible time window at the metering fix . . . . . . . . . 54
III-11 Effects of the position of the metering fix on the feasible time window . . . . . . . . . . . . . 55
III-12 Effects of the initial speed on the feasible time window at the metering fix . . . . . . . . . . 56

IV-1 Setup of the experiment to compare guidance strategies . . . . . . . . . . . . . . . . . . . . . 59
IV-2 Routes at Barcelona-El Prat chosen to compare guidance strategies . . . . . . . . . . . . . . 60
IV-3 Drag polars approximating aerodynamic data for the A320 . . . . . . . . . . . . . . . . . . . 61
IV-4 Polynomials approximating propulsive data for the A320 . . . . . . . . . . . . . . . . . . . . 62
IV-5 Definition of the phases and constraints for the comparison of guidance strategies . . . . . 64
IV-6 Specific energy and time deviations per guidance strategy . . . . . . . . . . . . . . . . . . . 67
IV-7 Planned and executed states per guidance strategy . . . . . . . . . . . . . . . . . . . . . . . . 68
IV-8 Planned and executed controls per guidance strategy . . . . . . . . . . . . . . . . . . . . . . 69
IV-9 Mean metrics per guidance strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
IV-10 Metrics distribution per guidance strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



IV-11 Correlation between metrics and longitudinal wind speed error . . . . . . . . . . . . . . . . 72

V-1 BOSSS TWO standard arrival procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
V-2 BADA 4 propulsive model for the A320-214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
V-3 BADA 4 aerodynamic model for the A320-214 . . . . . . . . . . . . . . . . . . . . . . . . . . 79
V-4 Definition of the phases and constraints for the assessment of NMPC strategies . . . . . . . 80
V-5 RAP wind forecast RMSE distribution from June 2017 to June 2018 . . . . . . . . . . . . . . 81
V-6 Setup of the experiment to compare NMPC guidance strategies . . . . . . . . . . . . . . . . 82
V-7 RAP wind forecast and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
V-8 Optimal trajectory updates for perturbations in the parameters vector . . . . . . . . . . . . . 84
V-9 Planned and executed trajectories by guidance strategy . . . . . . . . . . . . . . . . . . . . . 86
V-10 Time deviation at the metering fix for different NMPC variants . . . . . . . . . . . . . . . . . 87
V-11 Specific energy deviation at the metering fix for different NMPC variants . . . . . . . . . . . 88
V-12 Additional specific energy difference with respect to the open-loop execution for the diffe-

rent NMPC variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
V-13 Fuel consumption difference with respect to the open-loop execution for the different

NMPC variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
V-14 Normalised execution time for the NLP and QP algorithms . . . . . . . . . . . . . . . . . . . 92
V-15 Time and specific energy error at the metering fix as a function of the mean longitudinal

wind error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
V-16 Specific energy added/removed with respect to the initial plan as a function of the mean

longitudinal wind error for the INMPC and OL . . . . . . . . . . . . . . . . . . . . . . . . . . 93
V-17 Fuel consumption difference with respect to initial plan as a function of the mean longitu-

dinal wind error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

VI-1 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
VI-2 Planned and executed trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
VI-3 RAP wind forecast and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
VI-4 Time deviation at the metering fix for different values fo µ . . . . . . . . . . . . . . . . . . . 103
VI-5 Specific energy deviation at the metering fix for different values of µ . . . . . . . . . . . . . 104
VI-6 Specific energy added by means of T with respect to the initial plan for different values of µ 105
VI-7 Fuel consumption difference with respect to the initial plan for different values of µ . . . . 106

viii



List of Tables

I-1 Altitude and overfly time of two CDOs with different mass and CI at various distances to go 4

III-1 Definition of the phases and constraints for an energy-neutral descent . . . . . . . . . . . . 46
III-2 List of case studies for the energy-neutral feasible time window assessment . . . . . . . . . 48

IV-1 Definition of the phases and constraints for the comparison of guidance strategies . . . . . 63
IV-2 List of case studies per each of the four guidance strategies assessed . . . . . . . . . . . . . . 65

V-1 Definition of the phases and constraints for the comparison of NMPC strategies . . . . . . . 80
V-2 Metrics of energy removed by using speed brakes for the different NMPC variants and

wind forecast lookahead times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
V-3 Percentage of energy neutral trajectories for the different NMPC variants and forecast look-

ahead times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

VI-1 Metrics of energy removed by using speed brakes for different values of µ and wind fore-
cast lookahead times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VI-2 Percentage of energy neutral trajectories for different values of µ and forecast look-ahead
times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix





List of Publications

The list of publications resulting from this PhD. work is given in inverse chronological order as follows:

Journal Papers
• DALMAU, RAMON, BAXLEY, BRIAN & PRATS, XAVIER. Sensitivity-based model predictive control for

descent operations subject to time constraints. Journal of Guidance, Control, and Dynamics. Submitted
to Journal.

• DALMAU, RAMON, VERHOEVEN, RONALD, PRATS, XAVIER, BUSSINK, FRANK & HEESBEEN, BART.
Comparison of various guidance strategies to achieve time constraints in optimal descents. Journal of
Guidance, Control, and Dynamics. In Press.

• DALMAU, RAMON & PRATS, XAVIER. 2017. Controlled time of arrival windows for already initi-
ated energy-neutral continuous descent operations. Journal of Transportation Research - Part C. D.O.I:
10.1016/j.trc.2017.09.024. 85, 334–347.

Conference Proceedings
• DALMAU, RAMON, BAXLEY, BRIAN & PRATS, XAVIER. 2019 (Jun.). Using wind observations from

nearby aircraft to update the optimal descent trajectory in real-time. In: Proceedings of the 13th ATM
R&D Seminar (ATMS2019). Eurocontrol/FAA, Vienna, Austria.

• DALMAU, RAMON, BAXLEY, BRIAN & PRATS, XAVIER. 2018 (Sept.). Fast sensitivity-based optimal
trajectory updates for descent operations subject to time constraints. In: Proceedings of the 37th Digital
Avionics Systems Conference (DASC). IEEE/AIAA, London, UK. Best paper in track award.

• DALMAU, RAMON, VERHOEVEN, RONALD, PRATS, XAVIER, BUSSINK, FRANK & HEESBEEN, BART
. 2017 (Sept.). Performance comparison of guidance strategies to accomplish CTA during a CDO. In:
Proceedings of the 36th Digital Avionics Systems Conference (DASC). IEEE/AIAA, Saint Petersburg, FL.
Best student paper of the conference.

• DALMAU, RAMON, PEREZ-BATLLE, MARC & PRATS, XAVIER . 2017 (Sept.). Estimation and predic-
tion of weather variables from surveillance data using spatio-temporal Kriging. In: Proceedings of
the 36th Digital Avionics Systems Conference (DASC). IEEE/AIAA, Saint Petersburg, FL. Best paper in
track award.

• DALMAU, RAMON & PRATS, XAVIER . 2016 (Jun.). Assessment of the feasible CTA windows for
efficient spacing with energy-neutral CDO. In: Proceedings of the 7th International Conference on Research
in Air Transportation (ICRAT). EUROCONTROL/FAA, Philadelphia, PA.

xi





Agraïments

Els orı́gens d’aquesta tesi es remunten al 2014, quan el grup de recerca ICARUS de la UPC començava el
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una persona una mica més organitzada i ordenada, i això podré aplicar-ho a altres àmbits de la vida.
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La segona estada va ser a l’altra banda de l’Atlàntic, a Vriginia (VA). I must acknowledge the adminis-
trative team of the National Insitute of Aerospace (NIA) for the excellent work upon my arrival and the fast
preparation of my visa. I am wondering who is preparing the coffee after me and Sabine left. Danke auch
an Max Friedrich und Becket Zou, ich werde die Ausflüge mit Ihnen, die Biere, die slackline nachmittags in
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Roca. Em sento molt afortunat de tenir uns avis i uns tiets tant fantàstics. També he d’agrair a la famı́lia
Dalmau, especialment a la tia Laura, estar sempre tant interessada per com evolucionava la meva tesi i com
anaven les conferències. Òbviament, també estic immensament agraı̈t als meus pares, en Ramon i l’Olga,
per la seva confiança i consells; per deixar-me gaudir quan era un nen (i quan ja no ho era tant); i per posar
sempre la meva felicitat per davant de qualsevol altra cosa. Sense uns pares com ells n’estic segur que no
ho hauria aconseguit. Finalment, he d’agrair al meu germà Ferran haver-me acompanyat a tot arreu quan
necessitava un descans, per molt sonat que semblés el pla. No us podeu imaginar com d’afortunat em sento
de ser el seu germà!

Brétigny-Sur-Orge, Maig de 2019
Ramon Dalmau Codina
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Resum

El creixement del trànsit ha augmentat la pressió sobre la sostenibilitat ambiental del transport aeri. En
aquest àmbit s’han dedicat molts esforços en recerca per reduir l’impacte ambiental en les diferents fases
del vol. Les operacions de descens continu, en les quals l’aeronau descendeix amb els motors a ralentı́
des de l’altitud de creuer fins just abans d’aterrar, han demostrat ser una solució atractiva per reduir el
combustible, el soroll i les emissions en la fase de descens. Desafortunadament, aquest tipus d’operacions
tenen un inconvenient molt important: la pèrdua de predictibilitat des del punt de vista dels controladors
de trànsit aeri, en termes de temps de sobrevol als diferents punts de pas de la ruta. Per aquesta raó, els
controladors necessiten aplicar més separació entre aeronaus, reduint aixı́ la capacitat de l’aeroport.

Treballs anteriors han demostrat que si les aeronaus fossin capaces de satisfer restriccions de temps de
sobrevol a un o més punts de pas, seria possible implementar operacions de descens continu sense degradar
la capacitat de l’aeroport. Malauradament, avui en dia existeixen pocs sistemes de gestió de vol capaços
de generar trajectòries òptimes que satisfacin restriccions de temps, principalment perquè l’optimització de
trajectòries en temps real continua sent una tasca difı́cil. A més, la resolució espacial i temporal dels models
de vent utilitzats per els planificadors de trajectòria no son suficients per generar prediccions de temps de
sobrevol prou fiables. Finalment, les estratègies de guiatge que fins i tot avui en dia permetrien satisfer amb
exactitud restriccions de temps de sobrevol, no estan dissenyades especı́ficament per minimitzar l’impacte
ambiental.

Aquesta tesi té com a objectiu explorar algoritmes de d’optimització ràpids i robustos que perme-
tin actualitzar la trajectòria òptima en temps real durant l’execució del descens, satisfent al mateix temps
restriccions de temps de sobrevol; també s’investigaran nous conceptes de que permetin generar models
de vent molt exactes a partir d’observacions emeses per aeronaus veı̈nes; i estratègies de guiatge més in-
tel·ligents que minimitzin l’impacte ambiental de les operacions de descens continu subjectes a restriccions
de temps de sobrevol.

En primer lloc, es quantifica la finestra de temps disponible al punt on s’aplica la restricció de temps
de sobrevol, en funció dels estats de l’aeronau (altitud, velocitat i distància al punt) i assumint que els mo-
tors es mantenen ralentı́ i que no s’utilitzen aerofrens durant tot el descens. Els resultats de l’experiment
indiquen que es podrien utilitzar estratègies de guiatge que gestionessin l’energia cinètica i potencial de
l’aeronau per satisfer restriccions de temps sense necessitat de gastar més combustible. A continuació, es
compararen quatre d’aquestes estratègies. Els resultats d’aquests segon experiment indiquen que el control
predictiu, una estratègia que actualitza regularment la trajectòria òptima durant el descens, és molt robusta
en termes d’errors de temps i energia, i alhora redueix l’impacte ambiental. Malauradament, es tarda massa
a calcular la trajectòria òptima cada cop que s’ha d´actualitzar, fet que limita la implementació d’aquesta
estratègia per operacions reals. Per tal d’afrontar aquesta limitació, es proposa una variant que utilitza
sensitivitats paramètriques per reduir el temps d’execució a l’hora d’actualitzar la trajectòria òptima, sense
degradar significativament la seva exactitud. Finalment, s’investiguen els possibles beneficis d’aprofitar
observacions de vent enviades per les aeronaus veı̈nes per millorar el model de vent i, conseqüentment,
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l’exactitud de la trajectòria calculada. Els resultats d’aquest últim experiment demostren que si s’imple-
mentés model predictiu com a estratègia de guiatge i les aeronaus cooperessin per compartir observacions
de vent, es reduiria l’impacte ambiental sense degradar la capacitat de l’aeroport.
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Abstract

The growth in traffic increased the pressure on the environmental sustainability of air transport. In this con-
text, many research effort has been devoted to minimise the environmental impact in the different phases
of flight. Continuous descent operations, ideally performed with the engines at idle from the cruise altitude
to right before landing, have shown to reduce fuel, noise nuisance and gaseous emissions if compared to
conventional descents. However, this type of operations suffer from a well known drawback: the loss of
predictability from the air traffic control point of view in terms of overfly times at the different waypoints
of the route. Due to this loss of predictability, air traffic controllers require large separation buffers, thus
reducing the capacity of the airport.

Previous works investigating this issue showed that the ability to meet a controlled time of arrival
at a metering fix could enable continuous descent operations while simultaneously maintaining airport
throughput. In this context, the planning and guidance functions of state-of-the-art flight management
systems need to be modernised. On-board trajectory planners capable to generate an optimal trajectory
plan satisfying time constraints introduced during the flight are seldom, mainly because the real-time op-
timisation of aircraft trajectories is still elusive. Furthermore, the time scale and spatial resolution of the
wind forecasts used by these trajectory planners are far from being adequate to generate accurate flight
time predictions. Finally, there exist guidance strategies capable to accurately comply with time constra-
ints enforced at a certain fix in the trajectory plan, yet they are not specifically designed to minimise the
environmental impact.

This PhD thesis aims at investigating fast optimisation techniques to enable real-time updates of the
optimal trajectory plan subject to time constraints during the descent; wind networking concepts to gene-
rate more accurate and up-to-date wind forecasts and, consequently, time predictions; and more robust an
efficient guidance strategies to reduce the environmental impact at the maximum extent while complying
with the time constraints of the trajectory plan.

First, the feasible time window at a metering fix that could be achieved during a descent requiring
neither thrust nor speed brakes usage is quantified as a function of the aircraft states (altitude, distance to
the metering fix and airspeed), aiming to assess the feasibility of guidance strategies that take advantage of
time and energy management concepts. Then, the performance of four of these guidance strategies is com-
pared in terms of environmental impact mitigation and ability to satisfy operational constraints. Results
from the comparison reveal that model predictive control, a strategy based on a frequent re-calculation of
the optimal trajectory plan during the execution of the descent, is the most robust in terms of energy and
time deviation at the metering fix, providing at the same time excellent environmental impact mitigation
figures. However, the execution time required to solve a rigorous trajectory optimisation problem at each
re-calculation instant remains a critical limitation for practical applications. In order to address this issue,
a variant of the model predictive control strategy that allows for fast updates of the optimal trajectory plan
based on parametric sensitivities is proposed, which shows analogous results yet halving the time needed
to update the optimal trajectory plan. Finally, the potential benefits of using wind observations broadcast
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by nearby aircraft to reconstruct the wind profile downstream right before updating the optimal trajectory
plan when using model predictive control is also investigated. Promising results show that the combina-
tion of model predictive control with wind networking concepts could enable optimal descents without
degrading the capacity of the airport.
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Notation

Throughout this PhD thesis and as a general rule, scalars and vectors are denoted either with lower or
upper case letters. Vectors are noted with the conventional overhead arrow, like for example ~a or ~ψ. Sets
are denoted using caligraphic fonts, like for exampleA, B orX , while matrices use the same font but in bold
series, like R. The derivative of magnitude a(t) with respect to t is expressed by da(t)

dt = ȧ. Furthermore,
if not otherwise noted, all vectors are column vectors and a transposed vector is denoted by [·]T . For an
ordered set or a vector, for example A, the element at the ith position is denoted by Ai. Similarly, Ai:j is the
subset of A that includes the elements whose position ranges from i to j (inclusive). Being consistent with
this notation, Ai: is the subset of A that includes the elements with position greater or equal than i. Note
that A1: = A. Furthermore, (·)∗ indicates optimal. Finally, for a scalar function (·)+

= max((·) , 0), and for a
vector-valued function of n elements, (·)+

=
[
(·)+

1 , (·)
+
2 , . . . , (·)

+
n

]
.

Next, the principal symbols that are used throughout this dissertation are shown along with their
meaning. The reader should note that this list is not exhaustive.

B B-Spline basis function
CD drag coefficient
CL lift coefficient
CD,BADA drag coefficient of the BADA v4 model
CD,sim drag coefficient of the simulator
C ′D,sim drag coefficient of the simulator increased by a factor of KCD

CD0 parasite drag coefficient
CD2 induced drag coefficient
CDβ coefficient that represents the increase in drag coefficient when speed brakes are deployed
D aerodynamic drag
Ek kinetic energy of the aircraft
Ep potential energy of the aircraft
Es specific energy of the aircraft
Et total energy of the aircraft
J cost function of the optimal control problem
KCD factor to increase or decrease the nominal drag coefficient
KTidle factor to increase or decrease the nominal thrust idle
Kβ weighting parameter that determines howmuch the use of speed brakes is penalised
L aerodynamic lift force
M Mach number
N number of discretisation intervals in the whole time horizon
N1 revolutions of the engine fan
N1idle minimum revolutions of the engine fan
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N1max maximum revolutions of the engine fan
P number of phases of the optimal control problem
R perfect gas constant
S wing surface area
T engine thrust
Tidle,sim idle thrust of the simulator
T ′idle,sim idle thrust of the simulator increased by a factor of KTidle

Tidle idle thrust
Tmax maximum thrust
∆Es difference of specific energy
∆τ discretisation step
Λ forgetting factor
Π quadrature function of the running cost
< set of real numbers
α Hellman exponent
β speed brakes deflection
χg ground track angle
δ normalised pressure of the air
δ11 normalised pressure of the air at the tropopause
εinf infeasibility criteria
εopt optimality criteria
η landing gear status
γ aerodynamic flight path angle
γa a specific heat ratio of the air
γmin minimum aerodynamic flight path angle
π throttle setting
λh standard temperature lapse rate
Weq weighting matrix for the slack variables associated with equality constraints
Win weighting matrix for the slack variables associated with inequality constraints
E set associating the index of the last time sample to its corresponding phase
Gac active set of inequality constraints
Gin inactive set of inequality constraints
I set associating the index of the first and interior time samples to its corresponding phase
L lagrangian of the nonlinear programming optimisation problem
N normal distribution
O set of wind observations
P algorithm that solves the nonlinear programming optimisation problem
Q algorithm that solves the quadratic programming optimisation problem
T set associating the index of each time sample to its corresponding phase
U uniform distribution
µ parameter describing the expected number of occurrences in a Poisson distribution
µε expectation of the simulated wind speed error
ω weight associated to each wind observation
φ end cost or Mayer term
π running cost or Lagrange term
ρSSL SSL density of the air at standard sea level
σ normalised density of the air
σε standard deviation of the simulated wind speed error
τ discretised time sample
τSSL temperature of the air at standard sea level
τinf threshold for the infeasibility criteria
τopt threshold for the optimality criteria
Pos Poisson distribution
θ normalised temperature of the air
θ11 normalised temperature of the air at the tropopause
~F evolution function of the state vector
~X current states vector
~̂X predicted states vector
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~λ dual variables associated with inequality constraints
~µ dual variables associated with equality constraints
~ψ terminal constraints
~ϑeq equality interior-point constraints
~ϑin inequality interior-point constraints
~beq equality path constraints
~bin inequality path constraints
~c control points of the spline
~d fixed parameters of the model
~̂d predicted fixed parameters of the model
~eeq vector of slack variables for the equality constraints
~ein vector of slack variables for the inequality constraints
~f dynamics of the state vector
~g inequality constraints of the nonlinear programming optimisation
~h equality constraints of the nonlinear programming optimisation problem
~p vector of parameters of the nonlinear programming optimisation problem
~̂p predicted vector of parameters of the nonlinear programming optimisation problem
~u controls vector
~w wind vector
~x states vector
~z primal variables of the nonlinear programming optimisation problem
ζ aerodynamic configuration of the aircraft
a speed of sound
f cost function of the nonlinear programming optimisation problem
g gravity acceleration
h geometric altitude
hr reference altitude of the Hellman model
h11 standard altitude of the tropopause
hCO cross-over altitude
hFAP altitude at which the FAP has to be intercepted
hIF altitude at which the IF has to be intercepted
kmax maximum number of QP iterations before triggering a NLP trajectory update
m mass of the aircraft
nz load factor
p probability
pSSL pressure of the air at standard sea level
q nominal fuel flow
qidle idle fuel flow
s distance to go
sFAP distance to go of the FAP
sIAF distance to go of the IAF
sIF distance to go of the IF
t time
tF final time of the time horizon
tI initial time of the time horizon
v true airspeed
vCAS calibrated airspeed
vFAP calibrated airspeed at which the FAP has to be intercepted
vIF calibrated airspeed at which the IF has to be intercepted
vmax maximum true airspeed
vmin minimum true airspeed
we east wind component
wn north wind component
wr reference speed of the Hellman model
ws longitudinal wind component
wx cross wind component
ε simulated wind speed error
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List of Acronyms

3D-PAM 3D-path arrival management
ACARS aircraft communication and reporting system
ADS-B automatic dependent surveillance-broadcast
AGL above ground level
AMAN arrival manager
AMDAR aircraft meteorological data relay
ANSP air navigation service providers
APERO avionics prototyping environment for research and operations
APM aircraft performance model
AsNMPC advanced-step NMPC
ATC air traffic control
ATFM air traffic flow management
ATM air traffic management
BADA base of aircraft data
CAS callibrated airspeed
CDA-MP continuous descent approach for maximum predictability
CDO continuous descent operation
CI cost index
CONCORDE flight operations for novel continuous descents
CTA controlled time of arrival
DAE differential algebraic equation
EDA efficient descent advisor
FAA Federal Aviation Administration
FAP final approach point
FASTOP fast optimizer for continuous descent approaches
FMS flight management system
GAMS general algebraic modelling system
GD green dot speed
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GFS global forecast system
GRACE generic research aircraft cockpit environment
IAF initial approach fix
ICAO International Civil Aviation Organization
IF intermediate fix
ILS instrumental landing system
INMPC ideal NMPC
ISA international standard atmosphere
KKT Karush-Kuhn-Tucker conditions
MLM maximum landing mass
MMO maximum operative Mach
MPC model predictive control
NASA National Aeronautics and Space Administration
NextGen next generation air transportation system
NLP nonlinear programming
NLR Netherlands Aerospace Centre
NMPC nonlinear model predictive control
NOAA National Oceanic and Atmospheric Administration
NWP numerical weather prediction
ODE ordinary differential equation
OL open-loop guidance
OPD optimised profile descent
OPTIMAL optimised procedures and techniques for improvement of approach and landing
PARTNER partnership for air transportation noise and emission reduction
PEP Airbus performance engineering program
PM particulate matter
QP quadratic programming
RAP rapid refresh
RMSE root-mean-square error
RNAV area navigation
RTA required time of arrival
SbNMPC sensitivity-based NMPC
SESAR Single European Sky Air traffic management Research
SLQP sequential linear-quadratic programming
SNOPT sparse nonlinear optimiser
SQP sequential quadratic programming
SSL standard sea level
STAR standard arrival procedure
STATFOR statistics and forecast service
SUNDIALS SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers
TA tailored arrival
TAAM total airport and airspace model
TAS true airspeed
TDDA three-degrees deceleration approach
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TEMO time and energy managed operations
TMA terminal maneouvering area
TOD top of descent
TRL technology readiness level
UPC Technical University of Catalonia
UPS United Parcel Service
VMO maximum operative CAS
VNAV vertical navigation
WAFC world area forecast model
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We are trying to prove ourselves wrong as quickly as possible,
because only in that way can we find progress.

— Richard P. Feynman

The significant problems we have cannot be solved at the same
level of thinking with which we created them.

— Albert Einstein

I
Introduction

According to the most likely scenario of the Eurocontrol’s statistics and forecast service (STATFOR), there
will be around 14 million flights in Europe in 2035, 1.5 times the level of 2012, with an annual growth
around 1.8% (Eurocontrol, 2013). To accommodate the increasing demand for flights from passengers and
freighters, more airports will need to operate close to their capacity limits, thus adversely impacting the
predictability and punctuality of flights. According to SESAR (2015a), in the reference scenario where no
action is taken to increase capacity, alarming predictions estimate that around 12% of the future demand
will not be accommodated in 2035. The growth in traffic also implies increased pressure on the environ-
mental sustainability of air transport. In this context, Penner et al. (1999) were among the first to assess the
environmental impact of aviation, both for (what was then) current-day conditions and future scenarios.
Results from the assessment showed that, in 1992, aviation represented roughly 3.5% of total man-made
climate change impact, but this could increase by a factor between 2.6 and 11 by 2050 if no measures are
taken. Scientific advances since 1992 reduced uncertainties and sharpened the quantitative evaluation, yet
the conclusions remain the same. Updated assessments of the climate change impact of aviation since 1999
have been performed, for instance, by Sausen et al. (2005), Lee et al. (2010) and Phoenix et al. (2019).

Through the Single European Sky Air traffic management Research (SESAR) and next generation air
transportation system (NextGen) programmes, the SESAR Joint Undertaking and the Federal Aviation Ad-
ministration (FAA), respectively, are addressing the impact of air traffic growth by implementing new or
improved procedures and technologies that aim to increase the capacity and efficiency of the air traffic ma-
nagement (ATM) system, while simultaneously improving safety and reducing the environmental impact.

One of the SESAR ambition is to increase the capacity of the whole ATM system by 80-100% (SESAR,
2015a). Enhancements to conflict and separation management processes and increased automation for both
on-board and ground systems will help to safely handle the increasing traffic demand in the terminal ma-
neouvering area (TMA) and en-route environments. At airspace and air traffic flow management (ATFM)
level, more dynamic optimisation and allocation of airspace resources (see for instance the study performed
by Sergeeva et al. (2017)) is foreseen to enable airspace users to access required airspace with minimum cons-
traints. Finally, airport throughput is expected to increase by improving the traffic sequencing and merging
techniques and by reducing separation requirements for both arrivals and departures.
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2 Chapter I - Introduction

Furthermore, another SESAR ambition estimates a total reduction of between 5% and 10% in fuel burn
per flight (SESAR, 2015a). Improvements to the design of engines over the past years have greatly reduced
fuel consumption and gaseous emissions. Promising procedural solutions, which have the advantage to
provide fuel benefits without modifying aircraft engines or airframe, have been also proposed. For ins-
tance, in the en-route environment, more direct routes and more efficient vertical profiles (i.e., altitude and
speed) are expected to reduce fuel consumption by 2.5%. Optimal vertical profiles for en-route operations,
performed by progressively increasing the altitude of the aircraft as fuel is burnt, were investigated, for
instance, by Betts & Cramer (1995) and Soler et al. (2012). The actual quantitative benefits in terms of fuel
and time savings with respect to current profiles, performed at constant cruise altitudes, were assessed
by Dalmau & Prats (2015, 2017). Results from a recent study by Prats et al. (2018) showed that the en-route
inefficiencies of current operations in the vertical domain are similar to those in the lateral domain. In ad-
dition, most of these inefficiencies are due to the strategic part of the ATM (the fact that airspace users are
still forced to use a structured en-route network). In addition, it was observed that air traffic control (ATC)
typically contribute to reduce route extension by short-cutting the planned trajectory.

In the TMA environment, the SESAR target is to enable an average reduction around 10% fuel burn
reduction by enabling continuous climb and descent profiles with fewer tactical interventions from ATC.
The introduction of more fuel-efficient profiles, however, is achieved at the cost of a reduction on capacity
due to the more diverse trajectories that the ATC need to handle. New concepts of operation need to be
implemented in order to maintain capacity at acceptable levels, or even increasing it, while simultaneously
allowing fuel-efficient profiles. Major challenges involved with the implementation of new concepts of ope-
ration include the upgrade of the planning and guidance capabilities of current flight management systems
(FMSs), changes in airspace and procedure design, as well as modernisation of current ATC separation,
sequencing and merging techniques and their ground decision support tools.

I.1 Environmental impact of descents
In terms of environmental impact, the optimal descent of an aircraft should be performed uninterruptedly,
with the engines at idle from the cruise altitude to the stabilisation point, typically at 1,000 ft above ground
level (AGL), where the aircraft is configured for landing. This kind of flight operation is commonly referred
as continuous descent operation (CDO). It should be noted, however, that there is some controversy in the
rigorous definition of CDO. Some authors consider that a CDO is a trajectory performed without segments
at constant altitude (also known as level-offs) during the whole descent. Yet, this does not ensure a complete
engine-idle descent, since additional thrust might be required to maintain certain vertical speeds or flight
path angles without decelerating. For this reason, other authors prefer to define a CDO as a trajectory
executed with the engines at idle during the whole descent, no matter how many level-offs are performed.
In the case of a level-off at idle thrust, the aircraft will nothing but decelerate. In this PhD thesis, the latter
definition of CDO has been considered because a level-off at idle thrust could be used as a mechanism to
rapidly reduce the energy of the aircraft without deploying drag devices.

Figure I-1: Comparison between a CDO and a current descent operation
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Figure I-1 shows an illustrative comparison between the altitude profile of a typical descent in the
current concept of operations and that of a CDO. Current descents leave the cruise altitude earlier, typically
as a result of an ATC clearance. Then, the aircraft descends stepwise by performing several level-offs caused
by tactical ATC instructions (as will be explained in next section) or constraints defined at the waypoints
of the particular procedure being flown. During these segments at constant altitude, additional thrust is
typically required to maintain the altitude without decelerating too much.

A CDO keeps at the cruise altitude a longer distance, where the fuel consumption is lower. Then, at
the optimal top of descent (TOD) computed by the FMS, the point at which the aircraft leaves the cruise
altitude, the engines are set to idle and the aircraft starts the CDOs towards the interception of the instru-
mental landing system (ILS) glide slope. Summing up, a CDO is performed (as far as possible) at higher
altitudes, lower thrust settings and lower drag configurations, thus greatly reducing fuel consumption,
gaseous emissions and noise nuisance (Erkelens, 2000; Warren & Tong, 2002; Clarke et al., 2004).

Considerable research has been conducted to quantitatively assess the environmental benefits of
CDOs. For instance, extensive simulations and field tests were performed within the optimised proce-
dures and techniques for improvement of approach and landing (OPTIMAL) programme initiated by the
European Commission in 2004, and the partnership for air transportation noise and emission reduction
(PARTNER) programme established by the FAA in support of the NextGen initiative in 2003. It is worth
mentioning that these programmes are only two of the many research activities that have been performed
to quantify the benefits and to identify the limitations of CDOs.

In the OPTIMAL programme, field tests were performed at two major European airports to assess
the trade-off between environmental benefits and operational flexibility of CDOs, including predictability
of the descent trajectories, ATC coordination procedures and workload of the flight crew. The results ob-
tained from field tests at London Heathrow airport (LHR) were reported by Reynolds et al. (2005), while the
main findings obtained at Amsterdam Schiphol airport (AMS) were presented by Wat et al. (2006). Similar
experiments were performed within the PARTNER project at Louisville international airport (SDF) (Clarke
et al., 2004, 2006), Atlanta international airport (ATL) (Clarke et al., 2007) and Los Angeles international
airport (LAX) (Clarke et al., 2013).

With no exception, all the aforementioned experiments concluded that CDOs lead to fuel savings,
noise nuisance and gaseous emission reduction if compared to current descents. For instance, results from
United Parcel Service (UPS) flight tests during night-time operation at SDF reported fuel savings about 200
kg per flight for B767 models (Clarke et al., 2006), while results from flight tests at ATL, which considered
flights from two airlines, suggested fuel savings around 460 kg and 600 kg per flight for B757 and B767
models, respectively (Clarke et al., 2007). Later on, analysis over more than 480,000 flights to 25 airports in
the national airspace system during four months concluded that fuel savings of CDOs were lower than 25
kg for 45% of the flights, and less than 100 kg for 87% of the flights (Robinson & Kamgarpour, 2010).

Based on this diversity of fuel saving figures, it can be concluded that comparison of results across
different experiments is difficult due to the substantial differences in assumptions, types of data, models,
and methods being used. Nevertheless, Thompson et al. (2013) quantified the benefits of CDOs in Paris
and New York regions using similar sources of data, analytical methods and models, and concluded that
discrepancies in fuel saving figures across different experiments are also caused by the differences in traffic
intensity, as well as the distribution of level-off segments in the current descent trajectories due to the
dissimilar ATC practises, procedure designs, traffic patterns and meteorological conditions. These results
manifest the tangible trade-off between environmental impact and capacity, which will be further discussed
in the next section.

Different from previous works, Jin et al. (2013) aimed at explaining the fuel savings observed in field
tests found in the literature from an analytical point of view. In order to accomplish that, the relationship
between speed, altitude, and fuel consumption during a CDO were analytically derived. Based on their
findings, several helpful design guidelines for CDOs were proposed.
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I.2 Predictability of descents
Each aircraft performing a CDO will have a different optimal vertical profile (altitude and speed) depending
on, e.g, the aircraft type, the mass, the wind field and the cost index (CI)1. To give an insight into this fact,
Fig. I-2 compares two optimal CDOs, computed with the Airbus performance engineering program (PEP),
for the descent of an Airbus A320.
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Figure I-2: Comparison between two CDOs with different mass and CI. Heavy and fast: solid light lines.
Light and slow: solid dark lines.

Despite both descents are performed at idle thrust and for the same weather conditions, they differ
on the mass of the aircraft and the selected CI. By observing these dissimilar vertical profiles, the reader
could guess the compelling diversity of vertical profiles that ATC needs to manage when considering the
wide range of aircraft performance across different aircraft types, weather conditions and airline business
models. Due to the heterogeneity of vertical flight profiles and aircraft behaviour, a well-known drawback
of CDOs is the loss of predictability of the trajectory from the ATC point of view, in terms of altitude
uncertainties and overfly-times at the different fixes.

Table I-1 shows the overfly time with respect to the initial conditions and the altitude of the two CDOs
shown in Fig I-2 at four distances to the final approach point (FAP).

Table I-1: Altitude and overfly time of two CDOs with different mass and CI at various distances to go

Distance to FAP [NM]
Overfly time Altitude [FL]

Light and slow Heavy and fast Light and slow Heavy and fast
100 5 min 38 s 2 min 46 s 305 360
60 12 min 15 s 10 min 26 s 195 195
20 16 min 12 s 13 min 15 s 135 115
0 24 min 49 s 21 min 34 s 20 20

According to Table I-1, at 100 NM from the FAP the heavy and fast CDO is still in the cruise phase,
while the light and slow CDO has started the descent a while ago. As a result, the altitude dispersion at
that point is around 5,500 ft. Despite at 60 NM to the FAP both CDOs arrive at the same altitude, the time
difference at this distance is 1 minute and 49 seconds. In fact, the time difference increases with the flight
distance, reaching 3 minutes and 15 seconds at the FAP.

Due to this low predictability, existing CDO implementations typically require ATC to introduce ad-
ditional sequencing buffers to ensure safe spacing between aircraft, thus reducing the throughput of the
airport. For this reason, in busy airports CDOs are only operational in off-peak hours, when the traffic de-
mand is low (Robinson & Kamgarpour, 2010). In busy TMAs, very few flights are cleared to perform CDO,
and even those might be interrupted with ATC tactical instructions after starting the descent to ensure safe
spacing with surrounding traffic due to uncertainty.

1The cost index is a number representing the ratio of the time-related cost of an aircraft operation and the cost of
fuel (Airbus, 1998)



I.2 Predictability of descents 5

The relationship between target spacing, probability of uninterrupted CDO execution, and airport
capacity was investigated by Ren & Clarke (2007b,a) by means of Monte-Carlo simulations. The simulations
were used to estimate the number of possible CDOs that could be performed without ATC intervention and
thereby determine the minimum target spacing at a metering fix, such that there is a high probability of no
separation violations thereafter. Later on, the tool was used to determine the target spacing for CDOs at
SDF airport. Results showed that CDOs could be efficiently implemented in TMAs under low to moderate
traffic conditions (Ren & Clarke, 2008).

A well-known disadvantage of CDOs with the current ATC sequencing and merging techniques is
that, once initiated, it is hardly possible to react on ATC instructions while maintaining the engines at idle
for the remainder of the descent. The main reason is that the remaining distance to the runway threshold
must be known by the FMS in order to compute the optimal trajectory plan in terms of environmental im-
pact. The remaining distance to go could be computed from the lateral route (i.e., sequence of waypoints)
if the aircraft were following it through to completion. The fixed lateral route needed to enable CDOs,
however, is seldom used. In busy TMAs, descending aircraft are tactically vectored by ATC, who stretch or
shorten the lateral route to maintain and acquire safe separation with other departing and arriving traffic.
Unfortunately, with this very common practise it is not known neither the duration of the open-loop vec-
tor, nor how the aircraft will re-join its initial route. As illustrative example, Fig. I-3 shows the vectoring
instructions used by the ATC at Barcelona-El Prat airport during a typical day of operations.

Figure I-3: Vectoring instructions used by the ATC at Barcelona-El Prat airport during a typical day

Any lateral path stretching would place the aircraft below the trajectory plan, while any shortcut
would place it above. In the first case, more thrust might be required to intercept the planned vertical
profile from below at the moment of knowing the remaining distance to go, leading to both increased fuel
consumption, gaseous emissions and noise; in the second case, additional drag through the use of drag de-
vices might be required to capture the planned vertical profile, leading to both increased airframe noise and
an uncomfortable ride for passengers. Furthermore, since most FMSs do not allow for real-time updates of
the trajectory plan once the descent has been initiated (i.e., the trajectory plan is frozen at the TOD), the pilot
would be in charge of managing the vertical profile, probably not in the most environmentally friendly way
due to the lack of automated support in the face of the open-loop vectors. These instructions also increase
the workload of both ATC and pilots, and decrease the situational awareness of pilots.

Even when the route is unmodified, other tactical instructions commonly used by ATC to sequence
and merge arrival traffic in busy TMAs include segments at constant altitude and speed control. In order
to fly at the requested altitude and/or speed, aircraft might need to increase the energy by means of engine
thrust or to remove energy by increasing the aerodynamic drag.

Most of the field tests listed in Section I.1 were performed in low traffic demand scenarios. Never-
theless, some studies indicated that the fuel savings expected to result from CDOs could be potentially
neutralised by the need to provide separation assurance modifying the aircraft speed, altitude and/or by
using vector instructions (Cao et al., 2014). The extent of this reduction on the benefits of CDOs would
depend on the target spacing, the traffic demand level and the types of ATC instructions used to absorb the
delays due to the additional separation buffers.
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Since field tests of CDOs in high traffic scenarios are difficult to conduct, Wilson & Hafner (2005)
presented a simulation-based approach to quantify the benefits of CDOs in busy TMAs taking into con-
sideration spacing and sequencing issues. Fast-time simulations at ATL airport were performed with the
total airport and airspace model (TAAM) by removing altitude constraints associated to the waypoints
of the original procedures, as well as allowing aircraft to directly fly from the initial approach fix (IAF)
to the base-leg of the landing runway. Promising results showed significant fuel and time savings with
minimum increase on ATC workload. Aiming at assessing safety aspects of CDOs, Park et al. (2016) pro-
posed a trajectory-based methodology to estimate the encounter rate of CDOs in high traffic scenarios. The
proposed method was validated by comparing to Monte-Carlo simulation results. Khan et al. (2009) also
performed fast-time simulations in high traffic scenarios to compare current ATC procedures with ATC
assisted with various systems of ground automation, in terms of CDO success rate and throughput.

Statistical analysis from the fast-time experiment performed by Robinson & Kamgarpour (2010) re-
vealed that fuel savings of CDOs are marginal for high traffic scenarios due to the tactical instructions
required to provide separation assurance, which have negative effects on the fuel-efficiency of CDOs. In
particular, fuel savings due to CDOs were reduced by 70-85% if compared to the low traffic scenarios.
This work also reported a reduction of 45 kg per CDO due to traffic congestion at ATL airport. A similar
experiment at ATL airport reported a sightly different reduction of 23 to 36 kg per CDO (Cao et al., 2014).

In addition to fast-time simulations, human-in-the-loop studies with ATC showed that CDOs would
not be feasible at ATL airport during the busiest traffic periods, since too much efficiency would be lost to
accommodate the traffic demand (Johnson, 2009). In such traffic conditions, few flights would be issued the
CDO clearance and even some flights would likely need to be removed from CDO procedures after being
cleared in order to manage the demand. Nevertheless, results also showed that at least 15% of the total
environmental benefit would still be achievable for CDOs that are terminated earlier.

I.3 New concepts to enable CDOs in busy TMAs
Results from previous works reveal that the predicted increase in traffic demand will negatively impact the
potential benefits of CDOs due to their low predictability if compared to current descent operations. In
order to face this issue, several ATM concepts have been proposed that aim to enable CDOs also in high
traffic demand scenarios.

I.3.1 Fixed flight path angle descents
The three-degrees deceleration approach (TDDA) (De Prins et al., 2007; Sopjes et al., 2011; De Leege et al.,
2009) is a concept in which the descent is performed all along a 3◦ path from the TOD to the runway
threshold. To perform the spacing task, two controls are given to the pilot: the first is the thrust cutback
altitude, in which the throttle is set to idle and, consequently, the aircraft starts to decelerate; and the second
is the flaps/slats and gear setting, which allows to manage the deceleration after the thrust cutback altitude.
Figure I-4 (adapted from De Prins et al. (2007)) shows a scheme of this concept.

Pradeep & Wei (2017) investigated the variability and operational feasibility aspect of CDOs with
fixed path angle descents, and concluded that this kind of flight operation has higher degree of vertical
predictability and lesser variability in terms of altitude and speed profiles if compared to the CDOs per-
formed at idle thrust. This is achieved at the cost of thrust settings different from idle and with higher drag
configurations, which implies more environmental impact.

I.3.2 CDOs in vertical corridors
Aiming to allow for more flexible vertical profiles than fixed flight path angle descents, the International
Civil Aviation Organization (ICAO) published some CDO guidance material (ICAO, 2010) to support air
navigation service providers (ANSP) to design vertical corridors in which all descent trajectories must be
contained, helping in this way to strategically separate them from other arrival and departure procedures
in the vicinity. As reported by Fricke et al. (2015), however, these vertical corridors have been established
without explicitly considering the aircraft type, assuming international standard atmosphere (ISA) condi-
tions and with coarse assumptions regarding the aircraft gross mass and aircraft performance models. This
leads, in the majority of cases, to too restrictive corridors that limit the CDO adherence in real operations.
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Figure I-4: Scheme of the three-degrees deceleration approach concept

I.3.3 Optimised profile descents
Standard arrival procedures (STARs) used in most of the airports have been historically designed to ensure
that a wide variety of aircraft can fly the procedure, from those basically equipped to the most modern air-
craft. In order to enable the descent to aircraft with various navigation capabilities, current STARs include
altitude and speed constraints at various fixes of the route and, generally speaking, are not designed to
execute the whole descent with the engines at idle.

An optimised profile descent (OPD) is a procedure, normally associated with a published STAR, de-
signed to allow maximum practical use of CDOs (ICAO, 2010). Accordingly, OPD could be interpreted as
one method of facilitating CDOs by using altitude constraints that restrict the vertical profile to a near-idle
descent for many of the currently in use commercial aircraft.

Shresta et al. (2009) assessed the potential benefits and issues of implementing OPDs at Denver inter-
national airport (DEN). Arrival flights descending along CDOs were modelled by transforming the descent
trajectories of real flights, taken from radar tracks, into descent trajectories at idle thrust. Several potential
conflicts were identified as a result of allowing aircraft to descend along their optimal trajectories. Im-
plementing OPDs only in a certain altitude interval, allowing level-off above and below the delimiting
altitudes, demonstrated to greatly reduce conflicts while still offering attractive benefits in terms of fuel
consumption. As in previously mentioned studies (Johnson, 2009), a major conclusion of the work per-
formed by Shresta et al. (2009) was that CDOs do not need to be implemented from the cruise altitude to
the stabilisation point in order to obtain reasonable reductions of fuel consumption and gaseous emissions.

I.3.4 3D-Path arrival management
The working principle of the solutions presented so far consists of removing level-offs to the greatest pos-
sible extent, while still supporting ATC to predict the vertical profile of aircraft. In addition, these solutions
assume static routes, corresponding to the published STARs of the airport, and therefore not tailored to
each individual flight. The next solutions go one step further by controlling the time at which aircraft reach
one or several metering fixes along the route.

For instance, using the 3D-path arrival management (3D-PAM) concept (Nagle et al., 2011; Coppen-
barger et al., 2010), a ground system computes the arrival schedule of flights at a metering fix. Then, for
each flight, it strategically assigns the best route to the metering fix in combination of cruise and speed
advisories and (eventually) a path adjustment in the form of point-bearing-distance to meet the schedule.
These instructions, which are designed to facilitate the delivery by voice using standard phraseology, are
cleared prior the TOD and given to the pilot for manual entry into the FMS. This negotiation prior the TOD
allows the FMS to know the remaining distance to go, compute the optimal trajectory plan complying with
the cleared instructions, and uninterruptedly execute it. This is generally not feasible today due to the use
of open-loop vectors. A system for the integration of this concept is the efficient descent advisor (EDA),
developed by the National Aeronautics and Space Administration (NASA) (Coppenbarger et al., 2004).
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Figure I-5 shows a scheme of the 3D-PAM concept.

Figure I-5: Scheme of the 3D-path arrival management concept

It should be noted that, even if when implementing 3D-PAM some flights are actually travelling a
longer distance due to the point-bearing-distance instruction (see blue segment in Fig. I-5), the descent to
the metering fix is typically flown at a lower power setting, overall reducing the fuel consumption, gaseous
emissions and noise nuisance.

I.3.5 Tailored arrivals
Tailored arrivals (TAs) are a step further of 3D-PAM to enable CDOs. TAs are similar concept to OPDs,
but are not restricted to published STARs (Coppenbarger et al., 2009; Elmer, 2008). In the TA concept, a
customised, dynamic and conflict-free descent trajectory, tailored by ATC through use of a list of fixes with
associated speed and altitude constraints, is uplinked via data-link to the FMS before starting the descent,
given as a single clearance well before to TOD. These clearances provide sufficient information for the FMS
to compute the trajectory plan from the current aircraft position to the runway threshold. When possible,
the clearances should allow to generate a near-idle descent trajectory. It should be noted that even for ATC
without data-link support, TAs could be implemented by using a pre-negotiated set of STARs stored in the
database of the FMS.

I.3.6 CDOs with controlled times of arrival and fixed routes
A primary challenge of 3D-PAMs and TAs is the design of the route and constraints that are issued to the
FMS, which shall be chosen to allow the FMS to generate a trajectory plan that can be flown at idle thrust.
Ground systems in charge of computing these constraints, however, use trajectory predictors configured
with simplified models to represent the dynamics and performance of the aircraft. These models will rarely
reproduce the behaviour of all aircraft types without errors. Any discrepancy between the models used
by the on-board and ground trajectory predictors might result in clearances selected by the 3D-PAM or TA
ground automation system that, even if supposed to enable an idle descent according to the (inaccurate)
ground trajectory predictor, might require the use of additional thrust or drag according to the FMS.
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Another promising concept to enable CDOs in busy TMAs consists of enforcing controlled time of
arrival (CTA) at one or several metering fixes while keeping the aircraft on a lateral route cleared before
the TOD (Muynch et al., 2012). Note that this route could be either a published STAR or a sequence of
waypoints uplinked to the FMS by the ground system before the TOD. With this type of flight operations,
ATC would assign (using data-link, for instance) at least one CTA to each aircraft, ideally before they reach
their TOD, to sequence and merge arrival traffic.

A negotiation process of CTAs via data-link between ATC and FMSs provided with 4D capabilities
was proposed by Uebbing-Rumke & Temme (2011) and Oberheid et al. (2008). The negotiation process
includes the on-board computation (i.e., using accurate models bundled into the FMS) of the earliest and
latest achievable CTA at the metering fix (in other words, the feasible time window) for the known lateral
route that is to be flown, and the subsequent down-link of this information to the ground automation
system. Based on the feasible time window and the surrounding traffic, the ground system replies with the
CTA. The received CTA is entered as a required time of arrival (RTA) into the FMS, and then the on-board
trajectory planner computes a new (optimal) trajectory plan starting at the current position, while satisfying
the RTA and other operational constraints. Then, the resulting trajectory plan is executed by an on-board
guidance system with 4D capabilities (De Prins et al., 2007).

Note that, different from TAs and 3D-PAM, the constraints are not in form of altitude and speed
instructions at the different waypoints, but purely CTAs. The on-board trajectory planner is who selects
the optimal altitude and speed profile such that the applicable CTAs are satisfied. Accordingly, this kind
of flight operations are expected to increase the likelihood to generate a trajectory plan at idle thrust that
satisfies the CTA requested by ATC, supposed to safely sequence and merge arrival traffic.

Summing up, vertical dispersions of the CDOs trajectories could be mitigated by appropriately se-
lecting the location of the metering fix and conveniently assigning CTAs to each inbound aircraft, while
allowing them to follow a pre-negotiated lateral route to completion without ATC interventions. This kind
of flight operations, however, require a modernisation of both current ground automation and airborne
systems. The focus of this PhD will be in the development of new planning and guidance strategies to
accurately and efficiently satisfy CTAs during CDOs.

I.4 Motivation of this PhD
Sections I.4.1 and I.4.2 present the capabilities of current ground automation and on-board trajectory ma-
nagement systems, respectively, and the future needs for the efficient implementation of CDOs subject to
CTAs. These future needs drive the motivation of this PhD thesis.

I.4.1 Ground automation
Arrival managers (AMANs) were developed in the late 1990s to provide automated sequencing support
for ATC to achieve a smooth, predictable and optimised arrival stream with as few tactical interventions as
possible. State-of-the-art AMANs use information from the flight plans, radar tracks, weather data, local
airspace structure information, and approximated aircraft performance models to predict trajectories and
provide the predicted time of arrival at the different fixes for every flight. Research is currently ongoing
into how modern AMANs could also provide support to select appropriate CTAs (Muynch et al., 2012).
ATC would be ultimately in charge to provide the CTA to the pilot, who would then use a FMS trajectory
management with 4D capabilities to satisfy it.

I.4.2 On-board trajectory management
FMSs were developed in the early 1980s to reduce both workload of the flight crew and flight costs due to
their capability to generate trajectory plans minimising fuel and time, as well as to automatically guide the
aircraft along that plan by using elevator and throttle commands. In the last decades, a variety of FMSs
have been designed to comply with CTAs. Most of these systems, however, have difficulties to satisfy time
constraints with an accuracy of 30 s. It should be noted that even this 30 s accuracy is too large for reliable
use within the TMA. In 2009, Lenz & Korn (2009) reported that only about 11% of the aircraft flying in the
European airspace were equipped with FMS capable of meeting a CTA with an accuracy of 6 s.
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Modern FMSs include vertical navigation (VNAV) functions that can compute the optimal trajectory
plan for the descent and provide guidance to execute it. Limitations in both planning and guidance capabil-
ities of VNAV, however, have prevented widespread adoption of time-constrained CDOs for operational
use (Oseguera-Lohr et al., 2007). For instance, despite modern FMSs have the ability to meet a CTA on
cruise, state-of-the-art VNAV functions do not allow pilots to easily perform speed changes during the
descent while maintaining the engines at idle.

I.4.2.1 Future needs for on-board trajectory management
An example of concept that overcomes the main issues of current VNAV functionalities is the continuous
descent approach for maximum predictability (CDA-MP), developed by Boeing (Garrido-López et al., 2009).
This strategy uses a tactical controller to nullify time deviations with the elevator by following a ground
speed plan, and operates with the throttle applying small amounts of thrust in order to provide a mean to
reduce the energy in the face of disturbances. Since the elevator and the throttle are following, respectively,
the ground speed and thrust plans, when the models used by the FMS to generate the trajectory plan
do not match the reality (e.g., if the wind forecast is not representative of the actual wind conditions), the
aircraft will deviate from the altitude plan. If the aircraft deviates above the plan by more than a predefined
threshold, the throttle will revert to idle. Conversely, if the aircraft deviates below the plan by more than a
predefined threshold, the thrust will increase to nullify the vertical deviation. This strategy is able to satisfy
CTAs while being more fuel-efficient that current VNAV functionalities. If the models used by the FMS
were perfect, however, the resulting fuel consumption would be higher than that of a CDO performed at
idle thrust. In fact, taking into consideration the definition of CDO stated early in this chapter, the trajectory
plan computed with the CDA-MP would not be considered a CDO.

The CDA-MP concept assumes that the trajectory plan is computed right after receiving the CTA prior
the TOD and that is frozen afterwards, meaning that it is not dynamically updated during the course of the
descent. The initial trajectory plan, however, will be actually optimal and its time prediction will be correct
only if the models used by the FMS to represent the aircraft dynamics, aircraft performance, and weather
are accurate enough. In practise, these models will rarely reproduce the real world and are not exempted
from errors. In addition, if the deviation from the initial trajectory plan is significant, it might be preferable
(in terms of environmental impact) to update the trajectory plan, rather than trying to strictly follow it. Last
but not least, in the future trajectory-based ATM paradigm we could envisage ATC updating the CTA once
the descent has been initiated, requiring a new trajectory plan after the TOD.

Based on the above discussion, future FMS shall be able to dynamically update the trajectory plan
(on-board and in real-time) at any time during the course of the descent, in such a way constraints are
satisfied requiring the minimum amount of additional thrust and/or speed-brakes use. For instance, Liu
et al. (2018) presented a trajectory optimisation algorithm that allows to update the trajectory during the
course of a CDO. Similarly, Ramasamy et al. (2013) proposed a conceptual design for the next generation
of FMSs, which includes 4D trajectory planning and air-to-ground trajectory negotiation functionalities. In
this novel prototype of FMS, the optimal trajectory satisfying the negotiated CTAs is computed using direct
collocation methods, updating the trajectory with an execution time around 120 seconds, which might not
be acceptable for real-time applications considering the typical duration of a descent. Time and energy
management concepts have been also investigated in this context, showing very promising results.

I.4.2.2 The time and energy management operations concept
Time and energy managed operations (TEMO) is a trajectory management (planning and guidance) concept
that aims to satisfy a CTA at a metering fix by means of only elevator control while keeping, as far as
possible, the engines at idle during the whole descent (De Jong, 2014; De Jong et al., 2015). Otherwise,
optimal amounts of energy are removed or added by means of thrust or speed brakes, respectively, to
satisfy the CTA and applicable operational constraints while minimising the environmental impact. A
descent in which the total energy is not increased by means of thrust higher than idle nor removed by
using active drag devices is known as energy-neutral.

TEMO is a new concept that was developed within the management of trajectory and mission work
package of the area of systems for green operations of the Clean Sky European Joint Undertaking research
initiative. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management
and aims to provide significant environmental benefits in the arrival phase without negatively affecting
throughput, even in high density and peak-hour operations.
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From an ATC point of view, the TEMO concept assumes that the AMAN will use available trajectory
information to determine the preferred arrival route, landing sequence, inter-aircraft spacing, and arrival
schedule based on the capabilities and constraints of the inbound aircraft, as well as the scheduled airport
constraints (such as runway configuration, mixed-use runway use, dependent approaches, and weather
conditions). The scheduling process will be coordinated with adjacent ATC centres and, when the schedule
is frozen, a fixed area navigation (RNAV) arrival route (to the runway) with CTAs at some metering fixes
will be provided. The assigned control times will be entered as RTAs by the on-board TEMO tool-set.

Then, the on-board trajectory planner will compute the optimal trajectory plan such that a given cost
function is minimised (typically fuel), while fulfilling the entered RTAs. The trajectory plan is computed
by assuming more or less complex models for the aircraft dynamics, aircraft performance and weather
conditions. When the models used by the FMS trajectory planning function do not match the reality, the
initial trajectory is not longer the most optimal and some operational constraints may even be violated if
errors are not nullified by the guidance system.

Several guidance strategies were proposed as a part of the TEMO concept (De Jong et al., 2017, 2015),
which working principle will be explained in Section II.3. While all these methods have in common to man-
age the total energy of the aircraft (altitude and speed) such that CTAs are satisfied in an environmentally
friendly way, they differ in the mechanisms implemented to correct time and energy deviations. At present,
however, it is still not known which of these guidance strategies is the best in terms of environmental impact
mitigation and capability to satisfy operational constraints (of utmost interest CTA).

Initial batch studies of the TEMO concept were done using a conventional laptop to test its feasibil-
ity, reaching technology readiness level (TRL)-3 and proving lower fuel consumption and noise levels on
ground, if compared with current step-down descents (De Jong et al., 2015). Thereafter, a human-in-the-
loop study was performed in a high-fidelity flight simulator to look at human factors aspects, reaching
TRL-4 and showing acceptable RTA adherence performance and operational acceptability by qualified pi-
lots (De Jong et al., 2017). Yet, the models used by the trajectory planner were subject to several limitations.

The fast optimizer for continuous descent approaches (FASTOP) project, funded by the CleanSky Joint
Undertaking initiative, enhanced that version of the TEMO algorithm in order to test it in more realistic
environments, aiming at the TRL-5 gate. The main improvements of the model were the consideration of
realistic wind fields, non-standard atmospheres or curved routes. In addition, the TEMO software was
redesigned from scratch allowing to use it in real-time on-board applications (Prats et al., 2014, 2015b).

In 2014, a second human in the loop study was performed in the Netherlands Aerospace Centre (NLR)
full-motion flight simulator generic research aircraft cockpit environment (GRACE) to test TEMO in a more
realistic simulated environment, achieving in this way TRL-5. The design of the experiment and the qual-
itative assessments gathered from pilots were reported by Bussink et al. (2016), while Prats et al. (2015a)
presented a more detailed description of the trajectory optimisation algorithm and the quantitative results.

In 2015, and aiming at TRL-6, the NLR in cooperation with the Delft university of technology and with
the support of the flight operations for novel continuous descents (CONCORDE) consortium, executed
some flight trials with a Cessna Citation II research aircraft. Several TEMO guidance variants were tested,
including current step-down descents for benchmarking purposes. The preparation of this flight testing
campaign was described by Verhoeven et al. (2016), and the results were presented by Prats et al. (2017).

I.4.2.3 Wind modelling
As mentioned in previous section, the accuracy of the trajectories computed by the FMS, and especially
the computation of the estimated time of arrival over a fix in the flight plan, critically depends on the
quality of the wind and, to a less extent, temperature data used during the trajectory planning process.
Therefore, accurate weather predictions are of utmost importance to generate accurate trajectory plans and
minimise the need of corrective actions during the execution of the descent, which typically restrict the
accomplishment of energy-neutral descents.

Historically, the flight crew have received the wind forecast prior to the flight from the flight dispatch-
ers, and have manually entered this information into the FMS. At present, in order to simplify operations,
wind forecasts can be also up-linked automatically via the aircraft communication and reporting system
(ACARS). Typical FMS allow to store these wind data at several waypoints of the flight plan. Yet, at each
one of these waypoints, wind data is typically available at only five altitudes. Then, the wind is interpolated
between these altitudes and extrapolated beyond the limits when performing FMS trajectory predictions.
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The wind data entered to the FMS are primarily based on wind charts from numerical weather predic-
tion (NWP) models. Nowadays, the observations required to initialize NWP models are mainly gathered
from radiosondes and aircraft equipped with aircraft meteorological data relay (AMDAR). The spatial dis-
tribution of the radiosondes, which are launched only two to four times a day, however, is too coarse, and
wind observations gathered through AMDAR are not sufficient because not all aircraft in operation are
equipped with such system (Haan, 2010). Due to the relatively low spatio-temporal resolution of the data
required to initialize NWP models and the computational burden of running a prediction, wind forecasts
are generated over large areas of study only three to eight times per day, and are valid until +6, +12 or
+24 hours beyond their issued time. Consequently, the wind forecast for the descent is not tailored for the
current as-amended flight plan, and could be several hours old by the time the TOD is reached.

Most flight planning suppliers currently use the world area forecast model (WAFC) that is produced
to an ICAO specification by meteorological providers. Other suppliers allow to use higher resolution wind
forecasts in the spatial domain, but do not provide a higher update rate due to the time required to uplink
the data to the FMS (Bienert & Fricke, 2013). Aiming to increase the update rate of wind forecasts, Boeing
developed an advanced weather service that uplinks tailored wind data to the FMS via ACARS (Durham,
2011). This system, however, does not include additional altitudes at which wind data can be stored, but
determines the best depending on the prevailing meteorological conditions of the flight plan.

Some studies identified aircraft themselves as a potential network of airborne sensors emitting the
sensed wind and temperature to ground receivers (Hollister et al., 1986) or directly to nearby aircraft (De
Leege et al., 2013) to provide accurate, high-resolution and up-to-date weather data replacing or comple-
menting the forecasts obtained from NWP models.

I.5 Objectives of this PhD thesis
The optimisation of the trajectory of an aircraft can be formulated as a multi-phase optimal control prob-
lem (Bryson & Ho, 1975), which aims at finding the best control history (e.g., flight path angle and thrust)
such that a given cost function is minimised (e.g., fuel consumption) while satisfying applicable operational
constraints (e.g., a CTA). For real-life problems, obtaining the analytical solution is seldom. Consequently,
most practical implementations transform the continuous optimal control problem into a finite-dimensional
nonlinear programming (NLP) optimisation problem (Betts, 2010), which can be solved using standard
gradient-based optimisation techniques.

The execution time required to solve the resulting NLP optimisation problem and the robustness of the
algorithm, however, are critical aspects that need to be addressed when using these optimisation techniques
for on-board applications. A first objective of this PhD thesis is to establish a framework for robust and
real-time optimisation of aircraft trajectories, and also to provide guidelines to cope with the most common
implementation issues that one’s might encounter.

The paradigm of FMS considered in this PhD thesis generates an optimal trajectory plan (on-board
and in real-time) whenever either the guidance system requests a trajectory plan update due to, e.g., an
excessive time deviation, or the ATC up-links a new CTA. In both cases, the FMS attempts to generate an
energy-neutral trajectory plan, i.e., correcting eventual deviations and/or adjusting the time of arrival at the
metering fix without requiring additional engine thrust and keeping the active drag devices retracted. This
might be achieved by using time and energy management concepts, using only elevator control to exchange
potential energy by kinetic energy and vice-versa. For instance, if the aircraft had excess of potential energy
and needed to arrive earlier than initially planned due to, e.g., a CTA update, altitude could be exchanged
by speed by pitching down. The amount of time that can be absorbed or gained by using only elevator
control, as a function of the state of the aircraft (i.e., altitude, speed, mass and distance to the metering fix)
at the moment of updating the optimal trajectory plan, however, is still unknown. This PhD thesis aims to
quantify the performance limits of energy-neutral trajectories.

Any trajectory plan obtained after the optimisation process needs to be executed by the FMS in an
uncertain environment, in which the models used to generate the plan are not exempt of errors. Guidance
strategies build on time and energy management concepts are very attractive for executing CDOs subject
to CTAs in an environmentally-friendly way. To the best of our knowledge, however, a comprehensive
comparison of the existing guidance strategies based on time and energy management concepts has not
been performed before. An important objective of this PhD is to assess the performance differences across
various guidance strategies.



I.5 Objectives of this PhD thesis 13

In this PhD thesis, a new guidance strategy is also proposed as a part of the TEMO concept. This
strategy is based on an iterative update of the optimal trajectory plan when new measurements of the
current state of the aircraft and/or better knowledge of the surrounding environment are available (e.g., an
improved wind prediction). This guidance strategy, commonly referred in the literature as model predictive
control (MPC) - or nonlinear model predictive control (NMPC) for nonlinear systems - has been in use in
the process industries in chemical plants and oil refineries since the 1980s. NMPC guidance strategies
typically exploit the fact that the consecutive optimal control problems solved to update the trajectory
plan are similar to each other. This allows to initialise the solution procedure efficiently by a suitably
shifted guess from the previous trajectory plan, saving considerable amounts of computation time and
improving convergence. The similarity of subsequent optimal control problems is even further exploited
by strategies that never attempt to iterate the optimisation problem to convergence, and sensitivity-based
trajectory updates that use parametric sensitivity information of the previous solution with respect to the
uncertain parameters to generate acceptable approximations of the optimal solution quasi-instantaneously.
To the best of our knowledge, this is the fist time that NMPC guidance and its sensitivity-based variants
are implemented to satisfy time constraints during the descent of an aircraft.

As explained before, one of the most uncertain parameters is the wind that the aircraft will encounter
during the execution of the descent. An inaccurate wind forecast will both negatively effect CTA compli-
ance and reduce the environmental benefits of CDO. A lot of research activities on this field are currently
conducted, and future air-to-air communications to exchange accurate and up-to-date wind observations
are expected to improve the quality of the wind data input to the FMS. The quantitative benefits, in terms of
fuel consumption and time and energy deviations at the metering fix, of using wind observations emitted
from nearby aircraft to update the trajectory plan in real-time are still unknown. Therefore, this PhD thesis
proposes a method to include up-to-date weather observations in the trajectory management process under
NMPC guidance, and assesses the benefits of this new concept that combines optimisation and estimation.

Based on the discussions presented so far, the specific objectives of this PhD thesis can be outlined as
follows:

• Establish a trajectory management (planning and guidance) framework for the robust optimisation
and execution of aircraft descent trajectories, on-board and in real-time.

• Demonstrate the potential applicability of time and energy management concepts by quantifying
the feasible time windows at a metering fix of energy-neutral descents subject to last minute CTA
updates once the descent has been initiated (i.e., the aircraft has overflown the TOD).

• Perform a comprehensive comparison of guidance strategies build on time and energy management
concepts to satisfy CTAs during CDOs flying in an uncertain environment. The set of guidance
strategies compared in this PhD thesis includes those already existing in the TEMO concept (i.e.,
tactical, strategic and hybrid) and the newly proposed NMPC.

• Assess sensitivity-based alternatives to the generic NMPC methodology to overcome its main draw-
back, namely, the uncertain and in some cases excessive execution time required to update the tra-
jectory plan. These guidance strategies make use parametric sensitivity information from the active
optimal trajectory plan to frequently update it quasi-instantaneously.

• Investigate the benefits of combining the NMPC stategy with wind networking concepts (i.e., sharing
wind observations between aircraft), in terms of environmental impact and ability to comply with
operational constraints. In addition, the sensitivity of the performance metrics to the rate of wind
observations received from nearby aircraft will be also quantified.
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I.6 Scope and limitations of this PhD thesis
In order to accomplish the objectives of this PhD thesis, the research is subject to several assumptions and
limitations that define its scope:

• This PhD thesis only focuses on the on-board systems required to satisfy CTAs during CDOs. Ac-
cordingly, it is assumed that the CTAs is provided by an hypothetical ATC through a data-link com-
munications system. Furthermore, the time constraint is computed by an ideal AMAN, which is able
to accurately sequence the arrival traffic and ensure sufficient spacing.

• The concept of operations investigated assumes a closed-loop path from the TOD to the runway
threshold. Therefore, updates of the optimal trajectory plan due to route changes are not contem-
plated. Changes of the lateral route, however, could be translated to changes in the distance to go,
and use the proposed algorithms with minor modifications.

• All the experiments of this PhD thesis evaluate the best a single aircraft can do given a CTA and route,
thus neglecting interaction with surrounding traffic. The potential effectiveness of the proposed plan-
ning and guidance algorithms are not investigated through a traffic simulation, and discussions on
their benefits in the traffic stream management are not performed.

• Aircraft emissions consist primarily of carbon dioxide (CO2), nitrogen oxides (NOx), and methane.
Of additional concern are the generation of contrails, the sulphur oxides (SOx) and the particulate
matter (PM). In the recent years, several studies have proposed trajectory optimisation strategies to
mitigate the environmental impact of aviation considering some of these factors (see for instance
the work performed by Hartjes & Visser (2017)). In this PhD thesis, however, fuel consumption is
the only environmental impact metric considered for the optimisation of aircraft trajectories. Yet,
airframe noise is indirectly considered in the optimisation algorithm by also minimising the number
of speed brakes deployments. In addition, in certain experiments a noise model is used to asses,
ad-hoc, the noise footprints of the trajectories.

• The performance assessment of the planning and guidance strategies is done through simulation,
which requires an aircraft performance model. All the results presented in this PhD thesis are only
valid for the Airbus A320, which represents the vast majority of worldwide narrow-body commercial
aircraft. The proposed planning and guidance algorithms, however, are generic enough to consider
different aircraft types by adopting the corresponding performance model.

• It it assumed that speed brakes and throttle are the only mechanisms to remove and add energy from
the system to correct disturbances, respectively. Despite flaps and gear might be more efficient than
deploying speed brakes or decreasing the thrust, they have not been considered in this PhD thesis
as means to control the energy rate of the aircraft. In spite of that, they have been modelled in some
experiments to represent realistic approaches.

• The trajectory optimisation problem tackled in this PhD involves nonlinear constraints and/or cost
function and is, in consequence, a non-convex optimisation problem. This means that several local
minima may exist. Since global optimisation algorithms require a high computational burden, they
are prohibited for real-time applications such as the on-board generation of optimal trajectory plans
when using NMPC guidance. Thus, the proposed trajectory optimisation techniques involve the use
of local optimisation algorithms.

• Contingencies, such as downgraded guidance or engine failure, are not considered in the experi-
ments. In other words, normal operations are assumed in all the experiments.
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I.7 Outline of this PhD thesis
The present document is organised in seven chapters, which are summarised as follows. It is worth noting
that a broad state-of-the-art of the main topics addressed in this PhD thesis has been presented before.
A deeper and more specific state-of-the-art for each individual topic is included at the beginning of the
chapter that addresses it.

• Chapter II presents a detailed framework for trajectory management, which includes optimisation
techniques to generate optimal trajectory plans in real-time, and various guidance strategies to exe-
cute the resulting plans using time and energy management concepts.

• Chapter III quantifies the feasible time window for energy-neutral CDO trajectories as a function of
the altitude and distance to go; and analyses the sensitivity of the feasible time window to different
winds, metering fix position, aircraft masses, and initial speeds.

• Chapter IV compares the performance of four guidance strategies designed to satisfy time constraints
during a continuous descent operation: tactical, strategic, hybrid and NMPC.

• Chapter V proposes two variants of the generic NMPC guidance strategy that rapidly update the
optimal trajectory plan by using parametric sensitivities of the active trajectory plan. Then, the per-
formance of these two variants are compared with those of an ideal NMPC, which updates the op-
timal trajectory plan instantaneously at each re-calculation instant, as well as those of the open-loop
execution of the initial trajectory plan computed before the TOD.

• Chapter VI assesses the benefits, in terms of environmental impact and CTA compliance, of combin-
ing the NMPC guidance strategy with wind networking concepts to generate accurate and up-to-date
wind predictions on-board before updating the optimal trajectory plan.

• Chapter VII gives the conclusions that are drawn from this work and points out some future work
that could be done in the direction of the presented research.





When everything seems to be going against you, remember that the airplane
takes off against the wind, not with it.

— Henry Ford

The proper use of science is not to conquer nature but to live in it.

— Barry Commoner

II
Framework on trajectory management

Flight management systems (FMSs) emerged as a part of the standard avionics suite on Boeing 757 and 767
aircraft in the early 1980s (Liden, 1994). From that point on, FMSs became a standard in all new aircraft.
FMSs represented a revolutionary advance in the management of a flight, reducing both workload of the
flight crew and cost of flight for the airline due to its capability to generate and automatically execute
trajectory plans minimising fuel and time according to certain optimisation criteria. The birth of FMSs
also allowed high flexibility in the avionics functionalities and opened the door to design new operational
concepts, such as these addressed in this PhD.

One of the main tasks of a FMS is to generate the trajectory plan that is to be subsequently flown. The
trajectory plan is decomposed in a lateral route (sequence of waypoints) and a vertical profile (time histories
of the altitude and speed). Since this PhD thesis assumes an operational concept in which the lateral route
is fixed and only the vertical profile is managed to satisfy controlled time of arrivals (CTAs), the concept of
trajectory plan will refer only to the vertical profile.

In current FMSs, the trajectory plan is constructed by numerical integration of the differential equa-
tions of the mathematical model describing the dynamics of the aircraft. This numerical integration starts
at the current state of the aircraft, applying the appropriate flight intents or controls, using certain aircraft
performance and weather models, and satisfying the operational constraints entered at the different way-
points of the lateral route. In order to be optimal, the trajectory plan is generated by using economic speeds
and altitudes stored in pre-computed look-up tables as a function of the cost index (CI) and other flight
parameters. Even if some modern FMSs are also able to satisfy CTAs by using brute force (they iterate
with the CI to obtain different speed profiles, and therefore times of arrival, until the CTA is satisfied), the
trajectory plan for the descent is typically computed and frozen before the top of descent (TOD), meaning
that updates of the optimal trajectory plan are not allowed once the descent has started Airbus (1993).

Future FMSs, capable to optimally plan and execute continuous descent operations (CDOs) subject to
CTAs, will require on-board trajectory planning algorithms capable to rapidly generate, in real-time, the
optimal trajectory plan complying with entered required time of arrivals (RTAs) and typical operational
constraints. Future FMSs will also require a guidance system capable to satisfy RTAs in the most environ-
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mentally friendly way, even in presence of modelling errors during the planning process.

Section II.1 presents the models considered in the formulation of the trajectory optimisation problem
in this PhD thesis. Note that, depending on the specific goal of each experiment conducted in this PhD
thesis, these models will be adapted in the following chapters according to appropriate assumptions. Sec-
tion II.2 formulates the generic optimal control problem, which objective function and constraints will be
also particularised later on for each experiment, and then presents a numerical method to solve it. Finally,
the working principle of the existing time and energy managed operations (TEMO) guidance strategies, as
well as the nonlinear model predictive control (NMPC) variants proposed in this PhD thesis, are described
in Section II.3.

II.1 Models needed for trajectory management
An aircraft can be represented as a system composed by several states, which evolve according to a set of
nonlinear ordinary differential equations (ODEs) given some control inputs or, more generally, flight intents
in the form of algebraic constraints, which transform the ODEs system into a system of differential algebraic
equations (DAEs). In turn, this model for the aircraft dynamics must be particularised with certain models
for the aircraft performance and the weather, respectively. The aircraft dynamics, performance and weather
models are thoroughly described in the following sections.

II.1.1 Aircraft dynamics model
The motion of an aircraft can be described with a six degrees of freedom model (Nelson, 1998), where
the derivative equations of the three translations and the three rotations of the aircraft can be integrated
along the time. Although this methodology results in the most accurate planning of the aircraft trajectory,
it requires an extensive aerodynamic and propulsive model and the knowledge of the inertia tensor of the
aircraft. Due to the complexity of this model, many trajectory predictors used in some air traffic mana-
gement (ATM) applications use basic kinematic models that directly model the path characteristics of the
aircraft, without attempting to model the underlying physics (Bilimoria et al., 2000). Somewhere in between
these two approaches lie the aircraft point-mass model (Hull, 2007), a kinetic approach that is considered
accurate enough for on-board trajectory planning and the majority of ground-based ATM applications.

In a point-mass model, the aircraft motion is reduced to three degrees of freedom (the three transla-
tions), assuming that all forces are applied to the centre of gravity of the aircraft. Thus, there is no need
to model its inertia tensor or stability control loops (considered as higher order dynamics) and only the
aerodynamic, propulsive, and external forces (e.g., due to the gravity) must be modelled. This approach is
adopted in all the experiments conducted in this PhD thesis:

dv
dt

= v̇ =
T −D(v, h, s, CL, β)

m
− g sin γ (II.1a)

dγ
dt

= γ̇ =
g

v

(
L(v, h, s, CL)

mg
− cos γ

)
(II.1b)

dh
dt

= ḣ = v sin γ (II.1c)

ds
dt

= ṡ =
√
v2 cos2 γ − w2

x(h, s) + ws(h, s) (II.1d)

dm
dt

= ṁ = −q(v, h, s, T ), (II.1e)

where the state vector ~x = [v, γ, h, s,m]
T is composed, respectively, by the true airspeed (TAS), the aerody-

namic flight path angle, the geometric altitude, the distance to go and the mass of the aircraft; the control
vector ~u = [T, β, CL]

T is composed, respectively, by the total thrust force of the engines, the speed brakes
deflection and the lift coefficient; D is the aerodynamic drag force; L is the aerodynamic lift force; q is the
nominal fuel flow; wx and ws are, respectively, the cross and longitudinal wind components; and g is the
local gravity acceleration. Remember that in the notation adopted in this PhD thesis, (·)T represents the
transpose of (·).
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It should be noted that a flat, non-rotating earth with a constant gravity acceleration has been assumed
to derive Eq. (II.1). Moreover, the sideslip angle and angle of attack have been neglected, being the sum of
all propulsive forces a single thrust vector along the longitudinal axis of the aircraft. Finally, the vertical
component of the wind has been also neglected because it is typically orders of magnitude below that of
the horizontal component.

The aerodynamic forces (lift and drag) in Eq. (II.1) are commonly modelled as:

L(v, h, s, CL) =
1

2
σ(s, h)ρSSLv

2SCL (II.2a)

D(v, h, s, CL, β) =
1

2
σ(s, h)ρSSLv

2SCD(v, h, s, CL, β), (II.2b)

where σ is the normalised density of the air, ρSSL is the density of the air at standard sea level (SSL), S is
the wing surface area, and CD is the drag coefficient.

For practical reasons (such as requirements to speed up the algorithms) several simplifications can be
done in the mathematical representation of the equations describing the aircraft dynamics (Eq. (II.1)). In
general, the more complex (and typically accurate) the model is, the larger the number of nonlinearities in
the model and the more execution time required to solve the trajectory optimisation problem. As a result,
the trade-off between accuracy and execution time must be considered when selecting an appropriate air-
craft dynamics model for real-time trajectory optimisation purposes. For this reason, each chapter of this
PhD thesis considers a different variant of Eq. (II.1), depending on the specific implementation needs.

The thrust control is typically bounded by the idle (or minimum) thrust (Tidle), and maximum thrust
(Tmax) of the particular aircraft type. Similarly, bounds on the remaining controls, CL and β, are also
enforced to ensure that the aircraft remains within its operational limits. Generally speaking, the drag
coefficient, the maximum and minimum thrust, the maximum lift coefficient, the nominal fuel flow, and
the fuel flow when the engines operate at idle (qidle) are functions of the state and/or control variables. The
complexity of these mathematical expressions depends on the adopted aircraft performance model (APM).

II.1.2 Aircraft performance model
An APM particularises the expressions for CD, Tmax, Tidle, q and qidle as a function of ~x and/or ~u. The
accuracy of the APM is of crucial importance if one aims at computing realistic trajectories and thus obtain
representative results. Without going any further, the fuel flow function will be used to determine the total
fuel consumption, which will be used, in turn, to support investment decisions in many assessments of
new ATM systems and concepts of operations.

Generally speaking, the drag coefficient depends on CL (induced drag), Mach number (M ) (effects of
air compressibility), and to a lesser extent, the altitude (effects of air temperature on the Reynolds Number).
The drag coefficient will also change if speed brakes are applied, the gear (η ∈ {0, 1}) is deployed or the
aircraft is configured with flaps/slats (ζ). These gear status and flaps/slats configurations could be either
considered as additional controls (i.e., ~u = [T, β, CL, η, ζ] ) or modelled as a function of the state vector.

Another alternative widely used to reduce the nonlinearities of the model consists to split the descent
in several phases, where each phase is particularised with a different model for the CD, q, Tmin and Tmax.
The formulation of multi-phase optimal control problems, where each phase could have a different aircraft
dynamics and/or performance model, will be described in Section II.2.2.

For low subsonic flight (Mach approximately below 0.6) the effects of Mach and altitude in the drag
coefficient can be neglected, leading to the well-known drag polar, which is composed by a constant term
plus a quadratic term function of the square of the lift coefficient:

CD(CL, β, η, ζ) = CD0(β, η, ζ) + CD2(β, η, ζ)C2
L, (II.3)

where CD0 and CD2 are the parasite and induced drag coefficients, respectively, which depend on the sta-
tus of the landing gear, the flaps/slats configuration and the speed brakes deflection. Typical airliners,
however, operate in the range between approximately Mach 0.60-0.85 for most of the flight. Thus, compres-
sibility effects on drag coefficient cannot be neglected and models more elaborated than Eq. (II.3) need to
be considered to generate realistic trajectories.
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Regarding the idle and maximum thrust, these functions essentially depend on the Mach number and
the outside air temperature and pressure conditions. Similarly, nominal fuel flow depends on thrust, Mach
number and outside air temperature and pressure.

Several APMs can be used to model these aerodynamic and propulsive functions, from simple linear
interpolations with look-up tables coming directly from experimental or simulated data, to more or less so-
phisticated mathematical approximations that fit these data. For instance, Dalmau & Prats (2015) approx-
imated aerodynamic and propulsive data from the manufacturer with polynomial functions, while Betts
(2010) approximated similar kinds of data with tensor product spline functions (de Boor, 1972). Both meth-
ods will be used in this PhD thesis.

Another example of APM used in many ATM applications, such as air traffic control (ATC) simulation
purposes, is the Eurocontrols’s base of aircraft data (BADA) v3. In BADA v3, the drag coefficient is mod-
elled with Eq. (II.3), thus neglecting compressibility effects, the thrust limits are only given as a function of
altitude, and the fuel flow depends on the true airspeed and thrust. It is well-known that BADA v3 was
designed to model aircraft performance and fuel consumption in nominal flight conditions, and several
studies have already revealed that is not accurate enough to derive correct fuel consumption figures in the
terminal maneouvering area (TMA) (Senzig et al., 2009; Senzig & Fleming, 2009). In particular, it has been
reported that BADA v3 model tends to underestimate fuel flow in idle conditions. The newly developed
BADA v4 was designed as a realistic, accurate, and complete APM that overcomes the main limitations of
BADA v3 (Poles et al., 2010). BADA v4 will be also used in this PhD thesis.

It is out of the scope of this PhD thesis to review and assess the accuracy of existing APMs. Yet, it is
very important to remark the importance of having representative APMs when aiming to compute accurate
trajectory plans and time predictions. For instance, Slater (2009) showed the importance to accurately model
idle thrust and drag coefficient functions when generating trajectory plans for the descent phase. In the
same context, Casado et al. (2013) proposed a methodology to assess the impact of uncertainties in the
coefficients of parametric models such as BADA (i.e., models defined my mathematical functions which
depend on several coefficients) on the accuracy of the computed trajectory plan.

II.1.3 Weather model
The ground speed of the aircraft is greatly influenced by the wind field. Moreover, the performance of
the aircraft notably depends on the temperature and pressure of the air. For instance, during a 20 minutes
climb, temperature errors of 1.5 K throughout the climb would produce an altitude prediction error around
500 ft (Forester & Dharssi, 1992), and a difference of 12 kt in the ground speed would result in an estimated
time of arrival deviation of 5%, assuming an original ground speed of 250 kt (Robert & De Smedt, 2013).
Moreover, the ground speed not only depends on the longitudinal and cross winds, as shown in Eq. (II.1d),
but also on temperature if the aircraft is flying at a constant Mach number, or on temperature and pressure
if it is following a constant callibrated airspeed (CAS). As shown by Chatterji et al. (1996), ground speed
sensitivity is around 1.1 knot per K for typical cruise conditions, where aircraft operate at constant Mach
number. Therefore, an accurate weather model will definitely reduce the number of corrective actions
required to nullify altitude, time and/or speed deviations from the trajectory plan. Last but not least, the
trajectory plan is optimal only for the weather conditions considered in the weather model. Thus, if the
weather model does not accurately reproduce the actual wind, temperature and pressure conditions, the
executed trajectory will not be the most optimal achievable.

Typically, trajectory planning tools assume the international standard atmosphere (ISA) model (ICAO,
1993), which is representative of an ideal atmosphere based on the thermodynamic equation, as defined by
the International Civil Aviation Organization (ICAO). In the ISA model, the normalised temperature of
the air (θ) decreases at a constant lapse rate of λh = 6.5 K km−1 from standard sea level (where the ISA
temperature is τSSL = 288.15 K) up to the altitude of the tropopause, which ISA value takes h11 = 36, 000
ft. Above the tropopause, the temperature is considered constant with a value of θ11 = 0.732 up to 65,600 ft
(well above the typical altitudes where commercial aircraft operate):

θ(h) =

{
1− λh

τSSL
h ifh ≤ h11

θ11 ifh > h11.
(II.4)

By combining this linear model with the hydrostatic equation, the expression of the normalised pres-
sure (δ) as a function of the altitude can be easily obtained:
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δ(h) =

{
θ(h)

g
λhR ifh ≤ h11

δ11e
gτSSL
Rθ11

(h11−h) ifh > h11,
(II.5)

where R = 287.058 Jkg K−1 is the specific gas constant for dry air, δ11 = 0.224 is the normalised pressure
of the air at the tropopause, and pSSL = 1013.25 hPa is the pressure at standard sea level. Finally, given
the normalised temperature and normalised pressure values, the normalised air density can be obtained by
using the perfect gas law relationship:

σ(h) =
δ(h)

θ(h)
. (II.6)

The ISA model is just a theoretical representation of the atmosphere. In practise, due to temperature
inversions, as well as additions or decrease of moisture, the actual atmosphere will have lapse rates and
standard conditions at sea level different from those of ISA. Non-standard conditions are often modelled
by adding a specified temperature offset to the standard temperature at SSL (the well-known ISA+∆T).
However, pressure is not recalculated at the non-standard temperature because temperature effects on it are
considered to be much less important than the effect of altitude. In spite of that, non-standard conditions
for the pressure can be also modelled by considering a pSSL different from 1013.25 hPa.

It should be noted that the ISA model is not the only existing reference for temperature and pressure
profiles. The United States department of defense standard MIL-STD-210C and its successor standard
MIL-HDBK-310 also define temperature models for use as references of hot day, cold day, tropical, and
polar temperature profiles. Figure II-1(a) compares different standard temperature profile models.
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Figure II-1: Theoretical and empirical weather models

Realistic temperature and pressure data, as a function of the geopotential altitude1 and geographical
location (latitude and longitude) for different time stamps, can be obtained from weather forecasts and
analysis generated by numerical weather prediction (NWP) models. At present, there exist several NWP
which provide weather forecasts and analysis with a variety of resolutions, accuracies and look-ahead
times. To give a couple of examples, the global forecast system (GFS) is a NWP developed and maintained
by the National Oceanic and Atmospheric Administration (NOAA) that covers the entire globe with an
horizontal resolution of 28 km and look-ahead forecast times up to 192 hours; while the rapid refresh
(RAP) covers a limited region (North America), but has an horizontal resolution of 13 km and forecast look-
ahead times going out 18 hours. These data in gridded format can be interpolated to obtain the weather
information at specific geographical coordinates and altitudes or approximated with continuous functions
of various complexity, such as polynomials or splines. The RAP model will be used in this PhD thesis.

1For typical aircraft altitudes, the gravity variations at different altitudes can be neglected. Thus geopotential alti-
tudes, which are typically used in weather models, and geometric altitudes are assumed to be the same.
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Note that since in the concept of operations tackled in this PhD thesis the lateral route (sequence of
waypoints) is known before generating the optimal vertical profile, realistic air temperature and pressure
models will be essentially function of the altitude and distance to go.

A similar rationale is adopted to model the wind field. Simple models used for academic purposes
assume constant wind speed and direction throughout the descent, independently of the geographical lo-
cation and altitude. In practise, however, wind speed tends to increase with the altitude. This typical be-
haviour can be represented using various empirical and theoretical models, from linear functions to more
or less complex mathematical expressions. An example of empirical model for the total wind speed (|~w|),
which assumes constant longitudinal wind above a reference altitude (hr) is the well-known Hellmann
exponential law:

|~w|(h) =

{
wr if h > hr

wr

(
h
hr

)α
if h ≤ hr,

(II.7)

where wr is a known wind speed at hr. The Hellmann exponent (α) depends on many factors, such as the
coastal location, the shape of the terrain on the ground, and the stability of the air. Figure II-1(b) shows the
Hellmann exponential law for different values of α, fixing wr to 30 kt and hr to FL300.

State-of-the-art weather forecasts obtained from NWPs typically provide the wind vector at different
altitudes and geographical locations. These forecasts decompose the wind vector in north component (wn),
east component (we) and vertical component. Again, since the route is known beforehand in this PhD
thesis, the bearing between consecutive waypoints of the route is also known, and the wind field can be
projected to along-track and cross-track wind components as a function of the altitude and distance to go:

ws(h, s) = wn(h, s) cosχg(s) + we(h, s) sinχg(s) (II.8a)
wx(h, s) = −wn(h, s) sinχg(s) + we(h, s) cosχg(s), (II.8b)

where χg is the track angle, a known function of the distance to go.

In should be noted that the temporal variations of temperature, pressure and wind components are
neglected in this PhD thesis because the duration of a descent is small if compared with the time scale of
typical atmosphere dynamics. In addition, the trade-off between additional complexity (thus execution
time) of the model and accuracy of the resulting trajectories is not appealing. Yet, readers interested on the
extension of the model that considers temporal variations of the weather variables could consult the model
proposed by Prats et al. (2014).

For each of the experiments conducted in this PhD thesis, the expressions for δ, θ, ws and wx will
be particularised as a function of h and s, either with mathematical expressions approximating realistic
weather data from NWP forecasts or using empirical or theoretical models.

II.2 Optimal trajectory planning
As mentioned before, the optimisation of the vertical profile of an aircraft trajectory can be formulated as a
multi-phase, constrained optimal control problem (Soler et al., 2015). The formulation of a generic optimal
control problem is presented in Section II.2.1. Since the trajectory optimisation problem tackled in this
PhD thesis cannot be solved analytically due to the nonlinearity and complexity of the constraints and cost
function, a discretisation approach is presented in Section II.2.2 to solve it numerically.

II.2.1 Optimal control problem formulation
An optimal control problem for a generic system during a fixed or variable continuous time horizon [tI , tF ]
can be formulated as follows (Bryson & Ho, 1975):
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min
~u(t)

J := φ
(
~x(tF ), ~d

)
+

∫ tF

tI

π
(
~x(t), ~u(t), ~d

)
dt

s.t ~x(tI) = ~X

~̇x = ~f
(
~x(t), ~u(t), ~d

)
~bin
(
~x(t), ~u(t), ~d

)
≤ 0

~beq
(
~x(t), ~u(t), ~d

)
= 0

~ψ
(
~x(tF ), ~d

)
= 0,

(II.9)

where ~x ∈ <nx is the vector of differential states, ~u ∈ <nu is the vector of controls, and ~d ∈ <nd is the vector
of fixed parameters of the model. The cost function J : <nx × <nu × <nd → <, which is composed by a
running cost (or Lagrange term) π : <nx×<nu×<nd → < and an end cost (or Mayer term) φ : <nx×<nd →
<, is to be minimised subject to: dynamic constraints ~f : <nx ×<nu ×<nd → <nx in the form of ODEs with
initial conditions ~X ∈ <nx , algebraic constraints~beq : <nx ×<nu ×<nd → <nbeq , inequality path constraints
~bin : <nx ×<nu ×<nd → <nbin , and terminal constraints ~ψ : <nx ×<nd → <nψ enforced only at tF .

In some applications, free parameters that, in contrast to the controls, are constant in time might be
also included as a part of the decision variables. For instance, when the final time is fixed, tF is a known
and fixed parameter. For optimal control problems with variable final time, however, tF becomes a new
decision variable to be optimised, in addition to ~u(t).

It should be noted that the vector of fixed parameters of the model (~d), however, is not part of the
decision variables and, consequently, must be chosen by the user and remains constant during the whole
optimisation process. Yet, it might change for different problems. For instance, parameters that could be
included in ~d are the coefficients α, wr, and hr of Eq. (II.7) if the Hellmann model were considered.

The optimal control problem described by Eq. (II.9) assumes that the same running cost, dynamic
constraints and algebraic and path constraints apply during the whole time horizon. In addition, event
constraints can be set only at the very end of the time horizon. Yet, many real-life processes can be divided
into several phases (or stages), where the dynamics of the system, the running cost and the algebraic and
path constraints might change. In addition, in some particular applications it is necessary to formulate
interior-point constraints between two consecutive phases. Even in some applications, it could be desirable
to define different states and controls vectors for each phase. In this PhD thesis, different phases could have
different algebraic, path and interior-point constraints, yet they must have the same number of differential
dynamic constraints, because it has been assumed that the state vector is identical in all phases.

In order to extend the optimal control problem of Eq. (II.9) to multiple phases, let the time horizon
[tI , tF ] be divided intoP known intervals [tj , tj+1], with j = 0, . . . , P−1. Note that t0 = tI and tP = tF . Each
one of these intervals corresponds to a different phase. The generic multi-phase optimal control problem
defined over P phases can be formulated as:

min
~u(t)

J :=

P−1∑
j=0

(
φj

(
~x(tj+1), ~d

)
+

∫ tj+1

tj

πj

(
~x(t), ~u(t), ~d

)
dt

)
s.t ~x(t0) = ~X

~̇x = ~fj

(
~x(t), ~u(t), ~d

)
; j = 0, . . . , P − 1

~binj

(
~x(t), ~u(t), ~d

)
≤ 0; j = 0, . . . , P − 1

~beqj

(
~x(t), ~u(t), ~d

)
= 0; j = 0, . . . , P − 1

~ϑeqj

(
~x(tj+1), ~d

)
= 0; j = 0, . . . , P − 2

~ϑinj

(
~x(tj+1), ~d

)
≤ 0; j = 0, . . . , P − 2

~ψ
(
~x(tP ), ~d

)
= 0,

(II.10)
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where ~fj : <nx ×<nu ×<nd → <nx and πj : <nx ×<nu ×<nd → < are the differential dynamic constraints
and running cost of the jth phase, respectively. Similarly,~beqj : <nx×<nu×<nd → <nbeqj and~binj : <nx×<nu×
<nd → <nbinj are the algebraic and path constraints, respectively, of the jth phase; and ~ϑeqj : <nx × <nd →
<nϑeqj and ~ϑinj : <nx × <nd → <nϑinj represent applicable equality and inequality interior-point constraints,
respectively, applying at the last time of the jth phase.

When dealing with mutli-phase optimal control problems, a new set of constraints is added to link
the state variables across two consecutive phases and guarantee continuity in the solution:

~x(t+j+1)− ~x(t−j+1) = 0; j = 0, . . . P − 2. (II.11)

Analogously to the single-phase optimal control problem, for multi-phase optimal control problems
the final time of each phase could be either a known parameter or a decision variable to be optimised. For
instance, if only the final time of the whole time interval were fixed (e.g., due to a CTA) but the duration of
each phase were flexible, tP would be a known parameter and tj+1, j = 0, . . . , P − 2, additional decision
variables of the optimisation problem, in addition to ~u(t).

Basically, two different methods are available for solving optimal control problems:

• Indirect methods: consist of first deriving the necessary conditions for optimality in an analytical
way, and then solve them numerically by using root-finding solvers and ODE integrators. These
methods are commonly referred in the literature to optimise-then-discretise.

• Direct methods: consist of first discretising the time history of the controls and/or states to transcribe
infinite-dimensional optimal control problem Eq. (II.9) into a finite-dimensional nonlinear program-
ming (NLP) optimisation problem, and then attempt a direct numerical solution. These methods are
commonly referred in the literature to discretise-then-optimise.

In turn, indirect methods can be further classified into single-shooting and multiple-shooting, while
the direct methods can be divided into single-shooting, multiple-shooting and collocation (see Fig. II-2). An
excellent review of these methods was performed by Andersson (2013), illustrating the working principle of
them by introducing a simple, yet industrially relevant optimal control problem. Prats (2010) also described
the main features and the trade-offs of each method, in terms of complexity and computational burden,
from a more practical perspective.

Optimal control methods

Direct methods

(discretise-then-optimise)
Indirect methods

(optimise-then-discretise)

Direct 
collocation

Indirect 
Single-shooting

Direct 
Single-shooting

Direct 
Multiple-shooting

Indirect 
Multiple-shooting

Figure II-2: Methods to solve optimal control problems

The major drawback of indirect methods is the requirement for a detailed mathematical analysis of
each single optimal control problem. Even small changes in the definition of the constraints can lead to a
completely different solution, often requiring a complete derivation of the necessary conditions for opti-
mality. These methods also require a very accurate initial guess for the adjoint variables. These variables,
however, do not have any physical meaning, and the optimal solution is highly sensitive to even small
changes of them (Prats, 2010). Last but not least, including path inequality constrains in the formulation of
the optimal control problem can be prohibitely difficult when using indirect methods. For these reasons,
they were not implemented in this PhD thesis.



II.2 Optimal trajectory planning 25

Direct methods are much easier to set up, if compared with the indirect ones, and allow to solve very
complex problems with a minimum effort of mathematical analysis. Using direct methods, the whole time
horizon is divided into several time intervals, and the control vector is parameterised with a low order
polynomial on each interval (e.g., a piecewise constant control).

In direct single-shooting, the initial state vector ( ~X) is propagated forward in time from tI to tF by
integrating the differential equations (~f ) with ODE/DAE integrators. As a result, the state vector at tF
becomes a function of the parametrised controls on each interval and the initial state vector. The integral
of the running cost (π) is also calculated to evaluate the cost incurred during the whole time horizon,
which is to be minimised. Then the value of the terminal constraint (~ψ) is evaluated and, by using a NLP
optimisation algorithm, the parametrised controls and the initial state vector are adjusted in order to satisfy
it. In other words, with the single-shooting approach, only the time history of the controls is parametrised,
eliminating the state variables with ODE/DAE integrators. This method is effective for problems that are
either simple or have an extremely good initialisation. The main drawback of direct single-shooting is that
the objective and constraint are highly nonlinear dependent on ~u, thus slowing down the convergence of
the NLP solution (Andersson, 2013). In addition, if a guess for the state variables is available, e.g., from a
previously computed trajectory, it cannot be used to initialise and speed-up the solution.

Multiple-shooting methods address these issues by including the state trajectory in the NLP, essen-
tially breaking the problem into shorter steps. The working principle of multiple-shooting consists on
parametrising not only the controls, but also the state vector at the beginning of each interval. On each
interval, the initial state vectors can be propagated to the beginning of the next one by integrating the
differential equations with ODE/DAE integrators. As a result, the state vector at the end of each interval
becomes a (nonlinear) function of the state and control vectors at its beginning. The discretised state vectors
could be pieced together to form a continuous trajectory if and only if their values match at the junction
points. The discontinuities at the junction points, called defects, are included in the constraints vector as a
system of nonlinear equations that depend on the parametrised states and controls. Finally, the resulting
finite-dimensional optimisation problem is solved by using standard NLP optimisation algorithms. A deep
analysis on the proprieties of direct shooting methods was performed by Gath (2002) and Bulirsch et al.
(1993). In this PhD thesis, this approach was selected to solve the trajectory optimisation problem.

For a detailed explanation of the remaining direct collocation methods, the reader is referred to Betts
(2010). The main difference between direct collocation and multiple-shooting methods is that the former
perform an implicit integration of the dynamic system on each time interval, while multiple-shooting meth-
ods use explicit integration formulas, such as Euler or Runge-Kutta. One of the major advantages of using
multiple-shooting methods, if compared to direct collocation, is the possibility of running them with ODE
integrators that include step-size control techniques, resulting in an algorithm almost independent of the
discretisation grid that will, if it converges, at least deliver a suboptimal solution Gath (2002). A very
interesting survey on existing optimal control software packages was performed by Virtanen et al. (1999).

II.2.2 Direct multiple-shooting formulation
Let the continuous time horizon [tI , tF ] of Eq. (II.9) be discretised into N + 1 equidistant time samples τk,
with k = 0, . . . , N . Note that τ0 = tI , τN = tF and the discretisation step is ∆τ = (τN − τ0)/N . The optimal
control problem discretised by using direct multiple-shooting methods and minimising J in a time horizon
of N time intervals can be formulated as:

min
~xk,k=0,...,N
~uk,k=0,...,N−1

J := φ
(
~xN , ~d

)
+

N−1∑
k=0

Π
(
~xk, ~uk, ~d,∆τ

)
s.t ~x0 = ~X

~xk+1 = ~F
(
~xk, ~uk, ~d,∆τ

)
; k = 0, . . . , N − 1

~bin
(
~xk, ~uk, ~d

)
≤ 0; k = 0, . . . , N − 1

~beq
(
~xk, ~uk, ~d

)
= 0; k = 0, . . . , N − 1

~ψ
(
~xN , ~d

)
= 0,

(II.12)
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where ~xk ∈ <nx and ~uk ∈ <nu are the state and control vectors discretised at τk, respectively, for k =
0, . . . , N . While the algebraic, path and terminal constraints of the continuous optimal control problem
Eq. (II.9) can be directly evaluated at the discretised states and controls, the states evolution function ~F :

<nx × <nu × <nd × < → <nx must be defined as the result of integrating ~f during a time interval of
duration ∆τ using an appropriate integration scheme with the discretised states and controls. Similarly,
Π : <nx ×<nu ×<nd ×< → < is a quadrature function resulting from a numerical integration of π during a
time interval of duration ∆τ . For instance, using the Euler method with one integration step these functions
would be:

~F (~xk, ~uk, ~d,∆τ) = ~xk + ~f
(
~xk, ~uk, ~d

)
∆τ ; k = 0, . . . , N − 1 (II.13a)

Π(~xk, ~uk, ~d,∆τ) = π
(
~xk, ~uk, ~d

)
∆τ ; k = 0, . . . , N − 1. (II.13b)

where ∆τ could be a known parameter for optimal control problems with fixed final time, or an additional
decision variable to be optimised in Eq. (II.12) if the final time were free. It should be noted, however, that
Eq. (II.13) represents the most simple method to integrate ~f and π during ∆τ . In this PhD thesis, more
complex and accurate techniques have been used, which will be presented in the following chapters.

Analogously to Eq. (II.10), in the discrete domain the optimal control problem can be also defined over
more than one phase. First, let the continuous time horizon [tI , tF ] be divided into P time intervals [tj , tj+1]
for j = 0, . . . , P − 1; each time interval corresponding to a different phase. Again, t0 = tI and tP = tF .
Then, each time interval (or phase) is discretised into Nj equidistant time samples

[
τk, τk+1, . . . , τk+Nj−1

]
,

where τk = tj , τk+Nj−1 = tj+1 and k =
∑
i<j Ni, for all j = 0, . . . , P − 1. The discretisation step of the jth

phase is denoted by ∆τj . As a result, the whole time horizon is discretised again into N + 1 =
∑P−1
j=0 Nj

time samples [τ0, τ1, . . . , τN ].

Let T be a multi-dimensional set that relates the index of each phase to the indexes of its corresponding
time samples. The subset E ⊆ T only includes the index corresponding to the last time sample of each
phase; and I is defined as T \E . For instance, for a multi-phase optimal control problem with P = 3 phases
and N + 1 = 12 time samples equally distributed among them (i.e., Nj = 4 for j = 0, 1, 2), these subsets
would be particularised as:

T = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 8), (2, 9), (2, 10), (2, 11)}
E = {(0, 3), (1, 7), (2, 11)}
I = {(0, 0), (0, 1), (0, 2), (1, 4), (1, 5), (1, 6), (2, 8), (2, 9), (2, 10)}.

Figure II-3 shows an illustrative scheme of the discretisation process for an arbitrary number of phases
and time samples.

Based on the definitions stated above, the discrete multi-phase optimal control problem is:

min
~xk,k=0,...,N
~uk,∀(j,k)∈I

J :=
∑

(j,k)∈E

φj

(
~xk, ~d

)
+

∑
(j,k)∈I

Πj

(
~xk, ~uk, ~d,∆τj

)
s.t ~x0 = ~X

~xk+1 = ~Fj

(
~xk, ~uk, ~d,∆τj

)
; ∀(j, k) ∈ I

~binj

(
~xk, ~uk, ~d

)
≤ 0; ∀(j, k) ∈ I

~beqj

(
~xk, ~uk, ~d

)
= 0; ∀(j, k) ∈ I

~ϑeqj

(
~xk, ~d

)
= 0; ∀(j, k) ∈ E\{(P − 1, N)

~ϑinj

(
~xk, ~d

)
≤ 0; ∀(j, k) ∈ E\{(P − 1, N)

~ψ
(
~xN , ~d

)
= 0

~xk − ~xk+1 = 0; ∀(j, k) ∈ E\{(P − 1, N)}.

(II.14)
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Figure II-3: Discretisation process for a generic optimal control problem

In Eq. (II.14), Πj : <nx ×<nu ×<nd ×< → < and ~Fj : <nx ×<nu ×<nd ×< → <nx are the quadrature
and states evolution functions for the jth phase, respectively.

The discretisation step of each individual phase could be considered either known parameter or vari-
able to be optimised, depending on the problem. For instance, if the duration of the whole time hori-
zon were fixed to a certain parameter, say a CTA, but the duration of each phase were flexible, ∆τj for
j = 0, . . . , P − 1 would become decision variables subject to:

P−1∑
j=0

(Nj − 1) ∆τj − CTA = 0, (II.15)

which would be appended as an equality constraints in Eq. (II.14).

II.2.3 Nonlinear programming problem
As mentioned above, direct methods for optimal control compute the optimal trajectory plan by formulat-
ing the generic multi-phase optimal control problem Eq. (II.14) as a parametric NLP optimisation problem.
This NLP optimisation problem has the following form:

min
~z

f (~z, ~p)

s.t ~h (~z, ~p) = 0

~g (~z, ~p) ≤ 0,

(II.16)

where ~z ∈ <nz is the vector of primal variables, ~h : <nz × <np → <nh is the vector of equality constraints,
~g : <nz × <np → <ng is the vector of inequality constraints, and ~p ∈ <np is the vector of (fixed) parameters
of the NLP optimisation problem. In this PhD thesis, the following definitions are considered:

~z :=


~z0

~z1

. . .

~zN

 , ~h (~z, ~p) :=


~h0 (~z, ~p)
~h1 (~z, ~p)

. . .
~hN (~z, ~p)

 , ~g (~z, ~p) :=


~g0 (~z, ~p)

~g1 (~z, ~p)

. . .

~gN (~z, ~p)

 , (II.17)

where:
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~zk :=


[
~uk

~xk

]
if (j, k) ∈ I

~xk if (j, k) ∈ E

~hk :=



~xk+1 − ~Fj

(
~xk, ~uk, ~d,∆τj

)
~beqj

(
~xk, ~uk, ~d

)  if (j, k) ∈ I[
~ϑeqj

(
~xk, ~d

)
~xk − ~xk+1

]
if (j, k) ∈ E\{(P − 1, N)}

~ψ
(
~xk, ~d

)
if k = N

~gk :=

~b
in
j

(
~xk, ~uk, ~d

)
if (j, k) ∈ I

~ϑinj

(
~xk, ~d

)
if (j, k) ∈ E\{(P − 1, N)}.

(II.18)

According to Eq. (II.18), ~zk includes both discretised states and controls at the time sample τk. Similarly, ~gk
and ~hk include the inequality and equality constraints applied at τk, respectively.

In Eq. (II.16), f is the cost function of the original optimal control problem evaluated at the primal
variables and NLP parameters, i.e., f (~z, ~p) = J(~z, ~p). In this PhD thesis, the vector of NLP parameters is
composed of both current state of the aircraft and parameters of the model:

~p =

[
~X
~d

]
. (II.19)

Furthermore, in order to reduce the number of NLP variables and constraints, the constraint that fix
the initial conditions of the optimal control problem to the current state of the system is eliminated by
substituting the variables ~x0 for the vector of fixed initial conditions ~X in the whole NLP optimisation
problem (i.e., equality constraints, inequality constraints and cost function). This allows to remove the
constraint ~x0 = ~X and the variable ~x0 from the optimisation problem.

The Lagrangian function associated to the NLP optimization problem (II.16) is:

L
(
~z, ~p, ~λ, ~µ

)
:= f (~z, ~p) + ~λT~g (~z, ~p) + ~µT~h (~z, ~p) , (II.20)

where ~λ ∈ <ng and ~µ ∈ <nh are the Lagrange multipliers (dual variables) vectors paired up with the
constraints ~g and ~h, respectively. An optimal primal-dual pair

(
~z∗, ~λ∗, ~µ∗

)
, where (·)∗ indicates optimal,

satisfies the first-order necessary conditions of optimality, also known as Karush-Kuhn-Tucker conditions
(KKT) (Kuhn & Tucker, 1950), if:

∂L
∂~z

(
~z∗, ~p, ~λ∗, ~µ∗

)
=
∂f

∂~z
(~z∗, ~p) + ~λ∗

T ∂~g

∂~z
(~z∗, ~p) + ~µ∗

T ∂~h

∂~z
(~z∗, ~p) = 0 (II.21a)

~h (~z∗, ~p) = 0; ~µ∗ > 0 (II.21b)
gi (~z∗, ~p) = 0; λ∗i > 0; ∀(gi, λ∗i ) ∈ Gac (II.21c)
gi (~z∗, ~p) < 0; λ∗i = 0; ∀(gi, λ∗i ) ∈ Gin, (II.21d)

where the pairs of inequality constraints and associated dual variables have been divided into two comple-
mentary sets: the active set (Gac) and the inactive set (Gin) (Würth et al., 2009).

Newton methods suitable to solve this kind of optimisation problems try to find a point satisfying
Eq. (II.21), by using successive linearisation of the cost function and constraints. The major differences
between them are on how to achieve the conditions related with the inequality constraints Eqs. (II.21c)
and (II.21d). The two big families are:
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• Interior-point methods, which typically replace the original NLP optimisation problem by a series
of barrier subproblems (Wachter & Biegler, 2006), which are controlled by a barrier parameter. Two
representative interior-point methods are the primal-dual method, and the trust-region method.

• Active-set methods, which solve in turn a sequence of subproblems based on a quadratic approxima-
tion of the original NLP optimisation problem. Representative active-set methods are the sequential
quadratic programming (SQP) method (Gill et al., 2005), the sequential linear-quadratic programming
(SLQP) method (Byrd et al., 2003), and the gradient projection method (Lin & Moré, 1999).

LetPN be the NLP algorithm (either interior-point or active-set) that provides the optimal primal-dual
solution (i.e., satisfying Eq. (II.21)) as a function of ~p for the next N time samples:(

~z∗, ~λ∗, ~µ∗
)
← PN (~p) . (II.22)

Remember that the vector of NLP parameters includes both current states and parameters of the
model (see Eq. (II.19)). Taking into account that, by definition of Eq. (II.22), the optimal primal-dual so-
lution is an implicit function of ~p, any change in ~p would lead to a new optimal primal-dual solution. This
fact will be exploited in Section II.3.4.2 when considering parametric sensitivity methods to update the
optimal trajectory plan quasi-instantaneously.

II.2.4 Implementation considerations
Several common issues must be considered when dealing with NLP optimisation problems. In particu-
lar, how to react in the face of an infeasible solution in which some constraints are not satisfied, how to
handle discontinuities present in tabular data, and which mechanisms should be used to speed up the op-
timisation process when solving a sequence of similar problems. The following sections give a couple of
recommendations related to these three topics, respectively.

II.2.4.1 Recovering from infeasible solutions
In practical applications, the solution of the NLP optimisation problem described by Eq. (II.16) may not
always be feasible. Accumulated deviations caused by disturbances and modelling errors could eventually
lead to the impossibility to satisfy one or several constraints to a given numerical precision. If this were
the case, the NLP solver would not provide a valid solution and, consequently, the optimal trajectory plan
could not be obtained. Yet, in some circumstances it may be reasonable to allow, to some extent, violations
in certain constraints, so that a sub-optimal solution can still be obtained, as long as the safety requirements
of the application permit. With this aim, there exist several alternatives to recover the feasibility of the
solution.

Constraint relaxation method
An attractive method consists of not defining the admissible range of the constraints to their actual

operational limits but to more conservative values. Then, these limits will be systematically relaxed when-
ever an infeasible solution is obtained. This approach is commonly referred as the constraint relaxation
method. It is not always obvious, however, which constraints to relax, nor the amount which they should
be relaxed. In order to overcome this issue, some optimisation techniques have been proposed, which de-
termine the constraints that should be relaxed, according to some priority list, and the minimum relaxation
required to recover feasibility (Vada et al., 2001). These techniques resort to optimisation problems run-
ning in parallel to the original optimal control problem. Accordingly, their algorithmic complexity may be
significant.

Transient constraint violation method
A second alternative consists of allowing constraint violations only during a certain period of time,

typically at the beginning of the new trajectory, which duration is to be minimized. In some cases, however,
the time transient constraints violations could be large (Scokaert & Rawlings, 1999).
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Soft-constraint method
Finally, the soft-constraint method consists of defining additional slack variables in the optimisation

problem, which allow to violate the path and/or terminal constraints in case of not obtaining a feasible
solution to the optimal control problem (Scokaert & Rawlings, 1999). Using this method, the original NLP
optimisation problem, Eq. (II.16), is re-formulated as follows:

min
~z,~eeq,~ein

f (~z, ~p) + ~ein
T

Win~ein + ~eeq
T

Weq~eeq

s.t ~h (~z, ~p) = ~eeq

~g (~z, ~p) ≤ ~ein

~ein ≥ 0,

(II.23)

where ~ein ∈ <ng and ~eeq ∈ <nh are the vector of slack variables paired up with the inequality and equality
constraints of the original NLP optimisation problem, respectively.

Additional constraints ensure that the slack variables related to inequality constraints do not make
the associated constraints more restrictive than their original values.

The positive-definite weighting matrices Win ∈ <ng×ng and Weq ∈ <nh×nh determine how much
the violation of inequality and equality constraints is penalised, respectively. By educatedly tuning these
weights, it is expected that the optimisation algorithm will violate constraints only if necessary. Otherwise,
the result shall be equivalent to that obtained from solving (II.16).

The rule of thumb known as Bryson’s rule (Bryson & Ho, 1975) can be used as a guideline to determine
these weighting matrices. This rule states that the weights should be chosen so that the contribution of
each slack variable to the cost function is approximately the same. In order to accomplish that, the inverse
square of the admissible range of each constraint could be used as weight for the associated slack variable.

Last but not least, it should be noted that using this technique not all the constraints need to be neces-
sarily slacked. For these constraints which cannot be violated under any condition, the corresponding slack
variable could be either removed from the set of variables, or the weight associated to the slack variable
could be set to a very large value. Yet, the later solution is not recommended for numerical stability reasons.

II.2.4.2 Handling tabular data in NLP algorithms
On optimal control problems such as Eq. (II.9) one often encounters a cost function and/or constraints
given in tabular form, as a function of the states and/or controls. For instance, the drag coefficient of the
aircraft, which depends on the lift coefficient and Mach number, could be given as a look-up table with
performance data obtained from the manufacturer. Similarly, wind data from NWP forecasts, which are
required to compute the ground speed, are typically given in tabular form as a function of the latitude,
longitude and pressure level.

For use in simulations, the (linear) interpolation between discrete data points is a simple and con-
venient way to extract information from look-up tables. However, typical NLP solvers require the first
and second derivatives of the cost functions and constraints with respect to the primal variables in order
to work. The derivatives of a piecewise linear function are undefined at the data points, where two linear
functions with different slopes intercept. For this reason, state-of-the-art NLP solvers have difficulties when
using tabular data. In this kind of optimisation problems, the data must be approximated off-line in order
to generate continuous and twice-differentiable curves by some smooth function fitting techniques.

The easiest way to approximate tabular data is perhaps to use polynomial fittings. Although some of
the aircraft performance data could be approximated quite well by polynomial functions, these expressions
are not able to accurately approximate sharp change such as the drag rise region due to compressibility
effects or complex functions such as the wind field. In these cases, high-order polynomials prone to oscil-
lation due to the Runge’s phenomenon would be required, potentially leading to poor convergence, local
minima issues and large errors between data points.

In order to deal with tabular data in optimal control problems, Betts (2010) suggested to approximate
the data points with tensor product splines. Splines are functions defined piecewise by polynomials of any
degree, which keep sufficiently continuity and differentiability at the places where the polynomial pieces
connect, called knots (de Boor, 1972).
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(a) Interpolating spline
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(b) Smoothing spline
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(c) Interpolating spline: first derivative with res-
pect to altitude
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(d) Smoothing spline: first derivative with res-
pect to altitude
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(e) Interpolating spline: second derivative with
respect to altitude

Altitude [FL]

0
50

100
150

200
250

300
350

400

M
ac

h
[-]

0.3

0.4

0.5

0.6

0.7

0.8

∂
2T

m
a
x

∂
h

2

−300

−200

−100

0

100

200

300

400

(f) Smoothing spline: second derivative with
respect to altitude

Figure II-4: Comparison between interpolating and smoothing spline approximation for the maximum
thrust of an A320
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The simplest way to compute the splines coefficients is by ensuring interpolation to all data points
(the interpolating spline). The resulting function provides the continuity and second-order differentiability
required by NLP solvers to work. However, it is common for this kind of function to include wiggles that
are not actually present in the data itself. A technique for eliminating these oscillations is to approximate
the data rather than interpolating them. This can be achieved by using smoothing splines, which minimise
the curvature of the spline whilst ensuring sufficient accuracy through the smoothing factor Betts (2010).

Figure II-4 illustrates the effect of the smoothing factor in the approximation. Figures II-4(a) and II-4(b)
show the interpolating and smoothing splines that approximate maximum thrust data for an Airbus A320,
respectively. These data was obtained from the Airbus performance engineering program (PEP). According
to this figure, the smoothing spline approximates the data and does not pass through all the data points,
while the interpolating spline does. However, this excellent interpolation comes at the cost of oscillating
first and second derivatives (see Figs. II-4(c) and II-4(e)). The main conclusion is that, by using smoothing
splines, a small reduction on the accuracy of the resulting interpolation function could lead to significant
benefits in terms of convergence and execution time, due to the smoother first and second derivatives.

II.2.4.3 Solving a sequence of related NLP optimisation problems
Imagine an hypothetical case in which, at τ0, the algorithm PN has provided the optimal primal-dual so-
lution in the time horizon τ0, τ1, . . . , τN . After implementing the optimal control ~u∗0 during the first time
interval ∆τ , the system would be driven to a new state. If the dynamic model and associated parameters ~d
were perfect, the new state would correspond to ~F

(
~X, ~u∗0,

~d,∆τ
)

.

Assuming a situation in which the optimal primal-dual solution starting at the new state needs to be
updated, the structure of the NLP optimisation problem and the old primal-dual solution corresponding to
the new time horizon could be used to speed-up the optimisation process. Stated in a more general form,
the solution of the NLP optimisation problem at any τi, i = 1, . . . , N − 1 could take advantage of the NLP
optimisation problem structure and the optimal primal-dual solution at any of the preceding time samples.

The rationale behind this statement is that, firstly, the structure of the NLP optimisation problem at τi
will be a reduced version of that of a preceding τk. In particular, the variables and constraints will be:

~zi: :=


~zi

~zi+1

. . .

~zN

 , ~hi: (~zi:, ~p) :=


~hi (~zi:, ~p)
~hi+1 (~zi:, ~p)

. . .
~hN (~zi:, ~p)

 , ~gi: (~zi:, ~p) :=


~gi (~zi:, ~p)

~gi+1 (~zi:, ~p)

. . .

~gN (~zi:, ~p)

 , (II.24)

where (·)i: indicates the elements of (·) corresponding to time samples from τi to the end of the time horizon.
Similarly, ~λi: and ~µi: are the dual variables paired up with ~gi: and ~hi:, respectively; and the cost function is:

fi: (~zi:, ~p) = J(~zi:, ~p). (II.25)

According to this definition, the vectors of primal and dual variables, and of equality and inequality
constraints for the NLP optimisation problem solved at τi, are subvectors of the NLP optimisation problem
solved at a preceding time sample. This also implies that the Jacobian and Hessian matrices required by
the NLP solver at τi are sub-matrices of the Jacobian and Hessian matrices at a preceding time sample.
Figure II-5 illustrates this feature, showing the Jacobian matrix of a generic NLP problem solved at τ0. Note
that the columns correspond to the variables, and the rows to the constraints. Each element of this matrix
corresponds to the derivative of the nth constraint (row) with respect to the mth variable (column). Non-
zero entries, meaning that the derivative of the constraint nth might depend on the variable mth, are filled
in black. Figure II-5 also shows, in red, the Jacobian matrix for the NLP problem solved at any τi, i > 0.
As can be observed in this figure, the red matrix is contained in the Jacobian matrix for the NLP problem
solved at τ0, thus it can be obtained by simply eliminating the appropriate rows and columns.

The Lagrangian function of the NLP optimisation problem starting at τi is:

Li:
(
~zi:, ~p, ~λi:, ~µi:

)
:= fi: (~zi:, ~p) + ~λTi:~gi: (~zi:, ~p) + ~µTi:

~hi: (~zi:, ~p) , (II.26)

and the KKT conditions Eq. (II.21) need to be also satisfied at
(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
.
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Figure II-5: Jacobian matrix for a generic NLP optimisation problem

Let PN−i be the NLP algorithm that provides the optimal primal-dual solution as a function of ~p,
starting at τi and for the next N − i time intervals:(

~z∗i:,
~λ∗i:, ~µ

∗
i:

)
← PN−i (~p) . (II.27)

Secondly, NLP solvers are always executed from a starting point with all the primal and dual variables
of the problem (unknowns of the problem) initialised to some value. Typically, the user can specify these
starting values and otherwise, the solver will just set all the unknowns to zero or to another random value.
Then, from this starting point, the internal algorithm of the NLP solver aims to find a feasible (i.e., that
fulfils all the constraints) and optimal (i.e., that minimises/maximises the cost functional) solution.

An appropriate starting point or initial guess can dramatically reduce the convergence time of the
optimisation problem, being for some complex problems, a key aspect influencing the solver’s success
on convergence too, which cannot even converge if the guess solution is not good enough. It should be
noted that, since NLP solvers cannot guarantee a global optimal, different initial guesses could lead to
different sub-optimal solutions. Therefore, when solving a sequence of related problems, the solution from
the preceding optimisation corresponding to the current time horizon should be used as a guess. This
technique, which could significantly reduce the execution time, is commonly known as warm start.

Interior-point methods perform a minimisation steps on each barrier subproblem, then decrease the
barrier parameter and repeat the process until the original problem has been solved to the desired accuracy.
This strategy is powerful for solving large-scale NLP optimisation problems with thousands of variables
and inequality constraints. However, a well-known drawback of this strategy is that it might not provide a
clear picture of which constraints are active at the solution (i.e., the active set Gac). In addition, they typically
return a less exact solution and less exact sensitivity information than active-set methods. Conversely, most
active-set NLP solvers implement SQP or SLQP strategies to estimate the active set. This method may be
preferable to interior-point algorithms when a good initial point (i.e., guess) can be provided; for example,
when solving a sequence of related problems where one problem is a perturbed version of another.
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II.3 Trajectory guidance
A trajectory plan computed by solving the problem described in Section II.2 is just that: a plan. In order
to materialise it, the FMS uses its guidance system, which continuously generates commands for the ele-
vator and throttle/speed brakes to nullify deviations from certain variables included in (or derived from)
the trajectory plan ~z. If having two actuators at one’s disposal, only two variables can be simultaneously
controlled. Accordingly, several guidance strategies can be defined, depending on which variable is con-
trolling the elevator and which variable is controlling the throttle/speed brakes, and which mechanisms
these actuators use to correct deviations.

The core principle of the guidance strategies build on the TEMO concept (recall Section I.4.2.2) is that
the energy of the aircraft can be managed in such a way that the CTAs are always (or most of the time)
satisfied. The total energy of the aircraft in TEMO (Et) is composed by the sum of its kinetic (Ek) and
potential (Ep) energy:

Et(v, h,m) = Ek(v,m) + Ep(h,m) =
1

2
mv2 +mgh, (II.28)

which can be computed as a function of ~x, thus at any point of the trajectory plan ~z.

Note that v is the speed of the aircraft relative to the airmass frame in which the aircraft is flying,
while h is the geometric altitude with respect to the inertial earth frame. Clearly, these reference frames are
different and move with respect to each other dependent on the wind. This implies that the reference frame
associated with the total energy as defined in Eq. (II.28) is fictitious, i.e., without any physical meaning.

By differentiating Eq. (II.28) and combining it with Eqs. (II.1a) and (II.1c), the energy rate of the aircraft
can be expressed as:

Ėt(v, h, s, T, CL, β) = v (T −D(v, h, s, CL, β)) . (II.29)

According to Eq. (II.29), the total energy of an aircraft can be increased by applying engine thrust, and
decreased by increasing the aerodynamic drag. In addition, the law of conservation of energy states that
potential energy can be exchanged for kinetic energy and vice versa through energy modulation. It is well-
known that throttle and active drag devices (such as the speed brakes) are the most effective means to
increase and decrease the total energy, respectively, whereas elevator control provides an effective mean to
modulate this energy.

Summing up, the elevator could be used to exchange potential energy (altitude) and kinetic energy
(speed) at an appropriate rate, while throttle and speed brake would be only applied when energy needs
to be added or removed from/to the system, respectively. For instance, if the aircraft is late with respect to
the RTAs and at the same time has an excessive potential energy with respect to the plan, altitude should
be exchanged by speed with the elevator to accelerate and arrive on time while simultaneously reducing
the potential energy deviation.

This section presents several guidance strategies designed to execute a trajectory plan for a CDO
subject to a CTA at a metering fix. All of them are build on the TEMO concept. Yet, they differ in the
behaviour to react against energy and time deviations.

II.3.1 Tactical guidance
When executing a trajectory plan with tactical guidance, the deviations from the planned time at the current
distance to go are continuously nullified by using the elevator to control the speed (speed-on-elevator).
That is, if the aircraft is late, the aircraft will pitch down to accelerate; if the aircraft is early, the aircraft
will pitch up to decelerate. At the same time, the throttle and the speed brakes act together to maintain
the planned energy level all the time. That is, if the aircraft has less energy than planned, the thrust will
increase to add energy; if the aircraft has excessive energy, speed-brakes will be deployed to increase the
airframe drag and reduce the energy. As a result, using this strategy the aircraft is continuously following
the initially computed trajectory plan with minimum energy and time deviations, thus there is no need to
update the trajectory plan during the course of the descent, unless reaching the operational limits of the
aircraft. However, this kind of guidance strategy typically has a negative impact on the environment (and
on engine wear and tear) because the continuous use of thrust to nullify energy deviations.
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II.3.2 Strategic re-planning
Using this guidance strategy, both CAS and thrust plans are followed. The thrust plan is obtained directly
from ~z, while the CAS can be computed at any point of the plan using the following expression:

vCAS(v, h) =

√
2γa
γa − 1

pSSL
ρSSL

(
(δ(h)B(v, h) + 1)

γa−1
γa − 1

)
, (II.30)

where:

B(v, h) :=

(
1

2

γa − 1

γa
v2

(
σ(h)ρSSL
δ(h)pSSL

)
+ 1

) γa
γa−1

− 1 (II.31)

and γa is the specific heat ratio of the air.

On the one hand, the CAS plan is followed by using the elevator. On the other hand, the thrust plan
is followed by acting on the throttle. Different from the tactical strategy, time and energy deviations are
not continuously nullified. Instead, the guidance system remains passive with respect to time and energy
deviations as long as they do not exceed predefined thresholds. When the threshold is exceeded, the FMS
optimises again the trajectory, enforcing the initial conditions to the current state of the aircraft. This results
in a new CAS and thrust plan that minimises a certain cost function while satisfying all the constraints.

An advantage of this strategy is that the entire remaining time horizon is taken into account when
correcting deviations. In addition, being passive with respect to time and energy deviations could lead to
positive effects if the errors caused by different sources are counteractive. For instance, Figure II-6 shows
an hypothetical scenario in which an aircraft flies a curved approach with an unexpected wind from the
north. The aircraft starts the approach without time error. During the leg to B, the unforeseen head wind
increases the time error. However, the time error when reaching the point B is not high enough to trigger a
re-plan. After point B, the relative wind changes its direction and the unforeseen tail wind reduces the time
error, which returns to zero by the end of the procedure. Under these conditions, strategic guidance would
perform better (in terms of environmental impact) than tactical guidance, which would require additional
thrust in the upwind leg and speed-brakes in the downwind leg in order to nullify time deviations.

Figure II-6: Tactical and strategic behaviour in a 180 degree turn

Nevertheless, using this strategy, one must be cautious when selecting the energy and time error
thresholds, a critical design task that is not straightforward. For instance, if the thresholds were too permis-
sive, it could be too late to react and satisfy all applicable constraints when reaching the time and or energy
error threshold. In that case, any of the strategies presented in Section II.2.4.1 could be implemented to
recover feasibility. Conversely, if the thresholds were too strict, this strategy would result in a continuous
re-planning of the trajectory, which behaviour is similar to that of the NMPC guidance.
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II.3.3 Hybrid guidance
This guidance strategy is obtained as a result of combining the tactical and the strategic guidances described
above. For instance, one possibility consists of using the elevator to tactically nullify sustained time errors,
while simultaneously executing the thrust plan with the throttle. In that case, eventual energy deviations
from the trajectory plan caused by, e.g., wind uncertainties, are corrected by means of strategic re-planning
whenever the pre-defined energy error threshold is exceeded. As a result, the aircraft is no longer affected
by time errors, at the expense of being more prone to energy deviations. The analogous configuration
consists of a tactical controller nullify sustained energy deviations, and a strategic controller correcting time
errors by updating the optimal trajectory plan whenever the pre-defined time error threshold is overpassed.
Using this hybrid configuration, the aircraft is continuously following the energy plan, and the trajectory
plan is dynamically adapted to satisfy the time constraints.

II.3.4 Nonlinear model predictive control (NMPC)
This guidance strategy is based on the repeated solution of the optimal control problem described in Sec-
tion II.2.2. Based on the current state of the aircraft, the optimal control problem is solved over a finite time
horizon in the future, and the resulting optimal control is executed only until the next time sample. Then,
the process is repeated moving forward the time horizon, and so on.

A well-known way of classifying NMPC is according to the size of the optimisation time horizon.
Considering this criteria, NMPC can be divided into two major classes: in a receding-horizon NMPC (Al-
massalkhi, 2013), the size of the optimisation time horizon is constant and relatively small. In a shrinking-
horizon NMPC, the entire remaining trajectory is optimised at each re-calculation instant, thus the length
of the optimisation time horizon decreases while approaching the terminal state.

For the specific problem of an aircraft (a system with relatively slow dynamics) that needs to achieve
a fix in space and time (conditioned by a CTA), the hypothesis of this PhD is that shrinking-horizon NMPC
could be an excellent choice based on the execution times required to solve the open-loop optimal control
problem with existing NLP algorithms. Depending on whether the optimal trajectory plan is updated at
each time sample by solving a rigorous NLP optimisation problem as described by Eq. (II.16) and/or by
taking advantage of parametric sensitivities, the following NMPC guidance strategies can be defined.

II.3.4.1 Ideal NMPC (INMPC)
In an ideal case, problem PN−i is solved at each time sample as soon as the parameter vector is measured or
estimated. Then, the resulting optimal control ~u∗i is applied without delay until τi+1, where the process is
repeated. For achieving optimal performance, however, problem PN−i needs to be solved instantaneously.
We refer to this hypothetical case as the ideal NMPC (INMPC). Algorithm (II.1) details its main steps.

Algorithm II.1: Working principle of the ideal NMPC (INMPC)

1:
(
~z∗, ~λ∗, ~µ∗

)
← PN (~p)

2: Build the guess for ~z∗1:, ~λ
∗
1: and ~µ∗1: from ~z∗, ~λ∗ and ~µ∗, respectively

3: for i = 1, . . . , N − 1 do
4: Measure ~X and estimate ~d

5: ~p←
[
~X
~d

]
6:

(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
← PN−i (~p) using warm start (see Section II.2.4.3)

7: Build the guess for ~z∗i+1:, ~λ
∗
i+1: and ~µ∗i+1: from ~z∗i:, ~λ

∗
i: and ~µ∗i:, respectively

8: Implement ~u∗i until τi+1

Unfortunately, in practical applicationsPN−i may be computationally expensive to solve. This implies
that the control ~u∗i cannot be applied just after ~p is measured or estimated, but only after PN−i is solved.
The delay in calculating the new solution may lead to sub-optimal trajectories, failure to meet constraints,
or in some instances instabilities of the solution (Jäschke et al., 2014). This motivates the introduction of
sensitivity-based methods to update the optimal trajectory plan, which are presented below.



II.3 Trajectory guidance 37

II.3.4.2 Sensitivity-based NMPC (SbNMPC)
Sensitivity-based methods are based on the statement that, as long as the differences in the parameters
vector ~p are relatively small between consecutive time samples, parametric sensitivities at the active optimal
solution can be used to rapidly update the optimal trajectory for perturbation in the parameters vector (∆~p).

The parametric sensitivities of the primal and dual variables with respect to the parameters vector at
τi, i = 0, . . . , N −1 can be obtained by differentiating the KKT conditions, Eq. (II.21), evaluated at the active
optimal primal-dual solution

(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
(Wolf & Marquardt, 2016):


∂~zi:
∂~p

∂~λi:
∂~p

∂~µi:
∂~p

 = −


∂2L∗

i:

∂~z2i:

∂~g∗i:
∂~zi:

T ∂~h∗
i:

∂~zi:

T

∂~g∗i:
∂~zi:

0 0

∂~h∗
i:

∂~zi:
0 0


−1 

∂2L∗
i:

∂~zi:∂~p

∂~g∗i:
∂~p

∂~h∗
i:

∂~p

 , (II.32)

being consistent with the notation, (·)∗i: = (·)(~z∗i:, ~λ∗i:, ~µ∗i:, ~p). In addition, remember that (·)i: represents the
subvector of (·) that includes the elements with position greater or equal than i.

The linear system Eq. (II.32) can be solved for ∂~zi:
∂~p , ∂~λi:

∂~p and ∂~µi:
∂~p , allowing to update the optimal

solution using a simple first-order Taylor approximation as follows:

~z∗i:(~p+ ∆~p) = ~z∗i:(~p) +
∂~zi:
∂~p

∆~p (II.33a)

~λ∗i:(~p+ ∆~p) = ~λ∗i:(~p) +
∂~λi:
∂~p

∆~p (II.33b)

~µ∗i:(~p+ ∆~p) = ~µ∗i:(~p) +
∂~µi:
∂~p

∆~p. (II.33c)

Unfortunately, this fast and convenient parametric sensitivity update can only be used if the set of ac-
tive constraints does not change after the perturbation (Würth et al., 2009). In practical NMPC applications,
however, constraints in the active set may become inactive, or constraints in the inactive set may become
active for the solution corresponding to the perturbed ~p.

An interesting approach that accounts for active set changes after a perturbation in the NLP parame-
ters vector was suggested by Kadam & Marquardt (2004). This approach consists of reformulating Eq. (II.32)
as a quadratic programming (QP) optimisation problem:

min
∆~z

1

2
∆~zTi:

∂2L∗i:
∂~z2
i:

∆~zi: + ∆~zTi:
∂2L∗i:
∂~zi:∂~p

∆~p+
∂f∗i:
∂~zi:

T

∆~zi:

s.t ~g∗i: +
∂~g∗i:
∂~zi:

∆~zi: +
∂~g∗i:
∂~p

∆~p ≤ 0

~h∗i: +
∂~h∗i:
∂~zi:

∆~zi: +
∂~h∗i:
∂~p

∆~p = 0.

(II.34)

Let QN−i represent the QP algorithm that provides optimal primal variables perturbation ∆~z∗i: and
dual variables ~λ∗i:, ~µ

∗
i:as a function of ∆~p:(

∆~z∗i:,
~λ∗i:, ~µ

∗
i:

)
← QN−i (∆~p) . (II.35)

Then, the dual variables of the optimal solution computed with the unperturbed parameters vector (i.e.,
~λ∗i:(~p) and ~µ∗i:(~p)) are updated with those obtained from solving QN−i, and:

~z∗i:(~p+ ∆~p) = ~z∗i:(~p) + ∆~z∗i:(∆~p). (II.36)

The first-order update Eq. (II.36), however, will be accurate only for relatively small ∆~p. For large pertur-
bations, the new solution must to be analysed to verify that the KKT conditions are still satisfied. This is



38 Chapter II - Framework on trajectory management

accomplished by computing the error in the Lagrange sensitivity (εopt) and the nonlinear constraint infea-
sibility (εinfs) at the updated pair of primal-dual variables (Wolf & Marquardt, 2016):

εopt =
‖∂L

∗
i:

∂~z ‖∞
‖~λ∗i:‖2 + ‖~µ∗i:‖2 + 1

, εinfs =
‖~g∗+i: ‖∞ + ‖~h∗i:‖∞
‖~z∗i:‖2 + 1

. (II.37)

If these metrics were higher than pre-defined values, the set of first and second-order sensitivities F∗i: :=

{∂
2L∗

i:

∂~z2i:
,
∂2L∗

i:

∂~zi:∂~p
,
∂f∗
i:

∂~zi:
,
∂~g∗i:
∂~zi:

,
∂~g∗i:
∂~p ,

∂~h∗
i:

∂~zi:
,
∂~h∗

i:

∂~p } would be updated with the new
(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
solution and ~p, and

further iterations of QN−i would be triggered until satisfying feasibility and optimality criteria.

Summing up, if ∆~p is small, it is not really necessary to solve PN−i at each time sample. In the
neighbourhood of the active optimal solution, parametric sensitivities can be calculated to rapidly update
the optimal solution at τi using a first-order approximation and checking for optimality and feasibility
criteria. This fast trajectory update is performed by solvingQN−i, which is expected to be faster than PN−i.

A virtue of this method is that F∗i: can be evaluated in the background at the preceding optimal solu-
tion assuming the estimated parameters ~p (Würth et al., 2008a; Gros et al., 2009). Then, the optimal solution
is updated on-line by solvingQN−i almost instantaneously right after measuring and/or estimating ~p. This
is why this method is commonly referred as sensitivity-based NMPC (SbNMPC).

Algorithm (II.2) shows the main steps of SbNMPC, where τopt and τinfs are the pre-defined tolerances
for the optimality and feasibility criteria, respectively. The contingency step (line 17 in Algorithm II.2)
is optional. An alternative is to not update the trajectory if the optimality and feasibility criteria are not
satisfied after kmax QP iterations.

Algorithm II.2: Working principle of the sensitivity-based NMPC (SbNMPC)

1:
(
~z∗, ~λ∗, ~µ∗

)
← PN (~p)

2: Build F∗1: from F∗
3: for i = 1, . . . , N − 1 do
4: Measure ~X and estimate ~d

5: ~p←
[
~X
~d

]
6: ∆~p← ~p− ~p(τi−1)
7:

(
∆~z∗i:,

~λ∗i:, ~µ
∗
i:

)
← QN−i (∆~p)

8: ~z∗i: ← ~z∗i: + ∆~z∗i:
9: Evaluate F∗i: at the new (~z∗i:, ~λ

∗
i:, ~µ

∗
i:) and ~p

10: k ← 1
11: while (εopt > τopt | εinfs > τinfs) & k <= kmax do

12:
(

∆~z∗i:,
~λ∗i:, ~µ

∗
i:

)
← QN−i (0)

13: ~z∗i: ← ~z∗i: + ∆~z∗i:
14: Evaluate F∗i: at the new (~z∗i:, ~λ

∗
i:, ~µ

∗
i:) and ~p

15: k ← k + 1

16: if k == kmax then
17:

(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
← PN−i (~p) using warm start

18: Build F∗i+1 from F∗i:
19: Build the guess for ~z∗i+1:, ~λ

∗
i+1: and ~µ∗i+1: from ~z∗i:, ~λ

∗
i: and ~µ∗i:, respectively

20: Implement ~u∗i until τi+1

It should be noted that sensitivity-based trajectory updates presented in this section will work only
for small perturbations of the parameters vector, since they are based on a linear approximation of the
necessary conditions of optimality. For large perturbations, the linear approximation will not be accurate
enough, and a large amount of QP iterations might be required to satisfy feasibility and optimality criteria.
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II.3.4.3 Advanced-step NMPC (AsNMPC)
Consider that at any τi, i = 0, . . . , N − 1, the current state vector is ~X and that ~u∗i is applied to the system.
If the model and associated parameters used during the trajectory optimisation process match with the
reality, the system will evolve according to ~F . Under these circumstances, at τi it is possible to predict with

high accuracy the future state vector ~̂X(τi+1) and, using the most recent prediction for ~̂d, solve PN−i+1 in
advance. If this problem can be solved in background during the discretisation interval [τi, τi+1], and under
the strong assumption that the models match the reality, then ~u∗i+1 will be already available when reaching
τi+1. Accordingly, when using this guidance strategy, the discretisation interval between two consecutive
time samples needs to be higher than the expected time required to solve the optimisation problem.

Even if the execution time could be guessed from past experience, in some particular cases the opti-
misation may not finish before the next time sample. If this were the case, one of the following three contin-
gency actions could be implemented: first, to stop the optimisation and not update the optimal trajectory
at the current time sample; second, to wait until the optimisation finishes, and then shift the remaining
time sample in such a way that the separation between them keeps unchanged; third, to wait until the
optimisation finishes, but keeping the remaining time samples at their original values.

This simple approach allows to remove the computational delay and associated issues of the INMPC.
In the presence of errors in the models, however, the real state vector at τi will not coincide with that pre-
dicted at τi−1. In this case, the optimal control cannot be computed in advance with accuracy. In order to
account for errors in the models used by the FMS planning function, a fast update using parametric sensi-
tivities can be used when measuring the actual state and parameters at τi. This strategy, which mixes an
advanced full recalculation in background with an on-line sensitivity-based update when receiving mea-
surements, is shown in Algorithm (II.3) (Jäschke et al., 2014; Zavala & Biegler, 2009).

Algorithm II.3: Working principle of the advanced-step NMPC (AsNMPC)

1:
(
~z∗, ~λ∗, ~µ∗

)
← PN (~p)

2: Build ~z∗1:, ~λ
∗
1: and ~µ∗1: from ~z∗, ~λ∗ and ~µ∗

3: for i = 1, . . . , N − 1 do
4: Predict ~̂X and ~̂d

5: ~̂p←

 ~̂X
~̂d


6:

(
~z∗i:,

~λ∗i:, ~µ
∗
i:

)
← PN−i

(
~̂p
)

using warm start

7: Evaluate F∗i: at the new (~z∗i:, ~λ
∗
i:, ~µ

∗
i:) and ~̂p

8: Measure ~X and estimate ~d

9: ~p←
[
~X
~d

]
10: ∆~p← ~p− ~̂p
11:

(
∆~z∗i:,

~λ∗i:, ~µ
∗
i:

)
← QN−i (∆~p)

12: ~z∗i: ← ~z∗i: + ∆~z∗i:
13: Same as steps 9 to 20 of Algorithm (II.2)





You may delay, but time will not.

— Benjamin Franklin

I only feel angry when I see waste. When I see people throwing
away things we could use.

— Mother Teresa

III
The energy-neutral time window

Arrival managers (AMANs) were designed to provide support for air traffic control (ATC) when sequenc-
ing and merging arrival traffic in the terminal maneouvering area (TMA). Existing AMANs use ground-
based trajectory predictors to estimate the time of arrival of each inbound flight. These trajectory predic-
tions are used to provide sequence information to the ATC, and also advisories of the required time to loose
or gain for each flight in order to achieve the desired landing rate and spacing at the runway. The ATC is
then responsible for selecting and notifying appropriate instructions (e.g., vectoring, speed changes) for the
aircraft to loose or gain that time.

Future AMANs will also determine the optimum landing sequence based on inbound flight plans and
trajectory predictions. Then, a controlled time of arrival (CTA) will be calculated for each inbound aircraft
at a specific metering fix such that the required landing rate and spacing are satisfied. When executed with
sufficient timing accuracy, the CTAs will help to achieve an orderly arrival sequence of optimum descent
profiles without excessive workload to the ATC.

In order to efficiently allocate the CTAs, AMANs should know the earliest and latest time of arrival
of each inbound flight (i.e., the feasible time window). An estimation of the feasible time window could
be computed by the same ground system based on trajectory predictions. The models used by the ground-
based trajectory predictor to represent the aircraft dynamics and performance, however, are typically sub-
ject to several simplifications, which limit the accuracy of the trajectory predictions. Furthermore, even if
the models used by the ground-based trajectory predictor were perfect, the lack of flight intent information
would make difficult to accurately predict the trajectory of the aircraft. A novel concept for synchronisation
of ground-based trajectory predictors and flight management systems (FMSs) was proposed by Bronsvoort
(2014), in which FMSs provide to the ground system flight intent information to improve their predictions.

An alternative solution consists of using the on-board trajectory planner of the aircraft, which obvi-
ously knows the flight intent and has access accurate aircraft dynamics and performance models, to com-
pute both the earliest and latest times of arrival at the metering and report them to the AMAN. Having this
valuable information for all aircraft, the AMAN could compute the required CTAs (SESAR, 2015b).

41
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The earliest and latest times of arrival depend on many factors, including aircraft performance,
weather conditions and, noticeably, the current aircraft states when computing it (i.e., altitude, speed, mass
and remaining distance to the metering fix). If the aircraft were in the cruise phase, the time of arrival at the
metering fix could be easily modified by advancing or receding the position of the top of descent (TOD).
Therefore, wide feasible time windows are expected for aircraft that have not initiated their descent yet.
In some circumstances, however, the aircraft might be required to adapt the time of arrival after initiating
the descent (e.g., due to a late CTA update or a large time deviation). In this situation, time and energy
management concepts might still be used to efficiently re-plan the trajectory and adjust the time of arrival
to the requested CTA with minimum fuel consumption and speed brakes use. The extent for which energy
management can be used to adjust the time of arrival in this situation depends on the feasible time window,
which, to the best of our knowledge, has not been quantified before.

In this chapter, the feasible time windows for energy-neutral trajectories are quantified, assuming that
the descent has been already initiated when the time of arrival at the metering fix needs to be changed
by the on-board trajectory planner. In order to accomplish that, the earliest and latest times of arrival at a
metering fix are computed for a wide range of aircraft states. This optimisation is restricted in such a way
that neither thrust higher than idle nor speed brakes use are allowed along the whole descent. In this way,
the entire trajectory is subject to optimisation to minimise or maximise the flight time, and only elevator
control is left to modify the speed profile and change the time of arrival of the energy-neutral trajectory. In
addition, the CTA window sensitivity to different longitudinal winds, metering fix position and masses is
also investigated.

III.1 State of the art
Several studies have dealt with the assignment of CTA and the quantification of the feasible CTA windows
when the aircraft is still in cruise, well before reaching the TOD. See for instance the works of Takeichi
(2017) and Park & Clarke (2013, 2016), which computed CTA windows at a metering fix by allowing the
aircraft to adjust the TOD position (i.e., the duration of the cruise phase) and the descent speed profile,
while keeping the thrust at idle during the whole descent. With similar purposes, Takeichi & Inami (2010)
also enabled the addition (resp. omission) of waypoints to stretch (resp. shorten) the flight path length in
addition to adjust the TOD under a tailored arrivals (TAs) concept. However, in the cruise phase, energy
must be added to the system by means of throttle in order to maintain constant altitude and speed. This
leads to considerably more fuel consumption and emissions than during an energy-neutral descent.

The robustness of energy-neutral descent trajectories facing late changes to the CTA during the
descent was assessed by Lindsay et al. (2009). Aiming to minimise the environmental impact of the continu-
ous descent operation (CDO), only elevator control was permitted to adjust the time at which the metering
fix was reached, assuming rather simple Mach/callibrated airspeed (CAS) profiles and allowing a single
(and instantaneous) modification of the scheduled speed. Furthermore, the assessment was performed for
few initial aircraft states, and the method used to generate the energy-neutral descents could not ensure the
optimality (in the strict mathematical sense) of the resulting trajectories.

Another important limitation of previous works is that none of them (up to our best knowledge)
took into account the remaining descent between the metering fix at which the CTA was assigned and
the instrumental landing system (ILS) interception or the runway threshold. Adjusting the descent speed
profile to minimise or maximise flight time may result in a change to the altitude at which the metering fix
is overflown. If the energy of the aircraft at this fix were too low, additional thrust might be needed after
overflying it, interrupting in this way the CDO. Similarly, if the energy were too high, it might be required
to use speed brakes and/or to deploy high-lifting devices or the landing gear earlier than initially planned,
leading to more airframe noise.

Furthermore, most previous works used the base of aircraft data (BADA) v3 performance model,
which has been reported to show significant limitations for accurate trajectory planning tasks in the
TMA (Senzig et al., 2009; Hoekstra, 2016). More sophisticated aircraft performance models (APMs) are
needed in order to compute realistic descent profiles and to obtain accurate fuel consumption and flight
time, in particular time window, figures.
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III.2 Setup of the experiment
The goal for the study was to quantify the CTA window (latest arrival time - earliest arrival time) at a
certain metering fix as a function of the aircraft state when receiving the CTA after the TOD, and to study
the sensitivity of the feasible CTA window to the following parameters: initial speed when receiving the
CTA, aircraft mass, position of the metering fix along the route and longitudinal wind speed. In order to
accomplish that, thousands of optimal trajectory plans starting at different aircraft states and configured
with different values of the listed parameters were generated to minimise and maximise the time of arrival
at a single metering fix. The optimisation of these aircraft trajectories was formulated as an optimal control
problem as described in Section II.2.1, and was solved by using the numerical optimisation techniques
described in Section II.2.3.

This section describes the setup of the experiment performed in this chapter. First, Section III.2.1
presents the scenario. Then, the generic models introduced in Section II.1 are particularised for this ex-
periment in Section III.2.2. Analogously, the generic optimal control problem described in Section II.2.1 is
particularised in Section III.2.3 with specific cost function and constraints. Finally, the selected case studies
are listed in Section III.2.4.

III.2.1 Scenario
Considering a specific aircraft type, descent procedure with associated constraints, geographical location
and realistic weather conditions corresponding to a certain day and time only gives a clue of the feasible
CTA window for that particular scenario, and results might not be representative of other scenarios. Since
computing the CTA time window for all possible scenarios would be impracticable in combinatorial terms,
this study aimed to be as generic as possible.

Based on the discussion above, the following generic scenario was considered in this experiment: an
Airbus A320 (one of the mostly used commercial aircraft types nowadays in Europe) attempts to perform
an energy-neutral descent along an hypothetical straight-line route from the TOD to the interception of the
ILS glide slope at the final approach point (FAP), and somewhere in the descent, before reaching the initial
approach fix (IAF), the ATC assigns (or updates) a CTA at this metering fix. The typical speed constraint
of 250 kt at FL100, enforced nowadays in most of the TMAs, was also considered in the formulation of the
optimal control problem. Figure III-1 shows a schematic representation of this scenario.

CTA

Figure III-1: Scenario to investigate the feasible time window of energy-neutral descents

III.2.2 Models
The models required to formulate the optimisation of the aircraft trajectory, which were presented in Sec-
tion II.1, are particularised below for the experiment conducted in this chapter.
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III.2.2.1 Aircraft dynamics model
The point-mass model described by Eq. (II.1) was reduced to a γ-command model, which could be consi-
dered accurate enough for the objectives of the experiment. The γ-command model assumes continuous
vertical equilibrium thorough the flight (i.e., lift balances weight):

γ̇ = 0→ L = mg cos γ. (III.1)

As a result, Eq. (II.1b) is removed from Eq. (II.1) and the aerodynamic flight path angle becomes an input
control variable that can change instantaneously.

The following assumptions were also considered:

• The effect of the cross-wind on the ground speed is orders of magnitude below that of the longitudi-
nal wind (i.e., wx = 0).

• The longitudinal wind is a function of only the altitude (i.e., ws = ws(h)).

• The fuel consumption during an energy-neutral descent is a very small fraction of the total
mass (Clarke et al., 2004) and, consequently, the variations in mass m can be neglected (i.e., ṁ = 0).
In spite of that, the idle fuel flow qidle was computed in the model to determine the amount of fuel
consumption for each trajectory, which was used as a metric during the assessment of results.

Under the aforementioned assumptions, Eq. (II.1) can be simplified to:

dv
dt

= v̇ =
Tidle(v, h)−D(v, h, γ, ζ)

m
− g sin γ

ds
dt

= ṡ = v cos γ + ws(h)

dh
dt

= ḣ = v sin γ.

(III.2)

In this widely known γ-command model, the state vector is ~x = [v, s, h]T . Furthermore, since neither
additional thrust nor speed brakes use is permitted, the control vector is composed by only the aerody-
namic flight path angle (i.e., ~u = [γ]), and the thrust in Eq. (II.1a) is replaced by Tidle, which mathematical
expression, function of ~x, is particularised by the APM described below.

III.2.2.2 Aircraft performance model
Aerodynamic and propulsive data from the Airbus performance engineering program (PEP) were taken
to approximate the drag coefficient, idle thrust, and idle fuel flow tables with continuous and twice-
differentiable functions suitable for gradient-based nonlinear programming (NLP) optimisation algorithms,
as suggested in Section II.2.4.2. Using these accurate data from the manufacturer allowed us to obtain real-
istic fuel and flight time figures.

The drag coefficient was approximated by a smoothing spline of the form:

CD (CL,M, h) =
∑
i,j,k

ci,j,kBi(CL)Bj(M)Bk(h). (III.3)

Assuming temperature changes only with altitude, the Mach number can be expressed as a function of the
altitude and speed:

M(v, h) =
v

a(h)
=

v√
γaRθ(h)τSSL

, (III.4)

where a is the speed of sound.

In Eq. (III.3), B(·) (with (·) ∈ {i, j, k}) are spline basis functions; ci,j,k are control points of the
spline (de Boor, 1972); and CL is the lift coefficient, which can be obtained by assuming continuous vertical
equilibrium (see Eq. (III.1)) and solving Eq. (II.2a) for CL:
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CL(v, h, γ) =
2mg cos γ

SρSSLσ(h)v2
. (III.5)

Following the same methodology, Tidle and qidle were expressed as a function of h and M :

Tidle (h,M) =
∑
i,j

ci,jBi (h)Bj (M) , (III.6a)

qidle (h,M) =
∑
i,j

ci,jBi (h)Bj (M) . (III.6b)

The control points and knots of the splines appearing in Eqs. (III.3) and (III.6) were obtained by fitting
the aircraft performance data from the manufacturer using the FITPACK library (Dierckx, 1993). Figure III-2
shows the smoothing splines functions approximating the aircraft performance data obtained from PEP.
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Figure III-2: Smoothing spline approximating aircraft performance data obtained from PEP
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III.2.2.3 Weather model
This study aimed to be as generic as possible. Accordingly, the international standard atmosphere (ISA)
model, established to provide a common reference for temperature and pressure, was considered to repre-
sent the normalised temperature θ and pressure δ as a function of h through Eqs. (II.4) and (II.5), respecti-
vely. Then, the normalised density was computed assuming the perfect gas law relationship with Eq. (II.6).

With the same rationale, the empirical Hellman model defined by Eq. (II.7) was used to represent
the wind speed as a function of h. The parameters of this empirical model were particularised as follows:
α = 1/7, which is the typical value for neutral stability conditions; hr was set to 36,000 ft; and different
values of wr were analysed to assess the sensitivity of the feasible time window to the longitudinal wind
speed (see Section III.2.4 for the detailed list of case studies). In addition, the wind vector was assumed to
point in the direction of the aircraft track (i.e., ws = |~w|).

III.2.3 Optimal control problem formulation
The optimisation process adopted to generate earliest and latest trajectories at the metering fix is a con-
strained, multi-phase and nonlinear optimal control problem, as described in Section II.2.1. This section par-
ticularises the cost function and constraints of the generic multi-phase optimal control problem Eq. (II.10)
for each one of the phases composing the flight profile of an energy-neutral CDO.

The differential constraints (~f ) were particularised by the γ-command model given by Eq. (III.2):

~fj =


Tidle(v,h)−D(v,h,γ,ζj)

m − g sin γ

v cos γ + ws(h)

v sin γ

 ; j = 0, . . . , P − 1, (III.7)

where ζj is the flaps/slats configuration of the jth phase. In this experiment, ζj was set to clean (i.e., no
flaps/slats deployed) for all phases except for the last one, which modelled the approach.

In order to mimic a representative yet generic operation, the descent was split into P = 4 phases,
where different phase-dependent path, algebraic and interior-point constraints may apply. Table III-1 wraps
up the different phases and their constraints. This table is illustrated in Fig. III-3.

Table III-1: Definition of the phases and constraints for an energy-neutral descent
Phase (j) Description ~binj ~beqj

~ϑin
j

~ϑeq
j

0 Descent above FL100

[
vCAS(v, h)− VMO
GD − vCAS(v, h)

]
- -

[
h− 10, 000 ft

]
1 Descent below FL100

[
GD − vCAS(v, h)

vCAS(v, h)− 250 kt

]
- -

[
s− sIAF

]
2 Approach

[
GD − vCAS(v, h)

vCAS(v, h)− 250 kt

]
- -

[
vCAS(v, h)− GD

h− hFAP

]

3 Levelled deceleration

[
vFAP − vCAS(v, h)

vCAS(v, h)− GD

] [
ḣ
]

- -

All Entire descent

M(v, h)− MMO
γ

γmin − γ

 - - -

Several path constraints applying all along the descent were also considered in order to ensure that the
Mach number remains within operational limits and that the maximum descent gradient is not exceeded.
The maximum operative CAS (VMO) and the maximum operative Mach (MMO) are constant parameters
that depend on the aircraft type. In this study, MMO and VMO were set to 0.80 and 340 kt, respectively,
according to Airbus (1993). Furthermore, vFAP corresponds to the CAS that the aircraft should have when
intercepting the ILS glide slope at the FAP, and was computed as a fraction of the stall speed, which is a
function of both m and ζ (Airbus, 1993). The maximum descent gradient (γmin) was set to -15◦.
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Phase 0                          1                            2                           3

Figure III-3: Definition of the phases and constraints for an energy-neutral descent

According to Table III-1, the first phase starts at the current state of the aircraft ( ~X) and ends at FL100.
Note that since the goal of this study was to quantify the CTA window for different initial conditions,
the optimal control problem was solved for several values of ~X . Below FL100, ATC procedures typically
restrict the CAS to 250 kt. Afterwards, the aircraft heads towards the IAF, where the approach procedure
begins. Few nautical miles before the FAP, the aircraft decelerates to the green dot speed (GD)1 and starts
configuring with flaps at constant altitude (still at idle thrust), in order to intercept the ILS glide slope at
the FAP. Therefore, terminal constraints were:

~ψ =

vCAS(v, h)− vFAP

h− hFAP

s− sFAP

 , (III.8)

where hFAP is the altitude at which the FAP has to be intercepted, which value was set to 2,000 ft; and the
distance of the FAP (sFAP) was fixed at 6 NM from the runway threshold (see Fig. III-1).

The objective of this study was to compute trajectories minimising and maximising the time of ar-
rival at a given metering fix, which was assumed to be the IAF of an hypothetical straight-line procedure.
Accordingly, the running cost function was defined as:

πj =

{
± 1
v cos γ+ws(h) if j = 0, 1

0 otherwise,
(III.9)

where the + sign applied when computing the earliest trajectory, and − when computing the latest. The
end cost for each phase was not considered, that is φj = 0 for j = 0, . . . , P − 1. Furthermore, since the
duration of the time horizon, tF , was not fixed but had to be optimised, tj+1 for j = 0, . . . , P − 1 were
additional decision variables of the optimal control problem.

The optimal control particularised above was transformed to a parametric NLP optimisation problem
as described in Section II.2.3. Then, the resulting parametric NLP optimisation problem was formulated in
the general algebraic modelling system (GAMS) software suit, and solved with CONOPT as NLP solver,
which uses active-set methods. In this experiment, the trapezoidal integration scheme was adopted to
obtain ~Fj and Πj from ~fj and πj , respectively. In addition, techniques to recover from infeasibility were not
used, i.e., all the constraints shown in Table III-1 are hard constraints.

Last but not least, the profile shown in Table III-1 and Fig. III-3 does not include speed and altitude
constraints throughout the descent (excepting the typical speed limit at FL100), aiming to be as generic as
possible. Consequently, it is rather optimistic and the obtained results correspond to a best-case scenario. In
current operations, aircraft may encounter additional altitude and speed constraints, which negative effect
on the feasible CTA window would depend on their location and severity. It might even be the case that
it would not be longer possible to reach the metering fix using neither additional thrust nor speed brakes.
Nevertheless, it is expected that future procedures will trade altitude and speed constraints for CTAs, giving
more flexibility to FMSs for planning the optimal trajectory provided that time CTAs are satisfied.

1For the Airbus A320, the green dot speed is the minimum operating speed in managed mode and clean configura-
tion, being approximately the best lift-to-drag ratio speed.
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III.2.4 Case studies
Taking into account all the possible combinations of initial altitude, distance to go and speed would lead to
highly combinatorial problem, extremely difficult to visualise and analyse. In order to overcome this issue
and present the results in an intuitive way, the feasible time window is shown as a function of the distance
to go and altitude, either fixing the initial speed to a certain value or leaving it free (as an additional decision
variable) during the optimisation process.

For a given initial altitude and distance to go, and assuming the constraints presented in Table III-1,
the earliest and latest times of arrival at the metering fix (and therefore the feasible CTA window) could be
affected by the aircraft mass, the longitudinal wind, the exact location of the metering fix along the arrival
route, and the initial speed of aircraft.

A case study with intermediate values for these parameters was taken as baseline. For each one of
these parameters, negative and positive variations were considered, aiming at investigating the parametric
sensitivity of the feasible CTA window. As a result, 14 representative case studies were chosen for this
study, which are summarised in Table III-2.

Table III-2: List of case studies for the energy-neutral feasible time window assessment
Parameter Negative variation Baseline Positive variation
m [% MLM] 80 90 100

sIAF [NM] 15 25 50

ws [kt] −60, −40, −20 0 20, 40, 60

Initial speed (v) Minimum (GD) Medium Maximum (MMO/VMO/250 kt)

The baseline case study assumed a typical landing mass corresponding to 90% of the maximum land-
ing mass (MLM), an IAF located at 25 NM from the runway threshold and calm wind conditions. It was
also assumed that the aircraft received the CTA when flying at a speed corresponding to a kinetic energy
in the middle of the feasible kinetic energy range, which depends on the current altitude. Above the cross-
over altitude (hCO) the maximum airspeed (vmax) is limited by MMO, between the cross-over altitude and
FL100 by VMO, and below FL100 by 250 kt in terms of CAS:

vmax(h) =


v (MMO, h) ifhCO(M,vCAS) < h

v (VMO, h) if 10, 000 ft < h ≤ hCO(M,vCAS)

v (250 kt, h) ifh ≤ 10, 000 ft,
(III.10)

where:

v(M,h) = M
√
RγaτSSLθ(h) (III.11a)

v(vCAS , h) =

√√√√ 2γa
γa − 1

δ(h)pSSL
σ(h)ρSSL

((
A(vCAS)

δ(h)
+ 1

) γa−1
γa

− 1

)
(III.11b)

and

A(vCAS) :=

(
1

2

γa − 1

γa
v2
CAS

(
ρSSL
pSSL

)
+ 1

) γa
γa−1

− 1. (III.12)

The cross-over altitude can be calculated as:

hCO(M,vCAS) =
τSSL
λτ

1−


(

1 +
(
γa−1

2

) (
vCAS
aSSL

)2
) γa−1

γa

− 1(
1 + γa−1

2 M2
) γa−1

γa − 1


−λτRg

 . (III.13)
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Regardless of the initial altitude, the minimum kinetic energy before the IAF is always limited by GD,
which is also given in terms of CAS and is computed as a function of m (Airbus, 1993):

vmin(h,m) = v (GD(m), h) . (III.14)

As seen above, the maximum and minimum operational speeds are given in terms of CAS or Mach,
thus they were converted to true airspeed (TAS) by using Eqs. (III.11b) and (III.11a), respectively. Then, the
maximum and minimum kinetic energies were computed and the speed corresponding to their average
was used to set the initial speed of the descent in ~X :

v0(h,m) =

√
2

1
2mv

2
max(h) + 1

2mv
2
min(h,m)

m
=
√
v2
max(h) + v2

min(h,m). (III.15)

Three additional case studies were considered to assess the sensitivity of the feasible time window
to the initial speed: for the first case study, the aircraft received the CTA update when flying at the maxi-
mum speed (either MMO, VMO or 250 kt, depending on the altitude); for the second case study, the initial
airspeed was fixed to that corresponding to GD; for the third case study, the initial airspeed was left free,
assuming that the transition from any airspeed to that chosen by the optimiser would be quick enough in
practice by using the elevator, and neglecting the thrust or drag required to reach such energy level.

For each case study shown in Table III-2, the earliest and latest trajectories at the IAF were computed
at all possible combinations of initial altitude and distance to go in the selected ranges. Initial altitudes
between FL100 and FL360 and distances to go ranging from sIAF + 5NM to 120 NM were considered.

It should be noted that, for each initial aircraft state, there exist many energy-neutral trajectories that
satisfy the constraints listed in Table III-1. Only one of them, however, is optimal in terms of fuel consump-
tion. In order to quantify the extra fuel consumption that earliest and latest trajectories would entail, the
minimum fuel trajectory was also computed for each initial condition of the baseline case study. When
computing the minimum fuel trajectory, the running cost in Eq. (III.9) was set to:

πj = qidle(v, h); j = 0, . . . , P − 1. (III.16)

III.3 Results
This section presents the results obtained after computing the earliest and latest trajectories at the IAF,
starting at different initial altitudes and distances to go, for the case studies listed in Table III-2. First,
Section III.3.1 shows and analyses examples of earliest and latest trajectories for illustrative purposes. Then,
the results for the baseline case study are thoroughly discussed in Section III.3.2. Finally, the results for the
remaining case studies are shown in Section III.3.3.

III.3.1 Earliest and latest trajectory examples
Figure III-4 shows four examples of optimal energy-neutral trajectories computed for an Airbus A320 lo-
cated at 70 NM from the runway threshold, and with an initial speed corresponding to the middle of the
feasible kinetic energy range (i.e., for the baseline case study).

Figures III-4(a) and III-4(b) show, respectively, the earliest and latest trajectories at the IAF for a situa-
tion where the aircraft has excess of energy. In both cases, the aircraft aims at increasing the aerodynamic
drag in order to release enough energy so that all the constraints are satisfied. This requirement penalises
the latest trajectory, which would like to fly at a lower speed. Initially, altitude is exchanged by speed at the
maximum descent gradient until VMO is reached. Thereafter, the descent is performed at this speed down
to FL100, where the aircraft levels-off (but maintaining thrust idle) in order to decelerate as quick as possi-
ble. Below this altitude, the earliest and latest trajectories keep, respectively, the maximum and minimum
allowed speed until the IAF. What happens after the IAF has no impact on the cost function. Yet, all the
constraints in Table III-1 must still be satisfied and it does impact on the shape of the whole trajectory. For
this flight conditions, the time window is around 20 seconds.
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Figure 2(a)

(a) High energy earliest trajectory
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Figure 2(b)

(b) High energy latest trajectory
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Figure 2(c)

(c) Low energy earliest trajectory
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Figure 2(d)

(d) Low energy latest trajectory

Figure III-4: Examples of earliest and latest energy-neutral trajectories

By contrast, Figs. III-4(c) and III-4(d) show, respectively, the earliest and latest trajectories for a situa-
tion where the aircraft lacks of energy. Obviously, the earliest trajectory would like to accelerate and arrive
as soon as possible. However, the higher the speed the more drag and, consequently, the more energy loss
rate. Since the aircraft lacks of energy and it is not allowed to apply thrust, it has to settle for preserving the
spare energy and fly slower. The latest trajectory is not penalised in this case, and executes the descent by
gliding at GD. Then, the speed is increased after the metering fix aiming at releasing energy to satisfy the
terminal constraints. For this flight conditions, the time window is also around 20 seconds.

III.3.2 Baseline scenario results
This section thoroughly discuses the results obtained for the baseline case study, whose parameters were
presented in Table III-2. Figures III-5(a) and III-5(b) show, respectively, the earliest and latest times of arrival
at the IAF as a function of the initial altitude and distance to go of the aircraft. It is worthy to remember that,
for the baseline scenario, the initial speed is fixed to that corresponding to a kinetic energy in the middle of
the feasible kinetic energy range.

Figure III-6 shows the feasible energy-neutral time window, consisting on the difference between
Figs. III-5(b) and III-5(a), at the IAF, as a function of the altitude and distance to go. The black dashed
line represents the trajectory that maximises the feasible time window throughout the descent. An aircraft
starting the descent in the lower or upper white region would need to apply additional thrust or to deploy
speed brakes to satisfy all the constraints, respectively. In other words, energy-neutral trajectories are not
possible in the white region.
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(a) Earliest time of arrival
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(b) Latest time of arrival

Figure III-5: Baseline scenario: earliest and latest times of arrival at the metering fix

For a given distance, at the highest feasible altitudes the aerodynamic drag needs to be increased in
order to release the excessive energy. Since speed brakes use is not allowed, the most appealing option is to
accelerate and generate more drag, thus penalising the latest trajectories. Conversely, at the lower feasible
altitudes, the energy is limited and needs to be preserved. Since additional thrust is not permitted, the best
practise is to decrease the energy loss rate by decelerating, thus penalising the earliest trajectories. Conse-
quently, at a given distance to go, the maximum time window is expected to be achieved at intermediate
altitudes, where neither the earliest nor the latest trajectory is penalised.
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Figure III-6: Baseline scenario: feasible time window at the metering fix

According to Figs. III-5 and III-6, there exist only a feasible region of initial distances to go and alti-
tudes such that an aircraft could satisfy all the constraints without requiring neither additional thrust nor
drag devices during the descent. If the aircraft is close to the lower border of this feasible region, the energy
needs to be sustained by means of a shallower flight path angle and almost no margin is left to increase
the aircraft speed using elevator control. As the aircraft position approaches the trajectory of maximum
time window (black-dashed line), it has more freedom either to accelerate or decelerate by means of eleva-
tor control, and the time window increases until it reaches its maximum. However, if the aircraft is close
to the upper border of the feasible region, potential energy needs to be exchanged by kinetic energy by
descending with a steeper gradient and almost no margin is left to decrease the aircraft speed.

For this baseline scenario, the maximum time window is approximately 2.8 min, and is reached at the
highest altitude (FL360) and at 110 NM. It can be also observed that the time window decreases about 9 s
per NM or 30 s per 50 FL.
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The vertical trajectory plan of the aircraft is a function of many factors such as the cost index (CI), the
mass of the aircraft, the scheduled speed profile, the wind field or even a previous CTA assigned in cruise.
For instance, depending on the CI values the location of the TOD will move towards or away the metering
fix. Too high or too low CI values will narrow the feasible time window while intermediate CI values will
place the TOD in such a way that a wider feasible time window could be achieved. Accordingly, there
might exist a trade-off between airline preferences and robustness of the CDO facing late changes of the
CTA during the descent.

Even if keeping the engines at idle throughout the descent, the resulting fuel consumption depends
on the aircraft altitude and (to a lesser extent) on the speed profile. Figures III-7(a) and III-7(b) show, res-
pectively, the fuel consumption of the energy-neutral earliest and latest trajectories at the IAF, as a function
of the altitude and distance to go of the aircraft when computing them. As expected, the fuel consumption
and the time of arrival at the IAF are strongly correlated. In Fig. III-7 significant differences in fuel con-
sumption, between the earliest and latest trajectories, are observed, even though both are performed with
the engines at idle. Interestingly, it can be observed that earliest trajectories are more fuel-efficient than
latest trajectories.
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(a) Earliest time of arrival
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(b) Latest time of arrival

Figure III-7: Baseline scenario: fuel consumption at the metering fix

A priori, this could be seen as a paradox, since one might think that the higher the aircraft speed, the
higher the fuel consumption. If the CTA were updated in cruise, earliest trajectories would select a later
TOD, leading to higher fuel consumption due to the larger amount of time spent in the cruise phase. In the
scenario discussed herein, however, the aircraft is already descending when the CTA is updated and only
elevator control is allowed to gain or release time. The idle fuel flow depends mainly on altitude, being
lower at high altitudes. The latest trajectories tend to release as much energy as possible at the beginning
of the descent, then flying at low speeds and low altitudes. On the other hand, earliest trajectories attempt
to keep the faster speeds at the higher altitudes where the density (and the drag) are lower in order to
maintain the total energy level as long as possible, then releasing this energy close to the time-constrained
metering fix. Therefore, earliest trajectories operate at more fuel-efficient altitudes.

Among all the possible energy-neutral trajectories starting at a given flight conditions, there exist
only one that minimises fuel consumption. Figures III-8(a) and III-8(b) show, respectively, the extra fuel
consumption of the earliest and latest trajectories at the IAF with respect to those of minimum fuel con-
sumption, as a function of the distance to and altitude of the aircraft.

According to Fig. III-8(a) the most fuel-efficient trajectories at the IAF are very close to those of mini-
mum time, since both select similar altitude and speed profiles. Interestingly, the trajectory that maximises
the feasible time window throughout the descent also entails the maximum extra fuel consumption with
respect to the minimum fuel trajectory for the same initial conditions. Consequently, it can be concluded
that there is a trade-off between maximising the probability to achieve the whole descent at thrust idle (i.e.,
following the maximum time window trajectory) and minimising the fuel consumption.
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(a) Earliest time of arrival
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Figure III-8: Baseline scenario: extra fuel consumption with respect to the minimum fuel

III.3.3 Sensitivity study results
This section sums up the main results obtained from the sensitivity study. Results have been classified
according to the parameter subject of analysis.

III.3.3.1 Effect of the aircraft mass
Figure III-9 shows the effect of aircraft mass on the feasible time window. According to Fig. III-9, the set of
possible initial conditions (i.e., combinations of altitude and distance enabling an energy-neutral descent)
is larger and the feasible energy-neutral time window (i.e., difference between the latest and earliest times
of arrival) is wider for lighter aircraft.
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Figure III-9: Effects of aircraft mass on the feasible time window at the metering fix

The best glide speed of an aircraft (i.e., the speed that gives the most distance forward for each incre-
ment of altitude lost) is found at the maximum lift-to-drag ratio, which only depends on the aerodynamic
characteristics of the aircraft (Roskam & Lan, 1997). However, the speed at which the maximum lift-to-
drag ratio occurs (approximately the GD speed) is a function of the aircraft mass. For a given altitude, the
heavier the aircraft, the higher the GD speed.

When the involved aircraft is in clean configuration, fully automated and flying the trajectory plan as
determined by the FMS, the CAS is not allowed to drop below GD (Airbus, 1993). Therefore, while the ear-
liest times of arrival keep almost unchanged with the aircraft mass (since MMO and VMO are independent
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of the mass), slower descents can be achieved with lighter weights because of the lower GD speeds. Con-
sequently, there is a trade-off between maximising the feasible time window and maximising the amount
of payload carried on-board the aircraft.

It is worth noting that the difference of feasible time window between two different aircraft masses
becomes more significant at farthest distances from the runway threshold. For instance, for an increment
of the aircraft mass from 80% to 100% of MLM, at 60 NM from the runway threshold the maximum time
window decreases 30 s, while at 100 NM the detriment is about 1 min.

III.3.3.2 Effect of the longitudinal wind
Figure III-10 shows the effect of the longitudinal wind on the CTA window in a matrix form. Each column
represents a different magnitude of the wind speed. The first row shows the results for the simulations
with head wind, while the second row for those with tail wind. It is important to recall that the wind speed
is not constant, but changes with the altitude according to Eq. (II.7). Therefore, the values of wind speed
shown in Fig. III-10 correspond to wr, not to ws.
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Figure III-10: Effects of longitudinal wind on the feasible time window at the metering fix

According to Fig. III-10, in presence of head wind the feasible range of initial aircraft states moves to-
wards the time-constrained metering fix and becomes narrower, but the feasible energy-neutral time win-
dow at the IAF increases, if compared with calm wind conditions (see Fig. III-6). The opposite behaviour
applies in presence of tail wind.

This observation is easy to understand by analysing the impact of the ws on the total energy lost per
unit length, which expression can be deducted by combining Eqs. (III.2) and (II.29):

dEt
ds

=
dEt
dt

dt
ds

=
Ėt
ṡ

=
v (Tidle −D)

v cos γ + ws
. (III.17)

Equation (III.17) leads to the following inequalities for a given weight, altitude and speed:

dEt
ds

∣∣∣
ws>0

<
dEt
ds

∣∣∣
ws=0

<
dEt
ds

∣∣∣
ws<0

. (III.18)

According to Eq. (III.18), in presence of head (resp. tail) wind, less (resp. more) distance is needed
to release the same amount of energy if compared with calm winds condition. Namely, for a given initial
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energy, in presence of head wind the descent must start closer to the metering fix to satisfy all the constra-
ints. Equation (III.18) explains why, for a given altitude, the set of initial states moves towards the IAF and
becomes narrower for head wind conditions.

Generally speaking, for the earliest trajectories it would be desirable to maintain the maximum al-
lowed speed (either MMO/VMO or 250 kt, depending on the altitude) down to the IAF. Similarly, for the
latest trajectories, the deceleration to GD should be performed as soon as possible. In practice, however,
the capability to release energy once the IAF is overflown constrains the altitude and speed at which this fix
can be reached, and the ideal conditions cannot always be met. For instance, for the earliest energy-neutral
trajectories in the case studies with head wind, the optimal solution consists of reaching FL100 at VMO and
decelerating to 250 kt just before the IAF, since the aircraft is capable of releasing such amount of energy in
the remaining descent distance. In presence of tail wind, however, the energy at the IAF cannot be as high
because of the lower |dEt/ds|, and the deceleration to 250 kt must be performed well before the metering fix.

III.3.3.3 Effect of the IAF position
Figure III-11 shows the effect of the position of the metering fix on the feasible CTA window.
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Figure III-11: Effects of the position of the metering fix on the feasible time window

As expected, the closer the metering fix to the runway threshold, the wider the CTA window because more
distance is left to gain or lose time. It is interesting to note that, even if the time window is significantly
affected by the position of the metering fix, the set of feasible initial conditions remains unchanged. This is
because of the particularities of the selected scenario, in which neither speed nor altitude constraints have
been considered. As a result, the set of feasible initial conditions is not affected by the IAF location, but
only the value of the cost function.

III.3.3.4 Effect of the initial speed
Results shown in the preceding sections were computed fixing the initial speed of the aircraft to that corre-
sponding to a kinetic energy in the middle of the feasible kinetic energy range. However, the initial kinetic
energy of the aircraft plays an important role in the feasible time window, which must be also investigated.
For instance, if the CTA update forces the aircraft to arrive earlier than initially planned while flying very
slow, it might be not possible to accelerate enough without adding energy by means of thrust. Conversely,
if the aircraft is forced to arrive later than initially planned while flying at a very high speed, it might be
infeasible to decelerate (thus decrease the drag) and at the same time release the required energy without
using speed brakes

Figure III-12 shows the effects of the initial speed on the feasible energy-neutral time window.

According to this Fig. III-12, flying at a very high speed when receiving a CTA update is typically preferred.
For a given altitude and distance to go, the higher the speed, the higher the total energy. A high energy
level leads to more freedom to either release or retain it by increasing (provided that the aircraft is not flying
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Figure III-12: Effects of the initial speed on the feasible time window at the metering fix

at VMO/MMO/250 kt) or decreasing the speed, respectively. If the initial energy is limited, however, the
only choice left consists of preserving it as long as possible to satisfy the terminal condition, not being able
to fly faster and, consequently, highly penalising the earliest energy-neutral time of arrival.

Results for the case with a free initial airspeed (i.e., allowing the aircraft to change its initial speed
instantaneously) show feasible energy-neutral time windows up to 4 min, in contrast to the 2.8 min shown
for the baseline case study. However, changing the initial speed implies adding or removing energy from
the system by means of additional thrust or drag, respectively, leading to extra fuel consumption and/or
noise nuisance.

III.4 Discussion
An efficient assignment of CTAs when sequencing and merging traffic could enable the introduction of
CDOs in the TMA, where conflictive trade-offs exist between airspace capacity and environmental objec-
tives. For this purpose, future ground automation systems will require a good knowledge of the feasible
CTA windows for each inbound aircraft. This study quantified this feasible time window at the IAF for an
Airbus A320 performing a CDO such that the speed profile is only adjusted by means of elevator control
along the descent, and assuming the descent has been already initiated.

Results for a baseline case study show that CTA windows up to 2.8 min at the IAF could be achieved
for certain flight conditions. Another important remark that arises from this study is that a previously
assigned CTA or even the CI could have a significant impact on the CTA window. Interestingly, it has been
observed that minimum time (i.e., faster) trajectories are very similar to those of minimum fuel, provided
that the optimisation takes place once in the descent (i.e., the top of descent has been overflown) and neither
additional thrust nor drag devices usage are allowed.

It has been also found that there is a trade-off between maximising the robustness of facing late CTA
updates throughout the descent (i.e., adapting the time of arrival) and minimising the fuel consumption.
Therefore, for robust and optimal CDOs in the presence of uncertainties, it would be more interesting to fly
a higher extra fuel consumption if compared to that minimum achievable.

Moreover, it has been observed that the lighter the aircraft, the wider the feasible time window. In
addition, in presence of head wind, the set of feasible flight conditions such that an energy-neutral trajectory
can be accomplished, narrows and moves towards the time-constrained metering fix, but the magnitude
of the feasible time window increases. Results also show that receiving the CTA update while flying at a
high speed is typically preferred. Finally, and as expected, the closer the aircraft to the metering fix when
receiving the CTA update, the narrower the feasible time window

The most important conclusion of this chapter is that CTAs can be updated after overflying the TOD,
and that large energy-neutral time windows could still be attainable depending on the flight conditions.



He who is not satisfied with a little, is satisfied with nothing.

— Epicurus

The aim of science is not to open the door to infinite wisdom,
but to set a limit to infinite error.

— Bertolt Brecht

IV
Comparison of guidance strategies to meet time

constraints in optimal descents

In Chapter I, the assignment of time constraints to each inbound aircraft at some strategic fixes for sepa-
ration, sequencing and merging tasks was identified as a potential approach to enable continuous descent
operations (CDOs) in dense traffic scenarios. With this type of flight operations, air traffic control (ATC)
would assign (using data-link, for instance) at least one controlled time of arrival (CTA) to each aircraft,
ideally before they reach the top of descent (TOD). Chapter III quantified the feasible time windows of
energy-neutral CDOs that have overflown their TOD, showing that time windows up to 2.8 minutes could
still be achieved for certain flight conditions.

After receiving the CTA from the ATC, either before of after the TOD, the time instruction would be
entered as a required time of arrival (RTA) by the aircraft crew into the flight management system (FMS).
Right after, the on-board trajectory planner would compute the optimal trajectory plan for the descent
satisfying the RTA and other applicable operational constraints.

In practise, however, because of modelling errors and uncertainties encountered during the execution
of the trajectory plan, aircraft may deviate from the planned altitude and/or speed profile, and may also
be delayed or advanced with respect to the planned time schedule. In order to safely execute the trajectory
plan as well as to accurately comply with the entered RTA in such uncertain environment, corrective actions
must be taken by the on-board guidance system of the aircraft.

Several guidance strategies were proposed as a part of the time and energy managed operations
(TEMO) concept for this purpose, as mentioned in Section I.4.2.2. The aim of this chapter is to compare
the performance of the three existing TEMO guidance strategies described in Section II.3 (i.e., strategic,
tactical and hybrid), in terms of noise nuisance, energy error at the metering fix, fuel consumption, speed-
brakes use, as well as their ability to satisfy time constraints in presence of modelling errors. Furthermore, a
new TEMO guidance strategy called nonlinear model predictive control (NMPC), which is one of the major
contributions of this PhD thesis, will also take part of this comparison.
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IV.1 State of the art
Various guidance strategies have been proposed to comply with a CTA during a CDO, which essentially
differ on how the aircraft actuators are used to nullify the time deviations with respect to the trajectory
plan, and whether this trajectory plan is dynamically adjusted or not.

For instance, the speed profile could be continuously modified to tactically nullify a time error sig-
nal by using throttle and speed-brakes commands, while remaining on the vertical flight path with the
elevator, as suggested by Rumbo et al. (2002). At present, however, the automatic control of speed brakes
is seldom, implying that an additional margin must be available to control the throttle. This margin may
be acquired, for instance, by generating a trajectory plan at idle thrust plus some arbitrary increment. For
constant speed segments, the resulting flight path angle will be less steep, while for constant flight path
angle decelerations, the resulting decelerations will be slower. The continuous action on thrust required by
this guidance strategy, however, has a negative effect on noise nuisance, gaseous emissions, fuel usage and
engine wear and tear.

A more appealing guidance strategy, in terms of environmental impact, consists of actively controlling
the speed with the elevator (speed-on-elevator) in order to tactically nullify time deviations, then using
near-idle thrust variations to recover the initially planned path only when the vertical deviation exceeds a
predefined threshold (Garrido-López et al., 2009).

A set of additional guidance strategies were proposed as a part of the TEMO concept (De Jong et al.,
2017, 2015). These strategies have in common to manage the total energy of the aircraft (altitude and speed)
such that time constraints are satisfied in the most environmentally friendly way. For instance, if the air-
craft is late with respect to the CTA but exceeds the planned energy, the guidance system could command
a steeper descent angle to accelerate, which would result in an increased energy loss rate while simulta-
neously reducing the time error. These guidances were described in Section II.3, and will be summarised
below for the sake of completeness.

One guidance option in TEMO is to use speed-on-elevator to nullify time errors, while throttle and
speed brakes are continuously used to correct energy deviations (tactical guidance). Differently, the strate-
gic guidance approach consists of strictly follow the trajectory plan using speed-on-elevator while allowing
certain energy and time deviations during the execution, as long as some predefined thresholds are not
exceeded. Whenever time and/or energy errors exceed these thresholds, a new trajectory plan can be com-
puted from the current aircraft state in such a way that corrective actions are taken to satisfy all operational
constraints with minimum fuel usage (De Jong et al., 2017). In previous work, this guidance technique was
compared with the guidance strategy of a typical FMS that does not correct time errors, showing supe-
rior performances in terms of fuel consumption and RTA compliance in presence of wind errors (Dalmau
et al., 2016). The combination of the strategic and tactical guidance variants leads to the hybrid strategy,
where only the thrust plan is followed and a tactical controller is in charge to nullify time errors by using
speed-on-elevator (De Jong et al., 2015). Energy deviations exceeding the allowed threshold are corrected
by means of strategic updates of the trajectory plan. Finally, with NMPC (Diehl et al., 2008), the remaining
descent trajectory to the metering fix is frequently updated by solving an optimal control problem, setting
the current state of the aircraft as initial conditions. Different from the previous guidances strategies, the
NMPC does not wait for energy and time deviations to exceed a certain threshold, nor nullifies them to
strictly follow the initial trajectory plan. Thus, it could be seen as the limit of the strategic guidance, with
energy and time deviation thresholds tending to zero, in which the optimal plan is tactically updated.

Recent research demonstrated the feasibility of using NMPC guidance strategies to achieve pre-
cise spacing between aircraft, the main objective of interval management operations (Weitz & Bai, 2018).
However, due to limitations in the execution time of the trajectory optimisation algorithm, previous work
implemented a receding NMPC that did not update the remaining descent trajectory at each time sample,
but only computed the optimal controls over a relatively short future horizon such that the initial trajectory
plan was closely followed in the most optimal way. Other relevant contributions of NMPC in the aerospace
field have been performed, for instance, by Arrieta-Camacho & Biegler (2005), Gibbens & B. Medagoda
(2011) and Eren et al. (2017).
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IV.2 Setup of the experiment
The comparison of the four TEMO strategies was performed by simulating 123 descents per guidance
strategy (a total of 492) in the avionics prototyping environment for research and operations (APERO), a
flight simulator located at the Netherlands Aerospace Centre (NLR). The APERO is composed by a research
FMS, which allows the development testing of modules targeting applications for the optimisation of tra-
jectories, and a high-fidelity simulator of the aircraft dynamics, which implements a six-degree-of-freedom
model fed with accurate aircraft performance data.

A trajectory management software developed at the Technical University of Catalonia (UPC) as a
result of this PhD thesis was connected to the research FMS of the APERO, as illustrated in Fig. IV-1. This
trajectory management software is composed by a trajectory planner and a variety of guidance algorithms
build on time and energy management concepts.

NLR

High-fidelity
6DOF flight simulator

Research FMS 
(RFMS)

Trajectory planner

Guidance strategy

Aircraft 
performance 

model

ISA 

Re-plan trigger

Commands for
the actuators

Polynomial
fitting 

Figure IV-1: Setup of the experiment to compare guidance strategies

Basically, the trajectory planner was in charge of computing the initial trajectory plan complying with
a CTA at a certain metering fix of a realistic procedure. The optimisation of the aircraft trajectory was
formulated as an optimal control problem (see Section II.2.1), and solved by using the optimisation tech-
niques described in Section II.2.3. Thereafter, the trajectory plan was executed with the specific guidance
strategy subject of study. Using its particular logics, the guidance system provided the optimal controls
to the research FMS, which was in charge of computing the commands for the actuators. The trajectory
planner updated the optimal trajectory plan when requested by the guidance system, based on the state
observations provided by the research FMS.

As shown in Fig. IV-1, the simulations were performed by introducing intentional discrepancies bet-
ween the weather forecast and aircraft performance models implemented in the trajectory planner, and the
corresponding models implemented in the simulation environment. The detailed list of case studies and
their respective modelling errors will be presented in IV.2.4.

Fuel consumption, time and energy deviations at the metering fix, the number of speed brakes deploy-
ments, and area affected by the aircraft noise were selected as metrics for this comparison. Noise contours
were calculated using the model described by Van der Wal et al. (2001).

This section describes the setup of the experiment performed in this study. First, the scenario is pre-
sented in Section IV.2.1. Then, the generic models introduced in Section II.1 are particularised in Sec-
tion IV.2.2. Analogously, the generic optimal control problem stated in Section II.2.1 is particularised in
Section IV.2.3 with specific cost function and constraints. The case studies of the experiment are listed in
Section IV.2.4, and the workflow of a single descent simulation is summarised in Section IV.2.5.
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IV.2.1 Scenario
All simulations assumed the following scenario: an Airbus A320 was cruising at a certain altitude when
the ATC requested a CTA at a metering fix. Right after entering the RTA in the FMS, the on-board trajec-
tory planner computed the optimal trajectory plan and executed it by implementing any of the guidance
strategies considered in the experiment. However, the trajectory plan was computed under certain weather
forecast and aircraft performance modelling errors, and the guidance system reacted to correct energy and
time using its specific mechanisms.

All the simulations were performed to Barcelona-El Prat airport (LEBL), using four realistic standard
arrival procedures (STARs) published for runway 25L. As can be observed in Fig. IV-2, each STAR ends
at one of the four initial approach fixs (IAFs) of LEBL and then, all the approaches finally merge into a
single intermediate fix (SOTIL). The instrumental landing system (ILS) glide slope is intercepted at the final
approach point (FAP) few nautical miles later.

For this experiment, SOTIL (the intermediate fix) was selected as the metering fix where CTAs were
assigned by an hypothetical ATC for sequencing and merging tasks.

Figure IV-2: Routes at Barcelona-El Prat chosen to compare guidance strategies (Source: Spanish AIP)

IV.2.2 Models
The models presented in Section II.1 are particularised below for the experiment conducted in this chapter.

IV.2.2.1 Aircraft dynamics model
The point-mass model described by Eq. (II.1) was implemented in the trajectory planner of this experiment.
The control vector, however, was modified in the following way: the lift coefficient was exchanged for the
load factor (nz), and the thrust for the throttle setting (κ); that is: ~u = [κ, nz, β]

T instead of ~u = [T,CL, β]
T .

This also implies the following change in Eq. (II.1b):

dγ
dt

= γ̇ =
g

v
(nz − cos γ) , (IV.1)

where the load factor is defined as the ratio of the aerodynamic lift of an aircraft to its weigh:

nz =
L

mg
, (IV.2)

which represents a measure of the stress to which the structure of the aircraft is subject. According to
Eq. (IV.2), a load factor of one corresponds to straight and level flight, where the lift is equal to the weight.
Load factors different from one (or even negative) are the result of manoeuvres.
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The throttle was assumed to control the revolutions of the engine fan (N1) using a linear relationship:

N1(v, h, κ) = N1idle(v, h) + κ (N1max(v, h)−N1idle(v, h)) , (IV.3)

where N1idle and N1max represent, respectively, the minimum and maximum revolutions of the engine
fan, which are both function of the altitude and airspeed of the aircraft. In this model, the thrust force and
fuel flow were described as a function of N1, the altitude and the speed:

T (v, h, κ) = T (v, h,N1(v, h, κ)) (IV.4a)
q(v, h, κ) = q(v, h,N1(v, h, κ)). (IV.4b)

The differential equations of Eq. (II.1) for the remaining states kept unchanged.

IV.2.2.2 Aircraft performance model
The aircraft performance model (APM) used in this experiment was based on the performance data pro-
vided in tabular form by NLR for the Airbus A320. Since the nonlinear programming (NLP) solver used
in this study required first and second-order differentiability of the cost function and constraints, the drag
coefficient was modelled as the following drag polar:

CD(η, ζ, β, CL) = CD0(η, ζ) + CD2(η, ζ)C2
L + CDβ(η, ζ)β, (IV.5)

which neglects the compressibility effects and consider the effects of the speed brakes deflection as an
additional linear term. In Eq. (IV.5), CDβ is a coefficient that represents the increase in drag coefficient
when the speed brakes are deployed, and CL can be computed by combining Eq. (IV.2) with Eq. (II.2a):

CL(nz, v, h,m) =
2nzσ(h)ρSSLSv

2

mg
. (IV.6)

Figure IV-3 shows the drag coefficient as a function of CL, for different aerodynamic configurations.
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Figure IV-3: Drag polars approximating aerodynamic data for the A320

The maximum revolutions of the engine fan were set to a constant value, and the normalised revolu-
tions of the engine at idle thrust were modelled as fifth order polynomial:

N1max = 87 (IV.7a)

N1idle(v, h)√
θ(h)

=

3∑
i=0

3∑
j=0

ci,jθ
i(h)M j(v, h). (IV.7b)
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Figure IV-4: Polynomials approximating propulsive data for the A320

The same methodology was used to model the normalised fuel flow and the normalised thrust as a
function of the normalised revolutions of the engine fan:

q(v, h)

δ(h)
√
θ(h)

=

3∑
i=0

3∑
j=0

ci,j

(
N1√
θ(h)

)i
M j(v, h) (IV.8a)

T

δ(h)
=

3∑
i=0

3∑
j=0

ci,j

(
N1√
θ(h)

)i
M j(v, h). (IV.8b)

The coefficients of the polynomials functions appearing in Eqs. (IV.5), (IV.7) and (IV.8) where obtained as a
result of a least-squares fitting process with the aerodynamic and propulsive tabular data used in the flight
simulator, respectively. Figure IV-4 shows the polynomial approximation of the propulsive data.

It should be noted that even if both flight simulator and trajectory planner draw upon the same aircraft
type (i.e., an Airbus A320), the dynamics and performance models used by these components were sightly
different. The flight simulator used as a high fidelity six-degree-of-freedom model to represent the aircraft
dynamics, and very accurate look-up tables for the aircraft performance. Moreover, the trajectory planner
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represented the aircraft as a three-degree-of-freedom point-mass model (similar to Eq. (II.1)), and approxi-
mated the aircraft performance data included in the look-up tables of the flight simulator with polynomial
functions, aiming at achieving the continuity and second-order differentiability required by the embedded
NLP solvers.

IV.2.2.3 Weather model
The trajectory planner used in this experiment assumed international standard atmosphere (ISA) conditions
and calm winds. Accordingly, the normalised temperature θ and pressure δ were modelled as a function
of h through Eqs. (II.4) and (II.5), respectively; the normalised density was computed assuming the perfect
gas law relationship with Eq. (II.6); and ws = wx = 0.

IV.2.3 Optimal control problem formulation
The trajectory planner used in this experiment generated the optimal descent trajectory subject to a RTA by
solving a multi-phase, constrained and nonlinear optimal control problem, as described in Section II.2.1.
This section particularises the cost function and the dynamic, path, algebraic and interior-point constraints
for each one of the phases composing the flight profile.

The differential constraints on the dynamics of the aircraft (~f ) were particularised by the following
point-mass model, independently of the phase:

~fj =



T (v,h,κ)−D(v,h,m,nz,β)
m − g sin γ

g
v (nz − cos γ)

v sin γ

v cos γ

−q(v, h, κ)

 ; j = 0, . . . , P − 1. (IV.9)

The descent was divided into P = 4 different phases, where several phase-dependent path, algebraic
and interior-point constraints may apply. Table IV-1 wraps up the different phases and their associated
constraints. This table is also illustrated in Fig. IV-5.

Table IV-1: Definition of the phases and constraints for the comparison of guidance strategies
Phase (j) Description ~binj ~beqj

~ϑin
j

~ϑeq
j

0 Cruise phase

[
GD − vCAS(h, v)

vCAS(h, v)− VMO

] [
ḣ(v, γ)

Ṁ(h, v)

]
- -

1 Cruise deceleration

[
GD − vCAS(h, v)

vCAS(h, v)− VMO

] [
ḣ(v, γ)

]
- -

2 Descent

[
GD − vCAS(h, v)

vCAS(h, v)− VMO

]
- -

[
vCAS(h, v)− GD

]
3 Approach

[
vIF − vCAS(h, v)

vCAS(h, v)− GD

]
- - -

All Entire descent



M(h, v)− MMO
κ

κ− 1.0

β

β − 1.0

nz − 1.15

0.85− nz


- - -

Phase-independent path constraints (i.e., applying all along the descent) as a function of the state and
control vectors were also considered, which ensured that the Mach number remains within operational
limits all along the descent, and that the bounds on the controls are not exceeded.
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The bounds on nz were chosen to provide good passengers comfort (Pratt, 2000). Maximum operative
CAS (VMO) and maximum operative Mach (MMO) are constant parameters that depend on the aircraft
type. In this study, MMO and VMO were set to 0.80 and 340 kt, respectively. Finally, vIF was the callibrated
airspeed (CAS) that the aircraft must have when arriving at SOTIL.

Phase 0                          1                            2                           3

Figure IV-5: Definition of the phases and constraints for the comparison of guidance strategies

The cruise phase, starting at the current position of the aircraft ( ~X) and performed at constant Mach
and altitude, was followed by a cruise speed adjustment phase (still at constant altitude) that ended at the
TOD (which was a variable of the optimisation problem). There, the aircraft started the descent towards
SOTIL. Before reaching this fix, the aircraft configured with flaps at the green dot speed (GD). The last
phase of the profile ended with the aircraft at SOTIL and the following terminal constraints:

ψ =

vCAS(h, v)− vIF

s− sIF

h− hIF

 , (IV.10)

where hIF is the altitude at which the intermediate fix (IF) has to be intercepted, which value was set to 3,000
ft; the distance of the IF (sIF) was fixed at 11 NM from the runway threshold; and the GD was computed
according to Airbus (1993), as a function of the mass and the altitude.

The CTA was imposed by fixing the final time of the last phase. Therefore, the final times of each
phase were additional decision variables to be optimised subject to the following constraint:

t3 − CTA = 0. (IV.11)

Aiming at reducing the environmental impact, the running cost of the optimal control problem was a
compound function of fuel flow and speed brakes use:

πj = q(v, h, κ) +Kββ; j = 0, . . . , P − 1, (IV.12)

where Kβ is a weighting parameter that determines how much the use of speed brakes is penalised if
compared to the fuel flow. In this particular experiment Kβ = 1, and no terminal costs were considered
(i.e., φj = 0 for j = 0, . . . , P − 1).

The optimal control particularised above was transformed to a parametric NLP optimisation problem
as described in Section II.2.3. Then, the resulting parametric NLP optimisation problem was formulated in
the general algebraic modelling system (GAMS) software suit, and solved with CONOPT as NLP solver,
which uses active-set methods. In this experiment, the trapezoidal integration scheme was adopted to
obtain ~Fj and Πj from ~fj and πj , respectively. Finally, the constraint relaxation method described in Sec-
tion II.2.4.1 was implemented to recover from infeasibility.
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IV.2.4 Case studies
The aim of this experiment was to compare the performance of the following guidance strategies when the
target is to comply with time constraints during an optimal descent: tactical, strategic, hybrid (time tactical
and energy strategic), and ideal NMPC (see Section II.3). For each one of these guidance strategies, a set of
123 descents were simulated, which correspond to the case studies shown in Table IV-2.

For each arrival route shown in Fig. IV-2, three different CTAs were considered, enforcing to arrive at
SOTIL after 21, 22 and 23 minutes from the start of the simulation. It should be noted that for this particular
scenario, the earliest trajectory plan keeping the engines at idle during the entire descent (but allowing to
modify the position of the TOD) in ISA conditions, calm winds and nominal aircraft performance models
could bring the aircraft to the metering fix in 19 minutes, and the latest trajectory in 27 minutes.

Independently of the guidance strategy, the trajectory planner computed the optimal trajectory plan
assuming ISA conditions, calm winds and nominal aircraft performance models (i.e., the polynomials ap-
proximating the performance data used in the flight simulator). Then, either wind or non-standard atmo-
spheric conditions were incorporated during the execution of the descent, in the flight simulator, in order
to mimic mismatches between the models used by the trajectory planner and the reality. Similarly, the air-
craft performance models of the flight simulator were sightly modified by adding variations with respect
to those used by the trajectory planner.

Several combinations of CTAs and arrival routes with either wind, temperature or aircraft perfor-
mance modelling errors composed the complete set of case studies shown in Table IV-2. Note that not all
possible combinations were considered in this study. In fact, the effects of the different sources of modelling
error were assessed separately. The case studies considered to capture the effects of each particular source
of modelling error are listed in the following sections.

Table IV-2: List of case studies per each of the four guidance strategies assessed
Route CTA [min] ∆T [K] KTidle [%] KCD

error [%] Wind speed [kt] Wind direction [◦] Total

BISBA1M 1 21,22,23 -10,-5,5,10 -5,5 -5,5 5,10 0,90,180,270 3 · (4 + 2 + 2 + 2 · 4 + 1) = 51

VERSO1L 21,22,23 - - - 5,10 0,90,180,270 3 · 2 · 4 = 24

MATEX1M 21,22,23 - - - 5,10 0,90,180,270 3 · 2 · 4 = 24

GRAUS1L 21,22,23 - - - 5,10 0,90,180,270 3 · 2 · 4 = 24

IV.2.4.1 Weather forecast errors
The accuracy of the plan computed by the trajectory planner, and especially the computation of the esti-
mated time of arrival, critically depends on the quality of the weather model.

Wind and temperature accuracy requirements for the future air traffic management system have been
assessed before. According to Robert & De Smedt (2013), standard deviations of 5 kt and 2.5 K for the along
track wind and temperature, respectively, were considered as a requirement to compute accurate trajectory
plans. In this experiment, positive and negative temperature forecast errors of 5 and 10 K and wind speed
forecast errors of 5 and 10 kt were considered. It is important to remember that the trajectory planner
computed the plan considering ISA and calm winds. As a result, the temperature forecast errors were
translated to ISA deviations during the execution of the simulation. Similarly, wind forecast errors were
accomplished by simply adding winds in the simulation that were not considered during the planning.

The two wind speeds chosen for this experiment were combined with the four main compass wind
directions (north, south, east and west), leading to a total of eight case studies with wind forecast errors for
each CTA. That is, 8 · 3 = 24 simulations per guidance strategy and lateral route.

Regarding the temperature forecast errors, a single STAR (BISBA1M) was considered because results
are independent of the route, provided that the ISA deviation is not a function of the distance to go, leading
to a total of four case studies with temperature forecast errors per CTA. That is, 4 · 3 = 12 simulations,

Finally, an additional case study with neither wind nor temperature forecast errors was also consi-
dered for each CTA, but only for BISBA1M arrival route. It should be noted that the simulations corre-
sponding to the case studies with either wind or temperature forecast errors were performed by using the
nominal aircraft performance model (i.e., KTidle = KCD = 0).

1An additional case study without modelling errors was considered for each CTA value
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IV.2.4.2 Aircraft performance modelling errors
Inaccuracies in the aircraft performance models are also a source of error when generating trajectory plans.
In this experiment, the effects of errors in the drag coefficient (see Eq. (IV.5)) and idle thrust models were
analysed. In order to accomplish that, either the drag coefficient or the idle thrust of the flight simulator
were increased by some percentage as follows:

T ′idle,sim = KTidleTidle,sim

C ′D,sim = KCDCD,sim,
(IV.13)

where Tidle,sim and T ′idle,sim are, respectively, the generic thrust idle of the simulator and the thrust of the
simulator increased by a factor of KTidle . Similarly, CD,sim and C ′D,sim are , respectively, the generic drag
coefficient of the simulator and the drag coefficient of the simulator increased by a factor of KCD . Overes-
timations and underestimations of 5% in the magnitude of these two aircraft parameters were considered
in this experiment. Therefore, a total of four case studies with aircraft performance model errors were ex-
ecuted for each CTA. As for the case with temperature errors, a single STAR (BISBA1M) was considered
for this analysis, because results are independent of the lateral route. That is, 4 · 3 = 12 simulations per
guidance strategy.

It should be noted that the simulations corresponding to the case studies with aircraft performance
modelling errors were performed in ISA and calm wind conditions (i.e., ∆T = ‖~w‖ = 0).

IV.2.5 Workflow of a simulation
All simulations started at a distance to go of 140 NM from the landing runway threshold, cruising at FL360
and Mach 0.78, and with a mass corresponding to the 90% of the maximum landing mass (MLM). Immedi-
ately, a CTA at SOTIL was received from an hypothetical ATC, and a re-plan was triggered to generate an
optimal trajectory plan satisfying the entered RTA at this waypoint.

Right after configuring with flaps at the GD, the pseudo-pilot implemented in the simulator pressed
the approach button (this was achieved few nautical miles before SOTIL), disabling the guidance under
testing and engaging the ILS guidance modes. Consequently, all the simulations finished at SOTIL, and all
the metrics used for the comparison were computed at this fix.

The tactical guidance logic was configured to continuously adjust the commanded CAS such that time
deviations were nullified using speed-on-elevator. Regarding the specific energy (Es)2, a maximum allowed
deviation of 50 ft was set. In the case of being above this threshold, speed brakes were deployed; in the
case of falling below, the throttle acted to recover the planned energy level by commanding small amounts
of thrust. It is important to remark that under no circumstances the trajectory was updated during the
execution of the descent when implementing this guidance mode.

The specific energy deviation bounds for the strategic and hybrid guidances were set to 500 ft in the
cruise phase until the TOD and 100 ft at the metering fix, while time deviation bounds for the strategic
guidance were set to 10 and 3 seconds at these two points, respectively. Between these two points, specific
energy and time deviation bounds were linearly interpolated as a function of the distance to go.

Finally, the NMPC guidance strategy updated the plan every 30 seconds, independently of the energy
and time deviations present at the moment of updating the trajectory. This strategy was activated at the
beginning of the descent, in order to avoid a continuous shift of the TOD.

IV.3 Results
Section IV.3.1 shows the working principle of the four guidance strategies presented in Section II.3 by
means of an illustrative example taken from the batch study. Then, Section IV.3.2 compares the performance
of the guidance strategies subject to weather forecast and aircraft performance modelling errors. Finally, the
sensitivity of the performance metrics to the mean longitudinal wind error experienced during the descent
is discussed in Section IV.3.3.

2The specific energy is defined as the total energy divided by the weight of the aircraft
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(d) NMPC

Figure IV-6: Specific energy and time deviations per guidance strategy

IV.3.1 Guidance examples
The simulation chosen for this illustrative example corresponds to that executed by following the BISBA1M
STAR (see Fig. IV-2), subject to a CTA requiring to arrive 23 minutes after the start of the simulation, with
approximately 10 kt of unexpected head wind, in ISA conditions, and without aircraft performance mo-
delling errors. That is, in this particular case study the same temperature profile and aircraft performance
model were used in both simulation and trajectory planner, but with a different wind.

Figure IV-6 shows, for each guidance strategy, the time and specific energy deviations along with their
associated thresholds (if any), as a function of the distance to go. Figures IV-7 and IV-8 show the planned
and executed states and controls, respectively, for these four guidance strategies.

As seen in Fig. IV-6(a), with tactical guidance the time error caused by the unexpected head wind
is continuously nullified by using speed-on-elevator, while energy deviations are corrected by either de-
ploying speed brakes or by adding minimum amounts of thrust whenever these deviations exceed 50 ft.
Figure IV-7(a) illustrates that using this guidance strategy the initial plan computed before the TOD is never
updated. Figure IV-8(a) shows that the throttle acted twelve times to correct a negative energy deviation,
while speed brakes were deployed two times right after the TOD.

Remember that in strategic guidance, the CAS and thrust plans are executed by the elevator and
throttle, respectively, and neither time nor energy deviations are corrected as long as they remain within
the allowed thresholds. If the energy and/or time error exceeds the threshold, the optimal trajectory plan
is re-calculated starting at the current aircraft position. Figure IV-6(b) shows that five re-plans were trig-
gered by a time error exceeding the upper threshold (i.e., the aircraft was late with respect to the CTA due
to the unexpected head wind). Whenever a re-plan is triggered, the current state and time are enforced
as the initial conditions for the subsequent optimal control problem, thus both energy and time deviations
are nullified at the moment the new plan becomes active. According to Fig. IV-7(b), all re-plans required
a noticeable faster speed profile if compared with what was initially planned, aiming to correct the accu-
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(a) Tactical (b) Strategic

(c) Hybrid (d) NMPC

Figure IV-7: Planned and executed states per guidance strategy

mulated time deviations, which could be as high as the maximum allowed threshold at the distance to go
where the re-plan is triggered. Figure IV-8(b) shows that for none of the re-plans energy modulation with
the elevator was sufficient to correct the accumulated time and energy deviations. All re-plans required to
add a relatively small amount of energy to increase the kinetic energy and arrive on time.

In hybrid guidance, a tactical controller nullifies time deviations with the elevator while following the
thrust plan with the throttle, and energy deviations are corrected by re-planning the trajectory plan in a
strategic way whenever the maximum energy deviation is exceeded. According to Fig. IV-7(c), the tactical
controller systematically increased the speed above that planned in order to nullify the time deviations
caused by the unexpected head wind. This higher speed led to an increase of the aerodynamic drag and,
consequently, to the energy loss rate. As a result, three re-plans were triggered in the last 40 NM by an
excessive energy deviation reaching the lower threshold (i.e., the aircraft lacked of energy). All re-plans
required additional thrust. Since this guidance strategy does not correct energy deviations as long as they
remain within the allowed threshold, the metering fix was achieved almost 100 ft below the planned specific
energy level. This missing energy would need to be recovered afterwards by means of additional thrust,
leading to more fuel consumption as well as noise nuisance at low altitudes.

In NMPC guidance, energy and time deviations are neither tactically nor strategically corrected
during the course of the descent (see Fig. IV-6(d)). Instead, the trajectory is frequently updated by solv-
ing an optimal control problem over the remaining descent. The aim of this guidance strategy is to obtain
the optimal control vector that, at each plan update, corrects the deviations while optimising the remaining
descent for fuel consumption and speed brakes use. In this particular example, the plan was updated 30
times, reaching SOTIL at the planned time and energy level. According to Fig IV-8(d), energy modulation
was sufficient to correct energy and time deviations until 90 NM from the runway threshold. Thereafter,
small yet optimal amounts of energy were added to the system after each re-plan, aiming to correct energy
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(a) Tactical (b) Strategic

(c) Hybrid (d) NMPC

Figure IV-8: Planned and executed controls per guidance strategy

deviations and adjust the speed plan. If compared with the hybrid and strategic re-plans, NMPC re-plans
led to less modifications of the active plan, thus requiring less throttle and speed brakes use. The reason be-
hind this fact is that time and energy deviations at the moment the re-plan is triggered are smaller, because
they are continuously corrected rather than waiting them to reach a certain threshold.

IV.3.2 Comparison of guidance strategies
The comparison of the four guidance strategies is illustrated using spider charts (Fig. IV-9), which allow
to easily identify the trade-offs of each guidance strategy relative to the others, as well as violin plots
(Fig. IV-10), which show the distribution of the data at different values. Figure IV-9(a) gathers the average
results from all simulations. For the remaining subfigures, the set of case studies subject to either wind,
temperature or aircraft performance modelling errors were selected separately to isolate their effects.

According to Fig. IV-9(a), the average time deviation at the metering fix is lower than two seconds
for all the guidance strategies investigated herein, and less than one second for all those different from the
strategic. The reason behind this fact is that, in strategic guidance, time deviations are allowed as long as
they remain within the allowed bounds. The remaining guidance strategies show better time deviation
figures because their logics continuously correct sustained time deviations, either tactically (in hybrid and
tactical) or by means of a continuous re-plan of the optimal descent trajectory (in NMPC). These results
demonstrate the excellent performance of time and energy management concepts to satisfy time constraints
in uncertain environments.

Regarding the environmental impact, the tactical strategy shows the worst figures in terms of fuel
consumption and noise nuisance, due to the continuous (and not optimal) use of thrust and speed brakes
to correct energy deviations from the initial (static) trajectory plan. It should be noted that the mechanisms
used by the NMPC are similar to those used by the tactical strategy: energy and time deviations are not
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(d) Only aircraft performance modelling errors

Figure IV-9: Mean metrics per guidance strategy. E: Specific energy deviation [ft]; F: Fuel consumption
[kg]; N: Area affected by aircraft noise [NM2]; S: Number of speed brakes deployments; T: Time deviation

[s].

monitored, but the elevator, throttle and speed brakes continuously act together to nullify them. Yet, the
corrective actions performed by the NMPC are mathematically optimal and take into account the remaining
descent trajectory, which is dynamically adjusted. For this reason, the noise nuisance, fuel consumption and
speed brakes use for the NMPC strategy are comparable with those of the strategic and hybrid strategies.

The hybrid strategy show the best results in terms of environmental impact mitigation and speed
brakes use, proving to exploit the advantages of the strategic and tactical mechanisms. However, the dif-
ferences with respect to the strategic and NMPC strategies are not significant enough to conclude that the
hybrid guidance could be preferred over the others.

As expected, the specific energy deviation at the metering fix is higher for the strategic and hybrid
strategies, which allow deviations up to 100 ft at this fix before triggering a re-plan. Similarly, the tactical
strategy permits specific energy deviations up to 50 ft before applying throttle or deploying speed brakes.
The NMPC shows the best results in terms of energy deviation, because every 30 seconds the energy devi-
ation is nullified when activating the new trajectory plan.

The fuel consumption shown in Fig. IV-9 does not consider the phases after the metering fix. If this fix
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Figure IV-10: Metrics distribution per guidance strategy

were reached with a certain energy deviation, the missing or excessive energy would need to be added by
means of additional thrust (leading to more fuel consumption and noise) or released by deploying speed
brakes (leading to more airframe noise), respectively, at low altitudes and near populated areas. With
NMPC guidance, the aircraft typically reaches the metering fix with negligible energy deviations. Conse-
quently, the NMPC does not require the addition nor subtraction of energy after the metering fix.

As expected, and according to Fig. IV-9(b), wind errors have the effect of increasing both absolute time
and energy deviations. It is also worth to note that, at aggregated level (and considering the same number of
case studies with prevalent head wind than with tail wind), the fuel consumption, noise nuisance and speed
brakes use are similar to those observed in Fig. IV-9(a). In addition, Fig. IV-9(c) shows that temperature
deviations also lead to significant time and energy deviations. On the one hand, all the guidance strategies
considered herein execute the CAS plan, leading to true airspeed (TAS) errors in presence of temperature
deviations. On the other hand, the aircraft performance strongly depends on the air temperature (see
Eq. (IV.8b)). Finally, according to Fig. IV-9(d), errors in the aircraft performance models are not penalising
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Figure IV-11: Correlation between metrics and longitudinal wind speed error

the capability to satisfy CTAs, but have a major impact on the environment.

Figure IV-9 showed only the mean of the different metrics per guidance strategy. Figure IV-10 shows
the complete distribution for each metric and guidance strategy. Essentially, the conclusions remain the
same than stated before. Namely, the strategic and hybrid show the larger dispersion of energy deviations
at the metering fix, due to their passive behaviour with respect to the energy deviation as long as it remains
within the allowed threshold; the tactical hybrid and NMPC show excellent figures in terms of time error
at the metering fix, while the time error for the strategic approach shows larger dispersion; and the tactical
strategy is the one leading to more fuel consumption, noise nuisance and speed-brakes use.

IV.3.3 Sensitivity to the wind error
Figure IV-11 shows, for each guidance strategy, the dependence of each particular metric with respect to
the average longitudinal wind speed error encountered druing the descent. Each point in the scatter plot
shows the result of a single simulation. Positive (resp. negative) values of longitudinal wind speed error
represent unexpected head (resp. tail) wind encountered during the execution of the descent.

According to Fig. IV-11, and as expected, the higher the unexpected head wind, the larger the fuel
consumption and noise nuisance. In contrast, the number of speed brakes deployments typically increases
with the unexpected tail wind. The rationale behind these results was already discussed in Section III.3.3.2:
the head wind leads to an increase of the energy loss rate per unit distance, while the tail wind reduces the
amount of energy lost per unit distance. During the execution of the descent, the guidance system will add
more energy (directly related to fuel consumption and noise) or will release it by deploying speed brakes
to safely and efficiently guide the aircraft along the planned trajectory.

According to Fig. IV-11(c), for the tactical and NMPC guidance strategies, the energy deviation at the
metering fix is always close to zero, independently of the wind speed error. However, in strategic and
hybrid guidance more dispersion is found for large wind speed errors. The same conclusion applies for the
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time deviation (see Fig. IV-11(b)). In this case, however, the tactical, hybrid and NMPC guidance strategies
show excellent figures of CTA adherence, while the time deviation for the strategic guidance shows a linear
correlation with the longitudinal wind speed error.

Figure IV-11(f) shows that the number of re-plans for the strategic and hybrid guidance strategies
strongly depends on the absolute value of the longitudinal wind error. However, the number of re-plans
of these guidance strategies is still much lower than that of the NMPC strategy, which generates a new
descent plan starting at the current aircraft state every 30 seconds.

IV.4 Discussion
This chapter compared the performance of four guidance strategies based on time and energy management
concepts: tactical, strategic, hybrid and NMPC. Results from a batch study demonstrated that the four
guidance variants can safely accomplish a CTA during a CDO with negligible time and energy deviations,
even in presence of significant weather and aircraft performance modelling errors.

The tactical guidance strategy requires continuous actions on the throttle and speed brakes to remain
on the planned energy level and arrive on time, leading to more fuel consumption and noise nuisance if
compared with other strategies. The hybrid strategy shows the best results in terms of environmental im-
pact mitigation, and also requires less pilot actions to deploy speed brakes. However, due to its strategic
behaviour with respect to specific energy deviations, the metering fix is reached with larger specific en-
ergy deviations than for other strategies. In this context, the NMPC strategy demonstrated to be the most
robust in terms of specific energy and time deviations at the metering fix, while simultaneously showing
environmental impact figures comparable to those of the hybrid and strategic.

The main conclusion of this study is that these four guidance strategies provide very similar per-
formance. However, even these small differences could be significant at aggregated level. Since all the
guidance strategies showed similar results in terms of fuel consumption and time and energy error at the
metering fix, the additional robustness of the NMPC guidance strategy promotes its use for this application.
Compared to the other guidance strategies investigated herein, NMPC provides more situation awareness
for the pilot, since deviations from the (dynamic) trajectory plan are lower than for strategic and hybrid.
Also for this reason, the NMPC reduces the chances of obtaining infeasible solution as a result of a trajectory
update. Note that when the strategic and hybrid strategies update the trajectory plan due to an excessive
time and/or energy error reaching the threshold, it might be too late to react and satisfy all the constraints.
In such cases, any of the strategies discussed in Section II.2.4.1 could be used to recover feasibility as long
as the operational limits of the aircraft are not overpassed, yet degrading the performance of the opera-
tion. Last but not least, another advantage of the NMPC is that, if at certain moment during execution of
the descent up-to-date and accurate wind data is obtained from, e.g., the leading aircraft in the procedure,
re-planning the trajectory plan may be beneficial in both environmental impact and constraints compliance
terms. The combination of NMPC and wind networking concept will be further investigated in Chapter VI.

A limitation of the experiment presented herein is that the remaining descent after the metering fix
was not taken into account. If the energy of the aircraft at this fix were too low, additional thrust would be
needed after overflying it. Similarly, if the energy were too high, it would be required to use speed brakes
and/or to deploy high-lifting devices or the landing gear earlier. After the metering fix, however, the ap-
proach procedure is heavy constrained, since the aircraft has to intercept the ILS glide slope in few nautical
miles and thereafter follow a constant ground flight path angle (not allowing for energy management).

Last but not least, in this chapter the guidance strategies were not optimised for noise explicitly, even
if noise nuisance was used as metric for comparison. In future research, descents will be optimised for noise
(and emissions) explicitly, and even better results may be obtained in terms of these metrics.





A complex system that works is invariably found to have
evolved from a simple system that works.

— John Gaule

Any sufficiently advanced technology is indistinguishable from
magic.

— Arthur C. Clarke

V
Model predictive control to meet time constraints in

optimal descents

In Chapter IV, the performance of various guidance strategies build on the time and energy managed ope-
rations (TEMO) concept (De Jong et al., 2015) were compared using a high-fidelity flight simulator located
at Netherlands Aerospace Centre (NLR), focusing in the environmental impact mitigation of these guid-
ance strategies as well as their ability to comply with operational constraints (of particular interest, time
constraints). Hundreds of optimal descents to Barcelona-El Prat airport subject to controlled time of ar-
rival (CTA) at a metering fix were simulated by introducing errors in the weather and aircraft performance
models implemented in a research flight management system (FMS). Results showed that nonlinear model
predictive control (NMPC) (Diehl et al., 2008), a guidance strategy based on a frequent update of the optimal
trajectory plan during the execution of the descent (e.g., every 30 seconds), could be very robust in terms of
correcting energy (speed and altitude) and time deviations at the metering fix, providing at the same time
acceptable fuel consumption and noise nuisance figures, if compared to existing TEMO strategies. Another
advantage of NMPC is that deviations from the (continuously adjusted) trajectory plan are always small,
thus providing more situational awareness for the pilot and being less prone to infeasible solutions as a
result of a trajectory plan update. Based on these conclusions, NMPC was identified as a very attractive
guidance strategy to enable continuous descent operations (CDOs) in high traffic demand scenarios.

A practical limitation of the basic NMPC for real-life applications, however, was that each trajectory
update could take up to 10 seconds. The main reason of this excessive computation time was that the
trajectory planner formulated the optimal control problem in the remaining time horizon from scratch,
without taking advantage of the nonlinear programming (NLP) structure, parametric sensitivity or primal-
dual solution of a similar optimisation problem computed at a previous time sample (see Section II.2.4.3).

In this chapter, two additional variants of the basic NMPC will be investigated, which take advantage
of parametric sensitivities to update the optimal trajectory plan quasi-instantaneously. The hypothesis
is that sensitivity-based strategies will provide considerable reduction in execution time (thus allowing
to updated the trajectory plan more often), simplification of the optimisation algorithm (thus improving
convergence and robustness), at the expense of a small reduction on the accuracy of the solution.
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In order to accomplish that, more than 4,000 descents per guidance strategy were simulated at the Na-
tional Aeronautics and Space Administration (NASA), supported by their expertise in trajectory operations
and, in particular, CDOs and interval management. Errors in the parameters used by the FMS to describe
the wind profile were intentionally introduced in the simulations. The open-loop fuel consumption as well
as time and energy errors at the metering fix, obtained by applying the initial optimal control plan (com-
puted at the TOD) in open-loop subject to these modelling errors, were compared with those of the pure
sensitivity-based NMPC (SbNMPC), which uses only parametric sensitivities to update the optimal trajec-
tory plan at each time sample; the ideal NMPC (INMPC) (Suwartadi et al., 2017), which ideally updates the
optimal trajectory plan at each time sample by solving a rigorous NLP optimisation problem without delay
(i.e., zero execution time); and the advanced-step NMPC (AsNMPC), which combines an early rigorous
re-calculation of the trajectory plan based on the predicted state at the next time sample, with a sensitivity-
based update to correct perturbations after measuring the actual state of the aircraft and parameters. Last
but not least, the sensitivity of the performance metrics to the mean longitudinal wind error experienced
during the descent was also investigated for the INMPC, if compared to the open-loop execution.

It should be noted that the flight simulator used in this experiment was simpler than that used in
Chapter IV. In particular, the simulator consisted on a set of accurate ordinary differential equation (ODE)
integrators that, given the controls of the aircraft and its current state, calculated the future position at the
next time sample using CVODES, a solver for stiff and nonstiff ODE systems bundled into the SUite of
Nonlinear and DIfferential/ALgebraic Equation Solvers (SUNDIALS) (Hindmarsh et al., 2005).

V.1 State of the art
Generic NMPC implementations, such as that used in Chapter IV, frequently update the optimal trajectory
plan by solving a rigorous NLP optimisation problem. Ideally, the trajectory should be updated without
delay at each time sample, right after measuring the current state of the aircraft ( ~X) and estimating the
parameters of the model (~d). In practical real-time applications, however, solving the rigorous NLP optimi-
sation problem may take a significant amount of time, leading to potential stability issues and/or degrading
the overall performance of the descent operation (Suwartadi et al., 2017).

In order to reduce the execution time, educated simplifications in the models used by the FMS have
been used, for instance by Kim & Hull (1995), at the expense of compromising the accuracy of the solution.
Other NMPC implementations compensate for computational delay by starting the optimisation process in
advance, setting the initial conditions of the new trajectory plan to the predicted state of the aircraft at the
next time sample (Zavala & Biegler, 2009), or at a look-ahead time equal to the estimated execution time. In
the later case, the unpredictability of the execution time remains a critical issue (Wetzel, 1996).

An alternative method widely used in process industries consists of computing fast trajectory updates
in the neighbourhood of the last optimal solution using the theory of neighbouring extremals (Pesch, 1979).
Using this approach, parametric sensitivities are obtained by linearisation of the necessary conditions of
optimality, also known as Karush-Kuhn-Tucker conditions (KKT) conditions, along the (optimal) active
trajectory plan to rapidly update it for small perturbations in the parameters of the model. This strategy,
known as SbNMPC, has shown important benefits in terms of execution time (Würth et al., 2008b, 2009; Wolf
& Marquardt, 2016). For more technical details about this strategy the reader is referred to Section II.3.4.2.

V.2 Setup of the experiment
In the experiment performed in this chapter, 4,143 descents per guidance strategy were simulated to asses
the performance of the INMPC, SbNMPC and AsNMPC guidance strategies in the presence of errors in the
wind forecast model used by the trajectory planner. All the descents were subject to CTA at a metering fix,
and to several altitude and speed constraints of a realistic flight procedure.

First, Section V.2.1 presents the scenario. Then, the generic models introduced in Section II.1 are
particularised in Section V.2.2. Analogously, the generic optimal control problem stated in Section II.2.1
is particularised in Section V.2.3 with specific cost function and constraints. The selected case studies are
listed in Section V.2.4, and the workflow of a single simulation is summarised in Section V.2.5.
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V.2.1 Scenario
The Denver international airport (DEN) was selected as the scenario for the experiment performed in this
chapter. Fig. V-1 shows the BOSSS TWO standard arrival procedure at DEN, which was the starting point
to define the route and the vertical profile used in this study. The metering fix where CTA were assigned
by an hypothetical air traffic control (ATC) during the simulations was the final approach point (DYMON
in Fig. V-1). The aircraft type used for the assessment was an Airbus A320-214.

Figure V-1: BOSSS TWO standard arrival procedure (source: US AIP)

V.2.2 Models
The models required to formulate the optimisation of the aircraft trajectory, which were presented in Sec-
tion II.1, are particularised below for the experiment conducted in this chapter.

V.2.2.1 Aircraft dynamics model
A variant of the γ-command model described by Eq. (III.2) was implemented in the trajectory planner. Dif-
ferent from typical approaches, the independent variable of this variant is the distance to go (s) and not
the time. The selection of s as the independent variable was driven by the fact that during an ideal CDO,
with no intervention from the ATC except for the negotiation of the CTA, the aircraft will follow a closed-
loop route and the remaining distance to go will be known. In addition, this formulation replicates how
constraints are defined in the current operational environment, thereby enabling more precise modelling.

In the distance-based γ-command model, the state vector is ~x = [t, v, h]
T , and the control vector is

~u = [γ, T, β]
T . The dynamics of ~x are expressed by the following system of ODEs:

dt
ds

= t′ =
1

v cos γ + ws(h)

dv
ds

= v′ =

(
T −D(v, h, γ)

m
− g sin γ

)
1

v cos γ + ws(h)

dh
ds

= h′ =
v sin γ

v cos γ + ws(h)
.

(V.1)

Note that wx was neglected for the sake of simplicity.
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V.2.2.2 Aircraft performance model
Different alternatives can be used to model Tidle, Tmax, CD, q, qidle, as mentioned in Section II.1.2. In this
experiment, the base of aircraft data (BADA) v4 model was adopted (Poles et al., 2010). Unfortunately,
BADA v4 still does not include a model for the effects of the speed brakes on the drag coefficient. As
a workaround, the contribution of the speed brakes was modelled as an extra linear term in the generic
BADA v4 drag coefficient model (CD,BADA). A similar approach was adopted in the study performed in
Chapter IV:

CD(CL,M, β) = CD,BADA(CL,M) + CDββ. (V.2)

Figure V-2 show the propulsive functions of the BADA v4 performance model for the A320-214 used
in this study. Analogously, Fig. V-3 shows the drag coefficient.
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Figure V-2: BADA 4 propulsive model for the A320-214

V.2.2.3 Atmosphere model
In this experiment, the international standard atmosphere (ISA) model, established to provide a common
reference for temperature and pressure, was considered to represent the normalised temperature θ and
pressure δ as a function of h through Eqs. (II.4) and (II.5), respectively. Then, the normalised density was
computed assuming the perfect gas law relationship with Eq. (II.6). The longitudinal component of the
wind (ws) was modelled by a smoothing spline of the form:
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Figure V-3: BADA 4 aerodynamic model for the A320-214

ws(h) =

nc∑
i=1

ciBi(h), (V.3)

where Bi, i = 1, . . . , nc, are B-spline basis functions and ~c = [c1, . . . , cnc ] are control points of the
spline (de Boor, 1972). It should be noted that the longitudinal wind was modelled as a function of the
altitude only, as done in similar works (De Jong et al., 2015). Yet, it would be straightforward to consider
dependence also on the distance to go, which is the independent variable of the model.

V.2.3 Optimal control problem formulation
The trajectory planner used in this experiment generates the optimal plan trajectory subject to a CTA by
solving a multi-phase, constrained and nonlinear optimal control problem, as described in Section II.2.1.
This section particularises the cost function and the dynamic, path, algebraic and/or interior-point constra-
ints for each one of the phases composing the flight profile of the procedure illustrated in Fig. V-1.

The differential constraints that enforce the dynamics of the aircraft (~f ) were particularised by the
following distance-based γ-command model, independently of the phase:

~fj =

 1
T−D(v,h,γ)

m − g sin γ

v sin γ

 1

v cos γ + ws(h)
; j = 0, . . . , P − 1. (V.4)

From all the waypoints of the route, only the altitude and speed constraints at QUAIL, BOSSS, CHAPP
and DYMON were modelled. In order to accomplish that, the descent was divided into P = 4 different
phases, with associated phase-dependent path, algebraic and/or interior-point constraints. It should be
noted, however, that the fact of modelling few constraints of the real procedure is not a shortcoming nor a
limitation of the model. The model proposed in this study could handle an unlimited number of phases and
associated constraints, yet few constraints were selected aiming to represent a futuristic and less restricted
procedure facilitating CDOs, as well as to ease the interpretation of the results. Table V-1 wraps up the
different phases and their associated constraints. This table is also illustrated in Fig. V-4.

Note that the last row of Table V-1 includes phase-independent path constraints (i.e., applying all
along the descent), which ensure that the aircraft airspeed remains within operational limits, and that the
maximum and minimum descent gradients, thrust and speed brakes are not exceeded.

In Table V-1, β = 0 and β = 1 indicate that speed brakes are retracted and fully extended, respectively;
the minimum descent gradient was set to γmin = −7◦; and the values for maximum operative CAS (VMO)
and maximum operative Mach (MMO) were obtained from the BADA v4 performance model.

In addition, the following terminal constraints were set at the metering fix DYMON:
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Table V-1: Definition of the phases and constraints for the comparison of NMPC strategies
Phase (j) Description ~beqj

~binj ~ϑin
j

~ϑeq
j

0 TOD-QUAIL

[
vCAS(v, h)− VMO
250 kt − vCAS(v, h)

]
-

[
FL170 − h

h− FL190

] [
vCAS(v, h)− 250 kt

]
1 QUAIL-BOSSS

[
vCAS(v, h)− 250 kt
210 kt − vCAS(v, h)

]
- -

[
vCAS(v, h)− 210 kt

h− 12, 000 ft

]

2 BOSSS-CHAPP

[
vCAS(v, h)− 210 kt

GD − vCAS(v, h)

] [
ḣ
]

- -

3 CHAPP-DYMON

[
vCAS(v, h)− 210 kt

GD − vCAS(v, h)

]
- -

All Entire descent



M(v, h)− MMO
γ

γmin − γ

Tmin(v, h)− T

T − Tmax(v, h)

β

β − 1.0


- - -

Phase 0                          1                            2                           3

Figure V-4: Definition of the phases and constraints for the assessment of NMPC strategies

~ψ =

vCAS(v, h)−GD
h− 7, 000 ft
t− CTA

 . (V.5)

According to Eq. (V.5), the CTA was imposed by fixing the final time (which was considered a state) of the
last phase. Since the flight time was fixed by the CTA, the goal was to minimise a weighted sum of fuel
consumption and speed brakes use for the remaining descent. Therefore, the stage cost was:

πj =
q(v, h, T ) +Kββ

(v cos γ + ws(h))
; j = 0, . . . , P − 1. (V.6)

In this particular experimentKβ = 1, and a fourth-order Runge-Kutta scheme was used to obtain ~Fj and Πj

from ~fj and πj , respectively. Moreover, no terminal costs were considered (i.e., φj = 0 for j = 0, . . . , P − 1).

It should be noted that the vector of model parameters included the control points of the spline ap-
proximating the longitudinal wind and the CTA, i.e., ~d = [~c,CTA]

T . This definition allowed the optimal
trajectory to be updated whenever an improved wind forecast was available or the CTA was modified.

Finally, the soft-constraint method was implemented to recover feasibility (see Section II.2.4.1).
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V.2.4 Case studies
Accurate wind data can be obtained from the rapid refresh (RAP) forecast/analysis system of the National
Oceanic and Atmospheric Administration (NOAA). This system generates numerical weather forecasts
hourly for look-ahead times up to +18 hours in a 13 km resolution grid covering North America and for
50 vertical levels extending up to 10 hPa. Sightly different, RAP analyses, which reproduce the actual
weather conditions, are generated hourly by using weather observations gathered from commercial aircraft,
balloons, radars and satellites.

For each case study of this experiment, a different wind forecast generated by RAP was used to ini-
tialise the wind profile spline of the FMS (see Eq. (V.3)). Then, during the execution of the descent in the
simulator, the actual wind encountered by the aircraft was obtained from the corresponding RAP analy-
sis. Historical wind forecasts generated by RAP at 00:00, 06:00, 12:00 and 18:00 for look-ahead times of +1,
+3 and +6 hours during one year (from June 2017 to June 2018) and actual wind data as reported by the
corresponding RAP analysis were used to configure a total of 4,143 case studies per guidance strategy.

Figure V-5 shows the distribution of root-mean-square error (RMSE) for the RAP forecast from June
2017 to June 2018, as a function of the forecast look-ahead time. It is interesting to observe that the three
distributions are centred at 1.5, 2.5, and 3 kt, approximately, and that the tail of the distribution increases
with the wind forecast look-ahead time, as does the uncertainty of the wind prediction.
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Figure V-5: RAP wind forecast RMSE distribution from June 2017 to June 2018

V.2.5 Workflow of a simulation
The experiment simulated an aircraft cruising at FL360 and Mach 0.78. Well before starting the descent to
DEN, the FMS computed the optimal descent trajectory plan to DYMON considering a typical cost index
(CI) of 30 kg min−1 (Airbus, 1998), and discretising the continuous optimal control problem into N = 60
time samples. Note that the more the number of time samples, the more accurate the solution will be, but
the higher the computational burden. The initial trajectory plan was computed considering a spline for the
longitudinal wind profile1 that approximated wind data from the RAP forecast.

As a result of this optimisation, the best distance to go of the top of descent (TOD) and the optimal
time of arrival at DYMON, for a CI of 30 kg min−1, were obtained. In addition, the energy-neutral time
window 2 from the TOD to DYMON was also computed and sent to the hypothetically ATC, who replied
with a random CTA at DYMON within this energy-neutral time window.

1It should be noted that the longitudinal wind profile was computed assuming a constant track of 304◦ all along the
route for the sake of simplicity.

2The energy-neutral time window from a state to a metering fix is defined as the difference between the latest and
earliest time of arrival that could be achieved without requiring neither thrust nor speed brakes usage throughout the
whole descent. Results from Chapter III showed that energy-neutral time windows up to 2.8 minutes can be obtained
for certain flight conditions.
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Right after, the FMS set the CTA as a terminal constraint for the time state in Eq. (V.5), and calculated
the optimal descent trajectory from the current state to DYMON by solving PN . All simulations started
with the aircraft located at the TOD obtained by solving PN subject to the CTA, ready to start the execution
of the optimal descent trajectory using either of the NMPC strategies.

During the execution of the descent, the aircraft encountered the actual wind profile (obtained from a
RAP analysis), which was different from the forecast used by the FMS (obtained from a RAP forecast). The
initial forecast, however, progressively converged to the actual wind profile as the aircraft descended. At
each time sample, the actual wind at the current altitude was sensed by the ownship, the pair of altitude
and wind speed was appended to the set of available wind observations, and the control points of the spline
that approximated the wind profile were updated based on the ownship observations collected so far.

Given a set O composed by no wind observations with associated time stamps, (ĥk, ŵk, τk) for
k = 1, . . . , no, and a vector of fixed knots, the optimal locations of the control points ~c, that minimise
the curvature of the smoothing spline while bounding the approximation error was obtained by solving a
weighted least-squares fitting problem:

min
~c

∫
w′′(h,~c)2dh

s.t
no∑
k=1

ωk

(
w(ĥk,~c)− ŵk

)2

≤ ε,
(V.7)

where ε is the smoothing factor, which specifies the trade-off between smoothness and accuracy of the
approximation. The weights associated with the observations can be defined in many different ways. In
this chapter, all the weights are updated at each time sample τi according to ωk = Λτk−τi , where τk is the
time sample when the observation at ĥk was obtained. The forgetting factor Λ ∈ [0, 1] weights the more
recent measurements so that old observations are discounted at an exponential rate.

Right after updating the control points of the wind profile, the trajectory was updated either by solv-
ing PN−i orQN−i (see Chapter II.3), depending on the guidance strategy considered during the simulation.

In this chapter, PN−i and QN−i were formulated in CasADi (Andersson et al., 2018)3, a symbolic
framework for automatic differentiation and numeric non-linear optimisation, and were solved by using
the sequential quadratic programming (SQP) algorithm implemented by the sparse nonlinear optimiser
(SNOPT) NLP solver (Gill et al., 2005).

Figure V-6 shows the main components of this experiment and their interactions.

3DOF flight simulator
using CVODES

Trajectory planner NMPC
Guidance strategy

Aircraft 
performance 

model

ISA 

Re-plan trigger

Wind profile
estimationCTA

Figure V-6: Setup of the experiment to compare NMPC guidance strategies

3https://github.com/casadi/casadi/wiki

https://github.com/casadi/casadi/wiki
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V.3 Results
The results of the experiment described above are presented in this section. Section V.3.1 shows illustrative
examples of trajectory updates, which were generated after intentionally perturbing different elements of
the parameters vector at the first time sample. Then, Section V.3.2 shows examples of descent execution,
aiming to illustrate the distinctive traits of the different NMPC alternatives. From the 4,143 wind forecasts
and associated wind analysis considered in this experiment, those corresponding to the 2018-04-21 at 00:00
with a look-ahead time of +1 hour were selected for the illustrative examples in Sections V.3.1 and V.3.2.
Figure V-7 shows the forecast and the actual wind profile for this particular date and look-ahead time.
Finally, the aggregated results for the 16,572 simulations are presented and discussed in Section V.3.3.

Figure V-7: RAP wind forecast and analysis (2018-04-21 00:00 for a look-ahead time of +1 hour)

V.3.1 Illustrative examples: trajectory updates
The three NMPC guidance strategies presented in Section II.3.4 update the optimal trajectory at each time
sample τi, i = 1, . . . , N − 1 according to the vector of NLP parameters ~p. By definition, any perturbation in
one of the elements of ~pwill entail a new optimal trajectory plan. Remember that for the model proposed in
Section V.2.3, the vector of NLP parameters at time sample τi is composed by the current state of the aircraft
( ~X) and the parameters of the model (~d). In turn, ~d includes the control points of a spline approximating
the longitudinal wind profile (~c) and the CTA to be satisfied. That is:

~p =

[
~X
~d

]
=

 ~X

~c

CTA

 . (V.8)

The initial (unperturbed) trajectory plan computed at the TOD for this illustrative example is shown
in all three panels of Fig. V-8. The vector of parameters used to generate this trajectory plan was composed
by the control points of the spline approximating the wind forecast data obtained from RAP, the nominal
initial state exposed and the CTA corresponding to the simulation for the same wind forecast and analysis.
Figure V-8 also shows the trajectories that would result from solving the rigorous NLP and a sensitivity-
based update with perturbations in the different elements of the parameters vector. Each panel of this figure
corresponds to a different element of ~p. The state perturbation (δ ~X) was an altitude deviation of 1,000 ft
below the unperturbed trajectory, the wind perturbation (δ~c) was the difference between the control points
of the splines approximating the RAP forecast and analysis data, and the CTA perturbation (δCTA) was
ATC requesting the aircraft to arrive 30 seconds earlier. It should be noted that each panel of Fig. V-8 shows
only the results of a single trajectory update performed at τ0, after intentionally perturbing one element of
the parameters vector. Accordingly, results are independent of the guidance strategy.
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(a) δ ~X = [0, 0,−1000 ft] at τ0

(b) δ~c (actual minus forecast of Fig. V-7) at τ0

(c) δCTA = −30 s at τ0

Figure V-8: Optimal trajectory updates for perturbations in the parameters vector (2018-04-21 00:00, look-
ahead time of +1 hour)
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Generally speaking, Fig. V-8 shows that the optimal trajectories resulting from sensitivity-based up-
dates (solving QN ) are almost identical to those obtained from solving a rigorous NLP optimisation prob-
lem (PN ), even for large perturbations in the elements composing the parameters vector. This conclusion
is very important, and demonstrates that the trajectories updated by means of parametric sensitivities are
accurate enough while reducing the execution time, provided that the perturbation in ~p is relatively small.
In addition, it should be noted that for the three examples presented in this figure, the trajectories resulting
from any of the trajectory updates reached DYMON at the enforced time and energy using only energy
modulation by means of elevator control, thus requiring neither additional thrust nor speed brakes use.

According to Fig. V-8(a), when the actual altitude of the aircraft was 1,000 ft below that initially
planned (lacking of energy), the energy loss rate needed to be reduced in order to satisfy the altitude and
speed constraints enforced at QUAIL (see Table V-1). The most fuel efficient method to accomplish that
consisted on reducing the airspeed and consequently the aerodynamic drag, which is the main cause of
energy loss. Applying this strategy, the updated trajectory reached QUAIL at a feasible altitude and air-
speed without using speed brakes. However, this sustained reduction in airspeed delayed the aircraft with
respect to the enforced CTA. The time error was compensated by flying at a higher speed from QUAIL to
BOSSS, yet releasing the same energy than initially planned by following a different energy profile.

Figure V-8(b) shows trajectory updates in case of changes in the control points of the spline approx-
imating the wind profile, while keeping the initial CTA. This means that the aircraft needed to adjust the
altitude and speed profile to comply with the initial CTA but subject to a different wind profile. According
to Fig. V-7, during the first part of the descent (from FL360 to FL200) the actual tail wind was significantly
heavier than that reported by the initial wind forecast. Consequently, the updated trajectory at τ0 avoided
the altitude interval from FL260 to FL200 as much as possible, where the tail wind was drastically higher
than initially planned. In order to accomplish that, potential energy (altitude) was exchanged for kinetic
energy (airspeed) at the maximum descent gradient using the elevator. This process was only applied down
to FL200, since the extra kinetic energy would bring the aircraft to DYMON earlier than the imposed CTA.
The extra kinetic energy was rapidly released by means of a level-off at idle thrust at FL200.

Finally, according to Fig. V-8(c) the optimal way to arrive 30 seconds earlier than the initially en-
forced CTA (which was 21 minutes and was received just at the TOD), subject to the same wind profile and
for the original initial state, consisted of flying at the maximum allowed airspeed from QUAIL to BOSSS
(250 kt) to gain time, and then releasing the excess of kinetic energy by executing a level-off at idle thrust
just before BOSSS, in order to satisfy its associated hard altitude and speed constraints.

V.3.2 Illustrative examples: guidance strategies
Using the same RAP wind forecast and analysis as in the previous section, this section will describe the
behaviour of the three NMPC guidance strategies considered in this experiment.

Figure V-9 shows the initially planned trajectory (computed at the TOD) and the executed trajectory,
for the INMPC variant and for the open-loop guidance (OL) execution. For the OL execution, the optimal
control of the initial plan was implemented throughout the descent, without neither monitoring state devi-
ations nor updating the trajectory plan. Results for the remaining NMPC strategies are not shown in this
figure because the differences with respect to the INMPC are difficult to appreciate at first sight. This state-
ment agrees with the results presented in Section V.3.1, which showed little differences in the trajectories
generated by solving the rigorous NLP optimisation problem and by using parametric sensitivities.

The light solid lines in Fig. V-8 and in Fig. V-9 are identical to each other, i.e., the initial trajectory
plan computed at the TOD. Then, the slightly darker solid lines in Fig. V-9(b) represent the plans resulting
from trajectory updates at two of the sixty time samples. These time samples, which were selected only for
illustrative purposes, are τ10 and τ40. The plans generated at the remaining time samples are not shown for
the sake of clarity of the figure, even if being computed when implementing the NMPC strategies.

Before updating the trajectory plan at each time sample, the NMPC guidance system recalculated the
control points of the spline that approximates the wind profile, based on the wind sensed at the current
and previous altitudes. As a result, the wind profile used by the NMPC trajectory optimiser converged to
the actual wind profile as wind measurements were collected by the ownship during the execution of the
descent. This can be observed in Fig. V-7, which shows the initial wind profile, the wind profile at the time
samples τ10 and τ40, and the actual wind profile encountered by the aircraft during the descent.

The plan resulting from the trajectory update performed at time sample τ10 aimed to start an energy



86 Chapter V - Model predictive control to meet time constraints in optimal descents

(a) Open-loop (b) INMPC

Figure V-9: Planned and executed trajectories by guidance strategy (2018-04-21 00:00 with a look-ahead
time of +1 hour)

modulation process around FL260 to avoid the altitude interval with extreme and unexpected tail wind,
given the best available wind profile estimation at that time sample (see Fig. V-7). However, according
to the executed trajectory, a later trajectory update (not shown in Fig. V-9(b)) which had more accurate
information of the actual wind profile requested to start exchanging potential for kinetic energy around
1,000 ft earlier. After QUAIL, the updated trajectory demanded a sightly lower speed than that of the initial
plan, in order to compensate the unexpected head wind in the altitude interval FL170–7,000 ft.

It should be noted that, using NMPC, the optimal control applied at each time sample was based on
the best estimation of the wind profile at the current altitude. The actual wind conditions that the aircraft
would encounter at lower altitudes, however, were still unknown. Even if the control applied at each time
sample was optimal for the estimated wind, it was sub-optimal for the actual (unknown) wind conditions
(provided, of course, that the estimation of the wind downstream was not perfect). This can be observed by
comparing Figs. V-9(b) and V-8(b): the executed trajectory (resulting from applying the optimal control for
the best estimated wind profile at each time sample), and the trajectory update computed at the TOD with
accurate information of the actual wind for the entire descent, are similar yet not identical.

For the wind forecast error of this illustrative example, the open-loop trajectory arrived at DYMON
27 seconds earlier than the CTA and 600 ft above the enforced specific energy level. For any of the NMPC
strategies investigated in this chapter, the aircraft arrived at DYMON with negligible time and specific
energy error, while simultaneously using the minimum required fuel consumption and speed brakes.

V.3.3 Aggregated results
This section presents the aggregated performance metrics for the 4,143 case studies per guidance strategy.
Figure V-10 shows the time error at the metering fix (DYMON) with respect to the enforced CTA for the
INMPC, AsNMPC and SbNMPC guidance strategies. The time error that would be achieved by applying
the optimal control resulting from the initial trajectory plan in open-loop is also shown in Fig. V-10(d).
Analogously, Fig. V-11 shows the specific energy (Es)4 error at DYMON. This kind of plots visualise the
distribution of the data. The red horizontal line represents the average value, the central black horizontal
line represents the median value, and the whiskers extend out to the minimum and maximum values.

According to Fig. V-10, the more the look-ahead time of the wind forecast, the more time error (in
absolute value) is observed, independently of the guidance strategy. The maximum time error at the me-
tering fix (115 s) was realised when executing a trajectory plan computed with a wind forecast of +6 h in
open-loop (note that the scale of Fig. V-10(d) is different from the other subfigures). The median time error
at the metering fix when considering a wind forecast of +6 h is around 15 s for the open-loop execution. For

4The specific energy is defined as the total energy of the aircraft divided by the aircraft weight. By definition, the
units of the specific energy are ft.
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Figure V-10: Time deviation at the metering fix for different NMPC variants

a wind forecast of +1 h, this value is reduced to 8 s. For the set of descents simulated with a wind forecast
of +6 h, the distribution of time errors is concentrated in the range 0-60 s. When using strategies build on
NMPC concepts, the time error is drastically reduced if compared to the open-loop execution of the initial
trajectory plan. In particular, for all case studies analysed herein (one year of descent operations at DEN
using the BOSSS TWO procedure) the time error is always lower than 27 s. The median time error for any
of the NMPC guidance strategies is lower than 2 s for the set of descents simulated with a wind forecast of
+6 h. In addition, the distribution of time errors is always concentrated below 10 s.

Similar results can be observed for the specific energy error. According to Fig. V-11(d), the metering
fix could be achieved with specific energy errors up to 1,800 ft by implementing the control of the initial tra-
jectory plan computed at the TOD in open-loop. Conversely, guidance strategies build on NMPC concepts
achieve the metering fix with negligible specific energy error, always lower than 150 ft and with a median
value around 10 ft for a wind forecast of +6 h. In addition, the distribution of specific energy errors for the
open-loop execution extends up to 1,000 ft, while for any of the NMPC strategies it extends up to 100 ft.

Figures V-10 and V-11 show that the performance of the SbNMPC and AsNMPC, in terms of energy
and time errors, is equivalent to that of INMPC. Results agree with those shown in Section V.3.1, where the
trajectory updates based on parametric sensitivities were similar to those obtained by solving the rigorous
NLP optimisation problem, considering relatively small perturbations in the vector of NLP parameters.

In the model proposed in this chapter, the optimal control computed at each time sample could de-
mand to modulate energy with the elevator or to add/remove energy to/from the system by means of
additional thrust or speed brakes. Ideally, the NMPC optimiser will attempt to obtain an energy-neutral
trajectory. In certain conditions with significant errors in the model parameters, however, energy modu-
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Figure V-11: Specific energy deviation at the metering fix for different NMPC variants

lation by means of elevator control may not be sufficient to obtain a solution satisfying all the constraints.
In this case, the NMPC trajectory optimiser would calculate the optimal amount of energy to be added or
removed in terms of fuel consumption and use of speed brakes such that all constraints are satisfied.

Table V-2 shows the mean, maximum and standard deviation of the specific energy removed by using
speed brakes. For each case study, this metric was computed as follows:

∆Esβ =
1

2

S

mg

∫ tF

tI

v3(t)σ(t)ρSSLCDββ(t)dt (V.9)

For each guidance strategy and forecast lookahead times, the metrics shown in Table V-2 aggregate
the results of the corresponding 1,381 case studies. Note that results for the open-loop execution are not
shown in Table V-2 because the initial plan was always computed without speed brakes (i.e., β(t) = 0).

Table V-2: Metrics of energy removed by using speed brakes for the different NMPC variants and wind
forecast lookahead times

Guidance strategy
Mean [ft] Standard deviation [ft] Maximum [ft]

+1 h +3 h +6 h +1 h +3 h +6 h +1 h +3 h +6 h
INMPC 2 7 13 12 34 45 187 780 641
SbNMPC 2 8 14 16 41 52 340 977 668
AsNMPC 2 8 14 11 40 55 113 914 904

According to Table V-2, and independently of the guidance strategy, the more the look-ahead time of
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the wind forecast, the more the mean and standard deviation of energy removed by using speed brakes.
Interestingly, the maximum value of ∆Esβ corresponds to a case study with a +3 h wind forecast look-ahead
time. The sensitivity of the energy removed by using speed brakes with respect to the mean longitudinal
wind error encountered during the execution of the descent will be presented in Section V.3.4.

Table V-2 also shows very similar results for the three strategies based on NMPC, meaning that up-
dating the trajectory by solving a rigorous NLP or by using parametric sensitivities would result in almost
identical number of speed brakes deployments during the descent, at aggregated level. Not surprisingly,
the worst figures correspond to the SbNMPC, followed by the AsNMPC. These two NMPC strategies up-
date the trajectory plan by using an approximated method, which in some cases could be sub-optimal. The
INMPC show the best results, yet the differences with the other strategies are very small.

It is also interesting to remark the significant drop in the three metrics when comparing the results for
a wind forecast look-ahead time of +3 hours with those for a wind forecast look-ahead time of +1 hour. For
example, for the AsNMPC the maximum specific energy removed by using speed brakes decreases from
914 ft to 113 ft, the mean value from 14 ft to 2 ft, and the standard deviation from 40 ft to 14 ft.

Analogously, Fig. V-12 shows the difference between the executed trajectory and the open-loop execu-
tion of the initial plan, in terms of specific energy added by means of thrust above idle during the descent.
For each case study, this metric was computed according to the following formula:

∆EsT =
1

mg

(∫ tF

tI

(T (t)− Tidle(v(t), h(t))) dt
∣∣∣
NMPC

−
∫ tF

tI

(T (t)− Tidle(v(t), h(t))) dt
∣∣∣
OL

)
. (V.10)

Due to the particular altitude and speed constraints of the BOSSS TWO procedure (see Table V-1),
the initial trajectory plan was not computed assuming a complete engine-idle descent, but included some
segments with additional thrust above idle. For instance, additional thrust was typically required in the 2nd

phase, in order to keep the speed within the allowed bounds while flying at constant altitude.

Note that, since the wind encountered during the execution was different from that used to generate
the trajectory plan, the aircraft may deviate from the altitude and speed plan. Accordingly, the idle thrust
for the actual flight conditions (which depends on the altitude and speed) may be different from that of the
initial plan at the same time sample. In other words, altitude and speed deviations may lead to an actual
Tidle different from that assumed in the plan. It is also important to remark that, during the execution of
the descent, the thrust of the aircraft was not allowed to be lower than Tidle for the actual flight conditions:

T (t)
∣∣∣
actual

=

T (t)
∣∣∣
plan

ifT (t)
∣∣∣
plan
≥ Tidle(v(t), h(t))

∣∣∣
actual

Tidle(v(t), h(t))
∣∣∣
actual

otherwhise.
(V.11)

Results shown in Fig. V-12(a) demonstrate that, in most of the case studies, the specific energy added
to the aircraft by means of thrust when implementing any NMPC variant is identical to that of the open-loop
execution (since the median and mean values are close to zero). In addition, even if the maximum value
for each combination of guidance strategy and wind forecast look-ahead time is higher than the minim
value (in absolute terms), the main distribution is almost symmetric, meaning that the NMPC guidance
strategies have similar chances to demand additional specific energy than to remove it by reducing the
thrust, if compared to the open-loop execution. These results indicate that the NMPC strategies could take
advantage of the reiterated re-planning of the trajectory plan, based on the actual state of the aircraft and a
continuously improving estimation of the parameters that describe the model, to execute the descent with
the same thrust than initially planned. Taking into consideration the results shown in Figs. V-10 and V-11, it
can be concluded the NMPC strategies are able to satisfy operational constraints and to accurately comply
with the CTA without requiring extra energy, at aggregated level.

In order to further analyse this interesting conclusion, Table V-3 shows, for each NMPC variant, the
percentage of case studies not requiring speed-brakes or additional thrust during the entire descent. In
addition, the percentage of case studies that performed an energy-neutral trajectory while complying with
the CTA are also shown (i.e., uncertainties in the execution were cancelled by energy modulation).

Not surprisingly, the higher the look-ahead time of the wind forecast, the lower the percentage of case
studies not requiring use of speed brakes and/or additional thrust during the descent. An interesting result
of Table V-3 is that the figures for the three NMPC variants are almost identical. Another striking result is
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Figure V-12: Additional specific energy difference with respect to the open-loop execution for the different
NMPC variants

Table V-3: Percentage of energy neutral trajectories for the different NMPC variants and forecast look-
ahead times

Guidance strategy
Without speed brakes Without additional thrust Energy-neutral
+1 h +3 h +6 h +1 h +3 h +6 h +1 h +3 h +6 h

INMPC 98.3 93.7 90.0 82.1 75.6 75.5 80.6 70.3 67.0
SbNMPC 98.3 93.2 89.2 81.9 77.4 76.6 80.5 71.3 67.4
AsNMPC 98.6 93.2 89.9 82.0 76.3 76.7 80.9 70.5 68.4

that, even for look-ahead times of +6 h, around 70% of the descents could be performed without requiring
neither additional thrust nor speed-brakes use during a whole year of operations at DEN airport following
the BOSSS TWO procedure, provided that the sequencing and merging tasks were performed by means of
CTAs and without any kind of tactical intervention (e.g., vectoring) from ATC after the TOD.

Finally, Fig. V-13 shows the fuel consumption difference with respect to the open-loop execution for
the different NMPC variants. Negative values indicate fuel savings, positive values extra fuel.

Results shown in Fig. V-13 agree with those of Fig. V-12: the more the additional specific energy if
compared to the open-loop execution, the more the extra fuel consumption. Interestingly, Fig. V-13 shows
that using NMPC guidance strategies the fuel burned during the execution of the descent is typically the
same than that burned by implementing the initial trajectory plan in open-loop (the median and mean
values are close to zero). In addition, the distribution of fuel consumption difference is almost symmetrical,
meaning that the NMPC strategies have similar chances to burn more fuel than to save it, if compared to the
open-loop execution. The maximum extra fuel for each combination of guidance strategy and look-ahead
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Figure V-13: Fuel consumption difference with respect to the open-loop execution for the different NMPC
variants

time of the wind forecast, however, is considerable larger than the corresponding maximum fuel saving.
However, the maximum value was observed for a very particular scenario (out of 4,131 case studies) with
severe differences between the initial wind forecast and the actual wind. In fact, the distribution of fuel
consumption differences is concentrated in the range [−5%, 5%]. Taking into account that these results
include simulations for one year of wind forecasts at DEN, it can be concluded that the dispersion of fuel
consumption differences is relatively small, independently of the NMPC variant.

The open-loop execution implements the control plan that is optimal only for the initial wind forecast
assumed at the TOD. In contrast, NMPC strategies could take advantage of the frequent update of the
optimal trajectory plan based on a continuously improving wind forecast to save fuel. Again, taking into
consideration the results shown in Figs. V-10 and V-11, it can be concluded the NMPC strategies assessed
herein are able to satisfy altitude and speed constraints as well as to accurately comply with the enforced
CTA without requiring additional fuel consumption, at aggregated level.

Based on the results shown in this section, it can be also concluded that the three NMPC guidance
strategies assessed in this PhD thesis show very similar performance at aggregated level, even if the method
used to update the optimal trajectory plan is sightly different. Recall that the INMPC solves a rigorous NLP
optimisation problem at each time sample; the SbNMPC solves a quadratic programming (QP) optimisa-
tion problem to update the optimal trajectory plan; and the AsNMPC updates the trajectory in advance
by solving a rigorous NLPoptimisation problem (as the INMPC) and then corrects for potential prediction
errors by solving a QP optimisation problem (as the SbNMPC). Figure V-14 shows the normalised distri-
bution of execution times for the two optimisation methods, extracted from the whole set of simulations.

According to Fig. V-14, the maximum execution time for the QP algorithm is one order of magnitude
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Figure V-14: Normalised execution time for the NLP and QP algorithms. 1 corresponds to the maximum
execution time for all trajectory updates of all simulations, which was 10 seconds

below that for the NLP algorithm. In addition, the mean and median execution times for the QP algorithm
are approximately half of those for the NLP algorithm. The most important conclusion arising from Fig. V-
14, however, is that the dispersion of execution times for the QP algorithm is much lower than for the NLP
algorithm, thus demonstrating the additional robustness of the QP algorithm.

V.3.4 Sensitivity to the wind error
Previous section assessed the performance of various NMPC guidance strategies in presence of errors in
the wind profile forecast, and compared the results with those obtained by executing the initial trajectory
plan in open-loop. The time and energy deviations induced by errors in the longitudinal component of
the wind are significantly higher than those caused by errors in the cross and vertical components. For
this reason, Figs. V-15 to V-17 only show the correlation between the different metrics of the performance
assessment and the mean longitudinal wind error. The mean longitudinal wind error for each case study
was computed by averaging the longitudinal wind error of all time samples. Positive values indicate more
tail wind than initially expected, negative values manifest a stronger head wind if compared to the forecast.
Each data point in these figures corresponds to a particular case study. In order to keep this figure simple,
only the results for the open-loop execution and the INMPC are shown. Yet, it should be noted that results
for the remaining strategies are very similar to those of the INMPC, as shown in previous sections.

According to Fig. V-15(a), when executing the initial trajectory plan in open-loop, the time error at
the metering fix shows a strong and negative correlation with the mean longitudinal wind error, i.e., the
stronger the unexpected head wind, the later the aircraft will arrive with respect to the CTA. Analogously,
the specific energy error at the metering fix (see Fig. V-15(b)) presents a strong, positive correlation with the
mean longitudinal error, meaning that the stronger the unexpected head wind, the lower the energy of the
aircraft will be when arriving at the metering fix.

For any of the NMPC strategies, the time error appears to be weakly correlated with the mean longi-
tudinal wind error; and the specific energy error is not correlated at all. The differences in the correlation
patterns for the OL and NMPC guidance strategies are caused by the corrective actions performed by the
later, which repeatedly generates the best optimal trajectory plan to satisfy the terminal constraints at the
metering fix while simultaneously minimising the fuel consumption and speed brakes usage.

Regarding the extra energy removed by using speed-brakes (see Fig. V-16(b)), it can be observed
that for the open-loop execution speed brakes are never used (because the initial trajectory plan is always
computed without extra drag). Generally speaking, for the NMPC guidance strategies the stronger the un-
expected head wind, the more energy is removed. There exist some particular case studies in which energy
is removed for negative mean longitudinal wind error. Even if the mean longitudinal wind error is negative
for these case studies, in some regions of the descent more head wind than expected is encountered, which
requires the use of speed brakes to satisfy all the constraints.
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(a) Time error (b) Specific energy error

Figure V-15: Time and specific energy error at the metering fix as a function of the mean longitudinal wind
error

(a) Added by means of T (b) Removed by means of β

Figure V-16: Specific energy added/removed with respect to the initial plan as a function of the mean
longitudinal wind error for the INMPC and OL

Figure V-17: Fuel consumption difference with respect to initial plan as a function of the mean longitudinal
wind error
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Finally, according to Figs. V-16(a) and V-17 the specific energy difference due to thrust and the fuel
consumption difference show very similar patterns. Both performance metrics present a negative correla-
tion with the mean longitudinal wind error, meaning that the stronger the unexpected tail wind, the less
thrust and fuel consumption will be required if compared to the initial trajectory plan computed at the
TOD. Remember that for the open-loop execution, the differences in fuel consumption and energy added
by means of thrust are only caused by altitude and speed deviations from the initial plan (changing there-
fore the value of the idle thrust). Conversely, for the NMPC guidance strategies, these differences are also
caused by trajectory updates that might modify the states and controls plans. For this reason, results for
the NMPC strategies show more dispersion than for the open-loop execution.

V.4 Discussion
This chapter described the application of two additional NMPC guidance strategy that use parametric
sensitivities to update the optimal trajectory during the descent of an aircraft subject to time constraints.

Results showed that trajectory updates resulting from solving a rigorous NLP optimisation problem
are very similar to those obtained by using parametric sensitivities. Yet, the later method to update the
optimal trajectory is simpler, faster and more robust in terms of dispersion of execution times and conver-
gence. Accordingly, a guidance strategy that updates the optimal trajectory at each time sample by using
parametric sensitivities, called SbNMPC, showed equivalent performance (in terms of fuel consumption,
extra thrust, speed brakes use and extra fuel consumption) to the INMPC, which instantaneously updates
the optimal trajectory at each time sample by solving a rigorous NLP optimisation problem. A third NMPC
variant, which combines an early re-calculation of the optimal trajectory with a sensitivity-based update,
also showed similar performance to the INMPC. These results encourage the use of the later strategy.

If compared with the generic NMPC, which solves a rigorous NLP optimisation problem right after
measuring the actual state and parameters of the model, the AsNMPC has the advantage of not being
affected by computational delay. This is only true, however, if the optimal trajectory plan can be computed
in background before reaching the next time sample. Recall that the overall performance, capability to meet
constraints and stability of the generic NMPC deteriorate as the execution time increases.

Moreover, if compared to the SbNMPC, the AsNMPC is less affected by large perturbations in the
vector of parameters, since the sensitivity-based update is not performed over an approximated trajectory
plan but over a very accurate trajectory plan generated recently by solving a rigorous NLP optimisation
problem. Any trajectory obtained by using parametric sensitivities is just an approximation to the actual
optimal trajectory, and therefore includes some approximation error, which obviously increases with the
magnitude of the perturbation. This error would be propagated over time if only sensitivity-based updates
were performed (as in the case of the SbNMPC). The rigorous NLP optimisation problem solved by the
AsNMPC at each time sample, based on the predicted state and parameters of the model at the next one,
acts as a mechanisms to ”reset” these approximation errors. Moreover, since the predictions errors in the
state and parameters of the model are expected to be relatively small, provided that the time interval bet-
ween consecutive time samples is sufficiently small, the subsequent sensitivity-based approximation when
measuring the actual state and parameters of the model is expected to be very fast and accurate.

In addition, results showed that using any of the NMPC guidance strategies, energy modulation
through elevator control typically suffices to compensate time and energy deviations at the metering fix
caused by errors in the wind forecast. In particular, around 70% of the descents at DEN following the
BOSSS TWO procedure were able to perform an energy-neutral trajectory for a wind forecast look-ahead
time of +6 hours. However, in some circumstances with significant errors in the wind forecast, these guid-
ance strategies could demand to add or remove energy by means of thrust or speed brakes, respectively,
to satisfy operational constraints. In this case, the trajectory planner would compute the optimal energy to
be added or removed which, at each time sample, minimises the fuel consumption and speed brakes us-
age while simultaneously satisfying the constraints. In this context, promising results showed that NMPC
guidance strategies can accurately comply with CTAs and other operational constraints in presence of sig-
nificant wind prediction errors at no extra fuel consumption (considering the aggregated results of around
16,000 simulations).

Most common languages used in aviation safety critical systems are C, C++ and Ada. In the experiment
of this chapter, and taking into account that the developed system was just a prototype, the formulation of
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the optimal control problem (i.e., definition of constraints and cost function of the trajectory optimisation
problem) was performed in Python, but the resulting NLP optimisation problem was solved by using off-
the-shell NLP solvers. Many of these solvers are written in C and could be technically integrated into the
avionics systems. Regarding the hardware, modern FMSs provide significant improvements to already
highly reliable computers, as well as increased processing power and memory. The computational demand
of the proposed algorithm is not extremely high, yet the feasibility of running it using current on-board
resources deserves a more comprehensive study.

What drives value in avionics, however, is compliance to mandates, reliability and safety. On-board
trajectory planning and guidance algorithms must be simple for the pilot to be easily understood, as well
as robust enough to have hundreds of lives depend on them. Accordingly, new features being added into
conventional FMSs typically require few extra computational resources, and there is little incentive for the
the latest programming paradigms or innovatory technology.

Because the NMPC guidance algorithm uses a NLP solver for the trajectory optimisation process, this
trajectory management system can be characterised as an adaptive system with nondeterministic feature, which
conflicts with current civil aviation certification processes. In particular, NLP solvers lack from determinism
and cannot guarantee to always find a solution. In addition, the execution time has a lot of variance and in
some unpredictable situations could be unacceptably high. Accordingly, in order to implement any NMPC
variant in a real FMS, even if having enough hardware capabilities, operational and certification issues will
need to be tackled.





Life can only be understood backwards; but it must be lived
forwards.

— Soren Kierkegaard

Prediction is very difficult, especially about the future.

— Niels Bohr

VI
Wind-networking to improve time predictability and fuel

efficiency of descents

Several studies investigated the effect of errors in the wind forecast on the performance of continuous
descent operation (CDO) subject to controlled time of arrival (CTA), see for instance the excellent works
of Klooster et al. (2008) and Bronsvoort et al. (2011). A common and interesting conclusion of these works
was that an accurate knowledge of the actual wind conditions is of utmost importance to accurately comply
with CTAs. Supporting this statement, results from flight tests at Denver International Airport (DEN) using
conventional wind forecasts indicated that errors in the wind forecast accounted for approximately two-
thirds of the mean time error at the metering fix, and nearly all of the standard deviation (Green et al., 2000).
Results from flight trials reported by Prats et al. (2017) also showed the benefits of using a high-quality wind
forecast during the trajectory planing process of time and energy managed operations. However, according
to Glina et al. (2012), the primary driver of accurate CTA compliance is not only the quality of the wind
forecast provided to the flight management system (FMS) to generate the initial trajectory plan, but also the
guidance strategy used to follow the plan (or re-plan).

In Chapter V, the nonlinear model predictive control (NMPC) guidance strategy was enhanced to
enable the calculation of the trajectory plan using a wind profile based on the original forecast but pro-
gressively updated based on the ownship sensed winds. However, that only corrects the wind profile for
current and previous positions, not downstream positions, that is, from current position to destination. The
short coming of using ownship sensed winds is that any time deviation due to an incorrect wind forecast
at a downstream waypoint requires a higher and higher change to the aircraft airspeed as the distance
to that point becomes shorter and shorter (Glina et al., 2012). Using wind observations from aircraft that
have recently crossed downstream fixes at an altitude similar to that planned by the ownship is expected
to improve the accuracy of the trajectory prediction that is essential to meeting any constraints and CTAs.

In this chapter, the NMPC guidance strategy is implemented to guide aircraft during CDOs subject
to CTAs, and uses the concept of accessing data available in a hypothetical wind networked environment
to generate accurate and up-to-date wind predictions on-board and in real-time. Several case studies with
mismatches between the wind forecast and the actual wind conditions are simulated at DEN. Results from
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simulations are used to assess the benefits of this strategy based on optimisation and estimation techniques,
in terms of fuel consumption and time and energy deviations at the metering fix. The sensitivity of the
performance metrics to the cadence of wind observations received from nearby aircraft is also investigated.

VI.1 State of the art
Several works already proposed to use wind observations derived from surveillance data to provide en-
hanced wind predictions for the air traffic management (ATM) community. Most wind estimation methods
found in the literature rely on the fact that the wind vector is the difference between the ground speed
and the true airspeed (TAS) vectors. For instance, early in the 1980s Hollister et al. (1986) was the first to
propose a method to estimate the wind vector from ground-based (radar) surveillance observations. The
ground speed vectors for every scan of each aircraft track were obtained by taking the difference between
the sequential radar positions of aircraft and then dividing by the scan interval. Then, the ground speed
vectors from multiple aircraft were used to infer the wind vector by means of Bayesian estimation tech-
niques, assuming constant wind speed and aircraft airspeed during turning manoeuvres. An extension of
this algorithm was investigated by Delahaye & Puechmorel (2009).

Aircraft equipped with automatic dependent surveillance-broadcast (ADS-B) autonomously transmit
surveillance data including not only aircraft position but also ground speed vector. The wide availability of
ADS-B receivers at a relatively low cost and the growing amount of aircraft equipped with this system make
ADS-B an attractive source of data for many ATM applications. For instance, De Leege et al. (2013) proposed
a method to estimate the wind vector from ground speed vector observations. In this case, however, the
ground speed vector was directly obtained from the ADS-B surveillance messages. The method was based
on a modified extended Kalman filter that estimates the wind recursively from an aircraft in a turn. In
addition, a new method to estimate wind using data from multiple aircraft was also proposed.

Mode-S messages emitted by the aircraft surveillance system as a response to a secondary surveil-
lance radar interrogation include information about the ground speed and TAS vectors, from which the
wind vector can be easily inferred. The use of Mode-S data for wind networking applications was in-
vestigated by Hrastovec & Solina (2013). Recently, Dalmau et al. (2017) applied geostatistical techniques
to generate a four-dimensional wind model for the terminal maneouvering area (TMA), whilst Sun et al.
(2017) investigated a novel and relatively fast gas particle model that estimates the wind field in real-time
from standard ADS-B and Mode-S messages.

Another work by In ’t Veld (2011) proposed a wind prediction algorithm that uses observations broad-
cast by nearby aircraft to reconstruct, on-board and in real-time, the actual wind profile along the descent
route. De Jong et al. (2015) used a similar algorithm to update the wind profile before re-planning the
trajectory during the descent using guidance strategies based on the time and energy managed operati-
ons (TEMO) concept. Other studies investigating aircraft spacing during interval management operations
showed that the use of wind predictions generated from observations emitted by nearby aircraft within a
wind networking concept could reduce the spacing time error if compared with using outdated wind infor-
mation (Bussink et al., 2012).

Summing up, in a wind networking concept accurate wind data will be available in the FMS as each
aircraft equipped with ADS-B and Mode-S will be transmitting information from which the wind vector
could be derived, thus acting as a set of airborne wind sensors. Essentially, each aircraft that has com-
pleted the descent will have broadcast the complete wind profile, which could be used by nearby aircraft
to enhance the wind model and, consequently, the trajectory plan of the ownship.

VI.2 Setup of the experiment
The scenario, models, and formulation of the optimal control problem for the experiment performed in
this chapter were identical to those of Chapter V. Furthermore, the same 4,143 case studies presented in
Section V.2.4 were selected to assess the benefits of wind networking concepts on the performance of NMPC
guidance strategies for CDOs subject to CTAs.

Results from Chapter V showed that the performance of sensitivity-based NMPC strategies are similar
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to those of the conventional NMPC, being the former simpler, faster and more robust. Accordingly, results
will be shown only for the ideal NMPC (INMPC), yet having in mind that results for the sensitivity-based
NMPC (SbNMPC) and advanced-step NMPC (AsNMPC) strategies will be very similar.

In Chapter V, at each time sample, the wind measured by the sensors of the aircraft at the current
altitude was appended to the set of available wind observations (O) to re-compute the control points (~c) of
the spline approximating the wind profile, right before updating the trajectory by either solving a rigorous
nonlinear programming (NLP) optimisation problem or using parametric sensitivities. Here, at each time
sample, wind observations emitted by nearby aircraft during the last time interval were also appended to
the set of available observations, in addition to ownship wind measurements. The number of wind observa-
tions emitted by nearby aircraft during a time interval was modelled as a Poisson probability distribution:

p (x |µ) =
µx

x!
e−µ, (VI.1)

where µ is a parameter describing the average number of occurrences (here the received wind observations)
between two consecutive time samples. Equation (VI.1) expresses the probability of x events occurring in a
fixed time interval when the events occur with a known constant rate and independently of the time since
the last event. The probability of having x occurrences is shown in Fig. VI-1 for different values of µ. In
this chapter, three values of µ were investigated for each one of the 4,143 case studies: 0.0, 0.5 and 1.0.
Note that for µ = 0.0 only ownship wind observations are used to update the control points of the spline,
since p (x|0) = 0∀x ∈ N, and this essentially corresponds to the results shown in Chapter V. In addition,
the reference situation in which the initial wind profile forecast, obtained from rapid refresh (RAP), is never
updated during the descent (neither with ownship observations nor wind information broadcast from other
aircraft) was also assessed.

Figure VI-1: Poisson distribution

VI.2.1 Workflow of a simulation
The workflow of a simulation was identical to that described in Section V.2.5, with the only difference that,
at each time sample, both the wind measured by the ownship sensors at the current altitude and the wind
observations received during the last time interval from nearby aircraft were appended to O. Then, the
control points of the spline approximating the wind profile were updated by solving Eq. (V.7).

Algorithm VI.1 outlines the steps performed to update ~c at each time sample. First, the wind sensed
by the ownship at hi was appended to the set of wind observations. Then, the number of wind observa-
tions received from nearby aircraft between τi−1 and τi (nO) was generated from the Poisson probability
distribution. For each wind observation k = 1, . . . , nO, the altitude hk at which an hypothetical nearby
ownship sensed the wind wk was generated from a uniform distribution in the altitude interval [0, hi].
Each wind observation included a measurement error εk generated from a normal distribution, which was
centred at µε = 0 with a standard deviation of σε = 1 kt. The different wind observations, (hk, wk, τi) for
k = 1, . . . , nO, were progressively appended to O. Finally, the weights of the wind observations included
in O were updated using the forgetting factor presented in Section V.2.5 and ~c was updated.
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Algorithm VI.1: Update of ~c at each time sample

1: εi ← N
(
µε, σ

2
ε

)
2: wi ← w (hi) + εi
3: O ← O ∪ (hi, wi, τi)
4: nO ← Pois (µ)
5: for k = 1, . . . , nO do
6: hk ← U (0, hi)
7: εk ← N

(
µε, σ

2
ε

)
8: wk ← w (hk) + εk
9: O ← O ∪ (hk, wk, τi)

10: Update weights of O
11: ~c← solve Eq. (V.7)

Right after updating ~c, the optimal trajectory plan starting at the current state was re-calculated by
solving PN−i according to a more accurate prediction of the actual wind conditions. Note that PN−i was
solved at each time sample τi, with i = 0, . . . , N−1. As in Chapter V, PN−i was formulated in CasADi (An-
dersson et al., 2018), and solved by using the sequential quadratic programming (SQP) algorithm imple-
mented by sparse nonlinear optimiser (SNOPT) NLP solver (Gill et al., 2005).

VI.3 Results
The results of the experiment described above are presented in this section. Section V.3.2 describes a parti-
cular case study for various values of µ, as illustrative example. The aggregated results for all case studies
and values of µ are further discussed in Section V.3.3.

VI.3.1 Illustrative examples: wind networking benefits
The case study corresponding to the wind forecast generated the 17-09-2019 at 18:00 with a look-ahead time
of +6 hours, was selected as illustrative example. Figure VI-2 shows the planned and executed trajectories,
where each panel corresponds to a different rate of wind observations available to update the wind profile
during the descent. The lightest solid lines in the three panels of Fig. VI-2 are identical to each other, i.e.,
the initially planned trajectory computed at the top of descent (TOD). Then, the slightly darker solid lines
in Fig. VI-2 represent the plans resulting from trajectory updates at two of the sixty time samples. These
time samples, which were selected only for illustrative purposes, are τ10 and τ40. Data for the remaining
time samples are not shown for the sake of clarity, even if being computed.

Before updating the trajectory plan at each time sample, the NMPC guidance system updates the
wind profile according to Algorithm VI.1, provided that networked wind data are available. If this were
the case, the forecast wind profile would converge to the actual wind profile. When networked wind data
are not available, however, the forecast wind profile remains static and does not converge to the actual
wind profile. This can be observed in Fig. VI-3, which shows the initial wind forecast, the wind forecast at
the time samples τ10 and τ40, and the actual wind profile, for the three values of µ considered herein.

In Fig. VI-3, the initial wind profile forecast (lightest blue line) deviates fairly substantially from the
actual wind (red line) in two different portions of the CDO. From FL360 to FL220 the forecast wind profile
underestimates the actual headwind (note the negative values of the x-axis), and from FL200 to the surface
it overestimates the actual headwind. Therefore, when analysing the error in the forecast wind profile
shown in Fig. VI-3, the expectation would be an aircraft would have to increase its airspeed from FL360 to
FL220 and decrease its airspeed below FL200 from the initial calculated trajectory. A closer examination of
Fig. VI-2 reveals this does in fact happened. In Fig. VI-2(b) for µ = 0.5, the ground speed of the aircraft
increased around 15 NM before QUAIL and decreased afterwards, if compared to the initial plan, in order
to satisfy the operational constraints enforced at the waypoints of the route. In Fig. VI-2(c) for µ = 1.0, the
speed up was performed much earlier (around 25 NM before QUAIL) since a better knowledge of the actual
wind conditions downstream was available well in advance (see Figs. VI-3(b) and VI-3(c), respectively). In
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Figure VI-2: Planned and executed trajectories (17-09-2019 at 18:00 for a look-ahead time of +6 hours)

all cases, after QUAIL the updated trajectory plan required the aircraft to slow its calibrated airspeed to
compensate for the weaker than expected head wind from the initial wind forecast.

Figure VI-3(a) shows that, when only own measurements are used to update the wind forecast, any
error in the forecast will not be corrected at downstream waypoints. On the other hand, when wind obser-
vations from other aircraft are considered in the estimation of the wind profile, up-to-date wind data in the
whole range of altitudes may be accessible. As expected, the wind forecast converges earlier to the actual
wind profile as the average number of wind observations received per time interval (µ) increases.

For this particular case study, the time error resulting from executing the optimal control of the initial
plan in open-loop (i.e., neither nullifying state deviations nor updating the optimal descent trajectory) was
76 s. When implementing the NMPC guidance strategy, independently of the mechanism selected to man-
age the wind profile forecast, the time error was reduced to values below 30 s. Using a static wind profile,
the time error was 27 s. As expected, the smallest time error (10 s) was achieved for µ = 1.0.

In terms of specific energy error at the metering fix, the deviation with respect to the initial trajectory
plan for the open-loop execution was around 1,250 ft. For the NMPC strategy the specific energy error was
negligible, being lower than 50 ft independently of the mechanism selected to manage the wind profile
forecast during the execution of the descent. Again, the best result was achieved with µ = 1.0.

As a final remark, when a fully wind networked concept concept is implemented (Fig. VI-2(c) with
µ = 1.0), the executed trajectory is changed sooner and more profoundly than when less or no updated
wind information is available as shown by the larger difference between the light blue and dark red lines.



102 Chapter VI - Wind-networking to improve time predictability and fuel efficiency of descents

�60 �40 �20 0
Approximated longitudinal wind speed [kt]

0

100

200

400
A

lt
it

u
d
e

[F
L
]

⌧0

⌧10

⌧40

h0

h10

h40

Forecast

Actual

(a) Only ownship observations (µ = 0.0)

�60 �40 �20 0
Approximated longitudinal wind speed [kt]

0

100

200

400

A
lt

it
u
d
e

[F
L
]

⌧0

⌧10

⌧40

h0

h10

h40

Forecast

Actual

(b) µ = 0.5

�60 �40 �20 0
Approximated longitudinal wind speed [kt]

0

100

200

400

A
lt

it
u
d
e

[F
L
]

⌧0

⌧10

⌧40

h0

h10

h40

Forecast

Actual

(c) µ = 1.0

Figure VI-3: RAP wind forecast and analysis (17-09-2019 at 18:00 for a look-ahead time of +6 hours)

VI.3.2 Aggregated results
This section presents the performance metrics for all case studies of the experiment. Figure VI-4 shows the
time deviation at the metering fix (DYMON) with respect to the enforced CTA for three different values of µ
and for the case in which the wind forecast is not updated, i.e., the initial wind forecast obtained from RAP
keeps static throughout the descent. The time deviation that would result by applying the optimal control
of the initial plan in open-loop was already shown in Fig. V-10(d), which could be as high as 110 seconds,
with a mean and median value around 20 and 15 seconds for the worst forecast look-ahead time (+6 hours),
respectively. When using NMPC guidance, both maximum, mean and median time error drastically reduce,
independently of the mechanism adopted to update the wind profile (if any).

For instance, when using the static wind profile approach, the time error is lower than 30 seconds for
all case studies, and the distribution shows that most of the time deviations are lower than 20 seconds, with
a median value of 2.5 seconds and a mean value around 5 seconds for a forecast look-ahead time of +6 hours.
Even if at first sight 30 seconds could seem a very large time error, it should be noted that the simulations
performed in this chapter considered all the wind forecasts for +1, +3 and +6 h look-ahead time during one
year of operations at DEN airport. For the simulations in which the wind forecast is updated with only
ownship observations (i.e.,µ = 0.0), the maximum time deviation further reduces to 25 seconds, while most
of the case studies show a time deviation lower than 10 seconds. Using only ownship measurements, the
time error is approximately halved with respect to that using a static wind forecast. Results show that if
additional wind data emitted by aircraft in the neighbourhood were used to update the wind profile, the
time error would be negligible for most case studies.

Figure VI-5 show the analogous results for the specific energy deviation at the metering fix. The
specific energy deviation at the metering fix that would result by applying the optimal control of the initial
plan in open-loop was already shown in Fig. V-11(d), with maximum specific energy errors up to 1,800
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Figure VI-4: Time deviation at the metering fix for different values fo µ

ft as well as a mean and median values around 600 ft and 500 ft, respectively, for a wind forecast look-
ahead time of +6 hours. Conversely, when executing the descent with NMPC, the metering fix is achieved
with much smaller specific energy deviation. In particular, for the static wind profile approach, the specific
energy error is lower than 300 ft for all case studies. When the wind profile is updated at each time sample
yet using only ownship wind observations, the maximum specific energy error reduces to, approximately,
140 ft. Finally, if additional wind observations from nearby aircraft were used to update the wind profile at
each time sample, the specific energy error would be lower than 50 ft for all case studies.

As discussed in Chapter V, the optimal control computed at each time sample could claim to modulate
energy with the elevator or to add/remove energy to/from the system by means of additional thrust or
speed brakes. Ideally, the NMPC trajectory planner will attempt to obtain an energy-neutral trajectory. In
certain conditions, however, energy modulation may not be sufficient to obtain a solution satisfying all the
constraints. If this were the case, the trajectory planner would calculate the optimal amount of energy to be
added or removed, in terms of fuel consumption and speed brakes use, while satisfying all the constraints.

Table VI-1 shows the mean, maximum and standard deviation of the specific energy removed by using
speed brakes. Similarly to Chapter V, for each case study this metric was computed according to Eq. V.9.
It should be noted that, for each value of µ and look-ahead time of the wind forecast, results shown in
Table V-2 aggregate the results of the corresponding 1,381 case studies.

According to Table V-2, and independently of µ, the more the look-ahead time of the wind forecast, the
more the mean energy removed by using speed brakes. For the standard deviation, however, when using
wind observations emitted by nearby aircraft to update the wind profile (i.e., µ > 0), the larger values are
found for a +3 h wind forecast look-ahead time. As observed in Chapter V, the maximum value of ∆Esβ
corresponds to a case study with a +3 h wind forecast look-ahead time.
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Figure VI-5: Specific energy deviation at the metering fix for different values of µ

Table VI-1: Metrics of energy removed by using speed brakes for different values of µ and wind forecast
lookahead times

Guidance strategy
Mean [ft] Standard deviation [ft] Maximum [ft]

+1 h +3 h +6 h +1 h +3 h +6 h +1 h +3 h +6 h
Static 2 13 22 14 37 49 161 481 453
µ = 0.0 2 7 13 12 34 45 187 780 641
µ = 0.5 1 2 3 24 31 25 586 831 439
µ = 1.0 1 2 3 23 33 29 518 982 421

The largest mean and standard deviation, independently of the wind forecast look-ahead time, corres-
pond to the static wind forecast. These metrics decrease as the value of µ increases. In particular, for µ = 1
the mean energy removed by using speed brakes for a +3 h wind forecast look-ahead time is only 3 ft, with
a standard deviation of 29 ft. For the maximum value, however, it is more difficult to determine which
value of µ gives the best results. It should be noted that adding wind observations not only reduces the
mean and standard deviation of the energy removed by using speed brakes, but simultaneously reduces
the time and energy error at the metering fix, if compared to the static wind profile and µ = 0.

Analogously, Fig. VI-6 shows the difference between the executed trajectory and the open-loop execu-
tion of the initial plan, in terms of specific energy added by means of thrust above idle during the descent.
For each case study, this metric was computed according to Eq. (V.10).

By comparing the distributions of additional thrust for the static wind forecast with those correspond-
ing to µ = 0, it can be concluded that updating the wind profile using only ownship observation does not



VI.3 Results 105

have a great impact on the additional thrust used during the descent. Therefore, the time and energy error
at the metering fix can be significantly reduced without requiring additional thrust by simply updating the
wind profile with ownship observations. When including additional wind observations emitted by nearby
aircraft, however, even if the median and mean additional thrust are still close to zero (and even decrease
sightly for all wind forecast look-ahead times), the dispersion is larger, as are the maximum and minimum
values. Therefore, the huge reduction of time and specific energy deviations observed in Figs. VI-4 and VI-
5 for µ > 0 comes at a cost: there is a trade-off between reducing the dispersion of additional thrust and
reducing the time and specific energy deviations at the metering fix.
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Figure VI-6: Specific energy added by means of T with respect to the initial plan for different values of µ

Table VI-2 shows, for each strategy to update the wind profile forecast during the descent, the per-
centage of case studies not requiring speed-brakes or additional thrust during the entire descent. In addi-
tion, the percentage of case studies that performed at energy-neutral trajectory while complying with the
CTA are also shown in this table.

Table VI-2: Percentage of energy neutral trajectories for different values of µ and forecast look-ahead times

Wind forecast update mode
Without speed brakes Without additional thrust Energy-neutral
+1 h +3 h +6 h +1 h +3 h +6 h +1 h +3 h +6 h

Static 97.4 87.8 80.5 76.3 71.9 73.8 74.4 61.5 55.9
µ = 0.0 98.3 93.7 90.0 82.1 75.6 75.5 80.6 70.3 67.0
µ = 0.5 99.2 98.9 97.8 79.9 75.1 74.0 79.6 74.9 73.0
µ = 1.0 99.5 99.0 98.6 80.8 76.2 75.2 80.5 75.9 74.5

According to Table VI-2, and as expected, the more the forecast look-ahead time, the less the per-
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centage of case studies not requiring use of speed brakes and/or additional thrust during the descent. For
a given forecast look-ahead time, increasing the number of wind observations used to update the wind
profile typically reduces the chances of requiring speed brakes. Regarding the use of thrust, it is difficult
to determine the probability of executing a descent without additional thrust depending on the number
of weather observations used to update the forecast wind profile. Finally, the probability of executing an
energy-neutral descent, in which neither additional thrust nor speed brakes use are required to satisfy cons-
traints, typically increases with the amount of wind observations used to update the wind profile forecast.
This enhancement becomes even more significant for large forecast look-ahead times. In particular, when
using a static wind profile forecast with a look-ahead time of +6 h, only 55.9% of the descents are able to
perform an energy-neutral trajectory. Conversely, when updating the wind profile forecast with a cadence
of observations corresponding to µ = 1.0, the percentage of energy-neutral trajectories increases to 74.5%.

Finally, Fig. VI-7 shows the difference in fuel consumption between the executed trajectory and the
open-loop execution of the initial plan, with negative values indicating fuel savings and positive values
indicating that additional fuel was required. Results shown in Fig. VI-7 agree with those of Fig. VI-6:
the more specific energy added by means of thrust, the more fuel consumption. As already discussed in
Chapter V, when implementing NMPC strategies the fuel burned during the execution of the descent is
typically the same than that achieved by implementing the initial trajectory plan in open-loop (the median
and mean values are close to zero). In addition, the distribution of fuel consumption difference is almost
symmetrical, meaning that the NMPC strategies have the same chances to burn more fuel than to save it, if
compared to the open-loop execution. The same conclusions than for the additional specific energy added
by means of thrust apply here: there is a trade-off between reducing the dispersion of additional fuel and
reducing the time and specific energy deviations at the metering fix.
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(b) µ = 0.0
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(c) µ = 0.5
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(d) µ = 1.0

Figure VI-7: Fuel consumption difference with respect to the initial plan for different values of µ
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VI.4 Discussion
In this chapter the NMPC guidance strategy, which repeatedly updates the optimal trajectory of the air-
craft, was combined with wind networking concepts, in which aircraft collaborate by sharing their wind
observations to improve the wind profile forecast on-board and in real-time.

Results show that the performance of the conventional NMPC strategies assessed in Chapter V, which
(at most) used ownship wind observations to predict the wind profile just before updating the optimal
trajectory plan, could be significantly improved when taking advantage of up-to-date wind observations
emitted by nearby aircraft, notably in terms of time and specific energy deviations at the metering fix.

Another interesting conclusion is that there exists a trade-off between reducing the dispersion of ad-
ditional fuel and thrust and reducing the time and specific energy deviations at the metering fix. Generally
speaking, however, increasing the value of µ reduces the mean and median additional fuel and thrust.

It was also observed that by including wind observations emitted by nearby aircraft the number of
energy-neutral descents satisfying a CTA at a metering fix could be as high as 75%, considering a wind
forecast with a look-ahead time of +6 hours. Without updating the wind profile during the descent, the
number of energy-neutral descents satisfying a CTA at a metering fix would be around 55%.

These are very promising results considering that the case studies selected for this experiment corres-
pond to the RAP forecasts generated for +1, +3 and +6 h look-ahead times during one year over the region
of Denver. It should be noted that for those case studies in which energy modulation was not sufficient to
satisfy operational constraints, the amount of energy added/removed by the NMPC guidance system was
optimal in terms of fuel consumption and use of speed brakes.

The integration of CDOs subject to CTAs will require changes in both on-board trajectory manage-
ment and ground automation systems. In particular, the interaction between aircraft and arrival manager
(AMAN) systems on-ground is envisaged to follow the next sequence:

1. the ground system sends via datalink the area navigation (RNAV) route and runway in use to the air-
craft, which subsequently computes the most optimal trajectory plan (not subject to time constraints)
from its current position to the runway threshold.

2. the ground system requests (also via datalink) the estimated time of arrival for a certain fix along that
route.

3. the aircraft sends the estimated time on arrival and possibly the time window (energy-neutral and/or
absolute) at the requested fix.

4. the ground system sequences aircraft by assigning CTAs within the time windows transmitted by the
aircraft (preferably using their estimated time of arrival, which is supposed to be the most optimal
from the airline point of view).

A crucial aspect for the acceptance of the AMAN system in future operations is the accuracy of its
trajectory predictions. One of the main factors that directly affect the accuracy of any aircraft trajectory
prediction is the wind data that is used in the model. The better the wind data, the closer is to the real wind
that the aircraft will encounter, and the more accurate the resulting trajectory prediction (in particular,
altitude, speed and time at the different fixes).

Ground systems could also take advantage of wind observations emitted by airborne aircraft to im-
prove their trajectory predictions. Enhanced trajectory predictions would also improve the perceived ac-
curacy of the AMAN system, which will be very important to the overall acceptance by the air traffic
controllers.





We can only see a short distance ahead, but we can see plenty
there that needs to be done.

— Alan Turing

It’s the job that’s never started as takes longest to finish.

— J. R. R. Tolkien

VII
Concluding remarks

The growth in traffic implies increased pressure on the environmental sustainability of air transport. The
introduction of more fuel-efficient profiles, however, is achieved at the cost of a reduction on capacity due
to the more diverse trajectories that the air traffic control (ATC) need to handle. Continuous descent ope-
rations (CDOs) with controlled time of arrivals (CTAs) were identified as a potential solution to maintain
capacity at acceptable levels, or even increasing it, while simultaneously allowing fuel-efficient descent
profiles. The introduction of this kind or flight operations, however, will require the modernisation of both
ground and airborne systems. The main objective of this PhD thesis was the development of on-board
trajectory management algorithms to comply with time constraints during the descent of an aircraft in an
environmentally friendly way, even in presence of uncertainties.

During this work some questions arose that were assessed and some of them are still open and could
be topics of further research. A brief summary and conclusions of the achieved results, as well as hints on
the possible directions for future work, are presented in what follows.

VII.1 Summary of contributions
The main contributions of this PhD thesis are summarised as follows:

• A trajectory management (planning and guidance) framework for the robust optimisation and ex-
ecution of aircraft descent trajectories was established in Chapter II. This framework includes the
formulation of a generic yet very complete optimal control problem to generate optimal trajectory
plans taking into account any aircraft dynamics, performance and weather model as well as any
number of flight phases, constraints and cost function. Moreover, several recommendations to face
the most common issues that one could encounter when implementing nonlinear optimisation algo-
rithms were also provided in Chapter II. Finally, several guidance strategies to execute the resulting
trajectory plan, which take advantage of time and energy management concepts, were are also pro-
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posed.

• The potential applicability of these time and energy management concepts was demonstrated in
Chapter III by quantifying the feasible time windows at a metering fix for energy-neutral descents.
Remember that during an energy-neutral descent the total energy is not increased by means of thrust
nor removed by using active drag devices, if compared to the initial trajectory plan. The most impor-
tant conclusion of this study was that CTAs can be updated even after overflying the top of descent
(TOD), and that considerable time windows could be attainable at idle thrust and without using
speed brakes depending on the flight conditions. These results should encourage the introduction of
time and energy management concepts for CDOs subject to CTAs.

• A comprehensive comparison of guidance strategies build on time and energy management con-
cepts was performed in Chapter IV. The set of guidance strategies compared in this PhD thesis
included those already existing in the time and energy managed operations (TEMO) concept (i.e.,
tactical, strategic and hybrid) and a new guidance strategy called nonlinear model predictive control
(NMPC), which has been in use in the process industries in chemical plants and oil refineries since
the 1980s. Interestingly, results showed that all these guidance strategies could comply with CTAs
with an average time error lower than 2 seconds and very attractive fuel consumption and noise nui-
sance figures, even in the presence of significant aircraft performance modelling and weather forecast
errors. The main conclusion of this study, however, was that the performance of the four guidance
strategies assessed are very similar. In spite of that, the NMPC was selected for further research be-
cause it demonstrated to be the most robust in terms of time and energy deviations at the metering
fix.

• In Chapter V sensitivity-based alternatives to the generic NMPC were proposed to overcome its main
limitation: the computational delay. Sensitivity-based NMPC (SbNMPC) and advanced-step NMPC
(AsNMPC), which take advantage of parametric sensitivities to update the optimal trajectory plan
solving a quadratic programming (QP) optimisation problem at each time sample, were compared
to the generic NMPC, which solves a rigorous nonlinear programming (NLP) optimisation prob-
lem at each time sample. Fuel consumption, energy added and removed by means of thrust and
speed-brakes, respectively, as well as time and energy deviations at the metering fix were the metrics
selected for the comparison. Results from 16,000 simulations showed that trajectory updates result-
ing from solving a rigorous NLP optimisation problem are very similar to those obtained by using
parametric sensitivities. Yet, the later method to update the trajectory plan is simpler, faster and more
robust. Based on these results, the AsNMPC was the most recommended. Firstly, it has the advantage
of not being affected by computational delay, in contrast to the ideal NMPC (INMPC). Secondly, if
compared to the SbNMPC, it is less affected by large perturbations in the vector of parameters, since
the sensitivity-based update is not performed over an approximated trajectory plan but over a very
accurate trajectory generated recently by solving a rigorous NLP optimisation problem. There results
shall encourage the integration of AsNMPC into future flight management system (FMS) because it
is more robust than INMPC and SbNMPC, thus paving the way to certification processes.

• Finally, the benefits of combining NMPC with wind networking concepts (i.e., sharing wind observa-
tions between aircraft) were investigated in Chapter VI, in terms of environmental impact and ability
to comply with operational constraints. In addition, the sensitivity of the performance metrics to the
rate of wind observations received from nearby aircraft was also quantified. Results showed that the
performance of the conventional NMPC could be significantly improved when taking advantage of
up-to-date wind observations emitted by nearby aircraft, in terms of time and energy deviations at
the metering fix and fuel consumption. In particular, around 75% of the simulated flights were able
to execute an energy-neutral descent when taking advantage of wind networking concepts to contin-
uously improve the wind forecast in real-time, in contrast to the 55% observed when using a static
wind forecast. Unfortunately, the current and accurate automatic dependent surveillance-broadcast
(ADS-B) and Mode-S data being transmitted is not currently being used to update the wind profile
used by the FMS to optimise the trajectory plan. Results arising from this work should encourage the
aviation community to take advantage of data provided in the wind networked concept to further op-
timise the trajectory plan and reduce the overall environmental impact of aviation. Ground systems
could also take advantage of wind observations emitted by airborne aircraft to improve their trajec-
tory predictions and, consequently, increase the capacity and the safety of the air traffic management
(ATM) system.
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VII.2 Future Research
During this PhD thesis new questions and research lines arose. Taking advantage of the trajectory optimi-
sation framework that has been developed and for the sake of completeness, the following work items are
proposed for the future:

• It is almost impossible to predict how difficult it is to solve a particular model with a particular al-
gorithm, especially for NLP optimisation problems. The only reliable way to find which solver to
use for a particular class of models is so far to experiment. A benchmarking of optimal control prob-
lem methods, optimisation methods, solvers, and parameters of these components for the particular
problem of trajectory optimisation would be very valuable for the aviation community.

• The absolute time windows shown in Chapter III could be extended by allowing the aircraft to apply
thrust or speed brakes. It would be interesting to assess the sensitivity of the time window to the
amount of energy added or removed by means of thrust or speed brakes, respectively, as well as to
quantify the theoretical limits of this time window as a function of the state of the aircraft.

• It would be also interesting to compare the energy-neutral and absolute time windows with a fixed
route with that achievable by using path lengthening or stretching, even though pilots and ATC
would probably prefer energy management to reduce workload and increase situation awareness.

• The NMPC guidance strategy updates the optimal trajectory plan at regular time intervals; while
the strategic and hybrid guidance strategies update the optimal trajectory plan only when the time
and/or energy deviations exceed a pre-defined threshold. In the former case, a continuous re-
planning of the optimal trajectory plan could be contrapositive if the models used by the FMS are
not accurate enough; in the later case, it might be too late to react if the thresholds were not selected
properly. In future work, a new guidance strategy based on reinforcement learning could be used to
develop a system that ”learns” the best time samples to update the optimal trajectory plan, based on
the current state of the aircraft and the environment (for instance, procedure being flown and mete-
orological conditions). The agent (the guidance system) would ought to take actions (re-plan or not
re-plan) in an environment so as to maximise some notion of cumulative reward (e.g., the total fuel
consumption of the entire descent). A large number of simulations would be required to train this
agent.

• All the experiment performed in this PhD thesis were performed from the perspective of a single
aircraft. In future work, the potential effectiveness of the CTA window could be tested by a traffic
simulation, aiming to assess the effectiveness of the CTA window in the traffic stream management.
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