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Abstract
Animals evolved to survive in dynamic environments by developing multi-
ple behavioral strategies to adapt and to learn from their interaction with
the world. Associative mechanisms and internal representations are at the
core brain computation, however, to acquire a complete knowledge of their
relevance for behavior it is necessary to take into consideration their em-
bodied nature. In an interdisciplinary effort which integrates methods from
computational modeling, robotics, and electrophysiology, this dissertation
presents a series of studies that aim at advancing the understanding of the
automatic and deliberate processes that regulate embodied control of action
in the brain. Through the formulation of a biologically constrained control
architecture engaged in a real-world foraging task, we lay the ground for
modeling and analyzing complex goal-oriented behavior emerging from
the interplay between the automatic cerebro-cerebellar system acquiring
sensory-motor associations, and the deliberate fronto-hippocampal system
providing goal-oriented navigation and planning. Following the behavioral
analysis of the stimulus-response model of cerebellar learning, we later
ask how could the cerebellum implement anticipatory control which is
both adaptive and resistant to uncertainty. To answer this question, we
explore the properties of the automatic control system and advance a novel
hypothesis on the role of the cerebellum, by recasting its computation in
the perceptual domain. Finally, we ask how the automatic and deliberate
systems interact during unexpected situations that require a sudden change
of plans. By analyzing the neural dynamics of the human frontal cortex
in the control of deliberate action switch, we support the contribution of
low-frequency oscillatory dynamics within this area to orchestrate behav-
ior, based on internal representations of goals and rules. Altogether these
results contribute to our understanding of how automatic and deliberate
processes control action in the brain and advance novel insights that chal-
lenge or extend current theories. Despite the main aim to understand the
brain, these insights could also be applied to the development of novel
control systems for a new generation of robots.
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Resum

Els animals van evolucionar per sobreviure en entorns dinàmics desenvo-
lupant múltiples estratègies de comportament per adaptar-se i aprendre de
la seva interacció amb el món. Els mecanismes associatius i les representa-
cions internes estan en el nucli del càlcul del cervell, però, per adquirir un
coneixement complet de la seva rellevància per a la conducta, cal tenir en
compte la seva naturalesa incorporada. En un esforç interdisciplinari que
integra mètodes de modelització computacional, robòtica i electrofisiolo-
gia, aquesta tesi presenta una sèrie d’estudis que pretenen avançar en la
comprensió dels processos automàtics i deliberats que regulen el control de
l’acció incorporat al cervell. Mitjançant la formulació d’una arquitectura
de control biològicament restringida dedicada a una tasca de forjat en el
món real, posem el terreny per modelar i analitzar una conducta orientada
a objectius complexos que sorgeix de la interacció entre el sistema cerebro-
vascular cerebral automàtic que adquireix associacions sensorials motores
i deliberat sistema fronto-hipocamp que proporciona una navegació i una
planificació orientades a objectius. Després de l’anàlisi conductual del
model d’estı́mul-resposta de l’aprenentatge cerebel lari, ens preguntem
més endavant com es pot aplicar el cerebel a un control anticipat que és a la
vegada adaptatiu i resistent a la incertesa. Per respondre a aquesta pregunta,
explorem les propietats del sistema de control automàtic i avançem una
nova hipòtesi sobre el paper del cerebel, tot reformant la seva computació
en el domini perceptiu. Finalment, preguntem com interactuen els sistemes
automàtic i deliberat durant situacions inesperades que requereixen un
canvi sobtat de plans. Analitzant la dinàmica neural de l’escorça frontal
humana en el control del canvi d’acció deliberada, recolzem l’aportació de
dinàmiques oscil ladores de baixa freqüència en aquesta àrea per orquestrar
el comportament, basant-se en representacions internes d’objectius i regles.
Tot plegat, aquests resultats contribueixen a la nostra comprensió de com
processos automàtics i deliberats controlen l’acció en el cervell i avançen
noves idees que desafien o allarguen les teories actuals. Malgrat l’objectiu
principal d’entendre el cervell, aquestes idees també es podrien aplicar al
desenvolupament de nous sistemes de control per a una nova generació de
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robots.
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Introduction

0.1 An embodied approach to the study of be-
havior

0.1.1 Historical context

The tradition of multiple approaches in the fields of psychology, cognitive
science, and neuroscience have faced the challenge to describe and under-
stand the dynamics and processes that underlie animal behavior. In the
field of experimental psychology, early accounts of animal learning date
back to the first half of the 20th century with the important contributions
of Ivan Pavlov, Edward Thorndike, and Edward Tolman.

Pavlov introduced the notion of (Pavlovian) conditioning [Pavlov,
1941] to describe an experimental paradigm which taught animals to
acquire new associations between stimuli and responses. This method to
induce associative learning was based on a pairing between an Uncon-
ditioned Stimulus (US) and a novel one, termed Conditioning Stimulus
(CS). A US represented a stimulus that instinctively, without training,
provoked a reactive response of an animal (unconditioned response - UR).
In Pavlov’s canonical experiment, the US consisted in the presentation
of food which elicited salivation (UR) in the animal. The US was then
paired with a CS such as a sound. Over time, the contiguity between the
US and CS caused the CS to provoke the UR in the absence of the US. The
newly associated response was termed the Conditioned Response (CR),
to describe the new stimulus-response pair between the sound and the

1



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 2 — #24

salivation. Another example of conditioned response can be found in the
eyeblink conditioning paradigm, where an airpuff directed to the eyelid
(US) provoking a blink (UR) is anticipated through the pairing with a tone
(CS) (fig. 1-A,B) [Gormezano, 1972].

Edward Thorndike advanced an alternative associative paradigm by
introducing the notion of consequence and demonstrated how animals
could learn any type of stimulus-response associations through reward or
punishment. This broader view of animal learning extended the condi-
tioning paradigm from instinctual behaviors to genuinely novel ones and
culminated in the formulation of the Law of Effect, the first psychological
law of associative learning. Central to the Law of Effect was the idea that
animals could learn any stimulus-response pair through training and repeti-
tion without forming an internal representation or a schema. Whereas the
Law of Effect embraced and extended by the Behaviorism dominated the
field of experimental psychology for over 50 years, Edward Tolman sought
to demonstrate that animals were able to purposefully acquire knowledge
about the environment, which they could subsequently use in a flexible
manner, rather than learning stimuli-response associations only [Tolman,
1951]. Following the behaviorist experimental method, he observed that
rats, who were trained to navigate a maze in search for food pellets, be-
haved in a more sophisticated manner than what the Law of Effect would
predict. In particular, he suggested that animals were able to reuse knowl-
edge of an environment previously acquired without reward. The concept
of latent learning violated the essential principle of the Law of Effect
demonstrating that learning can occur in the absence of reinforcement and
inspired an alternative learning hypothesis grounded in representations
(fig. 1-C,D). The notion of cognitive map described for the first time the
fact that animals could make use of an internal representation of physical
space acquired through experience and alluded to an internal schema upon
which the animal could plan and deliberate [Tolman, 1938, Redish, 2016].
In sum, Tolman described learning as a consequence of a goal-oriented
cognitive process that entails an internal representation of the environment
in conjunction with motivational states. In a broader sense, this view on
animal behavior stressed the existence of active cognitive processes that

2
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complemented the sensorimotor learning mechanisms predicated on the
associationist view and enriched them with the notion of representation.

A B

C D

HNR

HR
HNR-R

Average errors

Days

Figure 1: Classical conditioning and Tolman’s latent learning A.
Setup of the eyeblink conditioning paradigm. B. The pairing of CS and
US progressively elicits a CR (from [Bracha et al., 1991]) C. The maze
from Tolman’s experiments D. Latent learning. Here rats that explored a

3
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maze in absence of reward and that received reward starting from day 11
(arrow) (HNR-R) learned faster than those that received reward from day 1
(HR).(from [Tolman and Honzik, 1930])

0.1.2 Dual processor theories in psychology

The notion that multiple coexisting processes, based on associations and
representations, may be essential for learning in animals is present in a
wide range of theories formulated in the field of experimental psychology,
macroscopically termed the Dual Processing System (DPS). At the core of
DPS theories of mind lays the idea that the brain processes information
in (at least) two ways including a fast and automatic one, and a slow
and deliberate one. This may be found, for instance, in the definition of
[Schneider and Shiffrin, 1977, Shiffrin and Schneider, 1977] who propose
the coexistence of automatic and controlled processes in the context of
visual attention. In their classical search experiment, automatic responses
directed the attention towards the target stimulus, whereas controlled ones
required conscious control of attention and memory. The first class of
responses was considered to be a result of an acquired association of
familiar stimuli, developed over a great number of repetitions. Controlled
responses, on the other hand, were thought to involve an active information-
processing mechanism which compares the presented stimuli with internal
representations stored in memory during novel or infrequent situations
[Schneider and Shiffrin, 1977, Shiffrin and Schneider, 1977, Schneider and
Chein, 2003].

On a slightly different vein, [Sloman, 1996] defined two separate learn-
ing principles on the basis of human decision-making. Specifically, one
associative, driven by experience and repetition, and one rule-based ex-
tracting knowledge through logical reasoning. The most popular example
of DPS, however, can be found in the work of Kahneman, the winner of
the 2013 Nobel prize. Based on the study of cognitive biases in human
decision-making, Kahneman postulated the existence of the so-called Sys-
tem 1 and System 2. System 1 describes a set of processes, evolutionarily
old, that underlie fast and automatic thinking and that take place at the

4
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unconscious level according to prior experience. Central to System 1
is the association of new information with existing patterns rather than
creating new ones [Tversky and Kahneman, 1974]. System 2, in contrast,
acts at a more controlled conscious and abstract level performing slower
deliberate problem solving by taking decisions during, for example, novel
situations [Kahneman, 2011].

In conclusion, DPS theories highlight two distinct mechanisms which
underlie animal and human behavior. Consequently, they extend the early
psychological framework of learning proposing that knowledge is acquired
through processing of information by means of associations and internal
representations.

0.1.3 An embodied perspective

In distinguishing between associations and representations both early and
more recent accounts of animal learning stressed the idea that central to
these processes is the ability of the brain to acquire, process and output
information. This is most evident in the theoretical frameworks attempting
to capture the computational aspects at the basis of classical and operant
conditioning [Sutton and Barto, 1998, Rescorla et al., 1972].

For example, the Rescorla-Wagner rule (1972), developed by Robert
Rescorla and Allan Wagner to formalize the principles behind the condi-
tioning phenomena, interpreted associative learning in terms of an acquired
internal organization of memories, formed of relationships between events
across a variety of modalities. [Rescorla et al., 1972]. Here however,
an association is not just an encoding of a co-occurrence of two stimuli
(CS-US) but rather an expectation that establishes a causal link between re-
lated events in the world [Rescorla, 1988, Medin et al., 1996, Spear, 2014].
This aspect is also captured by early attempts to implement conditioning
dynamics into artificial neural networks [Donegan et al., 1989] and later
extensions to probabilistic normative frameworks [Chater et al., 2006]

Moreover, the emphasis on memory and internal representation is
present in a wide range of cognitive theories of decision-making and de-
liberation that distinguish different learning modes based on the different
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information processing capabilities of distinct areas of the brain [van der
Meer et al., 2012,Oppenheimer and Kelso, 2015]. For example, theoretical
interpretations of the original concept of cognitive map describe the forma-
tion of internal representations as an unsupervised process which captures
the statistics of redundant flows of sensory inputs [Barlow, 1989]. An
internal schema that can be further used to perform model-based planning
through the representations of goals, actions, and expected outcomes [Daw,
2012].

Finally, a similar focus on the information processing aspects of learn-
ing is at the core of the formulation of dual processing theories of cognition.
In particular, a paradigmatic example can be found in the implementations
of the theory of Schneider and Shiffrin into a computational model which
aims at specifying the structures underlying cognitive performance in
terms of information encoding and retrieval [Schneider and Chein, 2003].
Here, the information available in the environment is processed by an
automatic associative system and a controlled one composed of intentional
and mnemonic processing modules. Both systems alter the input in a
systematic, purposeful way in order to generate the desired output.

In a broader sense, the notion of information processing is central
to the field of cognitive science [Fodor, 1985] and its relation to the
computational theory of mind advanced by connectionist approaches as
an algorithmic description of cognitive functions [Jackendoff, 1987]. A
view which is further promoted by current interdisciplinary approaches
attempting to bridge the fields of neuroscience and artificial intelligence
based on a close analogy between biological and artificial (deep) neural
networks [Hassabis et al., 2017, Dehaene et al., 2014] or that describe
mental operations in terms of unified algorithmic principles that extract
probabilistic rules that govern the environment minimizing global objective
functions [Tenenbaum et al., 2011, Friston, 2010].

Throughout this dissertation, we will argue, however, that focusing ex-
clusively on the information processing aspects of learning might constrain
the understanding of the mechanisms that underlie biological behavior.
This is because the brain is not an abstract information processor but rather
an embodied system whose primary goal is to control the body in its con-
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tinuous interactions with the environment [Clark and Squire, 1998, Varela
et al., 2017]. This becomes apparent from the perspective of the evolu-
tion of the Nervous System (NS). Simple NSs have evolved into more
complex and structured ones in order to provide reactive and adaptive
capabilities to organisms equipped with increasingly articulated bodies
which had to act within ever-changing, competitive environments [Jerison,
2012, Kaas, 2013]. For example, in mammals the evolution of the nervous
system accompanied the transition to novel ecological niches where to
forage [Simpson, 1955]. This required the development and expansion of
new peripheral apparatus and associated brain structures to handle more
complex coordination, but also new homeostatic mechanisms to regulate,
for example, body temperature. Corollary to this is the basic proposition
that the amount and kind of nervous tissue in the brain is related to the
amount and kind of sensorimotor activity that must be controlled [Jeri-
son, 1971], with increasingly complex brains representing sensorimotor
interactions with the environment in a more sophisticated and abstract
way [Fuster, 2015, Stout, 2010, Jerison, 2012].

This has implications for the dual processing system theories because
in the context of an embodied system the brain should act not just as an
information processing system but also as a control system. Under this new
perspective the learning abilities of the brain acquire a boarder meaning:
learning and adaptation have the ultimate evolutionary goal of regulating
the sensorimotor interactions of an individual with the environment for
the purposes of achieving goals that satisfy an internal need that come
from the body (i.e. nutrition) [Damasio and Sutherland, 1994]. Further,
the content of the information processed by the brain is grounded in the
sensorimotor space and it is processed with the goal to act in the world.
Therefore, information processing mechanisms, in their diversity, should
be seen as a whole in the context of controlling a physical body. In this
sense, more complex and abstract representations should stem from an
incremental development from simpler mechanisms through a bottom-up
evolutionary process and they are not based on centralized modules but
rather emerge from the integrated functions of distinct sub-modules within
the distributed (nervous) systems. Failing to integrate this perspective
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might incur in the misconception that cognition consists simply of building
maximally accurate representations of input information, while learning is
a mean to achieve a more immediate goal of guiding behavior in response to
the system’s changing surroundings (see [Miłkowski, 2013], p. 4). For this
reason to advance our understanding of automatic and deliberate processes
within this dissertation we focus on the study of action. In particular we
will attempt to complement the information processing approach with the
notion of embodied control. By looking at the brain as a control system that
acts within the environment, we will propose a different view on automatic
and deliberate processes. Not only we will demonstrate their capabilities
to acquire associations and representations but also their function in the
purposeful control of mechanical and biological bodies. In doing this,
we will provide a theoretical framework, presented in part 1, that maps
the functional description of automatic and deliberate processes to the
neural substrate. In doing this we will advance the understanding of the
neurobiological origin of these processes and generate a number of testable
hypotheses about the individual subsystems, which will be developed in
the following chapters.

0.1.4 The brain as a control system

The approach to the study of the brain as an embodied control system has
a long-standing tradition grounded in the cybernetics of Wiener, Ashby,
and Walter [Ashby, 1949, Wiener, 1948, Walter, 1963]. The field of Cy-
bernetics was born in the late 1940s, the same historical context in which
connectionism emerged, as an interdisciplinary field whose goal was to
study the design principles as well as mechanisms underlying control and
communication of biological and mechanical systems in their interaction
with the environment [Wiener, 1961].
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A B

C

Figure 2: Cybernetic approach to the study of behavior A. the tortoise
from Gray Walters B. An illustration of complex behavior in the Vehicles
(from [Braitenberg, 1986]) C. A brain based device navigating a track
(from [Edelman, 2007])

The concept of information processing was central to both connection-
ism and cybernetics. The latter, however, stressed its application on control
rather than computation. In particular, Cybernetics introduced a conceptual
framework to understand biological systems grounded in the notion of
feedback. Here, the system creates a closed loop with the environment
based on perception and action cycles under the general hypothesis that
the main function of the brain is to control, in a stable way, the behavior of
the animal (i.e. homeostatic functions [Ashby, 1949]). Methodologically,
Cybernetics promoted interdisciplinary research which addressed integra-
tive questions about the mechanisms of control in animals and machines
through the construction of robotic models. A notable example can be
found in the tortoises of Gray Walters, small autonomous robots built with
the goal to demonstrate that complex behavior (such as phototaxis) could
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emerge from a relatively simple mapping between perceptual (sensors)
and motor (actuators) systems (fig. 2-A).

The field of Cybernetics has been historically surpassed by connec-
tionist approaches possibly due to the limitations of building complex
machines instead of writing computer programs. The principles promoted
by the cybernetic approach, however, were further developed in neuro-
science and psychology. Such principles, for example, can be found in the
methods of Valentino Braitenberg, a psychiatrist, and neurophysiologist
who coupled the study of the biological brain with theoretical insights
borrowed from computer science and engineering [Braitenberg, 1990, van
Hemmen et al., 2014]. In his book entitled Vehicles, Braitenberg proposes
a thought experiment in which simple agents display simple intelligent
behaviors based on pure feedback and without the need for complex in-
ternal representation [Braitenberg, 1986] (fig. 2-B). The emphasis on
intelligence without representation is perhaps the central tenet of the sub-
sumption architecture of Rodney Brooks who, as an answer to the symbolic
doctrine, introduced an approach for the design of Artificial Intelligence
(AI) grounded in embodied systems [Brooks, 1991].

Finally, the Nobel prize, Gerald Edelman, advanced the so-called
’Darwin series’ of real-world Brain-Based Devices (BBD) arguing that
such synthetic method is the key step to improve our understanding of how
behavior is generated by the system-level interaction of multiple artificial
neuro-mimetic controllers [Edelman, 2007]. The assumption on top of
which the BBD where built was that the brain is an embodied system
that cannot be fully understood outside of the context of the interaction
between brain, body, and environment. This line of research led to a
construction of a number of different artifacts which implemented neural
models of different brain structures. Indeed, those artifacts were capable of
adaptive behaviors in the real world including goal-oriented navigation as
well as conditioned responses to stimuli, in a situated way, without global
coordinate systems or priors but just through sensing and actuating (fig.
2-C).
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0.1.5 Mapping brain functions to layers of control

In this dissertation we will follow the embodied approach to the study of
behavior and look at brain mechanisms underlying automatic and delib-
erate processes in the control of action. In order to ground our definition
of such processes, we introduce the notion of brain architecture. This
notion allows the double purpose of (1) defining the design principles
that an embodied system should follow in order to purposefully control
behavior and (2) mapping those principles to the biological neural sub-
strate. In particular, we frame our definition into the Distributed Adaptive
Control framework (DAC) [Verschure et al., 2003b, Verschure, 2012].
DAC extends the tradition of Edelman’s BBD and describes the functional
and anatomical organization of the mammalian brain as divided into four
complementary layers of control:

• somatic layer: it describes the fundamental interface between an
embodied agent and its environment. From a control perspective it
defines the physical aspects of the controlled system (i.e. the plant)
including its sensors and actuators as well as internal states. From
a biological perspective the somatic layer describes the body and
comprises the senses, the skeleton-muscle system as well as, for
example, the circulatory and digestive systems.

• reactive layer: it describes reactive behaviors, such as reflexes (US-
UR), and homeostatic mechanisms. From a control perspective it
defines hardwired feedback control mechanisms that map the sen-
sors to the actuators and produce stereotyped responses to sensory
inputs, for example to minimize a perceived error. From a biological
perspective the reactive layer describes the reflex arc and homeosta-
sis and it has been mapped to the functions of the brainstem and the
hypothalamus in the mammalian brain. Here the hypothalamus is
involved in, for example, thermoregulation whereas areas such as
the pons, in the brainstem, provide the mapping between sensory
and motor fibers underlying, for example, eyblink reflexes.
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• adaptive layer: it describes adaptive behaviors based on associa-
tive mechanism such as stimulus-stimulus and stimulus-response
associations (i.e. CS-CR). From a control perspective this defines
adaptive feedforward control, steer the actuators on the basis of pre-
vious knowledge of the controlled system, for example to minimize
an error before it is perceived. From a biological perspective the
adaptive layer defines the associative learning system and it has
been ascribed to the functions of the cerebellum [Herreros and Ver-
schure, 2013a, Herreros et al., 2013a, Maffei et al., 2013, Verschure,
2012, HofstoÈtter et al., 2002]. Here, sensory and motor afferents
from distinct areas of the brain are mapped according to detected
contingencies through plasticity mechanism and allow for anticipa-
tory behaviors such as avoiding a noxious stimulus (see section 2).
Other structures within this layer are, for example, the striatum in
its sensorimotor functions associated to outcomes.

• contextual layer: it describes goal-oriented behaviors based on de-
liberation, that makes use of internal representations of goals, space
and value (i.e. latent learning). From a control perspective it de-
fines control of action based on planning. Planning is defined as the
ability to act flexibly, by switching between the systems objectives
according to contextual changes and internal states and to accom-
plish those objectives upon consultation of memory and expected
outcomes. From a biological perspective, the contextual layer rep-
resents the deliberate learning system and it has been mapped to
the functions of the frontal cortex, where abstract representations
of actions are flexibly orchestrated in relationship to goals [Ver-
schure et al., 2014a, Duff et al., 2011] (see section 3). This system
also involves distinct memory areas, such as the hippocampus and
the temporal lobe, as well areas associated with value, such as the
ventral striatum and the ventral tagmental area.

This definition is, by no means, incomplete and it is sacrificing the
richness and complexity of the nervous system in favor of a schematic
representation of the brain in distinct layers of control. Nevertheless it
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captures the basic principles that underlie biological behavior and it allows
to develop concrete hypotheses on the interactions between distinct layers
and biological subsystem in the control of an embodied system.

Therefore, within this dissertation, we ground our definition of au-
tomatic system within the reactive and adaptive layers of control and,
specifically, into the functions of the cerebellum. In turn, we ground our
definition of deliberate system within the contextual layer and in particular
into the functions of the frontal cortex. In section 2 and 3 of this chapter
we will cover in more detail the basic anatomical and neurophysiological
features of these two areas and theoretical accounts that describe their
involvement in controlling behavior.

0.2 Automatic control in the Cerebellum

0.2.1 Anatomical organization of the cerebellum

The cerebellum is located in the posterior part of the brain overlying the
brainstem at the level of the pons (fig. 3-A). It is one of the oldest structures
of the nervous system of the mammalian brain. The earliest anatomical
mapping of the cerebellum dates back to the Spanish physiologist Ramon
y Cajal who, already in 1911, identified its main cell types through his-
tological staining [Ramón y Cajal, 1911]. A complete characterization
of its anatomical and physiological properties emerged in 1967 with the
work of Eccles, Ito, and Szentagothai, who established its organization in
a defining formulation still accepted nowadays [Eccles et al., 1967]. The
mammalian cerebellum receives inputs from a widespread of cortical and
sub-cortical regions through the pontine nuclei and its efferent connections
project to brainstem motor centers and especially back to the cortex in
an organization often referred to as cortico-cerebellar loops [Middleton
and Strick, 1998]. In mammals, the cerebellum expanded at the same rate
of the cortex suggesting a tight functional coupling between these two
structures [Jerison and Barlow, 1985].
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A

B

Figure 3: Cerebellum and cerebellar microcircuit A Section of the
human cerebellum and pons (from [ [Warwick et al., 1973]]) B Schematic
representation of the cerebellar microcircuit (from [ [Dean et al., 2010a]])

The cerebellum is cytoarchitectonically divided into the cerebellar
cortex and the cerebellar nuclei. The cerebellar cortex can be further
decomposed into granular and molecular layers. The former is located
in the innermost part of the cerebellar cortex and it is mostly composed
of the granule cells that receive inputs from the pons via mossy fibers
and relay this signal to parallel fibers in the molecular layer [Eccles et al.,
1967, Ito, 2006, Apps and Garwicz, 2005]. The main cell type within the
molecular layer is the GABAergic Purkinje cell. Purkinje cells are among
the largest cells known in the mammalian brain and they are characterized
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by a large arborization of the dendritic tree making hundreds of thousands
of synapses with the parallel fibers.

Purkinje cells axons represent the only output of the cerebellar cortex
onto the deep cerebellar nuclei. The cerebellar nuclei are composed of
constantly active excitatory and inhibitory cells that, through disinhibition
from the Purkinje cells, project the output signal of the cerebellum to
their target structures [Uusisaari and de Schutter, 2011]. Another structure
that anatomically relates to the cerebellum is the inferior olivary nucleus
in the medulla [Brown et al., 1977]. It receives afferents from sensory-
motor subcortical and cortical areas and projects to the dendritic tree of
the Purkinje cells through the climbing fibers [Eccles et al., 1967, Ito
et al., 1982]. The cerebellum presents a strikingly repetitive structure
where the Purkinje cells and associated cell types are organized in a set
of parallel circuits often referred to as ”cerebellar microcircuits” (fig.
3-B) [Eccles et al., 1967, Braitenberg and Atwood, 1958]. Although a
number of other cell types have been characterized within the cerebellar
microcircuit, this simplified description provides an anatomical foundation
for the validation of an algorithmic hypothesis of its functions [Apps and
Garwicz, 2005, Paul Dean and John Porrill, 2010].

0.2.2 What does the cerebellum compute?

One of the main models describing the computation implemented in the
cerebellum is based on the Albus-Marr hypothesis [Marr, 1969, Albus,
1971]. Starting from a functional assumption that the cerebellum was
related to motor control on the basis of anatomical, clinical and lesion
evidence available at the time, Albus and Marr hypothesized that the
cerebellar microcircuit, and in particular the Purkinje cell, could learn
associations between sensory states (i.e. context) and motor commands to
be issued in that context. This interpretation was supported by the anatom-
ical input-output connectivity of the cerebellar microcircuit, which would
receive contextual (sensory) information through the pontine pathways
and the motor command (or pattern) to be learned through the input from
the climbing fibers in the form of a supervising signal [Eccles et al., 1967].

15



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 16 — #38

Following this initial (discrete) formulation, further refinement of the
theory proposed the analogy of the cerebellum as an adaptive filter [Fujita,
1982]. Adaptive filters are a class of linear filters where the input-output
transfer function parameters can be adjusted via an optimization method
[Widrow et al., 1967]. Computationally, an adaptive filter requires a two-
steps analysis-synthesis procedure. During the analysis step, an input is
expanded into a set of basis functions with different temporal profiles,
whereas during the synthesis step an output is computed via a weighted
sum of those bases. The weights used to mix the bases into a unitary signal
are adjusted with the goal to minimize the difference between the output
of the filter and a target function (i.e. least square error).

According to this analogy [Fujita, 1982,Dean et al., 2010a], the analysis
step would occur in the granular layer where the interaction between the
granule cells and the Golgi cells could provide the necessary transformation
of the input signal into temporal bases, further conveyed to the Purkinje
cell dendrite through the parallel fibers. The Purkinje cell would, therefore,
compute the synthesis step of the algorithm by integrating parallel fiber
inputs into a unique response. Plasticity at the parallel fibers - Purkinje cell
synapsis serves as a weight adjustment regulated by Long-Term Depression
(LTD) (however see [Johansson et al., 2014]) driven by an error signal
computed at the level of the inferior olive [Ito et al., 1982, Hesslow, 1994].

Overall, the hypothesis that the role of the cerebellum (i.e. internal
computation) is to learn, reproduce and perhaps anticipate (i.e. eligibility
trace) an arbitrary function provided the right set of inputs and outputs, has
been supported by anatomical, behavioral and neurophysiological evidence
(see [Dean and Porrill, 2011] for review). Nevertheless, the original model
underwent a progressive refinement and revisions that enriched it with new
plasticity sites on the basis of new behavioral and anatomical observations
(see [Clopath et al., 2014] for an example). What surprisingly still remains
elusive about the cerebellum, however, is its functional role with respect
to the rest of the brain [Ito, 2006, Ito, 2008, Ramnani, 2006b].
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0.2.3 Anticipatory behaviors in the cerebellum

The highly repetitive structure of the cerebellum, organized as microcir-
cuits, suggests an algorithmic homogeneity of its internal computation [Ec-
cles et al., ] (although see [Cerminara et al., 2015]). What contributes to
determine the functions of the cerebellum, however, is the input-output
connectivity with the rest of the brain, as suggested by the wide range of
behaviors it is involved in.

The cerebellum has been implicated in a range of motor and non-motor
functions that have determined its classical parcellation into vestibular,
spinal and cerebral [Ito, 2008, Ramnani, 2006b]. Perhaps the most estab-
lished behavior that involves cerebellar learning is the adaptive eyeblink
conditioning reflex [Gormezano, 1972] (fig. 1-A,B). A similar anticipatory
dynamic is found in the smooth pursuit behavior where the cerebellum
drives a predictive response that allows the eyes to closely follow a moving
target [Shidara et al., 1993], or in the vestibular-ocular reflex where the
cerebellum elicits an anticipatory eye movement that compensates for
the head rotation [Fukuda et al., 1972, Miles and Lisberger, 1981]. The
involvement of the cerebellum extends to the control of limbs as in the
force-field adaptation task where it is critical to anticipate and minimize
the effects of a disturbance during a reaching movement [Pasalar et al.,
2006, Shadmehr and Mussa-Ivaldi, 1994, Thoroughman and Shadmehr,
2000].

Finally, several empirical observations involve the cerebellum in the
control of corrective postural adjustments [Massion, 1994, Timmann and
Horak, 2001a,Lang and Bastian, 1999]. This behavior will be of particular
interest within this dissertation and we briefly review here some essential
concepts. Postural adjustments are defined as predictive responses issued
by the brain to counteract the effect of an incoming disturbance affecting
the state of equilibrium of the body before an error is perceived. This
is experimentally observed when a quietly standing subject is hit by an
obstacle [Santos et al., 2010b, Santos et al., 2010a] (fig. 4-A) or the
platform on top of which he stands is moved forward [Timmann and
Horak, 2001a].
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A B

Figure 4: Anticipatory postural adjustments A Setup to study postural
adjustments against external disturbances (from [Santos et al., 2010b]).B
Example of electromyographic response recorded from the rectus femoris
muscle of a subject resisting a disturbance with eyes closed (top) or eyes
open (bottom). Only when the incoming disturbance can be predicted
APAs are detected (from [Mohapatra et al., 2012]).

In both cases, the subject perceives a loss of equilibrium (i.e. error) to
be compensated for and makes use of predictive cues (i.e. the proximity of
the obstacle or a tone preceding the platform motion) to act anticipatorily
(fig. 4-B). The total postural corrective response has been characterized
as the blend of at least three components, possibly originated as the result
of three distinct processes. In particular, the anticipatory component
of the response precedes the moment of the impact, the early (or fast)
compensatory component follows the moment of the impact but rises
earlier than the time of a postural displacement is being perceived by the
vestibular system (¡200ms). Finally, late (or slow) compensatory responses
follow the perception of the vestibular error [Shiratori and Latash, 2001,
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Latash, 2008]. In conclusion, the cerebellum has been involved in a
number of behaviors that require the anticipation of motor responses to
counteract predictable errors and allow for fast and responsive actions
within a number of domains.

0.2.4 Theories of cerebellar control

From a system-level modeling perspective, theoretical accounts supporting
this plurality of behaviors can be traditionally divided into two classes
of models. In particular, the ’inverse’ and the ’forward’ models [Wolpert
et al., 1998b]. Both classes share the same building blocks capitalizing on
the notion that the cerebellum provides a feedforward anticipatory signal.
They differ, however, in the quality of ’what’ they predict. Both require
the presence of a plant that is the system to be controlled

A

B

Figure 5: Theoretical functions of the cerebellum A.The inverse model
hypothesis (from [Gomi and Kawato, 1992]) B.The forward model hypoth-
esis (from [Miall et al., 1993])
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(i.e. the eye or the limb) and a (feedback) controller that is in charge
to achieve or maintain a desired state of the plant by mapping an error
(i.e. difference between current and desired state) into a corrective control
signal (i.e. the reflex). However, since the sensory feedback is subject
to delays and noise and the dynamics of the plant may introduce further
latencies (i.e. viscoelastic plants such as muscles), the feedback controller
alone cannot fully correct for the error. For this reason, a feedforward con-
troller that takes the function of the cerebellum is necessary to compensate
for these behaviorally relevant control latencies.

Inverse models, such as Feedback Error Learning (FEL) [Kawato et al.,
1987,Gomi and Kawato, 1992] (fig. 5-A), hypothesize that the cerebellum
learns to produce a necessary motor command to achieve a desired state of
the plant, covering a similar function of the feedback controller but in a
predictive manner. In particular, FEL learns to associate a contextual or a
predictive signal with a response that mimics the output of the feedback
controller advanced in time with the function to minimize an error before
it can be perceived through sensory feedback. This scheme has been used
to describe behaviors such as the eyeblink conditioning [Christian and
Thompson, ], postural adjustments and VOR [Gomi and Kawato, 1992].

Forward models, such as in the Smith predictor analogy [Miall, 1998]
(fig. 5-B), hypothesize that the cerebellum learns to predict the sensory
consequences of motor commands to compensate for the latencies of
sensory feedback. This is achieved on the basis of an internal model which
describes the dynamics of the controlled object that converts an efference
copy of a given motor command into a feedforward prediction about the
incoming sensory feedback. This scheme is consistent with a number of
(voluntary) motor behaviors including the smooth pursuit [Kettner et al.,
1997] and force-field adaptation [Tseng et al., 2007, Kawato, 1999] (but
see [Shadmehr et al., 2016]).

0.2.5 Open questions

The cerebellum is one of the best-characterized structures of the brain. Its
main anatomical and electrophysiological features have been established
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and a number of behaviors dependent on them have been extensively
studied and interpreted using the formalism of inverse and forward models.
Nevertheless, a number of questions regarding the cerebellum remain open
and need to be addressed by current research agendas, specifically about
its anatomical details, physiology and its role with respect to the rest of
the brain.

For the scope of this dissertation, we focus on two issues that regard
the current theories of cerebellar functions. Theoretical control models of
the cerebellum, as the examples mentioned above, have focused mostly on
the analysis of one individual microcircuit or collapsed the functions of
one cerebellar microzone [Ito, 1987] within a unitary algorithm. However,
the cerebellum is composed by approximately 15 millions microcircuits
with very different connectivity to the rest of the brain. In some cases this
multiplicity has been modeled by parallel architectures that integrated the
output of multiple microcircuits into a unitary response, capitalizing on
the parallel nature of the cerebellar cytoarchitecture [Wolpert et al., 1998a,
Wolpert and Kawato, 1998, Brandi et al., 2013]. Some other cases have
emphasized the hierarchical scheme suggested by the multiple layers of the
motor control hierarchy to which the cerebellum contributes [Kawato et al.,
1987]. However, it remains an open questions how multiple microcircuits
integrate their anticipatory functions, especially during the control of
behaviors that require the blend of multiple adaptive responses, as in
the case of postural adjustments. Indeed these responses could be the
result of a parallel cerebellar scheme. Alternatively, they could stem from
a sequential architecture. In these regards multiple possibilities should
be explored and their implications for the control of behavior carefully
studied.

A second aspect regards the function of the cerebellum with respect
to the rest of the brain. The study of the cerebellum has a long-standing
tradition within the realm of motor control and its role in motor behav-
ior is widely accepted. However, a growing body of empirical evidence
challenges the purely motor role traditionally ascribed to the cerebellum
and broadens the functional involvement of this structure in different do-
mains [Ramnani, 2006a, Strick et al., 2009a, Caligiore et al., 2017]. In
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particular, the cerebellum seems to play an important role in situations that
involve the prediction of forthcoming sensory events even in cases where
action is not required [Roth et al., 2013a, Deluca et al., 2014, Therrien
and Bastian, 2015]. Anatomical evidence further supports the engage-
ment of the cerebellum in purely sensory and cognitive domains, drawing
connectivity patterns that reciprocally link it to different neocortical re-
gions involved in sensory processing, such as somatosensory and parietal
cortices [Strick et al., 2009b, Schmahmann, 1996]. Crucially this set of
evidence is at odds with either the classical forward or inverse model for-
mulations and rises the question of whether the multiplicity of behaviors
the cerebellum is involved in are controlled by distinct learning schemes
or perhaps there could be a unified view. If so, how could pure sensory
predictions play a role in motor adaptation?

0.3 Deliberate control in the Frontal Cortex

0.3.1 Frontal control of goal-oriented behavior

The frontal lobes, the largest of the four major lobes of the cerebral cortex,
are located in the frontal area of the mammalian brain, rostral to the central
sulcus, an anatomical landmark that macroscopically separates the sensory
and the motor regions of the neocortex. The frontal lobes are anatomi-
cally divided into the primary Motor Cortex (M1) and, more anteriorly,
the premotor region, further segmented into the lateral premotor cortex
and, centrally, the Supplementary Motor Complex (SMC). Anterior to the
premotor region sits the prefrontal cortex, an area especially developed in
primates and humans [Fuster, 2015]. The regions of the frontal lobes are
interconnected by a feedforward communication pathway that allows in-
formation to flow from prefrontal to primary motor cortices and a feedback
pathway that backprojects form motor areas to prefrontal ones [Fuster,
2015] (fig. 6).
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Figure 6: Frontal networks involved in the control of action (from
[Fuster, 2015])

The frontal cortex, however, is also extensively connected to sub-
cortical areas involved in sensory, memory and motor functions such as
the basal ganglia, the hippocampus, the cerebellum and low-level motor
nuclei in the brainstem, to name a few. Following the description proposed
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by Fuster [Fuster, 2015], the entirety of the cortex of the frontal lobe
is devoted to the representation and production of action at all levels of
biological complexity in a hierarchical organization that sees the most
elementary actions operating at the low levels (i.e. M1) and the most
complex and abstract actions sitting at the higher level of the hierarchy
(i.e. lateral prefrontal cortex - LPFC). This definition entails, therefore,
a progressive gradient from abstract goals (i.e. high-level description
of behavioral patterns) to their motor implementations in the muscular-
skeletal system. The involvement of the frontal lobes in cognitive control,
that is the ability to coordinate actions in relation to internal goals, and
their underlying hierarchical organization has been a subject of a number
of studies [Koechlin, 2016, Ridderinkhof et al., 2004, Miller and Cohen,
2001, Nachev et al., 2008]. For example, using a cognitive task involving
the contribution of sensory, contextual and episodic elements, [Koechlin
et al., 2003] differentiated the contributions to the increased bold signal
of human premotor and caudal and rostral lateral prefrontal cortex. The
emerging model is a cascade of processes that mediate behavior in a
hierarchical fashion where sensory evidence is processed in premotor areas
whereas contextual and episodic control would be a distinctive feature of
prefrontal areas. Similarly, [Voytek et al., 2015] suggested a progressive
involvement of prefrontal cortex during a task that required the processing
of increasingly abstract rules. Several other reports have supported the
involvement of frontal areas in hierarchically organized functions such
as decision-making, planning, and action-outcome monitoring, aspects
central to the notion of cognitive control [Ridderinkhof et al., 2004].

0.3.2 Change of plans: the involvement of SMA

One of the key requisites for a ’cognitive controller’ in charge of exe-
cuting goal-oriented actions is the ability to switch between alternative
objectives following task demands and implement them at the level of
the motor system. For example, by suppressing ongoing automatic be-
havior and overwriting it with a controlled ’deliberate’ action [Koechlin,
2016,Hikosaka and Isoda, 2010a,Nachev et al., 2008]. This is a key behav-
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ioral function of a goal-oriented system with great implications for survival
as, for instance, when driving a car and unexpectedly having to steer be-
cause of an obstacle. From an experimental perspective, it also depicts
an extremely valuable case to study to understand the interaction between
automatic and deliberate (or controlled) processes through the creation
of a conflict, in which the latter has to exert control over the former. The
switch from automatic to deliberate processes is behaviorally characterized
phenomenon that can be observed during ’change of plans’ experimental
paradigms [Isoda and Hikosaka, 2007, Rushworth and Hadland, 2002].
This class of paradigms requires a subject to execute a repetitive action or
a set of actions in response to a stimulus (i.e. context) which induces a
progressive shift from reactive responses, where action is guided by the
cue, to anticipatory, or feedforward responses, where action is guided by
predictive processes that anticipate the presence or location of the stimulus.
This progressive automation of the response is captured by the gradual
decrease in stimulus-response time. On a small subset of trials, however,
an unpredictable change of contingencies requires the subject to switch
from an over-trained goal to a novel (or less frequent) one. Switch trials
are typically accompanied by a higher number of mistakes (i.e. not being
able to switch) and, importantly, longer response times, which suggests the
intervention of a slower and perhaps more complex system in the control
of action [Isoda and Hikosaka, 2007].

0.3.3 Supplementary motor areas: a neural controller
for deliberate action switch?

A candidate area for the implementation of goal-oriented plans into the
motor system is the Supplementary Motor Complex (SMC). Its anatomical
location indeed sits in between the prefrontal system and the primary mo-
tor cortex, suggesting a possible functional interface between high-level
deliberation and actuation [Nachev et al., 2008]. The involvement of the
SMC in motor control was originally observed during stimulations stud-
ies. They implicated SMC in the control of complex behavior such as
bimanual coordination or production of motor sequences and described its

25



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 26 — #48

functions as auxiliary to the primary motor system [Penfield and Jasper,
1954]. These experimental observations led to a further subdivision of
SMC into Supplementary Motor Areas (SMA) proper, engaged in the
control of the muscolo-skeletal apparatus, preSMA covering the same
functions but to a lesser extent and the Supplementary Eye Field (SEF)
specialized in the control of the eye [Tanji, 1994]. Note, however, that
this original distinction has been a subject of a debate as the electrophysi-
ological characterization of cells ’tuning-curves’ in the SMC suggests a
relative rather than an absolute difference between subregions, which indi-
cates perhaps a functional gradient rather than a clear dichotomy [Nachev
et al., 2008]. Despite the initial framing of its functions in the realm of
motor control, the precise contribution of SMC to behavior remains under
discussion. Variegated, but not necessarily contrasting evidence suggest
that SMC may play a role in volitional execution [Eccles, 1982, Deecke
and Kornhuber, 1978, Goldberg, 1985] of internally generated, rather than
sensory-driven, movements [Mushiake et al., 1990]. Alternative views
suggest its involvement in learning novel conditional stimulus-responses
associations [Chen and Wise, 1997, Nakamura et al., 1998].

Importantly for the present discussion, there is a relative consensus
about the involvement of SMC in the control of action under cognitive or
executive demands [Nachev et al., 2008]. In particular, the SMC is thought
to be necessary for proactive switching during ’change of plans’ situations.
For example, Rushworth and colleagues [Rushworth and Hadland, 2002]
suggested, in a combined fMRI and TMS study, that intact human preSMA
is crucial for the inhibition of current automatic motor plans and facilitation
of ’deliberate’ motor responses, but does not mediate automatic responses
alone. Similarly, [Isoda and Hikosaka, 2007] reported an engagement of
neurons in the monkey SEF, where an increased firing rate and artificial
stimulation was associated only with gazes triggered by an unpredictable
contextual switch (fig. 7-A).
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A

B

Figure 7: Switch mechanism in SMA A.Temporal onset and amplitude
of the firing rate in monkey pre-SMA neurons distinguishes between cor-
rect and incorrect switch (from [Isoda and Hikosaka, 2007]).B.Conceptual
model of the switching mechanism possibly found in the medial frontal
cortex (from [Hikosaka and Isoda, 2010b]).

Crucially, the temporal onset and magnitude of the response deter-
mined the difference between successful and unsuccessful trials. Based
on these and a number of other reports, an interpretation of the functional
role of the SMC can be therefore bootstrapped from experimental and
anatomical evidence, which is, SMC could be a neural controller in charge
for switching from automatic to controlled processes. Nevertheless, one of
the complexities in the study of this area and its functions is the lack of
an established theoretical model that can provide predictions to be tested
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experimentally [Nachev et al., 2008].
One, and perhaps, the only attempt to define the functional require-

ments of the supplementary motor complex as a neural controller mediat-
ing automatic and deliberate processes comes from [Hikosaka and Isoda,
2010b] who argued that SMC should implement the following functions:
(1) detecting a change in context through sensory evidence, (2) suppressing
ongoing automatic processes and, most importantly, (3) facilitating the
execution of an alternative controlled process (fig. 7-B). In addition, as an
extension of the original proposal, we argue that it should also be able to
access internal representations (i.e. memory) to inform behavioral choices
in the case that environmental cues do not indicate what alternative action
should be taken. This last requirement seems of particular relevance in (i.e.
social) contexts where norms and rules demand behavioral strategies that
are implicit in, for example, the moral code.

0.3.4 Theta oscillations in cognitive control

A natural question following the ’design’ requirements postulated by the
proposed model of SMC functions is whether evidence for the control sig-
nals mediating each of these functions can be found, at the implementation
level, in the brain. A number of studies have addressed the purpose to char-
acterize the neural dynamics involved in switching behavior. Importantly,
the majority of reports involving human and primate electrophysiology
seems to agree on the peculiar role of the oscillatory dynamics in mediating
different aspects of switching behavior. In particular, oscillations in the
theta range (4-9 Hz) have been greatly implicated in several aspects of
cognitive control [Voytek et al., 2015, Sweeney-Reed et al., 2017], leading
to the hypothesis that dynamics in this restricted set of frequencies could
reflect the neural control signal underlying the coordination of automatic
and deliberate processes.

Remarkably, theta phase synchrony between SMC and Parietal and Oc-
ciptal cortex was found in monkeys who were engaged in a gaze-switching
task (similar to [Isoda and Hikosaka, 2007]. Importantly, this synchrony oc-
curred only in the trials which required a switch between contexts [Phillips
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et al., 2014]. This observation possibly indicates that the fronto-parietal
network could constitute the neural pathway through which the detection
of a contextual change is conveyed to SMC. In addition, the theta band
together with beta band (12-30 Hz) has been widely implicated in the
suppression of ongoing motor behavior. For example, a number of EEG
studies in human cognitive control report an increase in the power of theta
in the mid-frontal electrodes during situations of conflict [Cohen, 2014a].
Here, the increased theta power positively correlates with subjects’ re-
sponse time during an increased demand for cognitive control, suggesting
a signature of inhibition over the motor system. An interpretation sup-
ported also by a similar relationship with retrospective behavioral changes
such as post-error slowing.

On a similar vein, [Chen et al., 2010] observed a comparable role of the
theta and beta band in monkey SMA during a countermanding paradigm
that only required to retract ongoing arm movements. Here the onset and
the peak of the relative change in power were correlated with the greater
ability of the animal to inhibit behavior prospectively and retrospectively
(i.e. post-error slowing). Note however that retrospective changes are often
related to the role of the anterior cingulate cortex [Hikosaka and Isoda,
2010a]. Finally, the inhibitory power that the SMC might exert over the
motor system is supported by its anatomical (hyper direct pathway) [Aron
and Poldrack, 2006] and functional connectivity with the subthalamic
nucleus, a region of the basal ganglia thought to act as a global brake for
the motor system [Cavanagh et al., 2011].

In conclusion, there seems to be a convergent empirical evidence that
low frequency oscillations could mediate various aspects of deliberate
control and that theta frequencies could be involved in synchronizing
multiple areas of a distributed network.

0.3.5 Open questions

An increasingly accepted view is that deliberate control is not a localized
function in the brain but rather a widely distributed network that comprises
a number of functionally specialized sub-systems. These sub-systems are
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in charge for goal representations, possibly driven by internal states and
drives, for memory from previous experience as well as current perceptual
evidence and value associated to it. For example, there it has been proposed
that the frontal cortex could be orchestrating goals, while the hippocampus
and the temporal lobe could hold memories that allow planning based on
previous experience. However, it remains unclear how this wide network
is integrated into a coherent behavioral response.

The second aspect related to the neurophysiology of deliberate control
pertains to the role of low frequency oscillations. In particular, theta
oscillations could mediate distinct aspects of deliberation as it has been
found during cognitive control tasks [Cavanagh et al., 2010, Helfrich and
Knight, 2016], but also, more generally, in a wide range of cognitive
functions including memory and visual attention [Lisman and Jensen,
2013, Szczepanski et al., 2014]. However, it remains unclear what is the
role of theta oscillations and the function of distinct features of the neural
signal, such as amplitude and phase, in orchestrating goal oriented behavior.
Indeed, increases in amplitude have often been reported during cognitive
or deliberation task as a neural correlate of conflict. Phase, in turn, seem
to have a long-range synchronization mechanism. It remains unclear,
however, whether phase dynamics are solely a mean to orchestrate the
different sub-systems involved in goal switching or perhaps they could also
constitute a control signal that drive behavior. Answering this questions
would contribute to elucidate not just the oscillatory dynamics involved
in this type of behavior but it would also address a broader, and perhaps
pressing issue in neuroscience regarding the functional role of oscillations
in the brain.

0.4 Thesis outline

0.4.1 Part 1
In the first contribution of this dissertation, we revisit the concepts of
automatic and deliberate processes in the light of the classical insights on
animal learning. We do this from the perspective of biological control mod-
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eling through the implementation of a brain-based control architecture. In
particular, consistent with the tradition of the experimental psychology, we
choose a foraging task where a mobile robot has to navigate an open maze
in search for distinct resources that need to be hoarded in the nest location.
The aim of this study is to provide an explicit mapping of automatic and
deliberate processes to the neural substrate of distinct regions of the brain
by bridging between the information processing capabilities of individual
modules and the global objective of controlling behavior through their inte-
gration. We demonstrate how reflexive, automatic and deliberate behaviors
are the result of the interaction of individually distributed sub-systems
that progressively develop associations and internal representations in a
bottom-up fashion through the situatedness and embodiment of the system.

0.4.2 Part 2

In part two of this dissertation, we focus on the automatic control prop-
erties of the cerebellum. We do this from a computational and control
perspective by modeling the acquisition of anticipatory postural adjust-
ments in a robot. Starting from a standard cerebellar control scheme based
on FEL, we provide an initial explanation for this phenomenon that re-
lies on the integration of multiple, parallel adaptive responses triggered
by predictive cues. We observe, however, that this control scheme lacks
the robustness to cope with uncertainty. By looking at the anatomical
organization of the cortex and the cerebellum, we introduce the notion
of hierarchy and later translate this biological insight into a control archi-
tecture. We further propose a new theoretical framework where the FEL
architecture can be recast into a hierarchical scheme that reflects the causal
structure of perceptual events in the environment. This novel approach can
achieve anticipation while solving the control problems of violation and
generalization in a simulated biologically-plausible postural task, and it
exhibits a performance consistent with behavioral literature. This theoret-
ical framework has implications for cerebellar theory as it proposes that
hierarchical descending predictions and ascending prediction-errors can
be implemented in cortico-cerebellar loops that only modulate behavior at
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the last stage of the control chain, as also proposed by normative accounts
such as the active inference.

0.4.3 Part 3
In part 3 of this dissertation, we focus on deliberate control of action within
the medial frontal cortex. We take a neurophysiology approach with the
objective to explore the oscillatory dynamics that underlie the switch from
automatic to deliberate actions in the human brain (iEEG). In particular,
we sought to determine the role of theta oscillations in controlling switch
behavior as well as the network interactions of the medial frontal cortex
with other areas involved in deliberate control. Our results suggest that
Supplementary Motor Areas (SMA) facilitate switching behavior through a
phase code. In particular, we find that the phase alignment of a small subset
of frequencies in the theta range is predictive of performance (Reaction
Times, RT) at the trial level, with theta-gamma phase amplitude coupling
being higher in faster trials. In addition, we find that the in switch trials
SMA synchronizes with the temporal lobe in a behaviorally dependent
manner. These results contribute to elucidate the role of theta oscillations in
controlling deliberate actions and support the involvement of a distributed
brain network engaged in cognitive control.
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Part I
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Chapter 1

A BRAIN ARCHITECTURE
FOR
AN ARTIFICIAL FORAGER

In this chapter, we propose an integrated brain architecture for an artificial
forager that reflects the anatomical organization of the rodent brain with
the goal to explore the internal dynamics of individual brain modules and
their contribution to the control of behavior and, more generally, to the
global fitness of the agent. We do this in the context of a foraging task,
where an artificial agent has to navigate a complex environment and collect
different types of resources while avoiding obstacles. Here, a number of
computational models reflecting the core computation of multiple brain
areas, such as the cerebellum, hippocampus, and frontal cortex provide
multiple levels of control from reflex-like behavior to automatic adaptive
control to deliberate decision-making. We show that an incremental acti-
vation of hierarchical levels of control produces incrementally complex
foraging strategies, from random navigation to stimulus-response associa-
tions and finally to planning with an overall increase in the optimality of
the behavioral strategy.

This chapter is based on: Maffei, G., Santos-Pata, D., Marcos, E.,
Sanchez-Fibla, M., & Verschure, P. (2015). An embodied biologically
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constrained model of foraging: from classical and operant conditioning to
adaptive real-world behavior in DAC-X. Neural Networks, 72, 88-108.

1.1 Introduction

Animals act in order to survive, reproduce and enhance their fitness in
general. It has been proposed that the functions of the brain behind this
performance can be decomposed into 5 top-level objectives called: ”how”,
”why”, ”what”, ”where” and ”when” or the H4W problem [Verschure,
2012]. A paradigmatic example of H4W is the foraging task where an
animal must both explore and exploit its environment in order to survive.
This form of complex behavior includes: to learn where and when to look
for resources, what to look for, where and when to return to the home
base, how to avoid obstacles and how to act in order to satisfy internal
needs, see [Clayton and Dickinson, 1998]. Animal foraging and in par-
ticular hoarding, where an animal stores resources for later retrieval, has
greatly contributed to the understanding of animal behavior from a neuro-
biological perspective in ecologically valid conditions. For example, the
selection of need-relevant resource types for hoarding has been shown to
be dependent on motivational systems defined by the Hypothalamus and
associated Brainstem nuclei [Keen-Rhinehart et al., 2010]. The same study
has shown that hamsters tend to apply an energy efficient hoarding strategy
(see also [Cabanac and Swiergiel, 1989, Lea and Tarpy, 1986]) consistent
with optimality accounts of foraging [Charnov, 1976]. In addition, hoard-
ing tasks are greatly used in the experimental study of spatial cognition and
its neural substrate, in particular the Entorhinal cortex and Hippocampus.
For example, hoarding behavior can be realized using either an egocentric
strategy combining local cues and/or landmarks through associative learn-
ing with actions, as we might find in the substrate of classical conditioning,
or an allocentric one that relies on global map-like representations found
in the Hippocampus [Tolman, , van der Meer et al., 2012, Gould et al.,
2010,Smulders et al., 2010,Buzsáki and Moser, 2013]. Despite insights
into the role of single neural populations in hoarding, the principles govern-
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ing the interaction among the multitude of processes underlying complex
goal-oriented behavior, such as foraging, are poorly understood. This is
partially due to the experimental intractability of the system-level and
multi-scale organization of the neural principles underlying most behav-
iors. It is exactly for this reason that a computational exploration can assist
in advancing hypotheses on the system level properties of the whole brain
as it engages with the world through the body.

Several aspects of complex animal behavior have been previously
described within the context of the learning paradigms of classical and
operant conditioning [Thorndike, 1927, Hull, , Skinner, 1948, Abarca et al.,
1985, Agetsuma, 1998, Domjan, 2004, Fantino and Abarca, 2010]. In clas-
sical conditioning, an animal learns to relate an initially neutral stimulus
with an innate reflex that comprises a predefined stimulus-response relation.
Through experience the initially neutral stimulus will substitute the reflex-
triggering stimulus in driving the reflex in a predictive manner. Examples
can be found in anticipatory salivation and mastication preceding food
intake [Pavlov and Anrep, 2003, Woods and Ramsay, 2000, Woods, 1991],
courtship behavior triggered by the presence of a possible partner [Zam-
ble et al., 1985] and avoidance responses anticipating noxious stimuli as
in eyeblink conditioning [Gormezano et al., ] (see [Domjan, 2004] for
review). In operant conditioning, the contents of what is learned are the
consequences of action and their relationship to the stimulus context. The
outcome of this learning is determined by the context and the goal to be
achieved [Thorndike, 1927]. Instrumental tasks, where an animal learns
to increase the probability of obtaining a food reward by performing a
specific action (e.g.. lever pressing) in a specific situation (context) have
been often used to study foraging [Abarca et al., 1985, Jurado-Parras et al.,
2013]. At present, however, there have been no attempts to reconcile the
multitude of neural mechanisms underlying foraging with the behavioral
modulation identified by the two conditioning paradigms in a biologically
grounded cognitive model. Here we attempt to overcome this limitation by
proposing a model that integrates the computational functions of several
brain areas thought to play a role in the two learning paradigms of classical
and operant conditioning while accounting for foraging.
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We realize our model from the perspective of the Distributed Adap-
tive Control (DAC) theory of mind and brain that interprets these two
paradigms in terms of core functional subsystems underlying adaptive
behavior, organized into a four-layered cognitive architecture: somatic,
reactive, adaptive, contextual [Verschure and Voegtlin, 1998] ( see [Ver-
schure, 2012] for review and [Verschure et al., 2014b] for a detailed
mapping to the neural system underlying goal-oriented behavior). Accord-
ing to DAC the somatic layer defines the fundamental interface between
the embodied agent and its environment, including the needs that must
be satisfied in order to assure physical integrity and survival. It captures
physical properties, such as body morphology, sensorium and effectors
and accounts for the role these play in the generation of behavior as for
instance expressed in the concept of morphological computation [Pfeifer
et al., 2007]. The reactive layer describes innate behavioral systems com-
prising reflexes and low-level stereotyped behavioral patterns, such as
those driven by fight or flight instincts and dedicated triggering stimuli, as
famously described in the hierarchy of sexual behaviors of the three-spined
stickleback fish by Tinbergen [Tinbergen, ]. These behavioral subsystems
are genetically predefined as sensory-affect-motor mappings, provide a
first level of internal processing driving somatic responses (i.e. reflexes)
and account for the putative computational functions of Brainstem nu-
clei such as the Pons [Bracha et al., 1991], Central Grey [Panksepp and
Biven, 2012] and the Superior Colliculus [Meredith and Stein, 1983].
Within the reactive layer, behavior regulation follows homeostatic and
allostatic principles [Fibla et al., 2010] driven by external stimuli or so-
matic states, defining a first step towards the generation of goals coherently
with the integrative functions ascribed to the Hypothalamus [Blouet and
Schwartz, 2010, Sutcliffe and de Lecea, 2002, Volkow et al., 2011, Pfaff,
1999]. The reactive layer captures the so called ”emotional operating
system” proposed by Panksepp that identifies seeking, fear, rage, panic,
lust, care and play as the primary behavioral subsystems of the mammalian
brain [Panksepp and Biven, 2012]. Alternatively, this layer also imple-
ments the circuits underlying the Unconditioned Stimuli and Responses of
classical conditioning [LeDoux, 2012]. It is important to emphasize that
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the reactive layer provides, through its control over the main neuromodula-
tory systems, global regulatory signals that strongly affect higher levels
of organization [Swanson, 2012]. As such, it provides the foundation on
which the content of memory systems is bootstrapped. The adaptive layer
of DAC captures perceptual and behavioral learning systems such as the
stimulus-stimulus and stimulus-response associations studied in classical
conditioning [Pavlov and Anrep, 2003, Gormezano et al., , Domjan, 2004].
At this level, the acquired value of sensory inputs is shaped by experi-
ence and leads to the anticipation of conditioned responses through the
predictive control of perception and action. This frees the agent from the
restricted envelope of phylogenetically defined reflexive systems tuned to
evolutionarily invariant trends of survival and allows it to adaptively shape
its actions to a priori unknown states of its environment. The learning
mechanisms of the adaptive layer are composed of the Amygdala [LeDoux,
2012], primary sensory areas of the Neo-cortex [Weinberger, 2004] and the
Cerebellum [Medina et al., 2002] as described in the so called two-phase
model of classical conditioning [Inderbitzin et al., 2010, Konorski and
Miller, 1937, Sánchez-Montañés et al., 2000, Clark and Squire, 1998]. In
particular, the Cerebellum is at the center of the short-timed sensorimotor
learning component of classical conditioning and provides key interfaces
to the reactive layer by being recurrently coupled to its core nuclei. The
adaptive layer also accounts for internal mechanisms of reward and moti-
vation, such as those attributed to the Striatum [Pennartz et al., 2011] and
the ventral tegmental area [Lockie and Andrews, 2013], considered to be a
crucial component of the brain rewarding system that drives the motivation
for action in operant conditioning [Luo et al., 2011]. Finally, the contextual
layer describes the goal oriented decision-making abilities of the brain,
built on sequential memory systems. Here, higher-level representations,
such as sensory percepts, behavioral policies, encoding of space and goal
definitions provide the foundation for learning in a broad temporal window
dependent on the actions of the agent as observed in operant conditioning,
where conditioned responses are actively generated, situation dependent
and task dependent [Jurado-Parras et al., 2013, Luo et al., 2011]. The con-
textual layer comprises short- and long-term memory systems that allow
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the formation of goal-oriented sequences of sensorimotor representations
and that is closely tied to our understanding of the Hippocampus [Haft-
ing et al., 2005, Lisman, 2005, O’Keefe, 1976], medial Prefrontal [Miller
and Cohen, 2001] and Premotor cortical regions [Marcos, Encarni Ver-
schure, 2013] and the dynamics regulating their interaction [Blumenfeld
and Ranganath, 2007].

On one hand, the general principles of DAC and its layered organi-
zation of behavior have been validated in several previous studies using
both mobile and humanoid robots [Verschure et al., 1995, Verschure and
Voegtlin, 1998, Verschure et al., 2003b, Duff et al., 2011, Duff and Ver-
schure, 2010, Verschure, 2012]. These studies however used abstract com-
putational models that did not take into account a functional mapping to
specific brain areas. On the other, specific hypotheses on individual struc-
tures have been recently validated within the context of DAC, by adding
biological constraints to its theoretical principles and aiming at a more
faithful mapping to the computational processes found in the brain. These
include the Cerebellum [Herreros et al., 2013b, HofstoÈtter et al., 2002],
the entorhino-hippocampal formation [Guanella et al., 2007, Rennó-Costa
et al., 2010] and the Prefrontal and Premotor cortex [Marcos, Encarni Ver-
schure, 2013]. To date however, these models have only been validated in
isolation against specific data sets and have not yet been brought together
in a single integrated system generating behavior from the interaction
between its multiple layers. To bridge this gap we present a cognitive
architecture, called DAC-X, that unifies the theoretical principles of DAC
with biologically constrained models of several areas of the mammalian
brain, working synergistically, in real-time, to control a robotic agent en-
gaged in a hoarding task. We embed in DAC-X the computational features
characterizing the neural substrate thought to be responsible for classical
and operant conditioning with the assumption that they could constitute a
sufficient computational architecture able to account for complex behav-
iors, such as foraging, and ultimately solve the H4W problem. In particular,
we implement a Hypothalamus based behavioral regulation system called
Allostatic Control [Fibla et al., 2010] integrated in the reactive layer to
manage the drives of the agent and their associated behavior systems, a
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model of the Cerebellum used to learn adaptive motor responses to cues
and to perform predictive obstacle avoidance, a model of the Hippocampus
used to build the cognitive map of the agent and solve its self-localization
problem (SLAM) and providing the foundation for planning capabilities in
the contextual layer, and finally a Prefrontal based decision-making model
managing, at the contextual level, the selection of goals and plans. To
benchmark our system we created a setup composed of a robotic agent and
a foraging arena [Dasgupta et al., 2014, Verschure and Voegtlin, 1998, Ver-
schure et al., 1995, Prescott et al., 2006]. The goal of the task is to forage
two types of motivationally relevant resources within the environment and
bring them to the home location by exploiting the main perceptual and
cognitive abilities found in animal hoarding, such as exploration, learning,
conflict resolution, decision-making, navigation and associative learning.
We will show that the interaction between the layers of the DAC-X archi-
tecture, individually learning through behavioral feedback, can capture the
intrinsic dynamics and the behavioral outcomes described in both classical
and operant conditioning paradigms and can efficiently control an agent
performing a foraging task within a complex environment. Our results
indicate that optimization of individual error functions driving different
subsystems can positively affect the efficacy of the hoarding strategy pur-
sued by the agent, described in terms of cost-reward relationship. We
discuss our results in the light of behavioral and neuroscientific evidence
from different fields of psychology and ethology and describe how our
system can account for decision-making, navigation, learning and other
cognitive aspects found in foraging and hoarding, ultimately addressing
the H4W problem. We also describe how DAC-X is consistent with be-
havioral and learning dynamics found in the paradigms of classical and
operant conditioning. Finally we discuss our modeling approach towards
mind and brain in comparison to previous implementations of the DAC
theoretical framework and other recent computational approaches devoted
to the understanding of the principles and the neural substrate driving
goal-oriented behavior.
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1.2 Methods

In order to benchmark the performance of DAC-X, we devised a robot-
hoarding task within an open arena with obstacles, that includes several
behavioral, perceptual and cognitive aspects found in animal foraging and
hoarding. We tested the behavior of the agent in the execution of the
task and analyzed the evolution of its performance as a function of its
experience and its underlying computational principles.

1.2.1 Setup

We used a custom built robot platform (diameter: 7cm) to perform the
task (fig. 1.1). It comprises a set of 5 infra-red proximity sensors (Sharp
2Y0A21; range: 0-20 cm,) evenly distributed around its base, two direc-
tional active wheels (Springrc SM-S4303R), a video camera (Pixy 1.3,
Charmed Labs; resolution: 640x480 pixels) for object detection, a digital
compass (Xsens, MTw Development Kit Lite), and a one-DOF active robot
gripper (custom made) for object carrying (fig. 1.1-B,C). An onboard
microcontroller (Ardunio Uno) samples all sensor signals and actuator
commands at 50 Hz. Computations were performed on a desktop com-
puter (MacBook Pro, Apple) and robot-computer communication was
established via Bluetooth. The foraging arena is a surface of size 100x60
cm [Fibla et al., 2010] comprising: a home location characterized by a
yellow patch, a set of objects representing resources of two types (blue
objects represent water, red objects represent food), a set of rigid walls
acting as obstacles, and finally a set of green patches on the floor used
as cues near collectable resources (fig. 1.1-A). A video tracking system
(Reactivision tracking software) mounted underneath the translucent table
top was used to record the robot’s and objects’ positions during the task at
25 Hz.
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1.2.2 Experimental Paradigm

Task

In order to evaluate the behavioral performance of DAC-X in the context
of foraging behavior, we defined an experimental protocol based on a
real-world hoarding task within an open-maze arena. In this context the
agent had to display all features known from rodent hoarding behavior
[Pravosudov and Smulders, 2010], such as taking decisions based on
internal states [Keen-Rhinehart et al., 2010], rely on associative learning
of landmarks with locations of resources and spatial memory [Gould et al.,
2010, Smulders et al., 2010], in order to optimize the resource gathering
process [Cabanac and Swiergiel, 1989, Lea and Tarpy, 1986]. Consistent
with similar animal [Jurado-Parras et al., 2013, Kim et al., 2013] and
robotic tasks [Montague et al., 1995, Verschure et al., 1995, Verschure and
Voegtlin, 1998, Prescott et al., 2006, Dasgupta et al., 2014] the agent was
required to explore a patched environment in search of resources, starting
from an initial home location. The resources were suitable to reduce the
drive provided by two simulated internal needs (e.g. hunger or thirst).
Once the correct drive-reducing resource was found, the agent had to grasp
it and bring it to the home location in order to obtain the specific reward.
Such a sequence, describing the course of one trial, from the home location
departure to the hoarded resource, was repeated along the duration of one
experimental session until the resources (12 items in total) were exhausted.
At the beginning of every session the instantiation of DAC-X (section 2.3)
was reinitialized with all memory systems erased, preventing the reuse of
any knowledge of the environment acquired in previous sessions. The main
goal of the agent was to increase the efficiency of the hoarding process
over trials, where efficiency was defined as the relationship between the
obtained reward value associated to a collected item and the energy spent
to obtain it. To do this, the agent had to make a decision on what type of
resource to fetch at every trial, to efficiently navigate, avoid obstacles and
walls, and acquire and exploit both specific (cue and action associations)
and contextual (space and trajectories) knowledge.

43



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 44 — #66

Experiment

In order to evaluate DAC-X we ran 9 experimental sessions of 12 trials
each with the aim to evaluate the behavior of the robot and its efficiency
in hoarding resources. To do this we ran the system with a full imple-
mentation of the control architecture (described in section 2.3) and we
analyzed the performance over different stages of learning together with
the underlying neuronal dynamics.

Figure 1.1: Robotic setup. A. Foraging arena. Red represents food
resources. Blue represents water resources. Yellow represents the home
location (patch on the floor). Green represents visual cues for sensory
motor associations. B,C. Robotic agent. 1: camera. 2: active wheels. 3:
gripper. 4: proximity sensors. D. Visual field of the robot facing a food
object identified using a color blob detection algorithm.

In particular, we analyzed behavior in terms of navigation, quantifying
trajectory lengths and occupancy patterns over the course of the session.
We looked at efficiency in terms of the relationship between cost and
reward as the main measure of performance, where the former captures the

44



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 45 — #67

total motor activity (see section 2.3.4) produced in exploratory behaviors
and item collection, while the latter captures the reward value associated
to each item and discounted over the time of a trial (see section 2.3.3.2).
We also provided an analysis of the dynamics that regulate individual
processes of the main modules of DAC-X and quantify their evolution
during the session. In addition, we ran 3 sets of 5 experimental sessions
each with the aim to assess the individual contribution of each layer of
the architecture over the progression of learning and performance. To do
this we progressively enabled a layer of control at every set, starting from
reactive (R), to reactive-adaptive (R+A), to reactive-adaptive-contextual
(R+A+C) and compared evolution of behavior and hoarding efficiency for
these three conditions over trials.

1.2.3 Control Architecture

The behavior of the agent was generated by a cognitive architecture based
on the Distributed Adaptive Control (DAC) theory of mind brain and
behavior (Verschure & al., 2003; Verschure, 2012). According to DAC,
the behavior of organisms can be understood in terms of the interaction
between multiple layers of control. Here, each layer implements comple-
mentary computational strategies, on various degrees of biological validity,
mapping sensory inputs to internal states and from states to action. As
reported in detail below, we mixed controllers that only emulate putative
behavioral functions of a specific brain structure with computational mod-
els constrained by biological validity (fig. 1.2). For each of the models,
we will explain in detail their physiological and anatomical grounding and
prior work on the basis of which we justify their biological validity.

The somatic layer of DAC-X represents the physical properties of the
agent, such as body morphology, sensors and actuators. The reactive layer
of control represents the lowest computational level of the architecture and
reflexively maps sensory states into action as described above. Here, we
used a set of feedback controllers that aim to approximate the role of reac-
tive Brainstem nuclei. In particular we modeled a controller responsible
for avoidance reflexes, that resembles in its function the reactive pathway
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found in the Trigeminal Nucleus and its motor output (via Reticular for-
mation and Abducens motor nuclei; [Bracha et al., 1991]). In addition we
implemented a controller responsible for visuomotor reflexes used to issue
orienting responses towards a visual target which approximates the behav-
ioral output of the Superior Colliculus [Goodale et al., 1975, Meredith and
Stein, 1983]. Finally, we created a set of leaky integrators computing the
somatic states of the agent, such as internal needs and low-level drives for
action, with the aim of approximating the monitoring role attributed to the
Hypothalamus [Volkow et al., 2011, Fibla et al., 2010].

The adaptive layer of control is responsible for associative sensory-
motor learning, encoding of motivation and reward, and contributes to
action selection. Multiple instances of a biologically plausible model of
the cerebellar microcircuit learned to associate initially neutral sensory
cues with adaptive responses under the supervision of reactive modules
[Herreros et al., 2013b, Inderbitzin et al., 2010]. A module mimicking the
putative computation performed by the Ventral Tegmental Area served as a
transformation step from low-level internal states to motivation for action,
laying the foundation for the definition of high-level goals [Lockie and
Andrews, 2013, Verschure et al., 2014b]. An abstract implementation of
the Basal Ganglia performed action selection for behavioral plans defined
at higher levels of control. In addition, the Basal Ganglia module also
delivers reward signals to hypothalamic nuclei (the core structure of the
reactive layer) as observed in [Pennartz et al., 2011]. The contextual
layer provides the memory systems underlying spatial cognition, decision-
making and planning. It comprises a biologically constrained model of
the Hippocampus [de Almeida et al., 2009, Rennó-Costa et al., 2010] that
acquires an internal representation of the environment underlying self-
localization, mapping, navigation and spatial planning. Finally a model
of the Prefrontal Cortex implements a biologically valid computational
mechanism for decision-making [Marcos, Encarni Verschure, 2013] and
a more abstract one mimicking the functions of long-term memory for
goal-dependent information storage [Duff et al., 2011].

Below we describe in detail each layer of DAC-X and its main compu-
tational features.
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Figure 1.2: DAC control architecture. From bottom to top: the soma
represents the physical properties of the agent. The reactive layer (blue) of
control is in charge of mapping sensory states into prewired action. This
layer includes computational elements mimicking the reflex-like sensory-
motor transformations performed by some Brainstem components such as
Trigeminal Nucleus (’TN’) and the Superior Colliculus (’SC’). The module
mimicking the functions of the Hypothalamus (’HT’) encodes somatic
states as internal needs. The adaptive layer (red) of control is in charge
for associative sensory-motor learning, encoding of motivation and reward
and action selection: this layer includes multiple models of the cerebellar
microcircuits (’CRB’), a model approximating the functions of the Ventral
Tegmental Area (’VTA’) and one performing some of the computation
attributed to the Basal Ganglia (’BG’). The contextual layer (green) is
in charge for spatial representation, decision-making and planning: this
layer includes a computational model of the Hippocampus (’HPC’) and
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a computational model of the Prefrontal Cortex (’PFC’), together with a
long-term memory structure for goal-place couplets storage.

Somatic Layer

The somatic layer represents the body of the agent as an interface with the
world (fig. 1.1-B,C). It describes low-level processes such as exosensing
(perception of the environment) and actuation. Here the relevant somatic
input signals were computed by the hardware components of the agent,
such as the proximity sensors, used to provide information on the relative
position of obstacles and walls. In addition we performed color-blob
filtering (colors: red, green, blue and yellow) on the source image provided
by the on-board camera to extract the coordinates of objects and relevant
landmarks within the visual field of the agent (fig. 1.1-D). Finally the
somatic outputs are computed as the total motor signal conveyed by the
control architecture to the motor wheels for spatial navigation and to the
gripper actuator for object recollection.

Reactive Layer

Allostatic control in the Hypothalamus. The simulated needs of the agent
encoded in its hypothalamic states represent glucose and hydration levels,
driving exploratory, consummatory, and security behavioral subsystems
[Blouet and Schwartz, 2010]. Similar to the work of [Fibla et al., 2010]
the state of each subsystem, s(t), was modeled as a leaky integrator with a
dynamic decay rate:

s(t) = s(t− 1)− kAs(t− 1) + vr(ttr)

(1)
where vr represents the reward value associated to a specific state de-

livered to each subsystems by the adaptive layer (see equation 14), A is the
decay rate (here set to 0.001) that is continuously modulated by a gain k en-
coding two alternative elements: the total motor activity at every time step
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(normalized between 0.1 and 1) for glucose and hydration values, or the Eu-
clidean distance of the robot from the home location (normalized between 0
and 1), for security levels (Euclidean distance computed from tracking sys-
tem coordinates, but see [Bernardet et al., 2008] for a biologically grounded
implementation). As in the notion of allostatic control [Fibla et al., 2010],
hypothalamic states can trigger basic predefined behaviors such as freezing
or reactive navigation (see equation 6), useful to reset the homeostatic
levels of each variable within the same layer. Hypothalamic values are
also used to set low-level resource seeking, driving the attentional system.

Reactive attentional mechanisms of the Superior Colliculus. A basic
attentional system used to orient the agent towards a visual target takes
into account the high-level computational features found in the Superior
Colliculus (SC), where the sensory-to-motor gradient found from the dorsal
to the ventral part of the SC is believed to map retinotopically organized
visual inputs into reflexive actions [Goodale et al., 1975]. Analogously, we
used a proportional feedback controller that maps the position of a target
detected in the visual field into a motor response, tSC , which centers the
fovea of the agent on the target location, according to:

tSC = K(xobj − xfov)

(2)
where xobj is the horizontal position of the centroid of an object in

the visual field, computed as a color blob by camera image processing in
the somatic layer (section 2.3.1 and fig. 1.1-D) and normalized between
0 (extreme left) and 1 (extreme right). xfov represents the normalized
horizontal position (= 0.5) of the center of the visual field. Finally K
represents a constant gain, that is set to 3.

The resulting command generates an agonist-antagonist turning action
directed to the left, wleft, and right wheel, wright, such that:

wleft = mr + tSC

wright = mr − tSC
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(3)
where mr(= 3) represents a constant forward motor command of 2

cm/sec reflecting a constant exploration drive.

Brain stem avoidance reflexes The avoidance reflexes mimic the com-
putational functions attributed to the Brainstem and in particular to the
Trigeminal Nucleus (TN) that directly maps noxious sensory stimuli into
avoidance motor responses by driving the spinal cord and the muscu-
loskeletal system [Bracha et al., 1991]. Here we implemented a reactive
feedback controller, responsible for collision avoidance, which proportion-
ally maps the proximity signal detected by a somatic sensor pj , into an
avoidance reflex, tTN , according to:

tTN = (Kp1p1 +Kp2p2 +Kp3p3)− (Kp4p4 +Kp5p5)

(4)
where j denotes the sensor index from extreme left (1), to center (3),

to extreme right (5) and Kpj an asymmetrical scaling factor. Each scaled
component is linearly summed and mapped to the left, wleft , and right,
wright , wheel to perform collision avoidance following:

wleft = mr + tTN

wright = mr − tTN
(5)

Altogether the reactive layer in the present system is in charge for
monitoring the internal state of the agent, providing a drive for action
to the above layers, as well as implementing a set of reflex-like sensory-
motor mappings, driving reactive navigation strategies. Reactive layer
motor control is thus defined as the summation of exploration, orientation
and avoidance:

wleft = mr + (tTN + tSC)

wright = mr − (tTN + tSC)
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(6)
where the linear sum of the commands provided by the obstacle avoid-

ance system, tTN , and the orienting system, tSC , is used to control the
agonist-antagonist turning gains applied to the motors, while mr controls
the constant forward gain. Finally, the reactive layer provides teaching
signals to the adaptive layer together with efferent copies of reactive motor
commands (see section 2.3.3).

Adaptive Layer

Adaptive motor control in the Cerebellum. In order to achieve a computa-
tional strategy useful to acquire adaptive motor responses we implemented
a biologically valid model of multiple parallel cerebellar microcircuits.
Each microcircuit is in charge for acquiring the predictive value of initially
neutral sensory cues, such as color patches or obstacle proximity values
and associating it with appropriate motor responses.The computational
mechanism is based on an analysis-synthesis adaptive filter implementation
mimicking the learning properties of the cerebellar microcircuit [Herreros
et al., 2013b, Maffei et al., 2014]. Note that, unlike previous implemen-
tations [Duff and Verschure, 2010], the perceptual learning component
and the sensory-motor learning component were merged into the same
algorithm.

According to the present setup, in each microcircuit an acquired output
signal is obtained by transforming the input signal into a target signal
under the supervision of an error signal. To achieve this, the input yt
to an adaptive module is expanded in a set of bases (20 basis functions
per microcircuit in the current setup). Each basis results from a fast
excitatory component, exc, subtracted by a slow inhibitory one , inh. Each
component is obtained as a double convolution with two exponentials in
such a way that the response of each basis to a unitary pulse resembles
an alpha function. The time constants governing the rise and the decay
of each basis are randomly drawn from two flat distributions (a fast time
constant, ranging from 10 to 60 ms and a slow one, ranging from 60 to 1000
ms). The value obtained after the two convolutions is then thresholded
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and scaled for each basis. The output excj(t) of an individual excitatory
component of a single basis is obtained as:

excrj = γrj exc
r
j(t− 1) + y(t− 1)

excdj = γdj exc
d
j (t− 1) + excrj

excj = σj[exc
d
j (t− 1)− hexcj ]+

(7)
where j is the index of a particular basis, excr and excd perform

the convolution imposing the temporal dynamics of rise and decay of
the output function. γr and γd represent persistence factors for rise and
decay imposing appropriate exponential decay. Importantly, non-linearity
of the response is achieved by applying a threshold, hexcj , to the output
signal which is finally scaled by the factor σj , where [x]+ = max(0, x).
This threshold factor, drawn from a random distribution within a range
of appropriate values, is used to modulate the magnitude and temporal
properties of the final response. For each basis, an inhibitory component,
inh, is computed in the same way as the excitatory component, but using
larger time constants. The final value of the basis function, pj , is computed
by integrating excitatory and inhibitory components such as:

pj(t) = [excj(t)− inhj(t)]+

(8)
The output of a single adaptive module is obtained as a weighted linear

combination of its components:

z(t) = [p(t)Tw(t)]

(9)
where p(t) represents the vector of basis at every time step and w(t)

represents the vector of weights. The weights are updated according to the
following learning rule:

∆wj(t) = βe(t)pj(t− δ)
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(10)
where β (set to 10 in the current setup) is the learning rate and e(t)

represents the error value at every time step. δ represents the sensory
feedback delay set to 800 ms. Finally, the error signal is computed as the
difference between a given reactive motor command, mr, and the weighted
output of the Cerebellum:

e(t) = mr(t)−Knoiz(t− δ)

(11)
whereKnoi is a constant gain representing the cerebellar nucleo-olivary

inhibitory gain used to balance the reactive and adaptive contributions to
the final motor response. Here we set it to 0 so that the acquired response
will entirely depend on the external sensory feedback error (see [Herreros
et al., 2013b] for details).

Coherently with anatomical evidence, we modeled the interaction be-
tween the Brainstem and Cerebellum by conveying an efferent copy of the
output of the reactive controllers to individual instances of the cerebellar
microcircuit, for a total of seven parallel microcircuits. In particular, we
account for bidirectional connections with Superior Colliculus [Kawamura
et al., 1982, May, 2006]. In our system, such interaction drives the associa-
tion of initially neutral visual cues (such as a color patch on the floor, yt in
equation 7) with the reactive responses provided by the SC reactive module
when a target object is detected within the visual field (tSC in equation
2). After learning, the resulting adaptive output is an anticipated steering
action, triggered by a predictive sensory cue, toward a target resource (i.e.
predictive modulation of reactive attentional mechanisms).

Similarly, we model bidirectional connections with the reactive con-
troller accounting for avoidance reflexes found in the Trigeminal Nu-
cleus [Bracha et al., 1991] used in the acquisition of anticipatory adaptive
responses in collision avoidance actions, similarly to [Herreros et al.,
2013b]. We instantiate one microcircuit for each sensor and provide the
proximity signal as input (yt in equation 7), whereas, the avoidance reflex
output by the above described reactive controller is provided as a teaching
signal (tTN in equation 4). Such association allows, after learning, more
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efficient collision avoidance. The total adaptive motor , tA, output of
multiple cerebellar microcircuits is computed as:

tA(t) =
N∑
j=1

zj(t)

(12) where zj is the output of a given microcircuit at index j.

Motivation, reward and action selection in the Ventral Tegmental Area
and the Basal Ganglia. A second function modeled within the adaptive
layer can be found in the motivational system that describes, at a high
level, the putative computational role of the Ventral Tegmental Area (VTA)
and the system that computes reward value, mimicking the role attributed
to the Striatum (STR). As suggested in [Verschure et al., 2014b] and
observed by [Lockie and Andrews, 2013], the information processing
performed by VTA is thought to drive the motivation to act, by encoding
low-level internal states and projecting a modulatory signal towards higher
level areas responsible for planning and decision-making. In the current
implementation a module approximating the computational role of VTA
was used as an intermediate step between the hypothalamic module that
encodes somatic needs and the high level decision-making system sitting
of the contextual layer, responsible for internal conflict resolution among
competing motivational drives. In particular, somatic states encoded by the
hypothalamic module, namely glucose level, hydration levels and security
levels are transformed into motivational drives according to the following
equation:

qs(t) = smax − s(t)

(13)
where s represents a current internal state (see equation 1) normalized

between 0 and 100, while smax represents its maximum value (= 100).
Our model of the Striatum computes the value of a reward used to satisfy
internal needs, on the basis of two main properties: first, we implement
the association of specific reward value to individual resources in the
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environment [Pennartz et al., 2011]. Second, we take into account the
discounting effect of time on reward value as proposed by [Kobayashi and
Schultz, 2008]. The first aspect was modeled as a reward value delivered
when a specific object is found and brought back to the home location.
Such values were predefined within the architecture as 50 units reward
for each food resource, 35 units reward for water resource and 0.001
units reward for every time step spent into the home location for security.
Reward values for food and water at total elapsed time from the trial start
ttr, vr (ttr), were discounted as a parabolic function of time at the end of
every trial [Shadmehr et al., 2010a] such that:

vr(ttr) = (r(ttr))/(1 + βttr)

(14)
where r represents the reward associated to a single collected resource

and β represents the constant temporal discount rate (here set to 0.0001)
.Each final reward value is projected to the allostatic module and integrated
in the computation of the internal states of the current agent (see equation
1).Finally, we take into account the Basal Ganglia functions of action
selection by defining a set of stereotypical action sequences associated
with different stages of the goal-oriented action process, such as foraging
or homing as shown in [Friend and Kravitz, 2014]. Action sequences are
triggered by contextual modules (see section 2.3.4) coherently with the
definition of goals and sub-goals over the task time. In the current setup
the action sequences associated with each goal were predefined.

Altogether, the adaptive layer is responsible for computing motivational
drives and for action and reward values associated with individual items
collected from the environment, providing an intermediate computational
step between low level allostasis and high level decision-making. Moreover
the adaptive layer is also responsible for implementing associative learning
generating anticipatory actions based the acquired predictive value of
environmental cues. In particular, the motor output of the adaptive layer,
tA, is integrated with the total motor response according to:

wleft = mr + (tTN + tSC + tA)
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wright = mr − (tTN + tSC + tA)

(15)

Contextual Layer

Episodic memory and path planning in the Hippocampus. Within the DAC
contextual layer, the hippocampal module provides the computation for
the robot spatial selectivity and navigational planning. A population of
720 head-direction cells was implemented as rate-based neurons in a ring
attractor fashion [Eliasmith, 2005] and their activation function was defined
by the robot’s angular direction, provided by a digital compass device.
Thus, every time the robot faced a specific orientation, cells tuned to that
orientation became active. Six populations of 100 grid cells each were
implemented as point neurons based on attractor dynamics and updated
with motion signals provided by the soma, such as the robot’s speed, and
directionality, provided by head-direction cells activity [Guanella et al.,
2007, Santos-Pata, Diogo Verschure, 2014, Yoon et al., 2013]. The scale of
each population of grid cells was set to mimic the varying encodings found
along the dorsal-ventral axis of the Medial Entorhinal Cortex (MEC) layer
2, such that grid cell firing fields distances range from 20 to 100 cm [Brun
et al., 2008]. As in [Guanella et al., 2007], grid cells were initialized with
random activity between 0 and 0.1 and are updated at each time step by a
linear transfer function given by:

Bi(t+ 1) = Ai(t) +
N∑
j=1

Aj(t)wij

where N is the total number of neurons in the population of grid cells
and wij represents the synaptic weight of each cell i to cell j, as described
below. At the synaptic level, each neuron in a grid cell population is
recurrently connected to every other neuron in the same population forming
a toroidal topology with a synaptic strength defined by a Gaussian weight
function as:
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Wij = Iexp(
−|Cij|2

σ2
)− T

(17)
where cij is the distance from cell i to cell j in the network position. cij

is transformed in order to maintain the toroidal topology. Synaptic strength
is modulated by the intensity parameter I(=0.3). The Gaussian distribution
is regulated by the parameter σ (=0.24), and excitatory/inhibitory zones are
determined by the gaussian parameter T (=0.05). Modulation of synaptic
weights was performed every time step determined by the robot’s motion
signals (all parameters are unit-less, see [Guanella et al., 2007] for more
details).

In our hippocampal place cells implementation, a population of 1000
point neurons received excitatory input from randomly distributed synap-
tic connections arriving from all grid cell populations, as described in
[de Almeida et al., 2009]. Thus, by convergence of spatially tuned grid
cells, the resulting activity of each hippocampal cell becomes location
specific. The excitatory input of each hippocampal cell is updated as:

Epc(t) =

Ngrid∑
j=1

Wpc,jgridAjgrid(t)

(18)
where the response, Epc, of each hippocampal cell is the product of

the rate of every MEC grid-cell, jgrid, with the specific synaptic weight,
Wpc,jgrid . The firing rate of each hippocampal cell, Apc, is the result of a
competition process driven by MEC grid cells input within hippocampal
cells governed by theE%−maxwinner-take-all process as in [de Almeida
et al., 2009] and is defined as:

Apc(t) = Epc(t)H(Epc(t)− (1− k)argmaxpc(t))

(19)
In our implementation, the value of k(E%−max) was defined as 0.1,

such that place cells activate the firing of those cells whose excitation is
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within k maximal excitation of the entire population. H is the Heaviside
function where H(x) is equal to 1 if x > 0 and 0 otherwise.

During learning, synaptic weights between grid- and place-cells were
susceptible to be reinforced or weakened through Hebbian mechanism.
The probability of applying the Hebbian mechanism between grid- and
place-cells was given by a decay function over time. In accordance with
the experimental design, such decay function reach the value of zero at the
end of early trials of the exrimental phase. Thus, at middle and late phases,
synaptic weights between these two populations remained stable.

The hippocampal place cells become tuned to specific locations form-
ing a short-term memory that allows the agent to generate its internal
map of the environment (see results section). In order to generate short-
term memory sequences and to be able to solve path planning, we set
a connectivity matrix of N2 sweep cells (N = number of place cells)
organized by previously active to currently active place cells [Johnson
and Redish, 2007]. This connectivity matrix was initiated with synap-
tic weights set to 0 and every time two place-cells were active (moving
from one place field to the next), the correspondent sweep cells was set
to 1. As in [Milford and Schulz, 2014], we used Dijkstra’s algorithm to
find the least number of sweep cells to be activated between the current
and goal place-cell. After obtaining the shortest path, a set of vectors
were computed to allow the agent to orient its heading direction. This
was implemented with an orientation matrix of equal dimensions as the
sweep cell connectivity matrix. Every time a sweep cell was updated, the
correspondent angular orientation cell was set with the current heading
direction of the robot. Thus, in order to reach a place-cell that has been
associated with the target object, the sweep mechanism would retrieve a set
of place cells as well as the angular directions to take in between place cells.

Decision-making and long-term memory in the medial Prefrontal Cor-
tex Within the DAC-X architecture, decision-making occurs at the level
of the contextual layer. This was modeled in reference to the dorsal me-
dial Prefrontal Cortex, where behavioral plans are computed based on
the integration of signals reflecting perceptual evidence, memory biasing
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and goal states (see Introduction). The decision-making model consists
of three populations (pools) of excitatory neurons that have excitatory
recurrent connections within themselves and that mutually inhibit other
pools [Marcos, Encarni Verschure, 2013]. Each pool is sensitive to a
specific drive-to-action signal arriving from the VTA module. The activity
of each neural pool is updated according to:

τ
dUi
dt

= −Ui(t) + f(λi + ω+Ui −
N∑
m

(ω−mUm)) + σξ(t)

(20)
where U is the mean activity of the neural pool, λ represents the pool’s

drive-to-action input signal, ω defines the strength of the connections of
the network, ξ is a Gaussian noise (with mean 0 and variance 1) added
to the network and modulated by σ (see parameter values below). The
function f(x) is a sigmoid function defined as:

f(x) =
Fmax

1 + e
−(x−θ)

k

(21)
where Fmax is the maximum value that the function can achieve, θ is

the center of the sigmoid and k defines its slope. The decision process
terminates when the mean activity of one of the neural pools reaches a
decision bound. When a decision is made, the decision signal is sent to the
long-term memory module. In our experiments, we used the parameters:
τ=20ms, ω+ = 1, ω-m = 1 except when m = i that ω-m = 0, σ=0.1 spikes
s−1, Fmax = 1.5 spikes s−1, θ = 4.44 spikes s−1 and k = 0.4 spikes s−1.

In the presented framework, long-term memory was implemented
based on the goal-place theory that associates goal-items with an internal
representation of the explored environment [Duff and Verschure, 2010].
At the functional level, this module performs associations of objects with
locations at which those objects are encountered. We have implemented
the long-term memory system based on a location-cue buffer following
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the rule: every time the agent perceives an object that potentially satisfies
internal needs, the most active hippocampal place cell is stored together
with the encountered object at that same location. When a goal-specific
decision signal arrives, the object-associated place-cell is retrieved and
a hippocampal sweep sequence together with its encoded orientation is
retrieved.

Altogether, the contextual layer in the present system is responsible
for acquiring an internal representation of space, performing decision-
making useful to define goals and store goal-location couplets defined in
the hippocampal module. This layer also provides a form of goal-directed
navigation based on internal representation of the environment used to
navigate towards known locations. In particular, the motor output of the
contextual layer , tc, is integrated with the total motor output system and
sent to the motors according to the following equation:

wleft = mr + (tTN + tSC + tA + tC)

wright = mr − (tTN + tSC + tA + tC)

(22)
Finally in order to keep track of the motor performance of the agent we

use a measure of motor cost. Coherently with [Fagg, 2002], computation
of total motor cost, Jw, encoding the total effort performed by the agent
at every trial and used for data analysis, is performed according to the
following quadratic function:

Jw = λ

∫ t

0

(|wleft|+ |wright|)2

(23)
where λ (=0.02) is a regularization parameter.

1.3 Results
In a first experiment we benchmark our system by looking at the evolution
of learning across different phases of the task and across the multiple
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Figure 1.3: Quantification of behavioral performance for Early trials
(trial 1-4; total trials = 36, 7 trials removed), Middle trials (trial 5-8; to-
tal trials = 36, 4 trials removed) and Late trials (trial 9-12; total trials
= 36, 3 trials removed) for a total of 9 sessions. A, B, C. Example tra-
jectory for one early, middle, late trial. Resource location refers to the
encountered one during the trial. D. Mean trial duration and variance
in seconds for different stages of learning. T-test significance for Early
vs Late (pvalue < 0.001), Middle vs Late (pvalue < 0.001). E. Mean
hoarding frequency and variance in items per minute for different stages
of learning. T-test significance for Early vs Late (p value ¡ 0.001), Middle
vs Late (pvalue < 0.05). F. Mean trial trajectory length and variance in
centimeters for different stages of learning. T-test significance for Early
vs Late (pvalue < 0.001), Middle vs Late (pvalue < 0.001), Early vs
Middle (pvalue < 0.001). H. Occupancy correlation score in function of
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distance to peak. As in G, higher correlation score along distance axis for
early trials suggests homogenous occupancy within the arena, compared
to more specific trajectories in middle and late trials.

layers of the architecture. We report our results by first analyzing the
evolution of behavior, from early to late trials, for a total of 9 experimental
sessions initialized at identical conditions. We discretize the behavioral
performance across the whole duration of the task into three phases per
each session: Early trials (session trial 1-4; total trials = 36 of which 7 trials
were removed due to tracking system failure), Middle trials (session trial
5-8; total trials = 36 of which 4 trials were removed due to tracking system
failure) and Late trials (session trial 9-12; total trials = 36 of which 3 trials
were removed due to tracking system failure). We provide a quantification
of behavior in terms of spatial (trajectory length, occupancy) and temporal
(trial time, hoarding frequency) measures and analyze efficiency in terms
minimization of motor cost and maximization of the value associated with
the reward. Moreover we provide an insight in the internal dynamics of
the principal modules of the architecture across different learning stages
and for key behavioral events identified during the task. In a second
experiment we provide a trial-by-trial quantification of the individual
contribution of each layer of the control architecture to the behavior of
the agent by progressively enabling each layer of the architecture starting
from reactive (R, total sessions = 5; trials per session = 12), to reactive-
adaptive (R+A, total sessions = 5; trials per session = 12) and, finally, to
reactive-adaptive-contextual (R+A+C, total sessions = 5; trials per session
= 12).

1.3.1 Quantification of behavior

At the beginning of every experimental session, the naÃ¯ve agent was
required to explore the arena and seek for resources in order to satisfy a set
of internal needs defined by the allostatic controller (hypothalamic nuclei)
in the reactive layer of the architecture. The naÃ¯ve agent displays a
reactive navigation strategy used to avoid walls and obstacles and to direct
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navigation towards visually located resources. Such navigation strategy,
supporting exploratory behavior, is characterized by a stochastic trajectory
pattern (fig. 1.3-A) that leads to a type of behavior characterized by high
occupancy (fig. 1.3-G,H Early) and a longer trajectory length per trial (fig.
1.3-F Early) compared to later stages of learning.

This type of navigation is useful to locate resources in the environment
due to the high coverage of the foraging arena, however it yields a relatively
low item collection rate (fig. 1.3-E Early) compared to more advanced
stages of learning, and a high mean trial time (fig. 1.3-D Early). To
measure navigation redundancy we have obtained the occupancy maps
from trajectories at each navigation phase. Redundancy is defined by the
coverage of the arena by the trajectory, i.e. revisiting the same location
multiple times within the same trial, and is independent of trajectory
length. Occupancy maps were cross-correlated in order to measure the
spatial tenancy (fig. 1.3-G Early). Linearization of the mean occupancy
correlation in function of peak-distance (fig. 1.3-H Early) reveals that early
trials require high level of navigational exploration in order to complete
a trial. Overall, this strategy is necessary to explore the environment,
locate resources and to build an internal representation of space; however
behavioral performance in terms of goal-achievement remains low.

During an intermediate stage of learning, the initial reactive navigation
strategy is complemented with adaptive responses useful to perform more
efficient obstacle avoidance and to make use of local visual landmarks
(green patches on the floor) that facilitate anticipatory movements towards
a resource location (see section 3.3.1). Moreover the initial exploratory
pattern fostered the consolidation of an internal representation of space
that supports goal directed navigation towards known locations (i.e. home
location). During this phase of learning we report a mixed trajectory pat-
tern (fig. 1.3-B) as the result of reactive exploration, cue-based navigation
and, in some cases, goal-oriented navigation towards resource or home
location. Such strategy yields a reduced occupancy of the arena (fig. 1.3-
G,H Middle), suggesting a progressive shift from purely exploration to
exploration-exploitation type of behaviors. This is confirmed by the reduc-
tion of the mean trajectory length in this phase (fig. 1.3-F Middle). The
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improved navigation strategy in this phase influences hoarding behavior,
producing a higher collection rate (fig. 1.3-E Middle) and a lower mean
time per trial (fig. 1.3-D Middle). Occupancy correlation was minimized
during Middle trials, which can be explained by the fact that during early
trials place-cells are susceptible to learning and thus navigation is not
supported by a stable spatial representation (fig. 1.3-G,H Middle).

Finally, during late stages of learning, the navigation strategy adopted
by the agent was enhanced by a complete contextual knowledge of the
environment. Such goal-oriented strategy is mostly driven by a combi-
nation of a robust representation of the environment (see section 3.3.2)
and the availability of goal locations stored in long-term memory, used to
perform shortest path navigation towards resources. This phase of learning
was characterized by a goal-oriented behavior that yields mostly linear
trajectory patterns (fig. 1.3-C) leading the agent to a resource location
and back to the home location. The occupancy measure maintained a low
correlation score (fig. 1.3-G,H Late) and a shortest path length (fig. 1.3-F
Late), suggesting a navigation strategy driven by exploitation of acquired
information with a direct effect on hoarding performance, that is expressed
in the high collection rate (fig. 1.3-E Late) and a reduced mean time per
trial (fig. 1.3-D Late).

1.3.2 Quantification of performance

The above measures are useful to describe the behavioral performance of
the DAC-X in the hoarding task, however they do not allow us to fully
analyze the intrinsic performance of the system. For example, trajectory
length and occupancy are certainly related with spatial measures but they
don’t explain the motor effort expended by the agent, which might cover
similar trajectories performing motor commands of different magnitudes
depending on the stage of motor learning (i.e. reactive vs adaptive obstacle
avoidance). Similarly, mean trial time and collection rate are related to the
amount of reward obtained by the agent, but they don’t unambiguously
account for its goal achievement due to the temporal parabolic discounting
applied to the reward value (see Methods).
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Figure 1.4: Quantification of efficiency expressed in terms of motor cost
and reward per trial for Early trials (trial 1-4; total trials = 36, 7 trials
removed), Middle trials (trial 5-8; total trials = 36, 4 trials removed) and
Late trials (trial 9-12; total trials = 36, 3 trials removed) for a total of 9
sessions. A. Mean reward value and variance per trial (normalized by the
maximum reward value of individual item) for different stages of learning.
T-test significance for Early vs Late (p value ¡ 0.001), Middle vs Late
(pvalue < 0.01), Middle vs Early (pvalue < 0.001). B. Mean cumulative
motor cost and variance per trial (normalized by the maximum of every
session) for different stages of learning. T-test significance for Early vs
Late (pvalue < 0.001), Middle vs Late (pvalue < 0.01), Middle vs Early
(pvalue < 0.01). C. Cumulative motor cost over reward value per trial in
Early (blue), Middle (red) and Late (green) stages of learning. Pearson’s
correlation coefficient: r : −0.87, p− value < 0.01.

We further quantified the performance of the agent by looking at
motor cost, reward value and their relationship during the evolution of
learning as a more reliable measure of hoarding efficiency. Along the
progression of learning during the performance of the task we notice a
continuous decrease of motor cost (fig. 1.4-B). This improvement is
the result of learning within the adaptive layer, which provides more
efficient obstacle avoidance (see section 3.3.1) together with an increased
probability to encounter resources. In addition, the contextual layer (see
section 3.3.2 and 3.3.3) provides an acquired strategy for efficient goal-
oriented navigation. An opposed trend can be found in the development
of the reward value associated with each item, which increases with the
advancement of learning (fig. 1.4-A). Together, these opposite trends hold
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a linear relationship suggesting a tendency towards optimal hoarding (fig.
1.4-C).

1.3.3 Single module dynamics and interaction

In order to outline the intrinsic processes that underlie the behavior of the
agent, we propose a more detailed analysis on single module dynamics.
First, we analyze the acquisition of adaptive motor responses in the adap-
tive layer and spatial memory in the contextual layer. We also provide an
insight in the decision-making process performed by the prefrontal module.
Finally we provide an overview on the interaction of the multiple processes
that generate behavior for key events during the performance of the task.

Cerebellar modules

We implemented a set of microcircuits responsible for the acquisition of
avoidance responses that learn from the output of the reactive layer and
are used to increase the ability of the agent to prevent collisions with
walls and obstacles through acquired avoidance. This form of motor
learning allows the agent to perform turning actions that anticipate the
output of the reactive controller, resulting in safer and smoother turns.
Such improvement can be noted in (fig. 1.5-A) where an initial reactive
response (Naive), triggered by the high proximity to a wall, is replaced,
after learning, by an anticipated adaptive response characterized by lower
amplitude (Trained). For this reason, adaptive obstacle avoidance allows
for a less costly and more effective motor strategy and could play an
important role in increasing the efficiency of the agent in the execution of
the task.

A second set of microcircuits was dedicated to exploit the acquired
predictive value of landmarks in the environment in order to perform a sim-
ple form of cue-based navigation towards resource sites. In particular, the
perception of a visual cue is progressively associated with an efferent copy
of an attentional reactive response so that, after a number of repetitions
(mean=5 for all the sessions) the cue is sufficient to trigger a turning
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Figure 1.5: Adaptive responses in the cerebellar modules. A. Example
of adaptive avoidance response learning. Naive trial (occurrence n=1): the
activity of the proximity signal (PR) triggers a reactive response in the
feedback reactive controller (TN) peaking at amplitude = 1.2. The adaptive
response (C TN) in this trial is absent. Trained trial (occurrence n=5):
the activity of the proximity signal (PR) triggers an adaptive response
(C TN) that precedes the reactive response (TN) and allows longer range

67



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 68 — #90

turning. Note that C TN response peaks at amplitude = 0.7 allowing more
efficient obstacle avoidance compared to NaÃ¯ve trial. B. Example of
cue response association underling landmark navigation. NaÃ¯ve trial
(occurrence n=1): the activity of the camera indicating a patch on the
floor (C) is followed in time by a reactive response (SC) directing the
robot towards a perceived resource. The adaptive response (C SC) in this
trial is absent. Trained trial (occurrence n=5): the activity of the camera
indicating the patch on the floor (C) now triggers an adaptive response (C
SC) as the result of an acquired cue-response association, that precedes
in time the reactive response (SC) and allows anticipatory turning. C.
Behavioral outcome effect of adaptive turning: trajectories for reactive
turning (red) and adaptive turning (green) strategies. Gray trajectories
represent intermediate occurrences. Green circle represents the visual cue.
Star marker represents the resource location.

action towards a previously encountered location. Such dynamic can be
appreciated in (fig. 1.5-B) where a comparison between pre-learning and
after-learning phases shows how the reactive response strongly present
in early trials (Naive) is replaced, in late trials (Trained), by an acquired
adaptive response triggered by the visual signal. Such adaptive motor
response ultimately allows the agent to navigate by making use of local
cues and to increase the probability to encounter resources in the arena
(fig. 1.5-C). Finally, this form of learning can contribute to the overall
performance by making the search process faster and more effective and
indirectly affecting the amount of reward value obtained at every trial.

Hippocampal modules

Within the hippocampal formation, three modules allowed the agent to
build an internal representation of space. Grid cells served as the core met-
ric system and each cell was characterized by its grid-scale and orientation
(fig. 1.6-C). Grid cells allowed place cells to receive multiple randomly
distributed inputs and served as their primary activation function. The
place cells winner-take-all mechanism modulated their behavior, leading
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to position specific activity. During early trials, place cells formed broader
and unspecific rate maps when compared to late trials (fig. 1.6-A). In
order to quantify place fields, a 15-pixels radius Gaussian kernel was used
to smooth the rate maps and clusters of neighboring pixels above 10% of
maximum activity were considered a place field. Mean and variance of
place fields number per cell was higher at early trials compared to late
trials, when most cells had one place field and few had zero or two place
fields (fig. 1.6-B). Thus as the robot explores, place cells become more
tuned to unique locations.

Place cells activity modulated sweep cells interconnectivity strengthen
with spatially proximal cells (see Methods section). During goal-directed
behavior, the sweep mechanism activated a sequence of cells that were
spatially contiguous through their associated place cells (see examples of
sweeps activity and required place cells in fig. 1.6-C). Synaptic updates
in sweep-to-sweep connectivity tend to stabilize as the agent explores the
environment (fig. 1.6-E) and place cells became position specific (fig.
1.6-B).
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Figure 1.6: Spatial memory in the hippocampal modules. A Examples of rate maps from NaÃ¯ve and
Trained place cells activity. NaÃ¯ve place cells show diffused and broader activity along the explored
arena, while trained cells are mostly location specific.B Quantification of number of place fields per cells
indicate that after training, place cells became tuned to unique locations (mean:1.06, std:1,16) compared
to naÃ¯ve cells (mean:1.64, std:0.23) . C Grid-cells rate maps from cells with different grid-scale from
three dorsal-ventral axis levels. D Examples rate maps from recruited place cells during three goal-direct
behavior. Left column shows rate maps of active place cell when sweep event was triggered. Subsequent
rate maps illustrate recruited cells to reach goal place cell. Vectored trajectories are illustrated on last
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column, where dots represent cells rate map center of mass. E Modification of sweep cells connectivity
during session. Rapid modifications at the beginning of each session tend to stabilize as the agent forms
its internal map.
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Prefrontal modules

In DAC-X an important role is played by the decision-making and long
term memory functions performed by the Prefrontal modules. Decision-
making dynamics are accounted for by the interaction among different
neural pools responsible for resolving the competition between different
motivational drives conveyed by the VTA module at the beginning of every
trial. This mechanism allows the agent to establish a goal, namely a target
resource to be fetched, at the beginning of every trial. An example of this
decision process can be seen in (fig. 1.7-A), where the rising activity of
every pool accounts for a competing goal relevant for the task. Competition
is resolved when one of the pools reaches enough activity to inhibit the
competitors and cross a decision threshold (here set to 1.0), above which
the goal is selected. In the present decision-making model competition
was influenced by both magnitudes of the input, such that a greater activity
encoded by the VTA module would increase the probability of that pool
winning. A second factor influencing the decision-making process can be
found in the intrinsic dynamics of each pool, where spontaneous noise
adds variability to the competition so that for equal input magnitude the
network might fall into different attractor states (fig. 1.7-B).

Another computational feature derived from the prefrontal module
is the long-term memory of goal-location couplets. In the current setup,
memory is defined as a structure associating the hippocampal activity of
specific place cells with an encountered resource location and it contributes
to the spatial knowledge exploited by the agent in the hoarding process.
Importantly, this feature is used by the hippocampal sweep mechanism
(see section 3.3.2) in order to define a path toward a goal location. In (fig.
1.7-C) we show the increasing amount of goal-place couplets stored in
memory as an important underling factor to the performance of the robot.
These couplets, due to the sweep mechanisms thus also implicitly encode
the heading vector that must be followed to reach the goal location.
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Figure 1.7: Decision-making and long-term memory in the prefrontal
modules. A. Example of competition among multiple choices triggered
at the beginning of every trial by the prefrontal module expressed in
normalized pool activity. Each line represents the encoding of a choice
among food seeking (red), water seeking (blue) and security seeking
(yellow). In the present example food-seeking behavior is selected when
the total pool activity reaches the value of 1.0 (decision threshold). B.
Bifurcation diagram of the PFC network for the selected parameters. The
figure shows the different states in which the model can operate depending
on the external drive provided to the three selective pools of the network.
When the network operates in the Decision State only one neural pool
fires at high rate whereas the other two fire at a low level rate. In the
other two possible states the three pools remain at the same level of
activation that depends on the specific range of the external drive: low
or high level for spontaneous and double-up, respectively. C. Long term-
memory representation (converted to x and y coordinates expressed in
centimeters) of encountered food (red) and water (blue) resource locations
across different stages of learning, from Early (top-left panel), Middle
(top-right panel) and Late (bottom-left panel) for a total of 9 sessions.
Yellow circle represents the home location. A total count of LTM locations
is presented in the bottom-right panel for the same stages of learning.

Architecture dynamics for key events

To provide an overview of the dynamics of the interaction of multiple mod-
ules within the architecture we selected key events during the execution of
the task highlighting the contribution of each process with respect to the
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Figure 1.8: Architecture activity for significant events. E1. Cue-
response association underlying cue-based navigation strategy. Note the
concomitance of increased activity in perceptual modules (camera (C)),
motor modules (M; motor left, black; motor right, green), reactive mod-
ules (SC) and cerebellar module (C SC). E2. Obstacle avoidance. Note
the concomitance of increased activity in perceptual modules (proximity
sensors (PR)), motor modules (M; motor left, black; motor right, green),
reactive modules (TN) and cerebellar module (C TN). E3. Reward delivery
and decision-making. Note the concomitance of activity of the perceptual
modules (camera (C)) perceiving home location (yellow patch), together
with the activity in selected cells of the hippocampal module (HPC) en-
coding for the same location. At the delivery of the food reward (STR,
red) hypothalamic values associated with food (HPT, red) are restored and
motivation in VTA modules decreased (VTA, red), triggering a decision in
pre-frontal modules for water-seeking goal. (PFC, blue).
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others. In particular, we select an example of adaptive cue-based naviga-
tion and adaptive avoidance responses, an example of reward achievement
and decision-making and finally, an example of arrival at resource location.
Adaptive cue-based navigation (fig. 1.8-E1) is characterized by the per-
ception of a visual cue (C) during the exploration process which triggers
an adaptive motor response (C SC) that conveyed to the motors (M) allows
the agent to turn toward a resource location. Such a response partially
overwrites the reactive attentional response (SC) by acting in anticipation.
Similarly avoidance responses (C TN - fig. 1.8-E2) triggered by proximity
sensor signal (PR) allow the robot to efficiently prevent collisions with ob-
stacles. When the agent reaches the home location (fig. 1.8-E3), visually
identified by a landmark (C) as well as by internal spatial representation
(HPC), a reward value associated with the hoarded item is delivered (STR).
Delivery of reward affected the allostatic value for the addressed internal
state encoded in (HPC), increasing its values and consequently decreasing
the motivation to pursue that type of resource encoded in (VTA). Activity
in VTA modules directly affect the decision-making process (PFC) per-
formed at the beginning of the trial, biasing the decision towards a most
urgent need.

1.3.4 Contribution of individual layers to behavior

We conclude the report of our results addressing the question of what each
layer of the DAC-X architecture contributes to the overall performance
of the agent in the execution of the task. To do this we ran a set of 5
sessions (12 trials per session) for three different conditions, where we
progressively enable for each condition a layer of the architecture, starting
from reactive only (R), followed by reactive and adaptive (R+A) and finally
reactive, adaptive and contextual (R+A+C). We report the overall evolution
of the hoarding efficiency in a trial-by-trial fashion, quantified in terms of
reward-cost ratio.

The form of control provided by the reactive layer is entirely based on
reflex-like motor responses and primitive attentional mechanisms. Never-
theless, the agent is capable to execute the task and hoard resources albeit
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with a high level of variability in performance. Motor cost (fig. 1.9-A,R
and fig. 1.9-D blue for a single trial example) for a given trial varies in
a wide range of values, coherently with the amount of reward obtained
per item (fig. 1.9-B,R). Such variability can be attributed to the non-goal-
oriented navigation strategy that essentially provides variable chances to
encounter reward depending on the variable feedback provided by the
sensors. Not surprisingly, hoarding efficiency is not subject to appreciable
changes along the whole session due to the absence of learning in the
reactive layer (fig. 1.9-C,R). Such strategy yields a relatively flat learning
curve (mean value = 2.8) that slightly decreases as available resources are
hoarded and the chances to encounter new ones decrease.

Enabling the adaptive layer of behavior introduces the first element
of associative learning in the control architecture. Learning in this layer
can be found in the adaptive properties of the cerebellar modules useful to
perform less costly collision avoidance combined with simple cue-based
navigation. An effect of this kind of learning is a decrease of mean motor
cost (fig. 1.9-A,R+A and fig. 1.9-D red for a single trial example) and
its associated variance as well as an increase of mean reward value (fig.
1.9-B,R+A). For reward value however variability is equal to condition
R, reflecting a hoarding strategy that is still mostly driven by sensory
contingencies. Overall, the introduction of the adaptive layer leads to an
increase in performance over trials (fig. 1.9-C,R+A). Initially condition
R+A does not differ from R, however an increase in efficiency can be
appreciated from the third trial on, where use of local cues for navigation
towards resources increases the probability to collect a higher reward.
Performance, which reaches a peak value of 6, is by necessity variable
and the decrease during the course of the session is due to the progressive
depletion of resources, i.e. lacking the capability to plan: in condition R+A
the agent can only optimize performance in a restricted spatiotemporal
window making it less likely for it to collect more difficult targets.

The reported performance of the adaptive layer partially depends on
the parameters configuration chosen for the task. In particular we set
a learning rate (β = 10 see Methods 2.2.3) which allowed the agent to
acquire a mature adaptive response within a temporal window of 2-3
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trials without inducing instability of the cerebellar output. Another key
parameter of the cerebellar module can be found in the delay, which
informally governs the anticipatory time span of the adaptive response
over the reactive response encoded in the teaching signal. In the current
setup the delay, δ, was fine-tuned to 800 ms (see Methods 2.2.3) in order to
guarantee an appropriate anticipatory range given the inertia of the servo
motors. A shorter delay would have been incompatible with the dynamics
of the robot by producing no anticipation, while a longer value would have
produced greater anticipation and possibly causing over-shooting actions,
thereby affecting performance. Finally the Knoi parameter, representing
the gain of the nucleo-olivary inhibitory synapses from the deep cerebellar
nucleus to the Inferior Olive, controls the magnitude of the teaching signal
conveyed to the cerebellar cortex, informally balancing the amount of
adaptive and reactive signals forming the final motor response. In this
particular setup we set this parameter to 0 because the generation of the
error can be fully accounted by behavioral feedback. This means that the
error can be fully canceled by behavioral response without the need of
internal error generation. Setting the Knoi to a higher value might improve
robustness and responsiveness of the system during extinction paradigms
(see [Herreros et al., 2013b]) which are outside the scope of the present
study.

The contextual layer of control introduces spatial learning, decision-
making and long term memory features to the behavior of the agent. This
layer greatly increases the performance of the agent, which is now able to
represent and efficiently navigate the arena as well as remember relevant
locations. We observe a highly significant decrease in motor cost (fig. 1.9-
A,R+A+C and fig. 1.9-D green for a single trial example), a mean value
of obtained reward comparable to the R+A condition with a reduction,
however, of its variance (fig. 1.9-B,R+A+C). This suggests that the main
contribution of the contextual layer, i.e. goal-oriented planning, is in
the ability to save motor energy providing shorter paths towards desired
location. This strategy indirectly optimizes reward, likely given by the
reduced variability in the time spent to hoard a resource. A positive
learning curve shows an increase of overall efficiency during the course
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of the sessions reaching a peak value of 13 (fig. 1.9-C,R+A+C). We
expect the difference in obtained reward to become more prominent in
more complex tasks.

The observed performance with the addition of the contextual layer is
tightly related to the initialization parameters of the hippocampal complex
and pre-frontal areas. The details of the integrated hippocampal model
were sufficient to match anatomical, physiological and functional proper-
ties of its biological counterpart. Despite its core computations, the model
dynamics were tuned to fit the biological constraints found in both grid-
and place-cells of the rodent Hippocampus. Specifically, the grid-cell gain
parameters were set to threshold grid-scale at every module such that firing
fields were within a range of 20 cm to 100 cm distanced of each other,
as found in the rodent MEC dorsal-ventral axis [Brun et al., 2008]. The
synaptic projections from grid- onto place-cells were randomly defined
with weights from 0.0 (no connectivity) to 1.0 (full connectivity). Further,
Hebbian dynamics shaped these weights during exploration. The rule for
Hebbian activation was probabilistically defined by a decay function over
time during early exploration phases, and only applied when more than
50% of place-cells showed activity grater than to 75% of hippocampal max-
imum activity. This mechanism allowed the tuning of place-cells location
sensitivity and stability over sessions. The E%-max winner-take-all mech-
anism was also used to realize competitive dynamics within the place-cells
population. As in [de Almeida et al., 2009] we have set a 10% threshold
of the maximal population activity. However, the consequences of pa-
rameter modulation was not considered in the present study. Altering the
grid-scale, for instance, would have an enormous impact on goal-oriented
behavior performance, given that it would modulate the resolution at which
grid-cells encode space. The grid-to-place-cell synaptic learning mech-
anism would also impact the rate at which place-cells become location
specific, affecting the formation of the spatial representation. Lastly, the
suprathreshold rule for place-cell competition was at a fixed spatial range.
However, altering the amount of cells competing for a specific location
would also affect the dynamics and stabilization of the hippocampal spatial
representation.
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Figure 1.9: Contribution of individual layers of behaviorfor three differ-
ent conditions with only Reactive layer enabled (R), Reactive and Adaptive
layers enabled (R+A) and Reactive, Adaptive and Contextual (R+A+C)
for a total of 5 sessions (total trials=60) per condition. A. Distribution of
total cumulative motor cost per trial (normalized by the maximum of every
condition) for different conditions. T-test significance for R vs R+A+C
(p value ¡ 0.001), R+A vs R+A+C (p value ¡ 0.001). B. Distribution of
reward value obtained per trial (normalized by the maximum reward value
of individual item) for different conditions. T-test significance for R vs
R+A+C (p value ¡ 0.001), R+A vs R+A+C (p value ¡ 0.05). C. Evolution
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of mean efficiency expressed in normalized reward-normalized cost ratio
for three different conditions (R, blue; R+A, red; R+A+C, green) over the
course of 12 trials of a session. Each data point represents the mean and
variance in performance of the same trial number for different sessions for
a total of 5 sessions. D. Example of cumulative cost for a single selected
trial for each condition (color code as in C).

Together with the hippocampal formation, the Prefrontal decision mak-
ing module within the contextual layer realizes a WTA dynamics for goal
definition in the presence of multiple competing motivational signals. The
strength of the competition is controlled by the external drive provided to
the goal pools which is given in a range within 4̃ and 6̃ Hz to guarantee
the termination of the competition when one pool reaches threshold (see
fig. 1.7-B). Here the decision threshold was set to an arbitrary value of 1
for the normalized activity of the pools. These parameters, together with
the modulation of the noise distribution, σ, affect the decision dynamics in
two aspects: decision time and decision accuracy, or how a prioritized goal
matches the relevant need. The first component affects performance by
modulating reward discounting, while the second affects reward achieve-
ment. Here we chose values for these parameters that minimize errors
in decision accuracy and guarantee an overall acceptable speed-accuracy
trade-off. Modulation of the decision threshold (i.e by an urgency signal)
and the introduction of decision biases due to learning would complexify
the dynamics. This type of analysis, however, is outside the scope of the
present paper but will be certainly be addressed in future studies.

In summary, we conclude that a progressive increase of efficiency can
be detected for every condition, where learning plays an important role
at every layer. However, it is the contextual layer that contributes the
most to performance for this task by complementing reactive and adaptive
navigation strategies with a shortest-path type of strategy and providing the
ability to reuse previously acquired knowledge to optimize the cost/reward
ratio.
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1.4 Discussion

We addressed the question whether foraging behavior can be understood
in terms of the neuronal substrate of classical and operant conditioning.
Following the Distributed Adaptive Control theory of mind and brain we
have decomposed foraging in terms of the H4W problem and we have
mapped each of its objectives to specific neuronal structures. The brain
functions addressing challenges such as satisfaction of internal needs,
spatial navigation and the use of environmental cues for gathering and
storing resources have been described in multiple studies [Gould et al.,
2010, Keen-Rhinehart et al., 2010, Smulders et al., 2010]. However, the
organizational principles structuring these functions in a coherent control
architecture generating complex behavior such as foraging are still un-
clear. It is especially here that our study makes its contribution. We have
implemented and tested the previously identified neural correlates of the
DAC architecture within a single computational framework called DAC-X.
At the implementation level, we integrated several computational models
of different brain regions controlling the behavior of a real-world mobile
robot performing a foraging task, where the properties of the environment
had to be learnt in order to succeed. At the beginning of each session,
a naÃ¯ve robot driven by its internal needs was placed into an unknown
arena. In order to optimize the task, each model had to improve its learning
mechanism for a specific objective-function, such as: 1) learning multi-
ple sensory-sensory and sensory-motor associations in order to anticipate
adaptive responses; 2) generating an internal map of the environment to
successfully navigate; 3) storing and maintaining goal-place couplets in
LTM; 4) generating navigational plans to achieve a goal location. Working
together, the learning mechanisms of each model led to the maximization
of reward and minimization of motor cost during each session, suggesting
that both serial and parallel processing mechanisms must occur in order
to optimize behavior. Moreover, our results suggest that the fundamental
H4W problem can be solved by the principles underlying classical and
operant conditioning.

DAC follows a method of convergent validation, where a model is
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asked to satisfy behavioral, anatomical and physiological constraints [Ver-
schure, 2012]. A synthetic approach towards understanding mind, brain
and behavior has a long history going back at least to Tolman and Gray
Walters (for review see [Cordeschi, 2002]). Since the late 80ies Gerald
Edelman has advanced the, so called, Darwin series of real-world brain
based devices, arguing that this synthetic method is a key step in advanc-
ing our understanding of how behavior is generated by the system level
interaction of multiple artificial neuromimetic controllers [Edelman, 2007].
DAC-X is consistent with this proposal but it deviates in the specific theory
it advances to explain complex behavior such as foraging and the way in
which it decomposes the behavior into the underlying H4W objectives. In
order to demonstrate the behavioral outcome of multiple neural structures
working in synergy, we implemented a biologically plausible cognitive
architecture, named DAC-X, which controls a robotic agent engaging in
a hoarding task. We have shown that the agent can efficiently perform
in this setup by learning from the interaction with its surroundings and
progressively increase its performance based on the learning and problem
solving principles found in classical and operant conditioning. According
to the definition of classical conditioning, an innate response, i.e. a reflex,
becomes expressed in a response to a previously neutral stimulus due to
their contiguity. Here we have shown how the interaction between the
reactive and adaptive layers of DAC-X leads to behavioral outcomes con-
sistent with the paradigm of classical conditioning. For instance, collision
avoidance in this setup can be understood in terms of avoidance learning,
where an animal issues an anticipatory response to avoid a predictable
noxious stimulus [Gormezano et al., ]. Predictive attentional responses,
on the other hand, can be compared to preparatory actions such as those
found in conditioning paradigms where anticipatory feeding responses
(i.e. salivation or mastication) are triggered by the presence of predictive
sensory stimuli [Woods, 1991, Woods and Ramsay, 2000]. Overall the
adaptation provided by these two layers of DAC-X, might account for
some of the cognitive aspects found in animal foraging such as the use of
cues for navigation and, more generally, ’foraging innovation’ [Dugatkin,
2008].
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The use of classical conditioning paradigms in robots by embedding
biologically plausible models of the Cerebellum within their control archi-
tectures is not new [Van Der Smagt, 1998]. For example, it has been shown
how this form of learning can lead to enhanced motor control in both sim-
ulated [HofstoÈtter et al., 2002, Herreros and Verschure, 2013a] and real
world agents [McKinstry et al., 2006,Herreros et al., 2013a] engaged in an
adaptive maze navigation task. This form of adaptive control however has
been often presented in isolation without addressing the interaction with
other modules mimicking complementary brain functions (see [Inderbitzin
et al., 2010] for an exception). Here for the first time, we integrated cere-
bellar learning dynamics in the broader context of a realistic real-world
task and showed how the versatility of cerebellar learning can be employed
in multiple aspects of sensory-motor learning partially contributing to the
global performance of the agent.

Additionally, we integrated classical conditioning with operant con-
ditioning. In operant conditioning the animal learns to produce a given
action because of its consequences, i.e. producing a reward [Mackin-
tosh, 1983]. Operant conditioning requires a more sophisticated form of
learning where reward seeking behaviors driven by intrinsic motivation
lead to context dependent decisions, such as in setups where an animal is
required to navigate to a specific location and perform an action to gain
a reward [Jurado-Parras et al., 2013]. Within a foraging task, this can
be observed, for instance, when an animal performs hoarding behaviors
requiring to learn specific contextual associations between a location and
a reward (i.e. resource location) [Luo et al., 2011]. In the presented task,
operant conditioning involves multiple cognitive and sensory-motor pro-
cesses and the interaction of multiple sub-systems. The Hippocampus is
mainly involved in contextual learning and spatial navigation [Burgess
et al., 2002] and receives spatial motion related signals from the medial
Entorhinal cortex [Knierim et al., 2014] as well as higher-level inputs from
Prefrontal areas [Ito et al., 2015]. Indeed, changes in synaptic strength
in hippocampal sub-regions during operant conditioning in foraging-like
tasks have been reported [Corbit and Balleine, 2000, Jurado-Parras et al.,
2013]. Specifically, high amplitude changes in excitatory postsynaptic po-
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tentials in the CA3 and CA1 regions are observed in appetitive behaviors.

Recently a number of robotic implementations capitalized on the
unique computational role attributed to the Hippocampus in order to create
artificial controllers, inspired by hippocampal anatomy and physiology,
able to generate grid cell-like and place cell-like spatial representations.
Krichmar et al. [Krichmar et al., 2005] for example proposed a brain-based
device engaged in a spatial memory task, comparable to the Morris wa-
ter maze, where a neural model of the thalamo-hippocampal circuit, in
conjunction with simulated cortical sensory areas, was used to learn to
navigate to a target location. Also [Waniek et al., 2013] have presented an
integrated system of grid- and place-cells for robot navigation and localiza-
tion in a massively-parallel computing architecture. Similarly, [Erdem and
Hasselmo, 2014] have presented a hierarchical goal directed navigation
model where multiple hippocampal-like cells were integrated to form spa-
tial representation and probe linear look-ahead trajectories in a simulated
environment.

The problem of Self Localization and Mapping (SLAM) has long
been a priority in robot navigation. Such an intrinsically probabilistic
task aims for a mobile robot to be able to represent spatial information
and access relationships between cues found in the environment [Smith
et al., 1990]. Ideally, the robot starts at an unknown location within an
unknown environment and it is still able to estimate its absolute position
by building a spatial representation of its surroundings. This problem
is often solved by the engineering solution of sensory integration and
filtering [Dissanayake et al., 2001] leading to robust levels of spatial
accuracy. Despite the advantages of such an approach in spatial localization
precision, the constraints faced by biological systems to solve the SLAM
problem are often neglected. Indeed, the animal sensorial apparatus is
limited in its capabilities when compared to millimeter-wave radars, for
instance. In our approach, however, sensory signals used for the formation
of the agent’s spatial representation were approximated by the type of
signals found in biology, such as head-orientation, acceleration or visual
inputs. Regardless of these sensorial limitations, our hippocampal model
was still able to form a map of the environments sufficient to support goal
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oriented navigation. Additionally, the increasing resolution and stability
of the hippocampal place fields over the session led to an improvement
of further higher-level processes such as long-term memory storage and
spatial planning. Hence, improvements in performance result from the
co-development of sub-systems in the task rather than by the competence
of single specialized systems.

Our approach is comparable to previous attempts to model hippocam-
pus based navigation, to the extent that the formation of place-fields en-
coding unique locations within an open arena were used as spatial anchor
points supporting efficient map based navigation. The present implemen-
tation however differs from [Krichmar et al., 2005] in that our agent’s
behavior is modulated by the integration of multiple sub-cortical and cor-
tical regions synergistically working to satisfy emulated internal needs.
Moreover, similarly to [Erdem and Hasselmo, 2014], we propose a nav-
igation strategy where spatial encoding is an emergent property of the
hippocampal sub-system acquired by experience. However, in order to
form sensory-place memories, we integrate sensory inputs within a neural
substrate coherent with the hippocampal anatomy and physiology. The
emergent map is then used to perform shortest path approximation, using
a similar technique as found in [Milford and Schulz, 2014]. Finally, differ-
ently from the previously proposed models, the notion of goal-state was
included within the hippocampal computation. This feature, coherent with
recent physiological findings suggesting Prefrontal projections to CA1 via
nucleus reuniens [Ito et al., 2015], allows the Hippocampus structure to be
informed on the current goal state of the system and supports goal directed
navigation establishing an objective resource location to be reached.

The putative role of the Prefrontal Cortex in decision-making has been
captured by competition dynamics among neuronal pools, orchestrating
internal conflict resolution (i.e. what internal drive/goal should be priori-
tized) at the highest layer of the architecture. Such type of computation,
coherent with neural dynamics of perceptual decision-making might par-
tially explain the initiation of goal-oriented behaviors found in operant
conditioning. Decision-making processes in the Prefrontal Cortex indeed
defined the goal of the agent at the beginning of every trial and they were
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further used to instantiate a coherent action plan by accessing long-term
memory structures. Here, behavioral planning was defined as the naviga-
tional strategy recruiting sequences of hippocampal place fields describing
the path towards the goal location and further actuated by action selection
processes. This is consistent with the type of goal directed navigation
found in animal foraging [Gould et al., 2010]. Within the decision-making
literature, several models have been proposed to account for the behavioral
and neural dynamics observed in perceptual and motor decision-making
tasks [Reddi and Carpenter, 2000, Smith and Ratcliff, 2004, Wong and
Wang, 2006, Ditterich, 2006]. Although, slightly different in their mathe-
matical descriptions most of them share in common the idea that decisions
are the result of an internal process that accumulates noisy perceptual
evidence in favor of each alternative [Gold and Shadlen, 2007]. Although
these models have provided a great advance towards the understanding
of the neural mechanisms involved in perceptual decision-making, they
have mainly focused on highly constrained tasks that are performed in a
controlled environment and it is not clear how well they would explain any
other real-world decision making situation. One attempt to address this is-
sue can be found in [Marcos et al., 2012], where a simulated robotic agent
had to forage an open arena and perform action selection based on per-
ceptual cues. Notably, the authors extended the Prefrontal competition to
multiple choices and introduced a learning bias to the competitive decision-
making dynamics. The present decision-making model shares with the
one found in [Marcos et al., 2012] some basics dynamics, such as multi-
ple choices competition, with the additional feature of being integrated
with sub-cortical structures drawing the neural circuit partially responsible
for goal-oriented behavior. For example, signals from the hypothalamic
nuclei monitoring internal somatic states were further encoded by VTA
as a control signal directed to decision-making modules. This interaction
represents the motivation of the agent to act in order to obtain a reward and
simulates the way dopaminergic signals might drive goal definition within
the medial Prefrontal Cortex, defining the specific objective of foraging
behavior [Lockie and Andrews, 2013, Luo et al., 2011]. This is consistent
with the functions attributed to the Hypothalamus in determining the type
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of resources to be sought during foraging [Keen-Rhinehart et al., 2010].
One of the main aspects of operant conditioning can be found in the

way consequences are linked to a given action. Reward mechanisms were
taken into account by modeling some of the functions associated to the
Basal Ganglia. In particular we focused on the object-value association
found in the Striatum [Pennartz et al., 2011]. Here, reward associated with
a given resource type was computed according to temporal discounting
mechanisms such as those described in [Kobayashi and Schultz, 2008].
Reward signals mainly affected hypothalamic structures [Volkow et al.,
2011] as the key sub-system for the definition of the needs of the agent.
These signals were used to restore internal homeostatic levels responsible
for the definition of low-level action pursuit. As discussed below, we did
not take into account the effects of reward on motor control.

Another of the behavioral features observed in animal foraging and
described by the operant conditioning paradigm is the optimization of
behavior and maximization of reward [Abarca et al., 1985, Cabanac and
Swiergiel, 1989, Lea and Tarpy, 1986]. Here, we have shown that the inter-
action of multiple subsystems organized according to the DAC principles
can account for tendencies toward optimal foraging strategies found in the
animal domain. Although a formal comparison with optimality theories in
resource seeking [Charnov, 1976] is not present and outside the scope of
this study (but see [Verschure et al., 2003b] for an analysis of optimality
of DAC in Bayesian terms), we have measured a trial-by-trial increase of
the performance of the agent.

We defined performance as the relationship between reward value and
motor cost measured at every trial, which showed a highly significant
inverse correlation. Such a measure however, was not conceived as an
objective function to be maximized, rather it is seen as an emergent prop-
erty of the behaving system. This apparent detail yields an important
implication for the design of the system and for our understanding of the
underlying neuro-computational principles, where distinctions between
objective and emergent behavior plays a key role. Normative frameworks
as, for instance, the free-energy principle [Friston, 2010, Friston et al.,
2015] aim at explaining perception and behavior using a unified formu-

87



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 88 — #110

lation that captures prediction and prediction error as both the objective
and the consequences of animal behavior. In this sense goal-directed
and uncertainty-reduction behaviors are merged in a unified probabilistic
principle underlying the computational mechanisms of the animal brain.
Therefore, the free energy principle seems to collapse the diversity of indi-
vidual goals into the minimization of a single objective function referred
as ”surprise”. In contrast, in DAC goals emerge from drives that emerge to
satisfy different needs. In this sense, behavior is explained by a multitude
of competing goals, where each goal can be decomposed in a set of sub-
objectives distributed and optimized across the system (see [Herreros and
Verschure, 2015] for a full commentary).

In support of this formulation, we suggest that the vertebrate brain
requires diverse mechanisms of prediction and error reduction, which are
not distinguished by the free energy principle. In particular, we have shown
that a tendency towards optimization in our system can be identified at the
subsystem level where each learning component of the system optimizes
internal objective functions reducing a specific error. Within the cerebellar
model, for example, optimization is defined as the minimization of the
difference among the unconditioned and the conditioned response and
it is captured by the decorrelation learning rule (described in Methods).
Within the presented hippocampal model, optimality is defined as the
trend to encode specific regions of an environment at higher resolution and
stability through Hebbian learning. The interaction between grid and place
cell populations led to an increase of place specific stabilization of place
cells. Thus, as a learning and memory structure, the hippocampal region
progressively optimizes the integration of spatial signals arriving from
grid cell populations. In summary, the tendency towards optimization on
multiple scales is not surprising and it is coherent with operant conditioning
definitions where an animal is expected to achieve a diversity of sub-goals,
from motor learning to self-localization and decision-making, that leads
to the emergence of a behavioral pattern that optimizes the cost/reward
relationship. The challenge, however, is to understand the sub-systems and
the interactions that underly this macroscopic tendency.

Similarly, the behavioral optimization problem is the center of most
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of the reinforcement learning literature, which made an effort to formal-
ize the outcome of a learning system according to a unified formulation
based on the optimization of reward [Sutton and Barto, 1998] and going
back to Thorondike’s law of effect. In particular, several models tried
to capture the behavior observed in classical (see [Balkenius and Morén,
1998] for a detailed comparison) and operant conditioning [Montague
et al., 1995] with the aim to provide a descriptive explanation of condi-
tioning phenomena. Whereas, multiple efforts were made to map such
principles to the animal nervous system (see [Schultz, 2002] for a com-
prehensive review). These views greatly contributed to the understanding
of reward-driven learning dynamics by elucidating the computational role
of dopaminergic nuclei in the brain and their effect on behavior. Such a
formulation however, describes the functions of specific neural circuits
and must be necessarily integrated with the output of other subsystems
that provide the building blocks for reinforcement learning computational
mechanisms [Doya, 1999, Doya, 2000]. For instance, the acquisition of
a state space, the definition of a value function, based on multiple goals
defined by the intrinsic motivation, and its translation to a behavioral out-
put can be interpreted as distributed elements described by the functions
of complementary subsystems. Our results support this distributed view
and suggest that a behavioral performance consistent with reinforcement
learning formulations, namely the optimization of the reward-cost ratio,
can emerge as a consequence of the interaction between localized modules
even in absence of an explicit reinforcement learning rule. Therefore, the
variability in the implementation of distinct systems raises the fundamental
question of how this apparent conflict between the synthesis of a unified
normative computational framework and the diversity of computational
realizations in biology can be resolved. In addition, when normative frame-
works describe macroscopic emergent behavioral properties, what is the
leverage they give us in understanding the sub-systems that contribute to
this performance? Further analysis is required to assess, from a theoretical
perspective, whether the fitness of an agent, captured by optimization
dynamics in the brain, is due to the role of specific localized structures
serving as a ’monitoring system’ (i.e. dopaminergic centers), or whether
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they are rather driven by more distributed objective functions.

Acquiring knowledge about reward and elaborate predictions for future
action can be based on two learning methods. On one hand, in model-free
learning the acquisition of value judgment of actions or events is the result
of progressive experience. On the other hand, in model-based learning,
representations of the environment and expectations are used to elaborate
predictions on the future value of events. Despite this dichotomy, these
two types of learning methods are not necessarily incompatible in the
instrumental learning paradigm. Indeed, it has been argued that Pavlo-
vian learning also involve a form of model-based evaluation [Dayan and
Berridge, 2014]. In conjunctive model-based and model-free instrumental
learning, both body and brain signals as well as the acquired model of
the environment affect the computation of an event’s value and their moti-
vational drive. Here we show that an agent acts based on both low-level
motivational drives, such as hypothalamic signals, and learned spatial rep-
resentation of the explored environment in order to optimize reward and
minimize cost. Thus, our agent not only acquired a model of the environ-
ment based on its exploratory experience, but also used that model in order
to evaluate future actions and value expectation. Further supporting the
notion that the model-based and model-free dichotomy is not that useful
in understanding adaptive behavior.

The use of a DAC-based system controlling artificial agents able to
learn from the interaction with the environment is not new. The DAC
architecture has been introduced 20 years ago. For instance, in [Verschure
et al., 2003b] it was used to identify a novel non-neuronal feedback loop
between perceptual and behavioral learning systems. Similarly, [Duff and
Verschure, 2010] proposed a formal interpretation of such interaction as
described in the correlative sub-space learning rule. Moreover, [Verschure
and Voegtlin, 1998] proposed a study addressing the high-level computa-
tional functions underlying classical and operant conditioning in a mobile
foraging robot. However, despite the novel insights these studies pro-
vided to the understanding of the organizational principles underpinning
behavior, they did not account for a detailed mapping of the proposed
computational strategies to the vertebrate nervous system. In contrast,
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multiple biologically constrained models of several individual brain ar-
eas, stemming from the theoretical account of DAC, have been recently
proposed and validated against specific datasets. For example, [Herreros
et al., 2013a] proposed a biologically plausible computational model of the
cerebellar microcircuit used to investigate the role of the nucleo-olivary
inhibitory pathways in adaptive motor learning. Renno-Costa [Rennó-
Costa et al., 2010] successfully explained the mechanisms underlying
rate-remapping dynamics in the Dentate Gyrus using a biologically valid
computational model of the hippocampal formation. Moreover, [Marcos,
Encarni Verschure, 2013] provided a model of the Pre-Frontal cortex that
accounts for the modulation of neural dynamics in decision-making due
to task memory. Finally, Guanella [Guanella et al., 2007] proposed a
model of the Entorhinal cortex based on attractor dynamics that explains
the self-organizing principles that govern space representation as encoded
in the grid-like pattern of activation found in this area. Although, these
models were up until now only validated in isolation, and did not pursue
an integrated account of their functions within a single control architecture.
Here, for the first time we proposed a cognitive control architecture for
a real-world agent that combines the organizational principles proposed
by DAC with the biologically valid computational principles found in
several core areas of the mammalian brain, outlining their anatomical and
functional interfaces and their role within a system-level neural and be-
havioral context. As such this could be considered an early example of an
embodied real-world whole-brain model that we see as the key objective
of theoretical neuroscience.

Outside of the DAC framework, multiple cognitive architectures have
been proposed in order to solve a diversity of tasks. However, the cou-
pling between a cognitive architecture and a theoretical framework is often
silenced and many of the previously presented cognitive models reject spe-
cific organizational principles to be elaborated on. One example is the Soar
architecture [Laird, 1987, Newell, 1994, Laird, 2012], which, as for DAC,
aims at addressing a set of bio-inspired cognitive properties. However,
Soar uses production rules to control its behavior, while the current version
of DAC builds upon a biologically grounded framework where internal
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needs govern the embodied and situated agent’s behavior. In that sense,
the ACT-R architecture [Anderson, 1983, Anderson et al., 2004] refines
the interpretation of the system in terms of cognitive neuroscience and
extends the sub-symbolic processing in explicit perceptuo-motor modules.
However, ACT-R takes a symbolic approach towards cognition, while
DAC emphasizes embodiment and real sensory acquisition in order to
act. SPAUN [Eliasmith et al., 2012] was recently presented as the largest
model of the human brain that successfully managed to bridge the gap
between complex behavior and complex neural activity. SPAUN was able
to perform a number of tasks traditionally used in cognitive psychology,
such as serial working memory or numerical sequence completion. De-
spite SPAUN’s efficiency in solving rule-learning problems, it was tested
through a disembodied agent performing within an abstract context, i.e. it
did not have to solve the fundamental problems an embodied real-world
agent has to solve. In contrast, we have implemented a cognitive architec-
ture accounting for the functions of subcortical and cortical brain regions
controlling an embodied agent acting within a real-world environment. In
this sense, our approach is similar to the one proposed by the dynamic field
theory [Sandamirskaya et al., 2013], where an embodied agent performs
in a real-world setup solving tasks such as navigation and planning in
dynamic environments. However, the dynamic field approach stands on
a unitary computational principle, while we based DAC-X on a layered
cognitive architecture that captures the diversity of the computational prin-
ciples found in different structures of the mammalian brain. Our approach
is also similar to [Prescott et al., 2006, Dasgupta et al., 2014] where a
cognitive architecture including a model of the Basal Ganglia and the
Cerebellum is used to solve a real-world foraging task in an open arena.
Our strategy however differs in the number of computational elements
used in the architecture and in the layered organizational principles used to
build it. The concept of layered architectures is not new, and was already
proposed in [Brooks, 1985] for controlling a variety of real-world agents.
Although Brook’s subsumption architecture wasn’t originally conceived as
a working hypothesis on the organizational principles of the brain and as
such is neutral towards its interpretation, [Prescott et al., 1999] suggested
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an interesting parallelism among its layered layout and the structure of
the vertebrate nervous system. In these regards the authors found in this
work a plausible biological metaphor to understand the evolution of the
neural substrate supporting animal behavior and cognition. Here, a key
feature can be found in the way multiple controllers acquire a partial but
complementary knowledge of the world that is integrated within a hierar-
chically organized architecture to originate behavior of a situated agent.
The organizational principles of DAC however, show that the notion of
well delineated modules does not hold, rather there are strong interdepen-
dencies between internal structures and layers supporting the bootstrapping
of performance. Embodiment in particular represents a crucial aspect of
DAC and it interprets the emergence of cognition as a bottom-up process
originating from the physical interaction of an agent with its environment
driven be dedicated constraints captures at the four layers of the DAC-X
architecture.

Overall, despite the disparity of cognitive architectures that have been
presented since [Newell et al., 1958], there has been great progress in
the understanding of animal behavior and the human mind. For instance,
ACT-R has made an effort to model human behavior, SOAR focused on
the selection of suitable forms of knowledge, the Dynamic field theory
architecture emphasized embodied cognition, and SPAUN has contributed
to the understanding of high cognitive functions within fairly complex
tasks.

Here we aimed to implement the neural circuitry responsible for oper-
ant and classical conditioning in the context of foraging. However, besides
the achievements of DAC-X, we are still facing a myriad of experimental
limitations. First, because of our focus on conditioning, many brain areas
were not taken into account. Also, in our implementation, the functions of
the addressed areas were modeled at different levels of description. Some
areas were implemented in accord with anatomical and physiological
constraints and learning principles described by neuroscientific literature,
while functions of other areas were captured by more abstract yet bio-
logically plausible implementations without considering their learning
mechanisms or network dynamics. The Basal Ganglia, as an example of
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this last category, was modeled on its functions of reward delivery but the
aspects of motor learning and action selection were not taken into account
in detail.

Moreover, here as in previous DAC implementations, we have used
the hoarding task benchmark so to match animal behavior. However, our
static setup does not include the unpredictability and dynamics of real
world situations. Furthermore, the exploratory arena used in our setup
is very modest in terms of size if we compare it with trajectory lengths
performed by rodents in real world tasks. In this sense, our task is a
simplified version of the dynamics encountered in the real world. In
addition, complex executive functions and reasoning were not addressed in
our implementation, as they are in SOAR, ACT-R and SPAUN. However,
none of these models have been instantiated in a real-world form yet.
Finally, we have based our study on the dynamics presented by the H4W
problem in order to solve a hoarding task. However, dealing with real
world dynamics implies cooperating or competing with other coexisting
agents. Moving into the H5W problem (adding a ”Who”) will imply
computing additional processes such as social interaction and making
predictions on the internal states of other agents.

In future work, we plan to elaborate the details of the neural models that
were only captured in an abstract form, such as the Basal Ganglia, include
a counter current attention model [Mathews et al., 2015] and expand the
architecture to include a more complete connectomics based model of the
Neo-cortex [Arsiwalla et al., 2015]. We will test this model towards more
complex tasks including social interaction [Lallee et al., 2013], which we
see as critically dependent on consciousness.
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Part II
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Chapter 2

ANTICIPATORY ACTIONS:
ADAPTIVE MOTOR
RESPONSES OR REACTIONS
TO SENSORY PREDICTIONS?

In this chapter we focus on the feedback-feedforward cerebellar architec-
ture presented in the previous chapter in the context of anticipatory control.
We argue that, from a control perspective, the parallel organization im-
plicit to standard cerebellar (inverse) models is not optimal when acquired
feedforward predictions are violated. We propose an alternative control
scheme that learns a feedforward prediction of a sensory event and test it
in a simulated postural task where an artificial agent has to resist an ex-
ternal disturbance. We conclude that anticipating events in the perceptual
domain, rather than advancing motor commands can achieve increased
control robustness at lower effort. This chapter is based on: Maffei, G.,
Sanchez-Fibla, M., Herreros, I., & Verschure, P. F. (2014). The role of a
cerebellum-driven perceptual prediction within a robotic postural task. In
International Conference on Simulation of Adaptive Behavior (pp. 76-87).
Springer.
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2.1 Introduction

When learning to perform a skillful motor task such as skiing, one has to
be able to resist perturbations issuing appropriate motor actions in order
to maintain constant balance and equilibrium and avoid falls. The novice
skier would tend to correct a disturbance, due to wind or irregularity of the
slope, at the time it is experienced. However with practice and exercise,
he would be able to recognize an incoming disturbance and to trigger a
preparatory motor action in order to minimize the effect of the perturbation
on his body configuration, his balance and ultimately on his performance.
Postural adjustments are described within the realm of motor control as
small muscular responses which constantly adjust the body configuration
to maintain barycenter position and equilibrium while walking, lifting
objects or during collisions with obstacles [Massion, 1994, Peterka, 2002].

Experimental studies found that healthy subjects involved in motor
tasks, such as catching a ball [Shiratori and Latash, 2001], or lifting objects
of different weights [Flanagan et al., 2001], rely on progressively acquired
motor patterns that enhance performance. Electromyographic recordings
show that compensatory muscular activity posterior to the experienced
perturbation is increasingly coupled with preparatory responses, possibly
driven by the adaptation to the disturbance. Such results suggest that
a preparatory action can be learned and initiated in advance, and that
postural adjustments can be decomposed in two elements: compensation
and anticipation. Similar studies conducted on cerebellar patients show that
they lack predictive anticipatory actions and correct response magnitude
scaling when tested in postural tasks, such as standing still on a sliding
platform [Timmann and Horak, 2001b, Horak et al., 1994] or minimizing
the arm vertical shift while catching a falling object [Lang and Bastian,
1999, Serrien and Wiesendanger, 1999a]. These findings would make the
cerebellum an ideal candidate as neural substrate involved in the acquisition
of adaptive postural motor responses.

Despite several mechanisms underlying postural control have been
widely studied, it remains unclear what strategy is adopted by the brain
in order to issue predictive motor responses. Moreover, it is poorly under-
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stood how anticipatory and compensatory components are integrated into
a single response. A possible explanation is that these responses are both
the result of an association between a sensory signal and a motor response.
The former would be triggered by a sensory signal co-occurring with the
perturbation, while the latter would be initiated by a sensory signal pre-
ceding the perturbation. The total motor response would therefore be the
sum of the two components separately acquired and combined in more pe-
ripheral areas such as the spinal cord [Bizzi et al., 2008]. However results
on the topographic organization of sensory and motor representations of
the hand in the human cerebellum show that, unlike the neocortex, sensory
and motor patches for the same finger do not overlap systematically, but
are closely interdigitated in a nearly unrelated fashion [Wiestler et al.,
2011]. The suggested close interaction between sensory and motor cere-
bellar circuits leads to an alternative explanation. It is indeed possible that
compensatory and anticipatory responses are the result of the interaction
of two predictions of different nature. Compensation could be achieved
by mapping a sensory input into an adaptive motor response. Differently,
anticipation could be achieved by associating a sensory signal anticipating
the perturbation with the sensory signal perceived at the moment of the
perturbation. This sensory prediction would then trigger the compensatory
action in an anticipatory way.

With these hypotheses in mind we propose an adaptive control architec-
ture formed by a compensatory and an anticipatory layer. The former acts
as a fast feed-forward controller that corrects the effect of a perturbation
after it has been experienced. The latter is responsible for anticipating the
incoming perturbation and initiating an action in advance. We compare
two alternative hypotheses to test the nature of anticipation: 1) a sensory
to motor prediction, which associates a sensory event preceding the per-
turbation with an adaptive motor response, and 2) a sensory to sensory
prediction, which associates a sensory signal with the expected sensory
outcome of the perturbing event and, in turn, triggers a motor response. In
addition, we explore the role of cerebellar adaptive properties, proposing a
learning strategy based on a model of the cerebellum where both compen-
satory and anticipatory components can be acquired by two independent
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instances of the same cerebellar controller [Herreros et al., 2013b,Herreros
and Verschure, 2013b, Maffei et al., 2013] .

Coherently with human equilibrium tasks [Horak et al., 1994], we de-
vise a simulated cart-pole setup in which a robot has to minimize the error
provoked by a perturbation directed to the pole. Similarly to [Maffei et al.,
2013], where a real robot had to maintain constant speed anticipating the
effect of the collision with an obstacle, the agent is equipped with sensors
that allow to measure impact force and proximity. The former provides a
sensory signal at the moment of the impact with an object allowing fast
compensation. The latter perceives the distance from the object allowing
anticipation. We propose an experimental procedure to compare the two
architectures in terms of learning curve, error minimization and motor
cost. Results suggest that an agent relying on an anticipatory sensory
prediction can remarkably reduce the error with less effort. Moreover, this
architecture appears to be more robust in case of ambiguity of the stimulus,
as shown in trials where a sensory signal previously associated with a
perturbation is no more reliable. Finally we discuss the obtained results in
the light of recent physiological and behavioral evidences supporting the
versatility of the cerebellum in learning associations outside the scope of
motor control. Implications for bio-mimetic robot control are also taken
into account.

2.2 Methods

2.2.1 Setup
In order to study the possible role of cerebellum in anticipatory responses
to postural perturbations we devise a simulated physics based setup im-
plementing the cart-pole dynamics (fig. 2.1, Left). A simulated agent
has to resist a postural perturbation through anticipation in order to min-
imize error and energy cost. The agent is able to slide on a horizontal
surface controlling one degree of freedom with the goal of maintaining
the pendulum in a constant vertical equilibrium performing control against
force of gravity and external perturbing forces. The agent is equipped
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with a proximity sensor and a pressure sensor detecting the distance to
external bodies and eventually the magnitude of the force produced by the
collision with them. A colliding object is directed to the extremity of the
pendulum with a given constant velocity and force, therefore provoking a
perturbation that affects the pendulum position and the state of equilibrium
of the agent. The goal of the agent is to learn to associate sensory inputs to
finely tuned motor responses in order to firstly compensate and secondly
anticipate the perturbing event both in terms of magnitude and timing,
therefore minimizing the pendulum deviation from the state of equilibrium
with the minimum effort.
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Figure 2.1: Left. Cart-pole setup. Cart represented in equilibrium position
(pendulum at 90 degrees) and incoming perturbation. Sensors are repre-
sented in green, actuators in red. Right. Computational Architectures. A.
Sensory-to-motor and B. Sensory-to-sensory hypotheses. Sensory signals
are represented in green. Motor signals are represented in red. Adaptive
components are represented by two cerebellar modules (CRB1 andCRB2
respectively). Note the different input-output configuration for CRB2 in
A, where the proximity signal is associated to a motor response and B,
where the proximity signal is associated to the impact force. Mossy fibers
(mf ) represent the microcircuit input stage, while Climbing fibers (cf )
provide the teaching signal (dashed line) via Inferior Olive (not displayed).
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K represents the gain of the reactive proportional controller that converts
the sensory input into motor output.

2.2.2 Learning algorithm.

The bio-mimetic learning algorithm at the core of the behavior of the
agent is based on an analysis-synthesis adaptive filter implementation
mimicking the learning strategy of the cerebellar microcircuit [Dean et al.,
2010b, Herreros and Verschure, 2013b]. The cue signal, representing
the input conveyed by mossy fibers, is decomposed into several signals
mimicking the expansion of information into cortical basis occurring
within the cerebellar granular layer. The signal of the cortical basis is
generated producing a fast excitatory component and a slow inhibitory one.
Each component consists of a double exponential convolution with time
constants randomly drawn from two flat probability distributions (a fast
time constant, ranging from 5 to 50 ms and a slow one ranging from 50
ms to 2.5 s controlling the raise and the decay of the basis respectively,
coherently with the physiological range of the time constants of the slow
currents in the granular layer [van Dorp and De Zeeuw, 2014]). The value
obtained after the two convolutions is then thresholded and scaled for each
basis.

The output of the cerebellar controller is given by: CR(t) = [p(t)Tw(t)]
where w(t) is the vector of weights and p(t), the vector of basis, both in
column form.

The weights are updated using the de-correlation learning rule: ∆wj(t) =
β E(t) pj(t− δ) where β is the learning rate and E(t) is the error signal,
computed by the inferior olive output. δ provides the latency of the nucleo-
olivary inhibition. The value of δ determines how much the adaptive action
anticipates the reactive one, and how much it has to exceed the feedback
delay [Miall et al., 1993].

Finally, the error signal for the cerebellar system is computed as the
difference between the scaled cerebellar output and the unconditioned
stimulus (US) signal as follows: E(t) = US(t)− knoiCR(t− δ)
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Computational Architecture. The agent implements a control architec-
ture composed by three modular layers (fig. 2.1, Right, A, B).

The first layer implements a feedback reactive controller which com-
putes the difference between a given target angle (equilibrium point at 90
degrees with respect to the horizontal axis) and the actual angular position
of the pole. The error, multiplied by a gain, is mapped into a reactive
motor response which moves the cart accordingly, therefore readjusting
the position of the pendulum with respect to the target.

The second layer implements an instance of the cerebellar microcircuit,
and it is responsible for acquiring compensatory responses. The cue signal
is given by the force input resulting from the collision with the perturbing
object. The signal to be learned (teaching signal) is given by the output of
the reactive controller, encoding the action necessary to compensate for the
pendulum error. The output of the controller is an acquired compensatory
motor response acting in a feed-forward manner and summing to the output
of the reactive controller.

The third layer of control, implementing a second instance of the same
cerebellar microcircuit, is responsible for anticipatory responses.

In order to study how anticipation is performed within the context of
anticipatory postural responses we propose two possible configurations
which reflect, at the implementation level, the alternative hypotheses on
the nature of such responses.

On one hand we propose a sensory-to-motor (S2M ) configuration (fig.
2.1, Right,A) which takes the input from the proximity sensors as cue
signal and the output of the reactive controller as error signal. The output
is represented by a feed-forward anticipatory motor response which is
summed to the motor response of the compensatory and reactive layer.

Alternatively, we test a sensory-to-sensory (S2S) configuration (fig.
2.1, Right,B). In this case the cue signal is given by the proximity sen-
sor value while the teaching signal is given by the force input resulting
from the collision with the perturbing object. This controller outputs
a predicted sensory signal anticipating the sensory consequences of the
collision. The prediction is subtracted with a small delay from the real in-
coming sensory signal coherently with neurophysiological data on sensory
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integration between cerebellar driven prediction and actual somatosensory
feedback [Blakemore et al., 1998]. The net force signal finally inputs the
compensatory controller, which in turn triggers an action preceding the
perturbation, therefore producing both an anticipatory and a compensatory
motor output.

2.2.3 Experimental Design.

The experimental session proceeds on a trial by trial base, having the agent
set at a given position in a state of equilibrium at the beginning of every
trial.

During each trial (5 seconds duration), a colliding object (25 kg) is
directed to the extremity of the pendulum with a velocity equals to 1 m/s,
therefore provoking a perturbation of 25 N affecting the pendulum position
and the state of equilibrium of the agent.

We run a set of experiments to primarily test the effectiveness of such
layered architecture in associating sensory inputs to finely tuned motor
responses. The goal is learning to predict the perturbing event both in
terms of magnitude and timing, issuing a motor action that minimizes the
pendulum deviation from the state of equilibrium with the minimum effort.

We therefore compare the learning performances of the two alterna-
tive anticipatory configurations both in terms of learning capabilities and
robustness to events that violate the acquired associations. In the first
experiment we run a session of 50 trial for each of the two proposed archi-
tectures with the goal of comparing the dynamics in the acquisition of the
compensatory and anticipatory responses. We are particularly interested
in error minimization and efficiency in motor action cost. In the second
experiment we test the acquired responses under a condition in which the
perturbing object is still activating the proximity signal but is not provoking
a perturbation anymore. We test both architectures under this condition for
10 trials looking at the robustness and flexibility of the architecture when
events violate the acquired prediction.
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2.3 Results

2.3.1 Experiment 1.
The goal of this experiment is to test the learning capabilities of the
proposed computational architecture under S2M and S2S conditions.

We train the agent to co-acquire both a compensatory and an anticipa-
tory response with the goal of minimizing the deviation of the pendulum
from a given target angle. The training session lasts 50 trials for both S2M
and S2S architectures, during which a perturbation of constant magnitude
of 5 N is sent to the pendulum with a delay of 1 sec from the beginning of
the trial.
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Figure 2.2: Left. Pendulum Angle. Right. Normalized mean cumulative
error. Colorcode : Blue dashed: reactive controller only (mean 10 trials).
Red thick: S2M trained controller (mean 10 trials). Green thin: S2S trained
controller (mean 10 trials). Black: perturbation onset.

This perturbation magnitude provokes the sole feedback controller to
reactively adjust the position of the pendulum (fig. 2.2, Left) showing a
prominent oscillatory pattern which reduces the error over time but never
stabilizes the pendulum to the desired position during the whole duration
of the trial.

Under both S2M and S2S conditions, at the end of the training the
robot is able to issue both an anticipatory and a compensatory response
that minimize the effect of the incoming perturbation on the position of
the pendulum (fig. 2.2, Left). We notice that a small deviation from the
target is introduced by the agent itself as a consequence of the anticipatory
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response approximately 0.3 seconds before the perturbation. This well
timed response allows the minimization of the perturbing force provoked
by the collision, and therefore stabilizes the normalized cumulative error
around a value of 0.05 (fig. 2.2, Right). If compared with the early trials,
the intervention of the reactive controller at the end of the session is greatly
reduced (fig. 2.4, Right) minimizing therefore the amount of energy
required to stabilize the pendulum in a correct position.

The adaptive motor response at the end of the training experiment can
be decomposed into two different elements.

Under the S2M (fig. 2.3, Left) condition we observe that a motor
response triggered by the sensed impact with the colliding object is issued
at the moment of the collision.
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Figure 2.3: Left. S2M adaptive responses. Magenta thin: anticipatory
motor response. Red thick: compensatory motor response. Black dashed:
perturbation onset. Right. S2S adaptive responses. Green thin: anticipa-
tory sensory prediction. Red thick: anticipatory and compensatory motor
response. Black dashed: perturbation onset.

It peaks before the response of the sole reactive controller, and allows
a faster compensation. An additional motor response triggered by the
proximity signal is issued before the perturbation onset, and it is added to
the total motor response allowing anticipation.

Under the S2S condition we notice that a single adaptive motor re-
sponse is issued accounting for both compensation and anticipation (fig.
2.3, Right). One single motor response is acquired at the level of the
compensatory controller where, similarly to the S2M architecture, a force
sensory input signaling the impact with the perturbing object triggers a
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fast motor response. However the anticipatory response is achieved by
predicting the force sensory input from the proximity signal in a sensory
to sensory fashion. The predicted signal then inputs the compensatory
module which triggers a motor response in an anticipatory way.

Both architectures perform almost equally, with similar performance
in terms of error minimization and learning curve slope (fig. 2.4, Left).
However the total adaptive energy produced by the S2M architecture is
significantly higher than the one produced by the S2S architecture (fig.
2.4, Right).
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Figure 2.4: Left. Learning curve during the training session (normalized
cumulative error). Red thick: sensory-to-motor architecture. Green thin:
sensory-to-sensory architecture Right. Total motor energy (sample of 10
trials per condition). We compare significance between S2M and S2S
architectures at early learning stage and advanced learning stage.

2.3.2 Experiment 2.
The goal of the second experiment is to test the reliability and flexibility
of the architecture in case of unexpected conditions, namely the amount of
self induced error in the case that a cue signal previously anticipating the
collision is providing no perturbation.

Once both anticipatory and compensatory responses are acquired we
run a short session of 10 trials for each architecture setting the mass of the
colliding object to 0g, and therefore producing a null perturbation.

Both controllers introduce an error triggered by an erroneous antici-
patory response. However we observe that the self-induced error in the
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case of the S2M architecture is significantly higher and varying than the
one introduced by the S2S architecture, which in turn appears to be more
stable and more resistant to unexpected conditions (fig. 2.5, Right).

This difference could be due to the comparison between predicted
sensory signal and real sensory signal found in the sensory to sensory
architecture (fig. 2.1, Right).
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Figure 2.5: Left. Sensory prediction - sensory input mismatch in catch
trial. Blue dashed thick: sensory prediction output of CRB2. Red dashed
thin: sensory prediction error. Green solid: net sensory input to CRB1.
Filled green area: positive part of net sensory input triggering a partial mo-
tor response. Right. Normalized cumulative error (sample of 10 trials per
condition). We compare significance between S2M and S2S architectures
at advanced learning stage and during catch trials (experiment 2).

Here the predicted sensory input is subtracted from the real incoming
sensory signal with a delay of 200 ms. The resulting net signal inputting
the first cerebellar module rises according to the erroneous prediction
and subsequently decays to negative values as a result of the mismatch
between expected and real perturbation (fig. 2.5, Left). Such signal
triggers just a partial adaptive motor response, avoiding the full execution
of the action and therefore introducing less error and less variability to the
motor response.
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2.4 Discussion

Within this study we are interested in the computational mechanisms un-
derlying the acquisition of anticipatory responses in a postural task. We
compare two alternative architectures representing two different hypothe-
ses: anticipation either as an acquired sensory-to-motor association or as
an acquired sensory-to-sensory association. We also propose that cerebel-
lum could be the neural substrate responsible for the acquisition of both
anticipatory and compensatory responses.

Both hypotheses would be consistent with cerebellar learning mecha-
nisms. Avoidance learning studies [Jirenhed et al., 2007, Hesslow, 1994]
indeed show how animals learn to produce a predictive motor action trig-
gered by a sensory cue in order to avoid a noxious stimulus. This view
suggests that the output of purkinje cells, the sole output of the cerebellum,
would be directly contributing to motor responses. This would therefore
be coherent with the sensory-motor association hypothesis which has been
shown capable of efficiently perform in terms of error minimization within
a postural task. According to this view the integration of two independent
motor responses might take place at a peripheral stage, such as the spinal
cord [Bizzi et al., 2008]. However the overall performance of the sensory-
motor controller is not completely satisfying in terms of energy costs and
robustness to unexpected conditions.

Postural control can be considered a complex task involving several
sensory-motor interactions [Massion, 1994]. We suggest that with in-
creasing complexity of the task, more sophisticated learning strategies
might need to be applied by the brain. Interestingly, recent studies on
the non-motor functions of the cerebellum [Ramnani, 2006c] suggest that
it would be capable of predictions outside the scope of adaptive motor
control. Neuroimaging studies have shown that the human cerebellum is
active during somatosensory processing [Gao et al., 1996] as well as visual
and auditory perceptual tasks [Baumann and Mattingley, 2010]. It has
been also shown that cerebellar patients perform poorly in pure perceptual
associative tasks where the prediction of a sensory signal is required to be
learned from a second sensory signal [Roth et al., 2013b, O’Reilly et al.,
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2008]. Finally, anatomical studies show that the cerebellum has distinct
projections to brain areas important for perception [Dum and Strick, 2003].

These findings could support the hypothesis which considers anticipa-
tory responses in the brain as the result of the interaction among a pure
sensory-to-sensory prediction and a sensory-to-motor prediction. This
view would not contradict the well established findings on the cerebellar
direct contribution to motor control, but would extend its adaptive proper-
ties to a more perceptual domain. We hypothesize that a possible advantage
of relying on sensory predictions is the tendency to minimize the amount
of action performed to achieve some motor goal. As we show in our results
the sensory-to-sensory architecture achieves error minimization in a more
efficient way compared with the sensory-to-motor one. Our assumption is
that learning to produce one adaptive response driven by an expected sen-
sory signal requires less energy than producing two, eventually antagonist,
motor responses with different temporal profiles.

This may not be the only advantage. We show indeed that the sensory-
to-sensory architecture is more stable and robust within conditions in
which an ambiguous stimulus is suddenly provided. This result could
be incongruous with findings from conditioning studies and avoidance
learning. According to this paradigm a subject tested on catch trials would
trigger a full motor response as result of a sensory-motor association, where
diminished response would be gradually expected during the extinction
phase. This view would therefore be more congruent with the sensory-
motor hypothesis.

However behavioral results have suggested that healthy subjects trained
to resist an expected perturbation tend to minimize self induced error in
case of unexpected conditions, reducing the acquired motor response since
the first trial [Crevecoeur and Scott, 2013]. This view is incongruous
with the previous one, possibly requiring a more complex explanation.
We propose that relying on a sensory prediction for anticipation could
have an advantage in terms of performance, and eventually safety for
an individual. As also proposed in [Crevecoeur and Scott, 2013], this
could indeed be a mechanism that weights a sensory expectation with an
actual sensory signal, partially preventing ambiguous stimuli to trigger
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inappropriate motor responses. The direct interaction between sensory and
motor predictions in the cerebellum could be supported by physiological
data showing a scattered an interdigitated topographic organization of
sensory and motor areas in the cerebellar cortex [Wiestler et al., 2011]. As
suggested by the authors such an arrangement may enable the cerebellum to
quickly form new, and often context dependent, sensory-motor associations
. This would ultimately be an important computational feature for learning
new motor tasks, in which sensation and action might take on novel
relationships.

The advantages above described could finally benefit robotic architec-
tures. The proposed bio-mimetic approach would allow a more efficient
adaptive control of posture in humanoid robots and, in general, a minimiza-
tion of errors during navigation and manipulation tasks. The importance
of learning to anticipate, as found in humans and animals, can therefore be
directly applied to agents able to learn useful sensory-motor contingencies
from the interaction with the environment. The proposed learning strategy
represents indeed a model-free approach where physical properties of the
environment are not assumed but progressively acquired. This could imply
more flexibility and ability for an agent in adapting to its surroundings and
learning appropriate motor responses from experience.
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Chapter 3

THE PERCEPTUAL SHAPING
OF
ANTICIPATORY ACTIONS

This chapter builds on the control insights from the previous chapter and
proposes a new theoretical framework where the standard parallel cerebel-
lar architecture for anticipatory motor control (FEL) can be recast into a
hierarchical scheme that reflects the causal structure of perceptual events
in the environment. Contrary to standard cerebellar schemes, this novel
approach can achieve anticipation while solving the control problems of
violation and generalization in a simulated biologically plausible postural
task, and it exhibits a performance consistent with behavioral literature.
This theoretical framework has implications for cerebellar theory as it
proposes that hierarchical descending predictions and ascending prediction
errors can be implemented in cortico-cerebellar loops that only modu-
late behavior at the last stage of the control chain, as also proposed by
normative accounts such as active inference.

This chapter is based on: Maffei, G., Herreros, I., Sanchez-Fibla,
M., Friston, K. J., & Verschure, P. F. (2017). The perceptual shaping of
anticipatory actions. In Proc. R. Soc. B (Vol. 284, No. 1869, p. 20171780).
The Royal Society.
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3.1 Introduction

Anticipatory motor actions, thought to depend on the cerebellum [Massion,
1992, Kolb et al., 2004, Timmann and Horak, 2001a], are part of our
everyday behavior: from walking [MacKinnon et al., 2007,Xu et al., 2004],
to grasping [Lacquaniti and Maioli, 1989, Lang and Bastian, 1999, Cordo
and Nashner, 1982] and to riding a bicycle [Vansteenkiste et al., 2014].
The question then arises as to how these actions are controlled? Decades
of research in motor control support the notion that internal models are key
to skillful performance [Kawato, 1999, Shadmehr et al., 2010b, Wolpert
et al., 2011]. Specifically, this research has highlighted two kinds of
internal models: forward models, which map the efference copies of
motor commands into their expected sensory consequences [Miall et al.,
1993, Wolpert et al., 1998b]; and inverse models, which map desired
sensory outcomes into their required motor commands [Kawato et al.,
1987, Kawato and Gomi, 1992].

However, here we argue that offering an alternative to these interpreta-
tions is a pressing issue for the field of motor control as neither forward
nor inverse models (in their standard formulation) can explain the ver-
satile anticipatory control observed in animals. In particular, standard
forward models allow for rapid feedback control in the presence of the
long transport latencies of the nervous system [Miall et al., 1993] or action
planning [Shadmehr et al., 2010b] but, as they exclusively predict the
consequences of motor commands, they cannot anticipate disturbances
that are not contingent upon those motor commands [Crevecoeur and Scott,
2013]. That is, one cannot call upon efference-driven forward models to
support behaviors that precede external events. This obvious limitation
has led researchers to conclude that preparatory actions should result from
inverse models that output anticipatory motor signals [Albert and Shad-
mehr, 2016, Ruan et al., 2007, Sainburg et al., 1999, Shibata and Schaal,
2001, Thoroughman and Shadmehr, 2000]. The benchmark computational
model for that theory is feedback error learning (FEL), which offers both
an adaptive motor control architecture [Gomi and Kawato, 1993] and a
theory of cerebellar function [Kawato, 1999, Kawato and Gomi, 1992]. In
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FEL, predictive actions are the result of anticipatory motor signals, learned
by shifting forward in time the output of the feedback controller [Albert
and Shadmehr, 2016, Thoroughman and Shadmehr, 2000]. However, we
will show that inverse model schemes present some important limitations
in the context of anticipatory control. For instance, while rapid corrections
of erroneous anticipatory actions are commonly reported in biological
systems, most notably in experiments that include catch trials (i.e. trials
where a predictable disturbance is signaled but not delivered) [Barnes et al.,
2000, Witney et al., 1999], FEL has no mechanism to correct feed-forward
motor responses once the course of events violates a prediction. In addition,
FEL acquires motor commands that are tied to the dynamics of the plant
that it controls and cannot easily be generalized to new configurations.
However, experimental evidence suggests that in humans, anticipatory
responses are still effective even if one changes the posture and/or the
effector after learning [Criscimagna-Hemminger et al., 2003, Ahmed and
Wolpert, 2009]. Hence, given that standard forward and inverse models
cannot fully account for anticipatory control, alternatives should be consid-
ered that both overcome the theoretical and practical limitations of these
motor-centric accounts and resolve the forward-inverse model dichotomy.
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Figure 3.1: Conceptualization of the Hierarchical Sensory Predictive
Control (HSPC) hypothesis. A predictable displacement caused by a
soccer ball directed to the chest elicits an anticipatory response that mini-
mizes the loss of balance before it is perceived. In HSPC, the anticipatory
response is the result of a hierarchy of descending sensory predictions
from distal (visual detection) to proprioceptive (impact) to vestibular (loss
of balance) modalities, where each modality advances in time the expected
consequences on the next modality until the predicted error in balance
triggers a reflexive action in a feed-forward manner. The minimal model
for this behavior is an inverted pendulum of mass (m) and height (h),
whose error in angle (θ) is minimized by generating a torque (τ ) at the
ankles that counteracts the disturbance (F).

Here, we advance the hypothesis that biological anticipatory control
can be explained by the ability of the brain to advance predictions of future
perceptual events [Roth et al., 2013a] and use those predictions to drive the
motor system in an anticipatory way [Herreros et al., 2016]. We formulate
this hypothesis in computational terms by proposing the cerebellar-based
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Hierarchical Sensory Predictive Control (HSPC) architecture, in which
internal models issue sensory predictions that facilitate anticipatory control,
with motor signals (i.e. efference copies of motor commands) playing no
role in adaptation itself. With that, HSPC challenges the inverse model
interpretation of anticipatory control - and, indirectly, the ’motor-centric’
forward-inverse model dichotomy. More precisely, we suggest that, in
contrast to the FEL hypothesis, where predictive actions are the result
of anticipatory motor signals, anticipatory actions can be controlled by
predictive sensory signals, becoming reactions to events that are brought
forward in time [McIntyre et al., 1995, Modayil and Sutton, 2014, Serrien
and Wiesendanger, 1999b]. Moreover, in HSPC the internal generation
of sensory predictions can mirror the (hierarchical) causal structure of the
sequence of perceptual events (fig. 3.1). HSPC builds on the hypothesis
that motor control can be understood as a process of sensory-sensory
learning where sensory predictions are only mapped onto motor commands
at the late stage before motor execution, for example through reflexes, as
proposed in the Distributed Adaptive Control (DAC) theory and formalized
in the theory of Active Inference [Adams et al., 2013, Verschure et al.,
2003a, Friston, 2011a]. At the theoretical level, this hypothesis has been
studied mostly within the active inference framework, using generative
hierarchical models and focusing on the aspect of reformulating control
as Bayesian inference [Friston, 2011a, Friston et al., 2010], whereas DAC
generalized it to robot-based foraging tasks showing Bayesian equivalence
[Verschure et al., 2003a]. Hence, here we propose for the first time a
detailed computational and practical treatment of the sensory-sensory
learning hypothesis in the context of anticipatory actions. To this end, we
provide a systematic comparison between HSPC and FEL by synthesizing
each hypothesis into an architecture applied to a postural control task,
minimally modeled as the stabilization of an inverted pendulum through a
torque at its base (i.e. ankles; fig. 3.1), demonstrating how learning in the
sensory rather than in the motor domain can account for the robustness and
generalization capabilities of biological control systems with emphasis
on the relation between the cerebellum and the neo-cortex. In summary,
this study presents an approach to motor control that could provide an
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alternative interpretation of the physiology of anticipatory control and
contribute to the theory of cerebellar learning.

3.2 Methods

In order to compare the behavior of a control strategy based on motor
anticipation (FEL) with one based on sensory prediction (HSPC), we
synthesize these hypotheses into two architectures that control an inverted
pendulum (a common model for bipedal postural control - see [Gage et al.,
2004] for review; fig. 3.2-B,C; electronic supplementary material, fig. S1)
engaged in an Anticipatory Postural Adjustment (APA) task. This task, in
line with experimental psychology paradigms [Kolb et al., 2004, Santos
et al., 2010b] (fig. 3.2-A), requires the agent to learn an appropriate
combination of anticipatory and compensatory responses to minimize the
effect of a disturbance (i.e. loss of balance) signaled by a cue.

3.2.1 Model of the Agent

The inverted pendulum actuated by a torque (τ ) at its base is modeled as
follows:

mh2θ̈ = mgh sin(θ) + τ + Fh cos(θ)

(1)
The pendulum has a mass (m) of 67 Kg and a height of its center

of mass (h) equal to 0.85 m. θ measures the angular deviation from the
vertical position. The disturbance is introduced as a force (F ) parallel to
the ground applied to the center of mass.

3.2.2 Control Architectures

The APA task involves three different sensory modalities: distal (perceiving
a cue that precedes the collision), proximal or proprioceptive (sensing the
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Figure 3.2: Motor anticipation (FEL) versus sensory prediction
(HSPC) strategies.(a) Different responses are elicited by different sensory
modalities. (i) A corrective reaction is triggered by the perceived postural
error. (ii) A fast compensatory corrective action is triggered by the per-
ceived impact (proximal stimulus). (iii) An anticipatory action is triggered
by the distance to the obstacle (distal stimulus). (b) Motor anticipation
strategy (FEL). (i) A postural error is converted into a reflexive action
by a feedback controller (R). (ii) A feed-forward compensatory action
associated with the impact signal is acquired by the proximal adaptive
module (FFp) on the basis of the feedback response to the error. (iii) A
feed-forward anticipatory action associated with the distal cue is acquired
by the cerebellar distal module (FFd) on the basis of the same feedback
response. (c) Sensory prediction strategy (HSPC). (i) Reflexive action
elicited as in FEL. (ii) Feed-forward compensatory action: triggered by
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the proximal cue and learned from the closed-loop error, a counterfactual
error is issued by the proximal module (FFp) in response to the proximal
cue driving the feedback controller. (iii) Anticipatory action: evoked by
the cue, a prediction of the expected impact issued by the distal module
(FFd) triggers the compensatory response in an anticipatory manner.

magnitude of the impact on the body) and vestibular (sensing the postural
effects of the impact, i.e. the inclination). Each modality enables a
different type of response: distal sensing allows for preparatory responses,
proximal sensing for fast compensation and vestibular for compensation
through feedback control [Lacquaniti and Maioli, 1989, McIntyre et al.,
1995, Mohapatra et al., 2012, Peterka, 2002, Savelsbergh et al., 1992] (fig.
3.2-A). Note that a similar distinction between distal and proximal sensory
modalities can be found in [Verschure et al., 2003a, Friston, 2011b] to
account for sensory predictions within extrinsic and intrinsic frames of
reference, respectively.

Feedback controller

The agent is stabilized by a torque generated through a proportional-
derivative feedback controller as follows:

τfb(t) = −kpθ(t− δs)− kdθ̇(t− δs)

(2)
Note that in the error term we use the angle and angular velocity values

delayed by δs (=100 ms) to account for the latency of the error feedback.

Adaptive feed-forward modules

In addition to a feedback controller, both architectures include the same
adaptive feed-forward modules to process the proximal and distal cues.
That adaptive feed-forward module (i.e. inversion of a forward or gen-
erative model) is implemented as an adaptive filter extended with an
eligibility trace mechanism [Herreros and Verschure, 2013a,Herreros et al.,

120



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 121 — #143

2013a, Maffei et al., 2014]. Each feed-forward module receives a single
sensory input signal that is expanded into N (=20) different signals or
bases. Each basis corresponds to the convolution of the (sensory) input
with an α signal that can be formulated as two serially linked leaky integra-
tors with identical time constants. For a particular basis, its output value is
generated as follows:

zj(t+ ∆t) = γjζj(t) + ζjx(t)

(3)

pj(t+ ∆t) = γjpj(t) + zj(t)

(4)
where δt(=0.01 s) is the simulation time step and γj = e−τj∆t is the

j − th basis decay factor, derived from a relaxation time constant τj. ζj
is a scaling factor that equalizes the power of all bases. At this point, an
expansion of the original signal x(t) into a series of bases or transients with
different temporal profiles is obtained. The second processing step consists
in mixing those bases according to a weight vector w(t) to generate an
output signal (ff(t)):

ff(t) = w(t)Tp(t)

(5)
where p(t) = [p1(t), ..., pN(t)]T is the vector of the bases. The weight

vector is adaptively set by means of an Least Mean Squares (LMS) or
Widrow-Hoff update rule [Stearns, 1985] extended with an eligibility trace:

w(t+ ∆t) = w(t) + βε(t)p(t− δx)

(6)
where, ε(t) is an appropriated error signal that is used to update the

weights. The eligibility trace is implicit in the use of a delayed copy of
the bases activity p(t − dx) for the update, with x indexing the type of
stimulus processed: proprioceptive (p) or distal (d). In short, to update
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the weights the current error is associated with an activity on the basis
signals δx seconds ago. With that, we assume that activity at time t− δx
is the one that should have been used to trigger a reaction with sufficient
anticipation to cancel the current error at time t. In general, we set both δd
and δp greater than the error feedback delay (δs), implying that the extent
of the anticipation goes beyond the transport (or error feedback) delay.

Configuration of the FEL and HSPC architectures

Both control architectures include the feedback controller and two feed-
forward modules (distal and proximal) wired according to the heuristic of
either predicting motor commands from sensory signals (FEL architecture),
or predicting sensory signals from sensory signals (HSPC architecture).

In FEL, feed-forward modules act upon the plant and are supervised by
the feedback reaction to the error in posture (fig. 3.2-B). In particular, the
proximal module issues a feed-forward action in response to the impact
learned by shifting the reactive action earlier in time, while the distal
module similarly acquires a response that is triggered by the distal stimulus,
and thus can precede the impact itself.

Let ffp(t) and ffd(t) be the outputs of the proximal and distal feed-
forward modules; xp(t) and xd(t), their respective input signals; and εp(t)
and εd(t), their respective teaching signals. The structure of the FEL
architecture is determined by the following equations:

xd(t) = id(t)

(7)
xp(t) = ip(t)

(8) and
εd(t) = εp(t) = τfb

(9)
where Embedded Image and Embedded Image represent the cue (distal)

and impact (proximal) signals, respectively, and τfb is the output of the
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feedback controller. As a final step, the output of all modules are added up
to generate the control signal (τfel(t)):

τfel(t) = τfb(t) + ffp(t) + ffd(t)

In HSPC, upstream modules drive and learn from the input of down-
stream modules (fig. 3.2-C). That is, the proximal module learns coun-
terfactual errors [Herreros et al., 2016] contingent to the impact so that
the feedback controller reacts to the expected error before the actual one
occurs. While the distal module learns to predict the collision signal contin-
gent to the cue and triggers the proximal module ahead of the impact. Note
that, by necessity, the HSPC architecture includes an internal comparator
that computes the prediction errors associated with the collision signal.

In keeping with the above notational conventions, the equations deter-
mining the distal feed-forward module inputs and error signals in HSPC
are:

xd(t) = id(t)

(11) and
εd(t) = ip(t)− ffd(t− δd)

(12)
Note that the error signal that controls learning in the distal feed-

forward module is a prediction error, coding the difference between a
past prediction, ffd(t − δd), and the actual stimulus, ip(t), where δd is
the anticipatory delay of the distal module. The proximal feed-forward
module is integrated within the control architecture as follows:

xp(t) = εd(t) + ffd(t)

and
εp(t) = −θ(t− δs)

In brief, the Sensory Prediction Error (SPE), εd(t), and the prediction
signal, ffd(t), related to the collision drive the proximal module, which is
supervised by the error in angle (measured with a delay of δs seconds).
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In the last stage, the output of the proximal feed-forward module is
added to the error in velocity driving the feedback controller. We formulate
that operation by introducing εθ(t) = −θ(t−δs)+ffp(t) and then rewriting
the first equation of the feedback controller:

τfb = kpεθ(t) + kd(̇εθ)(t)

(15)
Finally, the motor control signal generated by the HSPC architecture is

simply the output of the feedback controller, τhspc(t) = τfb(t)

3.3 Results

Below, we report on the performance of both the HSPC and FEL control
schemes for three experimental conditions: standard acquisition trials,
robustness (catch) trials in which the disturbance is cued but not delivered,
and generalization trials in which we provide both cued and non-cued
trials, and change the weight of the agent during training.

3.3.1 Acquisition

We start by analyzing the performance of the two adaptive control archi-
tectures in the acquisition of an APA trained in a trial-by-trial manner. We
use a simulated self-balancing system that at each trial receives an impact,
preceded by a distal cue by a fixed interval of 400 ms, and resulting in
a disturbance force (100 N during 300 ms). The force, applied to the
pendulum, produces an angular displacement that, in the naive system, is
uniquely counteracted by the reactive controller introducing oscillations
in the angular position (fig. 3.3-A, gray line). After learning, acquired
motor responses evoked by the two predictive stimuli (cue and collision)
substantially reduce the angular error (fig. 3.3-A, red and cyan). Note
that despite implementing different adaptive strategies, we could configure
both architectures to exhibit similar learning curves (fig. 3.3-B).
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Figure 3.3: Acquisition of adaptive postural adjustment. A. Mean an-
gular position during the disturbance rejection task for feedback-control
condition (gray - 10 trials), trained FEL architecture (red - trials 90-100)
and trained HSPC architecture (cyan - trials 90-100). Disturbance is deliv-
ered at t=0 (dashed line). B. Root mean square error (RMSE) in angular
position over trials for FEL (red) and HSPC (cyan) architectures normal-
ized by the maximum error in the naive system (feedback-control only). C.
Decomposition of the motor response driving behavior in FEL: cue-evoked
(gray), impact-evoked (solid black) and reactive (dashed black) responses
are integrated in a total motor command (red shaded area). D. Decomposi-
tion of the angular error driving the behavior of the feedback controller:
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the total error (shaded cyan area), obtained by summing the counterfactual
(solid black) and the current error (dashed black), is converted into a motor
response (green shaded area) by the feedback controller. Error and motor
response refer to different scales. E. Decomposition of the impact sensory
signal entering the feed-forward compensatory layer of HSPC: the total
impact signal (shaded cyan area) is obtained as the sum of the predicted
impact signal (black solid) and the prediction error (red dashed), which is
computed by subtracting the delayed prediction (black dashed) from the
actual impact signal (gray solid).

After learning, in FEL the reactive controller is only marginally en-
gaged as the errors in behavior that drove it initially are almost canceled
(electronic supplementary material, fig. S1a). Note that in this architecture,
only the cue-evoked command contributes to preparatory behavior (before
the collision) but both cue- and collision-evoked commands contribute to
the fast feed-forward compensation that takes place after the collision (fig.
3.3-C).

Conversely, in HSPC the proximal adaptive module that associates
the collision signal with inertial errors steers the feedback controller both
during anticipation and fast compensation (fig. 3.3-D). Still, after learn-
ing, the proximal module is fed with a mixture of actual and anticipated
collision signals, where the former is sensed and the latter provided by
the distal module. Importantly, the distal module predicts the collision
signal from the cue and issues an anticipated impact signal preceding the
actual impact by 100 ms (the extent of the anticipation, δd, is a design
parameter - see Methods) (fig. 3.3-E). Hence, the anticipatory part of the
response, despite being evoked only by the cue stimulus, results from a
cascade of predictions that involves both adaptive feed-forward modules
and the feedback controller.

In sum, despite the marked differences in the processing, both archi-
tectures converged to similar motor commands and behavior, indicating
that both motor anticipation- (FEL) and sensory prediction-based (HSPC)
strategies can be equally successful in acquiring APAs.
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3.3.2 Robustness

Next, we assess the reaction of both architectures to violations in the
sequence of predicted events that was learned during training. To that end,
after 100 acquisition trials, we run 50 trials within which we randomly
intersperse 10% catch trials in which we present the cue but omit the
disturbance. During catch trials, the agent initiates an anticipatory motor
response that later, due to the lack of disturbance, results in a performance
error [Lang and Bastian, 1999, Albert and Shadmehr, 2016, Witney et al.,
1999]. Here, we use such errors to quantify how responsive FEL and
HSPC are in recovering from erroneous predictions [Witney et al., 1999].

Prior to the expected impact time, both architectures introduce a slight
anticipatory angular error (fig. 3.4-A) by issuing the preparatory part
of the response (fig. 3.4-B) . However, once the impact fails to occur,
HSPC promptly corrects the initial error while in FEL the error keeps
increasing. In terms of performance, the error in a catch trial incurred by
HSPC (median of the RMSE) is approximately half of the error introduced
by FEL (0.3 versus 0.6 in normalized RMSE; fig. 3.4-C). The errors seen
in catch trials are the same ones observed at the onset of extinction training.
Both architectures greatly suppress these errors (also called after-effects)
after 50 extinction trials (fig. 3.4-C).

The reasons behind the difference in performance in catch trials are
the following: FEL reacts to the absence of the impact by omitting the
collision-evoked command, but maintains the whole cue-evoked command
even after the lack of the expected collision has shown it to be unneces-
sary. By contrast, HSPC rapidly aborts the (feed-forward) action once the
proximal module receives the SPE triggered by the missed collision (fig.
3.4-D).

In summary, the HSPC architecture outperforms the FEL in that, due
to the computation of sensory prediction errors, it can react on-line to
violations in the course of expected events (i.e. to SPEs).
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Figure 3.4: Robustness of the FEL and HSPC architectures. A. Mean
angular position of FEL (red) and HSPC (cyan) during catch (N=10 - solid)
and regular perturbed trials (N=10 - dashed). B. Mean motor response
during catch and regular perturbed trials. Color-code as in A. C. Root
mean square error (RMSE) in angular position during regular trained
perturbed trials (N=40) and catch trials (N=10). D. On-line prediction
error correction in HSPC: the prediction error (red dashed), obtained as the
difference between the delayed prediction (black dashed) and the actual
impact signal (gray solid) is subtracted from the erroneously anticipated
impact signal (black solid) and generates a total response (cyan area).

3.3.3 Generalization

In a final set of simulations, we test how both architectures respond to
changes in the plant dynamics and task contingencies. We run an additional
set of 60 trials after acquisition. During the first 10 extra trials, we measure
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the performance of the feed-forward compensatory layer in isolation,
omitting the cue. At trial 11, the plant is made heavier (+10% - light-
to-heavy condition; note a similar manipulation in behavioral postural
control studies [Li and Aruin, 2007]) and the agent receives additional
non-cued collisions (40 trials). Afterwards, we reintroduce the cue for 10
more trials. In a separate set of simulation, we train initially the heavier
agent and afterwards remove the weight (-10%-heavy-to-light condition).

In FEL, any change in the task decreases performance (removing
or reinstating the cue), irrespective of whether the plant has increased
or decreased its weight (fig. 3.5-A,C,E,F). In HSPC, the performance
deteriorates, albeit to a lesser extent, after removing the cue. However, once
the cue is reintroduced after having retrained the compensatory module,
we observe a gain in performance in both cases, greater when transitioning
to the lighter plant (fig. 3.5-B,D,E,F).

The difference in performance stems from the different ways in which
both architectures combine the two stimuli. FEL deals with the cue and
impact as independent stimuli. Initially, both contribute to the response, but
once the cue is removed a part of the response is removed as well, damaging
performance (electronic supplementary material, fig. S3a). Further training
makes FEL able to trigger appropriate compensatory responses just with
the proximal stimulus, but then, reinstating the cue superposes a motor
command partly redundant, damaging performance again (fig. 3.3-C).
Notably, if one would consider that cue and impact form a compound
stimulus in regular trials, one could explain the interference between the
cue and the impact stimuli with the Rescorla-Wagner model [Rescorla
et al., 1972]. On the contrary, in HSPC the distal module learns to predict
the impact from the cue, and uses that prediction to trigger (a part of) the
compensatory action in anticipation (electronic supplementary material,
fig. S3b). That implies that even after changing the properties of the
plant, anticipating an appropriate compensatory action can result in an
improvement in performance (fig. 3.3-D).

In summary, in face of perturbations to the plant dynamics or changes
in the task contingencies, a control strategy learning a cascade of sensory
predictions allows for better generalization than one that treats the different
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in angular position during light-to-heavy generalization phases for FEL
(red) and HSPC (cyan). ”Light plant” denotes the phase before plant
perturbation. ”Heavy plant” denotes the phase after plant perturbation. F.
Same description as E for heavy-to-light generalization.

3.4 Discussion

Even though it is clearly established that skilled motor behavior relies
on internal models, their nature is still under debate. The two prevailing
views are that internal models can be either inverse models, mapping
the desired sensory consequences into their required motor commands,
or forward models, mapping motor commands into their predicted con-
sequences. Here, we have challenged this dichotomy and advanced an
alternative proposal (HSPC) that reformulates anticipatory motor con-
trol as a sensory-sensory learning problem. On this view, the predicted
consequences of responses to (distal or proprioceptive) cues prescribe
action or motor commands (that are mediated - or realized - by reflexes).
This simplification and generalization of the ’standard model’ appeal to
active inference, with an emphasis on estimating and predicting states
of the world and the self. In order to test this hypothesis, we designed
two control architectures that adopted either a motor anticipation- or a
sensory prediction-based approach. We based the motor-anticipation archi-
tecture on the well-established FEL model [Kawato et al., 1987, Kawato
and Gomi, 1992, Gomi and Kawato, 1993] whereas HSPC provided the
sensory prediction-based architecture.

We compared both architectures in a simulated APA task [Lacquaniti
and Maioli, 1989, Lang and Bastian, 1999, Santos et al., 2010b]. Despite
differences in the processing, both architectures acquired an APA equally
well (fig. 3.3-A,B). However, as soon as we extended the basic APA
protocol with either the introduction of catch trials or by perturbing the
plant, the sensory prediction strategy outperformed motor anticipation.
Below, we will argue that the reasons for that superior performance are
grounded in two specific consequences of the sensory prediction strategy:
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its reliance on SPEs, and second, that HSPC affords a hierarchical pro-
cessing architecture that encapsulates learning at different levels. In other
words, in line with active inference, placing a hierarchical model on top of
reflexive sensorimotor control equips behavior with a context-sensitivity
and intentional aspects that are precluded in ’standard’ formulations.

3.4.1 Origin of the robustness and generalization capa-
bilities in HSPC

The hierarchical structure of the HSPC explains its superior generalization
ability. The FEL architecture has a flat structure as far as controlling
behavior is concerned: all modules send motor commands in parallel to
the plant. This means that after a perturbation of the plant, the output
of all modules has to be retrained to the new plant dynamics. In HSPC,
its hierarchical structure entails that all modules are only concerned with
driving and learning from the module immediately below in the hierarchy.
Hence, HSPC solves the control problem by partitioning it into two smaller
sub-problems: predicting the collision from the cue and predicting the
postural errors from the collision. As a consequence, changing the mass of
the agent only changes the sensory consequences of the collision, hence,
once a new feed-forward reaction to the collision is acquired, a gain in
performance can still be obtained by correctly anticipating the collision
(thereby, bringing the trained reaction forward in time).

On the other hand, SPEs enable the fast reaction to erroneous predic-
tions. As FEL only learns to react to stimuli, but not to predict them, it
cannot (at least naturally) incorporate SPEs. On the contrary, HSPC relies
on SPEs both for improving prediction accuracy and to preclude reaction
to predicted stimuli at the time of their actual occurrence [Miall et al.,
1993]. That is, SPEs are intrinsic to the design principle behind HSPC.
In catch trials, as no collision occurs, the prediction of the distal module
fails, generating a negative SPE that interrupts the ongoing response of
the proximal module initiated by the distal module, thereby enabling a
fast recovery (in addition to readjustment - learning - as the absence of the
collision may imply a lasting change in task contingencies).
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3.4.2 Environmental forward models and inverted sensory-
sensory forward models

The distal module in HSPC is a forward model of the environment that
solves the problem of predicting one stimulus (a collision) given another
stimulus (a cue); that is, a task contingency. In general, forward models of
the environment have been acknowledged [Miall and Wolpert, 1996], but
usually not considered specifically in the context of physiological motor
control except, recently, within the domain of active inference [Serrien
and Wiesendanger, 1999b,Friston, 2011a,Friston et al., 2010,Herreros and
Verschure, 2015]. However, the forward model in HSPC is not generically
predicting one stimulus from another; it is anticipating a stimulus with
the objective of driving a behavioral response that minimizes a defined
error. For that, it must take into account not only sensorimotor latencies
but also the dynamics of the plant (e.g. musculo-skeletal system). Hence,
the environmental forward model in HSPC affords action-aware sensory
predictions in that they are made having knowledge about the dynamics of
the action that they will drive. By contrast, standard forward models do
not require knowledge of the dynamics of the feedback action itself, as
they only need to be tuned to the afferent and efferent delays [Miall et al.,
1993].

On the other hand, the internal model dealing with the collision signal
acts as an inverse model. Even though it is supervised by a postural error
signal, its goal is not to learn to predict postural errors, but to steer its
downstream feedback controller to avoid these errors. We have earlier
called this approach counterfactual predictive control (CFPC) [Herreros
et al., 2016]. The goal of CFPC is acquiring counterfactual error signals
that, even though they do not code any forthcoming errors derived from
the interaction with the physical world, they are processed by a feedback
controller as if they were real errors. In practice, this leads the adaptive
model within the HSPC architecture to acquire an inverse model of the
closed-loop system that reflects jointly the dynamics of the plant and the
controller [Herreros et al., 2016]. That is, a model is said to be inverse
because it reverses a causal relationship: from the desired effects (i.e.
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avoiding errors in performance) to inferring the right causes (i.e. the motor
commands that will avoid those errors). The module processing proximal
events within HSPC shares the same goal as the standard inverse model
just mentioned. The only difference is that it outputs a predicted sensory
signal that signifies an error rather than a motor command. This signal
must be considered counterfactual. This demonstrates how a learning
process that depends on sensory errors (in contrast to motor errors) is not
automatically building a forward model (for another example, see [Tseng
et al., 2007]).

3.4.3 Related research in experimental psychology and
predictions of the HSPC hypothesis

Experimental APA protocols include standing human participants receiving
the impact of an object attached to a pendulum [Santos et al., 2010b, Mo-
hapatra et al., 2012]. As expected, those experiments show that faced
with the incoming pendulum, participants rely on distal sensing (vision)
to issue the anticipatory responses [Santos et al., 2010b, Mohapatra et al.,
2012], that is: no anticipatory responses were observed when participants
closed their eyes. Regarding the interplay between proprioceptive and
vestibular information, separate studies in compensatory postural control
have shown that humans with compromised proprioception display com-
pensatory responses delayed with respect to healthy controls [Allum et al.,
1998] as well as animals with pyridoxine-induced loss of peripheral sen-
sory efferents have delayed compensatory responses and increased postural
sway [Stapley et al., 2002]. This suggests that, despite some simplifica-
tions, the design of the task and the adaptive interplay between sensory
modalities and responses in our simulated APA task is in close agreement
with well-studied properties of biological control. We note, however, that
in humans and animals, anticipatory and compensatory strategies often
act synergistically across different sets of muscle synergies, reflecting
different demands (i.e. upper extremities respond with a higher degree
of anticipation compared to lower ones) [Iodice et al., 2015]. However,
those findings do not discriminate between the sensory prediction and
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motor-anticipation hypotheses. An exception comes from experiments
showing that altered proprioceptive information at the level of the Achilles
tendon delays anticipatory postural responses [Mohapatra et al., 2012].
Note that FEL would predict that decreasing the information in the propri-
oceptive channel would have no effect in the preparatory actions, which
are motor commands triggered by the visual stimulus. However, in the
HSPC hypothesis, anticipatory actions are elicited by generating propri-
oceptive predictions. Hence, one could expect that a manipulation that
alters the processing of real proprioceptive information would also affect
the mapping of predicted proprioception into action.

HSPC further predicts that in catch trials, subjects will correct erro-
neous anticipatory actions with a latency equal to the time needed to detect
SPEs. By contrast, as FEL makes no use of SPEs, it has no mechanism that
could detect and process such a sharp change in behavior at the expected
time of the disturbance. Note that errors observed in catch trials, or after-
effects, which provide a means to quantify learned motor responses, are a
hallmark of adaptive motor behavior. Hence, as HSPC greatly diminishes
those after-effects, it may seem that we are advancing a control scheme
whose performance is non-biological. However, this is not the case, first,
because HSPC reduces after-effects but it does not suppress them but
rather they are subject to extinction, or washout (fig. 3.4-A,C). Second,
HSPC curtails erroneous feed-forward responses as soon as SPEs can be
detected. Experimentally, the fast correction in catch trials that we demon-
strate with HSPC has also been observed using a grip-force modulation
paradigm where participants learned to anticipate an artificially delayed
(but self-generated) disturbance [Witney et al., 1999]. However, to the
best of our knowledge, this kind of catch trial has not been studied in the
context of the anticipatory control of balance. For an APA task as the one
we have modelled, providing catch trials will likely require a virtual reality
setup allowing to decouple the distal and proximal cues; that is, showing a
virtual looming object that in paired trials coincides with an actual object
hitting the participant but that in catch trials does not.

In addition, generalization of adaptive motor responses has been found
in limb [26,54] and postural control [Ahmed and Wolpert, 2009]. Subjects
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trained to catch a ball with one arm perform equally good when they switch
arm [Morton et al., 2001], a result that cannot be explained in terms of
inverse models (by definition, effector specific). Moreover, subjects that
learned to counter a force-field perturbation in a sitting position correctly
anticipated the postural disturbances that compensating for the force field
would introduce in an upright posture [Ahmed and Wolpert, 2009]. This
result argues in favor of an architecture composed of a forward internal
representation of the dynamics of the environment coupled with an internal
model of the postural dynamics, where the former is effector independent
and the latter is already fine-tuned by experience; a proposal consistent
with the hierarchical structure of HSPC.

Put together, these three sources of evidence (generalization of ac-
quired responses across limbs and postures, rapid reversal of the erroneous
response in catch trials and anticipatory responses affected by altered
proprioception) support a hierarchical control architecture that acquires
forward models of the environment, exploits SPEs and shows a dependency
between anticipatory and compensatory responses. All these features are
embodied in HSPC but are difficult to reconcile with an inverse model-
based architecture such as FEL.

Finally, APAs are also observed in response to voluntary actions that
trigger self-generated perturbations (e.g. extending an arm, loading a
weight) [MacKinnon et al., 2007, Cordo and Nashner, 1982]. Even though
we focused on externally generated perturbations, HSPC could account for
self-initiated perturbations by replacing the distal sensory input with an
internally generated signal encoding the initiation of a motor plan [Ruck
et al., 2016], which would trigger a similar cascade of sensory predictions.

3.4.4 Implications for cerebellar physiology

HSPC advances a hypothesis of cerebellar function in the domain of antic-
ipatory control. It has its origins in a model of the cerebellum [Herreros
et al., 2016, Herreros and Verschure, 2013a] as is the case for FEL [16]. In
both architectures, adaptive modules are implemented as adaptive filters,
a widely used computational model of cerebellar function [Dean et al.,
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2010a,Fujita, 1982]. Moreover, here we have demonstrated HSPC in a task
that depends on the cerebellum [Kolb et al., 2004, Timmann and Horak,
2001a, Diedrichsen et al., 2005]. A distinctive trait of our implementation
of the cerebellar algorithm is the use of a delayed eligibility trace (Methods
- equation (2.1)) [Herreros and Verschure, 2013a]. Taking into account that
in the cerebellum contextual information reaches Purkinje cells through
the parallel fibers whereas specific error signals arrive via the climbing
fibers, in terms of cerebellar physiology, the eligibility trace mechanism
predicts a plasticity rule in the synapses between parallel fibers to Purkinje
cells that modifies synaptic weights whenever activity in the parallel fibers
precedes climbing fiber input by a certain time interval. Both in HSPC
and FEL, we set that interval according to the behavioral constraints of
the agent/task [Herreros et al., 2016], a requirement that seems to apply
also in the cerebellum, where the timing of the plasticity rule of cerebellar
Purkinje cells is matched to behavioral function [Suvrathan et al., 2016].

From a system level perspective, our proposal emphasizes the com-
putations that could be achieved by organizing cerebellar modules in a
hierarchical fashion. At the level of anatomy, such a functional hierar-
chy would require cerebellar microcircuits to be serially connected. That
is, the output from one microcircuit could provide an input to the next
one (or ones) in the hierarchy. This could be realized as non-reciprocal
nucleo-cortical connections by which a particular area of the cerebellar
nucleus could feed a cerebellar cortical microzone projecting to a separate
region of the cerebellar nucleus. This arrangement is in agreement with
the descriptions of the organization of the nucleo-cortical projections be-
tween the nucleus interpositus posterior (NIP) and the nucleus interpositus
anterior (NIA) already present in the literature [Apps and Garwicz, 2005].
Indeed, it has been shown that a proportion of nucleo-cortical projections
originating in NIP target NIA, whereas the opposite is not the case. This
would imply that activity on NIP could modulate, after one step of cere-
bellar cortical processing, activity in the NIA. On a more speculative note,
from the perspective of HSPC, we would expect NIA to be more directly
involved in motor control tasks (i.e. targeting motor nuclei) [Monzée and
Smith, 2004] whereas NIP would be more linked to sensory processing
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areas. Indeed, tracing studies showed that NIP sends its outputs to the
ventro-lateral and ventro-posterior nuclei of the thalamus [Angaut, 1970],
main relays to somatosensory cortical areas crucial for the computation
of SPEs [Mathis et al., 2017] and to frontal cognitive areas [Lu et al.,
2012, Ramnani, 2006a].

3.4.5 Summary
We have shown how a hierarchical control architecture based on sensory
predictions enables the acquisition of responsive and generalizable APAs
better than one based on the traditional view building on sensory-motor
associations. In doing so, we went beyond the standard inverse-forward
model dichotomy by showing how (the inversion of) forward models that
acquire sensory-sensory associations can contribute to motor behavior with,
what we have called, action-aware sensory predictions. Our results provide
a validation of key principles behind the active inference framework of
motor behavior and their realization in the DAC theory. In future work,
we shall study how this anatomically constrained theory of anticipatory
motor control could be extended to address the questions of optimality
that arise when one takes effort-error trade-offs or the modulation of task-
irrelevant versus task-relevant variability into account [Todorov and Jordan,
2002]. At this point, however, we expect the HSPC architecture to allow
for the advancement of our understanding of the mechanisms underlying
physiological anticipatory motor control, which we propose can now be
treated in a framework related to active inference, while also contributing
to the development of robust control architectures for artificial systems.
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Part III
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Chapter 4

DELIBERATE CONTROL OF
ACTION IN
HUMAN MEDIAL FRONTAL
CORTEX

In this chapter we extend the notion of prediction violation from the
previous chapters by introducing the notion of goal, that is, we focus on
the type of violation that demands not just to halt behavior, but to switch
to a different behavioral objective. The aim is to elucidate what cortical
area and what features of the neural activity encode the control signal
promoting the switch from automatic to deliberate control within a human
intracranial EEG setup. The task, based on the standard serial reaction time
task, requires the subjects to perform an habitual (feed-forward) sequence
of button presses, occasionally interrupted by the appearance of a cue
that requires them to press an alternative, un-cued, key. We find that
medial frontal areas (SMAs) are involved in switching from automatic to
deliberate control. In addition, we suggest that phase alignment of the
oscillatory frequencies in the theta band, the synchronization with temporal
cortices and the coupling with higher frequencies (gamma) contributes to
explain behavioral performance. Altogether, these results may suggest that
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frontal theta oscillations could implement an actual control signal through
which executive and memory areas retrieve and execute goal-oriented
actions.

This chapter is based on:
Maffei, G., Puigbo, J. Y., Santos-Pata, D., Zucca, R., Principe, A., Roc-

camora, R., Conesa, G., and Verschure, P. (2018). Theta phase mediates
deliberate action switch in human SMAs. (in preparation)

4.1 Introduction

The ability to deliberately overwrite ongoing automatic actions as a re-
sponse to contextual changes is a necessary feature of animal behavior,
with important implications for survival. The Supplementary Motor Com-
plex (SMC), in the medial frontal cortex, is thought to mediate the switch
from automatic to deliberate control when a detected conflict between
current and expected contingencies requires a change in the ongoing motor
plans [Rushworth and Hadland, 2002] [Hikosaka 2004].

The hypothesis that SMC could work as a neural controller that or-
chestrates automatic and deliberate processes [Hikosaka and Isoda, 2010a]
requires this area to accomplish the following functions: (a) detect a
sudden contextual change, (b) inhibit ongoing motor routines, and (c)
facilitate the execution of alternative ”deliberate” actions. As an additional
requirement, we argue that the SMC should also be able to access internal
representations (i.e. memory) to inform behavioral choices in the case
when environmental cues do not indicate what alternative action should be
taken.

Frontal oscillations in the theta range (4-8 Hz) have been previously
reported to mediate cognitive control [Voytek et al., 2015] [Helfrich and
Knight, 2016] suggesting that dynamics within this restricted set of fre-
quencies may reflect a control signal that meets the requirements postulated
by theoretical models. In particular, it has been shown that theta oscillatory
phase mediates the communication between parietal and medial frontal
cortical areas during actions switch in primates [Phillips et al., 2014], a
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mechanism potentially necessary to detect sudden contextual changes. In
addition, a number of studies have implicated the power of theta oscil-
lations in inhibitory control. For example, multiple human EEG studies
have shown a positive relationship between theta power and response time
during high-conflict trials, suggesting an implication of this frequency
band (often termed ’frontal theta’) in the inhibiting rapid (automatic) re-
sponses and acting as a break for the motor system both prospectively and
retrospectively (i.e. post-error slowing) [Cavanagh and Frank, 2014].

Interestingly, however, a neural signature in SMC, which reflects a
control signal that facilitates action during deliberate action switch, has
remained elusive. This is a pressing issue for the study of the SMC since it
renders current interpretations of its functions, especially in humans, theo-
retically appealing but experimentally incomplete. A further experimental
limitation that restricts the interpretation of the role of SMC is the poor
characterization of the functional network that underlies deliberate actions
switch [Nachev et al., 2008]. For example, it remains unclear what are
the areas involved in this behavior during situations where the alternative
objective is not explicitly cued and it requires to be internally retrieved.

In this study, we aim at identifying the neural features that reflect
a facilitatory control signal of action switching in the human SMA and
to characterize the functional network involved in this behavior. Three
subjects implanted with intra-cranial electrodes in the medial frontal cortex
underwent a variation of the Serial Reaction Time Task (SRTT) [Nissen and
Bullemer, 1987], a paradigm that requires the execution of a sequence of
repetitive visually-guided key-presses, which is progressively automated.
In a small subset of trials, the automatic sequence was unpredictably
interrupted by the appearance of a cue (switch trials). During switch trials,
subjects were required to interrupt the ongoing action sequence and press
an alternative un-cued key.

Consistently with previous reports [Isoda and Hikosaka, 2007,Hikosaka
and Isoda, 2010b], we found that the SMC is involved in the control of
action during switch trials but not during the automatic ones, with the time
to peak of the evoked potential (ERP) being predictive of the response time.
However, once temporal differences between ERPs were filtered out by
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aligning the trials to an endogenous (ERP peak), rather than an exogenous
event (stimulus presentation) [Voytek et al., 2015], our analysis revealed
no significant difference in neither peak amplitude nor oscillatory power
between fast and slow trials. In contrast, we found a significantly higher
phase alignment in the theta band (4-9 Hz) in fast trials compared to slow
trials. Further, single trial coherence analysis [Hipp et al., 2011, Jarvis
and Mitra, 2001] confirm this negative relationship and propose phase
dynamics as a reliable predictor of prompt response time. In addition, we
report a significant increase of theta-gamma phase-amplitude coupling
associated to faster responses suggesting a modulatory effect of theta
rhythms on local population activity. Finally, to characterize the functional
network underlying deliberate action switch we computed inter-area phase
coherence during switch trials. This analysis revealed a higher synchro-
nization between medial frontal cortex and temporal lobe during fast trials
compared to low trials and suggests a critical contribution of memory to
the retrieval and execution of appropriate alternative responses.

Altogether, our results confirm the role of human SMAs in automatic
to deliberate action switch and support the involvement of the oscillatory
dynamics in cognitive control. Differently from previous results, however,
here we argue in favor of a direct implication of phase dynamics of the theta
band in facilitating the execution of deliberate actions, a novel observation
which supports theoretical accounts of SMC functions. In summary, we
provide a novel evidence for the role of oscillatory dynamics in action
execution in the human brain. This outcome supports a theoretical model
of SMA as a controller in charge for, not just inhibiting concurrent motor
plans, but also facilitating deliberate execution and suggests a functional
pathway underlying behavioral performance that involves executive and
memory network in the control of goal-oriented action.
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4.2 Results

4.2.1 Behavioral results

In order to explore the neural dynamics underlying behavioral perfor-
mance in deliberate action switch, three human subjects implanted with
intracranial electrodes (iEEG) in the supplementary motor areas (SMAs),
underwent a variation of the serial reaction time task [Nissen and Bulle-
mer, 1987] (Lee 2004) (fig. 4.1-A). The first phase of the task (trial 0-60)
required the participants to learn to perform a repetitive sequence of key-
presses (N=5) on a touch-screen keyboard by following the presentation
of a visual cue (green) until they reached automaticity. Automaticity was
defined as the decrease of inter-key-intervals (IKI) to asymptotic value,
indicating that the subject effectively internalized the motor sequence and
relied less on visual feedback [Nissen and Bullemer, 1987] (fig. 4.1-C). In
addition we observed a significant decrease in IKI mean time (fig. 4.1-D)(
t-test ind: S1, t = 5.30, p < 10−05; S2, t = 5.71, p < 10−05; S3, t = 4.08,
p < 10−03) and IKI variability (fig. 4.1-E) ( t-test ind: S1, t = 2.21,
p = 0.04; S2, t = 2.45, p = 0.02; S3, t = 3.28, p = 0.004) by the end of
the learning phase, suggesting that the subjects performed movements in a
more stereotyped (i.e. automatic) manner [Sakai et al., 2004]. In the sec-
ond phase of the task (trial 60-565), subjects were required to perform the
same sequence of visually guided key presses but they were unpredictably
interrupted by an appearance of a switch cue (red) at pseudo-random inter-
vals (7± 2). When the switch cue appeared, subjects had to interrupt the
ongoing automatic motor sequence and press an uncued key (instruction
given at the beginning of the experiment) (switch trials). Subjects were
able to successfully interrupt the ongoing action sequence during most
of the switch trials, exceeding the key-press after cue presentation only
in few cases (S1, N=7; S2, N=11; S3, N=13). Nevertheless, we report a
systematic increase in response time during switch key-presses compared
to automatic ones (fig. 4.1-F) (t-test ind: S1, t = −39.59, p < 10−120;
S2, t = −32.96, p < 10−106; S3, t = −71.56, p < 10−256) and large
variability in switch response times (calculated from switch cue
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Figure 4.1: Setup and behavioral results. a. Serial reaction time task.
During habitual trials subjects are required to perform a series of visually
guided key presses (green key) following a pseudo-randomly generated
sequence. During switch trials subjects are presented with a switch cue
(red key) appearing at a random moment of the sequence requiring them
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to interrupt the ongoing motor sequence and press an uncued key. b.
Projection of relevant contact points locations over MNI atlas for each
subject. c. Sequence time evolution of the performed sequence during
training for each subject. d. Mean inter-key-interval (IKI) during early
(trial 1-10) and late (trial 50-60) phases of the training for each subject.
Errorbars indicate S.E.M.e. Inter-key-interval (IKI) standard deviation
during early (trial 1-10) and late (trial 50-60) phases of the training for
each subject. Errorbars indicate S.E.M. f. Response time of habitual and
switch trials for each patient. Errorbars indicate S.E.M. g. Normalized
distribution of response time during switch trials for each subject.

presentation to uncued key press), varying from approx 600 ms to 1300
ms (fig. 4.1-G). Such variability in performance cannot be fully explained
either by a consistent learning effect across subjects or by the position of
the switch cue within the sequence (showing a significant effect only in
one subject), and it may, therefore, imply different characteristics of the
neural mechanism underlying switch action control.

4.2.2 SMA is involved in switch but not automatic action

Based on previous literature [Rushworth and Hadland, 2002, Isoda and
Tanji, 2004, Nachev et al., 2008], we hypothesized that frontal circuits and
in particular SMAs could be involved in the switch from automatic to the
deliberate control of action. We confirm this hypothesis by performing
a time domain whole-brain classification on the available electrodes for
each patient and show that medial-frontal cortex plays an active role in
this task, being the features of the neural signal predictive of the type of
trial (automatic vs switch) (fig. 4.2-A). Following this step, we restrict
our analysis to the relevant contact points in the SMAs. Time domain
analysis of the neural signal reveals a significant increase of LFP activity
locked to the switch action during switch trials, but not during automatic
trials (T-statistics cluster permutation (N = 1000) analysis: S1, t = 34.09,
p < 10−4; S2, t = 21.20, p < 10−4; S3, t = 29.69, p < 10−4) (fig. 4.2-B).
This suggests that SMAs are not generally involved in the control of
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Figure 4.2: Neural response in SMA.a. Classifier prediction accuracy
of switch trials across recorder areas. Labels indicate the mapping to
Brodmann atlas for each contact point b. Neural response in SMA dur-
ing switch (green) and habitual (black) actions aligned to key-press (red
dashed) . Mean and SEM of subjects. c. Relationship between response
time and erp time-to-peak (from cue presentation) during switch trials for
each patient. Green line indicates the linear fit of the data. d. ERP in
SMA during fast and slow response times (trial sorted by the median of
the distribution) aligned to ERP peak (red dashed). Mean and SEM of
subjects.
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over-trained sequential motor responses, but might mediate the execution
of those actions that require higher cognitive control [Rushworth and
Hadland, 2002]. Further trial-by-trial analysis supports the behavioral
relevance of the detected response, showing a positive correlation between
the single trial time-to-peak from stimulus presentation and the relative
response time (Person correlation coefficient: S1, R = 0.406, p < 0.01;
S2, R = 0.698, p < 10−8, S3, R = 0.456, p < 10−5) (fig. 4.2-D).
In contrast, peak amplitude showed no significant effect on response
times (Person correlation coefficient: S1, R = 0.118, p = 0.448; S2,
R = 0.265, p = 0.074, S3, R = 0.161, p = 0.174). Altogether, these
results suggest the idea that SMAs are recruited principally for cognitive
control of behavior and not while performing non-deliberative actions.
The behavioral correlation with time to peak and not with peak amplitude
further suggest an involvement of phase and not power in the spectral
domain.

4.2.3 Theta phase aligns in faster actions

We hypothesized that oscillatory dynamics in the theta range could consti-
tute a neural signature of cognitive control by facilitating action execution.
Previous reports have suggested a strong implication of phase dynamics
in cognitive control [Voytek et al., 2015, Phillips et al., 2014, Helfrich and
Knight, 2016] suggesting the hypothesis that stereotypical phase profiles
could underlie deliberate action modulation. To detect stereotypical phase
patterns underlying trial differences in response time, we sort the switch
trials for each subject into two classes of equal size (FAST and SLOW), by
splitting the RT distributions by their median value. Further, to perform a
comparison of trials with different temporal profiles we suppress inter-trial
temporal differences by locking individual trials to an endogenous event
(ERP peak) rather than to an exogenous one [Voytek et al., 2010]. In
order to detect differences in phase alignment predictive of response time,
we calculated the PLV for the separate classes of trials for each patient
and computed the normalized phase coherence difference following the
method described in [Maris et al., 2007] (see Methods).
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Phase coherence analysis revealed greater phase alignment in fast trials
compared to slow trials in the 5-7 Hz range for all subjects (Z-statistics
cluster permutation (N = 1000) analysis: S1, z > 2.58, p = 0.031;
S2, z > 2.58, p = 0.038; S3, z > 2.58, p = 0.042) (fig. 4.3-A,B).
Note that a significant increase of phase coherence was detected earlier
in S1 (−0.4s) and later for S2 (−0.1s) and S3 (0.1s), possibly reflecting
individual differences in implant locations (more frontal for S1).

It has been argued that phase coherence may be induced by increases in
the power of the oscillations, constituting, therefore, an evoked rather than
a real phase alignment [Lopour et al., 2013]. We controlled for this possi-
bility by performing a similar analysis on the normalized power spectrum
(fig.4.3-C). Cluster-based permutation statistical test showed no signifi-
cant differences in power between trial classes. If theta phase alignment
modulated action execution, a significant relationship between RTs and
PLV should be found over a continuous range of RTs. To answer this
question, we computed single-trial phase coherence (STPC) by deducting
the contribution of individual trials to the overall coherence value follow-
ing a jack-knife procedure based on [Hipp et al., 2011, Jarvis and Mitra,
2001]. We restricted this analysis to the significant temporal windows in
the 5-7 Hz range emerged from the class comparison, and related cluster
average STPC of each trial with the respective RT. We find a significant
relationship between STPC and RTs for all subjects (Person correlation
coefficient: S1, R = −0.399, p = 0.008; S2, R = −0.331, p = 0.027,
S3, R = −0.340, p = 0.003), where STPC decreases with the increase of
response time (fig. 4.4-A). These results support a direct implication of
theta phase in the modulation of action parameters under cognitive control
demands.

[ht]
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Figure 4.3: Phase alignment differences in fast vs slow trials. A. Phase
alignment (inter-trial phase coherence) in fast (left) and slow (center)
trials aligned to the peak of the ERP (black dashed) for each subject and
normalized difference between trials (right). Red circle indicates p < 0.05.
B. Mean phase alignment in fast (left) and slow (right) trials aligned to the
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peak of the ERP (black dashed) and mean normalized difference (right). C.
Mean normalized power in fast (left) and slow (right) trials aligned to the
peak of the ERP (black dashed) and mean normalized difference (right).

4.2.4 Cross-frequency coupling predicts faster movements

We have suggested that theta phase alignment critically contributes to
deliberate action execution, however, the physiological link needed to
support that theta phase dynamics modulate behavioral performance via
phase-dependent neural activity is still unclear. We sought to answer this
question by determining the modulatory effect of theta phase on local
high-frequency activity (Bastos 2018) with the hypothesis that higher
modulation could support faster actions, an analysis for which a measure
of cross-frequency Phase-Amplitude Coupling (PAC) is particularly suited.
We restricted our analysis to the temporal window where a significant in-
crease in phase alignment was detected, and, for each subject, we obtained
one surrogate signal for fast and slow trials by concatenating the respec-
tive single trial windows, so to achieve the temporal resolution necessary
for this type of analysis. Further, we computed PAC values (using the
GLM approach [Penny et al., 2008] ) between 5-7 Hz phase (modulatory
frequency) and the amplitude of higher frequencies (10-100 Hz in steps
of 2 Hz, modulated frequency), and obtained the difference between the
two classes. This analysis highlighted an increased modulatory effect of
the theta oscillatory phase on the amplitude of frequency bands in the
gamma range (30-80 Hz), consistent across patients (Z-statistics permu-
tation (N = 1000) analysis: S1, z > 2.58, p = 0.027; S2, z > 2.58,
p = 0.034; S3, z > 2.58, p = 0.029) (fig. 4.4-B,C). In addition, a signifi-
cant modulatory effect was found in the beta range (20 Hz) for one subject
(S1, z > 2.58, p = 0.019).

This result supports a neurophysiological link between theta phase
coherence and deliberate control of the action by means of modulation of
high-frequency activity, often interpreted as a correlate of local population
activity (Bastos 2018).
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4.2.5 SMA synchronizes with Medial Temporal lobe in
fast trials

Whereas high-frequency amplitude may reflect local population activity,
low-frequency oscillations could provide a mechanism for long-range
synchronization between different neural populations [Hyafil et al., 2015,
Fries, 2015]. The phase profile in the theta band emerged from the previous
analysis could, therefore, represent a signature of a communication channel
between the medial frontal cortex and the network of brain regions that are
functionally involved in deliberate action switch. In particular, one of the
distinctive features of our task is the absence of an explicit cueing on what
action should be taken upon switch stimulus presentation and requires the
subjects to retrieve this instruction from memory. It is, therefore, possible
that the SMC could rely on memory areas in order to facilitate the retrieval
of the appropriate action to be performed. We tested this hypothesis in
two of the three patients (S1, S2) that had implants in the temporal lobe
(TL), an area critical for the maintenance of working memory. For this,
we computed inter-area phase synchrony between the contact points in
the SMC and those in the TL during switch trials after having aligned the
two sets of signals to the ERP event. Interestingly, our analysis reveals
synchronization between SMA and TL in the theta range, being synchrony
significantly higher in fast trials compared to slow trials (fig. 4.4-D) (Z-
statistics permutation (N = 1000) analysis: S1, z > 1.97, p < 0.01;
S2, z > 1.97, p < 0.01). The subset of frequency in theta is consistent
with those emerged from the inter-trial phase analysis within each patient,
however, the peak of synchrony between areas follows the phase reset
in the SMC. This result supports our hypothesis that deliberate action
switch could involve a network of multiple regions where SMC and TM
transiently couple to facilitate faster retrieval of a ”deliberate” command.

[ht]
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Figure 4.4: Single trial phase coherence and phase-amplitude coupling
during switch trials. a. Relationship between Single Trial Coherence
(STC) (mean of significant clusters from class comparison) and trial re-
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sponse time during switch trials for each patient. Green line indicates the
linear fit of the data. b. Phase Amplitude Coupling (PAC) between theta
(5-7 Hz) phase and the amplitude of higher frequency bands expressed
as the difference between fast and slow trials. Green solid area indicates
p < 0.05. c. Distribution of gamma band amplitude (selected from statisti-
cally significant regions) over the phase of theta during fast (left) and slow
(right) trials for each subject. d. Phase synchrony between SMC and TL
(inter-area phase coherence) in fast (left) and slow (center) trials aligned
to the peak of the ERP (black dashed) for each subject and normalized
difference between trials (right). Red circle indicates p < 0.01.

4.3 Discussion

Switching from automatic to goal-oriented behavior according to con-
textual changes is a key aspect of human cognitive control. Previous
studies have supported the role of the medial frontal cortex in orches-
trating between these two modes [Nachev et al., 2008, Passingham et al.,
2010, Hikosaka and Isoda, 2010a]. The mechanisms underlying the abil-
ity to switch between them, however, are not fully understood. Here we
attempted to elucidate the mechanism through which the human SMC
facilitates the execution of deliberate actions in a human intracranial setup
using a variation of the Serial Reaction Time Task (SRTT).

The serial reaction time task [Nissen and Bullemer, 1987] tests the
gradual shift from explicit to implicit processes in the control of action
during the production of a repetitive sequence of key presses. Explicit
processes drive action on the basis of sensory feedback, such as a cue indi-
cating the key to be pressed, whereas implicit processes act in anticipation
on the basis of a prediction encoding the position of the next cue [Moi-
sello et al., 2009, Robertson, 2007, Keele et al., 2003]. The progressive
shift from explicit feedback processes to implicit feed-forward control is
measured by the gradual decrease of the time to press the next key in the
sequence. Once the sequence is learned, the movement is faster and more
stereotyped as an indicator of habituation [Sakai et al., 2004]. Consistently
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with previous results, in the training phase of our task, we observed a
progressive and asymptotic decrease of total sequence production time,
together with faster and more stereotyped IKIs in the late trials compared
to initial ones, indicating that subjects correctly learned the motor sequence
and relied less on explicit control. In our design, however, we extended the
SRTT and introduced a switch cue that signaled a change of context and
required the subjects to execute an alternative uncued key-press. We found
a significant increase in execution time between a habitual and a switch
key-press, which suggests that this manipulation induced a sudden change
from automatic to controlled processes [Isoda and Hikosaka, 2007,Nachev
et al., 2005, Crone et al., 2006].

From a theoretical perspective, SMC could be in charge of facilitating
controlled actions by inhibiting ongoing behavior upon a change of context
[Hikosaka and Isoda, 2010a]. In particular [Isoda and Hikosaka, 2007]
showed a lateralized increase in the firing rate of primate supplementary
eye field neurons that accounted for successful performance exclusively
during switch but not habitual actions, suggesting an involvement of the
SMC in the control of deliberate movements.

Similarly, we have shown that in humans an increase in the LFP am-
plitude in the medial part of Broadman area 6 could successfully predict
whether the action was performed in a controlled or automatic way, sup-
porting the role of human SMC in the deliberate action switch. Due to
limitations of our experimental setup, however, we could not test the
lateralization of this response, and therefore we cannot support its limb
specificity. Nevertheless, the relevance of this neural event for behavior
and its link to motor control was supported by the strong relationship be-
tween the single trial time to peak and the switch key-press time, whereas
the lag from the peak to movement execution was relatively stereotyped
suggesting little interference between this neural signature and action.

Critically, once the individual trials were aligned to the peak of the
ERP, we failed to encounter a reliable predictor of the deliberate perfor-
mance in the amplitude of the response. This is at odds with previous
reports from human EEG showing a direct link between the amplitude
of the P3 signature in the frontal areas and reaction times, where greater
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amplitude predicts faster responses [Ramchurn et al., 2014, Delorme et al.,
2007]. This difference may be due to the intrinsic differences between
EEG and intra-cranial methods, as the former suffers artifacts due to the
scalp diffusion whereas the latter provides a direct recording of the neural
activity from the neural tissue. The observation that amplitude of the
evoked response did not relate with the response time suggested that the
mechanisms underlying action switch could be encoded by other features
of the neural signal such as oscillatory dynamics.

An important issue for neuroscience is to determine the functional role
of oscillations in the human brain [Fries, 2015,Helfrich and Knight, 2016].
Importantly, we have shown that the phase coherence of the neural activity
before deliberate action execution could predict the response time of switch
trials. In particular, we found that the oscillations in the theta range were
more aligned in fast than slow trials. From a methodological perspective,
this result emerged by aligning the neural signals to an endogenous event
(ERP peak) rather than an exogenous one and remarks the necessity to
take into account the timings of internal neural dynamics, instead of
artificially imposed ones, to uncover otherwise hidden phenomena [Voytek
et al., 2015]. In addition, the single trial analysis revealed a negative
relationship between ITPC and behavioral performance precluded to group
average analysis [Cohen and Cavanagh, 2011], suggesting a direct effect
of oscillatory phase on behavior.

Overall, these observations suggest that deliberate action switch in
the human brain could be facilitated by a low-frequency phase code. The
notion that phase-coding could represent an operational mode of the brain
is supported by numerous experimental [Buzsáki and Draguhn, 2004, En-
gel et al., 2001] and theoretical [Fries, 2015, Lisman and Jensen, 2013]
accounts. In particular, the phase of low-frequency oscillations has been
linked to memory encoding processes [Siegel et al., 2009, Sweeney-Reed
et al., 2014], attentional [Voloh et al., 2015, Voytek et al., 2010] and execu-
tive functions [Voytek et al., 2015,Helfrich and Knight, 2016]. Few reports
have linked phase coding to behavioral performance, as in [Szczepanski
et al., 2014] where the strength of PAC in frontal and parietal regions
correlated with reaction times in an attentional task.
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However, whether a phase coding scheme also underlies motor func-
tions is still an open question. Here, we support the view that theta
oscillations could be involved in controlling behavior under the demands
of executive functions in motor areas. Similar to what observed in [Voloh
et al., 2015] phase resets could be a signature of local neural populations
aligning spatiotemporal dynamics in a task-relevant manner to promote
prompt action execution, where greater synchrony translates to a faster en-
coding of a command to downstream areas (i.e. motor cortex) [Ohara et al.,
2001]. An observation further supported in our data by the greater modu-
latory effect of theta phase on the amplitude of high-frequency oscillations
during fast compared to slow trials.

In addition, phase alignment could also represent a mechanism through
which the functional brain networks involved in executive functions com-
municate to successfully modulate behavior [Hyafil et al., 2015]. We
support this hypothesis by showing that the SMC synchronizes in the theta
range with the temporal lobe. Here the peak of synchronization followed
the local theta phase reset in the SMC and, crucially, it was significantly
related to the behavioral performance, with faster trials showing higher
synchronization than slower trials. This pattern of coherent activity be-
tween these areas could reflect a mechanism through which the medial
frontal cortex probes the memory system in the retrieval of the appropriate
behavioral pattern to be executed in a situation when alternative behavioral
objectives are not explicitly cued (i.e. uncued key).

It has been suggested that executive functions rely on frontal working-
memory systems (i.e. DLPFC) for the maintenance of relevant contextual
information and the rules that should drive behavior [Koechlin et al., 2003].
Although the involvement of prefrontal memory networks in deliberate
action execution is likely, the temporal lobe may also give an important
contribution for long-term encoding and retrieval of elements when at-
tention is diverted or during tasks with long delays [Jeneson and Squire,
2012,Ranganath and Blumenfeld, 2005]. This might perhaps be the case in
our design, where switch trials are separated by a number of seconds and
the rule has to be retrieved at every trial. This observation is in agreement
with previous results that suggest synchronous activity between tempo-

158



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 159 — #181

ral and frontal areas during a decision-making task in the presence of a
memory-guided contextual rule, despite that this activity pattern does not
predict performance [Guitart-Masip et al., 2013].

This result extends previous reports that suggested a role of theta
frequency phase as an inter-regional communication mechanism during
cognitive tasks. On the one hand, this modulation may mediate the in-
teraction between MFC and the sensory areas such as the Parietal cortex
signaling attentional demands. For example, [Phillips et al., 2014] reported
greater theta synchronization between SMA and Parietal cortex in mon-
keys during deliberate action switch, even though no significant interaction
with the behavioral performance was found. On the other hand, theta syn-
chrony and theta-gamma CFC code have been found as a signature of the
hierarchical control from pre-frontal areas over the motor system [Voytek
et al., 2015]. Altogether, this and the previous results draw a scenario
where executive functions are not the hallmark of one brain region, but
instead, they involve a larger brain network of sensory, memory, cognitive
and motor regions.

Importantly, it has been suggested that medial-frontal theta oscillations
may also mediate inhibitory control by promoting action-slowing during
situations of conflict and error [Cavanagh and Frank, 2014]. In particular,
human EEG studies testing interference tasks reported increased power in
the theta range during high-conflict trials to correlate with an increase in
response time perspectively and retrospectively (i.e. post-error slowing)
[Cohen and Cavanagh, 2011,Cavanagh et al., 2010,Narayanan et al., 2013].
Even though we did not explicitly test for this aspect within our paradigm,
we cannot confirm the role of theta as a signature of inhibition for two
reasons. Firstly, contrasting with the ’frontal theta’ interpretation, our
analysis did not reveal any distinctive role of the oscillatory power of this
frequency band. In addition, theta oscillatory phase alignment was found
to promote fast action rather than increasing the response time. Following
these observations, we propose that theta oscillations may have different
functional roles captured by different features of the neural code, where
power may locally encode a general conflict signal whereas phase may
serve as a long-range communication channel that promotes fast executive
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control [Cohen, 2014b].
In conclusion, we propose an account of the role of human SMA in

switching from automatic to controlled processes facilitating deliberate
action execution. Automatic processes could be implemented in motor
cortical and subcortical systems such as the motor cortex and the cerebel-
lum [Sakai et al., 2002]. SMA, in turn, could be involved in monitoring
action and mediating deliberate processes through a phase and CFC coding
that, by integrating memory retrieval, sensory signals [Phillips et al., 2014]
and goal-directed control [Voytek et al., 2010], could halt the ongoing
behavior through synchronization with the sub-thalamic nucleus via the
hyper-direct pathway [Zavala et al., 2016, Isoda and Tanji, 2004] and over-
write automatic actions with controlled ones in the motor cortex [Ohara
et al., 2001].

4.4 Methods

4.4.1 Data collection
Data were collected from three right-handed subjects with intractable
epilepsy, temporarily implanted with intracranial electrodes (iEEG) as a
part of a pre-operation procedure to localize the seizure focus. Electrode
placement was determined by the surgeons based on the clinical need
of each patient. Data were recorded at the Epilepsy Monitoring Unit
of the Hospital del Mar, Barcelona, Spain. All subjects provided the
informed consent to participate in the study in accordance with the ethical
committee of the Pompeu Fabra University as well as Hospital del Mar.
All iEEG recordings were performed using a standard clinical EEG system
(XLTEK, subsidiary of Natus Medical) with a 500 Hz sampling rate. A
uni- or bilateral implantation was performed using 12 to 16 intracerebral
electrodes (Dixi MÃ c©dical, BesanÃ§on, France; diameter: 0.8 mm; 5 to
15 contacts, 2 mm long, 1.5 mm apart) that were stereotactically inserted
using robotic guidance (ROSA, Medtech Surgical, Inc).

To identify the anatomical position of the electrode contacts we used
the 3D Slicer software [Fedorov et al., 2012]. With the registration tool, we

160



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 161 — #183

coregistered (rigid body, 6 degrees of freedom) the post-implantation CT
scan to the pre-implantation MRI. We then added the electrode fiducials
on a glass model of each patient’s brain obtained with the segmentation
tool of the Freesurfer bundle [Fischl, 2012]. To obtain a single model we
coregistered all studies on the MNI152 template provided by the Freesurfer
bundle using a semi-automated registration process of 3D Slicer. Briefly,
we calculated a linear transform with 12 degrees of freedom by superposing
and morphing each patient’s brain MRI onto the MNI brain template, then
we used the transform matrix to translate, shift, skew and resize all other
studies (CT scan, and unaltered MRI) accordingly. Since the 3D Slicer
interface shows the MNI coordinates when hovering the mouse pointer,
we could identify structures touched by electrode contacts both by visual
inspection and by referring to the aforementioned coordinates.

4.4.2 Behavioral task

The behavioral task was a variation of the standard Serial Reaction Time
Task (SRTT), a type of paradigm that promotes automation of sequential
motor behavior [Nissen and Bullemer, 1987]. Differently from the original
task, however, here, in a small subset of trials, the sequential automated
action was occasionally interrupted by a cue that required the subjects to
switch to a different goal instructed at the beginning of the experiment.
The task comprised a maximum of 500 experimental trials preceded by
60 trials of training. There were two types of trials: habitual and switch.
Every trial started with a waiting period of 700 ms ± 200 ms during which
the screen remained blank. After this, subjects were presented with a
virtual 4 by 4 square keyboard. During habitual trials, a sequence of five
keys was highlighted sequentially (green cue) upon button-press. Subjects
were instructed to press the cued key as rapidly as possible until the end
of the sequence. Each trial terminated at the end of the sequence, and the
following one started. The sequence was pseudorandomly generated at the
beginning of the experiment to respect a spatial uniform distribution over
the keyboard and it was maintained constant throughout the experiment.
Switch trials started with the same highlighted key as the habitual trials
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(green cue), and the next step in the sequence was highlighted upon a button
press. Differently from habitual trials, however, one of the intermediate
steps of the sequence (i.e. step 2-4 selected at random) highlighted in
red (switch cue). Upon presentation of the switch cue, subjects were
required to halt the ongoing sequence of movements as fast as possible and
press an alternative, uncued key. Participants received all the instructions
prior to the beginning of the experiment. Feedback was provided for
neither the correct nor incorrect performance. The training phase only
comprised habitual trials, whereas the experimental phase included a
combination of habitual and switch trials pseudo-randomly interspersed
every 7 ± 2 trials. The experimental setup ran on a portable capacitive
screen fixed to the hospital overbed-table. The tablet included a custom-
made Java-based application running the experimental task and logged
behavioral performance at 50 Hz whereas task synchronization with the
neural recordings was achieved through serial communication with the
recording system. Subjects sat in a comfortable position that avoided motor
constraints to the arm. After receiving the instructions, subjects underwent
a short session that exemplified the task. After this, the experimental
session started. Subjects could withdraw at any point during the task.

4.4.3 Electrophysiology pre-processing

All electrophysiological data were preprocessed in Matlab (EEGLAB tool-
box) and subsequently analyzed in Python using custom scripts based
on the Numpy , Scipy , SkLearn and MNE libraries. Data were initially
filtered using a two-way zero phase-lag, FIR bandpass filter (2-200 HZ)
and an additional notch filter (window = 2Hz) at 50Hz, 100Hz and 150Hz
to remove AC current contamination and respective harmonics. Follow-
ing this step, the signals were individually re-referenced to the average
potential of all electrodes for each subject. After filtering, artifacts derived
from strong muscle activity or interference due to contact with electrical
devices were identified by visual inspection and respective epochs rejected.
To reduce remaining artifacts (i.e. cardiac artifacts, muscle twitches), we
applied a combination of Principal Component Analysis (PCA) and inde-
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pendent component analysis (ICA). In brief, we performed PCA on all
channels and identified those components which accounted for > 98% of
the variance. Such components were subsequently decomposed into the
same number of independent components through ICA. At this point, each
component time-series was visually inspected and components that re-
flected signal artifacts were rejected. The selection of artifact components
was based on a careful inspection of their power spectrum, correlation with
other physiological measures (i.e. ECG), and the relation to the temporal
structure of the experiment.

4.4.4 Amplitude analysis

For each subject, the filtered and artifact-free signal was split into epochs
according to the trial structure of the task. Each epoch was individually
base-line corrected by subtracting the mean amplitude value in a tempo-
ral window of 500 ms preceding the beginning of each trial. To identify
task-selective channels displaying changes in the amplitude of the signal
(i.e. Event-Related Potentials (ERP)) we extracted a set of 3 descriptors
(absolute mean, variance and integral) and applied a classification method
based on the Linear Discriminant Analysis (LDA) [Blankertz et al., 2011].
100 cross-validation steps were performed to assess performance with Fish-
ers F1 score on class-balanced bootstraps of data samples (80% training,
20% testing). The channels providing the highest classification accuracy
were finally selected as the task-related channels. Note that this analysis
was naive with regards to the electrode location or the polarity of the
event. This step allowed us to narrow down our analysis to those contact
points that displayed a task-related change in the amplitude (a detectable
difference between conditions) for each subject.

Spectral analysis revealed the presence of ERPs in the low-frequency
range between 2 and 4 HZ. Trial-by-trial ERP peaks in the switch condition
were therefore identified by band-passing the signal in the 2-4 Hz range
using a two-ways zero-phase FIR filter and applying a peak detection
algorithm that estimated the time of the absolute peak amplitude between
stimulus presentation (switch-cue) and the response. Single-trial stimulus-
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peak interval, as well as peak-response interval, were further calculated by
subtracting the stimulus presentation time from the peak time and the peak
time from the response time respectively.

Finally, the statistical analysis of amplitude differences was performed
through a T-statistics one-dimensional non-parametric cluster based per-
mutation test [Maris and Oostenveld, 2007] as implemented in the MNE
toolbox with cluster significance threshold = 0.05 and number of permuta-
tions = 1000.

4.4.5 Spectral Analysis

Spectral analyses were performed using a DPSS multitaper method [Mitra
and Pesaran, 1999, Thomson, 1982] as implemented in the MNI toolbox.

Changes in the power with respect to the baseline where computed by
z-transforming the power spectrum . Statistical differences in the time-
frequency power between conditions were calculated through T-statistics
two-dimensional non-parametric cluster based permutation analysis as
implemented in the MNE toolbox setting cluster significance threshold =
0.05 and number of permutations = 1000 [Maris and Oostenveld, 2007].

Inter-trial phase coherence (ITPC)

We estimated inter-trial phase coherence to quantify the frequency-dependent
synchronization across trials through Phase Locking Value (PLV) method
[Lachaux et al., 1999]. ITCP is computed as:

ITPC =
1

N
|
N∑
n=1

ejφn|

where N is the number of trials in one condition and φn represents the
phase estimate at the nth trial. ITCP is bounded between 0 and 1, where
1 represents full phase synchronization. In order to test differences in
ITCP between conditions, we used the cluster-based permutations method
proposed by [Maris et al., 2007]. First, we applied a z-transform to the
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difference in coherence between conditions (ZITPC) that rendered the
distribution approximately normal [Enochson and Goodman, 1965]:

ZITPC =
(tanh−1(|ITPC1(f)|)− (1/d.f.1 − 2))− (tanh−1(|ITPC2(f)|)− (1/d.f.2 − 2))√

(1/d.f.1 − 2) + (1/d.f.2 − 2)

To account for the positive bias of ITPC, we used the same amount of
trials for the two conditions compared. Second, we selected those regions
where z > 2.58 corresponding to the 99th percentile of the distribution.
Finally, we assessed the significance of the measured difference against
the H0 obtained by computing the coherence difference between surro-
gate groups constructed by permuting 1000 times the original labels and
extracting the resulting Montecarlo P value.

Single trial ITPC

ITPC is by definition an average measure across multiple trials. An esti-
mate of the contribution of the single trial to the average ITPC (STPC),
however, can be obtained by computing the difference between the ITPC
across all trials and the ITPC across all but one trial following the method
proposed by [Jarvis and Mitra, 2001] and previously applied by [Hipp
et al., 2011]. The Single Trial ITPC (STPCi) for the ith trial is computed
as follows:

STPCi = N · ITPCall
z − (N − 1) · ITPCall−i

z

where N is the number of trials and ITPCall
z and ITPCall−i

z are the
z-transformed ITPCs for all trials and all but the ith trial respectively.
Finally, to obtain a single trial value of STPC we selected as Region Of
Interest (ROI) the time-frequency points of the spectrum that resulted
significant from the cluster based permutation analysis and integrated the
STPC values for that ROI.
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4.4.6 Phase-amplitude coupling (PAC)
PAC is a measure that quantifies the modulatory effect of low-frequency
phase on higher frequency amplitude as a signature of the interaction be-
tween their underlying processes resonating at different frequency bands.
PAC was computed through the Generalized Linear Models (GLM) method
[Penny et al., 2008] that captures the proportion of variance explained
by an underlying linear relationship between analytical amplitude (i.e.
envelope, modulated) and phase (modulating) as obtained by Hilbert trans-
forming the signal, using the PACpy toolbox. We restricted our analysis
of PAC to the ROIs emerged from cluster based permutation analysis and
selected as modulatory frequency band the significant frequency domain
range for each patient. Our epoch selection was also restricted to the
temporal window where a significant increase in phase alignment was
detected. For each subject, we obtained one surrogate signal for fast and
slow trials by concatenating the respective single trial windows, so to
achieve the temporal resolution necessary for this type of analysis. Further,
we computed PAC values between the selected modulatory phase and the
amplitude of higher frequencies (10-100 Hz in steps of 2 Hz, modulated
frequency), and obtained the difference between the two conditions. Statis-
tical significance between the two conditions was tested through z-statistics
against the null-hypothesis of samples from both conditions belonging
to the same distribution. This was obtained by randomly permuting the
conditions’ labels and calculating the 95 percentile of the maximum PAC
value achieved under the assumption that the two conditions were sampled
from the same distribution.
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Chapter 5

CONCLUSIONS

The aim of this dissertation was to advance our understanding on the mul-
tifaceted way the brain controls behavior. We focused our approach on
the definitions of automatic and deliberate processes and mapped them to
their computational and neurophysiological underpinnings with the goal
to explain their role in regulating the interaction of an agent within its
environment. In doing this, we have contributed to elucidate some of the
main system-level interactions underlying these processes from a theoreti-
cal perspective and demonstrated their relevance in controlling behavior.
Further, we generated specific individual hypotheses on some of the key
neural substrates that underlie automatic and deliberate control. On the
one hand, starting from the formulation of an anticipatory control problem
we reformulated the traditional motor-centric role of the cerebellum within
the sensory domain and advanced new theoretical insights on its functions,
together with concrete experimental predictions. On the other hand, we in-
vestigated the active role of the human medial frontal cortex in controlling
the switch between automatic and deliberate processes, supporting the sys-
tem level interactions between goals and the memory system hypothesized
in the chapter 2. Throughout the experimental chapters of this disserta-
tion, we combined a number of methods, from computational, to robotic
and electrophysiological, where each one of these approaches contributed
with a distinctive insight. Computational modeling provided theoretical
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predictions informed by biology on the mechanisms and system-level inter-
actions underlying automatic and deliberate behavior. Robotics imposed
the real-world constrains necessary for the analysis of the interaction be-
tween an embodied system and its environment. Finally, neurophysiology
constituted the ground for the empirical validation of theoretical insights
on brain functions. This variegated methodological approach implicitly
emphasized the need to look at the brain from multiple levels of description
to capture the complexity of biological behavior.

The coexistence of automatic and deliberate processes is central to a
number of theories that stem from the analysis of behavior of animals and
humans. Their characterization however has mainly focused on their infor-
mation processing. This perspective is perhaps grounded in the cognitivist
tradition whose primary goal is to study the way the brain and the mind
acquire, process, and retrieve information in order to build an accurate rep-
resentation of the world. This approach is fundamental in order to advance
theoretical interpretations on the local computations of individual brain
circuits, and it can provide useful insights on the learning mechanisms
that underlie animal performance. Nevertheless, we have argued that an
approach focusing only on the brain processing functions may overlook an
important aspect: the brain evolved to control a physical body and regulate
its interactions with the environment. Integrating, therefore, a view on
the brain that takes into account the control problems which an embodied
system needs to solve in order to perceive and act within the environment
with the goal of survival can lead to the understanding of the functional
role of automatic and deliberate processes as well as their organization.
For this reason, in chapter 2 of this dissertation, we aimed at bringing an
integrated view on some of the key brain areas that underlie automatic and
controlled processes from an embodied point of view. We did this through
the formulation of a biologically constrained control system based on
the anatomy and physiology of the rodent brain that advanced a concrete
definition of the computational requirements that the brain as a control
system has to implement in order to produce complex behavior. In doing
so, we provided a bridge between the information processing perspective,
intrinsic to the implementation and analysis of individual modules, and the
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control perspective emerging from the global objective of controlling the
behavior of an artifact in the physical world. In particular, three insights
have emerged from our first contribution. Firstly, we have shown that while
individual modules process information through distinct computational
mechanisms, their integration serves the control of behavior. This emerged
in the simple sensory-motor mappings provided by the reactive system that
contributed to the early stages of learning laying the ground for exploratory
behaviors. It also emerged within the associative learning mechanisms
that learned to associate stimuli and responses to predictively react to
behaviorally relevant cues, and deliberate mechanisms that acquired an
internal representation that sub-served goal-oriented behavior and plan-
ning. Importantly, each layer contained distinct modules implementing
different learning mechanisms but no global objective function was de-
fined within the system. Nevertheless, the agent tended towards a general
optimization of behavior. This suggests that increasingly sophisticated
behavioral strategies can be achieved implicitly as an emergent property
of the interaction between multiple learning mechanisms rather than by
explicitly optimizing one objective function. This is a relevant observation
with respect to the normative frameworks such as reinforcement learning
or Bayesian inference since it offers a way to reconcile the diversity of
brain structures and computation with the global tendency towards optimal
behavior. A second point which emerged from the first contribution is that,
by looking at the progressive development of different integrated learning
mechanisms from reactive to adaptive and contextual, we have provided
a perspective on automatic and deliberate control not as two separated
processes but rather as a continuum, where each form of control builds
hierarchically on top of the lower one. Reactive mechanisms build on
somatic features of the agent such as sensors and actuators. Associative
learning is based on reactive mechanisms, where reflexes are progressively
advanced through the pairing with predictive cues. Finally, deliberate
processes extend the adaptive properties of the automatic system from
the short-time scale (i.e. S-R) to the long one by using an internal rep-
resentation that stems from the situated interactions provided by lower
layers. Indeed, we have shown how the progressive enabling of these
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three layers of control lead to increased optimality. This could rise the
question of why the brain does not just have a deliberate system? The
answer might be that it would not be possible since enabling the deliberate
system alone would lack the grounding for learning and representation.
Indeed, a careful analysis of the quality of the information processed by
every module of the system unveils its sensory-motor and embodied nature.
The reactive system converts sensory inputs into reflexive responses that
allow for random navigation. The cerebellum extends the actions of the
reactive system to novel contingencies through sensory-motor associative
learning. The hippocampus builds internal representations of the envi-
ronment through the integration of speed, head direction and contingent
external cues, that is, features extracted from the embodied interaction
with the environment. Finally, the decision-making system extracts and
orchestrates goals that are representation of low-level needs associated
to the internal bodily state. This is consistent with an evolutionary and
developmental perspective on brain anatomy and functions that identifies
the structures responsible for reflexive behavior as philogenetically old-
est and anatomically closer to the spinal cord [Jerison, 2012]. In turn,
associative mechanisms have emerged later in the evolution of the brain,
but in tight anatomical relationship with reactive ones. Areas related to
deliberate control that implements internal representations such as the
hippocampus and the neocortex are philogenetically newest and found
principally in mammals. This perspective is possible only by looking at
the evolution of learning in an embodied agent within its environment
and it would not be possible by taking a sole (disembodied) information
processing perspective, as this would lack the sensory-motor foundations
of learning. Related to the previous points is the insight that automatic
and deliberate processes are highly distributed and cannot be reconciled
with the functions of one brain area or one individual processor and that a
mapping between functional level of description and neural substrate is
necessary to understand the neural mechanism underling behavior. For
this, a computational implementation of this mapping into an embodied
controlled system offers a valuable analytical tool to acquire insights and
make testable hypotheses on the design principles that various controllers
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in the brain may implement. We have expanded some of these insights in
the following chapters of the thesis.

We have grounded our definition of an automatic system in terms of
classical conditioning of avoidant responses in the cerebellum. In chapter
1, we defined the automatic control system as the interaction between reac-
tive and adaptive layers of control. Here, multiple parallel microcircuits
locally implemented mechanisms that reflect the internal information pro-
cessing of the cerebellum and that underlie the associative learning found
in avoidance learning. From a control perspective this structure learned to
produce anticipatory responses to environmental stimuli, which improved
the motor control capabilities of the agent. In particular, in contextual-
izing conditioning phenomena within an embodied system, anticipatory
responses provided a form of feedforward control that complemented reac-
tive, reflex-like behaviors. The use of classical conditioning paradigms in
robots embedding biologically plausible models of the cerebellum within
their control architectures has a long-standing tradition [Van Der Smagt,
1998, HofstoÈtter et al., 2002, Herreros and Verschure, 2013a, McKinstry
et al., 2006]. However, while these studies have typically focused on the
analysis of one microcircuit, our contribution was to integrate a number
of microcircuits and show how the parallel feedforward control scheme
can enhance the sensory-motor capabilities of an agent. From a cerebellar
learning perspective, this is particularly relevant. The parallel anatomical
organization of the cerebellum indeed suggests an homogeneous process-
ing structure whose behavioral functions are determined by its input-output
connectivity. However, this assumption has been recently challenged by
recent discoveries suggesting a richer arrangement of anatomical connec-
tions that may justify alternative, perhaps sequential, configurations [Apps
and Garwicz, 2005, Cerminara et al., 2015].

We have explored the possibility of alternative schemes of cerebellar
learning and their role in controlling anticipatory behavior in part 2. In
doing this, we have focused on the acquisition of anticipatory postural
adjustments, a form of predictive control dependent on the cerebellum that
allows the minimization of externally induced displacements through the
anticipation of a motor command. Following the modeling work presented
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in part 1, we hypothesized that postural adjustments could be the result of
parallel sensory-motor associations acquired by a control scheme based on
inverse models. Nevertheless, we observed that from a control perspective
this formulation lacked the robustness to deal with uncertainty. We hypoth-
esized that in order to overcome this limitation the cerebellum could learn
a sensory prediction, namely an associative representation between two
stimuli (chapter 3). This hypothesis on the cerebellar functions let to the
reformulation of the adaptive control architecture presented in chapter 3
(HSPC).

In the HSPC architecture sensory predictions are organized in a hierar-
chical structure that mirrors the cause-effect relationship within the task.
This is achieved by serially linking multiple microcircuits that acquire
qualitatively different sensory predictions. The anticipatory module of
HSPC, in particular, learns the association between one sensory input
(cue) and another one (impact). This form of learning is consistent with
the Rescorla-Wagner class of interpretations of conditioning, where the
learned relationship between two stimuli allows to make predictions about
future states (see [Balkenius and Morén, 1998] for review). In HSPC, how-
ever, the prediction of a sensory event is not just an acquired knowledge of
the environment but it serves the purpose of control. This aspect emerges
from the temporal dynamics of the prediction, and in particular, it is en-
coded in the delay that determines the amount of anticipation that will be
propagated to downstream modules in order to drive an effective predictive
response. The degree of anticipation needs to be tuned to the dynamics of
the body in its interaction with the physical world. Importantly, temporal
dynamics of predicted errors are also central to the feed-forward compen-
satory module of HSPC and that extends the model of cerebellar learning
previously advances by the CFPC architecture [Herreros and Verschure,
2015]. Indeed in CFPC the system learns to predict a counterfactual er-
ror with a temporal accuracy matched to behavioral functions [Suvrathan
et al., 2016]. Altogether, predictions in HSPC encode an action-aware
knowledge about the dynamical relationship between perceptual events
that has the goal to minimize errors in the sensory domain through action.
As discussed more in detail in chapter 3, HSPC follows a scheme con-
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sistent with the theory of active inference. In active inference, indeed, a
hierarchical organization of descending sensory predictions encoding an
internal (generative) representation of perceptual modalities have the goal
to minimize ascending prediction errors by actively modifying percep-
tion [Friston, 2011a]. In sum, the work presented in part 2 contributes to
the understanding of motor learning proposing a novel control scheme that
can account for acquisition, generalization and robustness in anticipatory
control paradigms. It provides an interpretation of associative learning
that reconciles the causal knowledge view of conditioning with the notion
of predictive control and shows how internal representations can be used
for behavioral purposes. In addition, HSPC bridges between the norma-
tive framework of active inference and a biologically plausible scheme
based on the computation of the cerebellum. This proposal has concrete
implications for the theory of the cerebellum. Firstly, it could contribute
to reconcile two distinct views on the cerebellum in motor and non-motor
domains. Indeed, HSPC is consistent with the motor control literature as it
makes use of internal models that act as feed-forward controllers to drive
motor behavior [Wolpert et al., 1998b]. However, unlike the traditional
inverse models it does this in the sensory domain, and unlike forward
models it can anticipate sensory consequences that are not contingent
upon motor commands. In this, HSPC goes beyond the traditional distinc-
tion between forward and inverse models and advances a hypothesis on
the existence of ”forward models of the environment”. Forward models
of the environment, namely internal models of sensory events timed to
behavioral goals may explain the involvement of the cerebellum in the pre-
diction of temporal aspects of perceptual stimuli [Roth et al., 2013a,Deluca
et al., 2014, Therrien and Bastian, 2015], further used to drive behavior
(i.e. motor preparation) [Ramnani and Passingham, 2001, Sakai et al.,
2002]. A second implication following our proposal is that cerebellar
predictions could be organized hierarchically. We have speculated that
a sequential organization of cerebellar circuits could be implemented by
the directional organization of the nucleo-cortical projections between the
Nucleus Interpositus Posterior (NIP) and the Nucleus Interpositus Anterior
(NIA) [Apps and Garwicz, 2005]. However, a sequential organization
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of cerebellar predictions could also be justified by the arrangements of
cortico-cerebellar projections [Kelly and Strick, 2003]. In particular, the
cerebellum is anatomically and functionally connected with the parietal
cortex, as well as motor, premotor and frontal areas involved in processing
perception and action at multiple levels of a functional hierarchy. It is
therefore possible that the cerebellum could participate at each level of
this hierarchy, or gradient [Guell et al., 2018], by advancing qualitatively
distinct predictions used to modulate behavior [Ramnani and Passingham,
2001]. Future research in this direction should focus on testing the experi-
mental predictions advanced by the HSPC theoretical model both through
behavioral and electrophysiological methods. Behavioral experiments
should focus on testing the relationship between distal and proximal events
in generating anticipatory behavior. In particular, HSPC predicts a causal
link between distal and proximal and vestibular modalities in the gener-
ation of anticipatory postural adjustments. Even though some literature
suggests this could be the case [Mohapatra et al., 2012,Stapley et al., 2002],
further experiments concretely addressing this question should be designed,
for example, by decoupling distal and proximal cues (i.e. catch trial) in a
virtual reality postural task. However, we expect the underlying scheme
presented for postural control to generalize to other anticipatory responses
(i.e. limb). This could be tested in an fMRI setup to elucidate the contribu-
tion of the areas involved in the acquisition of anticipatory responses, and
crucially, those involved in the computation of errors. Here, HSPC would
predict a high involvement of the cerebellum during acquisition of sensory
predictions and the somatosensory areas in detecting sensory-prediction
errors [Mathis et al., 2017]. From an electrophysiological perspective,
future research should focus on the identification of functional hierarchies
between distinct zones of the cerebellum, for example by simultaneously
recording from NIP and NIA in order to quantify the amount of directional
information transferred from one zone to the next (i.e. granger causality).
Further work on the control aspects of HSPC should be also be addressed.
Specifically, HSPC implicitly suggests that sensory predictions broaden
the limits of control allowed to the feedback controller (i.e. the range of
disturbances in which it can operate) while maintaining robustness. A
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systematic quantification of this trade-off in comparison with standard
solutions could lead to the design of novel control architectures that make
strong use of feedforward control such as those used in soft robotics.

We have grounded our definition of deliberate control within the frontal
cortex. In chapter 2 of this dissertation, we have suggested that one of the
key differences between automatic and deliberate processes is the fact that
the automatic system, in its associative nature, does not rely on explicit
internal representations of behavioral goals. Within the automatic system
the behavioral goal was set by the intrinsic role of the reflex, representing
a pre-wired behavioral repertoire (i.e. avoiding an obstacle). However,
in order to achieve flexible goal oriented behavior a system requires an
internal representation that allows action planning. We have shown in Part
1 that the deliberate system could implement the distributed functions of
planning through the interaction of frontal (decision-making) areas, the
memory system within the hippocampus and the basal ganglia. In particu-
lar, goals were encoded in frontal circuits that converted low level drives
into higher-level decision-making (i.e. what goal to pursue). A memory of
the environment was stored in hippocampal place cells that progressively
processed streams of sensory inputs into unique internal representations.
A long-term memory structure, in turn, stored representations of locations
and resources once those were encountered. Finally, the motor system
was in charge of implementing goal-oriented actions through the action
selection mechanisms found in the basal ganglia. This is consistent with
the notion of model based planning where an acquired schema of state (lo-
cation in space), action (behavioral repertoire) and value (type of resources
present in the environment) is used to select an appropriate behavioral
strategy that leads to increased efficiency of the system. Here our contribu-
tion was to bring together a biologically plausible implementation of how
deliberate control of action could be implemented in the brain. Empirical
evidence supports indeed the role of each individual sub-system presented
within our contribution in deliberate control. For example, neural signals
representing goals have been decoded in the rodent hippocampus as predic-
tive of task choice. These signals were mediated by a fronto-hippocampal
pathway possibly linking internal representations of goals and space [Ito
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et al., 2015]. Prefrontal circuits indeed orchestrate the selection of goals on
the basis of motivational signals encoded by dopaminergic neurons in the
VTA [D’Ardenne et al., 2012,Grace et al., 2007]. Finally, the basal ganglia
could be involved in the control of action selection mechanism driven by
deliberate circuits through inhibition of ongoing plans and facilitation of
novel ones. Nevertheless, the interactions of these sub-systems and how
they orchestrate goal-oriented action is still under debate. Therefore we
feel that contributing to a working model on how multiple areas of the
brain could combine their internal computation to produce behavior could
advance theoretical and empirical studies. Indeed, an important theoretical
question that followed our proposal is how the brain can convert representa-
tions of goals and strategies encoded in memory, into actions implemented
in the motor system. This is of great relevance for the current discussion
because making this link could allow to capture two complementary as-
pects of brain functions, such as the information processing capabilities
intrinsic to the formation and retrieval of internal representations and the
control aspects required to act in the physical world. In chapter 4, we have
attempted to address this question in the context of a human neurophysio-
logical setup. Based on previous reports, we have hypothesized that the
Supplementary Motor Complex (SMC) in the medial frontal cortex could
constitute a likely candidate for linking higher level planning (i.e. goals)
with motor execution [Nachev et al., 2008]. In particular, following a theo-
retical definition informed by empirical evidence on the functions of this
area in primates [Hikosaka and Isoda, 2010a], we outlined four functional
requirements that the SMC should meet in order to qualify as a controller
orchestrating goal-oriented actions. These functions included the ability
to process relevant information and to access internal representations as
well as a direct role in inhibiting current ongoing actions and facilitating
alternative ones. We tested some of these aspects within a change of plans
task where human subjects implanted with intracranial electrodes had to
perform a stereotyped sequence of movements occasionally interrupted by
a switch cue. Upon presentation of the cue, subjects had to interrupt the
ongoing sequence and execute an alternative (deliberate) action. Our main
finding was that, within the SMC, oscillatory phase in the theta range could
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predict deliberate behavioral responses. This result opens the question of
what is the role of the phase of low frequency oscillations during deliberate
actions and, in particular, what aspect of the action does it encode? We
have proposed that phase synchrony in low oscillations could be a signa-
ture of motor preparation, where the degree of motor preparatory activity
in response to the cue could directly drive behavior. However, motor prepa-
ration in this case would not be a localized phenomenon within the SMC,
but rather the result of an interplay of distinct areas within a functional
network. Support for this interpretation can be found in our results by the
higher Phase Amplitude Coupling (PAC) between theta and gamma bands
during faster trials. PAC is often detected as a signature of long-range
communication between distinct areas within a functional network [Hyafil
et al., 2015, Helfrich and Knight, 2016]. Therefore, according to this inter-
pretation theta could represent a communication channel that mediates the
interplay between various sub-system involved in the deliberate control
of action [Fries, 2015]. Long-range communication in the theta range is
known to mediate the communication within the fronto-parietal network
during change of plan tasks and could represent a mean to integrate per-
ceptual evidence to prepare for contextual changes [Phillips et al., 2014].
Theta is also found in the communication between prefrontal and premotor
areas, where it is thought to be a signature of executive control over the
motor system, especially when behavioral choices are based on high-order
rules [Voytek et al., 2015]. Finally, we have found synchrony in the theta
range between the temporal and the medial frontal cortex. This might
mean that those two areas functionally synchronize under task demands.
We speculate that this interaction could underlie the need for the deliberate
control network to access memory representations of stimulus-action rules.
An interpretation supported by the involvement of the temporal lobe in
episodic memory formation and its operational mode in the theta range.
What needs to be determined, however, is the pathway through which
this communication could occur. It is possible that this synchronization
could be mediated by the thalamus or by the fronto-temporal network.
Nevertheless, further work should address in a more systematic way the
involvement of the memory network in the deliberate control of action.
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Indeed, our current experiment does not allow us to distinguish the content
of this representation, which makes this interaction difficult to interpret. In
order to disambiguate this, a more complex version of the proposed task
should involve different types of switch cues leading to different types of
responses driven by either perceptual cues or memory.

In sum, we have sketched a possible distributed network of several
different cortical systems that may be involved in the control of deliberate
action. Within this network goals, memory, and perception may be inte-
grated through low frequency communication channels. An open question,
however, remains as to how the deliberate network could directly control
movements? We have suggested that the SMC should have both facilita-
tory and inhibitory functions over the motor system [Hikosaka and Isoda,
2010b]. Previous evidence supports the involvement of the subthalamic
nucleus in the inhibitory aspects of the switch [Isoda and Tanji, 2004].
This is further confirmed by the anatomical connections from SMC to the
STN as well as by a pattern of synchronization between these two areas
in the theta range during conflict where higher synchronization leads to
slower reaction times. The facilitatory pathway instead has not been fully
characterized. The SMA could promote action within the motor system
directly through direct projections to the spinal chord [Tanji, 1994] by
exerting control over the primary motor cortex [Ohara et al., 2001]. Alter-
natively, the SMA could promote action through the direct pathway of the
basal ganglia [Hikosaka and Isoda, 2010b]. Further studies will be needed
to determine the output pathways of the deliberate control system, for
example, by simultaneously recording from the medial frontal cortex and
the caudate nucleus of the striatum. If this pathway promotes switching
actions, behavioral dependent coherence in low frequency oscillations
might be found. In general, we speculate that within this picture theta
oscillations could have the double role of communication and control
by mediating a distributed action aware representation promoting goal-
oriented action. However, although converging evidence seem to point at
low frequency oscillations as the communication channel that integrates
the information processing and motor related aspects of the deliberate
control network, it still remains to be determined what are the mechanisms
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that generate this stereotypical oscillatory pattern and how this relates
to the neural activity. It has been proposed that theta oscillations could
emerge from a conflict detection mechanism present in the layer 5 of
the medial frontal cortex via the integration of input from other regions
such as the amygdala and the fronto-parietal circuit coming from more
superficial cortical layers. Integration of such inputs would increase the
power of theta oscillations [Cohen, 2014b, Ulrich, 2002]. Alternatively,
theta phase dynamics could be the result of synchronous activity at the
output cortical layer (i.e. layer 6) and serve as communication pathway
towards other brain circuits to modify cognitive and motor processes. To
test this hypothesis, single-cell intracranial electrophysiology could shed
light on the contributions of different layers of medial frontal cortex in
integration, conflict detection and control.

To conclude, we provide an outlook and future work that concerns the
system level interactions between the automatic and deliberate processes.
Indeed, although in some cases we have stressed their complementarity,
throughout this dissertation we have mostly analyzed them in isolation. A
great body of evidence however has stressed the existence of anatomical
pathway through which these systems can communicate and operate in
synchrony. We feel that perhaps on of the most important anatomical
pathways whose functions are still largely unexplored is the one between
the lobule VII of the cerebellum and the frontal cortex, and in particular the
area 46 [Ramnani, 2006a, Kelly and Strick, 2003]. The fronto-cerebellar
system is indeed one of the least undetstood in the brain and it could
represent a mean through which the deliberate and automatic systems
interact. This interaction could have various functions that range from the
automation of cognitive processes, such as rules [Balsters et al., 2012,Ram-
nani, 2014], but it could also support predictive processes contributing to
inference and decision making under uncertainty [Blackwood et al., 2004].
This could be achieved by an updated model of our HSPC architecture,
configured different processing stages of the deliberate system. Another
important anatomical pathway that could underlie the interaction between
the deliberate and automatic system is mediated by the basal ganglia. The
basal ganglia indeed is involved in the action selection of deliberate motor
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programs and it receives major cortical inputs from frontal and motor
areas. Recent anatomical evidence has stressed the existence of recipro-
cal pathways between the cerebellum and the basal ganglia [Hoshi et al.,
2005, Bostan et al., 2010]. Interestingly, excitatory projections from the
basal ganglia to the pontine nuclei come from the sub-thalamic nucleus,
which has the role to inhibit ongoing motor program. Why would an
inhibitory motor structure elicit alternative responses within the automatic
system? Perhaps this could be a pathway for the deliberate system, and
in particular the medial frontal cortex to indirectly recruit the cerebellum
through the hyper direct pathway within the basal ganglia. To date however,
only a few hypotheses have been advanced on the role of this interaction
about their possible involvement in model-based action planning [Caligiore
et al., 2017].

We propose that an interplay of interdisciplinary methods including
computational modeling, robotics as well as behavioral and neurophysio-
logical experiments is the key to advance the theory, unveil the unsolved
mysteries about the brain, and to design the next generation of intelligent
machines.
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[Tinbergen, ] Tinbergen, N. The study of instinct.

[Todorov and Jordan, 2002] Todorov, E. and Jordan, M. I. (2002). Op-
timal feedback control as a theory of motor coordination. Nature
neuroscience, 5(11):1226.

[Tolman, ] Tolman, E. C. Cognitive maps in rats and men.

[Tolman, 1938] Tolman, E. C. (1938). a t a Choice Point. 5(2):267–272.

[Tolman, 1951] Tolman, E. C. (1951). Purposive behavior in animals and
men.

[Tolman and Honzik, 1930] Tolman, E. C. and Honzik, C. H. (1930). In-
troduction and removal of reward, and maze performance in rats. Uni-
versity of California publications in psychology.

[Tseng et al., 2007] Tseng, Y.-w., Diedrichsen, J., Krakauer, J. W., Shad-
mehr, R., and Bastian, A. J. (2007). Sensory prediction errors drive
cerebellum-dependent adaptation of reaching. Journal of neurophysiol-
ogy, 98(1):54–62.

218



“ExempleUsPlantillaB5” — 2018/3/22 — 10:55 — page 219 — #241

[Tversky and Kahneman, 1974] Tversky, A. and Kahneman, D. (1974).
Judgment under uncertainty: Heuristics and biases. science,
185(4157):1124–1131.

[Ulrich, 2002] Ulrich, D. (2002). Dendritic resonance in rat neocortical
pyramidal cells. Journal of neurophysiology, 87(6):2753–2759.

[Uusisaari and de Schutter, 2011] Uusisaari, M. and de Schutter, E.
(2011). The mysterious microcircuitry of the cerebellar nuclei. Journal
of Physiology, 589(14):3441–3457.

[van der Meer et al., 2012] van der Meer, M., Kurth-Nelson, Z., and Re-
dish, A. D. (2012). Information Processing in Decision-Making Sys-
tems. The Neuroscientist, 18(4):342–359.

[Van Der Smagt, 1998] Van Der Smagt, P. (1998). Cerebellar Control of
Robot Arms. Connection Science, 10(3-4):301–320.

[van Dorp and De Zeeuw, 2014] van Dorp, S. and De Zeeuw, C. I. (2014).
Variable timing of synaptic transmission in cerebellar unipolar brush
cells. Proceedings of the National Academy of Sciences of the United
States of America, pages 1314219111–.

[van Hemmen et al., 2014] van Hemmen, J. L., Schüz, A., and Aertsen,
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