
Assessing soil and canopy spatial variability in fruit 
orchards to improve management and sampling by using 

auxiliary information provided by proximal and remote 
sensors

Asier Uribeetxebarria Alonso de Armiño 

http://hdl.handle.net/10803/666921

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El  acceso  a  los  contenidos  de  esta  tesis  doctoral  y  su  utilización  debe  respetar  los 
derechos  de  la  persona  autora.  Puede  ser  utilizada  para  consulta  o  estudio  personal,  así  como  en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.  No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes.

http://hdl.handle.net/10803/666921


 

 

            



 

 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

          

 

  



 

 

  

Uxueri eta gurasoei, Jose eta 

Iosune, bidai honetan nire 

makulu izatearren 



 

 

 

 

 

 

 

 

TESI DOCTORAL 

 
ASSESSING SOIL AND CANOPY SPATIAL VARIABILITY IN 

FRUIT ORCHARDS TO IMPROVE MANAGEMENT AND 
SAMPLING BY USING AUXILIARY INFORMATION 
PROVIDED BY PROXIMAL AND REMOTE SENSORS 

 
Asier Uribeetxebarria Alonso de Armiño 

 
 

 
Memòria presentada per optar al grau de Doctor per la Universitat de 

Lleida 

Programa de Doctorat en (Ciencia y Tecnología Agraria y Alimentaria) 
 

 

 

 

Directors  

Jaume Arnó Satorra 

José Antonio Martínez-Casasnovas 

 

 

2019 
 

  



 

 

 

  



 

1 

 

 
SUMMARY 
 
The aim of this Thesis is the analysis of spatial variability in fruit orchards of the central area of the Ebro Valley. In 

the first section, soil variability and peach trees (Prunus pérsica (L.) vigour were analysed with the goal to obtain 

site-specific management areas. In the second section, auxiliary information provided by different type of sensors 

was used to stimate quantitative (kg/tree) and qualitative parameters (fruit firmness and refractometric index) by 

using advanced sampling techniques. 

 

During this Thesis, data corresponding to two agricultural campaigns (2015 and 2016) were collected. Data of 2015 

correspond to the experimental plot that the IRTA (Agrifood Research and Technology Institute) has in Gimenells 

(Lleida). The most representative feature in this area was the presence of a petrocalcic horizon at a different depth. 

In 2016 data was collected in a commercial orchard of Utxesa (Lleida). The most outstanding characteristic of the 

plot was the presence of slightly saline soils and the land transformation accomplished in the 1980s. Regarding data 

adquisition, both plots were characterized by different sensors (contact and remote) employed in precision 

agriculture. Finally, soil variability was measured using the soil apparent electrical conductivity (ECa) with a 

resistivity on-the-go sensor, Veris 3100. In addition, a RGB camera and a multispectral camera, and the OptRX 

reflectance sensor were used to determine tree vigour. To obtain geometrical parameters of trees, a terrestrial 

LiDAR sensor was used. At the same time,, and based on the earlier delimited zones and the use of information 

from previous sensors, different sampling schemes were applied to estimate soil properties and quantitative and 

qualitative crop parameters. 

 

The use of the ECa, together with a nonlinear, smoothness-constrained algorithme and multivariate techniques 

such as the ISODATA and a multivariate analysis of variance (MANOVA) allowed delimiting homogeneous 

management zones, based exclusively on soil variability. The procedure followed allowed to determine with 

precision the properties that most influenced ECa variability. The greater knowledge over origin of the variability 

allowed the recommendation of actions to improve orchard management. In a subsequent study, the relationship 

between soil properties and crop vigour was investigated by incorporating the Normalised Difference Vegetation 

Index (NDVI) to the analysis. Unexpectedly, tree vigour did not show a correlation with soil ECa. The origin of this 

lack of relationship could be drip irrigation, which favours the creation of a humid micro-habitat around the bulb. 

The greatest discordances between ECa and NDVI maps occurred in the places where old terraces were located. The 

works transform the former plot structure to new larger plots altered soil properties, creating discontinuities. 

Because of that, two types of actions to improve plot management were proposed. 

 

The efficiency of stratified sampling (StRS) and ranked sampling (RSS) was compared versus simple random 

sampling (SRS) to estimate qualitative and quantitative fruit parameters. Both techniques, StRS and RSS, reduced 

necessary sample size by increasing the efficiency. The best results of StRS were obtained using the NDVI as 

auxiliary information, allowing diminishing yield estimation work up to 17%, without decreasing the accuracy. The 

stratification by ECa or by combining NDVI + ECa did not improve the results obtained with the NDVI. 

 

Finally, RSS sampling was more efficient than SRS for all sample sizes (N = 4 untill N = 12). The use of RSS in 

conjunction with a variable strongly correlated with the target variable (fruit load), allowing the reduction of the 

sampling effort by 40% in comparison to SRS. The selected variable was the projected nadir area of the tree canopy, 

obtained using a drone. The high resolution image made possible the delimitation of each tree with precision. The 

process of delimiting the canopy projected area was done manually. Automation of this process through the use of 

different algorithms opens the doors to a new research line. 

 

Key words: Spatial variability, NDVI, ECa, peach, stratified sampling (StRS), ranked sampling (RSS), random 

sampling (SRS), MANOVA, land transformation, sensors, soil sensing, spatial analysis. 
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RESUMEN 

Esta Tesis doctoral se centra en el estudio de la variabilidad espacial presente en parcelas frutícolas de la zona 

central del Valle del Ebro. En un primera parte, se ha analizado la variabilidad del suelo y el vigor de los 

melocotoneros (Prunus pérsica (L.) Stokes)  con el fin de obtener zonas de manejo diferenciado. En una segunda 

parte, la información auxiliar aportada por diferentes sensores ha sido utilizada para estimar parámetros 

cuantitativos (kg/árbol) y cualitativos (dureza e índice refractométrico) mediante técnicas de muestreo avanzadas.  

 

Los datos utilizados durante la tesis fueron recopilados en el transcurso de 2 campañas agrícolas, 2015 y 2016. Los 

datos del año 2015 correspondieron a la parcela experimental que el IRTA (Instituto de Investigación y Tecnología 

Agroalimentaria) dispone en Gimenells (Lleida), en la cual, la característica más representativa era la presencia en el 

suelo de un horizonte petrocálcico a diferente profundidad. Los datos del año 2016 fueron obtenidos en una 

parcela comercial en Utxesa (Lleida). La presencia de sales y los movimientos de tierra realizados en la década de 

1980 son las características más reseñables de esta parcela. En cuanto a la adquisición de datos, ambas parcelas 

fueron caracterizadas mediante diferentes sensores (próximos y remotos) empleados en agricultura de precisión. La 

variabilidad del suelo fue medida mediante la conductividad eléctrica aparente (CEa) proporcionada por un sensor 

resistivo, Veris 3100 (Veris Technologies). Además del sensor óptico terrestre OptRx (AgLeader), el vigor de la 

vegetación fue caracterizado mediante una cámara RGB y otra multiespectral transportadas por una avioneta y 

dron. Por otra parte, los parámetros geométricos de los árboles fueron medidos (caracterizados) mediante un 

sensor LiDAR terrestre. En paralelo, y en base a zonificaciones previas y al uso de la información de los sensores 

anteriores, distintos esquemas de muestreo fueron aplicados para estimar propiedades del suelo y parámetros 

cuantitativos y cualitativos de la cosecha.  

 

El uso de la CEa, junto a un algoritmo no lineal y técnicas multivariantes como el ISODATA y el análisis múltiple de la 

varianza (MANOVA), permitió delimitar zonas de manejo homogéneas, basándose exclusivamente en la variabilidad 

del suelo. El procedimiento empleado permitió determinar con precisión las propiedades del suelo que más 

influyeron sobre la variabilidad de la señal de conductividad. El mayor conocimiento del origen de la variabilidad 

hizo posible recomendar acciones para mejorar la gestión de la parcela. En un análisis posterior, la relación entre el 

suelo y la cosecha fue evaluada añadiendo la variable Normalised Difference Vegetation Index (NDVI). En contra de 

lo esperado, el vigor de los árboles no mostró relación con el CEa del suelo. El origen de esta falta de relación se 

atribuyó al riego por goteo, que favorecía la creación de un micro-hábitat húmedo (bulbo) alrededor de la zona 

radicular. Las mayores discordancias entre los mapas de CEa y NDVI se dieron en los lugares donde se localizaban 

las antiguas terrazas de parcelaciones anteriores. Los trabajos de remodelación de las antiguas terrazas alteraron las 

propiedades del suelo, creando discontinuidades en los patrones de variación espacial. Debido a ello, 2 tipos de 

actuaciones fueron propuestas para mejorar la gestión de las parcelas.  

 

En cuanto a las técnicas de muestreo en parcela, el muestreo estratificado (StRS) y el ranked set sampling (RSS) 

fueron comparados en términos de eficiencia con el muestreo aleatorio simple (SRS) a la hora de estimar 

parámetros cualitativos y cuantitativos. Tanto el StRS como el RSS redujeron el tamaño de muestra necesario al 

aumentar la eficiencia. Los mejores resultados del StRS se obtuvieron empleando el NDVI como información 

auxiliar, permitiendo reducir el tamaño de muestra necesario un 17% en estimaciones de cosecha (kg/árbol). La 

estratificación mediante CEa o la combinación de NDVI+CEa no mejoraron los resultados obtenidos con el NDVI. 

 

Finalmente, el muestreo RSS mejoró la eficiencia del muestreo respecto al SRS para todos los tamaños de muestra 

que fueron evaluados (N=4 hasta N=12). El empleo de este método de muestreo requirió el uso de una variable 

auxiliar fuertemente correlacionada con la variable a estimar (carga de frutos), obteniendo así muestras que, con 

igual precisión, podían ser ahora de menor tamaño (un 40% más pequeñas que las muestras SRS). La variable 

seleccionada fue el área nadir proyectada de la copa del árbol. Esta área fue obtenida mediante un dron y, dada su 

alta resolución por pixel, posibilitó delimitar individualmente cada árbol con alta precisión. El proceso de 

delimitación de las copas fue realizado manualmente. La automatización de este proceso mediante algoritmos más 

precisos y robustos abre las puertas a una nueva línea de investigación.  

 

Palabras clave: Variabilidad espacial, NDVI, ECa, melocotón, muestreo estratificado (StRS), ranked sampling (RSS), 

muestreo aleatorio (SRS), MANOVA, reparcelación, sensores, análisis espacial. 
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RESUM 

Aquesta Tesi doctoral s’ha centrat en l’estudi de la variabilitat espacial present en parcel·les fructícoles de la zona 
central de la Vall de l’Ebre. En una primera part, i amb l’objectiu d’obtenir zones de maneig diferenciat, la 
variabilitat del sòl i el vigor dels presseguers (Prunus pèrsica (L.) Stokes) foren analitzats. En una segona part, la 
informació auxiliar aportada per diferents sensors fou utilitzada per estimar paràmetres quantitatius (kg/arbre) i 
qualitatius (fermesa i índex refractomètric) mitjançant tècniques de mostreig avançades. 
 
Les dades utilitzades durant la Tesi foren recopilades en el decurs de 2 campanyes agrícoles, 2015 i 2016. Les dades 
de l’any 2015 correspongueren a la parcel·la experimental que l’IRTA (Institut d’Investigació i Tecnologia 
Agroalimentària) disposa a Gimenells (Lleida), en la qual la característica més representativa era la presència en el 
sòl d’un horitzó petrocàlcic a diferent profunditat. Les dades de l’any 2016 foren obtingudes en una parcel·la 
comercial a Utxesa (Lleida). La presència de sals i els moviments de terra realitzats en la dècada de 1980 són les 
característiques més destacables d’aquesta parcel·la. Pel que fa a l’adquisició de dades, ambdues parcel·les foren 
caracteritzades mitjançant diferents sensors (propers i remots) emprats en Agricultura de Precisió. La variabilitat del 
sòl fou mesurada mitjançant la conductivitat elèctrica aparent (CEa) proporcionada per un sensor resistiu, Veris 
3100 (Veris Technologies). A part del sensor òptic terrestre OptRx (AgLeader), el vigor de la vegetació for 
caracteritzat mitjançant una càmera RGB i una altra multiespectral embarcades en una avioneta i drone. Per altra 
banda, els paràmetres geomètrics dels arbres foren mesurats (caracteritzats) mitjançant un sensor LiDAR terrestre. 
En paral·lel, i en base a zonificacions prèvies i l’ús de la informació dels sensors anteriors, diferents esquemes de 
mostreig foren aplicats per estimar propietats del sòl i paràmetres quantitatives i qualitatives de la collita. 
 
L’ús de la CEa, juntament amb un algorisme no lineal i tècniques multivariants com l’ISODATA i l’anàlisi múltiple de 
la variància (MANOVA), va permetre delimitar zones de maneig homogènies, basant-se exclusivament en la 
variabilitat del sòl. El procediment emprat va permetre determinar amb precisió las propietats del sòl que més 
influïren sobre la variabilitat del senyal de conductivitat. El major coneixement de l’origen de la variabilitat va fer 
possible recomanar accions per millorar la gestió de la parcel·la. En una anàlisi posterior, la relació entre el sòl i la 
collita fou avaluada afegint la variable Normalised Different Vegetation Index (NDVI) a l’anàlisi. Contràriament a 
l’esperat, el vigor dels arbres no va mostrar cap relació amb la CEa del sòl. L’origen d’aquesta manca de relació 
s’atribuí al reg per degoteig que afavorí la creació d’un microhàbitat humit (bulb) al voltant de la zona radicular. Les 
majors discordances entre els mapes de CEa i NDVI es van donar en els llocs on es localitzaven les antigues terrasses 
de parcel·lacions anteriors. Els treballs de remodelació de les antigues terrasses alteraren les propietats del sòl, 
creant discontinuïtats en els patrons de variació espacial. Degut a això, 2 tipus d’actuacions foren proposades per 
millorar la gestió de les parcel·les. 
 
Pel que fa a les tècniques de mostreig en parcel·la, el mostreig estratificat (StRS) i el ranked set sampling (RSS) foren 
comparats en termes d’eficiència amb el mostreig aleatori simple (SRS) a l’hora d’estimar paràmetres quantitatius i 
qualitatius. Tant el StRS com el RSS reduïren la mida de mostra necessari a l’augmentar l’eficiència. Els millors 
resultats del StRS s’obtingueren emprant l’NDVI com informació auxiliar, permetent reduir la mida de mostra 
necessària un 17% en estimacions de collita (kg/arbre). L’estratificació mitjançant CEa o la combinació de NDVI+CEa 
no varen millorar els resultats obtinguts amb l’NDVI. 
 
Finalment, el mostreig RSS va millorar l’eficiència del mostreig en relació al SRS per a totes les mides de mostra que 
foren avaluats (N=4 fins N=12). La utilització d’aquest mètode de mostreig requerí l’ús d’una variable auxiliar 
fortament correlacionada amb la variable a estimar (càrrega de fruits), obtenint d’aquesta manera mostres que, 
amb igual precisió, podien ser ara de mida menor (un 40% més petites que les mostres SRS). La variable 
seleccionada fou l’àrea nadir projectada de la copa de l’arbre. Aquesta àrea fou obtinguda mitjançant un drone i, 
donada la seva alta resolució per píxel, va possibilitar delimitar individualment cada arbre amb alta precisió. El 
procés de delimitació de les copes fou realitzat manualment. L’automatització d’aquest procés mitjançant 
algorismes més precisos i robustos obren les portes a una nova línia d’investigació. 
 

Paraules clau: Variabilitat espacial, NDVI, CEa, préssec, mostreig estratificat (StRS), ranked sampling (RSS), 

mostreig aleatori (SRS), MANOVA, parcel·lació, sensors, anàlisi espacial.  

 

  



 

4 

 

LABURPENA  

Tesi honen funtsa, Ebro Bailaran landatzen diren mertxikondoen (Prunus persica (L.) Stokes) aldakortasun 

espazialaren ikerketa da. Lehen pausu batean lurreko aldakortasun espaziala eta fruitu arbolen indarra aztertu 

ziren, maneiu zona homogeneoak lortzeko asmoz. Bigarren pausu batean, sentsore ezberdinek igorritako informazio 

lagungarria erabili zen parametro kuantitatibo (fruituaren gogortasuna, °Baumè) eta kualitatiboak estimatzeko 

laginketa aurreratuen bidez. 

 

Tesi honetan erabilitako datuak 2015 eta 2016 urteetan bildu ziren. 2015-eko datuak IRTAk Gimenells-en duen 

landa eremu esperimentalean bildu ziren. Bertako ezaugarri aipagarriena sakonera desberdinean garatzen den 

horizonte pretokaltzikoren presentzia da. Beste alde batetik, 2016. urteko datuak Utxesako landa eremu 

komertzialean bildu ziren. Lur zati honetan, gatz kontzentrazio nahiko altuak aurkitzen dira, horretaz gain, 80. 

hamarkadan bertako lurra mugitu zen terraza txikiak eraldatuz lursail handiak eratzeko. 2 lursail hauek Preziziosko 

Nekazaritzan erabiltzen diren sentsoreen bidez karakterizatu ziren. Lurreko aldakortasuna ageriko konduktibitate 

elektrikoaren (ECa) bidez neurtu zen. OptRx sentsoreaz gain RGB kamera bat eta espektru anitz neurtzeko gaitasuna 

duen kamera bat erabili ziren zuhaitzen indarra neurtzeko. Mertxikondoen propietate geometrikoak LiDAR sentsore 

baten bidez eskuratu ziren.  

 

ECa-k duen informazioa algoritmo ez lineal batez eta ISODATA eta MANOVA bezalako teknika multibarianteen bidez 

aztertu zen, lurreko maneiu zona homogeneoak lortzeko asmoz. ECa gehien baldintzatzen duten lur propietateak 

zeintzuk diren jakitea ahalbidetu zuen erabilitako prozedurak. Aldakortasunaren iturria ezaguna izanik, hau 

konpontzeko ekintzak proposatu ziren. Bigarren ikerketa batek lurraren eta uztaren arteko elkarrekintzak aztertzea 

zuen helburu, horretarako ECa-z gain NDVI-a erabili zen. Esperotakoaren aurka, bi aldagaien artean ez zegoela 

erlaziorik aurkitu zen. Erlazio falta honen sorburua tantaz-tantako ureztatzean egon daitekeela uste da, sustrai 

sisteman baldintza hezeagoak egotea eragiten baitu. ECa eta NDVI-aren arteko diskordantzia handienak terraza 

zaharrak zeuden guneetan aurkitu zen. Terrazen birmoldatze lanek lurreko propietateak eraldatu zituzten. Hau 

horrela izanda 2 ekintza mota proposatu ziren lursailen maneiua obetzeko asmotan.  

 

Mertxikondoen parametro kualitatibo eta kuantitatiboak estimatzeko garaian, laginketa estratifikatua (StRS) eta 

ranked set sampling (RSS) laginketak, zorizko laginketa sinplearen efizientziarekin (SRS) erkatu ziren. StRS eta RSS 

laginketek SRSa baino efizienteagoak dira eta horren ondorioz beharrezko lagin tamaina murrizten dute hauen 

efizientzia handituz. StRS-aren emaitza onenak NDVI-a erabiliz lortu ziren. Esate baterako, zehaztazuna galdu gabe 

uztaren estimazioa %17-an obetu zuen. ECa edo ECa+NDVI bidezko estratifikazioak ez zuen NDVI-aren estimazioa 

hobetu.  

 

Beste alde batetik, RSS-aren efizientzia SRS baino altuago zela ikusi zen azterturiko lagin tamaina guztietarako (N=4, 

N=12). Fruitu kopuruarekin erlazio estua zuen aldagai lagungarri baten erabilerak, esfortzua %40 batean murriztu 

zuen. Kasu honetan, erlazio estuena zuen aldagaia zuhaitz buruaren area proiektatua izan zen. Aldagai hau, dron 

batean kokaturiko RGB kamara bateaz lortu zen. Irudiak zuen erresoluzio altuak zuhaitz buruaren definizio zehatza 

egitea ahalbidetu zuen. Algoritmo trinko eta zehatzagoen bidezko automatizazioak ateak ireki dakioke ikerketa lerro 

honi.  

 

Hitz gakoak: Aldakortasun espaziala, NDVI, ECa, mertxikondo, laginketa estratifikatua (StRS), ranked sampling 

(RSS), zorizko laginketa (SRS), MANOVA, lur eraldaketa, sentsoreak, analisi espaziala. 

 

  



 

5 

 

AGRADECIMIENTOS 
 
No  podría empezar de otra manera el apartado de agradecimientos que agradeciendo a 

Jaume y José Antonio, los directores de esta tesis, la buena disposición y la ayuda brindada 

durante el transcurso de estos 3 años ante cualquier duda o dificultad que he tenido. He de 

remarcar de una manera especial el tiempo invertido en las correcciones de las diferentes 

secciones de la Tesis. Hasta recabar en Lleida nunca había pertenecido a un grupo de trabajo 

tan grande como el GRAP, donde compañeros de diferente origen académico se organizan 

“asambleariamente” para trabajar conjuntamente hacia un mismo objetivo. Gracias por 

dejarme formar parte de este grupo. Bruno, gracias por abrirme las puertas de tu grupo de 

investigación en Montpellier, merci.  

 

Muchos viajes se emprenden con el objetivo de buscar y acumular nuevas experiencias para 

enriquecernos. Gracias a la forma peculiar de ver las cosas de mi madre he conseguido 

contemplar la Tesis como una especie de viaje, que comienzo desde el confort de lo conocido 

(casa) y voy trabajando y descubriendo diferentes aspectos de  mí mismo y las personas que 

me rodean, completando el saco de las experiencias,  hasta culminar este viaje en una nueva 

zona de confort. Haberme inculcado esta forma de contemplar las cosas no se puede 

agradecer con palabras. Aún y todo, no ha sido siempre sencillo el camino, y no han sido pocas 

las veces en las que he pensado mientras conducía de regreso a Lleida “zertan zabitz zu, 

Lleidara bidian, zertarako balio dotzu honek danak” y no son pocos los kilómetros conducidos, 

56 000 km.  Aita, momento horretan zu etortzen zare nire burura, pertsona gutxi ezautzen 

baitittut zu bezain konstanteak, ekindako lanaz eta hartutako konpromezuaz, jo eta ke hauek 

bukatu arte, betik aurrera. Uxue, zuri gauza asko dauzkot esateko, baina guztiak laburtzen 

dittuen hitz bat bakarrik idatzikot zuretako, milesker.  

 

Las personas que me conocen saben que el cocinar y el comer son aspectos clave para mí. Por 

ello invierto mucho tiempo en la cocina, pero si no pudiese disfrutar de una conversación y la 

compañía de los compañeros a la hora de la comida apenas me merecería recrearme en la 

cocina. Por ello querría agradecer encarecidamente los momentos compartidos con el grupo 

de Rius, moltes gracies.   

 

Bueno Efren, no puedo evitar una sonrisa cuando recuerdo las palabras que me dijiste el día 4 

de febrero del 2016 nada más conocernos “Kaixo, andas en bici no? que grupo llevas”.  

Entonces pensé en que por lo menos alguien de Lleida compartía mi afición por la bici. Desde 

entonces hemos compartido muchas horas sobre la bici y hemos sufrido todo tipo de 

inclemencias climáticas. Desde los 38 C ° subiendo Larrau a los 3 C° bajando Errozate en 

camiseta. Gracias por acompañarme en estas aventuras alocadas.  

 

Ezingo neuke atal hau amaitu Arrasateko lagunei eskerrak eman barik.  Hiru urte hauetan ez 

dot denbora asko konpartitu zuokin, baina batera egondakoa kalitatezkua izan dala uste dot. 

 

Mila esker guztioi!!!!! 
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INTRODUCTION 

 

1. Background and rationale of the research 

 

This Thesis is framed into the research project "Photonic-based tools for a sustainable 

agronomic management and use of pesticides in tree crops in the framework of precision 

farming” " (AgVANCE project, AGL2013-48297-C2-R, 2014-2017); carried out by The Research 

Group in AgroICT & Precision Agriculture (GRAP) of the University of Lleida and financed by the 

Spanish Ministry of Economy and Competitiveness. 

 

The relevance of this Thesis lays in the importance and specific weight that stone fruit 

production has in the economy of some Mediterranean countries. Particularly, Spain, Italy and 

Greece concentrate more than 90 % of peach (Prunus pérsica (L.) Stokes) production of the 

European Union (Eurostat, 2015). In Spain, deciduous fruit tree production is the main sub-

sector contributing to the total agricultural production, with 31% of it. The main production 

area is located in Ebro valley, where the 68 % of this production is concentrated. With 11 000 

ha dedicated to this type of orchard and with an annual production near to 190 000 tones, the 

province of Lleida is the most significant production area. In the mid of the past decade (2006-

2007), there was a substantial decrease in the area dedicated to peach production in Spain. In 

2 years it was reduced from 80 000 ha to 50 000 ha, 32% less (Seoane, 2016). From then until 

today, the cultivated area has remained, more or less, constant. 

 

In this context, agriculture of societies such as the European, Australian, and North American 

are facing two significant challenges. On one hand, the area dedicated to agricultural 

production is gradually decreasing (bancomundial.org); on the other, each habitant consumes 

more resources. In developing countries, the same trend is observed. In this way, the first 

challenge of modern agriculture has as purpose to increase production without increasing the 

area under cultivation, to be able to satisfy the new requirements of modern societies. The 

second objective tries to pool the first objective with the new ecological conscience. In this 

way, fruticulture, besides being competitive economically on a global market, must be 

environmentally sustainable (Collete et al., 2011) and allow the development of small farmers. 

The key to face both milestones of modern agriculture lies in the management of crops. A key 

point to manage plots adequately is to adapt it to the spatial variability of the crop 

(Aggelopoulou et al., 2010, Bramley et al., 2011). In this way, inputs application and 

distribution of the resources will be carried out in concordance with crop needs. For this, is 

essential to know the crop phenological stage, since it allows to efficiently organize the 

necessary resources and to plan work peaks. Harvesting, is considered one of the most 

complex and expensive tasks of agriculture (Bonora et al., 2014) since it involves a lot of 

workforces and specialized machinery. Properly planning of harvest has a positive impact on 

the final costs, since this reduces the workforce. Another advantage of knowing 

the phenological state of the crop is that allows to harvest the fruits in his optimum moment. 

Sampling is an efficient option for this (Doraiswamy et al., 2010).   

 

 



-Chapter 1 – General introduction- 

 

14 

 

1.1.1. Spatial variability of soil and crops 

 

The achievement of objectives in modern agriculture is hindered by the intrinsic spatial 

variability of crops (Arnó et al., 2012, Martínez-Casasnovas et al., 2012), and soil (Brevik & 

Fenton, 2003). The presence of spatial variability in the crops makes it inappropriate to 

manage homogeneously plots, making the farmers work more difficult. The spatial variability 

may have a natural or anthropic origin. Human activity can increase soil variability by land 

movements or interventions to adapt the land to new technologies and machinery (Martínez-

Casasnovas & Ramos, 2009). As an example, Figure 1 shows the transformation suffered in an 

area of 1 km2 located in the Ebro Valley (Utxesa, Lleida). The image of 1946 shows smaller 

plots (terraces) adapted to terrain morphology, where olive trees (Olea europea K.) and 

almonds (Prunus dulcis (Mill.) D.A. Webb) were cultivated in rainfed land. The image of 2016 

shows a very different structure. Terraces were removed through land movements and small 

plots were redesigned in larger ones. Moreover, rainfed crops were replaced by irrigated 

crops, such as peaches, nectarines and Saturn peaches, among others. These land movements 

can concern crop development (Martínez-Casasnovas et al., 2010).  

 

 
Fig. 1 Comparison of 2 orthophotos that show changes suffered in a representative area of the Ebro 
Valley during the last 70 years. Left: Orthophoto of 1946 from the area of Utxesa (Lleida) (American 
Flight Series A, 1945-1946). Right: Same area orthophoto of 2016, scale 1:2500 (Institut Cartogràfic i 
Geològic de Catalunya). This orthophoto allows seeing variability in crop development in the new plots. 

 

Homogenization of crops is one strategy used by the agricultors to facilitate the management. 

To achieve this goal, genetically uniform trees are planted following regular patterns (Miranda 

et al., 2018). In spite of it, crops present spatial patterns, which they should be born in mind at 

the moment of being managed. Because of this spatial variability, differentiate management at 

plot level would be essential to get optimum yield (Whelan & McBratney, 2000). In this

respect, Precision Agriculture (PA) is nowadays the new paradigm of agriculture which analyze 

synergies between plot and crop variability (Stafford, 2000). PA is a farming management 
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strategy based on information and technology, which improves the efficiency of production 

through the adjustment of doses to the plot’s intrinsic variability (Stafford, 2000). 

Differentiated management has as objective carrying out the appropriate intervention at the 

right time and in the right place (Bongiovanni & Lowenberg-Deboer, 2004). Following these 

principles, PA approaches previously mentioned milestones of modern agriculture. On one 

hand, by reducing the number of supplies, environmental impact of agriculture diminishes 

(Alamo et al., 2012). On the other hand, with a more efficient use of the resources, farmers 

can get better economic results. In addition, the management of plot zones with different 

characteristics allows the differentiated sale of the products, obtaining major benefits 

(Bramley et al., 2005). As a result, these products can get higher prices in the market. For 

example, Griffin & Lowenberg-DeBoer (2005) affirm that economic benefits of PA are directly 

correlated to machinery cost. Furthermore, in 68 % of the studied cases, economic benefits 

improved when managing the plot according to PA principles, in comparison with conventional 

management. 

 

To carry out site-specific crop management (SCCM) it is necessary to know soil and crop intra-

plot variability. In this respect, PA uses sensors for it. Those of photonic base are used to 

obtain information about crop geometry and vegetative status. Besides, resistivity or 

electromagnetic induction sensors measure soil apparent electrical conductivity (ECa), and 

from it other soil properties can be inferred (Corwin & Lesch, 2003). In both cases, data 

provided by the sensors must be geo-referenced so they can be analyzed and mapped by 

advanced geostatistical procedures, being the result maps that facilitate their subsequent 

interpretation. 

 

Figure 2 shows an example of soil variability. In it, a temporal lapse of 11 years is shown. In the 

image of 2005, bare soil can be observed, with different tonalities that may indicate distinct 

soil properties (Francis & Schepers, 1997). Right image of Figure 2 shows the plot in 2016. The 

central zone shows a more intense green vegetation strip. This strip coincides with an area 

where in 2005 appears with a darker tonality, which probably correspond with deeper soils 

and/or with greater water retention capacity. 
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Fig.2 Comparison between 2 orthophotos of the same plot previous to be cultivated (left) and during 
cultivation (right). The orthophoto of 2005 shows bare soil with different tonalities, indicative of distinct 
properties. In the orthophoto of 2016, the variability of fruit trees vigour is observed. 
 

Soil variability influences crop development (De Benedetto et al., 2013), therefore, in a specific 

plot, it is necessary to take several samples to capture that variability. Due to the high cost and 

effort required for intensive sampling, an appropriate number of samples is not usually taken 

(Peralta & Costa, 2013). With classical soil sampling techniques, spatial resolution required for 

PA is not achieved (Mertens et al., 2008). However, non-invasive sensors, such as the Veris 

3100 resistivity sensor (Veris Technologies Inc., Salina KS, USA), or the EM38-MK2 electrical 

conductivity meter (Geonics Ltd, Mississanga, Ontario, Canada), can help to streamline and 

reduce the price of the soil sampling process. These sensors, in conjunction with a few number 

of soil samples, allow detailed mapping of soil properties (Corwin & Lesch, 2005), and with 

significant fewer sampling effort (James et al., 2003). 

As mentioned above, the ECa signal depends on soil composition (Brevik & Fenton, 2002). 

Theoretically, soil properties that more affect ECa are salinity, moisture content and texture 

(Williams & Baker, 1982; Corwin & Lesch, 2005). Doolittle & Brevik (2014) compiled 

some works where these relationships were analyzed individually. Nevertheless, soil is an 

entity composed by a mixture of organic compounds, liquids, minerals, gases and alive 

organisms that interact between them. This makes difficult to determine the contribution of 

each soil property to the ECa variability. This makes inadvisably to determine the contribution 

of each property to the signal through a univariate analysis. To solve this problem, multivariate 

techniques can be used. For example, Morari et al. (2009) and De Benedetto et al. (2012) used 

multivariate geostatistics to predict clay, sand and gravel concentration from ECa. However, 

and despite not being the most appropriate technique to test differences between specific 

management zones, univariate statistics are still used. Thus, from an agronomic point of view, 

it would be interesting to analyze the usefulness of multivariate statistics to differentiate soil 

properties and to analyse the contribution of each of them to ECa variability. 
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High concentration of calcium carbonate (CaCO3) is common in Ebro Valley soils. 

Moreover, some areas can develop a petrocalcic horizon, which can limit the growth of the 

root system. Despite this, there are few studies where relation between the concentration of 

calcium carbonate and ECa signal variability is analysed. Then, knowing how CaCO3 

concentration affects the ECa signal is a pending research issue. In the same way, something 

similar happens with land transformations carried out to enlarge plotss to favour the 

mechanization of agricultural works. These operations are widespread since 1970s-80s 

(Martínez-Casasnovas & Ramos, 2009), being able to affect crops’ growth by altering the 

spatial distribution of soil properties. In this respect, ECa could be an option to identify the 

areas where soil movements have been carried out. 

 

1.1.2. Sampling for yield stimation 

 

A key element in fruit production management is yield forecast. Field sampling is considered 

the more reliable method for that. Sampling has advantages over gather all individuals of a 

population. For example, the sampling reduces the costs. Also, it speeds up the process of 

obtaining data, which is of vital importance when information is needed almost at once. 

Another advantage of sampling is that it can increase accuracy, since counting a large 

population presents difficulties and can lead to errors. However, if the number of individuals 

to be sampled is reduced, they are supervised in more detail (Cochran, 1977). In spite of this, 

sampling is not a recurring theme in PA, so there are few papers published in specialised 

journals and conferences. 

 

The inadequate planning of the samplings is the Achilles hell of many studies (Kerry et al., 

2010). Simple Random Sampling (SRS) is the most used sampling technique in agriculture. The 

most significant advantage that it presents is its facility of implementation in the field and the 

subsequent interpretation. One disadvantage of the SRS is that it does not consider the spatial 

variability of the crop at the time of sampling (Cambardella et al., 1999; Perry et al., 2010). 

Therefore, SRS is inefficient to estimate parameters with spatial patterns (Webster & Lark, 

2013). SRS is included within the sampling group denominated as “Design Based” (Brus & 

Gruijter, 1997). The same group includes sampling techniques such as stratified random 

sampling (StRS) or ranked set sampling (RSS), which consider the spatial variability of the crop 

when sampling. Sampling based on geostatistical techniques (model based) is another option. 

Geostatistic is based on the premises that nearby points are more similar than distant ones 

(Oliver et al., 2010). In this Thesis, the possibilities that this type of sampling offers to estimate 

the crop yield there has not studied in depth. However, geostatistics has been a crucial tool to 

get necessary information for nourishes the other sampling schemes.  

 

To perform an adequate sampling by considering crop variability reinforces the quality and 

precision of the subsequent analyses. Moreover, information quality depends on prediction 

accuracy. For this, to have detailed information which captures orchard attributes and soil 

variation is very important. At the time to sample, the methods used in agriculture are manual

 and destructive, which can be a substantial handicap. Usually, collection and process of 

samples is expensive (Webster & Oliver, 1990). Because of that, the knowledge of the 
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phenological status and consequently management of the plots has historically been based on 

measures of few points, which only allowed the homogeneous management of orchards. 

However, PA promotes differentiated plot management and, for it, the spatial variability has to 

be known in detail. This can be achieved by increasing sampling intensity (Kerry et al., 2010), or 

by using sampling strategies that consider intrinsic variability. An example would be the 

schemes based on auxiliary information provided by sensors used in the PA. 

 

One of the options is the use of auxiliary variable maps spatially correlated with the target 

variable. Digital terrain analysis or remote sensing is options to get these maps. For example, 

soil depth is a variable correlated with slope. Therefore, soil depth could be sampled 

considering the slope, which is an auxiliary variable easy to derive from a digital elevation 

model (DEM). Usually, multiple linear regressions are the way to establish the relationship 

between both variables (Hengl et al., 2003). This approach is known as “environmental 

correlation” (McKenzie & Austin, 1993). 

 

Wulfsohn (2010) presented a review on sampling techniques used in PA. One of the mentioned 

techniques is the Stratified Random Sampling (StRS), which tries to reduce sampling variability 

by creating homogeneous strata (with less variability within the group or stratum). These 

homogeneous strata can be delimited from auxiliary information acquired by sensors used in 

PA. Despite the possible advantages of StRS, this method is not widely used in PA. Wulfsohn 

(2010) did not present the technique called Ranked Set Sampling (RSS) (McIntyre, 1952), since 

it was not used in PA until today. RSS, through an iterative process based on the distribution of 

an auxiliary variable correlated with the target variable, allows obtaining more representative 

samples (more information about the distribution of the population). 

 

Within this interdisciplinary framework, this research focuses on the study of spatial variability 

of fruit orchards (peach). For this, geo-referenced information acquired from several sensors 

was used (Veris3100, Digital Multispectral Camera, LiDAR, and OptRX). As explained above, soil 

variability analysis is inherently complex. Because of that, the impact of soil movements on soil 

variability and the effects of these movements on crop development have been less studied 

than other parameters. Fruit orchards are variable, therefore, sampling to estimate the yield 

and to know the phenological status should contemplate this variability. 
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1.2. Aims, hypothesis and objectives 

 

The main aim of this Thesis is to deepen in the utility of auxiliary information based on non-

invasive sensors to measure and assess within-field spatial variability in fruit growing plots. 

Because of this spatial analysis, site-specific fruit management based on plot zoning and on 

efficient sampling to estimate yield and quality are the two areas in which this Thesis is 

focused on.  

 

The following hypotheses were contrasted: 

 

 H1 High concentration of CaCO3 in soils affects variability of ECa.  

 H2 Lands transformations carried out to enlarge fields and favour mechanization 

have broken soil continuity and induce crop variability. 

 H3 Auxiliary information obtained from non-invasive sensors allows sampling 

effort and efficiency to be improved in fruit orchards. 

 H4 Auxiliary information can facilitate use of Ranked Set Sampling as new sampling 

procedure in fruit orchards. 

 

In order to response these hypotheses, the specific objectives of the Thesis are: 

 

 O1 To analyse the utility of a resistivity sensor, Veris 3100, as a tool to detect and 

measure the spatial variability of soil properties in soils with high contents of 

calcium carbonate. 

 O2 To study the effects of land transformations in soil variability and in the 

development of trees in fruit orchards. 

 O3 To assess the efficiency of stratified sampling schemes based on auxiliary 

information, such as NDVI and ECa, compared to simple random sampling.  

 O4 To determine the most appropriate auxillary variable to use in Ranked Set 

Sampling schemes to compare efficiency with simple random sampling in yield 

estimation in peach orchards. 
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1.3. Thesis Structure 

 

Figure 3 shows the structure of the Thesis with the different chapters, associated objectives, 

hypothesis and journals where papers have been published or are in the process of 

publication. The main objectives of the Thesis are addressed in the focal chapters 3 to 6, with 

each of them corresponding with a scientific paper. Following the regulation of the University 

of Lleida (Article 28 of the Normativa acadèmica de doctorat de la Universitat de Lleida), which 

specifies the requirements of the Thesis based on article format, each of the focal chapters can 

be considered as a self‐contained unit. It means that they have an introduction section 

outlining the specific research context and objectives of the chapter, the full details of the 

methods used, the results, discussion and conclusions. The present chapter represents a 

general introduction of the Thesis. Chapter 2 provides an overview of the methods used for 

the respective focal chapters. Finally, in chapter 7, a comprehensive discussion of the results 

obtained in focal chapters 3 to 6 is presented, allowing general conclusions to be drawn in 

relation to each of the objectives of the work. General conclusions of the Thesis are presented 

in chapter 8. 
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Fig. 3 Structure of the Thesis with the different chapters, associated objectives and journals where 

papers have been published or have been submitted. 

 

 

 

 

 

 

 

 

 



-Chapter 1 – General introduction- 

 

22 

 

1.4. Thesis timeline 

 

This Thesis was performed within the framework of a 3-years doctoral fellowship funded by 

the University of Lleida, from February 2016 to February 2019. The timeline of the different 

studies that comprise the Thesis is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Timeline of the Thesis where chronologically main temporal tasks are detailed. 
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1. GENERAL WORKFLOW AND SHORT OVERVIEW OF SENSORS AND TECHNIQUES 

USED DURING THE THESIS 

 

1.1 Thesis workflow 

 

This chapter shows the general workflow of the research and the main characteristics of the 

sensors and techniques used. Figures 1 and 2 show the general workflow. Blue boxes 

represent the necessary steps to achieve the objectives described in chapter 1. Green letters 

contain the sensors used to measure soil and tree vigour variability. Finally, several sampling 

techniques and statistical procedures used during the research appear in brown letters. In the 

following sections, a brief description of the sensors (section 2), in addition to the statistical 

methods used (section 3), and the sampling techniques assessed in the Thesis (section 4) are 

provided. 

 

 
Fig. 1 Schematic illustration of the general workflow of chapters 3 and 5 (Gimenells study plot). The 

blue boxes indicate significant milestones to achieve the objectives of the chapters. The sensors used in 
these chapters appear in green letters. Brown letters are indicatives of different types of techniques. 
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Fig. 2 Schematic illustration of the general workflow of chapters 4 and 6 (Utxesa study plot). In the blue 

boxes, significant milestones to achieve the objectives of the chapters. The sensor used in these 
chapters appears in green letters, as well as brown letters are indicatives of different types of 
techniques. 

 
2. SENSORS USED DURING THE RESEARCH 

 

2.1. On-the-go soil ECa mapping with Veris 3100  

 

Veris 3100 (Veris Technologies, Inc., Salina, KS, USA) is a galvanic contact soil sensor. This 

sensor is a simple and effective tool to acquire on-the-go information on soil bulk electrical 

conductivity for subsequent mapping. This type of sensor measures the electrical resistivity of 

the soil, which is converted into apparent electrical conductivity (ECa), a variable correlated 

with several soil properties (Corwin & Lesch, 2003). Its advantage lies in the use of two 

electrical arrays that allow capturing the electrical readings in two different depths of the soil 

simultaneously. Furthermore, the presence of metals does not interfere the readings. The 

Veris 3100 equipment consists of six heavy-duty coulter-electrodes, each of one only need to 

penetrate the soil a few inches. While a pair of electrodes (Figure 3, coulters 2-5) injects 

electrical current into the soil, the other two pairs measure the voltage drop (Figure 3). 

Penetration of the electrical current into the soil and, by extension, the volume of soil explored 

increases as the inter-electrode space increases. The effective depth of electrical arrays is well 

documented in the scientific literature (Milsom, 1989). In the present case, arrays 

configuration allowed soil depths of 0–30 cm (shallow ECa reading) and 0–90 cm (deep ECa 

reading) to be explored (Figure 3). More precise specifications and frequently asked questions 

(FAQS) of Veris 3100 can be consulted in the web (www.veristech.com/the-sensors/v3100). 
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Fig. 3 Operation principle of the contact type ECa sensor. Blue coulters act as transmitting electrodes 

and the others act as receptors. In red, action range of shallow coulters, in pink, action range of deep 
coulters. 
 

2.2. Quantifying the crop vigour using aerial and terrestrial platforms and 

multispectral images 

 

In this Thesis, multispectral data was used to get different vegetation indexes (VIs). These VIs 

are employed to quantify remotely the vegetative state of fruit trees. A VI is built by a spectral 

transformation of two or more bands to improve the knowledge about vegetative properties. 

Combining reflectance values corresponding to different bands of the spectrum, a numeric 

value per pixel is obtained (Hall et al., 2002). Different VIs can be used allowing temporal and 

spatial variability to be assessed (Huete et al., 2000). In agriculture, one of the most used band 

to calculate VIs is the near-infrared (780-2500 nm), since it allows differentiating healthy and 

vigorous plants from other stressed (Hall et al., 2002). 

 

Throughout the Thesis, two types of sensors were used to capture multi-spectral data. On one 

hand, a digital multispectral camera (DMSC) (Figure 4, A) mounted on an aeroplane (CESSNA 

1725 Sky Hawk) (Figure 4, B). Images captured with this sensor have a spatial resolution of 25 

cm2 per pixel. Each of the pixels captured with the DMSC has 4-band, centred at 450 nm (blue), 

550 nm (green), 675 nm (red) and 780 nm (near infrared). Normalized Difference Vegetation 

Index (NDVI) was obtained through the combination of the red and near-infrared band as 

proposed by Rouse et al., 1974 (Table 1). This type of aerial images allows vegetative 

development and vigour of tree canopy to be measured. On the other hand, there is the OptRx 

terrestrial reflectance sensor (Ag Leader Technology, Ames, IA, USA) (Figure 4, C), that was 

used to measure the lateral reflectance of the crop. The OptRx can provide, in addition to the 

NDVI, the NDRE (Normalized Difference Red Edge) proposed by (Gitelson & Mezlyak, 1994) 

(Table 1). 
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Table 1 Spectral vegetation indices used in the Thesis  

Spectral index 

 

 

Reference 

Normalized Difference Vegetation Index (NDVI) 

 

     
       

       
 

Rouse et al. 1974 

Normalized Difference Red Edge 

 

     
      

      
 

Gitelson & Mezlyak, 

1994 

 

The OptRx works as an active sensor that projects a light beam to measure and record in real 

time the reflectance of the light shined on the growing plants (Figure 4, D). NDVI is 

recommended to measure crops in the early stage of development, while NDRE is more 

suitable to use for big crops as maize (Zea mays L.) or late stages in small crops as wheat 

(Triticum sp.). The OptRx sensor can be coupled with almost all types of terrestrial vehicles. 

Normally used with nadir viewing angle, reflectance data of the trees have been captured by 

positioning the sensor to take lateral readings of the canopy along the rows. 

 

 

 
Fig. 4 A) Tetracam Mini MCA-6 multispectral camera. B) CESSNA 1725 Sky Hawk aeroplane. C) OptRx 

multispectral terrestrial sensor. D) OptRx sensor in operation in arable crops.  

 

2.3. Scanning fruit trees using mobile terrestrial laser scanners (MTLS) 

 

The mobile terrestrial laser scanner (MTLS) used to characterise geometric properties of tree 

canopy was a UTM30-LX-EW time-of-flight LiDAR (HOKUYO, Osaka, Japan). Apart from the 

LiDAR (Light Detection and Ranging), the device includes a gimbal (to correct the oscillations 

that MTLS can have during field operation) and a GNSS sensor. The passive receptor used to 
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georeference the MTLS point cloud was a GNSS 1200+ (Leica Geosystems AG, Heerbrugg, 

Switzerland) with RTK-GNSS system (a real-time kinematics global navigation satellite system 

receiving GPS and GLONASS constellation signals). Both sensors were connected to a rugged 

laptop suitable to work in field conditions. Synchronization between GNSS and LiDAR was 

carried out using an own design program under Lab View environment (National Instruments, 

Austin, EE.UU). Concerning the operation of the LiDAR, the sensor allows the distance from the 

laser emitter to an object to be determined, by measuring the time elapsed since the 

transmitter emits the light beam until the response is received by the receptor after hitting the 

target. The sensor performs 40 scans per second (40Hz) with a 30 m scope. On the other hand, 

the HOKUYO sensor can work with up to 3 returns, but in the Thesis only the first return has 

been taken into account. This sensor emits a laser beam every 0.25° until completing an angle 

of 270°, 1081 laser beams every turn, existing a blind angle of 90° (Figure 5). The orientation of 

this angle is upward to lose as little information as possible. The sensor is mounted on a self-

propelled platform (Figure 5). The platform advances at a constant speed of 4 km/h, allowing a 

distance between consecutive scans of approximately 2.7 cm to be obtained. 

 

The MTLS was used to obtain geometrical properties of the tree canopy (Chapter 6). For 

functional characterisation of geometric features, it is essential to have georeferenced data in 

absolute coordinates, such as those provided by the Leica receiver. However, light beam 

impacts are only defined by polar coordinates (distance and emission angle) taking as 

reference the emitter (HOKUYO sensor). The combination of both positioning systems is 

necessary to georeference accurately where each beam has impacted. The result of having 

each impact point georeferenced is a point cloud, the basic structure to measure geometric 

properties of trees. Data process to obtain the geometric properties of the trees is explained in 

depth in chapter 6.  

 

 
Fig 5 (A) Photography of the MTLS where its main elements are observed: Self-propelled platform, 

LiDAR and GPS antenna (author: A. Escolà). (B) MTLS diagram showing graphically how the LiDAR sensor 

works. Figure B has been obtained from Escolà et al. (2017). 
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3. STATISTICAL ANALYSIS 

 

3.1. Geostatistics to assess spatial variability 

 

3.1.1 The concept 

 

Matheron developed modern geostatistics in the 1960s (Matheron, 1963) by expanding Krige's 

empirical ideas (Krige, 1951) as, for example, by exploring the concept that neighbouring 

points to a certain location in space could be used to improve predictions at that point. The 

theory of regionalised variables provides the appropriate mathematical tools (models) to make 

this prediction under the assumption of certain properties (Oliver, 2010). A regionalised 

variable is any spatially correlated attribute on some scale, that is, its value at a particular 

location depends, in statistical sense, on those of the neighbours, and this spatial dependence 

decreases as distance increases. This implies that unknown local values can be estimated more 

accurately from those actual values surrounding them. Interpolating in this way on a grid is the 

basis for creating a surface map or continuous raster map (Webster & Lark, 2013). 

 
 

3.1.2 Variogram: the key model in geostatistics 

 

To describe the variation of a regionalized variable in an area or surface, the idea behind the 

theory is that in locations close to each other, the values will be more similar than if we 

compare distant positions with each other. This idea is called spatial dependence or, what is 

the same, it is said that the variable shows spatial autocorrelation. The variogram is the model 

used in geostatistics to understand how regionalised variables are autocorrelated (Oliver, 

2010). 

 

The experimental variogram is calculated as follows: 

 

 ̂   =
 

     
∑ [             ]      

    

 

where z(x i) and z(x i h) are the actual values of   at places (x i) and (x i h), and m(h) is the 

number of paired comparisons at lag h. The experimental or sample variogram is obtained by 

changing h (Oliver, 2010). The quantity     (h) is known as the semivariance at lag h. The ‘semi’ 

evidently refers to the fact that it is half of a variance (Webster & Oliver, 2007), and 

corresponds to the expected quadratic difference of the variable between two locations 

(sites). 

 

Three especially relevant parameters are provided by the variogram once adjusted to the 

sampled data. The first is the sill (Figure 6). Assuming stationarity of the regionalized variable 

in each location (constant variance), the sill corresponds graphically to the value of the 

variogram that stabilizes at a certain distance or lag h. Specifically, this value is the constant 

variance, σ^2, assumed in the area under study (or variance of the random process). The range 

is the second parameter of the variogram (Figure 6), and it is directly associated with the sill. 
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The range is defined as the lag distance where the sill is obtained. This range is also known as 

the rank correlation, since it is the point where autocorrelation becomes 0 determining the 

limit of spatial dependence. Locations at greater distance than range are considered spatially 

independent. Finally, the third parameter of the variogram is the nugget variance (Figure 6). 

Usually, this parameter refers to measurement errors and/or variation that occur over 

distances shorter than the sampling interval. Finally, if the pattern of spatial variability does 

not happen in all directions homogeneously, the variogram will vary with the direction 

indicating anisotropy in the region under study (Webster & Oliver, 2007). 

 

 
Fig. 6 Example of variogram (dots) fitted to a spherical model (red line) showing its components: 

nugget, range and sill. In the top, limit of spatial autocorrelation is shown (Figure adapted from 
Caramés, 2015). 

 

Obviously, the experimental values of the variogram (dots in Figure 6) have to be adjusted to 

the best possible mathematical model to obtain the parameters mentioned above and 

minimize errors of subsequent analysis. This adjustment is a controversial step because some 

practitioners are fitting by eye. One advisable option could be the “weighted least squares” 

because it takes into account the accuracy of the individual semivariances providing the 

residual sum of squares a way to select the best fitting function (Webster & Oliver, 2007). 

 

3.1.3 Kriging: the method to interpolate in geostatistics 

 

Finally, a set of techniques allows values of the regionalised variables to be predicted in 

unsampled locations. Kriging, is the most remarkable technique since it obtains the best 

predictions (Laslett et al., 1987), combining non-bias and minimum error variance (best linear 

unbiased predictor, BLUP). Other methods only contribute with predictions while kriging 

contributes to forecasts, errors and kriging variances, which are a guide of the reliability of the 

estimates (Oliver, 2010). Many of the Thesis maps have been obtained by applying "ordinary 

kriging", the method commonly used in geostatistics applied to agriculture. 

 

 

 

 

 



-Chapter 2 – Methods-  

 

36 

 

3.2. Map classification algorithm (ISODATA) 

 

In chapters 3, 4 and 5 of the Thesis, homogeneous management zones were delimited using 

the ISODATA algorithm (Jensen, 1996). The prefix ISO of ISODATA is an abbreviation of 

Iterative Self-Organization way of performing classes or clusters within the analyzed maps. 

ISODATA algorithm is an iterative process to calculate minimum Euclidean distance when 

allocating each pixel to a cluster. The process begins allocating an arbitrary average value to 

each cluster (number of clusters are chosen previously because the method is unsupervised). 

In a second step, the algorithm groups the pixels according to the clusters, taking into account 

the smallest distance between average values of the clusters and those of the pixels. In a third 

step, ISODATA recalculates the mean of the new clusters with the pixels grouped in the first 

iteration. The same process is repeated, reassigning the pixels according to the mean values of 

the clusters. All this process is repeated until the number of pixels that migrate from one 

cluster to another will be low, that is, it does not exceed a certain threshold indicating that 

delimited clusters (zones or areas, since they are maps) are stable. Usually, if the number of 

clusters increases, a greater number of iterations will be necessary to obtain a stable 

classification. Figure 7 shows an example of how ISODATA algorithm works. The algorithm 

starts to allocate pixels from the continuous map (ECa, in this case) to the two previously 

established clusters. Continuing with this process, stabilisation of the clusters is observed as 

the number of iterations increases. 

 

 
Fig. 7 Iterative process used by the ISODATA algorithm to obtain differentiated management zones. 

 

As additional features of the algorithm, ISODATA allows the minimum number of pixels per 

zone to be defined. In this way, if this number is not reached, the algorithm will not create a 

new area (cluster). In addition, a zone is divided when the standard deviation within the 

original zone exceeds a predefined value, and the number of pixels is at least twice the 

minimum established above. 
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3.3. Multivariate analysis of variance (MANOVA) 

 

In statistics, multivariate analysis of variance (MANOVA) is an extension of analysis of variance 

(ANOVA) to the multivariate case. As a multivariate procedure, it is used when there are two 

or more dependent variables that can´t be combined easily. The advantages of using MANOVA 

instead of several ANOVA for each of the dependent variables have been detailed by Warne, 

(2014). In chapters 3 and 4, differences between management zones delimited according to 

different levels of the NDVI and ECa auxiliary variables have been measured by this technique. 

The post-hoc, Descriptive Discriminant Analysis (DDA), is then used to see the contribution, for 

example, of each soil property to ECa signal variability. A detailed description of DDA after 

performing a MANOVA can be found in Thomas, (1992). 

 
4. SAMPLING STRATEGIES USED DURING THE THESIS  

 

Next, the sampling methods used in the Thesis are briefly described. Among them, stratified 

sampling and ranked set sampling have been evaluated as alternative schemes for use in fruit 

growing. For this reason, stratified sampling and ranked set sampling methods have been 

described in depth in chapters 5 and 6, respectively.  

 

4.1. Simple Random Sampling (SRS) 

 

This is the simplest sampling method. Every unit in the sample is chosen independently to any 

other, and all units have the same chance to be selected (Webster & Oliver, 2007). SRS is an 

unbiased surveying technique. SRS without replacement was the strategy used in the Thesis, 

but it is theoretically inefficient (imprecise) compared to other methods (Wulfsohn, 2010).  

 

4.2. Systematic Sampling (SS) 

 

In this sampling technique, the first item is taken at random, and the following samples are 

taken always at the same distance. For instance, if the sampling distance is 100 m and the first 

individual has been obtained at 60 m from the plot boundary, the following individuals will be 

taken at 160, 260, etc. This technique often offers an appropriate balance between precision 

of estimates and time spent to obtain samples. It is easy to implement without mistakes and, 

in many situations, it is more precise than SRS although biased (Cochran, 1977). 

 

4.3. Stratified Random Sampling (StRS) 

 

Stratified random sampling provides a technique to reduce the variance of the estimates (or 

improve efficiency). The population is partitioned into no overlapping strata, and each stratum 

is treated as a separate population for sampling purposes. Subsamples are selected 

independently at random within each stratum (Wulfsohn, 2010). 

 
 
 
 



-Chapter 2 – Methods-  

 

38 

 

 
4.4. Ranked Set Sampling (RSS)  
 
Ranked set sampling is a sampling technique that does not need to divide the plot into 

different strata to cover globally the variability of the variable of interest. Instead, the entire 

distribution of the variable to be sampled is approximated by means of a ranking mechanism. 

Specifically, RSS obtains the information (items) from different partial distributions (as many as 

items in the sample) that have been ranked to occupy the complete distribution of the 

population. To select an item in each range (partial distribution), a ranking mechanism is 

commonly carried out through the use of auxiliary information. If the variable to be sampled is 

expensive, it may be reasonable to use an auxiliary variable that is easily measurable and 

strongly correlated. This makes RSS at least as efficient as SRS.  
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Apparent electrical conductivity and multivariate analysis of 

soil properties to assess soil constraints in orchards affected 

by previous parcelling 

 

Asier Uribeetxebarria, Jaume Arnó, Alex Escolà, José Antonio Martínez-Casasnovas 

 

ABSTRACT 

 

Fruit production is relevant to the European agricultural sector. However, orchards in semi-arid 

areas of southern Europe may contain soils with constrains for tree development. This is the case 

ofsoils with high CaCO3 content or limiting layers at variable depth. To assess spatial and in-depth 

variation of these soil constraints, an apparent electrical conductivity (ECa) survey was conducted in 

an orchard by using a galvanic contact soil sensor (Veris 3100). Different soil properties were 

randomly sampled at two depths (topsoil and subsoil) in 20 different sampling points within the 

plot. ECa raster maps were obtained for shallow (0-30 cm) and deep (0-90 cm) soil profile depths. In 

addition, an inversion modelling software was used to obtain horizontal ECa slices corresponding to 

10 cm thick soil layers from 0-10 cm to 80-90 cm in depth. Concordance analysis of ECa slices 

allowed the soil profile to be segmented into four homogeneous horizons with different spatial 

conductivity pattern. Then, a multivariate analysis of variance (MANOVA) was key, i) to better 

interpret the specific soil properties that mainly contributed to the spatial variation of ECa (CaCO3 

and organic mater (OM) contents), and ii) to delimit the soil layer and the specific spatial pattern of 

ECa that allows potential management areas to be delineated by presenting the same trend in 

CaCO3 and OM for topsoil and subsoil simultaneously. Moreover, assessing 3D variation of ECa 

made it possible to identify different soil areas that, linked to previous earthworks to optimize the 

parcelling of the farm, are the main cause of spatial variability within the orchard. 
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Soil sensing, ECa inversion, MANOVA, Precision fruticulture, Spatial analysis  
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1. INTRODUCTION 
 
Fruit production and quality are affected to some extent by soil properties given the plant-soil 

interaction (Pedrera-Parrilla et al., 2014; Unamunzaga et al., 2014; Khan et al., 2016). As soil can 

vary spatially and at different scales, knowledge of spatial patterns within the plots could help 

farmers to make better management decisions based on the delimitation of areas with different 

soil conditions and agronomic needs (Ping et al., 2005; Vitharana et al., 2008; Pedrera-Parrilla et al., 

2014; Córdoba et al., 2016). This is particularly relevant in semi-arid fruit growing areas of southern 

Europe. Soils in these areas are characterized by a high and spatially variable content of carbonates 

with clear incidence in nutritional deficiencies and chlorosis that affect growth and the normal 

foliar development. Accordingly, orchards usually show spatial variability in the canopy volume 

within the plot. In addition, this lack of homogeneity is particularly remarkable in plots that have 

been affected by successive earthworks over the years to reshape and optimize the parcelling of 

the farm. Fruit growers are therefore especially interested in locating and delimiting areas within 

the orchards that can be a major constraint for management (Fulton et al., 2011). 

 

Soil sensors for mapping the apparent soil electrical conductivity (ECa in mS/m) are increasingly 

used to understand and evaluate how soil varies spatially (Corwin and Lesch, 2003; Abdu et al., 

2008; Fulton et al., 2011) to delineate ECa-based management zones (Moral et al., 2010; Peralta 

and Costa, 2013). At present, it begins to be applied as a key sensing system in the framework of 

precision fruticulture (Käthner and Zude-Sasse, 2015). As ECa varies on a similar spatial scale as 

many soil physico-chemical properties (Sudduth et al., 2003; Carroll and Oliver, 2005), these soil 

monitoring systems have been widely accepted. Specifically, good correlations with soil salinity, soil 

water content and soil texture have been widely documented (Corwin & Lesch, 2005; Heil & 

Schmidhalter, 2012). Even, other soil properties affecting conductivity may be the organic C 

(Sudduth et al., 2003; Martinez et al., 2009), the cation exchange capacity (Sudduth et al., 2005) 

and the CaCO3 content (Kühn et al., 2009). However, despite these good predictive characteristics, 

there are few studies that refer the use of such sensors in horticulture and, more specifically, in 

fruit orchards located in Mediterranean latitudes. One reason could be the small size of many fruit 

orchards. This induces farmers to think that tree plantations are rather homogeneous, and spatial 

variability is not enough to justify investing in this technology. By contrast, Käthner and Zude-Sasse 

(2015) show that even in small orchards there may be differences in soil properties that relate to 

tree growth and fruit size. Two soil sensing systems are commonly used in agriculture (Corwin and 

Lesch, 2005). In both cases (galvanic contact with the soil and electromagnetic induction), sensors 

measure the ECa on a soil volume basis including both topsoil and subsoil. This is very interesting 

since soil influences fruit trees at least to the depth covered by the roots, and ECa measurements 

should cover the same depth. Depending on the system, soil sensors provide with several electrical 

signals corresponding to several explored depths. When two signals are provided, they are known 

as shallow and deep ECa, and may correspond to the topsoil and whole profile depending on the 

sensor range. Farmers can get maps of both signals to evaluate the spatial variation of ECa, and 

indirectly the spatial pattern of soil related properties. Moreover, by overlapping maps they can 

also assess whether the soil is uniform or varies in depth. The problem occurs when the interest is 

to determine exact depths at which changes in the soil profile are produced (e.g. petrocalcic 
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horizons) using such averaging procedures that encompass all or part of the soil profile (Heege, 

2013). 

 

Mapping the thickness or depth to a contrasting textural layer using ECa has been also referenced 

in several studies to detect clay horizons (Doolittle et al., 1994; Saey et al., 2009), or estimate 

topsoil depth explored by roots (Khan et al., 2016). Depth estimates may be based on empirical 

equations (using a single ECa signal that integrates the relative contribution of soil at each depth) or 

by combining data from multiple ECa sensors in both two- and three-layer models (Sudduth et al., 

2010, 2013). Electromagnetic conductivity imaging (EMCI) of soil is another option that has been 

recently investigated (Triantafilis et al., 2013). Combining conductivity data and an inversion 

modelling software, a two-dimensional model of the ECa can be generated to assess soil variation 

(i.e. horizons) at discrete depth intervals (Triantafilis and Monteiro Santos, 2013). Researchers can 

take advantage of this additional information regarding the signal variation probably caused by 

layers of different thickness and composition. In short, soil properties sampled at varying depths 

may be better interpreted if a model indicating the variation of ECa with soil depth is available. 

 

The main objective of the present research was to analyse the capacity of a galvanic contact soil 

sensor (Veris 3100) to be used as a diagnostic tool in fruit growing areas with high calcium 

carbonate content, and plots affected by previous parcelling works. Special attention was devoted 

to assess the spatial variability of physico-chemical soil properties to properly define differential 

management zones within an orchard. For that, we focused our research on i) evaluating the 

sensing system and its signal mapping, ii) inverting the ECa signal to obtain electrical imaging of ECa 

variation with soil profile, and iii) applying not conventional statistical methods i.e. multivariate 

analysis of variance (MANOVA) for a better interpretation of ECa and soil data. 

 

2. MATERIAL & METHODS 
 
2.1. Study area 
 
The study was carried out at the IRTA Experimental Station (Lon. 0.392017, Lat. 41.654413, Datum 

WGS84), located in Gimenells, 24 km west from Lleida (Catalonia, Spain). The research was focused 

on a 0.65 ha plot that was planted in 2011 with peach trees (Prunus persica L. Stokes var. 

platycarpa) according to a 5 x 2.80 m plantation pattern (Fig. 1). Soil was classified as Petrocalcic 

Calcixerept (Soil Survey Staff, 2014), and it is a well-drained soil without salinity problems. The 

climate, typical of semi-arid areas of the Mediterranean region, is characterized by strong seasonal 

temperature variations (cold winters and hot summers), and an annual precipitation that is usually 

below 400 mm, although with significant interannual variability. 

 

However, the most important feature of the plot was the presence of a petrocalcic horizon at a 

variable depth from 40 cm to 80 cm. This spatial variation in depth could be explained by the 

successive earthworks made in recent years in order to improve or adapt the parcelling of the farm. 

Probably, the petrocalcic layer was broken over time due to soil tillage and now appears even at 

shallow depths in certain areas. In fact, the history of transformation and land uses of this plot has 

been relatively complex as shown in Figure 1. Since 1946, when the Experimental Station was 

created, the plot has been cultivated with different crops and was modified in shape and size in 
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several occasions (at least, the plot undergone a minimum of four major transformations in recent 

years, Fig. 1). 

 

 
Fig. 1 Location of the study area and recent orthophoto (2015) of the experimental peach orchard (top). 

Other pictures: ancient orthophotos of the same area corresponding to different years since 1946. 

 
2.2. Soil sampling 
 
A simple random soil sampling was carried out in 20 different points within the plot (Fig. 2). Soil was 

sampled on March 15th, 2015. Samples were collected with the aid of a manual auger-hole at three 

different depths (0-30, 30-60, 60-90 cm). It is necessary to clarify that only in 4 of these sampling 

points it was possible to take a sample of the deepest layer, since the soil was shallow at most of 

the sampled sites. Sample locations were also georeferenced with submetric precision using a 

Trimble GPS Geo XH receiver and SBAS differential correction based on EGNOS. Soil samples were 

air-dried and sieved, and different physicochemical properties were analysed in laboratory 

according to the standard procedures. Specifically, data were obtained on the following properties: 

calcium carbonate content (CaCO3), cation exchange capacity (CEC), electrical conductivity in a 1:5 

soil-water solution (EC1:5), organic matter (OM), pH measured in a 1:2.5 soil-water ratio, soil 

texture, total nitrogen (TN) in soil, and water holding capacity (WHC). 



  -Chapter 3 – ECa and multivariate analysis of soil properties - 

 

47 

 

 

 
Fig. 2 ECa maps obtained by spatial interpolation and random soil sampling points within the plot. A) shallow 

ECa (0-30 cm). B) deep ECa (0-90 cm). 

 

In addition to manual soil sampling, an ECa survey was conducted by using the Soil EC Surveyor 

Veris 3100 (Veris Technologies, Inc., Salina, KS, USA). The Veris 3100 implement is a simple and 

effective tool to acquire on-the-go information on soil bulk electrical conductivity for subsequent 

mapping. Its advantage lies in using two electrical arrays that allows ECa readings to be obtained at 

two different soil depths simultaneously and free of metal interference. Equipped with six heavy-

duty coulter-electrodes, a pair of electrodes injects electrical current into the soil while the other 

two pairs measure the voltage drop. The penetration of the electrical current into the soil and, by 

extension, the volume of soil explored increases as the inter-electrode spacing increases. In our 

case, the array configuration allowed 0-30 cm (shallow ECa lecture) and 0-90 cm (deep ECa lecture) 

soil depths to be explored. 

 

The ECa survey was carried out on March 23rd, 2015. For that, the Veris 3100 system was pulled by 

a 4-wheel drive vehicle passing along all the alleyways of the peach orchard. As tree rows were 

spaced 5 m, parallel ECa measurements were spaced this same distance. On the other hand, the 

soil sensor was connected to a Trimble AgGPS332 receiver for georeferencing purposes, and SBAS 

differential correction based on EGNOS was used. Regarding the spatial sampling resolution, data 

were recorded every second providing a total of 644 georeferenced ECa readings within the 

orchard (990 sampling points per hectare). 

 

2.3. Apparent electrical conductivity maps and quasi-3D inversion modelling 

 

Both ECa values (shallow and deep) were mapped by ordinary kriging. Maps were obtained after 

checking the normality of the acquired data and having removed extreme outliers from the 

analysis. Regarding the latter, ECa values lower than          or greater than          

were not considered in the spatial interpolation (   and    were the first and third quartiles, and 

    was the interquartile range of the distribution). ArcMap 10.4.1 Geostatistical Analyst 

(Environmental Systems Research Institute, Redlands, CA, USA) was then used to finally interpolate 

shallow and deep ECa values by kriging on a 1 m grid. Geometric anisotropy along peach rows was 

taken into account when adjusting the experimental variograms (exponential model for the shallow 
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ECa, and stable model for the deep ECa). A strong spatial variation was also found on both maps 

(Fig. 2) (Cambardella et al., 1994).  

 

In addition to raster ECa maps (0-30 cm and 0-90 cm depth profile), inversion modelling was 

applied in order to estimate ECa values at different specific soil depths. The software invVERIS 1.1 

(EMTOMO Lda, Lisbon, Portugal) was used for this purpose. Specifically, invVERIS enables the 

inversion of ECa data acquired by galvanic contact soil sensors such as Veris 3100. The inversion 

procedure consists in a 1-dimensional laterally constrained technique to evaluate the ECa for a 

given soil transects (Quasi-2D inversion). The technique of signal inversion is based on a nonlinear, 

smoothness-constrained algorithm described by Monteiro Santos et al. (2011) and Monteiro Santos 

(2004). As the Veris 3100 sensor was used passing along all the alleyways of the orchard (different 

transects), the possibility of inversion in each of these profiles makes it possible to obtain a soil 

layer model from the set of 1D models distributed according to the locations of the ECa 

measurement sites. The program finally allows horizontal slices (maps) of soil layers of the same 

thickness to be displayed at selected depths and covering the whole area of the plot (quasi-3D 

inversion modelling). In our case, we chose to model and visualize 9 layers of ECa of 10 cm in 

thickness from 0-10 cm to 80-90 cm in depth. 

 

2.4. Data analysis 

 

2.4.1. Clustering and map comparison 

 

A cluster analysis was performed to classify ECa maps. Once the shallow and deep ECa maps were 

created, each map was clustered into two classes (low and high ECa) using the Iterative Self-

Organizing Data Analysis Technique (ISODATA) implemented in ArcGIS 10.4.1 (IsoCluster function). 

The procedure is based on an iterative algorithm that begins assigning an arbitrary mean to each 

class. Pixels are then successively reassigned based on minimizing the Euclidean distance of each 

pixel to the mean value of the class. In each iteration, class means are recalculated and pixels are 

reallocated until the last iteration is reached, or the number of pixels that change from one class to 

another does not exceed a certain threshold (Guastaferro et al., 2010). Classified conductivity maps 

were then used to assess whether the soil was significantly different depending on the ECa in each 

area. Multivariate analysis of variance (MANOVA) of the sampled soil properties according to 

conductivity classes (high and low) was used to evaluate this effect. 

 

This same procedure was repeated for the horizontal slices (maps) resulting from the quasi-3D 

inversion modelling of ECa values. However, to avoid redundant analysis, maps from the 9 inverted 

ECa layers were first compared with each other using the Map Comparison Kit (MCK) software 

(Visser & de Nijs, 2006). The degree of similarity between maps was quantified by the Kappa 

coefficient (Cohen, 1960) and, as a result of the comparison, the nine layers previously established 

were finally grouped into four different homogeneous horizons.  

 

2.4.2. Multivariate analysis of variance (MANOVA) 

 

Separate analysis of each sampled soil property according to different levels of ECa (ANOVA) may 

lead to misleading and inconsistent results. In fact, ECa reflects the combined effect of soil 
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properties as a whole, and delimitation of areas within the plot based on ECa maps should be 

checked from a multivariate approach. To detect the specific soil properties that mainly contributed 

to the spatial variation of ECa, a multivariate analysis of variance (MANOVA) was performed. The 

methodis slightly more complex and scarcerly used in soil science (Taylor and Whelan, 2011). 

However, it has proved to be an effective technique to delineate differential management zones in 

precision agriculture (Ping et al., 2005). In our case, the effectof ECa was then evaluatedby 

performinga MANOVAusingsoil sampled propertiesas dependentvariablesand classesofECa (high 

and low) as the factorunder analysis. 

 

The problem arises whena significant result must be interpreted, since there is no unanimity as to 

the most appropriate post hoc procedures to be used (Warne, 2014). In this research, a descriptive 

discriminant analysis (DDA) was used to interpret significant MANOVAs (Thomas, 1992). DDA is a 

statistical procedure that, in our case, provided a linear combination of the soil properties 

(discriminant function) that managed to separate the two classes of ECa in a meaningful way. 

Standardized coefficients of the discriminant function and structure coefficients were used for 

interpretation. Standardized discriminant function coefficients (SDFCs) were indicative ofthe 

contributionof each soil variable tothe discriminant function, whereas thestructure coefficients 

(SCs) were the correlations between each observed variable and the discriminant function scores. 

The most important soil variables affecting the differential ECa were finally identified through the 

so-calledparallel discriminant ratio coefficients (parallel DRCs) by multiplying SDFCs by the 

corresponding SCs. So parallel DRCs were used to assess non-redundant soil variables contributing 

to discriminate two types of soil in terms of ECa. 

 

 

3. RESULTS & DISCUSION 
 
3.1. Soil characterization 
 

Table 1 shows the main descriptive statistics for the soil properties. Only soil properties analysed at 

both depths (0-30 cm and 30-60 cm) were included in the analysis (total nitrogen was excluded for 

this reason). Soils in the study plot were found to have an average depth of about 60 cm, basically 

limited by the petrocalcic horizon. As the standard deviation was 18 cm, soil depth showed a 

considerable spatial variability within the plot (CV of 30 %).Other soil properties that showed spatial 

variability were the electrical conductivity at the two sampling depths and, with much lower 

incidence, the water holding capacity at the deepest layer. Regarding the latter, average WHC did 

not vary significantly between soil and subsoil, and a rather low value of 64.23 mm was obtained as 

an average for the whole soil profile. Carbonates also varied spatially (CV of 20 %), but the most 

significant was the high value of the carbonates content in the soil (27 % at the top layer and 33 % 

at the bottom layer). Probably, the observed enrichment of CaCO3 in the second layer (6 % higher) 

could be explained by the near presence of the petrocalcic horizon and its breakage over the years 

by tillage operations. Derived from this, a moderately basic pH was expected in the soil. Finally, the 

organic matter was lower in the subsoil but at the expense of a strong spatial variation. The soil 

could be considered as well-drained, not saline, and with a loam soil texture. No other 

consideration was noteworthy. 
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Table 1 Soil properties for two sampling depths (N=20 sampling points) 

Soil property Mean 
Standard 
deviation 

CV 
(%) 

Minimum Maximum 

Soil depth* (cm) 59.75 17.91 29.99 42.0 90.0 

Sampling depth 0- 30 cm 
pH 7.92 0.10 1.26 7.90 8.10 

EC1:5 (dS/m) 0.93 0.51 54.83 0.23 1.84 

CaCO3 (%) 26.95 5.61 20.81 16.27 35.32 

CEC (meq/100 g) 13.97 1.02 7.30 11.50 15.90 

OM (%) 2.70 0.64 23.70 0.89 3.93 

Sand (%) 42.45 3.66 8.62 37.60 54.40 

Silt (%) 30.38 3.38 11.12 18.30 35.60 

Clay (%) 27.18 1.99 7.32 23.80 31.50 

WHC (%) 10.95 0.94 8.58 9.00 13.00 

Sampling depth 30- 60 cm 
pH 7.57 0.12 1.58 7.30 7.80 

EC1:5 (dS/m) 1.92 0.96 50.00 0.50 3.46 

CaCO3 (%) 33.04 6.00 18.15 19.29 41.71 

CEC (meq/100 g) 11.61 1.47 12.66 8.96 14.10 

OM (%) 1.22 0.62 50.81 0.16 3.24 

Sand (%) 42.12 4.50 10.68 35.80 53.10 

Silt (%) 31.22 6.22 19.92 14.20 39.90 

Clay (%) 26.21 3.15 12.01 19.40 31.10 

WHC (%) 10.55 1.63 15.44 8.00 14.00 

*Soil depth refers to the depth needed to reach the petrocalcic horizon. 

 

3.2. Soil horizons delimited by ECa patterns at different depths 

 

Figure 3 shows the interpolated maps of ECa (shallow and deep) and the corresponding maps 

where ECa was classified into two classes (high ECa and low ECa). Comparing the shallow and deep 

ECa maps (Fig. 3), one realizes that the pattern of spatial variation is quite similar. In theory, this 

was indicative of a uniform soil in depth. However, classified maps are not so similar (Fig. 3), 

occupying the high conductivity class a larger area (59 % of the plot area) when the plot was 

classified based on the deep signal compared to 38 % for the case of shallow signal. 
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Fig. 3 A) Shallow interpolated ECa map (left), and shallow clustered map with low and high ECa classes 

(right). B) Deep interpolated ECa map (left), and deep clustered map with low and high ECa classes (right). 

 

To assess in more detail the variation of ECa within depth, inversion modelling software invVERIS 

1.1 was used to obtain electrical conductivity maps (ECM) or horizontal slices every 10 cm in depth. 

In this respect, nine different maps were obtained corresponding to depths from 0-10 cm to 80-90 

cm (Fig. 4). Maps corresponding to the topsoil layers (0-30 cm in depth) showed higher ECa values 

and greater spatial variability than the deeper layers (CV of 45 % for layer 0-10 cm was reduced to 

CV of 15 % for layer 80-90 cm). The attenuation of the conductivity signal was therefore evident, 

hindering differentiation of soils although there was considerable spatial variation in certain soil 

properties at greater depth (Table 1). This same result was observed by Sudduth et al. (2005). 

 

 
Fig. 4 Horizontal slices 10 cm thick at different depths obtained by inversion of the ECa values with invVERIS 

1.1. 
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Concordance analysis between ECa maps allowed the horizontal layers of 10 cm to be grouped 

according to 4 soil horizons that were homogeneous but different from each other in both signal 

intensity and spatial pattern. Only layers with high spatial agreement were grouped (Kappa 

coefficient greater than 0.6, data not shown; Landis and Koch, 1977), resulting in a soil profile that 

could be segmented into (i) a first horizon occupying the first 10 cm (0 to 10 cm), (ii) a second 

horizon of the same thickness, from 10 to 20 cm), (iii) a third horizon with a greater thickness to a 

depth of 50 cm (20 to 50 cm), and (iv) a deeper and homogeneous layer up to 90 cm (50-90 cm). 

The representative conductivity map of each horizon was classified into two ECa classes (high and 

low) following the same procedure as for the original maps (Fig. 5). Multivariate analysis of variance 

(MANOVA) of soil properties was then performed for each of the identified soil horizons (Table 2). 

 

 
Fig. 5 Clustered maps (high and low ECa) for the four soil horizons delimited by concordance 

analysis. 

 

3.3. Soil properties influencing the spatial and in-depth variation of the Eca 

 

A series of multivariate analysis of variance (MANOVAs) were performed to determine specific soil 

properties mainly linked to the spatial variation of ECa measured with the Veris 3100 sensor. 

Results are shown in Table 2. For topsoil properties (0-30 cm), pH, CaCO3 and organic matter (OM) 

were the properties that contributed most to the spatial variation of the ECa. This result was 

somehow unexpected since, besides carbonates, organic matter appeared as a soil property that 

influenced the ECa signal. Descriptive discriminant analysis (DDA) highlighted the importance of OM 

through the so-called parallel discriminant ratio coefficient (parallel DRC), that indicates the relative 

contribution of each soil property in the canonical (discriminant) function. Even more, the influence 

of OM on the ECa was evident for both the shallow values and for the discretized values for the first 
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three soil horizons (Table 2). Among the latter, discriminant function of soil properties 

corresponding to the 10-20 cm soil layer was able to better differentiate low and high electrical 

conductivity. However, good discrimination between low and high signals was also achieved by 

using the soil layer conductivity corresponding to a depth of 20-50 cm. This soil classification was 

especially interesting given the strong contribution of both CaCO3 and OM in the corresponding 

discriminant function (Table 2). On the other hand, contribution of water holding capacity (WHC) 

did not seem to significantly influence ECa, and the original idea that water holding capacity could 

be behind the spatial variation of ECa was no longer supported. 

 

A similar trend occurred for the subsoil (30-60 cm) and, again, CaCO3 and OM were the properties 

that contributed most to explain the variability of ECa. Discriminant function for the deeper layer 

(50-90 cm) provided the best differentiation between low and high electrical conductivity. But, as 

with topsoil, it was necessary to classify the ECa for a boundary horizon between topsoil and subsoil 

(20-50 cm) to detect such differences with almost exclusive contribution of CaCO3 and OM (Table 

2). Another possibility would be to focus the deep soil management on the carbonates content and, 

in this case, areas could be delimited using the deep ECa. The relationship between soil variables 

and ECa coincided with that reported by other authors. Thus, there was an increase in electric 

conductivity with increasing carbonates content (Kühn et al., 2009), while the effect of organic 

matter was just the opposite (Moral et al., 2010). 

 

Spatial and in-depth variation of CaCO3 and OM made it possible to propose a site-specific 

management within the plot based on applying chelates and organic amendments in a 

differentiated way. Two basic issues need to be addressed. Should the plot be managed based on 

the differences between topsoil and subsoil, or is it more advisable to consider the entire profile 

globally? And, faced with the delineation of potential management zones, should areas be defined 

using the shallow ECa, the deep ECa, or the discretized ECa for a particular soil layer? MANOVA 

provided very interesting information to assist in such decision making process (Table 2). First, 

differential management should primarily focus on the CaCO3 spatial distribution because this 

property clearly influenced the ECa for the entire soil profile. The petrocalcic horizon would 

probably be behind this spatial variation as a result of previous parcelling and earthworks in recent 

years. Secondly, the delimitation of areas of low and high conductivity by respectively matching low 

and high CaCO3 contents for both topsoil and subsoil would be ideal for differential management. 

The soil layer covering a depth between 20 and 50 cm has shown a spatial pattern of electrical 

conductivity that meets this requirement. OM was also important, and its spatial variation in the 

topsoil also seems to be linked to the variation in the subsoil in view of discriminant functions 

obtained for the soil layer from 20 to 50 cm depth (Table 2).  
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Table 2 Descriptive discriminant analysis (DDA) of soil properties affecting ECa for different soil depths 

ECa classified map Discriminant 
analysis (DDA) 

Soil properties sampled in the topsoil (0-30 cm) 
 

 
 

pH EC1:5 CaCO3 OM CEC Clay Sand WHC 
 SDFC 1.02 0.26 -1.04 1.19 -0.32 0.45 1.08 -0.03 

Shallow ECa SC 0.37 -0.23 -0.36 0.23 0.06 -0.09 0.08 -0.20 

 Parallel DRC 0.38 -0.06 0.37 0.27 -0.02 -0.04 0.09 0.01 

 SDFC 1.21 1.85 1.26 -1.60 0.35 -0.01 0.27 0.19 

Depth 0-10 cm SC -0.35 0.50 0.22 -0.14 0.05 0.12 -0.13 0.16 

 Parallel DRC -0.43 0.93 0.27 0.22 0.02 0.00 -0.04 0.03 

 SDFC 0.57 -0.66 -1.42 1.68 -0.28 0.74 1.60 -0.11 

Depth 10-20 cm SC 0.27 -0.22 -0.25 0.15 0.03 -0.07 0.09 -0.15 

 Parallel DRC 0.15 0.15 0.36 0.25 -0.01 -0.05 0.14 0.02 

 SDFC 1.21 1.36 -1.14 1.83 -1.77 - -0.21 0.13 

Depth 20-50 cm SC 0.27 -0.12 -0.46 0.26 0.08 - 0.06 -0.19 

 Parallel DRC 0.33 -0.16 0.53 0.48 -0.13 - -0.01 -0.02 

ECa classified map Discriminant 
analysis (DDA) 

Soil properties sampled in the subsoil (30-60 cm) 
 

  pH EC1:5 CaCO3 OM CEC Clay Sand WHC 

 SDFC 0.97 0.35 1.56 -0.02 - - -1.42 0.69 

Deep ECa SC -0.26 0.35 0.42 -0.09 - - -0.21 0.26 

 Parallel DRC -0.26 0.12 0.65 0.00 - - 0.30 0.18 

 SDFC 1.19 - 2.20 -0.87 - - - - 

Depth 20-50 cm SC 0.04 - 0.26 -0.45 - - - - 

 Parallel DRC 0.04 - 0.58 0.39 - - - - 

 SDFC - 0.48 1.04 -0.48 0.66 -1.36 -0.75 0.58 

Depth 50-90 cm SC - 0.37 0.38 -0.38 0.02 -0.05 -0.07 0.18 

 Parallel DRC - 0.18 0.40 0.18 0.01 0.07 0.06 0.10 

Hyphens indicate variables that were removed to obtain significant discriminant functions. Parallel DRC in 
bold indicates soil properties with greater contribution in the discriminant function from MANOVA. SDFC: 
standardized discriminant function coefficient; SC: structure coefficient; parallel DRC: parallel discriminant 
ratio coefficient. EC1:5: electrical conductivity in a 1:5 soil-water solution (dS/m); CaCO3 (%); OM: organic 
matter content (%); CEC: cation exchange capacity (meq/100 g); Clay (%); Sand (%); WHC: water holding 
capacity (%). 

 

Probably, the boundary condition between topsoil and subsoil of this intermediate layer allowed to 

use it as representative of the whole soil profile. Contrary to the post hoc interpretation of 

MANOVAs, separate ANOVAs for each of the most relevant soil properties led to somewhat 

different results (Table 3). Specifically, spatial pattern of ECa for this horizon (20 cm to 50 cm) 

would only be justified to delimit potential zones of topsoil management. However, this same ECa 

pattern can be applied to the subsoil according to the MANOVA results, highlighting the need for a 

multivariate approach when deciding on potential management areas. 
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 Table 3 Relevant soil properties with significant differences according to ECa classes 

ECa classified map ECa classe pH EC1:5 CaCO3 OM 

Soil properties sampled (0-30 cm) 

 

 

    

Shallow ECa Low 7.98 - 25.09 - 

 High 7.84 - 31.73 - 

Depth 0-10 cm Low 7.98 0.69 - - 

 High 7.83 1.52 - - 

Depth 10-20 cm Low 7.98 0.70 25.09 - 

 High 7.83 1.40 31.11 - 

Depth 20-50 cm Low 7.95 - 24.01 2.78 

 High 7.85 - 31.87 2.22 

 

Soil properties sampled (30-60 cm) 

      

Deep ECa Low - - 29.28 - 

 High - - 35.47 - 

Depth 20-50 cm Low - - - - 

 High - - - - 

Depth 50-90 cm Low - 1.29 29.05 1.57 

 High - 2.26 35.09 0.93 

Hyphens indicate variables that did not show significant differences (p<0.05) in the corresponding 

ANOVAs. EC1:5: electrical conductivity in a 1:5 soil-water solution (dS/m); CaCO3 (%); OM: organic matter 

content (%). CEC, clay, sand and WHC are not shown in the table, because they were not significantly 

different in any of the soil layers. 

 

3.4. Spatial pattern of the ECa as a result of previous parcelling: consequences for 

management 

 

As previously mentioned, the plot under study had been subjected to different parcelling processes 

in recent decades. Figure 1 shows the evolution from 1946. By overlapping the ECa map derived 

from the Veris 3100 sensor readings (deep signal) (Fig. 6), it is interesting to observe how it clearly 

reproduces the edges and divisions of previous plots. Depending on the use and the parent 

material, the soil of the present plot is the result of all these transformations affecting productivity 

and causing the current spatial variability. From this point of view, the use of combined information 

from soil sensors and historical orthophotos becomes an interesting tool for better soil 

interpretation and better diagnosis of management actions to be performed. 

 

As showed in Fig. 6, the two transverse subdivisions (paths) in 1946, one of which was still in place 

in 2005, are relatively marked as areas of highest conductivity in the ECa cluster map for the 

reference horizon corresponding to 20-50 cm depth (Fig. 5). On the other hand, a more compact 

area with also high ECa values appears as a consequence of incorporating a piece from another 



  -Chapter 3 – ECa and multivariate analysis of soil properties - 

 

56 

 

different plot in 1986. This area has remained different from the rest of the plot until today 

(perfectly marked on the cluster map), and corresponds to the area where problems commonly due 

to high carbonates contents are done. Our management proposal for this plot could then be 

established making use of the classified map for the aforementioned reference horizon that 

matches the joint differential needs for topsoil and subsoil. Therefore, in areas with potential 

chlorosis and soil fertility problems (high ECa), the farmer could implement a fertilization plan by 

adding chelates and organic fertilizers to correct these nutritional imbalances more optimally. 

 

 
Fig. 6 Evolution of historical parcelling until 2015 and current design. The overlapping of the deep 

ECa map shows where the transformations occurred. 

 

4. CONCLUSIONS 

 

The acquisition and mapping of apparent electrical conductivity (ECa) allowed areas with potential 

chlorosis problems to be delimited in the study plot. These areas were characterized by high CaCO3 

content due to the presence of a petrocalcic horizon at variable depth. On the other hand, 

parcelling carried out over the years has been revealed as a key factor in understanding the soil 

spatial variability allowing ECa measures to be estimated in depth at discrete intervals makes it 

possible to divide the soil profile into homogeneous horizons by comparing classified maps of ECa 

at different depths. Then, multivariate analysis of variance (MANOVA) based on the previous maps 

offers interesting outputs in agronomy because, i) the overall relationship between ECa and soil 

properties is better interpreted, and ii) potential management zones can be validated knowing in 

detail the specific causes behind the variation of ECa, in our case, both CaCO3 and organic matter 

contents. 
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Spatial variability in orchards after land transformation: 

consequences for precision agriculture practices 

 

Asier Uribeetxebarria, Elisa Daniele, Alexandre Escolà, Jaume Arnó, José 

Antonio Martínez-Casasnovas  

 

ABSTRACT 
 

The change from traditional to a more mechanized and technical agriculture has involved, in many 

cases, land transformations. This has supposed alteration of landforms and soils, with significant 

consequences. The effects of induced soil variability and the subsequent implications in site-

specific crop management have not been sufficiently studied. The present work investigated the 

application of a resistivity soil sensor (Veris 3100), to map the apparent electrical conductivity 

(ECa), and detailed multispectral airborne images to analyse soil and crop spatial variability to 

assist in site-specific orchard management. The study was carried out in a peach orchard (Prunus 

persica (L.) Stokes), in an area transformed in the 1980 decade to change from rainfed arable crops 

to irrigated orchards. A total of 40 soil samples at two depths (0-30 cm and 30-60 cm) were 

analysed and compared to ECa and the normalised difference vegetation index (NDVI). Two types 

of statistical analysis were performed between ECa or NDVI classes with soil properties: a linear 

correlation analysis and multivariate analysis of variance (MANOVA). The results showed that the 

land transformation altered the spatial distribution and continuity of soil properties. Although a 

relationship between ECa and peach tree vigour could be expected, it was not found, even in the 

case of trees planted in soils with salts content above the tolerance threshold. Two types of 

management zones were proposed: a) zones delineated according to ECa classes to leach salts in 

the high ECa zones, and b) zones delineated according to NDVI classes to regulate tree vigour and 

yield. These strategies respond to the alteration of the original soil functions due to the land 

transformation carried out in previous years. 
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Land use change, Apparent electrical conductivity, Vegetation index, Potential management zones, 

MANOVA 
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1. INTRODUCTION 

 

Since the mid-twentieth century, and particularly since the 1980s-90s, traditional agriculture is 

undergoing a change to a more modern, mechanized and technical agriculture. In many cases, 

these changes have involved land transformation, with land use alteration and intensification 

(Ritcher, 1984). This has been the case of cash crop development by the market-oriented 

agriculture. It is a global phenomenon that has promoted the expansion of hazelnut, rubber, fruit, 

and tea in developing tropical and subtropical countries (Xiao et al., 2015); citrus in Brazil (Moraes 

et al., 2017); or vineyards, almonds, olive and fruit trees in the Mediterranean Europe (García-Ruiz, 

2010; Martínez-Casasnovas et al., 2010a), among others.  

 

This intensification of agriculture has supposed the alteration of landforms and soils, with 

significant ecological consequences (Xiao et al., 2015). Some works have reported specific 

examples of those effects. For example, local hydrology (Yi et al., 2014), soil profile dismantlement 

(Laudicina et al., 2016; Öztekin, 2013), acceleration of soil erosion (García-Ruiz, 2010; Ramos and 

Martínez-Casasnovas, 2010; Xiao et al., 2015), fragmentation of traditional landscapes (de Oliveira 

et al., 2017), increase of CO2 emissions (Carlson et al., 2013), elimination of traditional soil 

conservation measures and increase of soil spatial variability (Laudicina et al., 2016; Martínez-

Casasnovas and Ramos, 2009; Su et al., 2016; Xiao et al., 2015). Another major problem is the 

effect of topsoil removing on plant growth. Reduced growth may occur on the fill areas (Martínez-

Casasnovas et al., 2010b), although the exposure of subsoil in the cuts is usually a more serious 

problem (Öztekin, 2013). Moreover, many of these land transformations have been supported by 

subsidies, as happens in the Mediterranean Europe, where many orchards planted in the last 

decades were also supported by the European Agricultural Policy in response to market demand 

(Cots-Folch et al., 2009; Nainggolan et al., 2012).  

 

Although there have been attempts to document the process of cash crops expansion, the effects 

of induced soil variability due to land transformations and the subsequent implications in crop 

management have not been sufficiently investigated. However, this is of particular interest to fruit 

growers since, due to the soil-plant interaction, fruit trees development and their potential 

production are affected by the spatial variability of soil properties (Khan et al., 2016; Panda et al., 

2010; Pedrera-Parrilla et al., 2016). Then, changes produced by land transformations can become a 

main constraint to consider when planning orchard management operations (Fulton et al., 2011). 

On the other hand, field size should not be considered as a limitation for precision agriculture 

applications in fruticulture since, even in small orchards, there may be differences in soil 
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properties affecting tree growth and fruit quality (Käthner & Zude-Sasse, 2015; Zude-Sasse et al., 

2016). 

 

Soil information is often not available at a spatial resolution intrinsically needed for precision 

agriculture or other site-specific soil uses and management purposes (Mertens et al., 2008); and 

specifically is not available after land transformations. One approach to obtain detailed spatially 

distributed soil data is the non-invasive measurement of the apparent electrical conductivity (ECa). 

Soil sensors for on-the-go ECa mapping are increasingly used for this purpose (Corwin and Lesch, 

2003; Fulton et al., 2011; Mertens et al., 2008), and to delineate management zones according to 

the concept of precision agriculture (Moral et al., 2010; Peralta & Costa, 2013). In orchards, ECa 

has been used for the analysis of soil variability, and some researchers have found correlations 

between ECa, generative tree growth, fruit development and fruit size (Käthner and Zude-Sasse, 

2015; Zude-Sasse et al., 2016). In this respect, it was pointed out that fruit development and soil 

ECa were well correlated. However, quality parameters, although very variable, are spatially less 

stable and may be poorly related to the ECa as indicated Aggelopoulou et al. (2010) in apple tree 

plantations. Regarding the interpretation of the ECa signal, some authors have highlighted the 

difficulty to determine the soil properties that most affect the variability of ECa in a particular field 

(Uribeetxebarria et al., 2018). Because of that, they proposed the use of multivariate analysis of 

variance (MANOVA) to better interpret which soil properties are behind the variation of the 

electrical conductivity signal. This was particularly useful in orchards affected by previous 

parcelling (Uribeetxebarria et al., 2018). 

 

Additionally, site-specific management zones (SSMZ) can also be delimited based on remote 

sensing data. In this respect, the most frequently used vegetation index is the Normalised 

Difference Vegetation Index (NDVI) (Rouse et al., 1974), which is feasible in low-chlorophyll fruits 

and canopy imaging. NDVI is correlated to plant vigour and has strong interaction with yield and 

sometimes quality parameters (Zude-Sasse et al., 2016). Different authors have used spectral 

indices to estimate orchard variables. For example, Peña-Barragán et al. (2004) developed a 

methodology to determine tree cover in olive groves using aerial images and different spectral 

indexes. González-Dugo et al. (2013), using high resolution airborne thermal imagery, assessed the 

heterogeneity in water status in commercial orchards (almond, apricot, peach, lemon and orange), 

as a prerequisite for precision irrigation management. Other authors (Noori and Panda, 2016) also 

studied the relationship between vegetation indexes (SAVI, NDVI and Vegetative Vigour Index) 

with field environmental data including soil and tree structure attributes in an olive orchard, 

suggesting that these relationships would help in Site Specific Crop Management (SSCM) of 

orchards. Other works used airborne hyperspectral imagery for predicting yield in citrus crops (Ye 
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et al., 2009), or more specifically, to quantify fluorescence emission in a commercial citrus orchard 

as well (Zarco-Tejada et al., 2016). In the latter, the objective was to track photosynthesis at 

different phenological and stress stages throughout the season to suggest its operational use in 

precision agriculture.  

 

Despite these findings and advances, there are not many examples of practical application of 

SSCM in commercial fruit orchards (Noori & Panda, 2016). However, emerging research knowledge 

in this field demonstrates clear advantages of precision agriculture tools in fruit production 

management. In this respect, different authors suggest the combination of ECa with spectral 

vegetation indices to help in the delineation of SSMZ (De Benedetto et al., 2013; Ortega-Blu & 

Molina-Roco, 2016; Panda et al., 2010). This approach allows identifying homogenous sub-field 

areas related to the intrinsic properties of soil and, above all, differentiated crop response. This is 

because ECa, by itself, may not be a good estimator of the most commonly measured soil 

properties and, under irrigation and fertigation conditions, the vegetation status may be more 

affected by water and nutrient management than by soil properties (De Benedetto et al., 2013). 

 

ECa and/or spectral vegetation indices have been mainly applied in field crops and vineyard (Priori 

et al., 2013), but fewer studies refer to their use in fruit orchards, and even less in Mediterranean 

latitudes. One important reason could be the small sized orchards usually have there. 

Nevertheless, and as pointed out by Käthner & Zude-Sasse (2015) and Arnó et al. (2017), even in 

small orchards there may be differences in soil properties affecting tree growth and fruit quality.  

 

As showed above, precision agriculture applications in tree crops are rather limited in the 

literature (Aggelopoulou et al., 2011). Moreover, as suggested by Öztekin (2013), after land 

transformations, some site-specific management practices should be taken into account to regain 

productivity and improve homogeneity in soil properties. However, to the best of our knowledge, 

there are no works addressing the implications of land transformations in precision agriculture. In 

this context, the aim of the present work was to investigate the effects of land transformations in 

soil variability and crop development in a peach orchard (Prunus persica (L.) Stokes) located in 

Lleida (Catalonia, NE Spain). The area suffered land transformations in the 1980 decade to enlarge 

fields and changed from rainfed crops to irrigated orchards. The hypothesis was that land 

transformations aimed to enlarge fields, instead to create more homogeneous areas, alter the 

spatial distribution and continuity of soil properties, with consequences in crop vigour. This opens 

an opportunity to precision agriculture techniques to assist in site-specific orchard management.  
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2. MATERIALS AND METHODS  

 

2.1. Study area 

 

The research was carried out in a 2.24 ha commercial peach tree orchard located 20 km south 

from the city of Lleida (Catalonia, NE Spain) (Lat 41.477157°, Long 0.509500° WGS84) (Fig.1). It was 

planted in 2012 with white peach (Prunus persica (L.) Stokes, var. Patty), which is early harvested. 

The training system was the so-called “Catalan” vase or vessel shape, with a plantation pattern of 

5x2 m. Peach trees were fertirrigated by means of a drip irrigation system. The system consisted of 

a unique irrigation sector, with one drip tubing per tree row and two emitters of 2 l h-1 per tree. 

 

The elevation ranges from 156 – 167 m a.s.l. The slope is gentle to moderate, with an average of 

5.3 % and a direction almost parallel to the tree rows (Fig. 1). The current morphology is the result 

of land clearing and levelling carried out during the 1980 decade. Previously, the relief was 

composed of low hills, with terraces protected with stone walls. Land transformation was carried 

out with heavy machinery (bulldozers). First, stones were removed from the old terraces and then 

terrain was smoothed. The upper more fertile soil layer was not specifically preserved. Marls and 

calcareous rocks belonging to the subsoil were put on the surface.  

 

Soils of the area were classified as Typic Xerorthent, coarse-silty, mixed (calcareous), thermic (Soil 

Survey Staff, 2014). They have a typical sequence of horizons Ap-Bw-C (lutites), with the latter 

usually presenting a moderate salt content. 
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Fig. 1 Location of the study area and comparison of land uses and crop systems before and after the land. 

 

2.2. Apparent electrical conductivity survey 

 

An ECa survey was conducted on March 1st, 2016. The survey was carried out with a Veris 3100 

sensor (Veris Technologies Inc. Salina, Kansas, USA). Veris 3100 uses two ECa arrays to measure 

the 0-30 cm (shallow ECa) and 0-90 cm (deep ECa) soil depths simultaneously. Data was 

georeferenced by means of a Trimble AgGPS332 receiver with EGNOS differential correction in 

geographic coordinates WGS84 (EPSG 4326). ECa values above or below ±2.5 standard deviations 

(SD) were considered outliers and were removed from the original data file according to the 

criteria of Taylor et al. (2007). The final ECa data set consisted of 1668 points with shallow and 

deep readings. For interpretation and comparison purposes, ECa values were standardized at the 

reference temperature of 25 °C. In order to do that, a polynomial function was used as proposed 

by Sheets and Hendrickx (Ma et al., 2011). The adjusted ECa values were then renamed to EC25 

and expressed in dS m-1 at 25 °C. These data were interpolated on a 1-m grid by means of 

ordinary kriging using the exponential semivariogram model. In addition, anisotropy was 

considered. This was because semivariance values presented a clear directional distribution in the 

NW to SE direction, perpendicular to the tree rows. For this purpose, ArcGIS Geostatistical Analyst 

10.4 (ESRI, Redlands, California, USA) was used.  
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2.3. Soil sampling 

 

Before soil sampling, an unsupervised classification of the shallow and deep EC25 maps in 5 

different classes was performed (Fig. 2) in order to stratify samples to obtain more structured 

information about the soil of the plot. For that, the ISODATA algorithm implemented in the Image 

Analyst of ArcGIS 10.4 was applied. The ISODATA is a k-means algorithm that uses minimum 

Euclidean distance to assign a cluster to each candidate pixel in an iterative process (Jensen, 1996), 

removing redundant clusters or clusters to which not enough pixels are assigned. Table 1 shows 

the average and standard deviation of the shallow and deep EC25 in the 5 classes that showed 

increasing electrical conductivity values. 

 

Table 1. Unsupervised classes based on the shallow and deep EC25
(1)

 and basic statistics (average and 

standard deviation) for each class. 

Class Shallow EC25 
dS m-1at 25 °C 

Deep EC25 
dS m-1at 25 °C 

1 0.74±0.20 0.69±0.18 

2 1.21±0.18 1.02±0.17 

3 1.57±0.15 1.32±0.16 

4 1.93±0.14 1.58±0.17 

5 2.39±0.19 1.86±0.19 
(1)

EC25: apparent electrical conductivity values (ECa) standardized at the reference temperature of       

25 °C. 

 

In each EC25 class, eight sampling points were randomly distributed, considering a minimum 

distance of 30 m between sampling points. This minimum distance corresponded to the range of 

the exponential semivariogram to interpolate ECa data from the Veris 3100 sensor. A total of 40 

points were sampled in the plot (Fig. 2). Soils were sampled with an auger up to 90 cm or up to the 

limiting layer depth. This limiting layer corresponded to Tertiary lutites. The samples were taken in 

the space between the tree rows, between the central marks of the Veris 3100 coulters. The 

following properties were analysed for the 0-30 cm and 30-60 cm layers: pH, electrical conductivity 

1:5 soil:water extract (EC1:5), equivalent calcium carbonate (CaCO3), cationic exchange capacity 

(CEC), particle-size (texture), water holding capacity (WHC) at -33 and -1500 kPa (field capacity and 

wilting point, respectively), and organic matter content (Org M) (the latter only at the 0-30 cm 

layer). 
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Fig. 2 Location of the soil sampling points stratified according to the spatial variability of EC25 data 

organized in 5 classes. See Table 1 for class description. (EC25: apparent electrical conductivity (ECa) 

standardized at the reference temperature of 25 °C). 

 

2.4. Multispectral data acquisition and vegetation index 

 

A 4-band multispectral image was acquired on May 16th, 2016 (approximately one month before 

harvest). For that, a Digital Multi-Spectral Camera (DMSC) (Specterra Services-Australia) mounted 

on a CESSNA 172S SKYHAWK airplane operated by RS Servicios de Teledetección (Lleida, Spain) 

was used. The DMSC captured four spectral bands 20 nm width, centred at 450 nm (blue), 550 nm 

(green), 675 nm (red) and 780 nm (near infrared). The spatial resolution of the image was 0.25 m.  

The image was pre-processed by the provider’s software to compensate for miss-registration due 

to lens distortion, less than 0.2 pixels, and for scene brightness due to the bi-directional 

reflectance distribution function (Wallace et al., 2008). Absolute radiometric calibration was not 

carried out since the purpose of the study was not a multi-temporal analysis of the tree vigour. 
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The near infrared and red bands were used to calculate the Normalised Difference Vegetation 

Index (NDVI) (Rouse et al., 1974) according to Equation 1. 

     
         

         
     (1) 

where NIR is the near infrared band (780 nm) and Red the red band (675 nm) of the multispectral 

image. 

 

Only the pixels including canopy vegetation of peach trees (NDVI > 0.4) were mapped (Fig. 3). 

These pixels were then used to define the tree canopy cover. This was done by converting the 

NDVI mask to a polygon layer and segmenting joined canopies into individual polygons. In this 

way, each tree in the plot was identified as an individual object. The polygons were used to 

calculate per tree NDVI zonal statistics (min, max, mean and standard deviation). These basic 

statistics were merged to the tree canopy layer. Finally, the polygons were converted to points 

using ArcGIS 10.4 and were stored in a point layer. The tool was forced to locate the centroids 

inside the polygons (Fig. 3). With the trees represented by their centroids, ordinary kriging with an 

exponential semivariogram was performed to interpolate a surface with the NDVI-per-tree 

continuous spatial distribution. 

 

 

Fig. 3 (a) False colour composite RGB (NIR-Red-Green) of the airborne multispectral image acquired on 

May 16th, 2016 (pixel size 0.25 m). (b) Example of the tree canopy area derived from the classification of 

the NDVI above 0.4 and centroids of the tree canopy areas (polygons). 
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2.5. Statistical analysis 

 

A linear correlation analysis (Pearson test) was carried out between individual soil properties, EC25 

and NDVI values at the sampling points. As shown later, some unexpected differences were found 

in the relationships between the EC25 and NDVI with soil properties, probably because soil 

samples were taken in the alleways and not on the tree rows where localized irrigation can 

influence certain soil properties. For this reason, new 20 points situated upon the wet bulb and 

located 2.5 m from the previously sampling points were sampled and analysed (0-30 cm). To 

compare the means of the soil variables according to the location (inside or outside the wet bulb), 

a series of multiple t-tests were performed, adjusting the usual significance level of 0.05 with 

Bonferroni correction (Faraway, 2014). The software JMP Pro 12 (SAS Institute Inc.) was used for 

this purpose. 

 

Different types of potential management zones were delineated according to the shallow and 

deep EC25 and NDVI surface data applying unsupervised classifications by means of the ISODATA 

algorithm implemented in the Image Analyst of ArcGIS 10.4. For each parameter, 2 classes (high 

and low values) were created. As proposed by Uribeetxebarria et al. (2018), the difference 

between high and low classes were determined by applying in each case a multivariate analysis of 

variance (MANOVA) of soil properties. This method was preferred instead of a separate analysis of 

variance (ANOVA) for each soil property to avoid misleading and inconsistent results. In fact, ECa 

and NDVI values can be considered as the result of the combined effect of soil properties as a 

whole (Corwin and Lesch, 2003), and delimitation of areas within the plot based on ECa or NDVI 

maps should be checked from a multivariate approach.  

 

To interpret the results of the MANOVAs, a descriptive discriminant analysis (DDA) was used 

(Uribeetxebarria et al., 2018). As a result of the procedure, linear combinations of soil properties 

(discriminant functions) were provided, which managed to separate the two classes of EC25 

(shallow or deep) or NDVI in a meaningful way. Standardized coefficients of each discriminant 

function (SDFCs) and structure coefficients (SCs) were used for interpretation. The first, SDFCs, 

were indicative of the contribution of each soil variable to the discriminant function, whereas the 

SCs were the correlations between each observed variable and the discriminant function scores. 

The most important soil variables were finally identified through the parallel discriminant ratio 

coefficients (parallel DRCs), by multiplying SDFCs by the SCs. Then, parallel DRCs were used to 

identify non-redundant soil variables contributing to discriminate two types of soil in terms of 

EC25 or NDVI. 
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3. RESULTS 

 

3.1. Soil properties 

 

The soils of the study area were characterised by a basic pH of 8.2±0.2 - 8.3±0.2 and an average 

EC1:5 between 1.6±0.8 and 1.8±0.7 dS m-1 at 25 °C (Table 2). In addition, soils had a high content 

of calcium carbonate (33.3±6.3 - 37.4±9.5 %). The average CEC was low to moderate (10.3±2.2 - 

9.4±2.7 meq 100g-1). The organic matter content of the first layer was also low to moderate 

(2.2±0.7 %) and the AWHC of both layers was very similar (9.8±1.5 - 10.5±1.1 %). Taking into 

account an average bulk density of 1400 kg m-3, the available water holding capacity (AWHC) in 

the average soil depth (61.1 cm) would be 86.8±11.1 mm, indicating a low AWHC for a xeric soil 

moisture regime and the necessity to irrigate the fruit trees. Regarding the texture, the most 

frequent textural classes were loam, clay loam or silty clay loam, which do not represent particular 

limitations for crop development. 

Table 2. Basic statistics of soil properties for the 0-30 cm and 30-60 cm depth layers (average 

values and standard deviation). 

Soil property 0-30 cm 30-60 cm 

pH1:2.5 8.2±0.2 8.3±0.2 

EC1:5 (dS m
-1

) 1.6±0.8 1.8±0.7 

CaCO3 (%) 33.3±6.3 37.4±9.5 

CEC (meq 100g
-1

) 10.3±2.2 9.4±2.7 

Org M (%) 2.2±0.7 - 

WHC -33kPa (%) 22.7±2.8 23.2±2.4 

WHC -1500kPa (%) 12.9±2.3 12.8±2.0 

AWHC (%) 9.8±1.5 10.5±1.1 

Clay (%) 23.9±5.8 25.6±4.6 

Silt (%) 38.8±8.9 42.2±8.4 

Sand (%) 34.8±10.6 30.7±12.1 

Soil depth (cm)
(1)

 61.1±21.0 - 

(1) 
The soil depth refers to the depth of the whole soil profile. The maximum measured soil depth 

was 90 cm, which was the maximum reached with the auger hole used for soil sampling 

 

3.2. EC25 and vegetation index: spatial pattern and comparison with former landforms 

 

The soil volume explored by the Veris 3100 ECa surveyor presented average values of 1.54±0.52 dS 

m-1 (0-30 cm) and 1.28±0.40 dS m-1 (0-90 cm) at 25 °C.  
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As described in section 2.1 (study area), land levelling works were carried out prior to planting the 

fruit trees. Stone-wall terraces were removed in order to enlarge fields. Figure 4 shows the 

comparison between the location of the old stone-wall terraces and the apparent electrical 

conductivity surface (shallow and deep readings). Lower EC25 values appeared in the northern 

part of the plot, where trees had also low vigour values, and in the southern part of the plot 

following the pattern of the terraces. Between the terraces there were higher EC25 values, 

probably due to the existence of soils with higher clay content (23.4 %) and less sand (34.7 %) than 

in the southern part of the plot (21.7 % clay and 43.5 % sand), as result of the land levelling works.  

 

Regarding NDVI, average per tree values ranged from 0.40 to 0.75. Two main zones could be 

distinguished: one with higher NDVI values, in the northern part of the plot, and another with 

lower NDVI values, in the south (Fig. 4).  

 

 
Fig.4. Comparison between the locations of the removed stone-wall terraces, the apparent electrical 

conductivity ((a) shallow and (b) deep EC25 dS m
-1

 at 25 °C) and (c) the interpolated NDVI in the study plot. 

 

3.3. Relationship between soil properties, EC25 and vegetation index 

 

Table 3 shows the correlation coefficients between the soil properties of the two analysed layers 

(0-30 cm and 30-60 cm), the EC25 (shallow and deep) and the NDVI. As expected, significant 

positive correlations were found between both measures of EC25 and EC1:5 (0.547 and 0.575, p-

value < 0.01). Regarding the availability of water, only the shallow EC25 showed a positive 
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correlation with the WHC at -1500 kPa (p-value < 0.05). On the other hand, soil depth presented a 

positive correlation (p-value < 0.01) with both EC25 readings. 

 

Differently from the relationships with the EC25, the NDVI was not related to properties such as 

shallow or deep EC25, nor with EC1:5, water holding capacity or soil depth (Table 3). Only textural 

fractions coarser than clay were correlated. In the case of sand, the relationship was negative, 

probably indicating that at higher sand content the trees were less vigorous. This was an expected 

relationship since higher sand contents indicate less soil fertility. Regarding other properties, only 

the CEC at 30-60 cm showed a positive relationship with the NDVI. Although premature to 

conclude, this correlation would be expected as a sign of better soil fertility conditions in these 

locations.  

 

Table 3 Correlation coefficients between soil properties (0-30 cm and 30-60 cm), shallow and deep EC25 and 

NDVI (N=40). 

 *p-value < 0.05; ** p-value < 0.01 

 

To check the differences found before in the relationships between EC25 and NDVI with soil 

properties, Table 4 shows the results of the comparison of some soil properties (pH1:2.5, EC1:5, 

organic matter and CaCO3) at 20 locations, inside and outside the wet bulb. The significant 

differences between samples inside and outside the bulb would explain the different expected 

relationship between soil properties and the ECa, the latter measured outside the bulb; and 

between these same soil properties and the NDVI, the latter mainly conditioned by the drip 

irrigation system.  

 

 

  Shallow EC25 
with 0-30 cm 
soil samples 

Deep EC25 
with 30-60 

cm soil 
samples 

NDVI 
with 0-30 cm 
soil samples 

NDVI 
with 30-60 cm 
soil samples 

Shallow EC25 - 0.910** 0.002 - 

Deep EC25 0.910** - 0.156 - 

pH1:2.5 -0.193 0.360* 0.110 -0.045 

EC1:5 (dS m
-1

) 0.547** 0.575** 0.075 0.164 

CaCO3 (%) -0.086 0.037 0.119 0.062 

CEC (meq 100g
-1

) 0.136 0.313 0.284 0.446** 

Org M (%) 0.129 - 0.097 - 

WHC -33kPa (%) 0.269 0.250 0.167 0.084 

WHC -1500kPa (%) 0.337* 0.217 0.241 0.260 

Clay (%) 0.207 0.252 0.048 0.253 

Silt (%) 0.123 0.194 0.523** 0.194 

Sand (%) -0.197 -0.196 -0.365* -0.233 

Soil depth (cm) 0.439** 0.487** 0.077 - 
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Table 4 Comparison of some relevant soil properties inside and outside the wet bulb (0-30 cm). Results of t-

test adjusted by the Bonferroni correction (N=20). 

Soil  
property 

Inside  
wet bulb 

Outside  
wet bulb 

t-test 
p-value 

pH1:2.5 7.96±0.1 8.23±0.24 <0.01 

EC1:5 (dS m
-1

) 0.97±0.47 1.43±0.54 <0.01 

Org M (%) 3.01±0.47 2.15±0.66 <0.01 

CaCO3 (%) 29.24±6.23 31.32±6.32 0.301 

 

3.4. Zonal analysis between soil properties, EC25 and vegetation index 

 

In addition to the previous analysis, different multivariate analyses of variance (MANOVAs) were 

performed to determine specific soil properties mainly linked to the spatial variation of EC25 and 

NDVI classes. Results are presented in Table 5. Regarding the shallow EC25 classes, properties such 

as EC1:5, soil depth and clay were the ones that contributed most to the discriminant function 

explaining the spatial variation. The importance of those properties is highlighted by the parallel 

discriminant ratio coefficients (parallel DRC), which indicates the relative contribution of each soil 

property in the canonical function. Similarly, in the case of the deep EC25 classes, the soil depth 

and EC1:5 were also key properties in the variation of the ECa in addition to silt as a textural class. 

These results were similar to those obtained previously with the linear correlation analysis (Table 

3). However, the use of MANOVAs made it possible to notice that, as expected, the use of ECa 

sensors is a good tool to indirectly observe the spatial variation of soil texture. On the other hand, 

the possible influence of the water content was now unnoticed. This should not be a major 

problem in the case of irrigation. From the point of view of land transformation, the ECa signal 

allowed to know the spatial variability of properties that are more stable in time, such as depth 

and soil texture, were now detected.  

 

Regarding the NDVI classes, contribution to the discriminant function was found only for silt and 

sand contents in the top layer; and with the water holding capacity at -1500 kPa and silt content in 

the 30-60 cm layer (Table 5). The expected contribution of soil depth to differentiate NDVI classes 

was not found.  
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Table 5 Results of the descriptive discriminant analysis (DDA) of soil properties affecting EC25 and NDVI at two different soil depths (0-30 cm and 30-60 cm). 

 
SDFC: Standardized discriminant function coefficient; SC: structure coefficient; Parallel DRC: parallel discriminant ratio coefficient; Hyphens indicate variables that were 
removed to obtain significant discriminant functions. * Indicates properties with a greater contribution to the discriminant function from MANOVA. 

  Soil properties (0-30 cm) 
 

 

Depth pH EC1:5 CaCO3 Org M CEC Clay Silt Sand WHC  
-33kPa 

WHC  
-1500kPa 

 SDFC 0.64 -0.42 0.79 0.21 - -0.16 0.86 -0.02 0.12 - -0.24 
Shallow  

EC25 
SC 0.51 -0.33 0.51 -0.11 - 0.133 0.32 0.13 -0.20 - 0.37 

 Parallel 
DRC 

0.33* 0.14 0.41* -0.02 - -0.02 0.28* 0.00 -0.03 - -0.09 

 SDFC -0.18 - 0.10 0.37 0.32 -0.36 - 0.99 -0.26 -0.31 0.19 
NDVI SC -0.02 - 0.03 0.21 0.36 0.57 - 0.86 -0.72 0.44 0.43 

 Parallel 
DRC 

0.00 - 0 0.08 0.12 -0.21 - 0.86* 0.19* -0.13 0.08 

  Soil properties (30-60 cm) 
 

 
Depth pH EC1:5 CaCO3 Org M CEC Clay Silt Sand WHC  

-33kPa 
WHC  

-1500kPa 

 SDFC 1.03 0.02 1.32 0.33 - 0.32 0.66 1.57 1.41 0.20 -1.30 
Deep  
EC25 

SC 0.48 0.22 0.33 -0.01 - 0.09 0.10 0.12 -0.11 0.09 0.07 

 Parallel DRC 0.50* 0.00 0.44* 0.00  0.03 0.07 0.19* -0.16 0.02 -0.10 

 SDFC - -0.87 0.54 0.74 - - - 1.29 1.52 -2.39 2.62 
NDVI SC - -0.16 0.14 0.16 - - - 0.13 -0.15 -0.04 0.23 

 Parallel DRC - 0.14 0.08 0.13 - - - 0.17* -0.24 0.10 0.62* 
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As previously noted, soil properties inside and outside the wet bulb vary significantly. Because of 

that, and although the spatial distribution of the ECa and the NDVI seem to follow similar patterns 

(Fig. 4), it is difficult to discern whether the NDVI varies linked to the variation of soil properties as a 

whole or, as the results of Table 5 seem to suggest, there is some local influence given the irrigation 

system used. In other words, it can be thought that there could be something altering the 

relationship between soil properties, EC25 and NDVI. To find the reason of this alteration, a 

combination of the EC25 and NDVI high and low classes was done and the coincidences and 

differences were mapped. The results can be observed in Fig. 5, which shows the four combinations 

of low and high EC25 and NDVI classes, with the coincidences high-high and low-low showed in 

green colours. The major inconsistencies between NDVI and EC25 were located upon the old 

terraces (in red and blue colours).  

 

 

Fig. 5 Comparison between the location of old stone-wall terraces and (a) EC25 classes, (b) NDVI classes and 

(c) combined classes of EC25 and NDVI. 

 

4. DISCUSSION 

 

The soils of the study area were characterised by average EC1:5 values at 25 °C between 1.6±0.8 dS 

m-1 (0-30 cm) and 1.8±0.7 dS m-1 (30-60 cm) (Table 2), although there were maximum values of 

3.58 dS m-1. These mean values (< 2 dS m-1 at 25 °C) were indicative of non-saline soils or slightly 

saline soils (2-4 dS m-1 at 25 °C) (Rhoades et al., 1999). However, this classification refers to salinity 

in saturated extracts of soil, but not to the 1:5 extract analysed in this work. Therefore, this 

interpretation may not be conclusive, although induces to think that peach trees development 

could be influenced by salinity in some parts of the plot, since peach trees are sensitive to salts, 

with a threshold value around 1.7 dS m-1 at 25 C. According to Tanji and Kielen (2002) and Stassen 

and Wooldridge (2011), yields begin to diminish at 1.5 dS m-1, and at 2.7 dS m-1 yields may be 
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reduced by 50 % (Maas & Grattan, 1999 in Stassen and Wooldridge, 2011). The main effects of high 

salinity are reduction of water uptake and the onset of sodium and, particularly, chloride toxicities. 

These toxicities cause leaf burn, reduced vigour, stunted growth and low yields. Moreover, the 

slope of the reference regression line between electrical conductivity and yield is -21 % (Tanji and 

Kielen, 2002), which indicates a fast yield decrease as salinity increases above the threshold. 

 

Regarding the values of EC25 (shallow and deep), average values of 1.54±0.52 dS m-1 at 25 °C (0-30 

cm) and 1.28±0.40 dS m-1 at 25 °C (0-90 cm), indicate that deep readings were lower on average, 

which is opposite to the EC1:5 measured in the soil samples. Nevertheless, both types of measures 

are not totally comparable, since deep measurements made with the ECa surveyor integrate the 

reading from 0 to 90 or 100 cm (Sudduth et al., 2005), and the results of the soil samples were 

specifically from 30 to 60 cm. The spatial pattern of both EC25 readings in Fig. 4 presents these 

differences in the average values, but shows the consistency and continuity of the signal in the two 

layers. However, per tree NDVI pattern presented some relevant differences with respect EC25 

variability. NDVI showed a more continuous and gradual distribution from the southern part of the 

plot to the northern part. Unlike the case of the EC25 spatial variability, the NDVI did not show a 

significant discontinuity where the old terraces were located (Fig. 4). This could reveal a specific 

behaviour of the fruit trees, in terms of development, independent of the soil properties that 

determined the electrical conductivity readings by the resistivity sensor. 

 

The analysis of the relationship between EC25 and NDVI (Table 3) revealed a lack of it. In addition, 

the results of the MANOVAs (Table 5) showed that the soil properties that contributed to the 

canonical discriminant functions of the EC25 and NDVI were not the same. In this case, the cause 

for this different behaviour between variables could be the influence of the fertigation system (drip 

irrigation), which maintains the root area free of salts, or with certain levels that are tolerated by 

the peach trees. This is in line with the findings of De Benedetto et al. (2013), who stated that 

under irrigation conditions vegetation might be more affected by water management than by soil 

properties. The results of Table 4 confirmed the hypothesis of the differences in relevant properties 

measured inside and outside the wet bulb, which could be responsible for the differences found in 

the relationships between the EC25 and the NDVI with soil properties. Except for the CaCO3 

content, which was very high in both locations (inside and outside the bulb), the rest of the 

properties showed significant differences (p-value <0.01). It is worth noting the differences in the 

EC1:5, which were significantly lower within the wet bulb. This means that peach trees were 

maintained with a tolerable salt content thanks to the drip irrigation system. In other words, tree 

vigour would not be affected by the salts content detected outside the wet bulbs by the ECa 

surveyor. The same reasoning could be applied to the lack of relationship between NDVI and soil 

depth. One could expect the higher the soil depth, the higher vigour trees, but this was not the case 

in the present study orchard, because the water and nutrients were supplied by fertigation and soil 

depth (61.1±21.0 cm) is not a constraint for tree development.  

 

As mentioned above, the lack of relationship between EC25 and NDVI would be particularly 

affecting the areas where differences in EC25 and NDVI classes occur (high-low and low-high), 

which were found where the old terraces were located in the past, before land transformation (Fig. 

5). The removal of the terraces and the levelling influenced the ECa, since subsoil original materials 

(Tertiary marls with a variable content of salts) were put on the top layer, breaking the continuity of 
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the original soils. This is what occurred in zones with high EC25 and low NDVI (Fig. 5 and 

supplementary material). However, in the low EC25 and high NDVI zones the subsoil material put 

on surface were calcareous gravels, which provide better drainage conditions than the marls and 

lower salts content. In these zones, the local supply of water and fertilizers through the drip 

irrigation system would be providing the conditions for high tree vigour. Nevertheless, it could 

influence that there was not a good correspondence of EC25 and NDVI zones, as shown in the 

results. 

 

As regards the relationship between the soil properties and EC25 as derived from the readings of 

the Veris 3100 ECa surveyor, the MANOVA offers an added value with respect to either the linear 

relationship or the ANOVA (Uribeetxebarria et al., 2018). A separate analysis of each sampled soil 

property with respect to EC25 or EC25 classes (ANOVA) may lead to misleading and inconsistent 

results. In fact, ECa reflects the combined effect of soil properties as a whole, and the delimitation 

of areas within the plot based on ECa maps should be checked from a multivariate approach. In the 

present case, the results of the MANOVA are in line with the theoretical basis for the relationship 

between ECa and soil properties developed by Rhoades et al. (1999). The parallel DRC values of the 

discriminant functions for the shallow and deep EC25 (Table 5) show the contribution of EC1:5, 

indicating that soil salinity is governing a significant part of the ECa readings. In addition, soil depth, 

clay and silt contents are also significantly contributing properties, in agreement with results 

reported in previous studies (Sudduth et al., 2005, Pedrera-Parrilla et al., 2016). In this case, the 

MANOVA was fundamental to identify clay as a relevant contributing property to the measured 

ECa, in comparison to the simple linear correlation analysis, in which clay was not correlated to 

EC25. On the other hand, discriminant functions for the NDVI showed that textural classes silt and 

sand were behind the variation of the NDVI in the top layer, while the WHC at -1500kPa and silt did 

the same in the second layer.  

 

The results confirmed the different behaviour of both types of variables (EC25 and NDVI) and 

suggest several possibilities of differential management in the orchard. In this respect, and 

although different authors have suggested the combination of ECa with spectral vegetation indices 

to help in the delineation of SSMZ (Panda et al., 2010; De Benedetto et al., 2013; Ortega-Blu and 

Molina-Roco, 2016), in the present case, and because of the lack of relationship between EC25 and 

NDVI, we propose two strategies. One of them would be delineating SSMZ according to the 

combined EC25 classes, which would mainly serve to increase the irrigation doses in the high EC25 

zones to reduce the salts content in the root zone and to enlarge the dimensions of the wet bulb. 

At present, this recommendation would not be easy to implement because the irrigation system 

consists of only one sector, since it was designed without having into account the soil spatial 

variability. Nevertheless, it would be possible to actuate by increasing the number of emitters per 

tree in those zones of high EC25 zones. 

 

The second strategy would be delineating SSMZ according to NDVI classes, which would serve as a 

reference to regulate the tree vigour and yield through different managements actions such as 

pruning, application of growth regulators or fruit thinning. 
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5. CONCLUSIONS 

 

The present work is a contribution to the application of precision agriculture (PA) techniques in 

fruticulture (precision fruticulture, PF), which are not so extensively used as in arable crops. 

Specifically, PA and PF can help in establishing optimized management actions in those orchards 

where land transformations have occurred.  

 

The results of soil sampling and ECa survey showed that land transformation carried out in the 1980 

decade to enlarge fields could have altered the spatial distribution and continuity of soil properties. 

In this respect, although a relationship between apparent electrical conductivity and peach tree 

vigour could be expected, it was not found, even in the case of trees planted in soils with salts 

content above the tolerance threshold. This could be due to the drip irrigation system used in the 

orchard, which keeps the trees free of high salt contents in the root-explored region. 

 

Adopting PA and PF strategies may be appropriate to manage the orchard according to SSMZ. In the 

present case, two management zones delineation strategies were proposed depending on the final 

objective of the action: a) zones delineated according to the combined EC25 classes, mainly 

addressed to leach salts in the high EC25 zone, and b) zones delineated according NDVI classes to 

regulate tree vigour and yield. These strategies respond to the alteration of the original soil 

functions due to the land transformation carried out in previous years. 
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Stratified sampling in fruit orchards using cluster-based 

ancillary information maps: a comparative analysis to 

improve yield and quality estimates 

 

Asier Uribeetxebarria, José A. Martínez-Casasnovas, Alexandre Escolà,    
Joan R. Rosell-Polo, Jaume Arnó 
 

 

ABSTRACT 

 

Estimation of yield or other fruit quality parameter is of great interest to farmers, technicians and 

agricultural cooperatives to decide on management actions just before harvesting and, in any case, 

to anticipate and plan harvesting operations. Making accurate and reliable estimates often requires 

systematic sampling that, when covering the whole plot, can result in the use of a large number of 

samples and a significant effort in time and cost for fruit growers. Faced with this whole area 

sampling strategy, simple random sampling (SRS) using reduced sample sizes is currently a widely 

used technique despite the less precise estimates that it provides. In this work, different stratified 

sampling schemes have been tested to estimate yield (kg/tree), fruit firmness (kg/cm2) and the 

refractometric index (ºBaumé) in a peach orchard located in Gimenells (Lleida, Catalonia, Spain). In 

contrast to SRS, the use of ancillary information (NDVI and apparent electrical conductivity, ECa) 

allowed sampling units or trees to be stratified according to two or three classes (strata) within the 

plot. The classes or homogeneous stratification zones were delimited by cluster analysis using, 

either separately or in combination, a multispectral airborne image (NDVI) and a ECa survey map 

acquired by means of a soil resistivity sensor (Veris 3100). Sampling schemes were then compared 

in terms of efficiency. In general, stratified sampling showed better results than SRS. Regarding 

yield estimates, stratified sampling according to two strata of NDVI allowed the sample size to be 

reduced by 17 % compared to the SRS for the same precision. On the other hand, quality 

parameters may require different stratification strategies concerning the number of strata to be 

used. While ºBaumé was better-estimated using also stratified samples based on two strata of 

NDVI, fruit firmness showed better results when stratifying by three classes or strata of NDVI. In 

any case, neither the ECa nor the combined use of NDVI + ECa has improved sampling efficiency 

when used as ancillary maps for stratification. 
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1. INTRODUCTION 

 

Sampling to estimate yield and/or fruit quality at harvest time is of great interest in fruit growing. 

However, reliable prediction of these parameters is not easy, especially when systematic sampling 

is usually replaced by a less complex simple random sampling (SRS) to reduce time and cost. In 

other occasions, random sampling raises doubts to both growers and advisors about how many 

trees should be sampled and, above all, which specific ones should be sampled within a plot. Facing 

this situation, there is a need to develop new and more precise methods with acceptable costs to 

guide fruit growers during field sampling. SRS is a widely used design, because it is relatively simple 

to implement by random selection of sampling units (trees) within the plot. However, SRS is 

inefficient when estimating parameters that show spatial autocorrelation within the plots (Webster 

& Lark, 2013). Taylor et al. (2005) and Kazmierski et al. (2011) showed that vineyards are spatially 

variable and that grape yield usually follows well-defined and consistent spatial patterns over time. 

This same situation can be expected in fruit orchards and, for this reason, sampling methods that 

take into account the different areas within the plot with different expected yield values would be 

preferable to optimally locate sampling trees to obtain better yield estimates. 

 

On the other hand, fruit growers can hire service companies that provide crop vigour and/or soil 

apparent electrical conductivity (ECa) maps obtained with suitable sensors (proximal and remote 

sensing). Normalized difference vegetation index (NDVI) derived from airborne images were used 

by Meyers and Vanden Heuvel, (2014) to optimize sampling protocols in vineyard and reduce 

sample sizes. Applying a heuristic optimization algorithm (Tabu Search Algorithm) to NDVI images, 

specific samples to conform the spatial distribution of NDVI within the plot can be established 

(Meyers and Vanden Heuvel, 2014). As NDVI is related to vine vigour, the method is a way for 

distributing sampling units by covering the areas of different vigour to capture vineyard canopy 

variability within the plot. This idea is also behind the method proposed by Carrillo et al. (2016) to 

improve grape yield estimates. The authors concluded with the need to consider a two-step 

sampling method combining NDVI-based samples with random vine samples to predict specific 

components of the productive potential in a vineyard. Regarding apparent electrical conductivity 

(ECa), there are several studies that address the use of ECa classified maps for site-specific 

management practices (Moral et al., 2010; Peralta & Costa, 2013). The suitability of this information 

in fruit-growing sampling is a pending issue, although soil characteristics are expected to impact 

yield and/or quality parameters. 

 

There are few studies on sampling in fruit orchards. Monestiez et al. (1990) proposed a 

geostatistical approach to assess spatial dependence between fruits to choose the most 

appropriate sampling designs inside the tree structure. Multilevel systematic sampling can also be 

an interesting option to estimate the number of fruits for yield forecasts (Wulfsohn et al., 2012), 

obtaining error coefficients of only 10 %. More recently, sampling stratification using NDVI-based 

aerial images allowed different areas to be better delimited for sampling in nectarine orchards 

(Miranda et al., 2015), with a significant reduction in sample size (20-35 %) compared to random 

sampling (Miranda et al., 2018). As is known, SRS can produce local clusters of trees and leave 

unrepresented areas within a plot (Webster & Lark, 2013). Alternatively, farmers can consider using 

NDVI or ECa data to stratify samples, assuming that yield and quality parameters in orchards often 

present spatial autocorrelation and, what is more important, possible spatial cross-correlation with 
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ancillary variables supplied by proximal and remote sensors of increasingly common use in 

agriculture. Cross-correlogram is a powerful tool to test the spatial correlation between two 

variables, and checking this spatial correlation may be the key factor before stratifying the samples. 

 

The aim of this study was to investigate how the use of ancillary data (NDVI and ECa) in stratified 

sampling schemes can improve sampling efficiency compared to a SRS of equal size for the whole of 

a plot. Efforts in time and cost could be reduced with this new sampling strategy by optimizing 

sample sizes through the application of technological advances in the framework of precision 

agriculture. Sampling in orchards is then proposed as a design-based sampling strategy, making use 

of classical sampling theory (that is, assuming normality and independence of observations). This 

may be a limitation in plots with spatial autocorrelation. However, the use of geostatistical 

methods is beyond the scope of this paper. 

 

2. MATERIALS AND METHODS 

 

2.1. Study plot 

 

The research was conducted in a peach orchard (Prunus persica cv. ‘Platycarpa’) located at the IRTA 

Experimental Station (41° 39’ 19” N, 0° 23’ 36” E, ETRS89) in Gimenells (Lleida, Catalonia, Spain). 

The plot covered an area of 0.65 ha, and was planted in 2011 according to a 5 x 2.80 m pattern (Fig. 

1). Soil was classified as Petrocalcic Calcixerept (Soil Survey Staff, 2014), and it was a well-drained 

soil without salinity problems. The presence of a petrocalcic horizon at a variable depth (0.4-0.8 m) 

and high CaCO3 content were the main soil limiting factors. The horizon may be at shallow depth 

due to successive earth movements and tillage operations that, over time and since 1946, have 

contributed to modify in shape and size of the parcelling in the farm. The climate is typical of hot 

semi-arid areas, with strong seasonal temperature variations (cold winters and hot summers). 

Annual precipitation is frequently below 400 mm, and basically distributed from September to May. 

 

 
Fig. 1 Location of the study area (left), and orthophoto of the peach orchard plot in 2015 (right). 

 

2.2. Sample size and stratification 

 

Three production and quality variables were sampled within the plot: yield (kg/tree), fruit firmness 

(kg/cm2) and refractometric index (ºBaumé). To determine the sample size, an aerial multi-spectral 

image was taken on June 9th, 2015. The image resolution was 0.25 m/pixel. Once the canopies were 

individually delimited on the basis of this image (ESRI® ArcMapTM 10.4.1) to obtain a map of 

georeferenced trees within the plot (statistical population), a weighted average value of NDVI 
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according to the area of the canopy was assigned to each tree. These tree-averaged NDVI values 

were then used as base data for determining the sample size for a SRS without replacement using 

Eq. 1: 

 

  
    
    

  
  (1) 

 

Where n is the sample size (number of trees) assuming sample independence, ζα/2 (1.96) is the 

value of the standard normal variate for a 95 % confidence (α = 0.05), CV is the Coefficient of 

Variation (17.5 % in the present case), and ER is the relative error assumed (10 %). The result of Eq. 

1 was 12 sampling trees that were first randomly distributed within the plot (samplingscheme A, 

Fig. 2). Apart from being a usual index for detecting spatial variability in tree crops (Kazmierski et 

al., 2011), the use of NDVI for this approach was justified because previous successful applications 

in fruit sampling were known (Miranda et al., 2015, 2018). 

 

 
Fig. 2 Sampling units (trees) corresponding to seven different sampling schemes. 

 

Additional schemes were tested in which new sampling trees (twelve in each case) were first 

obtained by stratified random sampling according to two and three classes of NDVI. Specifically, 

NDVI classified maps were built by clustering interpolated NDVI values (NDVI raster map) using the 

unsupervised classification algorithm ISODATA (Jensen, 1996). The process on which this algorithm 

is based is well known. Assigning an arbitrary mean to each class, pixels were then successively 

reassigned minimizing the Euclidean distance from each pixel to the mean value of the class. Each 

iteration, class means were recalculated and pixels were reallocated until the last iteration is 

reached, or the number of pixels that change from one class to another does not exceed a certain 
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threshold (Guastaferro et al., 2010). The same strategy (stratified sampling based on clustered 

maps) was repeated using the information provided by a Veris 3100 ECa surveyor. As a widely used 

sensor for soil characterization (Sudduth et al., 2005), the information provided may be very useful 

in sampling given the soil-tree interaction. This sensor measured the ECa at two soil depths: shallow 

(0-0.3 m) and deep (0-0.9 m). Both ECa value layers were interpolated by ordinary kriging, and ECa 

classes were established based on the cluster analysis of the two maps (shallow and deep) 

simultaneously. Finally, the same procedure was repeated again by taking all three ancillary layers 

(NDVI, shallow ECa and deep ECa). In short, seven sampling schemes (including scheme A) were 

compared to each other based on a total number of 84 sampled trees (7x12) within the plot (Fig. 2). 

Figure 3 shows five of the proposed sampling schemes, (i) SRS (scheme A), (ii) stratified sampling 

based on two classes of NDVI (scheme B1), (iii) stratified sampling based on three classes of NDVI 

(scheme B2), (iv) stratified sampling based on two classes of ECa (scheme C1), and (v) stratified 

sampling based on three classes of ECa (scheme C2). Schemes that use both information layers 

(schemes D1 and D2) are not shown. In each case, sampling trees within each stratum were 

randomly sampled without replacement. 

 

 
Fig. 3 Sampling schemes: (i) simple random sampling, (ii) stratified sampling by NDVI (two strata), (iii) 
stratified sampling by NDVI (three strata), (iv) stratified sampling by ECa (two strata), (v) stratified sampling 
by ECa (three strata). 
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2.3. Estimation in stratified sampling schemes 

 

In a SRS approach, the sample mean        has proven to be an unbiased estimator of the 

population mean    , with a variance that can be estimated by         
  

 
       

  

 
 

(  
 

 
) where    is the sample variance, and       

 

 
 is the finite population correction or 

fpc, where n is the sample size and N the size of the population (459 trees in the plot under study). 

As the interest was to work with small size samples, confidence limits for the mean can be 

formulated as         ⁄
 

√ 
√   , where      is the sample mean, 

 

√ 
√    is the standard 

error of the mean, and    ⁄  is the Student’s t value corresponding to n-1 degrees of freedom for a 

95 % confidence. 

 

In order to sample more efficiently, other sampling schemes were used by stratifying the 12 

sampling trees according to two strata (6 trees per stratum) or three strata (4 trees per stratum). As 

a reminder, strata corresponded to the classes obtained after classification of the plot according to 

NDVI, ECa or both auxiliary data layers. The different stratifications produced classes that were not 

equal in area (therefore, with different number of trees per stratum), and so the plot mean     was 

then estimated for K classes (strata) within the plot using a weighted average as suggested by 

Cochran, (1977), and more recently by Webster & Lark,(2013)in what is called regional classification 

techniques: 

 

      ∑      
 
    (2) 

 

where    is the sample mean of the kth class, and    allowed the number of individuals (trees) of 

the kth class to be weighted using Eq. 3, 

 

   
  

 
 (3) 

 

where Nk is the number of trees within stratum k, and N is the total number within the plot. 

 

As in SRS, confidence limits were obtained using the standard error of the mean, in this case, the 

square root of the estimated variance (Cochran, 1977): 

 

         ∑
  

   
 

  

 
           (4) 

 

where   
  is the within-class sample variance of the kth stratum,    is the sampling trees within the 

stratum (6 or 4), and      is the fpc for the kth stratum calculated as        
  

  
. Finally, the 

value    ⁄ was adjusted for each stratified sampling scheme according to an effective number of 

degrees of freedom as established by Cochran (1977) in these cases. 

 

The above confidence intervals were obtained assuming normality of observations. Since this 

hypothesis was not tested (for example, using Shapiro-Wilk test), additional intervals were 

calculated by applying a bootstrap estimation with the aim of contrasting the results. Bootstrap is a 
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method of resampling to obtain approximately the precision of an estimator without hypothesizing 

about its distribution. Thus, for each set of 12 sampling trees corresponding to the different 

sampling schemes (which are now the statistical population), sampling is done with replacement 

until obtaining 1000 sample arrangements each of equal size 12. By averaging the 12 values in each 

new sample, it is known that 1-α level confidence intervals can be obtained from the distribution of 

the 1000 calculated mean values through the use of the percentile method (Efron, 1982). 

Specifically, confidence limits were established excluding the          values located at the 

extreme positions of the distribution (α = 0.05). In all cases, sample arrangement generation was 

performed by programming in R software, version 3.3.2. 

 

2.4. Sampling efficiency 

 

The most interesting sampling scheme is that which provides, on average, the least mean squared 

error (MSE). Since the seven sample means were unbiased estimators of the plot mean, MSE can be 

used as a measure of accuracy. Coinciding MSE with the variance (Eq. 5), efficiency to estimate the 

plot or population mean     can be established as the inverse of the estimated variance of the 

sample mean. 

 

       [       ]            (5) 

 

To compare any of the stratified sampling schemes         with respect to the simple random 

sampling design       , the relative efficiency (RE) was obtained as shown in Eq. 6: 
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where          was in each case the variance of the stratified sample mean, and        or 

variance of a random sample mean of the same size (taken as reference) was best estimated by 

applying the method suggested by Cochran (1977). Specifically, given the results of a stratified 

random sample, an unbiased estimator of the variance of the mean for a simple random sample 

from the same population is (Eq. 7), 
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where     were the values sampled at trees within stratum k. The other parameters are those 

stated in previous paragraphs. By averaging the six previously calculated variances (one for each 

stratified sample) with the variance previously obtained for scheme A (SRS), the resulting variance, 

       , was the one used in the calculation of the RE. The reason for using Eq. 7 was the use of 

non-proportional allocation of sampling trees, that is, the same number of sampling units (6 or 4) 

was assigned regardless of the size (number of trees) of each stratum. 

 

Both the MSE and the RE were the statistics that served for the comparison of the different 

sampling schemes and, above all, for the verification of the possible gain due to stratification. 

Knowing the RE allowed the necessary sample size for the same precision to be compared between 
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sampling schemes. Low MSE valuesand values of RE greater than 1 are those sought for stratified 

sampling schemes. 

 

2.5. An estimate of the population mean 

 

Considering the spatial distribution of the 84 sampling trees resulting from the seven sampling 

schemes (7x12) (Fig. 2), it is important to emphasize that only 5 % of the plot area resulted in a 

weak sampling density, i. e. with sampling units separated from each other by a distance larger 

than 9.78 m (range of the NDVI exponential variogram, not shown). So, the sampled information 

contained in these 84 trees was finally considered to estimate the mean of the plot as accurately as 

possible by calculating a weighted average of the means of the samples. The most accurate linear 

combination of the seven independent sample means was obtained by assigning proportionally 

greater weighting to the more precise (Eq. 8), 

 

   ∑      (8) 

 

where    is the weighted average for the plot,    are the sample means calculated for each of the 

seven sampling schemes, and   are the relative weights calculated using the inverse of the variance 

of the sample means (Eq. 9): 

 

   
      ⁄
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2.6. Goodness of stratification 

 

Finally, and as already mentioned, stratified sampling schemes were based on a previous 

classification of the plot. A more accurate and efficient estimation of the mean was linked to the 

ability of the NDVI and/or ECa auxiliary layers to discriminate different mean values between 

classes, while the values within the classes have lower intra-class variability compared to the total 

variability of the plot. A parameter that served to judge the goodness of these classifications was 

the relative variance (     
   

 ⁄ ), where   
  was the pooled or average within-class variance, and 

  
  was the total variance in the sample (Webster & Lark, 2013). Used in the form of its complement 

(Eq. 10), 

 

     
   

 ⁄        (10) 

 

it allowed values close to 1 to be obtained for those more effective sampling schemes. Values close 

to 0 or even negative corresponded to non-effective stratifications. 

 

2.7. Spatial cross-correlation 

 

To check stratified sampling results using ancillary variables, bivariate Moran's coefficient was also 

calculated to assess the spatial cross-correlation between ancillary information layers (NDVI and 

ECa) and the sampled yield and quality variables (GeoDa 1.12 software, Anselin et al., 2010). 

Hypothetically, the most efficient stratified sampling schemes would be those with significant 

spatial correlation with the variables to be sampled. Having verified significant spatial 
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autocorrelation for the three variables of interest (Moran's I coefficient on the total of 84 sampled 

trees, data not shown), assessing spatial cross-correlation between ancillary variables and sampled 

variables could report information (even if a posteriori) on what ancillary information was most 

convenient in each case. However, it must be said that the use of geostatistical methods was 

beyond the scope of this paper. So, classical sampling theory was prevalent to assess stratified 

methods in this work under what is called design-based sampling strategies (Brus & de Gruijter, 

1997).  

 

3. RESULTS AND DISCUSSION 

 

Table 1 shows the mean squared error (MSE) and the relative efficiency (RE) for the different 

sampling schemes tested. For each of the variables (yield, fruit firmness and refractometric index), 

confidence intervals (CIs) for the population mean     are also shown. Two types of confidence 

intervals were built for each sampling scheme as a result of using, i) the standard error of the 

corresponding sample mean (parametric approach) or ii) the non-parametric bootstrap approach. 

In the same Table 1, the weighted average of the plot   for each field variable is added next to the 

sample means. By completing this table of results, each sampling scheme is valued according to the 

goodness of stratification using the value 1 minus the relative variance. 

 

Concerning the confidence intervals for the mean, bootstrap CIs were always slightly narrower 

compared to CIs based on the normality of the sample means. This may be due to the asymptotic 

approximation of the bootstrap method and, in any case, could prove the non-normality of the 

distributions. However, and for comparison purposes, relative efficiency (RE, Table 1) based on the 

estimated variances of the sample means (Eq.6) was the statistic taken as a reference instead of the 

CIs. As general results, stratified sampling seemed to improve efficiency (RE) compared to SRS, 

mostly for the quality variables (fruit firmness and refractometric index). The improvement in yield 

estimation efficiency using stratified sampling was lower than for quality variables, and it was only 

evident in very particular cases of stratification. To aid interpretation, a more detailed analysis of 

the results in Table 1 is addressed in the following sections. 

 

3.1. Sampling to estimate yield 

 

Compared to the other sampling schemes, stratified sampling based on two classes of NDVI 

(scheme B1) was the one that showed the best results in estimating yield, with an expected average 

error (√   ) of 2.71 kg/tree (Table1). Surprisingly, when stratifying the sample in three NDVI 

classes (scheme B2), the method failed to improve the efficiency or precision compared to SRS. This 

result could be explained by the poor effectiveness of the stratification (negative value of     ). 

In fact, negative values of the goodness of the stratification have always been obtained in those 

inefficient schemes with RE less than 1. 

 

Concerning the use of ECa as ancillary information, stratifying the sample according to three classes 

(strata) of soil conductivity (scheme C2) has also shown better efficiency results than SRS. However, 

the error (MSE) and relative efficiency (RE) are not as good as in scheme B1 (stratification according 

to two classes of NDVI). Again and unexpectedly, the stratified sampling has shown better efficiency 
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than SRS despite the poor result of the goodness of the stratification (positive but very low value of 

    , and very far from the optimal values close to 1). 

 

Table 1Efficiency parameters for the sampling schemes tested. 

Sampling 
scheme 

Mean ( ) (MSE)1/2 CIL CIU CILB CIUB RE      

Yield (kg/tree)         
Weighted average of the plot 24.49        

A 26.36 2.32 21.26 31.47 22.41 30.73 
 

0.00 
B1 24.33 2.71 17.93 30.73 19.65 30.09 1.20 0.04 
B2 24.29 3.65 15.37 33.21 18.28 30.58 0.66 -0.10 
C1 23.57 3.70 14.83 32.31 16.90 29.43 0.64 -0.09 
C2 24.58 2.82 17.90 31.26 19.11 30.20 1.10 0.07 
D1 22.09 3.30 14.29 29.89 16.32 27.00 0.81 -0.08 
D2 24.21 2.87 16.23 32.20 18.84 29.18 1.06 0.08 

Fruit firmness (kg/cm
2
) 

Weighted average of the plot 4.33        
A 4.10 0.30 3.44 4.76 3.51 4.60 

 
0.00 

B1 4.31 0.22 3.82 4.81 3.87 4.76 1.80 0.13 
B2 4.26 0.17 3.88 4.65 3.89 4.67 3.09 0.28 
C1 4.27 0.35 3.45 5.08 3.56 4.79 0.69 -0.08 
C2 4.75 0.27 4.13 5.37 4.28 5.22 1.18 -0.19 
D1 4.40 0.33 3.66 5.14 3.40 4.92 0.80 0.19 
D2 4.28 0.29 3.36 5.21 3.71 4.83 1.01 0.12 

Refractometric index (ºBaumé) 
Weighted average of the plot 6.86        

A 7.02 0.14 6.71 7.32 6.80 7.31 
 

0.00 
B1 6.55 0.10 6.32 6.78 6.34 6.74 3.77 0.10 
B2 6.63 0.19 6.10 7.16 5.90 7.09 1.09 0.54 
C1 7.22 0.17 6.81 7.63 6.99 7.54 1.40 -0.09 
C2 6.88 0.10 6.64 7.12 6.70 7.12 4.04 0.21 
D1 6.80 0.32 5.99 7.61 6.37 7.32 0.39 -0.05 
D2 7.31 0.17 6.86 7.76 6.88 7.66 1.29 0.38 

A (Simple random sampling); B1 and B2 (NDVI stratified sampling, 2 and 3 classes); C1 and C2 (ECa stratified 
sampling, 2 and 3 classes); D1 and D2 (combined NDVI + ECa stratified sampling, 2 and 3 classes). MSE (Mean 
Squared Error), CIL and CIU (lower and upper confidence interval considering normality), CILB and CIUB (lower 
and upper CI using bootstrap), RE (relative efficiency),    (relative variance). 

 

The choice between using scheme B1 (stratifying by using the NDVI) and scheme C2 (stratifying by 

using the ECa) is not easy. An analysis of the special characteristics of the plot can help to 

understand the sampling results for later decision-making. In the plot under study, affected by the 

presence of a petrocalcic horizon and high CaCO3 content, some advantage was expected by 

stratifying the sample using a classified map of the ECa. In fact, significant inverse spatial cross-

correlation was obtained between yield and ECa using the bivariate Moran’s IB statistic (Table 2). As 

high CaCO3 content is a limiting factor of yield, with high ECa values usually associated with low 

yields (Martínez-Casasnovas et al., 2012; Ortega-Blue & Molina-Roco, 2016; Uribeetxebarria et al., 

2018), the spatial variation of ECa could make it advisable to stratify on the basis of this information 

layer instead of using an NDVI map. However, given the also significant spatial correlation between 

NDVI and yield (Table 2), the best efficiency results, and the simplicity in managing the stratification 

in only two strata, the B1 scheme is the option to recommend. In fact, NDVI has been used 
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successfully to guide sampling for yield forecasting tasks in many crops (Fortes et al., 2015; Miranda 

& Royo, 2003; Taylor et al., 2010). 

 

From a practical point of view, as scheme B1 was more efficient (RE out of 1.20, Table 1), a similar 

efficiency for the SRS (scheme A) could be reached using a smaller sample size, theoretically equal 

to n(SRS)/RE (12/1.20). In short, stratified sampling according to two strata of NDVI allowed the 

sample size to be reduced by 17 % compared to the SRS for the same precision. 

 

Table 2 Spatial cross-correlation between NDVI and ECa ancillary information layers and the sampled yield 

and quality variables 

Ancillary information Sampled fruit variable  Bivariate 

Moran’s IB 

coefficient* 

Pseudo p-

value** 

NDVI Yield  -0.147  0.011 

NDVI Fruit firmness 0.199 0.004 

NDVI Refractometric index -0.215 0.002 

ECa Yield  -0.315 0.001 

ECa Fruit firmness -0.059 0.173 

ECa Refractometric index  0.029 0.306 

*Global spatial statistic to estimate the spatial cross-correlation between ancillary and sampled variables. 
Correlation calculated based on 84 sampling trees using GeoDa 1.12 software (Anselin et al., 2010). 
**Significance test was based on 999 permutations to generate the reference distribution under the null 
hypothesis of spatial randomness. The observed statistic was then compared to this distribution to calculate a 
so-called pseudo p-value (0.001 is the most extreme pseudo p-value under this scenario). 

 
3.2. Sampling to estimate fruit quality parameters 

 

Stratified sampling schemes worked differently when estimating fruit quality parameters. 

Regarding fruit firmness (Table 1), scheme B2 was clearly better in both MSE and efficiency (RE 

greater than the other sampling schemes). A significant spatial cross-correlation between NDVI and 

firmness (the greater the NDVI, the greater the firmness) could explain this result (Table 2). 

Likewise, stratifying sampling trees based on three strata of NDVI allowed spatial classification in 

fruit firmness to be more effective (     = 0.28). Concerning the sugar content of the fruit 

(refractomeric index), the results were somewhat difficult to interpret. Again, NDVI correlated 

spatially in a significant way (Table 2), showing an inverse relationship. However, among the two 

proposed schemes (B1 and B2), it was the B1 scheme (stratification through 2 strata) that achieved 

the best efficiency (RE value of 3.77). On the other hand, this result was somewhat inconsistent 

with the effectiveness of the stratification. Sampling trees were optimally classified using three 

classes of NDVI as suggested by the goodness of stratification (     in Table 1). Therefore, there 

was a discrepancy in the efficiency scores between schemes B1 and B2, and reasonable doubts 

arise as to whether to use two or three strata to stratify the samples. This situation can occur 

because the sampling trees can be well segmented (reducing the average within-class variance) 

and, however, presenting a variance of the sample mean too high (poor value of the RE). Since the 

fundamental criterion sought is to increase the RE, the B1 scheme would be the recommended 

option in this case by making compatible the values of RE (Table 1) and spatial correlation (Table 2). 
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The relationship between NDVI and some quality parameters has been shown in other studies 

(Zude-Sasse et al., 2016; Martínez-Casasnovas et al., 2012). Many times, fruits achieve lower sugar 

content (ºBaumé) in the areas with the highest NDVI values. Inversely, vigorous canopies with high 

amount of leaves (and higher NDVI values) can shade the fruits affecting fruit ripening and, as 

happens in viticulture (Vanden Heuvel et al., 2002), producing greener fruits with higher firmness 

values. This would explain the significant spatial relationship between NDVI, fruit firmness and 

ºBaumé within the plot (Table 2). 

 

Regarding the use of ECa as ancillary information to stratify the quality, specifically ºBaumé in fruit, 

the results have been contradictory. While sampling scheme C2 (three strata of ECa) has shown the 

highest relative efficiency (RE of 4.04) together with good goodness of stratification, spatial cross-

correlation between both parameters (ECa and ºBaumé) was not significant (Table 2). Since spatial 

correlation is an essential requirement to justify the suitability of stratification, the use of ECa was 

not a priori an interesting option to stratify the sampling. Nevertheless, as already said before, 

there could be an opportunity to use it to efficiently estimate yield in this plot. 

 

3.3. Lessons learned for future research 

 

Estimated variance of the mean in stratified sampling (StRS) is usually expected to be less than the 

variance of a simple random sample (SRS) of the same size (Cochran, 1977). Once the sample size is 

decided (in our case, 12 sampling units), variance for StRS is finally influenced by the particular 

allocation of the sampling units between the strata. Two or three strata were delimited in this work 

using auxiliary information maps (NDVI or ECa), to then allocate the same number of sampling units 

(trees) for all strata (6 or 4 trees per stratum if two or three strata were used, respectively). This 

procedure probably resulted in a non-optimal allocation of the sampled trees and, as a 

consequence, in a possible greater uncertainty (or less precision) of the estimates. Cochran, (1977) 

managed to evaluate, for a fixed sample size n, the effect of the deviation from an optimal 

allocation of sampling units in stratified samples. According to this approach, no significant increase 

in the variance (or significant loss of efficiency) was expected due to having used the same number 

of trees per stratum (data not shown). The use of identical allocation in each stratum was for 

reasons of simplifying the whole process for the farmer. However, it would be advisable in future 

works to opt for the proportional allocation of sampling trees according to the size of the strata to 

possibly minimize the variance of the stratified means. Moving away from the optimal allocation of 

sampling trees should be especially sensitive in yield estimation. This would explain why the 

variance of the mean in the stratified sampling according to three strata of NDVI was unexpectedly 

greater than the variance of the SRS. Interesting results comparing proportional and optimum 

allocation can be found in Brus, (1994). 

 

Finally, being in agreement with other studies (Meyers et al., 2011), sample stratification making 

use of ancillary information is a possibility to take into account in fruit growing. Cluster analysis has 

been the option used in this work for the construction of strata. A pending issue for future work is 

to check other methods to optimize strata such as, for example, the well-known rule of the 

cumulative root of the frequency function (see Cochran, 1977). Although both SRS and stratified 

sampling provide unbiased estimates of the population mean, stratifying the sample (Lark & 

Marchant, 2009) is a way to (i) get more precise estimates (or estimates with less uncertainty), or 
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(ii) reduce the sample size for a certain precision or efficiency. However, there is a major limiting 

factor as it is necessary for the ancillary information to be spatially correlated with the variable to 

be sampled. If this requirement is met, sample estimates can improve in precision. Ultimately, fruit 

growers and technical advisors can benefit from positive impacts on operating time and cost. 

 

4. CONCLUSIONS 

 

Use of ancillary data such as NDVI in stratified sampling schemes allows yield and quality 

parameters in a peach orchard to be estimated with greater precision (or greater efficiency). For 

fruit firmness, the stratification in three strata (scheme B2) is the most recommendable option, 

achieving almost triple the efficiency compared to simple random sampling (SRS). This means being 

able to reduce the sample size by almost 67 % for the same precision of the estimates. On the other 

hand, refractometric index may require a simpler stratification scheme using only two NDVI classes 

(scheme B1). In terms of yield estimation, the 20 % higher efficiency of also stratified sampling 

according to two strata of NDVI (scheme B1) allowed the sample size to be reduced by 17 % 

compared to SRS. In no case the ECa or the combined use of NDVI and ECa have provided 

substantial advantages compared to the use of NDVI as a single layer of ancillary information. So, 

the recommendation is to use NDVI as ancillary information to more efficiently estimate yield and 

quality variables in peach. However, and especially for yield estimates, caution must be taken at the 

time of allocating sampling trees by strata. 
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Assessing ranked set sampling and ancillary data to 

improve fruit load estimates in peach orchards 

 

Asier Uribeetxebarria, José A. Martínez-Casasnovas, Bruno Tisseyre, Serge Guillaume, 
Alexandre Escolà, Joan R. Rosell-Polo, Jaume Arnó 
 

 
ABSTRACT 
 

Fruit load estimation at plot level before harvest is a key issue in fruit growing. To face this 

challenge, two sampling methods to estimate fruit load in a peach tree orchard were compared: 

simple random sampling (SRS) and ranked set sampling (RSS). The study was carried out in a peach 

orchard (Prunus persica cv. 'Platycarpa') covering a total area of 2.24 ha. Having previously sampled 

the plot systematically to cover the entire area (104 individual trees or sampling points), both 

sampling methods (SRS and RSS) were tested by taking samples from this population with varying 

sample sizes from N = 4 to N = 12. Since RSS requires ancillary information to obtain the samples 

(ranking mechanism), several proximal and remote sensors already used or recently introduced in 

agriculture were assessed as data sources. A total of 14 variables provided by 5 different sensors 

and platforms were considered as potential ancillary variables. Among them, RGB images captured 

by an unmanned aerial vehicle (UAV), and used to estimate the canopy projected area of individual 

trees, proved to be the best of the options. This was shown by the high correlation (R = 0.85) 

between this area and the fruit load, providing RSS with the UAV-based canopy projected area the 

lowest sampling errors. Then, comparing relative efficiency between random sampling (SRS) and 

RSS, the latter enables more precise fruit load estimates for any of the considered sample sizes. 

Interest and opportunity of RSS can be raised from two points of view. In terms of confidence, RSS 

managed to reduce the variance of fruit load estimates by about half compared to SRS. Relative 

errors above the 10% threshold were always produced significantly fewer times using RSS, 

regardless of the sample size. In terms of operation within the plot, sample size could be reduced 

by 40%, from N = 10 for SRS to N = 6 for RSS without exceeding on average sampling errors of 10%. 

In summary, fruit growers can take advantage of the combined use of appropriate data (RGB 

images from UAV) and RSS to optimize sample sizes and operational sampling costs in fruit growing. 
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1. INTRODUCTION 
 

Fruit tree crops are considered high value products (Aggelopoulou et al. 2010), but they demand 

more tasks from farmers compared to arable crops. Among the tasks required in peach orchards, 

harvesting is a complex process that, necessarily done by hand, usually also needs to be finished in 

a short time window. Because of that, a large amount of labor is often needed once the quality 

standards demanded by the market have been reached (ripening of the fruit). Hence, obtaining a 

reliable yield estimate in advance would improve the logistics of the entire process (Wulfsohn et al. 

2012), also contributing to anticipate operational costs more effectively. 

 

In perennial crops, it is known that regular patterns are adopted by planting commercial plots with 

genetically uniform plant material (Miranda et al. 2015). Therefore, it is expected to achieve regular 

growths and certain homogeneity in production and quality. From this point of view, making an 

estimate of the yield should not raise any issue. By randomly choosing a few trees, the estimation 

of yield should be quite accurate knowing the total number of trees within the plot. However, 

perennial plots are not always homogeneous and spatial variability is present due to environmental 

factors, as it has been shown in different studies (Berman et al. 1996; Taylor et al. 2005; Arnó et al. 

2012). Moreover, since many of the factors that affect yield (or fruit load) are spatial dependent, 

yield spatial distribution within the orchards usually presents patterns and is not random 

(Aggelopoulou et al. 2013). Under this scenario of structured variability with yield potential varying 

for each tree and for the different productive areas within the plot, simple random sampling (SRS) 

strategy may be inefficient. In order to fulfill fruit grower demands, yield forecast should be made 

by using 5-6 sampling trees and with maximum error of 10%. Therefore, SRS may not be the best 

option since it does not take into account any spatial organization of the variable to estimate. 

Moreover, a large sample size may be needed to fulfill growers’ constraints (Carrillo et al. 2016). 

Only the simplicity to implement and understand the results of SRS would explain why this method 

is still used in agriculture in forecasting tasks. To overcome this issue, new and accurate sampling 

methods have to be proposed to fruit growers and farm managers. 

 

Although it is fair to mention that one of the pioneering work on sampling in fruit trees was 

published in the forties (Pearce, 1944), sampling methods making use of ancillary information 

provided by high spatial resolution sensors have been proposed in recent years. Previous analysis of 

the within-field variability of such information is often key when designing the sampling strategy. 

Even spatial variability on a smaller scale has also been the option used by other authors. So in 

1990, Monestiez et al. proposed a geostatistical approach to optimally sample within the trees to 

improve yield estimates. Wulfshon et al. (2012) opted for a multilevel systematic sampling to 

estimate the number of fruits reaching errors of just 10%, then extending this same method to 

estimate quality parameters (Martinez Vega et al. 2013). More recently, stratified sampling based 

on the use of auxiliary information for the spatial stratification of the sample has also shown 

promising results. Examples of this research are shown in Arnó et al. (2017) and Miranda et al. 

(2015, 2018). Specifically, trees were stratified using clustered NDVI-based aerial images (NDVI-

Normalized Difference Vegetation Index), either alone or in combination with other information 

layers such as the trunk cross-sectional area (TCSA). However, obtaining the representative NDVI 
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value for an individual canopy or, even more, a manual measurement of the trees is not always a 

simple task (Fountas et al. 2011). 

 

The use of ancillary information to stratify sampling has been favored by the availability and rapid 

access to proximal and remote sensors data. Among the sources of information most used for this 

purpose, it is worth mentioning the NDVI images (Meyers and Vanden Heuvel 2014), the apparent 

electrical conductivity (ECa) of the soil (Mann et al. 2011; Arnó et al. 2017), and time series of yield 

maps provided by manual harvesting or monitored by sensors on harvesters (Araya et al. 2017). 

Other data are also available while other technologies for acquiring crop data have been fine-

tuned. It refers to RGB and multispectral cameras (Ulzii-Orshikh et al. 2017), mounted on terrestrial 

platforms or unmanned aerial vehicles (UAV), and mobile terrestrial laser scanners (MTLS) based on 

2D LiDAR sensors (Rosell et al. 2009; Escolà et al. 2017), offering new possibilities for capturing 

canopy information from fruit trees. These higher resolution data allow the trees to be 

characterized in greater detail, but possible advantages of their use in sampling have not yet been 

verified. 

 

As already mentioned, SRS is a well-known method in agriculture. It is statistically consistent, but 

not always the most efficient, especially in the case the variability is not randomly organized. 

Moreover, there is a growing interest in developing sampling methods that, in addition to provide 

accurate and unbiased yield estimates, allow small sample sizes to be used. Stratified sampling 

(Cochran 1977) may be an option, because it fulfills the characteristics described above. However, 

to stratify the samples based on ancillary variable maps, fruit growers have to define the strata as a 

preliminary step by choosing between different classifications and zoning techniques. How many 

strata, how the strata are obtained, and how sampling points should be allocated in each stratum 

are decisions to be made. Therefore, this combination of subjective factors probably ends up 

affecting the goodness of yield estimates. Another option is using the Ranked Set Sampling (RSS) 

(McIntyre 1952). This method is interesting from the operational point of view because it does not 

need these preliminary steps. To obtain the sample, once the number of sites to sample is set, RSS 

only requires applying a ranking mechanism based on the distribution of an auxiliary variable 

(Wolfe 2010). This ranking mechanism allows the trees (sampling points), previously taken 

randomly in a first iteration from the population, to be ranked from lowest to highest, according to 

the value that in these trees takes an ancillary variable. More details about the ranking mechanism 

and the different iterations of the whole process can be found in the corresponding section below 

(Basics of the sampling methods). With everything, the ancillary information is therefore key in the 

procedure since it has to present correlation with the variable to estimate (the fruit load, in the 

case of this work). In short, finding the best ancillary information to perform RSS in fruit orchards is 

a pending issue to solve. 

 

Focusing our research on comparing RSS and SRS, the main objective of the present work was to 

evaluate whether the use of ranked samples significantly improves fruit load estimates in fruit 

growing. To do this, two main issues were addressed: i) to determine the most appropriate ancillary 

information to be used in the ranking process, and ii) to assess the efficiency in terms of relative 

error when comparing RSS to SRS for different sample sizes. 
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2. MATERIALS AND METHODS 
 

2.1 Study plot 
 

The study was carried out in a commercial peach orchard located in Aitona (45° 94’ 71” N, 0° 29’ 

20” E, ETRS89, 160 m a.s.l., Lleida, Catalonia, Spain). The plot covered an area of 2.24 ha. It was 

planted in 2012 with white peach (Prunus persica cv. ‘Platycarpa’) according to a regular plantation 

pattern of 5x2 m (Fig. 1). 

 
 

 
Fig 1 Location of the study area and orthophoto (2016) showing the 104 trees sampled within the plot. 
(Orthophoto source: Cartographic and Geologic Institute of Catalonia). 
 

Peach trees were planted in form of “Catalan” vessel shape, which is the most common training 

system in Catalonia. This canopy management system produces some visible gaps between trees 

within the same row, being relatively easy to individualize each tree. Regarding agricultural tasks, 

the plot was managed like many of the commercial orchards in the region. Drip irrigation system 

was used for water and fertilizers supply. 

 

The plot was representative of the so-called Ebro depression area, characterized by the presence of 

broad flat regions resulting from infilled valley bottoms and residual landforms. Climate is typical of 

hot semi-arid areas, with strong seasonal temperature variations and an annual rainfall frequently 

below 400 mm. As a consequence, soils in the region usually have high concentrations of calcium 

carbonate (CaCO3) and low content of organic matter (OM). However, as a main feature, within-

field soil heterogeneity is prevalent in many plots due to the levelling of original terraces in the 

eighties to facilitate agricultural mechanization. The plot under study resulted from this type of 

transformation. As for the spatial variability of trees within the plot, individualized canopy 

projected area values for each tree were obtained (see section 2.4.2 for more details). The average 

value was 2.82 m2, with a range between 0.62 m2 and 5.50 m2, and a Coefficient of Variation (CV) 

close to 21%. 
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2.2. Systematic sampling of the orchard 
 

A regular sampling grid of 15x15 m was defined in 2016 to sample the plot systematically (Fig. 1). 

The trees coinciding with the grid nodes were taken as sampling points. Grid size was previously 

defined by variographic analysis of the apparent electrical conductivity (ECa) data provided by a 

Veris 3100 soil sensor (Veris Technologies, Inc., Salinas, KS, USA) from an on-the-go survey of the 

plot. Once a strong autocorrelation of the ECa data was verified, half of the variogram range 

(ArcGIS 10.4.1 software) was taken as the optimum distance between sampling points (Kerry et al. 

2010). On the other hand, to avoid border effect, no sample sites were positioned in a buffer zone 

of 15 meters from the limits that separated other plots (short sides of the rectangular shape of the 

plot). However, this buffer zone was not applied on the sides alongside with other fields because 

the cultivated peach variety and the canopy training system were the same in these adjacent plots. 

 

In total, 104 trees (sampling points) were defined (Fig. 1), and the number of fruits was counted 

manually in each tree four weeks before harvest. As proposed by Miranda and Royo (2003), yield in 

fruit orchards is usually measured in terms of fruit load (number of fruits per tree). As yield 

(kg/tree) basically depends on fruit load, the latter was the variable used in this work. Covering the 

entire plot, these 104 trees were taken as a reference population on which to compare two 

sampling methods. 

 

2.3. Basics of the sampling methods  
 

2.3.1. Simple random sampling (SRS) 

 

The size of the sample was initially set at N = 12 trees or sampling points (with N << 104). Randomly 

selected without replacement, each of the twelve measured fruit load values could be considered 

representative of the population (or parcel under study), and with identical probability of choice. 

Therefore, the mean of the sample allowed the average number of fruits per tree to be estimated 

without bias. However, there was a distinct possibility that such a mean did not provide a truly 

representative picture of the population (Wolfe 2010). 

 

2.3.2. Ranked set sampling (RSS) 

 

Ranked set sampling is not a new method. Initially developed by McIntyre (1952), the method was 

proved to be effective in improving the efficiency of pasture sampling. In this work, making use of 

adequate ancillary information (necessary for the ranking mechanism as it has been previously 

mentioned), the method was updated to evaluate its use in fruit growing. 

 

Briefly, the method is based on an iterative sampling process (Wolfe, 2010). Following the 

procedure for a sample size N = 12, a first sample of size k = 12 was taken randomly without 

replacement from the 104 trees initially marked within the plot, and then the 12 selected trees 

were arranged according to some attribute (ranking mechanism). This process of sorting the 

sampled trees allowed a ranking to be established, usually from the lowest to the highest presence 

of the selected attribute. In our case, the attribute used in the ranking mechanism was an ancillary 

variable (or secondary variable) that, being related to the number of fruits per tree (as a relevant 
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component of yield), should also be easy to measure and at an affordable cost. The individual (tree) 

with the lowest value in this ranking was finally included as the first item in the ranked set sample, 

and the property of interest (fruit load) was formally considered only for this unit and denoted by 

 [ ]. Obviously, the remaining k-1 observations were discarded from this first sampling step. 

 

In a second iteration, another sample of k = 12 observations was again selected and ranked 

following the same procedure as before. The individual (tree) ranked as the second smallest 

attending the attribute (ancillary variable) was now chosen, providing a second number of fruits 

value  [ ] that was added to the sample. The process was repeated until obtaining N = 12 measured 

observations  [ ]  [ ]    [ ] that constitutes a balanced ranked set sample of size N. 

 

The mean of the N values (ranked set sample mean) is, like SRS, an unbiased estimate of the 

population mean (Takahasi and Wakimoto 1968). However, having applied a ranking mechanism, 

each of the individual sample items in a balanced RSS represented a very distinctly different portion 

of the underlying population. Figure 2 represents this situation. The histogram represents the 

actual distribution of the number of fruits per tree (fruit load) in the plot under study 

(approximately, normal). Obtaining a sample through SRS involves sampling within that normal 

population (red curve in Fig. 2), and non-representative sample values may be drawn. Instead, 

using a perfect ranking mechanism (since the ancillary variable that provides the attribute is well 

correlated with the fruit load), each of the observations included in the RSS behave like mutually 

independent order statistics, with densities that can be represented by the individual marginal 

density curves in Figure 2 (in this case, k = 6). Therefore, because of this extra structure provided by 

the judgment ranking (Wolfe 2004), RSS observations were much more likely to represent the full 

range of variation to estimate the population mean in a more effective way. This procedure is 

probably better than or equivalent to stratifying according to the probability distribution of the 

ancillary variable (stratified sampling based on the distribution of the percentiles). Adopting the 

previous notation for a sample size N = 12, the mean was calculated using (1), 

 

     
 

 
∑  [ ]

 
   . (1) 
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Fig 2 Distribution of the fruit load (histogram of the 104 trees sampled), normal density curve (in red) and 

the individual marginal densities of six order statistics  [ ]  [ ]  [ ]  [ ]  [ ]  [ ] (solid curves, in order of 

peaks, from the minimum,  [ ], on the left to the maximum,  [ ], on the right) for a random sample of size 6 

from the normal distribution. Figure adapted from Wolfe’s, (2010). 

 

 

Regarding the variance, Wolfe, (2010) provided the formula (2): 

 

   (    )     (    )  
 

  
∑ ( [ ]

   )
  

    (2) 

 

where  [ ]
   ( [ ]), for          Since ∑ ( [ ]

   )
 
   

   , it follows from Eq. (2) that the 

variance of the RSS mean (    ) is, at most, equal to the variance of the SRS mean (    ). 

Therefore, the RSS mean is, theoretically, a more precise estimator of the population mean   than 

the SRS mean based on the same number of measured observations. The reliability of the judgment 

ranking process in separating order statistic expectations  [ ]
  is a key in improving the efficiency of 

the RSS compared to the SRS. 

 

2.4. Ancillary variables in the ranking mechanism 

 

In this section, the most relevant characteristics of the ancillary variables used to rank 

sampled trees are shown. Both terrestrial and remote sensors, whether used or recently 

introduced in the framework of precision agriculture, were considered to provide these 

data. Table 1 shows the platforms and sensors tested with additional indication of the 

ancillary information provided as well as a first assessment of the technical difficulty to 

obtain and process the data. 
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Table 1 Sensors and ancillary information that were evaluated for the ranking of sampled trees in the RSS 

method. 
Acquisition 

platform 
Sensor View of the 

canopy 
Ancillary 

information 
Geometry-

based 
Reflectance-

based 
Obtaining 

process 

ATV Veris 3100 Soil sensor (B) shallow ECa    ME 

(C) deep ECa ME 

ATV OptRx Lateral view (D) NDRE   X ME 

(E) NDVI X ME 

UAV RGB 
camera 

Nadir (F) Tree canopy 
perimeter   

X  ME 

(G) Tree canopy 
projected area   

X  ME 

Airplane 
 

DMSC Nadir 
 

(H) NDVI   X ME 

(I) NDVIC  X X HG 
RGB 

camera  
(J) Tree canopy 

perimeter 
 

X 
 
 

 ME 
 
 

(K) Tree canopy 
projected area 

X  ME 

Terrestrial 
platform 

 

MTLS 
 

Lateral view 
 

(L) Canopy impacts  X  HG 

(M) Canopy volume  X  HG 
(N) Canopy volume  X  HG 
(O) Canopy volume  X  HG 

ATV (All-Terrain Vehicle); UAV (Unmanned Aerial Vehicle); DMSC (Digital MultiSpectral Camera); MTLS 
(Mobile Terrestrial Laser Scanner); ECa (apparent electrical conductivity); NDRE (Normalized Difference Red 
Edge); NDVI (Normalized Difference Vegetation Index); NDVIC (corrected value of the NDVI); ME (moderately 
easy); HG (hard to get) 

 

2.4.1. Apparent electrical conductivity (ECa) 

 

Soil apparent electrical conductivity (ECa) was measured using a Veris 3100 (Veris Technologies, 

Inc., Salina, KS, USA). The soil survey was conducted on March 1st, 2016, when the soil had 

moisture content close to field capacity. Passing through all the alleyways within the plot, two 

simultaneous measurements of ECa were recorded: shallow ECa (0-30 cm) and deep ECa (0-90 cm). 

ECa measurements were georeferenced using a Trimble AgGPS332 GPS with SBAS differential 

correction (EGNOS system). An acquisition frequency of 1Hz was used giving approximately 750 

sampling points per hectare. 

 

Two ECa raster maps (shallow and deep) were then obtained by ordinary kriging interpolation on a 

1 m grid. By superimposing the layer of 104 polygons corresponding to the 104 trees within the 

plot, the respective values of shallow ECa (variable B, Table 1) and deep ECa (variable C, Table 1) 

were extracted. The mean ECa value was calculated for each tree at each surveying depth. 

 

2.4.2. Tree canopy projected area and tree canopy perimeter 

 

Tree canopy projected area and tree canopy perimeter were obtained by processing two images 

acquired from two different platforms: airplane and unmanned aerial vehicle (UAV). Both images 

were acquired on May 16, 2016, approximately at mid-day and under clear sky conditions. 
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Each platform had its own camera. For the UAV, images were grabbed with a 16 MP Panasonic GX 7 

camera (Panasonic Corporation, Osaka, Japan) with a 20 mm “pancake” lens coupled on a 

Mikrokopter Oktokopter 6S12 XL eight rotor UAV (HiSystems GmbH, Moomerland, Germany). The 

UAV was handled in manual configuration at constant speed of 18 km·h-1 and constant altitude up 

to 100 m. Pitch and roll movements were minimized using MK HiSight SLR2 gimbal support 

equipped with two servo motors. The camera was configured to take an image every two seconds 

during the flight, being the autofocus activated and the exposure fixed. Nadir images were pre-

selected to obtain an orthomosaic image with a spatial resolution of 2 cm per pixel using Agisoft 

Photoscan Professional software (Agisoft LLC, St. Petersburg, Russia). 

 

Regarding the airplane image, a 4-band digital multispectral camera (DMSC) was used allowing 

images centred at 450 nm (blue), 550 nm (green), 675 nm (red) and 780 nm (near infrared) to be 

acquired. The images were pre-processed by SpecTerra (SpecTerra Services Pty Ltd, Leederville, 

Western Australia) to correct lens aberration, and adjust scene brightness by the bidirectional 

reflectance distribution function (BRDF). At the moment of photographing the plot, the airplane 

was flying at an altitude of 2000 m. The spatial resolution of the pre-processed image was 25 cm 

per pixel. The aircraft used was a CESSNA 1725 Sky Hawk operated by RS (RS Servicios de 

Teledetección SL, Lleida, Spain). 

 

In both cases, images were processed by manually delimiting each of the 104 individual trees 

sampled within the plot. The polygons used to delimit the projected canopies to the ground 

allowed the area and the perimeter of each tree canopy to be calculated. Table 1 shows the four 

variables (symbolized with a capital letter) that were used as ancillary information on the canopy's 

geometry: airplane-based canopy perimeter (J), airplane-based canopy projected area (K), UAV-

based canopy perimeter (F), and UAV-based canopy projected area (G). 

 

2.4.3. Tree canopy reflectance 

 

The aerial image provided by the multispectral camera (NDVI image, Rouse Jr et al. 1974) was post-

processed according to the following procedure. First, and having eliminated the NDVI pixels with 

values lower than 0.45 to discard other land covers (i.e. bare soil) that were not tree canopy, all the 

trees (or canopies) within the plot were then easily delimited by using automatically defined 

polygons. Specifically, 1816 trees were individualized this way. Then, in a second step, NDVI pixels 

within each polygon (or canopy) were extracted by overlapping the NDVI image and the polygon 

layer. The average value of NDVI was then calculated and assigned to the centroid of each polygon. 

The third step consisted in creating a continuous map (or surface map) by interpolation (ordinary 

kriging) of the average NDVI values of the centroids. By superimposing this new NDVI map (1 m 

pixel resolution) with the polygons corresponding to the 104 trees, an average value of NDVI for 

each tree was obtained. This ancillary information was denoted with the letter H (Table 1). As with 

the previous maps for the other sensors, ArcMap 10.4.1 (ESRI, Redlands, CA, USA) performed 

spatial data analysis. 

 

On the other hand, it is worth mentioning that the single information of the NDVI could be 

inconsistent with the expected fruit load of a tree. The bigger the canopy, the higher the expected 
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fruit load (Mann et al. 2011). However, average NDVI could take similar values in trees of different 

sizes. With this in mind, formula (3) was used to correct values of the NDVI to be obtained for each 

tree (variable I, Table 1), 

 

           
   

      
 (3) 

 

where NDVI and NDVIC were the initial value and the corrected value of the NDVI, respectively, TCA 

was the tree canopy projected area obtained from the airplane image, and TCAmax was the largest 

tree canopy projected area within the plot. 

 

Apart from the remote sensor, a terrestrial OptRx sensor (Ag Leader Technology, Ames, IA, USA) 

was also used to acquire canopy reflectance data using an all-terrain vehicle (ATV) as a platform. 

Since the readings were taken sideways passing through the alleyways of the orchard, data referred 

to the lateral reflectance of the canopy. Specifically, the sensor was maintained at a distance of 

approximately 1 m from the canopy and moved at a constant speed of 5 km·h-1. With the OptRx, 

only one side of each row was measured. Three different wavelengths were acquired every second 

(1 Hz) in the ranges of red (670 nm), red edge (728 nm), and near infrared (775 nm). So, the 

Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red Edge (NDRE) 

were finally obtained and georeferenced by also acquiring the position using a Trimble AgGPS332 

GPS with SBAS differential correction (EGNOS system). An average of 169 data per row was 

obtained. Then, following the same procedure as before, the NDVI and NDRE data were 

interpolated by ordinary kriging to obtain two surface maps with a final resolution (grid) of 1 m for 

each vegetation index. By superimposing the surface maps with the layer of 104 polygons, the 

average values of NDVI and NDRE were obtained and denoted as variables E and D, respectively 

(Table 1). The date of the terrestrial sensor measurements was May 17th, 2016. 

 

2.4.4. Tree volume 

 

The use of a MTLS allowed four different ancillary variables to be obtained. The sensor used was a 

UTM30-LX-EW time-of-flight LiDAR (HOKUYO, Osaka, Japan) that could perform 40 scans per 

second (40 Hz). In addition to this 2D LiDAR sensor, the MTLS integrated a GPS1200+ (Leica 

Geosystems AG, Heerbrugg, Switzerland) RTK-GNSS system (a real-time kinematics global 

navigation satellite system receiving GPS and Glonass constellation signals). So, after processing all 

data, the MTLS provided measurements of the position of the impact points produced between the 

laser beam and the canopy. These georeferenced impacts formed a point cloud that was then 

analyzed to calculate the canopy volume. A more detailed description of features, components for 

acquisition and field use methodology can be found in Escolà et al. (2017). 

 

Like the OptRx sensor, the MTLS laterally scanned the canopies of all the rows within the plot, but 

in this case, each row were measured from both sides to obtain a point cloud representative of the 

entire canopy. Point cloud visualization and specific computations were performed with 

CloudCompare (CloudCompare [GPL software] v2.6.1 2015). In short, the 3D point cloud was first 

classified into canopy and ground points. Points located at a height less than 0.4 m above the 

ground were discarded to eliminate weeds and ridges. The remaining points were then processed 

to individualize each tree trying to eliminate possible impacts (outliers) that were clearly outside 
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the canopy (presenting positions more than 2.5 standard deviations away from 6 neighboring 

points). 

 

Once the cloud of impact points for each tree was delimited (in our case, 104-point clouds), the first 

variable that was obtained was the number of canopy impacts (variable L, Table 1). CloudCompare 

‘octree’ allowed the cubical initial volume including the entire canopy for each tree to be 

recursively divided into smaller cubes until visually adjusting the actual volume of the canopy. 

Adding the unit volume of each adjusted cube or voxel (VOlumetric piXEL), the final volume of the 

canopy in m3 was obtained. Depending on either how the voxel size was set, manually or 

automatically, two different volumes could be obtained. The variable M (Table 1) referred to 

manually adjusted voxels, while the variable N (Table 1) estimated volume by adjusting a voxel size 

given by default parameters of the software. 

 

The last volume (variable O, Table 1) was calculated using the '2.5D Volume' tool in the 

CloudCompare software. Having projected the point cloud for a specific tree on the XY plane (Z-axis 

projection direction), this tool allowed the volume between the 2D rasterized cloud and the ground 

surface (taken as arbitrary plane) to be computed. As multiple points of the canopy could fall inside 

each cell, the maximum height was taken for calculation. 

 

Obviously, other methods could have been used to calculate the volume from LiDAR point clouds 

(Escolà et al. 2017). However, the special structure of the 'Catalan' vessel training system, open 

with branches in different directions and large gaps inside the canopy, could make it more 

convenient to use the voxelization procedure as proposed by Underwood et al. (2016) in almond. 

The readings with MTLS system were made on May 17th, 2016. 

 

2.5. Evaluating the efficiency of sampling methods 

 

To compare the SRS versus the RSS, B (B = 1000) samples from size N = 4 to N = 12 were resampled 

each time and for each method, with the sampling population being the 104 trees systematically 

sampled within the plot. By calculating the mean of each sample   , the variance of the distribution 

of means was computed using expression (4), 

 

   ( )  
 

 
∑ (    ̿)

  
    (4) 

 

where B = 1000 was the number of samples in the resampling method,    was the sample mean of 

the fruit load, and  ̿ was the average fruit load for the 104 trees previously sampled covering the 

entire area of the plot ( ̿ = 144.7 fruits per tree). The latter was considered the representative 

value of the plot (or best estimator of the population mean), besides being practically coincident in 

all the resampling processes with the average of the 1000 means (data not shown). 

 

Both sampling methods (SRS and RSS) provided an unbiased estimate of the population mean (in 

this case, the average of the 104 trees as a fairly representative measure of the plot mean). So in 

both cases, the mean squared error (MSE) coincided with the variance. Being the efficiency or 

precision the inverse of the variance, the comparison between the two sampling methods could be 
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done using the so-called relative efficiency (5), 

 

   
           (    )

           (    )
 

   (    )

   (    )
  (5) 

 

once obtained    (    ) and    (    ) by (4). RE values greater than 1 would be expected 

(Chen, Bai and Sinha 2004), showing that RSS would be more precise (or more efficient) than SRS. 

At worst (Webster and Lark 2013),      when the ranking process is completely imperfect, that 

is, there is no correlation between the fruit load and the ancillary variable used to rank the samples. 

Also, as Wolfe (2010) points out, good concomitant information is necessary to avoid error-prone 

ranking. 

 

Two additional efficiency indicators were computed. First, a relative error of sampling (er) for each 

method was obtained using equation (6), 

 

  ( )    ( )  
√   ( )

 ̿
      (6) 

 

being √      , the standard deviation of the mean. The last indicator allowed the number of 

individual samples with relative error greater than 10%,  [  (  )     ], to be computed in 

percentage terms over the total of 1000 samples (7), 

 

   
 [  (  )    ]

 
      (7) 

 

with the relative error of an individual sample calculated according to (8), 
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 ̿
    . (8) 

 

Note that this procedure was also used to test the optimal ancillary information to run the RSS. For 

this, the resampling of B = 1000 samples of size N = 12 using each auxiliary variable shown in Table 

1 was used. Indices defined by equations (4), (6) and (7) were used to compare the different 

auxiliary variables used in the ranking mechanism to provide an estimate of the fruit load. In all 

cases, resampling was performed by programming in R software, version 3.3.2. 
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3. RESULTS AND DISCUSSION 

 

3.1. Relationship between fruit load and the acquired ancillary variables 

 

Figure 3 shows the scatter plot defined by the first two factors of a principal component analysis 

(PCA) showing the correlation between the ancillary variables altogether and fruit load. By the two 

factors, 65.9% of variability is explained. In summary, many of the ancillary variables were well 

summarized by the two first components of the PCA allowing two sets of variables to be 

discriminated. 

 

The variables with the highest correlation to the first component, apart from the fruit load (variable 

A), were those obtained using remote sensing (UAV and airplane using RGB and multispectral 

cameras) and MTLS. So, the first component was basically related to the geometry and vigor of the 

trees. The soil apparent electrical conductivity (shallow and deep values) was correlated to 

component 2 instead of component 1. In short, component 2 should be interpreted as related to 

soil variability. Finally, NDVI and NDRE vegetation indices obtained from the OptRx proximal sensor 

were not clearly included in any of the previous groups (therefore, they showed a weak correlation 

with both components). As has been mentioned before, "Catalan" vessel is the adopted training 

system which favours open canopies to improve solar exposure in detriment of the lateral side. In 

short, a vegetation wall is not easily measurable from the lateral side of the canopy. Because of 

that, the field of view of the canopy varies between sensors (lateral from terrestrial platform and 

nadir from aerial platform), and NDVI readings are surely affected. Probably, the best correlation 

with nadir vision is due to better cover the full size of the canopy. 

 

 

 
Fig 3 Scatterplot showing the correlation between the ancillary variables and fruit load (variable A) with 

respect to the two principal components of PCA. 
 

Relevant information about the relationship between fruit load and all other variables was 

contrasted visually by the scatterplot of a PCA (Fig. 3). The surprising weak correlation between the 

number of fruits (variable A) and component 2 made it unwise to use the Veris sensor and the ECa 

as ancillary information in RSS schemes. This weak correlation was not expected when systematic 

sampling was designed, according to the findings of other authors in fruit growing (Käthner and 

Zude-Sasse 2015). In spite of this, variability at plot scale was also captured by covering the whole 

area of the orchard. The weak correlation could be due to drip fertigation allowing roots to grow in 
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a controlled environment with little final soil influence (taking ECa readings in the alleyways outside 

the wet bulb) on canopy and fruit load (Uribeetxebarria et al. 2018). There being little correlation 

between ECa and fruit load, the ranking process may not be optimal to obtain a sample with the 

additional information needed for a more efficient estimation of the mean. Figure 3 shows a nearly 

zero relationship between fruit load and variables D and E obtained by the OptRx sensor. For this 

reason, its use in RSS was rejected. However, the variables correlated to component 1 could be of 

interest. In short, the options for ancillary data to be used were limited to three data sources, i) 

RGB cameras mounted on remote acquisition platforms (UAV and airplane, variables F, G, J and K), 

ii) airplane images supplied by DMSC (variables H and I), and iii) MTLS point clouds (variables L, M, 

N and O). The close spatial arrangement within component 1 (Fig. 3), including fruit load, helped in 

this interpretation. 

 

Going into detail (Fig. 3), variable H (airplane-based NDVI) was the ancillary information with 

apparently the weakest correlation to fruit load among the variables of component 1. While 

variable H was only based on reflectance, the other variables were mainly based on geometric 

parameters. Even so, all the variables that were grouped as mostly correlated with component 1 

were selected in order to analyze their convenience as ancillary variables in the next section. With 

respect to the volume of the canopy, only the data calculated with the tool 'Volume 2.5D' (variable 

O) were considered to avoid redundant information. 

 

3.2. Ancillary information to be used in RSS to improve fruit load estimates 
 

Table 2 shows the results of linear correlation between the number of fruits per tree (variable A) 

and the most relevant ancillary variables within component 1. As expected, the best correlation 

was obtained using the UAV-based canopy projected area (variable G) with a value of the linear 

correlation coefficient of 0.85. The worst result (coefficient of 0.21) corresponded to the airplane 

NDVI (variable H). The rest of the variables ranging between these two extreme values (Table 2).  

 

Table 2 Assessment of RSS efficiency according to the ancillary variables used in the ranking mechanism. 
Variables are ordered according to their correlation with fruit load. 
 R

* 
   ( )**

   ( )***
 PS

****
 

UAV-based canopy projected area (G) 0.85 79.46 6.16 10.8 

LiDAR-based canopy volume (O) 0.68 119.71 7.56 17.6 

LiDAR-based canopy impacts (L) 0.60 118.68 7.52 18.4 

Airplane-based canopy projected area (K) 0.55 149.56 8.45 22 

Airplane-based canopy perimeter (J) 0.54 134.47 8.01 20.8 

Airplane NDVIC (I) 0.52 144.56 8.30 22.6 

UAV-based canopy perimeter (F) 0.49 147.30 8.38 22.8 

Airplane NDVI (H) 0.21 158.13 8.69 25.2 

*Pearson’s linear correlation coefficient 

**Mean squared error (or mean variance) 

***Relative error of sampling 

****Percentage of samples exceeding the error threshold of 10 % 
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As expected, Table 2 shows that MSE values follow almost the same order as the correlation 

coefficient showing that the higher the correlation, the lower the error in fruit load prediction with 

the RSS. The trend of the relative error (  ( )) was similar, going from 6.16 % when the ancillary 

variable was the UAV-based canopy projected area to 8.69 % using the airplane NDVI to rank items 

within the samples. Since a relative error of 10 % may be acceptable in the fruit production sector, 

any of the ancillary variables could be candidates to be used in RSS schemes. However, it is also 

true that the sample size used in the comparison (N = 12) is not usual in practice, and has 

undoubtedly contributed to improve the efficiency in fruit load estimates above what is expected. 

Hence, it is necessary to check how the efficiency varies by reducing the sample size closer to the 

usual sizes used by fruit growers. 

 

Table 2 also shows the percentage of times the relative error exceeded the 10 % threshold 

considering 1000 samples with a sample size N = 12. This probability is a way of knowing the risk 

assumed by fruit growers since they usually perform a single sampling. Values ranged from 10.8 % 

(variable G) to 25.2 % (variable H), and corroborate the results of MSE and linear correlation. The 

maximum difference between ancillary variables was 133 % for this parameter, being 75 % for the 

relative sampling error. 

 

On the other hand, the results shown in Table 2 were in accordance with what was noticed by 

Nahhas et al. (2002) and Stokes (2007) when applying RSS. The better the correlation between the 

variable to be estimated (number of fruits per tree, in our case) and the concomitant variable (or 

ancillary variable) used in the ranking process, the better the sampling efficiency. 

 

Apart from good efficiency results, the ancillary variable to be used must be easily measurable. RGB 

cameras embedded in UAV meet this requirement. The use of UAV in precision agriculture is a 

booming and low cost technology as suggested by Lelong et al. (2008). For this reason, the UAV-

based canopy projected area (variable G, Tables 1 and 2) was finally chosen as the optimal ancillary 

variable to use in RSS schemes in fruit growing. The advantage of this variable is the high resolution 

of the images compared to other remote data sources. 

 

3.3. Resolution of ancillary variables in RSS: the key factor 

 

In peach orchards, fruit production and quality are clearly influenced by canopy lighting conditions 

(Tang et al. 2015; Minas et al. 2018). Seeking to enhance floral induction and fruit growth, fruit 

growers adopt canopy open-center training systems (such as the typical 'Catalan'   peach vessel) to 

maximize exposure to solar radiation. In this way, peach trees with larger canopy projected area 

usually have a greater number of larger fruits (Marini 2002). In addition, the incidence of 

unproductive interior branches is lower, avoiding what usually happens in canopies formed into 

traditional or spherical vessels (Marini et al. 1995). In RSS, an ancillary information system that 

manages to individualize the canopy of trees in a precise manner will be essential, i) to ensure an 

optimal and accurate ranking process of the auxiliary variable, and ii) to cover all the variability of 

the objective variable (number of fruits) (Fig 2). 

 

Continuing the thread of the previous paragraphs, variables that best meet previously mentioned 

characteristics are those based on geometrical properties of the canopy (Table 2). UAV-based 
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canopy projected area (variable G) was the best rated ancillary variable. In contrast, LiDAR-based 

canopy volume (O) or impacts (L) and airplane-based canopy projected area (K) obtained less 

satisfactory sampling efficiency results. What could be the reason for this difference? Probably, the 

lack of resolution (57528 impacts per tree) is not the main reason for a lower correlation of LiDAR 

derived variables with fruit load. The lowest correlation comes from the different orientation of 

each sensor. While the RGB camera mounted on UAV (variable G) provides a top view of the 

canopy, MTLS provides a lateral view of the trees. The top view allows the area exposed to 

sunshine to be more precisely delimited. The efficiency when intercepting the sunrays is the key 

factor for transpiration and photosynthesis, therefore it is strongly related to the fruit load (Da Silva 

et al. 2014). 

 

Figure 4A shows the canopy of a peach tree as it is captured with an aerial image from airplane 

(0.25 m per pixel), and the same canopy when it was captured using UAV and resolution of 0.02 m 

(Fig. 4B). The difference is obvious. While the delimitation of the canopy projected area was more 

difficult using the airplane image, the UAV-based canopy projected area allowed the actual canopy 

projected area to be better defined. This would explain why the use of higher resolution images 

should lead to more accurate tree ranking processes and more efficient fruit load estimates. To 

provide an explanatory example, 45 pixels were needed on average to characterize the canopy 

projected area using the airplane image instead of the 6500 pixels for the UAV image. In other 

words, the average area of 2.60 m2 per tree using the higher resolution image became an area of 

2.81 m2 when a larger pixel size was used. The difference was therefore 8%, although large 

deviations for some trees could be obtained (maximum differences of up to 53% between UAV and 

airplane were found). Because of that, the use of images of poor resolution can alter the ranking 

process. In fact, ranking of individuals varied (data not shown) according to the resolution of the 

ancillary variable that was used (for example, G or K). The moderate Spearman correlation 

coefficient (0.71) between both variables allowed this property to be concluded. 

 

 

 
Fig. 4. Comparison of tree canopy projected area delimited for the same peach tree, A) using an airplane-
based image of 0.25 m per pixel (top view), B) using an UAV-based image of 0.02 m per pixel (top view), C) 3D 
reproduction of the same canopy using an MTLS (side view). 

 

MTLS are another different technology that allows canopy of trees to be characterized with high 

operative resolution. Figure 4C shows the point cloud obtained from a lateral LiDAR-based scan of 
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the same tree. Then, by 3D processing of all the data, a canopy volume expression can be obtained 

(variable O, Table 2). However, this parameter did not provide results as good as those obtained 

using the simplest UAV-based tree canopy projected area (variable G). Finding an explanation is not 

easy. Probably, sunlight penetration is optimal in trees with more open canopy resulting in a larger 

projected area. Conversely, bulky trees with smaller projected areas could have grown in height 

instead of laterally and more openly. This could hinder the interior lighting of the canopy and 

negatively affect the amount of viable fruits and yield. 

 

Figure 5 helps to understand this phenomenon. While the two trees shown (number 104 and 

number 45) have similar canopy volume (3.91 m3 and 3.83 m3, respectively), the canopy projected 

area (3.92 m2 and 2.40 m2) and fruit load (201 fruits and 124 fruits) are very different. In fact, the 

correlation between canopy projected area (variable G) and fruit load is higher (R = 0.85) than the 

correlation between canopy volume (variable O) and fruit load (R = 0.68). 

 

 

 

 

 
Fig. 5. Aerial projection of tree 104 (left) and 45 (right) obtained from the LiDAR-based MTLS system. 

 

The use of NDVI showed acceptable results when adjusting the value of the vegetation index 

according to the tree canopy projected area. However, the exclusive use of the airplane NDVI 

(variable H, Table 2) was the least recommended option. The resolution of the airplane images was 

lower than that of UAV images or MTLS point clouds and, in addition, the reflectance alone does 

not account for any geometrical parameters of the canopy. In any case, the weak correlation 

between fruit load and NDVI is also noted in other sampling studies (Arnó et al. 2017; Miranda et al. 

2018). 

 

Concluding, resolution of acquired ancillary data was the main constraint in reliably delimiting 

canopy of trees (Fig. 4). UAV-based RGB images offered high resolution at competitive costs, and 

good correlation with the fruit load (Table 2). Therefore, RSS was only tested with UAV-based tree 

canopy projected area as the ancillary information. Comparison of sampling efficiency against SRS is 

addressed in the next section. The pending issue is to test the method in other orchards trained 
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under systems that are more intensive forming a fruiting wall structure. Probably in this case, 

sections of wall vegetation rather than individualized trees should be delimited using an 

appropriate algorithm and a more automated method. 

 

3.4. RSS versus SRS: sampling efficiency and sample size 

 

Table 3 shows the mean squared error (MSE), and the relative efficiency (RE) of RSS versus SRS for 

different sample sizes (4 to 12 points or trees sampled within the plot). A resampling of 1000 

samples allowed such statistics to be calculated in order to compare the sampling methods. RSS 

was run in all cases using the UAV-based tree canopy projected area as ancillary variable to drive 

the ranking mechanism. 

 

Table 3. Mean squared error (MSE) and relative efficiency (RE) of the sampling methods for different sample 

sizes. 
  Mean squared error (MSE) 

 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 

SRS 537.64 346.02 333.46 290.64 240.66 233.26 183 176.09 158.96 

RSS 304.99 246.90 177.80 132.10 108.57 103.77 95.47 76.48 79.46 

  Relative efficiency        (    )    (    )⁄  

 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 

RSS vs. SRS 1.76 1.40 1.87 2.20 2.21 2.26 1.91 2.30 2.00 

SRS (Simple random sampling), RSS (Ranked set sampling) 

 

In both cases, SRS and RSS, the MSE decreased, as the sample size increased. As expected, the 

sampling methods became more efficient with an increasing sample size. However, comparatively, 

RSS always showed lower variance of the mean (lower MSE) than SRS. In short, RSS was more 

efficient than SRS for any of the sample sizes evaluated. Hence the RE was higher than one (Table 

3), ranging from 1.40 (N = 5) to 2.30 (N = 11). The fact of obtaining higher values of RE for the larger 

sample sizes was possibly due to the RSS procedure. Takahashi and Wakimoto (1968) reported a 

loss of efficiency by decreasing the number of individuals checked in the ranking process for the 

same final sample size. This would explain why the RE of the RSS increases with increasing sample 

size because a higher number of trees are ranked. Thus, by increasing the sample size (N = 7, 8 ... 

12), RSS required progressively increasing the number of trees to rank to obtain the final sample. 

For example, a sample of size N = 9 would suppose choosing 81 trees within the plot instead of the 

25 (52) needed for N = 5. In this way, additional information on fruit load structure was more easily 

achievable by having to select and assess a larger number of trees than the one obtained in small 

samples. As a result, the RE of RSS increased compared to SRS strategy. 

 

Considering the UAV-based canopy projected area as ancillary information, RSS allowed more 

accurate fruit load estimates to be obtained. The extent to which this precision was improved was 

quantified by the relative error of sampling (Eq. 6) as shown graphically in Fig. 6. Additionally, 

Figure 7 shows the effect of the sample size on the PS indicator for both sampling schemes. Both 

measures are important for fruit growers because they complement each other. Farmers collect 

samples at specific times during the life of the crop. Therefore, knowing the probability of 

exceeding the threshold and the average relative error for each sample size is important. Both 
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curves (Figures 6 and 7) show a similar nonlinear trend. For all sample sizes, RSS has a lower error 

than SRS. Specifically, while in SRS the error ranged from 16.0% (N = 4) to 8.7% (N = 12), in RSS 

errors ranged from 12.1% (N = 4) to 6.2% (N = 12). Likewise, SRS schemes exceed the error 

threshold of 10% with a higher percentage (PS, Fig. 7) compared to RSS. While for SRS, PS values 

ranged from 52.2% (N = 4) to 22.3% (N = 12), in RSS the same parameter reached significantly lower 

scores, varying between 41.9% (N = 4) and 10.8% (N = 12). Therefore, using SRS practically doubles 

the probability of obtaining relative errors of estimation above the 10% threshold than using RSS. 

However, for smaller sample sizes (N = 4 and N = 5), the difference between SRS and RSS was not so 

obvious. 

 

 
Fig. 6. Comparison of the relative error of sampling and sample size for two sampling methods: SRS and RSS. 

SRS (simple random sampling). RSS (ranked set sampling). Resampling of 1000 samples for each of the sample 

sizes was made, using the UAV-based tree canopy projected area as ancillary variable in the RSS. 

 

Furthermore, if a relative error of no more than 10% was assumed, RSS allowed the sample size to 

be reduced to N = 6 while the SRS required a sample almost twice as much (N = 10) (Fig. 6). 

Moreover, a sample size N = 5 in RSS could even be justified by reaching an error of only 10.9%. 

Undoubtedly, being able to reduce the sampling requirements, RSS could report favorable 

operative as well as economic consequences in fruit sampling as those obtained by Carrillo et al. 

(2016) in vineyard. Although RSS requires random sampling in each iteration to generate the final 

ranked sample, subjectivity (and, therefore, biased decisions) should not be applied during the 

ranking mechanism favoring a more automated (without farmers rating) and reliable sampling 

process. On the other hand, the ancillary variable being available, the method is even applicable in 

small plots like fruit orchards (Zude-Sasse et al., 2016), avoiding to perform a stratified sampling 

scheme. 
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Fig. 7. Comparison of the percentage of times the error threshold of 10 % is exceeded when sample size 

increases for SRS and RSS.  

SRS (simple random sampling). RSS (ranked set sampling). Resampling of 1000 samples for each of the sample 

sizes was made, using the UAV-based tree canopy projected area as ancillary variable in the RSS. 

 

4. CONCLUSIONS 

 

Ranked set sampling (RSS) is an interesting method to improve sampling in fruit growing. 

Improvements in the efficiency of peach fruit load estimates were proven by applying RSS 

compared to simple random sampling (SRS), at least for sample sizes from N = 4 to N = 12. 

However, to be optimal, RSS requires a relevant auxiliary variable, these data being the key factor 

in the procedure. Among different data sources currently available in agriculture, either 

commercialized or under development (such as MTLS), the UAV-based tree canopy projected area 

has been identified as the best option to use in the ranking mechanism aiming at estimate fruit 

number in peach production. This information can be obtained from RGB cameras that providing 

high-resolution images allowing the projected area of the canopy (geometric parameter) to be 

accurately delimited. The close correlation between this area and the fruit load per tree makes this 

auxiliary variable ideal in RSS schemes for peach trees in our conditions (open vessel like training 

systems). 

 

In terms of relative error of sampling, RSS using samples of size N = 6 allows acceptable errors 

below 10% to be achieved. In contrast, SRS requires practically doubling the sample needed for a 

similar error. Finally, it should be noted that the work has been carried out only on one plot, 

although it provides relevant information as the ancillary variable to be used in RSS for future 

research on a larger spatial scale. In fact, UAV-based tree canopy projected area is an interesting 

(cheap and easy to get) ancillary information. However, since the values of the variable are 

obtained manually, future research is required to automatically obtain this information by 

developing the appropriate algorithm. 
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DISCUSSION 

 

This Thesis has allowed increasing knowledge about two recurring themes of precision 

agriculture. First, information provided by terrestrial and aerial sensors has been used to study 

the spatial variability of soils and orchards of the central area of the Ebro Valley (two 

representative plots of peaches (Prunus pérsica (L.)Stokes), planted according the "Catalan" 

vessel training system). This information has enabled the elaboration of prescription maps, 

which allows proposing different to reduce the variability (Chapters 3 and 4). Secondly, and 

with a different objective, the information obtained from sensors has been used to propose 

more efficient sampling methods than simple random sampling (SRS) (Chapters 5 and 6). . 

 

1.1. Spatial variability in fruit tree plots (peach): evaluation of land transformation 

on soil variation and its effects on the crop.  

 

Moderate to high values of the Coefficient of Variation (CV) of field variables indicate a non 

homogeneous distribution of crop development within the fields. Thus, of the study plots, the 

one located in Gimenells had a CV of 41 % in the number of fruit per tree, while in the other 

location (Utxesa), the CV was 31%. These values are in agreement with the results presented 

by Aggelopoulou et al. (2010) y Fountas et al. (2011). Based on these data, and according to 

Kravchenko (2003), the spatial variation present in both plots makes them suitable for 

differentiated management.  

 

The reason for within-yield variability is, frequently, soil variability (Mann et al., 2010). In the 

central area of the Ebro Valley, soil variability has been increased along years by soil 

movements carried out to adapt small terraced plots into larger plots. To capture spatial 

variability of agricultural soils is not a simple process, since obtaining and analyzing the 

samples is expensive, both in time and money. Therefore, soil variability is usually maped using 

sensors that measure proxy variables related to soil properties. The most used proxy variable 

for this purpose is the apparent electrical conductivity (ECa) (Corwin & Lesch, 2003). Normally, 

ECa is obtained from electromagnetic induction sensors (EMI) or galvanic contact sensors, like 

the Veris 3100 used in this research. One advantage of these sensors is that are relatively 

cheap and data is can be acquired easily. Mobility and adaptability to different terrains is other 

of advantages of these sensors (van Dam, 2012). Contact sensors present an advantage over 

the EMIs. The signal of the latter is affected by the presence of metal objects, such as irrigation 

pipes, while the signal of galvanic contact sensors is not.  

 

The ECa signal is strongly correlated to several physic-chemical soil properties (Kafka et al., 

2005). To interpret relationships between soils properties and the ECa is not simple, given the 

spatial dependence and interrelation of many of the properties usually analyzed in agriculture. 

Hence, this is the reason for using multivariate statistical methods to better interpretet these 

relationships. In soils with a high concentration of calcium carbonates, even with a petrocalcic 

horizon, the spatial variability pattern of ECa has not been studied in detail (Peralta et al., 

2013) and, there are few studies focused on the analysis of these interactions (Domenech et 

al., 2017). 
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In chapter 3 of the Thesis, the problem of characterizing soil variability in a fruit orchard is 

addressed by the exclusive use of the ECa signal, measured with the Veris 3100soil surveyor. 

Different statistical and geostatistical techniques were used for data processing: i) Cluster 

analysis through the ISODATA algorithm to classify ECa and obtain homogeneous management 

zones. ii) Simulate ECa variability at different depths using the "InvVERIS" software (EMTOMO 

Lda. Lisbon, Portugal). This software is based on a nonlinear algorithm, smoothness-

constrained (Monteiro Santos et al., 2011). The analysis of conductivity data with InvVeris 

allows performing a quasi-3D map to evaluate ECa variation at discrete depth intervals. iii) 

Multivariate analysis of variance (MANOVA) and subsequent descriptive discriminant analysis 

(DDA). The use of these techniques allowed knowing which soil properties affect ECa 

variability, and to recommend about adapt crop management to the plot variability. The 

methodology proposed by Moral et al. (2010) is similar to the one used in this section. But the 

chapter 3 of this Thesis provides a more detailed interpretation of ECa variation due to use of 

multivariate techniques described above and the quasi-3D model of the ECa variation in depth. 

 

As a resultan interesting proposal is the creation of differentiated management zones based 

on estimation of ECa at 20-50 cm depth (Chapter 3). In this soil layer, the properties that most 

affected ECa were pH, organic matter content and the concentration of calcium carbonates 

(Chapter 3, table 2). As pH and organic matter are relatively stable over time (Shaner et al., 

2008) and they contribute to soil fertility, the zones with different characteristics in these 

variables would allow a differentiated fertilization management (Peralta & Costa, 2013), 

reducing the contribution of N, as in the case described by (Koch et al., 2004, Aggelopoulou et 

al., 2011). Nitrogen is considered to be the nutrient that more affects quality and productivity 

of peach trees (Minas et al., 2018). As it is known, a low concentration of N reduces the size 

and quantity of fruits, besides affecting negatively certain parameters of quality. On the other 

hand, an excessive concentration of N reduces fruit quality, since hinder gets an ideal 

coloration. Moreover, excessive N fertilization implies a reduction of buds development for the 

next year (Daane et al., 1995). Given the importance of this element, the differentiated 

management of N within the orchard might bring the farmers closer to the objectives of more 

sustainable and competitive agriculture. In this way, the economic benefits can be increased at 

the same time that the environmental footprint associated with fruit growing will decrease. 

 

Figures 6 and 4 of chapters 3 and 4 (ECa maps) show the differences created by land 

transformation processes made in previous decades. The variation of ECa, measured using a 

galvanic contact sensor has the ability to detect contrasts in soil conductivity. Both study plots 

showed different values where soil movements (land transformation) were carried out. This 

break in ECa signal continuity indicated that in these zones there were differences in soil 

properties. In addition to measure spatial variation of soil properties, in chapter 4 the effects 

of soil movements and land transformation on crop vigour were analysed. 

 

The plot located in Utxesa (Chapter 4) was characterized using 3 different interrelated 

procedures; i) soil sampling (40 soil samples and subsequent laboratory analysis), ii) ECa sruvey 

using the Veris 3100 sensor, iii) airborne multispectral image acquisition and NDVI calculation. 

The analysis of relations between soil and crop produced, a priori, unexpected results since 

ECa and NDVI did not seem to be related. Knowing that ECa allows to detect zones with 
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different fertility within a plot, it was expected that higher vigour trees would be located in 

more fertile areas (low ECa). But this was not been the case. The underlying explanation of this 

phenomenon was identified through a subsequent analysis. The lack of this relationship was 

due to drip irrigation. On one hand, ECa measures were made in the inter-row spaces where 

drip irrigation has not influence. On the other hand, the NDVI provides information about trees 

vigour, which is the reflection of the ecosystem where the roots inhabit (wet bulb), and this is 

influenced by fertigation. In short, information of both variables (ECa and NDVI), although 

measured in nearby locations, corresponds to soil properties that can vary significantly due to 

the different water regime with the one that they are managed. 

 

Regarding the effects of soil movements on plot variability, the major differences between ECa 

and NDVI were observed in the areas where old terraces were located (figure 5 of chapter 4). 

These differences reinforce the hypothesis that both variables behave differently. Whereas the 

ECa showed discontinuities where old terraces were located, the NDVI did not reflect them. 

This is in line with the hypothesis of De Benedetto et al. (2013), who affirm that crop under 

irrigation are more influenced by water management than soil properties.  

 

Chapter 4 of the Thesis highlights the importance that the knowledge of intra-plot variability 

has in fruit orchard management. Due to the small size of fruit orchards (Zude-Sasse et al., 

2016), the spatial patterns of variability (Zaman & Schuman, 2006) can go unnoticed, making 

difficult to know them. The knowledge and identification of these spatial patterns allows a 

more adequate management according to the site-specific crop management (SSCM) 

approach. A clear example of possible benefits to orchard management according SSCM is this 

plot. Considering that a significant difference (p <0.05) in fruit number (fruit load) between 

trees located in the high ECa zone and those located in the low ECa zone was found, it is 

noteworthy that, although there was not relationship between the ECa and the NDVI to 

individual level (tree), at the conglomerate level, clusters with different values of ECa, reflected 

significant differences in fruit production. Nevertheless, it is worth to mention that the 

difference between clusters was not excessive (3 kg/tree). Probably, if the plot was not 

managed by fertigation, the difference between clusters would be greater, since the 

production of the trees located in the worst soils would be lower. While those located in the 

high ECa zone area produced an average of 136 fruits, those located in the low ECa area 

produce 152, this represents a difference of 2700 kg/ha. In chapter 4 of the Thesis, it was 

proposed to solve the problem through the differentiated management of irrigation. As 

expected, in the high ECa cluster there were higher salt concentrations (Rhoades, 1999). 

Theoretically, a higher dose of irrigation can wash salt, diminishing its concentration (Munns, 

2002). As the peach tree is sensitive to the salt concentration, the reduction of these improves 

the production. Results obtained in this part of the investigation are in agreement with those 

obtained by Lambert & Lowenberg-Deboer (2000) and Silva et al. (2007), who affirm that the 

expenses in the agriculture can be reduced when improving the management at the plot level. 
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1.2. More efficient sampling methods through the use of auxiliary information.  

 

The knowledge of the phenological state of orchards and its variability can help to obtain more 

stable and higher quality crops (Mirjana & Vulić, 2005). The most precise way of knowing a 

parameter of a fruit is to measure it. But, to measure all the trees of a plot is not viable. On 

one hand, the investment in time and effort required for this task would make it totally 

disproportionate to the benefit obtained (Bongiovanni & Lafayette, 2004). On the other hand, 

in fruit growing, one of the fundamental applications of sampling is the estimation of yield in 

earlier phenological stages, previous to ripening (Elmendorf et al., 2016), which supposes 

sample destruction. A good option to solve this problem and know the phenological state of 

the orchard is by means of sampling. Theoretically, a good sampling has to represent all 

population with a few samples and this is not easy. Therefore, not all sampling techniques 

represent in the same way the phenological state of the orchard. In an instance, the 

characterization of the agricultural soil is a difficult and expensive process (Nawar et al., 2017), 

since the samples are collected and subsequently processed in the laboratory manually. The 

intrinsic cost of soil sampling together with the low efficiency of SRS used in this process 

means that the necessary information for the differentiated management of the plots is not 

obtained (Franzen et al., 2002). Since the SRS does not take into account spatial variability 

(Webster and Lark, 2013), an option to capture soil variability by SRS would be increasing the 

sampling density (Bramley & Janik, 2005). This would increase the effort significantly. Likewise, 

orchard characterization presents a similar problem since it also usually shows well-defined 

spatial patterns (Colaço et al., 2018). 

 

Another drawback that makes doubt the samplers is to decide the number of necessary 

samples and where to place the sampling points to capture plot's variability. When there are 

not evidences about which can be the variation, an option that allows to approach this 

problem is the nested survey. Kerry et al. (2010) proposed to use this method to obtain 

maximum distance between samples. Then, taking this distance into account, realize a 

systematic sampling. Using this procedure, the sampler solves the problems of where and how 

many samples must be collected. But when the plot variability is high, the number of samples 

needed to capture the variability is big, since the distance between the samples is small. Unlike 

SRS, one problem of systematic sampling is that it is biased. In spite of, SRS is less accurate 

than systematic sampling.  

  

The use of an auxiliary variable strongly correlated with the target variable opens the door to 

know the spatial variability of the plot more easily. Ideally, the auxiliary variable must gather 

the following characteristics: i) be easy to measure, ii) cheap, iii) strong spatial correlation, iv) 

be geolocated. Certain auxiliary variables, especially those obtained by sensors, allow to obtain 

many records correlated with the variable to be estimate, which facilitates the capture of 

spatial variability. Moreover, these variables can be used to define homogeneous management 

zones (Arnó et al., 2011, Córdoba et al., 2016). With all this, the usefulness of this type of 

variables at the time of sampling soil (Brogi et al., 2019), or vegetative (Carrillo et al., 2019) 

properties is beyond doubt.  

 

https://www.sciencedirect.com/science/article/pii/S1574954113000459#bbb0225
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In the last years, different authors have proposed different techniques to solve deficiencies of 

SRS and, in turn, increase sampling efficiency. These techniques can be grouped according to 

two different conceptual areas. On the one hand, there is the so-called "design-based" 

approach, which encompasses sampling based on classical statistics and assumes the 

independence among samples (Cochran, 1977). Another approach is known as “model-based", 

which is based on the principles of the geostatistics (Oliver, 2010). The latter assumes that the 

closest samples are more similar that those that are more distant. Therefore, there is no 

independence between the samples. Within the scientific community, there are defenders and 

detractors of both methods, as shown in the discussion article of Brus & Gruijter (1997). 

  

Chapters 5 and 6 of this Thesis have focused on the comparison of stratified random sampling 

(StRS) (Chapter 5) and ranked set sampling (RSS) (Chapter 6) versus the classic SRS. Both, the 

StRS and the RSS have been selected against other sampling techniques because they take into 

account the spatial variability patterns. Both sampling schemes are part of “design-based” 

group. Nevertheless, the geostatistical analysis has occupied also a preferential place during 

the Thesis, using spatial interpolation (kriging) as a preferential option for obtaining surface 

maps (continuous raster coverage). Moreover, kriging has been a fundamental tool in the 

chapter 5, since it is the previous step to classify the plot in two or three clusters to stratify the 

sample.  

 

In chapter 5, efficiency of stratified sampling (StRS) versus simple random sampling (SRS) was 

compared. The Gimelles study plot was clustered taking into account NDVI and ECa as auxiliary 

information. The relation between NDVI and tree vigour is contrasted by several studies and 

the ECa is the most used variable to characterize the variability of soil properties. The choice of 

these two variables is justified by being correlated with the target variables to estimate: i) yield 

(kg/tree), ii) refractometric index (Baumé), iii) fruit firmness (kg/cm2). The existence of a 

spatial correlation between the auxiliary variables and the target ones is essential for a good 

stratification and improve the results of the SRS since it enables design homogeneous strata. 

An accurate estimation of the population can be obtained using a small sample size in each 

stratum. The algorithm used to delimit the strata has been the ISODATA (Jensen, 1996). In 

chapter 5, the plot was into 2 or 3 strata, selecting in each stratum 6 or 4 trees respectively, 

without taking into account stratum size. The result of this identical allocation of sampling 

points in each stratum was a non-optimal point distribution, which could imply a lower 

sampling efficiency. A pending task to reduce sampling variance and improve the results in 

future works is to assign the sampling points in concordance to strata size. Despite this, 

chapter 5 confirmed the premise of Cochran (1977), who sets up that the variance estimated 

by StRS is lower than variance estimated by SRS for the same sample size. All parameters were 

better forecasted when used 2 strata of NDVI. The Gimenells plot, such as Utxesa plot, was 

fertigated by dripping, which creates a micro-habitat where roots are placed. This might be the 

reason why NDVI stratification obtained better results than ECa stratification. The reduction of 

sampling effort for the same precision ranged between 17% for the yield and 73% for the 

refractometry. 

 

In chapter 6, efficiency of ranked set sampling to estimate fruits number was evaluated. This 

variable is essential in fruiticulture since it is the main component of yield (Miranda & Royo, 
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2003). With a strong correlation of R = 0.85, the best auxiliary variable to estimate fruit 

number in peach trees in “Catalan” vessel training system was the canopy projected area, 

obtained by means of a drone image. Furthermore, and in concordance with results obtained 

in chapter 4, the ECa was not a good auxiliary variable to estimate fruits number, since it 

behaves independently. As mentioned previously, this could be because of the drip irrigation 

system. The accuracy of the RSS scheme was compared respect the SRS for different sample 

sizes (N=4, N=12). For all sample sizes, the relative error of the RSS was less than SRS. 

Moreover, SRS required 10 samples to obtain an average error lower than 10%, while RSS only 

required 6. This was translated to an increase of 40% in the effort of sampling for the same 

estimation error. Besides the average error, the probability of overcoming 10 % error in each 

sampling was calculated. For this parameter, the RSS showed a better behaviour than SRS for 

all of sample sizes. 

 

As mentioned by Gebbers & Adamchuk (2010), PA is a set of techniques that allow to apply the 

appropriate treatment, in the right place and at the right time. In this point, sampling plays a 

crucial role. It is essential to know a phenological state of the crop and act in consequence. The 

precise estimation of yield also requires knowing ahead in time the spatial variability attached 

to certain factors that determine the final yield of a fruit tree. Chapters 5 and 6 proposed two 

sampling schemes that make it possible to reduce the effort respect to SRS, on having 

increased the knowledge about crop phenology and the (spatial) distribution of its variability. 

Less effort in sampling implies, a lower economic cost, and this is of vital importance in a 

market such as agriculture, where the profit margin and profitability must be valued with 

increasing rigor. Fruit growers, apart from obtaining good crop estimates through increasingly 

more efficient sampling techniques, are also interested in knowing the possible variability of 

fruit quality parameters and estimate conveniently these properties in order to obtainhigher 

quality products with greater market value. Apart from optimizing sampling, knowing this 

variability can allow fruit growers to take the optimal decisions for harvest management 

(Taylor et al., 2007). Finally, another area where samplings are essential is the agricultural 

insurance. The damages suffered in a crop have been quantified historically quantified by 

means of a SRS. Miranda et al. (2018) have proposed recently the StRS as an alternative to SRS 

to quantify damages in agriculture, in consideration of improves the efficiency of the process. 

As mentioned previously, a more efficient sampling, improve economic results of fruit growers, 

by reducing effort and sample size necessary for acceptable error. 
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CONCLUSIONS 
 

This Thesis analysed spatial variability in peach orchards located in the central part of the Ebro 

Valley by means of sensors and technologies commonly used in the frame of Precision 

Agriculture. In the first part, sensor’s information was used to delineate differentiated 

management zones within the plots. In the second part, sensor’s information was used to 

improve conventional sampling schemes by taking into account such spatial orchard variability. 

The hypotheses proposed in chapter 1 have been solved in the course of the Thesis. Below, 

general conclusions drawn during the research are presented: 

 

C1. On-the-go soil apparent electrical conductivity (ECa) measured by the galvanic 

contact sensor Veris 3100 is influenced by presence of high contents of calcium carbonate 

(CaCO3) in the soil. Due to this, spatial variability of carbonates can be detected and quantified 

(Objective 1). ECa analysis using multivariate techniques (cluster analysis combined with 

multivariate analysis of variance) allows soil properties responsible for the significant variation 

of the ECa to be identified. This detailed spatial knowledge of some soil properties can help to 

make optimal decisions for plot management, based on delimiting areas with different soil 

properties or different productive potential. 

 

C2. ECa shows discontinuity in areas where old terraces from previous plots were 

situated. This suggests that soil properties were altered when reparcelling new larger plots. In 

any case, ECa signal allows footprint by land transformation to be conveniently detected 

(Objective 2). Concerning the Normalised Difference Vegetation Index (NDVI), it is difficult to 

trace such plot transformations, since this index did not show spatial correlation with ECa in 

the analysed plot. Possibly, canopy variation (or vigour/ NDVI variation) is mostly due to the 

use of a drip irrigation system, which creates a wet micro-habitat in the root development 

zone.  

 

C3. Compared to simple random sampling (SRS), stratified random sampling (StRS) 

allows sampling efficiency to estimate yield and quality parameters in fruit orchards (Objective 

3) to be improved. For that, and to get the best results, NDVI was used as auxiliary 

information. Specifically, stratifying sampling points according to homogeneous NDVI areas 

allows, for the same precision, to reduce by 20% the sample size as compared to SRS. In any 

case, the ECa or the combined use of NDVI and ECa have provided substantial advantages as 

compared to the use of NDVI as a single layer of ancillary information. 

  

C4. In fruit orchards, ranked set sampling (RSS) manages to improve efficiency as 

compared to simple random sampling (SRS), at least for sample sizes from N=4 to N=12 

(Objective 4.1). Having an auxiliary variable strongly correlated with the target variable (fruit 

load, in the present case), is key to success using ranked samples. UAV-based tree canopy 

projected area has been identified as the best option as ancillary variable to estimate fruit load 

in peach orchards, when “Catalan vessel” is the used training system (Objective 4.2). Sample 

size can be reduced by 40% using RSS compared to SRS, without exceeding sampling errors of 

10%. This provides a scheme to optimize sampling costs in fruit growing.  
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In this Thesis, research was focused on peach orchards under “Catalan” vessel training system, 

where individual canopies are easily identified and delimited. The challenge for future works is 

to investigate the proposed methods applying the know-how learnt in this Thesis to other fruit 

species trained in vegetation walls and more intensive plantation patterns. 
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