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ABSTRACT

Modern applications demand resources at an unprecedented level and, therefore, dat-
acenters are required to scale efficiently when more resources are added to the infras-
tructure, increasing their efficiency and flexibility to manage workloads. A technology
that confers advantages towards resource-efficiency is virtualization. A virtualized data
center offers higher management flexibility and at the same time increases resource uti-
lization by allowing workload collocation and isolation. Therefore, server virtualization
has now fully penetrated the market and become widely accepted on both the scientific
and industrial community.

At the same time, infrastructures have been shifting away from traditional datacenters
toward a software-based architecture with the focus on flexibility and customization,
allowing data center technologies to transition to the resource disaggregation paradigm,
in an attempt to expose expensive resources such as accelerators and flash memories
as pooled network resources that can be accessed across all the datacenter nodes. As a
consequence of this paradigm, operators can increase resource utilization by allocating

spare fragmented resources to remote applications.

Virtualization and resource disaggregation mechanisms simplify the complexity and
significantly enhances the flexibility of datacenter management. However, they pose new
challenges on how to extract the best performance of an unknown underlying platform
layer which is not fully exposed to the applications. More specifically, in such environ-
ments, applications have limited accesses and view to the resources, since these tech-
nologies abstract the view of the hardware topology and their characteristics, and limit
the access to resources by performing fine-grain resource partitioning. Therefore, the
potential to fully exploit the resource-efficiency in virtualized and disaggregated data-
centers is conditional on an intelligent system making informed decisions to orchestrate
the resources with a high-level view of the system.
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Additionally, as organizations demand management solutions to optimize how work-
loads efficiently run on virtualized datacenters, workload orchestration is still facing the
following three research challenges: i) understanding the performance impact caused
by both the virtualization and the underlying hardware characteristics; ii) efficiently
managing the application scheduling observing completion time goals and hardware
characteristics; and iii) adequately allocating resources to each application in a flexible

and automated manner.

In this context, this thesis contributes to the datacenter management to improve the
resource-efficiency on virtualized environments by C1) evaluating and characterizing
the performance of applications running on virtual environment (i.e., containers or virtual
machines) over complex hardware architectures (e.g. NUMA topologies), C2) provid-
ing new topology-aware multi-GPU workload scheduling techniques that maximize the
overall performance while minimizing the quality-of-service violations and C3) propos-
ing and evaluating a novel automatic workload orchestration for pooled resources and
disaggregated architectures capable of improving resource utilization across servers. The
combination of the three methods proposed in this thesis creates a new range of options
to enhance the resource-efficiency of a datacenter in regards to performance (C1 and C2)

and system utilization (C3).

Keywords: topology-aware scheduling, performance analysis, virtualization, NUMA, resource

disaggregation, software-defined architecture, workload optimized systems, and datacenters.
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INTRODUCTION

ITH the technology evolution plus the growth experienced on the available infor-
mation over the last years, the resource demand has been increasing in both tradi-

tional science and engineering marketplaces (to solve complex computational problems
for aerospace, finance, life sciences, etc.) and the enormous commercial marketplaces of
commerce and industry (to provide highly available services such as web servers, big
data and artificial intelligence applications). Not so long ago, the access to many com-
puting resources on large clusters was relatively difficult and expensive. But today, it
is much easier to access the popular off-premise cloud computing resources, and even
the on-premise high-performance computing (HPC) clusters are more accessible. Con-
sequently, these trends have been massively contributing to an increase in resource de-
mand. To satisfy this growing resource demand, datacenter operators have been attempt-
ing to enhance the resource-efficiency, i.e., the effective utility extracted from the system
resources, before investing in additional compute resources, in an attempt to maximize

their business competitiveness and return on investment of their infrastructures.

A key technology to improve resource-efficiency of datacenters is virtualization: a
systematic abstraction of hardware, system resources, and operating systems, to convert
dedicated physical resources into virtual shared resources and simplify the complex-
ity of management and deployment of applications. Virtualization can enable efficient
collocation of workloads due to its isolation capabilities, and besides that, provides envi-
ronments for applications that have specific software requirements including OS version

dependencies and libraries.

In parallel, the resource disaggregation paradigm has emerged in the last years in an
attempt to decouple datacenter resources (accelerators, flash memories) from the host
machines where they are connected. Under this paradigm, operators can increase re-
source utilization by allocating spare fragmented resources to remote applications. For
example, if an application is using all the compute capabilities of one server, its other
resources cannot be allocated to another application. However, the extra resources can be
remotely exposed to applications in different servers with available compute resources

to prevent resource wastage.



INTRODUCTION

For all these reasons, virtualization and disaggregation have been shifting away from
traditional datacenters toward a software-based architecture with the focus on flexibility
and customization.

1.1 MOTIVATION & CHALLENGES

Virtualization and resource disaggregation mechanisms simplify the complexity and sig-
nificantly enhances the flexibility of datacenter management. However, they pose new
challenges on how to extract the best performance of an unknown underlying platform
layer which is not fully exposed to the applications. More specifically, in such environ-
ments, applications have limited accesses and view to the resources, since these tech-
nologies abstract the view of the hardware topology and their characteristics, and limit
the access to resources by performing fine-grain resource partitioning (i.e., enforcing
resource isolation between applications).

IBM POWERS8® using NVLink NVIDIA DGX-1 using NVLink

- -—
- -

<— NVLink (20GB/s unidirectional)

<= PCI-e v3 x16 (16GB/s unidire.)
<+— Inter-socket (e.g., QPI, BW varies)

Figure 1: Examples of GPU physical topology over two representative NUMA systems.

Nonetheless, the underlying hardware topology is paramount for determining the
application performance. To illustrate this issue, consider Figure 1 that shows the con-
nectivity topology between the GPUs and CPUs for two representatives systems with
Non-Uniform Memory Architecture (NUMA) topology. In these systems, communica-
tions can take place in the same CPU domain, or across domains with a penalty in the
latency and bandwidth. As a result of these complex connectivity topologies, the appli-
cation performance depends on which resources are allocated for computations and how

they are connected.

Therefore, the potential to fully exploit the resource-efficiency in virtualized and dis-
aggregated datacenters is conditional on an intelligent system making informed deci-
sions to orchestrate the resources with a high-level view of the system. Among these



1.2 CONTRIBUTIONS

decisions, those made by the scheduler and the resource allocator to select which appli-
cation to run next among those in the wait queue and decides which resources to allocate
for running them, are particularly important for ensuring high levels of system perfor-
mance. Poor decisions can lead to poor resource usage and in consequence poor per-
formance of critical workloads. Therefore, organizations demand management solutions
able to take the communication requirements of the workloads, consider the topology of
the system, to provision resources for the new workload meeting the workload require-
ments. An intelligent scheduler also enables users to get access to the resources necessary
without worrying about the detailed topology of the underlying hardware.

In this thesis, we want to demonstrate that it is possible to develop resource man-
agement strategies that optimize the performance of both high-performance and cloud-
native workloads for virtualized and disaggregated datacenters.

To achieve this goal, three incremental research challenges have been addressed: i) un-
derstand the performance impact caused by both the virtualization and the underlying
hardware characteristics; ii) efficiently managing the application scheduling observing
completion time goals and hardware characteristics; and iii) adequately allocating re-
sources to each application in a flexible way. Given the scale and complexity of modern

datacenters, all of those items should be implemented in an automated manner.

1.2 CONTRIBUTIONS

The focus of this thesis is to improve datacenter scalability, by increasing resource-

efficiency on virtualized environments via smart management. To archive that we:

c1 Evaluate and characterize the performance of applications running on virtual envi-

ronment (i.e., containers or virtual machines) over complex hardware architectures;

c2 Propose and evaluate new topology-aware multi-GPU high performance artificial
intelligent (AI) workload scheduling techniques that maximize the overall perfor-

mance while minimizing the quality-of-service violations; and

c3 Propose and evaluate a novel automatic workload orchestration for pooled resources
and disaggregated architectures capable of improving resource utilization across

servers.

To this end, the combination of our proposed methods creates a new range of options
to increase datacenter-wide utilization (C3), by improving cluster management, while
performing best-efforts on guaranteeing that each scheduled application has its perfor-

mance requirements satisfies (C1 and C2). Figure 2 summarizes the main contributions

3
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Figure 2: Summary of contributions. The first contribution (C1) is an in-depth performance eval-
uation of virtual environment and NUMA architecture. The second contribution (C2) is
new topology-aware multi-GPU high performance AI workload scheduling techniques.
The third contribution (C3) is a novel automatic workload orchestration for pooled re-
sources and disaggregated architectures. Contribution C1 is incremental to C2 and C3.

of this thesis, targeting the scope of virtualized datacenters within HPC and cloud envi-
ronments. Note that, both the second contribution (C2) and the third contribution (C3)
encompass the scope of the first contribution (C1) by using the virtual environment in the
evaluation.

Next, we further detail the three contributions of this thesis.

1.2.1 [C1] Performance Characterization of Containerized and Accelerated Workloads

The execution stack of a virtualized application involves many components and middle-
ware that directly impact on the overall performance. Giving that in combination with
the hidden hardware complexity because of virtualization, determine the application per-
formance is not an easy task. Moreover, in a shared environment, the problem becomes
even more acute, since resource sharing can introduce undesirable interferences. Thence,
in-depth knowledge of the virtualization layers that compose the execution stack and
the underlying hardware characteristics is paramount to characterize the performance
of an application in such an environment.

The first contribution of this thesis is the performance characterization of workloads
running workloads running over virtualized environments and NUMA topologies over
different configurations. Its novelty resides in the fact that we developed tools and meth-

ods to measure the performance of applications running on top of virtualization tech-
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nologies over servers composed by NUMA architectures. We start the study evaluating
the performance of applications running on different virtual environments. The evaluation
exposes the performance of applications running on top of OS container or VM technolo-
gies; it targets the most fundamental components of the analysis. The monitoring is done
collecting the status from the processor hardware counters in addition to the application
completion time. Later, we execute the containerized applications on different scenario

varying the placement and resource allocation.

As shown by experiments, the performance of virtualization via OS-level containers is
almost as efficient as running directly in a bare-metal machine. Additionally, the results
also show that a sub-optimal resource allocation on NUMA topologies can introduce
a performance penalty and that not only the performance of threads running on the
processors are impacted, but also the performance of tasks running on GPUs. In further
analysis, the experiments also show that a smarter resource allocation on a multi-GPU
system can improve the performance in ~30%. These performance monitoring models
and methods developed in the first contribution were extensively applied throughout
this thesis, and in that sense, the second and third contributions are incremental to the

first.
The work performed in this area has directly resulted in the following publications:

[3] Marcelo Amaral, Jorda Polo, David Carrera, Igbal I. Mohomed, Merve Unuvar, and

Malgorzata Steinder. “Performance Evaluation of Microservices Architectures Using Con-
tainers.” In: 2015 IEEE 14th International Symposium on Network Computing and Ap-
plications. 2015, pp. 27-34. Cambridge, MA.

[122] Shuja-ur-Rehman Baig, Marcelo Amaral, Jorda Polo and David Carrera, "Perfor-
mance Characterization of Spark Workloads on Shared NUMA Systems," 2018 IEEE

Fourth International Conference on Big Data Computing Service and Applications (Big-

DataService), Bamberg, 2018, pp. 41-48.

1.2.2  [C2] Topology-Aware Multi-GPU High-Performance AI Workload Scheduling

Recent advances in the theory of neural networks (NNs), new computer hardware such
as GPUs, availability of training data, and the ease of access of resources through cloud
have allowed deep learning (DL) to be increasingly adopted as a part of business-critical
processes in healthcare, autonomous vehicles, natural language processing, and internet
of things. Consequently, many online platforms that offer image-processing and speech-

recognition systems leveraged by trained DL NNs are emerging to deliver various busi-
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ness critical services, such as IBM Watson [60], Microsoft Project Oxford [97], Amazon
Machine Learning [7], and Google Prediction API [45].

Although training on multiple GPUs can deliver many advantages, it presents new
challenges in workload management and scheduling for obtaining optimal performance.
The performance depends on both the GPUs and CPUs connectivity on the physical
topology, as discussed in section 1.1 and illustrated in Figure 1. Jobs in this environment
have varied GPU requirements: some need a single GPU, some need GPUs with NVLink,
others require multiple GPUs, but communication requirements are minimal, etc. In such
environments, the scheduler should be able to take the communication requirements of
the workloads, consider the topology of the system, consider existing applications and
their GPU and link utilization and provision the GPUs for the new workload that meet
the workload requirements. This enables users to get access to the resources necessary
without worrying about the detailed topology of the underlying hardware. Furthermore,
both cloud and HPC systems can benefit from GPU topology-aware scheduling tech-

niques.

The second contribution of this thesis is an algorithm with two new scheduling poli-
cies for placing GPU-based workloads in modern multi-GPU systems. The foundation of
the algorithm is based on the use of a new graph mapping algorithm that considers the
job’s performance objectives and the system topology. Applications can express their per-
formance objectives as Service Level Objectives (SLOs) that are later translated into ab-
stract Utility Functions. As shown by experiments, the proposed algorithm presents the
performance improvements that topology-aware scheduling confers for DL workloads
using multiple GPUs. The results show a speedup of up to ~1.30x in the cumulative
execution time and no SLO violations compared to greedy approaches.

The work performed in this area has resulted in the following publications:

[5] Marcelo Amaral, Jorda Polo, David Carrera, Seetharami Seelam, and Malgorzata

Steinder. “Topology-aware GPU Scheduling for Learning Workloads in Cloud Environ-
ments.” In: Proceedings of the IEEE/ACM International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC "17. 17:1-17:12. Denver, Col-
orado: ACM, 2017.

[4] Marcelo Amaral, Yurdaer N Doganata, Igbal I Mohomed, Asser N Tantawi, Merve Un-

uvar, "Selecting Resource Allocation Policies and Resolving Resource Conflicts", Patent
US9697045B2. Publication date: Mar 24, 2015. Granted data: Jul o4, 2017.
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Figure 3: Scheduling examples: WITH versus WITHOUT support of resource disaggregation.
When resource disaggregation is enabled, the waiting jobs can have their placement
advanced, increasing the resource utilization and decreasing the total job makespan.

1.2.3 [C3] Workload Orchestration for Pooled Resources and Disaggregated Architectures

Traditional datacenters consist of monolithic building blocks that tightly integrate a small
number of resources (i.e.,, CPU, memory, storage, and accelerators) for computing tasks
of the system software and applications. The main flaws of such server-centric archi-
tecture are the dearth of resource provisioning flexibility and agility. In particular, the
resource allocation within the boundary of the mainboard leads to spare resource frag-
mentation [39, 71, 112].

For instance, if a CPU-bound application saturating 100% of processor cores uses little
or no GPU in the system, the available GPUs cannot be allocated to other workloads due
to lack of processing resources. In such a scenario, even though a clever orchestrator
could assign a workload to a proper computer node, resource fragmentation still exists
because one workload cannot allocate resources from different nodes. More specifically,
Figure 3 illustrates this issue showing a scenario of two jobs consuming all the memory
of the node #1, which has spare GPUs. This placement is preventing the scheduling of
queued jobs that require GPUs. However, in the second scenario, GPU disaggregation is
enabled, then, the waiting jobs can get CPU and Memory from node #2 and remotely
access the GPUs from node #1. This process not only increases the system resource
utilization but also decreases the job make-span.

Consequently, both industry and research communities have been concentrating ef-
forts on enabling the shift from a mainboard-as-a-unit only paradigm to a more flexible
software-defined block-as-a-unit approach [52, 62, 63, 112, 121]. In such a Software De-
fined Environment (SDE) [83], the control and management planes are decoupled from
their data planes so that they can be deployed anywhere within the data center. More

specifically, resources can be disaggregated and treated as a pool of resources that can be
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remotely accessed from other servers. This increases the orchestration flexibility since al-
locating disaggregated resources enables fine-grained sharing and efficient provisioning
of the cluster resources across multiple applications. This flexibility also improves the
operation efficiency in a datacenter, which is of the topmost concern to cloud providers
because the overall economics ultimately determines their business competitiveness and
the return on investment [70].

To that end, the third contribution of this thesis is a flow-network-based framework
that orchestrates disaggregated resources on cloud systems employing best-efforts on
preventing SLO violations while maximizing the system utilization. The framework is
called disaggregated resource maestro (DRMaestro), and its main idea is to automatically
discover and allocate disaggregated resources in the cluster for a job as if the resources
are attached to the local machine that the job is placed. For the job standpoint, it is only
using local resources. For that reason, building DRMaestro poses several interesting and
challenging system problems, such as, how to: 1) enable transparent resource disaggre-
gation, 2) automatically control and determine the optimal placement, and 3) cope with
sharing-induced performance interference.

The work performed in this area has resulted in the following publication:

[submitted and under review] Marcelo Amaral, Jorda Polo, David Carrera, Nelson Gon-

zalez, Chih-Chieh Yang, Alessandro Morari, Bruce D’Amora, Alaa Youssef, Malgorzata
Steinder, “DRMaestro: Orchestrating Disaggregated Resources on Heterogeneous Cloud
Systems.”

1.3 THESIS ORGANIZATION

The rest of this thesis is organized as follows: Chapter 2 introduces some basic concepts
about virtualization and their associated technologies; about the concepts of how the
in-node underlying topology interconnects CPUs, memory and other devices; and about
different architectures to enable resource disaggregation. Chapter 3 presents a detailed
analysis of virtualized environment via combining 1) a rigorous performance analysis of
virtualization technologies, with 2) a detailed evaluation of what extent the underlying
hardware topology and the network load can impact on the performance of different
applications. Chapter 4 introduces and evaluates a new topology-aware multi-GPU sche-
duling algorithm, executing experiments with learning workload over different scenar-
ios and configurations. Chapter 5 presents and evaluates a new workload orchestration
for pooled resources and disaggregated architectures, using a flow-network-based sche-
duling algorithm to decide when and how to allocate disaggregated resources. Finally,

Chapter 6 presents the conclusions and the future work of this thesis.
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HE fundamental concepts used during the elaboration of the other chapters are
briefly introduced in this chapter and further described and discussed in the other
chapters along this thesis. We first describe the concept regarding virtualization, since
the thesis focus on virtualized datacenters. Then, we detail the Non-Uniform Memory
Architecture, which plays the key role in all methods developed in this thesis to improve
workload’s performance. Last, but not least, we introduce the basic concepts about re-
source disaggregation, which is at the end, in our case, an extended virtualization tech-

nique.

2.1 DATACENTER VIRTUALIZATION

The emergence of commodity-off-the-shelf computers with high processing power, fast
network connections, advanced accelerator technologies (e. g., Graphics Processing Units
(GPUs) and Field-Programmable Gate Array (FPGAs)), Linux OS and virtualization were
fundamental for the rising of cloud computing, enabling the access to a shared pool of
configurable and often virtualized resources typically billed on a pay-as-you-use. The
key technology that compounds the cloud build-blocks is the virtualization, which plays
an essential role in improving the datacenter’s resource-efficiency. Virtualization has
been shifting away from traditional datacenters toward a software-based architecture
with the focus on flexibility and customization. While in the past, virtualization tech-
nologies were mostly exclusive to off-premise cloud computing environments, currently,
the HPC community has recently started to offer virtualization into their on-premise dat-
acenters (HPC as a service - HPCaaS™), even though they have been apprehensive about
the security and performance in the beginning. Although not all kind of HPC applica-
tions can benefit from a public cloud yet, there still exist various applications that can
utilize the cloud facilities [48, 51, 68, 147], most especially the loosely coupled ones that
are less latency-sensitive. However, with the increase of microservices, and technologies
for DevOps, transforming existing HPC applications into Software-as-a-Service (SaaS)
can become a trend to make virtualization in HPC more popular [104]. A concrete ex-
ample of that is the Amazon EC2 HPC cloud cluster becoming part of the HPC TOP500

1 IBM supports HPCaaS from Rescale to deploy HPC jobs on the IBM Cloud
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ranking; in 2011 it was in 42nd position [6]. In this direction, virtualized datacenters
are becoming an attractive option for various kind of applications including cloud and
HPC, by providing cost-effective and resource-efficiency solutions. Next, we detail the
two leading technologies used to create virtual environments: i) virtual machines (VMs)

and ii) OS containers.

VMs are a widely used building block of workload management and deployment.
They are heavily used in both traditional data center environments and clouds (private,
public and hybrid clouds). The commonly used term VM refers to server virtualization,
which can be accomplished via full virtualization or paravirtualization. In paravirtual-
ization, differently from full virtualization, the guest OS is aware that it has been virtual-
ized and can provide directly communicate with the host (hypervisor) using the drivers.
While in the past, VM was the default technology used to create virtual environments, in
recent years, there has been a resurgence of interest on OS container technology, which
provides a more lightweight mechanism. OS containers are operating-system-level virtu-
alization under Linux kernel that can isolate and control resources for a set of processes.
Because a container does not emulate all the physical hardware component and the guest
OS as the VMs do, it is lightweight (consuming fewer resources) and presents fewer per-
formance overheads. A single server can reasonably have 100s of containers running and
memory usually ends up being the scarce resource; moreover, containers start up very

quickly - under 1 to 2 seconds in most cases.

The core of container technology relies on Linux namespace [73] and cGroups [74].
The former is an abstraction that wraps a set of processes appearing that they are an
isolated instance. Linux namespace isolates the set of filesystem mount points seen by
the group of processes. cGroups organize the processes in a hierarchy tree; they also
limit, police and account the resource usage of the process group. One can run a single
application within a container whose namespaces are isolated from other processes on
the system. Notwithstanding, the main capability of a container is to allow to run a
complete copy of the Linux OS within it without the overhead of a running hypervisor.
Although the kernel is shared, containers have limited access to the modules and drivers
that it has inherited. Some examples of the currently available container technology
are: OpenVZ [108], Rocket [124], Docker [29], Singularity [130], Resource containers [9]

among others.

While the concept of operating system level virtualization is not new (e.g., chroot and
jails in BSD), there has been a great deal of industry interest in Linux containers and
Docker [29] implementation in particular. There are many reasons for this resurgence
but from a technical perspective, two of the biggest reasons are (i) the improvements in

namespace support in the Linux kernel available in popular distributions, and (ii) a spe-
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cific implementation of containers - Docker - that has successfully created an attractive
packaging format, useful tools, and diverse ecosystem.

In recent years, there have been significant advances in virtual networking features in
Linux. Some notable mechanisms include network namespaces, veth pairs, tap devices as
well as virtual switches such as OpenvSwitch and Linux Bridges. The mechanisms can be
used to provide a high degree of flexibility and control of networking and form the basis
of Software Defined Networking (SDN) technologies such as OpenStack Neutron [18,
109], Calico [17], Romana [125], Flannel [23], Weave Net [142], etc. For instance, a physical
host might have just one physical network interface, while a number of guest containers
can run in isolation by having their own network namespaces, with tap devices wired
into an OpenvSwitch. Moreover, one could set up tunnels between the OpenvSwitch
instances on different machines and can enable communication between instances. In
practice, there are many ways of setting up virtual networking, with varying effects on
throughput, latency and CPU utilization. Currently, HPC networks using RDMA can be
performed within containers, but with limitations, only the containers configured with
host networking can use RDMA [136].

For facilitating the management of container in a large-scale cluster, many resource
management frameworks have been proposed during the last years. Kubernetes provides
lightweight, simple and self-healing services management, and we describe it further in
Section 2.1.1. Mesos [94] is another open source project that is intended to be an operat-
ing system for a datacenter. It is designed to manage the different type of workloads via
a hierarchical resource management solution that increases the scalability and reduces
the latency due to resource scheduling [53]. Docker Swarm [28] is a built-in framework
created by the Docker community, that natively manage a cluster of Docker engines.
However, by the time of this thesis, Kubernetes and Docker containers were the most
popular, widespread and mature approaches. Additionally, many big companies (such
as IBM, Amazon, Google, Microsoft, Huawei, among others) were endeavoring a lot of
efforts to contribute to the Kubernetes” development. Then, because of those reasons, this

thesis focused on using Docker and Kubernetes in the experimental evaluations.

2.1.1  Kubernetes

Kubernetes is an open source container orchestration platform targeting large-scale cloud
enabled workloads. It was initially proposed by Google engineers® to deploy, scale, and
manage containerized applications and heavily influenced by Google’s Borg system [16,
139]. Kubernetes uses a set of primitives to deploy, scale and manage containerized ap-

2 In 2015 Kubernetes was donated to the Cloud Native Computing Foundation.
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Figure 4: Kubernetes architecture. The master node can be composed by a built-in scheduler or
an add-on one. The workers start pods that can contain one or more containers.

plications. These primitives are extensible to accommodate a wide variety of workloads.
The basic unit of scheduling is called a "pod" which can be composed of one or more con-
tainers. A pod is considered a single unit and cannot span over multiple server nodes.
Therefore, an application running over multiple nodes will be composed of multiple
pods. Kubernetes also provides the capability to use key-value pairs to label pods and
other system resources, which can later be used in the scheduler. For instance, a node
composed of specific resources such as NMVe or GPUs can contain labels to identify the
resources, and the scheduler can filter the available nodes based on the labels.

The Kubernetes architecture is a master-slave configuration as depicted in Figure 4.
The Master uses an etcd key-value store to maintain information about the state of the en-
tire cluster. An API server provides an HTTP interface for both internal and external ac-
cess to the Kubernetes master. It processes REST or Protocol Buffers (Protobuf) requests
and updates the etcd data store. The Scheduler selects the node that an unscheduled
pod should run. The built-in scheduler knows about resource requirements, availability,
affinity, etc. to make scheduling decisions. However, another specialized scheduler can be
provided as an add-on plugin. In the worker, the Kubelet is responsible for discovering
the resources and keeps track of running state on each node and relays that information
to the Kubernetes master. Kubelet is also responsible for managing the pods and starting

the containers.

Kubernetes has a controller that manages the state of the cluster and provides mech-
anisms to replicate and scale multiple copies of a pod across the cluster of server nodes.
A set of pods that work together is called a Service in Kubernetes. Services are exposed
within a cluster and are assigned an IP address and the Domain Name System (DNS)
name so it can be discovered by other Kubernetes applications and services. Kubernetes
also has the concept of Job, which differs from the server by running up to its comple-
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tion, while a service never finishes. More specifically, a job creates one or more pods and
ensures that a specified number of them successfully terminate [22].

For monitoring the resources, Kubeletes typically uses Heapster, which discovers all
nodes in the cluster and queries usage information from the kubelets agents. The kubelet
itself fetches the data from cAdvisor (container Advisor), which is a running daemon

that keeps historical resource usage and network statistics for each container.
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Figure 5: Non-Uniform Memory Architecture (NUMA) topology example: memory, CPU, GPUs
and other devices can be interconnected via different paths and technologies.

Due to the growth in the number of cores in modern processors, parallel systems
are built using NUMA, which has gained wide acceptance in the industry, setting the
new standard for building new generation enterprise servers. These processors can be
connected to large amounts of physical memory, in the range of up to a couple of ter-
abytes for the time being. This opens an enormous range of opportunities for runtimes
and applications that aim to improve their performance by leveraging low latencies and
high bandwidth provided by RAM. The result is that today there are several examples of
applications that have started pushing the in-memory computing paradigm to accelerate
tasks.

To deliver such a large physical memory capacity, sockets in NUMA systems are
connected through high-performance connections, and each socket can have multiple
processors with its memory, as illustrated in Figure 5. A process running in a NUMA
system can access the memory of its node as well as the remote node where the latency
of memory accesses on remote nodes is significantly high compared to local memory
accesses [11]. Ideally, memory accesses are kept local to avoid this additional latency

and contention on interconnect links. Moreover, the bandwidth of memory accesses to
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last-level caches, and DRAM memory also depends on the access type that is local or
remote. Later on, we also discuss that NUMA not only impacts that intercommunication
performance of tasks running on CPUs from different NUMA domains but also on other
devices such as GPUs. As we can see in Figure 5, a process running on NUMA node #1
can access the GPU on Node #3 passing through intra and inter-node connections. But
note that the communication between devices on different NUMA domains depends on

how they are connected, which can be subject to additional overheads.

2.3 RESOURCE DISAGGREGATION

£ lom (=0 [~

CPU Accelerator ”NVMe MEM

Default Server Software-based Hardware-based
a) ) Disaggregation <) Disaggregation
Il Lk Lk L [raw] || e
non “RAM “RAM non ‘
RAM ik RN 1 -
=c f i ]7 - I:] RAM 1 ‘.
Resource Resource
] Cm pool Storage pool Storage
CPU MEM CPU MEM
Accelerators Accelerators

Figure 6: Server architectures examples. a) Default architecture without resource disaggregation.
b) Software-based resource disaggregation using an API to expose remote resources. c)
Hardware-based resource disaggregation with a rack composed by modules with sev-
eral homogeneous resources which are specialized in being rich in one type of resource.

By default, today’s datacenters consist of servers built as monolithic building blocks
tightly integrates with a small number of resources (i.e., CPU, memory, storage, and
accelerators) for computing tasks of the system software and applications, such as in
Figure 6 a). However, the main flaws of such server-centric architecture are the short-
age of resource provisioning flexibility and agility. In particular, the resource allocation
within the boundary of the mainboard leads to spare resource fragmentation [39, 71,
112]. To illustrate this issue, consider Figure 3 (a), where two CPU-bound jobs are satu-
rating 100% of processor cores from node #1, and the GPUs available in this node cannot
be allocated to other jobs due to lack of processing resources. In such a scenario, even
though a clever orchestrator could assign a workload to a proper computing node, re-

source fragmentation still exists because a waiting job cannot allocate the GPU resources
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from node #1. However, if the idle GPUs from node #1 could be remotely exposed to
node #2, then the waiting jobs could start running.

Industry and research communities have been concentrating efforts on enabling the

shift from a mainboard-as-a-unit only paradigm to a more flexible software-defined

block-as-a-unit approach [52, 62, 63, 112, 121]. In such a software-defined environment [83],

the control and management planes are decoupled from their data planes so that they
can be deployed anywhere within the data center. More specifically, resources can be
disaggregated and treated as a pool of resources that can be remotely accessed from
other servers. This increases the orchestration flexibility since allocating disaggregated
resources enables fine-grained provisioning decisions and efficient sharing of the cluster
resources across multiple applications. Disaggregated resources can simplify the data-

center management complexity by allowing a high-level of customization.

Systems within a disaggregated (or composable) data center are re-factored so that
the subsystems can communicate via a network as a single system; resources are pooled
together and provisioned independently [86]. A composable architecture at the cluster
level might contain both server-centric and rack scale architecture, where the later can be
a software-based or hardware-based architecture. For example, Figure 6 shows the three
different configurations: the server-centric architecture as the default one composed by
a small amount of each resource in a single box; b) the software-based resource disag-
gregation architecture is composed by several server-centric servers, but their resources
can be remotely accessed from other servers as the resources are locally available using
a software API; and c) a rack-scale is a box composed of modules specialized in being
rich in one type of resource that can be remotely exposed and combined to create virtual
servers. Both architectures in Figure 6 b) and c) introduce the concept of resource virtu-
alization offering disaggregated resources, and at a high-level view, they show a pool of

resources that can be accessed as their resources have no boundaries.

The disaggregated resources can be managed through a centralized or a distributed
model and accessed by application programming models through hardware based, hy-
pervisor/operating system based, or middleware based approaches as discussed in [84].
In this study, we focus on the software-based approach. In Chapter 5, we present our
proposed orchestrator that can allocate disaggregated resources establishing the channel
between the host and the resource (e.g., GPU) through RDMA /PCle and exposes the
access to jobs via a library, such as HFCUDA that is detailed in Section 5.4.
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PERFORMANCE CHARACTERIZATION OF VIRTUALIZED
WORKLOADS

HE execution stack of a virtualized application involves many components and mid-
dleware that directly impact the overall performance. Giving that in combination
with the limited view of the topology complexity because of virtualization and resource
disaggregation, determining the application performance becomes a complex task. There-
fore, in this chapter, we execute a performance analysis of the virtualization layers and
the underlying hardware characteristics to characterize the performance of applications
in such environments. This evaluation will also help to illustrate some of the key mo-
tivating factors behind the proposed scheduling techniques that we will present, dis-
cuss and evaluate over this thesis. Additionally, the performance evaluation in this first
contribution provides the necessary information for defining the performance model of
applications in the experiment conducted on the other chapters. More specifically, the ex-
periments performed in this chapter quantifying the performance impact of applications
running in their best-performing scenarios, and also in other situations with different

configurations, resource allocation, and application collocation.

3.1 PERFORMANCE OF OS CONTAINERS

In this experiment, to widely evaluate the virtualization environments, we analyze (i)
the computing performance, (ii) the overhead in the startup/creation process and (iii)
the network performance of a virtual environment (i.e., containers or virtual machines), in
three different configurations. The first configuration is a simple OS container running
directly on the host, and we call this configuration as regular-container. The second con-
figuration is a container running inside another container, which we call nested-container.
This configuration illustrates the scenario of a cloud provider offering containers as an
infrastructure-as-a-service (such as discussed in [16]), and then, a given user starts its
own containers into this given virtual environment. The primer container offered by the
cloud provider, we will call parent-container and the other containers created inside the
parent-container, we will call child-containers. Finally, the third configuration is using a

virtual machine. For these experiments, the VMs and containers are created using KVM
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and Docker technologies, respectively, and we use the default configuration for all the

configurable parameters.

3.1.1 Premises, limitations and other discussions

The goal of these experiments is to show the overhead and performance impact when
comparing the default configurations of virtual environment, which are more commonly
used by the end users in Cloud scenarios. Therefore, we do not aim to show in these
experiments the performance impact of each setting that can fine-tune the virtualization
performance of Virtual Machines or Containers, such as configuring the parameters for

processor pinning, driver by-passing, NUMA-awareness, etc.

Moreover, by the time that these experiments were conducted in this thesis - 5 years
ago -, OS container was a relatively new technology and measuring the performance
impact, and overhead of containers was an import research contribution. Nowadays,
the understanding of the container’s performance and its advantages are much more
mature and widespread. Therefore, in these experiments, we summarized only the key
advantage that we measured via experimentation. It is worth noting that the experiments
conducted in this chapter are still relevant since they compare the basic configuration
of OS containers and KVM virtual machines. The experiments show the overhead and
performance impact when comparing the default configurations, giving the baseline to

understand better the performance implications.

3.1.2  Evaluation infrastructure

The machines that are used to run the experiments are two 2-way Intel Xeon E5-2630L,
each one composed by 2 sockets, 6 cores per socket, 2 hyper-threads per core at 2GHz,
64GB of RAM and 1Gbps Network Interface Card (NIC). They are Linux box running
Ubuntu 14.04 (Trusty Tahr) with Linux Kernel 3.13 Those machines are in the same
rack and are connected with 2 stacked Gigabit Cisco Switch model 3750X with 48port
each, connected through StackWise+ connector. For containers, we used Docker 1.0.1,
while virtual machines were provided by KVM 2.0.0 configured with Intel Virtualization
Technology (VT-x) and network Gigabit mode (virtio). Experiments focused on CPU
are based on the Sysbench benchmark [78, 134] version 0.4.12. Experiments focused on
network use Netperf version 2.6.0, and the machines are configured with OpenvSwitch
version 2.0.2, and the Linux Bridge version natively available in Ubuntu 14.04. All the
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programs were compiled using gcc version 4.8.2 and Python 2.7.6. The configuration of

the testbed is summarized in Table 1.

Table 1: Testbed configuration

Version/Model
Processor Intel Xeon E5-2630L
Sockets 2
Cores per socket 6
Hyper-threads 2
Frequency 2GHz
Ram 64GB

Network bandwidth | 1Gbps

Docker version 1.0.1
KVM version 2.0.0
Sysbench version 0.4.12
Netperf version 2.6.0

OpenvSwitch version | 2.0.2

3.1.3 CPU Performance Evaluation

In order to evaluate the computing performance, we used Sysbench [134] running its
CPU benchmark, where each request calculates prime numbers up to a certain value
specified by the cpu-max-primes option, in this experiment, this is set as 40,000; all calcu-
lations are performed using 64-bit integers. In the experiments, we measured the comple-
tion time and ranged the number of concurrent Sysbench instances from 1 to 256. We run
Sysbench in all virtual environment configurations described before plus in a host configu-
ration in which we execute it directly on the bare-metal machine to be the performance
baseline. In the reqular-container configuration, we execute multiple containers, each one
running a single Sysbench instance. When using the nested-container configuration, we
execute multiple child-containers running a Sysbench instance each. Lastly, Sysbench is

also executed within virtual machines.
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3.1.4 QOverhead on the Computing Resource

In this experiment, no resource constraints are set for containers or virtual machines, so
the scalability is expected to grow linearly with the number of available CPU cores, and

each configuration was executed ten times.
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Figure 7: Observed slowdown of Sysbench with increasing number of instances relative to run-
ning a single Sysbench instance in bare-metal.

The results of this experiment are illustrated in Figure 7, which shows the observed
slowdown of running Sysbench when increasing the number of instances. In particular,
the Figure shows the average of 10 executions for each one of the tested environments:
bare-metal, regular containers, nested-containers, and virtual machines. The baseline to
measure the slowdown is the execution time of one single Sysbench instance running
in bare-metal. The results put in evidence the CPU performance when comparing con-
tainers versus bare-metal. In the tested configuration, the performance of the application
regarding the CPU had no significant difference, and when comparing bare-metal versus

VM, the performance had a very low impact of only ~2%.

The low CPU overhead is thanks to the improved virtualization support for virtual

machines in modern processors for efficiently enabling virtualization technologies and
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no additional software layers (i.e., overlays) for containers accessing the CPUs and OS
drivers.

3.1.5 QOverhead of Virtual Environment Creation

To evaluate the overhead in the virtual environment start-up/creation process, we measure
the time to create 1 up to 256 concurrent virtual environments. Each virtual environment
simply launches a dummy application that takes a negligible amount of time (in partic-
ular, we used Sysbench as in the CPU experiment, but configured with cpu-max-primes
set to 1), effectively allowing us to compare creation times under different environments.
For the case of regular-containers, we measure the elapsed time between starting the con-
tainer up and exiting from it. For nested-containers, we measure the elapsed time between
starting and exiting from the parent container, which includes loading a locally-stored
child image as well as starting-up and exiting from the child container. Finally, for a
virtual machine, we measure the time to create/start and delete a VM.
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Figure 8: Time to create and exit from virtual environment of an increasing number from 1 up to
256 virtual environment instances.

The results of our experiments are illustrated in Figure 8, which shows the measured
time to create a different number of instances under each configuration. As expected
regular-containers are always the fastest approach, followed by nested-containers and vir-
tual machines. While the creation of a single nested-container has almost eight times more
overhead than the creation of one regular-container, the creation of nested-containers is still
more than twice as fast as virtual machines. This additional overhead for nested-containers
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is related to the initialization of Docker in the parent container, which also involves load-
ing an image stored locally in the host and the creation of the child container itself.
Additionally, when creating more than eight nested-containers, the overall creation time
seems to increase more than linearly and becomes a lot closer to virtual machines than
reqular-containers. The host machine only has 12 cores, so the behavior when overload-
ing the cores is significantly different. However, nested-containers are still twice as fast as

virtual machines in most scenarios.

3.1.6  Network Performance Analysis

The goal of this experiment is to measure the network performance, with a focus on
studying the communication overhead of different technologies when running in the

same host.

To evaluate the network performance, we select the Netperf benchmark [69]. In par-
ticular, the Netperf tests used to evaluate performance are TCP Stream (TCP_STREAM)
and TCP Request/Response (TCP_RR). TCP_STREAM is a simple test that transfers a cer-
tain amount of data from a client running netperf to a server running netserver. This
test calculates the throughput and does not include the time to establish the connection.
On the other hand, TCP_RR is a synchronous test that consists of exchanging requests
and responses (transactions), and which can be used to infer one-way and round-trip
latencies. In particular, TCP_RR executions were configured to run in burst mode to have
more than one transaction at the same time, and the socket buffer size for connection
data set to 256K. Throughput and round-trip latency per transaction were measured
with Netperf under different virtual environment configurations and network virtualiza-
tion technologies, such as Host-Network (directly using the native host-network stack),
OpenvSwitch [110], and Linux Bridge. OpenvSwitch is configured only for routing pack-
ets, and there is no additional encapsulation, while Linux Bridge is combined with for-
warding NAT iptable rules. By the time of this experiment, to create Docker containers
with OpenvSwitch, an additional configuration was required, involving the creation of
virtual interface veth pairs, binding one pair in the OpenvSwitch bridge and the other in

the already running container.

The results are presented in 2 and Tables 3. All executions were repeated five times,
and the table includes the average times and the standard deviations. In this experiment,
it should also be noted that, even though the host is composed of a single 1 Gigabit
network interface card, the throughput is higher than 1Gbps since client and server are
running in the same host and the network packets are only going to the loopback inter-
face. We do not focus on measuring the performance impact of overlay networks, that
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are typically used by containers and virtual machines to communicate across servers
with virtual IPs and additional package encapsulations. We focus on showing the over-
head within a single host. This allows us to focus the experiment on only analyze the

virtualization overhead regarding the virtual environment.

Table 2: Network latency evaluation for different configurations of client/server under bare-
metal, container and virtual machine on a single host machine, using the loopback inter-
face. The first column shows where the Iperf client or server were executing.

Latency

Table 3:

(Client - Server)

Host-Network

Linux Bridge

Open vSwitch

Host - Host

102.77 US 0=0.95

Container - Host

104.48Us 0=1.45

231.971s 0=5.3

229.37us 0=6.38

Host - Container

105.0US 0=1.94

230.17Us 0=7.35

217.76us 0=4.63

Virtual machine - Host

424.921S 0=14.09

465.53 s 0=43.57

Host - Virtual machine

397.531Us 0=12.08

420.141S 0=27.09

Network throughput evaluation for different configurations of client/server under bare-
metal, container and virtual machine on a single host machine, using the loopback inter-

face. The first column shows where the Iperf client or server were executing.

Throughput

(Client - Server)

Host-Network

Linux Bridge

Open vSwitch

Host - Host

35.71 Gbps 0=0.32

Container - Host

35.13 Gbps 0=0.48

15.82 Gbps 0=0.36

16.01 Gbps 0=0.47

Host - Container

34.96 Gbps 0=0.63

15.96 Gbps 0=0.51

16.86 Gbps 0=0.35

Virtual machine - Host

8.64 Gbps 0=0.28

7.94 Gbps 0=0.69

Host - Virtual machine

9.24 Gbps 0=0.27

8.77 Gbps 0=0.55

As it can be observed in Tables 2 and 3, the network performance when using con-
tainers is generally higher than using virtual machines, and it can be as fast as bare-
metal under certain configurations. For instance, when containers are configured with
Host-Network, they basically present the same performance as bare-metal in terms of
throughput and latency. On the other hand, when containers or virtual machines are
configured with Linux Bridge or OpenvSwitch, there is a significant performance im-
pact. Even though OpenvSwitch is supposed to achieve higher performance than Linux
Bridge, as stated in [18], our results show that their behavior in terms of throughput
and latency under these configurations is similar, and their performance is not signifi-
cantly different, only achieving approximately half of the throughput, and almost twice
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as much latency. Finally, it should also be noted that even if virtual machines are accel-
erated to provide high computing performance, the network is still behind regarding
performance when compared to containers, and it’s approximately twice as slow, even
when compared against the same network virtualization technologies. This is mostly
because a VM emulates all the network stack in its guest OS and hypervisor, while

containers have direct access to the host kernel.

Table 4: Network throughput and latency evaluation of nested-containers

Parent

Child

Throughput

Latency

Host-network

Host-network

33.74 Gbps 0=2.3

109.31Us 0=7.66

Host-network

Linux Bridge

16.06 Gbps 0=0.73

228.901s 0=10.52

Linux Bridge

Host-network

15.56 Gbps 0=0.97

236.724S 0=14.72

Linux Bridge

Linux Bridge

12.53 Gbps 0=0.75

293.841s 0=18.45

Open vSwitch

Host-network

16.9 Gbps 0=0.44

217.25US 0=5.63

Open vSwitch

Linux Bridge

12.19 Gbps 0=0.57

301.541s 0=14.63

In addition to studying the performance of different virtualization environments, in
Table 4 we also show the result of evaluating network throughput and latency of nested-
containers under different combinations of network configurations for parent and child-
containers. Unfortunately, in this experiment OpenvSwitch could not be used in the
child-container due to privilege-related issues, so OpenvSwitch parent-containers are
only compared against Host-Network and Linux bridge child-containers. However, as
expected, when a parent or a child-container is configured with Host-Network, the per-
formance is significantly better than with Linux Bridge or OpenvSwitch, which are once
again approximately twice as slow concerning both, throughput and latency. While Host-
Network provides higher performance, it also has certain security tradeoffs and scala-
bility limitations. For example, when using Host-Network all containers will be in the
same network namespace with no isolation; they will have the same IPs (only the host
IPs); and they will also share the same socket (or verbs) ports and will not have any

virtual-network isolation, such as the one provided by vxlan.

3.1.7 Related Works of Performance Evaluation of Virtual Environment

At the time that this thesis researched and evaluated the overhead impact of contain-
ers, microservices management had started to gain popularity. Google Cloud Platform
implemented and opened sourced to a pre-production beta cluster management project
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-Kubernetes- that can be used for better management of large scale microservices [44].
Kubernetes promotes container technology via microservices architecture. Therefore, our
goal in this experimental evaluation was to execute a performance analysis for container
technology in microservices architecture. At this time, to the best of our knowledge, our
work was the first one to analyze performance and management overhead of microser-

vices architecture using containers and nested containers.

At this time, the most closer related works were the evaluations comparing virtual
machines and Linux containers. In the work [36], they showed that containers result in
equal or better performance than VM in almost all cases, but both VMs and contain-
ers require additional tuning to support I/O-intensive applications. Other works have
evaluated only the performance of virtual machines [58, 59] without considering Linux
containers, they basically compared only the performance of applications running over
hypervisors versus running directly in the bare-metal machine. In addition to that, there
were also some works comparing virtualization and containerization in the standpoint
of isolation with the cost of latency and overhead. Those works did a good job to show
that containers bring less overhead along with similar but less isolation than virtual
machines. Concerning the isolation capabilities of containers, [30] studied the perfor-
mance of different container implementations such as Linux, Docker, Warden Container,
Imctfy, and OpenVZ along with virtual machines. As for the trade-off between perfor-
mance and isolation between containers and virtual machines, [145] examined some
experiments for High-Performance Computing environments. Performance of network
virtualization for containers was also well studied in the Linux literature [20]. The work
in [16] has detail how Google has been managing their datacenters. The discussed that
resource isolation provided by containers is not perfect, it still needs to be improved.
They concluded that containers could not prevent interference in resources that the OS
kernel does not manage (e.g., level 3 processor caches and memory bandwidth), and
containers, by this time, need to be supported by an additional security layer (such as vir-
tual machines). They also concluded that the benefit from containerization goes beyond
merely enabling higher levels of utilization, but it transforms the data center from being
machine-oriented to being application-oriented. That is since well-designed containers
are scoped to a single application, managing containers means managing applications
rather than machines, which has the potential to improve application deployment and

introspection dramatically.

However, these works commented before did not evaluate the management overhead
by comparing the virtual environment initialization time as we showed in our analysis.
Additionally, these works did not evaluate the impact of multiple virtualization layers
as we have evaluated in this work. More specifically, as stated before, we have also

evaluated the scenario of a cloud provider offering containers as an infrastructure-as-a-
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service, where a user can start its own containers (i.e., the child one) into the container
acquired from the Cloud provider (i.e., the parent one). Thus, the user’s container would
have multiple levels of OS containers virtualization. Therefore, in our experiments, we
showed the impact of creating containers, and the CPU and network overhead in such

environments.

3.2 NUMA IMPACT ON GPU-BASED LEARNING WORKLOADS

The main sources of performance perturbation on multi-GPU applications are how the
allocated GPUs are connected, i.e., the NUMA topology, and how much of the shared

bus bandwidth other applications are utilizing.
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Figure 9: Pack vesus Spread scheduling policies, and job collocation versus running solo.

To illustrate these issues, Figure g illustrates two different possible problems that
might occur on top a single machine with hardware topology composed of two sockets
and two GPUs per socket (e.g., the same topology shown in Figure 1 for the POWERS®
system). For example, in the case an application has the communication more intensive
in the CPU-to-GPU part, it benefits more from the scenario a). Otherwise, if it is more
intensive in the GPU-to-GPU communication part, it will benefit better from being in
scenario b). This behavior is because the GPUs within the same socket are located at a
“shorter” distance (from a topology perspective) than the GPUs located across sockets.
Besides, GPUs on the same socket can utilize the higher bandwidth and lower latency
network (e.g., NVLink) to communicate instead of going over the PCI-e and the QPI links
to communicate across CPU sockets. However, even though, two applications perform
better when allocating GPUs from different socket domains, if they are co-collated, that
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is, sharing the inter-socket connection, they might perform better if they are "isolated"

on different socket domains, as shown in Figure 9 c) and d).

Therefore, in this section, we evaluate two general purpose workload placement strate-
gies: pack and spread. We define these policies as follows:

THE PACK POLICY systematically favors minimizing the distance between GPUs, to pri-
oritize the performance of GPU-to-GPU communication.

THE SPREAD POLICY attempts to allocate GPUs from different sockets and prioritizes
the performance of CPU-to-GPU communication.

Note that, the spread policy promotes better resource utilization by minimizing frag-
mentation where fragmentation means that the resource cannot be allocated consecu-
tively in the same machine. To illustrate that, consider two different scenarios, the first
we have four machines with four GPUs available on each, and another scenario with four
machines with only one GPU available on each. Giving that the maximum number of
available GPUs per machine is 4, we define here that only the second scenario presents
fragmentation; in the first scenario, the GPUs are fully available.

Another factor that impacts the performance of either pack or spread placement schemes
is the interference introduced by other applications sharing the system resources. For this
reason, the placement algorithms should take not only the static topology of the system
but also the runtime utilization metrics from currently executing applications for schedu-
ling decisions. Later, in Section 4.1, we combine these policies into a utility function that
is used by our proposed placement algorithm that allocates GPUs to jobs considering
the underlying topology characteristics.

Next, we detail the Deep Learning workload used in the conducted experiments in
this section and their characteristics that are relevant for topology-aware scheduling of
applications using multiple GPUs; we also describe the testing platform used during the
experiments, and we evaluate the impact of the placement strategies to allocate GPUs for
the DL applications. All the experiments are performed with the applications running

over Docker containers.

3.2.1  Deep Learning Workload Description and Limitations

With the increasing popularity of the DL methods, several deep learning software frame-
works have been proposed to enable efficient development and implementation of DL
applications. By the time that these experiments were conducted in this thesis, the list
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of available frameworks included, Caffe, Theano, Torch, TensorFlow, DeepLearning4],
deepmat, Eblearn, Neon, PyLearn, among others [8].

It is worth to mention that, by the time of this thesis research, the most known DL
frameworks were Caffe, Theano, Torch, TensorFlow, DeepLearning4J, deepmat, Eblearn,
Neon, and PyLearn [8], being Caffe the most popular one. Additionally, by this time, the
most used neural network implementations were AlexNet, CaffeRef (based on AlexNet)
and GoogLeNet, but our results are equally applicable to other frameworks and NN
implementations. While each framework and NN develop different algorithms and try to
optimize various aspects of training, they share similar GPU communication algorithms

[141], which is the most significant part of the application in our analysis.

Even though, by the time of this thesis already existed different approaches to imple-

ment NNs in regards to divide the workload when using multiple GPUs: data-parallelization

and model-parallelization, we have only focused on data-parallelization approach. This
is because the model-parallelization approaches were uncommon for cloud deployments
at the time of this research. The main difference between these two approaches is: in
data-parallelization, the data is partitioned and spread to different GPUs, and in model-
parallelization, the NN model is partitioned, and different GPUs work on different parts
of the model, for example, each GPU will have different NN layers of a multi-layer
NN.

Note that, model-based parallelism presents more communication than the data-based
parallelism approach since it requires more steps to share the weights and perform syn-
chronizations. Nowadays, it is more common to find examples of model-based paral-
lelism, and we believe that our experiments and our proposed algorithm evaluated later
in this thesis, in Section 4.3, will be even more critical for model-parallelization work-
loads because of the higher communication requirements and provide higher resource-
efficiency than the experiments presented in this thesis.

In spite of these applications represent a small set of applications, we have varied
them on many different configurations to represent a more significant range of different

applications.

During our experiments, we found that the key parameter that plays a significant role
in the GPU-to-GPU communication for our tested NNs is the batch size. This parameter
determines how many samples will be loaded in each GPU. Thus, the NN will analyze
in each training step the number of samples defined by the batch size, which directly
impacts the amount of communication and computation in each training step. The lower
the batch size is, the noisier the training signal is going to be; the higher it is, the longer
it will take to compute the stochastic gradient descent. Noise is an important component

for solving nonlinear problems, then apart from all the other parameters to determine
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the NN accuracy, the batch size is also an important one. Additionally, the batch size also
determines the level of parallelism the NN can reach since the batch size partitions the
dataset [12]. Therefore, in this thesis we have tested the NN configured with different

batch size over different scenarios.

However, note that, although many other workloads could be used in our experi-
ments, especially in the ones in Chapter 4.3, we have only used these DL ones because
of their significant GPU-to-GPU communication. But, by the time of this thesis, applica-
tions with high GPU-to-GPU communication were uncommon in Cloud environments.
But, we believe that with the advent of newer technologies providing higher performance
for GPU-to-GPU communication (e.g., NVLink and PCle 4 technologies) will encourage
the creation of a new set of new applications that can further benefit from a system com-
posed by multiple inter-connected GPUs. In this scenario, we believe that our proposed
algorithm can significantly improve the performance of a system formed by heteroge-
neous workloads; we leave such investigation for future work when more applications

with high GPU-to-GPU communication become available.

3.2.2 Testing Platform and Configuration

All experiments are conducted on an IBM POWERS® System S822L.C release, code-
named as “Minsky” shown in Figure 1. The server has two sockets and eight cores
per socket that run at 3.32 GHz and two NVIDIA GPU P100’s per socket. Each GPU has
3584 processor cores at boot clocks from 1328 MHz to 1480 MHz, and 16 GB of memory.
Each socket is connected with 256 GB of DRAM. Where the intra-socket CPU-to-GPU
and GPU-to-GPU are linked via dual NVLinks that uses NVIDIA’s new High-Speed
Signaling interconnects (NVHS). A single link supports up to 20GB/s of unidirectional
bandwidth between endpoints. A high-level illustration of the hardware topology is pic-
tured in Figure 1 and Figure 9. The configuration of the testbed is summarized in Table

5.

For the software stack, this machine is configured with Red Hat Enterprise Linux
Server release 7.3 (Maipo), kernel version 3.10.0-514.el7.ppcogle, Caffe version vo.15.14-
nv-ppc compiled with NCCL 1.2.3, CUDA 8.0 and CUDA driver 375.39. All Caffe work-
loads are configured with a set of images from the dataset used in the 2014 ImageNet
Large Scale Visual Recognition Challenge [126] (which is one of the most well-known
datasets for image classification and publicly available on the ImageNet competition
website [61], at the time that this thesis performed this experiments).
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Table 5: Testbed configuration

Version/Model
Processor IBM Power8 S822L.C
Sockets 2
Cores per socket 8
Hyper-threads 8
Frequency 3.32GHz
Ram 512GB
Network bandwidth | 1Gbps
GPU models NVIDIA P1o00
GPU interconnection | NVLinks
Docker version 1.9.1

Caffe Framework

v0.15.14-NV-ppc

NCCL 1.2.3
CUDA 8.0
CUDA driver 375.39

All experiments were

ber of iterations is 4000,

are only 4o0. The iterations are decreased because, at the time these experiments were
performed in this thesis, profiling was consuming a lot of memory, and a large profile
did not fit in the GPU memory. The tool used to profile the application was the NVIDIA
nvprofile. For all workloads, the NN training batch sizes range from 1 up to 128. We
defined some labels for the sizes to improve the readability, with "tiny" representing 1,

repeated five times. For each experiment, the maximum num-

except when generating the GPU profile where the iterations

"small" 4, "medium" 64 and "large" 128.
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3.2.3 Pack versus Spread Scheduling Policy
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Figure 10: The Pack policy (P2P-enabled) vs. the Spread policy (non-P2P-enabled). A speedup
higher than 1 represents that the pack policy performs better than spread policy.

Figure 10 shows the relative speedup achieved when allocating GPUs within the same
socket (pack) or over cross-socket (spread). When the speedup is higher than 1, the
application performs better with the pack strategy. The performance depends on both
the workload type and the batch size. When AlexNet is configured with batch size 1 or
2, it has a speedup of up to ~1.30x, but for batch sizes larger than 16 both pack or spread
have even performance. GoogLeNet has different behavior than the other NNs with less

or no impact, which will be better detailed later.

To better explain the cause of the performance delivered by the strategies, the ap-
plication breakdown is presented in Figure 11. The analysis shows the percentage of
computation and communication represented in the whole execution time. The results
indicate that larger batch sizes significantly increase computation time, while communi-
cation time becomes less significant overall.

Taking AlexNet, for instance, when configured with tiny batch sizes, the computation
time is ~1s for 40 iterations; with big batch sizes, this time increases to ~66s. The com-
munication time instead remains ~2s for all batch sizes. While NNs with a bigger batch
size increases the amount of data exchanged between the GPUs, it starts to spend much
longer time performing computation in the GPU for each batch step. Hence, the com-
munication starts to be less frequent with bigger batch sizes. On the other hand, smaller
batch sizes require many more steps to process the whole dataset and then require more
frequent communication. This behavior can be verified with the NVLink bandwidth us-

age in Figure 12.

The communication frequency directly impacts the usage of the NVLink bandwidth.
The NN configured with a small batch size reaches higher NVLink bandwidth usage



3.2 NUMA IMPACT ON GPU-BASED LEARNING WORKLOADS

N
o®

D QD

o
SN S
GooglLeNet

RSN
SN ®

"

GPU-Comm(sp=No-P2P)
)

I

>

sz)
S

>

o
GRS
CaffeRef

= GPU-Comm(pa=P2P)
D @D (D
@&\@@Q A (S
< o &

&)

2)
¥

O GPU-Computation

L)

'\%\Q

(&
%

80%
0%

D @ @ (D
RN
AU

@
AlexNet

100%
60%
40%
20%

QwI, "0aX{ JO 9

Figure 11: Application breakdown showing the percentage GPU computation and communica-
tion in relation to the whole execution time. All workloads were tested on different
scenarios allocating the GPUs using the pack policy (pa) or the spread policy (sp), and
ranging the batch size between tiny (1), small (4), medium (64) and large (128).

~40GB/s, while the NN with a bigger batch size barely reaches ~6GB/s, as in Figure 12
(the NVLink bandwidth calculation is described later in Section 4.3.1).

GoogLeNet is the less intuitive case. Since this NN contains sizable neural network
layers, and typically the intensity of communications depends on the amount of infor-
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Figure 12: NVlink bandwidth usage for AlexNet.

mation exchanged between the layer, it is expected that GoogLeNet performs more com-
munication than the other NNs. Nonetheless, GoogLeNet performs less communication
because of its Inception Modules, which in consequence reduces the NN layers output
by applying filtering and clustering techniques.

We have also executed the same experiments on a POWERS® machine equipped
with a PCI-e Gen3 bus instead of the NVLink, as well as NVIDIA K8o GPUs instead of
P10o. We do not include additional figures in this thesis but summarize the results as
follows. The impact of pack strategy is similar between NVLink-based and PCl-e-based
machines except for larger batch sizes, where the difference starts to be evident. For in-
stance, AlexNet with a batch equals one the speedup is ~1.27x with NVLink and ~1.24x
with PCl-e. For a batch size equals two, the speedup drops from ~1.30x with NVLink
to ~1.21x with PCl-e. For a batch size equals eight, the speedup decreases from ~1.20x
to only ~1.1x. In conclusion, while the topology impact in the GPU communication per-
formance is still significant in the PCI-e-based machine, improvements on the placement

decision of DL workloads are even more necessary in NVLink-based machines.

3.2.4 Jobs in a Co-Scheduled Environment

A typical approach to increase resource utilization in a data center is co-scheduling
workloads on the same machine. While it confers cost benefits, it comes with an inherent
performance impact. Although the GPUs are not shared in this work (jobs have private
access to GPUs), collocated applications share the bus interconnections among other
resources. Therefore, the goal of this experiment is to evaluate the performance impact
of the pack and spread strategies in a co-scheduled environment. Differently, from the

previous test, this experiment shows application interference.
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Figure 13: Normalized performance of Job #o co-located with Job #1 versus Job #o running solo
in a machine. Both Job #o0 and Job #1 are training an AlexNet NN and being configured
with different batch sizes, creating different placement scenarios. When the slowdown
is #o, it represents no performance interference in Job #o, else, it represents Job #o with
a slowdown in its execution time because of being co-located with Job #1.

We have performed an experiment that collocated two jobs in the same machine,
starting concurrently. Each job is an AlexNet NN requesting two GPUs and varying the
batch size. The results are shown in Figure 13, where zero represents no slowdown of co-
scheduling two jobs in the same machine and a value higher than zero accounts for the
slowdown percentage. Note that, a job with high GPU communication is more sensitive

to interference than a job with lower communication.

As analyzed in the previous experiment (Section 3.2.3) and showed in Figure 12, the
batch size plays the main role in defining the amount of communication and the job’s
performance sensitiveness. For that reason, when co-scheduling two jobs with a tiny
batch, the suffered slowdown is higher, which is up to ~30%. But when collocating two
jobs with a big batch, the performance interference is very small or nonexistent. This
is because a job with a big batch is not sensitive to perturbations in the bandwidth
since it requires low bandwidth. Nevertheless, a job composed by a big batch can cause
performance interference since it still consumes bandwidth. For instance, in Figure 13, if
the first job has a big batch and the second a tiny batch, the slowdown is ~24%, or ~21%

if the second has a small batch.

3.2.5 Related Works of Performance Evaluation of NUMA Topology

Although the NUMA concept is not new, and have been widely used on high-performance
computers for many years, at the time of this analysis in this thesis, this architecture has
started to be also popular in the Cloud environments. Most especially with the advent

of machines for DL workloads running over several interconnected GPUs.
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The NUMA impact of CPU-based workloads is well-known and was deeply inves-
tigated in previous works. Basic support for a NUMA-aware scheduler first appeared
for Linux in kernel 2.5 and evolved over time. Zaytsev et al. [54] executed benchmarks
to measure the impact of NUMA tuning on CPU/memory performance. They showed
that the performance impact depends on the application characteristics and that for
some situations manual binding is better than only rely on the OS’s resource alloca-
tion. Psaroudakis et al. [117] have further evaluated the performance impact of NUMA
topology on column-store database management systems (DBMS). They proposed also
a smart technique to partition the data across processor sockets to load balance memory
access and CPU utilization. Their results showed that their approach adaptively tracks
a utilization imbalance across sockets, and can move or re-partition tables at run-time
to fix the imbalance, improving the performance up to 4x compared to the default OS
strategies. The work in [81] has also further investigated the performance impact of
placement of threads and memory on NUMA systems. In their work, they do not only
consider whether the threads and data are placed on the same or different nodes, but
how these nodes are connected; some links might have different bandwidth. In their
work, they propose a dynamic thread and memory placement algorithm for the OS task
scheduling process with up to 218% better performance than when the placement is cho-
sen randomly. They used a micro-benchmark that simulate several different applications
in their evaluation. However, these previous works are CPU-based only, considering only
the effect of CPU task placement and memory allocation on NUMA systems. They do
not consider the allocation of other devices such as GPUs. Next, we describe the works
that have also considered GPUs in the analysis.

Faraji et al. [35] has evaluated the performance difference of intranode GPU commu-
nication channels and proposed a topology-aware GPU selection scheme to assign GPU
devices to MPI processes based on the GPU-to-GPU communication pattern and the
physical characteristics of a multi-GPU machine. They have evaluated the performance
impact of three different intranode GPU PCle pair levels. The level #o defines the com-
munication path between GPUs connected in the same PCle internal switch. The level #1
represents the path between GPU pairs traversing multiple internal switches. The level
#2 is composed by the path traversing a PCle host bridge, and level #3, the path travers-
ing a socket-level link (e.g., QuickPath Interconnect - QPI). A simple MPI memory copy
is used to measure the latency and bandwidth over all the levels. Their results show that
only for sizable messages (e.g., higher than 64K) the topology starts to impact the per-
formance. This work presents an interesting analysis to expose how the PCle topology
impacts GPU-to-GPU communication. In addition to this work, there exist other stud-
ies that have researched various GPU-aware point-to-point and collective operations

to improve the GPU communication performance that has also quantified the perfor-
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mance impact of communication over asymmetric communication paths [96], [116], [34].
NVIDIA has also created the Collective Communication Library (NCCL) to facilitate the
programming over such complex typologies [91]. By the time of this thesis, there was
available only the NCCL version 1, but recently they also have released version 2 that

also support efficient collective communication primitives on multi-nodes [100].

Our work, on the other hand, differently from these previous works, used a macro-
benchmark that emulated real DP applications using real data, instead of only use syn-
thetic micro-benchmarks forcing uncommon application behavior (e.g., with high load
and contiguous communication). Moreover, our work differs from them, by also eval-
uating the performance impact on the GPU-to-GPU communication in a co-scheduled
environment, quantifying the external interference that collocated applications can intro-
duce into each other. Finally, by the time of this thesis, NVLink was relatively new tech-
nology, and to our best knowledge, we were the first work to evaluate the performance
of heterogeneous paths in an intranode topology composed by NVLink technologies,
experimenting with emulated real DP applications using real data and also considering
the scenarios with collocated applications.

3.3 NETWORK IMPACT OVER RESOURCE DISAGGREGATION

Although resource disaggregation confers many advantages, it introduces the challenge
to deal with additional network requirements. That is, an application that does not re-
quire network communication will transparently start to rely on transferring data via
network connections. Additionally, the usage of disaggregated resources may introduce
orders of magnitude higher networking bandwidth, additional latency and memory us-
age not present in a directly attached system. Thus, depending on the application re-
source usage pattern, resource disaggregation can introduce high or minimal network

sensitiveness.

Therefore, to investigate of how extent the introduced network sensitiveness - by us-
ing disaggregation resources - can impact the application’s performance, we conducted
an experiment that collocates an application using remote GPUs with another network
intensive application introducing artificial network load. Hence, in this experiment, we
collocate Rodinia applications accessing remote GPUs using HFCUDA library with the
application Iperf that creates network pressure in the cluster. Note that, our goal in
this experiment is not to show the impact of disaggregation versus non-disaggregation
since it depends exclusively on the techniques used to enable disaggregation. That is,
it depends on how efficient is the software, or hardware-based disaggregation is im-
plemented. Our goal here is to show how sensitive to the network an application can
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become by using a disaggregated resource. We rely upon and have the premise that the
disaggregation technique implemented is efficient enough with minimal overhead.

3.3.1 lesting Environment

All experiments are conducted on 4 IBM® Firestone POWERS® servers. Each Firestone
is configured with 512GB DRAM, 2 x POWERS® 3.4Ghz CPU (10 cores per CPU and 8
threads per core), 4 x NVIDIA® K8o GPUs, 1 x dual-ported Mellanox® EDR IB, and 4
x 1/10GbE Broadcom Ethernet. The Infiniband network provides connectivity between
distributed applications tasks and access to the 1BM® Spectrum Scale storage servers
running GPFS file system. The 1/10 GbE networks are used for three purposes: (1) con-
nectivity via a private network to a management controller node that can be used to
provision software via the xCAT cluster management software (2) connectivity to the
BMC (Baseboard Management Controller) that monitors physical state of computer and
can be accessed to remotely power on/off a server (3) connectivity to the internet. The
Spectrum Scale storage servers provide 1.2 PB of storage accessed via General Parallel
File System (GPFS). Each Firestone server is provisioned with Ubuntu 16.04 with the
4.4.0-31-generic kernel. A development stack including GNU toolchain, IBM® XL com-
pilers, CUDA 9.1 with driver version 387.36, and Kubernetes version 1.10 is deployed
across the cluster. The configuration of the testbed is summarized in Table 6. In all ex-

periments, the applications were executed into Docker containers.

3.3.2 GPU-based applications

The workload is composed of applications from Rodinia Benchmark Suite for Hetero-
geneous Computing [21]. We selected only the applications that most differs from each
other in regards to the resource usage pattern. To determine that behavior, we executed
the applications over remote GPUs using the HFCUDA library; a detailed description of
this library is provided later in Section 5.4.3. Next, we briefly describe the selected appli-
cations and their configurations used in the experiments; their performance breakdown
is shown in Figure 14. All the applications parameters were carefully defined to make
the applications as intensive as possible and with similar completion time as much as
possible.

B+TREE performs queries on large n-ary trees and is configured with an input of 10k

elements.
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Table 6: Testbed configuration

Version/Model
Processor IBM Power8
Sockets 2
Cores per socket 10
Hyper-threads 8
Frequency 3.4GHz
Ram 512GB

Network bandwidth | 10Gbps

GPU models NVIDIA K80

GPU interconnection | PCle

Docker version 1.10
CUDA 9.1
CUDA driver 387.36
Kubernetes 1.10

BACK PROPAGATION is a pattern recognition application that implements a single train-
ing step of a neural network. But, we extended it to have multiple iterations, and
we configured it with 100k input elements and 10k iterations.

GAUSSIAN implements the Gaussian elimination solver for a system of linear equations
and is configured with a generated matrix of 6k elements.

HOTSPOT transient thermal differential equation solver and is configured with both the
thermal and the temperature data with a matrix of 8k elements.

LAVAMD performs a step in a larger molecular dynamics simulation; we configured it
with 114 cluster nodes (called boxes).

NEEDLEMAN-WUNSCH (NW) is a bioinformatics application that runs a global opti-
mization method for DNA sequence alignment, and we configured it with gok

rows/columns and a penalty of 10.

PATHFINDER computes the path on a 2D grid with the smallest total cost and is config-

ured with 10 million columns, 200 rows and with the pyramid height as 100.

SPECKLE REDUCING ANISOTROPIC DIFFUSION (SRAD) is an image processing algo-
rithm that uses anisotropic diffusion to reduce noise in the image, and we config-

ured it with 10k iterations, a saturation coefficient of 0.5, 5k rows and gk columns.
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3.3.3 Network Performance Characterization of Jobs Using Disaggregated Resources
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Figure 14: Usage breakdown for different Rodinia applications running with HFCUDA, with and
without collocation with network workloads

Figure 14 shows the characterization of Rodinia applications, breaking down how
much time is spent on CPU and disk, network, and GPU (CUDA), and comparing how
each application behaves running in isolation and running it co-located with other CPU-
only network-intensive workloads. As expected, all applications increase the network
time when running with other workloads that use the network, as discussed as fol-

lows.

For the application b+tree, the percentage of time spent in the network communica-
tion in comparison with the whole execution time has increased from 0.2% to 1%. This
shows that although the network part in this application is less significant, b+tree still
suffer from performance variation when co-scheduled with a network-intensive work-
load. On the other hand, NW has an expressive impact on its performance, increasing
the percentage of time spent in network communication from 17% to 49%. Backpropa-
gation increased from 5% to 6%. Gaussian increased from 1% to 9%. LavaMD increased
from 2% to 3%. Pathfinder increased from 2% to 11%. And finally, Srad increased from
3% to 8%.

Therefore, this experiment gives us a global view of the network impact of network-
shared-induced interference of the collocation of an application using a disaggregated
GPU with a network-intensive application. These results show that the effect is different
depending on the Rodinia application, where each application has different characteris-
tics, some transfer more data to the GPUs, spend more time in computation in CPU, or

perform more computation in the GPU.
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3.3.4 Related Works of Performance Evaluation of Resource Disaggregation

While resource disaggregation confers greater modularity to a datacenter infrastructure,
permitting operators to optimize their deployments for improving efficiency and per-
formance, it introduces new challenges regarding the network and sharing-induced per-
formance interference. In this Section, we describe the related works in regards, the
network requirements for resource disaggregation, GPU virtualization and performance

interference as follows.

By the time of these experiments, the most related work was executed in the work of
[39]. This work extensively evaluated the network latency and bandwidth requirements
to determine the feasibility and limitations to enable disaggregation of different type
of resources, i.e., CPU, Memory, Disk, etc. In their experiments, they concluded, as ex-
pected, that the key requirement to enable disaggregation lays on low latency and high
throughput, but not all type of resources can already be disaggregated with current avail-
able off-the-shelf technologies. That is, they claimed that it is still tough to fully embrace
CPU-to-CPU (cache coherence) and CPU-to-memory traffic into the external network.
Their experiments also show that, in some specific cases, when the working set size of
an application is bigger than physical memory, memory disaggregation improves the
application’s performance. In their conclusions, they pointed out that some of the possi-
ble issues that a datacenter might face in the future are that the network must be able to
scale up to millions of disaggregated resources. This means that the network will be even
more critical to be improved in datacenters. However, they did not perform experiments
to quantify how extent the network congestion may cause performance interference in
the applications using a disaggregated resource; they left it for future works. Therefore,
as a complement to this work, our work performed experiments to measure the perfor-
mance impact that an additional network load can cause on different applications using

disaggregated resources, only for GPUs in our case.

Because of technology limitations and the difficult to access a high variate of expense
resources, our work has focused only on GPU disaggregation. In our experiments, we
have enabled software-based GPU disaggregation via an external library working as a
middleware between the application and the remote resource. The middleware inter-
cepts application’s calls to resources/drivers/run-times and transparently forwards the
calls to the remote node that hosts the corresponding disaggregated resource. Previ-
ously, some works have proposed, implemented and evaluated middleware to intercepts
CUDA calls, such as follows. Oikawa et al. [107] proposed DS-CUDA, a middleware to
use many GPUs in a cloud environment with lower cost and higher security. They pro-
pose a redundant mechanism to replicate the job execution in other GPUs to minimize
the impact of errors, which they claimed to be frequent in cloud environments. For the

39



40

PERFORMANCE CHARACTERIZATION OF VIRTUALIZED WORKLOADS

experimental evaluating, they implemented DS-CUDA to intercepts calls from CUDA
toolkit 4.1. Liang and Chang [85] proposed GridCuda: a software development toolkit to
develop CUDA programs and to aggregate GPU resources in computational grids for the
execution of CUDA programs. The runtime system of GridCuda can automatically co-
operate with the resource brokers of computational grids to discover and allocate GPUs
available for jobs according to the user’s resource requirements. The implementation
supports CUDA toolkit 4.0 and demands modifications in the applications’ code to be
implemented using their toolkit. Merritt et al. [93] presents Shadowfax that assemblies a
subset of all components from potentially different physical nodes in a cluster, allowing
applications to access these resources as if they were local, but with increased access
latencies whenever application code executes on a remote GPGPU. There is flexibility
in how GPU assemblies may be built. If end users set low-latency as a priority, assem-
blies may be limited to those that only use locally accessible GPUs, avoiding the use of
cluster-level interconnect. The prototype is implemented over Xen hypervisor 3.2.1 and
supporting CUDA toolkit 1.1. The rCUDA [121] work, at the time of this writing, is the
most popular middleware for GPU virtualization. It supports CUDA toolkit up to 9.1,
can be used by both VMs and containers, and has low communication overhead when
using InfiniBand networks. rCUDA differently from the other works requires users to
allocate available GPUs by themselves for the execution of their CUDA programs and
the code is proprietary. Finally, Xiao et al. [146] presented the VOLC, a middleware to
virtualized GPU for OpenCL calls.

It is worth noting that, these above mentioned middlewares can be understood that
they virtualize GPUs by enabling accesses to GPUs from virtual environment, e.g., from
virtual machines. Hence, we describe next the related works regarding GPU virtual-
ization but that does not support disaggregation. Gupta et al. [50] proposed GViM, a
mechanism for improving GPU-accelerated VMs for HPC applications. GViM offers low
overheads by carefully managing the memory, and device resources used the applica-
tions and guest OSs. They implemented a prototype over Xen hypervisor 3.2.1 and eval-
uated it with benchmarks using CUDA toolkit 1.1. Shi et al. [128] proposed vCUDA
that intercepts and redirects CUDA commands and data in VMs to a CUDA enabled
graphics device, performing real graphics computations into the virtual machine mon-
itor. They have evaluated the performance of HPC applications running on VM using
vCUDA, demonstrating that, in their scenarios, hardware accelerated high-performance
computing jobs can run as efficiently in a virtualized environment as in a native host.
The implemented a prototype over Xen hypervisor version 3.0.3 and supporting CUDA
toolkit 1.1. Montella et al. [98, 99] have proposed GVirtus that enables a completely
transparent layer among GPUs and VMs. Their approach supports CUDA toolkit up to
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9.1, OpenCL up to 2.1, memory management and scheduling that multiplexes back-end

processes spawned by the GVirtuS Backend driver.

Although, by the time of this thesis there were many libraries to enable GPU disag-
gregation we decided to implement our own library3, the HFCUDA, which is detailed
in Section 5.4.3. This is due to most of these works are not up to date, providing support
of only to old CUDA versions (e.g., older than 8.0 and we used HFCUDA with support
to CUDA 9.1), or only offer support for VMs. Additionally, even though, rCUDA sup-
ports the newer versions of CUDA, by the time of this thesis writing, their code was
proprietary, preventing us from extending it to support and incorporate new features,
if necessary, and cross-compiled it for different architectures. E.g., at this time that we
performed our experiments, rCUDA was only compiled to x86 architectures, and we
needed it compiled to PowerPC architectures. Also, we believed that creating a similar
library that could be open-source could benefit the research community and engage re-
searches and companies to further develop and improve the library in the future. There-
fore, we supported the implementation of the HFCUDA library that has been developed
by IBM.

Last but not least, there are also some related works that have evaluated the per-
formance variability of applications running on co-scheduled cloud environments. For
instance, losup et al. [64] assessed the dependability of cloud computing services by an-
alyzing long-term performance traces from two Amazon Web Services and Google App
Engine. Through a trace-based simulation, they evaluated the impact of the variability
observed for the studied cloud services on three large-scale applications, in scientific
computing, social networks, and social gaming. As expected, they concluded that the
impact of performance variability depends on the application and that several cloud
services exhibit high variation in the monthly median values, which indicates large
performance changes throughout the year. Leitner et al. [80] investigated predictability
of performance in public Infrastructure-as-a-Service (IaaS) clouds. They formulated hy-
potheses relating to the nature of performance variations in IaaS systems. They found out
that there are relevant differences between providers (Amazon Elastic Compute Cloud,
Google Compute Engine, Microsoft Azure, and IBM Softlayer). They also showed that
hardware heterogeneity, as often seen as a core property of public clouds, only exists
in Azure and a small number of Amazon’s EC2 instance types at the time of their eval-
uation. Similarly, they also measured that the effect of multi-tenancy on performance
predictability is not equally pronounced in all cloud providers. El-Khamra et al. [32]

Note that, the proposal and implementation of HFCUDA library is more a software engineering challenge
and less a research challenge, the concept and architecture was already defined in the current existing
related libraries, e.g., rCUDA. Therefore, in this thesis, our real research contribution relies on how to
efficiently use such type of library to improve resource-efficiency on datacenters via intelligent scheduling
techniques.
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evaluated and characterized runtime fluctuations for a given application kernel, repre-
senting MPI/parallel workloads on two different cloud offerings, Amazon’s EC2 and
Eucalyptus. Their results show that, the variability depends both on the application and
that different cloud providers have different performance variation, such as variation in
performance on a single core is more pronounced on Eucalyptus than on EC2. Kayiran
et al. [72] showed that GPU-based applications tend to monopolize the shared hardware
resources, such as memory and network, because of their high thread-level parallelism
(TLP), which makes much more complex the task to evaluate the performance impact
of co-located applications. They proposed via simulation, a mechanism that considers
both GPU core state and system-wide memory and network congestion information to
dynamically decide on the level of GPU concurrency to maximize system performance.
They showed that there is always a trade-off, and their mechanism performs a fair ap-
proach minimizing the impacts in both CPU and GPU-based applications. In their results,
if the CPU-based application has their performance prioritized, the system can improve
their performance in 24%, while penalizing on the GPU-based applications in 11%. They
also presented the results of applying a mechanism that fairly managed the performance
for both CPU and GPU-based application, improving the performance of all application
in 7%. Wu and Hong [144] have also evaluated and proposed a mechanism to assist
the co-location of CPU-only jobs with CPU-based jobs. In their studies, they discov-
ered that the lack of overlap between CPU/GPU computation is a significant obstacle
in the efficient utilization of the heterogeneous system. They analyzed the factors that
impact the job’s performance regarding resource isolation, CPU load, and GPU memory
demands, using MPI/CUDA benchmarks. The results indicate that, in some specific sce-
narios, when those factors are appropriately managed, the collocated CPU-only job can
efficiently scavenge the underutilized CPU resource without affecting the performance of
both collocated jobs. The experimental results showed that the system demonstrates 15%
gain in throughput and 10% gain in both CPU and GPU utilization. Finally, Delimitrou
and Kozyrakis [25] evaluated and characterized the performance interference between
co-located workloads in cloud environments. They proposed a mechanism based on col-
laborative filtering techniques to make online predictions of the performance impact in
reasonable time, along with a scheduling technique to improve the datacenter resource-
efficiency for CPU-based workloads.

Although these works have done a good job on defining the source of the perfor-
mance evaluation on cloud environments, they focus only on CPU-based workloads
running only on local resources. Our work instead analyzes the performance variation
of workloads using disaggregated resources, GPUs and also in collocation with other ap-
plications, as shown in this chapter and also shown in analyzes in other chapters.
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3.4 FINAL CONSIDERATIONS

In this chapter, we first evaluated and characterized the performance impact that appli-
cations can suffer from virtual environments. We showed that while OS containers offer
clear advantages concerning lightness and performance under several circumstances,
they still show some specific challenges from the infrastructure management perspec-
tive in regards to overheads, performance, isolation, and scalability. After that, we eval-
uated the impact of the underlying NUMA topology on intra-GPU communication that
is typically fully exposed to the applications because of virtual environments abstraction.
We illustrated that multi-GPU applications running over modern-NUMA architectures
present new challenges as they usually require inter-GPU communications. Our exper-
iments show an optimal resource allocation can reflect in a speed-up of up to ~1.30x.
Finally, we further evaluated the topology impact, but in the context of resource disaggre-
gation. We showed that because resource disaggregation introduces additional network
requirements into the application, because of accessing remote resources, the applica-
tion’s performance depends on both the topology and the current network load. In con-
clusion, these experiments put in evidence the necessity of a scheduling algorithm that is
aware of both the underlying topology and possible performance interference to provide
Quality of Service (QoS) for jobs. In the next chapters, we will introduce the proposed
scheduling algorithms that we created to address the discussed problems.
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ECENT advances in the theory of Neural Networks (NNs), new computer hardware
R such as Graphics Processing Units (GPUs), availability of training data, and the ease
of access through cloud have allowed Deep Learning (DL) to be increasingly adopted as
a part of business-critical processes in health care, autonomous vehicles, natural lan-
guage processing, and Internet of Things. Consequently, many online platforms that
offer image-processing and speech-recognition systems leveraged by trained DL NNs
are emerging to deliver various business critical services, such as IBM Watson [60],
Microsoft Project Oxford [97], Amazon Machine Learning [7], and Google Prediction
APT [45].

Training DL NNs is a computationally intensive process. An image-processing ap-
plication, for instance, might demand the analysis of millions of pixels in one of many
layers of the NN that takes several hours to days of computations [31]. A promising ap-
proach to increase the levels of efficiency in processing time and power consumption of
the training process is using one or more GPUs. Computing the NNs on multiple GPUs
further reduces training times, enables to handle larger amounts of data, and increases
the accuracy of the trained models. Hence, multiple GPUs has become a common prac-
tice for DL applications [31, 46]. Although training on multiple GPUs can deliver many
advantages, it presents new challenges in workload management and scheduling for ob-
taining optimal performance. The performance depends on both the GPUs and CPUs
connectivity on the physical topology, and the application’s tasks communication pat-

tern.

To illustrate this issue, consider Figure 1 which shows the connectivity topology be-
tween the GPUs and CPUs for two representatives DL cognitive systems. In these sys-
tems, multiple link technologies such as PCI-e and NVLink connect GPUs to each other
and GPUs to host CPUs. NVLink offers better bandwidth and lower power consump-
tion over PCl-e. In the figure, the IBM POWERS® system consists of four GPUs and two
CPUs with two GPUs per CPU socket. The two GPUs on each socket are connected with
dual lane NVLink to achieve up to 40GB/s unidirectional bandwidth, and each of the
GPUs is also linked to the socket with two lanes of NVLink. The two CPUs are con-
nected via the system bus. NVIDIA DGX-1 has 8 GPUs connected to two CPU sockets.
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The GPUs are connected over a hybrid cube-mesh topology: the 12 edges of the cube
are connected via single lane NVLink, and the diagonals of two of six faces are also
connected via NVLink. Each of the GPUs is also connected to a PClI-e switch so it can
communicate to a GPU that is not connected to it via the NVLink and communicate to
the CPU as well.

In these systems, communications can take place directly between devices, in the so-
called Peer-to-Peer model (P2P), or it should be routed through the main memory of the
processors containing the bus controllers. For example, in the case of DGX-1, the commu-
nication between GPU1 and GPUs will go over the PCl-e switches and the system bus
(such as quick path interconnect — QPI). As a result of these complex connectivity topolo-
gies between different GPUs, the application performance depends on which GPUs are
allocated for computations and how the GPUs are connected to each other (via PCl-e or
NVLink).

Additionally, this challenge becomes acute in shared systems, like cloud computing,
where multiple applications from different users share the GPUs on the system. At the
time of this thesis, it was uncommon to share a single GPU between two applications
so sharing here means different applications get different sets of GPUs in the same ma-
chine. Jobs in this environment have varied GPU requirements: some need a single GPU,
some need GPUs with NVLink, others require multiple GPUs, but communication re-
quirements are minimal, etc. In such environments, cloud scheduler should be able to
take the communication requirements of the workloads, consider the topology of the
system, consider existing applications and their GPU and link utilization and provision
the GPUs for the new workload that meet the workload requirements. This enables users
to get access to the resources necessary without worrying about the detailed topology
of the underlying hardware. Major cloud providers such as IBM, Amazon, Google, Mi-
crosoft, and others provide multi-GPU systems as a service today via virtual machines,
and most of them have systems with similar GPU topology described in Figure 1; so
that job scheduling and resource management becomes critical at the time of running
multi-GPU based applications on a shared system. Thus, those systems require the same
placement functionality proposed in this work to exploit the capabilities of modern cog-
nitive systems fully. Furthermore, both cloud and HPC systems can benefit from a GPU
topology-aware schedule.

In this thesis, we present an algorithm with two new scheduling policies for placing
GPU workloads in modern multi-GPU systems. The foundation of the algorithm is based
on the use of a new graph mapping algorithm that considers the job’s performance ob-
jectives and the system topology. Applications can express their performance objectives
as Service Level Objectives (SLOs) that are later translated into abstract Utility Functions.
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The result of using the proposed algorithm is a minimization of the communication cost,

reduction of system resource contention and an increase in the system utilization.

4.1 TOPOLOGY-AWARE SCHEDULING ALGORITHM

To overcome the problems discussed in the earlier section, we propose a topology-aware
scheduling algorithm that makes decisions based on the workload’s communication, the
possible interference from currently running workloads, and the overall resource allo-
cation of the system. The algorithm’s core is a graph mapping mechanism: one graph
represents the job’s tasks and their communication requirements, and the other graph
represents the physical GPU topology. The mapping algorithm produces the GPU al-
location that satisfies communication requirements of jobs while minimizing resource
interference and fragmentation.

4.1.1  Topology Representation

4.1.1.1  Job graph

This graph represents the communication requirements of tasks (i.e., GPUs). Vertexes
represent GPUs and edges represent communication, as illustrated in Figure 16. Each
edge has an associated weight denoting the communication volume, given by the aver-
age GPU-to-GPU bandwidth usage. During the mapping process, this weight is normal-
ized by the total available bandwidth in the physical machine, where a value equal to
#o represents no communication and higher than #o accounts for the communication
level.

4.1.1.2  Physical system topology graph

This graph represents the GPU topology based on the underlying hardware of a machine
or a set of machines connected by a network. An example of how different physical GPU
topologies are modeled is illustrated in Figure 15, which shows the graph of Figure 1’s
topology. The physical graph can be understood as composed of multiple levels, where
the first level is the network. Just after this level, there is the machine level, as represented
by the vertexes M{X}, where X is the machine ID. The next level is the socket level and is
represented as S{Y}, where Y accounts for the socket ID. Other levels can exist between
the socket and the GPU, such as levels representing multiple PCI-e or NVLink switches.
The last level represents the GPUs.
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A GPU vertex can be directly connected to the socket vertex, to an intermediate vertex,
and/or directly connected to other GPUs, which represents a direct NVLink connection
between the GPUs. Consequently, some GPUs will have multiple paths to communicate.
The path distance is given by the sum of the weight of the edges of the path.

In our implementation, the weights are defined based on the distances defined by
the Linux OS, which represents qualitative distances. In the prototype, we created the
graphs based on the weights determined by the Operating System and collected by us-
ing the hwloc library [14]. In this model, a higher level has a more significant weight to
represent longer distances. However, note that those weights can also be given by quan-
titative measurements, such as executing memory copies and measuring the bandwidth
or latency on different configurations. Both approaches, using qualitative or quantitative
weights, can provide a good overview of the system, but the second can confers higher
accuracy. An example of a graph representing the physical topology of a machine is
shown in Figure 15, where each level right after the GPU level has weight 1, whilst at

higher levels, such as the socket level, the edges have weight 2o0.
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Figure 15: GPU physical topology graph.

4.1.2  Job Profile

The profile includes not only the job’s communication graph but also a performance
model defining the level of interference the collocated jobs will suffer and cause. This
model is created from experimentation using historical data. Although any the perfor-
mance model for the job profile can be generated in several different ways, in this thesis,

we performed experiments injecting artificial load, using micro-benchmarks, onto the
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shared resources and measuring the interference, i.e., the impact on run-time of other
collocated jobs. As the experiments that we performed in Section 3.2. Therefore, to gen-
erate the offline job profile, we first execute the job in the best know performing scenario
to serve as the baseline, and then, we execute the job in other different configurations
and job collocation. With the measurements, we quantitatively define the performance
impact of the application running on a different scenario. If a not know scenario occurs,

we then use a default performance model to represent the scenario.

4.1.3  Objective Function and Constraints

Our objective function focuses on minimizing the tasks communication cost (t¢), ex-
ternal resource interference (I®), and resource fragmentation (w9). Formally, it can be

defined as follows:

tece It wd

cc b d

MIN X t—w‘f—OCI—W—f—OCW (1)
where a¢ + o® + a? = 1. All parameters t°, I* and w? are normalized against the
corresponding worst case t", ' and w" (i.e., the scenario with the lowest bandwidth, the
highest interference, and the highest fragmentation). For the minimum t°¢, we allocate
GPUs as close as possible once all constraints are met. For the minimum I°, we allocate

d

GPUs with the lowest possible amount of bus sharing. For the minimum w®, we map

GPUs from the most fragmented domains to increase the cluster utilization.

The constraints that we define in this thesis are the resource capacity as the number
of GPUs and the memory bandwidth. Formally, all possible solutions must meet the
inequality constraints defined as t9%* < p9"“ and tow < pbw, where t* and p* denote
the resource requirement of a given application and the available capacity of a given
node for the resource type x, respectively. Other constraints can be added for different

scenarios than the ones we show in our experiments.
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Step by step illustration of our proposed algorithm. The algorithm takes two graphs,
where one can represent the requested job’s GPUs and their level of communications
as weights and the other graphs the system physical NUMA topology. The algorithm
recursively performs several partitioning and mapping steps until there is a one to one
match between the graphs partitions.
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4.1.4 Placement and Scheduling Topology-Aware Algorithm

Our placement process is formally defined as a function () taking the job’s graph A and
the physical topology P as (A, P) and transforming them into the GPU list g. Where
|A| is the number of requested GPUs, |P| is the number of available GPUs, and |g| is the
number of allocated GPUs to the job, being |g| < [P|.

Our proposed algorithm is a loop-based approach that each iteration attempts to place
jobs while there are jobs in the waiting queue Q and available resources. Otherwise, the
scheduler sleeps until a job has finished or a time interval has expired. During each
iteration, the scheduler takes a job from Q and filters the available nodes, eliminating the
ones that do not satisfy the constraints (e.g., resources types, anti-affinity, etc.), creating
the graph P’.

More specifically, as described in the algorithm 1 and further illustrated in Figure 16,
our proposed algorithm takes two graphs, where one represents the requested job’s
GPUs and their level of communications as weights and the other graph the system
physical topology that connects the GPUs. The algorithm recursively performs several
partitioning and mapping steps until there is a one to one match between the graphs
partitions where the mapping steps are based on the utility function, as later defined in
Equation 2. In each recursive iteration, the algorithm firstly bipartite the physical graph,
and then, it attempts to map the job’s graph into one of the two partitions created in
the previous step. However, if the second graph does not fit into a partition, it is also
bipartite the second graph. Note that, before starting the process, the solution must be
feasible, it must exist enough resources to place the jobs.

We define two scheduling policies for the proposed algorithm. One policy is referred
to TOPO-AWARE-P which allows out-of-order execution of jobs and postpone the place-
ment that the job’s utility is lower than a threshold defined in the job’s profile. The other
policy is the TOPO-AWARE, where the jobs are placed as soon as they arrive without
consideration for future jobs.

Next, we further detail the algorithm. In the algorithm 1, the function DRB() is called
to traverse the physical graph P’ and define the GPU allocation. After that, if the utility
of the solution s does not satisfy the job’s requirements and the policy allows postpone-
ment, the job is added back to the waiting queue at the end of the iteration; otherwise,
the placement is enforced.

The function DRB(), outlined in Algorithm 2, is based on the Hierarchical Static Map-
ping Dual Recursive Bi-partitioning algorithm proposed by [33] and implemented by
[113]. Its asymptotic complexity is defined as O(|EA| * logz(|Vpl)) [114], where in our
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Algorithm 1 Topology-aware job placement algorithm

A; //application’s job communication pattern graph
P; / /physical topology graph
C; //communication cost array
Q; //jobs waiting queue sorted by their arrival time (oldest to newest)
function scheduler(P)
while True do
while availableResources(P) and Q # () do
A+ Q.pop()
P’ < filterHostsByConstraints(A, P)
s =DRB(A, P/, C)
if U(s) < A.minimal_utility and postpone = True then
postponed_list.add(A)
else
place(A, s)
end if
end while
Q.add(postponed_list)
sleep(interval) //wakeup after an event (e.g a job has finished)
end while
end function

Algorithm 2 Recursive Bi-Partitioning Mapping based in [33]
: function DRB(A, P, C)
if (|A| == 0) then
return nil //This partition is not a candidate
end if
if (|IP| == 1) then
return g < (P,A) //Map job’s task to physical GPU
end if
(P%, P1) = physicalGraphBiPartition(P)
(AO, CO AT, C1) = jobGraphBiPartition(A, PO, PT, @)
g® = DRB(A?, PY, C0)
g' =DRB(A!,PT, C)
12: return (¢°+g')
13: end function

RooR
R

case |[E| is the number of edges from the job’s graph and [Vp| is the number of a vertex
from the physical graph.

More specifically, during each recursive iteration of DRB() two other functions are
called, the first is physicalGraphBiPartition() to bi-partition the physical graph P, and
the second is the jobGraphBiPartition() to bi-partition the job’s graph A. The recursion
stops when A = (), returning (), or when PY only has one element, returning the mapping

pair (AY, PY), where y € {o,1} partitions. The C parameter is an array that contains the
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Algorithm 3 Utility-based job graph bi-partitioning
1: function jobGraphBiPartition(A, P, P!, O
2 while A # () do
3 task < A.pop()
4 (PO.t¢, P1.t°¢) +— getCommCost(task, P°, P!, C)
5: (PC.I°, P1.I®) - getInter(task, P%, P!, A profile)
6
7
8
9

(PO.w94, Pl.wd) « getFragmentation(P°, P!, A)
if (U(task, P%) > U(task, P)) and (constraints) then
A° add(task)

: else
10: A'.add(task)
11 end if
12: end while

13: return A°, PO.tcc, AT P gec
14: end function

communication cost of all GPUs, even the ones not into the sub-partition PY. C is used

to calculate the communication cost between sub-partitions.

Similarly to the implementation of DRB() in [113], the physical graph bi-partition is
performed with the well-known Fiduccia Mattheyses algorithm [38] that minimizes the
cut-sets in linear time. However, differently, from [113], we do not only account the
communication cost, but also the job’s preference using a utility function to bi-partition

the job’s graph, as shown in the function jobGraphBiPartition() outlined in Algorithm
3.

Algorithm 3 creates two sub-partitions A® and A!, where each partition can have part
or all the job’s tasks. Since the tasks in A® will be placed in P® and A' in P!, the function
evaluates for each task which sub-partition PY provides higher utility. Then, if P! gives

better utility and has enough available resources, the task is added to A%, Otherwise, the
task is added to A'.

For each task, Algorithm 3 evaluates each sub-partition via calculating the communi-
cation cost t, the workload performance interference I of co-scheduled jobs and the re-
source fragmentation w, using the functions getCommCost(), getInter() and getFragmentation(),
respectively. Then, with those parameters, the job’s utility is calculated using the utility

function U, which can be defined as the convex function in Equation 2.

1 1 1
u= (oc“€+ocbf+ocd—) (2)
w



4.2 PREMISES, LIMITATIONS AND OTHER DISCUSSIONS

Next, we describe how the U parameters are calculated. The communication cost (t)
is defined as the sum of the combinatorial shortest paths p between all GPUs within the

solution as:

Pl [Pl—i

t= Z Z Pij, Where 1 #j (3)

i=1 j=1

The level of interference (I) is measured using the job’s profile. As described in sec-
tion 4.1.2, the profile is composed by the completion time of the job running solo and
running with other jobs (or with artificial loads). Therefore, the algorithm measures the
average slowdown that the job suffers and causes in the currently running jobs. Thus,
the average interference is calculated as follows:

Zrunning_jostr]

. i1 (solo_time(j)/collocation_time(j))

(4)

running_jobs + 1

System fragmentation (w) is the average fragmentation of all sockets, which is calcu-

lated as follows:

sockets (free GPUs(socket; ) /totalGPUs(socket;))

_ i=1
©= sockets (5)

4.2 PREMISES, LIMITATIONS AND OTHER DISCUSSIONS

The algorithm behaves as a greedy algorithm since the assignment of a task to a physical
GPU is never reconsidered. Hence, we perform a best-effort approach to find the optimal
solution. The algorithm preferentially places as many tasks as possible for a job in the
same node. If a job wants to get all its tasks spread across different nodes instead, it
needs to define anti-collocation policies for its tasks, and in response, they will be placed
on different nodes. The easiest way to define that is by creating multiple disconnected
applications graph, where each graph will represent a set of tasks that will be dis-jointly
placed on different nodes. Also, if a job does not support multi-node, it must be defined
with a single-node constraint in the profile. Moreover, if a job cannot be placed, its
placement is postponed to the next iteration of the scheduler. To avoid starvation and
enforce fairness as much as possible, the job waiting queue is sorted by the job’s arrival
time. Thus, the oldest jobs have priority to be placed.

The approach that we used to quantify the performance impact of collocated appli-
cations to generate the performance impact is very computationally costly. It requires a

combinatorial collocation of a set of known applications over many different scenarios.
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While this approach is highly accurate, it might not be realistic to perform it in a large
scale cloud scenario. Therefore, a promising approach to overcome that limitation is by
using advanced prediction models, such as using decision tree [37, 118] or statistical
clustering [26, 56, 87]. These approaches can be used to predict the performance of un-
known jobs using the models from known applications, which can enlarge the range of
the analysis and improve the accuracy of the system. We believe that by using such a
prediction model, our approach can be easily adopted in current cloud environments.
But, note that, the main goal of our approach is to minimize the communication cost
between GPUs, and the consideration of the sharing interference is to enable efficiency
in the system further. That is, in the case that the interference cannot be quantified, the
algorithm can still work without it, but with slightly lower quality decisions. However,
the system will still delivery high-quality decisions to improve the resource-efficiency

than comparing with a topology agnostic schedule.

Additionally, by the time of this thesis, it was uncommon to share a single GPU be-
tween multiple applications, even though, there were some libraries to help to enable
that, such as Multi-Process Service (MPS) [101]. At this time, MPS had harsh limitations
preventing its usage on Cloud environments. For instance, in pre-Volta NVIDIA GPU
architectures (e.g., Pascal and Kepler), the process sharing the GPU did not have iso-
lated address spaces, that is, an out-of-range write in a CUDA Kernel could modify the
memory state of another process without triggering an error. In the experiments within
this thesis, we had only access to GPUs with pre-Volta architectures. Therefore, we did
not enable GPU sharing with multiple applications. Moreover, even though, the new
NVIDIA Volta architectures implement now fully isolated GPU address spaces, there
are still limitations to turn the sharing GPU a reality in a cloud environment. That is, a
GPU exception generated by any client will be reported to all clients, and a fatal GPU
exception triggered by one client will terminate the GPU activity of all clients [101]. Ad-
ditionally, the CUDA run-time still does not expose in its API mechanisms to enable the
control to process preemption, which can efficiently allow time-sharing of processes and
prevent starvation of big kernels. Thus, when these limitations are exceeded, the model
can be extended to enable further resource-efficiency by time-sharing GPUs between

multiple applications.

4.3 PROTOTYPE EVALUATION

In this section, we present a prototype implementation to evaluate the proposed topology-
aware scheduler algorithm. This experimental evaluation was performed on a single

machine with characteristics described in section 3.2.2 and summarized in Table 5.
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While the focus of this work is on learning workloads, any workload can be submitted
in the prototype. Also, there is no need to change how applications are implemented to
use the scheduler. In the future, we plan to test the proposed algorithm in a cluster
manager framework like Kubernetes [44] or Mesos [53], similar to the enhancements
described in the related work [148].

4.3.1  Prototype Implementation

We implemented the prototype for the scheduler using C and Python. The program
continuously loads JSON files containing the necessary information about the submitted
jobs. To place a job, the system creates the job’s manifest, filling it with the information
received from the JSON file, and uses that information to determine the placement of
the job. If the algorithm decides to place the job, it enforces the decision of running the
job on the given machine. Until the job finishes, the system keeps track of the execution
of the job while collecting statistics including the ending time.

For the placement, the system captures various performance metrics. The DRAM
memory bandwidth is calculated using the POWERS® performance counters described
in [1], which are accessed using the library Perfmonz [115]. To calculate the NVLink
bandwidth (which is shown in most of the experiments), we access the NVIDIA CUDA
driver API using the command nvidia-smi nvlink -i $gpu_id that returns the trans-
mitted bytes from each link. Then, the algorithm calculates the NVLink bandwidth usage
of CPU-to-GPU or GPU-to-GPU communication based on their link connections. In all
experiments, the applications were executed into Docker containers.

For discovering the topology during the system startup, it executes the nvidia-smi
topo -matrix command#* to create a matrix of GPUs, and the to include socket distance
and CPU locality in the model, the command numactl --hardware is executed. For en-
forcing the decisions, before running an application, the system first defines the order of
the GPU ID’s by exporting the parameter CUDA_DEVICE_ORDER=PCI_BUS_ID, and then, for
each application, it exposes only the specified GPU list from the scheduler decisions us-
ing the parameter CUDA_VISIBLE_DEVICES=$gpu_list. For preventing performance vari-
ability related to NUMA remote memory access, the applications with only GPUs in the
same socket are bound to the socket using the command numactl.

To feed the performance prediction model, the application profiles are experimentally
generated, defining the optimal resource allocation (best-performing) and some possible

sub-optimal resource allocation (worst-performing) for both solo (when the job runs

4 The system targets only NVIDIA GPUs. But, for detecting GPUs from other vendors another library can
be used, such as the hwloc library [14].
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alone with no other jobs) and co-scheduled modes, as previously shown in Section 3.2.
The profile then contains the g5th percentile of the execution time from five executions of
each workload within different scenarios. A simple, but effective performance prediction
approach is then performed using the profiles, characterizing the workload slowdowns
for various configurations; we plan to extend it with more robust statistical techniques in
the future. Since Caffe framework is based on data-parallelism model, all GPUs perform
similar work, and then, they have a similar amount of communication between each
other. Therefore, we define in the workload graph all GPUs communicating with each
other with the same weight. However, for different batch sizes, different weights are
used, ranging from #4 to #1, where #4 represents the smallest and #1 the largest batch

size.

4.3.2 Prototype Evaluation

We implement two well-known greedy approaches: First Come First Served (FCFS) with
a FIFO queue, and Best Fit (BF) performing bin packing (i.e., allocating first the GPUs
from highly used domains) and compare them to our proposed placement algorithm
with the two scheduling policies: TOPO-AWARE and TOPO-AWARE-P. Finally, we eval-
uate the prototype in a cloud environment, where jobs have varied GPU requirements:
some needing a single GPU, some needing more than two GPUs, some requiring P2P
to be fully satisfied, others needing multiple GPUs, but communication requirements
are minimal. Additionally, as in a cloud environment, the jobs concurrently share any

machine’s resources.

In all experiments, we used the same workload as used and further detailed in Section
3.2.

Config. Jobo | Job1 Job2 Jobs Jobs Jobs

DL NN A G A A A C
Batch Size 1 4 1 4 1 1
Num. GPUs 1 1 1 2 2 2

Min. Utility 0.3 0.3 0.3 0.5 0.5 0.5

Arrival Time | 0.51s | 15.035 | 24.36s | 25.33S | 29.33s | 29.89s

Table 7: A=AlexNet, C=CaffeRef, G=GoogLeNet

4.3.2.1  Description of the experiment

Our first experiment is a simple, easy-to-verify scenario, with five jobs dynamically shar-

ing the machine described in Section 3.2.2. The workload configurations are summarized
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Figure 18: [Simulation] Behavioral description of the simulation performing a similar experiment
to that shown for the prototype in Figure 17. Figures (a) to (d) present the time line
of the placement decisions of each evaluated algorithm. A colored box can be on one
or more GPU IDs, which represents the GPU allocation for a job. It also presents for
each configuration the average job utility. Figures (e) and (f) present the slowdown
in comparison with the ideal scenario and the jobs are ordered from worst to best-
performing.
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in Table 7. Jobs” arrival time follows a Poisson distribution configured with A = 10 (i.e,,
the arrival of ten jobs per minute), except the Job #o which arrives at time t = 0.51s to
introduce the initial load in the system. We set equal weights (0.33) to the parameters of
the utility function in Equation 2 to provide equal consideration for communication cost
and resource interference and fragmentation. Small batch sizes represent a reliable ex-
ample of NNs that requires high GPU communication (especially for NNs using model-
parallelism). Hence, we conduct this experiment using small batch sizes.

4.3.2.2  Prototype experimental results

The results are shown in Figure 17. In the beginning, only Job #o is being placed. And
since it requires only one GPU and there is no other job to cause interference, any place-
ment decision fully satisfies its requirements. At the 15" second, Job #1 arrives, and the
profile indicates that it suffers interference from Job #o0. Thus, the overall system utility
will be lower if Job #o0 and Job #1 are collocated in the same CPU socket. On the other
hand, TOPO-AWARE-P prevents undesirable collocation; it places Job #1 on a different
socket than Job #o0. When Job #3 arrives, it cannot be placed since it requires more GPUs
than available. So Job #3 is only placed after Job #o has finished, %70th second. However,
at this point resource availability is non-uniform: the available GPUs are in different

sockets.

Here is where the TOPO-AWARE-P differs from the other approaches. If Job #3 re-
ceives the two free GPUs, one from each of the sockets, this will result in cross-socket
communication over the CPU bus and results in lower performance. For this reason, the
TOPO-AWARE-P delays the job placement to until it can allocate co-located GPUs, that
is, when these GPUs become available. Any job with the utility lower than a threshold
defined in the job’s profile will have the placement postponed to the next scheduler
iteration. As a result, the TOPO-AWARE-P policy performs better in regards to job’s
execution time than the other policies, as shown in Figure 17 (d) vs Figures 17 (a)-
(c). For example, Job #3 had the completion time as ~120s for the scenario with the
TOPO-AWARE-P (Figure 17 (d)), and ~240s with the other algorithms. Note that the
performance improvement is mainly related to enabling P2P over the NVLink interface
to Job #3. Only the TOPO-AWARE-P provides P2P for jobs as shown in Figure 17 (d), in
all the other scenarios the GPU communication is routed through the processor’s mem-
ory, which leads to higher latency, and lower bandwidth because of additional memory
copies and potential contention of the shared bus.

The quality of the placement is highlighted in Figure 17 (e) and (f). Both figures
show the job’s slowdown compared to the ideal scenario, where the job has the fastest
execution time. Also, both figures sort jobs from worst to best-performing. While Figure
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17 (e) focuses on showing the job slowdown strictly related to the placement decision,
Figure 17 (f) shows the slowdown also considering the waiting time in the scheduler’s
queue. The results indicate that TOPO-AWARE-P is the most efficient algorithm. For
instance, with TOPO-AWARE-P, jobs #1, #3, and #4 have no slowdown compared to the
best-performing scenario, while these same jobs suffer ~50% slowdown when the other

algorithms are making placement decisions, as shown in Figure 17 (e).

Intuitively, delaying jobs gives the impression that the queue waiting time might end
up being longer. However, the results surprisingly show that TOPO-AWARE-P has a
lower waiting time for some jobs than other algorithms, as shown in Figure 17 (f). This
happens because having better knowledge of the requirements enables the scheduler to
prevent performance interference, and then some jobs will execute faster, opening space
to place other jobs sooner. This can also be seen in the job makespan (cumulative execu-
tion time) of the algorithms. BF finishes in ~461.7s, FCFS in ~456.2s, TOPO-AWARE in
~454.2s, and TOPO-AWARE-P ~356.9s. Hence, TOPO-AWARE-P affords a speedup of

~1.30X, ~1.28X, and ~1.27X, respectively.

4.4 TRACE-DRIVE SIMULATION EVALUATION

Based on the logs from the prototype described in Section 4.3, we developed a trace-
driven simulation to evaluate the scheduling algorithm in large shared clusters. In this
section, we first describe the main characteristics and configuration of the simulation.
And second, we validate the simulation and perform experiments with a larger number

of jobs and machines.

To evaluate the scalability, the proposed algorithm was executed to handle trace-
driven simulated data at different scales of the system. The traces are generated by
performing multiple experiments on the previously described prototype. Afterward, the
trace files are parsed and transformed into a format compatible with the simulator, cre-
ating application and resource usage profiles. For generating the workloads, a Poisson
distribution with arrival rate A = 10 is used. To create the job’s configuration, we used
a Binomial distribution generating integer values between o and 3 to define the batch
size, where o=tiny, 1=small, 2=medium, and 3=big. And also a Binomial distribution
generating integer values between o and 2 to determine the NN type, where o=AlexNet,
1=CaffeRef, and 2=GoogLeNet. Additionally, all simulated machines are homogeneous
and follow the hardware topology described in Section 3.2.2. All the jobs can run in the

machines when there are enough resources.
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4.4.1 Validation of The Simulation

We validate the reliability of the simulation system by comparing it with the same sce-
nario as in the prototype experiments in Section 4.3. The simulation results are shown
in Figure 18. The algorithms behave very similarly in both the prototype and the simu-
lation, despite some expected small differences, which are acceptable when considering
the standard deviations.

4.4.2 Large-Scale Cluster Simulation and Results

To verify the behavior of the proposed algorithm in a large-scale environment, we use

the trace-driven simulation in two different scenarios as follows.

4.4.2.1 Scenario 1: 100 jobs and 5 machines
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Figure 19: Scenario 1: 100 jobs and 5 machines. Job’s slowdown relative to the best performing
configuration.

We start the first experiment with a few machines and jobs. The results in Figure 19
(a) show that the TOPO-AWARE-P policy performs slightly better than the other; it does
not violate the job’s SLO. The other strategies introduce similar slowdowns in general,
except FCFS that adds slowdown in more jobs.

The performance difference between the placement strategies is more evident when
analyzing the waiting time of jobs in the scheduling queue, as illustrated in Figure
19 (b). Both TOPO-AWARE and TOPO-AWARE-P clearly outperform the greedy algo-
rithms.

The lower performance of the greedy algorithms is explained by the fact that a sub-
optimal placement decision can also limit the possible placements of other jobs. If a
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fragmented machine is left with only one GPU and the waiting jobs require more GPUs,
the jobs must wait to be placed until enough resource becomes available. While less
expressive, TOPO-AWARE-P performs better than only TOPO-AWARE. The second still
presents slowdown in some jobs, and the former does not, since it allows out-of-order
execution of jobs. TOPO-AWARE-P results in better performance because it does not
schedule jobs to resources that do not fully satisfy its QoS.

4.4.2.2  Scenario 2: 10k jobs and 1k machines
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Figure 20: Scenario 2: 10k jobs and 1k machines. Job’s slowdown relative to the best performing
configuration.

The results in Figure 20 show that the FCFS algorithm has the worst performance, fol-
lowed by BF. In summary, the new algorithm significantly and consistently outperforms
the greedy algorithms in achieving the least slowdown and in minimizing the waiting
time. The new algorithm’s ability to achieve this is mainly due to its utility-based heuris-
tics and the strategy that does not place jobs when the placement is not efficient from a
communication perspective.

4.4.2.3 Owverhead

The average time that the algorithms spend when evaluating the placement decision in
scenario 2 is ~3s for TOPO-AWARE and TOPO-AWARE-P, while for FCFS and BF it is
~0.45s and ~20.44s respectively. Although the proposed algorithm has higher overhead,
that is, only 3 seconds on average, it is still fast enough for scheduling learning workload
on a cluster with high demands.

The proposed algorithm has a higher execution time than the greedy ones mainly
because it requires more computation to provide a better decision. Note that in the
worst case, our proposed algorithm will evaluate O(|Vp|) * O(|Ea| * logz(|Vpl)), where the
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tirst © represents the host filtering phase and the second represents the phase to make
the placement decision. Where the |E| is the number of edges from the job’s graph and
|Vp| is the number of a vertex from the physical graph. The other greedy algorithms have
the asymptotic complexity as O(|Ea| + [Vp|) since every machine will be explored in the
worst case.

4.5 RELATED WORKS

As we discussed in Section 3.2.5, over the last years, there have been various research
efforts to optimize the performance of task placement on NUMA architectures. In Sec-
tion 3.2.5, we have only focused on the description of the works regarding the perfor-
mance evaluation of applications running on such environments. In Section 3.3.4, we
have described the related works in regards to the performance evaluation of co-located
applications. In this section, we detail the works that have proposed scheduling tech-
nique for tuning the performance of applications considering the underlying node topol-
ogy.

Many previous researchers have been proposing heuristics for graph mapping such
as graph contraction [10], and graph embedding [135], [143], [89], [137] and recursive bi-
partitioning algorithm [33] that has been implemented in the software package SCOTCH
[113]. Note that, the SCOTCH library implements many mapping algorithms, and one
of them is the DRB, the algorithm that we have extended in our approach. [419] evalu-
ated the performance of many parallel graph partitioning algorithms; they compared
ParMETIS and PT-SCOTCH (parallel SCOTCH) frameworks. Their results show that
for the majority of the experiments, PT-SCOTCH had better performance. While those
methods have been proved to be an effective approach, most of them are contiguous
with static allocation approaches leading to resource fragmentation and focus only min-
imizing the communication cost, not considering the other characteristics, such as the
resource sharing-induced performance interference.

Topology-aware mapping has also been extensively studied in the context of CPU-to-
CPU communications. In [120], the authors propose a topology-aware mapping mecha-
nism for two of the MPI topology functions, but they do not consider the GPU-to-GPU
communication topology. The CPU communications are extracted via profiling the appli-
cation, and an undirected graph structure is generated to represent it with weighted ver-
tices and edges. In addition, a weight is assigned to each vertex of a process, and edges
between processes to represent the computation and communication requirements, re-
spectively. After that, the actual mapping is performed by the SCOTCH library. Mércier
and Jeannot [92] modify the implementation of functions in MPICH2 to be topology-
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aware with reordering of processes. In this implementation, one process on each multi-
core node extracts the architecture of that node and sends it to a global root process. This
work, similarly to our work, represents the whole hardware architecture of the system
in a tree structure considering the hierarchical architecture of the NUMA nodes. The au-
thors implemented an algorithm called TreeMatch that performs the mapping of a graph
describing the jobs communication pattern and the graph that represents the physical
topology. With a bottom-up approach, the algorithm works recursively on each level
of the memory hierarchy in such a way that the cost of remaining communications is
minimized. The algorithm performs the graph mapping algorithm using the SCOTCH li-
brary. Kindratenko et al. [75] proposed a CUDA wrapper that works in sync with Torque
batch system. The wrapper overrides some CUDA device management API calls to ex-
pose GPUs to users, taking into account the heterogeneous clusters with machines with
different CPU-GPU bandwidth. The work that is more related to our work is the work
in Faraji et al. [35] that evaluated the performance of difference intranode GPU com-
munication channels and proposed a topology-aware GPU selection scheme to assign
GPU devices to MPI processes based on the GPU-to-GPU communication pattern and
the physical characteristics of a multi-GPU machine. With profile information from the
MPI application, the algorithm allocates GPUs performing a graph mapping algorithm
using the SCOTCH library.

However, while the approaches of these previous works effectively minimize the com-
munication cost between GPUs and CPUs, they do not consider the possible perfor-
mance interference from co-scheduled jobs as we do in our work. Moreover, they only
implemented topology-aware GPU selection in the task-level scheduling (e.g., extending
the MPI runtime), in contrast, we proposed and implemented a cluster-level scheduling
algorithm. Our approach has the advantage of having the global view of the system,
making decisions based on all the jobs running in the clusters and not only for the tasks
of a specific application. In addition to that, these works only conducted experiments us-
ing synthetic micro-benchmarks, and we performed our work using a macro-benchmark

that emulated real DP applications using real data.

In addition, there exist various previous works that evaluated and proposed schedu-
ling approaches to mitigate performance interference for co-scheduled jobs. Verma et
al. [140] propose a power-aware placement algorithm that considers the performance
impact of co-location of heterogeneous applications with small and large memory foot-
print. For example, some applications that the total working set size is smaller than
the physical machine’s CPU cache size will degrade in performance if they are packed
with large applications because of thrashing in the CPU cache. Also, some applications,
whose working set does not entirely fit into the cache, will be impacted by other appli-

cations on the same machine. The work investigated the aspects of modeling the power
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consumption of applications and the impact of platform virtualization, and then, used
the generated models to make decisions with the proposed algorithm.

Other works proposed scheduling algorithms to avoid problematic collocation within
the same machine. The work [105] proposed a system called DeepDive that transpar-
ently identifying and managing performance interference between virtual machines co-
located on the same physical machine in Infrastructure-as-a-Service cloud environments.
DeepDive transparently inspects low-level metrics from hardware performance coun-
ters and hypervisor statistics about each VM. It has an analyzer that clones the VM
on-demand and executes it in a sandboxed environment. A proxy duplicate the client
request to also send it to the cloned VM. The analyzer then uses the low-level measure-
ments to estimate the performance of the original and cloned VMs. In the absence of
interference, the analyzer updates the repository with the new information, otherwise,
it calls a placement-manager to determine a preferable change in the VM placement
that mitigates the interference. That is, it migrates the VM to eliminate or reduce per-
formance interference. Delimitrou and Kozyrakis [27] proposed a cluster management
system called Quasar that use collaborative filtering techniques to predict the possible
performance impacts of co-located jobs to determine optimal scheduling and placement.
Quasar monitors workload performance and adjusts resource allocation and assignment
when needed. The results show that the proposed system improves resource utilization
by 47% in an experiment with 200 servers in the Amazon EC2 cluster, while meeting
workload’s performance constraints. Nathuji et al. [103] proposed a cluster management
system Q-Cloud that tunes resource allocations to mitigate performance interference ef-
fects on cloud systems. Q-Cloud allows applications to specify multiple levels of QoS as
application Q-states. With such information, Q-Clouds dynamically provisions underuti-
lized resources to enable elevated QoS levels, thereby improving system efficiency. Their
experimental results show that in their analysis Q-Clouds could improve the system

utilization up to 35%.

Additionally, other works proposed scheduling algorithms with best-efforts to mini-
mize the resources interference on co-scheduled CPU-based applications via performing
low-level resource partitioning. For example, Qureshi and Patt [119] proposed a utility-
based cache partitioning (UCP) mechanism partitions a shared cache between multi-
ple applications depending on the reduction in cache misses that each application is
likely to obtain for a given amount of cache resources. Their proposed approach has a
lightweight monitoring mechanism that requires less than 2kB of storage. The informa-
tion collected by the monitoring circuits is used by a partitioning algorithm to decide
the number of cache resources allocated to each application. Their experimental eval-
uation shows that UCP can improve the performance of a dual-core system by up to

23% and on average 11% over LRU-based cache partitioning. Gundu at al. [47] proposed
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a memory bandwidth reservation technique in the cloud to avoid information leakage
in the memory controller. This work, differently from prior works that implemented
temporal partitioning, proposes and evaluates bandwidth reservation. Via simulations,
they show that while temporal memory partitioning can degrade performance by 61%
in an 8-core platform; their bandwidth reservation only degrades performance by un-
der 1% on average. Finally, Lo et al. [88] a feedback-based controller that dynamically
manages multiple hardware and software isolation mechanisms, such as CPU, memory,
and network isolation (using containers, cache partitioning and network traffic control
mechanisms), to ensure that the latency-sensitive job meets latency targets while max-
imizing the resources by co-locating best-effort tasks (i.e., Batch analytics frameworks).
In their experimental evaluation, using production latency-critical and batch workloads
from Google, they demonstrated average server utilization of 9o% without latency vio-
lations across all the load and colocation scenarios that we evaluated, where the typical

utilization was between 10% to 50% without they proposed system.

These previous works describe the performance bottlenecks for CPU-only applica-
tion and/or providing best-efforts on mitigating workload performance interference of
co-schedule jobs. However, they neither directly show the performance constraints of
mixing multiple GPU-based learning workloads, nor do they propose a GPU-topology-
aware scheduling algorithm as we do. Therefore, in this thesis, differently from the
above-related works, we further analyzed and mitigated some possible performance
problems, and leverage P2P communication for multi-GPU based learning workloads
in a co-scheduled environment.

4.6 FINAL CONSIDERATIONS

Multi-GPU applications are becoming popular because they can deliver performance
improvements and increased energy efficiency. But at the same time, they present new
challenges as they usually require inter-GPU communications. Such communications can
take place directly between devices (with P2P) or may need to be routed through the pro-
cessors’ main memory, depending on the system topology and the resource allocations
for the existing jobs.

In this thesis, we presented a new topology-aware placement algorithm for scheduling
workloads in modern multi-GPU systems. The foundation of this approach is based on
the use of a new graph mapping algorithm built from application objectives and the
system topology. Applications can express their performance objectives as SLOs that
are later translated into abstract utility functions to drive the placement decisions. The

algorithm has been validated through the construction of a real prototype on top of an
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IBM POWERS® system enabled with 4 NVIDIA Tesla P1oo cards, as well as through

large-scale simulations.

Our experiments show that our algorithm effectively reduces the communication cost
while preventing interference related to resource contention, mainly for the scheduling
policy that allows postponing the placement of unsatisfied jobs. In particular, with this
policy, the performance impact of minimizing the GPU communication cost and avoid-
ing interference reflects in a speedup of up to ~1.30x in the cumulative execution time,
and no SLO violations. Finally, a trace-driven simulation of a large-scale cluster reveals
that compared with greedyapproaches our algorithm produces solutions that satisfy
more jobs, minimizes the SLO violations and improves the job’s execution time even

in a heavily loaded scenario.

Although in the simulation we could experiment with heterogeneous machines to
show the impact of different NUMA typologies, this was not the goal of this experiment;
we only aimed to validate the system based on the physical machines used in the pro-
totype experiment. In addition, by the time of this experiments, heterogeneity in cloud
providers was still not common as investigated in [80] (e.g., only found in Microsoft
Azure and a small number of Amazon EC2 instance). Therefore, we leave the evaluation
with heterogeneous machines (composed of different NUMA topology and number of
GPUs) for future work.
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RADITIONAL datacenters consist of monolithic building blocks that tightly integrate
T a small number of resources (i.e., CPU, memory, storage, and accelerators) for com-
puting tasks of the system software and applications. The main flaws of such server-
centric architecture are the dearth of resource provisioning flexibility and agility. In par-
ticular, the resource allocation within the boundary of the mainboard leads to spare
resource fragmentation [39, 71, 112]. To illustrate this issue, consider Figure 3 (a), where
two CPU-bound jobs are saturating 100% of processor cores from node #1, and the GPUs
available in this node cannot be allocated to other jobs due to lack of processing resources.
In such a scenario, even though a clever orchestrator could assign a workload to a proper
compute node, resource fragmentation still exists because a waiting job cannot allocate
the GPU resources from node #1. However, if the idle GPUs from node #1 could be

remotely exposed to node #2, then the waiting jobs could start running.

Determining the best-performing resource provisioning and job scheduling, in most
of its relevant forms, is known to be NP-hard and considering the possibility to allocate
disaggregated resources, further complicates this task. Furthermore, the optimality of
the placement depends on the performance variability related to the topology (i.e., the
topology is composed by both the resources that are local in the machine and the disag-
gregated ones that are accessible over a heterogeneous network topology) and the likeli-
hood of sharing-induced performance interference because of co-scheduled jobs. There-
fore, an ideal orchestrator would efficiently and transparently allocate disaggregated
resources to maximize the cluster utilization while employing best-effort approaches to
prevent violations of the applications” Service Level Objectives (SLOs) (e.g., prevent the

completion time of an application overpass a given threshold).

To that end, in this thesis, we present DRMaestro, a flow-network-based framework
that orchestrates disaggregated resources on cloud systems to help meet SLOs while
maximizing the system utilization. The main idea of DRMaestro is to automatically dis-
cover and allocate disaggregated resources in the cluster for a job as if the resources are
attached to the local machine where the job is placed. From the job standpoint, it is only
using local resources. For that reason, building DRMaestro poses interesting research

challenges, such as, how to: 1) enable transparent resource disaggregation, 2) automati-
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cally control and determine the optimal placement with an online scheduling approach,
and 3) cope with sharing-induced performance interference because of co-scheduled
jobs. To the extent of our knowledge, our work is the first one to apply a flow-network
model to solve the scheduling and placement problem considering resource disaggrega-

tion.

Enabling transparent resource disaggregation is our first challenge because of the
complexity of configuration and technology constraints. Disaggregation can be provided
either by software or hardware-based approaches and in both cases, the orchestration
system must to start new services and configure middlewares and/or drivers for each
application that will have the disaggregated resource allocated. The application must not
be aware that it is accessing a remote resource and all the steps to configure it must be
automated. Additionally, not all type of resource can be disaggregated since disaggrega-
tion poses additional overheads. When the access latency and bandwidth of the remote
resources become noticeable, there might be a significant performance penalty. Disag-
gregated GPU, FPGA, and SSD are much less performance demanding than CPU and
DRAM as they are likely to have their local memory, and will often enlist in computa-
tions that last many milliseconds. Thence, in this work, we focus on GPU disaggregation,

but the proposed method can be applied to any resource.

Optimal placement is challenging because the requirements of performance, fairness,
and cloud provider often conflict. The optimality conditions for the problem are the
equilibrium of the conditions. Hence, the goal of our orchestrator is to minimize the
placement and scheduling cost for a set of jobs while maximizing the cluster utilization.
For doing so, our proposal generalizes the algorithm in [41, 65]. DRMaestro first trans-
lates the job’s SLO (e.g., completion time) into abstract utility functions and cost models
that will dictate the job’s level of satisfaction with the placement decisions. Second, both
the job and cluster resources are expressed as graphs to model the problem conveniently.
Third, the algorithm employs a graph mapping technique based on flow-network disci-
plines to determine optimal placement, as detailed in Section 5.3.

Mitigating sharing-induced performance interference is important to be considered.
While resource disaggregation is a promising approach to increase resource efficiency,
it comes with the price of possibly introducing an inherent performance interference.
Remote network, CPU and memory usage can cause interference in a set of sensible
applications. Thus, our last challenge is dealing with the inherent performance inter-
ference of collocated applications in a shared environment. We do this by off-line and
dynamically collecting historical runs to derive the job interference when collocated with
other jobs within the same node and over network overloaded conditions. Then, based
on a simple yet effective classification, we mitigate the interference by preventing the

collocation of critical applications when possible. We detail this in Section 5.3.
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We validate our design implementing DRMaestro over Kubernetes [123] as shown in
Section 5.4, and running representative applications in a cluster with 4 POWERS® ma-
chines with 4 GPUs each, as further discussed in Section 5.6. The applications used are
based on the Rodinia Benchmark Suite [21]. These applications stress both computa-
tional throughput on CPUs and GPUs, and we use them to demonstrate the extensibility
of DRMaestro and to evaluate the efficiency and scalability of our proposal. We then
perform several faithful trace-driven simulations with traces from the testbed and show

that our solution provides higher cluster utilization and lower SLO violations.

5.1 MOTIVATION AND BACKGROUND ON DISAGGREGATED RESOURCES

Although there is a vast range of available cluster resource managers, even the widely
deployed ones such as Mesos [53], Kubernetes [123], YARN [138], and Borg [139], to
the best of our knowledge, they do not provide native mechanisms for orchestrating
disaggregated resources transparently to applications. More specifically, they lack an in-
telligent scheduling algorithm that considers the possibility to allocate disaggregated re-
sources when there are not enough resources in a server. And, they also have the absence
of mechanisms to transparently enable resource disaggregation like launching software-
based middlewares and injecting the necessary information into the application to work
with the middlewares or the necessary drivers to control the racks with hardware-based
resource disaggregation. Additionally, most of the available resource managers perform
only a task-by-task placement instead of a batching placement, restricting the decisions
due to not having further consideration of waiting jobs. For each job, they typically first
verify the feasibility to identify a suitable machine (i.e., if it has enough resources), then
scores them according to a preference order, and finally enforces the placement of the

job on the best-scoring machine.

Therefore, we believe that an efficient orchestration that manages GPU disaggrega-
tion will be a must feature to improve the resource efficiency of next-generation of data
centers. A large set of applications will benefit from that, ranging from HPC, Deep Learn-
ing to Cloud Gaming. Examples are the data centers composed by server-centric nodes
(e.g., the Amazon P2, the IBM® POWERS® boxes, the NVIDIA® DGX-2, etc.) and rack-
centric nodes (e.g., the Facebook Disaggregated Rack [62], dReDBox [71], etc.) with mul-
tiple GPUs to run applications, as well as the NVIDIA® Cloud Gaming platform [102].
A comprehensive introduction defining resource disaggregation and detailing both the

software and the hardware-based architectures is given in Section 2.3.
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Figure 21: Conceptual view of DRMaestro’s architecture. The cluster can be composed of both
server-centric (i.e., implementing a software-based resource disaggregation) and/or
rack-centric (i.e., implementing a hardware-based resource disaggregation) nodes. The
orchestrator receives a job list along with the job’s profile when available to determine
the optimal placement on the available nodes. The orchestrator might also start the
disaggregated resource daemons, when necessary, to transparently allocate disaggre-
gated resources to the jobs.

We have established the need for a dynamic orchestration framework that efficiently
manages disaggregated resources to improve the cluster utilization while fairly maxi-
mize the job’s utility. In this section, we present our proposed framework DRMaestro
that assigns a set jobs to a set machine considering the possibility to disaggregated the
resources, where a given machine can remotely access the resources of other machines in
a way that the applications think that all the resources are local. First, DRMaestro imple-
ments a flow-network model to determine both the optimal scheduling and placement
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for a given set of jobs in an online scheduling approach. Each requested resource that
is possible to be disaggregated is treated individually (e.g., if both GPUs and NVMes
are disaggregated, they are allocated on different phases). This is due to carefully sepa-
rating the optimization problem into independent sub-problems is effective at reducing
the complexity of finding the optimal placement. That is, we use a divide and conquer
approach. Second, our approach is incremental as it decides to place each resource at
a time without modifying the allocation plan from both previous decisions and run-
ning jobs. Third, DRMaestro accomplish fairness and prevent starvation by equalizing
the achieved relative performance between jobs. Forth, security is lower for GPU on the
cloud [107]; there is no further isolation mechanism during the execution. Therefore,
DRMaestro dynamically allocates GPUs attempting to enforce isolation as much as pos-
sible using the virtual environment mechanisms, such as containers cgroups, namespaces,

sysmted, among other tools.

5.2.1 The Key Components of the DRMaestro’s architecture

The DRMaestro’s architecture is depicted in Figure 21, showing that the framework is
composed of different modules. It has a resource manager that interacts with the end-
user receiving the submission of jobs and forwards the job list along with their infor-
mation to the orchestrator that is responsible for making the scheduling and placement
decisions. After the orchestrator has made the decisions, it forwards them to the resource
manager enforce them. Next, we detail the key components of system architecture.

THE RESOURCE MANAGER is responsible for monitoring the cluster, enforce the place-
ment decisions and trigger the orchestration with a set of jobs L when L > 0. Each
job, on its arrival, is put into a queue, and in a loop-based approach, the resource
manager sends a set of jobs to the orchestrator to find the optimal placement for
them. After that, it maps and runs each job’s task within its target machine. When
it is necessary, before starting any job, the resource disaggregation daemons will
be initiated.

THE EXTRACTION OF SLOS AND REQUESTED RESOURCES occurs just after the orches-
trator has received the job list; it then extracts the performance goals from the
manifests, and then, when available, an offline job profile is also used to determine
the know scenarios that the application might have its performance impacted. Note
that, the user either defines the application SLO (i.e., performance goals) or explic-
itly approves it. In this work, we focus on non-interactive workloads, where the
performance goal is typically relative to the completion time. Nonetheless, the per-

formance goals can be easily extended to include support for interactive workloads
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(e.g., web-services) in which the performance goals are relative to average or per-

centile response time or throughput over a short time interval.

THE COST MODEL depends on the scheduling policy, the job’s waiting time, and the
extracted job’s information that we describe later on.

THE FLOW-NETWORK MODEL incrementally determines the optimal resource alloca-
tion considering all jobs at once. For each iteration (i.e., when the orchestrator
is trigged), the model is updated with information of the cluster state and the cost

models of the incoming jobs. More details are given in Section §5.3.2.

THE MIN-COST SOLVER is applied for each flow-network model to determine which
jobs should be activated (i.e., scheduled or unscheduled), match the jobs’ resources
to the available nodes. It is noteworthy that the solver first places a task repre-
senting the CPU with all the other resources that cannot be disaggregated, which
will guide later the placement of disaggregated resources via defining placement

preferences.

THE MIN-COST ALGORITHM, in our model, any min-cost algorithm for flow-network

model to solve online scheduling problems can be used in the Solver.

5.3 NETWORK-FLOW-BASED SCHEDULING AND PLACEMENT ALGORITHM

In this section, we first describe the problem and formally define it, and after, we detail
the proposed framework to address the problem describing its architecture and algo-

rithm.

5.3.1 The Scheduling Problem

The scheduling problem, in most of its relevant forms, is known to be NP-hard, most
specifically when considering multiple mutually dependent scheduling goals. To tackle
that problem, a promising approach that has been widely investigated and efficiently
solved is by using graph isomorphism (aka, Graph Matching Theory) [2, 15, 90]. By
modeling the scheduling and resource provisioning problem in a bipartite graph, the
problem can be modeled as a flow-network problem which can be efficiently solved with
one of the de facto flow-network-based existing algorithms to find the optimal match by
minimizing the cost [2, 41, 42]. A bipartite graph consists of two sets with one repre-
senting the n jobs and other the m machines, and arcs (i,j) weights representing the

placement cost cy;.
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The main challenge is how to model the resource disaggregation as a flow-network
problem. To illustrate that, let’s consider the scenario where the GPU is disaggregated.
In this case, the model should consider that the traffic flow rests on the behavioral as-
sumption that job’s utility depends on any prevailing system flow, which might intro-
duce an inherent delay. Note that, this problem should attain an equilibrium because
of the delay that one job incurs depends on the flow of other jobs, and all jobs are si-
multaneously choosing their best path. Moreover, the model also should consider that a
machine has limited capacity, and to satistfy the job’s demand; it might have resources
allocated beyond the available spares at a larger cost, which is allocating disaggregated

resources.

Therefore, our framework divides the problem into multiple sub-problems and per-
forms an incremental approach by allocating each disaggregated resource in a different
phase. It is incremental since, in each phase, we do not change the previous ones, but
compose the next phase with information from the previous one. More specifically, for
example, lets assume that the first phase will place the “main” set of resources, in this
case, the CPU and memory, and other phases will place the disaggregated resource (the
GPU), where each phase relies on the placement preferences defined in the previous
phase (if any). In such a model, we define that the assignment of jobs is shepherd via
both the jobs and machines preferences expressed as costs and capacity limits to satisfy
a global goal. The solver then determines the optimal flow, exhibiting the best trade-offs
between (i) activate a job or keep it unscheduled, (ii) place the job in one or another ma-
chine, and (iii) determine when to allocate a disaggregated resource or allocate it locally
remotely.

5.3.2 A Formal Statement

Let G = (N, A) be a directed bipartite network graph whose arcs carry flow from the
source to a sink node, in which each arc (i,j) and (i,j) € A has a nonnegative capacity
xij and a cost cy; associated with every arc (i,j) € A. Each node i € N has a number b;
that indicates its supply or demand depending the node type. If it is a job’s task, the
b; > 0, else if the node is a machine, b; < 0. Additionally, it is always assumed that there
are no loops, the flow-network is finite and the solution is feasible, that is, there must be

enough resources to place all jobs.

The goal is to find a flow f that minimizes the Equation 6, while respecting the feasi-
bility constraints in Equation 7 and the capacity in Equation 8 and 9, as follows:
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Minimize Z Cij fij (6)
(Lj)eA

subject to

Z fij_ Z f]'i:bi, vVie N (7)

j(Lj)eA i:GA)eA
0<fy <xy, V(i,jeA 8)
and ) bi <0 ©)

ieN

A “feasible flow” assigns a non-negative integer flow fj; to each edge € A up to the

maximum capacity x;.

Additionally, when more than one resource is being represented, each flow, demand

or capacity will have the sum of the normalized values of each type of resource r € R.

For example, let’s consider the supply bj, each resource will be normalized with the

maximum existing supplier in the cluster, as shown in Equation 10.

bir .
b; = —, Vi€ A
' rEZR max_bi, te (10)

The demands, capacities, costs and flows follow the same normalization pattern as done

in Equation 10.

Despite that fact any utility function can be used, we have defined the following utility
showed in Equation 11, which is inspired in the work of [19]. If T, represents an average
completion time goal, the instantaneous utility of a job with the resources r and load 1
expecting the completion time ¢, is given by:

Tc—Pr1 :
— if ¢r1 < T
U-t((PT,I) = e 10 (11)
Te—@r 7. .
( T<Cp 4).( 92 ) if @1 > T

The utility value is bounded by one and is always greater or equal to zero as long as
the placement meets the goal. That is, Ut(¢,1) € [1,0]. If the goal is violated, the utility
function yields negative values scaling with the magnitude of z. loss, according to the
importance of the sharing-induced performance interference, where the z. = 1 has the

highest importance.

75



76

WORKLOAD ORCHESTRATION FOR POOLED RESOURCES AND DISAGGREGATED ARCHITECTURES

cij = (1 —Ut(er1))P; (12)
cij = (1 —Ut(@r1))Pi+ W, (13)

The cost cjj, as shown in Equation 12, is defined as the complement of the utility
Ut; times the preference P;. The preference P; is determined by the list of preferred
machines from each job i, which can be determined by affinity, resource constraints (i.e.,
a specific type of resource) or by different phases in our scheduling process (since our
scheduling approach define preference in different phases). The cost cj; for all edges,
except the one between the jobs i and the unscheduled state U;, is determined by the
Equation 12. On the other hand, cost cj; of the edges that point to an unscheduled
state U; is determined by the Equation 13, which, in order to avoid starvation, has an
incremental counter W; that increases every time that the job 1i is left unscheduled after

each scheduler iteration.

5.3.3 Scheduling and Placement as Flow-Network Model

Our proposed framework, DRMaestro, is a dynamic, loop-based controller that can man-
age resources from both server-centric and/or disaggregated architectures. The core of
the proposed scheduling algorithm is illustrated in the Alg. 4. This algorithm receives
a list of jobs from a waiting list sorted by the waiting time and filtered by the available
resources in the clusters. The algorithm then calls the mapping() function with the sum
of requested resources from the set of jobs lower or equal to the total of currently avail-
able resources in the clusters. The mapping() function updates the flow-network-model
(which is detailed later in this section) with the new incoming jobs and returns the map-
ping of the jobs to machines. If a job is not mapped, it is added back to the waiting list,
incrementing its waiting-time counter. On the other hand, if a job is scheduled, and dis-
aggregated resources were allocated, to enforce the placement decisions, containers with
the middleware to enable resource disaggregation is started. Note that, in the case of

hardware-based resource disaggregation no middleware is needed to be launched.

Although, the problem can be modeled as a flow-network model in many different
ways, for elegance and clarity we have attempted to create the simplest possible model,
inspired in the models applied in [41, 65]. Our proposed model is illustrated in Figure 22
(a), (b) and (c). All resource groups (aggregated and disaggregated) are incrementally
solved on different flow-network models to define the optimal placement. In each model,
the node U, determines if the job will be activated or left unscheduled. The node X

represents an aggregator to reduce the number of possible arcs from jobs to machines
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Algorithm 4 DRMaestro: scheduling and placing jobs
function scheduler()
jobs = Q.pop_jobs()
m = mapping(jobs) / / Algorithm 5
for job in m do
if job.state == scheduled then
for resource in disaggregated_resources do
for {task, machine} in m[job][resource] do
bind_hfcuda_server_to_node(job, machine))
end for
end for
wait_all_hfcuda_severs_start()
machine = m[job][not_disaggr_group][o]
inject_hfcuda_client_and_server_info(job.manifest)
bind_job_to_node(job.manifest, machine)
else
job.waiting_counter++
Q.push(job)
end if
end for
end function

(which might reduce the complexity, as shown in [41, 65]), the t* is the sink node. The
SN represent a server-node with software-defined resource disaggregation as in Figure 6
b). The RN represents a rack-node with hardware-defined resource disaggregation as in
Figure 6 c). To apply the scheduling policy, the arc weights and capacity are properly
determined.

In the first phase, as illustrated in Figure 22 (a), the Ty 1, represents each task of job Ji
with the group of the aggregated resource (e.g., CPU and memory). In a more intricate
description, this phase is a snapshot of the cluster, showing the available machines (SN
and RN), and also the running and incoming jobs (i.e., the jobs picked from the waiting
list). This first phase determines the placement of the resources that cannot be disaggre-
gated. The placement of each task Ty ., will determine the placement preferences in the
other phases.

After solving the first phase, the graph will be transformed to represent the next
resource group. For example, Figure 22 (b) creates new “sub-tasks” Gy, for each z
GPUs that each task Ty ,, is requesting. It allows to allocate each GPU independently and
possibly going to different machines (i.e., allocating disaggregated GPUs). Additionally,
the mapping result from the first phase is translated here to preference arcs for each
“sub-tasks”, which will dictate the costs. To illustrate that, consider the case where Job
Jo best performs when its CPU and GPU are on the same machine, and the applied
scheduling policy prioritizes locality. If in the first phase, the task Ty is placed in SNy,
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Scheduling : Placement
: (a) First Phase places the job in a node and
U, allocates all the not disaggregated resources (e.g.,

CPU and Memory).

« CPU and Mem. allocation of the job's tasks.
- T,, represents the resource request of the job’s

} task, where x represents the job # and y the task #.

« Each job will have the not disaggregated resources
allocated in only one Server-Node (SN) or Rack-
Node (RN).

* X is an aggregator (that minimizes the number of
edges in the model).

« U represents unscheduled state that a task can be.

» t'represents the ending state of the model.

5 * A running task keeps the resources allocated and

‘ might be preempted if preemption is enabled.

If GPU disaggregation is enabled:

(b) Second Phase allocates a type of resource that
- - can be disaggregated for each job's tasks that is
requesting the resource. In this example, they are
requesting CPUs.

disaggregated for each task T . Hence, G , is a

XYz
Y subtask of task T where 2z represents the subtask
number.

-« Note that, since the not disaggregated resources
(e.g., CPU and Memory) were already allocated, in
this phase each G has a scored placement
preference for the SN or RN that the previous phase

‘ selected.
: If NVMe disaggregation is enabled:

(c) Third Phase allocates a type of resource that can
be disaggregated for each job's tasks that were not
allocated in the previous phase. In this example, they
are requesting NVMe storages.

:> * G represents the requested resource that can be
t

R
_./preference

preférence

disaggregated for each task T . Hence, S, is a

X,y,Z

:> « S represents the requested resource that can be
t

K subtask of task T, , where z represents the subtask
number.

« Note that, previous phases have allocated resources
from some nodes, in this phase each S subtask has a
scored placement preference for the SN or RN that
the previous phases have selected.

. /preference

Figure 22: All disaggregated resources are allocated incrementally in different phases. Each phase
depends on the previous one and are optional depending which research can be dis-
aggregated. Additionally, Each phase determines the jobs” placement preferences that
directly changes the arcs costs to machines accordingly with the applied policy.

in the second phase, the sub-tasks Gy, will have a preference on SNy, as illustrated in
Figure 22 (b).

In the case that there are more resource groups to be provisioned, the method keeps
transforming the graph and translating the placements into preference arcs. For instance,

in Figure 22 (c), it will start a third phase to schedule and place the “sub-tasks” Sy 4 to
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allocate the storage, such as Non-Volatile Memory Express (NVMe). Note that, the level
of parallelism is defined by the number of sub-tasks. For example, in the case that a task
has only two "sub-tasks" Sy , this task can access up to two machines at most, but it is

transparent for the application.

Algorithm 5 DRMaestro: mapping jobs to machines
function mapping(incoming_jobs)
previous_solved_model = nil;
mapping_models = [[]]
for (group in resource_groups)) do
model = flow_models[group]
if (previous_model not empty) then
UpdateModelPreferences(model, previous_solved_model)
end if
mapping_models[group] = GetMappings(model)
previous_solved_model = mapping_models[group]
end for
for (job in incoming_jobs) do
job.state = scheduled
for (task in job[group].tasks()) do
machine = mapping_models[group][task]
if (task not in mapping_models[group]) then
job.state = unscheduled
else
mapping[job][group] = {task, machine}
end if
end for
end for
end function

The final placement and resource provisioning results are extracted based on the
analysis of the optimal flow from all solved models, as shown in Algo. 5. The Algo-
rithm calls the solver for each model that represents a resource group by calling the
function GetMapping (). This function calls the flow-network solver for the given model,
runs the flow-network algorithm, and returns the mapping of tasks to machines. If a
task is not mapped to a machine, it means that this task will not be scheduled. Since
we do not remove any running task from each solved model, the feasibility is always
maintained. Only the tasks and jobs that have completed are removed from the model.
After the first phase, the other phases (if any) update the machine preferences based on
the decisions made on the previous phase, then, the algorithm first calls the function
UpdateModelPreferences() before calling GetMapping (). After the algorithm has solved
the models of all group of resources, it parses all the solved models to identify which jobs
will be scheduled or will be left unscheduled. By default, we gang schedule all resources
(but the method can be easily extended to allocate resources incrementally). Therefore,
in our proposal, if any “sub-task” is left unscheduled, the job will not be scheduled. It
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is worthy to mention that if a “sub-task” is left unscheduled, it is because the solver has
optimally found that it is better to unscheduled it instead of allocating a bad performing
resource.

5.4 THE DRMAESTRO IMPLEMENTATION

We implement the design of §5.2 as extensions to Firmament [41], which is a flow-
network-based scheduler, Kubernetes [123] which is a cluster resource manager, and the
Poseidon [133], which is the Firmament add-on Kubernetes scheduler. Referring back
to the architecture of Figure 21, we implement the main components of DRMaestro as
follows. First, the automatic orchestration engine operates as a standalone service. It con-
tinuously consumes telemetry data, and keep waiting for jobs. Second, the orchestrator
is triggered when a list of jobs arrives. Third, the orchestrator Firmament’s mapping
engine is extended to create flow-network models for both the aggregated and the dis-
aggregated resources. We further detail it as follows:

THE SCHEDULER ADD-ON onto Kubernetes is extended both to understand and inter-
pret the new format of the placement decisions, as well as, it also generates and
starts the HFCUDA client and server daemons, as shown in Algorithm 4 and fur-
ther explained in Section 5.4.3.

THE INFERENCE ENGINE is a simple approach that maintains the information of the
average job’s completion time in a given cluster state. While we keep it simple
since in practice a complicated inference engine is not typically applied because
of the introducing delay in the placement, we plan to extend DRMaestro to use a
more sophisticated engine such as [26]. But for now, our classification is based on
the job’s Docker image metadata and an off-line model created with both historical
data from experimentation. As the experiments that we performed in Section 3.3.
In the absence of a model, the application is classified as unknown using a neutral
cost value (e.g., as 1). Most of the telemetry cluster data is given by Kubernetes
Heapster.

ANY MIN-COST ALGORITHM can be used. Albeit there exist lots of suitable algorithms
that can solve the problem in reasonable time, for this thesis we use an imple-
mentation of the successive approximation push-relabel algorithm (aka Cost Scaling)
described in [42], successfully used in [41, 57, 65] and detailed in Section 5.4.1.
The asymptotic complexity of the algorithm in our context is O(K x N?°Mlog(NC)),
where K is the number of disaggregated resources plus one, N is the number of
nodes, M the number of arcs, and C is the largest arc cost.
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THE FINAL MAPPING is the aggregation of all individual mappings from each solved
model. We use the Firmament’s GetMappings function [41] to extract the mapping
results from each solved model, and then, we combine their results, as shown in
Algorithm 5.

THE SECURITY problem is mitigated with a simple yet effective approach. First, we use
the available cloud virtualization mechanisms to isolate both the CPU, memory and
storage, such as the container cgroup and namespaces, by creating OS containers.
Second, the middleware that offloads the CUDA calls is also encapsulated into
virtualization environments so that a user cannot access resources from others.
Third, only the data related to CUDA API are used via a network, no additional
tiles are used (which could be a problem as detailed in [107]).

5.4.1 Flow-network solving algorithms

The simplest min-cost max-flow algorithm is the cycle canceling [76]. This algorithm
computes a max-flow solution and then performs multiple iterations augmenting flow
along negative-cost directed cycles in the residual network. It guarantees that the overall
solution cost decreases by pushing flow along with the cycle. The algorithm finishes
with an optimal solution once no negative-cost cycles remain, that is, the negative cycle
optimality condition is met.

Differently, from the cycle-canceling algorithm, the successive shortest path algo-
rithm [41] attempts to keep costs reduced in all the step to try to achieve feasibility.
This algorithm repeatedly selects a source node and sends flow from it to the sink along
the shortest path.

Cost scaling [42, 43] iterates multiple times attempting to reduce the cost while main-
taining feasibility, and relies on a relaxed complementary slackness condition called
e-optimality. The definitions is that, a flow is e-optimal if the flow on arcs with ¢y < € is
zero and there are no arcs with ¢y < —e on which flow can be sent. In the beginning, € is
equal to the maximum arc cost, but after each iteration the value of € quickly decreases
because it is divided by a constant factor in order to achieve the e-optimality The cost
scaling algorithm finishes when T]—l—optimality is achieved since this is it will be similar
to the complementary slackness optimality condition.

Table 8 compares the worst-case complexity of these three discussed algorithms. Where
K is the number of disaggregated resources plus one, N is the number of nodes, M the
number of arcs, and C is the most substantial arc cost. Although the complexities suggest
that successive shortest path performs better, the work in [41] showed that cost scaling
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scale better than the cycle canceling and successive shortest path algorithms. Therefore,
in this thesis, we performed our experiment using the cost scaling algorithm.

Table 8: Worst-case time complexities for min-cost max-flow algorithms. K is the number of dis-
aggregated resources plus one, N is the number of nodes, M the number of arcs, C is the
largest arc cost, and U the largest arc capacity. In our problem, M > N > C > l.

Algorithm Worst-case complexity
Cycle canceling O(KNM?CU)
Succesive shortest path | O(KN?Mlog(NC))
Cost Scaling O(KNZUlog(N))

5.4.2 Job Profile

The profiles of the jobs include not only the requested resources but also a performance
model defining the level of interference from the network load that the application can
suffer when accessing disaggregated resources. This model is created from experimenta-
tion using historical data, as the experiments showed in Chapter 3.3. Where the evaluated
applications are firstly executed in their best-performing scenarios, that is, without any
additional network load interference. After that, we measure the performance impact
of the application running on different configurations when accessing a disaggregated
resource; such as collocated with a network intensive application. These experiments are
then used to generate an offline job profile that will be later used in the tests that evaluate

the implementation of our proposed framework, in a testbed environment.

Moreover, as stated before, in the second contribution, we believe that both proposed
framework can be further improved by extending then to instead of using offline models,
to use an online approach with more advanced prediction models, such as using decision
tree [37, 118] or statistical clustering [26, 56, 87]. Because of the cloud’s high variability,
our model does not need to be optimal; high-quality decisions will be accurate enough.

We leave this extension for future work.

5.4.3 Enabling GPU Disaggregation

While some approaches to disaggregated GPU have been proposed before, such as
rCuda [121], GViM [121], DS-CUDA [107] and GridCuda [85], most of them target only
virtual machines, support only old CUDA versions, or have a closed source code which
prevents us from implementing missing features (we further detail it in Section 5.7).

Therefore, we implemented our own in-house middleware, so-called HFCUDA.
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The HFCUDA runtime is a cross-platform library written in C for portability and
performance. The architecture is composed by a “client” library hooking all CUDA calls
and offloads API-related data via a network (either Ethernet or Infiniband) to a “server”
that executes the calls into activated GPUs installed at the server node, and return the
results.

The application does not need to be changed, except that it must be compiled with
the cudart library set as shared and be started with LD_PRELOAD to load the client. Ad-
ditionally, the application’s shared library must be provided to the server. The server
uses the application’s shared library to execute the CUDA kernels. That is, it receives
the CUDA Kernel name and its parameters from the client, and loads and configures
the function from the shared library into the GPU. Therefore, the server depends on the
application, then, we dynamically create it. This confers security benefits as stated before
and reduces the exchanged information between the server and the client. Additionally,
when the server starts, it initializes CUDA and creates a context in each GPU that it
has access. Thence, the job’s threads can access the GPUs within the same context. But,
note that since a different server is created for a new application, different applications
will never share the same context. The client is composed of a host and a GPU address
manager. Thus, each address is stored in a hash table along with its information. Addi-
tionally, the addresses of GPUs from different machines can collide, therefore, since the
client intercepts all CUDA calls, it creates a GPU virtual address of 64bits where the first
12 most significant bits (left to right) are used to represent the Virtual GPU Id (note that
more bits can be used to address more GPUs). Then, in each call, from the client to the
server, the virtual address is translated to the physical one and vice-versa.

Into DRMaestro, we need to manage the GPU allocation in a way that the Kubelet from
the remote node will be aware the resource is allocated, that is, it must be aware when its
local GPU are being remotely used. However, we do not intend to excessively modify the
Kubernetes architecture, since it is not typically easily accepted by the developing com-
munity. To solve that problem, we propose a simple approach for dynamically creating
new HFCUDA servers as Kubernetes jobs. Then, for each application submitted into Ku-
bernetes that will need access to remote GPUs, we create HFCUDA servers in the nodes
that have the GPUs. Therefore, as a Kubernetes job, each HFCUDA server is created on
the node as a Pod with a container (e.g., using Docker or Singularity for instance) access-
ing the local GPUs. Consequently, the application is created with the HFCUDA client,
which will access the servers to access the GPUs remotely. Note that the process to create
the HFCUDA client and server is transparent from the user, the framework receives a
regular Kubernetes manifest and then injects the necessary libraries, environment vari-

able, affinity constraints and creates all the Kubernetes pods necessary to the job with
HFCUDA.
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5.4.4 Trace-driven simulation

As we stated before, we have extended the framework Firmament [41], which has sup-
port for an event-driven simulation. The framework simulates machines that are possible
to be configured with different NUMA topology with different number CPU and mem-
ory regions. The framework also has a generator for synthetic workloads, creating events
that will represent the arrival of a new job, taking as a parameter the time interval be-
tween job arrivals. The event that represents the arrival of a job is handled by creating a
job in the system and submitting it to the scheduler module. There is also an event to call
the scheduler: this event is periodically generated by a given interval. This scheduling
event updates the flow-network model with the new jobs and calls the flow-network
algorithm to solve the model. With the results from the solver, it generates events to
place the tasks in the simulated machines, and also events to complete the tasks. The

task completion time is given by a parameter.

Therefore, in addition to all extensions that we made to implement the support for
DRMaestro into Firmament, we had also extended the simulation part by adding support
of GPUs in the emulated machines (before it was only accounting for CPU and Memory).
The job arrival process was also modified to support a Poisson process with an exponen-
tial distribution receiving a job arrival rate. We have also extended the job description to
define the job type since each one request a different amount of resources, and have dif-
ferent completion time and performance interference. The module that defines the task
execution time was also extended to define the execution time based on the job type. The
execution time is then determined based on a given histogram of the jobs” completion
time, for each job type, that is generated from the traces from the prototype. The execu-
tion time also changes based on the currently running jobs in the machine, which via
pre-defined profile loaded from the traces, slowdown or speedup the completion time,
when a new task is placed or after a task completes. Note that, it does not adjust only the
completion time of the new incoming task but also the completion time of the currently
running tasks in the machine. Finally, we have also extended the metrics generated by

the simulation to collect information about resource utilization.

5.5 PREMISES, LIMITATIONS AND OTHER DISCUSSIONS

The approach we used to quantify the performance impact of collocated applications to
generate the performance impact is very computationally costly. It requires a combina-
torial collocation of a set of known applications over many different scenarios. While
this approach is highly accurate, it might not be realistic to perform it in a large scale
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cloud scenario. Therefore, a promising approach to overcome that limitation is by using
advanced prediction models, such as using decision tree [37, 118] or statistical clustering
[26, 56, 87]. These approaches can be used to predict the performance of unknown jobs
using the models from known applications, which can enlarge the range of the analy-
sis and improve the accuracy of the system. We believe that by using such a prediction
model, our approach can be more easily adopted in current cloud environments. But,
note that, the main goal of our approach is to minimize the communication cost be-
tween GPUs, and the consideration of the sharing interference is to enable efficiency in
the system. That is, in the case that the interference cannot be quantified, the algorithm
can still work without it, but with a slightly lower quality decision. However, because
of the cloud’s high variability, it will still delivery high-quality decisions to improve the
resource-efficiency then comparing with a topology agnostic scheduling.

Additionally, by the time of this thesis, it was uncommon to share a single GPU be-
tween multiple applications, even though, there were some libraries to help to enable
that, such as Multi-Process Service (MPS) [101]. At this time, MPS had harsh limitations
preventing its usage on Cloud environments. For instance, in pre-Volta NVIDIA GPU
architectures (e.g., Pascal and Kepler), the process sharing the GPU did not have iso-
lated address spaces, that is an out-of-range write in a CUDA Kernel could modify the
memory state of another process without triggering an error. For the experiments of
this thesis, we had only access to experiment with pre-Volta architectures. Therefore, we
did not enable GPU sharing with multiple applications. Moreover, even though, the new
NVIDIA Volta architectures implement now fully isolated GPU address spaces, there
are still limitations to turn the sharing GPU a reality in a cloud environment. That is, a
GPU exception generated by any client will be reported to all clients, and a fatal GPU
exception triggered by one client will terminate the GPU activity of all clients [101]. Ad-
ditionally, the CUDA run-time still does not expose in its API mechanisms to enable
the control to process preemption to efficiently perform time-sharing of processes and
prevent starvation of big kernels. Thus, when these limitations are exceeded, the model
can be extended to enable further resource-efficiency by time-sharing GPUs between

multiple applications.

56 EXPERIMENTAL EVALUATION

In this section, we demonstrate the effectiveness and scalability of DRMaestro through
cluster runs and simulations. We run a set of applications under different conditions,
and with the scheduler considering and not considering the possibility to allocate disag-

gregated resources.
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5.6.1 Experiments.

Our experiments combine experiments on a local testbed cluster and scale-up trace-
driven simulations. The prototype evaluation was performed on a single machine with

characteristics described in section 3.3.1 and summarized in Table 6.

THE FIRST EXPERIMENT consists of a small scenario composed of four machines and

512 jobs to execute in a testbed with our implemented prototype.

THE SECOND EXPERIMENT we use a trace-driven simulation to test a large-scale sce-

nario with ~ 4k jobs and 128 machines.

THE THIRD EXPERIMENT consists of using the implemented trace-driven simulation
to evaluate the measured network performance impact on a large-scale scenario,
using the traces from the previous experiment plus the traces from the experiments
form Section 3.3.

As stated before, one of the main advantages of resource disaggregation is to enable
the allocation of spare resources that could not be allocated in normal situations. That
is, a machine that does not have enough available computing resources cannot assign its
idle resource for waiting jobs. Therefore, we create all the experiments with a scenario
where some machines have part of their resources already allocated. Note that, this
configuration can also represent the scenario where the cluster has a pool of remote
resources as discussed in Section 2.3 and illustrated if Figure 6 b) and c). To configure
this scenario, we warm up the cluster allocating some long-running jobs before starting
the experiments. More specifically, the initial jobs only request CPU and Memory and
last ~800s. Additionally, each experiment is configured with a Poison process using an
exponential distribution with an arrival rate of 16 jobs per second. Although we have
tested other rates, we only show this one that presents enough pressure to illustrate
the scheduler behavior. Finally, in all experiments, we evaluate the schedule with two
different configurations: (i) not enabling and (ii) enabling resource disaggregation, and
the applications were executed into Docker containers.

5.6.2  Experiment 1: Comparison between scheduling with and without resource disaggregation
in a local testbed cluster

In this experiment, we execute the implemented prototype of the scheduler in a phys-
ical cluster. We can see the total GPU utilization on those scenarios in Figure 23. This
figure shows that, as expected, when we enable GPU disaggregation in a scenario that

some GPUs cannot be locally allocated because of the shortage of resources, the cluster
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Figure 23: [Prototype] Scheduling with and without GPU disaggregation, in a cluster with 4
machines and 512 jobs.

utilization increases. We can see that when disaggregation is not enabled, most of the
time, only 6 GPUs are being used. Just after the long-running jobs finished the 16 GPUs
can be allocated. On the contrary, when GPU disaggregation is enabled, all the GPUs
are allocated. The small interval that some GPUs are not being used happens because of
the interval between finishing and starting a job. Moreover, disaggregation confers the
benefit to advance the placement of waiting jobs that could not be placed before, and
then, the total makespan is reduced from ~2486 to ~2191s. Therefore, this experiment

presents a speedup of ~1.13x when enabling GPU disaggregation.

The scheduling overhead is illustrated in Figure 24, which shows the cumulative dis-
tribution function of the average time that the algorithm and all the other scheduling
mechanism spend on making the decision and enforcing the decisions. The scheduler
allocating disaggregated resources is ~2x slower than the case that does not allocate re-
mote resources. This behavior is expected since the scheduler runs the model twice on
two consecutive phases. However, the scheduler overhead itself is still minimal; it is in

the order of sub-seconds in both cases.

5.6.3 Experiment 2: Validation of The Simulation

As we performed in the second contribution, we also validate the reliability of the simu-
lation system, in this third contribution, by comparing it with the same scenario as in the
prototype experiments in Section 5.6.2. The simulation results are shown in Figure 25.
The algorithms behave very similarly in both the prototype and the simulation, despite
some expected small differences, which are not very noticeable because of standard de-

viations are very small in this experiments.
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Figure 24: The scheduling considering resource disaggregation runs 2x SLOWER than the one
not considering.
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Figure 25: [Simulation] Scheduling with and without GPU disaggregation, in a cluster with 4
machines and 512 jobs.

5.6.4 Experiment 3: Comparison between scheduling with and without resource disaggregation

without considering the network

We developed a trace-driven simulation to evaluate the scheduling algorithm in a large-
scale cluster. To generate the traces, we executed the prototype described in Section 5.4
ten times with different configurations, warm-ups, and job arrival rates. Afterward, the
trace files are parsed and transformed into a format compatible with the simulator, cre-

ating application and resource usage profiles.

In this experiment, we warm up the cluster with initial jobs requesting resources
similarly to the previous experiment, that is only requesting CPU and memory without
using the network. We submit then ~4k jobs and simulate 128 machines. For generating
workloads, a Poisson process with the same arrival rate as the first experiment is used.
To create the job’s configuration, we use a Uniform distribution generating the job’s



56 EXPERIMENTAL EVALUATION

WITHOUT DISAGGREGATION WITH DISAGGREGATION
500 YA i 500 At
n s *
) 400 ) 400
A A
O O
« 300 w 300
o o
~ ~
(M) (M)
< 200 < 200
g g
S s
Z 100 Z 100
0 y= - 0 = \
0 200 400 600 800 1000 0 200 400 600 800 1000
Elapsed Time (s) Elapsed Time (s)

Figure 26: Scheduling with and without GPU disaggregation, in a cluster with 128 machines
and 4096 jobs. Enabling GPU disaggregation gives a speedup of ~1.12X than without
disaggregation.

type (Rodinia application). All simulated machines are similar to the machines used
in the testbed. Therefore, all the jobs can run in the machines when there are enough

resources.

The results show that even and most especially in a more intensive scenario, resource
disaggregation provides higher resource utilization, scheduling flexibility and minimize
the makespan. For example, Figure 26 shows a speedup of up to ~1.12X; the scenario
without enabling resource disaggregation has a makespan of ~1087, and when enabling
disaggregation it drops to ~972. Note that, in the beginning, between time o to ~300,
the job arrival rate and the available resource have a good match, and the system is not
stressed, which explain why the GPUs are not fully utilized since the beginning. We
have confirmed that with other experiments varying the arrival rate and the number of

jobs and machines.

Figure 27 shows the schedule overhead. Surprisingly, in this experiment, the overhead
of the scheduler allocating disaggregated resources is lower. This is because the overall
waiting jobs get scheduled and terminate faster, therefore reducing the number of wait-
ing jobs in the queue, and then reducing the pressure on the schedule. It is possible to
see in the figure that in very few cases the scheduler with disaggregation runs slower,
which is at the beginning of the experiment. This scenario illustrates the flexibility and

performance that resource disaggregation confers to the scheduler.
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Figure 27: The scheduling considering resource disaggregation runs FASTER than the one not
considering, but in overall the difference is very small. For a scenario with 4096 jobs
and 128 machines

5.6.5 Constrained Network Experiments

In this experiment, using the collected traces from the previous experiment plus the
traces from the experiments done in Section 3.3, we use the simulation to evaluate
the scheduler configured with two different policies: (i) with and (ii) without network-

awareness to define the costs.

5.6.5.1 Network Awareness

The network-aware policy updates the costs to place a task and leaves it unscheduled
based on the network load, and the sensitivity of the task to such a load. More specifi-
cally, the cost is defined as the normalized current network load by the maximum ma-
chine load times the network-interference factor defined from the traces of the previous
experiments. Additionally, in this policy, for each scheduling decision, if the placement
does not satisty the task’s SLO, its placement is postponed. The SLO is defined as the
task’s expected completion time. But, to avoid starvation, we established a threshold to
limit the number of time that the task’s placement can be postponed, in this simulation

we defined it as 10.

In these experiments, we evaluate two different scenarios. The first scenario is a sce-
nario composed of only 64 jobs to be placed over four machines. The second scenario is
a large-scale scenario consisting of ~4k jobs to be placed over 128 machines. We evaluate
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these scenarios with different configurations of enabling or not enabling resource disag-
gregation and/or enabling or not enabling the network-aware policy, as follows:

Scenario with 64 jobs and four machines. For all configurations in this scenario,
when we enable the network-aware policy, both the total makespan increases, as sum-
marized in Table 9, and the resource utilization decreases, as illustrated in Figure 28
that the total GPUs allocated are never the maximum. This behavior is expected because
with this policy some jobs can have their placement postponed if their QoS is violated.
Note that, in the case that GPU disaggregation is enabled, the network-aware policy has
a bigger impact. It is explained by the fact that resource disaggregation increases the
network load by both introducing additional network load and increasing the overall
cluster utilization by placing more jobs. Thus, because the cluster has more network
load, more jobs might suffer from network performance interference, and the policy will
then postpone much more times the placement of jobs.
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Figure 28: Scheduling with and without GPU disaggregation, with the scheduler configured with
a network-aware policy with 64 jobs and 4 machines. Enabling GPU disaggregation
gives a speedup of ~1.4X than without disaggregation.

Table 9: Total makespan of running 64 jobs over 4 machines

Disaggregation
Number of Jobs | Nework-Awareness | False True | Disaggregation Speedup
64 False 413.08s | 261.77s ~1.58X
64 True 418.83s | 300.07s ~1.40X
Network Policy Slowdown ~0.99X | ~0.87X

We can see in Table 9 that when the scenario is configured with resource disaggre-
gation, enabling the network-aware policy slowdown the total makespan from ~261s
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to ~300s, i.e., it gives a makespan ~1.15X slower. However, even though the network-
aware policy is enabled, resource disaggregation is still more efficient than without it.
For example, the makespan when the network-aware policy is enabled is ~418s with-
out disaggregation, and it decreases to ~300s when enabling disaggregation. Hence, re-
source disaggregation presents a speedup of ~1.40x in the total makespan. Next, we will
show that although the network-aware policy slowdown and decrease resource usage, it

confers advantages in regards to QoS violations.

Figure 29 illustrates the jobs” QoS impact whether the network-aware policy is en-
abled or not. This figure presents the job’s execution time normalized by its execution
time in the best performing scenario, i.e., when it is running solo without network inter-
ference. While the scenario with resource disaggregation introduces more slowdown in
the jobs and possibly more QoS violations, the cluster resource usage is maximized, and
the total makespan is minimized. The additional slowdowns are a natural effect from in-
creasing the overall cluster resource utilization, which introduces more pressure. Finally,
it is possible to see in Figure 29 that the network-aware policy minimizes the network

performance impact.
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Figure 29: Normalized job execution time for the scheduling policies with and without network
awareness, ordered from worst to best performing job. For a scenario with 64 jobs and
4 machines

Scenario with 4096 jobs and 128 machines. The results of this experiment are surpris-
ingly different from the previous scenario with only 64 jobs. The previous scenario, the
network-aware policy increased the total makespan for all configurations. This scenario
instead, the total makespan has actually a speedup when enabling such a policy. This is
explained by the fact that in this scenario there are much more available resources, i.e.,
from only four machines to 128 ones, then, there is much more room to perform better
placements, providing more efficient job collocation. Hence, by improving the quality of
the job collocation, more jobs will suffer less slowdown which will also impact the total
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Figure 30: Scheduling with and without GPU disaggregation, with the scheduler configured with
a network-aware policy with ~4k jobs and 128 machines. Enabling GPU disaggrega-
tion gives a speedup of ~1.12X than without disaggregation.

Table 10: Total makespan of running 4096 jobs over 128 machines

Disaggregation
Number of Jobs | Nework-Awareness | False True | Disaggregation Speedup
4096 False 1087.73s | 972.20s ~1.12X
4096 True 959.21s | 862.15s ~1.11X
Network Policy Speedup ~1.13X | =1.13X

makespan. These results can be seen in Table 10. When using resource disaggregation,
enabling the policy speedups the total makespan from ~972s to ~862s, i.e., it gives a
makespan ~1.13X faster. When comparing the scenario with and without resource dis-
aggregation using the network-aware policy, the total makespan decreases from ~959s
to ~862s, granting a speedup of ~1.11X in the total makespan. Finally, when comparing
the scenario without both disaggregation and the network-aware policy (~1087s) versus
enabling both (~862s) gives a speedup of ~1.26X.

As occurred in the previous scenario, the network-aware policy decreases the resource
usage. We can see that by comparing the results from the scenario without the network-
aware policy in Figure 26, which has higher GPU utilization than the configuration in
this experiment, as shown in Figure 30.

As in the previous experiment, we also show here, in Figure 31, the jobs” QoS impact
from using the network-aware policy. One can see that even in a large-scale scenario,
the network-aware policy still minimizes the network performance impact on the overall
jobs performance, in both configurations of enabling and not enabling resource disag-

gregation. With this experiment, we further illustrate the trade-off between enabling and
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Figure 31: Normalized job execution time for the scheduling policies with and without network
awareness, ordered from worst to best performing job. For a scenario with ~4k jobs
and 128 machines

not enabling the network-aware policy, which is between increasing the makespan and

decreasing the resource utilization versus minimizing the job’s QoS violations.

5.7 RELATED WORKS

We introduced in Section 2.3 the key components that define resource disaggregation
and the main differences between software-based and hardware-based architectures.
In this section, we first describe the related works that have proposed and evaluated
hardware-based disaggregated architectures, and then, we show the works related to
the software-based ones, followed by the description of the related works related to

scheduling techniques.

The work in [63] introduces and details the Intel rack scale design architecture with
disaggregated and composable resources that can be pooled as needed. They describe
that the key concept is to break down the well-known servers that are in today’s datacen-
ters. Where those servers formed by a fixed ratio of computing storage and networking
resources can be broken down into separate resources pools that can be interconnected,
or "composed", on demand into logical systems or "nodes", which can be optimized for
specific applications. This concept means that many different resources, e.g., compute,
hard disk (HD) and NVMe storage, non-volatile memory modules, GPU, FPGA, and
networking modules can be installed individually within a rack. These modules can be
packaged as blades. And, throughout switches, a rack can be connected to other racks cre-
ating a management domain. Several other works have evaluated the feasibility of such

architecture and proposed enhancements. Li et al. [84] have qualitatively assessed the
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opportunities and challenges for leverage disaggregated datacenter architecture. They
compared some programming models that can be used to access the disaggregated re-
sources and commented on the implications for the network, resource provisioning, and
management. They argued that cloud computing could highly benefit from resource dis-
aggregation because they often have to be configured differently in response to different
workloads requirements, and disaggregation provides such required flexibility. In addi-
tion, they also mentioned that disaggregation brings efficiency to the system lifecycle.
That is, traditional systems impose identical lifecycle for every component (resources)
within a system. Hence, all of the components are replaced or upgraded at the same
time, preventing the earlier adoption of newer technologies at the component level. In
their experimental results, they showed that, as expected, a high percentage of local data
always introduces fewer penalties. However, the difference starts to decrease with dif-
ferent ratio of local vs. remote data with the data block size is more substantial, which
reduces the overhead in the data transfer. They also showed that in their experiments,
that for a given configuration, accessing data from across multiple disks connected via
Ethernet poses less of a bandwidth restriction than SATA (local), improving throughput
and latency of data access, preventing the need for data locality. Costa et al. [24] de-
scribed and evaluated the possible implications for network protocols and focused on
network routing and rate control mechanism to efficiently share the pool of resources.
For the network routing protocol, they used the Valiant Load Balancing (VLB), where
the packets are not always routed along the shortest path, is composed by excellent load
balancing properties and agnostic to the input traffic matrix. The main idea behind their
rate control protocol is that given the knowledge of the network topology and all ac-
tive flows, each node can independently determine the load on each network link, and
then, the fair sending rate for its flows. Via simulation, the evaluated they proposed
protocols. They showed that while VLB achieves good load balance, most bottlenecked
links is the bottleneck for almost all active flows since each flow uses nearly all links
in the network. Novakovic [106] proposed and evaluated a rack-scale memory pooling
(RSMP) technique that can reduce the networking overhead of disaggregated memory.
He showed that by using his proposed Scale-Out NUMA technique, the RSMP could
improve the throughput of a key-value store application up to 8.2X over a traditional
scale-out deployment.

The work in [71] introduce and detail the IBM rack scale design architecture for cloud
datacenters, so-called dReDBox project. The design is based on microservers based on
System on a Chip (SoC) architecture. In such architecture, the memory modules and ac-
celerators will be placed in separate modular servers interconnect via a high-speed, low-
latency optoelectronic system fabric, and be allocated in arbitrary set accordingly to the

decisions made by a resource/power management software. The defined that the dReD-
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Box disaggregated platform requires orchestration support that is not currently available
by state-of-the-art datacenter resource management tools. The key requirements are, (i)
allocate components and set appropriate forwarding information to interconnect them
based on hardware physical environment and software performance requirement, (ii)
maintain a consistent distribution and memory isolation to run applications, and (iii)
efficiently manage power taking advantage of the component level usage information.
Note that, our work in this thesis, is a first step in the direction to achieve such orches-
tration system. The work in [95] evaluated the feasibility to enable memory disaggrega-
tion in the dReDBox project. They proposed a model to represent and analyze it and
statistics-based queuing-based simulator to analyze applications performance in disag-
gregated systems. Their results show that the network layers may introduce overheads
that degrade the performance of their examined applications (a video streaming applica-
tion, a network monitoring application and an application using collaborative encryption
functions) up to 66%, and that low memory access bandwidth may degrade the perfor-
mance up to 20%. As described before, the work in [39] deeply evaluated the network
requirements for enabling resource disaggregation for many different types of resources.
Pagés et al. [112] has also investigated the minimal network requirement to support dis-
aggregated resources on virtual datacenters. They also propose a resource provisioning
mechanism to minimize the necessary amount of computing resources (CPU cores, stor-
age, memory) and the number of different wavelength channels per link in an optical
datacenter network. The results show that disaggregated datacenter architecture allows
a substantial reduction regarding needed computing resources. In their evaluated simu-
lated scenario, where applications in server-centric architecture need to over-provision
resources, the experiments show a decrease circa 46% for computing resources since
with resource disaggregation they claim that resources can be tightly allocated to match
the exact needs of the virtual machines. Finally, Klimovic et al. [77] have successfully
disaggregated flash storage is a promising way to handle flash overprovisioning. By tun-
ing the remote access to flash storages, they showed a trade-off in their experiments.
While remote flash storages access can introduce a penalty up to 20% in the throughout,
disaggregation allows improving the cluster resource efficiency by promoting resource-
efficient scale-out for applications.

As we also detailed in Section 2.3 that resource disaggregation can be enabled by a
software-based middleware that intercepts the call to the local resource, forwards it to the
remote resource and forwards back to the application the results. As stated before, since
thesis focus on GPU disaggregation, we have detailed the related works in Section 3.3.4
that also use or implement a middleware for GPU disaggregation. In Section 3.3.4, we
also showed the related works regarding performance interference of co-located applica-

tions in cloud environments.
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In this section, we also detail the related works that have proposed scheduling tech-
nique to allocate disaggregated resources. Hong et al. [55] performed an extensive survey
for GPU virtualization techniques and scheduling methods. Although there exist several
scheduling methods to schedule job’s task into GPUs, varying from priority-based to
load-balancing-based approaches, those scheduling works perform fine-grained schedu-
ling, being implemented in hypervisor or OS. Additionally, these scheduling methods do
not just focus on low-level scheduling instead of cluster scheduling; they do not consider
the possibility to allocate disaggregated GPUs. Which implies no additional overheads
depending on the topology and possible challenges related to sharing-induced perfor-
mance interference, as we showed in the experiments throughout this thesis. Moreover,
by the time of this writing, to the best of our knowledge, few works are proposing
cluster-level scheduling and placement technique to orchestrate disaggregated resource
efficiently. Also, note that, even though, the works related to distributed file systems [82,
129] and network attached storage [13, 40], apparently, seems similar to the concept of
disaggregated resources, these works have a fundamental difference in the way that they
are accessed by the applications. These works provide a unified file system that is shared
between all the applications. The cluster scheduler itself does not need to take into con-
sidering the allocation of the file system, the application will always have access to the
file system, but it might have some quota limitation of storage usage. The disaggregated
resource, on the other hand, can be understood as a single unit can need to be scheduled

and allocated to the application.

Next, we detail some of the existing works regarding orchestrating disaggregated
GPUs. Iserte et al. [66] provides an extension in the cluster resource manager Slurm [131]
by including a new type of resource the "rgpu", to obtain access from any application to
any GPU in the cluster, using rCUDA [121] to access the remote GPU. Therefore, when
a user submits a job to Slurm, the user must describe the number of rgpus that the job
must have allocated. It is also possible to specify the amount of GPU memory the job
requires to be reserved. The scheduler first attempts to allocate local GPUs, but if it is
not possible it randomly selects other available GPUs in the cluster. The work shows
a basic experiment showing that, because of disaggregated GPUs, the application can
scale to more GPUs and achieve better performance then only accessing the local GPUs.
Additionally, Iserte et al. [67] have done another work that extend OpenStack [127] to
support remote GPUs using rCUDA. They extended the OpenStack to allow the user
to allocate local or disaggregated GPUs from a pool of GPUs. Lama et al. [79] propose
the pVOCL that use the VOCL [146] middleware to virtualize GPUs for applications
using OpenCL. The pVOCL enable dynamic scheduling of GPU resource for online
power management in virtualized GPU environments, using a power-aware dynamic

placement and migration approach.
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While our work is inspired in the works [65] and [41] that provide a flow-network-
based scheduler, these works do not support resource disaggregation. Isard et al. [65]
introduce a powerful and flexible new framework for scheduling concurrent distributed
jobs, enforcing data locality, fairness and being a starvation-free method. As we pre-
sented in our work, the scheduling problem is mapped to a graph data structure, where
the edge weights and capacities encode the competing demands. They called their frame-
work as Quincy and evaluated over a cluster with a few hundred computers. They show
an example of how efficiently model scheduling problem on flow-based-network models,
which has inspired our work. The experimental results show that Quincy provides better
fairness when requested, while substantially improving the data locality. The scenario
that they have evaluated presented a throughput increase of up to 40%. Gog et al. [41]
extended the work of [65] by implementing different flow-network-based algorithms to
solve the model, improving the scheduling latency. They call their framework as Firma-
ment. Their results show that they improved the placement latency by 20x over Quincy
for an experiment with 12k machines. Additionally, in their experiments, they show that
Firmament’s ggth percentile response time is 3.4X better than the SwarmKit [132] and

Kubernetes [123] ones, and 6.2X better than Sparrow [111] response time.

However, while these previous works have done an excellent job using remote GPU
with a resource manager, their approaches are limited to the job explicitly requesting
remote GPUs. Additionally, these works provide very simple scheduling policies like
randomly selecting the GPUs. In our work, instead, we use a more advanced schedule
algorithm based on flow-network to define the optimal placement and allocate remote
GPUs transparently to the user. Additionally, another main difference from these ap-
proaches to our approach is to consider the job’s preference for resource and also the
possible additional network interference that the jobs might have because of accessing
remote resources. Therefore, to the best of our knowledge, our work is the first one to
apply flow-network model to solve the scheduling and placement problem considering

resource disaggregation.

5.8 FINAL CONSIDERATIONS

In this thesis we have presented DRMaestro, a novel framework to orchestrate disag-
gregated resources on cloud systems. DRMaestro addresses some of the main challenges
found in datacenters with disaggregated architectures, providing a mechanism to enable
transparent disaggregation of resources, as well as an optimized placement of workloads

that improves resource efficiency while avoiding interference.
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The framework is first validated through the implementation of a prototype over Ku-
bernetes and then evaluated by performing several trace-driven simulations with traces
from the testbed that show that our solution provides higher cluster utilization and lower
SLO violations.

Our experiments in a simulated environment driven by representative workloads
demonstrate the effectiveness of our proposal in different scenarios. To the best of our
knowledge, this is the first scheduling framework to take into account resource disag-
gregation that optimizes placement while mitigating sharing-induced performance in-
terference. The experiments show the trade-off of enabling resource disaggregation in a
shared cluster. While disaggregation can further reduce the job makespan, i.e., ~1.26x, it
also introduces slowdown due to increased resource utilization. Finally, we also showed
the effectiveness of a network-aware policy to mitigate the additional slowdowns in the

job’s execution time.

For future work, we plan to introduce into the framework the notion of the under-
lying machine topology that interconnects the GPUs similarly the work performed in

Section 4.
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6.1 CONCLUSIONS

In this thesis, we presented three complementary steps toward the creation of practi-
cal systems to achieve higher efficiency for datacenters. First, we presented a highly-
detailed evaluation to characterize the performance of applications running on virtual
environment (i.e., containers or virtual machines) over complex hardware architectures
(e.g., non-uniform memory architectures). This study makes possible a deep under-
standing of the behavior of the complex execution stack of applications running on
virtual environments over hardware-resources connected in a non-uniform fashion. Sec-
ondly, we use this performance characterization to uncover the potential to improve
the resource-efficiency of virtualized datacenters. And then, we propose an intelligent
system making informed decisions to orchestrate the datacenter’s resources. The sys-
tem implements a new topology-aware placement algorithm for scheduling workloads
in multi-GPU systems with the devices interconnected in a non-uniform manner. Fi-
nally, we further exploit the resource-efficiency potential via increase the datacenter’s
resource usage through enabling resource disaggregation. In this sense, we proposed
and evaluated a novel automatic workload orchestration for pooled resources and disag-
gregated architectures capable of improving resource utilization across servers. We have
proven that all the presented techniques achieve their performance objectives whereas
they fairly satisfy all applications, by employing best-efforts to mitigate the job’s SLO
violations. Next, we summarize in more detail the work presented and achievements

obtained in this thesis.

6.1.1  Performance Characterization of Containerized and Accelerated Workloads

The first contribution of this thesis is the performance characterization of workloads run-
ning over virtualized environments and NUMA topologies over different configurations.
In more details, we correlated detailed system information with high-level performance
data to characterize the performance of applications running on top of virtualization

technologies over servers composed by NUMA architectures.
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The evaluation exposed the performance of applications running on top of OS con-
tainer or VM technologies on different scenario varying the placement and resource
allocation. The data collected was later used to uncover the potential to improve the

resource-efficiency of virtualized datacenters.

We showed by experiments running on top of machines composed by IBM POWERS®
processors, that the performance of virtualization via OS-level containers is almost as
efficient as running directly in a bare-metal machine. Additionally, we showed that a sub-
optimal resource allocation on NUMA topologies can introduce a performance penalty
and that not only the performance of threads running on the processors are impacted,
but also the performance of tasks running on GPUs. In a further analysis, we tried
different manual resource allocation, showing that a smarter resource allocation on a
multi-GPU system can improve the workloads completion time in ~30%.

Finally, these performance monitoring models and methods developed in the first
contribution were extensively applied during the development of the orchestration sys-

tems.

6.1.2  Topology-Aware Multi-GPU High-Performance Al Workload Scheduling

The second contribution of this thesis consists of an algorithm with two new schedu-
ling policies for placing GPU-based workloads in multi-GPU systems with the devices
interconnected in a non-uniform way. The foundation of the algorithm is based on the
use of a new graph mapping algorithm that considers the job’s performance objectives
and the system topology. Applications can express their performance objectives as SLOs
that are later translated into abstract Utility Functions. The result of using the proposed
algorithm is a minimization of the communication cost, reduction of system resource

contention and an increase in the system utilization.

We showed by experiments using a prototype implementation and a trace-driven
simulation that the proposed algorithm presents the performance improvements that
topology-aware scheduling can confer for DL workloads using multiple GPUs. The anal-
ysis revealed that optimal resource allocation can reflect in a speed-up of up to ~1.30x
in the cumulative execution time, and no SLO violations. The trace-driven simulation of
a large-scale cluster showed that compared with greedyapproaches our algorithm pro-
duces solutions that satisfy more jobs, minimizes the SLO violations and improves the
job’s execution time even in a heavily loaded scenario.

Finally, these results evidence the necessity of a scheduling algorithm that is aware of
the performance interference to provide QoS for jobs.
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6.1.3 Workload Orchestration for Pooled Resources and Disaggregated Architectures

The third contribution of this thesis consists of a technique that allows maximizing the
cluster resource utilization even in a situation where a machine does not have enough
computing capabilities to be allocated. We used a flow-network-based framework to or-
chestrate disaggregated resources on cloud systems employing best-efforts on prevent-

ing SLO violations while maximizing the system utilization.

We called the proposed framework as disaggregated resource maestro (DRMaestro),
and its main idea is to automatically discover and allocate disaggregated resources in the
cluster for a job as if the resources are attached to the local machine that the job is placed.
For the job standpoint, it is only using local resources. Our system is driven by high-level
applications goals that determine the placement cost considering the application satis-
faction with how well the goals are met. With that, the framework enables transparent
resource disaggregation while automatically controlling and determining the optimal

placement.

The framework was validated through both the implementation of a prototype over

Kubernetes and via a trace-driven simulation using traces from the prototype.

Our experiments demonstrated the effectiveness of our proposal in different scenarios.
The experiments revealed the trade-off of enabling resource disaggregation in a shared
and virtualized cluster. While disaggregation can further reduce the job makespan, i.e.,
~1.26X, it also introduces slowdown in the job’s completion time due to increased over-
all resource utilization. We also showed the effectiveness of a network-aware policy to
mitigate the additional slowdowns in the job’s execution time via trace-driven simula-

tions.

Finally, we believe that enabling resource disaggregation to improve the cluster re-
source utilization and make the scheduling process more flexible is an exciting research
problem. It requires a novel resource allocation algorithm capable of transparently re-
mote expose resources while reasoning which is the best placement for applications
with different characteristics. It must also consider different resources that might be vir-
tualized and disaggregated.
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6.2 FUTURE WORKS

We believe that the contributions described above open many interesting paths for future
research. Therefore, in this section, we present some promising future directions for the
work done in this thesis.

APPLICATION CHARACTERIZATION: In Section 3, we showed the performance impact
from virtualization and the underlying topology in a set of applications. In the eval-
uation, we considered some proof-of-concept applications. However, to cover the
full complexity of real-world Cloud and HPC scenarios, additional techniques, and
assessments for complex applications need to be further explored. This would re-
quire further research on applications that are intensive on multiple resources, e.g.,
memory-bound and I/O-bound applications, with complex and irregular commu-
nication patterns; specifically, the ones with collective communication and dynamic
load balancing.

JOB INTERFERENCE CATEGORIZATION: In this thesis, we assumed that the application
could be profiled offline. But, that may not always be possible or accurate. Then,
a promising research direction is to perform scheduling and placement decisions
through run-time monitoring using a technique such as a decision tree, statistical
clustering, machine learning, among others. We expect that using more advanced
prediction technique; one should be able to distinguish the overhead of different
virtual environments more easily, and also distinguish the performance interference
suffered from the collocation of a broad set of applications with different character-

istics.

COLLOCATING HPC AND NON-HPC APPLICATIONS: In this work, we focus on non-
interactive workloads, where the performance goal was relative to the completion
time. Therefore, another interesting research direction is to analyze and extend
the scheduling algorithms to include support for interactive workloads (e.g., web-
services) in which the performance goals are relative to average or percentile re-
sponse time or throughput over a short time interval. Moreover, the collocation
of interactive and non-interactive workloads introduces a whole set of new chal-
lenges. Typically, interactive workloads have more restrict SLO with higher priority
and are highly sensitive to collocation with other resource-intensive applications.
The major challenges include sharing-induced performance interference, different

performance metrics, and security concerns.
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SCALING JOBS: In this thesis we do not schedule and place jobs considering that an
application might have different phases. For example, some application does not
use GPUs during all its execution, but only in some specific phases. An application
can only use GPUs in its final phase, for example, without needing to keep all the
idle GPUs allocated. In this sense, some applications can expand or shrink during
the execution to further enable fine-grain improvements in the cluster resource-
efficiency, and also, confer cost benefits in a cloud environment. Similarly, some
applications could also be dynamically shrunk to open space to expand or place
other high-priority applications. Therefore, a promising research direction is to take
decisions based on the applications needs during its execution, instead of using an

application-agnostic scheduling algorithm.

SECURITY IN CLOUD: The work in this thesis had the focus on improving performance
and resource utilization of applications running on virtualized and disaggregated
datacenters. But, another major challenge that typically discourages users to use
a cloud-like environment is the security concerns. Some of the security challenges
are providing isolation and stateless allocation of GPUs (i.e., the currently running
jobs must not have access to local data from the previous running jobs) and net-
work with the support of RDMA. Among other challenges mostly related to public
clouds such as the loss of full control of the resources in the cluster and lack of
trust on the cloud providers. Future research is needed to address these concerns

to enable a more secure cloud environment.
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