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Abstract

This doctoral dissertation proposed several statistical approaches to analyse urban dynamics with
aiming to provide tools for decision making processes and urban studies. It assumed that human
activity and human mobility compose urban dynamics. Initially, it studied geolocated social media
data and considered them as a proxy for where and when people carry out what it is defined as the
human activity. It employed techniques associated with generalised linear models, functional data
analysis, hierarchical clustering, and epidemic data, to explain the spatio-temporal distribution
of the places where people interact with their social networks. Afterwards, to understand the
mobility in urban environments, data coming from an underground railway system were used.
The information was considered repeated daily measurements to capture the regularity of
human behaviour. By implementing methods from functional principal components data analysis
and hierarchical clustering, it was possible to describe the system and identify human mobility
patterns.
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Resumo

Esta tese de doutorado propôs várias abordagens estatísticas para analisar a dinâmica urbana
com o objetivo de fornecer ferramentas para processos decisórios e estudos urbanos. Assumiu
que a atividade humana e a mobilidade humana compõem a dinâmica urbana. Inicialmente,
ele estudou dados de mídias sociais geolocalizadas e os considerou como uma proxy para
onde e quando as pessoas realizam o que é definido como a atividade humana. Empregou
técnicas associadas a modelos lineares generalizados, análise de dados funcionais, agrupamento
hierárquico e dados epidemiológicos, para explicar a distribuição espaço-temporal dos lugares
onde as pessoas interagem com suas redes sociais. Posteriormente, para entender a mobilidade em
ambientes urbanos, foram utilizados dados provenientes de um sistema ferroviário subterrâneo.
As informações foram consideradas medidas diárias repetidas para capturar a regularidade do
comportamento humano. Através da implementação de métodos a partir de análise de dados de
componentes principais funcionais e clustering hierárquico, foi possível descrever o sistema e
identificar padrões de mobilidade humana.
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1Introduction

1.1 Overview

Geospatial research comprises substantial efforts in studying the dynamics of cities (França et al.,
2015; Celikten et al., 2017; Jiang et al., 2012). In general terms, humans exhibit regularity in
their spatial, temporal, and social behaviours (Simini et al., 2012; Song et al., 2010b; González
et al., 2008; Brockmann et al., 2006); nevertheless, large-scale urban social systems are complex
and challenging to model or represent (Batty, 2009; Jackson, 1985). The accelerated urbanisation
process of the current society and the forecasts for a significant increase in urban populations are
expected to enhance this complexity (United Nations, 2014). To predict these systems requires a
mathematical description of the patterns found in city data, forming the basis of the models that
can be used to anticipate trends, assess risks, and manage future events (Vespignani, 2009). The
lack of data in this context has historically been a substantial problem (Thériault and Des Rosiers,
2013); however, the increase in the availability of crowdsourced data over the last decade, gives a
rich and real-time data source of detailed images of urban systems (Jiang et al., 2012; Vespignani,
2009).

Previous studies about human dynamics have focused mainly on two directions: (1) in the
branch of complex systems in statistical physics highlighting specific aspects such as dimensions
and mechanistic models and (2) on the use of survey sampling techniques to record data of the
users’ behaviour, i.e., origins and destinations (Hyman, 1969; Beckmann, 1967). These studies
have notably omitted larger explorations and insights into new methods for discovering patterns
using data coming from new and massive sources in the context of mobile and big data era
(Shaw et al., 2016). Currently, ubiquitous computing has permitted collecting a large amount
of data shared by people about themselves (Kaplan and Haenlein, 2010) and their interaction
with the physical world (Nummi, 2017). Those datasets are far from conventional in the sense
of tabular or structured data, and data processing has not analysed a significant amount of
them because of the computational expense and the need for specific data analysis techniques
(Gandomi and Haider, 2015). In addition, such information remains sparse in the geographical
space, is incomplete in a time interval (Huang, 2016; Gao and Liu, 2014; Ferrari et al., 2011),
and might not be representative (Toole et al., 2015); still, this informations is considered a
complementary alternative to the gathered information through survey sampling techniques for
analysing human dynamics since it captures people’s perceptions and spatio-temporal changes
more accurately (França et al., 2015; Frias-Martinez et al., 2012; Wakamiya et al., 2011).

In recent years, the concept of smart cities has been extensively studied to address
the development of methodologies based on the use of Information and Communication
Technologies (ICT) to improve the citizens’ quality of life in a sustainable development framework
(Steenbruggen et al., 2015; Pan et al., 2013a; Bakci et al., 2012; Chourabi et al., 2012). However,
it is common that citizens have a negative perception regarding the dynamics of the cities
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(Shittu et al., 2015; Enemark and Kneeshaw, 2013; Pressl and Köllinger, 2012). In this sense,
Buscher et al. (2014) mention that a constraint for the cities is related to the population growth
because it raises the demands for efficient flows of people in an environment with limited
physical infrastructure and requires for adequate management of systems to avoid congested
and unpleasant situations for the users. Thus, as a result of the emergence of the Internet, the
urban sensors, the smart devices, the wireless networks, and the development of online social
networks have made possible the storage of significant amounts of data broadening the spectrum
of modelling possibilities for understanding urban issues.

Therefore, the use of such data is allowing the development of particular analytical methods,
which characterise the structure of the cities by identifying, describing, and predicting similar
behaviours on the conducts of the people, in a branch of knowledge called urban analytics
or urban informatics (Zheng et al., 2014). These methods seek to explain when, where, and
why humans develop their activities in the cities. Thus, provide meaningful insights into the
spatio-temporal patterns of human activity and mobility.

In this sense, statistical modelling—and mainly spatio-temporal statistics—is an alternative
approach to study urban dynamics because it provides, by estimating the parameters of the
models, a way to explain the processes that generate the data Diggle (2013) and can be useful in
monitoring, comparing, and simulating urban environments more reliably. From a statistical point
of view, the selection of data analysis methods requires to define among others: (1) the nature
and the source of the studied information, (2) the characteristics of the analysed phenomenon,
(3) the sampling mechanism, and (4) the scope of the expected results.

Concerning this, as mentioned earlier, humans exhibit a high degree of spatio-temporal
regularity. However, the exact place and time of where and when people carry out their activities
can neither be fixed nor established by some sampling mechanism. Likewise, urban dynamics
can present sporadic, sudden happenings, such as massive events and traffic jams, etc. On the
other hand, the considerable advances of computational and analytical techniques have allowed
many processes to be continuously monitored, and their immediate consequence is the augment
of the amount of data to be analysed that demands for developing new statistical methods (Chen
and Müller, 2012; Martínez-Camblor and Corral, 2011).

For example, the analysis of geolocated social media data encompasses the study of the
number of events per area per hour. Those counts show strong temporal trends due to the
regularity of human behaviour. Likewise, in the context of public health, where is registered
the number of cases of a particular disease, those time series exhibit seasonality and occasional
outbreaks Paul et al. (2008). These data are called epidemic data and are conceived as realisations
of spatio-temporal processes with autoregressive behaviour which do not come from planned
experiments. Its observations, number of events, are not independent, and phenomena are only
partially observed Meyer et al. (2017). Thus, there is a high similarity between the number
of geolocated social media events and the counts of cases in public health studies. Hence, an
approach based on the statistical modelling of epidemic data can accommodate the presence
of abnormal events in urban dynamics and even be capable of predicting them. Besides, those
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models include autoregressive trends and spatio-temporal structures in the estimation of the
parameters that describe human social conducts more accurately.

On the other hand, daily flows of people in urban public transport systems is a continuous
process that under the scope of Intelligent Transportation Systems (ITS) is observed through
sensors at entries and exits of undergrounds, buses, and botes, etc. These systems usually
register the time when a user enter and exit to the network (Zhang et al., 2011). Such data
are repeatedly observed for each sensor along a set of locations. In this regard, Functional Data
Analysis (FDA) methodology that aims to study random functions of time-dynamic processes
(Ramsay and Silverman, 2005; Chen and Müller, 2012; Kokoszka and Reimherr, 2017) can be
useful to describe and forecast mobility behaviours.

1.2 Problem statement

Urban dynamics issues are becoming one of the most frequent in the cities. Different alternatives
have appeared to manage aspects related to human activity and mobility, such as the investment
in improving the physical infrastructure, the instruments to define policies regarding the provision
and administration of public services, and urban planning processes. These three latter options
are closely related to the development of models to study spatio-temporal patterns of human
conducts because that analysis can be meaningful to identify how urban spaces are used, therefore,
helping in decision-making processes. In this sense, previous works about urban dynamics were
mainly based on the use of survey sampling techniques to gather data about people’s behaviour.
Nowadays, it is more common to have a significant amount of data regarding how people interact
with their cities coming from new sources such as sensors, smart devices, and social media.
This recently collected information has allowed developing new approaches in data analysis.
However, these data have not been explored yet in-depth, and there is still room for proposing,
implementing and evaluating alternatives of data analysis to identify, describe, explain, and
predict patterns of human activity and mobility using statistical methods.

1.3 Scope, objectives and research questions

1.3.1 Scope

This dissertation aims to develop methods of data analysis to understand the dynamics of the cities
and provide insightsinto human activity and mobility, for urban planning and decision-making
processes in the scope of smart cities. Assuming that ICT allow collecting data about city
environments and human behaviour by accessing ubiquitous devices such as mobile phones and
sensors.

Specifically, the scope of this research is framed at the city level, i.e. the information used, and
its scale is limited to the urban environments analysed. However, the methodological approaches
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proposed can be replicated in cities of several sizes and provide insights to compare places with
different characteristics.

1.3.2 Objectives

Based on the previously presented scope, the current research has three primary objectives, as
follows:

• Objective 1 to use models to describe, identify, quantify, and predict the impact of the
factors associated with the regularity of the human conducts in the number of human
activities in urban spaces.

• Objective 2 To evaluate the goodness of fit of including spatio-temporal correlation
structures in statistical methods to analyse human activity and mobility.

• Objective 3To develop alternatives to characterise the spatio-temporal flows of users in
origin-destination systems.

1.3.3 Research Questions

To address the prior objectives, the main overarching research question proposed as part of this
dissertation is:

What are the new analytical strategies which became applicable with recently increased
available data sources to study different spatio-temporal aspect of urban inhabitants behaviour?

As a way to answer the above main question, three sub-guiding research questions were
proposed as follows:

• RQ 1 To what extent factors as the hour of the day, the day of the week, and autoregressive
trends are related to the human activities in urban environments?

• RQ 2 Which type of spatio-temporal structures can improve the goodness of fit in models
for studying human activity and mobility?

• RQ 3 Is it possible to identify spatio-temporal communities of stations in origin-destination
systems associated with underground railways?

1.4 Methods overview

In general terms, to answer the research questions, a process that involved four stages was
developed (see Figure 1.1).

Data collection. It implied to harvest information from two sources: (1) social media and
smart cards with entries and exits registries into an underground railway system. For example,
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social media data was downloaded from Lisbon, London, and Manhattan using the R software
and connecting the Twitter Application programming interface (API) . Additionally, the registries
of entries and exits of smart cards for the Lisbon underground railway in may 2015 was acquired
through private agreements for collaboration with the company in charge of the management of
the system.

Data pre-processing. This stage required the implementation of particular procedures to
identify and remove erroneous values from the data collected on the first stage, as well as to
aggregate data, and bring it in the appropriated standards for following stage, data analysis.

Research design

Data collection

Geolocated tweets

Traffic sensors

Underground railway system

Data pre-processing

Erroneous values

Aggregate data

Build standard datasets

Data analysis Statistical modelling

Interpretation of the results
Estimated parameters

Goodness of fit of the models

Figure 1.1: Schema of the research design.

Data analysis and interpretation of results. This thesis recurred to statistical modelling
since its methods provide elements, parameters of the models, to understand and explain
underlying processes that generate the data and can replicate or simulate complex systems. These
methods can be useful in monitoring urban dynamics more reliably. Particularly, the following
modelling approaches were considered: generalised linear models (GLM), functional principal
components analysis (FPCA), statistical analysis of spatial point patterns, hierarchical clustering,
spatio-temporal graph theory, and infectious disease surveillance models (see Figure 1.2). In
most of the cases, the observations were considered as daily repeated measurements and opted
for non-parametric estimation to avoid strong distributional assumptions when possible.

For social media data, geolocated tweets were downloaded as a proxy for human activity in
urban environments. The analysis was divided into two parts. First, by estimating regression
models under the scope of the GLMs to explain the number of geolocated tweets per hour in a
city as a function of the hour-of-the-day, the day-of-the-week, and autoregressive trends. Second,
by clustering hours of the day with similar patterns of spatial arrangement of the places where
people interact with their social networks.

Furthermore, an endemic-epidemic model, was estimated assuming a negative binomial
distribution for the counts and including seasonal effects as normal or endemic human behaviour
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Urban
dynamics

Statistical
modelling

Human
activity

Social media
data

Number of tweets
per area per hour

Human
mobility

Public
transport
systems

Number of trips between
stations of the system

Figure 1.2: Schema of statistical modelling.

and spatio-temporal autoregressive parameters for epidemic or abnormal situations as crowded
events.

Finally, for modelling the spatio-temporal directed graph that represents the flows
origin-destination within an underground railway system, daily time series for every pair of
stations, with the number of trips every 15 minutes starting in one of them and finishing in the
other, were considered. In this case, the method involved a mix between two steps FPCA and
hierarchical clustering to summarise daily behaviours and to describe the activity over the entire
graph.

1.5 Contributions

The overall results and insights from this research can help on providing efficiently performed and
replicable methods for analysing significant amounts of urban data in smart cities. It advances
on this by using more advanced statistical techniques which identify several spatio-temporal
characteristics of the dynamics of urban systems on a more straightforward manner than
alternatives developed in previous studies. These methods include and statistically test the
effect of considering spatio-temporal autocorrelation structures in models and predictions.

The proposed methods allow to predict, monitor and simulate human activity and mobility in
cities in a more accurate way by introducing associated effects with the regularity of the human
behaviour into the previously existing spatio-temporal models. All of the suggested approaches
admit the inclusion of data as soon as additional information is available, to potentially improve
the goodness of fit of models, anticipate changes in human behaviour in near real-time, and to
refine the precision in pattern discovery.

1.6 Thesis Outline

This doctoral dissertation is organised into five chapters, as follows:

• The current chapter 1 gives a general overview of the origin of the research, states the
problem, defines the objectives that are being persuit, and summarises the approach and
methods.
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• Chapter 2 presents a literature review regarding human mobility and urban human mobility.
It contains a summary of the main findings in this field from the perspective of the statistical
physics and the mechanistic models. Finally, it concludes with an exposition of the recent
trends in the analysis of mobility in the urban scenario and the role of the data analysis to
tackle its study.

• Chapter 3 is devoted to provide the statistical framework of the utilised methods for
analysing urban human dynamics. It included adaptations done on previous statistical
modelling methods as well as the novel approaches developed as part of the current
dissertation.

• Chapter 4 introduces and details a statistical approach for the study of the spatio-temporal
distribution of geolocated tweets in the cities. This part gives and justifies the statistical
details of the selected methods, as well as, evaluates the proposal in three different urban
scenarios.

• Chapter 5 is dedicated to present the methods and insights gained from analysing
human-generated social media data in cities by using tools of epidemic data and assuming
a model-based approach developed under the scope of the diseases surveillance systems. In
this regard, spatio-temporal models were estimated that describe simultaneously normal
and unusual events.

• Chapter 6 presents the results of the analysis of Lisbon underground railway system.

• Finally, chapter 7 outlines the main findings of this dissertation and answers the research
questions. Additionally, it discusses aspects related to further research.
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2Urban Human Mobility

Urban human mobility has always been a highly relevant issue for human settlements, particularly
for middle and large-scale ones. It serves to study and understand these in diverse areas and
scales. However, it becomes even more crucial for urban studies nowadays to constantly track
and address the possibility of city transportation systems becoming insufficient. Two reasons
may be responsible for this: 1) the fast growth of population and; 2) the complexity of building
transportation infrastructure to address it at the same rate. By 2014, around 54% of people live
in urban areas, an increase of 12% is expected by 2050 according to forecasts (United Nations,
2014), and the previous situation is predicted to triple the travelled distances in cities in the
upcoming 40 years (Van Audenhove et al., 2014). These elements and conditions, as stated by
Buscher et al. (2014) can produce a constraint for cities and their transportation systems due to
an increase in population demand for efficient flows of people in an environment with limited
physical infrastructure capacity. Cities that have poor results in traffic congestion such as Brussels,
Los Angeles, Milan, London Paris, and Mexico City, among others, can benefit from the results of
a detailed urban human mobility research and its use in policy-making and planning strategies
(Kirkpatrick, 2015; Cox, 2014; Gorzelany, 2013).

2.1 Human mobility

Mobility has been a central topic in many investigations since there has been scientific interest
in understanding how objects, animals, and people move. The initial works in this matter were
related to Robert Brown’s findings on the movement of particles through a fluid, which has led to
the use of stochastic models such as Brownian motion, random walks, and Lévy flights to describe
such displacements (Giannotti et al., 2013). However, the social nature of humans directs the
analysis of mobility for understanding social conducts such as grouping, access to goods and
services, and exchange of information (Toole et al., 2015). Human mobility is defined as “when
and where a user (who) has been to for what.” It reflects the mobile aspect of people behaviour
in the real world and is commonly treated as a stochastic process (Gao and Liu, 2015).

The initial modern attempts to study human movement using empirical observation appeared
in the work of Ravenstein (1885), which through an analysis of census data of the United
Kingdom, found significant regularities in the populations’ motions. Recently, studies related
to human mobility have raised a particular interest due to the availability of data and to the
relevance of the topic in several domains (see Table 2.1). Although there is not a unified schema
for conducting studies on human mobility, Karamshuk et al. (2011) and Pan et al. (2013a) suggest
that such a process should involve among others three stages. First, collecting real-life data
from traces of moving objects. Second, developing methods of analysis to get knowledge about
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mobility such as statistical properties, patterns, and models. Third, creating applications that
allow using the knowledge acquired in several fields.

Table 2.1: Applications of previous studies in human mobility

Field Authors
Management and
planning of urban and
transport facilities and
services

Cats et al. (2015); Chua et al. (2015); De Domenico et al. (2015);
Rebelo et al. (2015); Anbaroglu et al. (2014); Chen et al. (2014);
Louail et al. (2014); Nanni et al. (2014); Ren et al. (2014); Sun
et al. (2014); Liang et al. (2013); Castro et al. (2012); Hasan et al.
(2012); Yuan et al. (2012); Yuan and Raubal (2012); Noulas et al.
(2011); Phithakkitnukoon et al. (2010)

Predict and prevent
disease outbreaks

Wesolowski et al. (2012); Colizza et al. (2006)

Behaviour modelling Bettencourt (2013); Pan et al. (2013b); Bagrow and Lin (2012)
Migration trends Hawelka et al. (2014); Vaca-Ruiz et al. (2014); Brockmann (2012);

Murgante and Borruso (2012); Simini et al. (2012); Rae (2009)
Management and
optimization of
networks

Coscia et al. (2014); Karamshuk et al. (2014); Pirozmand et al.
(2014); Zhao et al. (2014); Szell et al. (2012); Karamshuk et al.
(2011)

Disasters, catastrophes
and preparation of big
events

Wachowicz and Liu (2016); Pinheiro (2014); Sagl et al. (2012)

From the perspective of opportunistic networks,(Karamshuk et al., 2011) proposes a
framework for studying human mobility, from data to models and it includes the collection
and analysis of the traces. Based on results from previous studies, these authors stated that
findings could be classified into three axes: spatial, temporal, and social whose components and
statistical properties are summarised. Besides, they infer that the predictability or regularity of
the movements of the individuals does not describe all their aspects, so they propose a more
general concept called “human mobility patterns." Pirozmand et al. (2014) update the content
put forward by Karamshuk et al. (2011). They give more detail in the description of each axis and
its components and include a brief exposition about the prediction of human mobility. The paper
exposes an alternative proposal for classifying mobility models. Diab and Mitschele-Thiel (2014)
make a detailed presentation, discussion, and qualitative comparison of mathematical models
to identify patterns of movement in fields such as mobile communication and urban planning,
among others.

Statistical physics have also devoted efforts to describe the general aspects of people’s
movements. In this sense, Giannotti et al. (2013) expose individual human mobility models from
an approach from the theory of stochastic processes and complex networks. They envisioned the
convergence of data mining research and network science research to increase the accuracy of
results in mobility studies.

Toole et al. (2015) make a presentation of concepts, data sources, models, and applications
about the movement of individuals. The review highlights the social nature of travel undertaken
by people and how this defines the functioning of societies. The paper mentions the changes
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produced in modelling by the availability of large, high-resolution data sets collected due to
the emergence of ubiquitous computing. Besides, they emphasise that despite the volume
of information, this is not enough to decrease the bias on data because they might not be
representative of the population, being necessary to combine modern techniques of analysis with
sampling and robust statistical methods to improve the understanding of the phenomenon. In
that same sense, Noulas (2013) makes a complete revision from a historical perspective of human
movement studies until the modelling in urban spaces. It details changes in mobility analyses
due to location-based social networks and ubiquitous devices.

2.1.1 Dimensions

Three dimensions, spatial, temporal, and social or connectivity characterises human mobility.
Spatial or geographical features refer to location information of mobile users and their trajectories
in physical space and rely on distance travelled. Temporal properties explore time-varying
structures of human mobility such as the times a user visits some specific locations. Meanwhile,
connectivity information examines contact and interaction patterns of people, which are related
to social relationships and similarities between them (Karamshuk et al., 2014; Pirozmand
et al., 2014; Karamshuk et al., 2011). Previous studies show that human mobility exhibit
a high spatio-temporal regularity. For example, probability distributions such as power-law
and truncated power-law with exponential cutoff are associated with the spatial and temporal
dimensions, respectively. This latter means that people tend to travel the same distance (relatively
1.5 km) in approximately similar periods of time (24h, 48h, 72h). Even, it has been identified that
people do not travel long distances (Simini et al., 2012; Song et al., 2010b; González et al., 2008;
Brockmann et al., 2006). Each individual is characterised by having a significant probability
to return to a few highly frequented places (Gao and Liu, 2015; Nanni et al., 2014; Pinheiro,
2014; Lu et al., 2013; Wang et al., 2011; Song et al., 2010a,b; González et al., 2008). Moreover,
there is a strong correlation in daily activity patterns among people who share a common work
area’s profile (Phithakkitnukoon et al., 2010). A detailed description of the components of each
dimension is presented in Table 2.2.

2.1.2 Aggregation levels

Mobility studies are usually conducted in two aggregation levels, small or individual and
large, collective, or aggregate (Sun et al., 2010). The analysis of small-scale human mobility,
namely, the movement trajectory of only one person attempts to explain the underlying patterns
of individuals using new high-resolution data with information of times, places, and semantic
attributes about how and why human beings travel between them. This analysis seeks to provide
insights into the nature of people behaviour by developing models in statistical physics, such as
random walks (Toole et al., 2015; Giannotti et al., 2013). On the other hand, large-scale human
mobility, i.e., the overall movement behaviour of large crowds, also called “urban dynamics” is
used for providing services to all citizens, such as public transportation, as well as planning city
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Table 2.2: Characteristics of human mobility

Dimension Component

Spatial
Travel distance or jump size (∆r) is an important feature of human walks
to characterize the spatial dimension of people. It has been described using:
a) power-law (Brockmann et al., 2006), P (∆r) ∼ ∆r−(1+β) where β < 2 and
b) truncated power-law with an exponential cutoff (González et al., 2008),
P (∆r) = (∆r + ∆r0)−β exp (−∆r/κ) where β = 1.65 ∓ 0.15, ∆r0 = 1.5km,
and κ a cutoff value varying in different experiments.
Radius of gyration

(
rg

)
is a measurement of the characteristic distance

travelled by an individual during an observation period t. González et al.
(2008) determined of the rg distribution like a truncated power-law with an

exponential cutoff, i.e., P
(
rg

)
=
(
rg + r0

g

)−β
exp

(
−rg/κ

)
with r0

g
= 5.8km,

β = 1.65∓ 0.15 and κ = 350km

Temporal
Return time (t) is the period of time in which a random walker returns
regularly to the same location visited previously. González et al. (2008) have
found that return probability has peaks at 24h, 48h and 72h.
Pause time (∆t) indicates the time period that a person stays in a specific
position. The probability pause time distribution has been found: a) as a
fat-tailed (González et al., 2008; Brockmann et al., 2006): P (∆t) ∼ (∆t)−(1+β)

with 0 < β ≤ 1 or b) according to Song et al. (2010a) like P (∆t) ∼ |∆t|−(1+β)

with β = 0.8∓ 0.1 and a cutoff of ∆t = 17h

Social
Contact time is the time intervals during two people are in the radio range of
one another.
Inter-contact time is the amount of time passed among two consecutive
contact periods for a given couple of people.

spaces; its study relies on origin-destination matrices that have the number of users travelling
through different locations and times by several means (Toole et al., 2015; Sun et al., 2010).

2.1.3 Spatial scales

Being mobility is an inherently spatial concept, as well geography and other spatial sciences,
the notion of scale plays an essential role in its analysis (Saberi et al., 2016) since the results of
the models are highly dependent on it. For example, multiple applications have studied human
mobility characteristics at different spatial scales and using several data sources; this has shown
that in the particular case of the patterns of the travel distance, there are differences which
are explained by the mode of travel and the scale of the data (Lloyd, 2014). Studies of human
mobility highlight four spatial scales: a) global or worldwide, b) national, c) regional, and d)
urban.

2.1.4 Models

Moreover, the study of human mobility can be addressed from two perspectives. First,
based on developing theoretical or mechanistic models to explain underlying behaviours of the
movement, as well as natural laws that govern it. Second, through generating of techniques to
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learn from data or empirical models, with the aim to describe patterns of displacement defined
by objects or individuals.

2.1.5 A theoretical framework

The analysis of human mobility encompasses four main elements which are present in almost
every research that aims to understand the behaviour of movement of people. It includes
dimensions, aggregation levels, spatial scales, and models. Figure 2.1 shows a theoretical
framework that explains human mobility as a transversal concept in which these four aspects
converge. This structure also highlights the multidisciplinary nature of the study of human
displacement, which includes among others, geography, sociology, data science, and physics.
For instance, modelling the characteristics (spatial, temporal, social) of movements requires the
definition of spatial resolution, as well as the scope regarding aggregation.

Human
Mobility

Spatial
scales

Worldwide

National

Regional Urban

Models

Mechanistic

Aggregation
levels

Collective
movements

Individual
trajectories

Characteristics

Social
For what?

Temporal
When?

Spatial
Where?

Figure 2.1: Theoretical framework

2.2 Urban human mobility and data sources

Although first studies of human mobility were related to analysing migration trends based
on information coming from population censuses, these were later replaced by survey sampling
techniques about the origin and destination of the citizens, especially users of transport systems.
This type of data had the inconvenient of not accurately representing the changes produced by
urban dynamics. Thus, recent attempts have used as a proxy of the human movement, among
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others, banknotes (Brockmann et al., 2006) and Call Detail Records (CDR) (González et al.,
2008) trying to catch in real time the underlying nature of displacements.

Nowadays, data-acquisition methods continuously record all sort of events occurring in real
life. Improvements in both hardware and software technologies allow to collect significant
amounts of data, producing, every day, more complete, accurate and detailed pictures of human
activity. These developments have increased the relevance of information in modern society,
which in turn has led to an even higher rate of data. It is a shared idea that information is a
valuable resource for any organisation.

Social media is conceived as Internet applications that allow creating, obtaining, and
exchanging content created by users which can be accessed everywhere (Kaplan and Haenlein,
2010). They take in information about events and facts that occur in the real world (Ferrari
et al., 2011). Thus, social media data reflects human behaviour, prompting new alternatives to
understand individuals, groups, and society (Batrinca and Treleaven, 2014). When information
of the geographical location is added to the social media data, this offers a source of social data
that contains information about people’s attitude, mobility, and feelings about places (Nummi,
2017).

In this sense, social and human researchers consider LBSN data is a crowd-data source useful
for studying and understanding cities due to the frequent interaction with the ubiquitous devices
by the dwellers (Silva et al., 2013; Frias-Martinez et al., 2012). Despite that this information is
sparse in the geographical space, incomplete in a time interval (Ferrari et al., 2011), and might
not be representative (Toole et al., 2015). It is considered a better alternative for analysing
city dynamics, human activity, and urban planning, than survey sample techniques through
using questionnaires because it catches people’s perceptions and spatio-temporal changes more
accurately in real-time (França et al., 2015; Frias-Martinez et al., 2012; Wakamiya et al., 2011).

However, social media data is not the only data source available to understand city behavioural
patterns and dynamics. Some examples of these are census data, remote sensing data, traffic
cameras, GNSS data, WIFI and mobile network data, e-transactions, smart card technologies,
among others. Integration of all this data is both, a challenge and opportunity for improving our
understanding of urban dynamics. Some of the most interesting aspects are the different spatial
and temporal resolution. Typically, all these data sources share a common characteristic: they are
georeferenced. Table 2.3 shows a summary of main data sources that have been used on human
mobility in different contexts.

2.3 Data-driven approach

Recent attempts at studying urban human mobility have been focused on alternatives for
identifying human mobility patterns. The type of data available points out the modelling approach
of urban mobility, i.e., a data-driven approach. In this way, human mobility patterns are an
empirical characterisation of objects’ collective behaviour through data. In general terms, it is
possible to classify the in three ways, thus:
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Table 2.3: Data sources in human mobility studies

Data Source Studies
Surveys

Online Cottrill et al. (2013)
Paper-based Yan et al. (2013); Maat et al. (2005); Schlich and Axhausen (2003); Ewing

and Cervero (2001); Vilhelmson (1999); Hanson and Huff (1988)
LBSN

Altergeo Karamshuk et al. (2014)
Brightkite Chen et al. (2015); Cho et al. (2011)
Facebook Cranshaw et al. (2010)
Foursquare Espín-Noboa et al. (2016); Forghani and Karimipour (2014); Karamshuk

et al. (2014); Nin et al. (2014); Cebelak (2013); Noulas et al. (2011)
Gowalla Chen et al. (2015); Karamshuk et al. (2014); Nguyen and Szymanski (2012);

Cho et al. (2011); Scellato et al. (2011)
Twitter Prasetyo et al. (2016); Wachowicz and Liu (2016); Chua et al. (2015);

Llorente et al. (2015); Rebelo et al. (2015); Gabrielli et al. (2014); Hawelka
et al. (2014); Nin et al. (2014); Ferrari et al. (2011); Wakamiya et al. (2011)

Yahoo Meme Vaca-Ruiz et al. (2014)
Trajectories

GNSS on cabs Espín-Noboa et al. (2016); Sun et al. (2014); Castro et al. (2012); Yuan
et al. (2012)

GNSS on vehicles Pappalardo et al. (2015); Coscia et al. (2014)
CDR Wachowicz and Liu (2016); De Domenico et al. (2015); Gao (2015);

Hawelka et al. (2015); Herrera-Yagüe et al. (2015); Louail et al. (2015);
Pappalardo et al. (2015); Steenbruggen et al. (2015); Amini et al. (2014);
Louail et al. (2014); Nanni et al. (2014); Palchykov et al. (2014);
de Montjoye et al. (2013); Lu et al. (2013); Bagrow and Lin (2012); Ranjan
et al. (2012); Sagl et al. (2012); Wesolowski et al. (2012); Yuan and Raubal
(2012); Cho et al. (2011); Wang et al. (2011); Phithakkitnukoon et al.
(2010); Sohn et al. (2006)

Ships Demšar and Virrantaus (2010)
Others

Banknotes (Brockmann et al., 2006)
Census Rae (2009)
Credit-card transactions Lenormand et al. (2015)
Highway newtorks Ren et al. (2014)
Public Transport Cards Cats et al. (2015); Chen et al. (2014); Hasan et al. (2012)
Surveillance cameras Anbaroglu et al. (2014)

1. The study of the trajectories of people or means of transport, such as vehicles and boats
by using space-time locations registered into CDR from cell phones or Global Navigation
Satellite System (GNSS) receivers. For each unit (person or vehicle), the collection of
positions form a trajectory; then the primary goal is using classification methods for
clustering similar paths (De Domenico et al., 2015; Gao, 2015; Hawelka et al., 2015; Louail
et al., 2014; Nanni et al., 2014; Palchykov et al., 2014; Pinheiro, 2014; Lu et al., 2013;
Sagl et al., 2012; Yuan and Raubal, 2012; Wang et al., 2011; Demšar and Virrantaus, 2010;
Phithakkitnukoon et al., 2010).

2. Geospatial data mining techniques related to the extraction of urban patterns from check-ins
and/or content data in Location–Based Social Networks (LBSN), such as Brightkite,
Foursquare, Gowalla, and Twitter (Chen et al., 2015; Gao and Liu, 2015; Wu et al.,
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2015; Forghani and Karimipour, 2014; Gabrielli et al., 2014; Noulas, 2013; Nguyen and
Szymanski, 2012; Ferrari et al., 2011; Noulas et al., 2011; Wakamiya et al., 2011).

Social science is related to the analysis of agents, which can be individuals or organisations
and the relationships between them. In this sense, social science data represents cultural
values and symbols of agents. This implies that data refers to meanings, motives, definitions,
and typifications. There are distinguished three types of data: 1) attribute data, 2) relational
data and 3) ideational data. Attribute data refer to attitudes, opinions and behaviour of
the agents. Relational data concerns with the ties and connections that link one agent to
another. Ideational data expresses definitions, causes, and symbolizations associated in
actions of agents (Scott, 2012).

Hence, social networks are framed in the study of relational data. A social network is a
social structure consisting of nodes (individuals or organisations), sometimes also called
actors and relationships between them (friendship, work, collaboration or siblings), which
are also called links (Scott, 2012; Snijders, 2011; Otte and Rousseau, 2002). In Otte and
Rousseau (2002) SNA is defined as “a strategy for investigating social structures through the
use of network and graph theories”. Also, Marshall and Staeheli (2015) say the SNA is used
to uncover structural patterns of social relations. SNA is a concept applied in many fields,
such as marketing, geography, and transport networks. Furthermore, with a mathematical
basis in graph theory, SNA is considered a multidisciplinary method becoming a hybrid of
information sciences, computer science, geography, and statistics (Robins, 2013).

In addition to spatial and temporal components in social networks, now actors are able
to share content data, which is referred to texts, pictures, and videos, among others, this
is called LBSN. In this sense, Gao and Liu (2014) indicate that aspects related to human
mobility can be seen in a “W 4" (who, when, where, and what) information layout.

Human activity understanding embraces activity recognition and activity pattern discovery.
While the first one is related to the accurate detection of human activities based on a
predefined activity model, the second one is more about uncovering hidden patterns
from low-level sensor data without any predefined models or assumptions (Kim et al.,
2010). On the other hand, Goodchild (2007) establishes humans can act as sensors of
activities that occur in real life, and this allows for generating content with some associated
geographical aspect. Thus, social media data and mainly location-based social networks
(LBSN) have become an information source for studying and identifying human activity
patterns. The analysis of LBSN data has been an active area of research in urban studies
over the last decade which has allowed for developing applications in urban planning
(Frias-Martinez et al., 2012; Frias-Martinez and Frias-Martinez, 2014; García-Palomares
et al., 2018; Soliman et al., 2017; Resch et al., 2016), human activity (França et al., 2015;
Celikten et al., 2017; Ferrari et al., 2011; Wakamiya et al., 2011; Hasan et al., 2013; Huang
and Li, 2016), population dynamics (Thakur et al., 2018; Steiger et al., 2015; Patel et al.,
2016; Huang and Wong, 2016), and event detection and disaster management (Cheng and
Wicks, 2014; Tasse and Hong, 2014; Huang et al., 2018; Resch et al., 2017; de Albuquerque
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et al., 2015; Shi et al., 2016), among others, as well as, implementing several analytical
techniques.

Data analysis on LBSN can be divided into two main approaches, data mining and
statistical methods that are looking for identifying groups of spatio-temporal similar
locations. From data mining, it stands out: self-organising maps (SOM) (Frias-Martinez
et al., 2012; Frias-Martinez and Frias-Martinez, 2014), hierarchical SOM (Steiger et al.,
2016), independent component analysis (ICA) (Ferrari et al., 2011), density-based spatial
clustering of Applications with Noise (DBSCAN) and ST-DBSCAN (Huang et al., 2018;
Shi et al., 2016), and random forests (Patel et al., 2016). Meanwhile, from the branch
of statistical analysis, it emerges ordinary least-squares (OLS) (García-Palomares et al.,
2018), generalised additive models (GAM) (de Albuquerque et al., 2015), local indicators of
spatial association (LISA)(Steiger et al., 2015), space-time scan statistics (STSS) (Cheng and
Wicks, 2014), Gaussian mixture models (GMM) (Bakerman et al., 2018), and kernel density
estimation (KDE) (Hasan et al., 2013; França et al., 2015). Generally, both alternatives
combine the discovery of patterns for the spatio-temporal locations, as well as, for the
content data. This latter implies the use of probabilistic topic models such as latent Dirichlet
allocation (LDA) algorithms.

Although the aforementioned studies provided promising results, there are still some
limitations on them. For example, (García-Palomares et al., 2018) normalised the number
of geolocated tweets to use models under the statistical assumptions of the OLS; however,
regression for count data captures the nature of the variable in the study directly. On the
other hand, techniques such as DBSCAN and ST-DBSCAN do not include spatial, temporal,
or spatio-temporal autocorrelation structures in the clustering process, whilst, the analysis
of point patterns estimates such as structures with the target of study the distribution
of the events. Also, ST-DBSCAN depends on the selection of distance and tolerance
parameters (Huang et al., 2018). Finally, in the case of LISA statistics, information is
spatially aggregated in pixels without considering the temporal variations of the social
media activity that causes modifiable area unit problem (MAUP) (Soliman et al., 2017);
then, for avoiding this issue, a better alternative is analysing the locations and timestamps
as points rather than spatial aggregations.

3. Spatial interaction data (SID) analysis of origin-destination systems such as flows of people
in transport means, such as subway, buses, or bicycles (Cats et al., 2015; Anbaroglu et al.,
2014; Chen et al., 2014; Ren et al., 2014; Hasan et al., 2012).

SID analysis is the field of the Spatial Statistics, which is responsible for analysing the
objects’ flows within an origin-destination system (Bailey and Gatrell, 1995; Thompson,
1974). The origin and destination are associated with a spatial location; meanwhile, the
flow is the strength of relationship between them. This idea is similar to Newton’s universal
gravitation law, where two bodies exert a reciprocal action in space. Although, initial
models almost took in a literal way the classic expression of Newton, this has been changing
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due to they do not represent adequately the reality, and their assumptions are invalid (Roy
and Thill, 2004).

Currently, there are two methodological approaches in models for studying SID (Patuelli
and Arbia, 2013). The first rests upon the independence’s hypothesis on observed flows,
i.e.; they are considered a set of independent random variables with a specified probability
distribution. The second is the assumption of spatial dependence; the movements are not
independent in space, which means that measuring a characteristic attributable to an entity
in space, depends on characteristics of other entities and the spatial relationships that exist
among them. Both forms have been useful throughout the history of spatial analysis and
assuming a position or another depends on specific factors, such as, scale and characteristics
of the base information (Arbia and Petrarca, 2013).

The classic model of SID assumes two fundamental hypothesis. Flows are independent
random variables that follow a specific distribution, and the ability to involve spatial effects
is determined by a distance or decay function. The interest lies in modelling the mean
or expected value of flow from an origin i to a destination j, for which there are several
specifications (Griffith and Fischer, 2013; Fischer and Wang, 2011; Roy and Thill, 2004).

The models seek to incorporate variables regarding the ability of a place to generate the
outflow and the attractiveness of a destination site for that the flow gets there. These
variables must be supported by the nature of the phenomenon under study. Additionally,
the models include an impedance’s effect in the flow. It is associated with the geographical
distance between the origin and destination. Nonetheless, this impedance may be a different
variable associated with other distances, whether social, economic or temporal.

However, specifying the expected value of the flows opens other consideration related to
determine their stochastic nature (Griffith and Fischer, 2013). The Poisson distribution has
traditionally been used to model migration, another distribution that can be associated is
the negative binomial of spatial interaction (Fischer and Wang, 2011); the latter is a derived
development, where, randomness assumptions, are made on the mean’s specification.

According to Griffith (1992) the spatial dependence effect can be interpreted in different
ways, among which are: autocorrelation, pattern mapping, absent or unspecified variables,
redundant information. Likewise, there are several ways to incorporate, analyse, model
and visualise such effect (Griffith and Chun, 2013). For modelling the mean of flows, under
spatial dependence, there have used mainly three methodologies. The first is based on
spatial econometrics through SAR and SEM, which assume normality in the logarithm of the
count of movements (Fischer and Getis, 2010; Fischer et al., 2010; LeSage and Pace, 2008).
The second is ESF, using as explanatory variables the eigenvectors of origin-destination
matrix on interaction models (Fischer and Griffith, 2008). Finally, a Bayesian Statistics
technique that combines data augmentation and MCMC (LeSage and Pace, 2009; LeSage
et al., 2007; Frühwirth-Schnatter and Wagner, 2004).
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3Statistical Framework

3.1 Regression models for count data

The regression techniques are used to explain the variations in the mean µ of a variable (called
response variable and usually denoted by y) associated with a set of factors (called explanatory
variables x1, . . . , xp) and to quantify the magnitude of their effect through a collection of values
called parameters of the model β0 , β1 , . . . , βp (Montgomery et al., 2012). Classical regression
models rely on the assumption that the response variable follows a Gaussian distribution (Myers
et al., 2012). However, in the case where the response variable yi , i = 0, . . . , n represents a
count of the number of events per unit of time, area, or volume, i.e. a non-negative, discrete
variable, statistical modelling falls under the scope of generalised linear models (GLMs). Those
models are a general framework that allows for the modelling of responses whose probability
distribution belongs to the exponential family of distributions, such as binomial, Poisson, gamma,
and negative binomial, among others (Nelder and Wedderburn, 1972).

To formulate a GLM requires the specification of three elements (Dobson and Barnett, 2008).
First, a random component referred to the probability distribution of the response variable.
Second, a systematic part or linear predictor η that expresses the parameters of the model as
a linear function of the explanatory variables, η = β0 + β1x1 + · · ·+ βpxp. Finally, a monotone,
differentiable link function g that relates the mean of the response variable with the systematic
part, g(µ) = η = β0 + β1x1 + · · ·+ βpxp.

In the context of count data, it is common to assume that the random component follows a
Poisson distribution when the mean and the variance of the response are equal or a negative
binomial distribution when the variance is greater than the mean of the response, which is called
overdispersion effect (Hilbe, 1993). In addition, it is customary to use the natural logarithm as
the link function to ensure that the predictions of the mean of the response are non-negative
(McCullagh and Nelder, 1989). The estimation of the parameters of the model is made by
maximum likelihood through the iteratively weighted least squares (IWLS) algorithm (Hardin
and Hilbe, 2012).

3.2 Multitype spatial point patterns

Under the scope of spatial statistics, the analysis of spatial point patterns is the branch where
the locations of the phenomenon of the study, called events, are not fixed, and themselves
are the variable of interest (Cressie, 1993). Thus, a set S = {s1 , . . . , sk

} : si =
(
xi yi

)ᵀ
,

i = 1, . . . , k, where si ∈ W ⊂ R2 denotes the location of the i-th event, is called a spatial
point pattern (O’Sullivan and Unwin, 2014). From the statistical point of view, two types of
measures summarise the pattern: (1) first-order statistics characterise the mean of the process

19



λ(s), i.e., the number of events per unit of area and (2) second-order statistics outline the
spatial autocorrelation between the events λ(si , sj ) (Dale and Fortin, 2014). One of the primary
objectives of the analysis relies on identifying whether the events exhibit spatial clustering or
spatial regularity by using the second-order summary statistics (Baddeley et al., 2015).

Second-order summary statistics are functions that express the degree of spatial relationship
between the events of the pattern for several spatial scales (Diggle, 2013). Conventionally,
Ripley’s K-function (K(r), r ≥ 0), Besag’s L-function (L(r) =

√
K(r)/π, r ≥ 0), and the pair

correlation function g (g(r) = K ′(r)/2πr, , r ≥ 0) are the essential elements for the analysis of
point patterns. Thus, the evaluation of the characteristics of the process, such as complete spatial
randomness (CSR), clustering, or regularity, is based on the empirical estimation and the values
that these functions take. For instance, under CSR, K(r) = πr2, L(r) = r, and g(r) = 1 (Illian
et al., 2008).

In many applications, the aim lies in analysing the distribution of various types of points
that come from the same origin or are of the same nature. The context might be the research
of species in ecology, the characterisation of different classes of crimes in a city, or analysis
of case-control studies in epidemiology. In this context, each event is labelled with a mark ζj ,
j = 1, . . . , l to identify its type and then the set S = {sij

, ζj} is called a multitype point pattern.
Thus, multivariate statistical methods play an essential role in the data analysis since they provide
elements for identifying groups of events with similar spatial distribution through the use of
clustering algorithms in second-order summary statistics (Baddeley et al., 2015).

The analysis implies the estimation of summary statistics for the formed pattern by each
type of mark in several distances, e.g., rq , q = 1, . . . ,m. This estimation produces numerical
realisations of l non-observable functions. Although it would be possible to conduct this work
by using classical multivariate analysis, the summary statistics are functions instead of single
values (Illian et al., 2008). Then, techniques such as the FDA provides tools for understanding
the spatial behaviour of the pattern since it considers that observations are functions or single
units rather than consecutive measurements (Illian et al., 2006).

3.3 Functional data analysis

A dataset in the FDA is a sample of the following form (Kokoszka and Reimherr, 2017):

xn(tj,n) ∈ R, tj,n ∈ [T1 , T2 ], n = 1, . . . , N , j = 1, . . . , Jn (3.1)

where we have n observed curves over the same interval [T1 , T2 ]. The basic idea is that the objects
of study are the smooth curves

{xn(t) : t ∈ [T1 , T2 ], n = 1, . . . , N} (3.2)

defined for all values of t but observed only at selected points tj,n .

20 Chapter 3 Statistical Framework



Then, the first step in the analysis involves rebuilding, through the sample equation 3.1,
the functions by using smoothing techniques, which includes determining a set of functional
blocks or basis functions φm , m = 1, . . . ,M and a set of coefficients cm , m = 1, . . . ,M to define
each function as a linear combination of these basis functions; thus, xn(t) =

∑M
m=1 cnmφm(t),

n = 1, . . . , N . Although several types of bases exist, it is common to use Fourier basis systems for
periodic data or spline basis (b-splines) for aperiodic data (Ramsay et al., 2009).

Conventionally, by using least squares or localised least squares fits, it is possible to estimate
the coefficients cm , m = 1, . . . ,M . However, such methods are not efficient when observations
exhibit a significant level of noise, causing their functional representation to exhibit multiple
local fluctuations. Therefore, a penalised smoothing approach is preferred to minimise the effect
of the random variability. This approach uses a large number of basis functions and penalises the
sum of the squares through a smoothing parameter λ to enforce a tradeoff between overfitting
and oversmoothing of the data to the smooth functions (Kokoszka and Reimherr, 2017).

Extensions of the classical summary statistics for functional data are useful to describe the
behaviour of the smoothed functions. Let xn , n = 1, . . . , N , be a set of functions fit to data. The
mean and variance functions are (Ramsay et al., 2009):

x̄(t) = 1
N

N∑
n=1

xn(t), var(t) = 1
N − 1

N∑
n=1

[xn(t)− x̄(t)]2 (3.3)

In this sense, e.g. the mean function represents the average of the functions point-wise across
the replications. Also, as in multivariate data analysis, it is possible to extend the concept
of measurements of dependence between curves for different argument values through the
covariance function, which is defined as (Ramsay and Silverman, 2005):

σ̂(t, s) = cov(t, s) = 1
N − 1

N∑
n=1

(xn(t)− x̄(t)) (xn(s)− x̄(s)) (3.4)

As usual, most of the statistical methods have an adapted version under the scope of FDA.
For example, principal component analysis (PCA), discriminant analysis, and the regression
techniques, among others (Martínez-Camblor and Corral, 2011) which mainly assume a sample
of independent functions (Chen and Müller, 2012). Similarly, when curves are observed through
the time, space, or the space-time, there are variants for correlated data, such as repeated
measures (Park and Staicu, 2015), time series analysis (Hyndman and Ullah, 2007; Hyndman
and Booth, 2008; Hyndman and Shang, 2018), and spatial statistics modelling (Delicado et al.,
2010; Mateu and Romano, 2016).

FPCA is a valuable tool to explore and identify features in the curves and the number of types
of them. As with the PCA used in classical multivariate methods, FPCA defines a new set of scalar
variables fj,n , n = 1, . . . , N , j = 1, . . . , Jn , called scores, as linear combinations of the smooth
functions. Thus (Ramsay and Silverman, 2005),

fj,n =
∫
ξn(t)uj(t)dt (3.5)
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where ξn(t) is a weight function that maximises N−1
N∑
n=1

f2
j,n

subject to the constraint ‖ξn‖2 =∫
ξn(t)2dt = 1. This process defines an eigenequation:∫

σ̂(s, t)ξn(t) = λξn(t) (3.6)

The solution of equation 3.6 gives the eigenvalues, λ, and the scores. Following the PCA, the
scores associated with the first eigenvalue retain the maximum variability of the smooth curves,
and so on with the next ones. Then, for subsequent analysis, it is customary to study the first d
principal components with d� N .

3.4 Epidemic data

Epidemic data are conceived as realisations of spatio-temporal processes with autoregressive
behaviour which do not come from planned experiments. Its observations, number of events,
are not independent, and phenomena are only partially observed. Statistical analysis can be
addressed for modelling (model-based approach) or monitoring (test-based approach) epidemic
processes, generally in the context of infectious diseases surveillance (Robertson et al., 2010).
It is common that data are spatially and temporally aggregated, and there is no information
available about the number of susceptibles per spatial unit (Meyer et al., 2017; Paul et al., 2008).
Also, time series on counts of infectious diseases exhibit regular patterns over time, i.e. long-term
trends, seasonality, and occasional outbreaks (Salmon et al., 2016; Meyer et al., 2017).

For modelling epidemic data several approaches have been developed, among others,
generalised linear mixed models (GLMM), Bayesian models, and models of specific space-time
processes (Robertson et al., 2010). In this latter direction, Held et al. (2005) and Paul et al.
(2008) developed a model for multivariate infectious disease surveillance counts based on a
branching process with immigration. This model decomposes the number of events into two
parts: (1) a regular or endemic component that shows the baseline rate with a regular temporal
pattern and (2) an anomalous or epidemic component that reflects occasional outbreaks. It also
allows the inclusion of overdispersion and seasonal effects and provides tools to identify sudden
happening that is useful in surveillance systems.

Let yi,t be the number of events in the i-th area at the period t, i = 1, . . . ,m, j = 1, . . . , T .
Those counts are assumed negative binomial distributed (accounting for potential overdispersion),
yi,t |yi,t−1 ∼ NegBin(µi,t , ψ) with conditional mean:

µi,t = λiyi,t−1 + φi

∑
j 6=i

wijyj,t−l︸ ︷︷ ︸
Epidemic component

+αi +
Si∑
s=1

(γi,s sin(ωst) + δi,s cos(ωst))︸ ︷︷ ︸
Endemic component

(3.7)

where λi represents the autoregressive parameter for the i–th area, φi quantifies the influence
of the counts between connected regions, and wij are weights defined as a power law of the

22 Chapter 3 Statistical Framework



adjacency order oji between zones wij = o−d
ji

for i 6= j and wjj = 0 to consider that humans
travel through the areas (Meyer and Held, 2014). Additionally, Si are the number of harmonics
to include and ωs are Fourier frequencies, e.g. ωs = 2πs/24 for hourly data. The parameter αi

allows different incidence level in the regions.

3.5 Spatio-temporal graphs

In mathematical terms, a network or graph is a structure utilised to represent the relationships
between a pair of objects. Thus, a graph is an ordered pair G = (V,E) where V is a non-empty
set of vertices, nodes, or points and E is a set of links (Otte and Rousseau, 2002). A link is
an ordered pair that represents the association between two nodes. Moreover, the relations
between nodes can be directional, i.e., the connection from a node to another does not mean
that the contrary connection exists, in which case the links are called arcs. The relationships
can be non-directional, i.e., when a node is related to another, it also implies the existence of
the reciprocal relationship, where links are called edges. Due to this, networks can be classified
into two groups, based on the type of relationships established between nodes, are called direct
graph in case non-directional and digraph in directional case (Snijders, 2011; Otte and Rousseau,
2002).

The network structure is described from a set of indicators, including density and centrality,
although they are not unique. The first is also called connectedness and describes the general
level of interconnection between nodes in a graph. Whilst, the second is generally referred to a
particular actor, and measures different aspects, such as the degree (number of links that have a
node with others), closeness (the sum or the average of the shortest distances from a node to
all others) and betweenness (frequency or number of times a node acts as a bridge along the
shortest path between two nodes) (Robins, 2013; Scott, 2012; Otte and Rousseau, 2002).

Statistical models in networks analysis are focused on the study of links, which are generally
considered binary random variables, where 1 represents that there is a tie while 0 means, there is
not. Models are developed for explaining dependencies between variables, i.e., between links.
Although there are many possible types of dependencies, principal ones are the reciprocation
of directed ties, homophily, transitivity of ties, degree differentials and hierarchies in oriented
networks (Robins, 2013; Snijders, 2011).

When the nodes of a graph represent locations or areas, and each link symbolises the
interaction between two nodes (locations), the formed graph is called a spatial network (Guo,
2009). Thus, the inclusion of geographic features is studied to understand how the graph
structures are presented in space. For example, in the context of location-based social networks
analysis where geographical properties are embedded through location services (Gao and Liu,
2015), people usually connect to others with comparable socioeconomic characteristics such as
income, education, and language, among others. Socially it implies that similar people tend to
live nearby, i.e., it is likely that spatial dependence schemes exist in social networks (Gao and Liu,
2015).

3.5 Spatio-temporal graphs 23



According to Brugere et al. (2014) a spatio-temporal network can be considered a network
representation of relations among nodes which are oriented in geographical locations over
time. The models for studying spatio-temporal networks should meet two requirements: (1)
accommodate changes in the relations and spatial positioning over time and (2) facilitate efficient
computation of results to ensure scalability.
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4A Statistical Approach for Studying the
Spatio-temporal Distribution of
Geolocated Tweets in Urban
Environments

4.1 Context

An in-depth descriptive approach to the dynamics of the urban population is fundamental as a
first step towards promoting effective planning and designing processes in cities. Understanding
the behavioural aspects of human activities can contribute to their effective management and
control. We present a framework, based on statistical methods, for studying the spatio-temporal
distribution of geolocated tweets as a proxy for where and when people carry out their activities.
We have evaluated our proposal by analysing the distribution of collected geolocated tweets over
a two-week period in the summer of 2017 in Lisbon, London, and Manhattan. Our proposal
considers a negative binomial regression analysis for the time series of counts of tweets as a first
step. We further estimate a functional principal component analysis of second-order summary
statistics of the hourly spatial point patterns formed by the locations of the tweets. Finally, we
find groups of hours with a similar spatial arrangement of places where humans develop their
activities through hierarchical clustering over the principal scores. Social media events are found
to show strong temporal trends such as seasonal variation due to the hour of the day and the
day of the week in addition to autoregressive schemas. We have also identified spatio-temporal
patterns of clustering, that is, groups of hours of the day that present a similar spatial distribution
of human activities.

Thus, in this work, we aim to offer, to practitioners and urban researchers, a robust and
straightforward methodological strategy for processing significant volumes of human-generated
social media data by using efficiently performed and replicable methods that can include new
data in the analysis as soon as additional information is available. This effort provides meaningful
insights regarding city environments and a picture of the urban population dynamics through
knowing the spatio-temporal changes where humans develop their activities (Thakur et al.,
2018).

To this end, we suggest a spatio-temporal statistical approach to analyse the collective
dynamics of urban environments through the analysis of locations and timestamps of geolocated
tweets generated by people in cities. This approach involves the estimation of regression models
to characterise the temporal trends of the usage of social media and the use of classification
algorithms to identify spatio-temporal patterns of places where humans develop their activities.
Our method mainly uses the tools of regression for count data, spatial point patterns, functional
principal component analysis (FPCA), and hierarchical clustering. This alternative considers

25



that social media usage is a proxy for when and where humans develop their activities that can
impact and shape policies and action plans in cities. Thus, we aim to study the spatio-temporal
components of the dynamics of human activities by investigating the distribution of locations and
timestamps in geolocated tweets.

Hence, we wish to prove that statistical modelling—and mainly spatio-temporal statistics—is
an alternative approach to study urban dynamics. It provides advantages such as (1) the
possibilities to analyse significant volumes of human-generated data in cities, (2) a way to
gain insight into human behaviour almost in real time, and (3) tools to include implicitly and
explicitly spatio-temporal correlation schemas in models and predictions. Besides, statistical
modelling provides, by estimating the parameters of the models, a way to explain the processes
that generate the data (Diggle, 2013). In such a sense, our approach can be useful in monitoring,
comparing, and simulating urban environments more reliably. In this context, techniques such as
regression models for count data allow for the inclusion of specific temporal structures such as
autoregressive and seasonality effects (Liboschik et al., 2017). On the other hand, the statistical
analysis of spatial point patterns identifies schemas of spatial distribution through a set of
summary measures defined for different spatial scales (Baddeley et al., 2015; Illian et al., 2008).
Furthemore, FPCA brings the possibility of reducing dimensionality, highlighting the relevant
underlying characteristics in spatial summary measures (Lee et al., 2015).

To evaluate our proposal, we collect geolocated tweets, accessing the Twitter application
programming interface (API) on streaming, for a two-week period in the summer of 2017 in
three urban scenarios, namely, Lisbon, London, and Manhattan. We first address the analysis of
temporal trends in the usability of social networks at the city level with explanatory models for
count data, such as Poisson and negative binomial regression. Those models allow for identifying
factors that explain the changes in the number of geolocated tweets collected per hour as a
function of the number of tweets in previous hours (autoregressive parameters) in addition to
the hour of the day and the day of the week data (seasonal effects). We then study the hourly
spatial distribution of the places where people perform social media activities. To do that, we
label each location within the hour when the tweet was created to form a multitype spatial point
pattern. We estimate second-order summary statistics for each type, such as Ripley’s K and
pair-correlation functions. We then convert these summary statistics into functional curves by
smoothing with the B-spline basis. We apply FPCA over curves and obtain the functional scores.
We finally cluster those scores to obtain hours of the day with a similar spatial arrangement of
places with events of Twitter activity.

Our approach demonstrates that spatio-temporal statistical analysis provides valuable tools
to analyse a significant amount of geolocated human-generated data and provides insights into
how human activities occur in the cities. The obtained results in the studied urban environments
highlight the presence of several types of patterns through time across space in the usage of social
networks by humans. Then, considering those patterns as a reflection of population dynamics in
the cities, this line of investigation can provide instruments to define public policies regarding the
provision of services and infrastructures and the planning, management, and mitigation of risks.
For example, identifying of places commonly visited by people and hours of the day when that
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happens can suggest changes in the frequency of service of public transport systems and define
strategies for disaster management, among others (García-Palomares et al., 2018; Resch et al.,
2017; de Albuquerque et al., 2015).

4.2 Data

4.2.1 Collection

Our approach depends on collecting human-made social media activity over a period in an
urban environment. Figure 4.1 summarises the process of data collection, which starts with the
city and the places where people interact with their ubiquitous devices (smart devices) and share
content on social media. Social network services store this content and the associated metadata
for several purposes. In some cases, those services provide access to samples of their databases by
connecting their APIs. In particular, Twitter offers the possibility to obtain (almost in real time)
user-generated data by accessing its streaming API. Several software libraries, such as twitter4j
of Java, tweety of MATLAB, streamR of R, and tweepy of Python, among others, allow for
researchers to perform this task. We used R (R Core Team, 2018), the language and environment
for statistical computing, and its package tweet2r (Aragó et al., 2018) to download geolocated
tweets. tweet2r requires the definition of two parameters for the query: (1) a bounding box to
establish the spatial scope and (2) a temporal window to set the period when R connects to the
API. The downloading process builds files in GeoJSON format, and each file stores up to 3000
tweets. Since streaming collects approximately 1% of the overall activity (Morstatter et al., 2013;
Hawelka et al., 2014; Steiger et al., 2016; Steinert-Threkeld, 2018), the gathered amount of data
depends on the volume of usage of the social network in the city.

Social media databasesSoftware
libraries

API

City

People      develop activities around 
cities. Some of them use smart 

devices   .

Some people 
share where 
and when 
they are.

Connect

Gives a sampleStorage sample in
GeoJSON files

Figure 4.1: Schema of gathering geolocated social media data.
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4.2.2 Pre-processing
Human-generated tweets

Once the data are collected, it is necessary to carry out a procedure of pre-processing to
identify the information generated exclusively by humans and leave the databases ready for the
subsequent analyses. Figure 4.2 presents a schema with the main steps to implement. Initially,
GeoJSON files are merged and converted into a table that has by rows each gathered tweet and
by columns its metadata. Due to the significant amount of recorded tweets, the gathered data has
noises which not necessarily represent people’s activities, and it requires filtering to access only
those generated by humans before performing any analysis and also, to avoid biases in the results
(Yin et al., 2016). The cleaning and removal of the noises is a semiautomatic iterative task that
evaluates several sources of perturbation. (Tsou et al., 2017) mention system errors, commercial
bot and cyborg tweets, along with user tweeting frequency. On the other hand, (Hawelka et al.,
2014; Frias-Martinez et al., 2012) point out the tweeting frequency in the same location, as
another aspect to review.

System errors are related to the API since it can provide tweets that do not have geolocation,
as well as, information outside of the bounding box. Then, our method removes those rows with
missing values in the attributes called ‘lat’ and ‘lon’ and rules out events registered outside of the
boundaries of the box. For detecting the content associated with advertising, (Tsou et al., 2017)
suggest reviewing the field called ’source ’ in the metadata of the tweets which allows identifying
a significant amount of accounts that are continuously sharing commercial information. Then,
after tabulating all sources and counting their activity, it is possible to remove tweets that belong
to cyborgs by manual inspection. We finally analyse the user and location tweeting frequency, by
enumerating unique users and coordinates and then, counting the number of tweets in each case
that permit identifying and eliminating those that are related to users and places with a high and
unusual frequency.

Figure 4.2: Process for pre-processing samples of geolocated tweets.

4.2.3 Datasets construction for statistical analysis

For performing the statistical analysis, our approach builds a new dataset that keeps only
three fields, the coordinates (lat, lon) and the timestamps (created_at). We then add two new
columns related to the temporal mark in the following way:

1. We obtain the hour of the day when people created those tweets, labelling each row with
corresponding numbers 0, 1, . . . , 23.
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2. We set, inside of the temporal window of data gathering, a study period, i.e., a start point
t0 and an endpoint tT +1 . It is necessary to ensure that the start point is at least 30 hours
after the lower boundary of the collecting window to allow for obtaining past information
about the process. In addition, we assume that ti denotes the timestamp of the i-th tweet,
i = 1, 2, . . . , N where N is the total number of collected tweets. Then, by subtracting
t0 from ti , we obtain the number of elapsed hours from start point until a user shared
the i-th tweet. That process allows for defining another timestamp, represented by tN ,
through applying the floor function: tNi = bti − t0c. For instance, if t0 =‘2017-07-30
00:00:00’, tT +1 =‘2017-08-13 00:00:00’ and if the timestamp for a particular tweet
is ti =‘2017-08-05 15:18:32’, then the tN values associated with that study period are
between 0 and 335 hours; the elapsed time for that tweet is 159.31 hours, and tNi = 159.

Temporal dataset
Our temporal data analysis approach requires to create a table based on the field called tN . Let

n
h

be the count of the number of obtained tweets at hour h, h = 0, 1, . . . , T . So, this procedure
gives a discrete-time time series of counts {n0 , n1 , . . . , nT }. We complement the dataset building
two sets of dummy variables, as follows: (1) six Boolean variables for the days-of-the-week
leaving out the corresponding variable to the Monday and (2) 23 indicator variables for the
hours-of-the-day assuming as the reference category the 00:00 hour. Finally, the table includes
variables related to the count of tweets in previous hours for catching autoregressive and seasonal
autoregressive schemas, the five last hours (n−1, n−2, . . . , n−5) and the same hours the day before
(n−24, n−25, . . . , n−29), respectively. Following our previous example, where t0 =‘2017-07-30
00:00:00’ and tT +1 =‘2017-08-13 00:00:00’, the Table 4.1 shows an schema of a possible
temporal dataset.

Table 4.1: Schema of a temporal dataset.

date tN n
autoregressive seasonal autoregressive day-of-the-week hour-of-the-day
n−1 . . . n−5 n−24 . . . n−29 tuesday . . . sunday 00:00 . . . 23:00

2017-07-30 00:00 0 n0 n−1 . . . n−5 n−24 . . . n−29 0 . . . 1 0 . . . 0
2017-07-30 01:00 1 n1 n0 . . . n−4 n−23 . . . n−28 0 . . . 1 1 . . . 0
2017-07-30 02:00 2 n2 n1 . . . n−3 n−22 . . . n−27 0 . . . 1 0 . . . 0

...
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
2017-mm-dd hh:00 h n

h
n

h−1 . . . n
h−5 n

h−24 . . . n
h−29 0 . . . 0 0 . . . 0

...
...

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
2017-08-12 23:00 335 n335 n334 . . . n330 n311 . . . n306 0 . . . 0 0 . . . 1

Spatio-temporal dataset
To perform the spatio-temporal analysis, we define another dataset based on the locations of

the tweets and the hour of the day previously calculated by selecting only the rows that cover the
study period. That is, we aggregate and label the data in hourly units of time. We then transform
the spatial coordinates to a local coordinate reference system (CRS) through the R package sp
(Pebesma and Bivand, 2005). Table 4.2 shows a schema of a possible spatio-temporal dataset,
where (xj

h
, yj

h
, h) means the location of the j-th tweet shared at the hour of the day h.

4.2 Data 29



Table 4.2: Schema of a spatio-temporal dataset.

east north hour
x10

y10
0

x20
y20

0
...

...
...

xn0
yn0

0
x11

y11
1

x21
y21

1
...

...
...

xn1
yn1

1
...

...
...

x123
y123

23
x223

y223
23

...
...

...
xn23

yn23
23

4.2.4 Dataset biases

The representativeness of the harvested human-generated data through the connection to
the social media APIs has been a matter of discussion in previous research. There is a consensus
regarding the high variation of the spatio-temporal distribution of the tweets (Steiger et al.,
2015). Yet, it is not possible to argue that LBSN data are a representative of actual activity in
the cities (Celikten et al., 2017) and it requires an assessment that is outside of the scope of this
paper. Then, the findings of our approach only represent the contained activity within our Twitter
datasets.

4.3 Methods

Our data analysis approach focuses on three main aspects. First, we implement several
statistical methods to analyse the spatio-temporal distribution of human-generated social media
data, followed by the processing of a significant amount of information almost in real time.
Finally, we use easily implemented and reproducible techniques that allow for the inclusion of
new data to the models as soon as further information is collected.

Additionally, we include in the analysis spatio-temporal structures that reflect the
characteristics of human activity adequately. To this end, we decompose the statistical analysis
into two parts (see Figure 4.3): the study of the temporal distribution of the hourly number of
geolocated tweets in a city and the description of the spatial distribution by hours of the places
where people generated the collected tweets.

Many factors can explain the temporal changes in the amount of human-generated data in
cities, and some of them can be more relevant to the understanding of human behaviours. For
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example, in the scope of urban planning and decision-making processes, we can rapidly obtain
insights regarding urban dynamics through the identification and impact quantification of issues
related to the day of the week, hour of the day, and other temporal trends, such as autoregressive
and seasonal effects. In this sense, the regression techniques are flexible statistical methods that
can provide valuable tools to study temporal variations in the frequency of social media use.

Although human activity exhibits a high degree of spatio-temporal regularity, the exact place
and time of where and when people carry out their activities can neither be fixed nor established
by some sampling mechanism. In that sense, the statistical analysis of spatial point patterns plays
an important role to study the distribution of the locations where people generate social media
data since such an analysis provides elements to describe if those locations present some particular
spatial arrangement. Furthermore, determining the temporal variations of that distribution gives
a vision of the dynamics of the activities in the urban spaces, e.g., how people move from
residential areas in the mornings to working places throughout the day or the frequency of visits
to places of interest in the cities. In addition, multivariate techniques allow for us to identify
groups of hours that show a similar spatial distribution, ultimately displaying in a synthetic way
pictures of urban human activity variations through the day.

This section first presents the main elements of the statistical methods that make up our
methodological proposal. It then describes the essentials of regression models for the count data
and establishes our procedure to estimate, select, and validate those type of models. We then
explain the general framework of the statistical analysis of spatial point patterns. Finally, we
address the functional data analysis (FDA) and its application in the context of the multitype
spatial point patterns. Let yt , t = 0, . . . , T be the number of geolocated tweets at the hour t. We
will assume those counts follow a Poisson or a negative binomial distribution with conditional
mean µt given by:

log (µt) = ηt = β0 + β1Itue(t) + · · ·+ β6Isun(t)︸ ︷︷ ︸
day of the week

+ β7I01:00(t) + · · ·+ β29I23:00(t)︸ ︷︷ ︸
hour of the day

+β30n−1(t) + · · ·+ β34n−5(t)︸ ︷︷ ︸
autoregressive

+ β35n−24(t) + · · ·+ β40n−29(t)︸ ︷︷ ︸
seasonal autoregressive

(4.1)

where βj , j = 0, . . . , 40 represents the parameters of the model, I, the corresponding dummy
variables for the day of the week and the hour of the day, and n−s, the counts of the number of
the tweets in previous hours. Equation 4.1 describes the full model. We use that specification
to estimate the parameters of two models, one for each type of response variable, following the
procedure suggested by (Katsouyanni et al., 1996). We carry out a stepwise process to select
explanatory variables based on the Bayesian information criterion (BIC) (Venables and Ripley,
2002). The obtained models are compared to choose the best model regarding the probability
distribution of the response variable by using a likelihood ratio contrast (Cameron and Trivedi,
1986). We finally identify the preferred model and test for normality of the residuals using the
Shapiro-Wilk test and for residual autocorrelation using empirical autocorrelation function plots.
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Figure 4.3: Methodological approach.

The format of the data (see Table 4.2) is {sj
h
, h} : j = 1, . . . , n

h
, where each sj

h
∈W ⊂ R2

denotes the location, and h, h = 0, . . . , 23, the corresponding hour of theday of a tweet shared in
the city W . We assume that these data constitute a full register of all events that happen within
W at the hour h. We will consider this dataset as an hourly multitype spatial point pattern.
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Thus, we first estimate the Ripley’s K-function for each hourly spatial point pattern using the
following estimator:

K̂
h
(r) = |W |

n
h
(n

h
− 1)

n
h∑

i=1

n
h∑

j=1
j 6=i

1{‖si
h
− sj

h
‖ ≤ r}ei

h
j
h

(r) (4.2)

where |W | is the area of the city, n
h

is the number of tweets at the hour h, ‖si
h
− sj

h
‖ is the

distance between the geolocation of two collected tweets at the hour h, 1{·} takes the value 1
when the distance is less than or equal to r or 0 otherwise, and ei

h
j
h

(r) is an edge correction
weight defined by the geometry of the window and the number of the events in the point pattern
(Diggle, 2013).

Based on the estimator 4.2, we calculate the Besag’s L-function L̂
h
(r), h = 0, . . . , 23 for

distances rq , q = 1, . . . ,m, where ri < rj ∀i 6= j. To decrease the bias in the estimation of
the function, we consider rq values up to 1/4 of the smallest side length of the rectangle that
circumscribes the window W (Baddeley et al., 2015). From those estimations, we then obtain a
functional representation of the 24 curves through smoothing techniques with cubic b−splines
by imposing a roughness penalty based on a harmonic acceleration operator (Kokoszka and
Reimherr, 2017). We establish the number of the functional blocks by using the rule F = m+ 2
(Ramsay et al., 2009). We posteriorly perform an FPCA over the smoothed functions and select as
many scores as is necessary to obtain at least 70% of the retained variability. Finally, we perform
hierarchical clustering on the selected scores with Ward’s procedure (Husson et al., 2017) which
allows for the detection of groups of similar second-order summary statistics, i.e., groups of hours
whit similar spatial distribution of tweet locations.

4.4 Results

To evaluate our data analysis approach, we collected geolocated tweets in a two-week period
from July 28, 2017, at 12:22:00 UTC/GMT+1 hour to August 14, 2017, 12:21:59 UTC/GMT+1
for the metropolitan areas of Lisbon, London, and New York City. Table 4.3 shows the geographical
limits of the corresponding bounding boxes that establish the parameters of the query to connect
the Twitter’s API in addition to the total number of downloaded tweets and the number of
tweets after preprocessing the data. In the case of New York City and the metropolitan area
of Lisbon, we restricted the study to the information coming from Manhattan Island and the
municipality of Lisbon, to avoid the impact of bodies of water. Thus, we discarded tweets
outside of the administrative boundaries of those cities. We collected 4, 373, 79, 519, and 79, 649
tweets for Lisbon, London, and Manhattan, respectively. For the subsequent analysis, we set
t0 =‘2017-07-30 00:00:00’ and tT +1 =‘2017-08-13 00:00:00’. This step provided a study
period of 336 hours, between 0 and 335. We then processed 3, 626, 64, 404, and 59, 472 tweets
in each urban scenario. We finally transformed the coordinates to the local CRS EPSG:3763
for Lisbon, EPSG:27700 for London, and EPSG:2263 for Manhattan. Figures 4.4 and 4.5 show
the bar charts of the temporal distribution of the collected tweets during the study period. We
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Table 4.3: Parameters of the query in the Twitter’s API.

Metropolitan area Lisbon London New York City

Bounding box
(Left, Bottom) (−9.503,−38.35) (−0.516,−51.30) (−73.995,−40.523)
(Right, Top) (−8.4925,−39) (0.36,−51.69) (−73.695,−40.923)

Number of collected tweets
Total 213, 253 1, 084, 059 1, 370, 963
Clean 11, 817 87, 448 119, 802

aggregated the tweets for the two-weeks period by hours of the day and days of the week.
We found considerable differences between the amount of gathered information in each urban
settlement, but their distribution throughout the day presents similar patterns of behavior. We
discovered a profound decreasing on the usage of twitter after midnight and till early in the
morning, followed by an increase that gets a peak in the evening. Those maximums did not occur
at the same hour, being among 19:00 and 21:00 in Lisbon, from 17:00 to 19:00 in London, and at
18:00 in Manhattan. On the other hand, regarding the day-of-the-week, the three cities showed
marked variations, while Lisbon had more social media activity from Tuesday to Thursday, London
recorded more of tweets in the weekends than in the weekdays, and there was not a considerable
difference in the volume of human-generated data into days of the week in Manhattan. Figure
4.6 displays the three count time series for the 336 hours of analysis where it is evident a daily
seasonal effect in the frequency of interaction of people with their social networks. Lisbon’s
time series exhibits unusual activity, a high number of tweets in the evenings on August 1st,
August 3rd, and August 9th, 2017. For each city, we adjusted two count regression models

(a) Lisbon (b) London (c) Manhattan

Figure 4.4: Hourly distribution of geolocated tweets.

based on the equation 4.1, by considering Poisson and negative binomial responses. Table 4.4
presents the statistics for the goodness of fit to the selected best model in each urban settlement.
The likelihood ratio test shows that in all cases the models have a better fit using a negative
binomial distribution for the random component in the corresponding GLM. After performing
the stepwise variable selection procedure, we concluded that the preferred models are suitable
to explain the number of geolocated tweets per hour as a function of the examined explanatory
variables since deviance statistics are statistically significant. Table 4.5 presents the summary
of the estimation for the selected negative binomial regression models. The results show that
the parameters related to the day-of-the-week are positively correlated with the Twitter activity
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(a) Lisbon (b) London (c) Manhattan

Figure 4.5: Weekly distribution of geolocated tweets.

(a) Lisbon (b) London (c) Manhattan

Figure 4.6: Time series of hourly geolocated tweets in three urban environments.

Table 4.4: Statistics of goodness of fit for estimated count regression models.

Test Lisbon London Manhattan
Likelihood ratio (LR) 26.25 *** 165.02 *** 281.97 ***
Deviance (D) 363.77 * 397.32 *** 388.88 **

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

in Lisbon, from Tuesday to Thursday, and in London, from Thursday till Sunday, and have no
impact on Manhattan. The models indicate that there is a notable correlation between the
hour-of-the-day and the amount of social media data shared by people. The pattern is almost the
same in the three urban environments, being a negative association from midnight until early
in the morning and a positive relationship that increases with the course of the day, peaking at
19:00 in Lisbon, 17:00 in London, and 18:00 in Manhattan. Additionally, some of the parameters
related to the autoregressive effects were significant. In Lisbon, the number of tweets created 5
hours before is negatively correlated with the activity for the current hour. In the case of London,
an increase of the social media activity in the one hour and three hours before is likely to produce
an increase in the number of tweets in the present time. In the same way as the selected model
for Lisbon, the estimated model for London reported a negative relationship with the number
of tweets five hours before and the activity at the current moment. For Manhattan, only the
amount of the tweets in the two previous hours exhibits a positive correlation with the amount of
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interaction with Twitter in the current time. The stepwise procedure removed all the variables
included for the seasonal autoregressive trends.

Figure 4.7 compares observed and fitted numbers of geolocated tweets over the observation
period in the three cities. The predicted values through the models represent most of the
trends that data exhibit adequately. To evaluate the validity of the models and to identify

Table 4.5: Estimated regression coefficients and 95% confidence intervals in the fitted negative binomial
regression models for the number of geolocated tweets per hour.

(a) Lisbon (b) London (c) Manhattan
Parameter Estimate 95% CI Parameter Estimate 95% CI Parameter Estimate 95% CI
Intercept 2.062 (1.952,2.172) Intercept 3.803 (3.721,3.884) Intercept 3.965 (3.823,4.108)
Tuesday 0.237 (0.112,0.362) Thursday 0.07 (0.027,0.112) 01:00 -0.321 (-0.455,-0.187)
Wednesday 0.239 (0.113,0.364) Friday 0.125 (0.08,0.17) 02:00 -0.698 (-0.854,-0.542)
Thursday 0.197 (0.069,0.325) Saturday 0.174 (0.122,0.226) 03:00 -0.813 (-0.984,-0.644)
02:00 -1.368 (-1.85,-0.934) Sunday 0.156 (0.106,0.206) 04:00 -0.618 (-0.789,-0.447)
03:00 -1.986 (-2.604,-1.458) 01:00 -0.291 (-0.414,-0.169) 05:00 -0.252 (-0.416,-0.089)
04:00 -2.536 (-3.333,-1.893) 02:00 -0.859 (-1.004,-0.717) 06:00 0.318 (0.166,0.47)
05:00 -1.523 (-1.977,-1.115) 03:00 -1.055 (-1.214,-0.9) 07:00 0.697 (0.555,0.839)
06:00 -1.033 (-1.393,-0.698) 04:00 -0.741 (-0.882,-0.603) 08:00 0.824 (0.693,0.956)
11:00 0.531 (0.321,0.741) 06:00 0.685 (0.578,0.791) 09:00 0.837 (0.714,0.959)
12:00 0.736 (0.53,0.942) 07:00 1.019 (0.909,1.129) 10:00 0.848 (0.728,0.968)
13:00 0.585 (0.374,0.795) 08:00 1.077 (0.958,1.196) 11:00 0.955 (0.835,1.076)
14:00 0.723 (0.515,0.929) 09:00 1.078 (0.954,1.203) 12:00 0.869 (0.739,0.999)
15:00 0.712 (0.505,0.919) 10:00 1.163 (1.037,1.289) 13:00 0.791 (0.661,0.922)
16:00 0.865 (0.653,1.076) 11:00 1.289 (1.165,1.412) 14:00 0.841 (0.714,0.968)
17:00 0.751 (0.533,0.97) 12:00 1.33 (1.204,1.456) 15:00 0.82 (0.691,0.95)
18:00 0.932 (0.725,1.14) 13:00 1.251 (1.12,1.382) 16:00 0.884 (0.756,1.013)
19:00 1.161 (0.959,1.365) 14:00 1.201 (1.073,1.33) 17:00 0.919 (0.787,1.052)
20:00 1.144 (0.941,1.348) 15:00 1.292 (1.169,1.414) 18:00 0.976 (0.837,1.114)
21:00 1.036 (0.825,1.249) 16:00 1.37 (1.249,1.491) 19:00 0.795 (0.645,0.945)
22:00 0.731 (0.513,0.948) 17:00 1.496 (1.371,1.621) 20:00 0.731 (0.586,0.877)
23:00 0.471 (0.229,0.711) 18:00 1.401 (1.263,1.54) 21:00 0.711 (0.577,0.846)
n−5 -0.018 (-0.026,-0.01) 19:00 1.327 (1.188,1.466) 22:00 0.572 (0.445,0.699)

20:00 1.248 (1.111,1.384) 23:00 0.354 (0.233,0.474)
21:00 1.119 (0.991,1.247) n−1 0.002 (0.001,0.003)
22:00 0.998 (0.883,1.114) n−2 0.001 (0.000,0.002)
23:00 0.646 (0.537,0.755)
n−1 0.002 (0.001,0.002)
n−3 0.001 (0.0002,0.001)
n−5 -0.001 (-0.001,-0.0003)

(a) Lisbon (b) London (c) Manhattan

Figure 4.7: Observed temporal variation of geolocated tweets (black dots) together with the fitted
variation from a negative binomial regression model (deep sky blue areas).

departures from the statistical assumptions, we conducted a residual analysis. The results of the
Shapiro-Wilk’s test, Lisbon: W = 0.996, p−value= 0.65; London: W = 0.995, p−value= 0.34;
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Manhattan: W = 0.996, p−value= 0.27, present that there is no statistical evidence to reject the
null hypothesis that states the residuals of the models follow a Gaussian probability distribution.
Additionally, Figure 4.8 shows the residuals versus the fitted values and autocorrelation function
and partial autocorrelation function plots. We note that no apparent patterns arise from the
relation between residuals and adjusted values, as well as, that the residual autocorrelation is
not significant. For each city, we built a multitype spatial point pattern, labelling each location

(a) Lisbon (b) London (c) Manhattan

Figure 4.8: Residual plots for the selected regression models.

with the hour when a user created the corresponding tweet. Figure 4.4 shows the distribution of
the number of events for each mark, displaying the dynamics of the social media activity through
the day. We established the length of the smaller side of the rectangles that circumscribe the city
of Lisbon, the London’s metropolitan area, and the island of Manhattan. Based on those lengths,
we defined the maximum distances (rm) to estimate the L-Besag’s function. We worked with
a sequence of values from 0 metres up to rm , each 25 metres. Table 4.6 shows a summary of
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the obtained ranges. We then estimated the centred version L̂(r)− r of the function, for every
hourly formed spatial point pattern, over the set of those distances. We obtained the functional
representation of those estimations by using functional blocks of 117, 451, and 304 for Lisbon,
London, and Manhattan, respectively and a roughness penalty with a smoothing parameter
λ = 0.00001. We after calculated the FPCA over the smoothed curves and kept the first two
principal scores since they cumulated more than 70% of the variability in the three scenarios.
Additionally, to disclose more significant components of variation, we rotated the functional
principal components with the VARIMAX rotation algorithm (Ramsay et al., 2009). We finally got
the dendrogram by applying agglomerative hierarchical clustering through Ward’s method on
the matrix of dissimilarities computed with the Euclidian distance between the scores. Figures

Table 4.6: Distance parameters for estimating the second-order summary statistics for the hourly multitype
spatial point patterns of tweets in three urban settlements.

City Length of the shorter side 1/4 of the length rm m

Lisbon 11, 530.11 2, 882.53 2875 115
London 44, 819.03 11, 204.76 11, 200 449
Manhattan 30, 153.90 7, 533.96 7, 525 302

4.9, 4.10, and 4.11 present the results of the spatio-temporal data analysis approach in the three
studied urban scenarios. In the case of Lisbon, the smoothed functions reveal schemes of spatial
clustering for almost all of considered distances and hours of the day, except for the case of the
events registered at 04:00 whose curve decreases rapidly and reach negative values after 1.75 km.
Also, those functional representations belonging to hours from midnight to early in the morning
(light deep sky blue curves) are more irregular than those associated with later hours. The first
two principal components retain 86.06% and 7.84% of the variability, respectively. As a functional
principal component symbolises variation over the average curve, the interpretation depends
on this capability. Thus, since the first component takes negative values for distances up to 500
metres, approximately the variation of the mean of the hourly second-order summary statistics,
the relationship is strongest for distances longer than this value, and the second component
captures primarily variations in the hourly summaries up to 1.5 km. Panel (c) of Figure 4.9 reveals
that the spatial distribution, of the shared events at 04:00, is quite dissimilar in comparison with
the behaviour of the distributions for the other hours of the day. There are approximately three
groups of hours for human activities, thus: (1) between 00:00 and 01:00, (2) from 02:00 to
07:00, and (3) at the rest of the hours.

The smoothed centred L-Besag’s functions for London show less irregularity than for Lisbon.
The curves also exhibit a pattern of spatial clustering for all distances and hours of the day.
The functional representation for the hourly second-order summary statistics reveals marked
differences between the curves associated with tweets generated in dawn hours to the curves
from tweets shared in other periods of the day. The first two principal components explain 97.5%
and 1.73% of the variability of the summary statistics, respectively. The first harmonic portrays
a continuous increase of the variation of the mean function with the distance, mainly from 3
km. The distribution of the hours through of the scatterplot of the first two functional principal
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components tells that there are four groups approximately, three of them for early hours in the
morning and the other for the rest of the day.

Similarly to the other two cities, the obtained results for Manhattan indicate that the spatial
arrangement of the collected geolocated tweets exhibits schemas of spatial clustering for every
hour and all distances. Also, the smoothed curves that belong to hours after midnight until 05:00
have more irregularity than at other hours of the day. The first two harmonics keep 70.13% and
26.17% of the variability of the smoothed L-Besag’s functions. The first component reveals that
the variation in the mean function of the second-order summary statistics is increasing for all
distances being higher from 2.8 km meanwhile the second component portrays increments of the
variations up to 4.2 km. The hours form almost four groups. One for activities done from 00:00
to 02:00, another for 03:00 to 05:00, and the other two for later hours.

We finally obtained the intensity function of each mark of the multitype spatial point pattern,
by using bidimensional density kernel estimation. We employed the quartic kernel and selected
the bandwidth by using Scott’s method (Scott, 2015). We later standardised all the estimated
values and brought them to the scale 0 - 1 by subtracting their minimum and then dividing
in their range. Figures 4.12 to 4.14 display the estimations. In Lisbon, there is a persistent
accumulation of the human-generated data in the margin south that borders with the Tagus
river where are located the main places of interest of the city. On the other hand, London’s
metropolitan area concentrates social media activity in the surrounding boroughs of the city of
London where are located touristic places, big companies, and commercial areas. The island of
Manhattan aggregates most of the Twitter’s activity in the direction south-west from the Central
Park to the limits with the Upper Bay and the Hudson River that locates Times Square, SOHO,
and the Financial District, among others.

4.5 Discussion

We first examined the temporal distribution of the number of geolocated tweets per hour by
using regression models for count data under the scope of the GLMs. We evaluated and found that
in the three studied cities, the models have a better goodness of fit when we used the negative
binomial distribution for the random component. This result implies that the counts exhibit a
high heterogeneity, which reflects the complexity of the analysed systems and agrees with as
stated by (Batty, 2009). We additionally detected strong temporal trends related to the day of
the week and the hour of the day that reinforce the idea that people who publish geolocated
tweets tend to develop their activities approximately at the same times. (França et al., 2015;
Frias-Martinez and Frias-Martinez, 2014; Steiger et al., 2016) studied social media data from
London and Manhattan and identified areas with high social media activity and differences in
behaviour between weekdays and weekends and in hours of the day. However, those temporal
patterns change between cities. Our results in the case of Manhattan show that the estimated
model did not establish a significant difference in the days of the week, which is contrary to the
findings in previous research. These divergences can be due to those aforementioned studies used
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(a) Smoothed L-functions (b) First two principal components

(c) A plot of the scores of all hours (d) Dendrogram of the scores

Figure 4.9: Results from a FPCA on L-functions in Lisbon.

a more extended period of data collection than ours, which allowed the authors to have a broader
image of the urban dynamics, not just a two-week period in a summer, and their conclusions
are based on frequencies while we used a more sophisticated approach that included regression
modelling and statistical hypothesis testing. The dissimilarity of the frequency of people’s use
of social media in the other two cities through the weekdays might be an effect of the unusual
counts registered in the time series of Lisbon that increased the volume of human-generated
data from Tuesday to Thursday. After a thorough review, we attribute the outlier occurring on
August 9, 2017, at 19:00 to the prematch tweets of the Portuguese local soccer league between
Benfica versus Braga. Our approach also involved the estimation of parameters associated with
autoregressive trends. The findings highlight that those temporal effects are also significant to
explain the number of tweets and can be meaningful as a measure to anticipate the pressures of
increasing the amount of human activity.

We then investigated the spatio-temporal distribution of the geolocated tweets. We linked
elements of statistical analysis of spatial point patterns, FDA, and hierarchical clustering. We
discovered that locations, where people create and share social media data, exhibit a pattern of
spatial clustering for every hour during the day and for all considered spatial scales. This result
agrees with the fact the people tend to visit the same places at the same times (Gao and Liu,
2014; Song et al., 2010b; González et al., 2008). Furthermore, we detected that those schemes
of clustering change through the day, being more similar from 08:00 to midnight and highly
unlikely between midnight and early hours in the morning. We also found that the measures
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(a) Smoothed L-functions (b) First two principal components

(c) A plot of the scores of all hours (d) Dendrogram of the scores

Figure 4.10: Results from a FPCA on L-functions in London.

of spatial correlation through the time tend to be more homogeneous in short distances, at 500
metres, 3 km, and 2.8 km for Lisbon, London, and Manhattan, respectively. These values differ
significantly with travel distance of 1.5 km reported in human mobility studies (González et al.,
2008; Simini et al., 2012; Song et al., 2010b). The behaviour of the smoothed second-order
summary statistics showed more uniform curves in London and more erratic curves in Lisbon,
which might be an effect of the number of gathered tweets in each city in the two-week period.
The analysis also revealed that the places where people share content in Twitter are located in
the same areas at the same hours, which is a common feature in the social conduct of humans.
The irregular shape of the curves for dawn hours retained most of the variability of the L-Besag’s
functions and covered other spatial effects that might occur in other periods of the day.

Considering our results, we suggest that an approach based on epidemic data can more
effectively accommodate the presence of outliers and might even be capable of predicting them.
Epidemic data are conceived as realisations of spatio-temporal processes with autoregressive
behaviour which do not come from planned experiments. Its observations, number of events, are
not independent, and phenomena are only partially observed (Meyer et al., 2017). There is a
high similarity with the distribution of the number of geolocated tweets. Those methods also
include autoregressive trends and spatio-temporal structures in the estimation of the parameters
of the models that might describe human social conduct more accurately. Our analysis has shown
the data coming from the hours commonly dedicated to rest might hide spatio-temporal patterns
in the behaviour of the people in the cities at other times of the day. Therefore, we also suggest
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(a) Smoothed L-functions (b) First two principal components

(c) A plot of the scores of all hours (d) Dendrogram of the scores

Figure 4.11: Results from a FPCA on L-functions in Manhattan.

that to avoid the randomness associated with activity during those hours, the analysis of the
human activity in cities should be restricted to the hours of the day where humans are more
active and developing their daily life.
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Figure 4.12: Estimated intensity function of the hourly multitype spatial point pattern in Lisbon.

Figure 4.13: Estimated intensity function of the hourly multitype spatial point pattern in London.

4.5 Discussion 43



Figure 4.14: Estimated intensity function of the hourly multitype spatial point pattern in Manhattan.
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5Understanding Human Urban Activity
Through the Statistical Analysis of
Epidemic Data

Understanding urban dynamics is a crucial task for the analysis of cities. It provides core elements
for informed urban planning and decision-making processes. Social media data has become a
sensor of human activities and a valuable source of information to study where and when these
occur. This research is proposing a framework based on the use of statistical modelling developed
in the context of infectious disease surveillance for explaining the spatio-temporal distribution of
social media data as a proxy of human activity in cities. To evaluate this, we gathered live stream
tweets of three urban environments in a two weeks period during the summer of 2017 and
estimated non-linear random effects multivariate models to explain the number of geolocated
tweets per region per hour. This approach assumes that the count of tweets follows a negative
binomial probability distribution and decomposes the conditional mean into two elements. First,
an epidemic component consisting of temporal autoregressive effect and spatial neighbourhood
defined by a power law concerning distance. Second, an endemic part that includes seasonality
and day of the week effects. The model selected caught the temporal trends in social media
activity accurately and showed the differences in the dynamics of the cities. It was also able to
identify regions and times with unusual behaviour. Our proposal provides through the parameters
for the identification of endemic and epidemic components of the social media data related to
human activity an alternative reading to this phenomenon that can replicate or simulate complex
systems and be useful in monitoring urban dynamics in real-time.

5.1 Introduction

The study of city dynamics has been receiving considerable attention in the geospatial
investigation due to the diversity and the complexity of issues appearing in the urban systems
(França et al., 2015; Batty, 2009; Celikten et al., 2017). Although, the lack of data for dealing
with this matter was a substantial problem. Nowadays, several actors including geographers,
social researchers, and data scientists consider social media data as a core source for studying
cities (Silva et al., 2013). Despite of it, this information is sparse in the geographical space,
incomplete in a time interval (Ferrari et al., 2011), and might not be representative (Toole
et al., 2015). It is considered a better alternative for analysing human activity than survey
sample techniques through the use of questionnaires since it catches people’s perceptions and
spatio-temporal changes more accurately in real-time (França et al., 2015; Frias-Martinez et al.,
2012; Wakamiya et al., 2011). Such data has allowed developing specific techniques which

45



involve network analysis, data mining, and statistics in a new branch of knowledge called urban
informatics or urban analytics (Stimmel, 2015; Zheng et al., 2014).

This work develops an alternative, built on statistical methods of epidemic data, for studying
data from LBSN as a proxy for human urban activity. It considers a model-based approach
(Robertson et al., 2010) that has been used in the context of multivariate modelling of infectious
disease surveillance counts (Paul et al., 2008; Held et al., 2005). Through this approach,
it aims to understand how social media data behaves across space and time. This model
decomposes the counts into two parts, the regular (endemic component) and the anomalous
(epidemic component) activity and allows the inclusion of overdispersion and seasonal effects
that are common in human behaviour. Additionally, it provides a tool for identifying outbreaks,
characteristic of surveillance systems, which can be useful for urban planners and decision-makers.

However, the use of social networks and their data has not been fully explored in this matter.
Specially, statistical modelling can provide elements (parameters of the models) to understand
underlying processes generating the data and be useful in monitoring urban environments more
reliably. In this context, epidemic phenomena exhibit similar characteristics to social media
activity. Thus, statistical methods for this type of data can be potentially used for analysing data
coming from LBSN. Even though to the best of our knowledge, there has not been developed a
specific application of epidemic data for studying human urban activity, reports can be found
about syndromic surveillance systems in the frame of preventing bioterrorism attacks. (Bradley
et al., 2005; Buehler et al., 2003).

Prior studies that use location-based social network (LBSN) data as the primary data source
have been narrowed to data mining techniques for examining urban dynamics and human activity
and extracting urban patterns. In modelling urban dynamics and human activity, (Celikten et al.,
2017) implemented a probabilistic topic modelling in a dataset of geotagged activity from
Foursquare that was accessed from check-ins via Twitter. The authors included in their analysis
the exact location of the users and the timestamps of the events. They reported unique features
of the geographical areas and similar regions across different cities. (França et al., 2015) studied
the dynamics of Manhattan using five months of geolocated tweets. The authors aggregated
the data in the corresponding days of the week and in hourly units of time. In addition, the
authors identified areas with high social media activity and differences in behaviour between
weekdays and weekends and in hours of the day. In extracting urban patterns, (Ferrari et al.,
2011) analysed 13 million Twitter posts in New York City using latent Dirichlet allocation (LDA)
algorithms. Such an approach allowed for the authors to identify hotspots in the city life that
persist over time and space in the urban scenario. However, to the best of our knowledge, no
previous research has been perfomed in the direction of spatio-temporal statistics.

Epidemic data are conceived as realisations of spatio-temporal processes with autoregressive
behaviour which do not come from planned experiments. Its observations (number of cases) are
not independent, and phenomena are just partially observed. Statistical analysis can be addressed
for monitoring or modelling epidemic processes, generally in the context of the infectious diseases
(Meyer et al., 2017; Salmon et al., 2016). Moreover, time series on counts of infectious diseases
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exhibit regular patterns over time, i.e. long-term trends, seasonality, and occasional outbreaks
(Paul et al., 2008; Held et al., 2005), aspects that also present human activity.

5.2 Data

Geolocated social media data coming from Twitter Streaming API was collected using tweet2r
(Aragó et al., 2018) library from R that enables to gather a sample of all tweets created in a
specific spatial boundary box in near real time. The process was carried out during a period
in the summer of 2017 in a window that covers the metropolitan area of Lisbon, Portugal (see
details in Table 5.1 and Figure 5.1). The process produced files in GeoJSON format, which were
transformed into a table with the location (longitude and latitude) of each downloaded tweet.
The analysis of the information ruled out the events registered outside of the boundary of the
city. The coordinates were projected to the local coordinate reference system (CRS) of Lisbon
(EPSG: 3763).

Table 5.1: Parameters of the query in Twitter Stream API.

Local time
Start End

2017-07-28 12:22:00 2017-08-14 12:21:59
Boundary box

(Left - Bottom) (Right - Top)
(-9.503; - 38.35) (-8.4925; - 39)

Figure 5.1: Bounding box around Lisbon Metropolitan Area

The dataset was transformed as follows. The runway of the airport and an extensive green
area (called Monsanto Forest Park) were not considered as potential zones with high impact on
urban human activity whereby they are not included in further analysis. The city was divided
into rectangles whose size was determined using Scott’s method (Scott, 2015) to estimate the
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bandwidth in kernel smoothing over the geolocations of the collected tweets (see Figure 5.2).
Finally, a new spatio-temporal dataset was built where each rectangle is associated with an hourly
time series of the count of the number of tweets gathered for that region.

Figure 5.2: Spatial arrangement of the area

5.3 Statistical framework and methods

A multivariate model of infectious diseases surveillance data was considered that can be
seen it as a branching process with immigration (Paul et al., 2008; Held et al., 2005). In the
context of surveillance setting, data are spatially and temporally aggregated, and there is no
information available about the number of susceptibles per region (Meyer et al., 2017; Paul et al.,
2008). Let yi,t be the number gathered of geolocated tweets in the i-th rectangle at the hour
t, i = 1, . . . ,m, j = 1, . . . , T . Following Paul et al. (2008), those counts are assumed negative
binomial distributed (accounting for potential overdispersion), yi,t |yi,t−1 ∼ NegBin(µi,t , ψ) with
conditional mean:

µi,t = λiyi,t−1 + φi

∑
j 6=i

wijyj,t−l︸ ︷︷ ︸
Epidemic component

+αi +
Si∑
s=1

(γi,s sin(ωst) + δi,s cos(ωst))︸ ︷︷ ︸
Endemic component

(5.1)

where λi represents the autoregressive parameter for the i-th rectangle, φi quantifies the influence
of the counts between connected regions, and wij are weights defined as a power law of the
adjacency order oji between zones wij = o−d

ji
for i 6= j and wjj = 0 to consider that humans

travel through metropolitan areas (Meyer and Held, 2014). Additionally, Si are the number of
harmonics to include and ωs are Fourier frequencies, e.g. ωs = 2πs/24 for hourly data. The
parameter αi allows different incidence level in the regions. While epidemic component reflects
occasional outbreaks (for instance, anomalous situations caused by massive events), endemic
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component shows the baseline rate with a regular temporal pattern. A particular case appears
for the overall time series, which is called univariate model where the general form presented in
the equation (3.7) can be written in the following way:

µt = λyt−1︸ ︷︷ ︸
Epidemic component

+α+ δ
d(t) + η

h(t) +
S∑
s=1

(γs sin(ωst) + δs cos(ωst))︸ ︷︷ ︸
Endemic component

(5.2)

where d(t) identifies the day-of-the week and h(t) the hour-of-the-day to reflect different incidence
levels.

5.4 Results

During the whole period, 14500 geolocated tweets where collected inside of bounding box of
which 8514 were created in the city of Lisbon. The statistical analysis was conducted considering
tweets generated between 2017-07-30 00:00:00 and 2017-08-12 23:59:59, establishing a
temporal horizon of 336 hours. Scott’s method provided bandwidths of 524m for x-axis and
563m for y-axis respectively. Based on that, the city was divided into 302 rectangles of such size.

Figure 5.3 shows the visualisation of the data. The overall time-series plot in Figure 5.3a
revealed a marked seasonality, peaking between 19:00 and 23:00 and reaching its minimum after
midnight till early morning. There was a significant increase of geolocated tweets in the evenings
of the sixth and eleventh days. The spatial plot in Figure 5.3b indicates the spatial clustering of
the events over the river margin, especially in the south-east direction where the city centre is
located. Finally, Figure 5.3c presents the individual time series for the rectangles with more than
200 tweets, which also exhibit seasonal behaviour and heterogeneity in the number of tweets.

The model was fitted using a stepwise procedure based according to Bayesian Information
Criterion (BIC). Finally, it included linear terms for the autoregressive (epidemic) component
and overall-trend, sine-cosine pairs corresponding to 24-hour, 12-hour, and 6-hour cycle lengths,
dummy variables for Tuesday, Wednesday, and Thursday, and dummy variables for hours between
6:00 and 15:00 (see Table 5.2). Day-of-the week was positively correlated with twitter activity
whereas the correlation with hour-of-the-day was negative. On the other hand, the autoregressive
part suggested a high-pressure for increasing the number of counts in hours preceded hours for a
low social media activity. Figure 5.4 compares observed and fitted numbers of geolocated tweets
over the observation period.

The multivariate (spatio-temporal) infectious disease surveillance model was estimated using
the same procedure as in the univariate case (see Table 5.3). Although it was considered terms
for the day-of-the-week and the hour-of-the-day in the endemic component, those were not
statistically significant whereby they were deleted into the selected model. Then, the long-term
trend was established by S = 3 harmonics with Fourier frequencies related to 24-hour, 12-hour,
and 6-hour. In this case, unlike univariate way, the epidemic component consisted of the temporal
autoregressive and the spatial neighbourhood parameters which have a statistical contribution
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(a) Time series of hourly counts. (b) Counts per rectangle.

(c) Count time series of the regions with more than 200 tweets.

Figure 5.3: Geolocated tweets in Lisbon

in the explanation of the phenomenon. The dominant eigenvalue was 0.79 that represents the
epidemic proportion of disease incidence, i.e., a considerable part of the fitted mean of the counts
comes from the inside-rectangle autoregressive component with a small contribution of activity
of adjacent areas and a slightly low endemic incidence. The estimation of the decay parameter of
the adjacency order d is approximately 2 meaning that spatial interaction is presented around
1km (size of two cells). Figure 5.5 compares observed and fitted counts over the observation
period in the areas with more than 200 of geolocated tweets, it can be observed that the epidemic
component give the highest contribution in comparison with the other elements of the model.
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Figure 5.4: Observed temporal variation of geolocated tweets (black dots) together with the fitted
variation from a univariate infectious disease surveillance model (grey-blue areas).

Table 5.2: Estimated regression coefficients, 95% confidence intervals, and p-values in the fitted univariate
infectious disease surveillance model for the number of geolocated tweets per hour in Lisbon,
Portugal.

Parameter Estimate 95% CI p-value
λ̂ -1.87 (-2.51; -1.23) 1.05e-08
α̂ 6.21 (5.14; 7.29) 0
Tuesday 0.17 (0.06; 0.27) 1.74e-03
Wednesday 0.15 (0.04; 0.25) 5.84e-03
Thursday 0.18 (0.07; 0.28) 7.80e-04
6:00 -3.21 (0.8; 1.67) 8.06e-11
7:00 -6.19 (-4.18; -2.24) 1.56e-09
8:00 -10.6 (-8.19; -4.18) 2.14e-10
9:00 -13.72 (-13.88; -7.33) 2.55e-10
10:00 -15.37 (-17.97; -9.47) 1.37e-10
11:00 -14.32 (-20.06; -10.67) 1.86e-10
12:00 -11.5 (-18.72; -9.92) 1.89e-10
13:00 -7.89 (-15.04; -7.96) 8.65e-11
14:00 -4.15 (-10.27; -5.5) 1.48e-10
15:00 -1.57 (-5.42; -2.88) 1.60e-09
sin S = 1 1.99 (-2.07; -1.06) 6.82e-06
cos S = 1 -6.17 (1.12; 2.86) 5.11e-12
sin S = 2 -3.73 (-7.93; -4.42) 3.59e-13
cos S = 2 2.26 (-4.74; -2.73) 1.05e-10
sin S = 3 1.23 (1.57; 2.94) 2.07e-08
ψ̂ 0.03 (0.02; 0.04) 5.37e-06

5.5 Discussion

It was proposed a novelty approach for analysing social media data coming from Twitter
based on statistical modelling for epidemic data. This alternative was able to describe the
phenomenon adequately and give meaningful insights about how humans behave across time
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Figure 5.5: Observed temporal variation of geolocated tweets (black dots) together with the fitted
variation from a multivariate infectious disease surveillance model (grey-blue-orange areas)
in the rectangles with more than 200 geolocated tweets.

Table 5.3: Estimated regression coefficients, 95% confidence intervals, and p-values in the fitted
multivariate infectious disease surveillance model for the number of geolocated tweets per
hour in Lisbon, Portugal.

Parameter Estimate 95% CI p-value
λ̂ -0.76 (-0.83; -0.68) 0
φ̂ -1.15 (-1.22; -1.07) 0
α̂ -4.73 (-4.9; -4.55) 0
sin S = 1 -0.11 (-0.25; 0.03) 0.13
cos S = 1 -0.85 (-1.07; -0.63) 2.82e-14
sin S = 2 -0.27 (-0.41; -0.12) 2.65e-04
cos S = 2 -0.5 (-0.68; -0.32) 5.19e-08
sin S = 3 -0.21 (-0.35; -0.08) 1.88e-03
cos S = 3 -0.13 (-0.28; 0.01) 0.07
d 1.98 (1.83; 2.12) 0
ψ̂ 3.32 (3.04; 3.61) 0

and space. The fitted models included: (1) an essential seasonal element of a 24-hour cycle, that
has been highlighted in previous research about human activity, (2) an autoregressive component
to indicate that hours with low content-generated precede hours with more usage of the social
network, and (3) a spatial element to reflect how the amount of activity is affected by the
behaviour in neighbouring areas with a radius of interaction is approximately 1km which also
agrees with the referred as the distance travelled by people.
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6Urban human mobility patterns in
origin-destination systems using
functional data analysis and hierarchical
clustering

6.1 Overview

We show a methodological approach to discover and describe human mobility patterns in
origin-destination urban public transport systems. These systems register the entries and exits
of the users to the system stations through smart cards. Conventionally, this information is
transformed into a matrix called spatial interaction or origin-destination matrix where each of its
positions represents the number of trips that start in one place and ends in another. Data analysis
is oriented to understand how the systems work through establishing the demand of the origins
and the attractiveness of the destinations.

Historically, origin-destination matrices were estimated by using survey sampling techniques,
which were slow and expensive and restricted their constant updating. Nowadays, the use of
sensors in the access points of public transport systems makes possible to collect large amounts
of data that describe the mobility of users through the network of stations in the system. This
availability of information requires for developing data analysis techniques that allow discovering,
understanding, describing, and monitoring human mobility patterns, as well as, providing tools
to establish adequate management plans for transport services and provide better travel time for
passengers.

6.2 Method

6.2.1 Data

To test our method, we had access to the information of the registered transactions in the
public transport system of Lisbon, Portugal in May 2015. We restricted the analysis to trips made
in the metro network of the city. At that time, the system had 49 stations, which are distributed in
4 lines identified with colours, yellow, blue, green, and red (see Figure 6.1). The system operates
every day between 6:30 am and 1:00 am. However, the frequency of service and the number
of wagons of each train decrease on weekends and holidays. Users enter and leave the stations
using a public transport card.

We carried out a sequential procedure for cleaning and preprocessing the information to
dispose of a database in the required format to perform statistical analysis and modelling. We
implemented such process using Microsoft SQL Server, and it consisted of the following steps:
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Figure 6.1: Map of Lisbon’s subway.

• Only transactions made in the Lisbon subway were selected.

• All inbound to the subway that had an associated outbound were selected.

• It was verified that the exit time of the system happened after the entry time.

• Those transactions registered outside of the service hours of the metro and those carried
out on weekends and holidays were eliminated.

• The total number of made outflows from each station of the system in fifteen minutes slots
was counted.

6.2.2 Statistical analysis

Data analysis consists of four main aspects. The first two are to establish the mobility pattern
of each station based on the daily information of the number of trips that start there, while
the last two are to define the overall behaviour of the system, by grouping stations that have
similar temporal behaviours in the demand of the service. Thus, for each station, a functional
representation of the daily number of trips is initially constructed, and then, such daily curves are
summarised through the use of the functional mean, which we interpreted as the mobility pattern
of said station. This process generates a characteristic curve for each station. These summary
curves are reduced through the functional principal components analysis and the generated
scores generated are classified by using hierarchical clustering methods.

6.3 Results

Lisbon’s public transport system registered 47,101,706 transactions of which 20,968,691
were in the metro. The information had 10,542,403 entries and 10,426,288 exits. We verified
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the consistency of the information and found that 10,312,211 origin-destination flows. We ruled
out 204,503 flows that were registered outside of the operational time. We also removed the
flows of the Labor Day (May 1st) and Saturdays and Sundays (May 2nd, 3rd, 9th, 10th, 16th,
17th, 23rd, 24th, 30th, and 31st). Additionally, the Lisbon subway did not report transactions on
May 19th, and 26th. Thus, to each station got 18 daily time series with the number of trips that
started there in slot-times of 15-minutes.

For each station and each day, we obtained the functional representation of the corresponding
curve to the number of trips by using 76 functional blocks a roughness penalty with a smoothing
parameter λ = 0.000001. We then calculated the functional mean of the 18 obtained curves.
The functional mean represents the mobility pattern of the station. Thus, we got 49 curves or
individual mobility patterns of all stations. To establish the aggregate mobility patter, we got the
functional expression of those 49 means. We after calculated the FPCA over the smoothed curves
and kept the first two principal scores since they cumulated more than 70% of the variability.
Additionally, to disclose more significant components of variation, we rotated the functional
principal components with the VARIMAX rotation algorithm (Ramsay et al., 2009). We finally got
the dendrogram by applying agglomerative hierarchical clustering through Ward’s method on the
matrix of dissimilarities computed with the Euclidian distance between the scores.

To illustrate our approach, we show in the Figure 6.2 the obtained functional representation
of the number of trips in a particular station of the system. Panel (a) belongs for one specific time
series, whilst, panel (b) displays the behaviour of the curves for all period and in colour black
la functional mean or mobility pattern in that place. Thus, we found that Marques de Pombal
station behaves in a unimodal mobility pattern with high demand iof the services between 17:00
and 21:00 reaching its maximum demand at 18:00.

(a) During a particular day (b) During all observed period

Figure 6.2: The functional representation of inflows counts at Marques de Pombal station.

6.3 Results 55



Figure 6.3 contains the plot of the smoothed curves or mobility patterns for each of 49 stations
of the system. It shows that in general there two peaks of the demand of the services. First one
occurs from 07:00 to 10:00 in the morning and between 17:00 to 20:00 in the evening. The

Figure 6.3: The functional representation of inflows counts at the Lisbon subway network.

results of the FPCA are displayed in the Figure 6.4. Panel (a) plots the components and panel
(b) the scores for each station. The first two principal components explain 61.9% and 36.3% of
the variability of the number of flows, respectively. The first harmonic portrays a decrease in the
variation of the mean function for the flows that happen early in the morning up to 10:00 and
a constant increase for the rest of the operation. This result implies that the number flows are
more homogeneous in the morning and more heterogeneous in the evening.

Figure 6.5 and table 6.1 present the results of the hierarchical clustering of the functional
scores. They shows that stations of the Lisbon subway can be classified into six groups according
with the amount of demand of the service. Particularly, Figure 6.6 plots the mobility pattern of
each group. We found mainly three summary behaviours: (1) Unimodal with high demand of
system in the morning (clusters 2 and 5), (2) Unimodal with high demand of the system in the
evening (Cluster 3, 4, and 6), and (3) Bimiodal with high demand in the morning and in the
evenings.
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(a) First two principal components

(b) Plot of the scores for all stations

Figure 6.4: Results from a FPCA of inflows counts at the Lisbon subway network.

Table 6.1: Clusters of stations based on temporal patterns of flows

Cluster Stations
1 Amadora Este, Alfornelos, Carnide, Alto dos Moinhos, Laranjeiras, Praca

Espanha, Parque, Santa Apolonia, Martim Moniz, Intendente, Areeiro,
Roma, Telheiras, Quinta das Conchas, Lumiar, Ameixoeira, Olaias, Bela
Vista, Chelas, Olivais Sul, Cabo Ruivo, Moscavide, Encarnacao, Aeroporto

2 Pontinha, Terreiro do Paco, Senhor Roubado, Odivelas
3 Avenida, Restauradores, Rossio, Anjos, Arroios, Alameda, Alvalade, Rato,

Picoas, Campo Pequeno, Cidade Universitaria
4 Colegio Militar, São Sebastião, Baixa Chiado, Saldanha, Oriente
5 Jardim Zoológico, Cais Sodré, Entre Campos, Campo Grande
6 Marques de Pombal
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(a) Dendrogram of the scores

(b) Plot of clusters

Figure 6.5: Results from a hierarchical clustering of inflows counts at the Lisbon subway network.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

Figure 6.6: Clusters of stations based on temporal patterns of flows
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7Conclusions

This dissertation reviewed relevant literature in the field of human dynamics and summarised
several components in its study, as well as reflections on the statistical methods to find urban
patterns. Discussions on Chapters 4 and 5 have been done on the potential opportunities
and impact of the two main statistical approaches suggested for the use of social media data
and epidemic-like data for studying spatio-temporal distributions related to the understanding
of human urban activity. These have particularly reflected on how the proposed methods
address some of the current gaps in the field of statistical modelling of human activity regarding
monitoring, modelling, and predicting urban human dynamics patterns on a large-scale level.
Furthermore, the statistical approaches here developed resource to the use of data fusion
techniques to integrate information from diverse smart city´s sources as a way to improve the
goodness of fit of models for pattern discovery.

7.1 Spatio-temporal distribution, social media data, and human activity

This dissertation proposed an alternative to studying the spatio-temporal distribution of
geolocated tweets through the use of statistical methods for answering several questions.
It first focused on developing a meaningful approach to analyse a considerable amount of
human-generated data. In that direction, it was found that regression modelling, spatial point
patterns, FDA, and hierarchical methods can process data coming from social networks and
discover and describe regularities in the distribution of the human activities in the cites.

Additionally, this work aimed to characterise temporal and spatial structures in the data
to capture the spatio-temporal behaviour of humans. The evaluated techniques showed that
temporal trends and spatial autocorrelation are relevant to improve the goodness of fit in
regression methods and adequately describe the spatial distribution of the places where people
interact with social media, respectively. The analytical proposal was tested in three different
cities to characterise and compare behaviours across those urban environments which allowed to
gain information involving human conduct in cities with different structures and dynamics.

However, the presented statistical approach and its application had some limitations. One
of the most relevant limitations referred to the analysis of content data which has provided
meaningful insights into the field of Twitter Analytics. The inclusion of semantics components of
geolocated tweets in our approach would give additional information about the cities.

Nonetheless, the previous point was not covered by the research here presented since its
core objective was to understand the spatio-temporal distribution of where humans interact with
their social networks as a proxy for human activity and avoid constraints related to the semantic
analysis. The two main arguments for not considering semantics analysis as part of the approaches
here developed were as follows. First, Twitter streaming API provides human-generated content
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that is not only text, which reduces the amount of data for analysing in procedures of sentiment
analysis, and thus, representativeness of its results, for example, we found the more than 50% of
the geotagged tweets came from third parties such as Instagram and Foursquare, among others.
Second, the computational expense of text mining methods the problems in the processing of
textual information due to UTF-8 characters, study more than one language, and hashtag parsing
(Huang et al., 2018). And third, the privacy concerns associated with the identification of the
users (Tasse and Hong, 2014; Gao and Liu, 2014; Frias-Martinez et al., 2012).

Additional limitations on this research study related to:

• The complex task of identifying and eliminating shared content by machines, bots, cyborgs
and other sources who are not people which restricts the analysis. A

• The short study period and the season when was located can distort the found patterns.

• The representativeness of the harvested sample through the Twitter API which is only
around one per cent of the overall activity.

• Finally, estimated models can vary greatly depending on population number, social structure,
ethnicity, culture, traditions, and consumer preferences. Many control variables can enter
modelling.

7.2 Spatio-temporal distribution, epidemic data, and human activity

Despite the above limitations, we have found that our approach was able to identify almost the
same behaviours in a more straightforward way than alternatives developed in previous research.
On the other hand, our proposal is looking for providing easily implemented and reproducible
methods that can be automatised and thus, analyse a significant amount of geolocated data
with the advantage of using more advanced techniques. Moreover, we included and statistically
tested the effect of considering structures of spatio-temporal autocorrelation that might allow
for predicting, monitoring and, simulating the activities accurately in the cities. For example,
the inclusion of autoregressive parameters permits anticipates abnormal situations due to the
pressure that immediate changes produce in the short-term forecasts.
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