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  Summary 

Obesity is one of the most prevalent diseases affecting the global population. It 

entails metabolic disruptions that affect the whole organism, including the correct 

functionality of the gastrointestinal (GI) tract. Proanthocyanidins have already 

proved to be effective at stimulating the enteroendocrine system in healthy 

conditions, but their effects under an obesogenic challenge have still to be 

determined. For this reason, this thesis was designed to study the effects of a grape 

seed proanthocyanidin extract (GSPE) on the enteroendocrine system in rats fed 

with a long-term cafeteria diet.  

Our results showed that a preventive treatment, a synchronic intermittent treatment 

and a corrective treatment were all capable of modulating the enteroendocrine 

system differently. Furthermore, each GSPE treatment showed different 

enteroendocrine profiles associated with changes in body weight and/or food intake. 

However, we had certain difficulties regarding the quantification of enterohormone 

secretions, which led us to develop a new ex vivo methodology that stimulated 

different segments of the GI tract and quantified their enterohormone secretion 

response, thus keeping their vectoriality. 

We also found that a 10-day pre-treatment with GSPE induced a long-term 

upregulation of GLP-1 gene expression in the ileum that was partly mediated by the 

hypomethylation of its GLP-1 promoter. Moreover, these effects were maintained 

when GSPE was administered every other week during the seventeen weeks of 

cafeteria diet. In addition, since this preventive GSPE treatment presented a 

decreased respiratory quotient and tended to reduce the body weight gain, we 

evaluated if there were also long-lasting GSPE effects on lipid management in the 

peripheric tissues. The results showed a limitation on adipose storage and an 
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increase in lipid oxidation in the liver and skeletal muscle that lasted seven weeks 

after the last GSPE dose. 

To sum up, this thesis revealed that grape seed proanthocyanidins are capable of 

modulating the enteroendocrine system and improving the energetic state altered 

by a cafeteria diet, thus demonstrating that they are good agents for treating 

metabolic alterations induced by obesity. 
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  Resum 

L'obesitat és una de les malalties més freqüents que afecta la població de tot el món. 

Inclou una sèrie de trastorns metabòlics que afecten tot l'organisme, incloent la 

correcta funcionalitat del tracte gastrointestinal (GI). Les proantocianidines han 

demostrat ser efectives estimulant el sistema enteroendocrí en condicions 

saludables, però els seus efectes sota un context d’obesitat encara estan per 

determinar. Per aquest motiu, aquesta tesi va ser dissenyada per estudiar els efectes 

d'un extracte de proantocianidines de llavor de raïm (GSPE) sobre el sistema 

enteroendocrí en rates alimentades amb una dieta de cafeteria a llarg termini. 

Els nostres resultats van mostrar que uns tractaments preventiu, intermitent 

sincrònic i correctiu son capaços de modular el sistema enteroendocrí de diferent 

manera depenent del tractament. A més, cada tractament amb GSPE va mostrar 

diferents perfils enteroendocrins associats a canvis de pes corporal i/o d’ingesta. No 

obstant això, vam trobar algunes dificultats en la quantificació de les secrecions 

d'enterohormones que ens van conduir al desenvolupament d'una nova 

metodologia ex vivo, que ens va permetre estimular diferents segments del tracte 

gastrointestinal i quantificar la seva resposta de secreció d'enterohormones, 

mantenint la seva vectorialitat. 

També vam trobar una regulació de llarg termini sobre l'expressió gènica  de GLP-1 

a ili, induïda per un pre-tractament de 10 dies amb GSPE, mediada parcialment per 

una hipometilació sobre el promotor de GLP-1. Aquests efectes es van mantenir 

quan el GSPE es va administrar cada dues setmanes durant les disset setmanes de la 

dieta de la cafeteria. A més, atès que els animals que van rebre el tractament 

preventiu de GSPE presentaven un quocient respiratori disminuït i tendien a reduir 

l'augment de pes corporal, es va avaluar si el GSPE induïa també efectes de llarg 

termini sobre la gestió de lípids en els teixits perifèrics. Els resultats van mostrar una 
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limitació d’emmagatzematge al teixit adipós i un augment de l'oxidació lipídica al 

fetge i múscul esquelètic que va durar set setmanes després de l'última dosi de GSPE. 

En resum, aquesta tesi ha mostrat que les proantocianidines de llavors de raïm són 

capaces de modular el sistema enteroendocrí i millorar l'estat energètic, alterat per 

una dieta de cafeteria, demostrant ser uns bons agents per tractar les alteracions 

metabòliques induïdes per l'obesitat. 
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  Resumen 

La obesidad es una de las enfermedades más frecuentes que afecta a la población de 

todo el mundo. Incluye una serie de trastornos metabólicos que afectan a todo el 

organismo, incluyendo la correcta funcionalidad del tracto gastrointestinal (GI). Las 

proantocianidinas han demostrado ser efectivas estimulando el sistema 

enteroendocrino en condiciones saludables, pero sus efectos bajo un contexto de 

obesidad aún están por determinar. Por este motivo, esta tesis fue diseñada para 

estudiar los efectos de un extracto de proantocianidinas de semilla de uva (GSPE) 

sobre el sistema enteroendocrino en ratas alimentadas con una dieta de cafetería a 

largo plazo. 

Nuestros resultados mostraron que unos tratamientos preventivo, intermitente 

sincrónico y correctivo son capaces de modular el sistema enteroendocrino de 

diferente forma dependiendo del tratamiento. Además, cada tratamiento con GSPE 

mostró diferentes perfiles enteroendocrinos asociados a cambios de peso corporal 

y/o de ingesta. Sin embargo, encontramos algunas dificultades en la cuantificación 

de las secreciones de enterohormonas que nos condujeron al desarrollo de una 

nueva metodología ex vivo, que nos permitió estimular diferentes segmentos del 

tracto gastrointestinal y cuantificar su respuesta de secreción de enterohormones, 

manteniendo su vectorialidad. 

También encontramos una regulación de largo plazo sobre la expresión génica de 

GLP-1 en íleon, inducida por un pre-tratamiento de 10 días con GSPE, mediada 

parcialmente por una hipometilación sobre el promotor de GLP-1. Estos efectos se 

mantuvieron cuando el GSPE se administró cada dos semanas durante las diecisiete 

semanas de la dieta de la cafetería. Además, dado que los animales que recibieron 

el tratamiento preventivo de GSPE presentaban un cociente respiratorio disminuido 

y tendían a reducir el aumento de peso corporal, se evaluó si el GSPE inducía también 
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efectos de largo plazo sobre la gestión de lípidos en los tejidos periféricos. Los 

resultados mostraron una limitación de almacenamiento en el tejido adiposo y un 

aumento de la oxidación lipídica en el hígado y músculo esquelético que duró siete 

semanas después de la última dosis de GSPE. 

En resumen, esta tesis ha mostrado que las proantocianidinas de semillas de uva son 

capaces de modular el sistema enteroendocrino y mejorar el estado energético, 

alterado por una dieta de cafetería, demostrando ser unos buenos agentes para 

tratar las alteraciones metabólicas inducidas por la obesidad.
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LIST OF ABBREVIATIONS

Ac-CoA Acetyl-CoA 

AKT Serine threonine kinase 

AMPK AMP-activated protein 

kinase 

ATP Adenosine triphosphate 

BAT Brown adipose tissue 

BW Body weight 

CAF Cafeteria 

CCK Cholecystokinin 

ChGA Chromogranin A 

COMTs Catechol-O 

methyltransferases 

COX-2 Cyclo-oxygenase-2 

DAG Diacyl glycerol 

DNA Deoxyribonucleic acid 

DNL De novo hepatic 

lipogenesis 

DNMTs DNA methyltransferases 

DPP-4 Dipeptidyl peptidase-4 

EE Energy expenditure 

EECs Enteroendocrine cells 

EGC Epigallocatechin 

EGCG Epigallocatechin gallate 

EI Energy intake 

ER Endoplasmic reticulum 

ERK1/2 Extracellular signal-

regulated protein 

kinases 1 and 2 

FA Fatty acids 

FFAs Free fatty acids 

FI Food intake 

Flavanols Flavan-3-ols 

GC Gallocatechin 

GHS-R Growth hormone 

secretagogue receptor 

GI Gastrointestinal 

GIP Gastric inhibitory 

polypeptide 
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GLP-1 Glucagon like peptide 1 

GLP-1R GLP-1 receptor 

GLUT-4 Glucose transporter 4 

GOAT O-acyltransferase 

GSPE Grape seed 

proanthocyanidin 

extract 

GTD Green tea decoction 

HAT Histone 

acetyltransferases 

HDAC Histone deacetylase 

HFD High fat diet 

HMT Histone 

methyltransferases 

HOMA-

IR 

Homeostatic model 

assessment-insulin 

resistance 

IAAP Islet amyloid 

polypeptide 

IGFBP-1 Insulin like growth 

factor binding protein-1 

IKKβ IκBα kinase beta 

IL-6 Interleukin-6 

IL-8 Interleukin-8 

IMLC Intramyocellular lipid 

content 

iNOS Inducible nitric oxide 

synthase 

IR Insulin resistance 

IRS Insulin receptor 

substrate 

JNK-1 C-Jun N-terminal   

kinase-1 

LCFA Long chain fatty acid 

LPL Lipoprotein lipase 

LPS Lipopolysaccharides 

MAPK Mitogenic activated 

protein kinase 

miRNA Micro RNA 

MPO Myeloperoxidase 

NF-κb Nuclear factor-κb 
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NPY Neuropeptide Y 

PACs Proanthocyanidins 

PC Pyruvate carboxylase 

Pdx1 Insulin promoter  

factor-1 

PGC1-α Peroxisome 

proliferator-activated 

receptor gamma 

coactivator 1-α 

PI3K Phosphatidylinositol 3-

kinase 

PKC Protein kinase C 

POMC Proopiomelanocortin 

PPARγ Proliferator-activated 

receptor γ 

PUFA Polyunsaturated fatty 

acids 

PYY Polypeptide YY 

RNA Ribonucleic acids 

RQ Respiratory quotient 

SCFA Short chain fatty acids 

SCFAs Short chain fatty acids 

SGLT-1 Sodium-dependent 

glucose transporter-1 

SULTs Sulfotransferases 

TAG Triacyclglycerols 

T2DM Type 2 diabetes mellitus 

TEER Trans electrical 

epithelial resistance 

TNF-α Tumour necrosis   

factor-α 

TRP  Transient receptor 

potential channels 

UCPs Uncoupling proteins 

UGTs Glucuronosyl-

transferases 

VLDL Very low-density 

lipoprotein 

WAT White adipose tissue 
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  Introduction 
 
1. Obesity: metabolic disorders and therapeutic management 

Obesity is one of the most prevalent diseases affecting the population all around the 

world. The last upload from the OMS indicates that in 2016, there were more than 

1.9 billion of adults considered overweighed and 650 million of them were obese [1]. 

It increases the risk factor of developing hypertension, hyperglycaemia, pro-

thrombotic states and a pro-inflammatory states alterations which can lead to the 

appearance of pathologies such as cardiovascular disease, type 2 diabetes mellitus 

(T2DM) and chronic inflammation [2]. These metabolic alterations are, in part, 

related to excessive accumulation of triacyclglycerols (TAG), particularly if fat 

accumulation occurs in the abdominal region, increasing the risk for metabolic 

alterations, cardiovascular diseases and insulin resistance (IR).  

It is believed that the increase in adipose tissue mass is linked to alterations of the 

endocrine and metabolic functions of adipose tissue that lead to worsening the 

systemic physiology. For example, adiposity is negatively correlated with production 

of adiponectin, a hormone produced by the adipocytes that it is thought to induce 

insulin sensitivity [3–5]. Moreover, other authors add that obesity and insulin 

resistance are related to a state of chronic, low-grade inflammation in adipose tissue, 

characterized by infiltration of adaptive and innate immune cells and an altered 

production of proinflammatory molecules (also called adipokines) such as tumour 

necrosis factor (TNF)-α, interleukin (IL)-6, IL-1b, inducible nitric oxide synthase 

(iNOS), among others, that have direct effects on cellular metabolism [6–8]. Finally, 

due to the impaired capacity to rapidly store dietary fat of hypertrophic adipocytes, 

lipids are released into the circulation as free fatty acids (FFA) and ectopically stored 

in non-adipose tissues, such as the liver, skeletal muscle, heart, pancreas and intra-
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abdominally [9]. This ectopic fat accumulation is generally higher in obesity and 

T2DM and leads to interference with insulin signalling [10, 11].  

1.1 Metabolic disorders associated to ectopic fat accumulation 

The adipose tissue is involved in energy storage and has an endocrine function, and 

plays an important role in maintaining body energy balance, thermogenesis and the 

production of various cytokines [12, 13]. In normal conditions adipose tissue 

responds to  insulin, an anabolic hormone secreted by pancreatic β cells in response 

to food intake, inducing glucose and fat transport in adipose tissue, skeletal muscle 

and liver,  and glycogen synthesis in skeletal muscle and liver [14].  Insulin interacts 

with the insulin receptor substrate (IRS), and the IRS/ phosphatidylinositol 3-kinase 

(PI3K)/ serine threonine kinase (AKT) pathway promoting the cellular translocation 

of glucose transporter 4 (GLUT-4) to the cell membrane, thus leading to cellular 

glucose uptake [15]. In obesity, according to the lypotoxicity hypothesis,  the excess 

of fat induces IR by blocking the IRS/PI3K/AKT pathway [16]. The alteration of this 

pathway blocks the entrance of glucose to the cell, which enhances its plasma levels 

and aggravates the IR [15]. Furthermore, once the adipose tissue has developed IR, 

it increases its lipolytic character and weakens the promotion of lipid synthesis [16, 

17] that is accompanied  an impairment of its storage capacity. This forces other 

peripheral tissues as the liver, the skeletal muscle and the pancreas, among others, 

to become fatty acids (FA) storage tissues [9]. 

In normal conditions the liver responds to fasting conditions due to the raised 

glucagon, which induce the production of glucose through gluconeogenesis and 

glycogenolysis, whereas in fed conditions insulin reduces hepatic glucose production 

and glycogenolysis, increases glycogen synthesis and the synthesis of fatty acids for 

storage with the subsequent utilization by other tissues [18, 19]. Fatty acids in the 

liver come from several different sources: derived from dietary fat, released from 
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adipocytes via lipolysis, and from de novo hepatic lipogenesis (DNL) [20]. Part of the 

FFAs of the liver are converted into TAG through esterification and are either stored 

in lipid droplets within hepatocytes, or are packaged and released as very low-

density lipoprotein (VLDL) particles into the blood [21].  In obesity, the increased 

FFAs that reach the liver, increase the hepatic Acetyl-CoA (Ac-CoA) which activates 

pyruvate carboxylase (PC), 

that leads to an increase of 

hepatic gluconeogenesis 

[22]. Furthermore, the 

impairment of peripheric 

glucose uptake induces a 

state of hyperglycaemia 

that forces the pancreas to 

produce more insulin 

which guides to a 

hyperinsulinemic state 

[23]. Hence, 

hyperinsulinemia leads to 

an upregulation of 

transcription factors 

regulating DNL and an 

inhibition of FFA β-

oxidation, further 

promoting hepatic fat 

accumulation [23, 24].   

Fig. 1. Mechanisms of insulin resistance in the adipose tissue, the liver and the skeletal muscle. 

Extracted from [25]. 
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Furthermore, the accumulation of FA as  diacyl glycerol (DAG) and ceramides, induce 

a pro-inflammatory response mediated by several serine kinases such as protein 

kinase (PKC) Cε, c-Jun N-terminal kinase-1 (JNK-1) and IκBα kinase beta (IKKβ), that 

leads to an impairment of hepatic insulin signalling, interfering with the tyrosine 

phosphorylation of IRS  and thus, constraining insulin-stimulated hepatic glycogen 

synthesis [26–28]. 

Additionally the increased adipose lipolysis, leads to an  increment of FA and  glycerol 

turnover to the liver, that further increases hepatic conversion of glycerol to glucose 

through a substrate push mechanism [22, 29]. Furthermore, insulin resistance is also 

enhanced by chronic metabolic inflammation and endoplasmic reticulum (ER) stress 

in the liver [30, 31].  

The  skeletal muscle plays an important role in glucose regulation and energy 

homeostasis, being the responsible of most of insulin-stimulated glucose utilization 

[32]. Under normal conditions, FFAs enter the skeletal muscle through fatty acid 

translocase and fatty acid-binding protein, and then form long chain fatty acids 

(LCFA)-CoAs, which are partitioned to the synthesis of lipids (TAG) or toward the 

mitochondria for oxidation [33].  In obesity, the increased deliver of FFA acids by the 

adipose tissue, leads to an excessive intramyocellular lipid content (IMLC), which 

reduce the mitochondrial oxidative and phosphorylation activity and leads to 

skeletal muscle IR [34, 35]. Furthermore, the DAG-mediated activation of PKCθ 

impairs muscle insulin signalling limiting the phosphorylation of IRS-1, blocking 

insulin-stimulated muscle glucose uptake through GLUT-4 receptors, thus increasing 

glucose delivery to the liver [36]. This will further drive hepatic lipid synthesis and 

activate hepatic gluconeogenesis via ac-CoA–mediated activation of PC and glycerol, 

increasing glucose production via substrate push [25]. In figure 1 it can be observed 

a schematic draw of the integration of the metabolic pathways that have been 

commented in this section. 
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The endocrine pancreas is mainly composed of different types of cells, of which 

pancreatic β cells are vitally important in maintaining glucose homeostasis by 

producing and secreting insulin in 

response to the blood glucose 

concentration [37]. In obese 

subjects, excess levels of circulating 

FFAs, impair the function of β cells 

[38]. A long-term cafeteria (CAF) 

diet has been shown to induce a pre-

diabetic state with ectopic lipid 

accumulation in the pancreas, just 

as to increase the insulin content 

and gene expression in the 

pancreas, a condition that leads to 

hyperinsulinemia. In addition, it has 

also been shown initial signs of 

apoptosis in the pancreas [39].  

The second most abundant peptide secreted by pancreatic β-cells is amylin, or also 

known as islet amyloid polypeptide (IAPP). It is stored and secreted with insulin in a 

ratio 1:100 [40–42]. Like insulin, plasma amylin levels are low during fasting and 

increase during meals. It also increases following glucose administration, and the 

levels are all directly proportional to body fat [43]. The biological actions of IAPP are 

still not fully understood, but appear to involve central nervous system-mediated 

induction of satiety, slowing of gastric emptying and potentiation of leptin signalling 

[40]. At the brainstem, amylin interacts with other neuropeptides involved in food 

Fig. 2. Representation of the main metabolic disorders induced by obesity in the peripheral tissues 

that contribute to the development of obesity-related pathologies.  
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intake including cholecystokinin (CCK),  glucagon like peptide 1 G(LP-1), and  

polypeptide YY (PYY) [44]. After long-term access to high fat diet, it has been 

observed a reduction of amylin’s ability to inhibit food intake [45]. Moreover, it has 

been detected that in obesity, it occurs an inefficient proteolytic conversion of 

proIAPP to IAPP, occurs and an increase in proIAPP levels may contribute to islet 

amyloid deposition and β-cell disfunction, subsequently contributing to the 

development of type-2 diabetes [40, 46]. Chronically elevated glucose and free fatty 

acids have been demonstrated to enhance amyloid fibril formation [47–49] that in 

turn, promotes the auto stimulation of pro-inflammatory cytokines that can initiate 

islet inflammation [50].In addition, IAAP aggregates have been shown to  acts as a 

potent stimulus for inflammatory cytokines thus aggravating the inflammatory 

process [51].  

Finally, the endocrine pancreas is also composed by α-Cells, which compose 

approximately 25% of the human islet and are classically associated with their role 

in producing glucagon for counter regulation of the actions of insulin in blood glucose 

homeostasis [52]. Studies of the effects of fatty acids on α-cells have shown that they 

enhance glucagon secretion by means of fatty acid oxidation and TAG accumulation 

in a time- and dose-dependent manner, but decrease cell proliferation [53]. Piro et 

al. suggested that fatty acids augment glucagon release and enhance glucagon 

expression and protein content, probably by activating the mitogenic activated 

protein kinase (MAPK) pathway [54]. In contrast, they observed that the   inhibitory 

action of insulin on glucagon release was impaired in a long-term incubation with 

fatty acids, probably due to palmitate-induced insulin resistance because of  the 

defects in the IRS-1/PI3K/AKT pathway [54].  
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1.2 The role of the gastrointestinal tract on obesity 

One of the main functions of the gastrointestinal (GI) tract is nutrient digestion and 

absorption. Hence, on the treatment of obesity, the development of both, nutrient 

digestion and absorption inhibitors is one of the main strategies to reduce energy 

intake through GI mechanisms [55, 56]. In addition, the GI tract is one of bigger 

hormonal tissues since it is a source of various regulatory peptide hormones, 

secreted along all the GI tract by different enteroendocrine cells (EECs), which are 

involved in the coordination of digestive processes within the gastrointestinal system 

via autocrine and paracrine effects. But, they also exert endocrine effects on other 

organ systems particularly in the brain, where some of them have also been found 

to exist as neurotransmitters [57]. Together the brain and the GI tract interweave to 

induce a proper satiety signalling and their interaction is known as the gut-brain axis. 

It has the control of food intake through the action of gut peptides, acting as both, 

hormones and neurotransmitters, allowing signalling between the periphery and 

central nervous system to coordinate systemic changes in our physiology [58]. 

Moreover, the parasympathetic nerves innervating the stomach play an important 

role in digestion and absorption and the sympathetic excitation and parasympathetic 

inhibition affect energy homeostasis,  feeding behaviour and also reduce food intake 

and body weight [59].  

Another important role of the intestine is being the largest and principal barrier 

protecting tissue from the external environment [60]. It allows the exchange of 

molecules between the host and the environment and nutrient absorption from the 

diet [61–64], while preventing the entry of antigens and microorganisms into the 

body [61, 65]. Moreover, the immune cells present in the intestinal barrier provide 

a measured inflammatory and defensive response to threats from pathogens [66, 

67]. Obesity is associated with inflammatory processes that contribute to IR. Apart 

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



26 

from adipocytes, the the GI tract has been described as another potential source of 

inflammation that is associated with diet- and/or obesity-related pathologies [68]. 

The colonic microbiota is also considered to play a role on the influence of gut 

homeostasis. The microbiota is able to influence gut homeostasis. Bacterial 

metabolic products or bacterial factors are able to directly interact with the intestinal 

epithelium and activate EECs to secrete gut peptides and regulate GI motility and 

hormone secretion [69]. Due to their position in the GI tract and their constant 

exposition to its contents, EECs are seen as intermediates in the communication 

between the gut microbiota and its host. The principal mechanism by which EECs 

sense microbiota is  by their products, such as short chain fatty acids (SCFAs), which 

are produced through microbial fermentation and can directly stimulate 

enteroendocrine secretions through the activation of transmembrane G-protein 

coupled receptors [70–72]. Furthermore they can also act as epigenetic regulators 

of gene expression by the inhibition of histone deacetylase (HDAC) [73]. This 

communication is disrupted in various pathophysiological conditions and contributes 

to their complications, as shown for obesity and inflammatory bowel disorders [74].   

In order to explain the interaction between central and peripheral signalling 

molecules affecting homeostasis regulation, food intake and/or satiety, it has been 

proposed a role for the hormones secreted by the enteroendocrine system, including 

the pancreatic hormones and the hormones secreted along all the GI tract [58, 75, 

76], which main functions are reviewed in figure 3.  

For 40 years it has been believed that each EEC only secreted specific hormones, for 

example, CCK secretory cells were called I cells and were located in the duodenum, 

or those containing GLP-1 and PYY which were located in the ileum and colon and 

called L cells [77, 78]. However, recent studies have revealed that these EECs are 
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more interrelated with  more 

complex secretory patterns, 

being able to secret different 

types of enterohormones 

depending on whether the 

activated G-protein coupled 

receptors engages an 

inhibitory Gi protein or 

excitatory Gs/Gq protein 

[79]. For example, Glass et al 

found that a single gut sensor 

can express both satiety-

inducing peptides (PYY, CCK, 

GLP-1) and the hunger-

inducing hormone ghrelin 

[80].  

Fig. 3. A schematic diagram of the gastrointestinal tract illustrating where particular gut hormones 

are concentrated and their major putative functions. Extracted from [75]. 

Nevertheless, in this thesis it will be used the classic system to explain the role of the 

different enterohormones, since it will be easier to expose the different hormones 

one by one, and to show the effects of flavanols on every one of them afterwards. 

Furthermore, it should be mentioned that even though there are more 

enterohormones that the ones that will be described [81, 82], their roles and the 

mechanisms by which flavanols induce or inhibit the expression, synthesis and 

secretion of many of them have no so clearly been defined. For this reason, 

hereunder there will be described the main enterohormones to give a general look 

of their role on energy homeostasis. 
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Ghrelin is an orexigenic peptide composed of 28-amino acid produced mostly in X/A 

endocrine cells in the oxyntic mucosa of the stomach, although the highest content 

of ghrelin is found in the gastric fundus [83, 84]. However, it has been observed that 

ghrelin cells are also present in the duodenum, ileum, cecum and colon. 

Nevertheless, the greatest number of ghrelin cells are found in the stomach, and the 

number of the opened-type cells gradually increase in the direction from stomach to 

the lower gastrointestinal tract [85]. Its active form appears with an addition of a 

octanoyl group to the Ser3 residue by O-acyltransferase (GOAT) and binds to the 

growth hormone secretagogue receptor (GHS-R) which is highly expressed in the 

hypothalamus and brain stem [86]. When nutrient availability is low, levels of ghrelin 

increase, and, after consumption of a meal, ghrelin levels are decreased [87]. Apart 

from regulating energy balance in the short term via induction of appetite and in the 

long term via increased body weight and adiposity [88], ghrelin has also been found 

to act in distinct areas including learning and memory, gut motility and gastric acid 

secretion, sleep/wake rhythm, reward seeking behaviour, taste sensation and 

glucose metabolism [89]. Despite the large body of literature that documents that 

alterations of the orexigenic hormone ghrelin play an important role in appetite 

fluctuation following meals, there is controversy about its in role on obesity. Makris 

et al. review the main limitations in investigating ghrelin that make it difficult to get 

to a consensus about correlation between ghrelin and obesity [90]. One of the 

hypotheses that has gained force is the appearance of ghrelin resistance in obese 

subjects. In figure 4 there can be observed the different mechanisms reviewed by 

Cui et al. by which obesity-associated ghrelin resistance might be developed [87].  
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Fig. 4. Hypothalamic ghrelin 

resistance. Obesity-associated 

ghrelin resistance might 

develop via different 

mechanisms, such as 

decreased circulating levels of 

ghrelin (1); impaired transport 

of ghrelin through the blood–

brain barrier (BBB) (2); reduced 

expression of growth hormone 

secretagogue receptor (GHSR) 

(3); and reduced expression of 

agouti-related protein (AgRP) 

and neuropeptide Y (NPY) (4), 

which reduces the orexigenic 

action of ghrelin. The 

molecular mechanisms leading 

to the reduction of 

neuropeptide expression are 

unclear, but possible 

candidates include hypothalamic inflammation, lipotoxicity, endoplasmic reticulum (ER) stress and 

impaired AMP-activated protein kinase (AMPK) or mechanistic target of rapamycin (mTOR) pathways. 

3v, third ventricle; ARC, arcuate nucleus of the hypothalamus; DMH, dorsomedial nucleus of the 

hypothalamus; LHA, lateral hypothalamic area; PVH, paraventricular nucleus of the hypothalamus; 

VMH, ventromedial nucleus of the hypothalamus. Extracted from [87]. 

CCK is a gut hormone generated from pro-CCK by post-translational modifications in 

the GI tract by I-cells, predominantly in the duodenum and jejunum but it is also 

widely distributed within the hypothalamus, generally in the median eminence and 

ventromedial nucleus [91–93]. EECs contain a mixture of the medium-sized CCK-58 

(the most abundant molecular form), CCK-33, CCK-22, and CCK-8 (the most active 

form), whereas neurons mainly release CCK-8 and to some extent CCK-5 [94]. CCK 
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acts as an anorexigenic peptide, inducing a decrease in food intake and body weight 

and an increase in perception of fullness, as well as regulating gastric emptying, gall 

bladder contraction and pancreatic enzyme release [76, 94]. CCK has been shown to 

be secreted in response to the presence of some luminal nutrients such as protein 

hydrolystates, individual amino acids and  long chain fatty acids [95–98]. It has been 

demonstrated that  when rats are placed on a high-fat  diet,  there is a marked 

reduction in afferent sensitivity to satiety related stimuli, which leads to a 

development of CCK-resistance [99]. For now, the exact mechanisms of how CCK 

administers its glucoregulatory effects and how CCK resistance develops remain 

unclear [100]. 

PYY, a member of the PP-fold family, is released by L cells in response to the 

stimulation of nutrient intake in the terminal ileum, colon and rectum. It is often co-

expressed and secreted with GLP-1 [101, 102]. There are 2 forms of PYY in plasma, 

the predominant form PYY3–36, and PYY1–36, which is digested by  the enzyme 

dipeptidyl peptidase-4 ( DPP-4) and converted to the active form PYY3–36 [103, 104]. 

Due to its PP-fold structure (as PP and NPY), it binds to the Y family of G protein-

coupled receptors Y1, Y2 and Y5 [105]. PYY is secreted into the circulation in response 

to food intake and is reduced by fasting. Its stimulation is not only induced by fatty 

acids, but also in response to carbohydrates and proteins [71, 106–109]. It has been 

proposed that PYY be involved in energy homeostasis by regulating food intake and 

suppressing excessive consumption through the activation of proopiomelanocortin 

(POMC) neurons and inhibition of NPY within the melanocortin system [110]. 

However, the relationship between obesity and PYY secretion has been recently 

reviewed to remain unclear because of the controversy found within the publications 

available [104]. 

GLP-1, a peptide derived from the glucagon precursor pro-glucagon, is released by L 

cells from ileum and colon, as a full length GLP-1 (7-36) amide, having a plasma half-
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life of few minutes, and rapidly degraded and inactivated by the endopeptidase 

dipeptidyl peptidase-4 (DPP-4), resulting in the formation of GLP-1 (9-36) amide 

[111, 112]. Its effects are mediated by GLP-1 receptor (GLP-1R), a member of the 

glucagon receptor family of G protein-coupled receptors [113]. The incretin effect of 

GLP-1 goes from increasing glucose-dependent insulin release, to reducing glucagon 

secretion, thereby contributing to limit postprandial glucose excursions, and  

decreasing gastric emptying [114, 115]. It also has an anorectic effect on appetite, 

inhibits gastrointestinal motility and promotes pancreatic β-cell growth [116–118]. 

In obesity, the GLP-1 response to meal has been described to be reduced and 

associated to an increase in body mass index [119–122]. Nonetheless, obese subjects 

remain sensitive to peripherally-administered GLP-1 and its anorexigenic effects 

[123]. Part of the feeding inhibitory actions of endogenous GLP-1 appear to occur 

peripherally and dependent on intact vagal afferent mediation [124]. This 

impairment in the incretin effect has been observed even in the absence of impaired 

glucose tolerance or diabetes mellitus [120]. 

Altogether, considering the importance of the intestine on energy homeostasis and 

how obesity alters it by disrupting different functions of the intestine, makes it an 

adequate organ to focus as a therapeutic target against obesity.  

1.3 Therapeutic approaches against obesity 

Obesity has become a public health issue with significant and profound impact on 

morbidity, mortality, and cost of health care. There is a rich evidence that presents 

obesity as a complicated chronic medical condition caused by the interplay of 

multiple genetic, environmental, metabolic, and behavioural factors [125]. The main 

approaches to treat it are based in energy balance equation: the body weight gain, 

which accompanies obesity, results from an energy imbalance between energy 

intake (EI) and energy expenditure (EE), both influenced by environmental and 
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genetic factors [126]. A negative energy balance is needed to produce weight loss 

and can be achieved by either decreasing EI or increasing EE [127, 128].  

Nevertheless, from the point of view of the lypotoxociticy theory,  an  improvement 

of the metabolic flexibility, defined as the ability of an organism to respond or adapt 

according to changes in metabolic or energy demand as well as the prevailing 

conditions or activity [129], might be an important target in body weight regulation 

and related metabolic disorders [130].  

Caloric restriction and physical activity are the main approaches prescribed to 

improve the overweight condition. However, normally this is difficult to maintain for 

a prolonged period, as it implicates important changes in someone’s lifestyle [131] 

and therefore, it appears the need to change to pharmacological treatments and/or 

bariatric surgery if more aggressive interventions are required. Recently, there have 

been reviewed the current major FDA-approved anti-obesity medications, which 

comprises a wide variety of targets, and together with the new obesity drugs under 

investigation, they provide hope for increasing the medicinal armoire against obesity 

with more effective treatment strategies [132].  Among the most used medications 

for prescription, there can be found Orlistat, a gastrointestinal lipase inhibitor, 

Lorcaserin, a serotonin agonist that modulate midbrain dopaminergic tone to 

suppress binge-related food intake, naltrexone-bupropion, which are a combination 

of an opioid receptor agonist and a reuptake inhibitor of dopamine and 

norepinephrine and Liraglutide, a GLP-1 receptor agonist named Liraglutide [132–

134]. Furthermore, new promising pharmacotherapies are currently under study, in 

example the use of enterohormone agonists (reviewed in [135]). Although 

pharmacological and surgical interventions are often the more efficient means to 

preventing obesity, there are still several negative effects, high costs and potentially 

hazardous side effects associated with these two therapies [58, 132], suggesting that 

other therapies, as could be natural products administration, may be a safest and a 
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most cost-effective option for those who are moderately obese [136]. The potential 

of natural products, such as flavonoids,  for treating obesity is currently under 

investigation and some of them have been demonstrated to present anti-obesity 

properties [137–140], thus opening a wide range of possibilities in forthcoming 

studies addressing obesity. 

2. Flavanols: structure, classification, metabolization and 

mechanism of action 

2.1 Structure and classification 

Flavanols, a subclass of flavonoids of the family of polyphenols and are becoming a 

subject of interests for their beneficial properties over human health. Most of them 

are secondary metabolites which are synthesised in most vegetables and fruits in 

response to stress conditions as could be herbivores, allelopathic agents, ultraviolet  

radiation, microbial invasion, among others [141]. Polyphenols represent a large 

family of secondary metabolites which can be divided into two major groups: 

flavonoids and non-flavonoids [142]. In particular, the study of flavonoids has 

become a topic of interest in human nutrition research. There have been identified 

more than 9000  plant-derived flavonoid compounds, all of them sharing the C6-C3-

C6 ring structure [143]. The different subclasses of flavonoids are determined by the 

substitution of the functional group of the C3 ring, the oxidation state of this 

heterocyclic ring and its conjugation pattern, thus giving the flavan-3-ols (flavanols), 

flavones, flavonols, anthocyanidins, flavanones, isoflavones, isoflavans and 

pterocarpans [144, 145]. In plants flavonols, flavanones and anthocyanins exist as 

glycosides, where the predominant attached sugars are glucose and rhamnose.  
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Fig. 5. Schematic classification of flavonoids and flavanols. 

Flavanols are the most structurally complex subclass of flavonoids and they are 

among the main phenolic compounds present in human diet. They are present 

mostly in their free forms catechin and epicatechin, but can be galloylated, or 

polymerised to form proanthocyanidins (PACs) [146], as shown in figure 5. Catechins 

are mostly found in green tea, chocolate and red wine, but also in fruits, which are 

the main source of epicatechins too. On the other hand, their gallate forms 

gallocatechin (GC), epigallocatechin (EGC) and epigallocatechin gallate (EGCG) are 

found in some seeds of legumes, grapes and tea [147]. Dietary flavan-3-ols, unlike 

other flavonoids, exist in plants mainly as aglycones rather than glycosides. 

2.2 Flavanols mechanisms of action 

For years it has been widely accepted that the main role of flavanols was their anti-

oxidant activity. However, these days, since it has been observed that 
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concentrations in blood are low compared with other antioxidants and extensive 

metabolism following ingestion lowers their antioxidant activity, the direct effect of 

polyphenols in vivo is questionable [148]. Nevertheless, apart from their in vivo 

antioxidant activity, most of the beneficial, chemopreventive and therapeutic 

properties associated with PACs appear to be due to specific interactions with 

proteins and enzymes. The interactions between PACs and proteins result in a 

biological effect determined by the function of the proteins involved, including the 

modification of enzymatic activities, binding of receptors and ligands, and 

transcription factors binding to their specific sites in deoxyribonucleic acid (DNA) 

[149]. For example, a grape seed proanthocyanidin extract (GSPE) has shown to 

modulate glucose homeostasis interacting with the insulin 

receptor insulin receptor in order to stimulate the uptake of glucose [150], or to 

regulate pro-inflammatory pathways through the modulation of the MAPK and  

nuclear factor-κb (NF-κb) activities [151]. Moreover proanthocyanidins have also 

shown to induce the transactivation of some nuclear receptors, such as the farnesoid 

X receptor [152] and the retinoic acid-related orphan receptor alpha [153] and to  

partially prevent cell apoptosis by attenuating ER stress via regulation of the caspase-

12 pathway [154]. Moreover, Blade et al. reviewed that PACs may also interact with 

phospholipid membranes by forming hydrogen bonds and hydrophobic interactions 

between the phospholipid OH groups and phenolic rings of the PACs. These 

interactions may indirectly affect cell function by modifying cell membrane structure 

and physical characteristics such as fluidity, density, and electrical properties [149].  

As it is shown in figure 6, other mechanisms by which flavonoids have demonstrated 

to exert their effects are through epigenetics modulation. On one hand, it has been 

described that flavonoids can prevent the hypermethylation of the DNA, through the 

inhibition of DNA methyltransferases DNMTs [155–158]. In addition, flavanols and 

other flavonoids influence on aberrant histone modifications leading to chromatin 
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changes, acting as histone deacetylases (HDAC), histone acetyltransferases (HAT), 

histone methyltransferases (HMT), or histone demethylases (HDM) inhibitors or 

inducers [159–164], which result in global and/or gene-specific changes in both, 

histone acetylation and methylation. Furthermore, it has been observed that 

flavanols can upregulate or downregulate expression levels of micro RNAs (miRNAs) 

[165–168], thus affecting their interaction with its target gene. Moreover, it has been 

suggested that proanthocyanidins might have the ability to bind to miRNAs, thus 

proposing a new mechanism by which flavanols modulate the metabolism [169]. 

 

Fig. 6. Simplified depiction of epigenetic mechanisms of action by dietary flavanols. A variety of 
histone modifications with DNA methylation status define the dynamic chromatin conformation as 
either “closed” or “open.” Dietary phytochemicals through modulation of the epigenetic machinery 
involved in both these chromatin conformations (inhibition of HDACs, DNMTs, HATs, HMTs, HDMs, 
miRNAs, and/or activation of HATs, HMTs, and miRNAs) may have potential health benefits. Extracted 
from [170]. 
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All these mechanisms described above can be carried out directly by molecules in 

their original form as the low molecular weight ones, by microbial-metabolized 

molecules, which are then reabsorbed, or they can exert a local activity in the GI tract 

through non-metabolized flavanols or phenolic acids produced through microbial 

degradation. Indeed, they have shown to be important in the maintenance of the 

intestinal barrier, keeping it impermeable ant protecting it from oxidative stress and 

cytokine-induced inflammation [171]. Moreover, they also play an important role in 

the regulation of the enteroendocrine system through the modulation of gut 

hormone releases, as well as in the regulation of gut microbiota [172]. 

2.3 Flavanols metabolization 

As mentioned before, depending on their structure, flavanols can exert their effects 

in the periphery in their original form, absorbed as low-molecular weight molecules 

or after being metabolised by the microbiota and/or the liver. The main products 

that have been used to study their absorption and metabolism in humans are green 

tea and some commercial cocoas because of their high concentration [141]. Most 

polyphenols are probably too hydrophilic to penetrate the gut wall by passive 

diffusion. However, flavanol monomers can enter directly by passive diffusion 

through the enterocytes and are immediately metabolized [173]. Nevertheless, the 

aglycones must be metabolized by sulfotransferases (SULTs), uridine-5ʹ-diphosphate 

glucuronosyltransferases (UGTs) and catechol-O methyltransferases (COMTs), 

becoming sulfate, glucuronide, and methylated sulfate/glucuronide metabolites 

which can be absorbed by the small intestine[173, 174]. Once absorbed, the 

unmetabolized monomers are glucoronidated, sulfated or O-methylated in the liver 

prior to their renal excretion (see figure 7). 
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Procyanidins are oligomeric flavanols with a high molecular weight, which makes 

them poorly absorbed in the GI tract due to their inability of being degraded in the 

acidic conditions in vivo. Even so, it has been observed that procyanidin dimers and 

trimers present a minor absorption [175, 176]. A study with human volunteers 

showed that after an ingestion of a cocoa beverage, the maximal plasma 

concentration of procyanidin B2, reached 2 h after ingestion, was much lower than 

that reached after a roughly equivalent intake of epicatechin [177].  The majority of 

the procyanidin B2, and other oligomers with a degree of polymerization  ³ 2 reach 

the colon and are extensively metabolized by colonic microbiota. A study with rats, 

suggested that most molecular weight phenolic acids and other compounds 

detected in the blood, produced from procyanidin B2 after an oral administration, 

were produced by gut microorganisms before absorption [178]. Zhang et al. 

reviewed that the main phenolic 

acids found after colonic 

metabolization of PACs are 

phenylvaleric acids, 

phenylpropionic acids, 

phenylacetic acids, benzoic acids 

derivatives and phenyl 

valerolactone (one of the typical 

metabolites of catechins and 

gallocatechins). Just a small 

amount of PACs dimers are able 

to retain one intact molecular 

structure of catechin after colonic 

fermentation [179].  

Fig. 7 Schematic representation of flavanols metabolization. Adapted from [176]. 
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Regarding their excretion, Stoupi et al. observed that after intravenous 

administration of B2 procyanidin, approximately a 76% was excreted via urine, 

reflecting an extensive renal clearance, while approximately a 28% of the dose was 

excreted in the faeces, indicating biliary excretion and also suggesting an 

enterohepatic recycling [178].  

3. Flavanols to ameliorate obesity-related pathologies 

Flavanols have been proved to be effective meliorating several pathologies related 

to metabolic syndrome [180–182]. The most accepted diagnostic tool for metabolic 

syndrome is the global consensus described by the International Diabetes 

Federation, which include a set of pathologies that are frequently related to 

obesogenic situation [183]. In this sense, one way through which flavanols have 

demonstrated to act against obesity is increasing the energy expenditure and 

reducing body weight (BW) [184–186].Recently, our research group has studied 

whether the anti-obesity effect of a 500 mg/kg BW dose of GSPE treatment was 

better if administered as a pre-treatment, a simultaneous-intermittent treatment or 

a corrective treatment. Although all the assessed GSPE treatments were associated 

with reduced respiratory quotients (RQ) during the light period measured, the results 

showed that GSPE is effective under moderate obesogenic conditions, and it has a 

greater effect as a preventive agent when it is administered from the beginning of 

the obesogenic diet. Furthermore, the two pre-treatment studies showed, in the 

seventh week after a 10-day treatment, that there was a lasting effect on BW that 

remained until the 14th week. This is a very novel effect that has not been previously 

shown for this parameter. Even so, the administration of this dose every other week 

resulted in the most effective treatment of those assessed: it limited BW gain 

induced by the CAF diet by 50% and adipose accumulation by 60% [187]. Regarding 

the available information of human studies there is controversy, since there are 
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studies that affirm that  dietary supplementation with flavanols do not enhance EE 

[188, 189], while there are other that do [185, 190], thus suggesting that there are 

needed more studies to clarify the role of flavanols on the EE of obese humans.  

There are discrepancies regarding potential anti-hyperglycaemic effect of dietary 

flavanols, since there are studies that show that their intake is inversely associated 

with the risk of developing T2DM [191, 192] and meliorates the glycaemic profile in 

T2DM patients [193–195], whereas other do not show any improvement in glucose 

and/or insulin levels [196, 197]. The same controversy has been found regarding the 

anti-hyperglycaemic effect of flavanols in animal studies (reviewed in [198, 199]).  

Apart from meliorating BW and EE, some studies have shown that flavanols may 

improve glucose and lipid homeostasis altered by obesity by interacting with the 

intestine and peripheric tissues [200–205]. In this sense, despite there are 

discrepancies about their anti-hyperglycaemic effect [193–197], an explanation of 

this variety of results might be that this anti-hyperglycaemic is effect is dependent 

on the quantity of procyanidins that the animals receive, including the daily dose, 

which in turn depends on the method and period of administration [199]. Focusing 

on GSPE treatments, while a dose of 50mg/kg BW has been shown to be ineffective 

improving insulin resistance in rats fed with a high fat diet (HFD), a lower dose of 25 

mg/kg BW has demonstrated to be effective improving the glycaemic state and 

insulin resistance when is administered for 21 or 30 days, but not if given for a 

shorter period of time (10 days) [202, 206]. Dorenkott et al. evaluated the effect of 

monomeric, oligomeric and polymeric forms of cocoa flavanols in obese mice fed 

with HFD, and a 12 weeks supplementation showed that the oligomer-rich fraction 

proved to be most effective in preventing weight gain, fat mass, impaired glucose 

tolerance, and insulin resistance in this model [207]. 
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Depending on their size, flavanols may induce their anti-obesogenic effects through 

their low-molecular weight compounds that are directly absorbed and may act by 

direct interaction with the molecules of the body, or as bigger metabolites, that are 

further metabolised by the colonic microbiota and absorbed.  Besides, both low and 

high-molecular weight compounds may act locally along the GI tract in their original 

form, thus interacting with the intestine and exerting many anti-obesogenic effects  

[171, 172]. For this reason, the effects of flavanols will be described in 2 sub sections 

differentiating the effects observed in peripheral tissues induced by the absorbable 

low molecular weight forms and the metabolites derived from colonic metabolism, 

and the direct effects that they exert on the GI tract. 

3.1 Anti-obesogenic effects of flavanols on the peripheral tissues 

As mentioned before, in addition to their net effect on body weight and EE, flavanols 

modulate the functionality of skeletal muscle, adipose tissue, liver, and pancreas 

thereby improving obesity-related pathologies [200–205, 208], and contributing to 

meliorate their lipid and glucose management [198, 209, 210]. Our research group 

has previously reviewed that glucose uptake modulation is one important 

mechanism through which PACs induce their antihyperglycemic effect (reviewed in 

[199]). Furthermore, Gonzalez-Abuín et al. describe that PACs increase glucose 

uptake in hepatocytes, adipocytes, and myotubes, being the AMP-activated protein 

kinase (AMPK) pathway a common target in all of these insulin sensitive cell lines 

[198]. 

3.1.1 Anti-obesogenic effects of flavanols in the adipose tissue 

In obesity, hypertrophic adipocytes lead to adipose tissue hyperplasia, and it is a 

result of a positive energy balance. Flavanols, have been shown to counteract 

hypertrophy through the regulation of rate of lipid synthesis and degradation [211]. 
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Interestingly, GSPE supplementation has shown to present anti-hypertrophic and 

hyperplasic activities in rats with established obesity, mainly in visceral white adipose 

tissue (WAT) inducing a healthier expansion of WAT to match the 

surplus energy provided by the CAF diet [212]. Dietary supplementation of green tea 

catechins has been shown to reduce adipose tissue mass and ameliorate plasma lipid 

profiles in HFD-induced obese mice through the regulation of the expression of 

multiple genes involved in adipogenesis, lipolysis, b-oxidation and thermogenesis in 

white adipose tissue [213, 214]. Furthermore, flavanols have also been proposed to 

reduce fat depots in rats and/or mice fed with high fat diet by increasing the insulin 

like growth factor binding protein-1 (IGFBP-1) in adipose tissues [215], or by the 

regulation of Peroxisome proliferator-activated receptor γ (PPARγ) mediated via 

extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway [216, 217]. 

GSPE has been proposed to decrease both the plasma free fatty acids (FFA) levels 

and lipid accumulation in adipose tissue via the activation of both β-oxidation and 

glycerolipid/ FFA cycle in hamsters fed with high fat diet [218]. Flavanols have also 

shown to improve glucose metabolism in hyperinsulinemic both in vitro [219, 220] 

and in vivo [219]. A daily dose 25 mg GSPE/kg BW administered for 30 days showed 

a reduction of plasma insulin as well as improvement of the homeostatic model 

assessment-insulin resistance (HOMA-IR) index. Despite the down-regulation of 

PPAR-g2, GLUT-4 and IRS-1 observed in mesenteric white adipose tissue, the authors 

suggest a possible insulinomimetic effect of GSPE on the adipose tissue [202]. 

Nevertheless, other doses of procyanidins have shown to up-regulate the expression 

of GLUT-4 and to favour its translocation to the cell membrane in vivo [219, 221]. It 

is suggested that procyanidins induce this anti-hyperglicaemic effect through the 

activation of AMPK and AKT pathways [150, 221, 222].  

The decrease in body weight gain due to consumption of dietary flavanols has also 

been associated to an increase in EE. Indeed, the consumption of black soybean seed 

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



43 

coat extract rich in flavanols has been associated to a  decrease in body weight gain 

through the upregulation of uncoupling proteins (UCPs) in WAT and brown adipose 

tissue (BAT), respectively, thus enhancing EE  [223]. Furthermore, a corrective 

treatment of GSPE to HFD-obese rats exhibited a protection against weight gain 

correcting the energy imbalance caused by obesity, improving the mitochondrial 

function and thermogenic capacity of the BAT [224]. In humans, it has been observed 

that a single orally ingested tea catechin with caffeine acutely increased EE 

associated with increased BAT activity and chronically elevates non shivering cold-

induced thermogenesis, probably because of the recruitment of BAT [225].  

3.1.2 Anti-obesogenic effects of flavanols in the liver 

Dietary flavanols have been proved to ameliorate the metabolic disorders caused by 

obesity decreasing fat synthesis and increasing the energy expenditure in the liver  

[203, 226, 227]. Moreover, it has been reviewed that in high-fat diet-induced obese 

mice, rats, or chickens, green tea and catechins downregulate the expression of 

genes coding for fat synthesis, and upregulate the messenger ribonucleic acid 

(mRNA)  levels of enzymes for fatty acid b-oxidation  in the liver [137, 228, 229]. As 

with adipose tissue, it seems that flavanols improve fasting and postprandial 

hyperglycemia and reduce hepatic the novo lipogenesis, restoring the activation of 

the AMPK pathway in the liver of animals fed with HFD [230, 231].  

Regarding the effect of flavanols on EE in the liver, Ikarashi et al. showed that the 

administration of the anti-obesity agent acacia polyphenol, rich in catechin-like 

flavanols, to mice fed with HFD, resulted to increase the expression of EE-related 

genes in skeletal muscle and liver, and decreased fatty acid synthesis and fat intake 

in the liver [226]. Besides, it has been reported that flavanols might induce their 

effect enhancing EE due to the effect of stimulation of mitochondrial complex chain 

and increased energy expenditure, particularly from the oxidation of lipid substrates, 
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thereby contributing to the prevention of hepatic steatosis and improving insulin 

sensitivity [227]. Furthermore, recent studies have revealed that a epicatechin 

supplementation to HFD-fed mice, resulted in a regulation of in the modulation of 

the insulin pathway in the liver and skeletal muscle, thus restoring the insulin 

sensitivity lost by the HFD [232].  

3.1.3 Anti-obesogenic effects of flavanols in the muscle 

Muscle is the major site of adenosine triphosphate (ATP) production and energy 

consumption; the uptake and oxidation of glucose and fatty acids are key molecular 

events controlled by the muscle which are impaired in obesity.  An oligonol rich in 

catechins and procyanidins treatment to HFD fed mice was able to improve glucose 

intolerance and facilitate glucose uptake and insulin sensitivity in skeletal muscle by 

restoring IRS1 and AS160 phosphorylation. Moreover, oligonol lowered 

intramuscular lipids in parallel with enhanced SIRT1 expression and restored AMPK-

a activity, indicating that reduced intramuscular lipid by oligonol could be via 

increasing fat oxidation [231]. A 16 weeks chronic treatment with pure EGCG was 

reported to reduce body weight gain and improve insulin sensitivity in HFD-fed mice. 

These effects were associated with increased expression of genes related to 

mitochondrial FA oxidation in skeletal muscle and by modulating fat absorption from 

the diet [233]. Furthermore, Gonzalez-Abuín et al. suggest that since AMPK is 

involved in the translocation of GLUT-4 to the plasma membrane, the mechanisms 

by which PACs up-regulate this glucose transporter in adipose tissue and muscle 

might involve the activation of AMPK [198]. 

The supplementation with a cocoa liquor procyanidin extract to C57BL/6 mice fed 

with a HFD, increased expression of UCP-1 in BAT, UCP-2 in WAT and UCP-3 in 

skeletal muscle was proposed as an underlying mechanism to the suppressed HFD-

induced fat deposition, due to the involvement of UCPs on thermogenesis and 
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energy metabolism. The authors indicated that the cocoa beans prevented obesity 

by up-regulating the expression levels of UCPs and Peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1-α) through the action of AMPK, thus 

preventing obesity by increasing EE, which resulted in the reduction of the WAT 

weight [230]. By using a β2 AR blocker and a β3 AR blocker, Kamio et al. have 

confirmed that the enhancement of energy expenditure (increased mRNA 

expression of UCP-3, and phosphorylated AMPKα) induced by the ingestion of single 

dose of a flavan-3-ol fraction derived from cocoa in mice is mediated by sympathetic 

nerve stimulation [234]. Furthermore, the same group has revealed that flavan-3-ols 

decreased both, body weight and the RQ, enhanced lipolysis and promoted 

mitochondrial biogenesis in gastrocnemius and soleus muscles and brown adipose 

tissue [235]. Similarly, Casanova et al. found that a 21 days supplementation of GSPE 

to rats fed with CAF diet was able to decrease body weight gain and RQ, in part 

through the reduction insulin resistance and the improvement of the muscle status, 

through the promotion of fatty acid oxidation and the increase of UCP-2.The authors 

attribute such modifications to the activation of the AMPK signaling pathway [205]. 

Regarding the studies with humans, a randomized controlled trial in which obese 

subjects received for 12 weeks a combined epigallocatechin-3-gallate and 

resveratrol supplementation (EGCG+RES), showed to increase mitochondrial 

capacity and stimulates fat oxidation in the muscle, but it was not translated into 

increased tissue-specific insulin sensitivity in overweight and obese subjects [190]. 

3.1.4 Anti-obesogenic effects of flavanols in the pancreas 

Pinent et al. and Salvadó et al. reviewed that the anti-hyperglycaemic effect of 

proanthocyanins seems to be mediated by mimicking insulin action on the liver and 

peripheral tissues and/or by affecting insulin secretion through the modulation of 

pancreatic β-cell functionality and the incretin system [180, 199]. Specifically, GSPE 
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has showed to modulate insulin secretion in both, isolated Wistar rat islets and 

pancreatic beta-cell lines [236]. In in vivo experiments, it has been shown that a 

corrective daily dose of 25 mg GSPE/kg BW for 30 days to female Wistar rats fed 

during 13 weeks with a CAF diet, was capable to reduce insulin production 

downregulating pancreatic insulin promoter factor 1 (Pdx1) and insulin gene 

expression. Furthermore, it also reduced the TAG content in the pancreas and down-

regulated the expression of lipid synthesis-related genes. GSPE treatment did also 

counteracted the decrease of AMPK protein levels after cafeteria treatment. The 

authors concluded that lack of triglyceride accumulation induced by GSPE in β-cells, 

counteracts its negative effects on insulin production, allowing for healthy levels of 

insulin production under hyperlipidemic conditions [208]. Interestingly, it has also 

been found an anti-proliferative effect of GSPE in the pancreas. A 21 days of 25 mg 

GSPE/kg BW corrective administration to male rats previously fed wit CAF diet for 7 

weeks, showed to improve insulin resistance and counteracted the cafeteria-induced 

effects on insulin synthesis [206], results that resemble those obtained by Castell-

Auví et al. [208]. However, the administration of the extract enhanced the cafeteria-

induced increase in Bax protein levels, suggesting increased apoptosis [206]. This 

result contradicts previous results from cafeteria-fed female rats, in which GSPE 

seemed to counteract the increased apoptosis induced by the cafeteria diet. 

Specifically, it was observed that 25 and 50mg/kg of GSPE seemed to counteract the 

deleterious effects of the cafeteria diet by inhibiting the down-regulation of Bcl-2 

protein expression after 10 and 30 days of treatment. In addition, 50mg/kg BW of 

GSPE also counteracted the decrease in the Bcl-2/Bax ratio at the protein level after 

10 days of administration [237]. The authors suggest that together, these results 

indicate that the effects of GSPE on apoptosis markers are dose, time, and/or gender 

dependent. Moreover, this hypothesis can be also extended to the effect of GSPE on 

the regulation of insulin secretion. 
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The beneficial effects of flavanols on amylin secretion in obesity are not clear. 

Nevertheless, as it was mentioned before,  in T2DM amylin fibrils may induce death 

of pancreatic islet cells [40, 44]. In this sense, flavanols have shown to inhibit amylin 

fibrils formation in pancreatic cells, thus protecting from the cytotoxicity production 

in pancreatic cells [238–241].  

In summary, the available data suggests that flavanol supplementation might 

meliorate glucose and lipid management, modulating lipolytic pathways, insulin 

sensitivity, and glucose uptake, and downregulating adipogenesis in the adipose 

tissue, liver and muscle. Furthermore, flavanols have also shown to play a role in EE 

regulation in the same tissues, by affecting pathways involved with thermogenesis. 

In the pancreas, flavanols might contribute to meliorate the obesogenic state 

through the reduction of fat accumulation, modulating insulin secretion and cell 

apoptosis in a dose, time, and/or gender-dependent manner and decrease 

pancreatic cell cytotoxicity by inhibiting the formation of amylin fibrils in pancreatic 

cells. However, the variability on the source of flavanols, the dosage and the duration 

and moment of the treatment makes it difficult to get into a clear conclusion, hence 

further studies should be carried out in order to get into a clear consensus.  

3.2 Anti-obesogenic effects of flavanols on the GI tract 

As mentioned before, flavanols are poor absorbed, fact that makes them great 

candidates to exert their effects over the GI tract. For this reason, over the last years 

there have been  hypothesis suggesting that flavanols might limit energy absorption 

through their influence on the intestinal processes involved in the digestion and 

absorption of energy compounds [55, 56, 137, 242], they also induce a satiety effect 

and regulate energy homeostasis through the modulation of gut hormones [243, 

244], they act as protective and anti-inflammatory agents of the intestinal barrier 
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[171, 245] and they are also a very powerful tool modifying microbiota along of 

gastrointestinal tract [172, 246]. 

3.2.1 Flavanols interaction with digestion and absorption processes 

Trypsin, a-amylase and lipase, the main enzymes involved in the hydrolysis of dietary 

protein, starch and fat, are delivered into the intestinal lumen as constituents of the 

pancreatic juices. It has been reported that PACs present inhibitory effects on these 

enzymes in vitro [55, 247–250], being this, one of the mechanisms by which they 

exert their effect limiting the energy availability to the organism. However, there is 

controversy regarding the inhibitory effects of PACs in vivo, since Tebib et al. 

observed that these effects disappear, due to the fact that in the duodenal lumen, 

alkalinity and detergency from the pancreatic biliary secretion neutralized the ability 

of tannins to inactivate brush border hydrolase activities [251]. Furthermore, 

Serrano et al. supported Tebib’s evidence observing that the ratio of energy 

absorbed between GSPE-treated rats and control group was quite similar, thus 

supporting the idea that the inhibitory effects observed in vitro differ from in vivo 

analysed effects [252]. Several authors also attribute the effects of flavanols 

lowering plasmatic glucose and TAG levels to an inhibition of digestive enzymes as 

α-glucosidase, alpha-amylase or pancreatic lipase [253–258], but these suppositions 

are made from results observed in in vitro experiments [249, 259–261] and therefore 

further in vivo experiments should be done to corroborate this hypothesis. 

Regarding the effect of flavanols on nutrient absorption, it has been pointed that 

flavanols, especially those with a galloyl moiety, could significantly inhibit the GI 

absorption of dietary nutrients and increase faecal energy excretion [262, 263]. In 

mammals, once digested, intestinal glucose uptake is mainly performed by its 

specific transporters, such as sodium-dependent glucose transporter 1 (SGLT-1), and 

and GLUT-5, all expressed in the intestinal epithelial cells. Experiments using brush-
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border membrane vesicles obtained from rabbit small intestine demonstrated that 

epicatechin-gallated inhibited SGLT-1 in a competitive manner, although it was not 

transported via SGLT-1 by itself [264]. In the study of glucose absorption on animal 

models, Snoussi et al. found that in fasted rats, an acute administration of 25mg/kg 

BW of a green tea decoction (GTD), rich in EGCG and EGC inhibited SGLT-1 activity, 

increased GLUT-2 activity and improved glucose tolerance. Similarly, to GTD, acute 

administration of synthetic phenolic compounds (2/3 EGCG+1/3 EGC) inhibited SGLT-

1 activity. Moreover, GTD-treated rats for 6 weeks display significantly 

reduced SGLT-1 and increased GLUT-2 mRNA levels in the jejunum mucosa. These 

results indicate that GTD, a traditional beverage rich in EGCG and EGC reduces 

intestinal SGLT-1/GLUT-2 ratio, a hallmark of regulation of glucose absorption in 

enterocyte [265].  

After fat digestion, lipids are emulsified, hydrolysed and absorbed through the 

intestinal tract. The absorption of dietary fats and cholesterol is largely dependent 

on the intestinal expression of several active transporters. The lipid transporters, 

which are highly expressed on the apical surface of the intestine, facilitate the fatty 

acid and cholesterol transfer/homeostasis in enterocytes which will be packaged into 

chylomicrons and secreted into the lymphatic system [266]. As for fat absorption, 

the bibliography available is mainly focused on the description of which are the lipids 

that are not absorbed after a treatment with flavanols [262, 263, 267], but there is 

not consensus about the specific mechanisms that explain this inhibition. 

Nevertheless, there are few studies that support the effect of flavanols on fat 

absorption.  As an example, Quesada et al. have observed that GSPE presents an 

hypotriglyceridemic activity in the intestine modulating TAG secretion by repressing 

the expression of long chain acyl-CoA synthetases in vitro [268]. Furthermore, in vivo 

studies showed that GSPE was capable to reduce chylomicron-rich or VLDL-rich 

fractions in a time-dependent manner, thus contributing to a hypotriglyceridemic 
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action. GSPE also reported to repress lipoprotein secretion without increasing 

lipoprotein lipase (LPL) activity [269]. Furthermore, Sugiyama et al. performed a 

triglyceride tolerance test in mice and humans with a simultaneous ingestion of an 

apple polyphenol extract rich in procyanidins, and observed that procyanidins  

significantly inhibited the increase of plasma triglyceride levels in both models [249]. 

Flavanols have also shown to exhibit in vitro protease inhibitory properties, which in 

the case of porcine pancreatic elastase have been observed to be positive related to 

their degree of polymerisation. There were necessary procyanidins with a molecular 

weight of at least 1154 Da to observe a significant inhibitory ability, which also 

demonstrated to be reversible and competitive. Specifically, the tetramer structure 

presented a higher affinity to the enzyme due the establishment of more contact 

points with the amino acids present in its active site [270]. Procyanidins have also 

showed to interact with the digestive protease trypsin [271, 272]. Procyanidin B3 

showed that depending on the concentration of procyanidins used, the interaction 

with trypsin was different, going from a specific interaction probably driven by 

hydrogen bonds between the protein backbone and the procyanidin with low 

concentrations, to a nonspecific interaction with high concentrations. Furthermore, 

carbohydrate pectin proved to induce a dissociation of the tannin- pancreatic trypsin 

complex [271]. 

Summarizing, despite there are well evidenced effects of flavanols inhibiting the 

digestion of carbohydrates, fat and proteins in vitro, there are discrepancies for their 

in vivo effect since alkalinity and detergency from the pancreatic biliary secretions 

might neutralize the ability of tannins to inactivate brush border hydrolase activities. 

Although there should be carried out more in vivo experiments, taking into 

consideration the available data, the studies suggest that flavanols are more 

prompted to inhibit GI absorption of dietary nutrients thus increasing faecal energy 

excretion.  
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3.2.2 Effect of flavanols on enterohormone secretions. 

Hereunder there will be described the effects of flavanols on the main 

enterohormones to give a general look of their role on energy homeostasis. 

3.2.2.1 Ghrelin 

The available bibliography has demonstrated that flavanols present anti-obesogenic 

effects, in part through the modulation of ghrelin. Serrano et al. reveals that that 

monomeric flavanols stimulate ghrelin secretion by activating bitter taste receptors. 

In contrast, oligomeric flavanols inhibit ghrelin release. When they studied the effect 

of an acute high dose of GSPE on Wistar rats, it increased plasma ghrelin, but when 

administered chronically, they observed that GSPE decreased plasma ghrelin levels, 

ghrelin secretion in intestinal segments, and ghrelin mRNA expression in stomach. 

They concluded that GSPE stimulates ghrelin release due to the interaction between 

monomeric flavanols and bitter receptors, while a subchronic GSPE treatment 

reduces ghrelin production by acting on its secretion and/or synthesis [273]. 

Similarly, in a study made by Jambocus et al., a high fat diet decreased ghrelin levels 

and only the lower dose of a Morinda citrifolia L extract (150 mg/kg BW), rich in 

flavonoids as catechin among others, was able to restore them to basal levels in Male 

Sprague-Dawley rats [274]. Similarly, a 11 weeks treatment with a Cosmos 

caudatus Kunth leaf to rats fed with a CAF diet increased ghrelin levels [275]. Ramos-

Romero et al observed that a 24-weeks supplementation with a grape seed extract 

(0.8 g/kg BW) plus ω-3 polyunsaturated fatty acids (PUFA) (16.6 g/BW) to HFD-fed 

rats resulted in an increase of plasma ghrelin, compared to the HFD group [276]. A 

recent meta-analysis, has reviewed the effect of green tea on plasma ghrelin levels, 

and shows that the consumption of green tea for long periods is associated with an 

increase of ghrelin levels. Nevertheless, the authors concluded that more 

randomized controlled trials with longer duration and more precise doses are 
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needed to assess green tea's effect on fat mass and obesity hormones [277]. Low 

fasting plasma ghrelin has been observed in obese rodents [278] and humans [279], 

and has been associated with insulin resistance [280, 281].   

3.2.2.2 Cholecystokinin 

Little is known about the effect of flavanols on CCK stimulation in a context of 

obesity, for this reason there will be also described the effect of other flavonoids in 

order to clarify a little bit more the effects of this hormone. In vitro assays with STC-

1 cells have shown that flavonoids such as naringenin and hesperetin are  able to 

stimulate CCK release through the activation of transient receptor potential channels 

(TRP channels) including TRP-1 and the increase of intracellular calcium levels [282, 

283]. Some other flavonoids as quercetin, kaempferol and apigenin have also 

resulted to increase CCK levels in vitro, while others such as rutin and baicalein have 

not [284]. Under non-obesogenic conditions, it has been observed that in an ex 

vivo assay of murine intestines, 1 mM EGCG stimulates CCK secretions in duodenum 

[285]. On the contrary, a treatment of 0.2 mg/mL of GSPE in duodenal rats leads to 

a decrease of CCK secretion, which role is attributed to the presence of gallic acid 

since it is a compound found in the extract mixture. Moreover, this inhibition seems 

to not be caused by an increase of CCK basal plasma levels in fasted animals, since 

CCK release is not stimulated [286]. In animal studies, it has been observed that a 4 

weeks treatment with isoflavones (flavonoid) to ovariectomized rats under a high-

fat diet results in a decrease in plasma ghrelin, and an increase in CCK levels, and a 

tendency to increase PYY levels, which the authors associate to a reduction of body 

weight and food intake [287].  

3.2.2.3 Peptide YY 

Like with the previous enterohormones, there is not much information available 

about the effect of flavanols on PYY secretion, thus, the effects of other flavonoids 
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there will be described too. In animal studies, a recent study has revealed that a 2 

months daily dose of 100 µg/BW  of EGCG to mice fed with a high-fat diet was able 

to increase both PYY and GLP-1 plasma levels [288]. Furthermore, as it was 

mentioned before, isoflavones have been also been capable to reduce body weight, 

total abdominal fat, food intake in ovariectomized rats fed with a high-fat diet, partly 

due to a slightly increase in PYY plasma levels [287]. Furthermore, in studies with 

humans, the consumption of 50 grams of white, red, or brown sorghum biscuits 

(containing phenolic acids, flavonoids and condensed tannins) resulted in an area 

under the plasma concentration-time curve of postprandial PYY significantly higher 

in sorghum biscuits groups as compared to the control, despite the energy intake at 

a subsequent meal did not differ between treatments [289]. Moreover, isoflavones 

supplementation has also shown to increase PYY plasma levels in healthy 

postmenopausal women after 8 weeks of treatment, despite it could not significantly 

reduce energy intake or body weight [290].  

3.2.2.4 Glucagon-like peptide 1 

There are some ex vivo and in vivo studies that show the effect of flavanols on GLP-

1 secretion. While Song et al. found that 1mM EGCG enhance GLP-1 secretions in 

murine ileum [285], Casanova et al. showed that GSPE directly promotes GLP-1 

secretion in the ileum, and its metabolites do so in the colon. Such direct stimulation 

required activation of glucose-induced GLP-1-releasing pathways. They also 

suggested that in vivo GLP-1 secretion may also be mediated by indirect pathways 

involving modulation of other enterohormones that, in turn, regulate GLP-1 release, 

such as enhancing the gastric inhibitory polypeptide (GIP) and reducing CCK 

secretion in the duodenum [286]. Yamashita et al. performed a study where after 18 

hours of fasting, a single oral ingestion of 10 mg/kg BW cinnamtannin A2 (tetrameric 

procyanidin) to male ICR mice, increased the GLP-1 and insulin levels in plasma 

without an oral glucose load [291]. Similarly, our research group found that an  acute 
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dose of 1g/kg BW GSPE extract increased GLP-1 plasma levels after an oral glucose 

load in rats [292]. Working also with GSPE, Casanova et al. found that a 8-days sub-

chronic treatment of 500 mg/kg BW GSPE, previously shown to reduce food intake, 

increased plasma GLP-1 in healthy female rats. They suggested that the changes in 

the microbiota may be linked to the modulation of enterohormone secretion 

induced by GSPE [172]. Regarding human interventions, the chronic consumption of 

1.5 g/day of green tea extract rich in EGCG for 16 weeks, significantly increased GLP-

1 plasma levels T2DM subjects [293].  

As for the study on long-term high fat diets, González-Abuín et al. developed a 12-

week CAF diet-fed rat model that caused a decrease in GLP-1 plasma levels and 

production in the intestine and clearly revealed an induction of insulin resistance. 

When the animals were treated with 25 mg of GSPE/kg simultaneously to the CAF 

diet, rats exhibited an increased amount of GLP-1 in colonic cells, with a 

simultaneous increase in GLP-1 mRNA. Moreover, they also observed that GSPE 

upregulated the colonic expression of both PYY, which has been reported to be co-

expressed with GLP-1 in enteroendocrine L cells, and chromogranin A (GhGA), a 

marker of endocrine cells. This suggested them that GSPE might increase GLP-1 levels 

by preventing the loss of enteroendocrine cells induced by a CAF diet. GSPE 

treatment also increased hypothalamic GLP-1 production and downregulated GLP-

1R, opposing the effects of the CAF diet. This preventive action also impacted 

intestinal DPP4, predominantly by preventing the decrease in its activity and protein 

levels [294]. Controversy, in another study with genetically obese rats, a similar dose 

of GSPE downregulated the gene expression of DPP4 [295]. This suggests that GSPE 

acts differently depending on if it is given as a preventive or a corrective treatment. 
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In summary, the currently available data shows that despite the variability in the 

extracts’ composition as well as the duration of the treatments, in a situation of 

obesity, flavanols seem to increase ghrelin plasma levels, in order to return them to 

the basal ones; they also increase PYY and GLP-1 levels, and although the lack of 

studies with flavanols, the studies with flavonoids suggest that they are able to 

increase CCK levels in healthy conditions. More in vivo studies should be carried out 

to study the effect of flavanols on CCK secretions under obesogenic conditions, and 

to elucidate the effects and mechanisms by which the flavanol-modulation of 

enterohormones counteract the effects of a HFD, in the whole organism. 

Furthermore, it is unclear how much time do the flavanol effects last, and if these 

effects can be extrapolated when they are given as a corrective treatment. Finally, 

more investigations should be done to come to an agreement of which is the best 

mode (plant, extract or pure compounds), duration and dose of flavanol 

administration in order to achieve greater results. 

3.2.2.5 Methodological approaches to study enteroendocrine system 

The study of enterohormone secretions entail some methodological difficulties 

associated to the low number of enteroendocrine cells and their dispersion along the 

GI tract, which makes it laborious to obtain clear and reproducible values of 

enteroendocrine secretions. Nevertheless, depending on the requirement for the 

study and the equipment available, the study of the enteroendocrine system can be 

accomplished through different methodologies, going from the simplest one, as 

would be working with intestinal cells [296–299], to the most complex, as would be 

working in vivo with animals [300, 301]. When the objective is to perform a 

mechanistic study thought, another alternative to the use of cell lines that permit to 

overcome the culture limitations, would be the utilization of ex vivo strategies using 

natural intact tissues structures in different controlled situations [302]. Some ex vivo 

approaches would be the use of isolated intestinal perfusions [303], everted sacs 
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[304], ligated intestinal loops [305], precision-cut intestinal slices [306],  organoids 

[286] among others. Many of these methods require sophisticated surgical 

procedures and instrumentations and/or the tissue loses gradually viability and 

integrity. The use of Ussing Chambers, overcomes some of these problems and it 

allows to test vectorial enteroendocrine secretions [307] in response to drug 

stimulus. The main drawback is that due to the low availability of chambers, it is 

difficult to have enough samples to minimise variability [308–310].  To overcome 

these limitations some authors work with ex vivo tissue fragments from animal 

intestines [273, 311]. These crude explants from animal intestines make it possible 

to produce numerous replicates, depending on the animal’s size, although it does 

not mimic the effect of the apical stimulation that takes place in the in vivo GI tract.  

3.2.3 Effects of flavanols on the inflammation and permeability of the intestinal 

barrier 

We have recently reviewed the effect of flavonoids on intestinal inflammation and 

barrier integrity during diet-induced obesity [312], which are summarized in figure 

8, and among them, flavanols have shown to exert some particular beneficial effects.  

On one hand, regarding the effect of flavanols on intestinal inflammation, in vivo 

studies have shown that Marie Ménard lyophilized apples, which are rich in flavonols 

and flavan-3-ols, reduced myeloperoxidase (MPO) activity and the gene expression 

of the inflammatory markers (cyclo-oxygenase-2) COX-2 and iNOS. MPO is 

considered a marker of disease activity in patients with intestinal inflammation. 

Furthermore, low doses of GSPE (5, 25 and 50 mg/kg BW) have shown to present 

corrective effects against a long-term CAF diet. The three doses showed to attenuate 

MPO increased activity, it was found an ameliorative effect of the low dose 

decreasing IL-1β and a beneficial effect of the doses 25 and 50 mg GSPE/kg BW in 

ROS levels and iNOS gene expression in the ileum [171]. Furthermore, in a study with 
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17-weeks CAF diet-fed rats, the cafeteria diet increased ovalbumin, 

lipopolysaccharides (LPS), MPO and TNF-α levels, and a dose of 500 mg GSPE/kg BW 

given as a preventive treatment (before or together with the CAF diet) showed to 

prevent this metabolic endotoxemia induced by the CAF diet, being the second 

treatment the most effective [245].  

On the other hand, regarding the effects of flavanols ameliorating the integrity and 

the permeability of the 

intestinal barrier, in vitro 

studies have shown that 

EGCG restores the trans 

electrical epithelial 

resistance (TEER) and 

reduces the isothiocyanate-

labelled dextran (FD-4) 

transport across the cell 

monolayer after an induced-

disruption of the intestinal 

barrier [313, 314]. 

Fig 8. Schematic view of the anti-inflammatory mechanisms of flavonoids on intestinal 

inflammation. Extracted from [312] 

 In another study, in HT-29 cells, a treatment with pomegranate juice, rich in 

anthocyanidins and catechins, reduced TNF-α-induced COX-2 expression [315]. The 

authors suggest that these findings may be related to the modulation of PI3K, AKT 

and/or MAPK pathways. Other authors have found that a pre-treatment with a wine 

extract rich in flavanols, flavonols and anthocyanidins, prevents IL-6 and IL-8 

expression and synthesis after being challenged with an oxysterol mixture in Caco-2 
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cells [316]. With regard to the in vivo effects of flavanols, 500 mg/kg BW of GSPE 

(before or together with the CAF diet) have also shown to prevent the decrease of 

the permeability in ileum and colon induced by a CAF diet being the second 

treatment, the most effective one against barrier dysfunctions [245]. 

Summarizing, flavanols have demonstrated to prevent and improve the intestinal 

inflammation and barrier-function alterations induced by high fat diets. 

3.2.4 Effects of flavanols on gut microbiota  

Although little is known about the interaction between flavanols and gut microbiota 

under an obesity context, there has been observed that dietary polyphenols, 

including flavanols, have the ability to induce oscillations in the composition of the 

microbiota populations, thus becoming potential gut microbial modulators [317–

319]. Strat et al. highlights that the dosing method may impact the mechanisms by 

which flavanols act in vivo. When they are given ad libitum by adding it into the chow 

or the drinking water, flavanols were co-consumed with macronutrients, thereby 

facilitating flavanol-mediated alteration of nutrient digestion. On the contrary, when 

flavanols are supplemented by an oral gavage, it is often done during the fasted 

state, in which case flavanols would not be co-consumed with macronutrients, 

thereby precluding the opportunity for flavanol-mediated alteration of nutrient 

digestion [318]. Moreover, dietary components might modulate the composition 

and metabolic and immunological activity of the gut microbiota acting as probiotics, 

microorganisms whose intake  confers health benefits to the host, or in the case of 

polyphenols, as prebiotics, whose fermentation results in  changes in the 

composition and/or activity of gut microbiota [320].  

It has been reported that flavanols can act as both, as antimicrobials against 

pathogenic microorganisms and as promoters of health-beneficial gut microbiota 
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strands. For example, in vitro assays have demonstrated catechins inhibit the growth 

of Helicobacter pylori [321], Staphylococcus aureus, E. coli [322], Pseudomonas 

aeruginosa [323], among others. There are other studies with flavanols that have 

revealed their influence on the composition of the non-pathogenic gut microbial 

community, thus contributing to the health of the gut microbiota and its host. As an 

example, a study with cocoa-derived flavanols, which have shown to modulate the 

human gut microbiota towards a more ‘health-promoting profile’ by increasing the 

relative abundance of Bifidobacteria and Lactobacilli [324]. Casanova et al. revealed 

the short-term effectiveness of GSPE at modifying microbiota, increasing the amount 

of Bacteroidetes and reducing that of Firmicutes, and altering specific genera within 

these phyla. The authors link the modifications in the microbiota with  changes in 

the short chain fatty acids (SCFA) profile from the caecal content, which in turn, these 

changes in the microbiota correlate with a modulation of plasma TAG, adiposity, and 

enterohormone secretion induced by GSPE [172]. In a recent study, the co-

administration of HFD and tea polyphenols to a human flora-associated C57BL/6J 

mice model showed that tea polyphenols meliorate glucidic and lipidic metabolism 

and it also increases acetic acid and butyric acid levels. Furthermore, tea polyphenols  

increased the richness and diversity of colonic microbiota compared to the HFD 

group [325].  

All in all, this data shows that the modulation of bacteria composition through the 

administration of dietary flavonoids might be a useful tool to control or treat obesity 

and other related metabolic diseases.  
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  Hypothesis and objectives 

Obesity and its associated pathologies have become a focus of attention for 

researchers during the last decade due to their increasing prevalence worldwide. 

Phenolic compounds such as grape-derived flavanols have been shown to exert 

beneficial effects on the gastrointestinal (GI) tract under healthy conditions, though 

as yet there is no consensus on their effectiveness against an obesogenic challenge 

such as the cafeteria diet. 

We have recently proved the effectiveness of a 500 mg/kg BW dose of grape seed 

proanthocyanidin (GSPE) extract to prevent or correct cafeteria-diet-induced 

damage. The above study showed that GSPE when administered intermittently 

(every other week), throughout the period of cafeteria treatment, limited body 

weight gain and adiposity and meliorated certain metabolic disruptions induced by 

the cafeteria diet. The study also demonstrated that the GSPE effect lasted for 

several weeks after the final dose was administered.  

The above GSPE dosage has also demonstrated satiating properties and lipolytic 

activity in subcutaneous adipose tissue under healthy conditions in rats. Some 

satiating properties were due to their activity in the enteroendocrine system in the 

GI tract. However, it is still unclear whether modification of the enteroendocrine cells 

is also exerted under a cafeteria diet. The compounds found in GSPE have been 

shown to interact with the luminal surface of the GI tract, thus modifying 

enteroendocrine cell function. However, the molecular interaction between the 

phenolic compounds and the enteroendocrine cells is not clearly defined since the 

scattered distribution of the compounds along the GI tract renders studying them 

difficult.  

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



90 
 

Based on these results we postulate that the beneficial effects of GSPE on cafeteria-

diet-induced obesity can be partly mediated by modulation of the enteroendocrine 

system and, more specifically, that the long-lasting effects of GSPE can be 

explained by epigenetic mechanisms.  

Thus, the main objectives of this thesis were: 

1. To determine the role played by the enteroendocrine system in GSPE 

treatments against the cafeteria diet. 

 

2. To verify the role of epigenetics in the long-lasting effects induced by GSPE.  

 

3. To describe the metabolic readjustments by which pre-treatment with GSPE 

acts to prevent dysfunctions caused by the cafeteria diet. 

 

4. To design a new method for studying the impact of food-derived molecules 

on enterohormone secretions in the various segments of the gastrointestinal 

tract while maintaining the vectoriality of the tissue.  
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Abstract  

We analysed the interaction on enteroendocrine system of three different grape 

seed proanthocyanidin extract (GSPE) treatments in rats on a cafeteria diet for 17 

weeks and analzed its relationship with their effects on body weight gain and food 

intake. 

Most of GSPE treatments led to ghrelin accumulation in the stomach, limited CCK 

secretion in the duodenum and increased GLP-1 and PYY mRNA in colon. It also 

increased caecal hypertrophy and reduced butyrate content. When the treatment 

was  administered one week every fortnight during 17 weeks, there was too an 

increase in colon size. 15 days with 500mg GSPE/kg reduced food intake. Multivariate 

regression analysis revealed a different pattern of relationship between food intake 

or body weight and plasma hormones between the controls and the GSPE-treated 

animals, pointing out at GLP-1 and ghrelin’s involvement in the body weight-reducing 

effects of GSPE.   
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1. Introduction 

Obesity is a primary risk factor for the most prevalent diseases affecting the 

worldwide population, including cardiovascular disease, type 2 diabetes mellitus 

(T2DM) and inflammation [1]. It is regulated by a complex biochemical process and 

its pathological mechanisms have been widely studied in adipose tissue, the liver and 

muscle [2, 3]. The GI tract plays a role in controlling the metabolism through peptide 

hormones secreted by enteroendocrine cells. These hormones from the gut play a 

central role in nutrient intake signalling, and regulating appetite and energy 

expenditure. There is evidence that specific enterohormones administered at 

physiological concentrations can influence the appetite of rodents and humans 

(reviewed in [4]). Likewise, the effects of gut hormones on food intake and body 

weight have been observed in bariatric surgery (such as Roux-en-Y gastric bypass), 

which induces a huge increase in GLP-1 and PYY secretion and is used to treat 

obesity. Therefore the modulation of enterhormone signalling may represent an 

important target for preventing obesity and related/associated pathologies.  

Natural compounds could be used to prevent the development of overweight and 

obesity-related problems from early preclinical stages [5]. Of these, grape-derived 

proanthocyanidins have been described as potential bioactive compounds that 

exhibit a wide array of beneficial effects on health. They have been reported to 

improve lipid [6] and glucose [7] metabolism, and although there are discrepancies 

in the literature, several studies show reduction in body weight gain and increase in 

energy expenditure (reviewed in [8]). Over the years in vitro, ex vivo and in vivo 

studies as well as clinical trials have provided ever-increasing evidence of the role 

polyphenols play as potential health compounds [9, 10]. However, the scientific 

evidence shows that the beneficial effects of polyphenols on health are directly 

linked to their absorption, distribution, metabolism and excretion. Some 

mechanisms used by flavonoids are exerted in the intestine, such as the inhibition of 
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the enzymes that participate in carbohydrate digestion and the reduction of glucose 

absorption through the inhibition of the transporters involved in glucose uptake 

(reviewed in [7]). Moreover, flavonoids have also been reported as having effects on 

the incretin system, which could be related to an improvement in glucose 

homeostasis (reviewed in [11]). Grape seed proanthocyanidins have been shown to 

modulate the enteroendocrine system. Acute grape seed proanthocyanidin extract 

(GSPE) treatment promotes the secretion of GLP-1 in vivo [12], while ex vivo studies 

also show modulation of PYY secretion [13]. GSPE and the specific pure compounds 

it contains modulate ghrelin production and secretion in cell lines, and in vivo studies 

also show acute and subchronic effects of GSPE on this hormone [14]. However, 

these effects have been shown in animals fed a standard diet or as acute effects on 

a palatable diet, but there is a lack of knowledge regarding the effects on the 

enteroendocrine system on an obesogenic diet. 

We have recently shown that 500 mg GSPE/kg bw administered every other week 

for a period of 17 weeks in animals fed a cafeteria diet reduces body weight gain and 

respiratoy quotient (RQ) [15]. In this study, we analyse the effects on the 

enteroendocrine system of this GSPE treatment in the context of an obesogenic diet 

intervention, and compare it with the effects of GSPE administered in a corrective 

manner (for only 15 days). We then relate the GSPE effects on this system to its effect 

on body weight gain and food intake. 

2. Materials & Methods  

2.1 Proanthocyanidin extract 

The grape seed extract enriched in proanthocyanidins (GSPE) was kindly provided by 

Les Dérivés Résiniques et Terpéniques (Dax, France). According to the manufacturer, 

the GSPE composition used in this study (Batch number: 124029) contains 

monomers of flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers 
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(13.3%) and oligomers (5-13 units; 31.7%) of proanthocyanidins. A detailed analysis 

of the monomeric to trimeric structures can be found in Margalef et al. [16]. 

2.2 Animal experiments 

Female rats weighing 240-270g were purchased from Charles River Laboratories 

(Barcelona, Spain). After one week of adaptation, the rats were individually caged in 

animal quarters at 22°C with a 12-hour light/12-hour dark cycle and were fed ad 

libitum with a standard chow diet (Panlab 04, Barcelona, Spain) and tap water. After 

a period of acclimation, the animals were randomly distributed into 5 experimental 

groups (n=7-10/group) and fed ad libitum a standard chow diet for the whole 

duration of the experiment. The control group (STD) received only the standard 

chow diet. All the other groups, in addition to the standard chow, received a cafeteria 

diet as a model of a high fat/high sucrose diet. The cafeteria diet consisted of bacon, 

sausages, biscuits with pâté, carrots, muffins and sugared milk, which induces 

voluntary hyperphagia [17]. This diet was provided fresh ad libitum every day to the 

animals for 17 weeks. One of these groups was used as a control for cafeteria (CAF), 

while the three remaining groups received the cafeteria diet and also received an 

oral GSPE supplementation (see 2.2 Dosage information).  

Body weight was monitored weekly. 20-hour food intake was measured right before 

the corrective treatments (week 15) and in the last week of the experiment (week 

17).  

All the procedures were approved by the Experimental Animal Ethics Committee of 

the Universitat Rovira i Virgili (code: 0152S/4655/2015). 
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2.3 Dosage information 

Study intervention is summaryzed in Figure 1. The treatments performed to the 

animals fed a cafeteria diet, as previously described [15], were the following: a) a 

dose of 500 mg GSPE/kg administered from the beginning of the cafeteria diet 

feeding until the end of the experiment,daily every other week (Simultaneous-

Intermittent-Treatment-CAF; SIT-CAF), b) a dose of 500 mg GSPE/kg daily 

administered during the last 15 days of the cafeteria intervention as a corrective 

treatment (CORR500-CAF), or c) a dose of 100 mg GSPE/kg daily administered during 

the last 15 days of the cafeteria intervention as a corrective treatment (CORR100-

CAF).  

Figure 1. Schematic diagram of the experimental design. 

 

For the administration, at 17:00h food was removed and at 18:00h GSPE dissolved in 

water was orally gavaged in a volume of 500 µL. The animals not supplemented with 

GSPE received water as a vehicle. At 19:00 food was replaced. 

The dose of 500 mg GSPE/kg was chosen due to its effects at modulation of 

enteroendocrine system observed after acute treatments and in standard-fed 
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rats[18, 19]. This dose corresponds to 81 mg/kg bw in adult humans, when 

considering the body surface area according to Reagan-Shaw et al. [20]. This is a dose 

achievable through supplements. The dose 100 mg GSPE/kg corresponds to 81 

mg/kg bw in adult humans [20]. The GSPE administration in the SIT-CAF group, was 

performed every other week so animals could recover from the daily oral gavage, as 

well as to reduce the total administered dose. 

2.4 Blood and tissue collection 

At the end of the study, the animals were fasted for 1-4 hours, anaesthetized with 

sodic pentobarbital (70 mg/kg body weight; Fagron Iberica, Barcelona, Spain) and 

exsanguinated from the abdominal aorta. The blood was collected using lithium 

heparin (Deltalab, Barcelona, Spain) as an anticoagulant. The blood was collected 

and aliquoted. Samples to measure GLP-1 were treated with a commercial DPP4 

inhibitor (DPPIV, Millipore, Madrid, Spain) and a serine protease inhibitor (Pefabloc 

SC, Roche, Barcelona, Spain). The samples to be analysed for active ghrelin were 

treated with the serine protease inhibitor and 0.1 M HCl. All the samples were stored 

at −80ºC. Plasma was obtained by centrifugation (1500g, 15 minutes, 4°C) and stored 

at −80°C until analysis. The caecum was quickly weighed before and after caecal 

content removal. Intestinal segments were measured. The caecal content together 

with stomach and intestinal segments from the duodenum, jejunum, ileum and 

proximal colon were immediately frozen in liquid nitrogen and then stored at -80º C 

for further analysis.   

2.5 Ussing chamber methodology 

Intestinal segments of 0.28 cm2 were mounted in Ussing chamber apparatus (Dipl.-

Ing. K. Mussler Scientific Instruments, Aachen, Germany). Up to 6 segments from 

each animal were used. Mucosal compartments were filled with 1.5 ml KRB buffer 

(with D-Mannitol 10 mM) and the serosal compartments filled with KRB buffer (with 
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D-Glucose 10 mM) [21]. The chambers were kept at 37 °C and continuously 

oxygenated, 95% O2 /5% CO2, with a circular gas flow. Before starting the 

measurements, tissues were equilibrated for 15 min in the chambers to achieve 

steady-state conditions in transepithelial potential differences.  

The transmucosal potential difference was continuously monitored under open 

circuit conditions and recorded through 0.8 mm Ag/AgCl glass electrodes. The basal 

transepithelial electrical resistance (RT) was calculated according to Ohm’s law from 

the voltage deflections induced by bipolar constant current pulses of 50 mA (every 

60 s) with a duration of 200 ms applied through platinum wires (Mussler Scientific 

Instruments, Aachen, Germany).  

After the the equilibration period, measurements of the basal secretion of 

enterohormones of intestinal segments obtained from the treated animals were 

performed.  

2.6 Plasma and tissue hormone analysis 

Enterohormones were analysed using commercial ELISA kits for insulin, glucagon 

(Mercodia, Uppsala, Sweden), GLP-1 7-37 amide (Millipore, Billerica, MA, USA), 

desulfated CCK8 (Peninsula Laboratories, San Carlos, CA, USA), PYY (Phoenix 

Pharmaceuticals, Burlingame, CA, USA), amylin (islet amyloid polypeptide, Cloud-

Clone, Katy, TX, USA) and specific octanoyl ghrelin (Phoenix Pharmaceuticals, 

Burlingame, CA, USA).  

2.7 mRNA analysis 

Total RNA was extracted using Trizol (Ambion, USA) and trichloromethane-ethanol 

(Panreac, Barcelona, Spain), and purified using a Qiagen RNAeasy kit (Qiagen, Hilden, 

Germany). The cDNA was generated using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Waltham, USA). Real time PCR amplification 
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was performed using specific TaqMan probes (Applied Biosystems, Waltham, USA): 

Rn01460420_g1 for PYY, Rn00563215_m1 for CCK, Rn00562293_m1 for proglucagon 

and Rn00572319_m1 for ghrelin. The relative amount of mRNA transcripts was 

calculated against the control group using the 2-ΔΔCt method, with cyclophilin A, PPIA 

(Rn00690933_m1), as reference. 

2.8 Short chain fatty acid quantification 

The concentration of short chain fatty acid (SCFA) (formic, acetic, propionic, butyric, 

isovaleric, valeric, lactic and succinic) were assayed in cecal content thawed at 4ºC. 

Briefly, approximately 1 g of sample was added to  a screw cap glass tube containing 

1 ml ultrapure deionized water (1:1, w/w), and was vortexed vigorously. 100 

microliters of the internal standard 4-methyl-valeric acid, 2 ml of ethylic ether and 

0.5 ml of HCl 37% were added to this samples, and in parallel to 1 ml a reference 

solution containing different concentrations of the standard SCFA. The tube was 

vortex mixed for 1 min and centrifuged for 15 minutes at 3500 g. 65 µl of supernatant 

was used for the derivatization step, performed  with 10 µl of MTBSTFA ((N-methyl-

N (tert-butyldimethylsilyl) -trifluoroacetamide), Aldrich 375934) at 80ºC for 30 

minutes. Derivatized SCFAs were analysed using gas chromatography (Agilent 6890-

NT, Santa Clara, USA,) coupled with a 30 m × 0.25 mm i.d., column, with a film 

thickness of 0.25 micras (Agilent DB-23, Barcelona, Spain) and a flame ionization 

detector (FID) to determine SCFA concentrations [22]. The carrier gas used was 

helium. A constant flow mode was used (split 25:1; 30 ml/min split flow). The column 

temperature was programmed to gradually increase from 60°C to 220°C during the 

analysis. In addition, injector port and FID temperatures were fixed at 250°C. 

Injection volume was set to 1 μl, and analyses were performed in duplicate [23]. 
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2.9 Statistical analysis 

The results are expressed as the mean ± standard error of the mean (SEM). A 

Student’s T-test was used to compare the treatments with the cafeteria control. P-

values < 0.05 were considered to be statistically significant. These calculations were 

performed using XL-Stat 2017 software.  

The role of plasma enterohormones in food intake and body weight was assessed by 

multivariate linear regression analysis for each treatment group. The analyses were 

performed with all the available data, including the most scattered, to preserve the 

original correlation of variables in each animal. Multiple linear regression models 

were constructed with up to 4 predictors and followed a stepwise backwards 

elimination of the nonsignificant variables (p>0.05). The most significant model is 

presented for each dependent variable, regardless of its R2 value. The statistical 

analyses were performed using XL-Stat 2017. P-values < 0.05 were considered 

statistically significant. 

3. Results  

3.1 GSPE limits ghrelin secretion in the stomach 

The effects of the different treatments with GSPE on the enterohormone profile was 

studied throughout the gastrointestinal tract. As a first site of action, ghrelin was 

measured in the stomach. 500 mg/kg bw of GSPE administered simultaneously and 

intermittently with the cafeteria diet every other week (SIT-CAF) significantly 

increased the amount of ghrelin in tissue (Table1). This seemed not to be due to an 

increased production or increased activation (mRNA of ghrelin O-acyltransferase 

(GOAT) was significantly reduced in SIT-CAF ) (Table1). A corrective treatment led to 

a higher increase in ghrelin (doubling the effect of SIT-CAF, p≤0.05), either with 500 

mg/kg (CORR500-CAF) but also at a lower dose of 100 mg/kg bw (CORR100-CAF) 

(Table 1). In this case the ghrelin-activating gene (GOAT) mRNA was not reduced as 
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in SIT-CAF. This accumulation in the cells was accompanied by a reduction in plasma 

levels (30-40%), although this was not statistically significant (Table 1). The effects of 

GSPE in the duodenum might not contribute to action on ghrelin since it was below 

detection limits in both amount and mRNA. 

Table 1. GSPE effects on ghrelin.  

 GHRELIN 
MRNA GOAT MRNA PG GHRELIN/µG TISSUE 

(STOMACH) 
PG GHRELIN/ ML 

(PLASMA) 
STD 0.74 ± 0.1 # 1.30 ± 0.17 1.90 ± 0.1 181.19± 21.10 
CAF 1.09 ± 0.2 1.01 ± 0.06 2.01 ± 0.2 240.30 ± 72.94 

SIT-CAF 1.44 ± 0.3 0.65 ± 0.06* 3.51 ± 0.5 * 162.38 ± 46.34 

CORR500-CAF 1.38 ± 0.2 1.05 ± 0.08 6.76 ± 0.7 * 138.55 ± 31.75 
CORR100-CAF 1.62 ± 0.5 0.96 ± 0.1 6.82 ± 1.3 * NA 

   

mRNA levels are relative to cafeteria controls (CAF). Values represent mean ± SEM of 5-7 animals per 
group. *p ≤ 0.05 versus CAF; # p≤0.1 versus CAF. NA: not analysed.  

3.2 In the duodenum GSPE limits basal CCK secretion  

Duodenal sections of treated animals were mounted in Ussing chambers in order to 

analyse basal CCK secretion. Table 2 shows that the CAF group has an increased CCK 

secretion compared to standard-fed animals, and a reduced CCK tissue content. The 

SIT-CAF group had a reduced basolateral CCK levels compared to the CAF group, thus 

avoiding the stimulation of basal secretion exerted by the cafeteria diet. This reduced 

secreted CCK levels did not seem to reflect defects in CCK production, since mRNA 

levels or tissue content were not modified (Table 2). The same dose applied as a 

corrective treatment showed no significant effects on basolateral CCK secretion 

although tissue content was significantly increased compared to the cafeteria. A 

lower dose (CORR100-CAF) did reduce basolateral CCK levels compared to CAF 

(0.334 ± 0.01, p≤0.05). The effects were not translated to CCK plasma levels, where 

CCK values were not significantly modified by any of the GSPE treatments (Table 2), 
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while the cafeteria controls showed a tendency to have increased plasma CCK levels 

compared to the STD group. 

Table 2. Effects of GSPE treatments on CCK.  

First column, mRNA levels relative to cafeteria controls (CAF), in the duodenum. Second column, CCK 
levels found in the basolateral media of duodenum segments mounted in Ussing chambers. Third 
column, CCK content in duodenum samples obtained at sacrifice. Last column, plasma CCK 
concentration at sacrifice. Values represent mean ± SEM of 5-7 animals per group. *p≤0.05 versus 
CAF; # p≤0.1 versus CAF. 

3.3 Modulation of GLP-1 and PYY by GSPE treatments 

Total GLP-1 and PYY were measured in the ileum and the colon in all the treatments. 

A corrective treatment with 500 mgGSPE /kg bw significantly decreased PYY gene 

mRNA in the ileum, opposite to the effects of the cafeteria diet that tended to 

increase it (Table 3). However, this treatment increased the mRNA of PYY and GLP-1 

in the colon, while no stimulation was observed in PYY secretion of samples mounted 

in Ussing chambers or plasma levels at sacrifice. When the same dose of GSPE was 

administered in a simultaneous intermittent way for 17 weeks, the effects in the 

colon were somehow maintained, but they were different in the ileum, where PYY 

was not changed and GLP-1 tended to increase. When the corrective treatments 

were performed with a lower dose, a different profile was observed, since the mRNA 

increase in PYY and GLP-1 was found in the ileum, but GLP-1 in the colon was 

maintained at control levels. In this case, however, total plasma GLP-1 was 

significantly increased and PYY decreased by the CORR100-CAF treatment (Table 3). 

Also, the corrective treatments showed a tendency to oppose the cafeteria diet PYY 
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secretion profile in ex vivo samples, although only tendencies were observed (Table 

3). 

Table 3.  Effects of GSPE treatments on GLP-1 and PYY.  

mRNA results are relative to cafeteria controls (CAF). PYY secretion in basal medium of intestinal 
samples mounted in Ussing chambers, in the ileum and the colon. GLP-1 in basolateral medium was 
not detected. *p≤0.05 versus CAF, # p≤0.1 versus CAF, T-test, mean ± SEM of 5-7 animals per group. 

3.4 GSPE effects on microbiota metabolites 

A simultaneous intermittent GSPE treatment increased colon size compared to the 

cafeteria-fed animals (15.42 ± 0.4 and 17.00 ± 0.6 cm in CAF and SIT-CAF groups 

respectively, p<0.05 ), while the corrective treatments did not modify it. No 

differences in small intestine size were observed in any group. Despite the fact that 

the cafeteria-fed animals showed no statistically significant differences in the small 

or large intestine when compared to the standard-fed animals, the small 

intestine/colon length ratio was significantly increased by the cafeteria diet and 

normalized by simultaneous intermittent GSPE treatment (Figure 2.a). 

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



108 

The caecum was weighed and Figure 2.b shows that the empty caecum weight was 

significantly increased by GSPE when this was administered concomitantly with the 

cafeteria diet, every two weeks for the 17 weeks’ duration of the experiment. 

Interestingly, a corrective treatment of 10 days with GSPE at the same dose at the 

end of the experiment induced a significant increase in caecum weight, not different 

from that of the simultaneous intermittent treatment. The corrective treatment with 

a lower dose, however, did not modify caecum weight. 

Figure 2. Effects of the different GSPE treatments on a) the length of the intestine (ratio between 
small intestine and colon length, measured in cm, and b) the weight of the empty caecum. STD: 
standard chow-fed controls, CAF: cafeteria-fed controls, SIT-CAF: rats fed cafeteria diet plus GSPE (500 
mg/kg bw) every other week during 17 weeks, CORR500-CAF: 500 mg GSPE/kg daily administered 
during the last 15 days of cafeteria, CORR100-CAF: 100 mg GSPE/kg daily administered during the last 
15 days of cafeteria. Values represent mean ± SEM of 6-10 animals per group. *p≤0.05 versus CAF, T-
test.  

Short chain fatty acids of caecal content were measured. As can be seen in Table 1 

supplementary materials, the cafeteria diet significantly reduced butyric acid 

content by 73% and tended to increase propionic and isobutyric acid content. The 

CORR500-GSPE treatment significantly reduced the butyric acid content compared 

to cafeteria-fed rats (10.5 ± 1.4 and 19.07 ± 3.6 in CORR500-GSPE and CAF, 

respectively, p<0.05). The simultaneous intermittent treatment led to butyric acid 

levels not different from the corrective treatment (12.21 ± 3.0), despite values that 

were not statistically different from the cafeteria values. However, if considering the 

% of butyric acid in the caecal content (% of the sum of all other measured SCFA), 
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then simultaneous intermittent and corrective treatments led to a reduction in its % 

(30.15 ± 0.9, 12.22 ± 1.5, 7.81 ± 1.2, 4.80 ± 0.2, 7.61± 0.9  in STD, CAF, SIT, CORR500, 

and CORR 100 respectively, all of them p≤0.05 versus CAF). 

3.5 GSPE corrective treatment reduces energy intake. Relationship between food 

intake and hormones 

We finally tried to define the relationship between the enterohormones and body 

weight and food intake. The effects on body weight and adiposity of different 

treatments with GSPE 500 mg/kg have been previously published [15]. We observed 

no significant effect on body weight or food intake of the 100 mg /kg BW dose 

(CORR100-CAF), and therefore this treatment was not included in the further 

analysis. 20 hours’ energy intake was measured at different time points. When 

administered as corrective treatment, i.e. after 15 weeks of cafereria feeding, 500 

mg GSPE/kg bw reduced energy intake. No other effects on food intake were found 

in the other treatments (Figure 3). 

 

Figure 3. Effects of the different GSPE treatments on relative food intake between week 15 (before 
the corrective treatment) and week 17 (after the corrective treatment) in animals fed a cafeteria 
diet for 17 weeks. STD: standard chow-fed controls, CAF: cafeteria-fed controls, CORR500-CAF: 500 
mg GSPE/kg daily administered during the last 15 days of cafeteria, CORR100-CAF: 100 mg GSPE/kg 
daily administered during the last 15 days of cafeteria. Values represent mean ± SEM of 5-9 animals 
per group. *p ≤0.05 versus CAF, T-test.  
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In order to evaluate whether the effect of GSPE on food intake and/or body weight 

could be related to modulation of plasma hormones, we analysed the multivariate 

linear regression between hormones (Tables 1-3 and supplementary materials Table 

2) and food intake or body weight gain. Table 4a shows that 95 % of body weight 

gain in the standard-fed animals was statistically explained by glucagon and insulin. 

Administration of a cafeteria diet modulated this relationship, since ghrelin, in 

addition to glucagon and insulin, was contributing towards explaining the body 

weight gain. GSPE totally changed this assotiation in different ways depending on the 

treatment: the SIT-CAF administration led to GLP-1 and CCK explaining the body 

weight gain, while in the CORR500-CAF none of the assayed hormones were 

significantly related to the body weight changes (Table 4a and Figure 4).  

Figure 4. Multivariate linear regressions after a simultaneous-intermittent treatment and a 
corrective treatment of 500 mg/bw grape seed proanthocyanidin extract (GSPE). Table a) Plasma 

A 

B 
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levels of amylin, glucagon, insulin, GLP-1, CCK and ghrelin were measured using ELISA kits to 
determine their fit with the multivariate linear regression of  Y = aX1 + bX2 + cX3 + d, where a) Y is the 
animal’s body weight increase, and b) Y is the animal’s relative food intake between week 15 (before 
the corrective treatment) and week 17 (after the corrective treatment) in animals fed a cafeteria diet 
for 17 weeks. p-value ≤0.05 indicates statistically significant regression. Non-significant regressions 
are expressed as NS. Adjusted R2 identifies the degree of explanation between related parameters. 
Figure b) Diagram of modeled relationships between hormones and body weight or food intake. Solid 
lines represent a positive contribution to the dependent variable, while dashed lines represent a 
negative contribution. Numbers within brackets correspond to beta coefficient. 

As regards food intake (Table 4b and Figure 4), in cafeteria-fed animals glucagon and 

amylin were the most significant variables included in the model that toghether were 

strongly related to food intake, while in the standard-fed rats, PYY, in addition to 

amylin and glucagon, contributed to explaining 97% of food intake variability. GSPE 

again changed this relationship, but this time it was the in the CORR500-CAF 

treatment were 99% of the food intake variability could be explained by plasma 

hormones (i.e. total GLP-1 and amilyn). In the SIT-CAF treatment no significant 

relationship was found.  

4.Discussion  

In the present paper we describe that an intermittent GSPE treatment alters the 

intestinal enteroendocrine system in cafeteria-fed rats. Interestingly, several 

parameters that are modified by the simultaneous intermittent treatment are also 

altered in a corrective manner, suggesting that the effects on the gastrointestinal 

tract do not require long-term treatments, although their possible translation to 

body weight homeostasis modulation does require a more prolonged treatment. 

We find changes in stomach acylated ghrelin content, suggesting an accumulation of 

ghrelin not due to increased production. Our resuts show that only 15 days are 

needed to exert such an effect and that, when a simultaneous intermittent 

treatment is performed, the effects are still found but to a lower extent. Ghrelin has 

previously been shown to be a target for GSPE [24]. In fact, in standard diet-fed 

animals, an 8-day treatment with the same GSPE dose (500 mg/kg bw) led to a lower 
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plasma ghrelin due to a reduced production in the stomach and secretion in the 

intestine, in fasted animals. Our present results suggest that a reduction in basal 

secretion by subchronic treatment with GSPE in the stomach also takes place in 

animals on an obesogenic diet. Furthermore, it is not a dose-dependent effect, since 

100 mg/kg bw exerts the same effect as 500 mg/kg. This effect is mitigated when the 

treatment is prolonged intermittently for 17 weeks, possibly due to a long-term 

effect of GSPE on the regulation of the ghrelin-activating enzyme (GOAT). In the 

present sacrifice conditions, with only 4 hours of fasting, we found no significant 

change in ghrelin plasma levels, possibly because it usually peaks right before meal 

initiation. However, our multivariate linear regression analysis shows that plasma 

ghrelin levels contribute significantly to explaining the body weight increase in 

cafeteria-fed control animals, while it does not in GSPE-treated animals. This 

supports the idea that GSPE-modulation of the ghrelin system is involved in its 

metabolic effect controlling body weight gain. In fact ghrelin has been shown to act 

centrally, modulating not only food intake but also energy homeostasis, since when 

administered to different parts of the brain it increases food intake but also reduces 

energy expenditure and increases RQ [25, 26]. Thus the modulation of ghrelin levels 

might be related to the previously observed effects of GSPE in promoting the use of 

lipids as substrate [15]. 

Multivariate linear regression analysis considering body weight gain and hormones 

revealed two more enterohormones with distinct patterns between the cafeteria 

diet and the SIT-CAF GSPE treatment, namely CCK and GLP-1. Our results show that 

in the duodenum, a simultaneous intermittent treatment with GSPE leads to lower 

basal secretion of CCK compared to the cafeteria-fed animals, which might not be 

linked to a lower production, counteracting the effects of the cafeteria diet. A role 

for GSPE acutely inhibiting CCK secretion in explants (Serrano, Casanova-Martí, et al., 

2016) and in vivo [19] has been previously shown. However, it is unlikely that the 
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present reduction in secretion is related to acute effects, since the last GSPE dose 

was administered 36 h previous to sacrifice and the tissues were thoroughly washed. 

CCK is released after stimulus such as aminoacids, protein hydrolyzates or long chain 

fatty acids, although in our system there was no such stimulus. Instead we measured 

basal CCK secretion, although for the moment we do not know which mechanism is 

involved in it. Thus a better understanding of the basal secretory mechanisms and 

the pathways by which cafeteria diet modifies them will help in elucidating the role 

of GSPE in this.  

As mentioned earlier, in addition to CCK, plasma total GLP-1 contributed to 

explaining the effects on body weight of an intermittent treatment with GSPE, while 

it did not in any other condition. GLP-1 was also found among the hormones that 

were related to the food intake of CORR500-CAF, but not in the other conditions 

including the controls. The role of GLP-1 as a mediator of GSPE’s acute inhibition of 

food intake has previously been demonstrated [27], and we have previously shown 

that GSPE stimulates GLP-1 secretion in a glucose dependent manner [28]. We found 

that, as previously shown for animals on a standard diet sub-chronically (8 days) 

treated with GSPE [19], a sub-chronic GSPE treatment also has satiating properties 

in rats that have been subjected to an obesogenic (cafeteria) diet. Furthermore, we 

found that when a prolonged treatment is performed, the effects on food intake are 

lost, and GLP-1 is no longer involved in regulating the food intake in the SIT-CAF 

treatment. However, GLP-1 contributes to explaining the body weight gain of these 

animals. GLP-1 has a well-described role as an anorexigenic and insulin-stimulating 

hormone, but it has recently been shown that GLP-1R signalling modulates energy 

expenditure rather than eating behaviour during HFD feeding [29]. Our results 

suggest that, similarly to what happened with ghrelin, the prolonged effects of GSPE 

involve the metabolic action of the enterohormone, regardless of its 

orexigenic/anorexigenic role.  
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Concerning the mode of modulation of GLP-1, our results point to GSPE acting 

through regulation of its gene expression. It has previously been shown that GSPE 

acutely modulates GLP-1 mRNA depending on the feeding state [28], and studies 

have reported an increase in intestinal GLP-1 gene expression after a chronic GSPE 

treatment with a lower (25 mg/kg bw) dose in rats fed a cafeteria diet [12]. Here we 

confirm that GSPE modulates intestinal GLP-1 mRNA depending on the treatment 

and tissue. The differential effects found on GLP-1 mRNA between the ileum and the 

colon might also derive from the different molecules that reach these tissues, since 

the microbiota in the caecum and the colon contributes greatly to the metabolism 

of ingested structures. We found that 500 mg/kg bw increased the caecum empty 

weight, and this was maintained when the treatment was prolonged intermittently. 

Caecum enlargement has previously been shown by treatment with prebiotic fibres, 

and it parallelled a reduction in adiposity in high-fat diet-fed [30] and standard-fed 

animals [31]. Gut hypertrophy and hyperplasia have been shown as an effect of fibre 

after only 8 days’ treatment, attributed to the fermentation products of dietary fibre. 

Consumption of nopal (a prickly pear cactus with high fibre and polyphenol content) 

on an HF diet for 6 weeks results in an enlarged caecum and increased caecal SCFA 

(propionate, acetate, isobutyrate, isovalerate and valerate, but not butyrate) while 

at the same time it counteracts high-fat induced adiposity [32]. Modulation of 

caecum weight was accompanied by small changes in SCFA composition, where the 

GSPE treatments led to a reduced % of butyric acid. Butyric acid has been claimed 

beneficial effects on intestinal homeostasis and energy metabolism, although its role 

in obesity remains controversial (reviewed in [33]). Our results do not support that 

modulation of SCFA are directly involved in the antiobesity effects of GSPE,but these 

reflect changes in the microbiota that take place after only 15 days of GSPE 

treatment, as previously observed in standard-fed animals after 8 days of GSPE 

treatment [34], and that might be maintained after a simultaneous intermittent 
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treatment. These changes may contribute to the increased colon length that we 

found in the simultaneous intermittent treatment.  

Finally we also found that the mRNA of PYY partially parallelled that of GLP-1, since 

it was up-regulated in colon  or ileum depending on the treatment. However 

regardless of whether there is more PYY available in the cells, our results also show 

that its secretion is dependent on stimulus, since basal secretion from ex-vivo 

explants was not significantly altered. 

To conclude, we show here that GSPE treatment in the context of an obesity-

inducing cafeteria diet modulates the enterohormone system throughout the 

gastrointestinal tract. Our results suggest that 15 days with GSPE treatment 

modulates ghrelin accumulation in the stomach, CCK secretion in the duodenum and 

GLP-1 and PYY mRNA in the ileum or the colon (depending on the dose). It also 

increases caecal hypertrophy and reduces butyrate content. These effects are 

maintained if the treatment is performed every other fortnight during 17 weeks, and 

then lead to an increase in colon size. These intestinal effects might be related to 

reduced adiposity, likely through mechanisms other than only modulating food 

intake.   
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Supplementary materials 

Table 1. Caecal short chain fatty acids.  

Values represent mean ± SEM of 6-10 animals per group. *p≤0.05 versus CAF; # p≤0.1 versus CAF. 
Lactic acid was also measured but not found. 

Table 2. Plasma hormone levels at sacrifice.  

 GLUCAGON (PM) INSULIN (PG/ML) AMYLIN (PG/ML) 

ST 7.24 ± 2.28 3.91 ± 0.63 8.79 ± 1.10 # 
CAF 9.81 ± 1.43 4.48 ± 0.33 12.62 ± 2.08 

SIT-CAF 5.52 ± 1.03 * 3.71 ± 0.90 9.28 ± 1.05 
CORR500-CAF 8.73 ± 1.54 6.18 ± 0.51 * 12.74 ± 2.25 

CORR 100 15.63 ± 2.29 # 6.36 ± 1.10 12.21 ± 0.22 

Values represent mean ± SEM. * p<0.05 vs standard, # p≤0.1 vs cafeteria, T-Test. 
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Abstract 

A grape seed proanthocyanidin extract (GSPE) presents long-lasting effects, reducing 

body weight gain and increasing lipid oxidation in cafeteria-diet-fed animals. It has 

also shown to modulate the enteroendocrine system. In this paper we determine the 

role of several GSPE treatments, previously shown to alter body weight gain and/or 

respiratory quotient in cafeteria-diet-fed rats, in the gene expression of several 

enterohormones and to ascertain whether they are modulated by epigenetic 

mechanisms. We found that 10-day GSPE administration prior to administration of 

the cafeteria diet (pre-treatment) led to upregulation of GLP-1 mRNA in the ileum 17 

weeks after the GSPE treatment that was associated with hypomethylation on the 

GLP-1 promoter. These effects were also found when GSPE treatment was 

maintained as simultaneous-intermittent treatment (administered every other 

week) during the 17 weeks of cafeteria-diet treatment. Also, the hypomethylation of 

the GLP-1 promoter correlated positively with body weight, respiratory quotient and 

plasma insulin. In the colon, GSPE had no effect on gene expression after pre-

treatment. On the other hand, GSPE administered at the end of the cafeteria diet 

upregulated PYY and GLP-1 mRNA, though it was not regulated by either the 

hypomethylation of the promoters or the acetylation of H3K9 and tri-methylation of 

H3K27 histones on the GLP-1 promoter. In conclusion, we have identified long-lasting 

effects of GSPE on GLP-1 gene expression in the ileum. These were partly mediated 

by a reduction in methylation at the gene promoter, which in turn was associated 

with changes in body weight, energy expenditure and plasma insulin.  
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1. Introduction 

Obesity is one of the most prevalent diseases that affects people all over the world. 

The development of obesity is affected by many factors, including alterations on the 

energy balance, genetic predisposition, gut microbiota disorders, imbalances in the 

oxidative stress-antioxidant defence, environmental factors, endocrine imbalances, 

etc., all of which can lead to metabolic and epigenetic alterations [1,2]. One widely 

studied approach to treating the metabolic disorders caused by obesity is to use 

natural bioactive compounds. Flavonoids in particular have been reported to act 

against obesity by modulating many metabolic pathways [3,4]. They have been 

proved to act as lipolytic agents, to limit white adipose formation, to activate energy 

consuming pathways [5],  and to act in the gastrointestinal (GI) tract [6].  

Since flavonoids are poorly absorbed, they have plenty of opportunity to exert their 

effects on the GI tract. It has been shown that flavanols limit energy absorption by 

influencing the intestinal processes involved in the digestion and absorption of 

energy compounds [5,7–10], they modulate inflammation and barrier properties 

[11], they can alter the bacterial populations in the gut [12], and they can also induce 

a satiety effect by modulating gut hormones [13,14]. Serrano et al. showed that a 

subchronic dose of 500 mg/kg bw of a grape-seed proanthocyanidin extract (GSPE) 

was able to decrease food intake [15], modify enteroendocrine hormone secretions 

[16] and decrease gastric emptying in female rats, thus inducing a satiating effect 

[13].  All these effects can be explained by a variety of mechanisms; the antioxidant 

antioxidant properties of flavanols [17–19], their interaction with proteins [20,21], 

the fact that they modify mRNA expression [16,22,23]  and the epigenetic 

mechanisms modulated by flavonoids [24–27].  

DNA methylation, the most studied epigenetic mechanism, takes place when a 

methyl group is added to the C5 position of cytosine (5mC), predominantly at CpG 
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sites [28]. The enzymes responsible are the DNA methyltransferases (DNMTs) [29]. 

It has been suggested that flavonoids reverse DNA hypermethylation, and that this 

is mediated by the inhibition of DNMT [24].  Flavonoids are known to inhibit histone 

acetyltransferase and histone deacetylate so, therefore, they can also interfere in 

histone remodelling [25]. Histone modifications are associated with changes in the 

structure of chromatin. Acetylation/deacetylation and methylation/demethylation 

correlate with chromatin accessibility, and the effect of transcription and 

methylation depends on the number of methyl groups and the position of the 

residues [30]. Some studies have focused on the study of the role that flavonoids 

play in modulating epigenetic processes (for example, DNA methylation and histone 

modification) to control obesity [26,27].  Boqué et al. showed that an apple 

polyphenol extract can induce epigenetic changes in the adipose tissue, which could 

explain some of the anti-obesogenic effects observed [27]. 

Recent studies by our research group have shown that GSPE presents long-lasting 

effects.  Several weeks after the last dose of GSPE, body weight, adiposity and RQ 

remain lower  [31]. Here we analyse the long-lasting effects on intestinal gene 

expression and whether the epigenetic mechanism is part of the explanation and 

compare the different GSPE treatments. 

2. Materials & Methods  

2.1 Proanthocyanidin extract 

The grape seed proanthocyanidin extract (GSPE) was kindly provided by Les Dérivés 

Résiniques et Terpéniques (Dax, France). According to the manufacturer, the GSPE 

composition used in this study contains (Batch number: 124029): monomers of 

flavan-3-ols (21.3%), dimers (17.4%), trimers (16.3%), tetramers (13.3%) and 

oligomers (5–13 units; 31.7%) of proanthocyanidins. A detailed analysis of the 

monomeric to trimeric structures can be found in the study by Margalef and col [32]. 
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2.2 Animal experiments 

Female rats weighing 240–270g were purchased from Charles River Laboratories 

(Barcelona, Spain). After one week of adaptation, they were individually caged in the 

animal quarters at 22°C with a 12-hour light/12-hour dark cycle and were fed ad 

libitum with a standard chow diet (Panlab 04, Barcelona, Spain) and tap water. The 

rats were randomly distributed into the experimental groups (n=7–10/group) and 

were fed ad libitum a standard chow diet until the end of the experiment. The control 

group (STD) received only the standard chow diet. The other groups, in addition to 

the standard chow, received a cafeteria diet as a model of a high fat/high sucrose 

diet and/or a GSPE supplement at different times.  The cafeteria group (CAF) received 

tap water as vehicle together with the cafeteria diet. The preventive treatment group 

(PRE) received an oral dose of 500 mg GSPE/Kg for 10 days before they started the 

cafeteria diet. The simultaneous intermittent treatment-CAF (SIT) group received a 

dose of 500 mg GSPE/Kg together with the cafeteria diet every other week, and the 

corrective treatment (CORR) group received a dose of 500 mg GSPE/Kg during the 

last 15 days of the long-term cafeteria intervention. 

The cafeteria diet consisted of bacon, sausages, biscuits with paté, carrots, muffins, 

and sugared milk, which induced voluntary hyperphagia [31]. This diet was offered 

ad libitum every day to the animals for 17 weeks. GSPE was dissolved in water and 

was orally gavaged to the animals at 18:00 for each treatment in a volume of 500 µL, 

one hour after all the available food had been removed. The animals not 

supplemented with GSPE received water as a vehicle. 

At the end of the study, animals were fasted for 1–4 hours, anesthetized with sodic 

pentobarbital (70 mg/kg body weight; Fagron Iberica, Barcelona, Spain) and 

exsanguinated from the abdominal aorta. Intestinal segments from the duodenum, 
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jejunum, ileum and proximal colon were immediately frozen in liquid nitrogen and 

then stored at -80º C for further analysis.   

All the procedures were approved by the Experimental Animal Ethics Committee of 

the Universitat Rovira i Virgili (code: 0152S/4655/2015). 

2.3 Quantitative real-time RT-PCR analysis 

Total RNA was extracted using Trizol (Ambion, USA) and trichloromethane-ethanol 

(Panreac, Barcelona, Spain), and purified using a Qiagen RNAeasy kit (Qiagen, Hilden, 

Germany). The cDNA was generated using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Waltham, USA). Quantitative PCR 

amplification was performed using specific TaqMan probes (Applied Biosystems, 

Waltham, USA): Rn00572200_m1 for ChGA, Rn01460420_g1 for PYY and 

Rn00562293_m1 for proglucagon. The relative expression of each gene was 

compared with the control group using the 2-ΔΔCt method, with cyclophilin A, PPIA 

(Rn00690933_m1), as reference. 

2.4 DNA methylation analysis by pyrosequencing 

Genomic DNA was extracted from the ileum using TRIzol Reagent (Life Technologies) 

and from the colon using a DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). It 

underwent bisulfite modifications using a commercially available modification kit 

(Zymo Research, Irvine, CA, USA).  

DNA methylation was assessed by pyrosequencing. Bisulfite-treated DNA was 

amplified by PyroMark PCR Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. The polymerase chain reaction conditions were as follows: 

95°C for 15 min, followed by 45 cycles of 94°C for 30 s, 56°C for 30 s, 72°C for 30 s 

and, finally, 72°C for 10 min. Polymerase chain reaction products were verified by 

agarose electrophoresis. Pyrosequencing methylation analysis was conducted using 
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the PyroMark Q24 (Qiagen). The level of methylation was analysed using PyroMark 

Q24 Software (Qiagen), which calculates the methylation percentage mC/(mC+C) 

(where mC is methylated cytosine and C is unmethylated cytosine) for each CpG site, 

and allows quantitative comparisons. The primer set sequences used for 

pyrosequencing were the ones that presented most CpG islands in the maximum 

number of pair-bases permitted by the PyroMark Q24 machine (see Table 1). 

Table 1. Primer sets used for pyrosequencing. 

rat GLP-1 

Forward 5’-GTTGAGGGGGAGTTTGGA-3’ 

Reverse 5’-ACCCCAAAAATAAAACCTCCAACTCTA-3’ 

Sequencing 5’-GGGAGGAGGGTTTTAATG-3’ 

rat PYY 

Forward 5’-GGAATGATTTGGTATTGTGATGT-3’ 

Reverse 5’-TCACCTCAAATAAACCCTACCC-3’ 

Sequencing 5’-GATGTTTTGTGGGGA-3’ 

rat ChGA 

Forward 5’-GGGATTTAGAAGGTGGGGAAAGG-3’ 

Reverse 5’-CAACAACCCCCAAACAATACTATACCCTC-3’ 

Sequencing 5’-AAGGTGGGGAAAGGG-3’ 

 

2.5 Chromatin immunoprecipitation (ChIP) 

The ileum and colon tissue samples used for chromatin preparation were dissected 

on a frozen surface. The samples were then immediately fixed for 12 min in cold 1% 

formaldehyde/PBS, followed by glycine incubation to stop further cross-linking. The 

fixed tissue was washed five times with cold PBS containing Na-Butyrate 20 µM and 

frozen for later use. ChIP experiments were performed as previously described [33] 
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with some modifications; tissue samples were homogenized in a nuclear extraction 

buffer (10 mM Tris; pH 8.0, 100 mM NaCl, 2 mM MgCl2, 0.3 M Sucrose, 0.25% IGEPAL 

CA-630) containing protease inhibitors (1 mM PMSF, 0.1 mM aprotinin, 1:100 

Protease Inhibitor Cocktail (Sigma-Aldarich, Madrid, Spain)), by douncing 25 times 

using a 2 ml loose grind pestle followed by a 5-minute incubation on ice. The 

homogenate was dounced another 25 times using a 2 ml loose grind pestle for 

nuclear release, followed by 10 min centrifugation at 2400 g to pellet nuclei. The 

nuclei were then lysed in a lysis buffer containing 50 mM Tris-HCl (pH 8.0), 10 mM 

EDTA, 1% (wt/vol) SDS and protease/phosphatase inhibitors, diluted in RIPA buffer 

[10 mM Tris-HCl (pH 7.5), 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% (vol/vol) 

Triton-X-100, 0.1% (wt/vol) SDS, 0.1% (wt/vol) sodium deoxycholate] and the DNA 

was sonicated to an average size of 300e500 bp using a sonicator (Vibra Cell; 3 cycles 

30 s ON, 30 s OFF, 40 Hz). A total of 3 µg of anti-H3K27me3 (Cell Signaling) and 3 µg 

of anti-H3K9ac (Cell Signalling, Massachusetts, USA) were incubated at 4C with 25 ml 

of washed Dynabeads protein A (Invitrogen, California, USA) and RIPA in a total 

volume of 100 ml. The bead-antibody complexes were then incubated at 4ºC for 2 h 

with 42 µl of chromatin in a total volume of 250 µl. Beads were washed three times 

in RIPA, once in high salt wash buffer [20 mM Tris-HCl (pH 7.5), 500 mM NaCl, 2 mM 

EDTA, 0.1% Triton-X-100, 0.1% SDS] and once in TE buffer. After washes, DNA was 

eluted from beads and de-crosslinked in 20 mM Tris-HCl, pH 7.5, 5 mM EDTA, 50 mM 

NaCl, 1% (wt/vol) SDS and 50 mg/ml protease K at 68ºC overnight. For input, 42 µl 

chromatin was de-crosslinked in 20 mM TriseHCl, pH 7.5, 5 mM EDTA, 50 mM NaCl 

at 68ºC overnight. ChIP and input DNA were then purified and eluted using 

NucleoSpin Gen and PCR Clean-up kit (MACHEREY-NAGEL, Düren, Germany). 

Enrichments on selected loci were measured by qPCR in triplicates relative to input 

chromatin. The primer sequences used were the ones shown in Table 1. 
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2.6 Statistical analysis 

The results are expressed as the mean ± standard error of the mean (SEM). A 

Student’s T-test was used to compare the treatments with the cafeteria group. P-

values < 0.05 were considered to be statistically significant. These calculations were 

performed using XL-Stat 2017 software.  

Spearman’s correlation coefficient was used to test for correlations between the 

methylation of the GLP-1 promoter and the respiratory quotient (RQ), the final 

weight, the adiposity index and the concentration of plasma insulin of the animals.  

P-values < 0.05 were considered to be statistically significant. These calculations 

were performed using XL-Stat 2017 software.   

3 Results 

3.1 GSPE has long-term effects on GLP-1 gene expression in the ileum but not in the 

colon 

First, we checked whether a 10-day pre-treatment of 500 mg/bw GSPE followed by 

a 17 week-cafeteria diet (PRE) was able to induce changes in gut hormone gene 

expression. Figure 1 shows that in the ileum, GLP-1 gene expression was increased 

17 weeks after the GSPE pre-treatment. This seems to be GLP-1 specific, since we 

checked PYY, a hormone usually co-expressed with GLP-1, and found no increase in 

its gene expression. Furthermore, ChGA, a marker of endocrine cells, was not 

increased but decreased by all GSPE treatments in the ileum.  

In the colon, it seems that the effect of GSPE increasing GLP-1 gene expression is 

linked to the treatments in which the last dose was administered recently, as is the 

case of the SIT and CORR groups. It can be observed that GSPE has similar effects on 

both colonic PYY and GLP-1 gene expression, while ChGa showed no differences in 

any of the treatments. 
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Fig 1. Effects of GSPE on GLP-1, PYY and ChGA gene expression in a) ileum and/or b) colon. * p<0.05, # p<0.1 

vs CAF using T-test. 

3.2 GSPE decreases the methylation of the GLP-1 promoter in the ileum 

In order to see whether the long-lasting effects of GSPE on gene expression in the 

ileum were related to epigenetic mechanisms, the methylation of the CpG islands 

present in the GLP-1 promoter was studied by pyrosequencing analysis. In 

agreement with increased GLP-1 gene expression, figure 2a shows a decrease in the 

methylation of the promoter 17 weeks after GSPE treatment (PRE). Furthermore, 

methylation is also decreased by a 10-day GSPE treatment (CORR) and maintained 

when the treatment is performed synchronically during the 17 weeks of the cafeteria 

period (SIT) (Figure 2a). To determine whether the results of GLP-1 gene expression 

and the methylations of its promoter were strongly associated, we used Spearman’s 

correlation test. As expected, the test showed a negative correlation between gene 

expression and positions 2 and 4, and the average of all the positions of CpG islands 

found (p=0.039, 0.046 and 0.038, respectively). 
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As happened with gene expression, these effects were GLP-1 specific, since PYY and 

ChGA promoters were also studied and no effects on average methylation of CpG 

sites were found in the various GSPE treatments (Figures 2b and 2c).  

 

 

Fig 2. Effects of GSPE on DNA methylation of GLP-1, PYY and ChGA promoter in ileum. *p<0.05, # 

p<0.1 vs CAF using T-test.  
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Finally, we observed a tendency towards a lower average methylation in ChGA 

because of the cafeteria treatment. This was not accompanied by changes in the 

ChGA gene expression. 

The methylation of the same hormone promoters was also analysed in the colon. In 

this case, the increased gene expression observed in SIT treatment was not related 

to the methylation pattern of the promoters, which was not modified (figures 3a and 

3b). Neither did we find that the promoters had any long-lasting effects on 

methylation, in agreement with the profile of gene expression that was not modified 

in the PRE animals (figure 1).  

 

Fig. 3. Effects of GSPE on DNA methylation of GLP-1 and PYY promoter in colon. * p<0.05, # p<0.1 

vs CAF using T-test. 
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3.3 GSPE does not modify the acetylation of H3K9 and tri-methylation of H3K27 at the 

GLP-1 promoter site in the colon 

As the effects of GSPE in the colon were significantly different from their effects in 

the ileum, we tested whether the changes in GLP-1 gene expression observed in the 

SIT and CORR groups were mediated by another epigenetic mechanism: the 

modification of histones. We studied the acetylation of lysine 9 (AcH3K9) and the tri-

methylation of lysine 27 (3meH3K27), both in histone number 3. Figure 4a shows 

that there are no differences in the H3K9 acetylation either due to GSPE or to the 

cafeteria diet.  As far as the H3K27 tri-methylation is concerned, the only tendency 

observed is an increase in the methylation of the CORR group. 

 

 

Fig. 4. GSPE-mediated acetylation of H3K9 and tri-methylation of H3K27 at the promoter site of GLP 

in colon. Signals from histone marks were normalized to the input using the same primers. The 

signals of all the groups were normalized to the STD group.  * p<0.05, # p<0.1 vs CAF using T-test. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



138 

3.4 A reduction in GLP-1 promoter methylation by GSPE is related to decreased RQ, 

body weight and plasma insulin 

To identify whether the methylations found in the GLP-1 promoter in the ileum were 

associated with metabolic and morphometric variables, previously shown to be 

modified by GSPE, we used Spearman’s correlation test to evaluate all the groups. 

Figure 5 shows that the RQ of the animals was positively associated with the average 

of the methylated CpG sites found in the GLP-1 promoter. Moreover, final weight 

and plasma insulin are associated with positions 3 and 1 of the CpG sites methylated 

in the GLP-1 promoter, respectively. 

 

Fig. 5. Plot of the significant associations between the methylation of GLP-1 promoter and the 

respiratory quotient (RQ), the final weight and the plasmatic concentration of insulin from the STD, 

CAF, PRE, SIT and CORR. Each plot presents each Spearman’s rho correlation value and the 

corresponding p-value. p-values < 0.05 were considered statistically significant. 

4. Discussion 

GSPE has been shown to interact with the enteroendocrine system by reducing food 

intake in a GLP-1-dependent manner, and enhancing enterohormone secretion in 

rats [13,16]. In rats fed a cafeteria diet, an intermittent GSPE treatment every other 

week for 17 weeks leads to modifications in enterohormone gene expression 

(submitted results). This treatment has also been reported to counteract the effects 
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of the cafeteria diet on body weight, adiposity and RQ [31]. Interestingly, when GSPE 

was administered preventively, for only 10 days, before the cafeteria diet, some of 

its anti-obesogenic effects were maintained [31]. Here, we have evaluated the role 

of epigenetic mechanisms in modulating the enteroendocrine system by a dose of 

500 mg/kg bw GSPE, depending on the moment of the dose and under a long-term 

cafeteria diet challenge.  

First, we studied whether a 10-day pre-treatment with GSPE, followed by a 17–weeks 

cafeteria diet, modulated the intestinal gene expression of GLP-1, PYY and ChGa, and 

compared it with the effects of an intermittent treatment (every other week) in 

conjunction with the cafeteria diet and a 15-days corrective treatment, administered 

during the last two weeks of the cafeteria diet.  

By pre-treating with GSPE, the expression of GLP-1 in the ileum was up-regulated 17 

weeks after the last dose. This up-regulation was also observed when the treatment 

was given every other week during these 17 weeks. GSPE therefore increased GLP-1 

gene expression through mechanisms that had long-lasting effects. As we did not 

find this effect in the corrective treatment, we hypothesize that it can only be noticed 

after the long-term period, at least under our study conditions. Since EECs can sense 

SCFA and stimulate the expression of GLP-1 and PYY in the distal small intestine and 

proximal colon [34,35], and GSPE pre-treatment did not induce any significant 

changes in SCFA composition (supplementary data), we discount microbiota changes 

induced by GSPE as an explanation for this effect. Nevertheless, the epigenetic 

modulation of DNA might be possible [36,37]. In the present study we show that a 

10-days pre-treatment with GSPE modulates the DNA methylation of the GLP-1 

promoter, which persists several weeks after GSPE treatment. This is consistent with 

the increased gene expression observed in PRE and SIT groups. However, the down-

regulation observed in the CORR-CAF group is not consistent with epigenetic 

modulation, which suggests that different metabolic pathways might be involved 
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[38–41]. It has been reported that flavonoids modulate DNA methylation by 

attenuating the effect of DNMTs, thus inducing a reduction in overall DNA 

methylation [36,42–44]. Hence, we propose that GSPE exerts its long-lasting effect 

on GLP-1 gene expression at the beginning of the treatment and leaves a print that 

persists for 17 weeks. The exact mechanism of DNMT1 inhibition by flavonoids is still 

under study, but it may take place by direct enzyme inhibition, indirect enzyme 

inhibition, reduced DNMT1 expression and translation,  interaction with methyl-CpG 

binding domain proteins, among others [42]. Bladè et al. report that 

proanthocyanins and their metabolites can induce different epigenetic modifications 

[45], which suggests that GSPE might be modifying other epigenetic marks that 

together could induce changes in chromatin organization and make some zones of 

the DNA more accessible to changes in methylation patterns. This might also explain 

the fact that only GLP-1 seems to be affected by epigenetics even though PYY and 

ChGa are also expressed in L-cells.   Actually, the rapid replacement of the intestinal 

epithelium [46,47] complicates the presence of long-term changes, which suggests 

that these epigenetic changes take place in the stem cells located in the crypts. 

Subsequently, these will be differentiated into enteroendocrine L-cells and reach the 

brush border of the villus, where they exert their activity. 

Our study of the methylation of the GLP-1 promoter also showed that the ileum and 

colon were affected differently by GSPE. While in the ileum a clear reduction in the 

methylation of the GLP-1 promoter can be observed, none of the treatments induced 

any change in the colon. This pattern has also been observed in other studies, where 

the terminal ileum presented different methylation patterns in the ascending and 

sigmoid colon [48,49]. The molecular mechanisms underlying the regional variations 

in methylation patterns along the GI tract are not understood but the molecules that 

reach the colon have  frequently been metabolised by gut microbiota and, 

consequently, are different to those that reach the ileum [50,51]. Thus, our results 
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suggest that the GSPE molecules that induce the modulation of methylation patterns 

are not reaching the colon and, consequently, they cannot induce epigenetic 

changes. Nevertheless, we did find changes in PYY gene expression in the colon, 

similar to the ones found in GLP-1. However, in this case, it seems that, since the 

differences in gene expression are only observed in SIT and CORR treatments, the 

GSPE molecules together with the microbiota-metabolized metabolites that induce 

these changes act through other metabolic pathways that are not explained by 

changes in the methylation of the PYY promoter (submitted results).  

Actually, our results also discounted some other epigenetic changes in the colon. 

Since GLP-1 mRNA was up-regulated in this segment, we checked if it could be 

mediated by epigenetic mechanisms other than DNA methylation. Dietary 

polyphenols have been reported to modulate transcription by altering the 

posttranslational modifications of histones. In this context, GSPE can increase the 

levels of histone acetyl-H3-Lys 9 (AcH3K9), by repressing histone deacetylases 

(HDAC) activity [36,37]. EGCG has also been found to decrease class I HDAC levels, 

thus increasing the acetylation of H3K9, and decreasing the repressive chromatin 

mark 3meH3K27 [52]. Other studies have also shown that EGCG inhibits 3meH3K27 

[53]. However, the lack of changes in chromatin immunoprecipitation, with the 

exception of a tendency to increase in the CORR, does not correlate with the increase 

in gene expression observed in the SIT and CORR, since 3meH3K27 is known to be an 

epigenetic mark of repression of DNA transcription  [54]. Thus, the present data 

shows that the expression of GLP-1 was not modulated by the chromatin remodelling 

markers AcH3K9 and 3meH3K27. 

The effect of GLP-1 on energy expenditure has been widely studied, and a recent 

meta-analysis concludes that more studies are needed if GLP-1 is to be attributed a 

direct role in the reduction of energy expenditure [55]. Furthermore, if not directly, 

GLP-1 might exert its effect by increasing glucose-dependent insulin release in the 
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brain which, in turn, produces a net catabolic effect by reducing food intake and 

increasing energy expenditure [56]. In our case, it can be observed that the 

hypomethylation of the GLP-1 promoter is correlated with low insulin levels. If it is 

taken into account that the animals were sacrificed after 4 hours of fasting, high 

levels of fasting insulin would indicate insulin resistance [57], but this is not the case. 

Even though, insulin concentration was evaluated under fasting conditions, its 

effects on energy expenditure and body weight are not limited to this specific 

moment, but to the general insulin signalling that takes place throughout the day. 

Following the hypothesis that GLP-1 increases  glucose-dependent insulin release, 

insulin might reach the brain where it triggers catabolic pathways that increase 

energy expenditure and reduce body weight [58]. This is reflected with the positive  

correlation between the methylation of the GLP-1 promoter and both RQ and body 

weight, in which the hypomethylation of the promoter is associated with low RQ 

values or, in other words, a higher oxidation of lipids, which in turn reduces body 

weight [59]. 

In summary, a 10-day pre-treatment with GSPE (500 mg/Kg bw) induces long-lasting 

effects on GLP-1 gene expression possibly driven by a reduction in DNA methylation 

at the gene promoter in the ileum. Moreover, the DNA methylation pattern of this 

promoter positively correlates with plasma insulin, energy expenditure and body 

weight. 
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Abstract 

A dose of proanthocyanidins with satiating properties proved to be able to limit body 

weight increase several weeks after administration under exposure to a cafeteria 

diet. Here we describe the molecular targets and the duration of the effects. We 

treated rats with 500 mg GSPE/kg BW for ten days. Seven or seventeen weeks after 

the last GSPE dose, while animals were on cafeteria diet, we used RT-PCR to measure 

the mRNA of the key energy metabolism enzymes from liver, adipose depots and 

muscle. We found that a reduction in the expression of adipose LPL might explain 

the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. 

Liver showed increased expression of CPT1a and HMGCS2 together with a reduction 

in FASn and DGAT2. In addition, fatty oxidation (OXCT1 and CPT1b mRNA) was 

increased in muscle.  However, after seventeen weeks, there was a completely 

different gene expression pattern. As conclusion, seven weeks after the last GSPE 

administration there was a limitation in adipose accrual that might be mediated by 

an inhibition of the gene expression of the adipose tissue LPL. Concomitantly there 

was an increase in fatty acid oxidation in liver and muscle. 
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1. Introduction 

Excessive adipose tissue significantly increases the risk and prognosis of metabolic 

syndrome (diabetes mellitus type 2, cardiovascular disease, hyperlipidemia, 

nonalcoholic fatty liver disease) and several types of cancer.1 The causes of excessive 

body weight are diverse, one of the most prevalent in developing and developed 

countries being excessive or bad quality food intake2 .  

Proanthocyanidins (PACs) are a group of polyphenols that are widespread in nature 

(in fruits, vegetables and their beverage products). They have been described as 

bioactive agents against several unhealthy situations. More specifically, they have 

the well-documented effect of limiting lipid accumulation and favouring lipid 

oxidation in the organism3 Their effect as specific inhibitors of fat digestion4 and 

absorption.5 Furthermore, PACs favour lower RQ 6,7, due to a higher fat oxidation in 

liver and muscle6.  As they are a group of different compounds, some of the effects 

could be explained by their interaction with molecules or structures located in the 

gastrointestinal lumen8,6. They protect against cafeteria diet-induced damage to the 

intestinal barrier and are anti-inflammatory agents.9 However, the absorbable low-

molecular weight flavanols reach intracellular targets inside the body, where they 

act on different molecular targets  to induce increased energy expenditure,3 and 

prevent cholesterol increase in the organism10, acting as antihipertensives10, 

antioxidants11) and maintaining glucose homeostasis12.  

The diversity of structures in proanthocyanidin-rich extracts and their interactions 

are the reason why some of these effects are highly dependent on the dose used for 

the studies and the physiological state of the animal 7. Most studies prove that PACs 

correct cafeteria diet-induced damage13,14. Some studies focus on their possible 

preventive role in obesity-related pathologies (that is, when they are administered 

from the beginning of obesogenic diets) 15. However, only very few studies have 

analysed their long-term effects after sub-chronic treatment16, 17. We have recently 
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attempted to determine the best moment to administer GSPE (500 mg/kg) so that it 

acts most effectively against the damaging effects of an obesogenic diet such as the 

cafeteria diet17. The results showed that PACs had a surprisingly long-lasting effect 

on body weight that needed a more in-depth analysis. In the present study, we have 

further analysed the long-lasting effects of sub-chronic GSPE treatment. We 

compare the duration of their effects, mainly on the energy metabolism and adipose 

depots, 7 weeks or 17 weeks after the last GSPE dose. 

 

2. Materials & Methods  

2.1 Proanthocyanidin extract 

The grape seed extract enriched in proanthocyanidins (GSPE) was kindly provided by 

Les Dérivés Résiniques et Terpéniques (Dax, France). According to the manufacturer, 

the GSPE used in this study (Batch number: 124029) contains monomers of flavan-3-

ols (21.3%), and dimers (17.4%), trimers (16.3%), tetramers (13.3%) and oligomers 

(5-13 units; 31.7%) of proanthocyanidins. A detailed analysis of the monomeric to 

trimeric structures can be found in the work by Margalef and col.18 

2.2 Animal treatments 

Female rats (Harlan Rcc:Han), each weighing 240-270 g, were purchased from 

Charles River Laboratories (Barcelona, Spain). After one week of adaptation, they 

were individually caged in the animal quarters at 22°C with a 12-hour light/12-hour 

dark cycle and fed ad libitum with a standard chow diet (Panlab 04, Barcelona, Spain) 

and tap water. Experiments were performed after a period of acclimation. 

Short cafeteria (SC) experiment 

The animals were randomly distributed into two experimental groups (n=7) and fed 

a standard chow diet ad libitum (figure 1, supplementary materials). One group of 
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animals received 500 mg GSPE/Kg bw together with a simplified high-fat-high-

sucrose diet for 10 days. The diet consisted of a palatable hypercaloric emulsion 

presented in an independent bottle, containing (by weight) 10% powdered skimmed 

milk, 40% sucrose, 4% lard and 0.35% xanthan gum as a stabilizer.19 The GSPE 

dissolved in tap water was orally gavaged to the animals at 18:00 in a volume of 500 

µL, one hour after all the available food had been removed. The animals not 

supplemented with GSPE received water as a vehicle. After 10 days of treatment, all 

the animals were kept for 18 days on a standard chow diet. Afterwards, the rats 

started with the cafeteria diet challenge for 35 days (SC). The cafeteria diet 

consisted of standard chow,  bacon, carrots, and sugared milk, which induces 

voluntary hyperphagia.20 This diet was offered ad libitum every day. 

Long cafeteria (LC) experiment 

A second group of thirty female Wistar rats was challenged with a long-term 

cafeteria treatment (LC), which was initially similar to the treatment described 

above. They were organized in three experimental groups (n=10), (figure 1, 

supplementary materials). One group was given the same amount of GSPE every day 

for 10 days at the same time, and the control group received the same amount of 

tap water. During the GSPE treatment period, all the rats were fed standard chow 

diet. On day eleven, a standard group (STD) stayed on the chow diet, and the two 

remaining groups started a cafeteria challenge, which in this case was maintained 

for 17 weeks. 

In both experiments, the GSPE treatments were intragastrically (i.g.) administered 1 

h before the onset of the dark cycle. Food intake was measured 20 hours after the 

daily chow replacement with an accuracy of 0.01 g. 
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2.3 Blood and Tissue Collection  

At the end of the study, the rats were fasted for 1-4 hours, anesthetized with sodium 

pentobarbital (70 mg/kg body weight; Fagron Iberica, Barcelona, Spain) and 

exsanguinated from the abdominal aorta. The blood was collected using heparin 

(Deltalab, Barcelona, Spain) as an anticoagulant. Plasma was obtained by 

centrifugation (1500g, 15 minutes, 4°C) and stored at −80°C until analysis. The 

different white adipose tissue depots (retroperitoneal (rWAT), mesenteric (mWAT) 

and periovaric (oWAT)), brown adipose tissue (BAT), liver and pancreas were rapidly 

removed and weighed. 

All the procedures were approved by the Experimental Animal Ethics Committee of 

the Universitat Rovira i Virgili (code: 0152S/4655/2015). 

2.4 Plasma metabolites and hormones 

Plasma b-hydroxybutyrate was analysed by colorimetry (BEN, Mainz, Alemania). 

Total ghrelin from plasma samples was analysed with an extraction-free total ghrelin 

enzyme immunoassay (Phoenix Pharmaceuticals, Burlingame, USA). 21. Plasma 

insulin and glucagon levels were analysed with rat ELISA kits (Mercodia, Sweeden). 

Plasma leptin levels were analysed with an ELISA kit (Millipore, Billerica, MA, USA). 

2.5 Tissue triglycerides and mRNA quantification 

Pancreatic triglycerides were assayed according to Castell et al.22 Total RNA was 

extracted using Trizol (Ambion, USA) and trichloromethane-ethanol (Panreac, 

Barcelona, Spain) and purified using an RNA extraction kit (Qiagen, Hilden, 

Germany). Complementary DNA was obtained using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Madrid, Spain), and the quantitative reverse 

transcriptase-polymerase chain reaction (qRT-PCR) amplification was performed 

using TaqMan Universal PCR Master Mix and the respective specific TaqMan probes 
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(Applied Biosystems, Madrid, Spain). The relative expression of each mRNA was 

calculated against the control group using the 2-ΔΔCt method, with cyclophilin A as 

reference. 

2.6 Statistical analysis 

The data are represented as the mean ± standard error of the mean (SEM). Statistical 

comparisons between groups were assessed by the T test. Analyses were performed 

with XLStat 2017.01 (Addinsoft, Spain). P-values <0.05 were considered statistically 

significant. 

3. Results 

3.1 Sub-chronic treatment with GSPE reduces food intake in rats on a palatable diet 

In previous studies we used a GSPE dose that has satiating properties in animals on 

a chow diet.7,23 Here, we reproduce this effect in animals with an enhanced appetite 

because they were offered a tasty diet. Figure 1a shows a 10% reduction in the total 

food intake of the healthy females while they were treated with GSPE. Table 1 shows 

that this reduction was due to the amount of hypercaloric emulsion ingested. 

Table 1. Characteristics of food intake during the short cafeteria study   

  Cafeteria GSPE pre-treated rats 

Initial treatment: 10 days, tasty diet 

Chow ingested (g)  8.34 ± 0.38 9.10 ± 0.53 

Hypercaloric emulsion ingested (g)  14.01 ± 0.82 10.54 ±1.07 * 

Carbohydrates (Kcal)  43.04 ± 0.78 39.15 ± 0.60* 

Lipids (Kcal)  6.84 ± 0.19 5.90 ± 0.21* 

Protein (Kcal)  7.07 ± 0.17 7.12 ± 0.22 

 

Final treatment: 35-day cafeteria diet 
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Carbohydrates (Kcal)  43 ± 4 38 ± 2.0 

Lipids (Kcal)  28 ± 1 28 ± 0.6 

Protein (Kcal)  8.4 ± 0.3 8.0 ± 0.2 

 

GSPE was administered for 10 days together with a tasty diet. After the GSPE treatment stopped, the 
rats were put on an 18-day chow diet and then a 35-day cafeteria diet. *: (P<0.05 vs C; T test) 

The effects on food intake disappeared when GSPE administration finished, as 

previously shown.7 Figure 1b shows that there was no difference between groups in 

the kilocalories (Kcal) ingested over the eighteen days after GSPE treatment, when 

animals received a standard chow diet. During this period, the rats obtained 68% of 

energy from CH, 12% from lipids and 20% from protein. When the animals were 

subsequently subjected to a short (35 days) cafeteria diet, the amount of Kcal 

ingested was not different between the groups either (figure 1c). During this last 

period of the study, animals obtained 54% ± 0.020 of energy from carbohydrates 

(CH) (mainly from the sucrose included in the milk), 36% ± 0.02 from lipids and 11 % 

± 0.003 from protein.  As mentioned, these percentages were not statistically 

different for GSPE treated animals (51% ± 0.01; 38% ± 0.009; 11% ± 0.001, from CH, 

lipids and protein, respectively).  
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Figure 1. Food intake in the short-
challenge group in different diet 
periods 

Food intake was measured 20 hours 
after the daily food had been replaced 
for each diet administered. The black 
column indicates animals not treated 
with GSPE. The white column indicates 
animals treated with 0.5 g/Kg BW of 
GSPE for the first 10 days of treatment. 
The results showed the mean data 
obtained from each measurement 
throughout the period. a) Mean food 
intake from the daily measurement for 
the first ten days of treatment with a 
tasty diet. b) Mean food intake from 
measurements taken during the 
eighteen days of treatment with a chow 
diet. c) Mean food intake from 
measurements during the thirty-five 
days with a cafeteria diet. Statistical 
differences identified by T-test are 
defined by * when p<0.05 between 
treatments 

 

3.2 A reduction in the expression of adipose LPL might explain the lower amount of 

adipose tissue in GSPE pre-treated rats 

We have shown that a 10-day pre-treatment with GSPE followed by a cafeteria diet 

led to a reduction in adiposity and RQ17  after 53 days. Table 2 shows that in the GSPE 

pre-treated group there is a statistically significant reduction of around 35% in the 

size of subcutaneous depots (estimated by the difference between total adipose 

contents measured by RMN and the weighed intraabdominal depots).  Although the 

mRNA levels of lipid metabolism genes did not help to explain it, there was a 

A 

B

C 
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statistically significant effect on the ratio between CPT1b vs FASn, suggesting a trend 

towards a higher oxidative profile in the subcutaneous depot. The next most 

abundant WAT depot is the periovaric WAT, which did not show any differences 

between the control and GSPE groups in either weight or gene expression. Instead, 

the retroperitoneal and mesenteric depots were of statistically different sizes due to 

the GSPE treatment (reductions of 23 and 35%, respectively). However, there were 

no significant changes in the gene expression profile, only a tendency to present 

lower FASn mRNA levels in mesenteric WAT (table 2). 

Table 2. GSPE effects on white adipose depots in the short cafeteria treatment 

 Cafeteria  GSPE pre-treated rats 

Subcutaneous WAT 

Size of depot (g) (estimated) 37.23 ± 3.78 24.05 ± 3.07* 

CPT1b 1.03 ± 0.09 1.09 ± 0.12 

LIPE 0.94 ± 0.09 0.70 ± 0.05# 

FASn 1.03 ± 0.09 0.74 ± 0.18 

DGAT2 0.98 ± 0.08 0.90 ± 0.08 

CPT1b/FASn 0.93 ± 0.06 1.40 ± 0.15* 

 

Periovaric WAT 

Size of depot (g)  17.25 ± 1.05 15.21 ± 0.64 

CPT1b  1.01 ± 0.07 1.17 ± 0.05 

 

Retroperitoneal WAT 

Size of depot (g) 12.74 ± 0.90 9.81 ± 0.63* 

CPT1b 1.15 ± 0.20 1.27 ± 0.29 

FASn 1.00 ± 0.08 0.95 ± 0.12 

DGAT2 1.00 ± 0.05 0.99 ± 0.09 

CPT1b/FASn 1.26 ± 0.24 1.56 ± 0.41 

 

Mesenteric WAT 
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Size of depot (g) 9.28 ± 0.98 5.96 ± 0.62* 

CPT1b 1.05 ± 0.08 0.97 ± 0.1 

FASn 0.95 ± 0.13 0.62 ± 0.1 # 

DGAT2 1.01 ± 0.09 0.78 ± 0.16 

CPT1b/FASn 1.22 ± 0.27 1.50 ± 0.18 

 

Adipose depots were obtained at the end of the treatment and each depot was weighed. RT-PCR was 
used for each gene (results are presented as arbitrary units versus cafeteria group). The T test was 
used to determine statistical differences highlighted as *p<0.05 vs cafeteria treatment; #p<0.1 vs 
cafeteria group. 

Brown adipose tissue was also analysed but there were no changes due to GSPE 

either in weight (0.91 ± 0.07 for the cafeteria group; 0.77 ± 0.04 for the GSPE-pre-

treated group) or in CPT1b gene expression (1.02 ± 0.0 for the cafeteria group; 1.15 

± 0.2 for the GSPE-pre-treated group) suggesting a lack of effect on oxidative activity 

in this tissue. 

Next, to identify the effects of GSPE on triglyceride entry into adipose tissue, we 

measured the gene expression of the genes related to this process: LPL, the enzyme 

that hydrolyses triglycerides into fatty acids and glycerol, before their uptake into 

the cell; CD36, involved in free fatty acid uptake into the cell; and AQP7, which 

facilitates the efflux of glycerol from the cell. Figure 2 shows that the amount of LPL 

in the mesenteric depot was highly reduced, as was the amount of Aquaporin 7. 

There were no statistically significant differences for the fatty acid transporter 

(CD36).   
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Figure 2. Effect of GSPE pre-treatment on mesenteric adipose gene expression in the short-

challenge group at the end of the study. Rats were treated with 0.5 g/Kg BW for the first 10 days, 

and then they were put on a chow diet for 18 days and a cafeteria diet for 35 days. The black column 

indicates animals not treated with GSPE. The white column indicates animals treated with 0.5 g/Kg 

BW of GSPE for the first 10 days of treatment. The mRNA extracted from mesenteric adipose was 

quantified by RT-PCR and the relative gene expression of LPL, CD36 and AQP7 was obtained by the 

DDCt method in each gene. The data are the mean ± SEM (n=7). Statistical differences identified by 

T-test are defined by * when p<0.05 between treatments. 

3.3 Lipid oxidation in liver and muscle is higher  

In our search for an explanation for the lower RQ observed in GSPE pre-treated 

rats,17 we analysed liver and muscle gene expressions. Figure 3a shows a significant 

increase in CPT1a and HMGCS2, suggesting the increased oxidation of fatty acids and 

the active synthesis of ketone bodies in the liver of GSPE-pre-treated animals. In 

addition, decreased FASn and DGAT 2 expression suggested decreased synthesis and 

esterification of fatty acids. 
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Plasma ketone bodies were not significantly modified (control: 4.14 ± 0.35; GSPE: 

3.89 ± 0.56; mM), so we measured the extent to which they could be oxidized by 

muscle.  Figure 3b shows a strong significant increase in OXCT1 due to GSPE 

treatment, concomitantly with a tendency to increased Cpt1b, which suggests that 

ketone bodies and fatty acids are the energy source in the muscle. 

 

Figure 3. Effect of GSPE pre-treatment on gene expression in the short-challenge group at the end 
of the study. Rats were treated with 0.5 g/Kg BW for the first 10 days, and then they were put on a 
chow diet for 18 days and a cafeteria diet for 35 days. The black column indicates animals not treated 
with GSPE. The white column indicates animals treated with 0.5 g/Kg BW of GSPE for the first 10 days 
of treatment. The mRNA extracted from liver was quantified by RT-PCR and the relative gene 
expression detailed gens was obtained by the DDCt method in each gene. Figure 3a resumes liver 
results. Figure 3b summarizes muscle gene expression. The data are the mean ± SEM (n=7). Statistical 
differences identified by T-test are defined by * when p<0.05 between treatments. 

 

A 
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3.4 Hormonal status of GSPE-treated rats after the short-cafeteria study 

We next analysed the effects of GSPE on key hormones for the regulation of 

energetic homeostasis 7 weeks after finishing the GSPE treatment.  

In pancreas, GSPE pre-treatment did not change insulin mRNA levels (1.16 ± 0.25 in 

controls; 0.66 ± 0.11 in the GSPE pre-treated group; A.U.) but showed a tendency 

towards a lower glucagon mRNA (1.16 ± 0.23; 0.60 ± 0.14; A. U.; p= 0.06). The amount 

of triglycerides in pancreas was not modified in GSPE pre-treated rats (29.66 ± 2.21 

in the control group and 27.10 ± 4.21 in the GSPE pre-treated group- µg TG/ mg 

tissue).  

GSPE pre-treatment statistically increased the plasma levels of total ghrelin (ng/mL; 

control: 4.09 ± 0.15; GSPE: 6.10 ± 0.42; p<0.05), although stomach mRNA levels of 

this hormone were not modified by GSPE pre-treatment (control: 1.04 ± 0.16; GSPE: 

1.05 ± 0.12). In addition, GSPE pre-treatment led to a trend towards lower leptinemia 

(ng/mL; control: 28.0 ± 4.04; GSPE: 18.02 ± 2.15; p=0.07). 

3.5 Duration of GSPE effects 

Finally, to estimate the duration of some of the effects described above, we analysed 

several parameters after a longer (17 weeks) cafeteria challenge. 

The gene expression profile in liver differed considerably from that found in the 

short-challenge study (table 3). GSPE pre-treatment led to an increase in FASn and 

DGAT2 and a decrease in CPT1a compared to the cafeteria treatment. This profile 

resembled that of the standard group of animals. 

The insulin/glucagon ratio of plasma levels in the GSPE pre-treated animals differed 

significantly from that of the cafeteria-fed animals, and produced a relationship 

closer to that of the standard-fed group (Chow: 0.86 ± 0.14*; cafeteria: 0.39 ± 0.10; 

GSPE: 0.95 ± 0.19*; *: p<0.05 vs cafeteria group).  
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Table 3. Effects of GSPE on liver seventeen weeks after treatment (long cafeteria study)  

 Chow diet Cafeteria diet GSPE pre-treated rats 

CPT1a (A.U.) 0.34 ± 0.12* 1.01 ± 0.08 0.35 ± 0.09* 

FASn (A.U.) 4.24 ± 0.80* 0.92 ± 0.18 2.69 ± 0.87# 

DGAT2 (A.U.) 1.23 ± 0.10 1.04 ± 0.12 1.36 ± 0.07* 

 

Liver samples were obtained at the end of the treatment. RT-PCR was used for each gene. The T test 

was used to determine statistical differences highlighted as *p<0.05 vs Cafeteria treatment; #:  p<0.1 

vs cafeteria group. 

4. Discussion 

Grape-seed derived proanthocyanidins have been extensively studied, but few 

studies use doses that are higher than can be provided by standard food ingestion 

but which may be interesting for a potential functional food. We showed that a dose 

of 0.5 g GSPE/kg bw  has satiating properties  in healthy rats7  and limits adipose 

accumulation induced by a cafeteria diet.17 We have also shown that GSPE maintains 

some of its antiobesogenic effects for a long period after GSPE administration 

finishes. In the present study, we analysed the mechanisms that explain this. We 

show that GSPE limits adipose fat pad accumulation until seven weeks after the last 

GSPE administration due to an inhibition in the adipose tissue LPL. An increase in 

fatty acid oxidation in liver and muscle compensates for the inability of fatty acids to 

accumulate in WAT.  

First, we show that GSPE also inhibits food intake if the diet is a tasty one (energy 

dense). During the ten-day GSPE treatment, animals reduced energy intake by 10% 

in comparison to the control group. Furthermore, these rats gained 30% less weight 

than the control (cafeteria) group.17 These results confirm that GSPE effects on food 

intake are additive to slimming effects because the lipid oxidation of GSPE is 
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activated.7 In our short-term experiment, after GSPE intake, animals changed to a 

chow diet, and showed no changes in body weight accrual.  Unexpectedly, when the 

rats were again fed a cafeteria diet (still without GSPE), the differences in body 

weight reappeared. These differences were around 40% between GSPE pre-treated 

animals and the control group, which correlate with the lower adiposity (79%),17 and 

there were no differences in either the quantity or quality of food intake. Our results, 

therefore, show that GSPE only has long-lasting anti-obesity effects under exposure 

to a high fat and/or a high sucrose diet.  

A key element in triglyceride food-derived storage is the adipose lipoprotein lipase 

(LPL). GSPE pre-treatment limited the amount of LPL mRNA in mesenteric adipose 

tissue, which suggested an impairment of triglyceride storage in this tissue. LPL has 

been shown to be a target for GSPE by  Del Bas and col.24 They showed that five hours 

after an acute dose of 250 mg GSPE/kg bw there was a reduction in adipose LPL 

mRNA. The results of the study by Yoon and col are more similar to ours.25 They 

showed that Allomyrina dichotoma larvae treatment had a considerable effect on 

LPL mRNA because it limits adipose tissue growth in mice fed a high-fat diet. 

However, adipose LPL limitation by itself is not sufficient to explain all GSPE effects. 

Weinstock and col, working with LPL  knockout mice that maintain LPL expression 

only in muscle, showed no changes in the various adipose depots or in total lipid 

content.26 This suggests that in our study, GSPE might also act on other targets in the 

body.  

If triglycerides cannot be stored in WAT after GSPE treatment, they might be derived 

to other organs. One of these organs is the liver, where GSPE pre-treatment directed 

fatty acids towards b-oxidation, as we found increased expression of CPT1a 

concomitantly with lower esterification (DGAT2). CPT1a was also found to be up-

regulated after two acute doses of 250 mg GSPE/kg bw27 in chow-fed rats but not 

after a subchronic treatment for 10 days with 25 mg/kg bw5 in 13-week cafeteria-fed 
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rats. Baselga and col28 found a similar trend to ours in FAS and CPT1a mRNA levels 

after three weeks with a dose of 25 mg/kg bw in rats that had previously been on a 

cafeteria diet for 10 weeks. The main difference between our results and Baselga’s 

is that that they found that GSPE decreased liver triglycerides but we did not. On the 

contrary, our results show  that triglycerides increased in the liver of the GSPE pre-

treated rats.29  However, when we analyse the long cafeteria challenge (17 weeks) 

the triglyceride content in the GSPE pre-treated group did not differ from content in 

the vehicle-treated group, which suggests a limited trend toward their accumulation 

in liver. Yang-Xue and col,30 working with partially KO mice for LPL, showed a strong  

LPL mRNA inhibition in the youngest animals that was partially reduced with aging. 

These animals also showed an increased deposition of triglycerides in the liver in 

adulthood due to the KO gene that reverted the aging period. We worked with 

different treatments, different species and different durations, but we noticed a 

changing relationship between GSPE pre-treated rats and the amount of liver 

triglycerides, which suggests that time affects the accrual of triglycerides in the liver.   

In the short-cafeteria study, GSPE pre-treated rats sent more triglycerides to the 

liver, oxidized fatty acids and produced ketone bodies, which were then removed by 

muscle.  In fact, del Bas and col also showed an increase in the mRNA of muscle LPL,24 

which suggests a derivation of fatty acids from adipose tissue to muscle that we 

cannot ignore. Similarly, fatty-acid uptake and oxidation were also found to be 

activated in muscle (higher mRNA CPT1b, LPL and CD36) in males on a  10-week 

cafeteria diet that subsequently received 21 days of 25 mg GSPE/kg BW.6 Besides, 

the dose of GSPE does not seem to have a critical effect on muscle, as Crescenti and 

col found an overexpression of genes related to fatty acid uptake (Fatp1 and CD36) 

and b-oxidation in the skeletal muscle of STD-GSPE offsprings.16  So the higher 

oxidation of fatty acids in liver and muscle explain the lower RQ found in the GSPE 

pre-treated rats, a common trait of several GSPE treatments.3 
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It is important to point out that the metabolic changes remain for some considerable 

time after GSPE treatment. There may be several explanations for this. On the one 

hand, GSPE is an extract composed of absorbable compounds and non-absorbable 

structures. Absorbable compounds can reach the various tissues assayed 31,32 and 

non-absorbable structures can interact with intestinal sensors33. Through their 

interaction with microbiota, they can produce new compounds that can reach 

different targets in the body34,35.  Thus, we cannot discount that there might be 

flavonoids remaining in the tissues. However, previous studies with a lower dose 

(100 mg GSPE/kg bw) administered for a longer time (12 weeks) suggested that 

flavonoids do not accumulate in liver or mesenteric adipose tissue.36  Another 

explanation might be that some epigenetic activity is taking place in the target 

tissues. GSPE modified liver miR-33a and miR-12237 at doses as low as 5 mg/kg BW 

for 3 weeks after a 15-week cafeteria diet. Similarly, Milenkovinc and col38 found 

changes in hepatic miRNA working with doses of proanthocyanidins closer to 5 

mg/kg BW for two weeks. GSPE activity on histone deacetylases was proved by 

Downing and col39, who showed that GSPE regulates liver HDAC and Pparα activities 

to modulate lipid catabolism and reduce serum triglycerides in vivo. Similarly, Bladé 

and col proved that PACs modulate hepatic class III HDACs, which are often called 

sirtuins (SIRT1-7), in a dose-dependent manner. This was associated with significant 

protection against hepatic triglyceride and cholesterol accumulation in healthy 

rats.10 All this evidence, in conjunction with our findings on the regulation of gene 

expression in liver 7 weeks after GSPE treatment, suggests an epigenetic modelling 

of hepatic functioning by GSPE. The duration of these effects after GSPE 

administration is not clear. Crescenti and col showed effects in offspring 24 weeks 

after GSPE had been administered to their mothers during pregnancy.40 We observe 

that seventeen weeks after GSPE treatment CTP1a, FASn and DGAT2 expression in 

the liver changed profile compared to 7 weeks after GSPE, which suggests that 

hepatic epigenetic regulation had come to an end. Instead, at this time point, the 
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changes in liver clearly agree with the insulin/glucagon ratio modulation by GSPE. In 

fact, we showed that GSPE (45 days with 25 mg GSPE per kg of body weight) 

modulates pancreatic miRNAs.41 miR-483, which we showed is down-regulated by 

GSPE treatment in rat pancreatic islets, has been related to the optimum equilibrium 

between b-cells and a-cells (that is, its upregulation leads to increased insulin 

production and decreased glucagon synthesis).42  Therefore, our results also point to 

epigenetic changes in pancreas, which will need to be addressed in future work.  

In conclusion, a short-term pre-treatment with GSPE repressed adipose LPL and 

activated fatty oxidation in the liver. In conjunction with a greater utilization of 

ketone bodies in muscle, this would help to prevent an increase in body weight 

caused by a long-term high-fat diet after the end of treatment.  
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Supplementary material 

 

Figure 1. Schematic diagram of the experimental design. (a) CAF-LC: rats receiving a GSPE preventive 

treatment 10 days before the 17-week cafeteria intervention; (b) CAF-SC: rats receiving a GSPE 

preventive treatment for 10 days together with a high fat/high sucrose diet followed by an 18-day 

chow diet (standard diet) and then the 35-day cafeteria diet; GSPE: grape seed proanthocyanidin 

extract  
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Abstract  

The enteroendocrine system coordinates gastrointestinal (GI) tract functionality and 

the whole organism. However, the scarcity of enteroendocrine cells and their 

scattered distribution make them difficult to study. Here, we glued segments of the 

GI wall of pigs to a silicon tube, ensuring that the apical and the basolateral sides 

were kept separate. The fact that there was less than 1% of 70-kDa fluorescein 

isothiocyanate (FITC)-dextran on the basolateral side proved that the gluing was 

efficient and the lactate dehydrogenase leakage lower than 0.1% proved that the 

tissue was viable. The intestinal barrier function was maintained as it is in segments 

mounted in Ussing chambers. Finally, apical treatments with a polyphenol-rich 

extract or an animal derived extract produced differential basolateral 

enterohormone secretions. In conclusion, we report an ex vivo system called “Ap-to-

Bas” for assaying vectorial transepithelial processes that makes it possible to work 

with several samples at the same time.  
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1. Introduction 

As sources of energy and the building blocks of essential constituents, food 

components play a key role in building and renewing the body. Also, through 

chemical and mechanical signalling in the gastrointestinal (GI) tract, they provide 

essential information for the homeostasis of the whole body. The enteroendocrine 

system is one of the largest endocrine organs in the body. It collects information at 

the entrance of the organism about what is being taken in and secretes signalling 

molecules in response. This information is sent to central control systems and used 

to coordinate homeostatic systems (for example, body energetics). The role, 

function and mechanisms of the enteroendocrine system are only partially 

understood [1,2]. One of the reasons for this lack of understanding is its distribution: 

it is the sum of lots of cells scattered throughout the intestine, with a low abundance 

of each type of enteroendocrine cell [3]. 

The most physiological and integrative approach to studying the enteroendocrine 

system works with the whole animal. Some authors administer the substances to be 

tested to specific areas of the GI and then obtain samples of blood from specific 

draining blood vessels and/or cut nerve communication with the central nervous 

system [4,5]. This approach requires a huge number of animals, which is 

problematical from an ethical point of view, and researchers who are highly skilled 

in surgical procedures. A different approach is to work in vitro with enteroendocrine 

cell lines. These are useful for highly controlled mechanistic studies, but the 

physiological response is sometimes quite different from the in vivo response. The 

most common enteroendocrine cell lines are STC-1 [6] and Glutag [7], which mimic 

L-cells. Additionally, ghrelin can be studied with attached MNG-3 (derived from mice 

gastric ghrelinoma [8]) and the unattached (SG-1 or PG-1 [9]) cell lines. One of the 

reasons for the different responses from animals and cell lines may be the lack of 

vector flux in the treatments. Most studies were carried out in cells attached to the 
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surface in a 2D situation, quite different from the polarised epithelial position in vivo. 

To overcome these culture limitations, 3D strategies such as gut-on-a-chip [10] have 

evolved to mimic intestinal fragments, although there are no reports on how 

effective they are in enteroendocrine studies. 

Ex-vivo approaches, such as everted sacs, perfused intestinal loops, Ussing 

chambers, intestinal punches, precision-cut intestinal slices (PCIS) and organoids 

[11], are in between the previous options, as they use natural intact tissue structures 

in different controlled approaches [12]. Ussing chambers are widely used to address 

the need for vectorial processes [13,14]. They locate the mucosal epithelium in an 

apical to basolateral position in a hermetic situation with concomitant control of 

barrier properties. The main drawback is that it is difficult to have enough samples 

to minimise variability, largely because each device only has a few chambers and is 

also usually very expensive [15–17]. To overcome these limitations some authors 

work with ex vivo tissue fragments from animal intestines [18,19]. These crude 

explants from animal intestines make it possible to produce numerous replicates, 

depending on the animal’s size. Although the treatment reaches all the exposed 

areas of the tissue, it does not mimic the effect of the apical stimulation that takes 

place in the in vivo gastrointestinal tract.  

We have developed a setup called Ap-to-Bas (AtB). It is an ex vivo system that 

combines the tissue that is readily available in the intestine of pigs, an animal with a 

metabolism that is similar to that of a human being [20], together with the 

vectoriality provided by a system that mimics a Ussing chambers approach. Our 

setup could be a useful tool to screen agents that modulate enteroendocrine 

secretions throughout the apical and/or basolateral epithelial intestinal areas. 
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2. Materials & Methods 

2.1 Chemicals 

Most of the chemicals used – formaldehyde, ethanol, xylol, dimethyl benzene, 

paraffin, D-mannitol, D-glucose, HEPES, CaCl2, MgCl2, KCl, NaCl, NaHCO3, NaH2PO4, 

70-kDa fluorescein isothiocyanate (FITC)-dextran, IBMX (I7018) – were purchased 

from Sigma-Aldrich (Madrid, Spain). The tissue adhesive used was 3M Vetbond (Cat 

1469SB, St. Paul, USA). Lucifer Yellow (LY-452 Da) was from BTIU 80016, Merck, 

(Darmstadt, Germany). The lactate dehydrogenase (LDH) kit was obtained from QCA 

(Amposta, Spain).  

The ELISA kits for total GLP-1 (GLP-1-T) (Cat. # EZGLPT1-36k), active GLP-1 (GLP-1-A) 

(Cat. # EGLP-35K) and acyl-ghrelin (cat. # EZRGRA-90K) were purchased from 

Millipore (Billerica, MA, USA). We obtained Elisa kits for CCK (Cat. No: EKE-069-04) 

and PYY (Cat. No: FEK-059-03) from Phoenix Pharmaceuticals (Burlingame, CA, USA). 

2.2 Collection of the tissue 

Intestinal tissues were obtained from female pigs (Sus scrofa domesticus, LANDRACE 

X LARGEWHITE) that were killed for meat production at a local slaughterhouse. 

Forty-eight pigs were used in the study, all from the same farm. For each assay the 

number of replicates has been indicated as “n”. Pigs were commercial breeds (18% 

protein; 5.7% lipid; 4.9% fibre; 6.7% ashes; 1.03% Lys; 0.3% Met; 0.78% Calcium; 0.73 

Phosphorus; 0.20% sodium, Coperal, Santa Coloma de Queralt, Spain) that weighed 

approximately 120 kg at slaughter and had been fasted for approximately 24 h prior 

to slaughter. Just 5 min after slaughter, the intestines were excised, and segments of 

various anatomical regions were stored in ice-cold oxygenated (95% O2,5%CO2) KRB 

buffer (Hepes 11.5 mM, CaCl2 2.6 mM, MgCl2 1.2 mM, KCl 5.5 mM, NaCl 138 mM, 

NaHCO3 4.2 mM, NaH2PO4 1.2 mM) with D-Manitol 10 mM. Duodenum (10 cm of 

intestine taken from the pylorus), distal Ileum (10 cm of intestine taken from the 
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ileocaecal junction) and proximal colon (10 cm of intestine taken downstream of the 

ileocaecal junction) were collected for the experiments. 

Tissues were transported in KRB buffer to the laboratory at 4 ºC and immediately 

used for ex vivo experiments. The time between excision and the beginning of the 

experiments was approximately 30 min.  

In the laboratory, the intestine was rinsed with cold KRB buffer (with D-Manitol 10 

mM) and mounted in a plastic tube to facilitate the removal of the outer muscle 

layers. Then, the intestinal tube was cut open longitudinally, and the mucosal tissue 

was placed apical side up. Circles of tissue with a diameter of 14 mm (approximately 

1.54 cm2) were punched out using a biopsy punch (Figure 1a). Twelve circles were 

taken from each segment from each animal. The intestinal segments were 

randomized, per region, in a beaker glass. The entire process took around 20 

minutes, and the whole time the sample was kept at a low temperature with cold 

buffer and an ice-cold bath. 

2.3 Building the Ap-to-Bas (AtB) system 

We cut a silicon tube with an internal diameter of 8 mm and an external diameter of 

12 mm into pieces 1.5 cm long with a perfectly flat surface. Tissue adhesive for 

animal use was lightly applied to the flat side of the tube, which was then gently 

pressed onto the apical side of the intestinal segment [21]. After 10 seconds, the 

intestine was placed inside a cell culture insert with no bottom membrane (Cat 

MCRP12H48, 12-well hanging inserts) (Figure 1b). The entire insert containing the 

tissue segment and the piece of tube was placed in one of the wells of a 12-well plate 

prefilled with 1 ml of KRB buffer (with D-Glucose 10 mM). Apically, the tube was filled 

with 400 μl of KRB buffer (with D-Mannitol 10 mM). The tissues were then pre-

incubated at 37 °C for 15 min in a humidified incubator (5% (v/v) CO2) (Figure 1c).  
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A 70-kDa fluorescein isothiocyanate (FITC)-dextran was used  to assess the efficiency 

of the gluing process. FITC-70 kDa was added apically (0.10 mg/mL), and after 60 

minutes of incubation, the apical and the basolateral media were collected, 

centrifuged to precipitate the debris and stored at -20 ºC for further analysis. The 

amount of fluorescent dye that crossed to the basolateral side was measured using 

a Perkin-Elmer LS- 30 fluorimeter (Beaconsfield, UK) at λexc 430 nm; λem 540 nm. 

 

Figure 1. Representative pictures describing the building of the AtB a) After the outer muscle layers 
had been removed, the intestinal tube was cut open longitudinally. Circles of tissue with a diameter 
of 14 mm (approximately 1.54 cm2) were punched out using a biopsy punch; b), the intestine was 
placed in a cell culture insert with no bottom membrane; c) Finally, the whole insert was placed in a 
well of a 12-well plate prefilled with 1 ml of KRB buffer (with D-Glucose 10 mM). Apically, the tube 
was filled with 400 μl of KRB buffer (with D-Mannitol 10 mM).  

2.4 Ussing chamber methodology 

Intestinal segments of 0.5 cm2 were mounted in Ussing chambers apparatus (DIPL.-

ING. K. MUSSLER-SCIENTIFIC INSTRUMENTS, Aachen, Germany). Up to 6 segments 

from each animal were used. Mucosal compartments were filled with 1.5 ml KRB 

buffer (with D-Mannitol 10 mM) and the serosal compartments were filled with KRB 

Figure 1a 

Figure 1b 
Figure 1c 
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buffer (with D-Glucose 10 mM) [22]. The chambers were kept at 37 °C and 

continuously oxygenated, 95% O2 /5% CO2, with a circular gas flow. Before the 

experiments were started, the tissues were equilibrated for 15 min in the chambers 

to achieve steady-state conditions in transepithelial potential differences.  

The transmucosal potential difference was continuously monitored under open 

circuit conditions and recorded using 0.8 mm Ag/AgCl Glas-Electrodes. Ohm’s law 

was used to calculate the basal transepithelial electrical resistance (TEER) from the 

voltage deflections induced by bipolar constant current pulses of 50 mA (every 60 s) 

with a duration of 200 ms and applied through platinum wires (Mussler Scientific 

Instruments, Aachen, Germany).  

After the 20-minute equilibration period, the mucosal side of the biopsies was 

subject to treatment.  

2.5 Paracellular transport (Lucifer Yellow assay) 

To evaluate the integrity of the intestinal barrier in AtB and Ussing chambers, a 

solution of Lucifer Yellow (LY-452 Da,) was used [23]. In this study, 0.4 ml of LY 100 

μM was added to the apical side and after 30, 60 and/or 90 minutes of treatment, 

the apical and the basolateral media were collected, centrifuged to precipitate the 

debris and stored at -20 ºC for further analysis. The amount of fluorescent dye that 

crossed to the basolateral side was measured using a Perkin-Elmer LS-30 fluorimeter 

(Beaconsfield, UK) at λexc 430 nm; λem 540 nm. 

2.6 Viability test 

Tissue viability was checked by measuring Lactate Dehydrogenase (LDH) with an LDH 

kit. Tissues were homogenized in ice-cold KRB buffer with a Tissue Lyser (Qiagen, 

Hilden, Germany) for 2 min at 50 oscillations/0.5 seg. After centrifugation, 

supernatant LDH was measured. Cell culture was centrifuged to eliminate debris, and 
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the supernatant was used for the LDH Assay. The amount of LDH activity found in 

the culture media was considered to indicate the health of the tissue sample 

throughout the incubation period. The percentage of LDH leakage vs total LDH was 

used as a viability test [23,16]. 

2.7 Study of the enteroendocrine function 

To test the enteroendocrine function, we measured the basolateral presence of 

enterohormones in basal (unstimulated) or apically stimulated conditions. IBMX  20 

µmol/L  was used as positive control [25], and natural extracts of animal and plant 

origin were used to test the differential ability to stimulate enterohormone secretion 

in the AtB system. Animal protein homogenate was obtained from pork meat and 

diluted to 10 mg protein/mL in KRB with D-glucose and protease inhibitors. Vegetal 

Grape Seed Proanthocyanidin extract (GSPE) was diluted to 100 mg/mL in the same 

buffer. Treatments were initiated by replacing the apical KRB buffer solution with 

400 μL of pre-warmed KRB buffer (37 °C) [25] containing the test compounds. KRB 

buffer with D-glucose was used as a control. After 30 minutes of the treatment, an 

aliquot of 200 μL was picked from the basolateral side of the AP-to-Bas system. 

Finally, 60 minutes (for ileum and colon) or 90 minutes (for duodenum) after the 

beginning of the experiment, the whole of the apical and basolateral sides was frozen 

and stored at −80 °C for further analysis of total and active GLP-1, PYY, CCK and acyl-

ghrelin. 

The enterohormones were assayed using commercial ELISA kits for total GLP-1 (GLP-

1-T) (Cat. # EZGLPT1-36k), active GLP-1 (GLP-1-A) (Cat. # EGLP-35K), acyl-ghrelin (cat. 

# EZRGRA-90K), CCK (Cat. No: EKE-069-04) and PYY (Cat. No: FEK-059-03) (following 

the manufacturer’s instructions. 
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2.8 Histology. 

Intestinal segments of the duodenum, ileum and colon samples were fixed in 4% 

diluted formaldehyde. After 24 hours of fixation, successive dehydration 

(Alcohol/Ethanol 70%, 96% and 100%; plus xylol/Dimethyl benzene) and paraffin 

infiltration-immersion took place at 52ºC (Thermo Scientific). Then, sections 2 μm 

thick (Microm HM 355S. Thermo Scientific) were obtained, placed on slides (JP 

Selecta Paraffin Bath) and subjected to automated haematoxylin-eosin staining 

(Varistain Gemini. Shandom. Thermo) [26].  

 

Figure 2 Haematoxilin-eosin staining of transversal thin sections from a pig's A) duodenum, B) ileum 
and C) colon mucosa (original magnification, ×6). The images show mucosa and submucosa of each 
section of intestine. The scale bar indicates 0.2 mm. 

2.9 Statistical analysis. 

Results were expressed as the mean ± standard error of the mean (SEM). Student’s 

T-test was used to compare the treatments with the control. The one-way ANOVA 

test was used for multiple comparisons followed by a T3-Dunnett post-hoc. P-values 

< 0.05 were considered to be statistically significant. The calculations were 

performed using XL-Stat 2017 software. 
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3. Results  

3.1 Structure, viability and barrier properties of the intestinal fragments in the AtB. 

Our setup, called Ap-to-Bas (AtB), enables vectorial transepithelial processes 

prepared from different areas of the intestinal tract ex vivo to be assayed. As Figure 

2 shows, the intestinal mucosa and submucosa were easily separated from the 

muscularis. 

The viability of the mucosa and submucosa was checked by measuring the amount 

of lactate dehydrogenase released to the basolateral side of the AtB setup. Table 1 

shows the amount of LDH activity of two representative segments (ileum and colon). 

At the beginning of incubation, it was similar for both tissues. After 30 minutes there 

was a significant increase in the amount of LDH, after which time it increased 

steadily. In both tissues, the ileum showed higher values of LDH basolaterally. 

However, the percentage of LDH in the basolateral side versus the total LDH (tissue 

plus basolateral) was lower than 0.1%. We also compared the LDH leakage of ileum 

samples mounted in the AtB to that of ex vivo free cultured ileum samples (of similar 

size). We found no differences (nKatals: 1.40 ± 0.17 (basolateral AtB); 1.38 ± 0.29 

(free)).  

Table 1. LDH leakage on the basolateral side of the AtB throughout the incubation 

  0 MINUTES 30 MINUTES 60 MINUTES 

 nKatal SEM nKatal SEM nKatal SEM 

ILEUM 0.46 A 0.04 1.40 B 0.17 1.92 B 0.18 

COLON 0.31 A 0.05 0.74 B 0.07 0.99 B 0.13 
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LDH in the basolateral media was measured at different time points. Values are the mean ± SEM. 
Statistical differences were calculated using one-way ANOVA followed by a T3-Dunnett post-hoc. 
Different superscripts mean statistically significant differences between time points. A p value < 0.05 
was considered to be statistically significant. 

For our study it is essential for us to be able to work on the apical-to-basolateral 

effect so, for this reason, the barrier function must be preserved. We initially used 

FITC-70 kDa to discount inadequate adhesion between biological tissue and the tube 

surface in the AtB. Figure 3a shows that the amount of FITC-70 was approximately 

0.1% in the ileum samples and 0.5% in the colon samples, which suggests optimal 

adhesion. Afterwards, we checked the barrier properties and compared them to 

those found when a chambers system was used. Transepithelial electrical resistance 

(TEER) measurements of various intestinal segments, with similar characteristics and 

A 

B 

C 

Figure 3. (a) Percentage of FITC dextran 70 kDa in 
the basolateral side in ileum and colon AtB. FICT 70 
kDa was added to the apical side of the AtB setup 
and, after 60 minutes of incubation at 37 ºC, the 
percentage of FITC on the basolateral side was 
measured. Values are the mean± SEM. (b) 
Transepithelial electrical resistance (TEER) of 
different intestinal segments during the incubation 
period. Barrier integrity measured as 
transepithelial electrical resistance (TEER) in Ω* 
cm2 at the start of incubation (black columns) and 
after 60 minutes of incubation at 37 ºC (white 
columns). Tissues were mounted in Ussing 
chambers and were incubated at 37 ºC for 60 
minutes. Values are means ± SEM. *P < 0.05 when 
the incubation start time of each tissue is 
compared with 60 minutes (T-Student). One-way 
anova P < 0.05 was used to compare differences 
between the start time of each tissue; differences 
were defined by different letters. (c) Percentage of 
Lucifer Yellow (LY) crossing the ileum wall on the 
basolateral sides of Ussing chambers and AtB.  LY 
was added to the apical side of both approaches 
and, after 60 minutes of incubation at 37 ºC, the 
percentage of LY on the basolateral side was 
measured. Values are the mean ± SEM. 
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assay conditions, but mounted in an Ussing chamber apparatus provides information 

on the integrity of the epithelia and their tightness.  

Figure 3b shows that the TEER varies between the intestinal segments and that it 

decreased slightly only in duodenal segments after a 60-minute incubation. Since 

TEER cannot be measured in the AtB device, we measured the paracellular transport 

of Lucifer Yellow from apical to basolateral compartments. Figure 3c shows that the 

amount of Lucifer yellow crossing the ileum mucosa and submucosa is approximately 

0.5% in both devices which had equal surface areas (Ussing chamber: 0.5 cm2 and 

AtB: 0.5024 cm2). The quantity of Lucifer Yellow in the duodenum mounted in AtB 

was 0.21% ± 0.06, and in the ascendant colon it was 1.62% ± 0.98.  

3.2 Enteroendocrine function. 

The relative abundance of enteroendocrine cells in the various intestinal segments 

depends on the species [27]. Here we show the differential basolateral secretion 

pattern obtained in response to different apical stimulatory signals. Figure 4a shows 

that non-stimulated secretion of PYY is higher in the duodenum than in the distal 

ileum. Moreover, figure 4b shows that the distal ileum produces more GLP-1 than 

the proximal colon. Since several enteroendocrine cells are located in the epithelium 

of the intestinal barrier, with the apical side in contact with the gastrointestinal duct, 

and the basolateral side draining the internal body fluids, apical stimulation by some 

agents should produce basolateral secretion of enterohormones (see figure 4c). 

Apically applied IBMX produces a statistically significant stimulation of basolateral 

secretion of active GLP-1 at the ileum and only a slight stimulation in colonic 

segments. 
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Figure 4. (a) Basolaterally secreted PYY under unstimulated conditions at different anatomical 

locations. Different Ap-to-Bas setups were mounted for each intestinal porcine duodenum (black 

column) and ileum (grey column) (n=8 for each section). After 60 minutes in the C- buffer, basolateral 

media were collected and hormone levels of peptide YY (PYY) were measured. Values are percentage 

± SEM. * p < 0.05 vs duodenum. (b) Ileum and colon relative basal secretion into basolateral media of 

GLP-1. Different Ap-to-Bas setups were mounted for each intestinal porcine ileum (black columns) 

and colon (squared columns) (n=5 for each section). After 60 minutes in the C-buffer, basolateral 

media were collected and hormone levels of total and active GLP-1, were measured. Values are 

percentage ± SEM. * p < 0.05 vs ileum. (c) Sensitivity of ileum and colon segments to apical IBMX 

stimulation of active-GLP-1 secretion. Different Ap-to-Bas setups were mounted for each intestinal 

porcine Ileum and colon (n=5 for each section).  IBMX (20 µM) was apically applied (white columns). 

Black columns refer to unstimulated controls. At the end of the treatment (60 minutes), basolateral 

media were collected and active GLP-1 was measured. Values are percentage ± SEM. * p < 0.05 

compared to negative (vehicle treated) control (C-) 

To determine whether our setup could be used to screen enteroendocrine 

secretagogues, we subjected our AtB setup to two treatments with potential 

A 

B 

C 
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bioactivity for stimulating enterohormone secretion. Figure 5a shows that an animal 

extract increased CCK and active ghrelin secretion at the duodenum and inhibited 

PYY secretion. The same extract did not lead to any change in the secretion of active 

GLP-1 in the ileum or in the colon. A plant extract, which has been proved to be a 

satiating agent in rats [28], produced a different profile of secretions. It increased 

colonic active GLP-1 secretion statistically. It showed a tendency to increase CCK and 

PYY in the duodenum and had no effect on active GLP-1 secretion in the ileum 

segment (Figure 5b).  

 

Figure 5. (a) Basolateral enteroendocrine secretions after apical stimulation with homogenates of 
animal origin in AtB setups. Different Ap-to-Bas setups were mounted for each intestinal porcine 
duodenum (black columns), ileum (grey column) and colon (striped column) (n=8 for each section). 
Animal extracts (10 mg protein/ mL) were apically applied. At the end of the treatment (duodenum: 
90 min; others: 60 min) basolateral media were collected and hormone levels of cholecystokinin 
(CCK), peptide YY (PYY), active ghrelin and active glucagon(-like) peptide 1 (GLP-1) were measured. 
Values are percentage ± SEM. * p < 0.05 compared to negative (vehicle treated) control (C-) (b) 
Basolateral enteroendocrine secretions after apical stimulation with plant extract in AtB setups. 
Different Ap-to-Bas setups were mounted on each intestinal porcine duodenum (black columns), 
ileum (grey column) and colon (striped column) (n=8 replicates). Plant extracts (100 mg extract/ mL) 

A 

B 
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were applied apically. At the end of the treatment, basolateral media were removed and hormone 
levels of cholecystokinin (CCK), peptide YY (PYY) and active glucagon such as peptide 1 (GLP-1) were 
measured. Values are percentage ± SEM. * p < 0.05, # p<0.1 compared to the negative control (C-). 

 

4. Discussion 

The study of enteroendocrine processes requires a sufficient amount of tissue to 

host enough endocrine cells to enable hormone secretions to be measured. These 

processes also need to be studied in different intestinal segments, since the 

enteroendocrine cell populations are distributed differently throughout the 

gastrointestinal tract [29]. Another key point is to preserve apical to basolateral 

separation, which is usually found in vivo. What is more, many signals cannot cross 

the intestinal barrier [25]. Ussing chambers are the gold standard procedure for this 

purpose, but they are expensive and the number of chambers is limited [14]. 

Our Ap-to-Bas setup is an ex vivo system derived from the pig’s intestinal wall, which 

enables vectorial transepithelial processes to be assayed. This system has three main 

advantages over the gold standard Ussing chambers method. It makes it possible to 

work with more samples at the same time while maintaining transepithelial activity 

affordably; it makes it possible to work with an animal model that is more similar to 

human beings [20], and the size of the mucosal sample guarantees that the 

enterohormones will be detected. 

Ex vivo systems have limitations, such as the short-time viability of the tissue. We 

have shown that when healthy intestines are mounted in the AtB system there is 

enough time for the changes in enterohormone secretions to be measured. 

Westerhout and col showed that LDH leakage of the intracellular enzyme into the 

basolateral media from pig jejunal tissue segments mounted in their setup was 3.5 ± 

0.8% [30]. The percentage of leakage we found was lower than this, and the amount 
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of LDH in the basolateral media increased as it did in free cultured equivalent 

segments, which suggests that the tissue was not damaged any further by being 

mounted in the AtB setup.  

Our system maintained the vectoriality required for processes that occur across a 

wall. As we were working with glued surfaces, we discounted any problems in the 

adhesion of the tissue by apically applying fluorescein (FITC)-labelled dextran (70 

kDa), an agent that is unable to cross the intestinal barrier [31] and is typically used 

to measure gastrointestinal transit [32]. The absence of fluorescence from the 

basolateral side of the AtB setup showed that the apical side had been optically 

insulated from the basolateral side. Pierre et al. [21] also used this same approach to 

develop an ex vivo intestinal segment culture (EVISC) model for studying the ex vivo 

effects of parenteral nutrition on the susceptibility of the ileum to invasion by extra-

intestinal pathogenic Escherichia coli (ExPEC). 

Evidence of the quality of the intestinal barrier was provided by various 

complementary approaches. Lucifer Yellow unidirectional permeable paracellular 

marker [13] showed that ileum segments were similarly permeable regardless of 

whether they were mounted in AtB or the Ussing chamber. And the permeability of 

the ileum and colon was similar. This similarity was also shown by Rozenhal working 

with Ussing chambers and an area of exposure that was quite similar to our own 

(0.46 cm2) [13]. The percentage of LY leakage was also in the range that 

corresponded to an intact intestinal barrier (0.5%) according to  Westerhout, who 

was working with porcine jejunal tissue and paracellular marker fluorescein 

isothiocyanate–dextran (FD4: MW 4 kDa) [30]. In fact, our values were slightly higher 

than those obtained by Westerhout et al, but our compound was smaller (LY: MW 

0.54 kDa) than theirs. They also worked with different intestinal segments. 

Lennernäs [33] showed that MW correlated closely with the permeability 

coefficients of hydrophilic drugs and that high permeability drugs (BCS class I−II) 
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showed a slightly higher permeability in the colon than the jejunum and ileum when 

passive diffusion is the dominant transport mechanism.  

To reinforce the integrity of the intestinal barrier and its standard state we compared 

the TEER measures of various intestinal fragments. As we were unable to measure 

TEER in our AtB setup, we worked with the same samples in the Ussing chamber 

apparatus, which we have also used to measure human colonic samples for other 

unpublished studies (Ω* cm2: 39.5 ± 2.2). Although the TEER measurements were 

highly dependent on the assay condition and the best approach was to compare 

them in the same study, the range of units obtained did not significantly differ from 

those obtained by Westerhout et al. [30], who found a TEER of 58 ± 7 Ω cm2, which 

remained stable for 120 min when they used their device to work with porcine 

jejunal tissue. Also working with Ussing chambers, Gleeson et al. [34] obtained a 

TEER of 37 ± 9 Ω cm2 (n=40) in jejunal mucosae, which was within the acceptable 

range [30]. Jejunal TEER gradually decreased over 120 min to 70–80% of the initial 

value. The lowest TEER values we found were in colon segments, the result of 

different barrier properties between intestinal segments. Permeability to small 

molecules and electrolytes was lower in the duodenum, higher in the ileum and 

highly increased in the ascendant colon. Hamilton et al. [35] and Moyano et al. [36] 

have shown that permeability to FITC KD4 (and also various hydrophilic drugs [33]) 

follows a similar pattern in rat samples..  

Our main reason for designing this setup was to be able to test the effects of 

compounds on enterohormone secretion in a situation that more closely resembles 

the physiological situation (i. e. several molecules in the gastrointestinal tube can 

only stimulate enterohormone secretion by interaction with the apical side of these 

cells). Very few studies have used ex-vivo approaches to determine vectorial 

enterohormone secretion [14,24]. Most studies use ex-vivo incubation of the 

intestine segment with treatment in a multiwell plate [36, 37]. Pig intestine makes it 
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possible to obtain samples from various intestinal sections in sizes that are big 

enough to produce a concentration of hormones secreted on the basolateral side 

that can be measured by standard ELISA kits. Holst et al. described the 

enteroendocrine hormone abundance of the various intestinal segments in different 

animal species [27]. The basolateral secretion of PYY in duodenum and GLP-1 in 

ileum was higher in our study than in their description. We should point out that we 

are working with basolateral secretions, although most of the available data has 

been published on the amount of hormone in each intestinal segment, not secreted 

on the basolateral side [27,39,40]. Ripken and Col studied the GLP-1 and PYY released 

by pig intestinal sections, but they did not compare them [16]. Similarly, Agersnap 

and col [41] assayed the relative presence of CCK throughout the small intestine, and 

showed that it was more abundant in the first 20 centimetres after the pyloric 

sphincter, and Vitari and col [42] proved the presence of ghrelin-producing cells in 

the duodenum of pigs. When we assayed an extract rich in protein, we found a 

stimulation in CCK. Similarly, Sufian et al. compared this effect between protein-

derived extracts from different animals [43]. And, in fact, protein is a very well 

defined secretagogue for CCK [44], [45]. We found that this protein-rich extract had 

the specific effect of reducing PYY and stimulating acyl-ghrelin production, although 

analysing this effect is beyond the scope of this manuscript.  

To determine the possible physiological effects of this screening tool , we checked 

the profile produced by an extract (GSPE [28]), which has been shown to have 

satiating properties. The main components of this extract are flavanols and phenolic 

acids. GSPE significantly increased GLP-1 secretion, as previously shown in vivo [28] 

and ex-vivo, by intestine tissue culture [46]. PYY, which significantly increased in our 

previous ex-vivo approach [46], tended to increase too. In contrast, our different 

systems gave different results for CCK. There may be several reasons for these 
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differences: for example, different responses between rat and pig, or the method for 

stimulating cells (apically in the AtB vs around all the cells in an ex-vivo system). 

In conclusion, our AtB setup is a tool for screening new agents that can act apically 

on enteroendocrine cells in a physiological approach. This tool could be useful for 

identifying new agents that can have an effect on the gut-brain axis. 
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  General Discussion 

In an initial analysis of the best grape seed proanthocyanidin (GSPE) treatment for 

combating obesity and its associated pathologies, a GSPE dose of 500 mg/kg body 

weight (BW) administered to prevent or correct cafeteria diet-induced damage led 

to a reduction in respiratory quotients (RQs). Moreover, administering GSPE from 

the beginning of the experiment, as in preventive (PRE-CAF) and simultaneous-

intermittent treatments (SIT-CAF), led to a reduction in adipose accrual and BW in 

the first weeks of the cafeteria (CAF) diet and/or at the end of it [1]. Modulating the 

enteroendocrine system has also been shown to be useful for maintaining energy 

balance [2]. We have previously reported that GSPE compounds can interact with 

the luminal surface of the gastrointestinal (GI) tract, thereby modifying 

enteroendocrine cells functions [3,4]. However, the molecular mechanisms that 

explain it, and the role of GSPE in the enteroendocrine system under a CAF diet, 

remain unclear. We therefore studied whether the beneficial effects of GSPE on 

cafeteria diet-induced obesity were partly mediated by modulating the 

enteroendocrine system and found that the CAF diet altered the function of the 

enteroendocrine cells (EECs). We also found that, depending on the period of 

administration, GSPE-modulated enterohormone profiles helped to reduce BW and, 

in some cases, maintained their effects on food intake (FI). 

The effects of GSPE on the enteroendocrine system and its involvement in the 

modulation of BW and FI can be observed from multivariate linear regressions (MLR) 

derived from the plasma levels of the enterohormones and main pancreatic 

hormones (insulin, glucagon and amylin) analysed (see figure 1). In these analyses, 

every treatment showed a different set of enterohormones that were related to 

changes in food intake and BW. Insulin and glucagon are two pancreatic hormones 

that participate actively in the modulation of BW gain [5,6]. Our study shows that 
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both hormones explain changes in BW in the standard (STD) and CAF groups but that 

these changes disappear when GSPE has recently been administered. Moreover, CAF 

differs from ST in the appearance of ghrelin, which also significantly helps to explain 

the increase in BW in these animals though BW does not increase in animals recently 

treated with GSPE. Although ghrelin is well known as an orexigenic enterohormone, 

its physiological role and action mechanisms under an obesogenic state are unclear 

and still under investigation [7,8]. A certain ghrelin resistance  has been observed  in 

obese subjects [8]. One of the characteristics of this resistance is the inability to 

reduce the circulating levels of ghrelin in response to a meal, which may lead to 

greater food consumption and increased body weight in obese people [9]. When 

observing animals recently treated with GSPE, we see that ghrelin loses its 

involvement in BW explanation. Since it was impossible to detect ghrelin secretions 

through the Ussing Chamber method, we quantified the content of acylated ghrelin 

inside the stomach and found that GSPE induced a stomach retention of ghrelin. This 

GSPE-induced stomach retention may be a mechanism for confronting ghrelin 

resistance and limiting its prolonged plasma levels. In fact, our research group has 

recently reported that sub-chronic treatment with GSPE reduces both ghrelin 

production in the stomach and ghrelin secretion in the intestine of healthy rats [4].  

Interestingly, in the MLR all GSPE treatments show that various enterohormones 

participate in BW regulation (figure 1). The exception is the corrective treatment 

(CORR500-CAF), where none of the hormones assayed explained the BW of these 

animals. This is probably related to the lack of differences with respect to the CAF 

group in the final BW. Nevertheless, a reduction in FI is reflected in the MLR, which 

indicate that GLP-1, insulin and amylin participate in FI regulation. The roles of GLP-

1 in increasing insulin release in response to meal initiation [10,11] and of insulin in 

reducing food intake [12] suggest that this could be one of the mechanisms by which 

these hormones act on food intake. Other authors (e.g. Ibars et al. [13]) have 
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observed the same effects on FI administering GSPE as a corrective treatment after 

a long-term CAF diet.  The role of amylin in obesity is not fully understood. However, 

the MLR shows that the inverse relationship between amylin and FI induced by CAF 

is reversed by GSPE in the CORR500-CAF group and that, although the metabolic 

implications of amylin are still under study, it counteracts the effect of the cafeteria 

diet and returns it to a similar profile to that of the STD group. 

As we mentioned earlier, the CORR500-CAF is the only GSPE group in which the role 

of enterohormones in BW is not observed. However, it is also the only group in which 

they have a role in FI. In fact, Serrano et al. showed that acutely-administered GSPE 

is able to reduce FI in animals with an adjusted FI control but that it has a greater 

effect when administered to animals whose FI control is disrupted, as occurs with a 

high-palatable diet [14] or, in the case of CORR500-CAF animals, with a cafeteria diet. 

However, it has been observed that when the treatment is extended over a long 

period flavanols, they tend to exert their anti-obesogenic effect by decreasing BW 

rather than by affecting FI (reviewed in [15]). The long-term overconsumption of 

palatable foods is reported to activate the reward system and be addictive, which in 

the end, leads to an overriding sensation of satiety [16]. After long-time exposure, it 

appears that the organism adapts to flavanols and that the effects associated with a 

high-fat palatable diet prevail over the beneficial effects the flavanols may induce. In 

the SIT-CAF group, we decided to administer treatment intermittently to avoid this 

adaptation to GSPE. However, we were unable to prevent it since the results of the 

recurring measurements of FI showed a periodic loss in the effectiveness of GSPE to 

inhibit FI. Nevertheless, in agreement with the studies reviewed by Pinent et al. [15], 

our long-term treatment with GSPE did reduce BW in comparison with the CAF 

group. Indeed, the MLR suggests a role for CCK and GLP-1 in this modulation (figure 

1). With regard to CCK secretions in the duodenum, it is unclear whether the effects 

of GSPE on CCK help to meliorate energy homeostasis. The MLR reveals the 

UNIVERSITAT ROVIRA I VIRGILI 
BIOACTIVITY OF FLAVANOLS ON THE MUCOSA OF THE INTESTINAL WALL: ENTEROENDOCRINE EFFECTS FOR PREVENTING 
DIET-INDUCED OBESITY AND ASSOCIATED PATHOLOGIES 
Iris Ginés Mir 
 



214 

involvement of plasmatic CCK in reducing body weight in the SIT-CAF group. GSPE 

affected neither the expression nor the plasma levels of the hormone, though ex vivo 

studies showed that it reduced the basolateral secretion in comparison with the CAF 

group and actually returned it to the level of standard-fed control. Our research 

group has previously demonstrated a role for GSPE in inhibiting CCK secretion both 

in ex vivo explants [3] and in vivo [17]. It is unlikely that the reduction in secretion in 

the present study is related to acute effects since the final GSPE dose was 

administered 36 hours before sacrifice and the tissues were thoroughly washed. 

Moreover, during the ex vivo assay, the tissues were not subjected to any stimulus 

for inducing CCK secretion. Casanova et al. tested the main monomeric and dimeric 

structures of GSPE in STC-1 cells and their inhibition on CCK secretion and suggested 

that these molecules, which are well absorbed in the upper intestine, may be 

involved in this inhibition [3].  

GL-1 is the other hormone seen to play a role in BW modulation. However, as with 

ghrelin, it was impossible to quantify ex vivo secretions from different intestine 

segments due to lack of detection. Although the Ussing chamber method is one of 

the most widely used methods for these studies, we were unable to measure ghrelin 

and GLP-1 secretion despite our efforts to optimize the system. Ultimately, this left 

us with only the gene expression and plasma levels. Since our research group focuses 

on understanding the role of the enteroendocrine system, we have been working 

with organoids (unpublished results) and crude explants [3,4], though these do not 

enable us to study vectorial enteroendocrine secretions. At first, we tried to 

reproduce the intestinal layer in vitro by developing a tri-culture but was 

unsuccessful because we were unable to obtain a proper percentage of the three cell 

lines and adequate basolateral enteroendocrine secretions. To overcome these 

limitations, we developed a setup named Ap-to-Bas (AtB) to study enterohormone 

secretions in a situation that more closely resembles the physiological situation, 
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differentiating between the apical and basolateral sides of the intestinal segments 

to enable the screening of new agents that can act apically on enteroendocrine cells 

in a physiological approach. With this setup we were able to quantify acyl-ghrelin, 

CCK, PYY, active GLP-1 and total GLP-1 from pig duodenum, ileum and colon. We 

were also able to maintain the intestinal barrier and the viability of the tissue in the 

same conditions as the Ussing Chambers throughout the time needed to obtain a 

suitable enteroendocrine secretion.  

Returning to the physiological effects of GSPE, the other hormone that explains 

changes in the body weight of SIT-CAF animals is GLP-1. It has previously been shown 

that GSPE acutely modulates GLP-1 gene expression depending on the feeding state 

[3] and that chronic GSPE treatment with a lower (25 mg/kg bw) dose in rats fed a 

cafeteria diet increases colonic GLP-1 gene expression [18]. In our study, depending 

on the treatment, the 500 mg/kg BW dosage of GSPE was seen to regulate the GLP-

1 gene expression in the ileum (as pre-treatment PRE-CAF did), in the colon (as 

CORR500-CAF treatment did), or in both tissues (as SIT-CAF treatment did). With 

regard to the effects observed in the SIT-CAF group, although GLP-1 mRNA levels 

were increased in both ileum and colon, they were considerably higher in the colon. 

Moreover, the colonic gene expression profile of the SIT-CAF group was similar to 

that of the CORR500-CAF group, where both GLP-1 and PYY gene expressions were 

increased. The GSPE molecules that reach the colon are known to be metabolised by 

the microbiota, thus creating new metabolites [19,20]. This presents the possibility 

that the GSPE molecules that reach the colon and increase their gene expression are 

the same for both hormones. Indeed, these metabolites are reported to act as 

bioactive compounds in colonic cells, thus stimulating GLP-1 and PYY secretions ex 

vivo [3]. In the ileum, however, since GLP-1 was unchanged in the CORR500-CAF 

group, we assumed that it may be regulated by other pathways and/or molecules. 

These effects did not seem to be attributed to an increase in enteroendocrine cell 
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differentiation, either for GLP-1 or PYY, due to discrepancies between the PYY, GLP-

1 and ChGA gene expressions. Moreover, the lack of effects on PYY secretion on ileal 

explants neither supported an increase in enteroendocrine cells. Administering 

yacon root flour to STZ-induced diabetic rats for 90 days led to a significant increase 

in caecal GLP-1 content that was accompanied by important tissue enlargement [21]. 

The differences in intestinal length observed in the SIT-CAF group (from the ratio 

between the small intestine and the colon), together with caecum enlargement, 

confer a greater colonic surface. This may help to explain the higher enterohormone 

expression in the colon than in the ileum. Moreover, as we mentioned earlier, the 

metabolites that stimulate GLP-1 gene expression in the colon appear to  be digested 

metabolites that have been metabolized by caecal microbiota [3]. Colonic 

enlargement would therefore favour a greater metabolization of these components. 

Although it is described as a BW-reducing hormone [22], GLP-1 shows a positive 

relationship towards BW in the MLR of the SIT-CAF animals (figure 1). Our research 

group has previously found that a dose of 1000 mg/kg BW of GSPE administered as 

a sub-chronic treatment in healthy rats induced hypothalamic desensitization to 

GLP-1, though this did not occur when the dose was the same as that used in this 

study (500mg/kg bw) [23]. Although our dosage of GSPE was lower, it was 

administered for a longer period. This may eventually have induced the same GSPE-

hypothalamic desensitization to GLP-1, causing it to lose some of its functionality. 

This hypothesis may help to explain the positive association found between GLP-1 

and BW in the SIT-CAF group. 

When we analysed the enduring effects of GSPE, we found that 17 weeks after the 

last dose of GSPE, the PRE-CAF morphometric parameters resembled those of CAF 

and that BW was one of the parameters that statistically did no differ between the 

PRE-CAF and the CAF group. Moreover, the MLR of the PRE-CAF treatment shows 

the involvement of the same hormones that appear in the CAF treatment, where 
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ghrelin and glucagon play the same role in explaining BW (figure 1). This shows that 

the PRE-CAF group follows a similar profile with regard to BW modulation. However, 

insulin changes its association, thereby differentiating one group from the other. In 

this case, higher levels of insulin are associated with a decrease in BW. This suggests 

that GSPE may affect certain metabolic pathways that still attempt to control the 

gain in BW associated with the CAF diet. Indeed, the correlation analysis between 

the methylation of the GLP-1 promoter and the plasma insulin, BW and RQ (all 

measured after 17 weeks of CAF diet) suggests that GLP-1 participates in the 

regulation of these physiologic parameters, where the increase in energy 

expenditure may also be an indicator of BW loss [24]. Moreover, as we mentioned 

earlier, one of the main incretin effects of GLP-1 is to increase glucose-dependent 

insulin release. In this case, the MLR suggest that insulin contributes to a decrease in 

BW, possibly due to its ability to reach the brain and trigger catabolic pathways that 

increase energy expenditure and reduce body weight. 

As we stated earlier, GSPE induced different effects on GLP-1 gene expression 

depending on the treatment administered. In the PRE-CAF group, we found that 17 

weeks after the final dose of GSPE, the GLP-1 mRNA levels were increased in the 

ileum but not in the colon. To determine the mechanisms behind the enduring 

effects of GSPE, we checked whether an epigenetic involvement could help to 

explain these changes, and observed that the pre-treatment with GSPE was able to 

downregulate the DNA methylation at the gene promoter of GLP-1 in the ileum. This 

persisted several weeks after GSPE treatment, which is consistent with the increased 

gene expression observed in the PRE-CAF and SIT-CAF groups. GSPE therefore 

increased GLP-1 gene expression via mechanisms that presented long-lasting effects. 

Since flavonoids have been shown to modulate DNA methylation by attenuating the 

effect of (DNA methyltransferases) DNMTs, thus leading to a reduction in global DNA 

methylation [25–28], GSPE may exert its effects by interfering at some point with 
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DNMTs activity via, for example, direct enzymatic inhibition, indirect enzymatic 

inhibition, a reduction in DNMTs expression and translation, an interaction with 

methyl-CpG binding domain proteins, etc. [25]. We also checked the involvement of 

other epigenetic mechanisms, such as histone modifications, to determine whether 

they were involved in the differences observed between the ileum and the colon in 

the SIT-CAF and CORR500-CAF groups. However, since the few changes observed 

were not linked to the results of gene expression, we were unable to report their 

involvement. Nevertheless, we do not discard the participation of other epigenetic 

mechanisms in the modulation of GLP-1 gene expression in the ileum or colon. 

Moreover, since the rapid replacement of the intestinal epithelium [29,30] 

complicates the presence of long-term changes, and since epigenetic status is 

reported to remain almost unchanged upon intestinal stem cell differentiation 

[31,32], we postulate that these epigenetic changes occur in the stems cells located 

in the crypts. These may later be differentiated into the enteroendocrine L-cells, 

reach the brush border of the villus, and exert their activity, though further studies 

should be carried out to confirm this hypothesis. 

As well as the long-lasting effects on GLP-1 gene expression, we also observed  a 

clear long-term anti-obesity effect [1]. Indeed, we detected a limitation in adipose 

accrual that was partly attributed to inhibition of the gene expression of the white 

adipose tissue LPL. GSPE was seen to make up for the limitation in adipose storage 

by increasing FA oxidation in the liver and muscle. After 17 weeks of cafeteria diet, 

this compensatory mechanism was no longer working and the liver acquired a lipid-

storing role because the increase in DGAT-2 favoured the production of TAG and the 

decrease in CPT-1 limited the entrance of lipids to the mitochondria to be oxidised. 

These data show that the lipolytic effect of GSPE has a limited duration and that what 

remain after 17 weeks are the cafeteria effects. Since, long-term GSPE intake has 

been shown not to trigger the accumulation of flavanol tissue, indicating a clearance 
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of products at each daily dosage [33], the long lasting-effects due to GSPE remainders 

are discarded. Another explanation for the 7-week duration of the GSPE effect may 

therefore be an epigenetic involvement. It has been reported that proanthocyanidins 

can modify hepatic miRNAs [34,35] and HDACs in vivo [36,37]. These effects have 

been associated with a significant protection against hepatic triglyceride and 

cholesterol accumulation in healthy rats [37]. Moreover, isolated pancreatic islets 

are also reported to be a target for epigenetic changes induced by GSPE. Castell-Auví 

et al. observed that a daily dose of 25 mg GSPE/kg BW for 45 days significantly altered 

the expression of some miRNAs, a result that is related to ion transport and response 

to glucose [38]. 

Considering all the information from the various studies conducted during this thesis, 

the treatment that most favourably modulates the enteroendocrine system appears 

to be SIT-CAF since it retains the long-lasting epigenetic effects on GLP-1 gene 

expression in the ileum (which are also induced in the PRE-CAF group) while also 

modulating its gene expression in the colon (like the CORR500-CAF group). 

Moreover, it downregulates the enzyme responsible for ghrelin activation and 

induces and acts against possible ghrelin resistance through retention in the 

stomach. The simultaneous-intermittent treatment is also shown to be the most 

effective in limiting BW gain, associating some effects on the enteroendocrine 

system with the BW modulation. However, the possible resistance of FI and GLP-1 to 

the treatment should be taken into account. Given that GSPE exerts its beneficial 

effects on BW several weeks after the final dose, a simultaneous-intermittent 

treatment with a prolonged resting period between administrations should be tested 

to prevent accommodation to treatment and loss of effectiveness. For example, the 

effect of administering GSPE one week every 2-3 weeks rather than every other week 

could be tested. Also, in relation to future extrapolation to humans, although the use 

of natural compounds as a dietary strategy against obesity has been widely studied 
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(reviewed in [2]), most chronic studies on overweight and obese subjects have 

demonstrated the effectiveness of these compounds against BW gain but not against 

FI. Some studies, however, have reported modulations of enteroendocrine 

secretions, a situation that resembles our SIT-CAF treatment. Further studies are 

needed to assess the effectiveness on FI of long-term treatments with food 

components. In addition, the toxicity of GSPE has been assessed in rats with both a 

higher concentration and the same concentration ours. Neither concentration 

proved toxic to rats when administered for a long period. However, further studies 

of the effects of long-term treatment on metabolism should be conducted in order 

to discard negative metabolic effects on the organism. 
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Figure 1. Diagram of modelled relationships between hormones and body weight or food intake, 
derived from multivariate linear regressions of the cafeteria and standard treatments, and the 
grape seed proanthocyanidin extract (GSPE) treatments: simultaneous-intermittent treatment, 
preventive treatment and a corrective treatment of 500 mg/bw GSPE. Solid lines represent a positive 
contribution to the dependent variable, while dashed lines represent a negative contribution. 
Numbers correspond to beta coefficient.  
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  Conclusions 
1. A 500 mg GSPE/kg BW dose modulates the enteroendocrine system of 

animals subjected to a 17-week cafeteria diet differently depending on the 

period of administration: 

a. A 10-day preventive treatment upregulates GLP-1 gene expression in 

the ileum. 

b. A 17-week simultaneous-intermittent treatment downregulates 

ghrelin acylation gene expression and increases ghrelin accumulation 

in the stomach, decreases CCK secretion in the duodenum, and 

increases GLP-1 and PYY gene expression in the ileum and the colon. 

c. A 15-day corrective treatment increases ghrelin accumulation in the 

stomach, decreases PYY gene expression in the ileum, and increases 

GLP-1 and PYY gene expression in the colon. 

2. A 10-day preventive treatment with 500 mg GSPE/kg BW induces 

hypomethylation of the GLP-1 promoter that helps to explain the up-

regulation of GLP-1 gene expression in the ileum after 17 weeks of cafeteria 

diet. 

3. Seven weeks after the final dose, 500 mg/kg BW of GSPE maintains a fat 

redistribution in the peripheric tissues that prevents its accumulation in the 

adipose tissue and is compensated by increased lipid oxidation in the liver 

and the skeletal muscle. 

4. A novel device named Ap-to-Bas, which enables separation of the apical side 

from the basolateral side of an intestinal segment, allows more accurate ex 

vivo quantification of enterohormone secretions in the duodenum, the ileum 

and the colon.  
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Obesity is one of the most prevalent diseases affecting the global population. It 
entails metabolic disruptions that affect the whole organism, including the correct 
functionality of the gastrointestinal (GI) tract. Proanthocyanidins have already 
proved to be effective at stimulating the enteroendocrine system in healthy 
conditions, but their effects under an obesogenic challenge have still to be 
determined. For this reason, this thesis was designed to study the effects of a grape 
seed proanthocyanidin extract (GSPE) on the enteroendocrine system in rats fed 
with a long-term cafeteria diet.  

Our results showed that a preventive treatment, a synchronic intermittent treatment 
and a corrective treatment were all capable of modulating the enteroendocrine 
system differently. Furthermore, each GSPE treatment showed different 
enteroendocrine profiles associated with changes in body weight and/or food intake. 
However, we had certain difficulties regarding the quantification of enterohormone 
secretions, which led us to develop a new ex vivo methodology that stimulated 
different segments of the GI tract and quantified their enterohormone secretion 
response, thus keeping their vectoriality. 

We also found that a 10-day pre-treatment with GSPE induced a long-term 
upregulation of GLP-1 gene expression in the ileum that was partly mediated by the 
hypomethylation of its GLP-1 promoter. Moreover, these effects were maintained 
when GSPE was administered every other week during the seventeen weeks of 
cafeteria diet. In addition, since this preventive GSPE treatment presented a 
decreased respiratory quotient and tended to reduce the body weight gain, we 
evaluated if there were also long-lasting GSPE effects on lipid management in the 
peripheric tissues. The results showed a limitation on adipose storage and an 
increase in lipid oxidation in the liver and skeletal muscle that lasted seven weeks 
after the last GSPE dose. 

To sum up, this thesis revealed that grape seed proanthocyanidins are capable of 
modulating the enteroendocrine system and improving the energetic state altered 
by a cafeteria diet, thus demonstrating that they are good agents for treating 
metabolic alterations induced by obesity. 
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