
Departament de Ciències de la Computació

Ph.D. in Computing

Synthesis of variability-tolerant circuits

with adaptive clocking

Alberto Moreno Vega

Advisor: Jordi Cortadella Fortuny

Barcelona, January 2019

Abstract

Improvements in circuit manufacturing have allowed, along the years, increasingly com-

plex designs. This has been enabled by the miniaturization that circuit components

have undergone. But, in recent years, this scaling has shown decreasing benefits as we

approach fundamental limits. Furthermore, the decrease in size is nowadays producing

an increase in variability: unpredictable differences and changes in the behavior of com-

ponents. Historically, this has been addressed by establishing guardband margins at the

design stage. Nonetheless, as variability grows, the amount of pessimism introduced by

these margins is taking an ever-increasing cost on performance and power consumption.

In recent years, several approaches have been proposed to lower the impact of vari-

ability and reduce margins. One such technique is the substitution of a classical PLL

clock by a Ring Oscillator Clock. The design of the Ring Oscillator Clock is done in

such a way that its variability is highly correlated to that of the circuit. One of the

contributions of this thesis is in the automatic design of such circuits. In particular, we

propose a novel method to design digital delay lines with variability-tracking properties.

Those designs are also suitable for other purposes, such as bundled-data circuits or per-

formance monitors. The advantage of the proposed technique is based on the exclusive

use of cells from a standard cell library, which lowers the design cost and complexity.

The other focus of this thesis is on state encoding for asynchronous controllers. One

of the main properties of asynchronous circuits is their ability to, implicitly, work under

variable conditions. In the near future, this advantage might increase the relevance of

this class of circuits. One of the hardest stages for the synthesis of these circuits is

the state encoding. This thesis presents a SAT-based algorithm for solving the state

encoding at the state level. It is shown, by means of a comprehensive benchmark suite,

that results obtained by this technique improve significantly compared to results from

similar approaches.

Nonetheless, the main limitation of techniques at the state level is the state explosion

problem, to which the sequential modeling of concurrency is often subject to. The last

contribution of this thesis is a method to process asynchronous circuits in order to allow

the use of state-based techniques for large instances. In particular, the process is divided

into three stages: projection, signal insertion and re-composition. In the projection step,

iii

iv Abstract

the behavior of the controller is simplified until the signal insertion can be performed by

state-based techniques. Afterwards, the re-composition generalizes the insertion of the

signal into the original controller. Experimental results show that this process enables

the resolution of large controllers, in the order of 106 states, by state-based techniques.

At the same time, only a minor impact in solution quality is observed, preserving one

of the main advantages for state-based approaches.

Acknowledgements

The journey that led to this thesis has not been easy, but it would have been impos-

sible without the help of many people.

First and foremost I want to thank my advisor, Prof. Jordi Cortadella. He is the

one who convinced me to follow this path and he has put a lot of effort into helping me

getting here. His insight and expertise aided me in more occasions than I can count and

his guidance and mentorship has helped me choose when faced with hard decisions.

I would also like to thank those who worked with me, specially in the early days.

For the friendly support and help, Pedro López and Marc Lupon. For our discussions in

asynchronous circuits Prof. Victor Khomenko and Danil Sokolov. I’m specially grateful

to Antoni Roca, for bearing with me and providing great help while I was navigating

the maze of commands, options and parameters of the EDA tools.

But this thesis would have been much harder without all the colleagues and people

around me. I want to thank my friend Alex Vidal, who started this journey at the

same time as me and helped me in many occasions, sometimes with technical insights

and sometimes with jokes and light-hearted conversation. Thanks to Javier De San

Pedro, for all the tips and tricks on C++ and other languages, as well as all the inter-

esting conversations. Special tanks to all the people from the office S108 of Edifici Ω -

Daniel Alonso, Jorge Muñoz, Josep Llúıs Berral, Alberto Gutiérrez, Evelia Lizárraga,

Eva Martinez, Carles Creus, Albert Vilamala, Alessandra Tosi, M. Àngels Cerveró, Lu-

cas Machado, Tuomas Hakoniemi, Josep Sanchez. Meeting them was truly an experience

and I count many of them among the most interesting people I have had the pleasure of

meeting.

I cannot forget about the support provided by friends and family. They helped

me stay positive and were always there when I just needed a break. I cannot fathom

reaching this point without them. Finally, my most heartfelt thanks goes to Andreea

Dragomir, for her love and for being there for me even in the most stressful moments.

But also for helping me improve my English, in our conversations and, sometimes, even

in my writings. Thanks!

This work has been partially supported by funds from the Spanish Ministry for Economy and

Competitiveness and the European Union (FEDER funds) under grant TIN2017-86727-C2-1-R,

the Generalitat de Catalunya (2017 SGR 786 and FI-DGR 2015).

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Contributions of this thesis . 3

1.2 Structure of this document . 5

2 Variability and Ring Oscillator Clocks 7

2.1 Variability . 7

2.2 Static Timing Analysis . 8

2.3 Dealing with variability . 12

2.4 Adaptive Clocks . 14

2.5 Ring Oscillator Clocks . 15

2.6 Margins and Derating Factors in Ring Oscillator Clocks 18

2.7 Conclusions . 19

3 Synthesis of Digital Delay lines 21

3.1 Introduction . 21

3.2 Nomenclature and overview . 25

3.3 Algorithm for gate and wire selection . 28

3.4 Cell placement . 32

3.5 Configurable Delay Lines . 36

3.6 Experimental Results . 38

3.7 Conclusions . 40

4 State encoding of asynchronous controllers 43

4.1 Introduction . 43

4.2 State encoding for logic synthesis . 44

4.3 Overview of the method . 48

4.4 Background . 50

4.5 SAT formula for the signal insertion problem 56

4.6 Pseudo-Boolean formula for optimization 59

4.7 SAT-based optimization algorithm . 63

4.8 Comparison with previous art . 64

4.9 Experimental results . 65

4.10 Conclusions . 69

vii

viii Contents

5 State encoding for large asynchronous controllers 71

5.1 Introduction . 71

5.2 Overview . 74

5.3 ALTS transformations . 75

5.4 CSC resolution algorithm . 78

5.5 Exploiting concurrency . 84

5.6 Rip-off and re-encode . 86

5.7 Experimental results . 87

5.8 Conclusions . 96

6 Conclusions 97

Bibliography 101

Chapter 1

Introduction

Computers have gone through a spectacular progress since their creation in the mid-20th

century. This rate of progress has, arguably, allowed most of the technological changes

that our society has undergone in the last decades.

It is impossible to talk about the evolution of computer technology without talking

about Moore’s law. In 1965, Gordon E. Moore presented what would become one of

the most famous papers in computer engineering [1]. Based on observations of the

achievements made by his company and others in the previous years, he estimated that

the number of components per chip would double every year. This was later revised to

2 years and became known as Moore’s law. This prediction proved to be accurate and

became a fundamental part in the progress of computer technology.

The impact of increasing the number of components per chip, most notably transis-

tors, is multiple. The larger amount of transistors enabled more complex designs with

increased performance and capabilities. As the transistors became smaller, switching

speed increased and voltage thresholds decreased. In particular, voltage reduction was

an important feature that limited power consumption as designs became larger and

faster. Possibly even more important, the cost per unit of area on the die remained

largely unchanged between generations. In practice, this meant that the price per tran-

sistor was effectively halving every 2 years.

Figure 1.1 shows the evolution of performance for processors over the last 40 years. As

can be seen, performance has followed an exponential growth since the early processors.

Nonetheless, increases in performance started slowing down in the early 2000’s and

virtually stopped in the last few years. The main reason for this slowdown is attributed

to the end of Moore’s law.

It was known from the beginning that transistor miniaturization could not go on for-

ever. The ultimate limit for Moore’s Law is physics. Eventually, quantum effects on elec-

trons dominate the behavior of transistors at the nanometer scale. But progress slowed

1

2 Chapter 1. Introduction

1996

100

1000

10,000

100,000

10

1
1978 1980 1982 1984 1986 1988 1990 1992 1994 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

25%/year

52%/year

23%/year

12%/year

3.5%/year

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

Figure 1.1: Growth in processor performance. Source [2].

down long before approaching those limits. When the nodes became small enough, sev-

eral issues, which had had a very limited impact in the past, became problems that

dominated important design decisions. Heat dissipation set a hard limit into the power

budget. Transistors were increasingly harder to scale, eventually becoming more expen-

sive than previous generations [3].

One of the biggest challenges over the last years has been variability. As transistors

get smaller, the fabrication process becomes more unreliable and the differences with

respect to the expected characteristics of components are larger and more frequent.

Changes in the environment, like temperature, have an impact in the switching activity of

transistors. As voltage thresholds become smaller, sensitivity to voltage supply increases.

Unfortunately, voltage noise does not scale at the same pace, which causes supply to

be comparatively more unreliable. This effectively prevents newer generations from

reducing voltage, establishing power dissipation as a major limitation.

All of this has motivated a large number of research and engineering papers that try

to deal with variability. One of such techniques, the substitution of classical PLL clocks

by a Ring Oscillator Clock, is a focus of this thesis and is introduced in Chapter 2.

An in-depth description and technical details about its implementation can be found in

Chapter 3.

The other main focus of this thesis is on asynchronous circuit synthesis. Historically,

most computer technology has been implemented using circuits that are synchronized

with a global clock signal (synchronous circuits). On the other hand, an asynchronous

circuit forgoes the use of a global synchronization signal in favor of localized signals

between individual modules.

Chapter 1. Introduction 3

This class of circuits is not new, yet it presents several advantages with respect to

the synchronous counterparts [4]. They typically present lower energy profiles, since

the absence of long clock signal lines avoids an unnecessary energy cost. While similar

results may be achieved by synchronous circuits, these require the use of complex clock

gating techniques. Additionally, asynchronous circuits have much better electromagnetic

emission spectrum. The presence of a clock signal in synchronous circuits induces spikes

of activity pulses at every clock period, which causes significant correlation between

signal edges. On the other hand, asynchronous circuits have a much flatter energy

spectrum due to irregular signal patterns.

Besides energy, this class of circuits also have advantages in raw performance. One

of the challenges for synchronous circuits is in choosing a clock period. For perfor-

mance reasons, this period should be as short as possible. Yet, at the same time, the

period needs to be large enough to accommodate all the components under any circum-

stances. This means that the clock cycle needs to be slower than the slowest component

performing the longest operation under the worst variability conditions. On the other

hand, the presence of local synchronization signals for asynchronous circuits allows ev-

ery component to always work at its nominal speed. This is especially important in

the presence of variability, where unpredictable changes in environmental conditions

and voltage requires the presence of conservative margins for classical designs. An im-

portant characteristic for asynchronous circuits is that they are implicitly resistant to

dynamic variations and always perform correctly, adapting the speed of its components

to the current conditions.

1.1 Contributions of this thesis

This thesis addresses the design of circuits resistant to variability. The complexity of

current systems makes automatic synthesis an essential part of the design process. This

work presents novel techniques for automated synthesis in two fields. For every case,

the problems are specified as combinatorial optimization problems and abstracted as

graphs. A common characteristic between all the problems is the large search space and

the need to implement efficient algorithms. The proposed techniques are shown to have

advantages with respect to existing approaches or improve results over them.

The thesis is divided into two main contributions:

• Synthesis of digital delay lines and ring oscillators (Chapters 2 and 3).

• State encoding for asynchronous controllers (Chapters 4 and 5).

Now follows a summary for each of the contributions, as well as a list of publications

related to them.

4 Chapter 1. Introduction

1.1.1 Synthesis of digital delay lines and ring oscillators

Delay lines allow to dynamically estimate the time needed to perform a computation.

This becomes more important in the presence of variability, as it allows to sample, at any

moment, an accurate approximation for the delay under current conditions. Chapter 3

presents a novel technique for synthesis of digital delay lines. Digital delay lines are

designed by using exclusively standard cells from a cell library. On the other hand, more

classical designs often make use of custom cells and especially tuned transistors. The

advantage of the approach introduced lays in the reduced cost, as well as a simplification

in the design and analysis, that the use of standard cells carries. This Chapter is based

on the publication:

[5] A. Moreno and J. Cortadella, ”Synthesis of all-digital delay lines,” in

23rd IEEE International Symposium on Asynchronous Circuits and Systems

(ASYNC), 2017, pp. 75-82

Delay lines can be used for a number of situations and approaches, but in this thesis

we propose to build Ring Oscillator clocks. Using Ring Oscillators as clock substitutes

allows to instantly react to variability changes, dynamically adapting the clock period

to ensure correct operation without sacrificing performance. Chapter 2 describes the

use of Ring Oscillator clocks and compares it against similar techniques. This is based

on the publications [6, 7].

1.1.2 State encoding for asynchronous controllers

Asynchronous circuits have a completely different design and synthesis methodology to

the more common synchronous circuits. An important stage for the synthesis of these

circuits is state encoding. This step needs to be performed while maintaining certain

notions of equivalence and correctness, such as speed-independence, hazard-freeness or

branching bisimilarity. At the same time, different solutions may drastically yield dif-

ferent implementations, each with its own merits and issues.

State encoding is performed differently depending on the underlying model used

to describe the behavior of the circuits. In this thesis, we focus on the most generic

form for the input/output model by solving this problem for state-based models. These

models explicitly represent all the interleaving of concurrent events. This allows find-

ing solutions at a much finer grain than other, more concise, models. Thanks to this,

it is often possible to find solutions where other techniques might fail. Additionally,

increasing the search space can potentially lead to better solutions. Chapter 4 shows

a SAT-based approach to solve this problem. It also serves as an example of the ad-

vantages of state-based techniques, as well as its disadvantages. The latter corresponds

Chapter 1. Introduction 5

mainly to the potentially large execution time, due to the enormous size that these rep-

resentations might have in some instances. This is because of the state explosion, typical

for sequential representations of concurrency.

In order to deal with large models, Chapter 5 introduces a technique to simplify

controllers which allows state-based techniques to solve them efficiently. This removes

the main disadvantage for these techniques while keeping most of their benefits. Addi-

tionally, it is also shown how, in certain situations, it is possible to find solutions faster

than techniques working on more succinct models, such as Petri nets. The chapters 4

and 5 are based on the publications:

[8] A. Moreno and J. Cortadella, ”State encoding of asynchronous controllers

using pseudo-Boolean optimization,” in 24rd IEEE International Symposium

on Asynchronous Circuits and Systems (ASYNC), 2018, pp. 9-16

[9] A. Moreno and J. Cortadella, ”State-based encoding of large asynchronous

controllers,” IEEE Access, vol. 6, pp. 61503-61518, 2018

1.2 Structure of this document

This document is organized into 6 chapters. The current chapter acts as an introduction

to the thesis.

Chapters 2 and 3 address the first subject of the thesis. In particular, Chapter 2

introduces some background on variability as well as related work on techniques to

reduce its impact. Additionally, an introduction to Ring Oscillator clocks is included.

The design of Delay Lines is discussed in depth in Chapter 3.

The second topic of this thesis, state encoding for asynchronous controllers, is dis-

cussed in chapters 4 and 5. Chapter 4 discusses a SAT-based technique for encoding,

valid for small controllers. On the other hand, Chapter 5 introduces a novel technique

that allows state-based techniques, such as the one from Chapter 4, to solve state en-

coding for large controllers.

Finally, Chapter 6 draws some conclusions about the work presented in this thesis.

Chapter 2

Variability and Ring Oscillator

Clocks

This chapter sets the background for variability and discusses why it is such an important

concept. There is a large number of techniques developed to reduce its impact and some

of the more relevant ones are presented in the following sections. A special focus is

given to two techniques: Adaptive clocks and Ring Oscillator Clocks. The latter is one

of the central topics of this thesis and shares multiple similarities with the former. As

such, a comparison between them is also included. The chapter concludes with a brief

description of how derating factors affect the design of Ring Oscillator Clocks.

2.1 Variability

Variability refers to the variations in the properties between different devices or between

the same device at different times. These differences appear because of uncertainties in

multiple aspects, such as the manufacturing process or environmental changes. There

are numerous taxonomies to classify sources of variability. Arguably the most important

ones for design are locality (local or global) and variation speed (static or dynamic).

The classification by locality considers two components of variability, global and

local. The global component of variability is the one that affects uniformly all the

devices. These are differences with respect to the nominal values that every device suffers

in a similar magnitude. On the other hand, local variability refers to the component of

variability that has a different impact for each device. Nonetheless, some elements of

local variability, such as voltage or temperature, often exhibit spatial correlation. This

causes spatially close devices to suffer similar variability impact.

Variation speed refers to the pace at which variations occur, most notably static

and dynamic variability. Static variability, as its name implies, is not altered with

time. This type is often referred to as Process (P) variability, as it depends on the

7

8 Chapter 2. Variability and Ring Oscillator Clocks

fabrication process. For example, because of imperfections in the manufacturing process,

a specific transistor might exhibit a faster (or slower) switching speed than the expected

magnitude. Nonetheless, this disparity with respect to nominal values remains constant

throughout time. On the other hand, dynamic variability changes over time. These are

changes that depend on the environment of the components. Dynamic variability can

be further classified according to the source and speed of change. It is usually divided

into three categories:

• Aging (A): It refers to the degradation of devices over time, as they become older.

As such, it is the slowest changing source for dynamic variability.

• Temperature (T): The temperature that the device operates on is an important

source of variation. While it does not change as slowly as aging, it is still considered

slow (in the order of milliseconds).

• Voltage (V): Variations in voltage supply have an important impact on the behav-

ior of devices. Voltage variations can happen slowly, in the range of milliseconds,

or very fast, in the order of nanoseconds.

Voltage is the most complex source of variability and presents a diversity of compo-

nents. On the one hand, it has DC components produced by static IR drops that can

be either global (off-chip resistance) or local (on-chip power delivery network). On the

other hand, voltage variability also has AC components determined by the activity of

the system.

2.2 Static Timing Analysis

Static Timing Analysis (STA) is a technique used to verify timing in digital designs.

The term static indicates that the analysis is done statically, without any dependence

on the values propagated through the circuit. Furthermore, this analysis covers every

possible path and scenario of a design at the same time, conforming an exhaustive and

complete method of verification.

Another timing analysis technique is simulation. In this case, a stimulus is applied

to input signals in order to verify the behavior. In contrast to STA, simulation requires

a large number of test vectors to stimulate inputs, making this kind of analysis only as

exhaustive as the number of paths exercised. In practice, this makes simulation suitable

only for a limited number of paths or scenarios.

STA also has its own limitations, including false paths, reset sequences, X-handling,

etc. [10] which prevents it from completely replacing simulation. Yet, current designs

can have billions of gates, making the use of STA necessary for exhaustive verification.

Chapter 2. Variability and Ring Oscillator Clocks 9

D Q

CLK
Data may change Stable data

TholdTsetup

Data may change

D

CLK

Flip-Flop

Figure 2.1: Hold and setup requirements for a flip-flop.

Given a design with an input clock and sequential elements, the purpose of STA

is to guarantee that the design can operate properly. In particular, ensure that data

propagates correctly across different sequential elements at the rated clock period. For

this, a set of constraints are checked, where probably the most common ones are setup

and hold constraints. The former checks whether data can arrive at a sequential element

within the clock period. The latter ensures that the data is held for at least the minimum

necessary time required to capture it.

These constraints must take into account requirements that sequential elements, such

as flip-flops, have in order to properly work. Figure 2.1 shows a flip-flop, along with

waveforms representing the input signals through time. Input D represents the data

that the flip-flop captures while signal CLK represents the clock signal. When a rising

edge of CLK is detected, the value of D is propagated to the output Q. But, in order to

properly work, the flip-flop requires that the data in D stabilizes at least a Tsetup time

before the clock signal arrives. Similarly, a reliable capture of the data requires D to

remain stable for a Thold time after the clock signal rises.

STA must verify setup and hold constraints over all the possible paths between

sequential elements. Consider Figure 2.2, which represents a small portion of a digital

circuit design. The grayed rectangles represent flip-flops, which encase a combinational

circuit. The flip-flops are connected to a clock tree, whose root is a clock generator

shown as a box containing a Phase-Locked Loop (PLL). Two paths are highlighted in

this figure: the launch path and the capture path. The launch path starts at the clock

generator, traverses the clock tree and the launch flip-flop, goes through one of the paths

in the combinational logic and ends at the capture flip-flop. The capture path starts at

the clock generator and ends at the capture flip-flop. Setup and hold constraints check

the timing relationship between these two competing paths.

For the setup constraint, STA ensures that a signal in the launch path arrives to the

capturing flip-flop before the capture path has propagated the clock signal at the next

cycle. This must include, additionally, the setup time of the flip-flop to ensure that data

is captured. Mathematically, this can be expressed as:

TLCK + TLFF + TCP + Tsetup < CapturePath + Period (2.1)

10 Chapter 2. Variability and Ring Oscillator Clocks

clock
tree

clock
generator

circuit

capture path
launch path

PLL

Launch FF Caputre FF

Figure 2.2: Paths involved in setup and hold constraints.

where TLCK is the delay of the clock tree of the launch flip-flop, TLFF is the delay of the

launch flip-flop, Tsetup is the setup time of the capture flip-flop and Period is the time

between cycles of the clock signal (its period). TCP represents the delay of the longest

path in the combinational logic, commonly referred to as critical path. This last delay

is important to guarantee that the setup constraint is honored regardless of what path

is exercised in the combinational logic.

The hold constraint checks whether the clock signal propagated through the capture

path arrives in time to capture the data from the launch path that started on the previous

cycle. In particular, the clock signal must arrive before the data in the input of the

capture flip-flop has been overwritten by the launch path of the current cycle, including

a margin to account for the flip-flop hold time. This is mathematically expressed as:

TLCK + TLFF + TMIN > TCCK + Thold (2.2)

where TCCK and Thold are the delay of the clock tree and the hold time for the capture

flip-flop respectively. The delay TMIN represents the delay of the combinational logic.

In this case, TMIN corresponds to the delay of the shortest path in the combinational

logic.

Of both constraints, setup is the only one that is concerned with the clock period

and, because of that, it will be the focus of this thesis. Henceforth, we will refer to the

setup constraint when we talk about STA, unless otherwise stated. Additionally, for

simplicity in the discussions that follow, we introduce the variable LaunchPath, which

includes all the delays of the launch path assuming the critical path in the combinational

logic and adding the Tsetup time of the capture flip-flop. Similarly, we will refer to the

Chapter 2. Variability and Ring Oscillator Clocks 11

delay of the clock tree for the capture flip-flop as CapturePath. In particular:

LaunchPath = TLCK + TLFF + TCP + Tsetup (2.3)

Capture = TCCK (2.4)

We can thus rewrite the setup constraint as:

LaunchPath < CapturePath + Period (2.5)

The previous inequality must also take into account variability. Given that timing

analysis cannot be performed under all possible operating conditions, the conventional

approach for modern STA is to analyze the circuit in a discrete set of corners. Each

corner defines the values for a set of parameters that model static (P) and dynamic vari-

ability (V and T). Henceforth, this parametrized analysis of variability will be referred

to as PVT.

From the locality perspective, given a subset of global PVT operating conditions,

the components of the circuit also suffer local (on-chip) variations. To cover on-chip

variability (OCV for short), corner-based sign-off applies some derating factors to the

timing paths of the circuit that scale the delays with regard to other competing paths

in the timing constraints.

Finally, clock jitter and any pessimism derived from the inaccuracies and uncertain-

ties of STA must also be modeled. Typically, they are modeled as a fixed margin in the

timing constraints. In summary, in modern STA, variability is modeled using:

• library corners to model global variability.

• derating factors to model on-chip variability.

• clock uncertainty to model clock jitter and other inaccuracies.

Timing constraints must hold for all paths and corners under consideration. Given

a library corner, the derating factors and clock uncertainty must be incorporated in the

setup constraint:

δL · LaunchPath < δC · CapturePath + Period− Jitter (2.6)

where δL ≥ 1 and δC ≤ 1 are the derating factors applied to the launch and capture

paths, respectively. Clock jitter must be conservatively subtracted from the period.

A simplification of the model consists of making the derating factors symmetric and

reducing the analysis to some ε such that:

δL = 1 + ε, δC = 1− ε (2.7)

12 Chapter 2. Variability and Ring Oscillator Clocks

Worst Typical Best
0

1

2

3

4

D
e
la
y
 (
n
s)

AES delay per corner

Figure 2.3: Critical path delay per PVT corner in AES circuit, implemented in 65nm.

The accuracy on how these derating factors model on-chip variability is crucial.

Foundries usually provide conservative values, but more aggressive values can be used

if designers have additional knowledge about the behavior and operating conditions of

the circuit.

2.3 Dealing with variability

The presence of variability is the main driver for the use of derating factors and margins.

This is often the only way to guarantee a valid behavior for a specific circuit. Unfortu-

nately, these margins can have a severe impact on performance and power consumption.

Furthermore, as process nodes become smaller, the effects of variability are more notice-

able and larger margins need to be used. This effect is so prevalent that it might negate

most of the benefits of process scaling.

In order to ensure correct operation, these margins need to account for the worst-

case situations, even if they are extremely unlikely. This produces overly pessimistic

designs, specified to operate in often unrealistic circumstances. As an example, consider

Figure 2.3 which shows the delay of the critical path for each PVT corner for an AES

(Advanced Encryption Standard) circuit implemented in a 65nm process. A variability-

aware design requires the clock period to be larger than the worst-case corner, after

applying derating factors and considering clock uncertainty. In the figure, any clock

period smaller than 3.5ns will fail in the worst-case corner. Yet for normal operation,

represented by the corner labeled typical, this period is extremely conservative. A clock

with a period of just 2ns is enough to accommodate the majority of corners and, in

particular, the most common ones. This evidences how conservative designs need to be

in order to guarantee valid operation.

Chapter 2. Variability and Ring Oscillator Clocks 13

Figure 2.4: Process variations for dies in 130nm [11]. Each bubble represents a single
die.

This pessimism presents multiple opportunities to decrease margins and thus improve

performance or reduce power. Multiple techniques have been proposed in order to exploit

these opportunities. Now follows a non-exhaustive list of techniques that aim to reduce

pessimism. These are classified depending on whether they address static or dynamic

variability. Note that this list is by no means exhaustive and it is only presented as a

small sample.

2.3.1 Static variability

As stated earlier, static variability is caused by the manufacturing process. Even before

taking into account dynamic variability, the process variations might be responsible for

large differences in characteristics between devices. Figure 2.4 shows the distribution of

operating frequency and leakage current over a high number of processor dies from Intel

in a 130nm process. As can be seen, even a mature process can suffer from a high degree

of frequency variation (more than 30%) and an even higher variation in leakage power.

These huge differences are responsible for some of the biggest margins at the design

stage. A common technique to address them is parametric binning [11–13]. This tech-

nique is conceptually simple: after devices are manufactured, these are tested for some

parameters, such as frequency (for speed binning) or voltage (for voltage binning). The

data obtained from testing is then used to classify chips into different bins. For example,

it is possible to categorize dies according to frequency and power leakage in Figure 2.4.

This is done by defining bins with specific frequency and leakage ranges. Dies that fall

below any bin are discarded as defective.

This classification allows identifying dies that have the desired process characteristics.

For example, the fastest dies might be used in situations where performance is important,

while the chips with less leakage can be directed to more power conscious use cases. On

the downside, this technique requires an extensive and costly testing.

14 Chapter 2. Variability and Ring Oscillator Clocks

2.3.2 Dynamic variability

Multiple techniques have been proposed to mitigate dynamic variability. One of the

most notable is Razor [14] and its variants, such as Resilient Circuits [15]. They propose

to accommodate the clock period to the typical cases, as opposed to worst-case sign-off.

This generates a number of errors which need to be detected and corrected.

In order to detect errors, a shadow latch is added to each delay-critical flip-flop (those

that might exhibit timing violations). The shadow latch uses a phased clock signal that

is delayed enough to ensure that it always captures the correct data, even in worst-case

situations. The values captured by the flip-flop and the shadow latch are compared

and, if found different, an error is flagged. When that happens, the pipeline must be

stalled, the incorrect data purged and the correct value (stored in the shadow latch)

propagated. Since the occurrence of an error has a slight performance impact, there is

a need to balance the error rate against the clock period. This method can be further

enhanced by adding dynamic voltage scaling and regulating the voltage to produce an

optimum error rate.

In a similar way, Tribeca [16] also reduces the clock period to work with nominal

conditions. The difference is in the use of ECC-protected data to detect errors, as well

as local recovery mechanisms.

These techniques produce benefits of over 30% of power reduction. The main draw-

back is the significant increase in area needed for the detection and correction of errors.

Furthermore, they need intricate schemes to cope with the metastability that might

occur. Blade [17] reduces the overheads of Razor by incorporating reconfigurable delay

lines, error detecting latches and asynchronous structures, yet it still requires intrusive

modifications in the circuitry.

More related to the work of this thesis are Adative Clocking [18–24] and Ring Oscil-

lator Clocks [6, 7]. These deserve a more detailed discussion and are presented in the

following sections.

2.4 Adaptive Clocks

As process nodes are miniaturized, voltage droops in the supply are becoming the most

severe dynamic variation. In this context, adaptive clocks were proposed for detection

and mitigation [18]. These techniques must be able to anticipate the arrival of voltage

droops. When detected, the clock period is increased [19, 20] or altogether stalled [21]

until the voltage stabilizes. This helps prevent timing violations, while avoiding conser-

vative margins at the design stage.

Chapter 2. Variability and Ring Oscillator Clocks 15

Data

VDD

Threshold

AClk

PLL

Figure 2.5: Adaptive clock scheme. The shadowed boxes in the Data row show the
computation in a critical path. AClk represents the adaptive clock pulses. A rigid PLL

is also shown as reference.

Figure 2.5 depicts the basic idea for adaptive clocks. The top part represents the

evolution of voltage supply along time. Immediately below, labeled by Data, the com-

putation time evolves with VDD variations. Shadowed boxes correspond to busy logic

and empty boxes correspond to idle logic. Near the bottom, AClk represents the pulses

of an adaptive clock. For reference, PLL at the bottom shows a standard clock with

constant frequency. As the voltage supply is reduced, e.g. due to a droop, the critical

path delay increases (shadowed boxes become larger). When the voltage falls under a

specific threshold, an adaptive clock increments the clock period to accommodate the

increased execution time. The normal frequency is resumed after the voltage raises over

the threshold.

The droop detection may be done by perceiving differences or timing violations in

delay lines or critical path monitors. The modulation of the clock period can be done

directly in the clock generation block, such as using a PLL [18]. Alternatively, it can be

done in the clock tree, while the edge is propagating [22, 23].

A common limitation of these schemes is the inability to deal with the full droop

spectrum. Usually, they target only the first droop [18, 22] and, sometimes, the sec-

ond [24]. But the main limitation is the reaction latency to modify the clock frequency.

This is addressed by increasing the margins in order to buffer the increasing delays,

which can have a considerable impact on performance.

2.5 Ring Oscillator Clocks

Ring Oscillator Clocks (ROCs) [6, 7] share the main characteristic of adaptive clocks:

they dynamically change the period in order to account for variability. The difference is

16 Chapter 2. Variability and Ring Oscillator Clocks

clock
tree

clock
generator

circuit

ring oscillator

capture path

launch path

Figure 2.6: ROC scheme.

that, for the case of ROCs, the clock generator and the sensing circuit are the same. Be-

cause of that, an ROC does not need to anticipate voltage droops or any other variability

change. Instead, they react to those changes in the same way and at the same time as

the rest of the circuit. This simplifies the design and, more importantly, eliminates the

main drawback of adaptive clocks: the reaction latency is always instantaneous.

Figure 2.6 shows the ROC scheme. Notice that the only difference with respect to

Figure 2.2 is the substitution of the PLL by a Ring Ocillator (RO) circuit. In this case,

a closed loop circuit (the RO) generates a periodic signal in a similar fashion to a classic

PLL. Yet, since the RO is constructed out of the same gates than the rest of the circuit,

it is subject to the same variability sources.

In general, when designing a classical clock source, it is important to reduce the jitter

in order to keep margins small (see constraint (2.6)). This is necessary because jitter is

uncorrelated to circuit variability. On the other hand, ROCs intentionally generate jitter

that is closely correlated to the variability of a circuit [6]. Thanks to this, a variation

that increases the delay in the critical path will similarly increase the period of the clock.

It is thus important to maximize the correlation between variability in the RO and in

the rest of the circuit. Chapter 3 discusses in detail how to achieve this correlation and

describes the design of ROCs.

As an example, Figure 2.7 shows a comparison between a classical PLL and an

ROC. The waveforms have been obtained by SPICE simulations in [6] and show a power

fluctuation of 30% for illustrative reasons.

As can be seen, the ROC dynamically modifies frequency as the voltage changes.

Higher voltages produce higher frequencies and lower voltages reduce, accordingly, the

frequency. This allows the ROC of the example to keep an average frequency of 1.55 GHz.

Chapter 2. Variability and Ring Oscillator Clocks 17

Figure 2.7: Clock generation with PLL and ROC. Source [6].

On the other hand, the PLL needs to be designed for the worst-case frequency of

810 MHz, in order to maintain correct operation. Alternatively, the ROC can be tuned

to track a similar average frequency of 814 MHz, but this time with a much lower voltage

(0.85v vs 1.2v). This shows how an ROC can be used both for increased performance

at iso-power or reduced power at iso-performance.

When comparing ROCs with Adaptive clocks, it is important to take into account

that the latter responds differently to fast and slow variability. In particular, fast changes

in variability, such as those produced by voltage droops, require low latency to reduce

clock frequency or assume larger margins. Figure 2.8, from [6], shows a comparison

between ROC and Adaptive clocks (AClk). In order to account for different variations

of voltage noise, the figure represents multiple frequencies of noise. Additionally, the

reaction time for Adaptive clocks is represented by the number of cycles they needs

to modulate the period (1, 2 or 3). It is interesting to note how the performance for

adaptive clocks degrades with the higher noise frequency and latency. On the other

hand, the ROC reacts immediately to changes in voltage and thus does not require

conservative margins.

18 Chapter 2. Variability and Ring Oscillator Clocks

Figure 2.8: Speed-ups for AClk and ROC on different frequencies of voltage noise
and adapting latencies. Source [6].

2.6 Margins and Derating Factors in Ring Oscillator

Clocks

As previously shown, ROCs are well suited to track global variability. Nonetheless, local

variability still requires the use of margins. This section presents a comparison between

derating factors of PLLs and ROCs. A more in-depth analysis can be found in [7].

Let us first adapt the constraint (2.6) to an ROC. Note that the term Period− Jitter

must be substituted by the delay of the RO:

δ′L · LaunchPath < δ′C · (CapturePath + RO) (2.8)

with δ′L = 1 + ε′ and δ′C = 1− ε′ being new derating factors.

In this case, the derating factor δ′C is also applied to the delay of the RO. This

is necessary because the RO must be treated as a conventional timing path, which

experiments the same sources of variability as the other components of the circuit. In

contrast, the jitter disappears from the equation, as it is now part of the delay of the

RO.

The derating factors in (2.6) can be different from those in (2.8) since δ′C and δ′L

must also take into account the spatial correlation between the critical paths and the

RO. In particular, the derating factors ε for a PLL can be expressed as:

ε =
MPLL

DL +DC

with DL and DC representing the delay for the capture and launch path, respectively,

and MPLL being the margin required to cover on-chip variations for the PLL.

Chapter 2. Variability and Ring Oscillator Clocks 19

Similarly, the derating factor ε′ required when performing timing sign-off in an ROC

can be defined as:

ε′ =
MRO

2DL +MRO

with MRO being the margin required to cover on-chip variations for the RO.

As discussed in [7], MRO has higher values than MPLL. This is because it needs

to cover for on-chip differences in process variability of the RO itself (which is not

applicable to PLLs, since they do not suffer process variability). Nonetheless, derating

factors applied to ROs are smaller than the ones required by the PLL. Thus, it is possible

to use derating factors provided by the foundry, which are valid but conservative from

the ROC’s point of view.

2.7 Conclusions

Variability and, more importantly, dynamic variability, has a significant impact in per-

formance and power consumption. Multiple approaches have been proposed to deal with

this phenomenon.

A promising technique, Ring Oscillator Clocks, presents important advantages with

respect to classic PLLs. These advantages come from the correlation in variability

between the RO and the rest of the circuit. This allows derating factors to be significantly

reduced, as well as giving the capacity to adapt to dynamic variability. Even when

comparing with the similar approach of Adaptive clocks, Ring Oscillator clocks can

obtain better results due to immediate reaction times.

Chapter 3

Synthesis of Digital Delay lines

A delay line is a device that produces a specific delay in the transmission of a signal. A

properly designed delay line can have a high correlation between its variability and the

variability of another circuit. This property makes them ideal for, among many other

things, the design of Ring Oscillators Clocks.

This chapter introduces an algorithmic approach for the synthesis of delay lines with

accurate variability-tracking properties. Additionally, the delay lines are all digital, they

use exclusively conventional standard cells. Finally, the technique allows the design of

configurable lines that can be tuned at runtime.

3.1 Introduction

Delay lines (DLs) have been used in different contexts to track the increasing variability

of integrated circuits as CMOS advances to smaller technology nodes. The main goal

of a variability-tracking DL is to have a circuit that generates a delay highly correlated

with the longest timing path of the system. DLs are often used for post-silicon tuning

[25–28], thus enabling the reduction of guardband margins.

One of the potential uses for DLs is in bundled-data (BD) asynchronous circuits [29]

where DLs are inserted in the paths of the handshake signals (req/ack) that synchronize

different modules of the system. For a correct operation, delays need to be longer than

the critical path yet as small as possible to prevent performance degradation.

The notion of Representative Critical Path (RCP) is used in [25] for the synthesis of

a DL highly correlated with the circuit delay. Two algorithms are proposed for designing

RCPs based statistical static timing models for variability rather than using the more

conventional static timing analysis (STA).

Delay monitors, such as canary paths, are also built with DLs [30]. In [31], a compre-

hensive survey can be found. An algorithmic technique is also introduced for designing

Ring Oscillators (RO) for circuit performance monitoring. The approach of [31] simplifies

the design of DLs by considering only blocks of identical gates and specific interconnect

21

22 Chapter 3. Synthesis of Digital Delay lines

Corner 1 Corner 2 Corner 3 Corner 4 Corner 5

D
e
la

y

Path 1
Path 2
Path 3
Delay Line

Figure 3.1: Several timing paths and delay line at different PVT corners.

lengths as the basic building element. This allows to ignore variations in slew propa-

gation and capacitance between blocks. With this simplification, the problem can be

modeled by an integer linear program, at the cost of losing flexibility and precision.

DLs can also benefit from post-silicon tuning to reduce margins after chip manufac-

turing by adjusting the delays. There are several ways of accomplishing this, including

analog and digital techniques. On the analog side, voltage-controlled delay elements are

typically used [32–34]. Digitally-controlled delay elements are also possible, for example,

by interleaving multiplexers in the DL [28, 35].

Additionally, DLs can be used for the design of Ring Oscillator Clocks (ROCs) [6]

introduced in Chapter 2.

All these schemes share the need to accurately match the delay of a DL with timing

paths that exhibit PVT variability. Using the terminology of STA, we can say that

different timing paths may have different criticality at different PVT corners. Therefore,

designing a DL by simply replicating a timing path of the circuit is not always a good

approach for delay matching.

A typical situation of time criticality is depicted in Figure 3.1. The histogram shows

the delay of three different paths (Path 1-3) at five different PVT corners (Corner 1-5).

Due to the different sensitivities to PVT variations, none of them can be taken as a

representative of the time criticality of the circuit.

In general, the number of critical paths (with small slack) tends to be extremely

large. The main reason is that physical design tools amortize the available time slacks

to reduce power by undersizing non-critical gates. In this context, synthesizing a DL

Chapter 3. Synthesis of Digital Delay lines 23

that is, at the same time, reliable and accurate at all corners is a challenging problem.

The figure also illustrates the desirable properties for a DL:

• It must be longer than the longest delay at any corner (within a certain guardband

margin).

• It must be as short as possible to minimize performance degradation.

It is also desirable that DLs can be synthesized and analyzed using conventional

standard cell libraries and design automation flows. In this way, the use of DLs can be

leveraged in a broader spectrum of application domains.

All the previous requirements pose a challenge for the design of DLs that must

address several aspects:

• How to extract the timing characteristics of a circuit at all PVT corners without

enumerating all critical paths?

• How to build a chain of heterogeneous standard cells that mimic the timing be-

havior of the circuit under different PVT conditions?

• How to take into account the variations introduced by the interconnect components

(wires)?

• How to make the DL configurable?

In this chapter we propose algorithmic techniques for the synthesis of all-digital DLs

with the following characteristics:

• The DLs only contain cells from a standard cell library. No custom cells or analog

components are used.

• The timing of the DLs is analyzed by conventional STA tools using library corners

and derating factors to model PVT variability.

• The design of DLs includes physical synthesis. In particular, an algorithm for cell

placement and derivation of routing constraints for interconnects is proposed.

• The DLs include configurable delays for post-silicon tuning.

The area and power consumption of the DLs can be considered negligible when used

for coarse-grain control, e.g., large clock domains or complex functional units.

24 Chapter 3. Synthesis of Digital Delay lines

b01 b02 b03 b04 b05 b06 b07 b08 b09 b10 b11 b12 b13 b14 b14_1 b15 b15_1 b17 b17_1 b18 b18_1 b19 b19_1 b20 b20_1 b21 b21_1 b22 b22_1
0

5

10

15

20

M
is

m
a
tc

h
 (

%
)

DL with any cell

DL with inverters of any size

DL with only one type of inverter

Figure 3.2: Accuracy of a DL when using only inverters or any cell in the library.
The Y-axis represents average mismatch.

Relevance of the problem

Figure 3.2 illustrates the importance of designing DLs with a mixed combination of

gates and wires to accurately track variability at different operating conditions. The

algorithm proposed in this chapter was used to generate DLs for the I99T benchmarks

from ITC99 [36]. For the selection of the DL cells, three scenarios were considered:

(1) only using one type of inverter (i.e. all the cells are identical), (2) using a mix of

inverters of different size and (3) using a mix of combinational cells in the standard cell

library. The algorithm tried to find the best match for each scenario.

A commercial 65nm library was used to map all reported circuits. Variability was

modeled by considering 22 different PVT corners with temperatures in the interval

[−40oC, 125oC], power supply in the range [0.9V, 1.32V] and process parameters includ-

ing SS, TT and FF models for transistors. The RCmin and RCmax corners were used to

model the variability of the interconnect layers.

The figure depicts the average discrepancy (mismatch %) of the DLs with regard to

the delay of the I99T circuits [36] mapped onto the library. The average was calculated

over the delays reported by STA (Synopsys PrimeTime [37]) at all available corners of

the library (more details in Section 3.6).

It can be observed that matching delays with only one type of inverter may result in

a large mismatch (e.g., 20% for b13). Using a mix of inverters with different size may

mitigate the mismatch significantly (6% for b13). Finally, the use of a mix of gates with

large diversity may contribute to obtaining a good match at all corners (1% for b13).

Table 3.1 also reports the usage of each cell type in the DLs when any type of cell was

used for synthesis. We can observe that more than half of the gates are not inverters. It

is precisely this diversity what allows a better matching at different operating conditions.

It is important to emphasize that the DLs do not only select a mix of gates, but also

Chapter 3. Synthesis of Digital Delay lines 25

Table 3.1: Gate type usage in delay lines

Gate Usage Gate Usage Gate Usage

INV 42.2% CKND2 4.1% AO221 0.4%

NAND3 18.6% NAND4 1.9% XNOR2 0.4%

NOR2B1 13.5% NOR2 1.0% OAI222 0.4%

CKINV 6.6% NAND2B1 0.6% OA211 0.3%

NAND2 4.9% AOI21B20 0.5% Others 4.6%

1 0

0

1

0

1

1

0
0

0
1

0

1
11

1
1

0

16 3 2
8

6
2

16

2888

IN

OUT

Figure 3.3: DL obtained for matching the delay of b05.

a mix of wire lengths between neighboring cells to account for interconnect variability.

The details will be described later in this chapter.

Figure 3.3 depicts an example of DL synthesized to match the delay of one of the

experimental circuits (b05). The picture shows the diversity of gates and sizes used in

the DL that contribute to mimic the delay of the circuit more accurately at different

operating conditions1.

3.2 Nomenclature and overview

The problem we want to solve is the synthesis of a DL that matches the delay of a circuit

under any potential operating condition. In our context, variability is modeled using the

same PVT corners and derating factors used during conventional STA to model global

variability and on-chip variability (OCV) and previously discussed in Chapter 2.

Using STA, the delay of the most critical path at each corner is obtained. However,

any information about the particular critical path that generates the longest delay is

disregarded, bearing in mind that each corner may exhibit different critical paths and

the particular structure of each critical path is irrelevant. We will call Dmaxc the longest

delay at corner c.

1The numbers inside the gates indicate the size of the cells.

26 Chapter 3. Synthesis of Digital Delay lines

IN
OUT

Si

Ci

wi

i i+1 i+2 n

1

0

0

1

0
0

Figure 3.4: Stages of a delay line.

Table 3.2: Delay line stage parameters

c Corner from the set of Corners

dc,i Delay of stage i at corner c

Cc,i Output capacitance of stage i at corner c

Sc,i Input slew of stage i at corner c

wc,i Wire delay of stage i at corner c

With this information, and the use of OCV derating factors, a set of target delays

T is derived. This set contains, for each corner c, the ideal delay τc ∈ T of the DL for

that corner. Formally:

τc = δ ·Dmaxc (3.1)

with δ > 1 being the OCV derating factor2.

Figure 3.4 shows a representation of a DL, which is a sequence of gates and wires.

Each pair gate/wire will be referred to as a stage of the DL. Each stage i has an output

capacitance Ci, an input slew Si and a delay di. For the sake of simplicity in the

nomenclature and the description of the algorithm, we will not distinguish between

falling and rising delays. However, they are considered in the actual algorithms and

results reported in this chapter.

Each stage i is characterized by the parameters defined in Table 3.2, where c repre-

sents the PVT corner at which the parameters are measured. The delay for stage i is

computed as the sum of the gate and wire delays. The gate delay and the output slew

are functions of the input slew and output capacitance:

dc,i = GateDelayc(Sc,i, Cc,i) + wc,i

Sc,i+1 = Slewc(Sc,i, Cc,i)

The output capacitance for stage i is the sum of the input capacitance for stage i+1

and the wire capacitance of stage i.

2For simplicity, we assume a unique δ for all corners. However the proposed approach can be easily
extended to different values of δ for each corner.

Chapter 3. Synthesis of Digital Delay lines 27

The delay of a DL of n stages at corner c is obtained by adding the delays of all

stages:

delayc(DL) =

n∑
i=1

dc,i

Given a set of target delays {τc}, we can define the delay mismatch of a DL at each

corner c:

Mismatchc(DL) = delayc(DL)− τc

It is important to notice that the mismatch is computed on a delay that has already been

derated to take into account on-chip variability (equation (3.1)). For the algorithm, it

is also convenient to define a normalized version of the mismatch:

NormMismatchc(DL) =
Mismatchc(DL)

τc
(3.2)

Delay constraint: For a DL to be correct, it should be always longer than the target

delay. Therefore, the following property must hold for any valid DL:

∀c ∈ Corners : Mismatchc(DL) > 0 (3.3)

Cost function: A cost function is needed to guide the exploration of the DL structure

during the execution of the synthesis algorithm. The cost function is responsible for

reducing the mismatch between the DL and the delay of the circuit at different corners.

Depending on the context, various cost functions may be considered. Here we present a

generalized formulation that can be customized for different application domains:

Cost(DL) =
∑

c∈Corners

ωc ·NormMismatchc(DL)α (3.4)

with ωc being a set of weights associated to each corner and α being a constant to

control the mismatch diversity. For example, if the designer would prefer to minimize the

mismatch at the typical corner, at the expense of having more mismatch at other corners,

then the weight ωtyp should be increased. If α has a small value (e.g., α = 1), then the

cost function will guide the exploration towards minimizing the average mismatch over

all corners. Instead, if a large value is used (e.g., α = 3), the cost function will guide

towards minimizing the maximum mismatch over all corners.

The algorithm presented in this chapter is independent of the cost function used for

optimization. Therefore, the designer can propose her own customized cost function.

28 Chapter 3. Synthesis of Digital Delay lines

Problem statement: The synthesis problem consists of finding a sequence of gates

and wires to build a DL with the following goal:

minimize: Cost(DL)

subject to: Constraint (3.3)

Exploration space: The space of potential configurations for a DL is determined by

the number of gates in the library (G) and the set of wire configurations for each stage

(W). Unfortunately, W is infinite: any sequence of segments of different length using

different layers could be potentially used to connect two consecutive gates. To prune

the search space, only a small subset of wire configurations is defined a priori to cover a

reasonable spectrum of wire lengths.

As an example, the results presented in this thesis have been obtained by considering

wires with length 5, 12, 25, 50 and 100µm (the height of a standard cell is 1.8µm). More

details about the gate and wire delay models will be given in Section 3.3.1.

Still, with G and W being finite, the possible set of configurations of a DL with N

stages is (|G| × |W |)N , which makes an exhaustive exploration impractical, bearing in

mind that N is unknown and can potentially be a large number (e.g., N > 50 in some

of the examples reported in Section 3.6).

Overview of the DL synthesis flow: The algorithmic strategy to generate a DL is

decomposed into four steps:

1. Selection of gates and wire lengths that will constitute the DL (algorithm presented

in Section 3.3).

2. Physical placement of the gates (Section 3.4).

3. Routing of wires using conventional EDA tools.

4. Timing sign-off with STA tools. If some timing violation is produced, the target

delay is slightly adjusted and steps 1-4 are executed again until no violation occurs.

Steps 1 and 2, described later in this chapter, use simplified delay models to synthe-

sized the DLs. Step 4 ensures that DLs will always meet constraint (3.3) using the same

timing models as the STA tools.

3.3 Algorithm for gate and wire selection

The synthesis of a DL is a combinatorial optimization problem. In this chapter we

present a heuristic algorithm based on the Beam Search paradigm [38]. Beam Search is

based on a constant parameter β (beam width) and explores a search tree by keeping β

partial solutions at each level selected from all the solutions generated from the previous

Chapter 3. Synthesis of Digital Delay lines 29

...

...

...

...

...

...

i

i+1

i+2

i+3

Figure 3.5: Beam Search with β = 2 showing the search levels i . . . i+ 3. The selected
candidates are shadowed.

level. A heuristic cost function is used to select the β best solutions. Figure 3.5 shows

a search example with β = 2.

For the synthesis of DLs, each tree level i stores partial solutions with i gates. When

all the generated solutions meet constraint (3.3), the search is aborted and the best

solution is delivered.

For the details of the algorithm, it is important to define two new concepts:

• Partial delay line (PDL): any DL with zero or more stages.

• Final delay line (FDL): any PDL that meets constraint (3.3).

Algorithm 1 shows the main loop of the synthesis algorithm. Initially, the set of

PDLs is initialized with a 0-stage DL (level 0 of the search tree) and the set of FDLs

is empty. At each iteration of the main loop, each element in PDL is extended by

one stage and the β best solutions are stored, according to the cost function described

later in Algorithm 3. The extension is performed by the function extendDelayLines,

described in detail by Algorithm 2.

Algorithm 1: BeamSearch(β)

begin
dl = DL with 0 stages
FDL = ∅ // Set of FDLs

PDL = {dl} // Set of PDLs

while not Empty(PDL) do
// Generate next level of DLs

PDL, FDL = extendDelayLines(PDL, FDL)
PDL = select the β best DLs from PDL

return the best DL in FDL

The function extendDelayLines generates the next level of the search tree by

adding a new gate g and a wire w to the PDLs generated in the previous level.

Wires contains a discrete variety of wire lengths. The number of new solutions is

30 Chapter 3. Synthesis of Digital Delay lines

|PDL| × |Gates| × |Wires|, from which the Beam Search algorithm will select the β best

solutions. If any of the new solutions meets constraint (3.3), it is stored in the set of

final solutions (FDL).

Algorithm 2: extendDelayLines(PDL, FDL)

input : A set of PDLs and FDLs stored in PDL and FDL, respectively
begin

newPDL= ∅ // Stores next level of the tree

foreach dl ∈ PDL do
foreach g ∈ Gates do

foreach w ∈Wires do
dl’ = addStage(dl , g, w)
if dl’ meets constraint (3.3) then

FDL = FDL ∪ {dl’}
else

newPDL = newPDL ∪ dl’

return newPDL, FDL

Finally, Algorithm 3 shows the function that computes the cost of each PDL. The

function estimates the accuracy of a PDL if the current delays would be scaled linearly

to meet constraint (3.3). First, a scaling factor s is calculated that corresponds to the

smallest factor required to meet constraint (3.3) at each corner. Next, the normalized

mismatch is computed for each corner using the scaled delays. Finally, the cost of the

DL is estimated using the scaled mismatches and the cost function (3.4).

Algorithm 3: Cost(dl)

begin
// s′ is a vector of scaling factors

foreach c ∈ Corners do
s′[c] = τc/delayc(dl)

s = max(s′) // scale factor

// Vector of scaled normalized mismatches

foreach c ∈ Corners do
NormMismatch[c] = (s · delayc(dl)− τc)/τc

// Apply the cost function (3.4)

return CostFunction(NormMismatch)

3.3.1 Gate and wire delay models

The models used during the synthesis of DLs are identical to the ones used for STA.

Each library uses one or more delay models (e.g., NLDM, CCS, ECSM). One of the

simplest is NLDM, which is the one used in this thesis for the experiments. However,

Chapter 3. Synthesis of Digital Delay lines 31

the delay model is only used in the evaluation of the cost function and the heuristic

exploration can easily adopt any other model. Furthermore, timing sign-off can be done

using the preferred model of the user, regardless of the model selected for the design.

For NLDM, each timing arc defines, for each transition direction, a transition time

(slew) and a delay table. These tables are indexed by the output capacitance and input

slew. The delay and output slew are calculated by a bilinear interpolation.

Libraries also include wire models. The main parameters that affect wire delays are

capacitance, resistance and crosstalk. For a set of technological parameters (e.g., resis-

tance/capacitance per unit length), resistance mainly depends on wire length, whereas

capacitance and crosstalk are heavily influenced by surrounding wires.

DLs have three interesting properties that simplify delay analysis: (1) the nets do

not have glitches, (2) the time windows of the nets do not overlap, and (3) all nets

have single fanout3. In this way, simple delay models can be used and crosstalk can be

ignored by simply isolating or shielding the DL.

In order to simplify the analysis of interconnect delays, the following routing con-

straints for the DLs are defined:

• Only a small set of metal layers is used. This limits the range of resistivity coeffi-

cients and increases the correlation between delay and wire length, regardless the

layers used during routing. In our experiments, only three layers were used.

• All the wires must have the same width.

• Large spacing rules between wires are defined. This dramatically reduces coupling

capacitance.

• The DL must be isolated from the rest of the circuit, preventing crosstalk.

• The routing algorithm must minimize length. This is important for predicting

wire length during placement.

With the previous constraints, wire delay mostly depends on wire length. Thus, sim-

ple delay models can be generated by randomly synthesizing DLs and learning a simple

statistical prediction model. Figure 3.6 shows a linear regression to estimate capacitance

from a set of wires extracted from synthesized DLs, where each point represents a net.

A high correlation between capacitance and wire length can be observed (R2 = 0.98).

A similar correlation is observed for wire delay predictions.

3.3.2 Implementation details

In the previous sections, it was assumed that the gate delay of a stage only depends on

the input slew and output capacitance. In a real scenario, delay also depends on the

3Property (3) is not fully complied when synthesizing configurable DLs with muxes (see Section 3.5).

32 Chapter 3. Synthesis of Digital Delay lines

0 20 40 60 80 100 120
Wire Length (um)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

C
a
p
a
ci

ta
n
ce

 (
fF

)

Figure 3.6: Linear regression to estimate capacitance as a function of wire length.

transition direction (rising or falling). The previous algorithm can be easily extended to

take into account the delays in both directions and select the most convenient.

Each combinational gate may also have multiple input pins and each one may be

eligible for the connection with the previous stage. Each input pin and transition di-

rection corresponds to a different timing arc in the gate with different characteristics in

slew, capacitance and delay.

The search algorithm can be easily extended to explore any input pin of each com-

binational gate with both transitions, rising and falling. In fact, any library gate could

be considered as a family of gates in which a different pin and transition is selected for

the exploration.

The non-selected input pins must be connected to constant values in such a way that

the selected input pin is sensitized (e.g., the remaining pins of a NAND gate must be

connected to 1).

The DL is treated as a black box during physical design. Therefore, space for the

DL must reserved a priori and used for placing its cells, as explained in Section 3.4.

Finally, the algorithm for DL synthesis assumes that the driver of the first gate and

the output capacitance of the last gate are known in advance. For example, if the DL

implements a delay monitor, there will be flip-flops at the input/output of the DL. In

handshake circuits, there might be C-elements.

3.4 Cell placement

The last step for the synthesis of DLs is physical synthesis (placement and routing).

Routing is delegated to the existing routing tool in the design flow, but imposing the

constraints described in Section 3.3.1.

Chapter 3. Synthesis of Digital Delay lines 33

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C

R

W

H

x

y

g0

g1

g2

g3

Figure 3.7: Placement area for a delay line discretized into a grid.

This section proposes a SAT formulation for the placement step. The SAT for-

mula is guided by the wire lengths of each stage selected during the synthesis step (see

Algorithm 2).

Given the routing constraints defined for the wires, that push for the minimization

of wire length, it is reasonable to assume that the nets will have a length close the half-

perimeter of their bounding boxes. Therefore, the half-perimeter wire length (HPWL)

model can be used as a good estimator.

The input of the placement formulation is a DL:

g1
l1−→ g2

l2−→ · · · li−1−→ gi
li−→ gi+1 · · ·

ln−1−→ gn (3.5)

where gi represents the gate at stage i and li represents the required wire length from

gi to gi+1.

The gates must be placed in an pre-defined area of the circuit. Figure 3.7 depicts

a placement area with width x and height y, divided in R rows and C columns. The

height of each row is H and corresponds to the height of the standard cells. The width of

each column is W and must be a multiple of the minimum routing granularity specified

in the cell library. Hence,

R = y/H, C = x/W

Placement problem statement: Given a DL as defined in (3.5), place the gates

g1 . . . gn in a gridded area such that:

∀i ∈ {1, . . . , n− 1} : |Manh(gi, gi+1)− li| < m (3.6)

where Manh(gi, gi+1) represents the Manhattan distance between gi and gi+1, and m

is a tolerance factor between the actual distances and the required distances (ideally, m

should be small).

34 Chapter 3. Synthesis of Digital Delay lines

Given that the number of gates is relatively small (few dozens at most), finding an

optimal solution may be affordable. We first propose an iterative approximation based

on the fact that a SAT formulation can be built for a given value m. The SAT formula

is satisfied for all placement solutions for which (3.6) holds.

Main algorithm:

1. A small margin m is defined.

2. A SAT formulation is generated for m.

3. The formula is solved by a SAT solver.

4. If not satisfiable, increase m and go to 2)

The model that satisfies the SAT formula determines the location of each gate.

3.4.1 SAT formulation of the placement problem

We next define the set of variables and clauses of the SAT formula. We assume that

each gate g occupies a set of adjacent slots in the grid. We call size(g) the number of

slots occupied by g (for example, gate g2 occupies 5 slots in Figure 3.7).

Variables: For every gate g, every row r and every column c, the variable P gr,c indicates

the fact that the leftmost slot of gate g is placed at the grid location (r, c).

Clauses: For simplicity in the representation, a number of definitions follow before

describing the clauses.

• The function Overlap(g, c) returns, for gate g and column c, the set of columns

occupied by g if placed at column c. More specifically:

Overlap(g, c) = {c′ : c ≤ c′ < c+ size(g)}

• The function Manh(r1, c1, r2, c2) returns the Manhattan distance between the grid

cells (r1, c1) and (r2, c2).

• The predicate validDist(l, r1, c1, r2, c2) is true when

|Manh(r1, c1, r2, c2)− l| < m

This predicate is useful to describe all the grid cells that are at a certain distance

from another cell. As an example, the darkest cell in the center of Figure 3.8

represents the location of a gate gi. The shadowed halo around it represents the

set of valid locations for gate gi+1 assuming that the required wire length is li. The

width of the halo is determined by the tolerance factorm. This width is represented

Chapter 3. Synthesis of Digital Delay lines 35

Figure 3.8: Valid positions for a gate connected to the one in the middle, as repre-
sented by the shadowed boxes.

in the figure as slashed lines and increase the amount of valid locations, allowing

slightly closer or more distant positions for gi+1.

We next describe the set of clauses of the SAT formula:

• Every gate must be placed: A clause for each gate g with the disjunction of

all the possible grid locations, ensuring that it is placed at least in one of them:

∀g :
∨
r,c

P gr,c

• Every gate can only be placed in one location at most:

∀g, r1, c1, r2, c2 s.t. (r1, c1) 6= (r2, c2) : P gr1,c1 ⇒ ¬P gr2,c2

• Gates cannot overlap:

∀g, g′, r, c, c′ s.t. g 6= g′, c′ ∈ Overlap(g,c) : P gr,c ⇒ ¬P g
′

r,c′

• Valid distance for consecutive gates: For any pair of consecutive gates, gi

and gi+1, the Manhattan distance between them must be close to li (within the

tolerance factor m), i.e.,

∀gi, gi+1, r, c, r
′, c′ s.t. ¬validDist(li, r, c, r

′, c′) : P gir,c ⇒ ¬P
gi+1

r′,c′

It is interesting to realize that all clauses have two literals except those that enforce

every gate to be placed. The proliferation of 2-literal clauses implies that a lot of deci-

sions are taken without branching (unit propagation). This aspect makes SAT solving

more computationally efficient.

36 Chapter 3. Synthesis of Digital Delay lines

(a) (b)

Figure 3.9: Mux-based configurable RO architectures.

1

0

1

0

1

0

m2
m1 m0

D2

D2 ≈ 2xD1 ≈ 4xD0

D1 D0

Figure 3.10: Distribution of delays in a configurable DL with 3 muxes.

3.5 Configurable Delay Lines

Delay models are just approximations of the reality used during synthesis and verifica-

tion. But reality is only known after manufacturing. Therefore, post-silicon calibration

is essential to adjust DLs to the actual delays of the circuit.

Various techniques exist for calibration such as current starved inverters or voltage-

controlled delay elements. In our work we propose all-digital solutions that use mul-

tiplexers (muxes) that can be found in the cell library. Calibration is performed by a

set of codewords that control the muxes. It is desirable that the different configurable

delays are uniformly distributed across codewords.

Figure 3.9 depicts two possible schemes for configurable DLs. Each of them has a

minimum delay shared by all possible configurations. The one in Figure 3.9b is more

area efficient but gives less flexibility in synthesizing the delay for each configuration.

Another interesting and area-efficient solution commonly used for delay lines is shown

in Figure 3.10 (e.g., [28]). For N codewords, this scheme requires M = dlog2Ne 2-input

muxes.

For the synthesis of configurable DLs, two new parameters are introduced:

• The number of codewords (N), usually a power of two.

• The configuration interval, CI = (CImin,CImax), that defines the range of config-

urable delays as coefficients over the target delay τc at each corner c. For example,

CI = (0.9, 1.1) indicates that N different delays must be configured in the interval

(0.9 · τc, 1.1 · τc).

Chapter 3. Synthesis of Digital Delay lines 37

In this thesis we focus on the scheme shown in Figure 3.10 as it is the smallest of

the three schemes. The synthesis for other schemes requires simple modifications with

regard to this one.

The configuration step ∆ of the DL is the expected delay difference between two

adjacent codewords for a uniform delay distribution. Hence,

∆c =
τc · (CImax − CImin)

N − 1
, for each c ∈ Corners

and the delay Di associated to each mux with control signal mi is:

Di,c = ∆c · 2i, for i ∈ {0, . . . ,M − 1}, c ∈ Corners

The process of synthesizing a configurable DL is as follows:

• Synthesize a regular DL with target delay CImin · τc, for each corner c, in which M

cells are enforced to be 2-input muxes. To mitigate the impact of slew propagation,

it is also enforced that there are at least 5 gates between muxes (see the discusison

about slew problem at the end of this section). This DL is represented by the

shadowed components in Figure 3.10. After this step, D0, D1 and D2 are simply

wires.

• The two inputs of each mux cell are connected to the output of the previous cell.

One of the inputs will be selected to implement the delay Di, whereas the other

will remain intact.

• Implement each delay Di as a DL using the same algorithm for a conventional DL.

Insert the delay in front of one of the inputs of the mux.

The synthesis of configurable DLs requires some small modifications of the SAT

formulation of the placement.

The slew problem. Using muxes introduces a new problem in the synthesis of DLs.

The output slew of a mux depends on which input is selected. This effect is multiplica-

tive, as the number of potential slew values at the output of a chain of muxes grows

exponentially with the number of muxes.

This problem can be solved using the following property: for a sufficiently long path

of gates, the output slew at the last gate is independent from the input slew at the first

gate. Typically, and for reasonable slew values, a chain of 5 gates is sufficient to make

the output slew virtually independent from the input slew [31].

The synthesis algorithm for configurable DLs guarantees that a minimum number of

gates is inserted between two adjacent mux stages, as shown in Figure 3.10. The delay

of these gates is accounted within the minimum delay of the DL.

38 Chapter 3. Synthesis of Digital Delay lines

3.6 Experimental Results

DLs have multiple uses, including matched delays for bundled-data asynchronous cir-

cuits, canary paths or Ring Oscillators (ROs). This section will focus on using DLs

to implement ROs, which implies some particular modifications on the algorithms pre-

viously described. A direct application of ROs is in the generation of Ring Oscillator

Clocks (ROCs) that was previously discussed in Chapter 2.

An RO is a DL connected in a feedback loop. Few aspects must be considered for

the synthesis of an RO:

• A new constraint for the DL algorithm is needed to ensure an odd number of

inversions.

• The RO period consists of two oscillations, one for the rising and another for the

falling transition. Thus, the period is the sum of the rising and falling delays at

each stage.

• The output capacitance of the last cell is the input capacitance of the first cell.

Similarly, the input slew of the first cell is the output slew of the last cell.

The experiments have been performed by synthesizing ROCs for several circuits.

All the circuits have been implemented in a 65nm commercial library with 22 corners:

11 PVT corners × 2 interconnect corners (RCmax and RCmin). Timing results have

been obtained by Synopsys PrimeTime [37].

The I99T subset from the ITC99 benchmark suite [36] has been selected for the

experiments. Circuits have been divided into two categories: small circuits (b01-b13),

with size up to a thousand gates, and processors (b14-b22) with size up to a few hundred

thousand gates [36].

The methodology for the experiments is as follows:

• Layout synthesis has been performed using Synopsys EDA flow.

• PrimeTime has been used to calculate the target period (τc) at each corner.

• ROCs have been generated by running the synthesis algorithms for DLs presented

in this thesis.

• The reported results have been obtained after layout synthesis using PrimeTime.

The values reported at the tables and charts in this section correspond to the nor-

malized mismatch (in percentage) of the ROC with regard to the target delay of the

circuit at each corner (τc), as defined in equality (3.2). In the case of configurable ROCs,

the mismatch has been calculated for each possible configuration of the delay.

Chapter 3. Synthesis of Digital Delay lines 39

b01 b02 b03 b04 b05 b06 b07 b08 b09 b10 b11 b12 b13 b14 b14_1 b15 b15_1 b17 b17_1 b18 b18_1 b19 b19_1 b20 b20_1 b21 b21_1 b22 b22_1
0

5

10

15

20

25

30

M
is

m
a
tc

h
 (

%
)

Average Mismatch

Max Mismatch

Figure 3.11: Accuracy of DLs synthesized with any cell in the library (left bar),
inverters of any size (middle bar) and inverters of one size (right bar).

Table 3.3 shows the results for ROCs without muxes. The column Size indicates

the number of gates of the ROC. Column Max reports the maximum mismatch for all

corners, whereas Avg reports the average mismatch across the 22 corners. Typ shows

the mismatch at the typical PVT corner, bearing in mind that most dies will fall around

this corner after manufacturing. The method guarantees that the mismatch is never

negative.

The maximum mismatch is usually below 3% while the average mismatch is around

1% in most cases. This shows that a single DL can track circuit variability very accu-

rately.

Figure 3.11 gives more detailed information about the one shown in Figure 3.2. It

can be observed that, when restricting the set of gates used in the DLs, the capability

of tracking variability is highly degraded. When only using one type of inverter, the

average and maximum mistmatches can go up to 20% and 30%, respectively (see b09,

b12 and b13). The inverter used in this experiment corresponds to the most used cell in

all synthesized DLs. Even when using all inverters in the library, the mismatch is still

substantially larger than when allowing all cells.

Table 3.4 reports results for configurable ROCs with 1, 2 and 3 muxes (M), respec-

tively. In this case, the maximum mismatch corresponds to the one achieved with any of

the possible configurations. The average mismatch is the one over all configurations and

corners. The mismatch at typical is the average over all the configurations at the typical

PVT corner. Only circuits with DLs longer than 25 gates have been synthesized for

this case. Small circuits are not appropriate for configurability given that the delay of

a single gate is often longer than the minimum configuration step ∆. The configuration

intervals used in the experiments were as follows:

40 Chapter 3. Synthesis of Digital Delay lines

Table 3.3: Ring Oscillator delay mismatch (%), no muxes.

Circuit Size Max Avg Typ Circuit Size Max Avg Typ

b01 5 2.70 1.13 1.01 b15 27 3.90 1.29 1.65

b02 5 2.23 1.11 1.09 b15 1 26 3.56 1.12 0.85

b03 5 4.50 1.86 0.75 b17 33 2.68 0.98 0.32

b04 20 0.98 0.45 0.40 b17 1 32 2.21 0.94 0.92

b05 12 1.37 0.66 0.70 b18 49 2.77 1.12 0.55

b06 5 2.00 1.13 1.51 b18 1 54 1.69 0.75 0.98

b07 8 1.71 0.97 0.64 b19 79 2.02 1.11 0.92

b08 9 1.22 0.79 0.78 b19 1 65 2.51 1.17 0.62

b09 6 1.86 1.08 0.97 b20 44 1.63 0.94 0.54

b10 6 2.38 1.31 1.81 b20 1 64 0.95 0.47 0.31

b11 13 2.69 1.34 0.88 b21 47 1.62 0.76 0.54

b12 13 2.61 0.99 0.86 b21 1 56 1.04 0.61 0.97

b13 8 1.86 1.27 1.27 b22 46 1.24 0.57 0.32

b14 41 1.60 0.66 0.66 b22 1 59 0.58 0.30 0.40

b14 1 49 1.95 0.74 0.39 Aver 30.55 2.07 0.95 0.81

CImin CImax

M=1 0.975 1.025

M=2 0.925 1.075

M=3 0.825 1.175

The results are reported in Table 3.4. As expected, the mismatch increases with the

addition of muxes, since the requirement for introducing muxes reduces the flexibility

to find gates that properly track the variability for all configurations. Still, the average

mismatch is maintained around 1-2% in most cases, which is a remarkable achievement.

This confirms the effectiveness of the synthesis algorithms to find very accurate mixtures

of gates even with a large number of configurations.

As an example, Figure 3.3 shows the DL generated for b05 according to the results

shown in Table 3.3. In this particular case, an ROC was constructed by connecting the

input and the output of the DL.

3.7 Conclusions

The synthesis of DLs for tracking variability is one of the emergent topics as technologies

move towards nanometric dimensions. For a widespread use of DLs, it is necessary to

provide design automation and schemes that can use the components of the cell libraries.

Chapter 3. Synthesis of Digital Delay lines 41

Table 3.4: Ring Oscillator delay mismatch (%) with 1, 2 and 3 muxes.

Max mismatch Avg mismatch Mismatch @typ

Circuit M=1 M=2 M=3 M=1 M=2 M=3 M=1 M=2 M=3

b14 2.06 2.46 3.44 1.04 1.19 2.03 1.00 1.14 1.99

b14 1 2.38 2.03 2.93 1.23 0.92 1.20 0.72 0.56 0.88

b15 3.27 4.82 6.30 1.56 2.50 3.38 1.19 2.02 3.37

b15 1 3.58 4.89 6.85 1.10 1.76 2.96 0.73 1.42 2.53

b17 2.46 4.32 4.94 0.88 2.31 1.97 0.40 1.92 1.78

b17 1 2.77 2.91 2.73 1.46 1.55 1.27 1.40 1.41 1.15

b18 3.73 3.05 4.55 1.81 1.22 1.80 1.42 0.73 1.20

b18 1 1.87 2.26 3.04 0.96 1.02 1.48 1.15 1.09 1.69

b19 2.90 3.65 3.93 1.54 2.25 2.18 1.01 1.80 1.48

b19 1 2.45 2.92 3.53 1.05 1.24 1.78 0.63 0.77 1.29

b20 1.39 1.73 2.04 0.75 0.85 1.08 0.44 0.50 0.77

b20 1 1.55 1.88 2.35 0.70 1.00 1.17 0.39 0.72 0.90

b21 2.14 3.31 3.04 0.96 1.51 1.47 0.81 1.29 1.33

b21 1 1.40 2.09 2.93 0.65 1.13 1.85 0.87 1.25 2.18

b22 2.01 2.54 3.05 1.09 1.49 1.92 0.78 1.04 1.55

b22 1 1.88 2.33 3.60 1.03 1.02 1.71 1.03 0.84 1.64

Aver 2.36 2.97 3.70 1.11 1.44 1.83 0.87 1.16 1.61

This chapter has presented algorithmic techniques to tackle the synthesis of DLs,

both at the logic and physical level. Using a variety of gates and wires in the same

DL has proved to be essential for an accurate tracking of delays under the presence of

variability.

We expect the incorporation of DLs, either playing the role of sensors or clock gen-

erators, to be a growing trend in the future. DLs can be used to monitor the potential

fluctuations of delays at runtime and adapt the circuit to the varying operation condi-

tions without requiring conservative guardband margins.

Chapter 4

State encoding of asynchronous

controllers

This chapter shifts the focus of the thesis towards asynchronous controllers. In particu-

lar, it introduces a method to perform state encoding at the state level. This technique

leverages the use of SAT in order to encode the problem and find the solution, if it

exists. An additional process of optimization guarantees that the solutions are optimal

with respect to a cost function.

4.1 Introduction

State encoding is one of the critical problems during the synthesis of asynchronous con-

trol circuits. Several methods have been proposed in the past, either for circuits working

in fundamental mode [39] or input/output mode [40], among others. In the latter case,

the concurrency between input and output events imposes more severe constraints on

the insertion of internal signals to disambiguate encoding conflicts. What makes encod-

ing difficult is the preservation of the implementability properties of the specification

(e.g., consistency and persistence) after the insertion of new events.

In this thesis we will face the encoding problem in its most generic form, i.e., us-

ing state-based models (state graphs) in which all possible interleavings of concurrent

events are explicitly represented. State graphs (SGs) can be derived from higher level

formalisms such as Signal Transition Graphs (STGs) or Burst-Mode (BM) machines.

The space of configurations for state encoding is huge and similar solutions may

result in significantly different logic complexity. One of the challenges in solving the

problem is finding low-complexity correct solutions.

This Chapter proposes an approach based on satisfiability (SAT) with two main

features: (1) all possible solutions for the encoding problem are represented by one

43

44 Chapter 4. State encoding of asynchronous controllers

dsr
VME Bus
Controller

dsw

dtack

Device

lds

ldack

d

Data
TransceiverBus

Figure 4.1: VME bus controller interface diagram.

Figure 4.2: VME bus controller timing diagram.

Boolean formula and (2) simple estimators of logic complexity are added to the formula in

such a way that high-quality solutions can be obtained by Pseudo-Boolean optimization.

The work goes beyond a previous SAT-based approach presented in [41], both in

the space of explored solutions and in the estimation of logic complexity. The results

obtained by our method shows that still a tangible margin for improvement was left by

the best previous approaches implemented in petrify [40] or MPSAT [42].

4.2 State encoding for logic synthesis

State encoding is a necessary step of logic synthesis. It is relevant to recall the full

process in order to contextualize the proposed work. In this section, we describe and

summarize all the basic steps for logic synthesis of asynchronous controllers.

A very comprehensive and detailed explanation for logic synthesis can be found in [4].

In this overview, we will make use one of the classical examples from [4], the VME bus

controller. Figure 4.1 shows a block diagram representing a VME bus controller.

The role of this controller is to open and close the data transceiver according to

a protocol for reading and writing data on a device. The arrows shown in Figure 4.1

represent signals that go into and out of the controller. Input signals conform the

information that the circuit has of the outside, usually referred to as environment. On

the other hand, output signals need to be generated by the controller. Figure 4.2 shows

a timing diagram for the controller that describes the behavior of the read operation.

Chapter 4. State encoding of asynchronous controllers 45

s1

s2

s3

s4 s5 s6

s7s8s9

s10s11s12

s13s14

lds+

ldtack+

d+

dtack+ dsr−
d−

dtack−

lds−

dsr+

lds−lds−

dtack−

ldtack−

dsr+

ldtack−ldtack−

dtack−dsr+

Figure 4.3: VME bus controller LTS for the read operations.

At first, the controller is in standby. The input signal dsr is raised from low to high to

indicate that a read request is being made. This is followed by a request with signal lds

for the device to perform a data transfer. When the device is ready, it acknowledges the

request with ldtack. The controller can now safely open the data transceiver by raising

signal d. While this signal remains on high, the device is directly connected to the bus.

The controller now needs to indicate that the read operation is ready to be performed by

raising signal dtack. The finalization of the operation is signaled when input signal dsr

is lowered. This allows the controller to close the data transfer by setting d to low. Now

the controller can signal that the operation is over with signals dtack and lds. This can

be done concurrently or in any order. Lowering dtack also indicates that the controller

is ready to perform another read operation. From the device perspective, the ending of

the operation still needs to be acknowledged by lowering ldtack. Until this happens, no

new requests can be performed from the controller.

The logic synthesis process is endeavored in going from the specification into a logic

description of a circuit, that generates the appropriate output signals from the input

signals it receives. In order to do that, we first need to specify the behavior in one of

the models for asynchronous synthesis. In this thesis we make use of Labeled Transition

System (LTS), which explicitly represents every signal interaction.

Figure 4.3 shows the LTS for the previous specification. In this model, every arrow

represents one of the signal events, or transitions, and how the state of the model changes

with them. Every label in a transition indicates in which way a signal changes, with the

symbol + indicating a rising edge and the symbol − representing a falling edge. Notably,

concurrency between events that occur after signal d is set to low must be represented

by explicitly enumerating all the valid combinations of causality.

As mentioned, every transition implies a change of state for a signal. For example,

the transition lds+ between states s1 and s2 implies that the state for lds in s1 is low or

46 Chapter 4. State encoding of asynchronous controllers

ER+
lds

QR+
lds

ER−lds

QR−lds

s1
10000

s2
10001

s3
10101

s4
10111

s5
11111

s6
01111

s7
01101

s8
00101

s9
10101

s10
01100

s11
00100

s12
10100

s13
01000

s14
00000

lds+

ldtack+

d+

dtack+ dsr−
d−

dtack−

lds−

dsr+

lds−lds−

dtack−

ldtack−

dsr+

ldtack−ldtack−

dtack−dsr+

Figure 4.4: Binary encoding of states with the vector (dsr, dtack, ldtack, d, lds).
Shadowed areas indicate regions for lds.

0, and the state in s2 is high or 1. Notice that no other signal changes its state between

s1 and s2. Making use of this, it is possible to infer a binary encoding for every signal

and every state. If such an encoding is unique and there are no contradictions, we say

that the model is consistent. A consistent encoding can be seen in Figure 4.4.

Transitions also allow us to divide the set of states into four regions. For this, we

are only interested in output signals, such as lds:

• Positive excitation region (ER+): Those states in which there is a rise transition

for lds.

• Negative excitation region (ER−): Those states in which there is a fall transition

for lds.

• Positive quiescent region (QR+): Those states in which there is no transition for

lds, but its encoding is 1.

• Negative quiescent region (QR−): Those states in which there is no transition for

lds, but its encoding is 0.

This division into regions is represented, for signal lds, by shadowing states in Figure 4.4.

Such a division enables a powerful way to analyze the behavior of the model. In par-

ticular, every positive region for lds implies that its next state is 1. Conversely, every

negative region implies a 0 for the next state. We can easily make use of this by defining

next state functions, depending on the binary encoding of every state and their region

for a given signal.

Figure 4.5 shows the Karnaugh map for the next state function of signal lds in which

every state is represented by its encoding. The function describes the value that lds

must transition into at every state. Note that some of the encodings are not defined,

Chapter 4. State encoding of asynchronous controllers 47

10

11

01

00

00 01 11 10ldtack,d

dsr,dtack lds=0

0 0 - 0

- - - -

- - - -

0 0 - 1

10

11

01

00

00 01 11 10ldtack,d

dsr,dtack lds=1

0 0 - 1
0

- 1 1 1

- - - -

- - - 1

Figure 4.5: Karnaugh map of the next state function for lds.

and in these cases the value of the signal is not relevant. These empty slots in the

map are called don’t care, since it does not matter whether they are 0 or 1. By using

logic minimization techniques, it is possible to infer a Boolean formula describing a well

formed function, and thus the specification that the model implements. Yet, the formula

from Figure 4.5 is not well formed. In this case, one of the slots in the map has both

0 and 1 at the same time. Going back to Figure 4.4, it is possible to identify which

states are responsible by looking at the encoding. Specifically, s3 and s9 share the same

encoding, but belong to regions of lds with different polarities. This is called a Complete

State Coding (CSC) conflict, which causes an irreconcilable ambiguity in the formula.

Intuitively, a CSC conflict indicates that the system lacks enough memory to remem-

ber the state. In some cases, this can be fixed by adding a new signal to act as additional

memory. An example of such a signal insertion can be seen in Figure 4.6, along with

the new encoding. Note that now every state has a unique encoding and so the next

state function is well defined for every signal. After a step of logic minimization, the

Boolean formula for every output signal can be obtained and implemented as a circuit.

The resulting formula after minimization for all the output signals is:

lds = d + x

dtack = d

d = ldtack · x
x = dsr · (x + ldtack)

An important thing to note is that there are multiple ways to insert a signal in order

to solve CSC conflicts. Where a signal is inserted can have a potentially dramatic impact

on the size and performance of the circuit that implements the formula. Furthermore,

there are many restrictions about where a signal can be inserted. The main focus of this

and the next chapters of the thesis is on finding the best place to insert a signal. The

following section illustrates this and overviews the proposed method.

48 Chapter 4. State encoding of asynchronous controllers

s1
100000

s2
100011

s3
101011

s4
101111

s5
111111

s6
011111

s7
011010

s8
001000

s9
101010

s10
011000

s11
001000

s12
101000

s13
010000

s14
000000

s′1
100001

s′6
011110

x+

lds+

ldtack+

d+

dtack+ dsr− x−

d−

dtack−

lds−

dsr+

lds−lds−

dtack−

ldtack−

dsr+

ldtack−ldtack−

dtack−dsr+

Figure 4.6: LTS after signal insertion. Encoding after the signal insertion is repre-
sented by the vector (dsr, dtack, ldtack, d, lds, x).

s1 s2 s3 s4 s5 s6

s7s8s9s10s11s12

r+
0 r+

1 a+
1 r−1 a−1

r+
2

a+
2a+

0r−0r−2a−2

a−0

Figure 4.7: Example sequencer.

4.3 Overview of the method

Let us consider the LTS from Figure 4.7 that models the behavior of a controller with

{r0, a1, a2} and {a0, r1, r2} as input and output signals, respectively.

The states s2 and s6 share the same encoding. This is evidenced by the comple-

mentary subsequence of events (r+
1 a+

1 r−1 a−1) that transition from s2 to s6. Solving the

encoding problem requires the insertion of a signal x with an event that breaks this

subsequence.

In order to break this subsequence, a new event (e.g., x+) needs to be inserted

between r+
1 and a−1 . Given that a1 is an input signal, x+ can only be inserted immediately

before r−1 in order to maintain the handshaking protocol with the environment. Still,

there is some freedom for the insertion of the complementary event x−. Let us consider

three different solutions found in Figure 4.8.

A well-established estimator of the complexity of a logic circuit is the number of

literals of the Boolean equations after logic minimization. We use the same criterion in

this thesis.

The state encoding problem faces a vast space of solutions. The challenge is to find

the ones that lead to simpler circuits without resorting to logic minimization during the

exploration.

Chapter 4. State encoding of asynchronous controllers 49

s1 s2 s3 s′3 s4 s5 s6

s7s8s9s10s11s12s′12

r+
0 r+

1 a+
1 x+ r−1 a−1

r+
2

a+
2a+

0r−0r−2a−2x−

a−0

(a)

s1 s2 s3 s′3 s4 s5 s6

s7s8s9s10s′10
s11s12

r+
0 r+

1 a+
1 x+ r−1 a−1

r+
2

a+
2a+

0r−0x−r−2a−2

a−0

(b)

s1 s2 s3 s′3 s4 s5 s6

s7s8s′8s9s10s11s12

r+
0 r+

1 a+
1 x+ r−1 a−1

r+
2

a+
2x−a+

0r−0r−2a−2

a−0

(c)

Figure 4.8: Valid signal insertions for sequencer of Figure 4.7.

This chapter proposes a SAT-based approach in which the main contribution is the

incorporation of logic complexity estimators in the same formula. The most important

estimator used in this thesis is the number of essential literals. Informally, if the encoding

of two states, s1 and s2, only differs in one signal value (e.g., z = 1 in s1, z = 0 in s2), and

s1 and s2 belong to the on- and off-set of the next-state function for signal x, respectively,

then z is essential for x, i.e., z must be in the support of x. The important aspect is that

the presence of essential literals is a local property (between pairs of states) that can be

efficiently encoded in a Boolean formula. Moreover, the number of essential literals can

be minimized by using Pseudo-Boolean optimization [43].

We have observed that there is a very high correlation between the number of essen-

tial literals and the final literals of a function represented as a factored form. Figure 4.9

depicts a plot comparing essential vs. literals after logic synthesis for a large number of

controllers. The solid line represents the ideal prediction (essential = actual). The red

dashed line represents a linear regression (R2 = 0.91), that indicates that the number

of essential literals is a good estimator.

The following table reports the logic equations for the previous solutions of Figure 4.8.

The number of essential literals is represented in brackets and is a lower bound (and a

good estimator) of the number of literals of the equations.

50 Chapter 4. State encoding of asynchronous controllers

5 10 15 20 25 30 35 40 45

Essential literals

5

10

15

20

25

30

35

40

45

Li
te

ra
ls

 i
n
 f

a
ct

o
re

d
 f

o
rm

Figure 4.9: Essential literals vs. literals in factored form.

Solution (4.8a) Solution (4.8b) Solution (4.8c)

r1 = [2] r0x̄ [2] r0x̄ [2] r0r̄2x̄

r2 = [3] r0ā1x [2] ā1x [3] ā1x+ r0a2

a0 = [2] a2 + a0x [1] a2 [2] a2x̄

x = [3] a1 + a2 + ā0x [3] a1 + r0x [3] a1 + a2x

Besides essential literals, there are other estimators that also have some correlation

with the complexity of the logic: size of the don’t care set and number of entry points

of the excitation regions. These estimators will be discussed later in this chapter.

4.4 Background

This section reviews some known concepts on Boolean functions, asynchronous LTSs

and speed-independent circuits. Additionally, it revisits the notion of branching bisim-

ilarity to characterize systems that are behaviorally equivalent. Some of the following

definitions only become important in Chapter 5, but are included here as reference.

4.4.1 Boolean Functions

An incompletely specified function (ISF) is a functional mapping F : B→ {0, 1,−},
where B = {0, 1} and ’−’ represents the don’t care (DC) value. The subsets of Bn in

which F has the 0, 1 and DC values are called the OFF-, ON- and DC-set, respectively.

Let F (x1, x2, . . . , xn) be a Boolean function of n Boolean variables. The set

X = {x1, x2, ..., xn} is the support of the function F. A variable xi ∈ X is essential

Chapter 4. State encoding of asynchronous controllers 51

for function F if there exist at least two elements of Bn, v1 and v2, that only differ on

the value of xi, such that F (v1) = 0 and F (v2) = 1.

4.4.2 Asynchronous Labeled Transition System

Most works about state-based encoding for asynchronous circuits use State Graphs (SG).

In this thesis we prefer to use the name Asynchronous Labeled Transition System, as

it better conveys the notion that they are based on the LTS formalism. Either way

they can be derived from higher-level formalisms such as STGs or BM machines. An

Asynchronous Labeled Transition System (ALTS) is a 4-tuple A = (S,Σ, T, s0) where:

• S is a finite non-empty set of states.

• Σ = In∪Out∪ Int is the set of signals, with In, Out and Int being disjoint sets

of input, output and internal signals, respectively.

• T ⊂ S × Lτ (Σ)× S is the set of transitions, with

– L(Σ) = Σ× {+,−}

– Lτ (Σ) = L(Σ) ∪ {τ}

– For every (s, a, s′) ∈ T , s 6= s′

– At most one transition (s, a, s′) ∈ T exists between s and s′.

• s0 is the initial state.

Henceforth, we will also assume that all states in S are reachable from s0. The label

τ is used to represent a silent (non-observable) event. A τ -free ALTS is an ALTS in

which there is no transition with label τ . This is an important property for state-based

encoding tools, such as the one presented in this chapter. These tools require either

a τ -free ALTS or all τ transitions to be inert, i.e., can be hidden while preserving the

behavior of the specification.

We denote (s, a, s′) ∈ T by s
a−→ s′, where a ∈ Lτ (Σ) is an event (possibly silent).

Rising and falling transitions of signal a ∈ Σ between states s and s′ are represented

by s
a+−−→ s′ and s

a−−−→ s′, respectively. We will sometimes refer to s
a±−−→ s′ as a generic

transition of signal a.

We will refer to events that possibly have arbitrarily many τ events interleaved.

We use s
a

=⇒ s′ as a possibly empty (ε) sequence of transitions with the trace τ∗a. In

particular, if s
ε

=⇒ s′ (empty transition) then s = s′. Additionally, α ∈ Lτ (Σ)∗ denotes

a sequence of (possibly empty) events, with α = a1a2 . . . an and s
α−→ s′ the sequence of

transitions that leads from s to s′ by following the events of α. If s
α
=⇒ s′, then τ events

may be interleaved between events in the form τ∗a1τ
∗a2τ

∗ . . . an.

52 Chapter 4. State encoding of asynchronous controllers

An event a is enabled in state s if there is a transition s
a−→ s′ for some s′. Furthermore

a signal a is enabled in s if s
a±−−→ s′ for some s′. A sequence of events α ∈ Lτ (Σ)∗ is

enabled in state s if s
α−→ s′ for some s′.

4.4.3 Branching bisimilarity

Milner proposed observational equivalence [44] (or weak bisimilarity) as a branching time

semantics to classify systems according to their capability of being distinguishable by

an external observer under the presence of unobservable events. Branching bisimilarity

was later introduced as a stronger equivalence that preserves the branching structure of

processes [45]. The difference between both equivalences is very subtle and irrelevant in

most practical cases.

Given an ALTS A = (S,Σ, T, s0) we call a relation R ⊆ S × S a branching bisim-

ulation relation if for all s, t ∈ S such that sRt, the following conditions hold for all

a ∈ Lτ (Σ) [46]:

• If s
a−→ s′, then

– either a = τ and sRt′, or

– there is a sequence t
τ∗
=⇒ t′ such that sRt′ and t′

a−→ t′′ with s′Rt′′.

• Symmetrically, if t
a−→ t′, then

– either a = τ and sRt′, or

– there is a sequence s
τ∗
=⇒ s′ such that s′Rt and s′

a−→ s′′ with s′′Rt′.

Two states s and t are branching bisimilar, denoted by s ≈ t, if there is a branching

bisimulation R such that sRt. Two ALTSs A1 and A2 are branching bisimilar, denoted

by A1 ≈ A2 if their initial states are branching bisimilar.

4.4.4 State encoding

Signals in an ALTS implicitly assign binary codes to the state. Thus, s(a) = 1 or s(a) = 0

represent the fact that a has value 1 or 0 in state s, respectively. In particular, s
a+→ s′

implies s(a) = 0 and s′(a) = 1. Similarly, s
a−→ s′ implies s(a) = 1 and s′(a) = 0. If

s
b→ s′, with b ∈ Σ ∪ {τ}, for any b 6= a, then s(a) = s′(a). An ALTS is said to be con-

sistent if these rules can be applied to every signal and state without any contradiction.

In a consistent ALTS with Σ = {a1, a2, ..., an}, a code can be assigned to every state:

code(s) = (s(a1), s(a2), ..., s(an)).

The positive and negative excitation regions of signal a, denoted ER+
a and ER−a re-

spectively, are the sets of states in which a+ (for ER+
a) and a− (for ER−a) are enabled.

The positive and negative quiescent regions of signal a, denoted QR+
a and QR−a respec-

tively, are the sets of states in which a is not enabled and has value 1 (for QR+
a) and 0

Chapter 4. State encoding of asynchronous controllers 53

(for QR−a). For convenience we also define ERa = ER+
a ∪ ER−a and QRa = QR+

a ∪QR−a .

When referring to individual states, ER+
a (s), ER−a (s), QR+

a (s) and QR−a (s) denote that

s belongs to ER+
a , ER−a , QR+

a and QR−a respectively.

We define ONa = ER+
a ∪QR+

a and OFFa = ER−a ∪QR−a . The next-state function of

a signal defines its future value in the next stable state. Thus, an enabled signal toggles

its value, whereas a stable signal maintains its value. The next-state function for signal

a is an ISF defined as follows:

ONset(a) = ∪s∈ONacode(s)

OFFset(a) = ∪s∈OFFacode(s)

DCset(a) = Bn \ (ONset(a) ∪OFFset(a))

An ALTS satisfies the Unique State Coding (USC) property if every state is assigned

a unique binary code, i.e.,

∀s, s′ ∈ S : s 6= s′ =⇒ code(s) 6= code(s′)

An ALTS satisfies the Complete State Coding (CSC) property if the next-state

function for any non-input signal is well defined, i.e.,

∀s,s′ ∈ S, ∀a ∈ Out ∪ Int : (s ∈ ONa ∧ s′ ∈ OFFa) =⇒ code(s) 6= code(s′)

The CSC property is a necessary condition for a specification to be implementable

as a circuit. If the previous condition does not apply for the states s, s′ and signal a,

we say that there is a CSC conflict between s and s′. Furthermore, we say that a has a

CSC conflict in s, s′ when:

CSCa(s, s
′) =⇒ code(s) = code(s′) ∧ (s ∈ ONa ∧ s′ ∈ OFFa)

Finally, the number of CSC conflicts for signal a is defined as the number of pairs of

states s, s′ such that a is in CSC conflict.

4.4.5 Speed independence and conflicts

From [44], an ALTS A = (S,Σ, T, s0) is weakly deterministic if, for every state s ∈ S and

for every sequence of events α ∈ Lτ (Σ)∗, whenever s1
α
=⇒ s2 and s1

α
=⇒ s3 then s2 ≈ s3.

For the rest of the thesis, the term determinism will refer to weak determinism.

A signal a triggers another signal b if there is a transition s
a±→ s′ such that b is

enabled in s′ and not enabled in s. Conversely, a disables b if b is enabled in s and not

in s′. An ALTS is said to be output persistent if for any pair of signals a and b such

that a disables b, then both a and b are input signals.

54 Chapter 4. State encoding of asynchronous controllers

Figure 4.10: ALTS with CSC conflicts.

An ALTS is said to be commutative if for any state s in which s
ab−→ s′ and s

ba−→ s′′,

then s′ = s′′.

A Well-Formed ALTS (WF-ALTS) is an ALTS such that is deterministic, com-

mutative and output persistent. An important result on speed independence is the

following [40]:

A WF-ALTS that satisfies the CSC property is implementable as a speed-

independent circuit.

An additional important property is input-properness. An ALTS is input-proper if

no internal signal triggers any input signal. This guarantees that the behavior of the

environment does not depend on any unobservable signal of the circuit.

A signal a is said to be in conflict if there is another signal b such that either a

disables b or b disables a. We say that σ is a conflict-free set of signals if every signal

a ∈ σ is not in conflict.

Solving the state encoding problem is based on inserting new signals to disambiguate

CSC violations. The insertion of new signals proposed in this thesis preserves the con-

ditions for speed-independence and input-properness.

4.4.6 Example

Figure 4.10 depicts an ALTS with five input signals (a, . . . , e) and two output signals

(y, z). The pairs of states (s1, s5) with code abcdeyz = 1000000 and (s10, s14) with code

0100000 are in CSC conflict, since the states of each pair share the code but differ in

the onset for y and z.

There are two signals in conflict, a and b, since they disable each other at state s0.

The ALTS is a WF-ALTS since it is deterministic, output persistent and commutative.

4.4.7 Signal Insertion

The insertion of a new internal signal is now described. This transformation is always

applied to a τ -free WF-ALTS. In this chapter we assume that an ALTS is a τ -free

Chapter 4. State encoding of asynchronous controllers 55

WF-ALTS whenever we insert a new signal. Signal insertion was proposed in [40, 47]

and proved to preserve trace equivalence when the new inserted signal is silent. Since

WF-ALTS are also deterministic, signal insertion also preserves branching bisimilar-

ity [48].

Henceforth, the new inserted signal will be named x /∈ Σ, whereas the signals from

the original ALTS will be named a, b ∈ Σ. The signal insertion process requires all

states in S to be partitioned into four sets1: ER+, ER−, QR+ and QR−. These sets will

determine the future ERs and QRs of x.

After inserting signal x, some transitions will be delayed (triggered) by x. These are

the transitions that exit ER:

EXIT ={s a→ s′ | (ER+(s) ∧ ¬ER+(s′)) ∨ (ER−(s) ∧ ¬ER−(s′))}

Some other transitions will become concurrent with x. These are transitions that will

remain inside ER:

CONC ={s a→ s′ | (ER+(s) ∧ ER+(s′)) ∨ (ER−(s) ∧ ER−(s′))}

The set of new states created by the insertion of x is called Ŝ. For every state s ∈ ER

a new sibling state ŝ ∈ Ŝ is added. New transitions are also added with the new states.

In particular, the new sets of transitions are:

Tx ={s x+−−→ ŝ : s ∈ ER+} ∪ {s x−−−→ ŝ : s ∈ ER−}
Td ={ŝ a−→ s′ : s

a−→ s′ ∈ EXIT}
Tc ={ŝ a−→ ŝ′ : s

a−→ s′ ∈ CONC}

with Tx referring to the transitions between siblings, Td to the delayed transitions and

Tc to the concurrent transitions.

The new ALTS (S′,Σ′, T ′, s′0), obtained after the insertion of x in the original ALTS

(S,Σ, T, s0) is defined as:

• s′0 = s0

• S′ = S ∪ Ŝ

• T ′ = (T ∪ Tx ∪ Td ∪ Tc) \ EXIT

• Σ′ = Σ ∪ {x}

Figure 4.11 shows an example of signal insertion on a fragment of an ALTS. On the

left, the figure shows the ALTS before signal insertion in which every state has been

1When no subscript is specified in the sets, they are assumed to refer to the new inserted signal.

56 Chapter 4. State encoding of asynchronous controllers

s1ER+

s2QR+ s3 ER−

s4 ER− s1 ŝ1

s2 s3 ŝ3

s4 ŝ4

a+

b−
c+

x+

a+

b−
c+

x−

x−

c+

Figure 4.11: ALTS before and after signal insertion.

a
b dQR+ QR-

ER-
ER+

f

h

c

e

a
b

d
QR+ QR-

ER-
ER+

f

h

c

e

b c

x+ x+ x+

x-

g

g

Figure 4.12: Partitioning of the state space into the ER and QR regions of x before
(left) and after (right) the insertion.

tagged with one of the ERs or QRs of x. On the right, states in the ER of x have been

duplicated and the new transitions defined accordingly.

A generic view of signal insertion is depicted in Figure 4.12. On the left, the partition

of S into the four ER/QR regions of x is shown. On the right, the state space after

adding the sibling states is shown.

4.5 SAT formula for the signal insertion problem

The SAT formulation is inspired by the work in [41]. The main difference with respect to

the proposed technique is that the CSC problem is solved by inserting signals sequentially

rather than inserting all signals at once. This strategy explores a larger space of solutions,

since it allows one internal signal to trigger another internal signal. This enables the

generation of solutions that cannot be found by the approach in [41].

Signal insertion is based on partitioning the set of states into four subsets as described

in the previous section. The SAT formula encodes this partitioning. Additionally, it also

encodes the properties for speed-independent implementability: consistency, persistence

and input-properness. It is assumed that the original ALTS are τ -free WF-ALTS.

Chapter 4. State encoding of asynchronous controllers 57

ER+ QR+

QR− ER−

ER+ QR+

QR− ER−

Figure 4.13: Consistent (left) and inconsistent (right) transitions.

4.5.1 Boolean variables

Two variables are defined for every state s: v1(s) and v2(s). They encode the member-

ship of s to one of the ER/QR regions of x. The encoding used in this work is:

ER+(s) = v1(s) ∧ v2(s) ER−(s) = v1(s) ∧ ¬v2(s)

QR+(s) = ¬v1(s) ∧ v2(s) QR−(s) = ¬v1(s) ∧ ¬v2(s)

The total number of variables is 2 × |S|. Additional variables, will be required for

optimization purposes (see Section 4.6).

4.5.2 Consistency

Constraints to ensure the consistency of x (i.e., x+ and x− alternate) must be included

in the SAT formula. That means that all paths across the ALTS must visit the insertion

regions in the order2 ER+ → QR+ → ER− → QR− → ER+ → · · · . Figure 4.13 shows

the legal transitions between sets (left) and the illegal transitions (right). The constraint

can be formulated as:

∀s1 → s2 ∈ T :

¬(QR−(s1) ∧QR+(s2)) ∧ ¬(QR−(s1) ∧ ER−(s2))∧
¬(QR+(s1) ∧QR−(s2)) ∧ ¬(QR+(s1) ∧ ER+(s2))∧
¬(ER+(s1) ∧QR−(s2)) ∧ ¬(ER−(s1) ∧QR+(s2))

4.5.3 Persistence

The insertion of a new signal must guarantee that no new non-persistence is introduced.

For that, it suffices to look at diamonds of concurrent transitions [40, 41]. Figure 4.14

(left) depicts a diamond with a possible assignment of ER/QR regions for signal inser-

tion. On the right, the result after signal insertion is shown. It can be noticed that this

insertion does not maintain persistence, e.g., a is enabled in s1 but not in s3.

2Transitions ER+ → ER− and ER− → ER+ are also possible.

58 Chapter 4. State encoding of asynchronous controllers

s1QR−

s2

ER+

s3ER+

s4QR+

a
b

b
a

s1

s2s′2 s3 s′3
s4

a b

x+ x+

b a

Figure 4.14: Non-persistent signal insertion.

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

a b

b a

Figure 4.15: Persistent insertions are circled on the left. Non-persistent inser-
tions are shadowed in gray.

Figure 4.15 shows all possible allocations of ERs in a diamond. The circled states

identify the ER for insertion. Circled regions preserve persistence, whereas shadowed

regions do not.

For each diamond s1
a→ s2

b→ s4 and s1
b→ s3

a→ s4, persistence can be formulated

with the following three constraints:

ER+(s1) ∧ ER+(s4) ⇒ ER+(s2) ∧ ER+(s3)

¬ER+(s1) ∧ ¬ER+(s4) ⇒ ¬ER+(s2) ∧ ¬ER+(s3)

ER+(s2) ∧ ER+(s3) ⇒ ER+(s4)

Similar clauses apply for ER−.

Chapter 4. State encoding of asynchronous controllers 59

4.5.4 Input-properness

Input-properness is guaranteed by forbidding x to trigger an input signal, i.e., not al-

lowing any input transitions to exit ER. Formally, for each s1
a→ s2, such that a is an

input event:

(ER+(s1)⇒ ER+(s2)) ∧ (ER−(s1)⇒ ER−(s2))

4.6 Pseudo-Boolean formula for optimization

This section introduces the optimization part of the SAT formula for generating high-

quality solutions. Optimization is performed by defining a cost function as a linear

combination of Boolean variables. This function biases the explored solutions towards

disambiguating CSC conflicts with low logic cost. Methods for Pseudo-Boolean opti-

mization can be used to formulate the problem with a linear cost function and still

using SAT solving engines [43].

4.6.1 Reduction of CSC Conflicts

After the insertion of a signal x, some of the CSC conflicts will be solved and some

will not. We next propose a formulation to quantify the remaining conflicts after the

insertion.

Let us call CSCpairs the sets of pairs of states with CSC conflicts. For each pair

(si, sj) in the previous set we define a new variable ci,j that denotes whether a CSC

conflict remains after signal insertion.

A CSC conflict is solved for (si, sj) if the two states have a different value for x. This

requires both states to be in different QRs of x. Notice that the presence in some ER

means that sibling states would be created that would inherit the original CSC conflict.

Thus, for any (si, sj) ∈ CSCpairs:

¬ci,j ⇔ [QR−(si) ∧QR+(sj)] ∨ [QR+(si) ∧QR−(sj)]

USC conflicts may also become CSC conflicts after signal insertion (they are called

secondary conflicts). They occur when two states still have the same code and x becomes

enabled in one of them but not in the other one. While this can be easily modelled as

a Boolean formula, these conflicts have a very minor impact and can be ignored in

practice.

The total number of conflicts (minus secondary conflicts) that will remain after

inserting x can be easily computed as:

Conf =
∑

(si,sj)∈CSCpairs

ci,j .

60 Chapter 4. State encoding of asynchronous controllers

4.6.2 Estimation of logic: essential literals

The encoding for essential literals is the most elaborate of the ones presented here. Before

giving the final encoding, we first need to introduce a series of predicates. Henceforth,

the suffix ± is used to indistinctly refer to the positive and negative regions.

The next predicate indicates that a transition in the original SG is delayed by x

after its insertion:

Delx(s, a) ≡ ∃s a−→ s′ : s→ s′ ∈ EXIT

It can also be interpreted as “x is a trigger of a in s”. The following predicates

encode the ERs and QRs in the new ALTS based on the original one. The ̂ symbol

indicates that the region refers to the new ALTS after inserting signal x:

Q̂R
+

a (s) = QR+
a (s) ∨ (ER−a (s) ∧Delx(s, a))

Q̂R
−
a (s) = QR−a (s) ∨ (ER+

a (s) ∧Delx(s, a))

Q̂R
±
a (ŝ) = QR±a (s)

ÊR
±
a (s) = ER±a (s) ∧ ¬Delx(s, a)

ÊR
±
a (ŝ) = ER±a (s) ∧ ER±x (s)

Q̂R
±
x (s) = QR±x (s)

Q̂R
±
x (ŝ) = ER±x (s)

ÊR
±
x (s) = ER±x (s)

ÊR
±
x (ŝ) = False

We will use the predicates ÔNy(s) and ÔFFy(s) to denote the fact that state s

belongs to the on- and off-set of signal y, respectively, after the insertion of signal x.

They are defined as:

ÔNy(s) = ÊR
+

y (s) ∨ Q̂R
+

y (s)

ÔFFy(s) = ÊR
−
y (s) ∨ Q̂R

−
y (s)

The following predicates define the encoding of x in a state s after signal insertion:

ÔNEy(s) = ÊR
−
y (s) ∨ Q̂R

+

y (s)

ẐEROy(s) = ÊR
+

y (s) ∨ Q̂R
−
y (s)

ÊQy(s1, s2) = ẐEROy(s1) ∧ ẐEROy(s2) ∨ ÔNEy(s1) ∧ ÔNEy(s2)

Chapter 4. State encoding of asynchronous controllers 61

The Hamming distance between the binary encodings of the encoding of two states,

s1 and s2, before the insertion of signal x is defined as:

d(s1, s2) =
∑
a∈Σ

(s1(a) 6= s2(a)).

Moreover, we define the Boolean predicate d̂1(s1, s2) to be true if the Hamming

distance after the insertion of x is one. This is defined as:

d̂1(s1, s2) ≡


False if d(s1, s2) > 1

ÊQY (s1, s2) if d(s1, s2) = 1

¬ÊQY (s1, s2) if d(s1, s2) = 0

This predicate can also be extended and used for sibling states, e.g., d̂1(s1, ŝ2).

The basic condition for a signal z becoming an essential literal for signal y is as fol-

lows: there must be a pair of states s1 ∈ ÔNy(s) and s2 ∈ ÔFFy(s), such that d̂1(s1, s2)

and s1(z) 6= s2(z). We can also distinguish between positive and negative essential lit-

erals depending on the polarity of the essential literal z with regard to y.

We can now define the basic predicate that represents the fact that two states (or

their siblings) with Hamming distance one can be at the on/off-set of y after the signal

insertion:

D1(s1, s2, y) ≡ (d̂1(s1, s2) ∧ ÔNy(s1) ∧ ÔFFy(s2))∨
(d̂1(ŝ1, s2) ∧ ÔNy(ŝ1) ∧ ÔFFy(s2))∨
(d̂1(s1, ŝ2) ∧ ÔNy(s1) ∧ ÔFFy(ŝ2))∨
(d̂1(ŝ1, ŝ2) ∧ ÔNy(ŝ1) ∧ ÔFFy(ŝ2))

Next, the constraint for essential literals is defined, where E+
z→y and E−z→y are new

Boolean variables that represent the fact that z is a positive and negative essential

literal for y, respectively.

∀s1, s2 ∈ S :(
D1(s1, s2, y) ∧ s1(z) = 1 ∧ s2(z) = 0⇒ E+

z→y
)
∧(

D1(s1, s2, y) ∧ s1(z) = 0 ∧ s2(z) = 1⇒ E−z→y
)

The number of essential literals after the insertion of x can now be computed as:

EssLit =
∑

y,z∈Σ∪{x}

E+
z→y + E−z→y

62 Chapter 4. State encoding of asynchronous controllers

4.6.3 Don’t Care set

A large DC-set increases the opportunities for logic minimization. After the insertion

of the new signal, the size of the DC-set depends on the amount of new sibling states,

which is determined by the size of the ERs for signal x. A simple way for estimating

their size is to count the signals that are concurrent with x after the insertion.

The variables conca+ and conca− indicate whether there is a transition a+ or a−,

concurrent with x. The following predicates represent the concurrent events with x:

∀s1
a+−−→ s2 : (ER+(s1) ∧ ER+(s2)) ∨ (ER−(s1) ∧ ER−(s2))⇒ conca+

∀s1
a−−−→ s2 : (ER+(s1) ∧ ER+(s2)) ∨ (ER−(s1) ∧ ER−(s2))⇒ conca−

The number of concurrent signals, highly correlated with the size of the ERx, is thus

computed as:

ERsize =
∑
a∈Σ

(conca+ + conca−)

4.6.4 Entry points

We say that s is an entry point (EP) for ER+
x if s ∈ ER+

x and all its predecessor states

are outside ER+
x (similarly for ER−x). The events leading to EPs determine the trigger

signals of x. Thus, reducing the number of EPs also contributes to reduce the causality

relations with the remaining signals of the circuit. We have observed that penalizing

the amount of EPs helps to find solutions with simpler logic.

For each state s, we define the variable ep(s) that determines whether s is an EP for

x:

∀si → sj :
(
¬ER+(si) ∧ ER+(sj)

)
∨
(
¬ER−(si) ∧ ER−(sj)

)
=⇒ ep(sj)

The number of entry points can now be computed by:

numEP =
∑
s∈S

ep(s)

4.6.5 Cost function

The multiobjective cost function used to estimate the quality of a solution is defined as:

Cost = α · Conf + β · EssLit + γ · numEP + δ · ERsize (4.1)

with α, β, γ, δ being adjustable coefficients.

Chapter 4. State encoding of asynchronous controllers 63

This function needs to be encoded as a SAT formula. The larger the coefficients, the

more complex the formula. This affects the runtime dramatically and limits the range

of values that can be used in practice.

We found that weights ≤ 3 produce good results with reasonable execution times.

Having a diversity of cost functions with different coefficients also contributes to a

wider exploration of solutions. In our experiments we have also generated results by

exercising a small set of cost functions and selecting the best solution. This strategy

will be further discussed in Section 4.9.

4.7 SAT-based optimization algorithm

The optimization algorithm iteratively tries to insert new signals (one at a time) into the

ALTS until CSC is solved or no satisfiable solution is found. The core of the algorithm is

the function findModelForOneSignal, which returns a model that encodes the definition

of the ER±/QR± regions for the insertion of a new signal.

Algorithm 4 sketches the procedure to find a solution for signal insertion using

pseudo-Boolean optimization. The cost function (4.1) is encoded as a set of SAT

clauses [49]. The function is minimized by iteratively constraining the formula until

it becomes unsatisfiable. If a model with Cost = k is found in one iteration, the con-

straint Cost < k is encoded and added for the next iteration. This strategy speeds-up

the optimization by taking advantage of the clauses learned by the SAT solver from the

previous iterations [49].

A binary search on the value of k could also be possible, but it cannot take advantage

of the learned clauses. We have not observed a clear benefit when using binary search.

Algorithm 4: findModelForOneSignal(G)

input : An SG with CSC conflicts.
output: A SAT model for signal insertion.
begin

CNF = encodeCSCconstraints(G)
model = SATsolver(CNF)
bestModel = model
while isSatisfiable(model) do

k = getCost(model)
addClausesForCost(CNF, Cost < k)
model = SATsolver(CNF)
if isSatisfiable(model) then bestModel = model

return bestModel

The PBLib [50] toolkit was used for the encoding of Pseudo-Boolean constraints and

solving the SAT formulas. Internally, PBLib uses Minisat [51] as SAT solver.

64 Chapter 4. State encoding of asynchronous controllers

(a) Original STG (b) MPSAT

(c) Petrify (d) Pbase

Figure 4.16: 4-phase latch controller L220oR2242 (from [53]). State encoding solu-
tions obtained by different tools.

4.8 Comparison with previous art

We next discuss the main differences with the most relevant approaches proposed for

asynchronous controllers working in input/output mode. We can distinguish two main

categories:

• Structural methods working at Petri net level, such as MPSAT [42] (based on

unfoldings) and structural methods using integer-linear programming [52].

• State-based methods, such as petrify [40] and a previous SAT-based approach [41].

We will use the example of Figure 4.16, depicting one of the 4-phase latch con-

trollers presented in [53], to discuss the differences among tools. This figure includes

the approach presented here, that will from now on be referred to as Pbase. The logic

equations for each solution are the following:

MPSAT Petrify Pbase

la = x2(rr+x̄1)+x3 x̄1 x̄1

rr = x2 lr x̄1+x3 x2+rr x̄1 (x̄1 ra)+rr x̄1

x1 = x̄2 lr+x1(ra+x̄3) (x̄2 rr)+x1+ l̄r (ra rr lr)+x1(rr lr)

x2 = (x3+x1)+x2 lr ra(x̄1+lr)+x2 lr

x3 = (x2x1ra)+x3x̄1

Regarding the exploration of insertion points for the new signals, the main limitation

of the structural methods is that the original specification acts as a corset. The new

Chapter 4. State encoding of asynchronous controllers 65

events must be anchored in existing nodes of the Petri net (or its unfolding). If two

different Petri nets have the same reachability graph, the space of solutions is also

different and a subset of the solutions available at ALTS level. Moreover, the insertion

must be done in such a way that the causality relations can be expressed with the

semantics of a Petri net. In Figure 4.16, the MPSAT solution requires three new signals

and 22 literals. The reader can intuitively perceive that the new events have simple

causality relations. This phenomenon also occurs for the ILP-based method proposed

in [52].

Petrify is a special case. The insertion of signals is done at state level, however the

sets of states for insertion are built based on combinations of regions (that correspond

to Petri net places). Petrify only uses simple combinations of regions that prevent the

exploration of intricate solutions that could potentially be better. It requires two signals

and 13 literals.

Pbase provides the most efficient solution, with only one signal and 11 literals.

Notice that the two new events have multiple causality relations (two input and two

output arcs). Although the figure shows a Petri net, these relations are naturally found

at state level ignoring the model of the original specification. In this particular case, the

solution was representable as a nice Petri net.

With regard to the estimation of logic, structural methods are mostly based on

finding trigger relations between events. This gives a lower bound on the number of

literals, although it is less accurate than the estimation given by essential literals.

The SAT-based approach presented in [41] has two main limitations. First, all new

signals are inserted simultaneously and cannot have mutual trigger relations between

them. Second, the approach is simply based on finding valid solutions without any

estimation of the logic cost. The solutions provided by this approach are significantly

worse than the ones generated by the other tools discussed in this section.

4.9 Experimental results

This section shows the experimantal results for Pbase and a comparison with Petrify

and MPSAT. Additionally, we have re-implemented the approach from [41] (referred to

as SAT), and included it as a baseline.

We have used a large diversity of benchmarks from the literature and all the 4-phase

latch controllers presented in [53] (127 out of 137 had CSC conflicts). The solutions for

all benchmarks can be found in [54].

Table 4.1 shows the results for a variety of heterogeneous controllers. The column

Signals/Literals reports the number of state signals that were inserted and the number

of literals of the Boolean equations (in factored form) after logic synthesis. CPU(sec)

reports the CPU time required to solve CSC. The number of states of the SG is in column

66 Chapter 4. State encoding of asynchronous controllers

|S|. The I/O column contains the number of input/output signals of the SG. This table

compares results between Petrify, MPSAT and two versions of Pbase, single and multi,

using different versions of the (α, β, γ, δ) coefficients for optimization function (4.1):

• Pbase(single): using the coefficients (2,1,3,2).

• Pbase(multi): using multiple different values for the coefficients and choosing

the best solution. The set of coefficients were (0,1,1,1), (3,2,2,0), (3,1,1,0) and

(1,0,1,1), besides the one used for Pbase(single).

Pbase(multi) explores a larger variety of solutions at the expense of computational

time. It also uses a fast heuristic in the first iteration to be able to solve larger problems.

A 10-minute timeout is set up and the best solution found when the timeout expires

is returned. The combination of the fast heuristic with the timeout allows to solve

problems that could not be solved with the simpler version.

In some cases, the tools were not able to complete the task. These cases are reported

with one of the following codes:

• Unsf: Unsafe Petri nets. MPSAT is unable to solve them.

• Fail: The tool was unable to find a solution.

• Time: No solution found in less than 1 hour.

A summary of the results for Table 4.1 can be found in Table 4.2, including the

results for SAT [41]. This table presents a comparison between Pbase(multi) and the

other tools. Row Solved reports the number of solved instances. The remaining data in

the table only report the total results for the benchmarks that were solved by both tools

under comparison. Results for those not solved by both were ignored in the summary.

The CPU time is divided into 3 groups as a function of problem size (see Table 4.3

for the group division). This puts into scale the amount of time used for the largest

problems. The final row reports the ratio of literals obtained by any pair of tools taking

the other tools as a reference.

SAT gives the lowest-quality solutions, as it does not include any quality estimator in

the model, while Pbase outperforms the other methods, with an average improvement

of 13% in the number of literals with regard to petrify. Pbase(multi) offers a tangible

improvements with regard to Pbase(single). However, this comes at the expense of a

higher computational cost. Section 4.9.1 discusses this problem.

Interestingly, one of the tiniest and most difficult problems for state encoding

(buf unsafe.1), was only solved by Pbase. It required 5 state signals and the SG

was expanded from 12 states to 69 after signal insertion.

Table 4.4 reports the summary of results for the 127 4-phase latch controllers [53]

without CSC. Even though all benchmarks were small, only Petrify and Pbase could

Chapter 4. State encoding of asynchronous controllers 67

Table 4.1: Experimental results for Petrify (Pfy), MPSAT (MP), Pbase(single)
(PB(s)) and Pbase(multi) (PB(m)).

CPU(sec) Signals/Literals
Example I/O |S| Pfy MP PB(s) PB(m) Pfy MP PB(s) PB(m)

adc.buff1 0/2 6 0.4 0.9 0.3 5.4 2/9 2/9 2/11 2/9
adfast 3/3 44 1.2 0.1 5.6 16.0 2/14 2/21 2/14 2/14
alloc-outbound 4/3 17 0.2 0.1 0.8 7.3 2/16 2/17 2/16 2/16
buf2 0/2 8 0.1 Unsf 0.8 7.9 3/14 -/- 3/15 3/13
buf dum.1 0/2 8 0.1 0.1 0.8 6.8 3/14 3/15 3/15 3/13
buf unsafe.1 0/2 12 Fail Unsf 5.3 23.3 -/- -/- 5/26 5/26
c10 0/10 2046 Time Fail 32.7 136.7 -/- -/- 1/31 1/31
c6 0/6 126 4.2 0.8 1.1 6.9 1/19 1/19 1/19 1/19
csc-div1 0/2 8 0.0 0.1 0.1 4.7 1/16 1/16 1/16 1/16
duplicator 2/2 20 0.4 0.1 0.5 5.9 2/18 2/13 2/13 2/13
future 4/4 36 1.0 0.2 0.4 6.0 1/18 3/33 1/18 1/18
glc 2/1 17 0.1 0.1 0.1 4.9 1/10 1/11 1/10 1/10
ircv-bm 5/4 44 5.8 0.4 9.8 39.9 2/37 2/31 2/35 2/28
isend 4/3 36 4.2 0.4 4.4 23.8 3/48 3/34 3/29 2/29
lazy ring.noncsc 5/3 160 1.7 0.4 27.6 53.9 1/24 2/29 1/22 1/20
master-read 6/7 8932 54.6 Fail Time Time 8/68 -/- -/- -/-
master-read2 0/13 8932 26.3 15.5 Time Time 6/70 5/75 -/- -/-
master-read.1098 6/7 1098 9.7 3.3 Time 537.3 4/57 6/43 -/- 5/41
mmu0 4/4 174 2.7 0.1 89.1 198.3 3/29 3/28 3/28 3/26
mmu1 4/4 82 1.1 0.2 8.1 27.1 2/32 2/25 2/25 2/23
mod4 counter 1/2 16 0.1 0.1 0.3 8.0 2/26 2/25 2/26 2/26
mr0 5/6 302 4.4 0.4 Time 600.2 3/45 4/29 -/- 4/33
mr1 4/5 190 3.4 0.6 91.6 201.7 4/35 4/31 3/26 3/25
nak-pa 4/5 56 0.7 0.1 0.7 9.0 1/18 1/18 1/18 1/16
nowick 3/2 18 0.2 0.1 0.2 5.4 1/13 1/13 1/13 1/13
par2 3/3 28 0.2 0.1 4.4 12.9 2/16 2/16 2/16 2/16
par4 5/5 628 3.9 0.2 Time 544.6 4/32 4/32 -/- 4/32
pla 0/3 12 0.1 0.1 0.2 4.5 1/14 2/16 1/14 1/14
ram-read-sbuf 5/5 36 1.8 0.1 1.2 10.3 1/18 1/19 1/22 1/18
read write 7/4 322 2.0 0.2 79.1 164.8 1/24 1/26 1/24 1/24
sbuf-ram-write 5/5 58 5.0 0.2 9.1 24.1 2/22 2/31 2/23 2/21
sbuf-read-ctl 2/4 14 0.1 0.2 0.2 4.5 1/15 1/15 1/15 1/15
seq2 3/3 12 0.1 0.1 0.1 3.0 1/8 1/8 1/8 1/8
seq3 4/4 16 0.5 0.1 0.6 6.9 2/14 2/14 2/14 2/14
seq4 5/5 20 1.3 0.2 1.4 8.3 3/20 3/20 2/19 2/19
seq8 9/9 36 4.7 1.1 108.7 302.6 4/47 7/44 3/44 3/37
seq-mix 4/4 20 1.1 0.2 2.2 10.8 3/20 3/20 3/18 2/18
sis-master-read 6/7 1882 3.3 0.3 Time 309.3 1/38 1/40 -/- 1/39
trcv-bm 5/4 44 8.7 0.3 7.6 35.3 2/37 2/32 2/31 2/31
tsend-bm 5/4 40 4.6 0.2 7.9 21.0 2/39 2/27 3/34 1/28
vbe4a.nousc 3/3 58 1.4 0.2 5.1 21.1 3/26 4/23 3/18 3/16
vbe5a 3/3 44 0.9 0.1 4.2 15.0 2/14 2/21 2/14 2/14
vbe6a.nousc 4/4 128 1.1 0.2 41.0 114.4 3/31 2/30 2/30 2/30
vbe6x.nousc 3/3 48 0.4 0.2 4.4 17.3 2/22 2/22 2/23 2/22
vme read 8/6 251 4.0 0.1 16.2 39.0 1/32 1/33 1/30 1/30
vme read write 3/3 28 0.3 0.3 1.0 8.6 1/23 2/27 1/22 1/22
vme write 8/6 817 7.8 0.2 Time 602.1 1/38 1/38 -/- 1/35
vmebus 3/3 24 0.8 0.2 0.5 7.2 1/19 2/28 1/19 1/19

68 Chapter 4. State encoding of asynchronous controllers

Table 4.2: Summary for the benchmarks in Table 4.1.

Pfy PB(m) MP PB(m) SAT PB(m) PB(s) PB(m)

Solved 46 46 44 46 43 46 41 46
CPU (small) 13 163 4 155 0 148 26 186
CPU (medium) 30 226 2 226 0 226 62 226
CPU (large) 53 3675 8 3675 73 3812 487 1218
Signals 88 83 97 80 72 78 78 74

Literals 1081 943 1042 930 1938 948 864 820
Ratio 1.00 0.87 1.00 0.89 1.00 0.49 1.00 0.95

Table 4.3: Average CPU time for different SG sizes.

Avg. CPU (s)

Size Condition n PB(s) PB(m)

small |S| < 40 ∧ |Σ| ≤ 15 22 1.2 8.5
medium 40 ≤ |S| < 100 ∧ |Σ| ≤ 15 10 6.2 22.6
large |S| ≥ 100 ∨ |Σ| > 15 9(s)/14(m) 54.1 272.3

Table 4.4: Summary for the 127 4-phase latch controllers.

Pfy PB(m) MP PB(m) SAT PB(m) PB(s) PB(m)

Solved 127 127 72 127 85 127 127 127
CPU (sec) 41 928 11 347 1 430 118 928
Signals 231 207 111 84 110 110 207 207

Literals 1818 1550 952 778 1386 943 1593 1550
Ratio 1.00 0.85 1.00 0.82 1.00 0.68 1.00 0.97

solve all of them. Since many of them were specified as unsafe Petri nets, MPSAT

could not handle them. SAT also failed in many examples due to the impossibility of

inserting state signals with causality relations among them. This feature was essential

for the other methods to solve some of the examples. The results for both tables show

an average reduction of 14% in literals when compared to petrify.

4.9.1 Scalability

A major concern is scalability with the size of the SG. The main reason for the increase

of the CPU time is the size of the SAT formula, which is mainly dominated by the

clauses representing the cost function (Pseudo-Boolean constraints).

Table 4.3 reports the average execution times for the benchmarks classified in three

categories according to the number of states (|S|) and signals (|Σ|) of the ALTS (n

reports the number of instances in each class). While the runtime is low for small

examples, it drastically increases for large ALTS.

Chapter 5 focuses on this particular problem by introducing a technique to reduce

the size of the ALTS.

Chapter 4. State encoding of asynchronous controllers 69

4.10 Conclusions

This chapter has introduced a novel approach for state encoding based on Pseudo-

Boolean optimization. The approach allows to encode any valid solution as well as

estimators of logic complexity. The results show a significant reduction in the number

of literals with respect to the existing tools.

Scalability for large controllers poses a challenge that is addressed in the following

chapter.

The exploration of solutions trading-off performance and complexity is an aspect that

remains to be addressed to reduce the input/output response time of the controllers.

Chapter 5

State encoding for large

asynchronous controllers

This chapter is devoted to address the challenges presented by large asynchronous con-

trollers for state encoding techniques. Typically, encoding of large controllers requires

turning to structural methods, which handle concurrency more efficiently than state-

based approaches. In contrast, the method proposed here works exclusively at the state

level. It enables state-based techniques, like the one presented in Chapter 4, to effec-

tively deal with large spaces of states. This allows keeping most of the advantages of

these methods, such as higher quality of solutions, while still performing in reasonable

execution times, even in the presence of high concurrency.

5.1 Introduction

The existing methods to solve the state encoding problem can be divided into two

categories: structural and state-based.

Structural methods have been proposed for STGs and exploit the properties of the

underlying Petri nets to avoid an explicit enumeration of the state space [42, 52]. In

state-base methods, the state space is enumerated explicitly by representing all possible

interleavings of concurrent events [8, 40]. State-based methods enable a more accurate

exploration of the space of solutions and can potentially lead to better circuits. How-

ever, they may suffer from the state explosion problem when the specification is highly

concurrent. All of this is evidenced by results reported in Chapter 4: Pbase could yield

the best results at the cost of the highest execution time.

The structural methods work directly on the graph representation of the specification

(e.g., a Petri net) or some unfolded version. They have limitations about the type of

acceptable representations, e.g., safe or free-choice Petri nets, and the locations where

the new signals can be inserted. Even for structural methods, some controllers may be

71

72 Chapter 5. State encoding for large asynchronous controllers

too large. For this reason, some techniques have been proposed to decompose a large

controller into smaller ones that can be synthesized separately [55].

One of the main problems for decomposition techniques is the appearance of irre-

ducible conflicts that cannot be solved while preserving implementability. Solutions for

that problem are suggested in [55] by introducing a structure called gyroscope that in-

serts new signals with a high degree of concurrency. However, this structure aims at

solving conflicts without paying attention at the cost of implementing the circuit, e.g.,

the complexity of the Boolean equations.

The work presented in this Chapter is encouraged by the following facts, observed

through years of experience:

• State-based methods can be superior to structural methods for the state encoding

problem. The main reason is that the exploration space for signal insertion is larger

and better estimators for good-quality solutions can be used (see Chapter 4).

• Most of the controllers are designed manually by humans and the largest specifi-

cations usually have no more than 107 states.

• The best-quality state-based methods for encoding can manage up to 103 states

with an affordable runtime.

Therefore, there is a gap of roughly 4 orders of magnitude between what is compu-

tationally affordable for state encoding and the size of large controllers.

In previous work, the decomposition into smaller sub-controllers has been pro-

posed [55]. Besides the requirement to insert the gyroscope structures to avoid irre-

ducible conflicts, the resolution of conflicts at each sub-controller is agnostic on the

behavior of the other sub-controllers. This may have a negative effect in the quality of

the solutions.

In this chapter we propose a new approach that explicitly keeps track of the complete

state space. The approach iteratively projects the behavior of the controller into subsets

of relevant signals and partially solves the encoding problem on the projections. The

new signals are incorporated into the original specification and the process is re-executed

until all encoding conflicts have been solved.

Unlike other decomposition techniques, irreducible conflicts do not pose any hurdle

for the proposed method. While a projection might cause these kind of conflicts, the

iterative nature of the projection and re-composition allows for these conflicts to be

solved in subsequent iterations.

An important aspect of the method is that the projections can be calculated effi-

ciently. Algorithms with complexity O(m log n)1 to minimize labelled transitions systems

up to some criterion of behavioral equivalence (branching bisimilarity) can be used [56].

1n and m are the number of states and transitions, respectively.

Chapter 5. State encoding for large asynchronous controllers 73

a+

c+1 d+1 c−1 d−1

b+

c+2 d+2 c−2 d−2

b− a−

(a) STG of a parallelizer.

c+1

d+1

c−1

d−1

c+2
d+2

c−2

d−2

b+

a−

b−

a+

(b) LTS of the parallelizer.

c+1
d+1 x−

1 c−1
d−1

b+
a−x+

1b−
a+

(c) Projection onto channel 1 and insertion
of signal x1.

c+2
d+2 x−

2 c−2
d−2

b+
a−x+

2b−
a+

(d) Projection onto channel 2 and insertion
of signal x2.

a+

c+1 d+1 x−
1 c−1 d−1

b+

c+2 d+2 x−
2 c−2 d−2

b− a−
x+
1

x+
2

(e) STG after state encoding.

Figure 5.1: State encoding for a parallelizer.

Thus, large controllers can still be manipulated and the state encoding problem solved

in small controllers using SAT-based methods like the one introduced in Chapter 4.

The re-composition of the system with the new inserted signals can be done via syn-

chronous products, which can have a quadratic runtime in the worst-case, but typically

run in linear time due to the high similarity of the two components.

74 Chapter 5. State encoding for large asynchronous controllers

5.2 Overview

This section sketches the main features of the method proposed in this chapter. The

example shown in Figure 5.1 will be used to illustrate the method. Figure 5.1a shows

an STG specifying the behavior of a parallelizer, which is a controller used in handshake

circuits to fork the execution of two asynchronous processes.

Signals a (input) and b (output) are the handshake signals of the channel that triggers

the activity of the parallel processes represented by the handshake signals ci (output)

and di (input).

The controller can be represented by a Petri net in a very succinct way. Yet, due to

the high level of concurrency, it suffers from the state explosion problem. This means

that the number of valid markings, corresponding to states in a labeled transition system

(LTS), grows exponentially with the number of channels. Figure 5.1b shows the LTS

representation of the same parallelizer. To quantify the state explosion, the following

table shows the number of states needed to represent a parallelizer with n processes:

Processes 2 3 4 5 6 7 8 n

Signals 6 8 10 12 14 16 18 2n+ 2

States 28 128 628 3K 16K 78K 391K 5n + 3

Let us now consider one of the channels, which follows the sequence 〈c+
i , d

+
i , c
−
i , d

−
i 〉.

The reader will notice that the states before c+
i and after d−i have the same encoding.

This conflict occurs at every channel. In this particular example, it is sufficient to

focus on each channel individually to solve the corresponding encoding conflict. Thus,

a channel can be freed from conflicts if a signal is inserted between d+
i and c−i . This

example suggests that not all the information is relevant to find a solution for certain

encoding conflicts.

In order to exploit this feature, we propose the following method:

1. Find a group of signals to be hidden and project the behavior onto the remaining

signals. For the example, a good strategy is to hide every signal except a, b, and

one of the channels (ci and di). Initially, the signals c2 and d2 are hidden while c1

and d1 are maintained.

2. Insert new signals to solve the encoding conflicts of the simplified controller. Fig-

ure 5.1c shows the projected LTS after the insertion of signal x1.

3. Recompose the full controller by doing a synchronous product between the original

controller and the simplified one with the new inserted signals.

4. If not all conflicts have been solved, go to step 1 and repeat the process using the

full controller with the new inserted signals.

Chapter 5. State encoding for large asynchronous controllers 75

In this example, the second iteration would generate the projection shown in Fig-

ure 5.1d, after hiding c1, d1 and x1. After recomposing the original LTS, the behavior

shown in the STG of Figure 5.1e would be obtained.

By hiding a well selected set of signals, an asynchronous controller can be simplified

enough so that it is possible to use state encoding techniques that can handle the full

state space.

In general, asynchronous controllers do not show behaviors as simple as the one of

the parallelizer and the automation of the process requires smart strategies to calculate

projections. This chapter presents a method to simplify arbitrary asynchronous con-

trollers and obtain small projections that can be manageable by encoding tools working

at state level.

5.3 ALTS transformations

This section describes a collection of transformations over WF-ALTSs. The purpose of

these transformations is to provide an infrastructure to insert/hide signals and recom-

pose the original specification with new signals that solve the CSC conflicts. All these

transformations must satisfy two properties:

• The behavior of the system must be preserved (branching bisimilarity).

• The implementatibility conditions must hold.

The most important result of this section indicates that the projections of the spec-

ification should never hide signals in conflict. This strategy allows to work with τ -free

WF-ALTSs when inserting new signals to solve CSC conflicts.

5.3.1 Signal Insertion

The insertion of new signals is described in detail in Chapter 4.4.7. For the purposes

of this chapter, it is important to remember that signal insertion preserves branching

bisimilarity.

5.3.2 Hiding signals

Given an LTS A = (S,Σ, T, s0), a set of signals σ can be silenced, denoted silence(A, σ),

if every event of every signal a ∈ σ is substituted by τ . Figure 5.2b shows an example

of the silence operation on Figure 5.2a for signals a and b.

We are now interested in removing the new τ transitions that appear after a silence

operation. This will yield a smaller ALTS. One of the ways of achieving this is by using

τ -priorization and τ -compression operations described in [57].

76 Chapter 5. State encoding for large asynchronous controllers

z

a

c

b

d

(a) Original

z

τ

c

τ

d

(b) Silence a, b

z

τ

τ c d

(c) τ -priorization

z c d

(d) τ -compression

Figure 5.2: Process to hide signals a and b.

a

τ

d

b

c

a

(a) Non-persistent τ transition.

a

d b

c

a

(b) Removed τ transition.

Figure 5.3: Branching bisimilarity is not preserved when removing a non-persistent
τ transition.

The τ -priorization operation consists on the following: if there is a transition s
τ−→ s′,

then any other transition s
a−→ s′′ is removed.

Intuitively, this operation assumes zero-delay τ -transitions and non-zero delay for the

other transitions. This makes the model prioritize τ ’s over other transitions. Figure 5.2c

shows the τ -priorization for the ALTS 5.2b.

The τ -compression is an operation aimed at removing sequences of τ transitions. If

a state s has only one transition, and this transition is s
τ−→ s′, then s is merged with s′.

An example for this operation can be seen in Figure 5.2d.

Important results about these operations can be found in [57]. In particular, these

operations preserve branch bisimilarity. If the τ transitions are persistent, then applying

both operations yields a τ -free ALTS.

Finally, given an ALTS A1 = (S1,Σ1, T1, s
1
0), a set of signals σ is said to be hidden

in A2 = (S2,Σ2, T2, s
2
0), denoted A2 = hide(A1, σ), if A2 is the τ -compression of the τ -

priorization of silence(A1, σ).

We can now define the concept of branch bisimilarity with respect to a set of sig-

nals. Let A1 = (S1,Σ1, T1, s
1
0), A2 = (S2,Σ2, T2, s

2
0) be two ALTS, then A1 is branching

bisimilar with respect to σ, denoted A1 ≈σ A2, iff silence(A1, σ) ≈ silence(A2, σ).

With these definitions and results we can now state that, given the τ -free WF-ALTS

A1, and A2 = hide(A1, σ), then A1 ≈σ A2. Furthermore, if σ is conflict-free, then A2 is

τ -free.

On the other hand, hiding a signal in conflict does not yield a τ -free ALTS. Fig-

ure 5.3a shows an ALTS with a non-persistent τ transition. In this case, τ -priorization

Chapter 5. State encoding for large asynchronous controllers 77

cannot be applied without breaking branching bisimilarity. The τ transition can still

be removed, as shown in Figure 5.3b, but this ALTS only preserves trace equivalence,

which is a weaker equivalence class.

5.3.3 Synchronous Product

The synchronous product of two LTSs can be defined as follows. Let

A1 = (S1,Σ1, T1, s
1
0), A2 = (S2,Σ2, T2, s

2
0) be two ALTS. The synchronous product

of A1 and A2, denoted by A1 ×A2 is another LTS (S,Σ, T, s0) defined by:

• s0 = 〈s1
0, s

2
0〉 ∈ S

• Σ = Σ1 ∪ Σ2

• S ⊆ S1 × S2 is the set of states reachable from s0 according to the following

definition of T ′:

• Let 〈s1, s2〉 ∈ S:

– If a ∈ Σ1 ∩Σ2, s1
a−→ s′1 in T1 and s2

a−→ s′2 in T2, then 〈s1, s2〉 a−→ 〈s′1, s′2〉 in T ′

– If a ∈ Σ1 \ Σ2 and s1
a−→ s′1 in T1, then 〈s1, s2〉 a−→ 〈s′1, s2〉 in T ′

– If a ∈ Σ2 \ Σ1 and s2
a−→ s′2 in T2, then 〈s1, s2〉 a−→ 〈s1, s

′
2〉 in T ′

– No other transitions belong to T ′

• T ⊆ T ′ is the set of transitions between states in S that belong to T ′.

It is necessary to note that the synchronous product preserves branching bisimilarity

in some way. In particular, the synchronous product of two ALTS that are branching

bisimilar with respect to their common signals will also be branching bisimilar to the

original ALTSs with respect to their common signals. This becomes important later to

ensure that the approach presented in this chapter preserves branching bisimilarity at

all steps. This result is formally stated by the following theorem:

Theorem 5.1. Let A1 = (S1,Σ1, T1, s
1
0), A2 = (S2,Σ2, T2, s

2
0) be two τ -free WF-ALTS,

with σ1 = Σ1 \ Σ2 and σ2 = Σ2\Σ1. Let A3 = A1 ×A2. If A1 ≈σ1∪σ2 A2 then A3 ≈σ2 A1

and A3 ≈σ1 A2.

Proof.

We will denote the set of states of Ai as Si and we will use si, s
′
i, s
′′
i , . . ., to denote different

states in Si. By construction of A3 = A1 ×A2, every state in S3 is a pair s3 = 〈s1, s2〉
with s1 ∈ S1 and s2 ∈ S2.

Let us first prove that A3 ≈σ2 A1. Consider A4 = silence(A3, σ2). Then, it suffices

to show that A1 ≈ A4.

78 Chapter 5. State encoding for large asynchronous controllers

Since A4 has the same states as A3, we can also represent every state in S4 as a pair

s4 = 〈s1, s2〉. Let us define a binary relation R between S1 and S4 as follows: for every

state s4 = 〈s1, s2〉, s1Rs4. It is trivial to see that this relation exists for every s4 ∈ S4.

Similarly, since A1 ≈σ1∪σ2 A2, it follows that by construction of the synchronous product

the relation R also exists for every s1 ∈ S1. We only need to prove that R is a branching

bisimulation, i.e.,

1) Whenever s1Rs4 and s1
a−→ s′1, then either a = τ and s′1Rs4, or there exists a path

s4
τ∗
=⇒ s′′4

a−→ s′4 such that s1Rs
′′
4 and s′1Rs

′
4.

2) Whenever s1Rs4 and s4
a−→ s′4, then either a = τ and s1Rs

′
4, or there exists a path

s1
τ∗
=⇒ s′′1

a−→ s′1 such that s′′1Rs4 and s′1Rs
′
4.

1) Since A1 is τ -free, we know that a 6= τ . If s1
a−→ s′1 and s4 = 〈s1, s2〉 then the product

also creates a state s′4 = 〈s′1, s′2〉 and a path s4
a−→ s′4. In case a /∈ Σ2, then s2 = s′2.

Therefore, τ∗ is empty and s4 = s′′4. By the definition of R, we have that s1Rs
′′
4 and

s′1Rs
′
4.

2) Let us assume s4 = 〈s1, s2〉. We need to consider two cases: a = τ and a 6= τ . If

a = τ then τ is hiding a signal in Σ2 \ Σ1. Therefore, the product generates the state

s′4 = 〈s1, s
′
2〉, since A1 does not move and, thus, s1Rs

′
4. If a 6= τ then A1 and A2 syn-

chronize with a and the product generates the state s′4 = 〈s′1, s′2〉. Therefore, the path

s1
a−→ s′1 exists in A1 and s′1Rs

′
4. Notice also that s′′1 = s1 and, thus, s′′1Rs4.

By symmetry, A3 ≈σ1 A2 can be proved identically.

5.4 CSC resolution algorithm

Intuitively, solving CSC conflicts is an iterative process with the following steps:

• Hide a subset of signals to reduce the size of the ALTS.

• Insert a new signal to solve some of the CSC conflicts of the remaining signals.

• Re-compose the ALTS by recovering the previously hidden signals.

• Reduce concurrency of the newly inserted signal.

This process is repeated until all CSC conflicts have been solved. A high-level de-

scription of the algorithm is shown in Algorithm 5.

The projection step (line 1) is necessary to reduce the ALTS to a size that is man-

ageable by CSC solving algorithms. Preserving the relevant signals of the CSC conflicts

is essential to derive good-quality solutions. The insertion of a new signal xi (line 2)

will solve only conflicts of the remaining signals. The details of the projection step are

discussed in Section 5.4.1.

Chapter 5. State encoding for large asynchronous controllers 79

a+ b+ a− b−

a+ b+ b− a−

Figure 5.4: Top: lock relation between a and b (top). Bottom: a and b are not in
lock relation.

The hidden signals are recovered by re-composing the original ALTS with the new

inserted signal. This is achieved by computing a synchronous product (line 3) between

the new ALTS (with the new inserted signal) and the original one.

Re-composition implicitly creates a high-degree of concurrency of the new inserted

signal with the signals that were hidden by the projection. In particular, the CSC

conflicts for the hidden signals are not solved by the new signal. To mitigate this effect,

the concurrency of the new signal is reduced (line 4). As a side-effect, new CSC conflicts

are solved and the size of the ALTS is also reduced.

An accurate description of concurrency reduction is out of the scope of this thesis.

An in-depth discussion can be found in [58].

Algorithm 5: SolveCSC(A)

input : An ALTS with CSC conflicts.
output: An ALTS without CSC conflicts.
begin

while A has CSC conflicts do
1 B = Project(A) /* Hiding signals */

2 xi =insertSignal(B) /* Solving CSC */

3 A = A×B /* Re-composition */

4 reduceConcurrency(A, xi)

return A

The following subsections describe more details about projection and re-composition.

Afterwards a discussion about some of the properties of this algorithm is presented.

5.4.1 Projection

The main objective of the projection step is to reduce the size of the ALTS by means of

hiding signals. The only constraint is that none of the hidden signals can be in conflict.

The reason is that τ events become inert if they are not in conflict [57] and, thus, they

can be completely removed during state minimization. That means that any ALTS can

become τ -free if no signals in conflict are hidden.

The set of signals to hide has an impact in the quality of the solution. Next, a set

of concepts useful to define the criteria to select the signals are discussed.

80 Chapter 5. State encoding for large asynchronous controllers

a+ b+ c+ a− b− c−

Figure 5.5: Hiding signals a, b and c causes the CSC conflict represented by the dots
to collapse.

• Concurrency: Hiding signals with high concurrency has a bigger impact on the

size of the ALTS. It is thus convenient to hide signals with a large ER.

• Lock relation: Two signals a and b are in lock relation when, for every possible

trace in the ALTS, there is a transition b between two transitions for signal a and

vice versa. Figure 5.4 shows an example of lock relation. Signals in lock relation

are helpful to solve conflicts [59].

• Signals with CSC conflicts: Hiding signals with many CSC conflicts generate

ALTSs with fewer conflicts. This gives less information to the signal insertion

process. In general, preserving signals with many conflicts leads to more informed

decisions and better solutions.

• Conflict collapse: A CSC conflict between the states s and s′ collapses when all

the signals present in a path between s and s′ are hidden. Figure 5.5 shows an

example of a collapsing conflict. A collapsed conflict is not observed and cannot

be solved in the projected ALTS. It is thus convenient not to hide signals that

collapse conflicts, whenever possible.

Algorithm 6 shows a high level description of the projection algorithm. The first

step is to choose the signal a with the largest amount of CSC conflicts. This signal will

be the anchor of the new ALTS and will not be hidden. The objective is to solve as

many conflicts as possible for a. Next, signals are iteratively hidden until the size of the

ALTS is below a threshold. At each iteration, the best candidate signal for hiding is

obtained.

The criteria (in priority order) to select the best candidates is as follows:

• From the set of signals that do not collapse conflicts, and are not in lock relation

with a, the best candidate is the one with the largest ER (highest concurrency).

• In case of a tie, the signal with the smallest number of CSC conflicts is selected.

• If no such signal exists, the lock relation constraint is dropped and the best can-

didate is selected.

• In case of a tie, the signal that collapses the smallest number of conflicts is selected.

Chapter 5. State encoding for large asynchronous controllers 81

Algorithm 6: Project(A)

input : An ALTS with CSC conflicts.
output: An ALTS with a size under thresholdSize
begin

a = signalWithLargestCSCconflictNumber(A)
while size(A) > thresholdSize do

b = findSignalToHide(A, a)
hideSignal(A, b)

return A

5.4.2 Re-composition

Re-composition aims to re-introduce the hidden signals after signal insertion. This is

achieved by calculating the synchronous product of the original ALTS with the projection

after solving CSC.

The conflicts solved in the projected ALTS will also be solved in the re-composed

ALTS, whereas the other ones will remain. If some conflicts were collapsed during signal

hiding, they will also remain after re-composition.

Re-composition greatly increases concurrency, specially when a high number of sig-

nals were hidden during the projection. This may have the undesired effect of increasing

the total number of CSC conflicts, thus precluding convergence of the algorithm. For

this reason, concurrency reduction is an effective way of avoiding this effect.

5.4.3 Concurrency reduction

We resort to the concurrency reduction transformation proposed in [58]. A concurrency

reduction operation over a signal a reduces the size of the ER for that signal and preserves

commutativity, determinism and persistency. In particular, it also preserves branching

bisimilarity with respect to a.

Concurrency reduction has two positive effects:

• The size of the ALTS is reduced.

• Additional CSC conflicts are solved.

This operation makes some states unreachable and, as a by-product, CSC conflicts

are reduced if some of these states are involved in the conflicts. Furthermore, the

reduction of states also increases the DC-set of the logic functions and the opportunities

to simplify the Boolean equations.

There are multiple ways of performing concurrency reduction, each one deriving a

different solution. Figure 5.6 shows an example with different valid reductions.

In this work, a greedy approach has been used to decide how concurrency must

be reduced. At every state, the number of possible reductions may be potentially of

82 Chapter 5. State encoding for large asynchronous controllers

a) b) c) d)

y−

a+

b+

x+

z−

y−

a+

b+ x+

z−

y−

a+

b+

x+

z−

y−

a+

b+

x+

z−

Figure 5.6: Concurrency reduction of x: a) full concurrency; b) no concurrency with
a; c) no concurrency with a and b, b triggers x; d) no concurrency with a and b, x

triggers a.

the order of 2k, with k being the number of enabled signals at the state. To avoid a

worst-case exponential cost in the exploration of highly-concurrent controllers, a limit

is defined for the maximum number of solutions that are evaluated.

The following criteria are taken into account to estimate the quality of each solution:

• The number of CSC conflicts that disappear.

• The number of states that become unreachable.

• The number of new trigger signals that appear/disappear.

The number of CSC conflicts that disappear after the reduction is used to maximize

the utility of the inserted signal. Furthermore, reducing the number of states as much as

possible is important to prevent the size of the ALTS from growing excessively. Finally,

the number of triggers is highly correlated with the number of essential literals. This is,

at the same time, correlated with the number of literals after logic synthesis [8]. Ideally,

the concurrency reduction operation would minimize the number of essential literals.

This work proposes to use the trigger events as proxy for essential literals for the sake

of performance.

5.4.4 Properties of the algorithm

There are two main properties that this algorithm must have to be an effective and valid

technique:

• The computational complexity must be affordable.

• It must preserve the behavior of the specification (branching bisimilarity).

Complexity. For projection, hiding a signal is done by a step of silencing, followed

by τ -priorization and τ -compression. Silencing can be trivially done in O(|T |), whereas

τ -priorization and τ -compression can also be solved in linear time [57].

Chapter 5. State encoding for large asynchronous controllers 83

The other important operation for the projection is selecting the signal to be hidden.

The worst-case cost is dominated by the detection of pairs of conflicts that collapse.

Theoretically, this operation is O(|C|+ |S|), with |C| representing the number of CSC

conflicts and |S| the number of states. Although a theoretical upper bound for |C| is

|S|2, in practice |C| < |S| for realistic controllers. Since the projection step is repeated

on the order of O(|Σ|), the average complexity for projection is O(|S| × |Σ|).
The complexity of the re-composition step is the one of the synchronous product.

However this is a singular synchronous product A1 × A2 in which A2 is a projection of

A1 with a newly inserted signal. If A1 has |S| states, the product will have at most

2|S| states, under the assumption that the new signal can be highly concurrent with the

original specification. Thus, the synchronous product can run in linear time.

The cost of concurrency reduction is maintained as O(|S| × |Σ|) and guaranteed by

the heuristic that explores a small amount of options at each state in which the new

signal is enabled (discussed in Section 5.4.3).

In general, the average runtime for solving CSC of a large controller can be modeled

as:

Runtime(CSC) = O (|X| × (|S| × |Σ|+ Runtime(CSCproj)))

where |X| is the number of inserted signals. For every signal, the cost might be domi-

nated by the projection/re-composition steps (O(|S| × |Σ|)) or the runtime for solving

CSC of the projected controllers. The dominating term will depend on the size of the

projected controllers. If they are small, the effort will be dominated by the projection/re-

composition. Conversely, a little effort in projection (hiding few signals) will result in

larger controllers and a major effort in solving CSC. Defining the appropriate size of the

projected controllers is a tuning parameter of the method.

Branching bisimilarity. We need to show that the insertion of a new signal x through

the following transformations preserves branching bisimilarity:

A1
hide(A1,σ)−−−−−−→ A2

insert(A2,x)−−−−−−−→ A3
A3×A1−−−−→ A4 ≈x A1

Theorem 5.2. Let A1 = (S1,Σ1, T1, s
1
0) be a τ -free WF-ALTS, A2 = (S2,Σ2, T2, s

2
0)

such that A2 = hide(A1, σ), with σ being a conflict-free set of signals,

A3 = (S3,Σ3, T3, s
3
0) such that A3 = insert(A2, x), with x /∈ Σ1, and A4 = (S4,Σ4, T4, s

4
0)

such that A4 = A3 ×A1. Then A1 ≈x A4.

Proof. First note that the hiding operation and the insertion operation preserves branch-

ing bisimilarity, so A1 ≈σ A2 and A2 ≈x A3. Since branching bisimilarity is transitive,

A1 ≈σ∪{x} A3. Then, by Theorem 5.1, A4 ≈σ A3 and A4 ≈x A1.

84 Chapter 5. State encoding for large asynchronous controllers

From [58] it can be easily observed that the basic transformation for concurrency

reduction (forward reduction) is equivalent to a τ -priorization assuming the new in-

serted signal x is silent and confluent. Thus, branching similarity is also preserved when

applying concurrency reduction.

5.5 Exploiting concurrency

Usually, large ALTSs show a high degree of concurrency. While the algorithm previously

described has a disposition to hide signals that exhibit more concurrency, it is possible to

exploit parallelism more explicitly. In this section we describe a pre-processing step for

the projection algorithm that dramatically reduces the number of iterations by directly

targeting concurrent signals first.

Let us first introduce the concept of individual excitation region. As a reminder,

the concept of excitation region for a signal a was defined in Chapter 4.4 as the set of

states in which a is enabled. This is divided into ER+
a and ER−a for states in which

a+ and a− are enabled, respectively. Building on this, an individual excitation region

for signal a, eria ⊆ ERa, is a subset of ER+
a or of ER−a where every state is at most at

distance 1 from another state in eria (i.e. there is at most one transition between them).

In particular, if a is consistent there is at least two individual excitation regions, one for

a+ and one for a−.

For the purposes of this thesis, two persistent signals a and b are concurrent if one

or both of the following conditions holds:

• For every eria ⊆ ERa, there exists a state s ∈ eria such that b is enabled, or

• For every erib ⊆ ERb, there exists a state s ∈ erib such that a is enabled.

Figure 5.7a shows an example of concurrent signals. The partially shown ALTS on

the figure depicts all the transitions for signals b and c. Assume that signal a has other

persistent transitions that are not shown in the figure. As can be seen, every individual

excitation region for signals b and c contains at least one state in which a is enabled.

From our definition then, a and b are concurrent, as well as a and c.

A careful examination of the ALTS in Figure 5.7a reveals the presence of two conflicts:

one between the states s1 and s5, and one between s6 and s10. Both of these are conflicts

for signal b and are mirrored by the concurrency with signal a.

Let us assume that we are only interested in solving conflicts for signal b. In that

context, signal a is not providing any distinction in the encoding of the states in conflict,

so it can be hidden without losing information on the conflicts. This is depicted in

Figure 5.7a. After hiding a, the two pairs of states in conflicts are merged into a single

pair, s1, s5, and the space of states has been reduced. This conflict can be solved by

inserting a signal between c+ and b−, as represented by Figure 5.7c. Finally, it is possible

Chapter 5. State encoding for large asynchronous controllers 85

s1 s2 s3 s4 s5

s6 s7 s8 s9 s10

b+ c+ b− c−

b+ c+ b− c−
a+ a+ a+ a+ a+

(a) Concurrency ALTS

s1 s2 s3 s4 s5
b+ c+ b− c−

(b) Signal a hidden

s1 s2 s3 s′3 s4 s5
b+ c+ x+ b− c−

(c) Inserted signal x

s1 s2 s3 s′3 s4 s5

s6 s7 s8 s′8 s9 s10

b+ c+ x+ b− c−

b+ c+ x+ b− c−
a+ a+ a+ a+ a+ a+

(d) Conflicts solved

Figure 5.7: Exploiting concurrency to simplify an ALTS

to generalize the insertion into the original ALTS by a synchronous product operation

in order to obtain the conflict-free ALTS of Figure 5.7d.

Note that no signal insertion between the states s1 to s9 would be able to solve

any conflict for signal a due to the concurrency with other signals. If we only wanted

to solve conflicts for signal a, hiding signals b and c before performing signal insertion

would reduce the search space without affecting the space of solutions.

We propose then to identify all pairs of concurrent signals. This can be done with

a worst-case complexity of O(|S| × |Σ|). After choosing to which signals are conflicts

going to be solved, all other concurrent signals can be hidden. Algorithm 7 shows the

improved projection step. Note that the only difference is the addition of a function

hideConcurrentSignals that hides all signals concurrent to a.

Algorithm 7: ProjectImproved(A)

input : An ALTS with CSC conflicts.
output: An ALTS with a size under thresholdSize
begin

a = signalWithLargestCSCconflictNumber(A)
hideConcurrentSignals(a,A)
while size(A) > thresholdSize do

b = findSignalToHide(A, a)
hideSignal(A, b)

return A

86 Chapter 5. State encoding for large asynchronous controllers

This process does not have any impact on worst-case complexity, but can dramati-

cally reduce the number of iterations in the projection stage when dealing with highly

concurrent ALTS. This is particularly important when considering that these are the

ALTSs that suffer from the state explosion problem.

5.6 Rip-off and re-encode

Besides the base algorithm from Section 5.4 and the improvements of Section 5.5, there

is an optional step that can be done as a post-processing stage. The idea is very simple:

hide one of the inserted signals (rip-off) and find a different solution (re-encode). This

process is repeated until no further improvements are observed. This step improves the

quality of the results, at the expense of a cost in execution time.

This technique exploits the fact that signals are inserted sequentially and some CSC

conflicts might be resolved by more than one signal. Typically, the first inserted signals

are eager to resolve a large amount of conflicts. But some of the conflicts may also

be resolved later by new inserted signals. By ripping-off some of the first signals and

re-encoding, the constraints are relaxed, i.e., the number of CSC conflicts is smaller, and

better solutions can be found. In some rare cases, it may even occur that ripping-off

some signal does not introduce any CSC conflict, thus detecting that the signal was

redundant.

For a fast estimation of the quality of the solutions, the cost function used is similar

to the one presented in Chapter 4, which accounts for the number of essential literals,

entry points and size of the excitation regions.

Algorithm 8 shows the strategy proposed in this chapter. The algorithm consists of

two nested loops. The external loop repeats the process until no further improvements

are found. The set of inserted signals (X) is visited in descending order of essential

literals, which is an estimation of the logic complexity of the signal. The rationale behind

this order is that signals with more literals offer more opportunities for improvement

after logic synthesis.

The inner loop stops when some improvement has been detected. After that, the

cost of the signals is re-evaluated and the outer loop starts again.

Finally, in order to estimate the quality of the solutions, an efficient algorithm for

calculating essential literals is needed. Given a signal a, it is possible to efficiently com-

pute the set of signals for which a is essential. This can be accomplished by grouping all

the states that have the same encoding (minus the code for signal a) and checking, for

each non-input signal, which ones meet the condition for a to be essential. If the encod-

ings are stored in a hash table, the worst-case complexity is in the order of O(|S| × |Σ|).
Nonetheless, by exploiting bitwise and vectorial instructions in actual hardware, a linear

cost O(|S|) can be obtained, as long as |Σ| is on the order of the word size.

Chapter 5. State encoding for large asynchronous controllers 87

Algorithm 8: RipOffReencode(A)

input : An ALTS with CSC property.
output: A re-encoded ALTS.
begin

C = costSolution(A)
do

improved = False
X = insertedSignals(A)
sortByEssentialLiterals(X)
/* in descending order */

foreach x ∈ X do
B = hideSignal(A, x)
solveCSC(B)
newC = costSolution(B)
if newC < C then

improved = True
C = newC
A = B
break

while improved
return A

To compute the essential literals for all signals, the previously described computation

needs to be executed for every signal. The cost of finding all the essential literals is

O(|S| × |Σ|2), or O(|S| × |Σ|) if the size of |Σ| is on the order of the word size.

5.7 Experimental results

This section presents experimental results for the projection and recomposition tech-

nique, henceforth called SEPR (State Encoding using Projection and Re-composition).

The signal insertion step is performed with Pbase (in its single heuristic version), even

though it is possible to use any other state graph based approach (like Petrify). Ex-

perimental results include a comparison of the method against Pbase as a baseline

and MPSAT for large controllers. Versions with the rip-off and re-encode technique

(SEPR-R) are also included.

In every case, the projection steps of the algorithm are performed until the ALTS

satisfies all the following conditions:

• |S| × |Σ| < 500.

• At least one signal has been hidden.

The last condition is included for the smallest controllers. Some of them are small

enough to already satisfy the first condition. Hiding at least one signal guarantees that

the technique is used in every instance.

88 Chapter 5. State encoding for large asynchronous controllers

The benchmarks are divided into three groups: small, medium and large. The

following subsections present and discuss the results for the different groups, as well as

experiments testing the scalability of the approach.

5.7.1 Small controllers

Controllers in this group correspond to the ones presented in Chapter 4 and have less

than 1000 states (with the exception of c10). This experiment is performed to give a

baseline comparison with Pbase (single heuristic version), since it cannot be used for

larger controllers due to the execution time. Additionally, a comparison with the rip-off

and re-encode technique is included.

Table 5.1 shows the results in the same format presented in Chapter 4.9. The table

compares Pbase (PB), SEPR (SP) and SEPR-R (RR). In some cases, Pbase was not

able to solve CSC in less than 10 hours. This is denoted as Time in the table.

A summary of the results for Table 5.1 can be found in Table 5.2, which presents

a pairwise comparison between different techniques. Row Solved reports the number

of solved instances. The remaining data in the table only reports the total results for

the benchmarks that were solved by both techniques under comparison (i.e. ignoring

controllers not solved by both). Ratio reports the average ratio of literals between every

pair of techniques.

The comparison between Pbase and SEPR shows a significant difference in execu-

tion time, without hardly sacrificing quality: the number of literals only increases by 1%.

The addition of the rip-off technique has a very minor impact on quality, while increasing

execution time. The main reason is because the number of inserted signals is small (less

than 3 in most cases), giving few opportunities to explore different re-encodings. Thus,

the rip-off technique is not well suited for small controllers. Nonetheless, all controllers

were solvable with SEPR-R.

Although the work of this chapter was not originally meant to be used for small con-

trollers, the experiments show that the technique contributes to reduce runtime without

having a significant impact on quality.

5.7.2 Medium controllers

In this experiment, the controllers have up to 14,000 states. This size is already out of

the scope of the controllers manageable by Pbase. For this reason, MPSAT is used as

reference.

The controllers come from different sources. Some of them (master-read versions)

correspond to controllers from Chapter 4.9. The art(m,n) are parameterized controllers

from [60]. They model a synchronization of m pipelines, as shown by the STG depicted

Chapter 5. State encoding for large asynchronous controllers 89

Table 5.1: Experimental results for small controllers. Comparing Pbase (PB), SEPR
(SP) and SEPR-R (RR).

CPU(sec) Signals/Literals
Example I/O |S| PB SP RR PB SP RR

adfast 3/3 44 5.6 1.2 1.3 2/14 2/14 2/14
alloc-outbound 4/3 17 0.8 0.2 0.3 2/16 2/16 2/16
c10 0/10 2046 32.7 4.1 15.4 1/31 2/32 1/31
c6 0/6 126 1.1 0.2 0.3 1/19 1/19 1/19
duplicator 2/2 20 0.5 0.2 0.2 2/13 2/13 2/13
future 4/4 36 0.4 0.1 0.1 1/18 1/18 1/18
glc 2/1 17 0.1 0.1 0.2 1/10 1/11 1/11
lazy ring.noncsc 5/3 160 27.6 0.9 1.0 1/22 1/22 1/22
mmu0 4/4 174 89.1 1.8 2.9 3/28 3/29 3/29
mmu1 4/4 82 8.1 1.0 2.1 2/25 2/24 2/24
mod4 counter 1/2 16 0.3 0.1 0.2 2/26 2/26 2/26
mr0 5/6 302 Time 1.2 2.7 -/- 4/31 3/30
mr1 4/5 190 91.6 7.5 11.1 3/26 3/26 3/26
nak-pa 4/5 56 0.7 0.2 0.2 1/18 1/18 1/18
nowick 3/2 18 0.2 0.1 0.1 1/13 1/13 1/13
par2 3/3 28 4.4 0.5 0.8 2/16 2/16 2/16
par4 5/5 628 Time 3.6 10.7 -/- 4/32 4/32
pla 0/3 12 0.2 0.1 0.1 1/14 2/16 2/16
ram-read-sbuf 5/5 36 1.2 0.3 0.3 1/22 1/22 1/22
sbuf-ram-write 5/5 58 9.1 1.9 2.1 2/23 2/24 2/24
sbuf-read-ctl 2/4 14 0.2 0.1 0.1 1/15 1/15 1/15
seq2 3/3 12 0.1 0.1 0.1 1/8 1/8 1/8
seq3 4/4 16 0.6 0.2 0.3 2/14 2/14 2/14
seq4 5/5 20 1.4 0.4 0.6 2/19 2/19 2/19
seq8 9/9 36 108.7 41.0 56.6 3/44 5/43 5/43
seq-mix 4/4 20 2.0 0.5 0.9 3/18 3/20 3/20
vbe4a.nousc 3/3 58 5.1 1.4 2.2 3/18 3/18 3/18
vbe5a 3/3 44 4.2 0.7 0.9 2/14 2/14 2/14
vbe6a.nousc 4/4 128 41.0 1.2 1.7 2/30 2/30 2/30
vbe6x.nousc 3/3 48 4.4 0.3 0.3 2/23 2/22 2/22
vme read 8/6 251 16.2 0.7 0.7 1/30 1/31 1/31
vme read write 3/3 28 1.0 0.5 0.3 1/22 1/22 1/22
vme write 8/6 817 Time 1.0 1.0 -/- 1/36 1/36
vmebus 3/3 24 0.5 0.2 0.2 1/19 1/19 1/19

in Figure 5.8. These controllers have a high number of states and require a moderately

high number of signals to guarantee CSC.

Another set of parameterized controllers is PpArb(m,n), obtained from [61]. They

model m pipelines synchronized with arbitration. Figure 5.9 shows an example for

PpArb(2,3). These controllers are highly concurrent and have a large set of states, but

a comparatively small number of signals. They can be solved with few signal insertions.

The ParMix(m,n) controllers are based on the ones presented in [60]. These con-

trollers show a handshake of sequencers, parallelizers and mixers, as represented by

Figure 5.10. The original controllers in [60] did not have any CSC conflict. The ones

presented here have been modified (by hiding internal signals) such that the sequencer

and every parallelizer have conflicts. The result is a controller with a high number of

90 Chapter 5. State encoding for large asynchronous controllers

Table 5.2: Summary for the benchmarks in Table 5.1.

PB SP PB RR SP RR

Solved 31 34 31 34 34 34
CPU (sec) 459 68 459 104 74 118
Signals 53 57 53 56 66 64

Literals 628 634 628 633 733 731
Ratio 1.00 1.01 1.00 1.01 1.00 1.00

Figure 5.8: Art(m,n). Source: [60].

Figure 5.9: PpArb(2,3). Source [61].

signals and CSC conflicts.

Finally, the SeqPar(n) controllers are introduced in this work. Like the ParMix(m,n),

they represent a handshake of smaller controllers. A SeqPar(n) controller represents an

n-level tree of alternating handshakes of sequencers and controllers. Figure 5.11 shows

an example with three levels. Since every parallelizer and sequencer has CSC conflicts,

this class of controllers also contains a high number of signals and CSC conflicts.

Table 5.3 shows results for this experiment. The codeword Time is used when a

controller could not be solved in less than 10 hours. The codeword Fail marks an

Chapter 5. State encoding for large asynchronous controllers 91

Figure 5.10: ParMix(4,3). Source [60].

S

P P

S S S S

Figure 5.11: SeqPar(3).

instance in which a solution could not be found. A summary for Table 5.3 can be found

in Table 5.4.

The results show that SEPR generates slightly better results than MPSAT, even be-

fore the rip-off technique. In general, the execution time is slightly higher than MPSAT,

with the exception of the controller ParMix(2,4). This controller biases the total exe-

cution time for MPSAT in Table 5.4. Nonetheless, this result is important because it

hints at a trend in the ParMix and SeqPar controllers: MPSAT takes too long to solve

these classes of problems and hits the 10-hour timeout for most of them. A possible

explanation is later discussed in Section 5.7.4.

Another singularity is the master-read controller. This controller is the original

specification of master-read2, including the inputs and outputs (all signals in master-

read2 are artificially declared as outputs). The presence of inputs reduces the space of

valid solutions since the input properness property prevents the insertion of a signals

triggering inputs. While MPSAT can solve master-read2, it fails to find a solution for

92 Chapter 5. State encoding for large asynchronous controllers

Table 5.3: Experimental results for medium controllers. Comparing MPSAT (MP),
SEPR (SP) and SEPR with Rip-off (RR).

CPU(sec) Signals/Literals

Example I/O |S| MP SP RR MP SP RR

art(3,4) 0/12 2048 4.1 16.5 21.6 6/54 4/49 4/49
art(3,5) 0/15 4000 10.2 12.9 16.8 6/57 4/53 4/53
art(3,6) 0/18 6912 38.7 23.5 28.0 6/60 4/56 4/56
art(4,3) 0/12 10368 8.7 39.5 81.8 10/70 5/69 5/69
master-read 6/7 8932 Fail 42.9 160.7 -/- 9/74 6/59
master-read2 0/13 8932 15.6 147.6 201.1 5/75 7/69 7/69
master-read.1098 6/7 1098 3.6 4.4 12.4 6/43 6/44 4/39
PpArb(2,3) 2/9 1088 0.3 0.1 0.2 1/39 1/42 1/42
PpArb(3,3) 3/13 14336 0.3 2.9 4.5 2/61 2/69 2/69
sis-master-read 6/7 1882 0.4 0.4 0.5 1/39 1/37 1/37
ParMix(2,4) 0/38 13852 766.8 53.4 99.2 5/123 6/121 6/121
ParMix(3,3) 0/46 3796 Time 76.8 134.3 -/- 6/157 6/157
SeqPar(4) 0/72 7452 Time 194.5 817.2 -/- 11/210 9/195

Table 5.4: Summary for the benchmarks in Table 5.3.

MP SP MP RR SP RR

Solved 10 13 10 13 13 13
CPU (sec) 849 301 849 466 615 1578
Signals 48 40 48 38 66 59

Literals 621 609 621 604 1050 1015
Ratio 1.00 0.98 1.00 0.97 1.00 0.97

master-read. This highlights the increased power of the state-based techniques to find

intricate solutions in highly restrictive specifications.

Finally, the rip-off technique shows an overall reduction of 2% in the number of liter-

als with respect to the base approach, at the cost of a higher execution time. The higher

number of inserted signals with respect to the small controllers allows this technique to

improve the SEPR solutions.

5.7.3 Large controllers

The last experimental results are for large controllers, which was the main motivation

for work in this chapter. These controllers can have up to several million of states. The

aim of this experiment is to show the scalability of the proposed approach.

The controllers in this test come from the same sources as the ones in the previous

results. Table 5.5 reports the results for large controllers, which are summarized in

Table 5.6.

SEPR can solve problems up to 4.5 million states in a reasonable time. The rip-

off technique significantly increases the execution time, even more than in previous

results. This is because there are more candidates to rip-off, which also increases the

Chapter 5. State encoding for large asynchronous controllers 93

Table 5.5: Experimental results for large controllers. Comparing MPSAT (MP),
SEPR (SP) and SEPR with Rip-off (RR).

CPU(sec) Signals/Literals

Example I/O |S| MP SP RR MP SP RR

art(4,4) 0/16 0.3 · 105 17.0 38.3 129.7 9/76 6/74 6/72
art(5,4) 0/20 5.2 · 105 25.4 677.7 1676.2 10/104 7/100 7/100
art(5,5) 0/25 16 · 105 225.8 2210.3 6422.0 12/105 8/115 8/102
par8 9/9 3.9 · 105 9.9 554.7 1833.7 8/64 8/64 8/64
PpArb(2,6) 2/15 0.7 · 105 1.6 7.5 8.6 1/69 1/72 1/72
PpArb(2,9) 2/21 44.6 · 105 6.5 808.0 826.8 1/99 1/102 1/102
ParMix(4,4) 0/86 1.1 · 105 Time 480.2 1911.6 -/- 11/313 11/298
ParMix(5,4) 0/110 2.2 · 105 Time 812.9 7126.0 -/- 16/411 14/387
SeqPar(5) 0/126 2.4 · 105 Time 892.2 4505.0 -/- 12/396 10/394

Table 5.6: Summary for large controllers.

MP SP MP RR SP RR

Solved 6 9 6 9 9 9
CPU (sec) 286 4296 286 10897 6482 24440
Signals 41 31 41 31 70 66

Literals 517 527 517 512 1647 1591
Ratio 1.00 1.02 1.00 0.99 1.00 0.97

opportunities to generate better results. This last approach allows for solutions with

higher quality than those of MPSAT. Every instance can be solved with the SEPR and

SEPR-R.

Even though MPSAT uses structural methods, it solves CSC using a SAT formulation

of the problem [42]. The runtime highly depends on the size of the SAT formula,

which is mainly determined by the size of the unfolding and the number of signals.

Although the unfolding can grow exponentially under the presence of multiple choices

in the specification, in practice the number of signals is the one that has the largest

impact on MPSAT runtime. The following section discusses the scalability of different

approaches.

It is also important to note that only examples suitable for MPSAT have been

selected, which need to have an underlying safe Petri net. These constraints do not

apply for state-based methods.

5.7.4 Scalability

This section studies the scalability of SEPR with regard to MPSAT, with the goal of

comparing a state-based method with a structural one. The experiments are performed

with three suites of benchmarks: Sequencer(n), Art(m,n) and Parallelizer(n). The

circuits have been scaled with the parameter n. In the case of Art(m,n), m has been

set at 3. The following table shows how these circuits grow with n:

94 Chapter 5. State encoding for large asynchronous controllers

Seq(n) Art(3,n) Par(n)

Signals 2n+ 2 3n 2n+ 2

States 4n+ 4 32n3 5n + 3

Signals grow linearly with n in all cases. The main difference is in the size of the set

of states. For Seq, it grows linearly, whereas for Art and Par the growth is cubic and

exponential, respectively.

Figure 5.12 reports the execution time of these benchmarks for MPSAT, SEPR

and SEPR-R. The x-axis represents n and the y-axis represents the execution time in

seconds (log scale). Table 5.7 reports the total sum of literals after logic synthesis for

all controllers of every class.

Table 5.7: Total number of literals for controller classes.

Seq(n) Art(3,n) Par(n)

MPSAT 1339 567 352
SEPR 1240 565 352
Rip-off 1220 521 352

Figure 5.12a depicts the results for Seq. The dashed line represents a linear regression

of SEPR, with R2 = 0.946. SEPR and SEPR-R manifest a linear asymptotic behavior,

whereas MPSAT hits a computational wall around n = 20. The main reason is that

MPSAT does not scale well with the number of signals.

The results for Art are reported in Figure 5.12b. In this case, the dashed line is

a cubic polynomial regression of SEPR, with R2 = 0.988. This is consistent with

the cubic polynomial growth of the number of states. MPSAT shows an exponential

behavior, mostly dominated by the number of signals.

Finally, Figure 5.12c shows results for Par. In this case, the complexity of the ALTS

is dominated by the number of states, rather than the number of signals. The dashed

line represents an exponential regresion of SEPR2. Clearly, MPSAT overtakes the state-

based methods since the number of states grows much faster than the number of signals.

Working with the unfolding of a Petri net, rather than its reachability set, is a clear

advantage in this case.

MPSAT is more scalable for large state spaces that can be succinctly represented by

a Petri net. However, the runtime grows exponentially with the number of signals. The

main reason is the way that MPSAT estimates the logic complexity of the circuit, using

a quadratic number of SAT variables to encode the trigger relations between pairs of

signals [42].

2The regression is on the order of 4.5n (states grow on the order of 5n). Given the small number of
points and the dominance of the large values, the regression may not be sufficiently meaningful. However
it helps to hypotesize the exponential relationship with the state space.

Chapter 5. State encoding for large asynchronous controllers 95

0 5 10 15 20 25 30

10-1

100

101

102

103

104

105

SEPR-R

SEPR

MPSAT

Regression

(a) Seq(n)

2 4 6 8 10 12 14 16 18 20

10-1

100

101

102

103

104

105

SEPR-R

SEPR

MPSAT

Regression

(b) Art (3,n)

2 3 4 5 6 7 8 9

10-1

100

101

102

103

104

105 SEPR-R

SEPR

MPSAT

Regression

(c) Par(n)

Figure 5.12: Runtime growth, in seconds (y-axis) with the size of the ALTS, defined
by n (x-axis).

96 Chapter 5. State encoding for large asynchronous controllers

5.7.5 Final remarks

The results show a good picture of how SEPR scales. For small controllers, it reduces

runtime while maintaining quality. For medium controllers, the quality of the solution

and runtime are slightly better than the structural methods.

For controllers with a large number of signals, SEPR can go much beyond the

complexity wall hit by other tools (e.g., MPSAT or petrify). The base version of the

tool, SEPR, sometimes provides solutions with slightly lower quality than MPSAT,

but the re-encoding strategy using rip-off gives an opportunity to improve the results,

specially in those controllers that require a larger number of encoding signals. In fact,

it generates the best results for most cases, with the exceptions of the PpArb class of

controllers, which are solved with just one signal.

Finally, the strongest advantages of SEPR are in the number of problems solved and

the scalability of the approach. Structural methods depend on the Petri net structure,

which limits the solutions that can be found. In the case of MPSAT, for example, it

cannot solve unsafe nets. But even when safe Petri nets are used (as in the case of

the benchmarks presented here), some other limitations might arise. As for scalability,

this approach grows linearly with the number of signals and states. In the case of state

explosion typical of high concurrency, this limits the size of the controllers than can be

solved (to the order of 106 states). But when the controllers have large number of signals,

results show that SEPR still manages to grow linearly, as opposed to the exponential

growth of MPSAT.

5.8 Conclusions

This chapter has presented a novel technique to address the problem of state encoding

for large asynchronous controllers. The approach allows to project a large specification

onto a subset of signals and obtain a smaller one suitable to be handled by state-based

encoding techniques. The complete asynchronous controller is recovered by re-composing

the original specification with the projected solution.

Results show that asynchronous controllers of several million states are now within

reach of state-based encoding techniques. Furthermore, it can speed up the encoding

for controllers of smaller sizes. This allows state-based techniques to effectively compete

with structural methods and handle controllers that can be generated from different

formalisms for which no encoding tools exist yet.

Chapter 6

Conclusions

This thesis contributes to the area of variability tolerant circuits. It proposes techniques

in two fields: synthesis of Ring Oscillators Clocks, that adapt their period to variabil-

ity conditions, and synthesis of asynchronous controllers, which are implicitly resistant

to variability. While methods in both categories concur in their ultimate goals, their

applicability and approaches are different enough to deserve a separate analysis. This

chapter summarizes the contributions on each of these approaches and concludes this

thesis.

Delay lines and Ring Oscillator Clocks

As technology scaling reaches its limits and variability grows, mitigating its impact is

becoming more and more necessary. Several techniques exist for this purpose, yet most

of them either offer limited improvements or require high implementation costs in terms

of complexity or area. This thesis proposed, in Chapter 2, a novel technique that reduces

most of the impact of global variability by substituting the PLL for a Ring Oscillator

Clock (ROC). This method offers similar benefits to other, more aggressive, approaches

such as Razor [14], while dramatically simplifying the design. In fact, an ROC can act

as a drop-in replacement for a PLL. It is even possible to use both a classical clock and

a ROC in the same design. Because of its size, there is no increase in complexity to

speak off, and the cost in area is negligible.

In order to implement ROCs, Chapter 3 introduces an algorithmic technique to

design all-digital delay lines (DL). DLs are designed with the purpose of having a delay

representative of a specific circuit for all variability conditions (PVT corners). When

connected in a loop, a DL can act as a RO whose period is affected by variability.

Since the variability of a DL is correlated to that of a circuit, the period of an RO

instantaneously adapts to changes in the environment, such as temperature or voltage.

Besides building ROs, DLs have multiple uses in systems that require accurate tracking

97

98 Chapter 6. Conclusions

of variability. These include bundled-data circuits and performance monitors, which are

often used by other techniques, such as adaptive clocks.

While a delay line is not a novel circuit in itself, this thesis proposed a new technique

to design all-digital DLs. In this case, all the components for the DL are limited to

standard cells from standard cell libraries. This considerably increases the ease and

approachability of designing such circuits. In particular, no costly custom design is

needed and conventional EDA tools can be used to verify them. Additionally, this

thesis showed how DLs can be built to be configurable at the post-silicon stage. This

further increases the utility and ability of DLs to reduce variability margins. Finally,

a comprehensive series of experiments over a well-known benchmark suite, I99T from

ITC99, shows very promising results about the accuracy that these circuits exhibit in

tracking variability.

State encoding for asynchronous controllers

State encoding is one of the most challenging problems in the synthesis of asynchronous

controllers modeled in input/output mode. There exist a few techniques that solve the

problem in effective ways. But, as Chapter 4 shows, those approaches still have margin

for improvement. This thesis presented Pbase, a SAT-based approach that solves the

state encoding problem at the state level. By working at the state level, this technique

leverages a larger search space with respect to structural methods that work at the Petri

net level. Furthermore, the encoding in SAT guarantees that, if a solution for a single

signal insertion exists, it will be found. These two properties give important advantages

over previous approaches. Pbase can work with any type of correctly specified controller,

bypassing restrictions of other techniques (e.g. unsafe nets). In some cases, solutions are

found for controllers that no other tool could solve. Finally, results over a heterogeneous

benchmark suite show that Pbase finds the best solutions, in terms of number of literals,

for most of the circuits tested.

Unfortunately, these improvements do not come without an important drawback.

Working at the state level means that controllers may fall into the state-explosion prob-

lem. This is a typical issue for models in which concurrent events are modeled by

sequential interactions, causing an exponential growth in the number of states while

in presence of concurrency. This large state space dramatically increases the execution

time for circuits with a high degree of concurrency. Furthermore, since Pbase uses SAT

to find solutions, a larger number of states increase the risk of falling into an exponential

runtime. This effectively puts a limit on the size of controllers that can be solved by

Pbase. Indeed, benchmarks show several instances in which Pbase requires so much

runtime that execution is aborted after reaching a tiemout limit.

Chapter 6. Conclusions 99

In order to overcome this limitation, Chapter 5 proposes SEPR, a method that

allows state-based techniques to effectively solve large controllers. This is achieved by

a process of projection and re-composition, in which a large part of a circuit’s behavior

is simplified, or hidden, until the size of the state space is suitable for solving. Once a

solution has been found in this reduced controller, it is projected into the original circuit

by means of a synchronous product. The process is then repeated until a full encoding

is achieved. With the use of this technique, controllers with a size up to 106 states are

solvable by Pbase or any other technique working at the state-level.

The results presented show how execution time may be dramatically reduced for

Pbase when using SEPR for small controllers. In the case of large controllers, the exe-

cution time often remains higher than competing structural methods. Nonetheless, this

is rewarded by an increased quality in the solutions found with respect to those same

approaches. Furthermore, the other main advantage of Pbase, finding solutions when

other approaches are unable to, remains present in SEPR. Finally, even though struc-

tural methods scale better with the number of states, results show that this approach

can surpass structural methods for controllers with a large number of signals.

An aspect not addressed by this work is related to the way quality is measured. This

thesis uses a well established metric to gauge the quality of a solution: the number of

literals of the Boolean formula after synthesis. Oftentimes, the use case of asynchronous

controllers is more concerned about latency than complexity. Using metrics to approxi-

mate delay and latency is left as future work. Another avenue left unexplored is power

consumption. This is a metric that is often overlooked in synthesis of asynchronous

controllers, due to their often relatively small size. Yet it may become relevant for larger

instances or larger amounts of instances.

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics

(magazine), vol. 38, no. 8, pp. 114–117, Apr. 1965.

[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-

proach. Elsevier, 2017.

[3] H. Jones, “Why migration to 20nm bulk CMOS and 16/14nm FinFETs is not best

approach for the semiconductor industry,” International Business Strategies, Los

Gatos, CA, Tech. Rep., Jan. 2014.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic

Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.

[5] A. Moreno and J. Cortadella, “Synthesis of all-digital delay lines,” in Asynchronous

Circuits and Systems (ASYNC), 2017 23rd IEEE International Symposium on.

IEEE, 2017, pp. 75–82.

[6] J. Cortadella, L. Lavagno, P. López, M. Lupon, A. Moreno, A. Roca, and S. S.

Sapatnekar, “Reactive clocks with variability-tracking jitter,” in Computer Design

(ICCD), 2015 33rd IEEE International Conference on. IEEE, 2015, pp. 511–518.

[7] J. Cortadella, M. Lupon, A. Moreno, A. Roca, and S. S. Sapatnekar, “Ring oscillator

clocks and margins,” in Asynchronous Circuits and Systems (ASYNC), 2016 22nd

IEEE International Symposium on. IEEE, 2016, pp. 19–26.

[8] A. Moreno and J. Cortadella, “State encoding of asynchronous controllers using

pseudo-Boolean optimization,” in Asynchronous Circuits and Systems (ASYNC),

2018 24rd IEEE International Symposium on. IEEE, 2018, pp. 9–16.

[9] A. Moreno and J. Cortadella, “State-based encoding of large asynchronous con-

trollers,” IEEE access, vol. 6, pp. 61 503–61 518, 2018.

[10] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs.

Springer, 2009.

101

102 Bibliography

[11] A. Datta, S. Bhunia, J. H. Choi, S. Mukhopadhyay, and K. Roy, “Speed binning

aware design methodology to improve profit under parameter variations,” in Pro-

ceedings of the 2006 Asia and South Pacific Design Automation Conference. IEEE

Press, 2006, pp. 712–717.

[12] B. Cory, R. Kapur, and B. Underwood, “Speed binning with path delay test in

150-nm technology,” IEEE Design & Test of Computers, vol. 20, no. 5, pp. 41–45,

Sep. 2003.

[13] V. Zolotov, C. Visweswariah, and J. Xiong, “Voltage binning under process vari-

ation,” in Proceedings of the 2009 International Conference on Computer-Aided

Design. ACM, 2009, pp. 425–432.

[14] D. Ernst, S. N. S. Kim, Das, S. Pant, R. Rao, T. Pham, C. Zieslera, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power pipeline based on

circuit-level timing speculation,” in IEEE Micro, 2003, pp. 7–18.

[15] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. Lu,

T. Karnik, and V. De, “Energy-efficient and metastability-immune timing-error

detection and instruction-replay-based recovery circuits for dynamic-variation tol-

erance,” in International Solid State Circuits Conference, 2008, pp. 402–403.

[16] M. S. Gupta, J. A. Rivers, P. Bose, G.-Y. Wei, and D. Brooks, “Tribeca: design for

PVT variations with local recovery and fine-grained adaptation,” in Int. Symp. on

Microarchitecture, 2009, pp. 435–446.

[17] D. Hand, M. Trevisan, H. Hsin-Ho, C. Danlei, F. Butzke, L. Zhichao, M. Gibiluka,

M. Breuer, N. L. V. Calazans, and P. Beerel, “Blade – a timing violation resilient

asynchronous template,” in IEEE Int. Symp. on Asynchronous Circuits and Sys-

tems, May 2015, pp. 21–28.

[18] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar, “Next genera-

tion Intel core micro-architecture (Nehalem) clocking,” IEEE Journal of Solid-State

Circuits, vol. 44, no. 4, pp. 1121–1129, 2009.

[19] K. Chae and S. Mukhopadhyay, “All-digital adaptive clocking to tolerate transient

supply noise in a low-voltage operation,” IEEE Transactions on Circuits and Sys-

tems II: Express Briefs, vol. 59, no. 12, pp. 893–897, 2012.

[20] C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J. Tierno, J. Carter, and

R. Berry, “Active guardband management in Power7+ to save energy and maintain

reliability,” IEEE Micro, vol. 33, no. 4, pp. 35–45, Jul. 2013.

Bibliography 103

[21] K. Bowman, C. Tokunaga, T. Karnik, V. De, and J. Tschanz, “A 22 nm all-digital

dynamically adaptive clock distribution for supply voltage droop tolerance,” IEEE

Journal of Solid-State Circuits, vol. 48, no. 4, pp. 907–916, Apr. 2013.

[22] K. L. Wong, T. Rahal-Arabi, M. Ma, and G. Taylor, “Enhancing microprocessor

immunity to power supply noise with clock-data compensation,” IEEE Journal of

Solid-State Circuits, vol. 41, no. 4, pp. 749–758, 2006.

[23] D. Jiao, J. Gu, and C. H. Kim, “Circuit design and modeling techniques for enhanc-

ing the clock-data compensation effect under resonant supply noise,” IEEE Journal

of Solid-State Circuits, vol. 45, no. 10, pp. 2130–2141, 2010.

[24] A. Grenat, S. Pant, R. Rachala, and S. Naffziger, “5.6 adaptive clocking system for

improved power efficiency in a 28nm x86-64 microprocessor,” in Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2014 IEEE International. IEEE,

2014, pp. 106–107.

[25] Q. Liu and S. S. Sapatnekar, “Synthesizing a representative critical path for post-

silicon delay prediction,” in Proceedings of the 2009 international symposium on

Physical design. ACM, 2009, pp. 183–190.

[26] G. D. Carpenter, A. J. Drake, H. S. Deogun, M. S. Floyd, N. K. James, R. M. Senger

et al., “Circuit for dynamic circuit timing synthesis and monitoring of critical paths

and environmental conditions of an integrated circuit,” US Patent 7,576,569, Aug.,

2009.

[27] L. Xie and A. Davoodi, “Representative path selection for post-silicon timing pre-

diction under variability,” in Proc. ACM/IEEE Design Automation Conference,

2010, pp. 386–391.

[28] A. Singhvi, M. T. Moreira, R. N. Tadros, N. L. V. Calazans, and P. A. Beerel, “A

fine-grained, uniform, energy-efficient delay element for FD-SOI technologies,” in

2015 IEEE Computer Society Annual Symposium on VLSI, Jul. 2015, pp. 27–32.

[29] G. Heck, L. S. Heck, A. Singhvi, M. T. Moreira, P. A. Beerel, and N. L. V. Calazans,

“Analysis and optimization of programmable delay elements for 2-phase bundled-

data circuits.” in VLSI Design, 2015, pp. 321–326.

[30] M. Bhushan, A. Gattiker, M. B. Ketchen, and K. K. Das, “Ring oscillators for

CMOS process tuning and variability control,” IEEE Transactions on Semiconduc-

tor Manufacturing, vol. 19, no. 1, pp. 10–18, Feb. 2006.

[31] T. B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “DDRO: A novel performance

monitoring methodology based on design-dependent ring oscillators,” in Thirteenth

104 Bibliography

International Symposium on Quality Electronic Design (ISQED), Mar. 2012, pp.

633–640.

[32] M. Maymandi-Nejad and M. Sachdev, “A digitally programmable delay element:

design and analysis,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 11, no. 5, pp. 871–878, Oct. 2003.

[33] W. Hua, R. N. Tadros, and P. Beerel, “2 ps resolution, fine-grained delay element

in 28 nm FDSOI,” Electronics Letters, vol. 51, no. 23, pp. 1848–1850, 2015.

[34] N. R. Mahapatra, S. V. Garimella, and A. Tareen, “An empirical and analytical

comparison of delay elements and a new delay element design,” in IEEE Computer

Society Workshop on VLSI, 2000. Proceedings, 2000, pp. 81–86.

[35] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and V. De, “Tun-

able replica circuits and adaptive voltage-frequency techniques for dynamic voltage,

temperature, and aging variation tolerance,” in Int. Symp. on VLSI Circuits, 2009,

pp. 112–113.

[36] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first

ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3, pp. 44–53, Jul.

2000.

[37] Synopsys, “Synopsys PrimeTime,” http://www.synopsys.com/Tools/

Implementation/SignOff/Pages/PrimeTime.aspx.

[38] R. Bisiani, “Beam search,” in Encyclopedia of Artificial Intelligence, S. Shapiro,

Ed., 1987, pp. 56–58.

[39] R. M. Fuhrer, B. Lin, and S. M. Nowick, “Symbolic hazard-free minimization

and encoding of asynchronous finite state machines,” in Proc. International Conf.

Computer-Aided Design (ICCAD), 1995.

[40] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “A

region-based theory for state assignment in speed-independent circuits,” IEEE

Transactions on Computer-Aided Design, vol. 16, no. 8, pp. 793–812, Aug. 1997.

[41] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, “A generalized state as-

signment theory for transformations on signal transition graphs,” Journal of VLSI

Signal Processing, vol. 7, no. 1/2, pp. 101–115, Feb. 1994.

[42] V. Khomenko, “Efficient automatic resolution of encoding conflicts using stg un-

foldings,” IEEE transactions on very large scale integration (VLSI) systems, vol. 17,

no. 7, pp. 855–868, 2009.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

Bibliography 105

[43] P. Barth, “A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean

optimization,” Max Planck Institut für Informatik, Saarbrücken, Germany, Tech.

Rep. MPI-I-95-2-003, 1995.

[44] R. Milner, Communication and concurrency. Prentice hall New York etc., 1989,

vol. 84.

[45] R. J. V. Glabbeed and W. P. Weikland, “Branching time and abstraction in bisim-

ulation semantics,” Journal of the ACM, no. 3, pp. 555–600, May 1996.

[46] J. Groote and M. Mousavi, Modeling and Analysis of Communicating Systems. The

MIT Press, 2014.

[47] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man, “A generalized state as-

signment theory for transformations on signal transition graphs,” Journal of VLSI

signal processing systems for signal, image and video technology, vol. 7, no. 1-2, pp.

101–115, 1994.

[48] R. J. van Glabbeek, “The linear time - branching time spectrum,” in CONCUR ’90

Theories of Concurrency: Unification and Extension, J. C. M. Baeten and J. W.

Klop, Eds. Springer Berlin Heidelberg, 1990, pp. 278–297.

[49] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into SAT,”

Journal on Satisfiability, Boolean Modeling and Computation, vol. 2, pp. 1–25, 2006.

[50] T. Philipp and P. Steinke, “PBLib – A Library for Encoding Pseudo-Boolean Con-

straints into CNF,” in Theory and Applications of Satisfiability Testing – SAT 2015,

ser. LNCS, M. Heule and S. Weaver, Eds. Springer, 2015, vol. 9340, pp. 9–16.

[51] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in 6th Int. Conf. on Theory

and Applications of Satisfiability Testing, 2003, pp. 502–518.

[52] J. Carmona and J. Cortadella, “Encoding large asynchronous controllers with ILP

techniques,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 27, no. 1, pp. 20–33, 2008.

[53] G. Birtwistle and K. S. Stevens, “The family of 4-phase latch protocols,” in Asyn-

chronous Circuits and Systems, 2008. ASYNC’08. 14th IEEE International Sym-

posium on. IEEE, 2008, pp. 71–82.

[54] “Benchmark repository,” http://www.cs.upc.edu/∼jordicf/petrify/benchmarks.

[55] D. Wist, R. Wollowski, M. Schaefer, and W. Vogler, “Avoiding irreducible CSC

conflicts by internal communication,” Fundamenta Informaticae, vol. 95, no. 1, pp.

1–29, 2009.

http://www.cs.upc.edu/~jordicf/petrify/benchmarks

106 Bibliography

[56] J. F. Groote, D. N. Jansen, J. J. A. Keiren, and A. J. Wijs, “An O(m log n) Algo-

rithm for Computing Stuttering Equivalence and Branching Bisimulation,” ACM

Trans. Comput. Logic, vol. 18, no. 2, pp. 13:1–13:34, Jun. 2017.

[57] J. F. Groote and J. van de Pol, “State space reduction using partial τ -confluence,”

in International Symposium on Mathematical Foundations of Computer Science.

Springer, 2000, pp. 383–393.

[58] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, “Au-

tomatic handshake expansion and reshuffling using concurrency reduction,” in Proc.

of HWPN, vol. 98, 1998, pp. 86–110.

[59] P. Vanbekbergen, G. Goossens, F. Catthoor, and H. J. De Man, “Optimized syn-

thesis of asynchronous control circuits from graph-theoretic specifications,” IEEE

transactions on computer-aided design of integrated circuits and systems, vol. 11,

no. 11, pp. 1426–1438, 1992.

[60] J. Carmona, J.-M. Colom, J. Cortadella, and F. Garćıa-Vallés, “Synthesis of asyn-

chronous controllers using integer linear programming,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1637–

1651, 2006.

[61] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state encoding conflicts in

STG unfoldings using SAT,” Fundamenta Informaticae, vol. 62, no. 2, pp. 221–241,

2004.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Contributions of this thesis
	1.2 Structure of this document

	2 Variability and Ring Oscillator Clocks
	2.1 Variability
	2.2 Static Timing Analysis
	2.3 Dealing with variability
	2.4 Adaptive Clocks
	2.5 Ring Oscillator Clocks
	2.6 Margins and Derating Factors in Ring Oscillator Clocks
	2.7 Conclusions

	3 Synthesis of Digital Delay lines
	3.1 Introduction
	3.2 Nomenclature and overview
	3.3 Algorithm for gate and wire selection
	3.4 Cell placement
	3.5 Configurable Delay Lines
	3.6 Experimental Results
	3.7 Conclusions

	4 State encoding of asynchronous controllers
	4.1 Introduction
	4.2 State encoding for logic synthesis
	4.3 Overview of the method
	4.4 Background
	4.5 SAT formula for the signal insertion problem
	4.6 Pseudo-Boolean formula for optimization
	4.7 SAT-based optimization algorithm
	4.8 Comparison with previous art
	4.9 Experimental results
	4.10 Conclusions

	5 State encoding for large asynchronous controllers
	5.1 Introduction
	5.2 Overview
	5.3 ALTS transformations
	5.4 CSC resolution algorithm
	5.5 Exploiting concurrency
	5.6 Rip-off and re-encode
	5.7 Experimental results
	5.8 Conclusions

	6 Conclusions
	Bibliography

