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Abstract

An important problem in neuroscience is the assessment of the connectivity
between neurons from their spike trains. One recent approach developed for
the detection of directional couplings between dynamics based on recorded
point processes is the nonlinear interdependence measure L. In this thesis we
first use the Hindmarsh-Rose model system to test L in the presence of noise
and for different spiking regimes of the dynamics. We then compare the
performance of L against the linear cross-correlogram and two spike train
distances. Finally, we apply all measures to neuronal spiking data from an
intracranial whole-night recording of a patient with epilepsy. When applied
to simulated data, L proves to be versatile, robust and more sensitive than
the linear measures. Instead, in the real data the linear measures find more
connections than L, in particular for neurons in the same brain region and
during slow wave sleep.

Keywords: Spike trains, connectivity, nonlinear time series analysis,
generalized synchronization, Hindmarsh-Rose neurons, coupled oscillators,
epilepsy, neuronal single-unit recordings.
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Resum

Un problema important en la neurocieéncia és determinar la connexi6 entre
neurones utilitzant dades dels seus trens d’impulsos. Un metode recent que
afronta la detecci6 de connexions direccionals entre dinamiques utilitzant
processos puntuals és la mesura d’interdependencia no lineal L. En aquesta
tesi, utilitzem el model de Hindmarsh-Rose per testejar L en preséncia de
soroll i per diferents regims dinamics. Després comparem el desempenyora-
ment de L. en comparacio al correlograma lineal i a dues mesures de trens
d’impulsos. Finalment, apliquem totes aquestes mesures a dades d’impulsos
de neurones obtingudes de senyals intracranials electroencefalografiques
gravades durant una nit a un pacient amb epilepsia. Quan utilitzem dades
simulades, L demostra que és versatil, robusta i més sensible que les mesures
lineals. En canvi, utilitzant dades reals, les mesures lineals troben més con-
nexions que L, especialment entre neurones en la mateixa area del cervell i
durant la fase de son d’ones lentes.

Paraules clau: Trens d’impulsos, connectivitat, analisi de series tem-
porals no lineals, sincronitzacié generalitzada, neurones Hindmarsh-Rose,
oscilladors acoblats, epilepsia, gravacions neuronals d’unitat Unica.
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CHAPTER 1

Introduction

The detection of dependence between dynamics from experimental signals
is very important for the understanding of a wide variety of systems. One
of the fundamental problems in the study of brain dynamics is the recon-
struction of networks from some measured signals [33]. These signals can
be at the macroscopic level, including the electroencephalogram (EEG) the
magnetoencephalogram (MEG) [40, 93, 117] and the functional magnetic
resonance imaging (fMRI) [103]. Looking at the microscopic level allows
one to resolve the activity of individual neurons interacting in networks.
From the study of those signals it is hard to reconstruct anatomical links
(anatomical connectivity) between distinct brain areas. The types of brain
connectivity that are studied in the literature are described as functional and
effective connectivity [33]. Functional connectivity is quantified with mea-
sures of statistical dependencies, while effective connectivity corresponds
to the parameters of a model that tries to explain observed dependencies
[33]. In this thesis we focus on the detection of functional connectivity from
spike train signals, following a data-driven approach. Differently from other
measures of correlation though, the approach that we study was developed
focusing on the detection of weak directional interactions between nonlinear
dynamics.

The formalism of the analysis of spike trains came originally from the
study of point processes, and the hypothesis that spike trains participate in
neural coding was developed alongside [113]. In fact, the assumptions are
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that individual spikes are indistinguishable from one another [94]. With
the same formalism of stochastic point processes [94], in [95] Perkel et
al. discussed the basis of the statistical analysis of two simultaneously
observed trains of neuronal spikes. The fundamental question was if two
spike trains are independent. They use the idea that under the null hypothesis
that two spike trains are independent, the times of spike occurrence in one
train represent random instants in time with respect to the other. After these
initial studies, many different approaches for the detection of driver-response
relations between two point processes have been developed. They are usually
some extension of concepts applied to the detection of directionality between
continuous signals [93]. The first methods were based on cross-correlation
[2, 41, 96]. Other methods are adaptations of information theory approaches
[28, 45, 69], they evaluate for example the information transfer [39] or the
transfer entropy [46, 89, 119]. Granger causality assesses the coupling by
evaluating the ability of one spike train to forecast patterns in the other one
[52, 61, 81]. There are methods based on maximum likelihood [21, 87, 120],
and other methods aim at reconstructing network structure of many neurons
assuming to know the underlying node dynamics [16, 86, 97, 124].

In this work we focus on a different class of approaches to detect cou-
plings that is derived from the study of low-dimensional deterministic chaotic
dynamics [14], and which are based on the asymmetric state similarity crite-
rion [15]. These measures of nonlinear interdependence [10, 15, 100, 111]
quantify the likelihood that similar states of the response are mapped to
similar states of the driver. The word nonlinear indicates that these measures
were specifically designed for being able to detect weak coupling between
nonlinear dynamics [6, 18]. The basic assumptions of these approaches is
that there are two separate deterministic dynamics which both exhibit an
independent self-sustained motion [18]. The other assumptions are that if
there is a coupling it is unidirectional and that the dynamics are stationary
for the time window under investigation. This approach has later been called
also convergent cross mapping [121].

The measure that we use is called L, and it is a particular rank-based and
normalized implementation of the asymmetric state similarity criterion. This
measure was shown to be of higher sensitivity and specificity for couplings
than previous approaches [18]. Methods based on this principle were applied
not only in neuroscience [3, 37, 102], but also in other fields, e.g. musical in-
teractions, ecology, climatology etc. [43, 91, 121]. While initial applications
were restricted to time-continuous signals, L was subsequently extended to
the study of point processes and also to the combination of point processes
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and flows [6]. The original method for time-continuous signals is based on
a reconstruction of the signals in an embedding space [109], and similarity
is assessed by the squared Euclidean distance in that space [18]. Instead, in
the application to point processes, the similarity between different windows
of the signals is quantified by a spike train distance [54]. The method is
modular, meaning that different methods for estimating spike train similarity
can be used in order to focus on specific properties of the signals, and also
different nonlinear interdependence statistics can be applied.

In the paper where the measure L was first adapted to point processes
[6], the capability of the method to detect unidirectional couplings was
demonstrated on two model systems, the Lorenz dynamics and Hindmarsh-
Rose model neurons. However, only one spike train distance was used, and
the analysis was performed under rather simplified conditions. There was no
noise and only one possible regime of the Hindmarsh-Rose dynamics was
covered (irregular spiking in the driver neuron and bursting in the response
neuron). In this thesis we go a decisive step further and using Hindmarsh-
Rose dynamics we test the method under more challenging conditions [73].
In Chapter 2 we first test the robustness of the method against different
types of noise which are meant to mimic different conditions encountered
in the analysis of real data. Subsequently we investigate its behavior in
more problematic Hindmarsh-Rose regimes, not only irregular spiking and
bursting, but also regimes close to periodicity and exhibiting generalized
synchronization. We still use a model system because it allows us both to
simulate realistic experimental conditions and to validate the results under
controlled conditions. Throughout the analysis, we test different spike train
distances, ISI- and SPIKE-distance (Appendix A) in order to understand
their advantages and disadvantages.

Considering the conceptual complexity of the measure L, it is interesting
to compare its performance against the classical linear cross-correlogram.
In Chapter 3 we introduce a framework with temporal shifts (that we call
cross-functions) that allows this comparison, using again different settings
of Hindmarsh-Rose dyamics. We also include the linear spike train distances
in the comparison. We do so because spike train distances were specifically
designed to quantify spike train similarity. In Appendix A we describe
them in detail in their recently introduced adaptive versions [108]. In the
comparison we also show interesting properties of auto-functions, i.e. the
cross-functions between a signal and itself. We use time shifts for detect-
ing effective delay of the coupling [23], and cross-functions as surrogate
techniques.



Finally in Chapter 4 we apply the nonlinear measure L, cross-correlogram
and ISI- and SPIKE-distance to spike trains from intracranial recordings of
an epilepsy patient. We study a night multi-channel recording of neuronal
spiking [82]. We carry out the comparison between the methods using the
same framework of Chapter 3, and we illustrate the difficulties that can arise
in the analysis of real neuronal data.



CHAPTER 2

Robustness and versatility of the measure L

In this Chapter we closely follow our study [73]:

I. Malvestio, T. Kreuz, & R. G. Andrzejak. Robustness and versatility of a
nonlinear interdependence method for directional coupling detection from
spike trains. Physical Review E, 96(2), 022203, 2017.

2.1 Asymmetric state similarity criterion

The method that we use to detect the presence of a coupling is based on the
asymmetric state similarity criterion [15]. We consider two unidirectionally
coupled dynamics, the driving dynamics X and the response dynamics Y.
The criterion is based on the fact that as a consequence of the unidirectional
coupling, similar states of Y are likely to be mapped to similar states of
X. At first sight, this appears counterintuitive, because it may seem that
similar states in the driver should be mapped to similar states in the response.
To understand the general idea better we describe a simple example, the
interdependence between the weather (driving dynamics) and the behaviour
of a girl called Alice (response dynamics). We consider just two states for
both driver and response, the weather is either rainy or sunny, and Alice
either carries an umbrella or does not. Whenever Alice goes out with an
umbrella (similar states of Alice’s dynamics) the weather is rainy (similar
states of weather dynamics). But if it is rainy, Alice does not always behave
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in the same way. For example, she might stay at home, with no need to use an
umbrella. Hence, when the coupling is unidirectional, there is an asymmetry
in the probability that similarity in one signal implies similarity in the other.
This asymmetry is exactly what the asymmetric state similarity criterion
uses to detect the direction of the coupling. The degree of the mapping
between similar states was used to quantify the strength of the interaction
between the driver and the response [4, 18]. Importantly, if the dynamics
are close to synchronization, there can be a strong bidirectional mapping
between the similarity in the two signals, without a pronounced asymmetry
in the two directions. The strong state similarity would be an evidence
of high coupling, and the lack of asymmetry would weaken directionality
detection [90]. We now describe how L was used in Ref. [6] to apply this
principle to spike train signals. First of all, it is necessary to have two signals
x(t) and y(t) measured simultaneously from X and Y, respectively. We
assume that the two systems are both stationary. In order to make use of
the asymmetric state similarity criterion, we need to define the states of the
dynamics. In the case of time-continuous signals, the states are obtained
by the state space reconstruction of the signals. They contain information
about the present and recent past amplitude of the signal [100]. For spike
trains, the analogous is to consider short windows. In order to obtain pairs
of isochronous windows, we cut the signals in short overlapping pieces.

After defining the states of the dynamics, we need to assess the similarity
between different states of the same signal, across different times. For
this purpose, we calculate a matrix with the values df](- (dfj ) of a chosen
spike train distance (see Section 2.4) between all pairs of windows 7 and j
(4,5 =1,..., Ny, where N, is the total number of windows) of the signals
X (Y).

2.2 The nonlinear interdependence measure L

Here we describe the algorithm to calculate the nonlinear interdependence
measure L proposed by Chicharro and Andrzejak [18]. This measure evalu-
ates the asymmetric state similarity criterion by quantifying the degree to
which similarity between states of one dynamics is mapped to similarity
between states of the other dynamics. It was already widely applied to time-
continuous real-world signals, for example in the study of EEG [3, 37, 102],
and also in contexts different from neuroscience [91].

In the previous Section we defined dgg . Here we are interested in com-
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paring similarity between windows relative to similarity between other pairs
of windows. Therefore, we consider ranks of distances instead of exact
values of distances. For every window ¢ of the Y dynamics, ¢t = 1,..., N,
we define the quantity r};, which is the index of the window with rank [
when sorted by the distance dw’ j=1,...,N,. We also define g;* "m as the
rank of the distance d;\, in the sorted ascendmg list of the distances dl] ,
7 =1,..., N,. This allows us to calculate the Y-conditioned mean rank:

k
1
k _ L X
GI(X|Y) = ? E iy, 2.1

=1

This quantity reflects the degree to which the first k£ closest neighbors of
the window ¢ in Y are mapped to close neighbors of the same window in
X. The number of nearest neighbors &k can be £ > 1, but it has to be small
compared to the total number of windows N,,. To estimate the interdepen-
dence between the dynamics, we take an average across all windows of a
normalized value for G¥(X|Y). In this way we obtain L(X|Y') [18]:

LIX|Y) = Z G Gk()f H)/), (2.2)

where e
GH(X) = % (2.3)

is the minimal mean rank. G;(X) is the mean rank expected for independent
dynamics
M;+1
5
The value M; is the number of windows taken into account for comparing
similiraity. We exclude from the comparison W windows close to the
diagonal, because they correspond to neighbouring windows on time: M,; =
Ny —2W —1for W < i < N,—W +1, whereas below and above this range,
M; increases linearly until it reaches the values M; = My, = N, — W — 1.
This is in analogy to the Theiler correction [123].

The measure L(X|Y") has the expected value 0 for independent dynamics.
When the coupling strength from X to Y increases, also L(X|Y) increases.
The maximum possible value is L(X|Y) = 1, reached when X and Y are
equal or so similar that their matrices of ranks of distances coincide. The
measure L is designed such that L(X|Y") detects the coupling from X to

Gi(X) = (2.4)
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Y. To quantify the level of coupling in the other direction, we use L(Y'|X),
obtained by switching the role of X and Y in Eq. 2.2 and in all previous
definitions. We use AL(X,Y) = L(X|Y) — L(Y|X) to assess the direction
of the coupling [18].

The modularity of the approach based on the asymmetric state similarity
criterion allows one to choose a statistics different from L to evaluate the
criterion. In the context of time continuous signals other nonlinear interde-
pendence measures were proposed [5, 10, 111]. Here we consider only L
because it was shown [18] to be more sensitive and specific for directional
couplings than previous approaches.

2.3 Spike train distances

In the last twenty years, many different measures of spike trains similiarity
were developed [54]. Among the best-known are the Victor-Purpura distance
[127] and the van Rossum distance [125]. Both depend on a parameter that
defines the time-scale to which the method is mainly sensitive to. This
sensitivity determines the relative importance of rate versus exact timing
of the spikes in computing the dissimilarities. Kreuz et al. developed the
ISI-distance [57] and the SPIKE-distance [56], two time-scale independent,
time resolved distances which can evaluate dissimilarity without the need of
having to set a time-scale.

These distances were applied not only in neuroscience [11, 38, 79], but
also in other fields [130]. Recently, new generalizations of these distances
were developed [108], called A-ISI-distance and A-SPIKE-distance. These
generalized definitions add a notion of the relative importance of local
differences compared to the global time-scales. In particular, they start to
gradually ignore differences between spike trains for interspike intervals
(ISIs) that are smaller than a minimum relevant time-scale.

We here give a brief description of three measures of spike train syn-
chrony [54]: the time-scale dependent van Rossum distance [125], and the
time-scale independent ISI- and SPIKE-distances in their adaptive gener-
alizations [56, 57, 108]. For a more detailed description of the time-scale
independent measures see Appendix A.
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2.3.1 van Rossum spike train distance

For the van Rossum distance, each spike time t}, (n = 1,..., N}, where N}
is the number of spikes in this spike train) is convolved with an exponential
kernel, giving the convolved waveform:

N:
fi(t) = Z H(t —t,)e ttn)/mr

=1

where H (t) is the Heaviside step function. The time constant 7 is a param-
eter that sets the time scale. Analogous formulation holds for the convolved
waveform f,(t) of second spike train, with spike times t2 (n = 1,..., N2,
where N2 is the number of spikes in the second spike train, which can be
different than the number of spikes in the first spike train). The van Rossum
distance Dpg [125] is then calculated as:

Datre) = = [ A1)~ R0t @.5)

TR

For high values of 75 the distance between the two spike trains is mostly
determined by the difference in rate (since timing differences get lost in the
smoothed convolutions), while for low 75 the temporal relationship between
the spike timing is taken more into account (since even small differences in
spike time lead to a significant contribution).

2.3.2 ISI- and SPIKE-distance

Both the ISI- and the SPIKE-distance compute first a time-resolved spike
dissimilarity profile [77]. The ISI-dissimilarity-profile /(t) is based on the
interspike intervals, whereas the SPIKE-dissimilarity-profile S(t) takes into
account the exact timing of the spikes. Here we briefly describe how to
compute these two dissimilarities profiles, using the notation of Mulansky
etal. [77].

The ISI-dissimilarity-profile (¢) is based on the relative length of simul-
taneous interspike intervals [57]. For every time ¢ let tﬁi)’@) (t) be the time of
the last preceding spike, and tg)’@) (t) be the time of the first following spike,
for the first and the second spike train, respectively. The instantaneous inter-

spike interval is thus defined as: v(V)(t) = t(Fl) — tg), and analogously for
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v2)(t). The profile I(t) is computed by normalizing the absolute difference
of the interspike intervals:

(0 — ()
)= D, 20

By construction »M)(¢) and v(?) (¢) are piecewise constant functions, and the
same holds for 7(t).

The SPIKE-dissimilarity-profile focuses on the exact timing of spikes.
For every time ¢, the distance from the last preceding spike to the closest
spike of the other spike train is defined as:

Atp)(t) = min{[t}" — 7]}

and analogously for Atg) and At%l) ®)_ Then these values are weighted by
the instantaneous distances to the two nearest spikes:

(1) =t — ),

e (t) =t —t

with xg:,l) (t) +xg) (t) = vM(¢t). In this way the local dissimilarity is obtained

as

Aty (2 (1) + Aty (1) (1)
v(D(t) ’

Si(t) = 2.7

and S5(t) is defined analogously.

The SPIKE-dissimilarity-profile S(¢) is obtained from these local dis-
tances S1(t), Sa(t), weighted by the local interspike intervals, with a final
normalization:

S1 @ (t) + Sy (t)v(t)
2(v1:2)(t))?

S(t) = (2.8)

Notice that S(t) is a piecewise linear function.

For both the ISI- and the SPIKE-distance the total distance between two
spike trains is then calculated as an integration over time of the instantaneous
spike dissimilarity profile:

1
te — 15

te
Dp = / P()dt, P =15,
ts
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where ¢, and t. are the beginning and the end of the interval.

In the calculation of the dissimilarity profiles there is always an ambigu-
ity concerning the interval preceding the very first and following the very
last spike. In our case we initially calculate the profile for the whole time se-
ries and afterwards we segment it in overlapping windows and compute the
integrals. This way, for the intermediate windows we use some information
about the spikes in neighbouring windows, and the problem remains only at
the very beginning and at the very end of the spike trains. For this reason
we ignore the first and the last W, windows of our signals. The value of
W, 1s set adaptively as the minimum number of windows that we have to
neglect in order not to consider windows with empty neighbour windows.

Recently adaptive generalizations of the ISI- and the SPIKE-distance
were proposed [108], which take into account the relative importance of
local differences compared to the global time-scale (see Appendix A for
a more detailed description). By relying on a minimal relevant time scale,
they basically give less importance to the differences that are smaller than
a threshold 7. This threshold is computed as the mean of the square root
of the second moments of the ISIs of the whole spike train. It is important
to calculate 7 for each spike train from the whole signal and not just from
individual windows, in order to compute a meaningful distance between
different windows of the same signal. In contrast, 7 can in general be
different for the two spike trains whose connection is under investigation. In
fact, the measure L evaluates how similarity between different windows of
one signal is mapped on similarity among different windows of the other
signal.

In this thesis, we only show the values of L computed with the adaptive
generalization of ISI- and SPIKE-distance. Their property of taking into
account the global information about the time scale and not only adapting to
the local one is always desirable [108]. Additionally, in particular for Lgpixg
this is also reflected in a higher robustness to noise.

2.4 Assessing similarities between states with
spike train distances

Since it is not defined a priori which should be the proper ’distance’ between
different windows of a spike train, we study different possible choices: We
apply the van Rossum distance and the generalizations of ISI- and SPIKE-
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distance (see Section 2.3). To distinguish between L computed with different
distances, we use the notation L;s; when A-ISI-distance is used, Lspixg for
the A-SPIKE-distance and L. for the van Rossum distance. In pre-analysis
the Victor-Purpura distance yielded very similar results to the van Rossum
distance and is thus omitted here. When the parameter of the van Rossum
distance increases, the distance focuses more on spike rate than spike timing
accuracy. On the one hand the parameter offers more flexibility, but on the
other hand it is not obvious how to adjust it. Regarding the two parameter-
free distances, we exploit the fact that A-ISI-distance focuses on differences
of the rate whereas the A-SPIKE-distance focuses more on the exact timing,
in order to gain complementary information about the system. In Figure 2.1
we present an exemplary application of the three spike train distances to both
the driver X and the responder Y of a unidirectionally coupled system. This
example illustrates that the three distances give complementary information.

Segments of the signal of a fixed length ¢ are used as states of the
dynamics for the calculation of the distance matrices. In order to obtain
a finer sampling, we use overlapping windows, i.e. from one window to
the next there is a step size s with s < ¢, which leads to the following
segmentation of the signal: [(i — 1)s, (i — 1)s +¢] withi = 1,..., N,. The
total duration of the point process is (), and the total number of windows
N,, 1s obtained by rounding down % + 1. In every window, the time 7 of
a spike is relative to the beginning of the segment: 7 = ¢ — (i — 1)s, where
t s the time of the spike relative to the beginning of the whole signal. We
mentioned in Section 2.2 that in the distance matrices, for every reference
window we exclude the comparison with the W overlapping neighboring
windows, in analogy to the Theiler correction [123]. A possible value for
Wis W, = % — 1, which is the minimal one that guarantees to avoid the
comparison between overlapping windows. It is important to choose the
parameters of the method properly. In general, a good choice for ¢ is the
length of several mean interspike intervals, because a minimum number of
spikes in every window is needed for a good evaluation of distances between
windows. The parameter s should be a good trade-off between having more
sensitive results (shorter s) and the required computation time (which is
shorter for larger s).
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Figure 2.1: Example of distance matrices dfj(- (first row) and d}; (second row)
calculated with three different spike trains distances: (a) van Rossum distance, (b)
SPIKE-distance, (c) ISI-distance. The signals are simulated from unidirectionally
coupled Hindmarsh-Rose dynamics X and Y (driver and response, as indicated by
the large arrow). The matrices are quite different even for the same signal. From the
asymmetric state similarity criterion we expect that dark colour in the d}; matrices
are likely to correspond to dark colour in the df§ matrices, as indicated by the
direction of the small arrows. Elements close to the diagonal are not taken into
account (see Section 2.4).
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2.5 Methods

2.5.1 Test on simulated data: Hindmarsh-Rose neurons

We use spike trains derived from coupled Hindmarsh-Rose model neurons
([49] and references therein) to test different methods. This model is the
same as in [6], but here we consider more complicated settings. The system
of equations is composed of a driver dynamics X

i1 (t) = 2o(t) + 321 () — 21 (1) — 23(t) + J, (2.9)
I‘Q(t) =1- 51’1(t)2 - Ig(t)
i3(t) = 0.0021(—z3(t) + 4(z1(t) + 1.6)),

and a response dynamics Y,

(1) = y2(t) + 3y (1) — 91 (1)* — ws(t) + J,

+ €Z(x1(1))(0.3 — 51 (1)) (2.10)
Ja(t) =1 — 5yi(t)* — yalt)
yg(t) = 0.0021(—y3(t) + 4(y1(t) + 1.6)).

The coupling strength is € and the coupling function is defined as

Zoo(1(t)) = Z(2:1(1))

Z(@(1) = 100(1 — Zoo (1 (1)) @.11)
with
Zon(a(8)) = {ganh (z1(t) + 0.5), ieflsxel.(t) > —0.5, o

The two dynamics are identical apart from the input currents J, and J,,
which moreover determine the dynamical regime of the signals. The type
of coupling (Eq. 2.11-2.12) is a model for chemical synapses, whereas
electrical synapses are described by a diffusive coupling [99]. The first
components of Eqs.2.9 and 2.10 represent the membrane potential of the
neurons. In experiments, often one cannot measure the membrane potential
but only the times of spikes. To simulate such experimental conditions,
here we extract from these two time-continuous signals the spike times
that compose the point processes X and Y. The time of the spike is the
instant in which the signal x;(¢) crosses a threshold from below. As the
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threshold value we chose © = 0.6. We call ¢ the time of the n-th spike,
withn = 1,..., NX and N being the total number of spikes in X. The
times ¢! are defined analogously.

The Hindmarsh-Rose equations were integrated with a fourth-order
Runge-Kutta algorithm. The step size was 0.1 time units and the sampling
step At = 0.2 time units. We define 7' = 1000At as the unit time interval.
We started the dynamics with random initial condition and the first 5007
was discarded to exclude initial transients of the dynamics. The length of
the spike trains was () = 4007, and for the segmentation of the signals we
used a window length of ¢ = T with an overlap of s = 0.27". We chose a
Theiler window W of W,,;, = £ — 1. In order to avoid any type of in-sample
optimization, this procedure was exactly the same as in the previous work
[6].

Depending on the parameters .J, and J,, there can be different dynamical
regimes of the Hindmarsh-Rose model: spiking or bursting regimes, and
both can be periodic or aperiodic. In general the resulting signals have
different numbers of spikes, and furthermore the number of spikes in the
response changes with increasing coupling. In our work we analyze two
settings. In Setting A, we use the same regime as in [6], to test the robustness
against noise for the different spike train distances. In Setting B, we consider
different input currents and coupling values in order to validate the method
for a range of different problematic dynamical regimes, as dynamics close
to periodicity and under generalized synchronization.

An example of the signals from Setting A is shown in Figure 2.2, with
irregular spikes in the driving dynamics and irregular bursts in the response.
The input currents are the same as in [6], J, = 3.30 and J, = 3.28. We
computed L for the uncoupled case plus n. = 29 coupling values € equidis-
tantly distributed on a logarithmic scale from 0.0006 to 0.24. For each e,
we run n, = 20 independent realizations of the dynamics. We say that the
coupling and its direction for a specific value of ¢ is detected if the mean of
the difference on the n, realizations (AL(X,Y)) = (L(X]Y) — L(Y|X))
is significantly larger than zero. In order to assess the significance, we
performed a Wilcoxon signed rank test on (AL(X,Y')). The level of sig-
nificance was o = 0.05/n., where we used the Bonferroni correction [114]
to take into account the multiple testing of the n. values of the coupling.
We use this setting to study the robustness of the measure L to noise. We
define the performance W to be the percentage of the n. coupling values for
which we can significantly detect the coupling and its direction. To quantify
the variability of W, we ran three times n, realizations and we calculated
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the mean and the variance of the performances. When we compare the
performance for the robustness to noise with different spike train distances,
for the ISI-distance and the SPIKE-distance there is no need of choosing a
parameter. Instead, in the case of the van Rossum distance, we compute the
performance VW for a range of parameters and we select the one which leads
to the best performance.

In Setting B we consider different input currents (J, = 3.28, J, =
3.60). We consider the uncoupled case plus n. = 89 coupling values ¢
equidistantly distributed on a logarithmic scale from 6 * 107 to 1.8. Here
the driving dynamics is in an irregular bursting regime, while the response
shows a variety of different behaviours. It is close to periodicity for very
small coupling values (Figure 2.3a), while it undergoes a bifurcation as
the coupling increases, until it reaches an irregular bursting regime (Figure
2.3b). Finally, for the highest coupling values, there are degenerated bursts
(Figure 2.3c): the spikes in the bursts show a decrease in the amplitude
from the beginning to the end of the burst, and the amplitudes of the last
ones are so small that the spikes do not reach the threshold for detection
any longer. The very irregular shape of the spikes makes them not so well-
defined as in the other regimes, and even adjusting the threshold would
not be effective. Therefore, as the coupling increases, the detected spikes
preserve less and less of the information contained in the time-continuous
signals. There are two intervals of coupling values for which the driving
and the response are in generalized synchronization [105]. The concept
of generalized synchronization comes from the study of time-continuous
signals. Two dynamics X and Y are in generalized synchronization when
the trajectories y(¢) of Y can be derived by a functional relationship from the
corresponding trajectories x(t) of X [53]. In this way, y(¢) is not dependent
anymore on its initial conditions. In order to check for which coupling
values the dataset is in the regime of generalized synchronization, we use
the auxiliary system approach [1], exploiting the fact that the spike trains
that we study are extracted from time-continuous signals. For a realization
of the driving dynamics X [Eq. 2.9] we generate two realizations of the
response dynamics, Y and Y’, which obey the same equations 2.10 but start
from different initial conditions. We wait a long transient (500007") and we
compute the average of the difference between the last 4007 of y; () and
y; (t). If this distance is zero that means that the Y dynamics is independent
of its initial condition, therefore generalized synchronization is established.
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Figure 2.2: Example signals for Setting A: coupled Hindmarsh-Rose dynamics
(x1(t),y1(t)) with coupling strength e = 0.24, J, = 3.30 and J, = 3.28. The
coupling function z(¢) is defined as z(t) :== Z(z1(t)) (see Eq. 2.11). Horizontal
lines represent the threshold for spike detection. The time is in unit of 7". The x4 ()
signal is in an irregular spiking, the y; (¢) signal in an irregular bursting regime.

2.5.2 Robustness to noise

In this Section we introduce different noise types that we apply to the
simulated signals of Setting A. We select them in order to cover some of the
principal disturbances that can affect data in the real world. The principal
noise sources are due to the intrinsic stochasticity of the neurons [30, 50],
the uncertainty due to spike sorting and other measurement noises [68].

At first we consider a noise type which we call unreliability noise. It
represents the possibility of having false-positive and false-negative detec-
tions of spikes. We simulated this noise by randomly removing and inserting
spikes. In the original point process X, with 1 < n < NX, we remove
0 < M < NZ spikes. At the same time, we randomly insert M new spikes.
The positions of the new spikes are uniformly distributed in the interval
between 0 and the total recording time (). This way, the new spike train t~§
has the same number N SX of spikes, while the interspike interval distribution
is not maintained. We define the noise level -y, as the fraction of spikes that
we remove and insert M = -, NX. Analogous definitions hold for the Y
spike train.

The second type of noise is a shift in the spike times, the jitter noise.
In this case, we shift every spike time of both X and tY by a different
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Figure 2.3: Example signals for Setting B: coupled Hindmarsh-Rose dynamics
(x1(t),y1(t)) with J, = 3.28 and J, = 3.6. In all the panels, the = (t) signal is in
an irregular bursting regime. The time is in unit of 7". The y; (¢) signal is very close
to periodicity in panel (a), where the coupling strength is ¢ = 0.0101, in an irregular
bursting regime in panel (b), e = 0.1092, and finally it presents degeneration of the
bursts in panel (c), e = 1.0276.

delay dt extracted from a Gaussian distribution with zero mean and standard
deviation 0. We choose o as a fraction y; of the mean interspike interval of
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the time series pusi: 0 = ;iusi. The noise level is quantified by ;.

The third type of noise reflects the fact that spike propagation depends
on unreliable connections between neurons, for example some spikes of
two connected neurons may not be transmitted. We represent this effect by
modifying a term in the equations, hence it is a dynamical noise that we
call transmission noise. In the Hindmarsh-Rose Eqgs. 2.9-2.12 the coupling
between the neurons is mediated by the coupling function Z(z(t)) [Eq.
2.11], which is influenced by z;(¢) only when x;(¢) is higher than the
threshold of —0.5, i.e. in correspondence to a spike in x;. We cancel the
influence from single spikes of X on Y, with some probability 7;, which
quantifies the noise level. Thus, for the whole time of the increase of the
membrane potential due to a specific spike in z;, we let the function Z
evolve as if the threshold was not crossed. It is important to notice that by
ignoring spikes we reduce the effective” coupling strength.
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Figure 2.4: Values of L for increasing coupling strength (the number of nearest
neighbors k of Eq. 3.17 is set as kK = 1). From top to bottom, Lis1, Lspike and Lyr
(with the optimal parameter for significant coupling detection). For every coupling
value, there are 20 independent realizations. Results for uncoupled dynamics
(e = 0) are displayed on the ordinates. The stars on the bottom of the plots mark the
coupling values for which the detection of the coupling is significant. The measure
Lys1 performs best, since it is able to detect even low couplings.
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Figure 2.5: Comparison of the performance ¥ of the measure L for different spike
train distances in dependence on increasing levels of (a, d) unreliability, (b, e) jitter
and (c, f) transmission noise. In the first row (a, b, ¢c) we set £ = 1, in the second
row (b, e, f) k = 10. The A-ISI-distance performs best. The robustness to noise is
improved by a higher number of nearest neighbors k.
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Figure 2.6: Values of Lig; and Lgpigg in dependence on the coupling strength e
(k = 10). Results for uncoupled dynamics (¢ = 0) are displayed on the ordinates.
The stars on the bottom of the plots mark the e values for which the direction of the
coupling is significantly detectable. The shaded areas correspond to the generalized
synchronization regimes. The first dashed vertical line on the left distinguishes the
regime close to periodicity (corresponding to small coupling values, see Figure
2.3a) from the regime with bursts in the response (see Figure 2.3b), and the second
line marks the transition to the regime for which there is a strong degeneration of
the bursts (see Figure 2.3c).
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Figure 2.7: Results of the auxiliary system approach applied to Setting B of the
Hindmarsh-Rose model. We plot the average of the absolute value of the difference
between the last 4007 corresponding values of y(¢) and its copy y;(t), after
discarding a transient of 10°7T". For every coupling value there are five independent
realizations, each of them represented by an asterisk. The green crosses at the
bottom that correspond to values of exactly zero in at least one realization mark the
regime of generalized synchronization. Results for uncoupled dynamics (¢ = 0) are
displayed on the ordinates.
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2.6 Results

In this Section we show the influence of different distances and parameters
on the efficiency of L. First we study the dependence on the coupling strength
without noise. Subsequently, we investigate the robustness of L to various
kinds of noise. Finally, we test the versatility of this approach to work in
different dynamical regimes.

We start our analysis with the noise-free case of Setting A. In Figure
2.4 we investigate the dependence of L on the coupling strength for the
A-ISI-distance (Ls;), the A-SPIKE-distance (Lgpikg) and the van Rossum
distance (Lr). The measure L;g can distinguish the direction even for small
€ and it also gives higher values of L. The measure L, instead, even with
the parameter which optimizes the performance ¥, performs worse and has
lower values than L;s;. The Lgpixg performs worst.

In Figure 2.5 we continue to analyze Setting A, but now we investigate
the effect of the different spike train distances on the robustness against
noise of L. We also look at the influence of k on the performance. In the
presence of unreliability noise, generally Lig; continues to perform best,
even if for high levels of noise Lgpkg starts to perform better (Figure 2.5a).
It is clear that selecting a high number of neighbors is very important for the
robustness of the method, since the overall performance increases (Figure
2.5b). At the same time, for £ = 10, L;s; performs best across the entire
range of noise levels. For larger £ the value of L in general decreases,
but also the variance of L across different realizations decreases because
averaging over more neighbors gives more stable results. As a consequence
the direction detectability improves, in particular in the presence of noise.
The measure L.g, even though its parameter is optimized separately for
every noise-level, performs worst. Regardless of the spike train distance, up
to 35% of the spikes have to be removed and randomly reinserted in order to
completely destroy the performance. Thus we can conclude that the measure
L is robust to unreliability noise.

For jitter noise (Figure 2.5¢,d) Lg performs very well, in particular it
slightly outperforms Lg; for high levels of noise. Every spike has to be
shifted by a value extracted from a Gaussian distribution of standard devia-
tion 70% of the mean interspike interval in order to lead to zero performance.
Accordingly, we can state that the method is robust also to jitter noise.

The measure Lg; performs best also with the addition of transmission
noise (Figure 2.5¢,f). Despite the optimization, L,g performs worse than Lig;.
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The performance is zero only if 90% of the spikes of the driven dynamics are
ignored by the coupling, hence the measure L is robust also to transmission
noise. We notice that in this case the performance stays high for high levels
of noise and then it drops more suddenly at the end. The dependence on the
noise level is therefore different than for the other noise types.

One interesting aspect of this analysis concerns the strong dependence
of the van Rossum distance on the time-scale parameter (results not shown).
Putting the focus on rate works better in the presence of high levels of jitter
noise, whereas for high levels of unrealiability noise it is preferable to focus
on spike accuracy. This is intuitive and in agreement with the comparison
of Lspikg and Ligp in the presence of these two types of noise. However,
this dependence of the optimal parameter on the type and level of noise,
renders the use of the van Rossum distance problematic for applications to
realistic situations when all kinds of noise are present at the same time and
the ground truth is unknown.

In Setting B, we focus on the adaptability of the measure L to spike trains
which reflect the different regimes of the underlying dynamical systems
(Figure 2.6). To avoid the complications caused by the time-scale parameter,
we do not consider the van Rossum distance any longer (and the same applies
to the time-scale dependent Victor-Purpura distance). From Figure 2.6a we
can see that Lyg; is highly sensitive to small coupling values, even if in this
regime the response is close to periodicity (compare Figure 2.3a). At the
same time, Lgpixg cannot detect the very small coupling values (Figure 2.6b).
When ¢ increases, the values of L for both spike train distances increase, but
their behaviour differs. The directionality detection of Lg; deteriorates until
the values of Ljg; are very close to one and almost coincide in both directions.
The results of the auxiliary system approach in Figure 2.7 confirm that the
high values of Lig; correspond to coupling values close to and inside the
first interval of the generalized synchronization regime. Surprisingly, for the
corresponding coupling values Lgspixg can perfectly detect both the presence
and direction of the coupling.

The behaviour of Lis; resembles the behaviour of L for time-continuous
signals when the coupling is approaching a value large enough to induce
generalized synchronization [18]. This behaviour is well-known in the study
of time-continuous signals [104]. As a consequence, a requirement for
the applicability of directionality detection is that the coupling does not
induce synchronization [90, 115]. The high sensitivity of L;s; leads more
easily to high values for the coupling without any sign of directionality
when approaching the regime of generalized synchronization. In contrast,
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while being less sensitive, Lspikg in the generalized synchronization regime
can perfectly detect the direction of the coupling. There might be two
reasons for these results. First, the rate compared to the exact timing is
more easily affected by a small coupling. Second, the functional relation of
generalized synchronization which connects the y; (¢) and x4 (t) signals of
the Hindmarsh-Rose model can be very complicated, and it is in principle
possible that it is easier to detect from spike rate instead of spike timing.
A complete study of generalized synchronization between two Hindmarsh-
Rose dynamics is beyond the scope of our study. Nevertheless, empirically
we see that generalized synchronization expresses itself in different features.

After the first synchronization window, while both values Ls;(X|Y") and
Lspike(X|Y') show a decrease, a distinction of the coupling direction is still
possible (Figure 2.6). These coupling values correspond to the change of
regime in the response, from almost regular spiking to irregular bursting
(compare Figure 2.3b). In this case, the values of L increase also in the
opposite direction L(Y|X). We remind that L(Y|X) would indicate a
coupling from Y to X. For the highest coupling values, L;s; decreases
again in both directions (Figure 2.6a). Furthermore, there is another window
of generalized synchronization. However, both Lis; and Lgpixg behave
differently as compared to the first window. Here the corresponding signals
show an additional effect, the degeneration of the bursts (see Figure 2.3c).
The spikes contain less information about the original time-continuous
signals. Moreover, spike density in the bursts is very high and there are
longer inter-burst periods. This bursting structure leads to smaller values
of L despite the higher coupling strength, compared to the previous regime
close to periodicity.

2.7 Discussion

The detection of directional interdependence between unknown dynamics
from their signals is a non-trivial problem, and in the last decades many
different approaches to address this problem have been proposed. Before
using a method to interpret real data, it is always important to first study its
properties and to apply it to model systems. Thus in this Chapter we simulate
realistic experimental conditions to validate a method for the detection
of unidirectional couplings between point processes. This approach is
based on the asymmetric state similarity criterion in the formulation of the
nonlinear interdependence measure L [18]. The capability of this method
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to detect coupling was already demonstrated in the Lorenz and in one
setting of Hindmarsh-Rose dynamics [6]. Here we examine the robustness
against various kinds of noise and the versatility of the approach in dealing
with different dynamical regimes. Additionally, we take advantage of the
modularity of the measure L and test three spike train distances which are
sensitive to different aspects of the dynamics.

Our results show that among the three distances that we used for the
measure L, the A-ISI-distance exhibits the highest sensitivity in detecting
unidirectional coupling. While all three distances prove to be very robust in
the presence of noise, again the measure Ls; performs best. The measure
L in general works for different dynamical regimes, including irregular
spiking, irregular bursting, almost periodic motion and under generalized
synchronization. Interestingly, Lis; and Lgpigg catch different features of the
coupling between spike trains, namely an interdependence based on the rate
or on exact spike timing, respectively. Therefore, it is recommendable to
apply both Lig; and Lgpikg, because they provide complementary information
and might therefore be sensitive to different coupling strengths.

In general, the values of L are not monotonically increasing with an
increase of the coupling value. As emphasized in [64], the effect of the
coupling depends not only on the coupling strength but also on the energy
of the individual dynamics. As a consequence, the estimate of the coupling
is not independent from the structure of the data, for example in bursting or
spiking regimes.

The choice of the parameters is important to obtain meaningful results.
In particular, we have seen that a higher number of nearest neighbors £ is an
advantage in the presence of noise. Nonetheless, no fine-tunig of k is needed,
and a value of approximately 0.5% of the total number of windows is a good
choice in order to be less affected by noise. Another important parameter is
the window length. If it is too long it reduces the reliability of the measure L,
in the sense that there will be too few windows to compare. If it is too short,
the estimation of similarity is not reliable. In order to obtain robust results,
we recommend a minimum number of 5 spikes. Furthermore, the relevant
information about similarity can be contained in a complex structure, such
as the bursts, which cannot be properly captured by very short windows.

It was shown in the previous study [6] and is further supported by our
results that the measure L for the detection of directional coupling between
point processes performs well in the study of simulated spike trains derived
from nonlinear deterministic dynamics. If the spike trains are from two
coupled stochastic point processes instead, the measure L could have trou-
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ble with the detection of directionality, even if the presence of a coupling
is still detectable. Another caveat is the possibility to have a small but
significant difference in the values of L in the two directions also for bidirec-
tionally coupled dynamics [64]. As a consequence, in the interpretation of
experimental results, more caution is necessary to assume directionality if
L(X|Y) ~ L(Y|X). An open question regards the efficiency of the measure
L under these conditions and how to quantify the reliability of directionality
detection.

Since different methods can extract information from different features
of the data, it is recommendable not to restrict yourself to just one approach
such as nonlinear interdependence measures, but instead to use complemen-
tary techniques for directionality detection [28, 39, 41, 61, 69, 81, 119, 120].
In the next Chapter we compare the measure L with the cross-correlogram
and the spike train distances used for coupling detection. A more com-
prehensive comparison with also other methods regarding their statistical
requirements, their computational cost and their abilities to provide comple-
mentary information on the dynamics under investigation will be the focus
of future studies.
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CHAPTER 3

Comparison of the measure L with linear
methods

In Chapter 2 we tested the robustness of the measure L to noise and its
versatility to different spike train regimes of Hindmarsh-Rose dynamics, that
manifest themselves in different predominant patterns in the spiking: irregu-
lar bursts, irregular spikes, etc. In this Chapter we compare the performance
of the nonlinear measure L against the one of the linear cross-correlogram
[95] and the spike train distances (Appendix A). The measure L was in-
troduced relatively recently in [6] and it is a quite complicated method of
data analysis. It is therefore important to compare its efficacy against other
standard approaches. This comparison is not so trivial considering that the
measures rely on different assumptions.

The zero-lag cross-correlogram and spike train distances do not allow
to extract the direction of the coupling, because they are symmetric mea-
sures. However, a common approach is to look at the cross-correlogram
as a function of a time shift between the signals. Here we generalize that
approach to the spike train distances and finally also to the measure L (even
though it is already directional at zero shift). We assume that the difference
for the positive and negative temporal shifts reflects the difference between
driver and response. In analogy to the expressions cross-correlogram and
auto-correlogram, we use the term cross to refer to the case when we com-
pute a measure between two signals, as a function of a time shift between
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them. The word auto instead is referring to the case of a cross function
between a signal and itself. In application to our measure for nonlinear
interdependence, this leads to cross-L and auto-L. The approach auto-L
corresponds to the nonlinear predictability score introduced by Naro et al.
[80]. We should note that cross-functions for spike train distances were
already used before in [13], with the aim of detecting latencies. With the
formalism of cross-distance, we test for the first time the efficacy of the spike
train distances as methods to not only test for the presence of a coupling, but
also the direction of the coupling.

In the first part of this Chapter we define the methods that we compare
using cross- and auto-functions. Then we compare their performance for
directionality detection simulating many realizations of the same dynamics
for the assessment of the significance of the results (Section 3.2). In the
second part of the Chapter (Section 3.3) we approach a simulated scenario
more similar to the case of real-world data, considering only one realization
of each dynamics. In this case we use cross-functions as surrogates for
assessing the significance of the coupling. Surrogates are Monte Carlo
techniques for estimating a distribution of values expected under a certain
null-hypothesis [65]. We use them to estimate a distribution of values
expected for pairs of independent spike trains. In the application of nonlinear
methods to phenomena in nature, surrogates are used to test the nonlinearity
of the dynamics [4, 62, 112]. In the context of spike train analysis, there
is a wide use of generation of artificial data from experimental ones for
implementing null hypothesis. For example, for the correlation analysis of
parallel spike trains, often the complexity of data does not allow analytical
formulation [71]. Surrogates should preserve as far as possible features
such as the inter spike interval distribution [51, 70], non-stationarity of
firing rate or irregularity of firing rate [118]. Commonly used methods are
trial shuffling, spike time randomization, spike train dithering, spike time
dithering, joint-ISI dithering, spike exchanging [41]. In this Chapter we deal
with pairs of spike trains and we do not make assumptions on the time scale
of the coupling, therefore we choose to use time-shifted surrogates which
preserves all characteristics of the individual signals.
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3.1 Methods for interdependence and direction-
ality detection

3.1.1 Cross-correlogram and auto-correlogram

The simplest and most intuitive method for computing the dependence
between two signals is the cross-correlation [95]. When the signals are
spike trains, we obtain the cross-correlogram [24], which is a histogram of
the number of spikes of one neuron at a certain time, relative to the spike
times of another neuron. It is computed by counting coincidences between
the spikes in one signal with the shifted spikes of the other signal, as a
function of the time shift. Evidently, it is necessary to use binning to assess
the interval for which two spikes are considered coincident. The choice of
the bin width is important, because it affects the time scale that we look
at. A significant peak close to zero delay in the cross-correlogram is an
indicator of interdependence between the signals. If the delay is too far away
from zero, taking into account our prior knowledge about the dominant time
scales of the system under study, a prominent peak can be interpreted to be a
result of chance coincidences. The position and broadness of the peak could
point to different types of interrelation. For example, a broad peak may be
due to nonstationarity in the firing rates of the neurons which leads to an
increase of joint-spike events (if the time-dependent firing rates co-vary in
the same way in both spike trains).

There are many different ways to define the cross-correlogram [83, 92]
for spike train signals. Here we consider two spike trains x(t) and y(t). We
define Zeount(tc) and Yeount (tc) as the number of spikes that occur in the bin
with index ¢, withtc = 1,..., @) and () total length of the spike trains. We
call the bin width f and the step size between two subsequent bins s¢. If
sc = f there is no overlap between subsequent bins. We express the shift 7
between x(t) and y(t) in units that we call f¢. In general, fynr is not equal
to f. This is an important point that allow us to cover different time-scales.
Next, we define the cross-correlogram as:

Q min(Q—7,Q)
CVOSS—C(T) = = Z xcount(tC) : ycoum(tc’ - 7—)7 (31)
Q-7
tc=max(0,7)
with 7 = (_Ndelay(cross)7 ey Ndelay(cross)) : fshift» where Ndelay(cross) is the total

number of positive and negative delays that we compute. The normalization
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factor % takes into account that the overlap between the two signals is
reduced for bigger shifts, and therefore also the likelihood to have simulta-
neous spikes between them decreases. Similar signals have high values for
their cross-correlogram for small values of 7.

Let us assume to have two unidirectionally coupled dynamics X and Y.
We want to use the cross-correlogram to assess the directionality studying
their signals z(¢) and y(¢). A peak at negative delay is an indication of a
coupling from X to Y, while a peak at positive delays points to a coupling
in the opposite direction. Therefore, we can use as estimator for the two
directions:

cross-C(X|Y, 1) = cross-C(1), with T <0, (3.2)

and
cross-C(Y'| X, 1) = cross-C(7), with 7 > 0. (3.3)

We apply the standard score as normalization to these functions, in order to
have a distribution with a mean of 0 and a standard deviation of 1:

_ x — mean(x)

A0 = —dm 3.4

where the mean mean(x) and the standard deviation std(x) are computed
across all the delays 7 of cross-C(7) in Eq. 3.1. If we have many realization
n, of the dynamics, the directionality of the coupling is assessed by a
significant difference between the maximum values of these two functions:

AMc = Mc(X]Y) — Mc(Y|X) =
max(z(cross-C(X|Y,—7))) — max(z(cross-C(Y'|X, 7))),
with 7 = (17 LRI Ndelay(cross)) : fshift- (35)
We call the position of the maximum 75**. In general, the absolute value is
different for the two directions: |72 (X|Y)| # [7&*(Y]X)|.

The auto-correlogram of z() corresponds to the cross-correlogram (Eq.
3.1) between xz(t) and itself:

Q
CZMIO-C(T) = % Z xcount(tC) : mcount(tC - 7—)7 (36)

tc=max(0,7)

with 7 = (0, ..., Naelay(auto)) * fsnift- Where Neelay(auto) 18 the total number of
positive delays in dependence of which we compute the auto-function.

32



3.1.2 Cross-distances and auto-distances

We consider again two spike trains x(¢) and y(¢), witht = 0,...,Q. We
define d;s7(z(t),y(t)) and dsprxr(x(t), y(t)) to refer to the A-ISI-distance
and A-SPIKE-distance computed between the two signals, using the defini-
tions of Section 2.3 and Appendix A.

Introducing the time shift, we define the cross-distances cross-ISI and
cross-SPIKE:

cross-ISI(1) = 1 — dysr((t), y(t — 7)), (3.7)
cross-SPIKE(T) = 1 — dsprxp(z(t),y(t — 7)), (3.8)

where the distances are computed for the time range
t = max(0,7),...,min(Q — 7, 7). The shift 7 between the signals x(t) and
y(t) is expressed again in units of fuite, 7 = (—Naelay(cross)s - - - » NVaelay(cross))-
fsnire. Here we do not need to include a normalization factor because the
spike train distances are already normalized themselves. In Eqs. 3.7 and
3.8 we take one minus the distances in order to get a measure of similarity
instead of dissimilarity, analogously to the cross-correlogram (Eq. 3.1).

As in Section 3.1.1, to assess the directionality between unidirectionally
coupled dynamics, we can use the maximum values for positive and negative
delays:

cross-distance( X |Y, 7) = cross-distance(7), with 7 < 0, (3.9
and
cross-distance(Y'| X, 7) = cross-distance(7), with 7 > 0, (3.10)

and with the standard score normalization (Eq 3.1.1) where mean(x) and
std(z) are computed across all the delays 7 of cross-ISI(7) (Eq. 3.7) and
cross-SPIKE(T) (Eq. 3.8):

AMp = Mp(X|Y) — Mp(Y|X) := max(z(cross-distance( X|Y, —7)))
— max(z(cross-distance(Y' | X, 7))), with 7 = (1, ..., Ngelay(cross)) * Jshift-
(3.11)

max

We call the position of the maximum 775%*, whose absolute values are in
general different for the two directions: |735**(X|Y)| # |75*(Y'|X)|. For
the auto-distances, analogously to Eq. 3.6, we get:

auto-1SI(1) = 1 — dys(x(t), z(t + 7)), (3.12)
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auto-SPIKE(T) = 1 — dsprxp(z(t), z(t + 7)), (3.13)

where the distances are computed for the time range ¢t = 0,...,() — 7 and
T = (07 ce 7Ndelay(aut0)) : fshift~

3.1.3 Cross-L and auto-L

The measure L is a measure of nonlinear interdependence which allows one
to determine not only the strength but also the direction of this interdepen-
dence. The value L(X|Y') is an estimation of the coupling strength from X
to Y, while L(Y'|X) is for the other direction. This estimation is based on
the asymmetric state similarity criterion (introduced in Section 2.1), i.e. if
there is a unidirectional coupling from X to Y, similar states in Y are likely
to be mapped to similar simultaneous states in X . In this formulation, no
delay is considered in the coupling detection. However, note that the states
of the signals cannot be instantaneous (in order to be able to meaningfully
estimate similarity between them). In the case of continuous signals, the
states are based on a reconstruction of the dynamics with delayed coordi-
nates [109, 122], therefore they can be interpreted as instantaneous. In the
case of point processes there is no reconstruction, and the temporal length
of the states automatically takes into account the possible presence of a
latency in the interdependence. Despite this consideration, it is nevertheless
meaningful to introduce explicitly small shifts between the signals also for
the measure L. From the point of view of the asymmetric state similarity
criterion, we are thus checking if similar states in Y at time ¢;, %o, ... are
mapped to similar states in X attime t; + 7,to +7,....

As introduced in Section 2.4, we estimate the states of the dynamics
with short segments of fixed length ¢, with an overlap of 5, s < ¢q. Asa
consequence we get a segmentation of the signal: [(i — 1)s, (i — 1)s + ¢]
with? =1,..., N,. The total length of the signal is (), with a total number
of windows N, obtained by rounding down % + 1.

We define cross-L as:

cross-L(X|Y,7) = L(z(t)|y(t — 1)), (3.14)
cross-L(Y'| X, 7) = L(y(t)|z(t — 7)), (3.15)
with 7 = (=Naeiay(cross)s - - - » Naelay(cross)) - fsnite and L computed for the
time range t = 0, ..., ). Considering the higher computational complexity

of the measure L (compared to the previously defined cross-correlogram
and cross-distances), in the definition of cross-L we use circular boundary
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condition z(—t) = x(Q — t), y(—t) = y(Q — t), with step fir always
being an integer multiple of s. In this way, we can compute L without the
need to re-compute the distance matrix for all time shifts. Instead we can
introduce a circular shift by fi,r/s matrix elements to the distance matrix.
This is equivalent to shifting the signals against each other.

In the case of cross-correlogram and cross-distances, exchanging the role
of x and y only changes the sign of the cross-function, i.e., cross-C(X|Y, T) =
cross-C(Y'| X, —7), and analogously for the cross-distances. In fact, we in-
troduced the difference between the peaks at positive and negative delays
for assessing directionality. We notice that in the case of cross-L the same
property does not hold: cross-L(X|Y, 7) # cross-L(Y| X, —7). We can still
use the maximum values of cross-L at positive and negative delays as for
cross-correlogram (Eq. 3.5) and cross-distances (Eq. 3.11) to assess the
directionality of the coupling, but in this case we take negative and positive
delays of different functions:

AM; = My(X]Y) — My (Y|X) =
max(cross-L(X|Y, —7)) — max(cross-L(Y | X, 7)),
with 7 = (07 ) Ndelay(cross)) : fshift- (316)

We call the position of the maximum 7;"%*. Its absolute values are in general
different for the two directions: |7"**(X|Y)| # |[7"*(Y|X)|. Another
difference to Eqgs. 3.5 and 3.11 is that for the measure L we always include
also the values of zero 7 as possible value of 77" for both directions.

3.1.3.1 Predictability score

In this Section we describe the rank-based predictability score, a near-
est neighbor prediction measure introduced in reference [7] for assessing
the determinism in spike train signals. This approach quantifies the auto-
predictability of individual signals, since signals derived from deterministic
dynamics should exhibit some predictability. Here we use the predictability
score for the definition of auto-L.

We consider the dynamics Y and the spike train distances d}; between
all pairs of windows ¢z and j (¢,57 = 1, ..., V,,) of the signals (in complete
analogy with Section 2.4). From these distances we can determine the
degree to which the future states of similar windows are similar between
them. For each reference window i, we want to compare its future after /
steps, that corresponds to the window with index ¢ + h, with the future of
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the k£ most similar windows to ¢, whose indexes are 7;;, with | = 1,.. .k,
as in Section 2.2. In analogy to the Theiler correction [123], we do not
consider the entries around the diagonal of the distance matrix. That means,
for every reference window we exclude the comparison with ¥ temporal
neighbouring windows. We also have to exclude the last 4 windows from
the analysis, because their recorded future is not sufficiently long. Therefore,
the number of distancesis M; = N, —2W —1forW < ¢ < N, — W + 1,
whereas below and above this range, M; increases linearly until it reaches
the values M; = My, = N, — W — 1, exactly as in the computation of L
in Section 2.2. We denote with g; ,,, the rank of the distance d}fn in the sorted
ascending list of the distances d};, j=1,..., N, — h, excluding again the
W windows close to the diagonal. We need to quantify the degree to which
similar windows remain similar after the horizon h. To this aim, reference
[7] defined the quantity

k
1
Ri(h) = T Zgi+h,ri,l+h~ (3.17)
-1

that corresponds to the mean rank (refered to the window ¢ + h) of h time
steps ahead of the k nearest neighbors of the window :. In case of complete
predictability, the mean rank takes its smallest possible value, so we get

R, = R;, where

Ry — % (3.18)

analogously to Eq. 2.3. For no predictability, the expected value for R; is

RU:M“Ll
7 2 I

(3.19)

defined analogously to Eq. 2.4. With a normalization analogous to the one
of Eq. 2.2, the rank-based predictability score [7] is defined as:

N—h

1 RV — R;(h)
S =5— ; R (3.20)

In case of complete predictability, R; = RL, therefore S = 1 and the
expected value for no predictability is S = 0. These boundaries and expected
values of the measure S are analogous to the ones for L (Eq. 2.2).

The predictability score S(h) of Eq. 3.20 is equivalent to applying the
measure L between a signal and itself shifted by the horizon h. The only
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difference from our formulation of Eq. 3.14 is that for S(h) we do not
use circular boundary conditions: the length of the overlap between the
signal and the shifted version of itself, is shorter the longer the horizon h.
Accordingly, as we mentioned above, the last h windows of the signals are
excluded from the analysis considering that their future is not completely
present in the recorded signal.

We therefore use S(h) to define auto-L, consistent with our previous
definitions (Egs. 3.6, 3.12, 3.13):

auto-L(T) = S(1), (3.21)

with 7 = (1,.. ., Naelayauto)) - feniti- As for cross-L, we choose fire always
as an integer multiple of s. We call hy the smallest value of 7 for which
auto-L(7) = 0. This is a useful quantity because it estimates the length of
the predictability interval.

3.2 Comparison for directionality detection

To compare cross-correlogram, cross-distances and cross-L as in Section
2.5.1, we use pairs of signals measured from unidirectionally coupled
Hindmarsh-Rose dynamics, where X is the driver and Y is the response.
We want to determine the direction of the coupling, assuming that we know
a priori that if a coupling is present, it is unidirectional (the same logic as in
Chapter 2). We first extract information about the time scale of the signals
looking at the auto-functions.

We use AM; = M;(X|Y) — M;(Y]X) to assess directionality, with
the different functions I = C, D, L, as introduced in Egs. 3.5, 3.11, 3.16,
respectively. In particular, as in Chapter 2, we compute the values of AM;
for n, = 20 independent realizations of the dynamics. In order to assess
the significance, we perform a Wilcoxon signed rank test across the n,
realizations of the values of AM;. Like in Section 2.5.1, we consider Setting
A and B of the Hindmarsh-Rose dynamics, for the uncoupled case plus n,
different values of the coupling. The level of significance is « = 0.05/n,,
where we use the Bonferroni correction [114] to take into account the
multiple testing of the n. values of the coupling. The performance WV is
estimated as in Section 2.5.1 by the percentage of the n. non-zero coupling
values for which we can significantly detect the coupling and its direction.

In Table 3.1 we summarize the parameters that we use for each method.
We always express parameters in units of sampling time At, as defined in
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Section 2.5.1. For the cross-correlogram C, we use two sets of parameters.
Set 1 is a choice with small bins, no overlap between subsequent bins
(s. = f) and small shifts for the cross-correlogram. The spike train distances
have no binning and no overlap; we choose fy,s with the same length as
the step size of the cross-correlogram, and the same number of delays. For
the measure L we use the same window length ¢ and overlap s as in the
previous Chapter 2: ¢ (set 1) = 1000, s (set 1) = 1000/5. We also consider
a different parameter choice with the same total number of windows N,, as
in set 1 (N, = 400 - 5) but with shorter length: ¢ (set 2) = 1000 - (2/5),
and less overlap: s (set 2) = 1000/2, in order to check for the influence of
those parameters on the performance, and we got similar results as for the
first parameter choice (results not shown). For L the window length ¢ is the
equivalent of the bin size for C. Evidently, because of the requirements that
there needs to be a certain number of spikes in each window for L, ¢ cannot
be as small as the binning of C in set 1. That is the reason why we consider
the parameter set 2 for C, in which we choose the same binning as for L (set
1) and the same values of overlap.

Table 3.1: Parameters used for the comparison of the different methods, in units of
sampling time A¢. The number of nearest neighbors for the measure L (Eq. 3.17)
issetas k = 5.

method binning Step size f shift N, delay(cross) N, delay(auto)
C(setl) f=20 sc =20 1 250 1000
C(set2) f=1000 sc=1000/5 sc 25 100
Distances no binning no overlap 20 250 1000

L g=1000 s=1000/5 s 25 100

3.2.1 Results

3.2.1.1 Auto-functions

We first show profiles of auto-functions to qualitatively illustrate the meaning
of the parameters that we choose and compare their characteristics for dif-
ferent measures. In Figures 3.1 and 3.2 we depict profiles of auto-functions
for the different methods and parameters, obtained for one realization of the
driver dynamics X and different realizations of the Y dynamics, for some
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Figure 3.1: Profiles of auto-functions for the Hindmarsh-Rose dynamics in Setting
A. The first column represents auto-C with parameter set 1, the second column
parameter set 2. The first row corresponds to one realization of the X dynamics,
in this case in an irregular spiking regime. Being the driver dynamics, it does not
depend on e. The subsequent rows correspond to realizations of the Y dynamics,
first for uncoupled dynamics (¢y = 0) and then for coupled dynamics (¢, = 0.24).
The Y signals are in an irregular bursting regime. Examples of these signals are
shown in Figure 2.2. Note that for auto-functions with X we zoom in the x-axis in
order to better resolve the oscillations of the functions.

selected values of e. These values are the same as for the examples shown
in Figures 2.2 and 2.3 of Chapter 2.

In general, auto-correlogram (set 1 and set 2) and auto-distance show
oscillations that in many cases are consistent among these different measures
for the same signals. For the irregular spiking regime (X signal in Figure
3.1) we see differences between auto-1SI and auto-SPIKE. The peaks for
auto-SPIKE have the same frequency as the spikes: around 19/(4000 - At)
peaks in the auto-SPIKE profile, and this same value approximates the
average number of spikes per time in the corresponding signal. The auto-ISI
instead captures slower oscillations in rates. Another difference between
auto-1S1 and auto-SPIKE occurs for the almost periodic regimes (Y (¢)
and Y (e, ) signals in Figure 3.2). Only auto-SPIKE captures the frequency
of the spikes, in accordance with the auto-correlogram (set 1). The auto-
correlogram with the other parameter set 2 is not capturing the frequency of

the almost periodic spiking, instead it is only reflecting the small variations
due to the large bins with overlap (s = 200, while for set 1 s = 20). Note
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Figure 3.2: Profiles of auto-functions for the Hindmarsh-Rose dynamics in the
Setting B. The first column represents auto-C with parameter set 1, the second
column parameter set 2. The first row refers to one realization of the X dynamics,
that is in an irregular bursting regime. The subsequent rows refer to the Y dynamics
with increasing values of coupling strength. For ¢ = 0 and ¢, = 0.0101 (as the
example in Figure 2.3a), the signals are almost periodic. For ¢, = 0.1092 (as Figure
2.3b) and €. = 1.0276 (as Figure 2.3c), Y is an irregular bursting regime, with
degeneration of bursts for the last value €.. Note that for auto-C (set 1) and auto-D

with Y (¢9) and Y (e,) we zoom on the x-axis for resolving the oscillations of the
functions.

that a perfectly periodic function has a periodic auto-correlogram.

The irregular bursting regimes of the Y'(¢g) signal in Figure 3.1 and the
X and Y (¢,) signals in Figure 3.2 give similar profiles for auto-correlogram
and auto-distances. In these cases, the oscillations in the profiles share the
frequency of the bursts in the signals. The same happens for the more distinct
bursts of the Y (¢,) signal in Figure 3.1 and the Y (e.) signal in Figure 3.2.
The frequency of the bursts is slightly better captured by auto-ISI than by
auto-SPIKE.

Auto-L shows a different behavior since it does not oscillate. Instead
it conveys straightforward information about the maximum predictability
horizon hy. We remind that 7 in this case corresponds to the predictability
horizon h, and h is the minimum value of 7 for which S(7) < 0. In many
cases hg is contained within the range of 7-values that is shown, as we can
see from the vertical lines in the plots of auto-L of Figures 3.1 and 3.2. This
is reasonable considering that the interval of values of 7 in the plot is the
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same for which we compute the other auto-functions, from where we see
that always many oscillations are included. The exceptions happen in the
special case of almost periodic spiking (Y (¢y) and Y (¢, ) signals in Figure
3.2). In these cases there is a very long horizon of predictability. This is due
to the strong regularity in the structure of the signal, which is very close to
periodicity. It is interesting to note that in the case of the Y'(¢,) signal in
Figure 3.2, auto- Lis; and auto- Lspikg are very different, evidently because
the ISI and the SPIKE-distance in this regime are capturing different features
of the signals. In fact, also the corresponding auto-1SI and auto-SPIKE are
very different. The stronger regularity in the structure of the signal, due to
the distinct bursting structures, is also responsible for the highest value of
ho for Y (¢,) in Figure 3.1.

3.2.1.2 Cross-functions

In Figures 3.3 and 3.4 profiles of cross-functions are shown for the different
methods and parameters, for one realization of the driver dynamics X and
different realizations of the Y dynamics, for the same selected values of e
as in Figures 3.1 and 3.2, respectively. We see that with cross-correlogram
and cross-distances, there are oscillations in the profiles, related to the oscil-
lations in the corresponding auto-functions. We remind that the difference
in the maximum values of these function for negative and positive delays
M(X|Y)and M (Y| X) is what we use for assessing directionality. From vi-
sual inspection, the profiles of cross-correlogram and cross-distances do not
always look asymmetric. In the case of cross-L instead, the profile is always
smooth (as auto-L of Figures 3.1 and 3.2), and clearly the peaks M, are for
small negative values of delays for both M (X|Y") and the other direction
Mp,(Y|X). This is a clear indication that introducing small delay helps in
discriminating directionality even if the measure L is already directional for
Zero T.

In Figures 3.5, 3.6 and 3.7 we summarize the capability of cross-C,
cross-distances and cross-L to detect the coupling in Setting A and B of the
Hindmarsh-Rose dynamics. These figures are analogous to Figures 2.4 and
2.6 in Chapter 2 [73]. In Table 3.2 we summarize the performances with the
different methods.

We find that the performance of measure L is the best, in particular with
ISI-distance. The weakest performance are obtained for cross-correlogram
in Setting A, where it is unable to detect the coupling direction. The two
parameter sets of cross-correlogram give similar performance, the worst

41



Table 3.2: Performance ¥ obtained from the comparison of the different methods.
The range of values for ¥ is 0 < ¥ < 1. For the measure L, we added in brackets
the values computed in Chapter 2, with no shifts.

method U (Hindmarsh-Rose A) W (Hindmarsh-Rose B)

C(setl) 0.14 0.35
C(set2) 0.03 0.26
D(ISI) 0.61 0.76
D(SPIKE) 0.45 0.83
LS 0.86 (0.83) 0.91 (0.90)
L(SPIKE) 0.79 (0.72) 0.75 (0.73)
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Figure 3.3: Profiles of cross-functions with the standard score normalization (Eq
3.1.1), for the Hindmarsh-Rose dynamics in the Setting A, for the same exemplary
signals as in Figure 3.1. The first column represents cross-C with parameter set 1,
the second column parameter set 2.

among the cross-functions. The cross-distances are performing better than
the cross-correlogram, proving to be a promising approach for the detection
of directionality. We note that we have no false positive detection of direc-
tional coupling: for zero coupling we never detect a significant directionality.
Instead we get in one case some significant detections of the wrong direction,
for some values of the generalized synchronization regime in Figure 3.5d,
for Mo with parameter set 2.

The introduction of shifts improves the performance of the measure
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Figure 3.4: Same as Figure 3.3, but here for the Hindmarsh-Rose dynamics in the
Setting B, for the exemplary signals already used in Figure 3.2.

L, as it is clear from the values of W summarized in Table 3.2 (values in
brackets correspond to the performances of L without shifts). We can see the
improvements also by comparing Figure 3.7 with the corresponding Figures
2.4 and 2.6 in Chapter 2. We note that for the Setting B with L in Figure
3.7c, in contrast to the application of L at zero shift only, with cross-L it is
possible to detect the direction of the coupling also close to the generalized
synchronization regime, where the values of L are very high.

3.2.1.3 Delay values 7m%*

In Figures 3.8, 3.9 and 3.10, we show the values of the position of the
maximum 7 (XY, 70#*(Y| X'). The interval of delays that we consider
is the same across the different measures, although the parameter values
are different. Therefore the values of 7% can directly be compared, also
visually from the plots. For the cross-correlogram, the delays 75 are
spread around the whole possible interval in correspondence to the coupling
values ¢ where the directionality detection fails (Figure 3.8a-b and small
couplings in Figure 3.8c-d. For the Setting A of Hindmarsh-Rose, the
measures that can detect directionality (spike train distances and L) share
the same behavior: 7™**( X |Y') attains a sharper distribution with a mean
that is closer to zero, compared to the opposite direction 7**(Y"|.X).

High coupling values in Setting B of the Hindmarsh-Rose regime ob-
tained in the region where all the measures detect directionality, and the
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Figure 3.5: Values of M¢c: Mo(X|Y) and Mo (Y| X), Eq. 3.5, for increasing
values of the coupling strength. First row (a-b): Setting A of Hindmarsh-Rose.
Second row (c-d): Setting B of Hindmarsh-Rose. On the left, parameter set 1, on
the right, parameter set 2. Results for uncoupled dynamics (e = 0) are displayed on
the ordinates. As in Figures 2.4 and 2.6, the asterisks at the bottom of the figures
mark the coupling values for which there is a significant detection of the direction
of the coupling, as assessed by a Wilcoxon signed rank test. As in Figure 2.6, the
shaded areas in (c-d) indicate the generalized synchronization regimes. The dashed
vertical line on the left distinguishes the regime close to periodicity (see Figure
2.3a) from the regime with bursts in the response (see Figure 2.3b), and the second
line marks the transition to the regime for which there is a strong degeneration of
the bursts (see Figure 2.3c). The black stars on the bottom of the plots mark the ¢
values for which the direction of the coupling is significantly detectable. The red
stars mark the values for which the opposite direction is significantly detected. Note
that in the generalized synchronization regime in (d) there are many significant
detections of the wrong directionality.

qualitative agreement between the measures for the values of 7% can give
us information about the effect of the coupling in the Hindmarh-Rose model
for that regime. Even if there is no explicit delay in the equation, because of
the intrinsic dynamics of Hindmarsh-Rose model, the coupling manifests
itself with an effective delay.
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Figure 3.7: Same as Figures 3.5 and 3.6, but here for M, (X|Y): M (X|Y) and
M (Y]X), Eq. 3.16. First row (a-b): Setting A of Hindmarsh-Rose. Second row
(c-d): Setting B of Hindmarsh-Rose. On the left, results for Lig;, on the right,
Lspike. These figures are analogous to those of Figures 2.4 and 2.6 of Chapter 2,
with the difference that here we plot My, instead of L.
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as in Figure 3.5.
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Figure 3.9: Values of 75**(XY") and 75**(Y'| X) corresponding to the results of
Figure 3.6.
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3.3 Comparison using surrogate techniques

In the last Section we used different methods to detect directionality between
two signals. We assumed to know that if a coupling is present, it is unidirec-
tional. Furthermore, we took advantage of the fact that we are working with
simulated data to generate a distribution of n, = 20 realizations for each
coupling value €. We used the statistical difference between the distributions
of values of a measure for assessing the directionality. In this Section we
change the perspective. We continue to further approach settings and con-
ditions that we encounter when dealing with real data. At the same time,
we are interested in comparing the measures also from the general point of
view of interdependence detection, regardless of directionality. Accordingly,
we do not assume to know a priori if the coupling is unidirectional, but
more importantly, we do not use a distribution of values obtained from many
realizations. The common approach to measure interdependence with these
conditions is to compute surrogates.

Surrogates allow one to test a well-defined null hypotheses H, about the
dynamics underlying some experimental data [5]. They are signals derived
from the original signals under study, and depending on the null hypothesis
they maintain only certain properties of the original signals while all other
properties are destroyed. In our study, we want to test the null hypothesis
that the signals are independent. Otherwise, we make no further assumptions.
Accordingly, we ideally want to maintain all the properties except those
that have to do with interdependence or correlation: the auto-correlogram,
the distribution of intervals between subsequent spikes, the nonstationarity
in rate. The best way to do that are time shifts between the two signals.
Therefore, we calculate the measures not only for the original signals but
also for an ensemble of surrogates, each computed with a different time
shift between the original signals. If we find a significant difference in the
coupling estimation between real signals and surrogates, we can reject the
hypothesis H that the original signals are independent. The cross-functions
are the values of the measures obtained for these surrogates. We use the
same cross-functions introduced before, but now the time shifts are not
’small’, but instead they need to be sufficiently large in order to guarantee
the independence between the original signal and its shifted version.

We here adapt the notation for describing the cross-functions. In this
case we always use the circular boundary condition because the shift is
higher. For the cross-correlogram we use a formulation similar to Eq. 3.1,
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but here with circular boundary conditions Zeoun(—tc) = Teount(@ — te),
and the same for Yeoun(tc):

Q
Crossgs- C Z Lcount tC) ycoum( cC — T) (322)

te=0
with 7 = (= Njyerossyr - - -+ Navtayteross)) * Jain-  The crossg-ISI(7) and
crosss-SPIKE(7) are defined in Egs. 3.7 and 3.8, with
T = (= Niayieross) -+ Nivtay(eross)) * Fenir DUt as a consequence of cir-
cular boundary conditions, the distances are computed for the time range
t = 0,...,Q. The definition of crosss-L(X|Y)(7) is the same as in Eq.
3.14.

We want to use a f3,, long enough that we can assume that x(t) and
y(t + ) are independent, and also the surrogate values for different shifts
are independent among them. We therefore take the following approach. We

fix the total number of surrogates (N7 f = 20) and we take the longest

elay (cross) —
interval for f3.. that allows to have N delay(cross) NON-overlapping surrogates
equidistantly distributed. In Table 3.3 we summarize the parameters that we
use. The choice of the binning is the same as in Table 3.1 from the previous
Section 3.2.

Table 3.3: Parameters used for the comparison of the different methods using
the surrogates, in units of sampling time At. Note that the binning is the same
as in Section 3.2, while fis is just slightly shorter than the interval covered by

the auto-functions (see parameters in Table 3.1). The value of N§ delay(cross) is
NS

delay(cross) = 20. The number of nearest neighbors for the measure L (Eq. 3.17)
issetas k = 5.

method  binning step size .
C(setl) f=20 s =20 19 - 1000
C(set2) f=1000 sc=1000/5 19-5
Distances no binning no overlap 19- 1000
L g=1000 s=1000/5 19-5

If the assumption that surrogates are independent holds, we can compute
the standard score to assess the significance of the value of the cross-function
at zero shift:
crosss-C(0) — mean(crossg-C)

-
¢ std(crossg-C)

) (3.23)
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where the mean mean(crosss-C) and the standard deviation std(crosss-C)
are taken across the N felay(cmss) shifts. For the distances and the measure L
we analogously get Zp (Zis1, Zspike) and 2y, (Z1,,, and Zpg,,.)-

In cases when Z > Zy,,.(«s), for a single realization, the null hypothesis
of independence between the signals can be rejected at a significance level
of ag = 0.05/n., where we use the Bonferroni correction [114] to take into
account the multiple testing of the n. values of the coupling.

Here we consider the same Settings A and B of the Hindmarsh-Rose
dynamics as in Section 3.2, with only n,. = 1 realization for each coupling
value. We then compute Z values for each realization, from the crossg
functions for V dselay(cmss) surrogates. In order to evaluate the performance of
the surrogates approach to assess the presence of the coupling, we compute
W s which is defined as the percentage of non-zero coupling values for which
Z > Zthr<@S)~

To verify if the null hypothesis of independence holds between x(t)
and y(t + f3), and between all the pairs of signals at different shifts, we
look at the profile of auto-functions (Figure 3.1 and 3.2). These functions
contain information about the length of the interval that guarantees that the
signal loses the memory about its past. We can see that the oscillations
of auto-C and auto-D are damped for 7 = f3.;. Also auto-L goes to zero
even for smaller values of 7, meaning that the horizon of predictability A
is hg < fi.:. The only exceptions occur in the range of coupling values
for which the Y dynamics is in an almost periodic regime (Y (eg) and Y (e,)
of Figure 3.2). These are special cases because periodicity strongly affects
auto-functions.

3.3.1 Results

In Figures 3.11 and 3.12 (equivalent to Figures 3.3 and 3.4) we show pro-
files of crossgs -functions for the different methods and parameters, for one
realization of the driver dynamics X and different realizations of the Y dy-
namics, for some selected values of €. We can see that the values at different
delays look independent. Note that for crossg-D in Figure 3.11 there are
negative peaks at zero delay. This shows that in some cases the coupling
could be detected not only by a high level of similarity for no shift between
the signals, but also by a high level of dissimilarity.

In Figures 3.13, 3.14, 3.15 we show the capability of Z, Zp and Z; to
assess the interdependence between the X and Y dynamics for Setting A
and B of the Hindmarsh-Rose neurons. The corresponding values of the
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Figure 3.11: Profiles of crossg-functions for surrogates for the Hindmarsh-Rose
dynamics in the Setting A, for the same exemplary signals as in Figure 3.1. The first
column represents crossg-C with parameter set 1, the second column parameter set
2. For crossg-C and crossg-D we show standard score (Eq. 3.1.1) as normalization
to the functions. Note that for crossg-D there are negative peaks at zero delay. The
smallest values are obtained for crossg-SPIKE.
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Figure 3.12: Profiles of crossg-functions for surrogates for the Hindmarsh-Rose
dynamics in the Setting B, for the same exemplary signals as in Figure 3.2. The first
column represents crossg-C with parameter set 1, the second column parameter set
2.
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Figure 3.13: Values of Z for increasing values of the coupling strength (for the
two parameter sets). The points are the values of the surrogates. (a): Setting A
of Hindmarsh-Rose. (b): Setting B of Hindmarsh-Rose. Results for uncoupled
dynamics (¢ = 0) are displayed on the ordinates. The horizontal lines represent the
threshold value of Z;p,,-(ag), with g = 0.05/n.. For the Setting A, n, = 29 and
Zinr(ag) = 2.9, while for the Setting B, n, = 89 and Zy,,.(ag) =~ 3.3.

Table 3.4: Performance W g obtained from the different methods with surrogates.
The range of values for ¥ is 0 < ¥ < 1. We compare them with the values of Table
3.2. For the measure L we compute g not only for the relevant direction of the
coupling X — Y but also for the opposite direction Y — X.

method V¢ (Hindmarsh-Rose A) g (Hindmarsh-Rose B)
C(setl) 0 0.18
C (set2) 0 0.53
D(SD) 0 0.61
D(SPIKE) 0 0.33
LASH(X|Y) 0.72 0.85
LASH (Y| X) 0 0.73
L(SPIKE)(X|Y) 0.59 0.71
L(SPIKE)(Y'|X) 0.03 0.30
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Figure 3.14: Same as Figure 3.13 but here for Zp (Zis1, Zspikg) for increasing
values of the coupling strength. Note that in (a) with Zgpikg there are significantly
negative values, meaning that z(t) and y(¢) are more dissimilar than the average val-
ues at different delays, as we can see also from the exemplary profiles of crossg (D)
in Figure 3.11.

performance Vg are summarized in Table 3.4. We can see that, as in the
comparison of the previous Section 3.2, the measure L performs best also in
this case, with L;g; giving the best performance overall. In Setting A, only L
can detect the coupling. Furthermore, the values in the opposite direction
Z1,(Y|X) are never significant (with only one coupling value as exception).
This means that we can fully reconstruct the presence and direction of the
coupling with only one realization, as in the real data scenario, while the
linear methods cannot detect any couplings.

In Setting B, performances Wg are better with all the methods, as com-
pared to Setting A. We should note that the values of Z, (Y| X') are now more
often significant as well. Therefore, an evaluation of the directionality for
these cases needs to be based on the comparison of the coupling strengths in
the two directions and consequent assessment of the main direction. Overall,
the performances Wg are generally not as good as the performances W of
Section 3.2. Nevertheless, we remind that here we have only one realization
for each coupling value, therefore we are considering a much harder and
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Figure 3.15: Values of Z1, (Z1,, and Z 1, ) for increasing values of the coupling
strength. (a-b): Setting A of Hindmarsh-Rose. (c-d): Setting B of Hindmarsh-Rose.
Figures (a) and (c) are the equivalent of Figures 3.13 and 3.14 but for Z1,(X1Y),
while in (b) and (d) we show the values of Z, (Y| X), correspondent to the opposite
direction of the coupling.

more realistic approach.

The spike train distances, that in Section 3.2 proved to be good in
detecting directionality, are suited also for detecting interdependence with
surrogates, but are not sensitive to small couplings and we show that there are
regimes where they cannot detect directionality. Setting A of the Hindmarsh-
Rose dynamics with the SPIKE distance (Figure 3.14a) is a quite special
case. In fact, the performance of Zspg is zero in the way we compute it,
but for high coupling values Zspxg obtaines values significantly negative,
meaning that the two signals x(¢) and y(t) at zero delays are more dissimilar
than when they are shifted. Therefore, it is possible to also use dissimilarity
for coupling detection.

3.4 Discussion

Among the different measures, the measure L proves to be the most sensitive
measure for coupling detection. We first compare the capability of assessing
directionality (Section 3.2) using n,, = 20 realizations of the dynamics for
each coupling value, a scenario that helps us to test the approaches but that
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would not be directly applicable to real data, where normally we have only
one realization. Then we introduce the surrogates for simulating the study of
real data (Section 3.3). The measure L gives excellent results in both cases.
In particular, in Setting A of the Hindmarsh-Rose dynamics, the correlogram
and the spike train distances almost cannot detect directionality, while the
measure L is sensitive also to small coupling values.

In this Chapter we use for the first time spike train distances for di-
rectional coupling detection. We show that they perform generally better
than the other linear measure, the cross-correlogram. Moreover, the adap-
tive properties of the measure based on spike train distances considerably
decrease the choice of parameters that we need to make, and this can be
very useful. However, spike train distances are not always capable to detect
couplings, and furthermore, we found examples in which they detect the
wrong directionality.

We show examples of auto-functions to illustrate the differences when
they are computed with different methods. Auto-correlogram and auto-
distance give important information regarding the frequencies in the signals,
in dependence on the binning, the shift and the distance that we use. This
information is overall quite consistent between the different measures. In
the case of the auto-L (or predictability) we have a smooth profile, as for
cross-L which does not contain any information about the frequencies. It
instead provides straightforwardly the values of the predictability horizon
hg that is the important quantity for our aim, because it estimates the time
scale that we are interested in for the scope of surrogates computation, i.e. a
temporal horizon wherein different states are strongly related to each other.

The value hy may be too large to allow the computation of a sufficient
number of surrogates. The interval can be too long for different reasons.
In the examples of this Chapter, it was due to the regularity of the signals.
Another characteristic of the data that could induce high value of iy could be
nonstationarity. A strong nonstationarity would at the same time influence
the value of hy and also bias the estimation of coupling with the measure L.

A crucial aspect of this Chapter is the comparison between linear and
nonlinear measures. In particular, cross-correlogram with parameter set 2
is looking at the same binning etc., as the measure L. We show how much
more sensitive is the nonlinear measure L for coupling detection, even when
it looks at the same time scale. The advantage of the measure L comes
from the asymmetric state similarity criterion (Section 2.1). The information
about the coupling is extracted by the comparison between similarity of
different windows of one signal with different windows of the other signal.
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The criterion can in fact be applied also between a point process and a
continuous signal [6], thanks to this property. As we learn from the study
of chaotic dynamics, the property is useful to detect small couplings, when
we are dealing with dynamical systems [18]. It is interesting to make the
same comparison also in the context of neuronal data. Real data have a more
irregular structure compared to simulated Hindmarsh-Rose data, and in this
case it is not so clear how much more information can be extracted with
nonlinear approaches. On the other hand, the measure L is evidently more
complex and computationally demanding than the linear measures. In the
next Chapter we will apply the measures on real data to show complications
that can arise. Again, we will also compare the different approaches.
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CHAPTER 4

Interaction between single neurons in different
brain regions

In the previous chapters we extensively tested the performance of the
nonlinear measure L, and we compared it with the linear measures cross-
correlogram and spike train distances. Here we apply all measures tested
in Chapter 3 to spike trains signals from the human brain. In this case we
are dealing with multiple signals and not just single pairs. Nevertheless, the
techniques that we apply are still bivariate, and aim at studying functional
connectivity between the single neurons [33]. Accordingly, if we detect
coupling between two units, this does not necessarily imply a physical con-
nection between them, instead it is just an interdependence relation. This
means that the neurons can for example interact through a third unit (that
may be one of the measured units or not) or they can be driven by a common
1mnput.

4.1 Dataset description: Single unit recordings
from an epilepsy patient
The dataset is composed by data of one night recording from one epilepsy

patient suffering from pharmacologically intractable epilepsy. He was im-
planted with depth electrodes for intracerebral electroencephalographic
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monitoring to localize the epileptogenic focus. Electrode locations were
defined exclusively by clinical criteria. From the tip of each depth electrode
a bundle of nine micro-electrodes sticked out. For the description of the
experimental setting, please refer to [82]. Recordings were made in the
following regions: amygdala (A), parahippocampal cortex (PHC), entorhi-
nal cortex (EC), posterior hippocampus (PH), middle hippocampus (MH),
anterior hippocampus (AH).

For our analysis, we use temporal windows of length 7" = 20 minutes.
The classification in the dataset is: awake, sleep stage 1, 2, 3 and REM. We
are interested in epochs all in the same state, i.e. awake or in a particular sleep
stage. We merge sleep stage 2 and 3 together and we refer to this joint state
as slow wave sleep (SWS). With this classification, we have 6 windows of
awake (w) and 4 of SWS, while we do not have sleep stage 1 and REM. The
sequence of sleep stage is: w/w/w/SWS/SWS/wiw/SWS/SWS/wiw (eleven
temporal windows). The regions are A, AH, EC, MH, PHC in the left
hemisphere, A, AH, MH in the right hemisphere. Note that the electrodes
are in different regions in the different hemispheres. The spike trains are
obtained with spike sorting [82] from the local field potential recorded by
the electrodes. Each spike train corresponds to one unit, that can likely
represents one or more neurons (i.e. single or multi-unit). We do not make
distinctions between these two cases in our analysis. In our dataset we had
65 signals in the right hemisphere, 58 in the left. For the following analysis
we select only signals that have more than 500 spikes in each 20 minutes
window. There are in total Ny, = 35 units in the left hemisphere, and
Nunie = 30 units in the right hemisphere, that fulfill the requirements.

4.2 Estimation of connectivity with linear and
nonlinear methods

We apply again the methods described in Chapter 3. In particular, we
compute cross-functions (Sections 3.1.1, 3.1.2 and 3.1.3), and also cross-
functions as surrogates (Section 3.3). In Table 4.1 we summarize the param-
eters. Regarding the precision of the signals, here 1 ms corresponds to the
smallest bin of the previous Chapters 2 and 3, but here the signals are longer,
@ = 12-10° ms ( = 20 minutes). As a consequence, for the measure L we fix
N,, = 400 and we get ¢ = 3000 ms. The parameters of the other measures
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Table 4.1: Parameters used for the comparison of the different methods, in units of

ms (corresponding to the sampling time). We use [V C‘?e lay(cross) = 20. The number

of nearest neighbors for the measure L (Eq. 3.17) is setas k = 5.

method binning step size fonite  Naelay(cross) fsiiﬂ
C(setl) f=60 sc = 60 1 150 59 - 1000
C(set2) f=3000 sc=3000/5 s¢ 15 19-5
distances no no 60 150 59 - 1000
L g =3000 s=3000/5 s 15 19-5

are updated accordingly. We reconstruct the connectivity separately in each
hemisphere. We only take into account connections which are classified as
significant by our surrogate test, with a threshold of thrg = 3. For the unit
neurons that we consider to be connected, we then estimate directionality of
the coupling from the cross-functions: We compute Mq(i|j), Mp(i|j) and
M, (i]j), between all the pairs of neurons 7, 7 = 1, ... Nyp.

We call W the matrix of connectivity estimation:

0, if Z(i, ) < thrg

0 L . 4.1)
M (i|j) — M(j]i), otherwise.

-]

We make the matrices antisymmetric by using the difference M (i|j) —
M(j 7).

4.3 Results

Table 4.2: Fraction of significant connections over the possible number of connec-
tions, within the same region and across different regions, in the awake and slow
wave sleep stage.

method wsame w different SWS same SWS different

C(setl) 0350 0.024 0.822 0.142
C(set2) 0.107  0.007 0.389 0.087
D(ISI) 0.124  0.006 0.633 0.143
D(SPIKE) 0.255  0.014 0.850 0.220
L (ISI) 0.028  0.001 0.118 0.034
L (SPIKE) 0.046  0.002 0.110 0.037
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In Figures 4.1, 4.2, 4.3 and 4.4 we show examples of reconstruction W
obtained with different methods. Note that the positive values correspond
to the most driving unit and the negative to the most driven. In Table 4.2
we summarize the proportion of significant connections that we find with
the different methods, separately for the connections within the same region
and between different regions, during the awake or slow wave sleep stage.
A value of 1 would mean that all the units are connected with all the others.

All the methods that we use detect significant couplings in spike trains
recorded from the brain of epilepsy patients. This holds true not only
between units in the same brain regions, but also between units in different
regions. As expected, there are more significant connections within the
same regions. Furthermore, we found generally more connections in the
slow wave sleep stages. In these stages there are many more connections
also between different regions. In the awake states instead, we detect very
few connections between different regions. For the left hemisphere of the
patient, we find many connections particularly between amygdala (A) and
entorhinal cortex (EC).

Overall, linear measures find more significant connections than the non-
linear measure L. This holds true also if we consider the cross-correlogram
with the parameter set 2, that uses exactly the same binning as the measure
L. In Chapter 3 we showed that the nonlinear measure L is more sensitive to
small coupling values than the linear measures. In contrast, in this Chapter
we find more significant connections with linear measures. This is an indica-
tion that in this dataset the interdependence between units can be described
in terms of correlated spike timings between units, at time scales of dozens
of ms. In fact, the methods that find more connections are C (set 1) and
SPIKE train distance, that both focus on spike timing at small time scales.
ISI distance that focuses more on rate indeed finds less connections, and the
same holds for C (set 2), that averages longer time scale as L.

4.4 Discussion
We find stable patterns in the reconstructed connectivity across the different
epochs of 20 minutes in the same stage. Pronounced differences are found

when we compare results from the awake state against those from the slow
wave sleep. Connectivity patterns during slow wave sleep are more stable.
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These effects can be explained by the different statistics of the spike trains
during slow wave sleep. This stage is characterized by slow oscillations
between up and down states in cortical neurons [84]. Synchronous oscilla-
tions can be both a local or global phenomenon, with most of the sleep slow
waves occuring locally and also propagating between different brain regions
[84]. This mechanism is thought to be key to maintain network statistics that
promote skewed distributions of neuronal firing rate, promoting at the same
time the integration of new memory traces [67]. Taking these studies into
account, it is not surprising that we found more connections during SWS,
and in particular between different areas. In a similar study [88], Olcese et al.
applied nonlinear information theoretical measures of functional connectiv-
ity to single-cell recordings in the neocortex and hippocampus of rat, during
both awakefulness and sleep. They found that during non-REM sleep there
was a decrease in coupling between excitatory neurons located in distinct
brain areas, while local and long-range coupling between interneurons were
preserved. Since these recordings were performed in rats, it was easier to
perform them under controlled conditions as compared to our recording
from an epilepsy patient. These controlled conditions allow one to better
validate the results obtained from these recordings. In future studies it can
therefore be interesting to apply the nonlinear measure L for the same dataset
to compare the information that can be extracted.

We show results for one patient but we found similar results for other
patients as well. However, we chose to show only this example because
the variability in the settings only adds complexity to the descriptions. We
make here a first step in the analysis of coupling between single neurons
in different regions of human brain. The capability of reliably detecting
different kinds of connectivity between single neurons is a challenging
problem in neuroscience research. From single-unit neuronal recordings
outstanding discoveries were made [63, 101]. From similar recordings of
cellular activity in vivo during seizure onsets the local origin of the seizures
have been studied [110, 116] and also the burst firing changes of neurons
before the seizure [35]. These studies were made during the transition to
seizures (and in some temporal interval before and after the seizure), while
in our dataset seizures are not present. If we better understand the interplay
between different brain regions in dependence on different sleep stages, this
could be a further step to understand how memory works at single neurons
level [36]. We here show the potential and the caveats in the application
of data analysis techniques. The analysis of bigger datasets is necessary to
further substantiate our preliminary conclusions, and extend the precious
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knowledge that this unique dataset can provide.
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Figure 4.1: Matrix of connectivity estimation W for the left hemisphere in two
different windows in the awake state (top six and bottom six matrices). Each matrix
is computed with a different methods (C(setl), C(set2), D(ISI), D(SPIKE), Lis,
Lspikg). The group of units delimited by red lines correspond to the different brain
regions: A, AH, EC, MH, PHC. White color indicates connections that are not
significant, the reddish colors indicate mainly driving units, while the bluish mainly
driven.
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Figure 4.2: Same as Figure 4.1 but here for two windows recorded during the slow
wave sleep stage.
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Figure 4.4: Same as Figure 4.1, 4.2, 4.3 but here for the right hemisphere in two

windows recorded during the slow wave sleep stage.
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CHAPTER 5

Conclusion

In this thesis we tested the performance of the nonlinear measure L with
different settings of Hindmarsh-Rose dynamics. We proved its robustness
to noise, and we showed that L with ISI- and SPIKE-distance provides
complementary information (Chapter 2). Moreover, L can be applied to
analyze spike trains from different regimes of the Hindmarsh-Rose dynamics,
such as irregular spiking, irregular bursting, generalized synchronization.
We furthermore introduced time shifts between pairs of spike trains. These
shifts can be used in two different ways. On the one hand, they allow
one for the detection of delay in the coupling. On the other hand, they
can be applied to construct surrogates. With this framework we compared
the performance of L against the cross-correlogram and the spike train
distances. For coupled Hindmarsh-Rose neurons, the measure L proved to
be the best approach for estimating coupling, effective delays, and in general
estimation of connectivity with time-shift surrogates (Chapter 3). Finally we
compute the same comparison with real data from a recording of neuronal
spiking measured in an epilepsy patient (Chapter 4). We show that in this
more complicated setting the advantages of applying a complex nonlinear
technique such as the measure L over the simpler cross-correlogram and
spike train distances are not so clear. In fact, at short time scales (tens of
ms) the linear measures find more significant connections than L, despite
the high sensitivity of L found for simulated Hindmarsh-Rose data.

The nonlinear measure L is an extension of a technique developed for
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time-continuous signals in the framework of the study of low-dimensional
chaotic systems [18] to point processes. In the case of continuous signals,
the distance matrices are computed based on Taken’s embedding theorem
[122]. The idea is that inaccessible degrees of freedom are coupled into
the observable variable via the system dynamics [109]. In the case of point
processes, the distance matrix is not the result of a reconstruction. Sauer
[109] extracted spike trains from a Rossler or Lorenz dynamical system
through an integrate-and-fire model, showing that this leads to a one-to-one
correspondence between the system states and interspike interval vectors
of sufficiently large dimension. In the case of measure L, we do not use
interspike intervals for reconstructions, because in that way we would not
have simultaneous states for the pairs of dynamics. In [7], the authors
underline that for the measure L there is a conceptual advantage in using
distances between segments of spike trains because we can focus on spike
rate or timing and also achieve a better sensitivity for determinism across
different dynamics. In Chapter 2 we show that indeed the two spike train
distances (ISI-and SPIKE-distance) have different sensitivity for different
regimes of Hindmarsh-Rose dynamics, and in Chapter 3 this behavior was
confirmed also with the use of time shifts and surrogates. The theory
of recurrence plots [29] can be a relevant topic for future research for
evaluating from the distance matrix whether it is meaningful to proceed with
the measure L to check causality. In fact, recurrence plots correspond to
the distance matrices that we compute for L but with the application of a
threshold. Using the fact that distance matrices have the same properties
regardless if they are computed from a point process or continuous signal,
the same techniques can be adopted for both cases [26, 42, 47, 74].

The application of sophisticated mathematical techniques to reveal deter-
ministic structures and nonlinear interdependence in spike trains needs much
more study. First, we lack a more robust mathematical framework specific
for the case of point processes. This would also help in the assessment of
deterministic structures in the spike train signals [7], to be able to judge
when the signals are suitable to be studied with techniques derived from the
study of low-dimensional chaotic dynamics. Second, prominent problems
known from the study of time-continuous signals, also affect the analysis
of spike trains [17]. For example, in the study of causality between signals
with different frequency distributions, there are issues in the choice of the
parameters used for reconstruction, and it is very hard also to correctly
estimate coupling strength [20, 64]. This aspect is even more important
for spike trains, because the rate is related to the amount of information
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present in the data [106]. This is similar for continuous signals where a
dynamics with low frequency spectrum need to be recorded for long time
in order to cover sufficiently the state space. Another complex problem is
the detection of coupling with delay. In the context of continuous signals,
many extensions of methods have been proposed [22, 34, 128], and time
shift techniques have been applied and tested [129]. Nevertheless, there are
still open issues to be solved [23]. In the study of point processes, we have
shown that taking small delays in the coupling into account improves the
detection of directionality for the nonlinear measure L, but the capability of
the measure to consistently estimate coupling delay still needs to be tested.

Neuronal data are among the most complex signals to study. In fact sin-
gle units recording are subject to common rhythms of different frequencies
depending on the states, and correlated activity in populations of neurons
have shown to play important roles [25, 98]. Furthermore, there is hierarchi-
cal network structure with few hub neurons spiking more than the others,
and a long tail distribution of firing rate of different neurons. Firing rates
of principal neurons show a lognormal-like distribution in all brain states
[76]. Neuronal activity exhibits large variability on time scales ranging
over seconds to days [75]. From a data analysis point of view it is a real
challenge to analyze the connectivity from this kind of dataset. Models that
incorporate these characteristics are needed for testing and developing new
data analysis methods suited for facing these challenges. In particular, these
models need to take into account different patterns of synchronization and
desynchronization between units [8], and possibly also interactions between
networks of neurons [9]. We have shown that initially it may be better to
apply simple linear measures to get information about the systems, but it is
important to take into account the nonlinearity of the neurons [32]. In fact,
in the brain nonlinearity is already introduced on the cellular level given
that the dynamical behavior of individual neurons is governed by integra-
tion, threshold, and saturation phenomena [66, 85]. An interesting aspect
that deserves future study is the comparison between nonlinear methods
derived from nonlinear chaotic dynamics, with other nonlinear methods
from information theoretical approaches [46].

Here we have focussed on neuronal signals, but the measure L for point
processes seems to be a very promising tool also for applications outside of
neuroscience, for example in climatology [12, 60] or earthquake prediction
[44]. In closing, we would like to point out that we provide the Matlab
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source codes to calculate L and the spike train distances used here *.

“http://ntsa.upf.edu/downloads, http://www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html
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APPENDIX A

Adaptive measures of spike train synchrony

In this Appendix we summarize our study [107]:

E. Satuvuori, I. Malvestio, and T. Kreuz. Measures of spike train synchrony
and directionality. In Mathematical and Theoretical Neuroscience: Cell,
Network and Data analysis, pages 201 —222. Springer INdAM series, 2017.

We describe the adaptive version of spike train distance that we use
in Chapters 2, 3 and 4. Note that the similarity measures A-ISI-distance
and A-SPIKE-distance are implemented in three publicly available software
packages, the Matlab-based graphical user interface SPIKY' [59], cSPIKE*
(Matlab command line with MEX-files), and the open-source Python library
PySpike® [78].

A.1 Introduction

Measures of spike train synchrony are estimators of the similarity between
two or more spike trains, which are important tools for many applications
in neuroscience. Among others, they allow to test the performance of
neuronal models [48], they can be used to quantify the reliability of neuronal

Thttp://www.fi.isc.cnr.it/users/thomas kreuz/Source-Code/SPIK Y.html
*http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html
Shttp://mariomulansky.github.io/PySpike
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responses upon repeated presentations of a stimulus [72], and they help in
the understanding of neural networks and neural coding [126, 127]. They
have been used also outside neuroscience, for example in robotics [31] and
prosthesis control [27].

Over the years many different methods have been developed in order to
quantify spike train synchrony. They can be divided in two classes: time-
scale dependent and time-scale independent methods. The two most known
time-scale dependent methods are the Victor-Purpura distance [127] and
the van Rossum distance [125]. They describe spike train (dis)similarity
based on a user-given time-scale to which the measures are mainly sensitive
to. Time scale independent methods have been developed more recently.
In particular, the ISI-distance [58] and the SPIKE-distance [55, 56] are
parameter-free distances, with the capability of discerning similarity across
different spatial scales. These measures are time-resolved, so they are able
to analyze the time dependence of spike train similarity.

One problematic aspect of time-scale independent methods is that they
consider all time-scales as equally important. However, in real data one
typically is not interested in the very small time scales. Especially in the
presence of bursts (multiple spikes emitted in rapid succession), a more
adaptive approach that gradually disregards differences in smaller time-
scales is needed. Thus, here we describe the recently developed adaptive
extensions of these parameter-free distances: A-ISI-distance and A-SPIKE-
distance [108].

All of these similarity measures are symmetric and in consequence
invariant to changes in the order of spike trains.

Two of the most well known spike train distances, the Victor-Purpura
[127] and the van Rossum distance [125], are time-scale dependent. One
drawback of these methods is the fixed time-scale, since it sets a boundary
between rate and time coding for the whole recording. In the presence
of bursts, where multiple spikes are emitted in rapid succession, there are
usually many time-scales in the data and this is difficult to detect when using
a measure that is sensitive to only one time-scale at a time [19].

The problem of having to choose one time-scale has been eliminated in
the time-scale independent ISI-distance [58] and SPIKE-distance [55, 56],
since these methods always adapt to the local firing rate. The ISI-distance
and the SPIKE-distance are time resolved, time-scale free measures of
dissimilarity between two or more spike trains. The ISI-distance is a measure
of rate dissimilarity. It uses the interspike intervals (ISIs) to estimate local
firing rate of spike trains and measures time-resolved differences between
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them. The SPIKE-distance, on the other hand, compares spike time accuracy
between the spike trains and uses local firing rates to adapt to the time-scale.

The ISI-distance and SPIKE-distance are looking at all time-scales at the
same time. However, in real data not all time-scales are equally important,
and this can lead to spuriously high values of dissimilarity when looking
only at the local information. Many sequences of discrete events contain
different time-scales. For example, in neuronal recordings besides regular
spiking one often finds bursts, i.e. rapid successions of many spikes. The
A-ISI-distance and the A-SPIKE-distance [108] are generalized versions of
previously published methods the ISI-distance [57] and the SPIKE-distance
[55]. The generalized measures also contain a notion of global context that
discriminates between relative importance of differences in the global scale.
This is done by means of a normalization based on a minimum relevant
time-scale (MRTS). They start to gradually ignore differences between spike
trains for interspike intervals (ISIs) that are smaller than the MRTS. The
generalization provided by the MRTS is implemented with the threshold
parameter thr, which is then applied in a different way to each of the
measures. The threshold is used to determine if a difference between the
spike trains should be assessed in a local or in a global context. This
threshold is used for all three measures, but the way it is applied varies. The
extended methods fall back to the original definitions when thr = 0 and we
refer to this whenever we talk of the original methods. In this case even the
smallest time-scales matter and all differences are assessed in relation to
their local context only.

Throughout this Appendix we denote the number of spike trains by V,
indices of spike trains by n and m, spike indexes by ¢ and j and the number
of spikes in spike train n by M,,. The spike times of spike train n are denoted
by {t} withi =1... M,.

A.2 Adaptive ISI-distance

The A-ISI-distance [ 108] measures the instantaneous rate difference between
spike trains (see Figure A.la). It relies on a time-resolved profile, meaning
that in a first step a dissimilarity value is assigned to each time instant. To
obtain this profile, we first assign to each time instant ¢ the times of the
previous spike and the following spike
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Figure A.1: Schematic drawing for all three measures. (a) Illustration of the
variables used to define the A-ISI-distance. All measures use the instantaneous
interspike interval :1:%)1 (t) to adapt to the local firing rate. (b) Additional variables
used for the A-SPIKE-distance.
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Figure A.2: Profiles of A-ISI-distance (a) and A-SPIKE-distance (b) for an
artificial example dataset of 50 spike trains with population events with different
jitters and decreasing noise over time.

10 (t) = max{t [tV <t} for V) <t <) (A2.1)
£ @) = min{t" [t > 1} for £ <t <t i (A.2.2)

From this for each spike train n an instantaneous ISI can be calculated as
g (1) = 157 (1) — 157(1). (A.2.3)

The A-ISI-profile is defined as a normalized instantaneous ratio in ISIs:

A |xISI( ) — xISI ( )|
IA () = (A2.4)
O a2 o). o)

For the A-ISI-distance the MRTS is defined so that when the ISI of both
spike trains are smaller than a threshold value thr, the threshold value is
used instead. The multivariate A-ISI-profile is obtained by averaging over
all pairwise A-ISI-profiles:
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n=1 m=n+1

This is a non-continuous piecewise constant profile and integrating over time
gives the A-ISI-distance:

1 fe
Dt = — / I4(t)dt. (A.2.6)
e Us Jtg

Where ¢, and ¢, are the start and end times of the recording respectively. If
thr is set to zero, the method falls back to the ISI-distance [57].

Figure A.2a shows an artificial spike train dataset together with the cor-
responding A-ISI-profile in Figure A.2b. The A-ISI-profile for the example
dataset shows high dissimilarity for the left side of the raster plot, where
noise is high. When the noise is decreased and rates become more similar in
the right side, the dissimilarity profile goes down. The overall ISI-distance
is the mean value of the profile.

A.3 Adaptive SPIKE-distance

The A-SPIKE-distance [108] measures the accuracy of spike times between
spike trains relative to local firing rates (see Figure A.1b). In order to assess
the accuracy of spike events, each spike is assigned a distance to its nearest
neighbour in the other spike train:

A = min([t” — ™). (A.3.1)

J

The distances are interpolated between spikes using for all times ¢ the time
differences to the previous and to the following spikes :17(")( t) and wg?) (t):

2P =t -t for "

<t <t (A3.2)
2Py = —t for "M <t <

£ (A3.3)
These equations provide time-resolved quantities needed to define time-

resolved dissimilarity profile from discrete values the same way as Eqgs.
A.2.1 and A.2.2 provide them for A-ISI-distance. The weighted spike time
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difference for a spike train is then calculated as an interpolation from one
difference to the next by

At 02D () + AL, (428 (t) "<t <t

n ) 2+1
x%s% (t)

Sn<t) =

(A.3.4)

This continuous function is analogous to term 9(:%1) for the ISI-distance,
except that it is piecewise linear instead of piecewise constant. The pairwise
A-SPIKE-distance profile is calculated by temporally averaging the weighted
spike time differences, normalizing to the local firing rate average and,
finally, weighting each profile by the instantaneous firing rates of the two
spike trains:

Spigr(t) + Smafs (1)
2(xrgr (1)) max{ (wg" (1)), thr}’

where (x7g["(t)) is the mean over the two instantaneous ISIs. MRTS is
defined by using a threshold, that replaces the denominator of weighting
to spike time differences if the mean is smaller than the ¢hr. This profile
is analogous to the pairwise A-ISI-profile ];?,m(t>’ but again it is piecewise
linear, not piecewise constant. Unlike .S,,(¢) it is not continuous, typically
it exhibits instantaneous jumps at the times of the spikes. The multivariate
A-SPIKE-profile is obtained the same way as the multivariate A-ISI-profile,
by averaging over all pairwise profiles:

Smn(t) =

(A.3.5)

SA(t) = m Z Z (A3.6)

n=1 m=n+1

The final A-SPIKE-distance is calculated as the time integral over the multi-
variate A-SPIKE-profile the same way as the A-ISI-distance:

1 te
Dj;:t — / SA(t)dt. (A.3.7)

The effect of applying the threshold can be seen in Figure A.3. With thr = 0
the method falls back to the regular SPIKE-distance [55]. The A-SPIKE-
profile for the artificial test dataset in Figure A.2c goes to zero when the
spikes in all spike trains appear at the exactly same time.
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Figure A.3: An example spike train pair and its SPIKE-distance and A-SPIKE-
distance profiles. (a) Two spike trains having four events with five spikes per event
in each spike train. The sequence of spikes in all four events is the same but the
event is increasingly compressed. The only thing that changes is the time-scale.
From a global perspective the first event consists of non-synchronous individual
spikes, while the last event consists of coincident bursts. The two events in the
middle are intermediates. (b) The SPIKE-distance S(¢) looks only at the local
context and has the same profile shape for all events. (c) The A-SPIKE-distance
considers also the global context and judges the first event like the SPIKE-distance
as being dissimilar, but scales down the small spike time differences in the burst
and considers the coincident burst as very similar.
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A.4 Selecting the threshold value

In some cases spikes that occur less than a second apart might be considered
more simultaneous than those taking place within minutes, and in applica-
tions like meteorological systems, weeks instead of months. Setting the
minimum relevant time-scale might not be a simple task. If no information
of the system producing the spikes is available, all one can do to estimate an
appropriate threshold value is to look at the ISIs.

There are two criteria that a threshold value extracted from the data has
to fulfil. First of all it needs to adapt to changes in spike count so that adding
more spikes gives shorter threshold. Additionally we want the threshold to
adapt to changes in the ISI-distribution when the spike count is fixed. The
more pronounced bursts are found in the data, the more likely any differences
within aligned bursts are not as important as their placement. Thus, we want
our threshold to get longer if the spikes are packed together. To do so, all
the ISIs in all spike trains are pooled and the threshold is determined from
the pooled ISI distribution.

One should not just take a value based on ISI-distribution that counts the
interspike intervals, as the mean does, but weight them by their length, which
is equivalent to taking the average of the second moments of ISIs. Doing
this reduces the importance of very short ISIs even if they are statistically
much more common. In order to obtain a value with the right dimension,
the square root of the average must be taken:

N n 2
thr = /{(Lis1)? ﬂ (A4.1)
Zn 10n
Here we denoted a single ISI length in the pooled distribution as L{g; and
the number of ISI with length L{y; as a,,. It is important to note, however,
that this is only an estimate based on different time-scales found in the data.
The selected MRTS is not an indicator of a time-scale of the system that
produced the spikes.

As an example of how the threshold works we apply the threshold
to Gamma I'(k, x) distribution. Since the kurtosis of the distribution is
proportional to 1/k, for small k the distribution contains large number of
small IST and few long ones.This is the property the threshold is tracking.
Thus the mean of a gamma distribution is k/x and the second moment
(k + 1)k/x. thus the ratio of the threshold and the mean ISI is thr/(Lis;) =

z(k + 1)/k. From the formula we can see that for small k, where the

79



distribution is more skewed, the ratio between the mean ISI and the threshold
increases. This means that mainly the rare and large inter-burst ISIs are
taken into account.

The threshold value determines the outcome of the adaptive methods.
However, the threshold is not a hard set limiter neglecting everything below
the threshold, but rather the point from which on differences are considered
in a global instead of a local context.
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