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Abstract

In this dissertation, I study the inclusion of prosody into two applications
that involve speech understanding: automatic speech transcription and spoken lan-
guage translation. In the former case, I propose a method that uses an attention
mechanism over parallel sequences of prosodic and morphosyntactic features. Re-
sults indicate an [} score of 70.3% in terms of overall punctuation generation
accuracy. In the latter problem I deal with enhancing spoken language trans-
lation with prosody. A neural machine translation system trained with movie-
domain data is adapted with pause features using a prosodically annotated bilin-
gual dataset. Results show that prosodic punctuation generation as a preliminary
step to translation increases translation accuracy by 1% in terms of BLEU scores.
Encoding pauses as an extra encoding feature gives an additional 1% increase to
this number. The system is further extended to jointly predict pause features in
order to be used as an input to a text-to-speech system.

Keywords: prosody, automatic speech transcription, punctuation restoration,
spoken language machine translation, bilingual spoken corpus

Resum

En aquesta tesi estudio la inclusié de la prosodia en dues aplicacions que in-
volucren la comprensié de la parla: la transcripcié automatica de la parla i la
traduccid de la llengua oral. En el primer cas, proposo un metode que utilitza un
mecanisme d’atencid sobre seqiiencies paral-leles de caracteristiques prosodiques
i morfosintactiques. Els resultats indiquen una precisié de F1=70.3% en la gene-
raci6 de la puntuacié. En el segon cas m’ocupo de la millora de la traducci6 de la
llengua oral utilitzant la prosodia. Un sistema neural de traducci6 automatica for-
mat amb un corpus de text en el domini del cinema s’adapta amb caracteristiques
de pauses afegides utilitzant un conjunt de dades bilingiies prosodicament anota-
da. Els resultats mostren que la generacié de puntuacié prosodica com a pas previ
a la traducci6 augmenta la precisié de la traduccié en un 1% en termes de BLEU.
La codificaci6 de les pauses com a caracteristica addicional encara incrementa la
precisio en un altre 1%. A més a més, amplio el sistema de traducci6 per a predir
conjuntament les caracteristiques de pausa i poder-les utilitzar com a entrada en
un sistema de sintesi de veu.

Paraulas clau: prosodia, transcripci6é automatica de la parla, restauracio de la
puntuacid, traduccié automatica de llenguatge oral, corpus bilingiies






Contents

Figures index XIII
Tables index XVI
1. INTRODUCTION 1
I.1. Motivation . . . . . . . . . .. .. e 2
1.1.1. Automatic Speech Transcription . . . . . ... ... ... 2

1.1.2.  Machine Translation Enhancement with Prosody . . . . . 3

1.1.3.  Prosodic Data Compilation . . . . . ... ... ...... 4

1.2 ODbjectives . . . . . . . . v i e e e e e 4
1.3. Outlining the Dissertation . . . . . . . . ... ... ........ 5

2. STATE OF THE ART 7
2.1. Neural Speech Processing Overview . . . . . ... ... ..... 7
2.1.1. Deep Neural Networks . . . ... ... .......... 8

2.1.2. Automatic Speech Recognition. . . . . . ... ... ... 13

2.1.3. Punctuation Restoration in ASR Generated Transcripts . . 15

2.1.4. Neural Machine Translation . . . . ... ... ... ... 18

2.1.5. Text-to-Speech Synthesis . . . . . ... ... ....... 21

2.1.6. Speech-to-Speech Translation . . . . ... ... ..... 23

2.2. Speech Prosody Overview . . . . ... ... ... ........ 25
2.3. Prosody in Speech Processing . . . . .. ... ... ....... 27

2.3.1. Utilizing Prosody in Punctuation Restoration in Transcribed
Speech . . . . . . ... 28

2.3.2. Utilizing Prosody in Spoken Language Machine Translation 29

VII



3. COMPILING CORPORA FOR BUILDING DATA-DRIVEN PROSODIC

MODELS 35
3.1. Toolkit for Prosodically Annotated Speech Data Creation . . . . . 36
3.2. Compiling the TED Talks Corpus . . . . ... ... ... .... 39
3.3. Automatic Extraction of Parallel Speech Corpora from Dubbed
Movies . . . . . .. 41
3.3.1. Methodology . . . .. ... .. ... ... .. ..., 42
3.3.2. Using the Parallel Corpus Extraction Framework . . . . . 47
3.3.3. Fair Use of Copyrighted Material . . ... .. ... ... 47
3.4. Compiling the Heroes Corpus . . . . . . ... ... ... .... 48
3.5. Prosograph for Aiding Study of Large Speech Corpora . . . . . . 52
3.5.1. Implementation . . . . . .. ... ... .......... 52
3.5.2. Predetermined Feature Types . . . . . ... ... ..... 53
353. AccessandUsage . ... ................. 56
35.4. Discussion . . . ... 56
3.6. Conclusion . . . . .. ... .o 57
4. PUNCTUATION RESTORATION USING PROSODIC CUES 59
4.1. Motivation and Background . . . .. ... ... .. .. ..... 59
4.2. Analyzing Punctuation in Conference Talk Transcripts . . . . . . 62
4.3. Methodology . . . . .. . ... .. ... 65
4.3.1. Features for Punctuation Modelling . . .. ... ... .. 66
4.3.2. Model Architecture . . . . .. .. ..o 68
4.4, EXperiments . . . . . . . . . .ot e e e e e 71
4.4.1. Dataand Preprocessing . . . . . . .. ... .. ...... 71
4.4.2. Implementation and Hyperparameters . . . . . .. .. .. 72

4.5.

4.4.3. How do Prosodic Features in Speech Affect Punctuation
Placement? . . . . . . .. ... .o oo 72

4.4.4. What’s the Effect of Punctuation Presence to Syntactic

Parsing? . . . . . ... .. 76
4.4.5. Performance with ASR Qutput . . . . ... ... ..... 79
Conclusion . . . .. .. ... . 81



S. ENHANCING SPOKEN LANGUAGE TRANSLATION WITH PROSODY 85

5.1. Motivation and Background . . . ... ... ... ... ..... 85

5.2. Analyzing Significance of Prosody in Machine Translation . . . . 87

5.2.1. Example-based Analysis . . . .. ... ... ....... 87

5.2.2. Corpus-driven Analysis. . . . . ... ... ... ..... 91

5.3. Methodology . . ... ... ... ... ... 93

5.3.1. Neural Translation Model . . ... ... ......... 94

5.3.2. Data and Data Preprocessing . . . . . .. ... ...... 98

SA4. Experiments . . . . ... 101
5.4.1. How Does Prosodic Punctuation Restoration Affect Trans-

lation? . . . . . .. 102

5.4.2. Does Pause Encoding Improve Translation? . . . . . . . . 104

5.4.3. Can Pauses Be Translated Jointly with Lexical Information?105

5.5. Conclusion . . . .. ... ... ... 109

6. CONCLUSIONS AND FUTURE WORK 113
6.1. Conclusions . . . . . . . . . . . . ... e 114
6.2. FutureWork . . . . . . . . ... 117
6.3. Achievements and Attributions . . . . .. ... ... .. ... .. 119
6.3.1. Publications . . . . . ... ... ... ... ... ... 119

6.3.2. Datasets . . . . . . ... 120

6.3.3. Software Resources. . . . . ... ... ... ....... 120

6.3.4. Attributions . . . . . ... ..o 121

IX






List of Figures

2.1.
2.2.

2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

2.11.
2.12.

2.13.
2.14.
2.15.
2.16.

2.17.
2.18.

An artificial neuron. . . . . . . .. ...

A fully connected feed-forward neural network with two hidden

Various types of RNN architectures. . . . . ... ... ... ...
Architectures of a LSTM and GRU cell. . . . . . ... ... ...
Speech recognition. . . . . . . .. ... L.
General architecture of a traditional ASR system. . . . .. .. ..
Comparison between GMM based and DNN based ASR. . . . . .
Punctuation and capitalization as a postprocessing step after ASR.

Architecture of an encoder-decoder neural machine translation
SYSIBIML. . v v v ot e e e e e e e e e e e

Attention mechanism in encoder-decoder NMT architecture.

Spoken language translation demonstrated on a conference record-
ING. . o o e e e e e e e

Speech synthesis from units in concatenative TTS. . . . . . . ..
Basic workflow of a statistical text-to-speech system. . . . . . ..
A conventional speech-to-speech translation pipeline. . . . . . . .

Segmental (phoneme and word) and suprasegmental (pitch in blue,
intensity in yellow) features of a speech signal shown with the au-
dio waveform and frequency spectrogram. . . . . .. ... ...

Phrasing in speech affecting meaning. . . . . .. ... ... ...

Various implementations of S2S translation systems with empha-
sistransfer. . . . ... oL oL

15
16
16

22



3.1.
3.2
3.3.

3.4.

3.5.

3.6.

4.1.

4.2.
4.3.
4.4.

45.

4.6.

4.7.

4.8.

4.9.
4.10.
4.11.

4.12.
4.13.

Word-level prosodic feature labelling. . . . ... ... ......
Overall parallel corpus extraction pipeline from movies. . . . . . .

Processes 1, 2 and 3 of the methodology illustrated on a portion
ofamovie. . .. ... L

An example of a visualization frame of segments from a confer-
ence talk with Prosograph. . . . . ... ... ... .. ... ..

Visualizing parallel samples from an episode of Heroes Corpus
with bilingual mode of Prosograph.. . . . . . ... ... ... ..

Word-aligned feature data types in Prosograph. . . . . .. .. ..

Transcription available in TED web page for the talk 7100 Solu-
tions to Climate Change” by Chad Frischmann. . . . . . . .. ..

Punctuation distribution in the transcripts of the TED Talks Corpus.

Pausing percentage of each punctuation mark in TED Talks Corpus.

Distribution of punctuation presence in paused intervals (left) and
corresponding average non-zero pause lengths of each punctua-
tion mark (right). . . . . ... ... o o o

Modelling punctuation as a classification problem at each word
interval. (Quote by Lao Tze) . . . . . . . . . . .. ... .. ..

Two stage architecture of Tilk and Alumée (2015) (source of the
diagram) which is later extended with bidirectional RNN layers in
Tilk and Alumie (2016). . . . . .. ... ... ... ...

Our neural network architecture depicting processing of a speech
data sample with pause and mean FO features aligned at the word

(a) Overall punctuation results in terms of precision, recall and F}

score (b) F score of each punctuation mark in different feature

SELNGS. © v v v e e e e e e e e e e e e e
1

An example of a dependency tree generated with an English parser’.

Architecture of the interactive ASR testing setup. . . . . . .. ..

The two window interactive test environment. Recordings are pre-
sented through the command line interface (right) and visualized
directly on Prosograph (left). . . . .. ... ... ... ... ...

Segment pair s2_5_0227 from the Heroes corpus . . . . . . . . ..
Segment pair s2_5_0107 from the Heroes corpus . . . . . . . . ..

XII

43

53

54
55

63

64

65

65

66

69

70

75
76
80

80
81
82



4.14. Segment pair s2_5_0114 from the Heroes corpus . . . . . . .. .. 83

5.1.
5.2.
5.3.
54.
5.5.

5.6.

5.7.

5.8.
5.9.

Segment pair s2_5.0043 from the Heroes corpus . . . . . . . . .. 88
Segment pair s2_5_0010 from the Heroes corpus . . . . . . . . .. 90
Segment pair s2_5_0020 from the Heroes corpus . . . . . . . . .. 90
Segment pair s2_5_0050 from the Heroes corpus . . . . . . . . .. 91
Punctuation distribution at paused (> 0.05 s) intervals in English
segments(1936 in total) of the Heroes corpus. . . . . . . ... .. 93
TransProse sequence-to-sequence translation encoder with prosodic
INPUt. . . . e e e 95
TransProse sequence-to-sequence translation decoder with prosodic
OULPUL. . . o v v o v i e e e e e e e e e e e e e 96
Attention mechanism in the TransProse decoder. . . . . . . . . .. 97

Segment s3_12_0124_EN from the Heroes corpus and its sequence
representation. . . . . . ... .. e e e e e e e e e 100

5.10. Prosodic translation of segment s3_16_0113 from the Heroes corpus.107

5.11. Prosodic translation of segment s3_1_0001 from the Heroes corpus. 107

XIII






List of Tables

2.1.

3.1.
3.2

3.3.
3.4.

3.5.

4.1.

4.2.

4.3.

4.4.

5.1.

5.2

5.3.

5.4.

A selection of available parallel speech corpora for use in S2S
translation. . . . . . .. .. Lo

Word-level information kept in an example Proscript format file. .

A selection of non-matching subtitle entries and dubbing scripts
in Heroes series episodes. . . . . . . ... ... ... .......

Heroes corpus duration information. . . . . . ... ... .....

Word, token, sentence counts and average word count for parallel
English and Spanish segments. . . . . . .. ... ... ......

Averages numbers for each episode. . . . . . ... ... ... ..

Morphosyntactic and prosodic features used in the punctuation
restoration framework. . . . ... ...

Punctuation generation results for two stages baseline and the pro-
posed single-stage approach. P, R and F) stands for precision,
recall and F} score respectively in percentage (%). . . . ... ..

Punctuation generation results for a set of sentences. Audio sam-
ples can be accessed from the Github repository®. . . . . .. ...

Parsing similarity results . . . . . ... ... ... ........

Silent pause occurrences in English and Spanish segments of the
Heroescorpus. . . . . . .. . .. ..

Pause presence in punctuated intervals in English and Spanish
segments of Heroescorpus. . . . . ... ... ... ... .. ...

Heroes corpus partitioning versions and number of train, valida-
tion and testing set samples. . . . .. ... ... .. L.

Hyperparameters used in the experiments with TransProse archi-
TECTUTE. . . . o v v v e e e e e e e e e e e e e

50

7



5.5.

5.6.

5.7.

Punctuation restoration models used for punctuating raw English
SEEMENTS. . . . . ... 103

BLEU scores obtained from translating English subtitle segments
with restored punctuation. . . . . ... ... ... .. ... ... 104

BLEU scores (%) on the heroes-v1 testing set with and without
pauseencoding. . . . . . ... ... e 105

XVI









Chapter 1

INTRODUCTION

Human machine collaboration has arrived to another level with the advent of
natural language processing (NLP). By teaching machines to understand and in-
terpret human languages, we can now solve many problems that before required
human labour. For example, dialog systems help solve our queries the same way
we are used to interact with a person, or machine translation has changed the way
we perceive language barriers. Technology like automatic speech recognition and
text-to-speech synthesis has made this interaction further possible in the spoken
form of human languages. Automatic speech transcription, for example, involves
conversion of speech to its written form and is applied in many type of applica-
tions such as dictation systems, automatic captioning and spoken dialogue sys-
tems. Spoken language machine translation (SLMT) involves automatic speech
transcription as its first step but further translates the transcription into a second
language and in some cases synthesize it. Its uses include, for example, automatic
subtitling and automatic dubbing.

As machines function using a pre-defined set of symbols, language in its writ-
ten form dominates the functioning of most of these applications. Even in the
cases where spoken language is involved, machines rely on a step where speech
has to be converted to text in order to carry on with the subsequent processes in
the pipeline. However, this conversion brings with it a loss of a dimension in
the language. Compared to written language, spoken language inherently carries
more information than its linguistic content. Linguistic units like words are en-
veloped within properly divided measures, accompanied with a certain melody
that has its ups and downs delivered in a rhythm. These “music-like” aspects,
which roughly correspond to “prosody” in language, deal with how a certain ut-
terance is delivered. It functions for structuring the spoken discourse and also
to encode both linguistic and para-linguistic phenomena (Fujisaki, 2004). Loss
of this information in spoken language interfaced systems eventually harms the



machine interpretation of the communicative intention as a whole.

1.1. Motivation

The recent advances in automated processing of natural languages owe much
to the application of neural networks. Although the core technology behind neu-
ral networks is not new, it has only recently started being preferred against older
probabilistic methods in NLP and speech technology. This was largely due to the
rise in computational power that made possible the training and applicability of
the systems that use deep neural networks (DNN). Its use for language modelling
was demonstrated in 2001 (Bengio et al., 2003), for automatic speech recogni-
tion (ASR) in 2012 (Dahl et al., 2012) and machine translation (MT) in 2014
(Sutskever et al., 2014).

As sketched in the introductory section, the current tendency in spoken lan-
guage processing systems is carrying on with the modelling only the linguistic
information once spoken input is converted to its written form. This causes an
irreversible loss of the information that is encoded through prosodic features of
speech, which are intonation, rhythm, and stress.

I will demonstrate in this section the relevance of modelling of this level of
language in two applications of spoken language processing: Automatic Speech
Transcription and Spoken Language Machine Translation. Finally, I will touch
on the issue of prosodic data compilation which is demanded in development of
data-driven models that account for prosody.

1.1.1. Automatic Speech Transcription

The process of automatic speech transcription involves use of an ASR sys-
tem to convert the spoken input to text. The raw text output of an ASR system
generally lacks any form of punctuation. Depending on the application, punc-
tuation proves to be important for two reasons: first, in the cases where tran-
scriptions will be read by humans, lack of punctuation reduces readability to a
large extent. This is demonstrated in the work of Tiindik et al. (2018) where
watchers of broadcast news were asked to compare punctuated and unpunctuated
captions. Both for manually and automatically created transcriptions, punctuated
transcriptions were preferred in helping follow the video content. Second case
where punctuation has an important role is when the ASR output is further used
in subsequent processes like machine translation or parsing. Both these processes
require sentence-like units as input and cannot function with long unsegmented
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text. Furthermore, commas and other punctuation marks that are defined within
the orthography of a language prove to be important cues for machines to under-
stand text, similar to the case of humans (Cho et al., 2017; Jones, 1994). Although
rules of punctuation are formally defined within the grammatical and orthographic
rules of a language, spoken language punctuation is predominantly related with
prosody (Chafe, 1988). Sentence structures and phrasing are often marked with
intonational phrasing and breaks. Sentence modality influences the intonation
style of a sentence, which in turn influences punctuation. Topic changes are gen-
erally marked with intensity and pitch resets (Farrus et al., 2016). Emphasized
information is often delivered with stress.

Looking at raw ASR output, which consists of only the linguistic content,
is often not enough to determine punctuation especially in cases of spontaneous
speech. This type of speech often does not follow a regular syntactic structure
as in written language, thus making it difficult to determine punctuation based on
syntactic or data-driven methods that are modeled for written text (Ballesteros and
Wanner, 2016). Neural network-based work that gets use of prosodic cues report
improvement in accuracy of the punctuation marks generated (Tilk and Alumde,
2016), but still rely on huge chunks of textual data thus biasing models on writ-
ten language. As they are the closest form of symbology that represents speech
prosody in written form of language, its modelling requires a level in prosody.
This calls for further study in the evaluation of various prosodic features on the
task.

1.1.2. Machine Translation Enhancement with Prosody

Spoken language machine translation (SLMT) is a type of machine translation
architecture where input and/or output to the system is spoken language. In the
speech-input setup, prosody is relevant for capturing the sentence structure and
phrasing which in turn affects translations. In spoken-output systems the need
to convey the prosodic structure into the synthesized speech appears in applica-
tions such as automatic dubbing. In both setups, a prosodic modelling of the input
speech is needed to avoid the information loss at the recognition step. Prosodic
transfer modelling was previously explored in a number of works (Agiiero et al.,
2006; Do et al., 2018; Anumanchipalli et al., 2012). The data used in these
approaches are collected in laboratory conditions, meaning that recordings are
prompted, and almost always are based on travel domain. There is no previous
study that takes on a domain that involves more expressive speech such as movies
or TV shows. Especially in these domains, there is a rich source of prosodic vari-
eties that affect both translations for subtitling and dubbing.
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1.1.3. Prosodic Data Compilation

Key to machine learning-driven development is directly related to the avail-
ability of quality data. Although some toolkits exist that assist prosodic annotation
of speech data (Rosenberg, 2010; Xu, 2013; Huang et al., 2006), they fall short
in terms of applicability in machine learning-based approaches. Another issue in
prosodic data collection is that data collected in laboratory environments often
fail in reflecting expressivity normally present in spoken language, and in turn,
influence models to bias on unnatural data. To aid collection of expressive speech
data, a form of harvesting “found data” that accommodates prosodic annotation is
needed. Scalable methods to process, visualize and store this type of data is also
necessary in developing data-driven methodologies.

1.2. Objectives

Revolving around the motivation that prosody should be incorporated in tech-
nology that involves spoken language understanding and processing, I have as-
signed the following objectives for the course of my research:

= Development of open tools that enable creation, prosodic annotation, han-
dling and visualization of spoken language data.

= Compilation and publication of monolingual and bilingual corpora suitable
for machine learning-based development that involves prosodic-linguistic
modelling.

= Development of a framework for automatic punctuation restoration in man-
ually or automatically generated speech transcripts, using lexical and prosodic
features.

= Assessment of the effect of acoustic-prosodic features on the quality of
punctuation restoration and subsequent processes like dependency parsing
and machine translation.

= Development of a machine translation framework for movie domain that
enables prosodic feature input and output to aid translation and also to gen-
erate cues for synthesis.

My hypothesis is that systems that process spoken language will benefit from
modelling of prosodic features in speech besides the linguistic modelling involved
in them. The experiments aim to assess this in neural network-based architectures.
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1.3. Outlining the Dissertation

The rest of this dissertation is structured as follows:

Chapter 2 first gives an overview on speech processing systems encom-
passing the motivated applications of this dissertation. Emphasis is given
on deep neural network based-setups. Second, role and characteristics of
speech prosody are reviewed. Finally, state-of-the-art in relation to my ob-
jectives are presented.

Chapter 3 presents corpus related work. Tools that were developed and uti-
lized for prosodic data compilation and visualization are presented. Also,
two corpora that were used and published within the frame of this disserta-
tion are explained in detail.

Chapter 4 focuses on the topic of automatic punctuation restoration in raw
speech transcripts with a focus on the use of prosodic features and their
effects on recovery performance and parsing.

Chapter 5 explores the use of prosodic features within a neural spoken
machine translation setting.

Chapter 6 sets the final conclusions on the thesis in terms of the objectives
reached and also outlines possible venues for future research and applica-
tions.






Chapter 2

STATE OF THE ART

As presented in the introductory chapter, this dissertation focuses on two main
applications: automatic transcription and spoken language translation. In the first
part of this chapter, I will give an overview on the main research areas that are
related to these two topics with a focus on neural network-based approaches. Au-
tomatic transcription, which is made possible with automatic speech recognition
(ASR), is explained in Section 2.1.2. Approaches to the task of punctuation recov-
ery in ASR output are presented in Section 2.1.3. Neural machine translation is
presented in Section 2.1.4 with a focus on spoken language machine translation.
After a brief introduction to text-to-speech synthesis (TTS) systems in Section
2.1.5, I will present the concept of speech-to-speech translation with recent work
on its field in Section 2.1.6. Next, in Section 2.2, I will give an overview on
Prosody. Finally, the last part of this chapter reviews relevant work on the in-
clusion of prosody into these systems. Focus is given on usage of prosody in
punctuation recovery in Section 2.3.1 and adding prosodic modelling on spoken
language translation in Section 2.3.2.

2.1. Neural Speech Processing Overview

A spoken language system consists of at least one of the following modules:
automatic Speech Recognition (ASR) for converting verbal communication into
discrete symbolic form (i.e. text), text-to-speech (TTS) system for generating in-
formation in spoken form, and a spoken language understanding (SLU) system
for mapping between actions and verbal utterances (Huang et al., 2001). Depend-
ing on the application, versions and combinations of these systems are employed
to solve the task involved with it. For instance, an automatic subtitling system
would involve an ASR system together with a speech activity detection module to
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Activation

Inputs Weights Bias function Output

Figure 2.1: An artificial neuron.

transcribe the spoken parts in a media. If the subtitling is to be done in another lan-
guage, the same pipeline would be followed by a machine translation system. A
complete speech-to-speech pipeline would result in an automatic dubbing system
where translated content would be synthesized using a TTS system.

Research on these subareas of speech technology has recently experienced
a great shift towards the usage of artificial neural networks (ANN). Popularity
of ANN in general has risen in the recent years mostly due to advancements in
computing power. Specifically, training of large and deep neural networks (DNN)
in a reasonable amount of time has been made possible with Graphical Processing
Units (GPUs).

I will introduce briefly the concept of DNNs as they form the basis of the
experimentation presented in this dissertation. The information presented in this
section can be consulted in Katagiri (2000) and Goodfellow et al. (2016) for a
deeper understanding.

2.1.1. Deep Neural Networks

An artificial neural network consists of a group of nodes and connections be-
tween them, inspired respectively by the neurons and axons in a biological neural
system. Figure 2.1 illustrates the structure of one neural node, which is also re-
ferred as perceptron or simply neuron. Each connection towards a neuron is an
input (x;) and is associated with a weight coefficient (w;). The basic function of a
neuron defines the input signal to the neuron as:

a= Zwi:vi +b (2.1)

The input signal is then passed into an activation function to produce the output
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Figure 2.2: A fully connected feed-forward neural network with two hidden lay-
ers.

y = f(a) (2.2)

Activation function is a differentiable function that originally resembles a step
function so that the neuron fires with certain input. The original Rosenblatt’s per-
ceptron had Heaviside step function as the activation function (Rosenblatt, 1958).
Activation functions commonly being used today are the sigmoid and the hyper-
bolic tangent functions.

One single neuron is evidently not sufficient for modelling complex functions.
A basic neural network consists of a layer of input neurons fully connected to a
layer of output neurons. This setting produces an N-to-M mapping. Extra layers
are added between the input and output layers to introduce even more complexity
to the network. These layers are called hidden layers and are fully connected
between each other between input and output layers. An illustration of a neural
network with two hidden layers is given in Figure 2.2. Number of hidden layers
can be determined according to the task-at-hand. A neural network with more
than one hidden layer is called a deep neural network (Goldberg, 2016).

Although there exist many types of neural network taxonomies, one important
characteristic that divides neural network architectures into two is the direction
of the signal flow in the network. A feed-forward network (as in the example
in Figure 2.2) allows information to be passed only in one direction, whereas a
recurrent neural network (RNN) network allows the output signal of some nodes
to be passed again to a neuron coming previously, or to the neuron itself. Re-
current neural networks are especially suitable for representing time-series data.
Because of this, it is currently being preferred as the principal architecture in many
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Figure 2.3: Information flow in a recurrent neural network (RNN). Output signals
are allowed to go back as input signals to the neurons.

state-of-the-art applications of machine translation, speech recognition and speech
synthesis.

As it can be seen in Figure 2.3, a neuron in a RNN can have its output con-
nected back to itself as an input. This model allows the neuron to keep a form
of a memory from previous inputs and decide on the next output according to it
together with the current input. Modelling inputs and outputs in a time-series
enables the processing of either a fixed number or a sequence of vectors, one at
a time. Different types of RNN-based architectures is demonstrated in Figure
2.4. A one-to-one network serves for fixed size input and output at each time
step. Although this architecture is useful in, for example, image classification, it
is not sufficient for modelling variable length data. A “many” type input or output
means an arbitrary number of vectors can be introduced to and/or obtained from
the model at each time step. Many-to-many architecture can either have input and
output sequences synchronized (left in the figure), where an output is given for
each input vector, or not (right in the figure). An example to an non-synchronized
many-to-many type architecture is machine translation. A sequence of vectors
representing words in source sentence is first input to the model. Then, words
from the translated sentence are decoded from the output layer. This group of
neural networks are sometimes called encoder-decoder networks. Many-to-many
type RNN is sometimes referred to as a sequence-to-sequence network as intro-
duced in Sutskever et al. (2014).

Neural Network Training

The steps involved in neural network training can be summarized as follows:
(1) introduction of samples in the training set to the network, (2) computing the
error of the network regarding the desired and obtained output from the network,
(3) computing the gradient given by the error and then (4) moving the network
weights in the direction and magnitude of the gradient.

10
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Figure 2.4: Various types of RNN architectures. Each box represents a vector.

The error of a network is calculated with the loss function:

B=g (v (Xwa)) 23)

where y represents the desired output, and f(z) giving the output of the neural
network. Using a method called backpropagation, the error given by this function
is traced back in the network layers using reverse differentiation. This is done by
calculating the gradient of the loss function V.J(#) with respect to the weights ¢
of the network.

Updating of the weights of the network is done with an optimization algorithm.
The gradient descent technique is used to find the minima in an error space by
updating the parameters of the network in the opposite direction of the gradient
scaled with a learning rate 7:

0=0—n VIO (2.4)

As the calculation of loss with respect to the whole dataset would be cum-
bersome for large training sets, stochastic gradient descent (SGD) (Goodfellow
et al., 2016; LeCun et al., 1998) does the parameter updates for each training sam-

ple {x(i), y()}:
6= 0 —n-VJ(0:2(): y(i)) 2.5)
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However, this method causes unnecessary fluctuations (i.e. noise) in weight
updates as it is done at each input sample. To avoid this, samples are input in
batches and the average loss for that batch is used to update the network instead.

Learning rate 7 is a key hyperparameter in setting up neural network training.
Optimization on the selection and variance of this parameter is often crucial in
DNN architectures. Learning rate scheduling is performed to help network con-
verge with smaller updates through the later stages of training. Several variations
on the SGD account for this aspect and further adapts the learning rate at each
batch to each parameter. Adagrad does this modification based on past gradi-
ents that were calculated for the parameters (Duchi et al., 2011). Adam chooses
an accelarated learning rate in relavant directions and diminishes it in irrelevant
directions (Kingma and Ba, 2014).

Addressing the Problems of RNN

There is a number of issues that has emerged in the development of RNNs and
much of it is addressed in various works. First one is the issue that is common
in any machine learning problem, which is overfitting. A model is said to overfit
on training data when it covers too well noisy data inside it and fails to general-
ize on anything outside it. Overfitting can be avoided by applying regularization
techniques such as dropout (Hinton et al., 2012). This particular technique func-
tions by randomly deactivating a portion of a layer’s weights at each pass of a
training sample, so that the network does not end up relying on specific weights
(Goodfellow et al., 2016).

Two problems specific to the training of RNNs are exploding and vanishing
gradients. It is common that gradients end up either growing extremely high or
extremely low during the course of backpropagation. The issue of exploding gra-
dients is simply solved by putting a threshold on the magnitude of the gradients,
and clipping it once it is exceeded. On the other hand, resolution of vanishing
gradient is still seen as an open research problem. Both these problems contribute
to the shortcoming of RNNs in remembering long-term dependencies. Bengio
et al. (1994) explores this issue in deep and stated the inefficiency of the gradient
descent algorithm especially in preserving gradients across longer sequences.

The issue with the short-term memory in RNNs was addressed with the in-
troduction of Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997). LSTM defined a mechanism of gates which decides on the information
flow at each time-step. Gates decide which information is allowed to pass by
through input and output gates, and which are bound to be discarded with the
forget gates. Although LSTM was an efficient solution for modelling long-term
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Figure 2.5: Architectures of a LSTM and GRU cell. (Diagram from Michael
Nguyen’s article on Medium')

dependencies, it was also a complicated one (Goodfellow et al., 2016). Gated re-
current unit (GRU), was introduced as a simpler variant of LSTM units and made
computation simpler by having fewer parameters Cho et al. (2014). Number of
gates were reduced to two where the resetr gate determined whether the previous
memory will be ignored, and the update gate determines how much of the previ-
ous memory will be carried on. An illustration of architectures of both LSTM and
GRU cells is given in Figure 2.5.

2.1.2. Automatic Speech Recognition

In its most simple sense, automatic speech recognition (ASR) is the conversion
of speech in its acoustic form into a symbolic form such as words or letters. It
is the probabilistic modelling of the question “What is the most probable word
sequence among all possible word sequences given an acoustic input?”. Figure 2.6
illustrates this process. Speech signal captured by a microphone is first encoded
into a sequence of acoustic feature vectors. Following, the acoustic feature vectors
are decoded into the words that represent the linguistic information that lies in the
speech signal.

Classical approaches to ASR employ a modeling of spoken language that uses

'https://towardsdatascience.com/illustrated-guide-to-lstms—and-
gru-s—a-step-by-step-explanation-44e9eb85bf21l

13


https://towardsdatascience.com/illustrated-guide-to-lstms-and-
gru-s-a-step-by-step-explanation-44e9eb85bf21

ENCODER

!
DECODER
l
HELLO WORLD L[;]-

/| "\

Figure 2.6: Speech recognition is the conversion of an acoustic signal with spoken
language into its written form.

Gaussian mixture model-hidden Markov model (GMM-HMM). HMM is a pow-
erful statistical method for representing time-series data (Huang et al., 2001; Ra-
biner, 1989). As illustrated in Figure 2.7, a GMM-HMM ASR system has a mod-
ular architecture: The feature extraction step converts the input speech signal into
a sequence of fixed size acoustic vectors. Later, the decoder makes use of the
acoustic model, the language model and the pronunciation dictionary in order to
decide the most likely word sequences they represent. Acoustic and language
models are trained with a corpus of transcribed speech samples and a text corpus
respectively. While the acoustic model stores the information of the statistical be-
haviour of the sounds in a language, the language model stores the likelihood of
the tokens (words) occurring and co-occurring in a language.

ASR systems experienced a breakthrough with the use of deep neural networks
from 2012 on with its introduction in Dahl et al. (2012). The hybrid DNN-HMM
model replaced the feature representation step that used Gaussian mixtures with a
RNN-based architecture. The graphical comparison of the acoustic modelling of
the two models is illustrated in Figure 2.8. The DNN-HMM based ASR showed
an improvement of 20% in sentence accuracy compared to the GMM-HMM based
model in a large-vocabulary task.

More recently, end-to-end systems were introduced that made large-vocabulary
speech recognition possible even without a language model or a lexicon (Graves
and Jaitly, 2014). Graves and Jaitly suggested a model that maps directly between
spectral features and characters using a deep bidirectional LSTM and Connec-
tionist Temporal Classification (Graves et al., 2006) as loss function. Although
this approach did not beat the hybrid approach baseline, it was a breakthrough for
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Figure 2.7: General architecture of a traditional ASR system.

remedying a complex modular architecture that depended on separate acoustic,
phonetic and language modelling. Later advancements, however, report outper-
forming of the hybrid methods both in terms of recognition accuracy and noise
robustness (Hannun et al., 2014).

2.1.3. Punctuation Restoration in ASR Generated Transcripts

As applications of automatic speech recognition vary greatly, the objective of
ASR is only focused on the recognition rate of the words. Aspects such as capi-
talization and punctuation, which are crucial elements for readability of the ASR
output, is generally considered apart from an ASR system. For applications such
as automatic captioning or transcript extraction, punctuation and capitalization
prove to be essential for improving readability. In broadcast domain, Tiindik et al.
(2018) evaluate the effect of presence of punctuation in captions from an end-user
perspective and show that punctuated captions are easier to read both when tran-
scriptions are manually or automatically generated. In clinical domain, Salloum
et al. (2017) points out the importance of punctuation in the reports dictated by
medical doctors.

Another case where punctuation proves to be essential is when subsequent
processing steps in spoken language system pipeline are optimized to work with
it. Syntactic or semantic parsing, which is an important module in dialog based
systems, necessitates input segmented into sentence-like units to function. Most
machine translation systems are trained with single sentence input (Niehues et al.,
2018). Furthermore, it is proved that both of these processes function better with
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Figure 2.9: Punctuation and capitalization as a postprocessing step after ASR.

properly placed in-sentence punctuation and especially commas (Vandeghinste
et al., 2018; Jones, 1994).

The problem of punctuation restoration has been addressed in several works
in the literature —as has been the closely-related issue of boundary detection. Both
problems have been tackled from diverse perspectives. In terms of which types of
features are used, the approaches fall into three categories: (1) models based only
on textual (lexical and syntactic) features, (2) models based only on prosodic/a-
coustic features and finally (3) models where both textual and acoustic/prosodic
features are used. In this section, I will focus on models based only on textual fea-
tures. That is, as illustrated in Figure 2.9, punctuation process is only applied on
the raw ASR output without any other cues. Models that employ prosodic features
will later be explained in Section 2.3.1.

Punctuation using only textual features is relevant when e.g. punctuation restora-
tion is needed for written data (Jakubicek and Horak, 2010) or in the case when
corresponding audio information is lost (Lu and Ng, 2010). In Jakubicek and
Hordk (2010), for instance, the punctuation detection is addressed from a syntax-
based perspective by using the output of an adapted chart parser, which provides
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information on the expected punctuation placement. In Ueffing et al. (2013), sev-
eral textual features including language model scores, token n-grams, sentence
length and syntactic information extracted from parse trees are combined using
conditional random fields (CRF). They demonstrate that syntactic features help
only when the input language is well-structured (as e.g. newspaper texts). In Lu
and Ng (2010), the task is based on dynamic CRF and applied to a conversational
speech domain where sentence boundaries and types are detected.

Another reason that facilitates the usage of solely textual features is the abun-
dance of well-punctuated written data. Using a purely text-based n-gram language
model, Gravano et al. (2009) demonstrate the performance improvement induced
by large textual training in punctuation detection and capitalization. Although
narrow-range grammatical constructions are recognized well for comma and pe-
riod placement, n-gram approach fails in discovering long-range dependencies for
the correct placement of question marks.

Punctuation placement is also approached as a monolingual machine transla-
tion problem in Peitz et al. (2011); Cho et al. (2017); Paulik et al. (2008); Klejch
et al. (2017) where target sequence is the punctuated version of the source se-
quence.

Recently, usage of DNN-based systems has shown remarkable performance in
the task for their ability to capture long-range dependencies in sequential data.
These models use word embeddings to represent words as vectors in a high-
dimensional space that reflects their semantic, syntactic and morphological be-
haviour in the language (Mikolov et al., 2013). Ballesteros and Wanner (2016)
introduces a language-independent model with a transition-based algorithm using
LSTM, without any additional syntactic features. Treviso et al. (2017) experi-
ments with different word embeddings model within an RNN-based setup and
proves that a good word embeddings model improves punctuation restoration ac-
curacy. Che et al. (2016) follows a convolutional neural network-based approach
where the punctuation is predicted for the third word in a 5-word window and
reports improvement on a similar non-DNN based approach that uses n-grams
(Ueffing et al., 2013). A task specific approach is followed in Salloum et al. (2017)
where punctuation marks are restored in medical dictation transcripts. They show
that accuracy of state-of-the-art RNN-based methologies can be improved to a
large extend using vocabulary reduction techniques adapting to the language do-
main.
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Figure 2.10: Architecture of an encoder-decoder neural machine translation sys-
tem. (Diagram taken from spro’s“sequence-to-sequence translation tutorial on
github)

2.1.4. Neural Machine Translation

Machine Translation is defined as the automatic conversion of a sequence of
symbols in one language to a sequence of symbols in another language (Goodfel-
low et al., 2016). It has evolved through years from rule-based systems (RBMT)
to statistical approaches (SMT), which modeled the probabilities of mappings be-
tween sub-phrases of various sizes. These probabilities are learned in a statistical
fashion from parallel texts where sentence aligned translations are available in the
languages involved (referred as source and target languages).

Neural machine translation (NMT) quickly replaced SMT in the recent years
for its relatively simpler architecture and better performance. Usage of sequence-
to-sequence architecture for this task was first introduced in Sutskever et al. (2014)
and made it to commercial spectrum in 2016 as the preferred architecture for the
task (Wu et al., 2016). Transformer architecture further simplified this model in
and also recorded better performance (Vaswani et al., 2017).

A commonly used architecture for NMT is the encoder-decoder architecture.
As illustrated in Figure 2.10, token vector sequence in the source language input
through an encoder is sent over to a decoder to output token vectors of the target
language. Tokens can either represent words (Sutskever et al., 2014), sub-word
units (Wu et al., 2016) or characters (Ling et al., 2015; Costa-Jussa and Fonollosa,
2016). Similar to the data-driven approach of SMT, this network is trained with
parallel text, generally on sentence level, to maximize the probability of a correct
translation given a source sentence (Bahdanau et al., 2014).

’https://github.com/spro
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Figure 2.11: Attention mechanism in encoder-decoder NMT architecture keeps
track of portions of the input sequence that affects each decoder output. (Diagram
taken from spro’s sequence-to-sequence translation tutorial on github)

One weakness that this model introduces is the connection between two RNNs
that squeezes the input sequence into one single-length vector before being de-
coded as target token sequence. This is analogous to reading a phrase from be-
ginning to end and then translating it into another language without looking at it
again. Normally, a translator would break a input sentence into smaller portions
and translate step by step giving attention to a different parts each time. An anal-
ogy of this approach was implemented in NMT with the introduction of attention
mechanism (Bahdanau et al., 2014; Luong et al., 2015). As illustrated in Figure
2.11, the attention mechanism helps focus on different parts of the input at each
step of decoding. This relieves the decoder from having to predict target language
tokens in one go without any spacial context of the input phrase (Wu et al., 2016).

Spoken language machine translation is a type of MT where input and/or
output to the system is spoken language. Spoken input translation can be em-
ployed through the usage of ASR prior to MT and translation can be generated as
speech with a TTS to obtain spoken output.

Machine translation with spoken input introduces its own specific challenges.
First is that written and spoken domain show differences which could lead to
degradation of performance if data domains are not compatible (Britz et al., 2017).

Another challenge that spoken language translation introduces is the possible
incompatibility between ASR output structure and MT input structure. MT mod-
els are usually trained with sentence-like structures as samples and therefore show
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> asi que bajo esa base lo publicamos y decimos que somos

>so under that basis we put it out and said look we're skeptical escépticos sobre esto

about this thing.

m g > No sabemos, pero que podemos hacer.
>we don't know but what can we do. > El material se ve bien
>the material looks good. v
B tifesls riahtibut weg'ust can't verify it > Se siente bien, pero no podemos verificarlo.

g ) - - - >y luego recibimos una carta esta misma semana de la

>and we then got a letter just this week from the company who compafiia que la escribié queriendo rastrear Ia fuente
wrote it wanting to track down the source saying hey we want

diciendo: hey, queremos rastrear la fuente y estdbamos como:

> Oh, dinos mas de qué documento es precisamente de lo que
estas hablando.

> ¢ Puede demostrar que tenia autoridad legal sobre ese
documento?

> ¢ Es realmente tuyo?

to track down the source and we were like:

>oh tell us more what document is it precisely you're talking
about.

>can you show that you had legal authority over that
document?

>is it really yours?

Figure 2.12: Spoken language translation demonstrated on a conference record-
ing.

low performance on partial sentence or long sequences of words as input (Niehues
et al., 2018). In text translation domain, processing of long text documents is per-
formed by translating it sentence by sentence using punctuation information as
segmentation cues. A similar approach needs to be followed when input is spoken
utterances as well. Figure 2.12 illustrates an example of spoken language transla-
tion of a conference talk. A standard MT system would be unable to translate the
unsegmented transcription of the talk. Translation is made possible only through
a segmentation process, such as boundary detection or punctuation restoration.

A topic worth mentioning in the area of translation is methods for measuring
the accuracy of automatic machine translation methods. Commonly used metrics
like BLEU offer a remedy for the expensive labour involved in human evaluation
of translation. The evaluation is performed in comparison with human transla-
tions. Given a testing set, each machine translated sample is compared to a ref-
erence translation and given a score of how close they are. BLEU that stands for
Bilingual Evaluation Understudy measures this by calculating the ratio of match-
ing n-grams in the translation and reference text (Papineni et al., 2002). A BLEU
score 1s basically a number between 0 and 1, 1 signifying a higher similarity be-
tween the texts. The quality of a MT system is usually estimated with an average
score among a set of testing samples and reported in percentage.
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Figure 2.13: Speech synthesis from units in concatenative TTS. (Credit: Tom
Biickstrom, Speech Synthesis Overview?)

2.1.5. Text-to-Speech Synthesis

Speech synthesis involves production of a human-like speech given a text in-
put with computational methods. Before the advent of deep learning, there were
two main approaches to text-to-speech (TTS) synthesis: concatenative TTS, and
parametric TTS. Concatenative TTS, also called unit selection, combines short
pre-recorded audio clips called units to synthesize the desired text (van Santen
et al., 1997). Figure 2.13 illustrates this process. A linguistic analysis performed
on the text dictates which units to be selected in which order to form the waveform
from an audio codebook consisting of phones, biphones or triphones. Since audio
units are based on real speech samples, this technique can provide a good perfor-
mance in terms of speech quality. That is, it sounds very similar to real human
speech. However, the cut and stitch procedure involved often results in lack of
naturalness. Also, this technique proves to be less flexible since its construction
involves creation of a carefully designed large database.

In contrast to having a large codebook, parametric TTS relies on statistical
methods by generating speech with a combination of parameters like FO and en-
ergy, modelling the human speech production (Zen et al., 2009). Figure 2.14
illustrates the workflow of a parametric TTS system. First, morphemes in the in-
put text are converted to phonemes through a linguistic analysis. Next, features
like cepstra, FO, duration and break are calculated to be fed into the vocoder.
The vocoder finally generates the waveform using these parameters. The param-

Shttps://mycourses.aalto. fi
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Figure 2.14: Basic workflow of a statistical text-to-speech system.

eter probabilities is learned from phonetically labeled speech data and modeled
as Hidden Markov Models (HMM). Recently introduced DNN-based models fol-
low a similar approach but replace the HMM-based modelling with DNN (Zen
et al., 2013). End-to-end models, on the other hand, employ a DNN to directly
synthesize speech from characters Wang et al. (2017).

There exist two main parameters in evaluating a TTS system: intelligibility
and naturalness. Intelligibility, as its name suggests, measures to what extend the
linguistic information in a synthesized speech waveform can be comprehended.
Naturalness, on the other hand, deals more with the way how an utterance is said
and measures roughly the likelihood that it was said by a person and not a ma-
chine (Dall et al., 2014). Naturalness is almost directly related to the prosody
production in a TTS system. Prosody modelling in a TTS is predicted in three
dimensions which are intonation, duration and breaks. Among a few theories on
intonation modelling are the Fujisaki model (Fujisaki, 1983), Tilt model (Taylor,
1992), Bezier polynomial coefficients (Escudero et al., 2002), and Tones and Break
Indices (ToBI) (Silverman et al., 1992; Pierrehumbert, 1980). Duration modelling
deals with the prediction of segment (phone or syllable) lengths in speech. Breaks
also have an important role in achieving naturalness in speech as it helps structure
the discourse and also occur naturally from respiration. They can be manifested
in two ways: silent, or filled, i.e. through lengthenings or filler words (Zellner,
1994). Several approaches exist for break prediction in TTS. Some recent works
include Agiiero and Bonafonte (2003) which models disfluency in synthesized
speech through filled pauses to mimic a talking-style speech opposed to the a
reading-style. Pascual and Bonafonte (2016) focuses on silent break detection by
employing RNNS.

External Prosodic Encoding to TTS

Some implementations of TTS systems allow the taking of external labels to
influence the prosodic parameter selection process. This is performed through
an interface called markup language which accompanies the text input and condi-
tions the sythesized speech on various acoustic/prosodic aspects. One well-known
implementation of this interface is Speech Synthesis Markup Language (SSML)
(Taylor and Isard, 1997). An example of an input segment to a state-of-the-art
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Figure 2.15: A conventional speech-to-speech translation pipeline.

TTS system” that utilizes SSML tags is given below.

<p><s>Conscious of its spiritual and moral heritage <break time

="300ms"/>, the Union is founded on the indivisible,

universal values of <prosody rate="-15%">human dignity,
freedom, equality and solidarity.</prosody> It is based on

the principles of democracy and the rule of law <break time

="500ms"/>. </s> <s> It places the individual at the heart of
its activities, <prosody rate="+15%">by establishing the
citizenship of the Union</prosody> and by creating an area of
freedom, security and justice.</s></p>

The synthesis is indicated on where to break for how long using the tag break
and tuned to speak faster or slower with the tag rate. Usually, tags that are related
with pitch, speech rate and volume are set with relative percentages and have an
estimated effect on the outcome instead of an absolute effect.

2.1.6. Speech-to-Speech Translation

Speech-to-speech (S2S) translation enables human-to-human communication
where each of the agents involved speaks in a different language. A device capable
of enabling such a communication is able to accept spoken input in language
A, translate it to language B and then synthesize it for hearing. By performing
this process in both ways, it acts as an interface for a turn-based inter-lingual
communication. Conceptually, such a system is the concatenation of the three
following processes: (1) ASR, (2) MT, and (3) TTS. A diagram of the one-way
process in S28S translation is illustrated in Figure 2.15.

There exist various examples of S2S translation solutions resulting from both
academic and commercial research. Verbmobil is considered as the pioneer in the
field as it is the oldest and most extensive research project dealing with S2S trans-
lation (Wahlster, 2013). It was designed for translation of spontaneous dialogues
in mobile situations for the languages English, German and Japanese. IBM MAS-
TOR was developed in a defense oriented framework for facilitating spoken com-
munication in low-resource languages (Gao et al., 2006). European Union funded

4IBM Watson TTS: https://text-to-speech-demo.ng.bluemix.net/
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project TC-STAR was the first that addressed S2S translation in an unrestricted
domain between languages English, Chinese and Spanish (Loo6f et al., 2007). Its
local counterpart TECNOPARLA was developed with the motivation of spoken
translation in the broadcast radio and television domain for the languages Cata-
lan, English and Spanish (Schulz et al., 2008). EMIME project was the first work
that aimed voice personalization through S2S translation, where synthesized voice
is adapted to sound like the recognized voice (Kurimo et al., 2010). Two projects
with Swiss origin, SP2 SCOPES (Szaszak et al., 2014) and SIWIS (Garner et al.,
2014) that focus on Swiss and Eastern European languages report cross-lingual
prosodic transfer as their main objectives. Although, there are no recorded results
on the accomplishment of these objectives.

Spoken Parallel Corpora

Corpus Languages Speech style

EPIC en/it/es spontaneous/interpreted
TC-STAR en/es, en/zh spontaneous/interpreted
MSLT en/fr/de constrained

EMIME fi/en, de/en prompted

EMIME Mandarin zh/en prompted
SP2-Speech-Corpus en/fr/de/hu/mk/sr prompted w/ emphasis
Japanese-English emphasis jalen prompted w/ emphasis
SIWIS database en/fr/de/it prompted w/ emphasis
MDA (Almeman et al., 2013) 4 Arab dialects prompted

Farsi-English (Melvin et al., 2004) fa/en read/semi-spontaneous

Table 2.1: A selection of available parallel speech corpora for use in S2S transla-
tion.

The availability of large parallel corpora is one of the major challenges in
developing machine translation systems. Bilingual corpora, which are needed to
train statistical translation models, are harder to acquire than monolingual corpora
since they presuppose the implication of labour in translation or interpretation.
Working on the speech domain introduces even more difficulties since interpre-
tations are not sufficient in capturing the paralinguistic aspects of speech. The
profession of interpretation aims rapid spoken translation of speeches in e.g. con-
ferences, diplomatic gatherings and do not give any attention to the re-enacting of
any paralinguistic features. In contrast, dubbing also covers for this aspect since
the aim is to have translated voice segments of a movie or series that match with
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the context and lip movements in the original language. Although this domain
could be rich for obtaining expressive parallel corpora, it has not been explored
in any previous work. In Chapter 3, I will explain my work in detail dealing with
this type of domain (Oktem et al., 2017b, 2018b).

Several attempts have been made to compile large spoken parallel corpora
from interpreted or fully-prompted material. Some of these corpora that were
published in literature are listed in Table 2.1. Each of them show some differ-
ences in terms of its source and the way translation was handled. The EPIC cor-
pus has been compiled from speeches from the European Parliament and their
interpretations (Bendazzoli and Sandrelli, 2005). The 1 hour voice conversion
corpus collected within the TC-STAR project also contains speech segments from
the European Parliament and their interpreted versions in Chinese and Spanish
(Bonafonte et al., 2006). The EMIME database is a compilation of prompted
speeches to serve for the task of speaker conversion (Wester, 2010). The MSLT
corpus has been collected in bilingual conversation settings, but ‘there is no one-
to-one alignment between sentences in the different languages as they are lightly
guided conversations (Federmann and Lewis, 2016). There is a number of cor-
pora collected for projects focusing on the emphasis translation task: SP2 Speech
Corpus (Secujski et al., 2016), SIWIS database (Goldman et al., 2016) and the
database collected by Do et al. (2014). These corpora contain sentence recordings
with acted emphasis on the same word or word groups in both languages.

2.2. Speech Prosody Overview

In this section I will try to break down prosody to get an overview on its role in
speech and also its characteristics. According to the definition by Fujisaki (1997),
role of prosody in speech is to organize linguistic units into an utterance and its
realization involves segmental and suprasegmental features of speech. What is
referred to as segmentals in this expression are the phonemes, syllables and words
that have distinct boundaries in the utterance. On the other hand, suprasegmentals
refers to the elements that can span over or partially cover segments in speech
(Crystal, 2003). Suprasegmental features in speech are the following prosodic
elements: intonation, rhythm and stress. These features can be briefly explained
as:

» Intonation deals with the melodic aspects of the speech, and is realized
by pitch movements. Pitch is what is perceived through the fundamental
frequency (FO) involved in an audio signal.
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= Rhythm deals with the timing of phonemes, syllables and pauses in speech.
Speech rate, which gives the number of segments uttered in a unit of time,
is also a feature derived from rhythm.

= Stress deals with the energy in speech and is perceived through the speech
signal amplitude.

Figure 2.16 shows visualization of a short speech segment on Praat where
pitch contour and intensity can be visualized over word and phoneme segments.

Prosodic features are employed in speech in a complex manner to convey lin-
guistic, para-linguistic and non-linguistic information (Fujisaki, 1997). I will try
to demonstrate the uses of these features on some examples in English.

Intonation is considered as one of the key features in conveying attitude in
many languages (Prieto, 2015). Prieto gives the simple sentence “I am cold.”
as an example for this. With different intonation structures this sentence could
have many different meanings including contradiction, command (as a request to
close the window) and surprise. Intonation can also be used to mark modality in
sentences. Yes/no questions, for example, commonly end with a rising pitch in
English.

Stress feature is used for marking salient points in discourse or to encode
givenness. Take the example “The butler killed the him.”. A word is marked
with a stress depending on which element is already mentioned and which ele-
ment is new information. This type of encoding can also be defined as phrasal
stress or accent.

Rhythm and pausing is relevant in forming a hierarchical organization in speech
through phrasing. The example given in Zellner (1994) expresses this very well.
The length of the inter-lexical pause in “a Turkish carpet salesman” can help
distinguish if the carpets or the salesman is Turkish. Audio waveforms of both
versions are visualized in the Figure 2.17.

It has to be noted that use of prosodic elements vary greatly between lan-
guages. In tonal languages like Chinese, Somali or Thai, it is used for encoding
different semantics of words. In intonational languages like Spanish and Catalan,
position of the word accent also can infer different meanings.

Prosody is also realized in the para-linguistics of speech such as emotional
state and attitude. These features however, tend to show more variety between
different languages, cultures and classes (Douglas-Cowie et al., 2003).
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Figure 2.16: Segmental (phoneme and word) and suprasegmental (pitch in blue,
intensity in yellow) features of a speech signal shown with the audio waveform
and frequency spectrogram.

2.3. Prosody in Speech Processing

In Section 2.1 I gave a review of the systems where spoken language is be-
ing processed to serve for a certain purpose. However, in these systems, speech
is considered only with the linguistic content (i.e. words, phrases, etc.) it car-
ries. Prosodic features that are encoded through various acoustic phenomena like
intonation, energy, breaks etc. are disregarded in any further analysis.

In this section, I will review recent as well as some historical works that re-
gard prosody as an essential dimension in a speech processing framework. These
works not only argue that prosodic features in spoken language are important for
spoken language applications, but also suggest methodologies for their inclusion
and report progress through it.

I will present two applied areas where prosodic cues are utilized as an ad-
vancement for speech processing systems. First, in automated speech transcrip-
tion where prosodic cues are used for phrase boundary detection or punctuation
restoration, then in speech-to-speech translation where a complete linguistic and
paralinguistic information transfer is desired.
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Figure 2.17: Phrasing in speech affecting meaning. Above “a Turkish (carpet
salesman)”, below “a (Turkish carpet) salesman”. (Example and figure taken from
Zellner (1994))

2.3.1. Utilizing Prosody in Punctuation Restoration in Tran-
scribed Speech

It has been shown that prosodic features are highly indicative of phrase bound-
aries as well as of punctuation placement in many works (Nunberg, 1990). There-
fore, a great deal of effort has been put in several works into the use of prosodic
features in punctuation restoration when original speech is available. In Levy et al.
(2012), the authors successfully detect automatically full stops in ASR output
with no language modeling using only weighted pause, FO changes and amplitude
range values. Commas are shown to be more difficult to detect when only prosodic
features are used. In Baron et al. (2002), it is demonstrated that combination of
language and prosodic models performs better than single-model approaches.

Many studies consider punctuation restoration as a problem of determining the
probability of a certain label at a boundary point in speech, e.g. between words
or at pauses, calculated in the vicinity of that point. Prosodic and textual cues
around each inter-word boundary are taken as features for a decision tree classifier
to detect sentence boundaries in Liu et al. (2006). Similarly in Khomitsevich
et al. (2015), word and grammatical n-gram features are combined with prosodic
features to detect punctuation marks in Russian ASR system. Kolar et al. (2004)
focus on Czech broadcast news speech to detect commas and sentence boundaries
by using a prosodic model based on decision trees and language model based on
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n-grams.

A combination of lexical-, prosodic-, and speaker-based features is also found
in Batista et al. (2012) for the detection of full stops, commas, and question marks
in a bilingual English-Portuguese broadcast news corpus. Similar works deal with
the punctuation generation problem by using statistical models of prosodic fea-
tures (Christensen et al., 2001), the combination of both textual and prosodic fea-
tures based on adaptive boosting (Kolaf and Lamel, 2012), and a cross-linguistic
study of prosodic features through two different approaches for feature selection:
a forward search wrapper and feature filtering (Fung et al., 2007). Also, in Klejch
et al. (2017), frame-level prosodic features (only pitch and pause) are integrated
in a neural machine translation based system with a hierarchical encoder.

Combining lexical and prosodic models has been employed in a bidirectional
neural network setting in Xu et al. (2017) for sentence boundary detection and in
Tilk and Alumée (2016) for punctuation restoration. Both approaches are based
on training of the language model (on large amounts of textual data) separately to
the acoustic model (from a smaller corpus), eventually leading the models to bias
on written data.

2.3.2. Utilizing Prosody in Spoken Language Machine Trans-
lation

There has been considerable work on inclusion of prosody into speech-to-
speech translation pipelines. Most of the research based systems give some of the
focus onto this area as it is believed that spoken translation is truly complete only
through conveying of prosody as well as linguistic information between source
and target phrases. On another aspect, some research focus on the fact that ASR
output is not optimized to be inputted to machine translation. ASR outputs only
a raw sequence of words without any further information on sentence or phrase
boundaries and thus harms MT quality that necessitates a certain input size and
context.

It is observed that there are three main objectives when it comes to incorpo-
ration of prosody into a S2S framework. These objectives are: (1) segmentation
of the source phrase into meaningful units through use of prosody to aid the ma-
chine translation step, (2) transfer of prominence (emphasis) in input speech into
the synthesized translations and (3) using context information to boost translation
accuracy.

First use of prosody within a spoken language translation system was within
the Verbmobil project (Noth et al., 2000). A group of prosodic features were com-
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puted for the word hypotheses computed by the ASR module. These were: prob-
abilities for clause boundaries, accentuation and sentence mood. Among these, a
major improvement was achieved through the classification of clause boundaries
in the input phrases. Syntactic parsing of the recognized words was improved in
terms of readings and computation time only through the segmentation of the in-
put phrases. Boundary classification was based on a combination of textual and
prosodic features (energy, duration and FO). A similar approach is investigated
in Matusov et al. (2007). A lexical-prosodic boundary prediction algorithm is in-
troduced and compared with various other segmentation algorithms in terms of
their effect on translation quality. They show that translation is optimized through
usage of a boundary prediction algorithm based on prosodic features and phrase
probabilities using a language model.

Agiiero et al. (2006) can be considered as the first example where objective is
to transfer the underlying paralinguistic features in the source speech to the syn-
thesized target speech. The methodology they present aims to find transfer pat-
terns of FO contours in source and target speech in a S2S framework. This is done
with an extension on the intonation prediction module of the TTS that does not
only consider linguistic features of the target translation but also features derived
from the source speech. The intonation patterns of phrases of the input sentence
is first classified and then mapped into intonation patterns of the target language.
These transformations are learned from a bilingual corpus and integrated as an en-
hancement to a phrase-based translation system. They report improvement over
preferences of the synthesized translations in terms of naturalness.

A similar approach is followed in Anumanchipalli et al. (2012) for word-level
emphasis transfer. They explain their motivation with experimentation on a subset
of the bilingual speech corpus they collected. By manual inspection, they see
that there’s a match of 48% of the emphasized words in the parallel languages.
Their cross-lingual intonation transformation methodology is based on learning
the mapping between word-level intonation contour parametrizations between two
languages from a single-speaker bilingual dataset. Since they do not perform the
machine translation itself, they are able to compare intonation contours generated
in a neutral way and with their enhancement. They show that through this process
generated contours get closer to the reference contours in their dataset.

Do et al. approach cross-lingual prosodic transfer from a perspective based on
transferring of word-level emphasis. Their general approach is to label each word
in the source token sequence with a real-numbered emphasis level and then map
it into the words in target sequence using a transformation function. Emphasis
modelling is performed with linear-regression hidden-semi Markov models (LR-
HSMMs) that is trained on FO, duration and energy features (Do et al., 2017b).
Their methodology for mapping input emphasis estimations to target emphasis
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weights show change over various works. In Do et al. (2017b), this is performed
using a model based on conditional random fields (CRFs) (Figure 2.18a). Fol-
lowing, in Do et al. (2016), they utilize a LSTM based model with attention that
exploits the word alignment information of machine translation. They record an
improvement of 1% in terms of emphasis prediction F-measure (Figure 2.18b).
Both of these approaches incorporate prosodic transfer process as an additional
module besides MT and assume perfect translations. This is later addressed in
Do et al. (2017a) and Do et al. (2018) where emphasis and word prediction are
done jointly within a sequence-to-sequence MT system (Figure 2.18c). The lack
of parallel spoken data is covered by a two-stage training procedure. Transla-
tion model is first trained on a large text corpus and then emphasis modelling is
generated from a smaller laboratory generated English-Japanese parallel corpus.
Their results show that text translation does not improve with inclusion of em-
phasis weights. As a simpler system is introduced, gain on computational time
is recorded, however, without an improvement on emphasis prediction compared
to previous works. All in all, they report that their models are speaker depen-
dent and is demonstrated on a highly controlled setting. This can be explained by
the corpus they use at hand which consists of a small set of samples with acted
emphasis.

Pausing in speech is an important prosodic feature that affects both emphasis
perception and phrasing. Transfer of pauses within S2S translation is addressed
in the works: Do et al. (2015) and Agiiero et al. (2008). In the former one, pause
prediction is incorporated into the CRF-based emphasis prediction module and
shows improvement in terms of emphasis perception in the synthesized examples.
The latter work focuses on the transfer of the phrasing and follows a rule-based
approach exploiting alignment information from SMT.

Some work on use of prosody in S2S translation focuses on employing prosodic
features available through acoustic or linguistic analysis to further boost transla-
tion accuracy. These works are mostly inspired from approaches where factored
SMT is enhanced with linguistic features (e.g. POS features) and employ a similar
approach in spoken translation. Guo et al. (2016) is an example where additional
prosodic features based on pronunciation, boundary marks and emphasis is inte-
grated as factors to a factored translation model based system. They record slight
improvement in terms of translation accuracy with inclusion of boundary marks
when translated from Chinese to English. In the opposite direction, they record
improvement with inclusion of all three features. Again in Sridhar et al. (2013),
factored translation models used for phrase-based translation is extended to accept
additional prosodic information on source and target sides. They test inclusion of
dialog information such as question types in source side and pitch accent based
prominence features on the target side. Modest improvements are recorded in
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32



terms of translation accuracy.

Having reviewed the fundamental concepts and state-of-the-art, I will move in
next section on presenting the corpus related work.
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Chapter 3

COMPILING CORPORA FOR
BUILDING DATA-DRIVEN
PROSODIC MODELS

In order to develop data-driven models related to speech prosody, one needs
access to a sufficiently large corpus of speech samples that are annotated with
prosodic features. Spoken samples collected to form a corpus serve for develop-
ing models for machine-learning applications as well as empirical research. A
prosodically annotated spoken corpora usually consists of speech samples, their
transcriptions and certain acoustic and prosodic labels associated with it. There is
a few number of publicly available speech corpora that serve for prosody research
as it is hard to process and annotate (Rosenberg, 2018). One major work that
this dissertation involves is collection of corpora to develop prosodic models on
spoken language applications. This chapter presents: two prosodically annotated
corpora that were used during this work, methodologies followed in compiling
them and also further tools that were used and developed during the process.

There are two different methods for compiling spoken language corpora. First
approach involves recording of designated speakers reading prepared text material
in a controlled environment. Although this approach is the best way to obtain
noiseless data, it is very expensive and hard to re-scale. Moreover, it poses a
further disadvantage if prosody is an important aspect. As speakers are placed
in a controlled environment their speech lacks the prosodic features that would
normally be present in a more natural setting.

Another approach to corpus development lies in exploiting readily available
recorded material. This type of data is often called as found data and it includes
any type of data that is available in public domain like audiobooks, public broad-
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cast, conference talks. Material lying outside of public domain like copyrighted
movies etc. can also be used within fair use principles.

Using found data still implies some labour in development of various auto-
mated and manual processing methodologies to shape it to the need of the ap-
plication need. One major disadvantage is the noise it introduces. On the other
hand, two big advantages that it gives are that (1) the speakers can have more nat-
urally expressive prosody, and (2) relatively low-cost scalability that comes with
development of automated extraction methods.

For the sake of obtaining data to be used in the methodologies presented in this
dissertation, automated approaches that exploit readily recorded material were fol-
lowed (Oktem et al., 2017b, 2018b). Two main sources of spoken data have taken
advantage of: conference talks and subtitled movies and TV shows. The method-
ologies developed to process this material were compiled as open-source software
libraries accessible online' (Sections 3.1 and 3.3). Two corpora were obtained
through the result of these processes: First one is the re-compiled and published
TED talks corpus, which is modified from Farrus et al. (2016) to suit experiments
related to prosodic punctuation recovery task (Section 3.2). Second is the Heroes
corpus, which consists of parallel English and Spanish speech segments gathered
from a TV series to suit prosodic translation task (Section 3.4). Both of these
corpora are made accessible openly through UPF Digital Repository?.

Another task as important as obtaining of prosodically annotated corpora is
analyzing them in terms of various prosodic features. The nature of prosodic data
introduces its challenges and thus necessitates specialized tools to accommodate
its analysis. In this chapter, I will also present Prosograph (Oktem et al., 2017c),
which helps analyze data of this type in a simple and clear way (Section 3.5).

3.1. Toolkit for Prosodically Annotated Speech Data
Creation

In this section, I will introduce some of the principal tools employed which
served an important role in the corpus development processes.

"http://www.github.com/alpoktem
repositori.upf.edu
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Proscript for Prosodic Data Handling

Handling speech data together with prosodic annotations introduces its own
challenges. Prosody can be seen as a phenomena parallel to the words uttered in
speech. There has been considerable work on symbologies to represent prosodic
aspects of speech together with its written form. For example, ToBI convention
introduced in Silverman et al. (1992) represents speech prosody in 4 tiers. These
four tiers are agreed annotation styles for representing intonation, accents and
breaks in correspondence with utterance.

Computational applications that deal with prosody necessitate a standard in
representing the structure of speech with its orthography and prosody together.
One of the most popular of these conventions is the 7extGrid file format, which is
used by Praat (Boersma, 2001). This XML based file format stores any number
of tiers that can be used to label prosodic features. Although very useful for
visualization in Praat, this format is not designed to be functional for viewing and
manipulating for itself. Every tier defines which event occurs at what time on its
own and it is difficult to associate events that occur in parallel in different tiers.
Also, for handling raw acoustic features, Praat uses different file formats. Due to
this design, a complete prosodic-acoustic representation of a short utterance ends
up being represented with a clutter of files. Other tools such as Huang et al. (2006);
Xu (2013) are also based on Praat and are only runnable through its interface.

An optimal and standard data structuring was needed in this study for two
reasons: for accommodating creation and storage of prosodic data and also for
easy processing with machine learning applications. Proscript framework was
created to remedy for this deficit. It is both a data representation format and a
specialized library for creation, manipulation, reading and writing of this sort of
data. The name Proscript is a portmanteau of the words prosody and transcript.
It is seen as an enhanced way of representing a speech transcript. Instead of tiers,
speech is represented with its features that occur in parallel at discrete bounded
intervals. These bounded intervals can be words or a group of words that is called
“segments”. A segment can represent, for example, a prosodic phrase, a sentence
or a group of sentences. Any type of feature can be stored within these boundaries.
Be it acoustic features such as intonation, intensity or morphosyntactic features as
part of speech or speaker tags.

Proscript file format is based on the CSV file format. First line is the names
of features that particular file stores and the following lines are the sequence of
syntactic units together with the features that go parallel with them. See Table
3.1 for an example of parallel features stored in a Proscript file. In this particular
example the linguistic units are defined as words. The set of features is determined
by the application. For example, a configuration to keep only word-alignment

37



Feature Details

word as a token

id unique word id

speaker id unique speaker id

start time start time of the word in an associated audio file
end time end time of the word in an associated audio file
pause coming before and after the word

punctuation coming before and after the word

POS part-of-speech

ToBI ToBI label

mean FO in Hertz and log-scaled (semitones)

mean intensity in decibels and log-scaled

FO contour as a list in Hertz or semitones

intensity contour as a list in Hertz or log-scaled

speech rate in second per syllable

Table 3.1: Word-level information kept in an example Proscript format file.

information would keep words and their starting and ending times.

A Proscript file can represent a short utterance as well as a whole dialog be-
tween two speakers. Dialog turns, for example, can be represented as segments
with the speaker 1d tagged. Use is kept highly customizable through the library.

Proscript Python library was developed in order to make creation, manipu-
lation and annotation of Proscript files as easy as possible. It can be imported from
a Python script to batch process transcripted speech files, annotate them with the
desired features and output as files. Both word alignment and prosodic-acoustic
tagging software (explained in following subsections) is accessible through the
library.

Proscript as python package is accessible online®. Guide and example scripts
are provided in the repository on development. A “Proscripter” script is provided
to obtain Proscript file from a audio file and its transcription.

Proscript file format is used as the accepted format in the other software frame-
works (Prosograph, punkProse, transProse) developed in this dissertation.

3http://github.com/alpoktem/proscript
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Montreal Forced Aligner for Speech-to-text Alignment

Speech-to-text alignment is the process of determining boundary points of
words and phonemes present in speech audio recordings defined by their text tran-
scriptions. It proves to be essential for the work in this dissertation as it helps to
align prosodic features in speech within their morphological boundaries.

For this task, the open-source Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017) is employed. Forced alignment process is built on an automatic
speech recognition system and requires its own acoustic models and a pronun-
ciation dictionary. Although pre-trained models for both English and Spanish is
provided through the website of the tool*, Spanish pronunciation dictionary is not
openly available. For this reason, a Spanish pronunciation dictionary has been cre-
ated that uses the same phoneme set as MFA®. Vocabulary has been gathered from
the open source spell checker tool ISpell°. Phonetic transcriptions of each word in
this dictionary was obtained with TransDic software (Garrido et al., 2018).

ProsodyTagger for Prosodic Feature Annotation

In order to augment speech data with acoustic-prosodic features ProsodyTag-
ger is used. ProsodyTagger (Dominguez et al., 2016) is a part of the Praat on
the Web service’ (Dominguez et al., 2016) and was provided by its main author
Dr. Ménica Dominguez for carrying out prosodic feature annotation task within
the Proscript library. The tool is based on Praat and simplifies the process of
extracting mean FO and intensity features in speech given its word-boundary in-
formation as a TextGrid file. See Figure 3.1 for an illustration of the prosodic
features extracted for a speech utterance using this tool.

3.2. Compiling the TED Talks Corpus

In this section, I will introduce the TED talks corpus that was recompiled and
published to serve for the automatic punctuation restoration work (explained in
Chapter 4). TED (Technology, Entertainment, Design) talks are a set of confer-
ence talks lasting in average 15 minutes each that have been held worldwide in
more than 100 languages. They include a large variety of topics, from technol-
ogy and design to science, culture and academia. The corresponding transcripts,

4montreal—forced—aligner.readthedocs.io/

SResource available in: https://github.com/TalnUPF/phonetic_lexica
Shttps://www.gnu.org/software/ispell/
"kristina.taln.upf.edu/praatupf
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Figure 3.1: Word-level prosodic feature labelling.

as well as audio and video files, are available openly on TED’s website®. For its
public availability, TED talks have been the source of many corpora for linguistic
analysis and machine learning-based applications. Different formats of corpora
based on TED talks cover areas from automatic speech recognition (Hernandez
et al., 2018) to document classification (Hermann and Blunsom, 2014) and ma-
chine translation (Cettolo et al., 2012).

Farrus et al. (2016) studies paragraph-based prosodic cues in TED talks for the
aim of improving naturalness in synthesizing spoken discourse. The dataset used
for this work consists of 1365 talks published before 2014. Using the punctuation
and paragraph annotated transcriptions available on the website, several prosodic
analyses has been performed and stored at various lengths: words, sentences, seg-
ments (from subtitles) and paragraphs. Word and sentence timings were extracted
using forced alignment. Pause durations between words were extracted from the
provided word timings. Acoustic annotations are done at each interval automat-
ically using Praat (Boersma, 2001). Fundamental frequency (FO) and intensity
contours were extracted at 10 ms precision and then converted to semitones rela-
tive to speaker mean value. Thus, speaker mean values were represented by zero
values in both cases.

Although available on demand, this extensive corpus is not published in an
open way. Moreover, it was found out that words, word timings, punctuation
information and acoustic features associated with words were scattered among
many files in the corpus. This made it difficult to process and create training
data for machine learning based experiments. For these reasons, the corpus was
re-processed, taking the information as it is, but making it easily readable.

Due to some talks lacking acoustic annotations, the recompiled corpus consists

$http://www.ted.com
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of a subset of 1038 talks in the original corpus. These talks were given by 877
English speakers, which means that some speakers were present in various talks.
Through counting of sentence-ending punctuation marks, 155174 sentences were
calculated to be present in this version. The dataset is published online as Prosod-
ically annotated TED talks® and is accessible through Attribution 4.0 International
(CC BY 4.0) license'?. Source code used during the recompilation of this corpora
is also provided online'".

3.3. Automatic Extraction of Parallel Speech Cor-
pora from Dubbed Movies

Dubbing is the process of voice acting on top of the dialogues in a movie,
TV series or documentary to make it accessible to viewers of another language.
Popularity of dubbing of media material for a language depends greatly on the lan-
guage culture of the country where the language is mainly spoken. For countries
that prefer watching films in their mother-tongue, most movies and TV series go
through this process before being released. Dubbing is carried out in professional
studios and with professional voice actors.

There are certain characteristics of art of dubbing that makes it an interesting
candidate as a resource for parallel corpora. The process as a whole can be con-
sidered as a translation process. However, it has many more processes involved
than just merely translating the movie script. One requirement it entails is that the
voice-over recordings must match the lip movements of the actors. To ensure this,
translations are made that match the length of actor lines and silenced segments
within. Once a translation that fits a line is found, voice actors record the segment
over the original movie respecting the way of acting of the original actors. It can
be seen as a way of re-enactment of the line but with another language. Even-
tually, the voice-over doesn’t only carry the content to the dubbing language but
also the paralinguistic aspects that go with it. For example, if the original actor
speaks in a particular tone (angry, sad, happy etc.), the dubbing artists also speak
in the same tone. To match lip movements, they pause at the same points. Further
remarks such as emphasis, irony, mockery are also expressed in a similar fashion
within the general context of the scenario.

A methodology has been built around getting advantage of this type of re-
source to obtain parallel speech corpora. In contrast with a methodology based

http://repositori.upf.edu/handle/10230/33981
Ohttps://creativecommons.org/licenses/by/4.0/
https://github.com/alpoktem/ted_preprocess
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Figure 3.2: Overall corpus extraction pipeline. Audio excerpts are first processed
in each language and then aligned to obtain bilingual segments.

on collecting samples in a controlled environment, I propose to exploit dubbed
movies where expressive speech is readily available in multiple languages and
their corresponding aligned scripts are easily accessible through subtitles. The
time information in subtitles makes it easy to align sentences of different lan-
guages since timing is correlated to the audio.

The proposed methodology needs only raw data, does not require any training
(as is the case of previous work (Tsiartas et al., 2011)) and satisfies the follow-
ing requirements: (1) it is easily expandable, (2) it supports language pair where
dubbed material is available, (3) it can handle any domain and speech style, (4)
it delivers a parallel spoken language corpus with annotated expressive speech
which is present in movies, and (5) it doesn’t violate the fair use principles that
go with copyrighted material (see Section 3.3.3). This type of data proves to be
valuable both for cross-lingual prosodic research and spoken machine translation
with prosodic modelling.

3.3.1. Methodology

The methodology for obtaining a parallel corpus from a dubbed media consists
of three stages: (1) a monolingual step, where audio+text pairs are extracted from
the movie in both languages using transcripts and cues in subtitles, (2) paralin-
guistic feature annotation (speaker information and prosody) and (3) alignment
of monolingual material to extract the bilingual segments. See Figure 3.2 for an
overview of the system pipeline. Figure 3.3 further illustrates the whole process
on an example portion of a movie. I will now explain each process in detail.
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Figure 3.3: Processes 1, 2 and 3 of the methodology illustrated on a portion of a
movie.




Audio Segment Mining Using Subtitles

Subtitles are the source for obtaining both (1) audio transcriptions, and (2) tim-
ing information related to utterances in a movie. These information are contained
in a standard srt'? subtitle file, entry by entry like the structure below:

1

00:06:25,675 ——> 00:06:26,903
That’s why I'm going

to Philadelphia...

2

00:06:26,994 —--> 00:06:28,746
to see my father,

figure this whole thing out.
3

00:06:29,474 ——> 00:06:31,590
-Let me come with you.

-No! You’re not a cop.

Each subtitle entry is represented by an index, time cues and the script being
spoken at that time in the movie. The script portion can consist of single, mul-
tiple (#3), or incomplete sentences (#1). They can contain speech from single
(#1,2) or multiple speakers (#3). Thus, using only these time cues does not suffice
for extracting audio segments with complete sentences of a single speaker. To
achieve this, word boundaries extracted with aligner software is combined with
punctuation mark positions to split and merge segments as needed. Two entries
are merged if the first one does not end with a sentence-ending punctuation mark
and the second one starts with a lowercase letter. Multi-speaker segments were
split from the words following speech-dashes [-]. This process is marked with the
label 1" on Figure 3.3.

The resulting segments from the subtitle excerpt from above would be:

1. That’s why I’'m going to Philadelphia to see my father, figure this whole
thing out.

2. Let me come with you.

3. No! You’re not a cop.

2SubRip text file format https://www.matroska.org/technical/specs/
subtitles/srt.html
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Speaker Annotation Through Scripts

Movie scripts, which contain dialogue and scene information, are valuable
pieces of information for determining the segment speaker labels. Scripts follow
approximately the same format: Actor/actress name is followed by the line they
say. In between, there might be non-spoken information in brackets. An example
excerpt from a movie script is given below:

MATT: That’s why I’m going to Philadelphia to see my father,
figure this whole thing out.
(A yellow car passes by)

NATHAN: Let me come with you.

MATT: (Shouting) No! You’re not a cop.

Unlike subtitles, scripts do not have timing information. In order to map sub-
title segments with the speaker information, an automatic procedure is followed.
First, all non-spoken text included in brackets is removed. Then, speaker tags and
corresponding lines are extracted with regular expressions depending on the for-
mat of the script. Next, segments coming from subtitles are mapped one by one to
lines in the script. If 70% of the words in a subtitle segment is included in a script
turn, then the segment is labeled with the speaker of that turn. If it doesn’t, up to
five next script turns are checked as candidates.

It should be noted that scripts are usually only available in the original lan-
guage. However, since segments are aligned on a later step with their dubbed
matches, they can share the speaker labels. In Figure 3.3, speaker labels are ex-
tracted from the English script and matched with the subtitles. Spanish segments
are left with an "UNKNOWN” label until they are aligned with their English
matches.

Word-level Acoustic Feature Annotation

Each word in the extracted segments is automatically annotated with the fol-
lowing acoustic features: mean fundamental frequency (FO), mean intensity, speech
rate and duration of non-voiced intervals (pauses) coming before and after. The
first two features are extracted with ProsodyTagger. Pause information is calcu-
lated from word-boundary information and speech rate is calculated using:

# syllables in word

word speech rate =

3.1
word duration G-

To represent speaker independent, perceptual acoustic variations in the seg-
ments, both FO and intensity values are converted into logarithmic semitone scale
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relative to the speaker norm value. Thus, speaker mean values were represented by
zero values in both cases. Semitone values are calculated with the corresponding

formula:

) (3.2)

semitone(x, norm) = 12 x log(

norm

The prosodic annotations are shown under the extracted segments with Proso-
graph feature visualizations in Figure 3.3.

Cross-lingual Segment Alignment Based on Subtitle Cues

The first three methodologies presented in this section dealt with extraction
of segments in each language. This subsection explains how these segments are
aligned to create the bilingual segment pairs.

As explained earlier, the dialogues in the original and dubbed language corre-
spond to each other time-wise. So, in order to align segments extracted for each
language, timing information of the segments can be exploited. However, as subti-
tles show slight differences, alignment cannot be performed one-to-one. Also, the
number of segments extracted in previous steps can differ for each language. This
means that the segment alignments can be one-to-one, one-to-many, many-to-one
or many-to-many depending on the sentencing structure in the subtitles.

In order to create an alignment algorithm based on time cues, a metric is de-
fined that measures the correlation percentage between two sets of ordered seg-
ments (51, ..., Sk) and (E1, ..., En):

lati
correlation(E,, S,) = max( ,M x 100) (3.3)
span
correlating(E,, S,) = min(Ey, S;) — max(E;, S;) (3.4)
span(E,, S,) = max(Ey, Sy) — min(E;, S;) (3.5)

where £ and E¢ denote the starting and ending time of the x'" English seg-
ment, S; and S; denote the starting and ending time of the y*" Spanish segment.

The alignment procedure is as follows. First, segments in both languages are
checked one by one from beginning if they correlate more than the T, thresh-
old. If they do, they are assigned as a one-to-one matched pair. If not, the possibil-
ities of one-to-many, many-to-one or many-to-many matches are considered. This
is done through computing the correlations between combinations of the current
and two following segments and selecting the most correlating segment set pair.
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While considering combinations of the segments it is made sure that two merged
segments belong to the same speaker and are not more than 10 seconds far from
each other. If the combined segment set pair with highest correlation has a corre-
lation of more than 7'y/erg4eq threshold, then the combinations are merged into one
segment and paired with each other.

Although the T%,,. threshold catches most of the one-to-one mapping seg-
ments, many of them still fall below this threshold even if they map. So, another
decision step is added where if one-to-one mapping correlation scores higher than
merged pairings and it scores above a Tpk threshold, then it is preferred as a
matched pair.

Figure 3.3 illustrates two examples of segment matching. First two Spanish
segments are merged to align with the first English segment. Following segments
are aligned one-to-one as their durations correlate enough.

After the matchings are done, if one of the languages have a speaker id labeled,
it is copied to its matching segment. In Figure 3.3, speaker information is copied
from English segments to the Spanish segments.

3.3.2. Using the Parallel Corpus Extraction Framework

This methodology is developed as a open source framework called movie2parallelDB
and is accessible online'?. The usage instructions are included in the online repos-
itory.

The scripts are run with audio and their corresponding subtitles. Therefore,
audio tracks needs to be extracted from the respective video prior to the process.
Matching subtitles also needs to be acquired.

One challenge that this method poses is that although it is easy to find subtitles
in both original and dubbed languages of a movie, dubbing script might differ
from subtitles. This is due to the difference in process between subtitling and
dubbing. As it is mandatory to obtain exact transcription of the audio segments,
subtitles need to be corrected prior to the process if this is the case.

3.3.3. Fair Use of Copyrighted Material

Generally, material such as movie and TV shows are protected with copyright
laws and limit the amount of its usage. This is governed by the principles of fair
use. It lets the use of copyrighted material for transformative and non-commercial

Bhttp://github.com/alpoktem/movie2parallelDB
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purpose. The boundaries of what counts as transformative is not defined in a rigid
way, but governed with guidelines and court decisions. The term “fair use” is
originally defined by the United States law'* and is influenced in other countries.
United Kingdom, for example, allows non-commercial research on any material
as long as it is within lawful access'”.

The work introduced here assumes the work of collecting small portions of au-
dio which cannot be reconstructed back to its original form for research purposes.
The copyright on the original source of the segments has to be stated in both any
publication explaining the work and during its access.

3.4. Compiling the Heroes Corpus

The methodology presented in the previous section was put into practice by
compiling a corpus from 2000’s popular science fiction TV series Heroes'®. Orig-
inating from United States, Heroes ran in TV channels worldwide between the
years 2006 and 2010. The whole series consists of 4 seasons and 77 episodes
and is dubbed into many languages including Spanish, Portuguese, French and
Catalan. Each episode runs for a length of 42 minutes in average.

Raw Data Acquisition

The DVD’s of the series were obtained from the Pompeu Fabra University
Library. Episodes were extracted using the Handbrake software and were saved
as Matroska format (mkv) files. Mkv files can hold multiple channels of audios
and subtitles embedded in it like DVDs. In order to run movie2parallelDB scripts,
audio and subtitle pairs for both languages needed to be extracted. Audio was ex-
tracted using the mkvextract command line tool'’. As subtitles were embedded as
bitmap images in the DVD, an optical character recognition (OCR) software'® was
used to convert them to sr¢ format subtitles. As OCR is an error-prone process,
the resulting srt files needed to be spell checked.

In total, 21 episodes were processed to obtain 25 hours English and Spanish
audio with their corresponding subtitles. The episode scripts were obtained from

Yhttps://www.copyright .gov/fair-use/more-info.html

Bhttps://www.gov.uk/guidance/exceptions—-to-copyright

16Produced by Tailwind Productions, NBC Universal Television Studio (2006-2007) and Uni-
versal Media Studios (2007-2010)

"https://mkvtoolnix.download/

8 Through a functionality provided by Subler: https://subler.org/
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a fan web page'”.

Manual Subtitle Correction Work

The Spanish subtitles needed slight correction in order to match the Spanish
audio. It was observed that the Spanish subtitle transcripts were matching the
Spanish audio in approximately 80% of the cases. As exact correspondence be-
tween audio and transcription was aimed, a correction process was carried out.
Both subtitle transcripts and time-stamps had to be corrected to match exactly
what is being spoken on the dubbing audio and when. This process was done
using a subtitle editing program Aegisub®°.

An advantage the manual correction process gives is the opportunity to filter
out unwanted audio portions that would otherwise end up in the corpus. This pro-
cess is necessary especially in the case the source material is noisy. During the
correction process, subtitle segments that contained noise and music, overlapping
or unintelligible speech and speech in other languages (e.g. Japanese) were re-
moved. The spell checking and timestamps and script correction of 21 episodes
was done by two annotators and took 60 hours in total.

For each episode to be processed, the annotators were provided with the episode
video, English and Spanish subtitles extracted with the OCR software. The cor-
rection procedures for each episode were as follows:

1. Automated correction of OCR errors in English subtitles.
2. Manual correction of English subtitles with a spell checker.
3. Automated correction of OCR errors in Spanish subtitles.
4. Manual correction of Spanish subtitles with a spell checker.

5. Proofing and correction of the Spanish subtitles.

The automated correction process involved a basic substitution procedure for
the character errors that the OCR software did consistently. For example the letter
‘i’ would be mistaken almost always as ‘fi” or ‘I’s would be mistaken as lower-
case ‘L’s. For further non-standard errors, the spell checker provided in Aegisub
software was employed. Each spelling mistake in the subtitles were replaced with
its corrected version.

¥https://heroes-transcripts.blogspot.com/
Mnttp://www.aegisub.org/
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Subtitle Entry Audio Transcript

-Te presento a tu compafiero. -Te presento a tu companero.

-¢{Me vas a cambiar? -{Me cambiaras?

Me han tenido dos afios, pensardn que | Me han tenido encerrado dos afios,
los abandoné. pensaran que los abandoné.
Discutimos,... Empezamos a discutir...

-Nunca quise... -Yo nunca quise...

-Cierra la boca! Escucha. -Cierra la boca! Escucha.

Hablaremos cuando vuelva, ;vale? Hablaremos mas cuando vuelva, ;vale?

Table 3.2: A selection of non-matching subtitle entries and dubbing scripts in
Heroes series episodes.

Last step involves checking of the transcripts and timings of each entry in
the Spanish subtitles. Entries that do not correspond to the speech in the dubbed
audio were corrected. Also, start and end time of the subtitle entries were adjusted
so that it fits perfectly to the spoken segment. See Table 3.2 for a selection of
entries that showed difference in transcript between subtitle entries and dubbing
transcript. Depending on the episode, about 10% to 20% of the subtitle transcript
needed to be corrected for minor differences.

Heroes Corpus in Numbers

Statistics of the first preparation sprint of The Heroes Corpus are presented in
this section. 21 episodes from season 2 and season 3 were processed. Total audio
durations of 7000 parallel segments is about 9.5 hours (see Table 3.3). Counts
of several linguistic units (words,tokens, sentences) in the final parallel corpus
are presented in Table 3.4. Tokens represent words plus punctuation marks. A
summary of how much of the content in one episode ended up in the dataset in
average is presented in Table 3.5.

English  Spanish

Total duration 4:45:36  4:43:20
Avg. duration/segment 00:02.44  00:02.42

Table 3.3: Heroes corpus duration information.
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Counts English Spanish

# words 56320 48593
# tokens 72565 63014
# sentences 9892 9397
Avg. # words/sentence 5.69 5.17
Avg. # words/segment 8.04 6.94
Avg. # sentences/segment 1.41 1.34

Table 3.4: Word, token, sentence counts and average word count for parallel En-
glish and Spanish segments.

Counts English Spanish
Avg. # sentences (subtitles) 647 554
Avg. # sentences (extracted) 628 513
Avg. # segments 226 459
Avg. # parallel segments 334

Table 3.5: Averages numbers for each episode.

Discussion

The first version of the Heroes corpus shows that the proposed methodology
for bilingual corpus building is successful in terms of the quality of the segments
extracted. Correct alignment of segments and audio-transcription match was eval-
uated manually on selected samples. Although no thorough analysis has been
followed, it shows that in general the parallel segments were well detected.

The Spanish subtitle correction task was the only time-consuming part of the
whole process. However, the task showed its usefulness for obtaining clean paral-
lel segments. Subtitle segments that were removed during the correction process
ensured the elimination of unwanted audio portions.

Table 3.5 shows the amount of information loss at various stages. The first
one being the segment mining process where in average 5% of the sentences are
lost due to the word segmentation skipping noisy speech. The difference in num-
ber of segments and sentences is that segments can consist of merged sentences.
The biggest loss happens at the stage of cross-lingual segment alignment where
in average 30% of the segments in each language are left unmatched. This per-
centage is directly affected by the alignment parameters explained in Section 3.3.
For example, selecting a lower T, leads to detection of more aligned segments
but also to more mismatches. A similar logic applies to Tpx. Choosing a lower
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T'rergea leads to a better coverage of the sentences but segments end up being
longer and fewer this way. After experimenting with a handful of parameter com-
binations, this parameter combination proved to be the most optimal for this task:
TSure = 70%, T]V[erged = 80% and TOK = 30%.

3.5. Prosograph for Aiding Study of Large Speech
Corpora

Prosody conveys several communication elements such as meaning, intention,
and emotions, among others. Being able to clearly visualize the different elements
involved in prosody —intonation, rhythm, and stress— may be helpful for compu-
tational prosody research. Several speech analysis tools (e.g. Praat), together
with derived scripts and tools (Xu, 2013; Mertens, 2004; Dominguez et al., 2016)
partially cover these needs by helping to visualize quantifiable speech features
like fundamental frequency (£'0) and intensity contours, word stress marking, or
prosodic labeling. These tools work well when showing detailed analyses on data
and visualizing one single utterance at a time, but fail in visualizing generalized
word-averaged speech features of many utterances, e.g., a discourse or a collection
of speech samples, at once.

Prosograph was born from the need to study prosody of long segments of
speech to see the relation of prosodic features with punctuation in text. Inspiration
was taken from music scores and piano rolls that help reading and visualizing
music. Similar to a musical analysis tool, Prosograph helps visualize acoustic
and prosodic structure in speech together with its transcript. Also, through an
interactive interface it makes it easy to listen to any portion of the displayed speech
to accommodate auditory analysis (Oktem et al., 2017c).

3.5.1. Implementation

Prosograph is written in Python mode of Processing?! because of its simplified
programming of graphical and interactive features. In order to simulate music
scores, the speech prosodic features are plotted in the vertical axis over a temporal
horizontal axis. Words are put in order together with pauses and punctuation, and
the prosodic features are drawn under each corresponding word. An overview of
the tool can be seen in Figure 3.4.

2lhy . processing.org/
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Figure 3.4: An example of a visualization frame of segments from a conference
talk with Prosograph.

Two modes of Prosograph have been implemented: monolingual (standard)
mode and bilingual mode. Bilingual mode makes it possible to view aligned par-
allel corpora. Aligned samples are displayed side by side to accommodate e.g.
prosodic comparison. Figure 3.5 illustrates an overview of Prosograph in bilin-
gual mode.

Prosograph reads prosodically annotated speech data from Proscript format
files (see Section 3.1). Data path, and names and types of features in the files to
be visualized is set in a configuration file before running the software.

3.5.2. Predetermined Feature Types

Prosodic features differ in the way they encode words or sentences. For in-
stance, word stress is a feature that represents salience among a group of words,
intonation and intensity are continuous encodings throughout successive voiced
phones, accent is a peak that occurs at a certain syllable in a word, etc. Because of
these variations, each prosodic feature demands a special way for its storage and
visualization. Prosograph allows the visualization of different kinds of prosodic
features through the selection of its feature type in initialization. Predetermined
feature types in Prosograph are listed below with some examples of prosodic fea-
tures that they could be used for. Note that features are aligned to the words as
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Figure 3.5: Visualizing parallel samples from an episode of Heroes Corpus with

bilingual mode of Prosograph.

they are in the Proscript format.

pause-duration holds the silence duration coming after the corresponding
word. Paused intervals are visualized as an empty yellow box between
words with a width proportional to the length of the pause (see Figure 3.6a).

punctuation holds the punctuation mark coming before or after the corre-
sponding word. Punctuation marks are placed in the same axis with words.
If a punctuation mark coincides with a pause, then it is placed inside the
pause interval (see Figure 3.6b).

binary-feature holds a binary value determining if the corresponding word
carries a certain feature (1) or not (0). This feature type can be used e.g. for
word-stress. Bounding boxes of these words are drawn with a salient color
(see Figure 3.6¢).

point-feature holds a real numbered value that belongs to the correspond-
ing word (e.g. standard FO deviation, mean FO, median FO, etc.). Itis placed
at its value below the middle of the word’s bounding box (see Figure 3.6d).

line-feature holds a real numbered value as point-features. They are visu-
alized as a line below and parallel to the word. This feature type could be
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Figure 3.6: Word-aligned feature data types in Prosograph.

useful e.g. for visualizing better the mean FO movement across the utterance
(see Figure 3.6e).

contour-feature holds a sequence of value corresponding to a word. Each
value is treated as curve bins and drawn as a line below the word in same
length intervals. It is to be used e.g. for visualizing FO curves or intensity
curves or quantiles (see Figure 3.6f).

percentage-feature holds sequences of varying lengths where each value
in the sequence corresponds to a percentage of time with respect to the
duration of the word. A mark is placed at the corresponding time position
below the word’s bounding box. This feature type can be used e.g. to mark
the point where the accent occurs in a word, FO or intensity peaks (see
Figure 3.6g).

label-feature holds a string label for their respective words. The label is
written just below the respective word’s bounding box. This feature type
can be used to visualize prosodic labels such as ToBI or part of speech (see
Figure 3.6h).
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3.5.3. Access and Usage

Prosograph is made publicly available as an open-source software®*> under the
GNU General Public License?.

Once it is installed and the configurations are set, utterances in the dataset are
shown in batches and user can navigate over the batches using keyboard shortcuts
N(next) and B(previous). The current batch frame can be saved as an image by
pressing S.

By default, colors of different prosodic features are set randomly at run-time.
A legend showing which color belongs to which feature is shown at the bottom
of the screen. If not easily distinguishable, the colors can be changed (again ran-
domly) by pressing C on keyboard.

To listen to a particular sample, beginning and end word of the utterance need
to be selected. When P key is pressed, the utterance is played between the selected
word interval. This is made possible if an audio file accompanies the Proscript file
in the same directory with the same name.

3.5.4. Discussion

Prosograph can be used for the analysis of prosodic features and patterns in a
speech corpus. It has been designed to be robust for handling different types of
prosodic data annotated on word level. By simplifying the process of observation
and comparison of prosody, this application can be used in many areas of research
such as language learning and acquisition, comparative studies in different lan-
guages, tone languages, audiovisual prosody, etc.

Prosograph was first implemented to aid feature selection process in the punc-
tuation restoration methodology that this dissertation presents in Chapter 4. After
its development, it was used to demonstrate the results of this system and to rea-
son how a neural punctuation restoration system behaves with respect to various
prosodic features. Through the development of the bilingual mode, it proved its
use in studying prosodic transformations in the dubbed translations in the Heroes
corpus and helped inspire the prosodically enhanced translation system that is to
be presented in Chapter 5. Also, with its easy integration with Proscript library, it
simplifies creation of visualizations of speech samples for linguistic study. Visu-
alizations of speech samples in this dissertation are also made with Prosograph.

It should be noted that Prosograph is not a program that obligates its usage

Pnttp://github.com/alpoktem/Prosograph
Bhnttp://www.gnu.org/licenses/gpl.html
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“as-it-1s”. It is a framework, written in a highly visual and simple programming
language to be customized to the needs of its user. For instance, a linguist wanting
to observe certain characteristics in a recorded corpus can set it up to display
segments together with speaker information. The bilingual mode can be further
extended to display utterances of two speakers together with a reference utterance
and facilitate comparison. Another use-case could be real-time prosodic display
and assessment for accent and intonation training. I hope the framework inspires
researchers from different fields to study prosody and speech corpora in a visual
and customizable way.

3.6. Conclusion

In this chapter, I have introduced the data related work carried out to aid the
machine learning-based methodologies that will be explained in the following
chapters. The toolkits introduced include a library for the prosodic annotation
and handling of segmented speech data, Proscript, a parallel corpus extraction
framework, movie2parallelDB and a tool for the visualization of speech corpora,
Prosograph.

Two corpora that were prepared and packaged using these toolkits were also
presented. These are: (1) TED talks corpus, which consists of prosodic annota-
tions of TED conference talks and (2) Heroes corpus, which consists of prosod-
ically annotated parallel speech segments from TV-movie domain. All of the re-
sources developed are published openly for research purposes.

In the next chapter, I will start with explaining the work carried out within the
area of automatic transcription dealing with punctuation restoration.
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Chapter 4

PUNCTUATION RESTORATION
USING PROSODIC CUES

This chapter deals with the theme of punctuation restoration in speech tran-
scripts focusing on its relation with prosody. My first aim is to convince the reader
of the crucial role of prosody when determining placement of punctuation marks
in raw speech transcripts (Section 4.1). Next, the claims are further elaborated
with some quantitative analyses on punctuation usage and prosody-punctuation
relation in a corpus of conference talks (Section 4.2). Then, I will present a deep
learning based framework (Oktem et al., 2017a) for carrying out experiments on
testing effects of various morphosyntactic and prosodic features on the task of
punctuation restoration (Section 4.3). Experiments explained in Section 4.4 focus
on testing which feature set works best for the problem (4.4.3), quantifying the
influence of prosodic feature usage into dependency parsing quality (4.4.4) and fi-
nally evaluating the system incorporated on a real speech recognition application
(4.4.5). Final remarks and conclusions are given in Section 4.5.

4.1. Motivation and Background

The introduction of punctuation marks into the output of automatic speech
recognition (ASR) is an important issue in applications such as automatic tran-
scription/subtitling, speech-to-speech translation, language analysis, etc. Punc-
tuation is essential for grammaticality, understandability, and —in the case of a
number of different tasks—, subsequent processing. Thus, correct sentence seg-
mentation and punctuation of recognized speech improves the quality of machine
translation (Matusov et al., 2006; Peitz et al., 2011; Cho et al., 2017; Lu and
Ng, 2010), and missing periods and commas in machine generated text results in
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sub-optimal information extraction from speech (Favre et al., 2008; Hillard et al.,
2006). On a more end-user perspective, Tiindik et al. (2018) show that punctuated
captions are preferred by viewers of television shows in both manually and auto-
matically generated transcriptions. Also, most of the data-driven parsing models
require segmentation of recognized text into sentence like units and use punctua-
tion as features (Jones, 1994; Spitkovsky et al., 2011; Ma et al., 2014).

Punctuation marks support understandability and readability in written lan-
guage. Sentences generally form an enclosed unit with subject, object and verb
and are marked by sentence-ending punctuation marks such as period, question
mark and exclamation mark according to their modality (statement, interroga-
tive etc.) Intra-sentence punctuation marks such as comma are required by certain
syntactic phenomena like enumeration, clause separation, dislocation etc. In some
languages (such as, e.g. English), punctuation is also essential for the realization
of the information structure (Moore, 2016).

In spoken language, punctuation of the transcribed speech is influenced by two
intertwined phenomena: (1) syntax and (2) prosody. Syntax determines the dis-
tribution of punctuation marks in accordance with the orthography of a language.
Prosody realization in speech (such as, e.g., word grouping, pausing, emphasis,
rising-falling intonation, etc.) tends also to signal the position and type of the
punctuation marks. As a matter of fact, it has been debated in history whether
prosody is influenced by punctuation or vice versa (Chafe, 1988). Early works
on English grammar regard the use of punctuation as a mere symbology of how
the language sounds. According to Lowth (1762) point marks (period, colon,
semicolon and comma) indicate breaks with different lengths, question mark and
exclamation marks indicate “an elevation of the voice” and parentheses indicating
a “moderate depression of the voice”. Modern linguistic definitions, on the other
hand, state that punctuation is directly dictated by grammatical rules with prosody
influencing it from time to time (Quirk et al., 1985). Regardless of a formal stand-
point, it can be seen that prosody is related many times with punctuation. For
instance, a pause after consecutive words might signal an enumeration, which re-
quires comma, and rising intonation at the end of a sentence is a likely indicator
of a question. Sentence and discourse boundaries are often marked with pauses
and a reset in pitch.

During the manual transcription of an audio recording, both modalities, syn-
tax and prosody, are used in determining the phrasing structure and punctuation.
Example below illustrates the effect of prosody on punctuation, where the raw
text could be punctuated in two different ways, eventually leading to two different
meanings and syntactic structures.
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Raw and with all sincerity I can say I am glad I lived those two years of my life
that way

(1a) And with all sincerity, I can say, I am glad I lived those two years of my life
that way.

(1b) And with all sincerity, I can say I am glad, I lived those two years of my life
that way.

Although it is ambiguous where to place the commas in this example just by
looking at the transcription, by listening to the voice sample!, there is only one
possible punctuation: (la), where I lived those two years of my life that way is a
subordinated clause of I am glad.

Many state-of-the-art approaches to automatic punctuation restoration are driven

by textual criteria only (Cho et al., 2017; Lu and Ng, 2010; Ueffing et al., 2013;
Gravano et al., 2009; Jakubicek and Horak, 2010; Che et al., 2016). However, it
is proved that combination of prosodic and acoustic features with a textual model
improves accuracy in ASR output (Baron et al., 2002; Khomitsevich et al., 2015;
Tilk and Alumie, 2015, 2016). Some approaches that use textual and prosodic
models (or a combination of them) consider punctuation placement with narrow-
range features such as n-grams (Liu et al., 2006; Khomitsevich et al., 2015; Kolar
et al., 2004). Recent data-driven approaches that use recurrent neural networks
(RNN) proved to be competitive for the task due to RNN’s ability to capture long
and short term syntactic dependencies. These models, moreover, get use of word
vectors which proves to capture well both syntactic and semantic structure of the
language (Treviso et al., 2017; Che et al., 2016). However, such neural models that
account for prosodic features (e.g. Tilk and Alumée (2015, 2016)) rely merely on
pause duration between words, while other prosodic features such as pitch and in-
tensity information are ignored. Another shortcoming of these approaches is that
the models are trained either only on written data (Ballesteros and Wanner, 2016;
Che et al., 2016) or on a combination of written and spoken data (with, again, a
dominance of written material) (Tilk and Alumée, 2016). This makes the trained
models biased towards written data.

My motivation extends from the necessity seen in inclusion of prosody in a
more complete way into the problem of punctuation restoration on raw speech
transcripts. In applications where automatic speech recognition is employed, it is
possible to integrate a prosodic feature extraction framework which would con-
tribute to the accuracy of the punctuation placement. Also, there is no earlier

' Accessible from github.com/alpoktem/punkProse/tree/master/
audio-samples

61


github.com/alpoktem/ punkProse/tree/master/audio-samples
github.com/alpoktem/ punkProse/tree/master/audio-samples

study mentioning the individual and combined effect of various prosodic features
(e.g. intonation, intensity, speech rate) to the generation of various punctuation
marks in a neural-network based setting. For these reasons, this chapter gives fo-
cus to the development of a framework that enables testing of various prosodic
features in the problem of punctuation restoration. Furthermore, the applicability
of the introduced model is put into test on two distinct settings. Firstly, the effect
of prosodic punctuation restoration is studied on quality of dependency parsing
which is a method often used in natural language processing (NLP) applications.
Secondly, the methodology is put into test with a real ASR system.

4.2. Analyzing Punctuation in Conference Talk Tran-
scripts

In this section, I will study the TED Talks Corpus presented in Section 3.2 in
terms of punctuation usage and correlation of punctuation marks with pausing in
speech. This kind of a quantitative analysis is performed both for helping design
an automated methodology to solve the problem of punctuation restoration and
also to help interpret its results.

The speech style involved in conferences is usually defined as semi-spontaneous.
This is for the fact that it is delivered without being read from a source text, how-
ever, with prior rehearsal possibly utilizing a written form of the talk. Although it
restricts to a certain spoken language stype, it still gives a good estimation for ex-
tracting knowledge on punctuation placement for spoken language transcription.

Both punctuation and the transcriptions analyzed are manually annotated by
volunteers who watch and transcribe the talks. Punctuation marks and paragraph
breaks are placed while listening to the talks at the same time of transcribing them
meaning that they are related with the prosodic structure of the talk. See Figure
4.1 for an example of the transcription structure available for the talks on TED’s
website.

The first analysis that I perform involves examination of the frequency of each
punctuation mark in the dataset. As demonstrated in Figure 4.2, it is observed that
the majority of the punctuation marks in the dataset consists of a comma and a
period, corresponding to 94% of all punctuation marks. As most of the talks go in
the style of a monologue, questions are seldom made explaining the 3.7% share
of question marks.

Inter-word pauses in speech are known to be a pertinent prosodic feature in
determining sentence and phrase boundaries, and punctuation marks (Koléf et al.,
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English v

00:01 Hello. I'd like to introduce you to a word you may never have heard before, but you ought to know: drawdown. Drawdown is a new
way of thinking about and acting on global warming. It's a goal for a future that we want, a future where reversing global warming is
possible. Drawdown is that point in time when atmospheric concentrations of greenhouse gases begin to decline on a year-to-year
basis. More simply, it's that point when we take out more greenhouse gases than we put into Earth's atmaosphere.

00:42 Now, | know we're all concerned about climate change, but climate change is not the problem. Climate change is the expression of
the problem. It's the feedback of the system of the planet telling us what's going on. The problem is global warming, provoked by the
increasing concentrations of greenhouse gases caused by human activity.

01:08 So how do we salve the problem? How do we begin the process of reversing global warming? The only way we know how is to draw
down, to avoid putting greenhouse gases up and to pull down what's already there. | know. Given the current situation, it sounds
impossible, but humanity already knows what to do. We have real, workable technologies and practices that can achieve drawdown.
And it's already happening. What we need is to accelerate implementation and to change the discourse from one of fear and
confusion, which only leads to apathy, to one of understanding and possibility, and, therefore, oppaortunity.

Figure 4.1: Transcription available in TED web page for the talk 7100 Solutions
to Climate Change” by Chad Frischmann.

2004; Christensen et al., 2001). The relation between inter-word pauses and punc-
tuation is analyzed in two ways: First checked is the presence of a pause given
that there is a particular punctuation mark, and second checked is the type of the
punctuation mark given that there is a pause. Note that the pauses are defined
as intervals in speech where no speech signal is detected. This information is
obtained from the word alignments available in the corpus.

Figure 4.3 shows results of the first analysis. It is seen that sentence-ending
punctuation marks are more likely to be accompanied by a pause. Most paused
interval is where periods occur (51.6%). This means that at most half of the sen-
tence boundaries are actually marked by pause. Commas seem to be marked with
a pause in only 27.5% of the cases.

Second analysis illustrated in Figure 4.4 shows the pause-punctuation causal-
ity in the opposite direction. Paused intervals are analyzed in terms of the type of
punctuation event occurring at that interval. Performing a binary analysis, it shows
that more paused intervals (52.6%) are punctuated than unpunctuated (47.4%).
However, the small difference indicates that it is only slightly more probable that
a paused interval infers a punctuation than no punctuation. Moreover, it is seen
that the distribution of the punctuation marks is reflected in the order of the fre-
quency of the events. However, although there are more commas in the corpus
than periods, the latter type shows to be much more likely to occur in a paused
interval.

With respect to durations of the pauses, right side of Figure 4.4 shows the
average of non-zero pause lengths that correspond to each punctuation event.
Sentence-ending punctuation marks tend to correspond to longer breaks than com-
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Figure 4.2: Punctuation distribution in the transcripts of the TED Talks Corpus.

mas. Excluding very rarely occurring punctuation marks (colon, semi-colon and
exclamation mark), sentence boundary pauses are almost half a second in aver-
age. Itis also seen that the 47.4% of the pauses, the ones without any punctuation
mark, are actually of very short duration in average (40 ms).

The quantitative analyses show that presence of pauses is not a discriminat-
ing feature by itself in determining the presence of a punctuation mark. How-
ever, length of the pause can be a good feature for both determining presence of
a punctuation and also the type of the punctuation. Sentence-endings are more
likely to be related with a break and if so, it indicates a longer break compared
to commas. However, this distinction fails to show itself between different types
of sentence-ending marks, period and question mark. This signals the necessity
of other discriminative features, be it syntactic or prosodic, for the differentiation
between them.

Another finding is that a data-driven model based on this dataset would be use-
ful in classifying only a group of punctuation marks consisting of period, comma
and question mark as the rest is not represented enough in this particular dataset.
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Figure 4.3: Pausing percentage of each punctuation mark in TED Talks Corpus.
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Figure 4.4: Distribution of punctuation presence in paused intervals (left) and
corresponding average non-zero pause lengths of each punctuation mark (right).

4.3. Methodology

As explained earlier in Sections 2.1.3 and 2.3.1, state-of-the-art on punctu-
ation restoration shows advance with two main approaches (1) combination of
prosodic and lexical features, and (2) employment of RNN-based architectures. A
RNN-based architecture defines the problem as prediction of a punctuation class
(including “no punctuation’) at each position coming before or after a word in-
put at each step, as in Figure 4.5). The words are input to the network as vectors
(using word embeddings) and are accompanied with prosodic features if there is
a prosodic modelling involved.

RNN-based work that combines lexical and prosodic features (Tilk and Alumie,
2015, 2016) show incorporation of prosodic features into the punctuation mod-
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Word sequence | he | who | knows | does | not | speak | he | who | speaks | does | not | know

Punctuation after | @ (%] s [%] Q . (%] [} , (%] [%]

Figure 4.5: Modelling punctuation as a classification problem at each word inter-
val. (Quote by Lao Tze)

elling only through a limited dimension. Firstly, prosodic modelling is only lim-
ited within pauses used as sole prosodic feature. Secondly, prosodic modelling is
done in a secondary training step which is the only step that involves introduc-
tion of spoken language. Model is biased on huge amounts of written data which
shows differences in terms of both language and punctuation usage compared to
spoken language.

In this section I will address my motivation that prosody should be considered
in a more complete way for the task of punctuation restoration. I will first define
a set of features that could be used for modelling punctuation in spoken language
within a neural network based setting. Secondly, I will explain a RNN-based ar-
chitecture that is able to process this information and also allows testing of which
prosodic features influence punctuation placement to what extent.

4.3.1. Features for Punctuation Modelling

Syntactic information proves to be one of the main features in modelling punc-
tuation as in the works Che et al. (2016); Batista et al. (2012); Ballesteros and
Wanner (2016). Syntactic influence to punctuation is defined by the grammati-
cal rules of a language as well as sentence structure. Sentence boundary marking
is the most common use of a punctuation mark. The type of the punctuation
terminating a sentence is influenced by the modality of the sentence (statement,
question, command etc.) Each of these modalities often influence which type of
words are used in which order in the sentence. For example in English, a WH-
question would include one of the WH-words (what, which, how etc.). Whereas a
yes/no question can be discriminated by the order of the verb and subject (It is...
vs. Is it...). Usage of comma, which is a non-sentence-ending punctuation mark,
is many times required by certain syntactic structures in a language again sig-
naled by the lexical content. These include relative clauses or presence of initial
temporal information as in examples below:

1. Today, I will start jogging.

2. It is, however, extremely difficult to identify all the relevant variables.
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3. Adam’s new van, which is less than a month old, makes a lot of noise.

A RNN-based network is able to model the language by processing sequences
of words being represented as vectors. These vectors, which are also called word
embeddings, are able to represent words in their morphological forms capturing
their semantics, syntactic behaviour and morphological structures (Ballesteros and
Wanner, 2016).

In the proposed methodology, as morphosyntactic features, word embeddings
and part-of-speech (POS) tags are used. POS tagging of the words were available
as a supporting syntactic feature for English language through the NLTK toolkit
(Bird et al., 2009).

For modelling prosodic influence on punctuation generation, four main acoustic-
prosodic features are employed: pauses, pitch, intensity and speech rate. Pause
features indicates the duration of silence between previous word and the current
word. As pitch and intensity features vary between speaker to speaker, a scaling
method is used for these features to convert the measured values to relative scales.
Fundamental frequency (FO) in Hertz and intensity in decibels are converted to
scales relative to the speaker’s norm using the expression:

) 4.1

semitone(z, norm) = 12 x log(
norm

This is done to ensure the prosodic features represent the variations with respect
to the mean rather than absolute values that may differ across speakers.

To align pitch and intensity features to the utterance, mean and range values
are calculated at word level so that each word can be associated with the pitch and
intensity level corresponding to it. Range values are calculated by subtracting the
minimum pitch and intensity values respectively from the maximum pitch/inten-
sity value in the contour corresponding to the word. If a word is unvoiced or a
measurement fails, its mean and range values are set to 0 which corresponds to
the speaker mean value in the normalized scale.

Farrts et al. (2016) states speech rate as a discriminating feature in determin-
ing paragraph boundaries. To test its effect on sentence boundaries, it is included
as a feature as well. Speech rate is calculated at each word by dividing the number
of syllables in that word with the word’s duration. It is then normalized according
to the speaker’s mean value. A complete list of the features with their abbrevia-
tions is given in Table 4.1.
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Feature ID

Word vector word
Part-of-speech tag pos

Pause before pause
Mean pitch mean.f0
Pitch range range.f0
Mean intensity mean.i0
Intensity range range.i0
Speech rate speech.rate

Table 4.1: Morphosyntactic and prosodic features used in the punctuation restora-
tion framework.

4.3.2. Model Architecture

The architecture of the model is inspired by the methodology presented in
Tilk and Alumie (2015) and Tilk and Alumée (2016). These works employ a 2-
stage training approach, as depicted in Figure 4.6. Two recurrent neural networks
(RNN) are chained where the first one processes the words and the second one
adds pause duration between two consecutive words as an additional feature to the
output of the first network. The two stage architecture is employed for the lack
of audio data compared to text data. In Tilk and Alumée (2016), the network is
further enhanced to process words in two directions using a bidirectional recurrent
network (Schuster et al., 1997) with attention. As RNN layers, gated recurrent
units (GRU) are used (Cho et al., 2014) which were explained earlier in Section
2.1.1.

The modifications to Tilk and Alumie’s architecture are that (1) instead of
passing prosodic feature values in a second stage, they are introduced to the model
through separate parallel GRU layers that are tuned in one single stage, and (2)
the proposed network is easily scalable so that it facilitates experimentation with
different sets of features and configurations. The system can be configured to
take any discrete features (e.g. word, part-of-speech (POS)) and prosodic features
(e.g. FO and intensity) to build a parallel layered network. Suprasegmental acous-
tic/prosodic features such as fundamental frequency, intensity and speech rate are
aligned with words by taking the mean value corresponding to each word.

I will now explain a possible model that could be generated by the proposed
framework. For the sake of simplicity, the model will use as input: words (w) as
the sole lexical feature and inter-word pause durations (p) and word-level pitch
(m) as prosodic features. As for output, a punctuation class (period, question
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Figure 4.6: Two stage architecture of Tilk and Alumie (2015) (source of the dia-
gram) which is later extended with bidirectional RNN layers in Tilk and Aluméie
(2016).

mark, comma or no punctuation) is given at training and predicted at inference.
This architecture is illustrated in Figure 4.7. It can be seen that, the model has
5 input GRU units: bidirectional layers for words, bidirectional layers for pitch
values corresponding to words (denoted as mean.f0), and a unidirectional layer for
pauses coming before the words. Word GRU layers are preceded by an embedding
layer (W,). Inputs to the embedding layers are one-hot encoded vectors of sizes
respective to the word vocabulary size. The hidden states of the GRU layers at
time step ¢ are:

ha(t) = GRU(x(t)W., hu(t — 1)) 4.2)
h(t) = GRU(z()W., ha(t + 1)) 4.3)
ho(t) = GRU(p(t)Wy, hy(t — 1)) (4.4)
hon(t) = GRU(m(t) Wy, h(t — 1) 4.5)
hon(t) = GRU(m(t)Win, hin(t — 1)) (4.6)

where x(t), p(t) and m(t) are the word index, pause duration and mean FO value

respectively at time step ¢. The parallel GRU states are concatenated to form the

context vector h(t) before being passed over as input to another unidirectional
GRU layer:

_)
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Figure 4.7: Our neural network architecture depicting processing of a speech data
sample with pause and mean FO features aligned at the word level.

s(t) = GRU(h(t), s(t —1)) (4.8)

The attention mechanism combines all input states into a weighted context
vector a(t), which is then late-fused with the state s(t) of the output GRU layer:

N

a(t) = > h(t)ou, (4.9)

Ft) = aOWra (D) ola®WiWyp + s()Wye + by) + s(t)  (4.10)

where oy ; is the weight that determines the amount of influence of each input
state to the current output and N is sequence size. The late-fusion approach lets
the context gradient carry on easily by preventing it to pass through many acti-
vation functions (Wang and Cho, 2015). Finally, the late-fused context f(¢) is
passed through a Softmax layer, which outputs a vector containing probabilities
of the punctuation classes to be placed between the current and the previous word
(starting from the second word in sequence):
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y(t) = Softmax(f(t)W, + by) (4.11)

Two key concepts introduced in Tilk and Alumée (2016) are: (a) bidirection-
ality and (b) attention mechanism. Bidirectional layers help to carry information
from both past and future context with respect to the currently processed word. In
the presented architecture, words as well as some prosodic features are processed
bidirectionally. The attention mechanism is useful for the neural network to iden-
tify positions in a sequence where important information is concentrated (Bah-
danau et al., 2014). For words, it helps to focus on positions of words and word
combinations that signal the introduction of a punctuation mark. For prosodic
features, it either remembers a salient point in the sequence or detects a certain
movement that could help determining a punctuation mark at a certain position.

4.4. Experiments

In this section, I will explain the implementation process of the proposed
methodology regarding data preprocessing and selection of hyperparameters. Later,
using the models obtained from various setups, I will explore the following ques-
tions through experimentation:

1. How do prosodic features in speech affect punctuation placement?
2. What’s the effect of punctuation presence to syntactic parsing?

3. How do the obtained models perform within a speech recognition interface?

4.4.1. Data and Preprocessing

Taking into account that the number of words per sentence in the TED Talks
Corpus is 15-20 in average, the data is sampled into sequences of 50 words. Sam-
ples are extracted sequentially from talks. Each sample starts with a new sentence.
Once no more complete sentences fit into the sample, the rest of the sample is
padded with empty tokens. Sentences with more than 50 words are discarded.
This was to ensure input to the system was complete so that the model always
places a punctuation mark at the end of an utterance. Finally, a sample consisted
of 2.6 sentences in average.

51,311 samples were extracted this way. 70% percent (39,419 samples) of this
data were allocated for training, 15% for testing and 15% for validation (8,446
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samples each). The word vocabulary was created with the tokens that occur more
than 6 times in the corpus and three extra tokens: out-of-vocabulary, end-of-
sequence and empty. This totaled up to 13,031 tokens. The output punctuation
vocabulary in the experiments include 4 classes: period, question mark, comma
and no punctuation.

4.4.2. Implementation and Hyperparameters

Theano (Theano Development Team, 2016) was used for implementing the
models. In the experimental setup, the word embedding vector sizes for words
were set to 100 which were initialized randomly at the beginning of the training.
The hidden layer dimension of all GRU layers is also set to 100, except for pause
durations and POS, where a smaller dimension of 2 and 10 respectively performed
better in terms of validation scores. Besides words, mean pitch and intensity val-
ues are also processed in bidirectional RNN layers.

The models were trained in batches of size 128. The weight matrices are
updated using the AdaGrad algorithm (Duchi et al., 2011) with a learning rate
of 0.05 for minimizing the negative log-likelihood of the predicted punctuation
sequence.

Two ways of inputting prosodic features into the model are tested. First, val-
ues are input as their absolute values in a continuous fashion, i.e. pause durations
in seconds, mean FO values in semitones, intensity values in dB, and speech rate
normalized within -1 and 1. Secondly, they are inputted as discrete values (in
levels) and passed through an embedded layer similar to words and POS features.
Leveling of the prosodic values was done by dividing each feature’s normal dis-
tribution to quantiles of 100, so that more frequent ranges are represented more
precisely.

4.4.3. How do Prosodic Features in Speech Affect Punctuation
Placement?

This section reports on the results obtained by training various models using
different feature settings in terms of punctuation restoration accuracy. As the ma-
jority of the punctuation marks in the dataset consists of the punctuation marks in
the reduced set (comma, period and question mark), experiments were performed
only with this set.

The two-stage method by Tilk and Alumie is used as a baseline by train-
ing over the data twice: first, only with text, and then together with the pause
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durations. Tilk et al.’s models are based on BRNN with an attention mechanism,
which provided the best results when compared to other models (Tilk and Alumde,
2016).

In the proposed single stage approach, the use of only lexical information
(words) provides the same scores as the use of only words in the two-stages ap-
proach, since only one step is involved in both approaches. In order to assess the
contribution of new prosodic information to our model, more prosodic features
were added one by one until no improvement is recorded.

Results

The outcome of experiments in generating periods, commas and question
marks with different settings of features are listed in Table 4.2 and illustrated in
Figures 4.8a and 4.8b. The results reported here use prosodic feature as continu-
ous values in order to ensure comparability with the baseline. The best performing
model was re-trained using discretized features and reported as well with the label
discretized. Additionally, a model with only prosodic features that ignores word
information was tested (labeled as no words).

Compared to the two-stage models performance on the same dataset, first im-
provement is achieved through employing of the parallel processing architecture:
An average improvement for all punctuation marks in terms of F; score of 0.4%
when the same features (word and pause durations) are used. The model opens the
way for a further improvement of 2% with the addition of pitch and POS feature
into the model, and finally, with the introduction of discretized prosodic features,
an overall F} score of 70.3% is obtained.

By incrementally adding features on top of the word-based model, it is ob-
served that usage of pause durations and part of speech (POS) improves period
and question mark generation, and a combination of them results in an improve-
ment in terms of /) score for all punctuation marks. The results also show that
each punctuation mark has different sets of prosodic features that work the best for
them. The best result for generation of commas in terms of 3 score is observed
with pause and pitch mean features (55.2%). For period, mean intensity helps in
terms of recall and a combination of it with pause and pitch mean results in best
performing Fj score of 82.0%. For question mark, however, pitch and intensity
features do not lead to an improvement, as the best result is achieved with the
pause feature only (71.8% I3 score).

Even without any textual features, silence, pitch and intensity features are able
to determine sentence boundaries to a certain extent. A solely prosodic feature
based model gives a precision of 71.3% and an F} score of 55.7% in detecting
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Comma Period Question All
Feature set P R 1 P R F1 P R F1 P R F1

Baseline (Tilk and Alumie, 2016)

word(w) 542 526 534 829 73 776 70.89 615 659 687 633 659
w+pause 58.8 46.5 519 784 79.1 787 70.89 63.3 669 703 63.6 66.8

Proposed model

w+pause(p) 589 469 522 80.0 786 793 73.1 625 674 712 63.6 672
w+POS 56.3 50.0 53.0 76.7 819 793 732 620 67.1 682 66.6 674
w+POS+p 56.7 51.0 53.7 820 79.1 805 758 682 718 70.7 659 68.2
w+POS+p+mean.fO 554 549 552 830 80.7 819 735 664 69.7 70.0 68.4 69.2
w+POS+p+range.f0 53.0 54.8 539 838 744 788 750 623 68.1 683 650 66.6
w+POS+p+mean.i0 539 548 543 79.2 83.0 81.1 70.1 679 69.0 67.5 69.6 68.6
w+POS+p+range.i0 56.8 48.7 525 813 78.7 80.0 74.0 643 688 70.6 645 674
w+POS+p+sp.rate 61.5 449 519 80.6 80.0 80.3 76.3 61.0 67.8 73.1 63.3 679
w+POS+p+mean.fO+range.i0 57.0 49.5 530 82.7 80.5 81.6 77.6 61.8 688 71.5 657 685
w+POS+p+mean.fO+mean.i0 594 462 519 814 826 820 715 68.1 698 724 655 68.8
w+POS+p+mean.fO+sp.rate 56.7 51.6 540 837 794 815 664 69.8 68.1 71.0 66.4 68.6
p+mean.fO+mean.i0 (no words) 338 1.1 21 713 458 557 00 00 0.0 699 237 354
w+POS+p+mean.fO (discretized) 61.3 489 544 826 835 830 718 706 712 737 673 703

Table 4.2: Punctuation generation results for two stages baseline and the pro-
posed single-stage approach. P, R and F3 stands for precision, recall and Fj score
respectively in percentage (%).

periods. When textual features are added to this set, it performs as the best model
for generating periods. Although a sentence-ending punctuation mark, the ques-
tion mark does not show the same behavior as it is much less represented in the
dataset.

The improved scores, which are achieved through discretization of continuous
prosodic features, present new parameters of the neural network architecture that
could be used to boost its accuracy. It proves that reducing the parameter space
and representing leveled features in an embedded space can improve results in
similar tasks.

Table 4.3 shows some examples from the testing set punctuated with solely
word-based and word-prosody combined model. Listening to the audio samples,
one can spot some examples that show improvement caused by prosodic models
(sentences 2c and 4c in Table 4.3). However, other examples (sentences 1c and
3c in Table 4.3) also show that there are some cases where inclusion of prosodic
features do not necessarily help the correct prediction of punctuation. In the case
of sentence 1c, the speaker consistently makes pauses after most words and makes
prominent most content words. That might be the reason why prosodic features
do not help establish the correct punctuation after the word axons. On the other
hand, the sample for sentence 3a points out that the model that includes prosodic
features has some limitations as it inserts a comma in the middle of a clearly au-
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Figure 4.8: (a) Overall punctuation results in terms of precision, recall and F}
score (b) F} score of each punctuation mark in different feature settings.
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dible prosodic unit video cassette recorders. One plausible solution to overcome
this limitation may be testing including other features or giving more weight to
prosodic features over textual ones.

4.4.4. What’s the Effect of Punctuation Presence to Syntactic
Parsing?

The first step of many NLP applications involves the parsing of an input phrase
to the system. In a system with human input for example, it allows further inter-
pretation of the input phrase through a syntactic analysis. The output of a syntactic
parser is a dependency tree, where the sentence is defined as a group of relations
between the elements of a sentence. Figure 4.9 illustrates an example of a depen-
dency tree. Most syntactic parsers are statistical in a sense that they determine
these relations based on knowledge gained from a huge corpus of hand-annotated
dependency trees. Words, as well as punctuation marks are the nodes of depen-
dency trees.

punct:

nsum punct nmod
cop case case
VEZ DT det: Aramcd puncmD % -Arauxpass \TO -&del i} N wamod

Dependency is the not|on thatlmgulstlc unlts . words are connected to each other by directed I|nks

Figure 4.9: An example of a dependency tree generated with an English parser”.

As much as human understanding of written language is affected by it, syn-
tactic parsers also depend on punctuation marks on input sentences (Jones, 1994).
First and most important cue lying in punctuation is the sentence boundaries. Syn-
tactic parsing is generally performed on a sentence. Thus, parsing of huge texts
imply segmentation of it from sentence boundaries. Other punctuation marks have
also effect on parsing as they are grammatical and semantic elements of a sen-
tence.

In this section, I will perform an experiment on examining the effect of punc-
tuation placed by the trained prosodic punctuation models on dependency parsing.
Specifically, I wanted to examine if the commas predicted with our models help
the parsing. As wrong placement of commas could decrease the parser accuracy,
I wanted to test if the relatively low-scoring comma prediction helps the parser
output.

2github.com/alpoktem/punkProse/tree/master/audio-samples
3http://corenlp.run/
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ID | Model | Sentence

la

1b

lc

Gold

‘Word

W&Pr

So all of those colored lines correspond to bunches of axons® the fibers
that join cell bodies to synapses®
so all of those colored lines correspond to bunches of axons® the fibers
that join cell bodies to synapses®
so all of those colored lines correspond to bunches of axons the fibers
that join cell bodies to synapses®

2a
2b
2¢c

Gold
Word
W&Pr

Now molecules are really® really tiny®
now® molecules are really really tiny®
now® molecules are really® really tiny®

3a

3b

3c

Gold

Word

W&Pr

Cassette tapes® video cassette recorders® even the humble Xerox ma-
chine created new opportunities for us to behave in ways that astonished
the media business®

cassette tapes® video cassette recorders® even the humble xerox
machine® created new opportunities for us to behave in ways that as-
tonished the media business®

cassette tapes® video® cassette recorders® even the humble xerox ma-
chine created new opportunities for us to behave in ways that astonished
the media business®

4a

4b

4c

Gold

Word

W&Pr

And you could see how my poor® manipulated sister faced conflict®
as her little brain attempted to devote resources to feeling the pain and
suffering and surprise she just experienced® or contemplating her new
found identity as a unicorn®

and you could see how my poor manipulated sister faced conflict as
her little brain attempted to devote resources to feeling the pain and
suffering and surprise® she just experienced or contemplating her new
found identity as a unicorn®

and you could see how my poor manipulated sister faced conflict® as
her little brain attempted to devote resources to feeling the pain and
suffering and surprise she just experienced® or contemplating her new
found identity as a unicorn®

Table 4.3: Punctuation generation results for a set of sentences. Audio samples
can be accessed from the Github repository?.
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Experimental Setup

One hundred sentences that represent different types of comma events have
been collected from our test set. The collection includes simple to complex sen-
tences with commas used for different functions; e.g., enumeration, dislocation of
noun phrases, and clause division, among others. Some sentences in which differ-
ent placement of commas could lead to different semantic or syntactic structures
have also been chosen.

Sentences with gold punctuation (from original annotations), with punctuation
taken out, and with predicted punctuation (with and without prosodic features)
were parsed using a state-of-the-art dependency parser (Bohnet and Kuhn, 2012;
Bohnet and Nivre, 2012). In order to compare the parsing results, the standard de-
pendency parser quality metrics Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS) are used. For assessing the closeness of two dependency
trees, UAS measures the number of arcs with correct head and dependencies. On
top of UAS, LAS measures whether the dependency labels are correct (Buchholz
and Marsi, 2006). For more information on UAS and LAS refer to Nivre and Fang
(2017); Green (2011).

Results

The results listed in Table 4.4 show that dependencies are labeled wrong in
16.6% of the cases if punctuations are omitted; cf. the corresponding LAS. La-
beled dependency trees get more similar to the gold standard with the introduction
of commas using our models. Thus, LAS improves by 5% when only word fea-
tures and by 5.7% when both word and prosodic features are used, resulting in a
decreased error rate of 10.9%. A similar tendency can be observed with UAS. The
results show that consideration of prosody improves dependency parsing.

Similarity
Setting LAS UAS
Unpunctuated 83.4% 86.3%
Punctuated with word feature 88.4% 89.8%
Punctuated with word and prosodic features 89.1% 90.6%

Table 4.4: Parsing similarity results
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4.4.5. Performance with ASR Output

In this section, I further extend on the performance tests by attaching the devel-
oped prosodic punctuation restoration models into a speech recognition pipeline.
A testing interface is prepared that uses a state-of-the-art ASR system to convert
spoken input to raw transcription and Prosograph (Oktem et al., 2017c) to an-
alyze the input prosody. Punctuation restoration is then performed on the raw
transcripts with the two types of models models that were trained during the ex-
periments: Text-only model and best performing text+prosodic model. Through
these tests it is possible to see the performance of the proposed methodology on a
setting closer to a real-world use case (Oktem et al., 2018a).

Overview of the Testing Interface

The testing interface is designed so that spoken input can be given to the in-
terface either by recording with microphone or by presenting a pre-recorded file
which is then sent to an ASR system for transcription. The transcriptions, punc-
tuated with our models, are displayed together with their graphical prosodic visu-
alizations.

As depicted in Figure 4.10, the pipeline of the testing interface can be summa-
rized as follows: (1) Obtaining a recording from either microphone or a waveform
audio file, (2) transcription using a speech-to-text system*, (3) prosodic and syn-
tactic feature extraction, (4) punctuation restoration, (5) visualization of punctu-
ated versions of transcript together with acoustic measurements. See Figure 4.11
for example of the testing interface.

Selected Testing Samples

Here I will show some samples from the Heroes Corpus running through the
testing interface. I test on examples from the movie domain to get insight on how
the proposed model would work on an automatic captioning use case.

Figure 4.12 shows an example that was recognized well with the ASR system.
Both text and prosodic punctuation restoration models perform well in recogniz-
ing the sentence boundary. Figure 4.13 illustrates an example where the ASR
system fails to recognize the speech input accurately. In this example, textual
model works better in determining the boundary marked by a comma in the orig-
inal sentence. Even though the boundary is marked by a long pause, the prosodic

4Google’s Cloud ASR service is employed.
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Audio file

[ Transcript—>>| i i i
ASR Acoustic/prosodic Proscript— Punctuation
——Word timing—»{ feature extraction restoration
> P h Punctuated
> < 3
rosograp transcript

Interactive
visualization

Figure 4.10: Architecture of the interactive ASR testing setup.

Ji
or we

-

e = N = P—— =,
- N =c

SeRNBZ OT NN

W oTvez ven

ismade] | [firstcuriosityf]< >]
[fhree] first HIEND:

oneketofdnal olonel

S oy g s |

W W Bz 10 GO

idelfihe]
BT

Wover OT  u NN W

B T S -

Ik Th: Ihilli
I billionsjo
e

Tl et e =
o T oiyol[kEND>]
W
: f0_mean _contour_semitones :i0_mean

g w

o

et

o e e e
HERBRBHRRRHRER SRS UNPUNCTUATED TRANSCRIPTION ###############H###
it rips apart of the chromosome one set of DNA goes to one side
the other side get the other side of DNA identical copies of DNA
and then the cell splits down the middle and again you have bil
lions of cells undergoing this process right now inside of you
HHRHHRA AR AR AARH PUNCTUATED WITH punkProse ###HHHHEIHHHRIEIINH
Model 1: word

it rips apart of the chromosome . one set of dna goes to one sid
e . the other side get the other side of dna identical copies of
dna . and then the cell splits down the middle and again , you
have billions of cells undergoing this process right now inside
of you .

Model 2: word + POS + pause + fO_mean

it rips apart of the chromosome . one set of dna goes to one sid
e . the other side get the other side of dna identical copies of
dna , and then the cell splits down the middle and again , you
have billions of cells undergoing this process right now inside
of you .

HERBRRHRHRRAR AR
Press R to record, O to open audio file, Q to quit...

Figure 4.11: The two window interactive test environment. Recordings are pre-
sented through the command line interface (right) and visualized directly on

Prosograph (left).
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model doesn’t perform well due to the ungrammatical structure of the recognized
utterance.

Figure 4.14 also illustrates a misrecognized example. The tag question “don’t
you” at the end of the speech sample is not recognized. Without that part, the
text model marks the sentence end with a period. However, the prosodic model
captures the intonation of the sample and predicts successfully the question mark
at the end. This example shows that the prosodic model is able to predict well in
some cases even though ASR fails to recognize the input speech accurately.

All in all, the models trained on conference speeches show an acceptable and
usable performance on ASR output and on a different domain than the models are
trained on. With further domain adaptation better results can be obtained.

Original utterance
I’'m so sorry I left you. It wasn’t easy for me.

Prosodic visualization
I'mlsalsormylileftlyouifwasn'tleasylforimel<END>]
MA MA NA NA

M, MA MANA O NA WA M,

Punctuation restored (Word model)
1’m so sorry i left you® it wasn’t easy for me
Punctuation restored (Word+Prosodic model)
i’m so sorry i left you® it wasn’t easy for me

Figure 4.12: Segment pair s2_5_0227 from the Heroes corpus

4.5. Conclusion

In this chapter, I have presented a recurrent neural network architecture that
processes lexical and prosodic information in parallel for the generation of punc-
tuation in speech transcripts, avoiding the dominance of written data, and thus the
bias of trained models towards written material. The proposed model allows the
integration of any desired feature (lexical, syntactic or prosodic) and thus a further
analysis of the impact of every feature used on the punctuation generation. In ad-
dition, the current model achieves a significant improvement over previous works
that used two stages and were biased to written data. An overall F} score of 70.3%
is reported for restoration of three punctuation marks. For individual punctuation
marks, F scores of 83%, 71.8% and 55.2% were reported respectively for period,
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Original utterance
This American girl, she’s hitting all the boys on the dock...
looking for a certain shipping container.
Original Prosodic visualization

thislamericanlgirl] [she'shittinglalltheboyslonltheldock]lookinglforial [certainjshippinglcontainer|
HA M M M MA M

M MA MA M MA - MHa M M M M M

Prosodic visualization of recognized speech

lspanishjamericanigir| [sittinglallfthelboyslonithe|doctors|lookingfforja] [certain|shippinglcontainer<END>]
A A MM WBG PDT DT MMNE W DT MMNS WBGE M DT M MM MM

- a ' - L A a - - 5 — - a -

Punctuation restored (Word model)
spanish american girl® sitting all the boys on the doctors
looking for a certain shipping container®
Punctuation restored (Word+Prosodic model)
spanish american girl sitting all the boys on the doctors
looking for a certain shipping container®

Figure 4.13: Segment pair s2_5_0107 from the Heroes corpus

question mark and comma employing various other feature combinations. The
low scores on the comma could be a hint that annotation style for commas vary
between different annotators more than other punctuation marks. This should be
verified with an experiment evaluating annotator agreement as future work.

The results are shown to be significantly better when syntactic and prosodic
features are added to the lexical information. Solely pauses —when trained with
a separate RNN — improve considerably the vocabulary-based scores. Moreover,
FO- and intensity-based prosodic features help to achieve a better comma and pe-
riod detection in terms of F; measure. All in all, the best combination of prosodic
features is when the model is trained on words, their POS tags together with the
preceding pause durations and their normalized mean FO values.

Further experiments have been carried out to test the performance of the mod-
els on parsing and ASR output. Quantitative metrics on parsing of single sentences
showed that prosodic models perform better in accurate syntactic parsing. Results
also show the relatively poorly detected commas in terms of F} scores are still
useful.

On a demonstrative setting where ASR was employed, reasonable perfor-
mance is recorded in recovering punctuation marks on out-of-domain spoken in-
put. Through further model adaptation (e.g. vocabulary extension and speaker
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Original utterance
You care about her, don’t you?
Original Prosodic visualization

lyoucarelaboutherldon'tyoul<END>]

M M M M M LhY

Prosodic visualization of recognized speech

lyoulcarelaboutjit
PRE  VBP M PRE

Punctuation restored (Word model)
you care about it®
Punctuation restored (Word+Prosodic model)

you care about i@

Figure 4.14: Segment pair s2_5_0114 from the Heroes corpus

adaptation) better results can be obtained.

In this chapter, I have introduced the automatic punctuation restoration frame-
work and experiments revolving around prosodic punctuation restoration. Next
chapter, I will present the work on movie domain spoken language translation.

83






Chapter 5

ENHANCING SPOKEN
LANGUAGE TRANSLATION
WITH PROSODY

This chapter explores around the question of how can prosody be utilized in
the framework of spoken language machine translation (SLMT). My motivation
for this researched is enveloped around the applications automatic subtitling and
dubbing in movie domain. The first goal of this chapter is to gain insights and
prove that prosody is an essential element to consider in spoken language transla-
tion. This is performed through linguistic and corpus-based analysis on a bilingual
expressive speech corpus (Section 5.2). Following, building of a neural machine
translation system is explained in Section 5.3. This system serves both as a text
translation baseline and a basis for incorporation of prosodic features in both input
and output. Next, I perform experiments that utilize this system on movie-domain
translation (speech-to-text and speech-to-speech). First, I explore the effect of
prosodic punctuation restoration as a preliminary step to translation in Section
5.4.1. Secondly in Section 5.4.2 I aim to improve text translation system through
prosodically-enhanced input. And finally, for the aim of generating prosodic syn-
thesis cues in a speech-to-speech translation pipeline, I report on the experiments
building a translator that can handle prosodic input and output (Section 5.4.3).

5.1. Motivation and Background

Spoken language machine translation is a type of machine translation (MT)
where input and/or output to the system is spoken language. It is usually used
in the context of translating from speech to text (through incorporation of ASR),
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or speech to speech (through incorporation of ASR and TTS). However, spoken
language processing introduces its distinct challenges. For instance, in a system
with speech input, the output of ASR lacks punctuation or phrase boundary in-
formation, which provides both linguistic and functional cues for translation. MT
systems are usually trained with sentence or sentence-like phrases. However, ASR
output can consist of partial sentences or long segments of tokens which in turn
affects the functioning and quality of MT. Another issue arises in the case of a
spoken input and output system. Prosodic information of the input speech is lost
already in the first step. Thus, any communicative information residing in the
input speech through prosody is not reflected in the translations and synthesized
speech.

One can draw an analogy of the difference between spoken language transla-
tion and written language translation as the difference between book translation
and movie dubbing. A book translator translates a book chapter by chapter, then
paragraph by paragraph, and then sentence by sentence. All these segmentations
are cued through the layout of the book, paragraph breaks and punctuation. Once
at a certain sentence, the translator interprets the sentence in the original language
of the book and then transforms it into the translation language following author’s
intentions.

Although essentially a translation task, the art of dubbing a movie requires
many more challenges. A similar segmentation process is followed but this time
through scene information and actor turns. Once a line of an actor is transcripted,
it can be segmented into sentences by looking both at grammatical and auditory
aspects. The lines are then translated into the dubbing language by translators
with the paralinguistic information such as the tone, intention and intensity noted.
Finally, the voice actors vocalize the translated scripts respecting these paralin-
guistic aspects in the original version of the movie.

The additional tasks involved in the latter process should somehow be consid-
ered in an automatic translation/dubbing system of audiovisual content in order to
obtain optimal results. The segmentation part requires tasks such as speech activ-
ity detection, speaker turn detection and ASR. The work in this chapter assumes
that these tasks are already done perfectly and focuses on the translation part of
the system and especially on the involvement of prosody to it.

Specifically, I will address these three principal questions that involve prosody
in the spoken language translation framework:

1. How does prosodic punctuation restoration affect translation?

2. Does pause encoding improve translation?
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3. Can pauses be translated jointly with lexical information?

where the last one lying in the field of speech-to-speech translation.

Before I embark on answering these questions, I will try to give the context to
them with a linguistic and corpus study based on movie translation domain. This
study is designed both to inspire the design of a prosodically enhanced transla-
tion model and also to help interpret experimental results. The questions will be
answered with a practical methodology.

The requirement posed by these questions is building of a prosodically en-
hanced translation model. Through this study, I aim to prove the need for inclu-
sion of prosody in spoken machine translation pipelines and also to introduce a
framework that would allow experimentation in this respect.

As a remark, although there is previous work involving translation of TV-
movie subtitles (Volk et al., 2010; Volk, 2008), this is to my knowledge the first
work focusing on audio translation on movie domain. Spoken translation is even
more interesting in this domain due to the highly expressive nature in movies.

5.2. Analyzing Significance of Prosody in Machine
Translation

In this section, I perform some example-based and statistical analysis on bilin-
gual segments of the Heroes corpus, which was presented in Chapter 3. This
corpus contains parallel English and Spanish speech segments from a dubbed TV
series. The aim is to show how prosody is reflected in dubbing translation. Par-
ticularly, I focus on inter-lexical silent pauses as a prosodic feature. The first part
demonstrates on a few examples in the corpus how pausing information influences
translation, both for text and audio output. In the second part, I follow a statistical
approach to prove significance of pausing in spoken translation. By pauses, I will
always refer to silent pauses from this point as the dataset does not contain any
information on filled pauses.

5.2.1. Example-based Analysis

In order to gain linguistic insights before building a data-driven model, se-
lected parallel segments from the Heroes corpus are carefully inspected. Specifi-
cally, I investigate how does pausing as a prosodic feature reflects in the translation
script. These are then compared to how a classic automated model performs with
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the same input sentence. All spoken samples presented throughout this chapter
can be found in the thesis repository '.

I will firstly examine the sample s2_5_0043 from the Heroes corpus. The orig-
inal punctuated transcription of the English segment is: He pushed his way in,
shoved a gun in my face. Next thing I know, he’s flying through that glass. Fig-
ure 5.1 shows the Prosograph visualization of English and Spanish version of the
sample. Yellow boxes, lines and circles below indicate unvoiced intervals between
words, mean pitch and mean intensity, respectively.

ENG

lhe| Jpushedhisjwaylin]Jshovedalgunfinmyfface]nextlthingflknow|ne's|flying[throughjthatiglass]]

- z = = C c - -

SPA

hal lempujado]apuertalimehalpuestolunapistolalen]alcaralyl]derepente]hasaliddvolanddlcontrdelcristall]

& a —

Figure 5.1: Segment pair s2_5_0043 from the Heroes corpus

Both segments are formed of 4 clauses. English segment consists of two sen-
tences whereas in the Spanish segment these two sentences are joined with a link-
ing word ”y” (and). Pauses are observed in all clause boundaries in English seg-
ment, whereas in the Spanish segment, a clause boundary pause is observed only
after "de repente” (lit. suddenly, non-literal translation of “next thing I know”).

A fairly longer non-clause boundary pause is observed at the beginning of both
sentences. 0.25 seconds of pause are observed after “he” in English and 0.31 sec-
onds of pause are observed after "ha” (part of a compound verb to mark past
tense) in Spanish. In the last clause in English, two short pauses are observed,
which is not reflected in the Spanish sentence. However, when we listen to the
Spanish segment, instead of a silent pause, a filled pause is observed where the
word "ha” is lengthened. With a focus on pauses, the following observations are
made with respect to prosodic realizations in this particular segment pair. Firstly,
silenced sections are not necessarily reflected in translation, even though they are
induced by grammatical structures like clauses. Secondly, silences are sometimes
reflected with respect to their position in the sentence and not from syntactic struc-
ture. This is partially due to the necessity that same sections need to be voiced in
dubbing. And finally, it is seen that silent pauses can appear in a different form
such as filled pauses.

"https://github.com/alpoktem/PhDThesis
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This parallel segment shows the complexity of the problem of prosodic trans-
fer. It is hard to predict the prosodic realizations of the translation of a sentence
only by looking at prosodic features in the input sentence. It is assumed that the
English and Spanish versions of the segment are expressed in a similar fashion by
the two actors, explaining these particular prosodic reflections. However, another
voice actor could possibly dub this line in a different way with a different prosodic
structure as well.

Next, a state of the art machine translation system is employed to see its per-
formance in translating this example. Translations are performed using a state-of-
the-art commercial MT system?.

Input sentence (ENG) He pushed his way in, shoved a gun in my face. Next
thing I know, he’s flying through that glass.

MT (ENG — SPA) Se abrio paso empujdandome una pistola en la cara. Lo sigu-
iente que sé es que estd volando a través de ese cristal.

What is noticed first is the mistranslations of some parts of the phrase. How-
ever, it is not our point to assess the quality of the translation in terms of correct
word usage. The translated phrase represents the actions and objects in the source
sentence well enough for our study.

It is examined that the first two clauses in the English phrase are joined into
one: Se abrio paso empujdindome una pistola en la cara (lit. He opened the
way pushing a gun in my face). Even though there is a comma separating the
two clauses explicitly in the input sentence, this is not reflected in the translation.
When we translate this section with punctuation marks removed we get a similar
result:

Input sentence (ENG) he pushed his way in shoved a gun in my face

MT (ENG — SPA) él se abrio paso empujdandome una pistola en la cara

The phrase, both prosodically and gramatically, is structured in a way that
the speaker is explaining a sequence of actions: character pushing in and then
pointing a gun on the speaker. Even though this is cued orthographically through
punctuation, still the translation system is not able to capture this structure. An
ideal translation that takes heed of the prosodic structure would be:

2Google Translate: http://translate.google.com
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El se abrio paso, empujo una pistola en mi cara. Lo siguiente que sé, él estd vo-
lando a través de ese cristal.

This example shows that a translation system that disregards the prosodic
structure of the source sentence fails to translate in a way that was originally
uttered. In a dubbing scenario, the presence of a pause in between two phrases
should be reflected in the translation for two reasons: (1) to convey the same lin-
guistic structure in translation and in turn (2) to ensure a synthesis reflecting the
original phrasing.

Next, I will list some examples where pausing is somewhat more directly
transferred between original and dubbing language. Many samples of this type
were found in the corpus. Three samples are demonstrated in Figures 5.2 to 5.4.

ENG
thishere'sleverythingyouhadonlyou] whenjwelfound)you]]

SPA
lesto]ollevabagayer|allencontrarte]]

- a a a - a

Figure 5.2: Segment pair s2_5_0010 from the Heroes corpus

ENG
Whenlconfrontedbylourlworsthightmares]. thelchoicesareffew]]

= 2 = = = = - = = =

SPA

kcuandolnoslenfrentamoslalnuestrasjpesadillas],

lasfalternativaslguelienemosfsonfpocasl:..]

- —_—

Figure 5.3: Segment pair s2_5_0020 from the Heroes corpus

Pause intervals can be directly traced at the phrase boundaries in both lan-
guages. This is, again, largely due to the necessity that voice-overs need to match
the original voiced segments. What these translations suggest is that, a direct ap-
proach can be followed in transferring of pauses. Also, it is observed that paused
slots are often marked with a punctuation in subtitles.

In order to arrive to more concrete conclusions on the feasibility of a direct
transfer of pauses and punctuation co-occurrence, a statistical study is conducted
in the next subsection.
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ENG

i'misorry] , flcan'tdolthat]]

SPA

lolsientd] , [nofpuedohacerlof]

Figure 5.4: Segment pair s2_5_0050 from the Heroes corpus

5.2.2. Corpus-driven Analysis

Manual analyses done in the previous subsection are further extended to get a
generalized behaviour of silent pauses in Heroes corpus. My motivation behind
this study is to first, evaluate statistically how pausing is reflected in the dubbing
translations in Heroes corpus, and second, how much pausing is related to punc-
tuation in movie domain subtitles.

How is Pausing Reflected in Translations?

A straightforward scheme is followed to evaluate how much of the silent pause
events in English segments are reflected in the Spanish segments. To quantify this
in the Heroes parallel corpus, first, number of segments with a pause event is
counted for both English and Spanish segments. Then, number of segment pairs
that contain a pause event only in English, only in Spanish and both in English
and Spanish is calculated. A paused segment is defined as an unvoiced interval
with a duration of minimum 0.05 seconds. See Table 5.1 for the results.

Event # Segments
Pause in English segment 3050
Pause in Spanish segment 3493
Pause in both English and Spanish 2539
Pause only in English segment 511
Pause only in Spanish segment 954

Table 5.1: Silent pause occurrences in English and Spanish segments of the
Heroes corpus.

It can be seen that in 83% of the cases, a pause event in English segment
is reflected in the Spanish segment. Other way around, in 72% of the cases, a
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pause event in Spanish segment is reflected in the English segment. It can be
deduced that pausing as a prosodic feature is reflected in the dubbing translations
in majority of the cases. In this study, positions of the pauses are ignored.

To What Extend Pausing is Associated with Punctuation in Subtitle Tran-
scripts?

In the manual inspections performed in Subsection 5.2.1, it was observed that
many times pauses occur at punctuated slots between words in the subtitle tran-
scription. Below, I explore this on a statistical basis in English and Spanish seg-
ments of the Heroes corpus similar to the study in TED talks presented in Sec-
tion 4.2. The importance of this study is to know how much pausing influence
punctuation placement and vice versa in movie domain. Two directions of co-
occurrence are observed: (1) how is a paused interval punctuated? and (2) to what
extend punctuation infers a paused interval? I answer the first question in Fig-
ure 5.5 where distribution of punctuation events in paused intervals is shown. In
English segments, among 1854 inter-word slots with a pausing, 80% of them are
annotated with a punctuation in the subtitle transcripts. The majority of the punc-
tuation marks at these paused intervals are sentence ending punctuation marks
(period [.], question mark [?], exclamation mark [!]), whereas comma [,] and el-
lipsis [...] consist of a smaller percentage. Spanish segments demonstrate a simi-
lar behaviour in terms of the ratio of punctuated slots with 78% of them annotated
with a punctuation mark. Whereas it is observed that commas tend to be paused
more compared to English. These ratios indicate a higher punctuation probability
of paused intervals compared to the conference talk transcripts.

Secondly, Table 5.2 shows the distribution of pausing events at inter-lexical
intervals where a punctuation occurs. Looking at English segments, when all
punctuation marks are considered, there is a pause in that interval with a 58% of
probability. However, when only sentence ending punctuation marks are consid-
ered this percentage rises to 75%. It can be deduced that a sentence boundary is
a highly discriminating cue for a pausing event between two words. However, the
ratio of pause presence at occurrences of comma is quite low (39%). Whereas in
Spanish segments, commas seem to be paused much more with a 60% of them
marking a short pause of 420 ms in average. Punctuation marks that act as a sen-
tence boundary also mark a pause more than in English segments (86%). Both
these contribute to a higher distribution of pausing at punctuation points. 72% of
punctuation marks are paused, which is 14% higher than in English segments.

Through these studies it can be confirmed that pausing is a highly correlated
phenomena with punctuation in movie domain. Comparing to the transcriptions
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Figure 5.5: Punctuation distribution at paused (> 0.05 s) intervals in English
segments(1936 in total) of the Heroes corpus.

of TED talks, the numbers indicate a higher percentage of punctuation-pause cor-
relation in movie subtitles.

Two insights that could be taken from these results regarding movie domain
machine translation is that: (1) Punctuation restoration can benefit more from the
use of prosodic features such as pauses and (2) prosodic features can complement
punctuation in acting as cues for machine translation.

5.3. Methodology

Having the intuition gained from examining prosodic parallelisms in the bilin-
gual segments of the Heroes corpus, I embark on building a system that can learn
and generate prosodic structures in a neural machine translation setup. This sec-
tion explains the MT framework built in order to carry out experiments to answer
the questions we listed earlier. Before diving in the technical specifications of the
system built, I will list the requirements defined prior to the implementations:

1. Translation will be in movie domain. This is mainly because of our mo-
tivation for gaining insights for the automatic subtitling and dubbing use
cases.

2. System will be extended incrementally i.e. we will start from a basic text
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#Occurrences Percentage Mean pause

Punctuation event #QOccurrences

w/ pause of paused duration (s)

English

Punctuated interval 5429 3152 58% 0.81

Sentence boundary 2549 1913 75% 1.02
Comma 2652 1038 39% 0.38
Ellipsis 228 201 88% 0.94
Spanish

Punctuated interval 4935 3580 72% 0.77

Sentence boundary 1856 1606 86% 1.11
Comma 2718 1653 60% 0.42
Ellipsis 361 321 88% 0.83

Table 5.2: Pause presence in punctuated intervals in English and Spanish segments
of Heroes corpus.

translation system and then add on it first prosodic input and then prosodic
output.

3. Prosodic encoding and decoding will be built within the translation system:;
i.e., text and prosodic encoding and decoding parameters will be learned
jointly.

4. The system should be able to compensate for the scarcity of spoken parallel
data.

In order to address these requirements, a system is built that can learn transla-
tion of textual and prosodic features jointly. I will refer to this system as TransProse
for simplicity. Design and subtleties of this model are explained in the next sub-
section 5.3.1. Next, data sources that suit best for our problem has to be selected.
Collected and acquired corpora and our preprocessing steps are detailed in sub-
section 5.3.2.

5.3.1. Neural Translation Model

TransProse framework is based on a sequence-to-sequence network with at-
tention mechanism, which was explained earlier in Chapter 2. For that reason, I
will not go deep into the core of the architecture but I will explain more how it
was extended to handle prosodic input and output.
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Figure 5.6: TransProse sequence-to-sequence translation encoder with prosodic
input.

Encoding Text Tokens and Prosody

The encoder of the system is illustrated in Figure 5.6. The text encoder part
(inner box) takes word token indexes as input and passes them through an embed-
ding layer then a linear layer to obtain word vectors of size H. Then, this vector
is passed to a bidirectional GRU layer, outputting hidden and an output vectors in
both directions at each step. The forward and backward output vectors are then
summed in order to obtain an output of size H for each input token.

Encoding jointly with the added prosodic features is depicted in the outer box
of the same figure. Note that prosody input vector carries any number of prosod-
ic/acoustic features that belong to the word token at that timestep. This number is
denoted with P. A separate encoding sequence is followed by the prosodic fea-
tures. The input features are converted to a vector of size H in a gradual fashion
where a linear layer is followed by a non-linearity at each step. Once it is the same
size of the GRU input layer, it is summed with the encoded word input and intro-
duced to the bidirectional layer together with the input word token representation.
Output vectors at each timestep are then passed on through the decoder.
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Figure 5.7: TransProse sequence-to-sequence translation decoder with prosodic
output.

Decoding Text Tokens and Prosody

As illustrated in Figure 5.7, the decoder is also designed to output either text
tokens only or accompanied with their corresponding prosodic features. During
training, target sequence tokens are input and passed through first, the embedding
layer, then a linear layer followed by a dropout layer until it reaches the GRU layer.
The output of the GRU layer is used to determine the attention weights according
to each of the effect of the encoder output effect on that particular target token.
The attention model is based on the global attention model in Luong et al. (2015).
The weights vector for output at timestep ¢ is calculated as in Equation 5.1, where
h; stands for GRU output in decoder side and & on the target side. General scoring
function is used as the scoring function (score (ht, ES) = htT W,hs). A general
overview of the implementation of the neural attention architecture is illustrated
in Figure 5.8.

exp (htT W,ﬁs)
> exp (htT Waﬁs)

ar(s) = align (hy, hy) = (5.1

After the attention weights are calculated, encoder outputs are multiplied with
these weights and averaged to obtain the context vector. Context vector is then
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Figure 5.8: Attention mechanism in the TransProse decoder.

concatenated with the decoder output and eventually used to calculate the vocab-
ulary sized one-hot word token output.

The depiction of the decoder illustrated in Figure 5.7 has one type of prosodic
outputs: pause flag. Flag outputs are of size 2 and are designed to fire when a
pause is predicted after the current predicted word of the timestep.

Both in encoder and decoder, word embedding layer is initialized with pre-
trained word vectors, and is updated during training.

Learning Procedure

A translation model enhanced with prosodic input and/or output is obtained
in two stages. First, training is performed on parallel text data updating only the
parameters belonging to the text encoder and decoder. On a second stage, training
is performed on prosodically annotated parallel data with the joint text+prosody
encoder/decoder components. Before starting the second stage training, the ex-
tended text+prosodic architecture is initialized with the pre-trained first stage pa-
rameters. While training on prosodic data, all parameters are updated, where
prosodic model components are trained from scratch.

In order to calculate gradients for the model to converge while training, loss
functions has to be defined for the model outputs. The loss function compares

97



the prediction of the model to the gold output and back-propagates to decide how
the model parameters should be updated. For text token and flag-based outputs,
masked cross entropy is used. Average loss is calculated after each batch by sum-
ming each individual loss with its respective weight, as in Equation 5.2:

Ltotal = )\word : Lword + Apauseflag : Lpauseflag (52)

In text training, total loss function is only the loss coming from word token
predictions. In audio training, loss weights Ayorq and Apgysefiag are set to 1.0
and 10.0 respectively. In this work, pause flag output is employed only in the
experiment reported in Section 5.4.3.

For parameter optimization, Adam (Kingma and Ba, 2014) is used. After
each training epoch, model is validated on a smaller validation set. Training is
continued until no improvement is noted in terms of total loss in the validation set
in the last three epochs.

5.3.2. Data and Data Preprocessing

Training is performed in two stages with two types of data, a parallel text
corpus and a prosodically annotated parallel spoken audio corpus. OpenSubtitles
corpus and Heroes corpus were used respectively for the two stages of the task.

Parallel Text Dataset

In order to keep consistent in the movie domain, text data are also obtained
from movie based resources. OpenSubtitles collection® provides parallel text ob-
tained from movie and series subtitles and is provided freely in the OPUS website
(Lison and Tiedemann, 2016). The OpenSubtitles2018 release* contains 1,782
bilingual text pairs among 62 languages. For the English-Spanish pair more than
61 million sentence pairs are available.

The text dataset to train TransProse models is gathered from this set. The
dataset size was restricted to 5 million sentence pairs to accommodate training in
reasonable amount of time. Sentence pairs for this set of 5 million sentence pairs,
which we call the opus5Smm set, is obtained by a simple set of filters selecting
from the original corpus. These filters are:

Shttp://www.opensubtitles.org/
“http://opus.nlpl.eu/OpenSubtitles2018.php
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1. Sentences shouldn’t contain more than a certain number of tokens (40 in
this case),

2. Sentences shouldn’t contain any non-alphanumeric characters,

3. Sentence should only consist of tokens in a pre-determined vocabulary of
most frequent 30,000 tokens in the whole corpus.

These filters were determined in order to ensure a training set as clean as pos-
sible. Since the corpus is derived automatically from subtitles registered in open-
subtitles.org, it is likely to come across badly written sentences or misalignments.
Also, subtitle segments where auditory or visual annotations are made was filtered
out. These subtitle segments contain information on speaker, background music,
voice characteristics and even signatures of the subtitle authors and are marked
with usage of XML-style tags or other non-alphanumeric characters.

Another important characteristic of the movie subtitles is that translations are
not necessarily literal. The differences are caused by the nature of subtitling, e.g.
sentences are cut short to fit on the screen or some spoken remarks are omitted
to simplify reading. This feature makes movie subtitles sub-optimal for training
translation models.

The opusSmm dataset consists of 5 million sentence pairs plus 10,000 pairs
for validation and 10,000 for testing purposes. For tokenization, NLTK tokenizer
(Bird et al., 2009) is used with a modification on English enclitics. Words tokens
were separated from apostrophes. For example the word “I’ll” consists of two
tokens: “T” and “’11”.

Parallel Speech Dataset

For the second stage training involving prosodic parameters, Heroes corpus is
used. The experiments described in this chapter are performed on a pre-release
version of the corpus that consisted of 7225 parallel segments. Two training-test-
validation partitionings generated from this dataset are described in Table 5.3.
The first partitioning heroes-v1 is generated by taking 80% of the shuffled seg-
ment pairs as training set and dividing the rest into two to be used as test and
validation sets. The second partitioning heroes-v2 is generated in a more manual
fashion. First, 138 segment pairs were manually picked from heroes-vi test set,
that ensured a translation well enough to be used in the prosodic prediction exper-
iments. Secondly, after shuffling the rest of the segment pairs, 200 were chosen
randomly for the validation set and the remaining 6887 segments were allocated
as training set.
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#Training #Validation  #Testing

Dataset

samples samples samples
heroes-vi 6141 542 541
heroes-v2 6887 200 138

Table 5.3: Heroes corpus partitioning versions and number of train, validation
and testing set samples.

Punctuation Handling and Prosodic Sequence Representation

In the neural machine translation model described above, prosodic features
are assumed to be parallel to the tokens (words and punctuation) that form the in-
put and output sequences. Resulting from this design choice, punctuation tokens
also need to carry prosodic features. Although this is logically unintuitive, it was
the approximation that was made. Figure 5.9 shows an example of an utterance
from the speech corpus and its representation as an input sequence to the neural
network. The original segment consists of 4 tokens as can be seen in the Proso-
graph illustration. After tokenization, the input sequence results ends up with 7
tokens (including the END token). FO and intensity features are copied into the
punctuation mark tokens attached to a word.

Speech segment
it'sfallfright|[scott]

Sequence representation
word token it 's all | right| , |scott| . |<END>
pause after 00 |00 000|003 0000|000 00
fO mean -1.20/-1.20|-1.29/2.13 |12.13/0.25 0.25| 0.0
intensity mean | 0.02 | 0.02 | 0.03 | 2.34 |2.34/0.83/0.83| 0.0

Figure 5.9: Segment s3_12_0124_EN from the Heroes corpus and its sequence
representation.

FO and intensity features, which were already normalized with respect to the
speaker norm, are further normalized within —1 to +1 representing corpus mini-
mum and maximum. Pause duration was normalized within 0 and 1, 1 meaning a
pause duration of 10 seconds.
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Further Implementation Details

The architecture described in this section is implemented with PyTorch®. Text
models were trained on graphical processing units (GPU)® and second stage prosodic
models were trained on CPU. Other hyperparameters used while training are listed
in Table 5.4.

Hyperparameter Value
Encoder learning rate 0.0001
Decoder learning rate 0.0005

Batch size 64

Hidden layer size 512

Number of GRU hidden layers 2
Decoder dropout rate 0.1
Gradient norm clip rate 50.0
Word vocabulary size (EN-ES) 30,000
Maximum sequence size 40

Table 5.4: Hyperparameters used in the experiments with TransProse architecture.

Initial word vectors were trained using the gensim library (Rehtifek and So-
jka, 2010). These vectors were trained from English and Spanish segments in the
complete OpenSubtitles corpus. An optimal vocabulary was created with a com-
bination of the most frequent 30,000 tokens from this corpus with the tokens in
the Heroes corpus.

5.4. Experiments

In this section I will explain the following three stages of experimentation that
is based on the proposed TransProse framework:

1. How does prosodic punctuation restoration affect translation?
2. Does pause encoding improve translation?

3. Can pauses be translated jointly with lexical information?

Shttps://pytorch.org/
®GPU was kindly donated by NVIDIA through the GPU grant program

101


https://pytorch.org/

5.4.1. How Does Prosodic Punctuation Restoration Affect Trans-
lation?

In previous chapter, it was stated that punctuation restoration of transcriptions
has an important role for subsequent processing steps such as machine translation.
This section focuses on this very statement and explores the effect of punctuation
restoration in transcripts on translation. Principal functionality of punctuation in a
machine translation system is that it segments source input into meaningful units
through sentence structure, which in turn gives cues on the output structure. Most
state-of-the-art translation systems take sentences as units to translate. The type
of punctuation that ends the sentence signifies if it is a statement, interrogation or
exclamation. This does not only affect what punctuation mark should be placed
at the end of the target sentence but also the translation itself. Moreover, intra-
sentence segmentations through usage of commas signal which types of word
groupings (e.g. clauses) should be carried to the target translation.

The first question that this section explores is: To what extend source in-
put punctuation affects machine translation performance? Secondly, assuming
to have unpunctuated transcriptions of an audiovisual content, e.g. coming from
ASR, how can we recover from this loss with punctuation restoration as a prelim-
inary process step to machine translation? Thirdly and mainly, the effect of using
prosody and domain-adapted punctuation and translation models is explored.

Experimental Setup

The experiments are based on the movie domain focusing on the use case of
translation of TV series. Translation models were trained on opusSmm set and
then adapted to the heroes-v1 set.

In order to quantify the difference in performance caused by punctuation, the
source sentences are sent to translation with and without the punctuation marks
already present in the dataset. These marks are the annotated punctuation in the
original English subtitles of the TV series.

Punctuation restorations are performed over English segments with models
obtained using the punkProse framework presented in Chapter 4. Four models
that were trained specifically for this experiment are listed in Table 5.5. As the
Heroes corpus is not sufficiently big to train a punctuation model, all models are
principally trained on the TED corpus and then fine tuned to movie domain by
training over the English segments of the heroes-vI set. Two types of feature sets
are used for training the punctuation recovery models: 1. Lexical-only where
words are the only features for tedheroes-w, 2. Lexical-prosodic where words and
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Punctuation Base training | Adaptation Features

model dataset dataset

ted-w TED Corpus - word

ted-wpmf TED Corpus - word, pause, mean-FO
tedheroes-w TED Corpus Heroes corpus | word

tedheroes-wpmf | TED Corpus Heroes corpus | word, pause, mean-FO

Table 5.5: Punctuation restoration models used for punctuating raw English seg-
ments.

two prosodic features are used (pause and mean-FO0) for tedheroes-wpmf.

Two types of translation models were created with respect to source language
punctuation. The standard model was trained with punctuation presence in both
source and target language segments (model p — p). A side model was created
by removing punctuation in English segments but keeping in Target (model © —
p). This model was created to test if a translation model is able to recover the
punctuation on the target side even though it is not present in the source language.

Results

Table 5.6 shows the translation performance of various settings in this experi-
ment. The baseline, which translates from manually punctuated English transcrip-
tions, gives a BLEU score of 20.15%. A significant fall of almost 8% in BLEU
is observed when the punctuation marks are removed from the translation input
when the same translation model is used. Although, through using the transla-
tion model that was trained on unpunctuated input (v — p), this fall is largely
recovered (17.44% BLEU).

The rest of the rows on Table 5.6 are results from translation of English seg-
ments with recovered punctuation. BLEU scores obtained with 4 source input
types, each one resulting from using a different punctuation model, are reported.
It can be seen that BLEU scores improve generally compared to the unpunctu-
ated input. However, punctuation models trained from a different domain does
not seem to reach the performance of the translation model that predicts from un-
punctuated input. This threshold is only surpassed by the restored input that is
adapted to the dataset and uses prosodic features as input (18.08% BLEU).

It has to be taken note that the restoration models only predict period (.),
comma (,) and question mark (?). Other punctuation marks such as colon (:) and
quotation marks () have an important role in defining the meaning thus needs to
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Punctuation in source Punctuation Translation model BLEU (%)
phrase model

subtitle (baseline) - p—p 20.15
none - p—Dp 12.17
none - U —p 17.44
restored ted-w p—Dp 16.73
restored ted-wpmf p—p 17.22
restored tedheroes-w p—p 16.94
restored tedheroes-wpmf  p —p 18.08

Table 5.6: BLEU scores obtained from translating English subtitle segments with
restored punctuation.

be included during translation if general domain translation is considered. How-
ever, in movie domain these punctuation marks are seldom used.

5.4.2. Does Pause Encoding Improve Translation?

In the previous section I reported the improvement in translation quality through
punctuation restoration on the input side of the system. Results showed that us-
ing prosodic modelling on the punctuation restoration process benefits translation
quality in terms of BLEU scores. In this section, I further explore the introduction
of prosodic features directly on the translation system and its eventual effect on
text translation quality. I particularly focus on the inclusion of inter-lexical silent
pauses as an additional feature on the encoder side of the sequence-to-sequence
MT architecture.

Motivation for this question comes from the observations made from the dubbed
scripts of the Heroes corpus which was presented in Section 5.2. It has been ob-
served that many times pausing in the English segments were reflected in the
Spanish translations in terms of phrasing. These examples suggest that pauses
residing in the input sentence might be a feature that needs to be taken in an auto-
mated translation setting.

Experimental Setup
In this experiment, a prosodic translation model which takes inter-lexical pause

durations as input besides the word input. Only word tokens are decoded. This
model is compared against the baseline presented in the previous experiment.
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Both models are trained on punctuated input sentences. On a real-world set-
ting the input sentences would lack punctuation since they would be the output of
an ASR system. However, in this case, having an access to a punctuation restora-
tion system remedies this deficit. Punctuation marks are kept in input sentences
for two main reasons: (1) for their effect on translation quality (as proved in pre-
vious section, and (2) for their high correlation with pauses in speech.

As training and testing sets, heroes-v1 dataset is used. Two versions of the
test set are created: (1) with original subtitle punctuation annotations and (2) with
recovered punctuation using the prosodic punctuation recovery model tedheroes-
wpmf presented in previous section. Two versions of the testing sets are identical
in terms of the word tokens but show differences in punctuation due to the errors
made during recovery.

Results
translation encoder type
text text+pauses
punctuation in input | subtitle | 20.15 21.46
recovered | 18.08 19.15

Table 5.7: BLEU scores (%) on the heroes-vI testing set with and without pause
encoding.

Table 5.7 lists the BLEU scores obtained by the baseline and the prosodically
enhanced model on the two testing sets. With manually annotated punctuations
on the input sentences, there is an improvement of 1.31% in terms of BLEU scor-
ing. With punctuation recovery preprocessing on the raw transcripts, translation
quality still increases by a 1.07%. These improvements prove the hypothesis that
prosodic encoding can help improve quality of neural machine translation.

5.4.3. Can Pauses Be Translated Jointly with Lexical Informa-
tion?

In previous experiments, I dealt with the input of prosodic features —mainly
pause— to a translation system in order to improve the translation quality. This
section further expands on this framework and explores also the outputting of
prosodic features in order to be used as cues in synthesis applications. The moti-
vation for this task is to approach more the process of automatic dubbing.
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The particular task I define in this section is the transfer of pauses. Previ-
ously on Section 5.2, I have given some examples of direct and indirect transfer
of pauses in the dubbed movie segments of the Heroes corpus. It shows that in
majority of the times a pause in the English segment is reflected in the dubbed
Spanish segments. I delve into the question of whether its possible to incorporate
the modelling of transferring of pauses in a neural machine translation framework.

Experimental Setup

In order to carry out this task, TransProse framework is set to input and output
pause features. As explained in Section 5.3.1, the encoder-decoder architecture
accepts prosodic input for each input word token. It can also be set to output bi-
nary or real-numbered features for each output word token. In this experiment,
each input word token to the encoder is accompanied with the duration of the
pause coming after that word token. On the decoder side, for every output word
token a binary flag is outputted determining presence of a pausing coming after
that word token. To keep the model simple, duration of the pauses are not pre-
dicted.

In this experiment, heroes-v2 set is chosen as the prosodic adaptation dataset
for its selection of testing samples that consists of hand-picked simpler sentences.
In this particular setting, the translation quality is an important factor in terms of
evaluation. If the text translation is not above a certain quality threshold, it is hard
to determine whether it is right or wrong where the model predicts a pause at a
certain point.

Results

The task of predicting labels for each predicted word poses a particular chal-
lenge in terms of evaluation. The reason is that the predicted text translations are
generally different than the gold standard translations. If the word with a pause
after in the gold standard is not present in the predicted translation, then there is
no way to evaluate the pause prediction performance. Also, as the data are not
created in laboratory conditions, pausing in the input language segments are not
necessarily reflected in the target language segments in 100% of the cases. For
these reasons, I carried out manual inspection on the relatively small test set to
see how much the model predicts meaningful pauses that reflect the pauses in the
input sentences.

On manual inspection, it is seen that in a minority of the cases input pauses
were reflected on the predicted prosodic translations. Out of 138 segments in the
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testing set, 64 of them had a silent pause in the input English segments. Out of
prosodic translations of this 64 segments, in only 16 of them a pause flag is output
(25%). Also, in 9 segment translations a pausing is predicted even though there
is none in the original input sentence. Statistically it can be said that the model
performs poorly in reflecting pauses in translations.

Even though a small portion of the pauses in input sentences are reflected in
the prosodic translations, it is seen in some of the translations that model is able
to convey the input pausing correctly to the translation. See Figures 5.10 and 5.11
for some of the examples that can be deemed as successful prosodic translations.

Input segment
just] [allittlefsad]that'sfall]

Prosodic translation
Es un poco [P] triste, eso es todo.

Figure 5.10: Prosodic translation of segment s3_16_0113 from the Heroes corpus.

Input segment
lcomelonclaire| |it's|me]

Prosodic translation
venga, claire. [P] soy yo.

Figure 5.11: Prosodic translation of segment s3_1_0001 from the Heroes corpus.

Examples like these show that the model does learn to predict pauses in trans-
lations to some extend. However, the size of the training set shows to be too small
to obtain useful generalizations for this problem.

Perception tests with text-to-speech synthesis

A perception test was prepared to test to what extend the pausing cues out-
putted by the prosodic translation actually help. This test involved participants
listening to a batch of original segments from the Heroes corpus and then lis-
tening to two types of synthesized translations (dubbings): (1) synthesis of the
“classical” text translation output, and (2) synthesis of the prosodic translation
together with the prosodic cues. Two comparisons were made for each sample
pair:

1. Which one of the Spanish dubbings is a better translation of the original
English segment?
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2. Which one of the dubbings better reflects the prosody of the original speech?

Selecting the samples It was challenging to select the samples to be used in
such a test for two reasons: firstly, the quality of translations was, in general,
considerably low. If a fair comparison has to be made, both outputs of the text
translation model and the prosodic translation model had to be with an acceptable
quality. This was assured by manually picking samples from the testing set which
had acceptable translations for both models. Secondly, if a prosodic comparison
was to be made, there had to be a prosodic cue output on the prosodic model.
As reported earlier, only one quarter of the prosodic translations of the testing set
actually had a pausing output given that there was a pausing in the source English
sentence. 15 sentences were selected respecting these requirements.

Synthesizing the translations IBM Watson TTS 7 was used to obtain synthe-
sized versions of the translations. This service is provided free of charge and offers
inputting of prosodic conditioning with SSML tags (Taylor and Isard, 1997). In
this case, it was only needed to add breaks after the words with a pause after on the
prosodic translations. Lengths for the breaks were selected regarding the average
lengths of breaks in the Spanish segments.

Results 32 people participated in the test. The results of the perception test
show that in 76.5% of the cases the translation made by the prosodic model
was preferred. However, in prosodic assessment, synthesized samples with the
prosodic cues were preferred in only 27% of the cases. In 32.4% of the cases,
participants stated that they heard no difference between the synthesized samples
in terms of prosody. The majority 40.6% preferred synthesized version of the text
translation.

The lack of agreement on synthesized samples can be explained by two rea-
sons: firstly, both synthesized samples were greatly far from the original segments
from the series. Many participants found the dubbings highly “robotic™ after hear-
ing an original actors version from the TV series. Second reason is that in many
samples the added pauses contributed even more to the unnaturalness of the syn-
thesized samples. This shows that the pauses cannot be taken in isolation from
other prosodic cues. Appearance and duration of the pauses are directly affected
by the speech rate. In turn, a pause between two words affects the general in-
tonation of the sentence. If the pause for example is placed for emphasis, the
emphasized word should be marked with a high pitch or intensity as well. Place-
ment of a pause without taking account the general prosodic structure does not
contribute in terms of expressivity and even might harm it in terms of naturalness.

"https://www.ibm.com/watson/services/text-to-speech/
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5.5. Conclusion

In this chapter, I have discussed about the reasons and ways to include prosodic
features in a spoken language translation pipeline. I formed my motivation on the
use-case of automatic translation and dubbing of media material such as movies
or TV shows. A prosodically enhanced neural machine translation system was
proposed. Experiments were performed using a parallel corpus compiled from
the original and dubbed spoken segments from movie domain.

The empirical study performed on the segments of the Heroes corpus indicate
that pauses have an effect both on the translation and dubbings made by profes-
sionals. In majority of cases both original and dubbed speech segments agree
on containing an inter-lexical pause. I used these findings to argue that if an au-
tomated system was to be built to translate and dub spoken segments in a TV
show, it has to heed certain prosodic characteristics of the actors’ speeches just as
dubbing artists do. I further demonstrated how the classic speech-to-speech trans-
lation pipeline would fail to do a proper translation when prosody of the source
sentence is ignored.

Motivated by the shortcomings of this classic translation pipeline, a novel
framework has been introduced that takes prosodic features into account and
outputs prosodic cues for the synthesis of the translated segments. This frame-
work, which I call TransProse, is designed to take speech transcriptions together
with their word-level prosodic features and output translations with word-level
prosodic cues. Joint prosodic-textual translation models were trained in two stages,
where in first stage translation of word tokens is learned from a large corpus from
movie domain and later transfer of prosodic features are learned on a second stage
from a corpus annotated with prosodic-acoustic features.

My experiments involving the incorporation of prosody to the movie-domain
translation pipeline were built around these three questions: (1) How does prosodic
punctuation restoration affect translation?, (2) Does pause encoding improve trans-
lation? and (3) Can pauses be translated jointly with lexical information? Through
these three questions I have employed prosody into the TransProse translation
pipeline in three steps. In the first step prosody is incorporated on the standard
text-to-text translation setting by punctuating the source sentences using prosodic
cues. In the second step, inter-lexical pausings as the sole prosodic features is
introduced on the encoder side to improve the translations. And finally on the
third step, I introduced both prosodic input and output where the output tokens
were accompanied with flags that signal if a pause should be placed after a lexical
element or not.

As my initial study suggested, improvements over the translation quality were
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achieved with incorporation of prosody into the input side of the translation frame-
work. Related to my first question, I reported an improvement over usage of
prosodic features in a preliminary punctuation restoration step. This was demon-
strated with automatic punctuation recovery in the input phrases using first solely
lexical features and then lexical-prosodic features. It showed that punctuation re-
covery on input phrases improves a lot the translation quality in movie domain.
Lexical-based punctuation recovery recorded an improvement in terms of 4.77%
BLEU over the unpunctuated input. However, a translation model that was trained
to recover punctuation on target phrases performed better (5.27% BLEU increase)
without an additional punctuation recovery process. Finally, the lexical-prosodic
punctuation recovery was employed on the input sentences. This setting worked
the best in terms of translation quality given unpunctuated input sentences with a
BLEU improvement of 5.91% compared to unpunctuated input. The experiment
showed that a prosodic punctuation recovery step before translation serves best
for overall translation quality.

For answering my second question, I have incorporated inter-lexical pauses to
the translation pipeline and assessed its effect on the translation quality. Compar-
ing with standard text translation an improvement of 1.31% BLEU was achieved
with incorporation of pause feature on the input side. To demonstrate this increase
in a setting closer to a real speech-to-text translation setting, punctuation marks in
the input phrases were removed (which would be missing in ASR output) and re-
covered again using the prosodic punctuation models and a similar improvement
has been recorded (1.07%). The results clearly show the usefulness of including
prosodic features in a spoken translation pipeline. This proved my hypothesis that
pausing could act as a cue in machine translation just like punctuation, given their
co-presence and abundance especially in movie domain. Incorporation of more
prosodic features should be considered in future research.

The final experiment presented in this section delved into the task of spoken
output with the motivation of further work in a full speech-to-speech translation
pipeline. I have demonstrated that through the proposed framework it is possible
to obtain some meaningful output to be used as cues in a text-to-speech system.
However, low performance on text translation certainly hindered the process of
evaluation since it was difficult to assess the correct placement of pauses on a dif-
ferent translation than the reference translations. To account for this, a smaller and
cleaner test set was prepared. Manual inspection on output in this set also failed
in demonstrating a successful transfer of pausing within a joint prosodic-lexical
translation architecture. This can partially be explained by the non-standard trans-
fer of pauses in the data, such as silent pauses being dubbed as filled pauses etc.
Also, it could be a problem in the architecture. Pause encoding has to pass through
many layers in the architecture until the pause flag output layer, which is con-
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nected through the more strongly trained lexical path. It is possible that pause
information gets lost in the way with this setup. Techniques like skip-encoding
(Do et al., 2017a) of prosodic features can be a remedy for this.

Further perception tests were performed on a selected meaningful set of sam-
ple outputs with pause information to see the feasibility in using this type of out-
put for synthesis. A state-of-the-art TTS system was employed to synthesize these
translations with the pause intervals coded as breaks. Participants were asked to
compare them with the synthesized samples of the regular text translations. In
average, prosodic translations were preferred in terms of translation but not in
terms of closeness to the original samples from the series. The conclusion from
this experiment was that single prosodic features cannot be considered as isolated
from other features. In order to achieve a complete transfer of suprasegmental
prosodic features, many aspects should be considered as a whole such as transfer
of spectral characteristics, speech rate, intonation, etc. in a TTS system.

All in all, the proposed methodology paves the way for research for inclusion
prosody in both neural speech-to-text and speech-to-speech translation pipelines.
Even with a simple model and a limited sized audio data it is possible to achieve
improvements on spoken language translation in movie domain through incorpo-
ration of prosody.

Next chapter, I will conclude the thesis with final remarks and possible future
work.
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Chapter 6

CONCLUSIONS AND FUTURE
WORK

In this dissertation, I have addressed the motivation for the inclusion of prosodic
modelling in systems with spoken input. Initially, I have tried to give a general
perspective on the issue while explaining my motivation for this work. As it is not
only the linguistic content but also the para-linguistic content encoded through
prosody that counts in human communication, machines should also pay atten-
tion to it in processing natural languages in their spoken form.

Within the development of speech processing technologies, focus is given into
the extraction and transformation of the linguistic content. Prosody, which has
an important linguistic and para-linguistic role in communication is generally not
given the attention it deserves.

Defined within this broad perspective, I have argued and demonstrated my
point specifically on two main applications that process spoken language: auto-
matic speech transcription and spoken language translation. In the former one, I
focused my attention on the effect prosody has on the punctuation of the resulting
transcription. In the latter one, I experimented on the inclusion of pause features
on both input and output of a sequence-to-sequence neural translation pipeline,
with a focus on movie domain. To accommodate both of these data-driven ap-
proaches, a number of toolkits were developed for the creation, processing, han-
dling and visualization of speech data annotated with acoustic-prosodic features.
Using these toolkits, two prosodically annotated speech corpora have been pub-
lished, one of them being the first example in the highly expressive movie domain.

This chapter is organized as follows: I will give final conclusions regarding
the developments and experiments conducted within the framework of this disser-
tation in Section 6.1. Next, I will sketch a road map for future work in Section
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6.2. Finally, the achievements that are the results of the work in this dissertation
and attributions are given in Section 6.3.

6.1. Conclusions

The motivation to enhance speech related methodologies with prosodic mod-
elling comes with a cost and that mostly resides in the labour of data harvesting.
It is notable the portion of the work given in this dissertation on development of
methodologies to collect naturally expressive speech data and shape them to be
processed in machine learning-based applications. A complete pipeline for col-
lecting, handling, annotation, storage and visualization of prosodic data has been
presented. Proscript library, which was developed for acoustic-prosodic annota-
tion of transcripted speech data, served a basis for the experimentation presented.
Regarding collection of large datasets, Prosograph was developed as a side project
that served greatly in manual examination of prosodic corpora. It was seen that
there was a lot to learn from the data itself during the design of machine learning-
based systems that process prosody. Nature of prosody shows that it is worth
its own set of toolkit for examination and studying. Prosograph addresses this
with its easily programmable interface that helps visualization of speech related
characteristics in huge portions of spoken data.

I furthermore addressed the lack of availability of expressive parallel speech
corpora to the scientific community. A novel methodology was developed for
exploiting the readily available parallel speech data residing in dubbed movies.
This framework was utilized for obtaining a parallel English-Spanish expressive
speech dataset from a TV series. Heroes corpus, which consists of 7000 paral-
lel audio segments with transcriptions and annotated prosodic features, is made
openly available. This is to my knowledge first example of a corpus containing a
rich variety of prosodic characteristics and is bilingually structured. The experi-
ments carried out using this corpus demonstrated that dubbed movies can serve as
a valuable resource for cross-lingual prosodic studies and developing prosodically
motivated translation methodologies.

A part of this dissertation focused on the topic of punctuation as it was seen
as the closest form of symbology in written text that is influenced by prosody. It
serves for various functions including marking boundaries in discourse, modality
in communication (question, affirmation, exclamation etc.), resolving ambiguity,
etc., all of which is partially encoded with prosody in spoken language. Output
of speech recognition interfaces lack this form of symbology that proves to be
essential for both humans and machines in processing of the transcript.
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I have presented a novel methodology that employs lexical and prosodic fea-
tures in a neural network-based framework for the task of punctuation restoration
in speech transcripts. The framework was designed to work with purely spoken
data to avoid the dominance of written language, which is the case in previous
works. Moreover, it made possible the integration of any desired feature (lexical,
syntactic or prosodic) and thus enabled the evaluation of effect of various features
on the task. Experiments that were conducted on a corpus of conference talks
showed that combination of the word, POS, inter-lexical pause and pitch features
worked best for the accurate restoration of the three principal punctuation marks:
period, comma and question mark. The setup that performs best among three
punctuation marks obtained an F score of 70.3% which showed an improvement
of 3.5% compared to the baseline approach when only spoken data was used. Fur-
thermore, for individual punctuation marks, F scores of 83%, 71.8% and 55.2%
were reported employing various other feature combinations. Period had a ten-
dency to benefit from the use of intensity features. Commas were detected gen-
erally with low accuracy but showed that use of pitch features helped. The low
scoring of commas was explained with the possible variance in punctuation anno-
tation in the reference transcripts. Although pitch features were expected to help
detection of question marks, it did not show any improvement with its inclusion.
This signals the need for a better modelling of pitch features in the framework as
future work. As an architecture choice, converting continuous prosodic features
to discrete levels on input improved the results in general.

The punctuation recovery models obtained with this approach gave promis-
ing results also when employed within a framework where an automatic speech
recognition system was employed. This was demonstrated in an interactive setup
employing a commercial large vocabulary automatic speech recognition system
and Prosograph.

Effect of prosody in punctuation restoration modelling was tested on two sub-
sequent processes: dependency parsing and machine translation. The former eval-
uation was conducted on a small dataset and showed that accounting of prosody
does imply an improvement in correct parsing of the sentences. An improvement
of 5% was recorded with lexical feature-based punctuation restoration of unpunc-
tuated sentences in terms of labelled attachment score. This was further improved
by 0.7% when lexical-prosodic punctuation restoration was employed. This shows
that commas, which are detected more accurately with prosodic models, do show
improvement in parsing despite their low detection accuracy.

The final set of experiments presented in the dissertation involved spoken
language machine translation (SLMT) based on movie domain. My motivation
was to incorporate prosodic input and output into a neural machine translation
pipeline, exploring ways to improve automatic subtitling and dubbing. Example-

115



based and statistical study showed agreement of prosodic phenomena in dubbed
segments of the expressive parallel speech dataset (Heroes corpus). Focus was
given to inter-lexical silent pauses as a prosodic phenomena in both these stud-
ies and the methodology proposed. I introduced a neural machine translation
framework that was able to take prosodic input and output besides the lexical
information to be translated. This framework that I call TransProse, was used for
exploring these three questions: (1) How does prosodic punctuation restoration
affect translation?, (2) Does pause encoding improve translation? and (3) Can
pauses be translated jointly with lexical information?

Regarding the first question, it showed that a prosodic punctuation restoration
step prior to translation serves to improve translation quality. A known technique
to recover for missing punctuation in input phrases of a SLMT system is to train
models that learn to translate from unpunctuated to punctuated sentences. Trans-
lation using this technique taken as baseline worked better than performing lex-
ical feature-based punctuation restoration beforehand. However, when prosodic
features were employed in the punctuation restoration process, an improvement of
0.5% was recorded in terms of BLEU scoring compared to the baseline technique.
This experiment showed that encoding of prosodic features in a MT pipeline,
through a process of punctuation restoration, can help in improving translation
quality.

I explored my second question regarding the effect of pause encoding in trans-
lation by setting the TransProse framework to do joint encoding of inter-lexical
silent pauses with lexical information. This setup was tested on two types of input
in terms of punctuation: First input set contained manually placed punctuation
while the second input set contained automatically restored punctuation to emu-
late a real SLMT setup where ASR output is unpunctuated. Translation of both
test sets showed an improvement in terms of translation quality with the encod-
ing of the pauses. First set showed an improvement of 1.31% and the second an
improvement of 1.07% in terms of BLEU scores. The results of this experiment
showed that encoding of prosody, even within a limited dimension, can indeed
benefit automatic translation. The third and final question was motivated from
the use-case of automatic dubbing of movies and TV-shows. Dubbing involves
carefully timed acting of dialogues in a movie to make it accessible to foreign lan-
guage viewers. A speech-to-speech translation system designed to be used in such
an application needs to take heed of prosody in the translation and dubbings in or-
der to capture the para-linguistic features of actors lines. Usage of inter-lexical
pause features is explored in this aspect.

To evaluate this, I set up a translation framework that both encodes and de-
codes pauses. Each output token in this setup carries a pause flag output for the
purpose of cuing the TTS system that a pause needs to be placed after that token.
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A small test-set had to be built especially for this experiment as it proved to be
difficult to assess the right placement of a pause in inaccurate translations. Some
meaningful pausings were observed in this test set, however no generalized pattern
was discovered. A selection from this samples with “well-transferred” pausings
were synthesized using a TTS system that takes prosodic labels. The perception
tests involving these samples showed that although prosodic translation models
perform better in terms of text translation, in terms of synthesis, they were not
preferred. The synthesized samples were deemed as even more “robotic”” with the
pausings introduced isolated from other prosodic characteristics. Future work on
this aspect need research on a better interface with a TTS system.

6.2. Future Work

As a follow-up to the work in this dissertation, a variety of research lines
and also applications can be mentioned. With respect to parallel data collection
methodologies, a more systematic approach can be followed employing collabo-
ration with dubbing companies. Cleaner and larger corpora can be obtained by
development of processes incorporated in the dubbing process itself.

An improvement on the automatic prosodic feature annotation toolkit could be
labelling of filled pauses. The current setup only accounts for silent pauses easily
obtained from word alignments. An extension on the word alignment software
could be made to exploit phoneme durations. Modelling of filled pauses would
benefit both prosodic punctuation recovery and prosodically enhanced machine
translation.

The prosodic punctuation restoration framework introduced in this disserta-
tion is planned to be integrated within an open source Catalan speech recognition
system (Kiilebi and Oktem, 2018). This will give the opportunity to compare the
prosody-punctuation interfaces between the languages English and Catalan. How-
ever, the low performing comma detection needs to be addressed in future work.
As itis a punctuation mark that is defined mostly within grammatical rules, it sug-
gests the hybrid integration of a syntactically-oriented approach. Also, modelling
of intonation features can be improved by having a higher precision of sampling
of pitch movements. Having pitch aligned to linguistic information on syllable or
phoneme level can work better in this sense.

Applications that automate captioning, subtitling and dubbing will be even
more relevant once an acceptable quality is achieved in real-world applications.
Prosodic modelling for these applications is still a virgin area to be discovered. For
this reason, TransProse framework opens many doors for future research. How-
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ever, there is work to be done before thinking on how to improve the prosodic
modelling on the network. First and foremost, the main lesson gained from the
experiments was that a baseline for good text translation is crucial before thinking
to make prosodic enhancements on the pipeline. This will be the first objective
in near future on this aspect. More recent NMT approaches like Transformer
(Vaswani et al., 2017), which report better performance, could be applied. An-
other problem faced was that the text training corpus employed was sub-optimal.
A base corpus with less noise and more literal translations is central for having
a good text translation baseline. Also methodologies that adapt better to spoken
domain by training on incomplete sentences could help (Niehues et al., 2018).

It showed that dubbed movies as a spoken language translation resource is a
less explored area. There are many features of dubbing, like matching lip move-
ments, sentence lengths etc. that makes it interesting for computational modelling.
The fact that dubbing artists pay much attention to the re-enacting of paralinguis-
tic aspects cross-lingually is a phenomena that could be studied more carefully.
My near future research includes more analyses on the position of matching long
pauses. This is a feature that is more or less directly transferred in dubbing for
matching lip movements. It hints that automatic modelling of this transfer could
be more straightforward. It showed that two types of pauses, silent and filled,
often were used in the place for the other in the dubbed translations. It would
be beneficial to look into ways to annotate this on Heroes corpus and incorporate
them in future experiments.

Also, it would be very interesting to see voice conversion (Turk and Schroder,
2010; Kaneko and Kameoka, 2018) and style transfer techniques (Wang et al.,
2018) in this application area. The former techniques are used to transfer spec-
tral characteristics between two speech recordings. Some recent work include
cross-lingual transfer as well (Sun et al., 2016). Applying these techniques could
make the synthesized dubbings closer to the voices of the original actors. Style to-
kens represent prosodic features in embeddings to be used for encoding prosodic
style of a speaker in end-to-end TTS. A similar method could be employed cross-
linguistically.

I have learned from my final experiment with TransProse framework that hav-
ing a complete speech-to-speech pipeline needs more attention on text-to-speech
systems. Inputting prosodic features as external SSML tags did not improve but
even made the final audio samples sound worse. The cohesion between MT and
TTS has to be improved by putting more focus on the parameters that TTS uses
for prosodic modelling.
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6.3. Achievements and Attributions

This section lists publications, datasets and software created by the author
during the course of the work presented in this dissertation. Finally, I will list the
attributions that are relevant to the work carried out.

6.3.1. Publications

A number of papers were successfully published in peer-reviewed conferences
that cover some of the work presented. Portions from these work were used during
the writing of this dissertation. Below lists these publications together with the
related ones that the author contributed:

» Oktem, A., Farriis, M., Bonafonte, A. Bilingual Prosodic Dataset Compila-
tion for Spoken Language Translation. Proc. IberSPEECH 2018, October
25-29 2018, Barcelona, Spain.

» Kiilebi, B., Oktem, A., Building an Open Source Automatic Speech Recog-
nition System for Catalan. Proc. IberSPEECH 2018, October 25-29 2018,
Barcelona, Spain.

» Oktem A, Farris M, Bonafonte A., Visualizing Punctuation Restoration in
Speech Transcripts with Prosograph. Proc. Interspeech 2018, p. 1493-4,
Sep 2-6 2018, Hyderabad, India.

» Oktem A, Farrds M, Wanner L. Punctuating Transcribed Speech Using
Lexical and Prosodic Cues via Attentional Parallel RNNs. (Under review)
Computer Speech and Language. Elsevier.

» Oktem A, Farrds M, Wanner L., Attentional Parallel RNNs for Generating
Punctuation in Transcribed Speech. In: Camelin N, Esteve Y, Martin-Vide
C. Statistical Language and Speech Processing. 5th International Confer-
ence SLSP 2017; 2017 Oct 23-25; Le Mans, France. Cham: Springer, 2017.
p. 131-42. (LNCS; no. 10583 ). DOI: 10.1007/978-3-319-68456-7 11

= Burga A, Oktem A, Wanner L., Revising the METU-Sabanct Turkish tree-
bank: an Exercise in Surface-syntactic Annotation of Agglutinative Lan-
guages. In: Montemagni S, Nivre J, editors. Proceedings of the Fourth
International Conference on Dependency Linguistics (Depling 2017); 2017
Sept 18-20; Pisa, Italy. ACL; 2017. p. 32-41.
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s Oktem A, Farris M, Wanner L., Prosograph: A Tool for Prosody Visu-
alisation of Large Speech Corpora. In: Proceedings of the 18th Annual

Conference of the International Speech Communication Association (IN-
TERSPEECH 2017),p. 809-10, Stockholm, Sweden: ISCA; 2017.

Oktem A, Farris M, Wanner L., Automatic Extraction of Parallel Speech
Corpora from Dubbed Movies. In Proceedings of the 10th Workshop on
Building and Using Comparable Corpora (BUCC), p. 31-35, Vancouver,
Canada: ACL, 2017.

6.3.2. Datasets

Both datasets that were compiled during the work in this dissertation are pub-
lished openly for the use of the research community. They are listed below with
their short description:

= TED Talks Corpus - TED talks are a set of conference talks lasting in
average 15 minutes each that have been held worldwide in more than 100
languages. They include a large variety of topics, from technology and
design to science, culture and academia. The corpus consists of 1038 talks
by 877 English speakers, uttering a total amount of 155174 sentences. The
corresponding transcripts, as well as audio and video files, are available on
TED’s website!. This dataset is a recompiled version of the dataset used
in Farrds et al. (2016). LINK: http://hdl.handle.net/10230/
33981

Heroes Corpus - Heroes Corpus contains mapped bilingual (English and
Spanish) speech segments from the TV series Heroes. It contains 7000
single speaker speech segments extracted from the original and Spanish
dubbed version of 21 episodes. Audio segments are accompanied with sub-
title transcriptions and word-level prosodic/paralinguistic information. Au-
dio portions are taken respecting fair use. LINK: http://hdl.handle.
net/10230/35572

6.3.3. Software Resources

All software related to the work in this dissertation was developed with the
mindset that another researcher would like to reproduce its results or improve

"http://www.ted.com
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them. Below is the list of repositories that contain the source code used in the
experiments:

movie2parallelDB - Automatic parallel speech database extractor from dubbed
movies. LINK: https://github.com/TalnUPF/movie2parallelDB

Prosograph - A Visualizer for prosodically annotated speech corpora writ-

ten with Processing. LINK: https://github.com/TalnUPF/Prosograph

PunkProse - A library for punctuation generation for speech transcripts
using lexical and prosodic features. LINK: https://github.com/
TalnUPF/punkProse

Proscript - A Python package to help create proscript files. Proscript helps
represent speech with annotated prosody. The library carries automatic an-
notation scripts that are based on Praat. LINK: https://github.com/
alpoktem/proscript

TED talks corpus preprocessing scripts - A library for creating a train-
able corpus from the prosodically annotated TED corpus prepared by Mireia
Farras and Catherine Lai. LINK: https://github.com/alpoktem/
ted_preprocess

Prosodic punctuation generation demo on ASR - This is a demo soft-
ware that contains scripts to punctuate audio recordings using punkProse
library. It is intended to use for demonstration purposes. LINK: https:
//github.com/alpoktem/punkProse_ASR-demo

TransProse - A framework based on sequence-to-sequence neural networks
for translation with prosodic features. LINK: https://github.com/
alpoktem/TransProse

6.3.4. Attributions

I will list in this section the attributions relevant to the work presented in this
dissertation (with no particular order):

= Special thanks to annotators Sandra Marcos Bonet and Laura Gomez Fisas
for their collaboration during the Spanish subtitle correction process for the
development of Heroes Corpus.
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The author received the 2018 Maria de Maeztu Reproducibility Award from
Department of Information and Communication Technologies of Univer-
sitat Pompeu Fabra for his presentation “Generating punctuation in Tran-
scribed Speech: Combining lexical and prosodic features using parallel re-
current networks.” The prize was partially used to finance the Heroes corpus
compilation work.

NVIDIA Corporation has kindly donated a Titan Xp GPU to be used in
training the translation models presented in Chapter 5.

The author has received full-time scholarship from Department of Informa-
tion and Communication Technologies of Universitat Pompeu Fabra through-
out his doctoral study.

Work related to prosodic punctuation restoration presented in Chapter 3 and
4 was developed for this project for the European Union project KRISTINA,
which received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under the Grant Agreement number 645012.

Linguistic analyses on punctuation and prosody in Chapter 4 were carried
out in collaboration with Dr. Monica Dominguez and Dr. Alicia Burga.

Some parts of the work presented in Chapter 3 and 4 were done in collabo-
ration with Dr. Leo Wanner.
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