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Abstract

Alzheimer’s Disease (AD) is a progressive and neurodegenerative disorder characterised by
pathological brain changes starting several years before clinical symptoms appear. Although
at the moment there is no cure, earlier and accurate identification of those brain structures
changes can help to improve diagnosis and monitoring, allowing that future treatments target
the disease in its earliest stages, before irreversible brain damage or mental decline takes
place. The brain of AD subjects shrinks significantly as the disease progress. Furthermore,
ageing is the major risk factor for sporadic AD, older brains being more susceptible than
young or middle-aged ones. However, seemingly healthy elderly brains lose matter in regions
related to AD. Likewise, similar changes can also be found in subjects having mild cognitive
impairment (MCI), which is a symptomatic pre-dementia phase of AD. Thus, in the research
field, it is a challenging to distinguish brain changes in healthy elderly individuals from
incipient AD; as well as in MCI subjects with risk to progress to AD. This work proposes
two methods based on statistical learning methods, which are focused on characterising the
ageing-related changes in brain structures of healthy elderly controls (HC), MCI and AD
subjects, and addressing the estimation of current diagnosis (ECD) of HC, MCI and AD, as
well as the prediction of future diagnosis (PFD) of these diagnostic groups mainly focused
on the early diagnosis of conversion to AD. Analysis of longitudinal biomarkers based on
Magnetic Resonance Imaging (MRI-based biomarkers) is the core of both methods. These
biomarkers were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
and the Open Access Series of Imaging Studies (OASIS), and corresponded to measures of
cortical volume (CV) and thickness average of cortical regions, and measures of subcortical
volume (SV). ADNI data include MRI biomarkers available at a 5-year follow up on HC,
MCI and AD subjects, while OASIS data only include biomarkers measured at baseline on
HC and AD.

In the first method, called Mres, in order to identify the variant (vr) and quasi-variant (qvr)
brain regions over time, CV/TA/SV MRI-based biomarkers of HC subjects were characterised
by using a Linear Mixed Effects (LME) approach on males and females, separately. All
these LME models included the subject’s age at each visitation (age) and years of education
(educ) as covariates. We hypothesised that, by identifying both vr and qvr regions, it would
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be possible to obtain an ageing-based null model, which would characterise their normal
atrophy and growth patterns as well as the correlation between them. By using the null model
on those subjects who had been clinically diagnosed as HC, MCI or AD, normal age-related
changes were estimated, and then, deviation scores (residuals) from the observed MRI-based
biomarkers were computed. The ECD for HC/MCI/AD subjects, as well as the PFD, were
addressed through residual-based Support Vector Machines (SVM) modelling. SVM models
were trained by using the pool of vr biomarkers plus the age as input. The advancement
of early disease prediction was calculated as the average number of years advanced in the
prediction of the future diagnosis of the subjects concerning the last known clinical diagnosis.
We found reductions in most cortical volumes and thicknesses in HC (with evident gender
differences) as well as in sub-cortical regions, including greater atrophy in the hippocampus.

The second method, called Mraw, continues along the same direction as the first method,
addressing both ageing-related brain change understanding and the ECD and the PFD
problems. However, unlike the Mres, this method is focused on directly analysing the raw
MRI-based biomarkers values (without derived residuals) stratified by five-year age groups.
Furthermore, instead of identifying variant biomarkers, Mraw includes a differential diagnosis-
specific feature selection (FS) method, which is applied before classification. First, subjects
with a stable last diagnostic, i.e., who remained as HC (sHC), MCI (sMCI) or AD (sAD)
for the duration of the study were identified and labelled as such. To study the effect of
ageing on brain structures, and to perform morphometric comparisons between sHC, sMCI
and sAD, we fitted random intercept LME models for each MRI-based biomarker including
the age as a covariate. After descriptive analysis, the differential diagnosis problem within
each age group was addressed by carrying out three main experiments—sAD vs sHC, sMCI
vs sHC, and sAD vs sMCI. For each, the most significant biomarkers were selected by
sorting them according to their minimum redundancy and maximum relevance (mRMR)
scores within diagnosis classes. After that, it was applied a feature selector based on an
SVM wrapper. We built two-class SVM models to label subjects as HC, MCI or AD by
using the pool of selected features plus age, gender and years of education as input. The
regional analysis results confirm accelerated or reduced estimates of decline in all CV and
TA measures with increasing age. Results confirm a frontotemporal pattern of atrophy in
sHC subjects across the adult age-span, as well as in sMCI and sAD, which also support
findings from the univariate analysis stage.

In addition, the reliability of both methods to correctly discriminate AD vs HC subjects
was evaluated and compared by testing them on OASIS subjects observed at baseline. Several
features were customised or excluded to facilitate such comparison. Models derived from
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both methods were firstly re-trained from ADNI training data and then tested separately on
remaining ADNI data, as well as, on OASIS data.

Results from both methods could confirm that the frontotemporal change corresponds
to an inevitable process related to normal ageing and is not necessarily an AD-specific one.
Furthermore, it is possible that the vulnerability of these areas to normal ageing-related
decline contributes to their vulnerability to AD-related atrophy. Regarding the ECD problem,
SVM models from both methods obtained better results than comparable methods in the
literature, especially on AD vs HC experiment where most indicators rank in the first place
(accuracy: 98.68%). Both methods also improve the PFD given the current clinical tests,
both in prediction quality indicators as well as in the amount of time by which the diagnosis
is advanced (up to 1.87 years earlier for subjects aged 80-84 years).

Resumen
La enfermedad de Alzheimer (AD) es un trastorno progresivo y neurodegenerativo

caracterizado por cambios patológicos en el cerebro que comienzan varios años antes de
aparecer los primeros síntomas clínicos. La identificación temprana y precisa de estos
cambios ayuda a mejorar el diagnóstico y la monitorización, permitiendo que la enfermedad
sea abordada en sus primeras etapas, antes de producirse un deterioro morfológico y mental
irreversible. El cerebro de los sujetos con AD se reduce significativamente a medida que
avanza la enfermedad, siendo el envejecimiento el principal factor de riesgo para la AD
esporádica, donde los cerebros de la gente mayor son más susceptibles que los más jóvenes.
Sin embargo, ha sido observado que los cerebros de los adultos mayores y de los sujetos en
una fase anterior con deterioro cognitivo leve (MCI) pierden materia en regiones relacionadas
con AD. Esta tesis propone dos métodos basados en métodos de aprendizaje estadísticos,
que se centran en caracterizar los cambios relacionados con el envejecimiento en estructuras
cerebrales de controles sanos de edad avanzada (HC), MCI y AD, y en abordar la estimación
del diagnóstico actual (ECD) de estos grupos, así como la predicción de su diagnóstico
futuro (PFD), principalmente en el diagnóstico precoz de la conversión a AD. Los datos
utilizados corresponden a biomarcadores de neurodegeneración longitudinal obtenidas de
imágenes de Resonancia Magnética (MRI). Estos biomarcadores se obtuvieron a partir de
los estudios Alzheimer’s Disease Neuroimaging Initiative (ADNI) y Open Access Series of
Imaging Studies (OASIS). Los datos de ADNI incluyeron biomarcadores de MRI disponibles
en un seguimiento de 5 años en sujetos HC, MCI y AD, mientras que los datos de OASIS
solo incluyeron biomarcadores medidos al inicio del estudio en HC y AD. En el primer
método, denominado Mres, los biomarcadores que cambiaron significativamente (vr) y los
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que cambiaron en una reducida escala (qvr) fueron identificados en sujetos HC utilizando
modelos lineales de efectos mixtos (LME). Asimismo, modelos nulos basados en el normal
envejecimiento del cerebro fueron construidos para cada género. A través de estos ellos se
buscó caracterizar la atrofia normal y los patrones de crecimiento de los biomarcadores vr
y qvr, así como la correlación entre ellos. Estos modelos fueron utilizados en los sujetos
HC, MCI y AD restantes para inferir los valores normales de los biomarcadores vr y luego
calcular sus desviaciones (residuos) respecto a los biomarcadores observados. A diferencia
de Mres, el segundo método denominado Mraw, se centra en el análisis de los valores directos
de los biomarcadores MRI, estratificados por grupos de edad de cinco años. Mraw incluye un
método de selección de características específicas del diagnóstico diferencial aplicado antes
de la clasificación. En ambos métodos, se entrenaron máquinas soporte vectorial (SVM)
para abordar tres experimentos: AD vs. HC, MCI vs. HC y AD vs. MCI. En Mres, los
modelos SVM fueron entrenados a partir de los residuos calculados para los biomarcadores
vr más la edad, mientras que en Mraw, se utilizó el grupo de características seleccionadas
más la edad, el sexo y los años de educación. El avance de la predicción temprana de la
enfermedad fue calculada como el promedio de años avanzados en el PFD con respecto
al último diagnóstico clínico conocido. Los resultados confirman una reducción en todos
los biomarcadores corticales a medida que la edad avanza, siendo el cambio de algunas
regiones más acelerados que otras. Asimismo, se observó un patrón de atrofia frontotemporal
en los tres grupos de sujetos. Con respecto al problema ECD, todos los modelos SVM
obtuvieron mejor desempeño en la clasificación que los métodos comparables en la literatura,
especialmente en AD vs. HC (Precisión: 98.68%). Ambos métodos también mejoraron la
PFD, tanto en los indicadores de calidad de predicción como en el tiempo de avance en el
diagnóstico (hasta 1.87 años antes en sujetos de 80-84 años).
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Chapter 1

Introduction

1.1 Clinical Motivation

In 2015, an estimated 46.8 million people were living with dementia. This number is
expected to increase to 50 million people in 2017. Alzheimer’s Disease (AD) is the most
common form of dementia, whose prevalence rises rapidly as the world population ages.
In 2006, the worldwide prevalence of AD was 26.6 million. By 2050, a study based on
mathematical model [11] predicted that prevalence would quadruple, by which time 1 in 85
persons worldwide will be living with the disease. Regarding European rates, a collaborative
study carried out in the 1990’s to determine the prevalence of dementia and major subtypes
in several European population-based cohorts [78] found an AD’s prevalence of 4.4% in
2346 demented individuals older than 65. Recently, a meta-analysis study based on literature
research [91] have estimated the prevalence of AD in Europe at 5.05%, with woman’s rate
(7.13%) higher than men’s rate (3.31%). The impact of the disease is huge, not just for the
patient who loses the control of their life; but also for the family who cares for the patient;
and for the society, that has to deal with the growing number of persons with AD in need of
care.

AD is a disease with both pathological brain processes and clinical decline occurring
gradually, with dementia representing its last stage. Changes begin several years before the
onset of clinical symptoms. At some point, neuronal dysfunction and neurodegeneration
impair the ability to carry out essential human functions. Although at the moment there
is no cure, earlier and accurate identification of those brain structures changes can help to
improve diagnosis and monitoring, allowing that future treatments target the disease in its
earliest stages, before irreversible brain damage or mental decline takes place. Thus, there is
an urgent need for biomarker-based tests, which enable a more accurate and early diagnosis
of AD [108] and the prediction of disease progression from Mild Cognitive Impairment
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(MCI), which is a symptomatic predementia phase of AD [3]. Moreover, such tests could
also improve monitoring AD progression, evaluation of new AD therapies, and enrichment
of AD cohorts with specific subsets of AD subjects in clinical trials.

In the last few years, the potential of structural neuroimages based on Magnetic Reso-
nance Imaging (MRI) is used to propose powerful neuroimaging biomarkers. MRI-based
biomarkers quantify the degree of brain atrophy, allowing to measure the correlation between
progression of cognitive impairment and atrophy rate. Despite cerebrospinal fluid (CSF)
biomarkers including CSF-Aβ and CSF-τ have been suggested as the most informative AD
biomarkers [108], many studies have also suggested their combination with other features
types, such as MRI-based biomarkers, socio-demographic characteristics, among others, to
increase early prediction accuracy [18]. On the other hand, despite older people are more
susceptible than young or middle-aged ones for sporadic AD [45], studies have found that
seemingly healthy elderly brains lose matter in regions related to AD. Likewise, similar
changes can also be observed in subjects having MCI.

Thus, one of the most critical challenges in clinical AD research is to identify a set of
reliable and robust AD features to distinguish brain changes in healthy elderly individuals
from incipient AD; as well as in MCI subjects with risk to progress to AD. The research
presented in this thesis aims to address the ageing-related brain change understanding, as
well as the early diagnosis of MCI and AD subjects by using statistical learning methods
to identify MRI-based biomarkers and socio-demographic features and build classifiers to
evaluate them.

1.2 Clinical diagnosis.

The definitive diagnosis of AD requires the presence of high cognitive impairment and
autopsy confirmation of the accumulation of both Aβ and τ . However, in clinical practice,
the diagnosis of dementia due to AD and its previous stages are most often based on the
criteria developed by the National Institute of Neurologic and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA). These
criteria were initially established in 1984, and 27 years later, three research workgroups
where formed by the National Institute on Aging (NIA) and the Alzheimer’s Association
to formulate a set of new guidelines and recommendations for AD diagnostic and research
criteria for the continuum of AD [81, 3, 110]. As a result, in order to disambiguate the term
"AD", researchers distinguished two AD process with three disease’s stages contained within
them [110]. The first process is named AD-pathophysiological (AD-P) process, which refers
to the evidence of the underlying brain disease process at the preclinical stage. The second
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process is named AD-clinical (AD-C) process, which refers to the clinical phase of illness,
which includes not only AD dementia stage but also individuals within MCI stage due to
AD-P. AD-P is thought to begin years before the emergence of AD-C. Figure 1.1 shows a
model of the clinical trajectory, which is known as "The continuum of AD". That model
represents the pathological-clinical continuum of AD where the stage of preclinical AD
precedes both, MCI due to AD and AD dementia, but does not imply that all individuals with
biomarker evidence of AD-P process will progress to the clinical phases of the illness. The
three disease’s stages within each of these processes are described following.

Preclinical AD. This stage includes individuals classified as "Not normal, not MCI". It
also includes: (1) completely asymptomatic individuals with biomarker evidence suggestive
of AD-P at risk for progression to AD dementia, (2) biomarker-positive individuals who are
already demonstrating very subtle decline but not yet meeting standardized criteria for MCI,
(3) individuals who carry one or more ApoE ε4 alleles who are known to have an increased
risk of developing AD dementia (AD-P biomarker-positive individuals), and (4) carriers of
autosomal dominant mutations, who are in the pre-symptomatic biomarker-positive stage
of their illness, and who will almost certainly manifest clinical symptoms and progress to
dementia.

MCI due to AD. This stage refers to the symptomatic predementia phase of AD when
sufficient damage has been accumulated to result in cognitive symptoms and impairment
[3, 122]. Individuals in this stage are characterized as follow: (1) symptomatic but non-
demented individuals who experience a gradually progressive cognitive decline with relative
preservation of other cognitive domains and functional activities, and (2) do not meet the
criteria for dementia. Studies showed that MCI patients progressed to AD at a yearly
rate of 10% to 15%, and the probability of this progression depends on the interaction of
genotypic-phenotypic-environmental factors.

Dementia due to AD. This stage refers to dementia in the clinical process. As a result of
guidelines proposed by McKhann et al. [81], dementia due to AD was classified into three
groups as follow.

1. Probable AD dementia, which includes typical clinical syndrome without histologic
confirmation.

2. Possible AD dementia, which means atypical clinical features but no alternative
diagnosis apparent and no histologic confirmation.
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3. Probable or possible AD dementia with evidence of the AD pathophysiological process,
which includes individuals who meet the core clinical criteria defined for types (1) or
(2) with additional evidence of pathophysiological process detected through some AD
biomarkers.

The first two classes should be used in all clinical settings. The third class should be used
only for research purposes by taking into account both biomarkers for the pathophysiological
process of AD and neuropsychological deficits, in the diagnostic criteria.

Fig. 1.1 Model of the clinical trajectory of AD. Source: Sperling et al. [110]

Regarding monitoring of AD in the clinical practice, neuropsychological tests such as the
Clinical Dementia Rating (CDR) [86], the Mini-Mental Examination Score (MMSE) [46]
and the Alzheimer’s Disease Assessment Scale (ADAS) cognitive subscale [102] are used to
monitor AD progression or treatment efficacy. However, although these tests unquestionably
reflect an important aspect of disease progression (i.e. functional impairment), they also have
several limitations such as relatively low specificity and reliability [87].

1.3 Risk factors

The single major risk factor for developing AD is age. Older brains are more susceptible
than young or middle-aged ones for sporadic AD [45]. Most cases of AD are seen in order
adults, after of 65 years.

Regarding genetic risks, a genetic pattern of inheritance is not observed in sporadic AD.
However, there exists a gene found on chromosome 19 associated with AD risk, which
is responsible for the production of a protein that carries cholesterol in the blood, called
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apolipoprotein E (ApoE). From the three main types of this protein, carriers of the ApoE-ε4
allele have more risk of developing this disease, being sufficient the presence of at least one
allele to advance the age of clinical onset of AD dementia.

Another risk factor to consider is the influence of socio-demographic characteristics.
Both higher levels of education or occupational attainment may act as a protective factor. For
example, studies have found that higher levels of education may increase the brain reserve,
leading to larger brain structures, which can help to counter the effects of brain atrophy
[64, 76].

Finally, coexisting health problems, such as cardiovascular diseases and Type 2 diabetes
can increase the risk of developing AD. Cardiovascular diseases, such as stroke, atrial
fibrillation, coronary heart disease, and heart failure are very prevalent in elderly individuals
and have regularly been linked to AD [26]. This association might be due to shared risk
factors between those and AD, and the fact that cardiac disease causes hypoperfusion and
microemboli, which have been implicated in the aetiology of AD. For example, heart failure
causes damage to blood vessels in the brain, meaning less blood flow and possible neuronal
death. On the other hand, many studies have confirmed that the risk of dementia and AD is
higher in individuals with type 2 diabetes mellitus, even in a pre-diabetes stage [26]. This
tendency is because the increase in glucose and insulin levels causes a direct neurotoxicity.

1.4 Neuropathology of AD.

AD is characterized by pathological changes in the brain at molecular and morphological
levels. Based on causative factors triggered those changes, AD subjects can be grouped
into two groups including the familiar AD and sporadic AD [36]. The inheritable AD is
the smallest group, which is affected by mutations in the genes of presenilin 1 (PS1) and
presenilin 2 (PS2). This group is typically associated with an early onset, before the age of
65 years. However, even if several members of a family have in the past been diagnosed as
having AD, this does not mean that another member of the family will necessarily develop it.
On the other hand, as mentioned in Section 1.3, the sporadic AD subjects are not affected by
the presence of such known genetic causes, but age is their most significant risk factor for
developing AD.

1.4.1 Molecular changes.

Molecular changes in the brain begin several years before the onset of clinical symptoms.
These changes include accumulation of beta-amyloid (Aβ ) plaques and neurofibrillary
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tangles composed of τ amyloid fibrils, and these proteins are associated with neuronal
dysfunction and neurodegeneration causing cognitive impairment. In 1992, Hardy and
Higgins [57] proposed the "Amyloid Cascade Hypothesis", which affirms that Aβ production
and accumulation is the causative agent of AD pathogenesis. Figure 1.2, presented by
Cummings [20], shows graphically that hypothesis. In that figure, it is observed the amyloid
precursor protein (APP) causes the generation of the Aβ peptide, which is followed by
multiple secondary steps, to cell death, neurotransmitter deficit and cognitive and behavioural
abnormalities. The amyloid hypothesis was the core of many investigations focused on
developing agents for disease-modification. However, a few years ago, the total validity
of the amyloid hypothesis has been questioned because there was no validation based on
treatment of that hypothesis [20]. Despite that fact, currently, Aβ deposition is the first
detectable change in AD, but the initial cause of its appearance in the brain is still undefined.

1.4.2 Morphological changes.

Brain atrophy is one of the initial consequence of neuronal death due to AD. The pattern of
atrophy in AD is not random, but usually, it evolves slow changes [45]. Firstly, this pattern
involves the medial temporal lobe (MTL) including mainly the entorhinal cortex, and the
hippocampus. After that, change continues through association areas in medial parietal,
lateral temporal and frontal regions, eventually affecting all regions of cortex [45, 99].
Expansions of the ventricular and sulcal CSF regions also are observed [90, 35]. Once the
patient has reached a diagnosis of AD, neurodegeneration is usually found throughout the
neocortex and subcortical regions, with significant atrophy of the temporal, parietal, and
frontal cortices Risacher and Saykin [99]. The main brain structures changes identified for
each AD stage are briefly described below.

Pre-clinical stage. In this stage, there is evidence that the early Aβ deposition within
the brain is associated with the grey matter atrophy, where the main affected regions are
the neocortex and the parietal and frontal lobules, including higher atrophy degree within
the hippocampus and the cingulate gyrus [36]. However, even these findings, a complete
understanding of the brain deposition of Aβ remains an important study field.

MCI stage Many studies have shown that the atrophy degree in MCI subjects is intermedi-
ate between controls and AD demented subjects. Global grey matter volume in MCI subjects
has been observed smaller than in AD, but higher than in healthy control (HC) subjects, with
significant local reductions in grey matter in the MTL, insula, thalamus, temporal neocortex,
parahippocampal cortex, orbitofrontal and inferior parietal areas [66, 13]. However, when



1.4 Neuropathology of AD. 7

Fig. 1.2 Graphic representation of the “Amyloid cascade hypothesis”of AD proposed by
Cummings [21].
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comparing MCI subjects who did subsequently converted to AD (ADc) with the MCI who
remain stable (MCIs), the first group have shown accelerated atrophy than MCIs.

Dementia due to AD. As neuronal degeneration progresses, atrophy in specific areas
typical of AD becomes readily detectable and measurable by using neuroimages. Studies
have found early pathological changes in MTL regions, such as reduction of hippocampus
volume and the entorhinal cortex; then as disease progress, changes are gradually extended
to temporoparietal cortical regions.

Morphological changes are assessed by neuroimaging biomarkers, which are described
below in the Section 1.6.2.

1.5 Brain morphological changes due to ageing.

The effects of ageing on the brain are widespread and include atrophy caused by dendritic
pruning, as well as a loss of synapses and neurons. Studies have demonstrated that seemingly
healthy subjects lose brain matter over time and brain age-related changes and function are
not uniform across the whole brain or over subjects. The volume of the brain decreases
with age at a rate of approximately 0.2–0.5% per year [43], and this rate might be even
greater over the age of 70 [93]. Regionally, ageing-related atrophy has been observed across
many of the cortical regions [104, 64, 43] with a prominent decline in the prefrontal cortex
and the slight decline of the temporal cortex and parahippocampal cortex [104]. Fjell et al.
[43], Jiang et al. [64] found reductions in several subcortical structures including the caudate
nucleus, amygdala, cerebellum, and hippocampus, the latter being the most studied structure,
with annual atrophy rate of about 2.0% [43]. Studies on cross-sectional and longitudinal
MRI have found significant correlations between gender and cortical and subcortical regions,
but there are inconsistencies between the results [64, 104].

However, many of these age-related changes are shared by neurodegenerative diseases.
Some studies have found that cognitively normal elderly have Aβ deposition in the brain with
similar levels of the substances observed in subjects with dementia due to AD [85]. τ protein
values in AD is higher than in HC, and this protein is also found in other neurodegenerative
diseases referred to as tauopathies [125]. Furthermore, at the macroscopic level, part of
ageing-related atrophy occurs in areas vulnerable to AD, while other changes are observed
in areas less characteristic of early-stage AD [43, 64, 104]. Due to the shared biochemical
and morphological characteristics, it is a complex task to discriminate some of these ageing-
related changes in healthy elderly subjects from subjects affected by early stage of AD.
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1.6 Biomarkers for AD.

Biomarkers of AD are physiological, biochemical and anatomical indicators that can be
measured in vivo and that indicate specific features of disease-related pathological changes
[61]. These biomarkers can improve both the diagnostic and prognostic accuracy of AD
and its differentiation from other neurodegenerative diseases [115]. They enable physicians
to identify individuals at risk for the disease, even before symptoms appear, and possibly
prevent or slow down the progression to dementia.

Based on the current literature, the following five AD biomarkers are the most widely
studied:

• Decreased CSF Aβ42,

• Increased CSF tau,

• Decreased [F-18]-fluorodeoxyglucose uptake on positron emission tomography (FDG-
PET),

• PET amyloid imaging, and

• Structural MRI measures of cerebral atrophy

Because AD biomarkers play an important role both as outcome measures and as inclusion
criteria, researchers have dedicated efforts to measure these biomarkers in cross-sectional
and longitudinal observational studies and to establish the correct ordering of the relevant
biomarkers and their relationships to clinical symptoms. In 2010, Jack et al. [61] proposed a
framework of AD development where the five AD biomarkers do not reach abnormal levels
simultaneously but do so in an ordered manner. The framework represents a hypothetical
model of the time-dependent ordering of onset and maxima of those five AD biomarkers,
where the disease stages appear related to these biomarkers. The five biomarkers are grouped
according to two groups: (1) Biomarkers of Aβ -plaque deposition, where are both CSF
Aβ42 and amyloid PET imaging; and (2) Biomarkers of degeneration including the CSF tau,
FDG-PET, and MRI biomarkers.

One year later, as result of the AD biomarkers revision carried out in 2011 by the NIA
and the Alzheimer’s Association (see Section 1.2), Sperling et al. [110] proposed a new
biomarker model adapted from the original model presented by Jack et al. [61]. In this model,
the pre-clinical phase of AD is expanded, and biomarkers are considered as dynamic, i.e.,
each biomarker changes over time and follows a non-linear time course. Figure 1.3 shows
the main statements of the model, in which the researchers highlight the following findings:
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• Brain Aβ accumulation biomarkers are identified by CSF-Aβ42 assay or PET amyloid
imaging. These biomarkers become abnormal first, possibly with a lag greater than a
decade until clinical symptoms could be quantified. The model highlight that brain Aβ

accumulation is necessary but not sufficient to produce the clinical symptoms of MCI
and dementia,

• Biomarkers of synaptic dysfunction obtained from FDG-PET and functional MRI may
demonstrate abnormalities in very early stage, particularly in APOE gene ε4 allele
carriers.

• Elevated CSF-τ is a biomarker of neuronal injury, and it is measured in the CSF.

• Brain structures are markers of neuronal loss obtained from structural MRI images.
These biomarkers seem to become abnormal a bit later in comparison with the previous
biomarkers, following a pattern of change affected by disease progression.

• Either cognitive and clinical function decline retain a close relationship with brain
structure atrophy in both MCI and dementia stages.

Fig. 1.3 Hypothetical model of dynamic biomarkers of the AD. Source: Sperling et al. [110]
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1.6.1 CSF-based Biomarkers.

CSF is a clear fluid largely produced by the choroid plexus and found in the ventricular system
and subarachnoid spaces surrounding the brain and spinal cord. Due to CSF directly interacts
with the extracellular space in the brain reflecting the associated biochemical/pathologic
changes, it is an ideal source for developing biomarkers in AD [56]. Many studies suggest that
changes in CSF levels of tau and Aβ occur in early stages of AD. A CSF profile consisting of
decreased concentrations of the Aβ peptide extending to position 42 (Aβ1−42) and increased
concentrations of total tau (T-τ) and hyperphosphorylated τ (P-τ) have been associated with
AD signature in the CSF [108, 117, 61, 122]. Probably, damaged and dying neurons that
harbour dystrophic tau neurites and tangles release tau levels in CSF and as a consequence,
its levels are increased. On the other hand, levels of Aβ1−42 may be reduced due to it is
accumulated into insoluble plaques in the AD brain and is not available in a diffusible form.
However, despite the utility of these biomarkers for diagnosis of AD, there exist several
issues that researchers have to face. First, CSF-Aβ and CSF-τ are also found in healthy
elderly people and MCI, thus, it is necessary to discriminate AD-related CSF abnormalities
from the CSF profile in normal subjects due to ageing and MCI. Additionally, the analysis
of these proteins levels in the same sample often varies significantly from institution to
institution due to not being applied a standard procedure protocol.

1.6.2 Neuroimaging biomarkers

Neuroimaging is one of the most promising areas of research focused on early detection of
AD. Currently, image-based diagnostic techniques, such as MRI and computed tomography,
are considered part of the standard workup for AD, being used to exclude other types of
brain diseases, whose symptoms could be confused with AD (e.g., brain tumours or bruising
epidural). Furthermore, with the increasing potential of these techniques and the advent
of new modalities in medical imaging, its use has not only been focused on improving the
accuracy of clinical disease diagnosis, but it has also benefited the potential of these images
to monitor the progression of diseases and effects of treatments. Neuroimaging methods are
capable of detecting early substantial brain changes not only in AD subjects but also in MCI
and in cognitively normal subjects who may be in the preclinical stage of AD [36].

By using neuroimages, Ewers et al. [36] were able to reconstruct the AD trajectory in
the living brain and create a hypothetical model of the temporal profile of neuroimaging
biomarkers, see Figure 1.4. That model shows a set of imaging modality-specific changes
within the AD stages, where biomarkers measured in CSF, PET, functional MRI and structural
MRI could detect early brain changes even in the preclinical stage of AD. However, it is
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relevant to take notice of that trajectory could be not uniform and may be affected by several
factors including risk-associated and protective genes, comorbidities, brain reserve, among
others [35].

Fig. 1.4 Hypothetical model of main meuroimaging biomarkers applied along AD stages.
Fuente: Ewers et al. [36].

Magnetic Resonance Imaging (MRI). Magnetic Resonance (MR) images is a type of
structural image which produces clear reproductions of the brain, and it is beneficial in
ruling out AD-related changes and other causes of dementia, such as tumours or strokes.
These images give a macroscopic visualisation of atrophy caused by neuronal death and
allow clinicians for multiple tracking over time to compare the stuff lost since the first
images to evaluate the applied treatments. However, at the moment, there is no agreement
on standardised values for brain volume, which would help to determine a significant brain
shrinkage for any individual at a single point in time. In this study, we have focused on
analysing biomarkers based on MRI. They are introduced briefly in Section 1.7 and details
about its development, analysis, and application on AD are described in the Chapter 2.

Positron Emission Tomography (PET). PET is a type of functional image, which pro-
vides information about reductions of the brain cell activity in certain regions. Neurodegener-
ation is accompanied by the decline in synaptic function, which is assessed by FDG-PET
images. These images obtained from patients with AD show a specific topographic pattern of
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decreased glucose uptake in brain regions critical for memory, learning and problem-solving.
PET-based biomarkers are widely used in studies focused on the early diagnosis of AD
[36, 99, 122, 19, 129, 114, 65, 73]. However, currently, this method is more invasive and
expensive, and less accessible. Thus, it has a limited application in everyday clinical practice.

Molecular imaging. Since a few years ago, molecular imaging tracers are applied on
patients to evaluate possible AD or other causes of cognitive decline. Tracers, such as the
florbetapir F-18 and the flutametamol F-18, are molecules that bind to and reveals amyloid
plaques in the brain. Because these plaques are labelled with a radioactive tracer, it can be
visualised during a PET brain scan. However, as mentioned previously (see Section 1.6.1),
many people have amyloid plaques in the brain but have no present symptoms of cognitive
decline or AD. Thus, at the moment, amyloid imaging is not recommended for routine use in
patients suspected of having AD.

1.7 MRI-based biomarkers.

One of the main challenges of AD neuroimaging-related studies is the combination of MR
images processing techniques with data-driven statistical approaches to obtain measures from
brain regions of interest (ROI), which are called MRI-based biomarkers.

1.7.1 Characteristics and advantages.

Studies carried out by Clark et al. [16], Hampel et al. [54], Fjell and Walhovd [42], Hampel
et al. [55], Weiner et al. [122] have presented a detailed review of the recent studies focused on
the use of AD biomarkers, including the ones based on structural MRI and other sources. In
summary, those studies described some characteristics expected from them to be considered
as reliable measurements:

• Its replication and generalizability must be demonstrated to support the early diagnosis
and prognosis at the individual level.

• Be able to predict the cognitive impairment.

• Be able to distinguish healthy elderly from subjects with prodromal AD.

• Be able to distinguish MCI subjects with risk of progression to AD.

In addition, some of the main proven advantages from using these biomarkers could be
summarised as follow:
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• MRI-based biomarkers describe and quantify certain patterns in the brain even for
stages where the cognitive impairment is mild and possibly reversible helping to the
early AD diagnosis as well as the prediction of disease advancement [67, 29, 36, 54,
55].

• Have shown to reach higher specificity and reliability than clinical tests, such as the
CDR and the MMSE scores, even when the earliest symptoms are not visible [88].

• Are more effective than CSF-based biomarkers in detecting the cognitive decline [42].

• Allow distinguishing the ageing-related atrophy from the one related to the disease in
order to understand the ageing effect on brain structures [104, 64, 43].

Regarding the role of MRI-based biomarkers along AD stages, they provide a dynamic
and powerful approach for understanding the spectrum of AD-related brain changes with
applications in clinical trials, screening, diagnosis and prognosis. As described in Section
1.6, as neuronal degeneration progresses, atrophy in certain areas typical of AD could be
identified by MRI-based biomarkers (see Figure 1.3). Likewise, the hypothetical model
represented in Figure 1.4 suggested that MRI-detected grey matter atrophy starts primarily,
though not exclusively, in the hippocampus (green line), and continues to decline throughout
the progression of the disease.

1.8 Longitudinal Data

Longitudinal studies play an important role in the health as well as in other areas (social,
education, biological and agricultural sciences, education, economics, marketing, etc.).
By contrast to the cross-sectional approach, the longitudinal design can provide increased
statistical power by reducing the confounding effect of between-subject variability and be
used to study of time-related change not only of the outcome but also of the covariates [41].
For example, Figure 1.5 shows the individual trajectories of hippocampal volume changes
over time obtained from a longitudinal study carried out by Schuff et al. [105]. Hippocampus
is the most studied region due to be strongly associated with declining cognitive function. In
the figure, observations over time allowed them to identify that AD subjects had on average a
greater volume reduction over than HC subjects, and MCI subjects had intermediate values
between HC and AD subjects.

Longitudinal data analysis (LDA) applied on AD have become increasingly widespread
over the last decades with the main focus on studying the within-subject and between-subject
changes over time and identifying statistically significant biomarkers in order to propose



1.8 Longitudinal Data 15

Fig. 1.5 Comparison of individual trajectories of hippocampal volume change over time from
HC, MCI and AD subjects. The thick black lines indicate the mean trajectory of each group:
Image Source: Schuff et al. [105]

better ways to accurately early diagnose AD and track its advancement. Longitudinal studies
have specific features and challenges, which determine the main aspects of their complicated
analysis. The most relevant are described below.

Covariance structure. Heterogeneous variability and correlation are common character-
istics of repeated measurements on one individual. Heterogeneous variability refers to the
variance of a feature over time. Correlation refers to know a priori the likely feature value
in a specific time from previous values. As Fitzmaurice et al. [40] described, correlated
observations are a positive feature of longitudinal data; they provide more precise estimates
of the rate of change or the effect of covariates on that rate of change that would be obtained
from an equal number of independent observations of different individuals. Both longitudinal
data characteristics violate the fundamental assumptions of independence and homogeneity
of variance of many standard statistical techniques, such as Analysis of Variance (ANOVA)
and multiple linear regression. Accordingly, these data should be analysed with adequate
statistical methods.

Balanced versus unbalanced designs. A study is defined as "balanced" over time when
all subjects have the same number of repeated measurements obtained at a common set of
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occasions (or timepoints). On the contrary, a study is defined as "unbalanced" over time
when the repeated measurements are not obtained at a common set of timepoints due to
mistimed measurements (observations made before or after the scheduled time).

Missing data. Missing data are the common problem in longitudinal studies, mostly in
health sciences. A subject can be observed at baseline, missing at one follow-up time and
then measured again at one of the next, resulting in an unbalanced study with a missing
data pattern. However, to difference unbalanced studies due to missing data from those with
repeated measurements unequally separated in time, the first studies are often referred as
“incomplete” studies.

Time-varying and time-invariant covariates. Longitudinal studies permit repeated mea-
sures not only of the outcome but also of the covariates. The incorporation of covariates that
change stochastically over time poses many intricate and complex analytic issues.

Continuous and discrete responses. Longitudinal studies vary in the types of outcomes
of interest. Outcomes in AD studies can be continuous variables, e.g., hippocampus volume,
CSF-Aβ range; or discrete variables, e.g., clinical disease status (HC, MCI or demented due
to AD). Depending on the type of outcome, there exist adequate approaches for its statistical
analysis.

Challenges. The benefits of a longitudinal design are not without cost. There are several
challenges posed:

• Analysis of correlated data; where are required methods that can properly handle the
intra-subject correlation of responses. If correlation is ignored, inferences such as
statistical test or confidence intervals can be invalid.

• Participant follow-up; because in this type of studies there exist the risk of bias due
to incomplete follow-up or drop out of subjects. In that case, statistical analysis may
provide summaries that are not representative of the study population.

• Cost of longitudinal studies; these studies are expensive, suffer from subject-drop out
over time and often span a relatively short period of follow up [35].

Both cross-sectional and longitudinal studies go hand in hand with statistical learning
(SL) methods. These methods are valuable for summarising and obtaining assumptions about
data. Several SL methods are described in more detail in Chapter 2.
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1.9 Thesis outline

Relevant concepts of developing of neurodegeneration biomarkers, as well as their analysis
using statistical learning methods, are described in Chapter 2. Regarding neurodegeneration
biomarkers, this chapter provides an introduction to main processes related to brain MR
images analysis addressing stages from image reading to measuring neurodegeneration
biomarkers. Also, some of the most used tools to MRI-based biomarkers development and
visualisation are briefly described. Then, it is presented an overview of several statistical
learning methods applied to cross-sectional and longitudinal clinical data, mainly focused
on methods related to this work. It includes methods for regression and classification, and
common methods with which to assess their performance. Chapter 3 describes the main and
secondary objectives, as well as the expected contributions of this thesis. In Chapters 4 and
5 are presented the two methods proposed in this work, which are focused on addressing
both ageing-related brain change understanding, and the early prediction and diagnostic
prediction advancement of MCI and AD. Univariate and multivariate statistical learning
methods are applied together on MRI-based biomarkers from the ADNI longitudinal data.
Chapter 6 presents the results of comparing the two previous methods by applying them
on a new cohort integrated by MRI-based biomarkers from the OASIS study. In Chapter
7, we discuss the findings from the previous chapters and evaluates the performance of the
proposed methods, relating the results with the objectives defined for this study. We also
compare our results to the performance achieved in related work. Chapter 8 presents our
conclusions, as well as points out some potential avenues of investigation. Finally, in Chapter
9 are listed the scientific papers in indexed journals produced during the development of this
thesis, as well as the publications in conferences.





Chapter 2

Background

2.1 Development of MRI-based biomarker

Due to high complexity data arising from brain MR images, it is difficult to analyse them
directly. In fact, the brain tissues are characterised by a varied, complex and often overlapping
morphology, thus obtaining MRI-based biomarkers is not an easy and trivial task. Nowadays,
the existence of powerful and user-friendly tools for image processing have overcome that
issues, allowing to obtain biomarkers of neurodegeneration automatically. This chapter
describes state-of-art methods applied to obtain MRI-based biomarkers. MR image analysis
stages including pre-processing, segmentation, visualisation and biomarker quantification
are reviewed in Section 2.1.1. Then, a brief description of automatic tools used directly or
indirectly in this study to obtain these biomarkers is presented in Section 2.1.3.

2.1.1 Brain MR images analysis

MR image analysis deals with the development of problem-specific approaches for the
enhancement of raw images, segmentation, quantitative measurements, and visualisation for
further analysis. Steps applied for that purpose could be grouped into four main stages: (1)
3D image reconstruction, (2) Pre-processing, (3) Segmentation, and (4) Quantification of
biomarkers.

Reading and 3D image reconstruction

Separate DICOM files are read into an mxn matrix and then assembled in parallel to create a
3D matrix of mxnxz dimensions. Here, z represent the number of slices (or DICOM files)
available for each subject’s MR image collection, see Figure 2.1. Every is integrated by a
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finite set of image elements called pixels in 2D space or voxels in 3D space [31], see Figure
2.2. The values of each pixel or voxel are intensities representing the radio-frequency signals
that are emitted by the brain tissue during the image acquisition process. These values are
typically represented by a grey value 0, ...,255 in an MR image.

(a) (b)

(c)

Fig. 2.1 3D brain image reconstruction.

Pre-processing

Defacing. Once obtained the 3D image reconstruction, the next step in many brain MRI
analysis is the removal of extra-brain tissues. Defacing consists of identifying the facial
features, such as eyes, nose and teeth, and removing it without damaging the brain tissue.
This process ensures the individual anonymisation.
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Fig. 2.2 Representation of an image pixel and image voxel in a brain MRI. Source: Despotović
et al. [31]

MR image registration. In research as well as in clinical practice, it is common to obtain
a set of subject MR images (sessions) across time, even for a short period. In this sense,
precise and consistent alignment of scans based on image registration techniques is necessary
for motion correction of images taken in the same session (single timepoint), or across time
in longitudinal studies where changes in the images can be expected [98]. Figure 2.3 shows
an example of 3D image registration applied on three MR images sessions obtained for an
individual in a short period.

Bias correction. Bias field signal is a low-frequency and very smooth signal caused by
several factors such as magnetic settings and patients’ position. These artefacts corrupt MR
images degrading further processing based on the image grey level values. For this reason,
bias correction is applied before segmentation-based steps or classification. Figure 2.4 shows
the resulting image after noise filtering.

Skull stripping. In this process, the non-cerebral tissues, such as the skull and scalp are
removed. It is usually achieved by applying image processing techniques, such as tissue
threshold [103], border detector, watershed [106] or region growing algorithms, or even a
combination of them.
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(a)

(b)

(c)

(d)

Fig. 2.3 Orthogonal views of three MRI sessions from an individual obtained in short period
of time. (a) mpr-1 session. (b) mpr-2 session. (c) mpr-3 session. (d) Image registered from
three image sessions.
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(a) (b)

Fig. 2.4 Orthogonal views of three MRI sessions obtained in a short period of time. (a)
Original MRI slice. (b) Image after noise filtering. Gavidia et al. [50]

Skull stripping is among important initial process in image analysis. Inaccuracies at this
step can lead to the introduction of artefacts adversely affecting further analysis; therefore, a
robust and accurate automated method for this step is highly desirable [122].

Fig. 2.5 Orthogonal views of a brain image after defacing and skull stripping.

Segmentation

Segmentation is the fully automatic separation of the non-overlapping anatomical structures
within the brain including white matter (WM), grey matter (GM), CSF, the cerebral cortex,
and more specific ROIs. Pre-processing and image segmentation could be considered as the
most difficult tasks due to both the variability of region shapes and image quality. Brain
MR images frequently display high-intensity variations throughout regions, but two neigh-
bouring regions can share very similar intensity profiles being more difficult to differentiate
them. Also, noise and other image artefacts can cause incorrect structures or boundary
discontinuities. For these reasons, despite the more complex algorithms developed so far, the



24 Background

preprocessing and segmentation of brain images remain highly dependent on the imaging
modality and its quality.

There exist an extensive list of MRI segmentation methods applied on the human brain,
which could be grouped as follows.

Manual segmentation. The first group is focused on computing measures from brain
structures obtained manually. For example, in previous studies, the hippocampus and
entorhinal cortex have been outlined manually, and then their volume was computed to
quantify their decline [32, 15]. However, manual methods could be inexact and time-
consuming activities due to the complexity of brain structures; as a consequence, these
methods are applied just on limited regions.

Intensity-based methods. In this group are included well-known methods such as thresh-
olding, region growing, classification, and clustering, where each pixel/voxel is classified
based on their intensity [31]. Because the intensity profiles of more specific brain structures
overlap, these methods are often applied to distinguish three main classes including WM, GM
and CSF, see Figure 2.6. Furthermore, these methods are combined with more sophisticated
techniques to bring hybrid segmentation methods, which allow to segment additional brain
regions, as explained below.

Fig. 2.6 Segmented image with three labels:WM, GM, and CSF. Source: Despotović et al.
[31]

Region growing is a technique widely used in medical applications to extract connected
body structures and study its pathologies. In its simplest form, region growing starts with one
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or more seed points (spherical volume for 3D images) within the region of interest. The seed
points can be manually selected or automatically initialised with a seed finding algorithm.
The next step analyses the neighbour pixels/voxels to determine if their intensities satisfy
a predefined homogeneity criterion. This step is applied until no more elements can be
added. Finally, the segmented structure is represented by all the elements accepted during the
searching process. Figure 2.7 shows an example of GM segmentation by using this algorithm.
Region growing was applied on a brain phantom with dimensions 181x217x181 in directions
x, y, z. For visualisation purposes, only the segmentation corresponding to the phantom’s
98th slice is presented.

(a) (b) (c)

Fig. 2.7 Gray matter segmentation in a phantom volume. (a) Axial slice number 98 of the
original phantom image. (b) Image with two seeds points. (b) Region growing segmentation
after selecting the four seed points. (c) Final segmented GM region. Source: Gavidia et al.
[50]

Atlas-based methods. In this approach, additional knowledge about the human brain for a
specific population of interest is introduced through an atlas image (sometimes also called
template). The atlas contains information about the localisation of different brain structures,
which have been previously labelled by an expert, and it is used as a reference for segmenting
new images. First, the atlas is aligned to the target image by applying a registration method
where the similarity between the deformed atlas image and the target image is maximised.
Then, all atlas information (e.g. segmentation labels) is transferred to the target image. The
main advantage of these methods is the possibility of segmenting any brain structure available
in the atlas without any additional cost. However, the accuracy of the segmentation is directly
dependent on the quality of the registration method [118, 31]. Several image processing tools
included atlas-based methods for brain segmentation, as described in section 2.1.3
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Deformable models. In the literature, deformable models are also known by different
names, such as snakes or active contours in 2D and active surfaces or balloons in 3D
[118, 31]. Whichever the case, deformable models use curves or surfaces within an image
domain for delineating region boundaries. Curves and surfaces are deformed under the
influence of two forces: (a) internal forces, which are applied to keep the model smooth
during deformation; and (2) external forces, which are applied to move the model toward an
object boundary or other desired features within an image.

Hybrid segmentation methods. Hybrid approaches combine two or more previous meth-
ods to avoid many of the disadvantages of each method alone and improve segmentation
accuracy. For example, Nestor et al. [90] combined the region growing procedure with
image intensity and shape analysis (using morphological operators) for lateral brain ventri-
cles segmentation on MR images to compare ventricular enlargement after six months in
subjects with MCI, AD and normal elderly controls. Segonne et al. [106] proposed a hybrid
approach that combines watershed algorithms and deformable models to strip the skull from
T1-weighted MRI images.

2.1.2 Approaches of biomarkers extraction

Once brain MR images have been processed, the next step is to obtain quantitative measures
from segmented regions to assess changes in brain structures as consequence of AD (e.g.
atrophy rates). Many methodologies have been developed to process those images and
obtain the most relevant MRI-based biomarkers [38, 69, 28, 58]. Nowadays, there are many
methods proposed to quantify MRI-based biomarkers related to AD. Here, by considering
the source of where they are computed, we grouped them into the three following categories.

MRI voxel level-based approach In this category, biomarkers are defined at the level
of MRI voxel, which can be considered as the most simple, direct and low-level value to
be used as features in classification. Several studies have computed these biomarkers as
the probability of a given voxel belongs to one of three different tissue classes GM, WM
and CSF [121, 69, 95]. Another approach consists in grouping the voxels into anatomical
regions using a labelled atlas as it was described in section 2.1.1. For example, Fischl et al.
[38] applied this approach to create a brain atlas, where each voxel in a brain MRI volume
was assigned to one of 37 subcortical structures, including left and right caudate, putamen,
pallidum, thalamus, lateral ventricles, hippocampus, and amygdala, among others regions.
Figure 2.8 shows a coronal slice through a T1-weighted volume with regions labelled from
his proposed atlas.
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Fig. 2.8 Atlas sample proposed by Fischl et al. [38]

Lao et al. [72] used a labelled atlas of 101 ROIs developed by Noor Kabani at the
Montreal Neurological Institute to label MR images and obtaining volumetric measurements
of these ROIs, see Figure 2.9. The goal of this study was to detect subtle and spatially
complex atrophy by training an SVM classifier.

Fig. 2.9 Example of brain atlas used by Lao et al. [72]. (A) Parcellated brain image used
as an atlas for the definition of ROIs. (B) Another individual’s image parcellated via a
high-dimensional elastic warping of the atlas on the left, using the HAMMER method. (C–D)
One cross-section of the individual’s original MR image and the corresponding labeled
(segmented) image. Source: Lao et al. [72]

Vertex level-based biomarkers. In this category, biomarkers are defined at the vertex-
level on the cortical surface, i.e. they are computed from the cortex thickness at each vertex
of the human cortex. The cerebral cortex has the topology of a 2-D sheet and a highly
folded geometry, and it is divided into a large number of different areas [22]. Currently,
cortical thickness is considered as a potential candidate to support the early diagnosis of
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AD [19, 32, 59]. Several studies have also focused on labelled cortical structures from a
reference atlas. Probably, one of the most important studies has been carried out by Desikan
et al. [28], who proposed a method to split the human cortical surface within 68 gyral-based
ROIs (34 regions per each hemisphere). In this study, data were obtained from MRI scans of
40 subjects that varied widely in age and clinical status (young-adults, middle-aged adults,
elderly adults and demented people). Information about regions was then encoded in the form
of an atlas, which has been used in many further studies aimed at automatically split the brain
into anatomic regions and quantify biomarkers for tracking the evolution of AD-induced
changes. This atlas is shown in Figure 2.10. Also, it is import to notice that the atlas does not
include the hippocampus as part of the cortical structures.

Individual ROIs-based biomarkers Here, biomarkers are computed from predefined and
structured ROIs, either at the voxel or vertex-level. Thanks to the relatively low feature
dimensionality and the easy understanding and identification in the whole brain, it is widely
used in the literature. For example, one of most studied ROI is the hippocampus region.
AD-related atrophy in MTL regions is associated with declining cognitive function, where
the hippocampal volumetry on MR images is the most studied to be considered as a potential
biomarker [105, 15, 89, 19, 44, 49, 9].

Patch-based biomarkers. In this category, biomarkers are computed from small 3D
patches dissected previously from brain areas. In its simplest form, the whole brain is
uniformly divided into patches of fixed size without overlapping [74]. However, more sophis-
ticated techniques apply statistical methods to select the most significant voxels, and then 3D
patches are extracted from the local neighbourhood of each selected voxel [74, 75].

2.1.3 Software tools.

The development of new tools for analysis, quantification and visualisation of neuroimaging
data have made more accessible the quantification of MRI-based biomarkers to researchers
and clinicians. These tools incorporate many methods such as the ones describe above and
the possibility of analysis another image sources. Following are briefly described five tools
used for this purpose, four of them are software packages widely used in the neuroimaging
community for structural and functional brain imaging study.

Freesurfer. Freesurfer is a suite of tools for analysing neuroimaging data that provides an
array of algorithms to quantify the functional, connectional and structural properties of the
human brain [37]. This tool allows for the measurement of neuroanatomic volume, cortical
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Fig. 2.10 Three-dimensional representations of all gyral-based 34 ROIs from atlas proposed
by Desikan et al. [28] (only one hemisphere is shown): (A) lateral and (B) medial views of
the grey matter surface: Image Source: Desikan et al. [29]
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thickness and surface area of ROIs throughout the whole-brain. It was developed by Martinos
Center for Biomedical Imaging and is freely available at the "Freesurfer wiki site" (http:
//surfer.nmr.mgh.harvard.edu/fswiki). FreeSurfer has been used in many studies dedicated
to automatically obtaining MRI-based measures from the whole brain or specific regions
to successfully predict the early conversion from MCI to AD subjects [29, 32, 19, 18, 14,
111, 2]. Technical details of the FreeSurfer processing pipeline have been described in prior
publications [38, 106, 28, 37]. Here, the automatic subcortical segmentation of a brain volume
is based upon the atlas proposed by [38] (see Section 2.1.2. This atlas contains probabilistic
information on the location of structures. Each voxel in the normalized brain volume is
assigned one of about 40 labels, including the Cerebral White Matter, Cerebral Cortex,
Lateral Ventricle, Inferior Lateral Ventricle, Cerebellum White Matter, Cerebellum Cortex,
Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, Lesion, Accumbens area,
Vessel, Third Ventricle, Fourth Ventricle, Brain Stem and Cerebrospinal Fluid. Regarding the
cortical brain regions, one of the Fresurfer methods to segment the human cerebral cortex
into gyral based ROIs is based on the Desikan-Killiany atlas [28], which automatically labels
34 cortical ROIs in each hemisphere. This atlas was briefly introduced in Section 2.1.2.

SPM. The Statistical parametric mapping (SPM) is as software package freely available at
(http://www.fil.ion.ucl.ac.uk/spm), which was developed by the Wellcome Department of
Imaging Neuroscience at University College London [6]. SPM has been designed for the
analysis of brain imaging data sequences, such as image normalisation, segmentation, bias
correction, among others. The sequences can be a series of images from different cohorts or
time-series from the same subject. Currently, SPM12 is the major update to the SPM software,
containing substantial theoretical, algorithmic, structural and interface enhancements over
previous versions. That release is designed for the analysis of functional MRI (fMRI), PET,
Single-photon emission computed tomography (SPECT), Electroencephalography (EEG)
and Magnetoencephalography (MEG). Regarding MRI segmentation, SPM was designed to
perform segmentation of brain tissues consisting of GM, WM and CSF.

FMRIB Software Library (FSL). The FMRIB Software Library (FSL) (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki) is a comprehensive library of analysis tools for multimodality imaging
data (structural MRI, functional MRI and diffusion MRI). It was developed by members
of the Oxford Centre for Functional MRI of the Brain (Oxford University). FSL has many
different modules for functional and structural MRI data analysis, of which the FMRIB
Automated Segmentation Tool (FAST) was developed for segmentation of brain tissues into
cortical and subcortical structures.

http://surfer.nmr.mgh.harvard.edu/fswiki
http://surfer.nmr.mgh.harvard.edu/fswiki
http://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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BrainSuite. BrainSuite (http://brainsuite.org/) is a collection of open source software tools
that enable largely automated the processing of MR images of the human brain. It was written
by the Laboratory of Neuro Imaging at the University of California and the Biomedical
Imaging Research Group at the University of Southern California [107]. As with Freesurfer
and FSL, BrainSuite can segment MR images into cortical and subcortical regions.

Pysurfer. PySurfer (http://pysurfer.github.io), a Python library, is a tool for visualising
the cortical surface change. PySurfer is mainly intended for use with Freesurfer, but it also
can plot data that are drawn from a variety of sources. Besides, PySurfer extends Mayavi’s
powerful rendering engine with a high-level interface for working with MRI data.

2.2 Statistical Learning Methods

Model building is a crucial stage in AD data analysis. Statistical learning (SL) methods
are applied to MRI-based biomarkers to model and understand their change and facilitate
the access to them automatically. This section presents an overview of several SL methods
applied to cross-sectional and longitudinal clinical data relevant to the study presented in
this thesis. Feature selection (FS) method is briefly described in Section 2.2.1. Details of
several SL methods applied to cross-sectional and longitudinal data are described in Sections
2.2.2-2.2.5, followed by a brief description of metrics to assess their performance in Section
2.2.6.

2.2.1 Feature selection (FS)

Feature selection (FS), also known as variable or attribute selection, consists in selecting a
subset of most relevant features eliminating the non-informative and redundant features from
an initial set for being used as input features in model construction. Therefore, an FS step is
desirable before model building to reduce possible issues arising from high dimensionality
and reach the potential benefits, including [124]:

• Better accuracy of the inference engine,

• Improving scalability,

• Better data visualisation and understanding,

• Reducing measurement and storage requirements,

• Reducing training and inference time.

http://brainsuite.org/
http://pysurfer.github.io
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In a very simple example scenario, given a n x m dataset X consisting of n samples (rows)
over m-dimensional feature space Rm representing m features x1, ...,xm over n samples; and
the n x 1 outcome feature vector y; FS can be seen as the combination of an exhaustive search
technique for proposing a feature subset S = x1, ...,xs,s < m, which improves the model
performance. Many FS algorithms include feature ranking (FR) as a principal or auxiliary
selection mechanism because of its simplicity, scalability, and good empirical success [53].
Below it is briefly described the main methods applied in this study for carrying out both
approaches.

Feature ranking (FR)

FR applied a score function T to rate each feature x1, ...,xm according its significance to
the outcome y. Methods for defining T could be grouped into two categories: (1) methods
applied on individual features, independently of the context of others (e.g. correlation); or
(2) methods applied on individual features taking into account its effect in combination with
other features, hence together have good predictive power.

Minimum Redundancy and Maximum Relevance (mRMR). The Minimum Redun-
dancy and Maximum Relevance (mRMR) method, introduced by Peng et al. [92], Ding
and Peng [33], belong to the second category of FR method. It computes the mutual infor-
mation of two features based on their probabilistic density function, and it evaluates all of
the features by looking at the intrinsic characteristics of the data concerning the outcome
classes. Tthe mRMR scores are obtained by the simultaneous optimisation of two criteria,
the maximum relevance and the minimum redundancy. Maximum relevance determines how
well a feature discriminates between the response classes, while the minimum redundancy
measures similarity or correlation between the distribution of attributes and the distribution of
labels. For continuous features, a discretisation approach is applied as a preprocessing step,
and then the mutual information between features is computed. The, a feature discretisation
is applied using µ ± (t ∗σ), where µ is the mean value, σ is the standard deviation, and t is
a threshold usually ranging from 0.5 to 2. For example, if t = 1, it means that each feature is
discretized into three states: -1 if it is less than µ −σ ; 1 if larger than µ +σ ; and 0 otherwise.

Wrapper methods

Wrapper methods popularized 20 years ago by Ron and George H [101], use a predictive-
classification model to score feature subsets iteratively. In its most general formulation, for
each subset, these methods train a new model and then test its prediction performance to assess
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the relative usefulness of that subset. This train-test process could be very computationally
intensive, but usually, provide the best performing feature set for that particular type of
model. Wrapper methods incorporate efficient search strategies such as forward selection
and backward elimination to reduce computational cost. In forward selection, features are
progressively incorporated into growing subsets, whereas in backward elimination the search
process starts with the set of all features and progressively eliminates the least promising
ones; in both cases by evaluating the prediction model performance.

Many statistical and ML algorithms have been applied for model training, either for FS
tasks or for building final prediction models. Several of them are briefly described below.

2.2.2 Early origins of linear models for longitudinal data

The early origins of the statistical analysis of change were based on ANOVA-based ap-
proaches including the following methods [39]:

• Mixed-effect ANOVA, known as univariate repeated-measures ANOVA, where a
random subject effect was introduced among the repeated measurements on the same
subject.

• MANOVA, repeated-measures multivariate analysis of variance,

• Methods focused on computing a derived features by summarising repeated measures
by a single value (or set of them). For example, the area under the curve (AUC) is a
common measure frequently used to summarise the sequence of repeated measures on
any individual.

ANOVA methods resulted useful for very simple studies where data were balanced, with
a uniform timing of measurements and discrete covariates. Fitzmaurice and Molenberghs
[39] presented a historical perspective and review about the most remarkable developments
in statistical methodology for longitudinal data analysis in the past 30 years. Authors referred
an extensive review of shortcomings that limit the usefulness of based-ANOVA approaches
in longitudinal studies. In Table 2.1 are summarised some of these.

2.2.3 Linear mixed-effect (LME) regression modelling

There are two main reasons for studying multiple subjects over time, the first one is the
interest in individual differences and the second one is the interest in what is common to the
population. Hence, there are two sources of variability known as within-subject and between-
subject variabilities, and both must be taken account for inferences about a population.
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Table 2.1 Review of main features and shortcomings of three ANOVA-based approaches.
Summarised from Fitzmaurice and Molenberghs [39]

Approaches References Features Shortcomings
Univariate
repeated-
measures
ANOVA

(Airy, 1861),
Fisher(1918,
1925), Scheff´e
(1956)

It was conceptualized as a model
for a single response variable. - Be-
cause it includes a single, individual-
specific random effect, it induces
positive correlation among the re-
peated measurements. - It can be
considered a forerunner of more ver-
satile regression models for longi-
tudinal data by allowing effects to
vary randomly from one individual
to another.

- To made very restrictive assump-
tions about the covariance structure
for repeated measures on the same
individual, by assuming a compound
symmetry form for the covariance
(that assumption is often unrealistic).
- It was originally developed for the
analysis of balanced data with dis-
crete covariates.

Repeated-
measures multi-
variate analysis
of variance
(MANOVA)

(Box, 1950; see
also Geisser
and Greenhouse,
1958; Greenhouse
and Geisser,
1959)

- It is a model for multivariable re-
sponses, where repeated measures
of the same response feature over
time are correlated.

- Require somewhat more advanced
computations. - It forces the within-
subject covariates to be the same
for all individuals, as consequence:
it cannot be used when the design
is unbalanced over time, it did not
allow for general missing-data pat-
terns to arise, and individuals with
missing data must be excluded from
the analysis.

Derived Variable Wishart (1938),
Box (1950) and
Rao (1958)

- After obtaining the single number
summary, another ANOVA methods
(or non-parametric methods) for the
analysis of a univariate response can
be applied.

- By summarising repeated mea-
sures, it forces to focus on only a
single aspect of the repeated mea-
sures over time losing information.-
Subject including discernibly differ-
ent response profiles can produce
the same summary measure.- The
method cannot be applied when
covariates are time-varying.- Prob-
lems with missing data or irregularly
spaced repeated measures.
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Models based on fixed effect approach, as linear regression model (LM), take into account
just the within-subject variance. LM is a common approach for the analysis of longitudinal
data when the response is continuous, however, when applied on repeated measures on the
same subjects, this approach is not sufficiently flexible to capture the complex patterns of
change in the response, their inherent correlation, as well as their relationships to covariates.
Thus, the Type I error rate (i.e., when the null hypothesis H0 is true but is rejected) could be
increased.

Linear Mixed-Effects (LME) provide parsimonious ways to account for group level
structure in the data while simultaneous assessing effects within and across groups [62]. These
models incorporate both fixed-effects and random-effects [94]; and describe the relationship
between a response and covariates that have been observed along with the response [7].
Like LM models, LME models describe a relationship between a response and one or more
covariates. However, in this kind of models at least one of the covariates is categorical and
represents the observational unit under study (e.g. humans in medical studies). By focusing
on the "effect" of the covariate levels, it arise the two kinds of effects previously mentioned:
fixed-effects and random-effects. In the literature, there are different ways of defining them.
Pinheiro and Bates [94] define the fixed-effects as the parameters associated with an entire
population or with certain repeatable levels of experimental factors, and the random-effects as
associated with individual experimental units drawn at random from a population. Bates [7]
establishes that a covariate is modelled using fixed-effects parameters when the set of possible
levels of that covariate is fixed and reproducible (e.g. gender). On the other hand, if the
levels observed of a covariate represent a random sample from the set of all possible levels,
random-effects are incorporate in the model (e.g. participant identification). Significantly,
it is important to notice that in these definitions, Bates [7] only establishes fixed-effects as
model parameters, whilst random-effects not. For more details about other meanings of
fixed-effects and random-effects see [52].

In the field of clinical longitudinal studies, probably the usefulness of LME models was
highlighted in the 1980s by Laird and Ware [70], who applied a unified approach based on
the two-stage formulation to fitting both growth models and repeated-measures models on
data taken from an epidemiological study of the health effects of air pollution. However,
the adoption of these models in medicine has been much slower. LME modelling provides
a general and flexible approach to longitudinal data because it allows a wide variety of
correlation patterns (or variance-covariance structures) to be explicitly modelled.

LME models offer a flexible framework by which to model the sources of variation and
correlation that arise from grouped data. They provide enormous advantages over other
approaches, which are listed below.
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• Handles clustered data. Inferences can be made by fitting the clustering effect as
random.

• Allows to analyse unbalanced and incomplete data, and also, it handles uneven spacing
of repeated measurements.

• Works with reduced data.

• Models both linear and nonlinear relationships between response and covariates.

• These models are often more interpretable than other methods applied on repeated
measures.

Formulation. The standard form of an LME model is given by Eq (2.1)[94].

Yi j = Xi jβ +Zi jbi + εi j; i = 1, ...,n (2.1)

where yi j is the jth response on the ith subject; Xi j is the regressor vector for the jth

response on the ith subject; β is the p x 1 vector of fixed effect coefficients; Zi j is the ni x
q model matrix for the random effects for the jth observation in subject i; bi is the q x 1
vector of random-effect coefficients for group i; εi j is the ni x 1 vector of errors for the jth

observation in subject i; Ψ is the q x q covariance matrix for the random effects; and 0,σ2λi

is the ni x ni covariance matrix for the errors in subject i.
The assumptions for the LME model are:

• Random-effects vector b and the error vector ε have the following distributions: bi ∼
Nq(0,Ψ), and εi j ∼ Nni(0,σ2λi)

• b and ε are independent from each other.

2.2.4 Partial least squares regression (PLSR)

The Partial Least Squares Regression (PLSR) is a statistical method introduced by Wold
et al. [123], which relates the two data matrices, X and Y , by a linear multivariate model
instead of finding hyperplanes of maximum variance between them. In other words, PLSR
is used to find the multidimensional direction in the X space that explains the maximum
multidimensional variance direction in the Y space. PLSR derives its usefulness from its
ability to analyse data with many, noisy, collinear, and even incomplete variables in both X
and Y [123]. PLSR has the desirable property that the precision of the model parameters
improves with the increasing number of relevant variables and observations.
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Formulation. By definition, after observing n data samples from each block of features,
PLSR decomposes the n×N matrix of zero-mean predictors features X and the n×M matrix
of zero-mean responses variables Y into the form shown in Eq (2.2).

X = T PT +E

Y = UQT +F (2.2)

where X ⊂ RM is an n×m matrix of predictors and Y ⊂ RP is an n× p matrix of responses.
T and U are n× l matrices that are the l extracted score vectors (projections, components,
latent vectors) of X and Y , respectively. The m× l matrix P and the p× l matrix Q represent
matrices of loadings. The n×m matrix E and the n× p matrix F are the matrices of residuals
(or error matrices), assumed to be independent and identically distributed random normal
variables. The decompositions of X and Y are made to maximise the covariance between T
and U .

2.2.5 Support vector machine (SVM) classifier

Support Vector Machine (SVM) is a supervised method of ML developed by Vapnik [120],
which have gained wide popularity for solving classification and regression problems. SVM
makes use of the well-understood linear classifiers in combination with a projection into a
higher-dimensional space, where the original problem can be solved (or at least reasonably
well approximated) in a linear manner. A classification problem involves separating data into
training and testing sets. Each sample in the training set contains one “observed response
value” (i.e. the class labels) and several input features. The goal of SVM is to build a
model (based on the training data) which predicts the response values of the test data given
only the test data features. Figure 2.11 shows a simple representation of that training and
testing processes for a two-class SVM classifier. Note that the original data were split into
training and testing sets. The SVM model was built from the training data to predict the
response values, and then the model was used for predicting the response values from testing
data. Finally, the predicted and observed responses were compared to assess the model
performance. Statistical measurements applied for model assessing are described in more
detail in Section 2.2.6.

Figure 2.12 illustrates a hypothetical 2-D illustration of how a linear binary classification
problem is solved during the training phase. Several different classifiers could correctly
separate the two classes (black and white points), but the SVM approaches this problem
through the concept of the margin, which is defined to be the smallest distance between the
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Fig. 2.11 Simplest representation of SVM model building for a binary classification problem.

decision boundary and any of the samples [10]. In this sense, the optimal model, represented
by the solid black line, is trained by maximising the margin of separation between the two
groups and using those samples lying closest to the separating plane as defining points, which
are called as support vectors (blue circle symbols).

Linear SVM formulation. In a binary classification problem, as illustrated in Figure 2.12,
SVM is formally described in a easier way as follow.

Given a training set of l points instance-response (⃗xi,yi), i = 1, ..., l; where the binary
response yi ∈ [1,−1]l and each x⃗i is a p-dimensional real vector. The decision surface of a
linear SVM classifier is described as follow.

w⃗.⃗x−b = 0, (2.3)

where the the feature weight vector w⃗ is normal (or not) to the hyperplane, and the
parameter b

∥w⃗∥ determines the offset of the hyperplane from the origin along the normal
vector w⃗. The support vectors x⃗i are mapped into a higher dimensional space by the function
φ . SVM finds a linear separating hyperplane with the "maximum-margin hyperplane" in
that higher or infinitive dimensional space. As illustrated in Figure 2.12, the support vectors
lie on two parallel hyperplanes described by w⃗.⃗x−b = 1 and w⃗.⃗x−b = −1, such that the
distance between them is computed by 2

∥w⃗∥ .
During the training phase, there are several parameters that need to be optimized. On of

them is the SVM-specific parameter C > 0, which is a penalty parameter of the error term.
Likewise, K(xi,x j)≡ φ(xT

i φ(x j), which is known as the "kernel function", must be evaluated
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Fig. 2.12 Hypothetical example of a linear classification for a binary problem. The solid
black line represents the optimal classifier by using SVM. Here, the support vectors are
represented by blue circled symbols
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for all possible pairs xi and x j. There are numerous forms of kernel functions applied on
SVM algorithm, several of them are listed bellow:

• Linear:
K(xi,x j) = xT

i (x j) (2.4)

• Polynomial:
K(xi,x j) = (γxT

i x j + r)d,γ > 0 (2.5)

• Radial Basis Function:

K(xi,x j) = exp(−γ∥xi − x j∥2),γ > 0 (2.6)

• Sigmoid:

K(xi,x j) = tanh(γxT
i x j + r) (2.7)

where γ , r y d are kernel parameters, which need to be optimised.

2.2.6 Model performance

Additional methods are required to assess the performance of statistical and ML models, and
their selection will depend on the kind of model under evaluation. For example, a well-fitting
regression model results in predicted values close to the observed response values. These
models can be examined using graphical and numerical summaries. A common practice is to
plot residuals versus the fitted responses to assess the assumption of constant variance of the
error. Also, many numerical summaries of estimated model-specific parameters can be used
as measures of “goodness of fit”, including the R-squared, overall F-test, Root Mean Square
Error (RMSE), Akaike Information Criteria (AIC) and the Bayesian Information Criteria
(BIC), among many others.

An important part of this study focuses on assessing classification models built for binary
outcomes. There are a variety of metrics for that purpose, several of them are briefly described
in the following section.

Assessing classification models

In classification problems, statistical metrics are computed to assess the model performance
using testing data, as well as for parameters optimisation during the training stage.



2.2 Statistical Learning Methods 41

Confusion matrix Confusion matrix, also knows as contingency tables, is used to visualise
the performance of classifiers by representing the observed and predicted classifications. A
confusion matrix is of size L×L, where L is the number of different classes. In a binary
response variable with classes positive (p) and negative (n) , L = 2, and thus, the confusion
matrix takes the form presented in Table 2.2. In this case, four basic metrics could be
computed: True Positive (TP), which represents the number of positive samples correctly
labelled as such; True Negative (TN), which represents the number of negative samples
correctly labelled as such; False Positive (FP), which represents the number of negative
samples incorrectly labelled as positive; and False Negative (FN), which represents the
number of positive samples incorrectly labelled as negative.

Table 2.2 Representation of a confusion matrix for a binary classifier

↓ observed \ predicted → negative
(n)

positive (p)

negative (n) TN FP
positive (p) FN TP

By using the metrics listed above, another evaluation metrics can be derived. Several of
them are listed below.

Accuracy(ACC). In the binary classification context, ACC = (T N + T P)/(T N +FP+

FN +T P). ACC is the proportion of true results (both TP and TN) among the total number
of samples.

Precision (PREC). Also know as Positive Predictive Value (PPV). PREC is calculated as
PREC = T P/(FP+T P). It is the proportion of positive cases that were correctly identified.

Negative predictive value (NPV). It is the proportion of negative cases that were correctly
identified. It is computed as: NPV = T N/(T N +FN)

Sensitivity (SEN). Also knows as True Positive Rate (TPR) or recall, is computed as
T PR = T P/(FN + T P). It measures the proportion of positives cases that are correctly
identified as such.

Specificity (SPE). Also knows as True Negative Rate (TNR). It is calculated as T NR =

T N/(T N +FP). It measures the proportion of negatives cases that are correctly identified as
such.
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Cross-validation and train-and-test

Cross-validation is a popular strategy for models evaluation and comparison. The basic idea
behind CV is to split data into two segments, where the first one is used to learn or train a
model, and the other is used to validate the model. The principal interest of cross-validation
lies in the universality of the data splitting heuristics, where training and validation samples
are independent. Therefore, cross-validation can be applied to (almost) any algorithm in
(almost) any framework, such as regression and classification models, among many others
[5].

One commonly used method is k-fold cross-validation, in which data are randomly
partitioned into k equally (or nearly equally) sized segments, called folds. Then, k iterations
of training and validation are performed such that within each iteration a different fold of the
data are held-out for validation while the remaining k−1 folds are used for learning. Finally,
the results are averaged over the folds.

Figure 2.13, obtained from Refaeilzadeh et al. [97], represents an example of 3-fold CV,
where the darker section of the data are used for training, while the lighter sections are used
for validation.

Fig. 2.13 Example of 3-fold CV. Source: Refaeilzadeh et al. [97].

In contrast to cross-validation, the train-and-test methodology just employs two com-
pletely different data sets as training and testing data (e.g. 70% for training and 30% for
test).

One of the main reasons for using k-fold cross-validation instead of train-and-test is when
there is not enough data available to partition it into separate training and test sets without
losing significant modelling or testing capability.
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2.3 The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://www.loni.usc.edu/ADNI)
is an extensive, multicenter, longitudinal neuroimaging study, which has addressed the major
health problem of AD by including an extensive set of biomarkers, imaging and genetic data,
as well as socio-demographic characteristics of hundreds of subjects. It was launched in
2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private pharmaceutical companies, and
nonprofit organisations, led by Principal Investigator Michael W. Weiner, MD. Its primary
goal has been to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and AD.
The complete ADNI project enrolled 819 adult subjects, aged 55–90 years, and recruited
from over 50 sites across the United States and Canada.

ADNI has been used by many publications focused on the characterisation of age-related
brain changes [43, 44] and the early prediction of conversion to AD [29, 30, 19, 18, 111].
A recent review has been published by Weiner and colleagues in Alzheimer & Dementia
journal [122]. Details about the procedures for selection of participants and the full study
protocol have been presented in [87, 60].

2.3.1 Sociodemographic and neuropsychological data

ADNI data include demographic features, such as sex, age at baseline, years of education,
handedness and APOE-ε4 carrier state, among others, which were documented in the
screening visit of ADNI participants. These features have been considered in other dementia
studies based on ADNI database [71, 18, 19]. APOE-ε4 carrier state includes three classes:
(0) non-carrier; (1) single copy carrier; or (2) two copies carrier.

Regarding neuropsychological features, ADNI includes scores, such as, the MMSE, the
CDR and the Global CDR (CDRGLOBAL) scores, which were obtained for each participant
visit. CDRGLOBAL indicates the severity of dementia: 0) no dementia; 0.5) very mild
dementia; 1) mild dementia; 2) moderate dementia; 3) severe dementia). It is obtained by
using an algorithm that weights memory more heavily than the other remaining five categories
(orientation, judgment and problem solving, community affairs/involvement, home life and
hobbies, and personal care).

Furthermore, participants were clinically diagnosed at baseline and during follow-up
visitations. The clinical assessment is described below.

http://www.loni.usc.edu/ADNI
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2.3.2 ADNI diagnosis criteria

The general inclusion-exclusion criteria applied by ADNI to a baseline clinical assessment are:
1) Control normal subjects (CN, n=229) had MMSE scores between 24 and 30 (inclusive) and
a CDR of 0. They were non-depressed, non MCI, and non-demented; 2) Late MCI (LMCI,
n=398) subjects had MMSE scores between 24 and 30 (inclusive), a memory complaint,
had objective memory loss measured by education-adjusted scores on Wechsler Memory
Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other
cognitive domains, essentially preserved activities of daily living, and an absence of dementia;
3) AD (n=193) subjects had MMSE scores between 20 and 26 (inclusive), a CDR of 0.5
or 1.0, and met the NINCDS/ADRDA criteria for probable AD. It is important to remark
that ADNI patient diagnostics are not pathologically confirmed. Thus some uncertainty on
the subject’s diagnosis may be introduced. In this study, this baseline clinical assessment is
called dxbl .

For the longitudinal study, ADNI also provides a clinical assessment of the subjects
assigned at each visitation in which MRI images were obtained. Here, subjects are labelled as
following: 1) Normal (NL) subjects diagnosed at current visitation; 2) NL to MCI, Subjects
diagnosed as MCI at current visit who previously were NL; 3) MCI, subjects diagnosed as
stable MCI at current visit who previously were also MCI; 4) NL to Dementia, subjects
diagnosed as dementia due to AD at current visit who previously were NL; 5) MCI to
Dementia, subjects diagnosed as dementia due to AD at current visit who previously were
NL; 6) Dementia, subjects diagnosed as stable dementia due to AD at current visit who
previously were MCI.

2.3.3 CSF-based Biomarkers.

ADNI CSF-based data include the Aβ1−42, T-τ and P-τ , which were measured during
baseline evaluation from 410 subjects(100 mild AD, 196 MCI, and 114 elderly cognitively
normal subjects) enrolled at 56 participating centres [108]. Besides, a reduced number of
participants have CSF biomarkers measured for months 12 and 24. In order to address the
high variability in the assays used to measure these biomarkers, Shaw et al. [109] conducted
a seven-centre inter-laboratory standardisation study for these biomarkers as part of the
ADNI study. Concentrations of these biomarkers were measured using the xMAP platform
(Luminex Corp, Austin, Texas) and INNO-BIA AlzBio3 research-use-only reagents.
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2.3.4 MRI-based biomarkers

In the ADNI repository are available structural MR images obtained for each participant,
as well as datasets of neurodegeneration features associated with cortical reconstruction
and volumetric segmentation performed with the Freesurfer image analysis suite (version
4.4). These MRI-based biomarkers corresponded to cortical measures including the cortical
thickness average (TA) provided in units of millimetres (mm), cortical thickness standard
deviation (TS) in mm, surface area (SA) in mm2 and cortical volume (CV) in mm3, which
are obtained from a total 34 cortical ROIs available per each hemisphere; and measures
including the subcortical volume (SV) in mm3 from 25 subcortical brain regions. All these
biomarkers were measured along five years follow-up. It is important to remark that ADNI
classifies the hippocampus region as a subcortical region, i.e. an SV biomarker, but it is not
entirely right. Although the hippocampus is located under the cerebral cortex, it is not truly a
subcortical structure. In humans, the hippocampus is located in the medial temporal lobe,
which is one of the brain structures making up the limbic system. In fact, the hippocampus is
a cortical infolding itself much older and more primitive than the surrounding neocortex.

The ADNI MRI Core, led by Clifford Jack, M.D., is responsible for all aspects of MRI
images including determining specific MRI pulse sequences, site qualification, QA and QC
of all MRI data, tracking all MRI data acquisition and processing, and performance of all
MRI data processing. The ADNI MRI methods are described in more detail in [60]. Also,
details of the acquisition of structural MR images of the participants can be found in ADNI
project site (adni.loni.usc.edu).

Freesurfer was developed by Martinos Center for Biomedical Imaging and is freely
available at the "Freesurfer wiki site" (http://surfer.nmr.mgh.harvard.edu/fswiki). This tool is
described with more detail in Section 2.1.3.

2.4 The Open Access Series of Imaging Studies (OASIS)

The Open Access Series of Imaging Studies (OASIS) is a series of neuroimaging datasets
that are publicly available for study and analysis. OASIS include data from a cross-sectional
study [79] and a longitudinal study [80]. Cross-sectional imaging data includes three or
four individual T1-weighted MRI scans obtained in single imaging sessions from 416 adults,
ages 18–96. One hundred of the included subjects older than 60 years have been clinically
diagnosed with very mild to moderate AD. On the other hand, the longitudinal data consist
of a collection 0f 150 subjects aged 60 to 96. Each subject was scanned on two or more
visitations, and 3 or 4 individual T1-weighted MRI scans were obtained in single scan
sessions. At baseline, 64 of the included subjects were characterised as demented including

adni.loni.usc.edu
http://surfer.nmr.mgh.harvard.edu/fswiki
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51 individuals with mild to moderate AD. Over the study years, 14 subjects, who were
characterised as non-demented at baseline, were subsequently characterised as demented.

Both studies include additional subject’s sociodemographic information, such as age,
gender, handedness, socio-economic status and level of education. Neuropsychological
features are also provided, including the CDR and MMSE scores. All participants with
CDR > 0 were diagnosed with a probable AD. Genetic or CSF-based data are not available
in OASIS studies. Like ADNI, a dataset of MRI-based biomarkers including the TA, TS, SA,
CV and SV measures, also is provided for the cross-sectional study. These data are openly
available at the "OASIS Website" (http://www.oasis-brains.org)

2.5 Advances in the early diagnosis of AD

Due to neuropsychological tests commonly used in the clinical practice of AD (see Section
1.2) may lack high reliability [88], there exist a great need for providing complementary
information and increasing the accuracy of early and reliable diagnosis of the disease as
well as enhancing the ability to predict the progression from early disease stages. Several
studies have dedicated a special interest in exploring the influence of socio-demographic
characteristics on cognitive impairment and AD development [112, 119, 4, 126, 84, 46]
by analyzing data from cross-sectional studies. However, AD-related features including
neuroimaging biomarkers, CSF-based biomarkers and APOE genotype (see Section 1.6)
have demonstrated to be more robust to improve the diagnostic and prognostic accuracy of
AD, mainly when they come from longitudinal studies. These features enable physicians to
identify individuals at risk for the disease, even before symptoms appear, and possibly prevent
or slow down the progression to dementia. Statistical learning (SL) methods are applied
on MRI-based biomarkers to model and understand their change and facilitate the access
to them automatically. SL is a recently developed area in statistics and blends with parallel
developments in computer science and, in particular, machine learning [63]. It includes,
multivariate techniques such as Linear Mixed-Effects (LME) modelling, Orthogonal Partial
Least Squares (OPLS), Support Vector Machine (SVM) and Relevance Vector Machine
(RVM), among others, which have enabled the correlation and variance of these biomarkers
to be evaluated in a more easily interpreted way and with greater statistical power as compared
to univariate approaches. The following sections present a review of several studies, which
were focused on building SL models using AD-related biomarkers, mainly studies based on
MRI-based biomarkers. Several of these models were previously introduced in Section 2.2.

http://www.oasis-brains.org
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2.5.1 Analysis of biomarkers trajectory

The analysis of biomarkers change over time is key for understanding differences along
disease stage and for discriminating them against age-related changes. Mainly, longitudinal
studies based on neuroimaging have allowed measuring brain changes within the same
individuals over time, independently of such cohort effects [35]. In many studies, MRI
biomarkers have been used in combination with other types of biomarkers, such as PET-
based biomarkers, CSF-based biomarkers, genetic-based biomarkers and socio-demographic
and neuro-psychological features to characterise the AD-related changes and improve early
diagnosis performance.

Table 2.3 shows several studies focused mainly on characterising differences in AD-
related biomarkers and neuro-psychological features between HC, MCI and AD subjects.

Davatzikos et al. [24] modelled spatial patterns of brain atrophy to distinguish among
HC and MCI using a single value, called as the SPARE-AD index (Spatial Pattern of
Abnormality for Recognition of Early AD); and whether those patterns are associated with
decline cognitive. First, a classifier was trained to recognise spatial patterns of brain atrophy
that distinguish AD vs HC. By using that classifier, it was obtained a SPARE-AD index for
each subject. More positive SPARE-AD implies a more AD-like pattern of brain atrophy,
and more negative SPARE-AD implies a more normal pattern of brain morphology. Then,
the classifier was tested on a longitudinal cohort, and the progression of the computed
SPARE-AD index for HC and MCI subjects was analysed using LME models. As a result, a
significant increase in the rate of SPARE-AD with age was observed in HC and MCI, being
the rates of change more significantly greater in MCI than in HC subjects. Furthermore,
subjects who had converted to MCI over time showed worse cognitive performance; here
the LME model showed a significant association between the SPARE-AD index and MMSE
scores.

Risacher et al. [100] analysed different types of structural MRI biomarkers in four subject
groups (sAD, cAD, sMCI and HC) and the conversion of MCI to AD using two timepoints
(baseline and the final 1-year sample). Neurodegeneration biomarkers were obtained by using
multiple image processing methods on MR images, including voxel-based morphometry,
ROIs, and automated parcellation. For each subject, annual percent change (APC) estimates
of biomarkers were calculated by using mean values from left and right ROIs from two
timepoints. Also, they evaluated the influence of APOE genotype on APC rates. As a result,
sAD and cAD subjects showed higher atrophy APCs across regions than HC, and APOE
genotype was associated with APC in key AD-related structures.

Lo et al. [77] studied longitudinal data from ADNI subjects (HC, MCI, and AD) during
up to 36 months of follow-up. Data included 3 categories of biomarkers: (1)CSF-based
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biomarkers (CSF-Aβ , CSF-τ and CSF-Phosphorylatedτ), (2) MRI hippocampal volume,
and (3) Fludeoxyglucose F18 (FDG) uptake using positron emission tomography (PET).
Population average rates of change of these time-varying biomarkers were evaluated by using
repeated measures linear regression [34], which is an extension of generalised linear models
[128]. These models were regressed by time and age at baseline. Likewise, to assess the
extent to which pathological markers correlated with cognitive decline function over time,
the correlation between these biomarkers and the Alzheimer Disease’s Assessment Scale
(ADAS) cognitive subscale (ADAS-cog) score was also studied. In summary, researchers
found that biomarkers observed over time provide a potential approach for early diagnosis of
AD and longitudinal patterns of them capture AD pathological states sequentially and that
their predictive values for cognitive decline depend on the disease stage.

Bernal-Rusiel et al. [9] analysed well-known pair of AD biomarkers (MRI-derived
longitudinal hippocampal volume and entorhinal cortex thickness measurements) from AD,
MCI and HC subjects groups observed during 2-year follow up. They provided a methodology
to apply LME modelling on longitudinal structural MRI studies in order to characterize the
change of both biomarkers between five diagnostic groups: stable HC, stable MCI and stable
AD ( all these subjects were stable throughout the follow-up period) and converter HC and
converter MCI subjects (those who were converted to MCI and AD during follow up). They
observed a significant difference between the two biomarkers across HC, stable MCI, and
converted MCI subjects, but that difference diminished and became statistically insignificant
for the entorhinal cortex thickness measurements when comparing converted MCI subjects
and stable AD patients. Their results suggested that LME approach offers superior statistical
power in detecting longitudinal group differences in comparison with widely-used alternative
methods.

Fjell et al. [43] focused on determining which brain regions show the greatest changes in
normal ageing over short time intervals (one or two years), and how those regions change with
age. Longitudinal biomarkers were obtained from MRI volumetric ROIs and surface-based
ROIs from HC and AD (mild to moderate status) subjects. One-sample t-tests were used
to test significant atrophy in each ROI of both diagnostic groups. As an important finding,
significant volumetric reductions of the cerebral cortex and subcortical brain structures, as
well as an expansion of the ventricles, were seen in HC over periods as short as one year.
Several of these age-related changes occur in well-known brain regions vulnerable to AD,
while other changes have been observed in areas less characteristic of an early-stage AD. Four
years later, in order to differentiate the characteristics of normal aging from presymptomatic
AD, this study was extended to compare atrophy rates in HC, MCI and AD subjects using
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MRI biomarkers observed to 3-to-4-year follow-up, as well as, CSF-Aβ biomarker, APOE
genotype and neuro-psychological features (CDR and MMSE) [44] .

2.5.2 AD classification from neuroimaging data

The development of automatic methods for the accurate classification of subjects into diag-
nostic groups from neuroimaging data is the aim of multiple studies. Studies are focused on
supporting the early diagnosis and prognosis of AD by selecting and combining optimum
features from multiple modalities, including MRI, PET, CSF biomarkers, and clinical tests;
and building statistical and ML models using those features. Most studies are mainly focused
on three differential diagnosis problem: (1) AD vs HC, (2) MCI vs HC, and (3) AD vs
MCI. The last one problem is focused on the prodromal AD, and it is mainly directed at
discriminating between the stable MCI (sMCI, MCI who had not converted to AD) versus
converted to AD (cAD, subjects who had converted to AD).

Table 2.4 compares the prediction accuracy of several methods, which have been evaluated
on the ADNI datasets and other data sources and have mainly focused on MRI and its fusion
with different data modality. In the table, we only show the most significant results of those
studies. Many of those methods applied SVM [121, 18, 129, 65, 73, 113, 114] and Principal
Components Analysis (PCA) [47–49] before classification task to improve prediction quality
by selecting the most significant brain structures or other feature types. In this way, once
selected the most optimal features, the correlation and variance of multivariate models were
determined and evaluated in a more easily interpreted way. In summary, for AD vs HC,
the methods mentioned achieved high accuracy (ACC) values (up to 96.88% sensitivity
and 95.22% specificity); and ACCs from 79.27% to 97.62% for MCI vs HC. However, for
the detection of the prodromal AD (AD vs MCI), the ACC was substantially lower (below
76.72%) for all methods.

Table 2.4 also shows that many of classification methods are based on SVM [69, 121, 18,
19, 65, 73, 129, 113]. Klöppel et al. [69] built SVM models to classify the GM voxels of
structural MR images from patients with a confirmed diagnosis of AD, probable mild AD and
HC subjects. Furthermore, in order to test the ability of the SVM’s to differentiate different
forms of dementia, researchers also built SVM models to discriminate between confirmed
AD and subjects with neuropathologically proven frontotemporal lobar degeneration (FTLD)
(this disease is sometimes difficult to distinguish from AD clinically). They found that SVMs
can aid the clinical diagnosis of AD and correctly differentiate between different forms of
dementia. Plant et al. [95] developed a multi-step data mining framework including FS,
clustering and classification to identify the best discriminating regions in brain images, which
support the prediction of the conversion from MCI to AD (cAD vs sMCI). For classification
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tasks, authors selected three representative approaches: SVM, Bayes statistics, and voting
feature intervals (VFI). Using AD and HC as training data and MCI as test data, the best
prediction of conversion to AD was achieved with the VFI classifier. Like the previous study,
Cui et al. [18] were also focused on supporting the prediction of conversion from MCI to AD
by examining multiple features including MRI-based biomarkers, CSF-based biomarkers
and neuropsychological and functional (NM) scores. MRI-based biomarkers corresponded to
34 ROIs per hemisphere. Data were downloaded from the ADNI website, where longitudinal
structural MR images were processed using Freesurfer software. These biomarkers provide
information about the cortical thickness average, the standard deviation of thickness, surface
area and cortical volume of each ROI. FS step was carried out to select an optimal feature
subset from each modality. Then, SVM models were trained on both HC and AD data
at baseline and testing was conducted to discriminate between sMCI and cAD subjects at
different times (6 months,12 months, 18 months and 24 months). The SVM model trained
with selected MRI, CSF and NM features obtained the best performance, suggesting that their
combination may be more useful and practical for clinical diagnosis than single modality of
predictors. Cuingnet et al. [19] evaluated the performance of ten multivariate classification
methods applied on MR images at baseline. Five methods were based on the voxel-based
segmentation, three methods were based on cortical thickness, and the remainders were
based on the hippocampal shape or volume. Three classification experiments were performed
to compare the different approaches: the classification AD vs HC, cAD vs HC, cAD vs
sMCI. Classifiers were built using SVM. High accuracies in distinguishing AD from HC
were reported for whole-brain (or the whole cortex) approaches. However, at the prodromal
stage, no method was able to predict conversion to AD with higher sensitivity. Zhang and
Shen [129] proposed a general learning framework called Multi-Modal Multi-Task (M3T)
learning, to jointly predict multiple features from baseline multi-modal data, including MRI,
FDG-PET, and CSF data. First, a multi-task FS method was applied to select the relevant
features for multiple response features from each data modality, and then a multi-modal SVM
(for both regression and classification) was trained which joins the above-selected features
from all modalities to predict multiple (regression and classification) variables. Finally, SVM
models were validated on two sets of experiments: (1) Estimation of two clinical continuous
features (MMSE score and ADAS cognitive subscale) and one categorical diagnostic feature
(HC/MCI/AD class label ); and (2) Prediction of 2-year changes of MMSE, ADAS cognitive
subscale and also the conversion of MCI to AD (cAD vs sMCI).

On the other hand, some methods summarised imaging data into one score, allowing the
direct comparison of subjects and their classification into diagnostic groups. Vemuri et al.
[121] trained SVM models to classify tissues density values of structural MR images obtained
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from HC and AD subjects. Model input data included the previously selected GM, WM and
CSF voxels by using SVM-related weights. In order to study the age, gender and genotype
effect on brain atrophy, authors added that information to model training. The output of that
models was an adjusted structural abnormality index called (aSTAND)-score. This score
takes into account the additional subject-specific information for each individual and gives
a number that represents the severity of brain atrophy that individual in comparison to the
AD and HC cohorts of the same age, gender and APOE genotype. This study found that the
aSTAND-scores correlate well with cognitive decline measures, such as MMSE, CDR, and
Dementia Rating Scale (DRS). Other studies have proposed an age estimation framework
(BrainAGE) to estimate individual brain ages based on GM measurements from MR images.
Franke et al. [47, 48] trained an RVM model for regression (RVR) from healthy subjects
images- Then, Gaser et al. [49] used this model to estimate the age of MCI and AD subjects
and recognise faster brain atrophy to predict the conversion from MCI to AD. Differences
between the estimated and the true age were used to indicate accelerated (positive values) or
decelerated (negative values) brain ageing. Other studies proposed methods to calculate an
MRI-based AD severity index from cross-sectional [111] and longitudinal studies [2], where
multivariate models based on OPLS regression were built from HC and AD subject data.
Then, those models were applied to MCI subjects for early prediction of conversion to AD
through subject classification as either HC-like or as AD-like.

Recently, a deep learning (DL) architecture is gaining a considerable attention due to its
representational power. When DL is applied to medical images, low to high-level features can
be obtained, which allow building more robust classifiers. Suk and Shen [113] proposed a DL-
based feature representation for early diagnosis of prodromal AD. They applied a Stacked
Auto-Encoder to discover a latent representation from the neuroimaging and biological
features. Data included baseline MRI, PET, and CSF features from ADNI. Their method
achieved accuracies of 95.9%, 85.0%, and 75.8% for AD, MCI, and MCI-converter diagnosis,
respectively. Later, Suk et al. [114] addressed both feature representation and multimodal
data fusion for computer-aided AD/MCI diagnosis by combining a patch-based feature
representation and Deep Boltzmann Machine. In that way, researchers handled small changes
in the brain with more sensitivity. For the differential diagnosis problems, this study obtained
the maximal accuracies of 95.35%, 85.67%, and 74.58%, for AD vs HC, MCI vs HC and
AD vs MCI, respectively.



2.5 Advances in the early diagnosis of AD 53

Ta
bl

e
2.

4
C

om
pa

ri
so

n
of

m
et

ho
d

pe
rf

or
m

an
ce

s
fo

cu
se

d
on

su
bj

ec
tc

la
ss

ifi
ca

tio
n

(%
).

St
ud

y
M

et
ho

d
A

D
vs

H
C

M
C

Iv
sH

C
A

D
vs

M
C

I
D

at
a

us
ed

A
C

C
SE

N
SP

E
A

C
C

SE
N

SP
E

A
C

C
SE

N
SP

E
K

lo
ep

pe
le

ta
l.

[6
9]

SV
M

95
.0

95
.0

95
.0

-
-

-
-

-
-

M
R

I(
G

M
)

V
em

ur
ie

ta
l.

[1
21

]
SV

M
-

86
.0

86
.0

-
-

-
-

-
-

M
R

I(
G

M
,W

M
,C

SF
)

SV
M

-
88

.0
90

.0
-

-
-

-
-

-
M

R
I(

G
M

,W
M

,C
SF

),
ag

e,
ge

nd
er

SV
M

-
86

.0
92

.0
-

-
-

-
-

-
M

R
I(

G
M

,W
M

,C
SF

),
ag

e,
ge

nd
er

,A
PO

E
Pl

an
te

ta
l.

[9
5]

SV
M

90
.0

96
.8

8
77

.7
8

97
.6

2
95

.8
3

10
0

75
.0

55
.5

6
86

.8
7

M
R

I(
G

M
,W

M
)

Fr
an

ke
et

al
.[

47
]

RV
M

-
-

-
-

-
-

-
-

-
M

R
I(

G
M

)
Fr

an
ke

et
al

.[
48

]
RV

M
-

-
-

-
-

-
-

-
-

M
R

I(
G

M
,W

M
)

C
ui

et
al

.[
18

]
SV

M
-

-
-

-
-

-
67

.1
3

96
.4

3
48

.2
8

N
M

,C
SF

,M
R

I-
ba

se
d

bi
om

ar
ke

rs
-

-
-

-
-

-
62

.2
4

92
.8

6
42

.5
3

N
M

,M
R

I-
ba

se
d

bi
om

ar
ke

rs
-

-
-

-
-

-
62

.2
4

57
.1

4
65

.5
2

M
R

I-
ba

se
d

bi
om

ar
ke

rs
C

ui
ng

ne
te

ta
l.

[1
9]

SV
M

-
81

.0
95

.0
-

-
-

-
57

.0
78

.0
M

R
I(

G
M

)
Z

ha
ng

et
al

.[
12

9]
*

m
ul

ti-
m

od
al

SV
M

93
.3

-
-

83
.2

-
-

73
.9

68
.6

73
.6

M
R

I,
PE

T,
C

SF
Su

k
et

al
.[

11
3]

D
L

,S
V

M
95

.9
-

-
85

.0
-

-
75

.8
-

-
M

R
I,

PE
T

Ji
e

et
al

.[
65

]
SV

M
95

.0
3

94
.9

0
95

.0
0

79
.2

7
85

.8
6

66
.6

4
68

.9
4

64
.6

5
71

.7
9

M
R

I,
FD

G
-P

E
T

G
as

er
et

al
.[

49
]

RV
R

-
-

-
-

-
-

75
.0

0
71

.0
0

84
.0

0
M

R
I-

ba
se

d
ag

e
Sp

ul
be

re
ta

l.
[1

11
]

O
PL

S
R

eg
re

ss
io

n
88

.4
86

.1
90

.4
-

-
-

67
.7

69
.6

66
.8

M
R

I-
ba

se
d

in
de

x
A

gu
ila

re
ta

l.
[2

]
O

PL
S

R
eg

re
ss

io
n

-
92

.0
75

.0
-

-
-

-
92

.0
47

.0
M

R
I-

ba
se

d
in

de
x

L
iu

et
al

.[
73

]
M

ul
ti-

ke
rn

el
SV

M
94

.3
7

94
.7

1
94

.0
4

78
.8

84
.8

5
67

.0
6

67
.8

3
64

.8
8

70
.0

M
R

I,
PE

T
Su

k
et

al
.[

11
4]

D
L

,S
V

M
92

.3
8

91
.5

4
94

.5
6

84
.2

4
99

.5
8

53
.7

9
72

.4
2

36
.7

0
90

.9
8

M
R

I
93

.3
5

94
.6

5
95

.2
2

85
.6

7
95

.3
7

65
.8

7
75

.9
2

48
.0

4
95

.2
3

M
R

I,P
E

T

*
T

hi
s

st
ud

y
ap

pl
ie

d
m

ul
ti-

m
od

al
le

ar
ni

ng
(b

ot
h

re
gr

es
si

on
an

d
cl

as
si

fic
at

io
n)

.H
er

e,
ju

st
cl

as
si

fic
at

io
n

A
C

C
is

re
po

rt
ed

.M
R

I,
M

ag
ne

tic
R

es
on

an
ce

Im
ag

in
g-

ba
se

d
fe

at
ur

es
;C

SF
;C

er
eb

ra
lS

pi
na

lF
lu

id
-b

as
ed

bi
om

ar
ke

rs
;N

M
:N

eu
ro

-p
sy

ch
ol

og
ic

al
m

ea
su

re
s;

PE
T,

Po
si

tr
on

E
m

is
si

on
To

m
og

ra
ph

y-
ba

se
d

fe
at

ur
es

;F
D

G
-P

E
T,

[1
8F

]fl
uo

ro
de

ox
yg

lu
co

se
up

ta
ke

m
ea

su
re

d
in

PE
T;

M
R

I-
ba

se
d

ag
e,

in
di

vi
du

al
es

tim
at

ed
ag

e
co

m
pu

te
d

fr
om

M
R

Ii
m

ag
es

;M
R

I-
ba

se
d

in
de

x,
in

di
vi

du
al

se
ve

ri
ty

in
de

x
co

m
pu

te
d

fr
om

M
R

Ii
m

ag
es

;



54 Background

2.6 Open issues

As seen in the previous Section, neuroimaging biomarkers are among the most promising
areas of research focused on early detection. In fact, structural MRI is considered part of the
standard workup for AD to obtain macroscopic visualisation of atrophy caused by neuronal
death over time. However, at the moment, there is no agreement on standardised values for
brain volume, which would help to determine a significant brain shrinkage for any person at
a single point in time. Furthermore, as previously described in Section 1.5, ageing effects on
the brain include changes at molecular and morphological levels. Several of these changes are
shared by neurodegenerative diseases. Healthy subjects lose brain matter over time, and those
changes are not uniform across the whole brain or over subjects. Part of the ageing-related
atrophy occurs in areas vulnerable to AD, while other changes are observed in areas less
characteristic of the early-stage AD, such as MCI. Regarding molecular changes, cognitively
normal elderly have Aβ deposition in the brain with similar levels of the substances observed
in subjects with dementia due to AD. Similarly, despite an increase in τ protein having been
seen in AD as compared to HC, τ deposition is found in other neurodegenerative diseases.
These shared biochemical and morphological characteristics represent opportunities and
challenges for researchers and clinicians to discriminate age-related changes in healthy
elderly subjects from people affected with the early stage of AD. Also, part of that challenge
includes dealing with the current poor understanding of the initial stage of AD. In order
to address these issues, a good starting point is to understand and differentiate age-related
changes in brain regions in the absence of disease, and then to support early and accurate AD
diagnosis.

Multivariate regression and classification algorithms, such as those used in the studies
described above, have boosted the major advances made in the early diagnosis of AD
in this century. These methods have allowed obtaining multi-source features obtained
by identifying and combining different types of AD-related features, such as phenotypes,
biomarkers, clinical data, genotype, among others. Multi-source features have more statistical
significance than each of them alone. However, most studies commented in Section 2.5
present limitations, which should be considered as starting points for new studies. Although
it is well known that ageing-related effects on the brain are widespread; ageing is the major
risk factor for sporadic AD—older brains being more susceptible than young or middle-aged
ones, and the atrophy rate in elderly adults is higher than in middle-aged adults. most of
studies listed on Tables 2.3 and 2.4 have not taken into account age differences in applying
the SL methods. On the other hand, even though the most studies have been applied to ADNI
data repository, which is highly prized for the complete AD longitudinal study carried out on
hundreds of people; very few of them have been focused on analysing the longitudinal data.
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Furthermore, the few methods applied to longitudinal data have not been careful enough
with likely bias issues due to samples of the same subjects are correlated. In that sense, it is
necessary to conduct studies that focus on modelling both between-subject and within-subject
changes addressing the challenges inherent in that data type. Finally, no study provided
information about the advancement (in years) in the early disease prediction by using their
proposed methods. By knowing the number of years of advancement in the early prediction
of the disease, researchers would compare methods, identify the most potent biomarkers
and others AD-related features; and also clinicians could apply the most reliable treatments
according to the disease stage.





Chapter 3

Objectives and thesis contribution

3.1 Main Objective

The main objectives of the thesis are to figure out the ageing-related brain change over
time, and to address the differential diagnosis between healthy elderly (HC), mild cognitive
impairment (MCI) and demented due to Alzheimer’s disease (AD) subjects, as well as
the early prediction of conversion to MCI or AD, using statistical learning methods on
longitudinal neurodegeneration biomarkers based on MRI.

3.1.1 Specific Objectives

1. Define a set of rules to stratify in a reliable way the HC, MCI and AD cohorts according
to their current and future diagnosis.

2. Develop suitable methods to analyse longitudinal MRI-based biomarkers from HC,
MCI and AD by taking into account the nature of this kind of data.

3. Figure out the ageing-related changes of the brain in HC, as well as in MCI and AD
subjects.

4. Identify the most significant MRI-based neuro-degeneration biomarkers on HC and
subjects along AD stages taking into account age and gender.

5. Apply statistical learning algorithms to address the estimation of current diagnosis by
carrying out differential diagnostic experiments between HC, MCI and AD subjects.

6. Address the prediction of future diagnosis of HC, MCI and AD subjects by building
statistical learning models, which should be capable of predicting advanced stages of
the disease from pre-dementia stages.



58 Objectives and thesis contribution

7. Compute the time of advancement in the prediction of future diagnosis reached by the
proposed methods.

8. Validate the proposed methods by using data gathered from a different population.

3.1.2 Expected Contributions

The most important expected contribution is to aid the growing research area focused on the
early diagnosis of AD, not only by developing powerful models to subject’s diagnosis but
also by initially addressing the ageing-specific changes in the brain, in order to differentiate
these changes from the changes due to the disease. In particular, by using significant
neuro-degeneration biomarkers based on MRI, two methods for HC/MCI/AD subjects
discrimination and early prediction of future disease stages, are presented. Also, the ageing-
related morphological brain changes are identified and characterised by applying specific
methods for modelling longitudinal data, which takes into account the between-subject and
within-subject changes over time.



Chapter 4

Early prediction of AD: Method Mres

Work in this chapter has, in part, been presented in: Giovana Gavidia-Bovadilla, Samir
Kanaan-Izquierdo, María Mataró-Serrat, Alexandre Perera-Lluna, for the Alzheimer’s Dis-
ease Neuroimaging Initiative. Early Prediction of Alzheimer’s Disease Using Null Longitu-
dinal Model-Based Classifiers. PLOS ONE, 12(1):e0168011, jan 2017. ISSN 1932-6203.

4.1 Introduction

In order to understand the specific effects of AD on brain structures, it is important to
differentiate their age-related changes in the absence of disease. This chapter presents a
sequential method, called Mres, which is focused on characterizing the age-related changes
in brain structures of healthy elderly to identify the variant (vr) and quasi-variant (qvr) MRI
biomarkers and build ageing-based null models. We hypothesized that, by identifying both
vr and qvr regions, it would be possible to obtain an ageing-based null model, which would
characterize their normal atrophy and growth patterns as well as the correlation between them.
Null models were built from identified HC subjects (n=46) with a normal CSF-profile. Most
importantly, this method address the estimation of current diagnosis (ECD) of HC/MCI/AD
subjects and the prediction of future diagnosis (PFD) mainly focused on the early prediction
of conversion to AD, by using these null models to estimate the age-related values of
vr and qvr MRI biomarkers for longitudinal data of HC (n=161), MCI (n=209) and AD
(n=331) subjects. Residuals were then calculated as deviation scores of observed MRI-based
biomarkers from estimated normal MRI-based biomarkers. Support vector machines (SVM)
were used to build residual-based classifiers for three experiments: MCI vs HC, AD vs MCI
and AD vs HC. The advancement for early disease prediction was calculated as the number
of years that the proposed method leads in predicting the last known subject diagnostic. Data
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used in this study was obtained from the ADNI study (adni.loni.usc.edu). Details about
ADNI database was briefly introduced in Section 2.3.

4.2 Data

4.2.1 Subjects and inclusion criteria.

Participants were selected from original ADNI study if they met the following criteria (at
the time of the study, April, 2015): (1) Had all selected longitudinal MRI images correctly
processed (2) Had completed demographic and neuropsychological data and were clinically
diagnosed at each visitation. In total, longitudinal data of 747 subjects (215 CN, 366 LMCI
and 166 AD) were studied. Demographic details of the studied cohort are given in Table 4.1.
Summaries are grouped by gender and correspond to baseline stage.

adni.loni.usc.edu
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Table 4.1 Statistical descriptors of studied ADNI cohort at baseline.

Female Male
N = 316 N = 431

Agebl 71.1 75.3 79.9 71.2 75.6 79.9

(74.8± 6.8) (75.4± 6.7)
Years of education 0.65 0.75 0.85 0.70 0.80 0.90

(0.75±0.14) (0.80±0.15)
Ethnicity

Hisp/Latino 2.2% 7
316 1.9% 8

431

Not Hisp/Latino 96.5% 305
316 98.1% 423

431

Unknown 1.3% 4
316 0.0% 0

431

Race
Am Indian/Alaskan 0.32% 1

316 0.00% 0
431

Asian 1.58% 5
316 2.09% 9

431

Black 6.33% 20
316 3.25% 14

431

More than one 0.32% 1
316 0.23% 1

431

White 91.46% 289
316 94.43% 407

431

Marital State
Divorced 10.44% 33

316 3.25% 14
431

Married 61.08% 193
316 89.10% 384

431

Never married 4.43% 14
316 2.09% 9

431

Unknown 0.00% 0
316 0.23% 1

431

Widowed 24.05% 76
316 5.34% 23

431

APOE-ε4 ∗

0 52% 164
316 50% 215

431

1 37% 116
316 39% 167

431

2 11% 36
316 11% 49

431

MMSE 25.0 27.0 29.0 25.0 27.0 29.0

(26.8± 2.7) (26.8± 2.5)
CDRGLOBAL

0 32.6% 103
316 26.0% 112

431

0.5 54.4% 172
316 65.7% 283

431

1 13.0% 41
316 8.3% 36

431

dxbl

AD 25% 80
316 20% 86

431

CN 33% 103
316 26% 112

431

LMCI 42% 133
316 54% 233

431

Availability of CSF data ∗∗

Yes 52% 164
316 55% 236

431

Not 48% 152
316 45% 195

431

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous
variables. x± s represents X̄ ±1 SD.N is the number of non–missing values observations.
Numbers after percents are frequencies. AD: dementia due to Alzheimer‘s Disease; CN:
Control Normal and LMCI: Late Mild Cognitive Impairment.
∗ Number of copies of allele.
∗∗ Availability of both CSF-Aβ and CSF-τwas data at time of study (April, 2015).
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4.2.2 CSF biomarkers.

CSF biomarkers set was conformed by the Aβ peptide extending to position 42 (CSF-Aβ )
and the total tau (CSF-τ), in pg/mL, which were briefly described in Section 2.3.3. It should
be noted that in Table 4.1 just 164 women and 236 men have available measures of CSF-based
biomarkers.

4.2.3 MRI-based biomarkers.

MRI-based biomarkers used in this study were previously described in Section 2.3.4. They
correspond to measured of neuro-degeneration available in ADNI at 5 years follow-up. These
biomarkers were obtained with the FreeSurfer image analysis suite, version 4.4 (see Section
2.1.3). We only included biomarkers of the cortical volume (CV), cortical thickness average
(TA) and the volume estimates of a wide range of sub-cortical structures (SV). Note that
in this thesis, we maintained the biomarkers classification established by ADNI. Thus, we
kept the hippocampus within the group of SV structures. Biomarkers related to white matter
hypointensities, optic chiasm, insula and the unknown regions were excluded from further
analysis. Furthermore, biomarkers with missing values for most samples were discarded.
Likewise, we only included the ones correctly processed and available for at least two time
points. In this sense, we included an unbalanced longitudinal data of 166 longitudinal
MRI-based biomarkers, including CV (N=66) and TA (N=66) of 33 cortical regions; and SV
(N=34) of 22 subcortical regions. Biomarkers measured at multiple time points: baseline, 6,
12, 18, 24, 36, 48 and 60 months.

4.3 Methods

This study was divided into three main stages: (1) Subject classification, (2) Building the
ageing-based null models, and (3) Residuals-based early prediction of conversion to MCI/AD
and HC/MCI/AD classification with SVM classifiers. Figure 4.1 illustrates a schematic
diagram of the proposed method, Mres. All statistical and Machine Learning analyses and
graphics were performed in R version 1.0.44 [96].

4.3.1 Classification of subjects.

Since the diagnosis of MCI and AD is progressive, in addition to ADNI clinical assessment
established at every visitation, dxage (see Section 2.3.2), we aim to control the last ADNI
clinical diagnosis of each subject at time of this study, by building a time-invariant diagnosis
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variable (dxlast). This variable labels subjects according the following classes: (1) stable
HC (sHC), (2) stable MCI (sMCI), (3) converted to MCI (cMCI), (4)stable AD (sAD)
and (5) converted to AD (cAD). Because previous studies have found ADNI participants
with abnormal concentrations of CSF-based biomarkers even in healthy elderly subjects
[117, 108], we decided to study the subjects with available CSF data (see Table 4.1) and to
discriminate the ones with normal CSF-profile from the ones with abnormal concentrations.
For this propose, we investigated the cut-off values previously established by [108] (CSF-
Aβ : 192pg/ml, CSF-τ : 93pg/ml) [108] from their study with ADNI-independent autopsy-
based samples, on our samples at long-term follow-up times (84 months). As many of these
subjects have more than one measurement available for both CSF-based biomarkers, the
normal or abnormal profile was evaluated for all observations. In this way, we expected to
classify these subjects through the other time-invariant feature (dxcs f ), which combines their
dxlast state and their CSF profile. Table 4.2 gives a brief description of all diagnosis variables
used in this study. Once the subjects were characterized according to dxlast and dxcs f , two
cohorts were established: (1) The null model cohort, integrated by the stable HC subjects
with normal CSF profile (normal-HCcsf); and (2) The early prediction cohort, integrated by
the remaining subjects who did not meet the previous condition.

4.3.2 Building the ageing-based null models

In this stage, we analyzed data from the null model cohort. Every MRI-based biomarker of
the normal-HCcsf group was standardized to have zero mean and unit variance. Here, we also
refer to an MRI-based biomarker as a ROI when we refer to the modelling process.

Modelling temporal change in ROIs.

To visualize the between-subject and within-group variabilities on normal-HCcsf, ROIs were
represented by quartiles. The change in cortical and subcortical brain regions over 5 years
was calculated by applying the LME approach for every ROI (see Section 2.2.3). The subject
age (age) at each observation and the years of education (educ) were included as covariates
in all models. Because we hypothesize that there are important individual-level effects and
believe that subjects have similar rates of change over time, we fitted random intercepts LME
models. In this type of model, the measured value of ROI r defined as yi j is assumed to have
a set of parameters β , fixed across subjects. In addition, for each individual i, a set of random
parameters υi is assigned that models the deviation from the fixed effect β . For i = 1, ...,n,
each model reads as follows:
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Table 4.2 Diagnosis variables used in this method.

Source Diagnostic variable Class Class description

ADNI

dxbl

CN Control normal at baseline
LMCI Late MCI at baseline
AD Early probable AD at baseline

dxage

NL Subjects diagnosed as stable normal at current visitation
NL to MCI Subjects diagnosed as MCI at current visit who previously

were NL
NL to Dementia Subjects diagnosed as dementia due to AD at current visit

who previously were NL
MCI Subjects diagnosed as stable MCI at current visit who previ-

ously were also MCI
MCI to Dementia Subjects diagnosed as dementia due to AD at current visit

who previously were MCI
Dementia Subjects diagnosed as stable dementia due to AD at current

visit who previously were also MCI

Our study

dxlast

sHC Subjects labelled as HC who remained like HC in all follow-
up visits (who did not become MCI or AD)

sMCI the MCI subject who did not become AD
cMCI Subjects initially labelled as HC who subsequently have

converted to MCI
sAD Subjects who remained like probable or possible AD all the

follow-up visits
cAD Subjects labelled as HC or MCI who subsequently have

converted to probable or possible AD

dxcs f

normal-HCcsf sHC subjects with normal CSF profile
abnormal-HCcsf sHC subjects with abnormal CSF profile
normal-MCIcsf sMCI and cMCI subjects with normal CSF profile
abnormal-MCIcsf sMCI and cMCI subjects with abnormal CSF profile
normal-ADcsf sAD and cAD subjects with normal CSF profile
abnormal-ADcsf sAD and cAD subjects with abnormal CSF profile

yr
i j = Xi jβ

r +Zi jυ
r
i + ε

r
i j (4.1)

where, yr
i j is the standardized value of ROI r measured for the ith subject in the jth

observation; i = 1, ...,n subjects, j = 1, ...,ni available observations for subject i and r =
1, ...,nr, nr = 166 ROIs. Xi j is a ni x p design matrix, where p is the number of covariates (age,
educ and the constant term of 1’s) on the jth observation of ith subject. β r is the p x 1 vector
of unknown fixed effects or regressor’s coefficients, which are: β r

1 (coefficient for constant
term or Intercept), β r

a (coefficient for age) and β r
e (coefficient for educ). Zi j is a known

design matrix of size ni x q, where q is the number of random effects for the jth observation
of subject i. υr

i is the q×1 vector of unknown random effects coefficients ∼ Nq(0,ψ) for
subject i measured for ROI r. εr

i j is the nix1 residual vector of errors ∼ Nni(0,σ2λi) for the
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jth observation in subject i measured for ROI k. ψ is the q× q covariance matrix for the
random effects. 0,σ2λi is the ni x ni covariance matrix for the errors in subject i.

LME modelling was performed using the lme4 package available for R [8].

Identification of variant and quasi-variant ROIs.

The predictor estimates of LME models were interpreted the same way as the coefficients from
a traditional regression. For instance, a one year increase in the regressor age corresponded
to the effect of age (βa) increase or decrease in the outcome. Taking into account the βa’s,
we classified as variant (vr) ROIs the ones that had both an annual change greater than 1% on
ROI standard deviation and a significant change at p-values ≤ 0.05. The ROIs with annual
change less than or equal to 1% were considered as quasi-variant (qvr), where all of these
did not have a significant change.

Inference of variant ROIs y-intercept values from quasi-variant ROIs.

The Y-intercept value (y0) from each ROI, which represents the subject-specific ROIs measure
at basal stage (age = 0), was directly obtained from all LME models. We assumed that for
healthy elderly people, the qvr ROIs values remains basically the same along time, even at
basal stage, which is not true in the vr. We also assumed there is a strong correlation between
the y0 set of both ROI types. Therefore, we built the HC null model based on the PLSR
algorithm [123] (see Section 2.2.4) to infer the set of y0’s for vr ROIs in function of the set of
y0’s for qvr ROIs. PLSR is a linear algorithm particularly useful to analyse data with strongly
collinear (correlated), noisy, and numerous predictors variables, and also simultaneously
model several response variables [123]. There are several algorithms proposed to implement
the PLSR model. In this study, we applied the kernel algorithm [25] available in the pls
package [82] developed in R [96]. To determine the optimal number of components to take
into account, it was used leave-one-out (LOO) cross-validation method available in this
package. LOO calculates potential models excluding one observation at a time.

4.3.3 Early disease prediction based on residuals.

In this stage, we addressed the estimation of current diagnosis (ECD) and the prediction of
future diagnosis (PFD) using data from HC, MCI and AD subjects unused in the previous
stage. ROIs of these subjects were standardized according to the mean and standard deviation
of the null model cohort.
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Inference of age-associated ROIs values for new subjects.

For each subject, the y0’s of vr ROIs were inferred from the y0’s of qvr ROIs using the
same PLSR model described in previous section. Once the y0 set for both ROIs types was
completed, we used these values in combination with the vector of coefficients β , see Eq (4.1)
and the observed covariates (age and educ), to infer the expected values of each ROI (ŷi j)
according to Eq (4.2). Here, the inferred value represents the value that should measure the
ROI at age ̸= 0 whether the subject is healthy or not.

ŷr
i j = ŷ0

r
i +(Xi jβ

r) (4.2)

where ŷr
i j represents the inferred or predicted value of the rth variant ROI on the jth

observation for the ith subject. Xi j is the design matrix with observed covariates at age ̸= 0
without the constant term. β r is the vector of calculated fixed effects of ROI r obtained from
its LME model, according Eq (4.1).

Computing the residuals of variant ROIs.

In order to get a meaningful deviation value of ROIs from an inferred healthy subject-specific
trend, the difference between the estimated (ŷ) and the true (ŷ) ROIs values, here called
residual (e), was computed. The residuals er

i j for each ROI were calculated as following:

er
i j = yr

i j − ŷr
i j (4.3)

where yr
i j and ŷr

i j are the observed and inferred values, respectively, for each ROI r
measured on the ith subject in the jth observation. The e’s for all ROIs were stored in a matrix
E.

Application of proposed method in a hypothetical example

Figure 4.2 illustrates a hypothetical example of how we have used the LME and PLSR
approaches to infer the ROI values at basal stage and over time; and then to infer the
residuals. The figure shows an example of LME-based trajectories for hypothetical variant
and quasi-variant ROIs fitted on healthy elderly data. In each plot, P1, P2 and P3 represent
hypothetical observations of each ROI y for two subjects at three different ages (a1, a2 and
a3). The first subject is assumed as HC and the second subject is assumed as AD, and it is
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assumed that neither subject was used to build the models. The black lines represent the
healthy population regression line calculated for each ROI, where ŷ0 represents the vertical
y-intercept value of healthy population. The blue and red lines represent the individual
regression lines estimated for both subjects by assuming both as healthy; and the points P̂1,
P̂2 and P̂3 represent the inferred ŷ’s for the three ages. Observe that, ŷHC0 and ŷAD0 are the
subject-specific y-intercepts estimated for HC and AD subjects, respectively. For both cases,
ŷHC0 and ŷAD0 of vr ROI are inferred from the ŷHC0 and ŷAD0 of qvr ROI using the PLSR
model (as described above). The slope βa is the rate change of the standard deviation of ROI
per unit of age; and this slope is the same for both estimated individual regression lines. εHC1,
εHC2, εHC3, εAD1, εAD2 and εAD3 are the residuals of each observation with respect to the
estimated individual regression lines, which are computed in general way as y− ŷ. Here, the
figure shows that AD residuals are greater than HC residuals because this subject is possibly
affected by further neurodegeneration.

Diagnosis prediction using SVM.

In this stage, we used the matrix of residuals E to address the ECD and PFD problems. The
first one was focused on the subject classification, where the vector of class labels, used
as the outcome, was the diagnostics at the time of the visit, dxage (Table 4.2). The second
problem was focused on the early disease prediction, here, we trained a classifier that predicts
the future diagnosis of the subjects given their current clinical tests, i.e. what is the expected
diagnostic of the subject some years after the current visit. The vector of class labels used to
train this classifier was dxlast (Table 4.2). In this case, as the feature set used was obtained in
previous visits of the subject, the classifier learns to predict the future outcome of a subject,
given his present state.

For both problems, we performed three experiments focused on the binary classification
problems: (1) HC vs AD, (2) HC vs MCI and (3) MCI vs AD. The MCI vs AD experiment
in the early prediction problem was focused on addressing the problem of prodromal stage
of AD, by comparing the sMCI (stable MCI over all visitations) with the subject initially
diagnosed as MCI who became to AD over time (cAD). Likewise, for each problem, two
configurations of the feature set have been tested. Let Ev be the subset of matrix E where
only the columns of either the vr ROIs or the qvr ROIs whose residuals are different from
zero were included. The first feature set used in each experiment, F1, included the residuals
from matrix Ev plus the age (age of the subject at the time of the visit). The second feature
set used, F2, includes the information in F1 together with the results from the CDR global
score (CDRGLOBAL) and MMSE tests. The goal of testing two training sets was to assess
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ŷ A
D

0
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.ŷ

H
C

0
an

d
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ŷ H
C

0
an

d
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the influence of the neuro-psychological tests in the quality of diagnostic as opposed to the
use of ROI residuals with age only.

The classification method used to carry out each experiment is a SVM, configured with a
Gaussian radial kernel and a misclassification cost parameter C = 1 (see Section 2.2.5). Each
experiment has been evaluated using a ten-fold cross validation with a specific constraint: as
ADNI is a longitudinal database, there may be multiple samples per subject (multiple visits).
The subjects were assigned to either the training or the test subsets, in order to perform a fair
evaluation. On each cross validation run, 60% of the subjects were assigned to the training
subset and the remaining 40% to the test subset.

Because, it is known that the rate of atrophy increases with age, SVM classifiers were
built on age groups to address the EFD problem. Furthermore, since previous studies have
suggested that there are gender differences in brain atrophy with aging [17, 127, 68, 64, 104],
the full workflow in building the null models and training the SVM models was applied
separately for each gender.

4.4 Results

The ADNI data used to evaluate the classification for males and females are summarized
in Tables 4.3 and 4.4, respectively. These tables provide demographic information and the
number of measurements and diagnoses by each age group.

4.4.1 Healthy elderly subjects with normal CSF profile

Analysis of CSF-Aβ and CSF-τ biomarkers showed us that their distributions were not
normal for all diagnosis groups, see figure 4.3. A bimodal distribution was observed in
CSF-Aβ levels within each diagnosis group. CSF-τ values in CN group showed a unimodal
normal distribution. We confirmed cut-off values determined by [108], classifying as normal
the CSF profile of subjects who fulfilled both conditions: CSF-Aβ >= 192pg/ml and
CSF-τ ≤ 93pg/ml. Several subjects with abnormal CSF profile classified as CN by ADNI
at baseline clinical assessment were converted to MCI or AD (triangle dots) along time.
Likewise, some subjects classified like ’LMCI’ by ADNI were converted to AD later (open
circles).

From CSF profiles, we identified 46 normal-HCcsf, 33 normal-MCIcsf, 11 normal-ADcsf,
63 abnormal-HCcsf, 75 abnormal-MCIcsf and 172 non-ADcsf subjects. Figure 4.4 shows
CSF-τ concentration versus CSF-Aβ concentration for these six groups, where the blue
dots represent the HC subjects with normal CSF profile used to build the null models for
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men and women. Furthermore, in Figure 4.5 is shown the last available measurements of
CSF biomarkers concentrations for the studied ADNI subjects grouped according dxcs f .
An increase in τ values was observed when comparing normal-HCcsf and subjects with
abnormal CSF-profile, and when comparing abnormal-HCcsf with MCI and AD subjects
with abnormal profile. With respect to Aβ levels, we observed a reduction of levels when
comparing normal-HCcsf with abnormal-HCcsf and the remaining groups with abnormal
profile.

In total, 226 samples were available for the 46 normal-HCcsf subjects (males: 22, females:
24). Table 4.5 provides their demographic information at baseline. Age, education and
MMSE scores were similar across gender, but CSF concentrations and CDRGLOBAL were
different between men and women. Furthermore, only three subjects (2 males and 1 female)
were carriers of APOE-ε4 at allele 1. More detail of demographic and cognitive features
measured in ADNI were presented in Section 2.3.

Table 4.5 Baseline statistical descriptors of HC subjects selected for null models building.

Female Male
N = 24 N = 22

age 71.2 75.1 77.7 (74.7± 5.3) 70.4 71.8 74.0 (72.7± 6.0)
education 0.56 0.62 0.75 (0.67 ±0.12) 0.62 0.78 0.88 (0.77 ±0.20)
APOE-ε4

0 95.8% 23
24 90.9% 20

22

1 4.2% 1
24 9.1% 2

22

MMSE 29.0 29.0 30.0 (29.25± 0.67) 28.0 29.0 30.0 (28.54± 1.50)
CDRGLOBAL

0 100% 24
24 82% 18

22

0.5 0% 0
24 18% 4

22

CSF-Aβ 234.9 248.5 256.0 (247.23± 20.14) 235.0 257.9 268.2 (253.22± 21.69)
CSF-τ 47.9 55.260.9 (55.41± 15.10) 47.0 59.9 73.8 (59.84± 16.83)

Values of continuous variables are represented by the lower, the median and the upper
quartiles; and the mean± standard deviation in parentheses.

4.4.2 Ageing-based variant (vr) and quasi-variant (qvr) ROIs.

When studying the within-subject and between-subject variabilities using the box plots
representation, we found that there are significant between-subject variability and strong
gender effect for several ROIs. The left hippocampal volume is one of ROIs that showed
this pattern, see Figure 4.6. However, for others regions, their change was not very evident.
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Fig. 4.3 Distribution of CSF-based biomarkers at follow-up 84 months. (a) CSF-Aβ . (b)
CSF-τ .
△: 8 of 113 CN subjects were converted to MCI and 1 CN subject was converted to AD. ⃝:

88 of 94 LMCI were converted to AD and 5 were re-converted to HC at follow-up visits.
Dotted vertical lines within each diagnosis are the computed cutoff concentrations. CN:

Control normal subjects at baseline labelled as such by ADNI. LMCI: Late MCI subjects at
baseline labelled as such by ADNI.
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Fig. 4.4 CSF-Aβ vs. CSF-τ concentration available at last subject’s observations.
Dots represent the last CSF biomarker measured for subjects available at April, 2015.

Vertical and horizontal dashed lines split normal CSF-profile from abnormal profile. Null
models for characterization of healthy brain structures were built from samples labelled with

blue dots.
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From LME modelling, we identified 97 vr ROIs for males and 109 vr ROIs for females.
Regarding quasi-variant ROIs, we found 69 qvr for males and 57 qvr for females. Figure
4.7 shows examples of fitted LME models for both types of ROIs within each gender. In a
similar way to these examples, the β coefficients of age (βa) of the remaining vr ROIs were
observed as being close to zero, but for qvr ROIs, their slopes were not. Figures 4.8 and
4.9 show the summary of ageing-associated differences of biomarkers in control men and
women, respectively. Biomarkers are coloured according their type of change: blue for vr
regions and red for the qvr ones. The size of biomarkers with significant P-value ≤ 0.05
are bigger than the not significant. Dotted vertical lines separate the increased biomarkers
(positive beta values) from the reduced ones (negative beta values). ROIs are represented
according to their location into brain hemisphere (lh:left, rh: right or bilateral). The βa

values of TA, CV and SV are presented in measurements units of mm, mm3 and mm3 ,
respectively. These values mean the average population change observed per year in each
biomarker. Results suggest important ageing-related reductions in neocortical and subcortical
regions and ventricular expansion, with several gender-specific significances. Reductions
are observed in the most of cortical volumes and cortical thickness, where men and women
showed a similar degree of global thinning. Some of these regions showed prominent atrophy
while others showed a more conservative change. For example, the entorhinal volume was
observed to be significantly reduced in females but not in males. In relation to the subcortical
regions, we also observed few gender-specific differences. In summary, both gender had
significant volumetric reductions in both hemispheres of hippocampal volume and significant
ventricular expansion; the volume of the optic chiasm region was significantly increased in
females, but it was not significant in males; a reduction in amygdala volume was significant
in both hemispheres of the male brain but it was not significant in females; and, in general, the
volume of bilateral corpus callosum regions are observed as thinned, but without significant
differences between the genders. Tables 4.6 and 4.7 summarize the cortical and subcortical
vr biomarkers for males, respectively; and Tables 4.8 and 4.9 summarize the cortical and
subcortical vr biomarkers for females, respectively. The last column in all these tables
(beta_AGE_IMG) shows the βa’s and its measurements units correspond to mm for TA
biomarkers, mm3 for CV biomarkers and mm3 for SV.

4.4.3 Estimation of current diagnosis based on ROI residuals

Table 4.10 shows the performance of models addressing the ECD problem on each gender.
These results include the average prediction accuracy (ACC), sensitivity (SEN) and specificity
(SPE) of the test for both the F1 and F2 training set configurations. Although the performance
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Fig. 4.6 Boxplot of trajectory of left hippocampal volume for normal-HCcsf subjects.
High between-subject variability is evident, e.g., by comparing subject 099_S_0533 with

subject 133_S_0488. Likewise, there is a strong indication of gender effect over
hippocampal volume, female volumes are less than the man ones. Note that we standardized

every MRI-based biomarker to have zero mean and unit variance.
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Fig. 4.7 Examples of variant and quasi-variant ROIs per normal-HCcsf subjects stratified by
gender. (a) Left hippocampal volume classified as variant (vr) ROI. (b) Left caudate volume
classified as quasi-variant (qvr) ROI.
Note that for the vr ROI, the slope of trajectories is not close to zero, in contrast, for the qvr

ROI, the slope of trajectories is close to zero. Furthermore, both regions, the y-intercept
values vary between subjects, but the slope value of each ROI is the same for all subjects.
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Fig. 4.8 Characterization of ageing-based variant (vr) and quasi-variant (qvr) ROIs in control
males
SV: Subcortical Volume, CV: Cortical volume, SA: Surface Area. lh: left hemisphere. rh:

right hemisphere.
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Fig. 4.9 Characterization of ageing-based variant (vr) and quasi-variant (qvr) ROIs in control
females
SV: Subcortical Volume, CV: Cortical volume, SA: Surface Area. lh: left hemisphere. rh:

right hemisphere.
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Table 4.6 Summary of variant cortical MRI-based biomarkers for males.

ROI hemisferi measuretype Lobe βa

1 lateraloccipital lh CV occipital lobe -0.050
2 pericalcarine rh TA occipital lobe -0.051
3 inferiorparietal rh CV parietal lobe -0.052
4 posteriorcingulate lh CV cingulate cortex -0.052
5 superiorparietal lh CV parietal lobe -0.052
6 precuneus rh CV parietal lobe -0.053
7 temporalpole lh TA temporal lobe -0.053
8 isthmuscingulate rh TA cingulate cortex -0.053
9 parsopercularis rh TA frontal lobe -0.053

10 rostralmiddlefrontal lh CV frontal lobe -0.054
11 cuneus rh TA occipital lobe -0.056
12 precuneus rh TA parietal lobe -0.059
13 supramarginal lh CV parietal lobe -0.059
14 medialorbitofrontal rh CV frontal lobe -0.059
15 lingual lh CV occipital lobe -0.059
16 frontalpole rh CV frontal lobe -0.059
17 supramarginal rh TA parietal lobe -0.060
18 inferiortemporal rh CV temporal lobe -0.061
19 postcentral lh CV parietal lobe -0.061
20 posteriorcingulate lh TA cingulate cortex -0.063
21 frontalpole rh TA frontal lobe -0.064
22 superiortemporal lh CV temporal lobe -0.064
23 paracentral lh TA frontal lobe -0.064
24 lingual rh TA occipital lobe -0.064
25 lingual lh TA occipital lobe -0.065
26 precentral rh CV frontal lobe -0.066
27 parsorbitalis lh CV frontal lobe -0.066
28 medialorbitofrontal rh TA frontal lobe -0.066
29 parsopercularis lh TA frontal lobe -0.066
30 caudalmiddlefrontal rh TA frontal lobe -0.067
31 parsorbitalis rh CV frontal lobe -0.067
32 medialorbitofrontal lh TA frontal lobe -0.068
33 entorhinal rh TA temporal lobe -0.068
34 caudalmiddlefrontal lh CV frontal lobe -0.070
35 precentral lh CV frontal lobe -0.072
36 lateralorbitofrontal lh CV frontal lobe -0.072
37 parsorbitalis rh TA frontal lobe -0.073
38 precuneus lh CV parietal lobe -0.073
39 superiorparietal lh TA parietal lobe -0.074
40 superiorfrontal lh CV frontal lobe -0.074
41 superiorparietal rh TA parietal lobe -0.074
42 lateralorbitofrontal rh CV frontal lobe -0.074
43 fusiform rh CV temporal lobe -0.075
44 postcentral rh TA parietal lobe -0.075
45 posteriorcingulate rh TA cingulate cortex -0.076
46 inferiortemporal lh CV temporal lobe -0.076
47 middletemporal lh CV temporal lobe -0.078
48 parsorbitalis lh TA frontal lobe -0.078
49 lateraloccipital rh TA occipital lobe -0.079
50 inferiorparietal lh TA parietal lobe -0.079
51 postcentral lh TA parietal lobe -0.079
52 parstriangularis rh TA frontal lobe -0.081
53 inferiorparietal rh TA parietal lobe -0.081
54 middletemporal rh CV temporal lobe -0.081
55 precuneus lh TA parietal lobe -0.082
56 supramarginal lh TA parietal lobe -0.083
57 bankssts rh TA temporal lobe -0.083
58 fusiform lh CV temporal lobe -0.083
59 lateraloccipital lh TA occipital lobe -0.084
60 lateralorbitofrontal lh TA frontal lobe -0.085
61 superiortemporal rh TA temporal lobe -0.087
62 superiorfrontal lh TA frontal lobe -0.087
63 lateralorbitofrontal rh TA frontal lobe -0.088
64 superiorfrontal rh TA frontal lobe -0.088
65 rostralmiddlefrontal rh TA frontal lobe -0.091
66 fusiform lh TA temporal lobe -0.092
67 superiortemporal lh TA temporal lobe -0.094
68 caudalmiddlefrontal lh TA frontal lobe -0.095
69 precentral lh TA frontal lobe -0.097
70 bankssts lh TA temporal lobe -0.097
71 middletemporal rh TA temporal lobe -0.102
72 precentral rh TA frontal lobe -0.103
73 fusiform rh TA temporal lobe -0.105
74 inferiortemporal lh TA temporal lobe -0.111
75 rostralmiddlefrontal lh TA frontal lobe -0.114
76 inferiortemporal rh TA temporal lobe -0.117
77 middletemporal lh TA temporal lobe -0.119
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Table 4.7 Summary of variant subcortical MRI-based biomarkers for males.

ROI hemisferi measuretype Lobe βa

1 lateralventricle rh SV 0.079
2 lateralventricle lh SV 0.072
3 thirdventricle bilateral SV 0.068
4 putamen rh SV -0.050
5 cerebellumwm lh SV -0.052
6 corpuscallosumanterior bilateral SV -0.052
7 corpuscallosumposterior bilateral SV -0.054
8 brainstem bilateral SV -0.058
9 accumbensarea lh SV -0.059

10 thalamus rh SV -0.065
11 accumbensarea rh SV -0.067
12 pallidum rh SV -0.067
13 hippocampus lh SV -0.072
14 corpuscallosummidanterior bilateral SV -0.080
15 pallidum lh SV -0.082
16 thalamus lh SV -0.086
17 ventraldc rh SV -0.087
18 hippocampus rh SV -0.087

of models with the F2 set was the best for all cases, the experiments performed on the F1 set
had also good results.

4.4.4 Prediction of future diagnosis based on ROI residuals

Table 4.11 shows the performance of models built for addressing the PFD problem. As
in previous results, although models built with the F2 configuration have obtained slightly
better accuracies than the ones built on the F1 configuration, both performances are very
satisfactory.

Table 4.12 shows the average number of years this method leads in predicting the subject
diagnosis. This advancement in the prediction was only possible in subjects whose dxage

(diagnostic at each visitation) was different from their dxlast diagnosis (last known diagnostic).
Therefore, only these subjects were taken into account and some age groups lack enough
data to be shown in this table. The prediction of conversion from HC to AD in females was
up to 1.64 years earlier (75–79 age group); and for males, up to 1.73 years earlier (80–84 age
group). However, the greatest lead was obtained in the early prediction from MCI to AD in
males (80–84 age group), this being 1.85 years earlier. Along with the time advancement in
the prediction, Table 4.12 also shows the average prediction accuracy for that differential
diagnostic stratified by gender and age group. Accuracies where computed on few samples,
namely those that fit the conditions of five-year age group stratification and whose last known
diagnostic differ from the diagnostic at the time of the test in the given age group.
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4.5 Discussion and conclusions

This chapter has presented the Mres method proposed for building ageing-associated null
models from longitudinal MRI-based biomarkers, as well as to address both the ECD and
PFD problems from residuals calculated through these null models.

Analysis of CSF biomarkers distributions allowed us to confirm the cut-offs values
established by [108] and to establish criteria for CSF profiling. We found subjects clinically
diagnosed as CN at baseline with abnormal CSF profile, which is consistent with previous
studies where the presence of possible AD pathology has been found in ADNI control
subjects [108, 116, 27]. These findings may be because ADNI subject diagnosis is made
independently of the CSF biomarkers values (see Section 2.3).

We modelled the longitudinal change of an extensive set of MRI-based biomarkers
obtained from cortical and subcortical regions. Studies have shown that early diagnosis
methods using the whole brain or the whole cortex reached higher specificity (over 90%) than
those based on the specific regions like the hippocampus (from 63% to 84%) [15, 19, 23].
LME modelling allowed to classify biomarkers as variant or quasi-variant ROIs, and to
build null models for ageing-related changes in men and women. Results suggest important
ageing-related reductions in neocortical and subcortical regions and ventricular expansion. In
general, few gender-specific differences were observed. The entorhinal volume was observed
to be significantly reduced in females but not in males,but in general men and women
showed a similar degree of global thinning. As in previous studies [104, 43–45, 64], these
results confirm that changing cortical biomarkers in elderly people follow a fronto-temporal
pattern and much of this change occur in brain areas related with AD. In relation to the
subcortical regions, we also observed few gender-specific differences. For both genders, the
hippocampus was the region most reduced in volume, also the most significant expansion
was observed in the ventricular system. Similar changes in both the hippocampus and the
ventricles in elderly people have been previously reported by [43, 64, 44, 45]

Null models were carried out by making assumptions of correlation between the y-
intercepts values (at basal stage) of variant and quasi-variant ROIs, where the first ones
were explained in function of last ones using PLSR. By using these null models and LME
β coefficients, we calculated residuals, which were established as differences between the
observed ROIs and age-related inferred ROIs. These residuals were computed for new cohort
of HC, MCI and subjects; and used for training and testing SVM models to address subject
classification and early disease prediction.

As of the date of this study, we were unable to find studies where ageing-related null
models and residuals-based classifiers were applied to early diagnosis. The performance
obtained in all experiments suggests that the proposed method of obtaining the ROI residuals
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and their use to train SVM predictors is useful to support the early diagnosis problem, the
fundamental challenge in AD research. LME modelling of MRI-based biomarkers was only
applied by fitting age and years of education, but future work could assess the impact of
different available feature types such as other functional neuroimaging biomarkers, genetic
factors, biological markers and other clinical and neuropsychological assessment.

The main contributions of the residual-based classifier presented in this chapter are: (a)
From a longitudinal study of 5 years follow-up, the ability to predict the future diagnostic
of the subjects up to 1.85 years earlier than the standard clinical procedure. (b) Use of
relatively common clinical tests such as MRI and neuropsychological tests, as opposed to
methods that rely on more expensive or invasive tests such as PET-based, CSF-based and
Genotype-based biomarkers. (c) In the ECD for AD vs HC: highest sensitivity among the
state of the art methods; a classification accuracy of 94%, higher than all MRI-only methods
except for [69]. (d) In the ECD for AD vs MCI: highest classification accuracy among the
state of the art methods. (e) In most experiments, the sensitivity (the ability of a predictor
to correctly classify a subject as ’diseased’) was higher than the specificity (the ability of
predictor to correctly classify a subject as ’disease-free’). This may be due to the fact that
ADNI clinical diagnosis is based on neuro-psychological tests, but neurodegeneration occurs
many years before the onset of clinical symptoms. Possibly, residual-based SVM predictors
may determine that subjects are into early stages of disease (MCI and prodromal AD) but
this finding is not consistent with clinical diagnosis because the subject does not yet present
clinical symptoms. Abnormalities of CSF profile observed on several subjects diagnosed as
HC and MCI (see Figure 4.4) may support this hypothesis.

The use of MMSE and CDRGLOBAL tests (F2 method) yields significantly better results
than using the residuals alone (F1 method). These are two of the most common neuropsy-
chological tests routinely applied to patients in the primary clinical practice. However this
should not be seen as a mere contribution of MMSE and CDRGLOBAL, as these tests on
their own have several limitations such as relatively low specificity and reliability. However,
they complement and enhance the present method here without adding a significant cost or
invasive clinical tests.
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Table 4.8 Summary of variant cortical MRI-based biomarkers for females.

ROI hemisferi measuretype Lobe βa

1 cuneus lh TA occipital lobe -0.050
2 pericalcarine lh CV occipital lobe -0.050
3 bankssts rh CV temporal lobe -0.051
4 caudalmiddlefrontal rh TA frontal lobe -0.051
5 temporalpole rh CV temporal lobe -0.052
6 rostralmiddlefrontal rh CV frontal lobe -0.052
7 inferiorparietal rh TA parietal lobe -0.053
8 precentral rh CV frontal lobe -0.053
9 supramarginal rh CV parietal lobe -0.055

10 medialorbitofrontal lh CV frontal lobe -0.055
11 temporalpole lh TA temporal lobe -0.055
12 supramarginal rh TA parietal lobe -0.055
13 parsopercularis lh CV frontal lobe -0.055
14 precentral rh TA frontal lobe -0.057
15 superiorparietal lh CV parietal lobe -0.057
16 entorhinal rh CV temporal lobe -0.058
17 temporalpole lh CV temporal lobe -0.058
18 transversetemporal lh CV temporal lobe -0.058
19 isthmuscingulate rh CV cingulate cortex -0.059
20 cuneus rh CV occipital lobe -0.059
21 paracentral rh CV frontal lobe -0.059
22 supramarginal lh TA parietal lobe -0.060
23 parahippocampal rh TA temporal lobe -0.060
24 isthmuscingulate lh CV cingulate cortex -0.061
25 cuneus lh CV occipital lobe -0.061
26 transversetemporal lh TA temporal lobe -0.061
27 lingual rh CV occipital lobe -0.061
28 entorhinal lh CV temporal lobe -0.062
29 inferiorparietal lh CV parietal lobe -0.062
30 lateralorbitofrontal rh TA frontal lobe -0.062
31 pericalcarine lh TA occipital lobe -0.063
32 rostralmiddlefrontal lh CV frontal lobe -0.063
33 cuneus rh TA occipital lobe -0.063
34 caudalmiddlefrontal lh TA frontal lobe -0.064
35 rostralmiddlefrontal rh TA frontal lobe -0.065
36 postcentral lh TA parietal lobe -0.066
37 superiorparietal rh TA parietal lobe -0.066
38 lateraloccipital lh CV occipital lobe -0.066
39 superiorparietal rh CV parietal lobe -0.067
40 superiortemporal lh CV temporal lobe -0.067
41 superiorfrontal rh CV frontal lobe -0.068
42 lateralorbitofrontal lh CV frontal lobe -0.068
43 middletemporal rh CV temporal lobe -0.069
44 parstriangularis rh TA frontal lobe -0.069
45 inferiortemporal rh CV temporal lobe -0.070
46 middletemporal lh CV temporal lobe -0.070
47 parsorbitalis rh CV frontal lobe -0.070
48 fusiform lh CV temporal lobe -0.071
49 temporalpole rh TA temporal lobe -0.071
50 parahippocampal rh CV temporal lobe -0.072
51 precuneus lh CV parietal lobe -0.072
52 isthmuscingulate rh TA cingulate cortex -0.073
53 middletemporal lh TA temporal lobe -0.073
54 precuneus lh TA parietal lobe -0.073
55 inferiortemporal lh TA temporal lobe -0.073
56 lateralorbitofrontal lh TA frontal lobe -0.075
57 superiorparietal lh TA parietal lobe -0.075
58 postcentral rh TA parietal lobe -0.078
59 medialorbitofrontal lh TA frontal lobe -0.078
60 parsorbitalis rh TA frontal lobe -0.079
61 entorhinal rh TA temporal lobe -0.079
62 middletemporal rh TA temporal lobe -0.079
63 precentral lh CV frontal lobe -0.079
64 superiorfrontal rh TA frontal lobe -0.080
65 superiortemporal rh CV temporal lobe -0.080
66 precuneus rh CV parietal lobe -0.081
67 parahippocampal lh CV temporal lobe -0.081
68 medialorbitofrontal rh TA frontal lobe -0.083
69 isthmuscingulate lh TA cingulate cortex -0.083
70 precentral lh TA frontal lobe -0.086
71 superiorfrontal lh CV frontal lobe -0.087
72 rostralmiddlefrontal lh TA frontal lobe -0.088
73 fusiform rh CV temporal lobe -0.089
74 fusiform lh TA temporal lobe -0.090
75 precuneus rh TA parietal lobe -0.092
76 lateraloccipital rh CV occipital lobe -0.093
77 lingual lh CV occipital lobe -0.093
78 bankssts rh TA temporal lobe -0.093
79 entorhinal lh TA temporal lobe -0.093
80 inferiorparietal lh TA parietal lobe -0.093
81 inferiortemporal rh TA temporal lobe -0.094
82 lingual lh TA occipital lobe -0.097
83 superiortemporal rh TA temporal lobe -0.103
84 superiorfrontal lh TA frontal lobe -0.106
85 superiortemporal lh TA temporal lobe -0.110
86 lingual rh TA occipital lobe -0.118
87 fusiform rh TA temporal lobe -0.123
88 lateraloccipital lh TA occipital lobe -0.129
89 lateraloccipital rh TA occipital lobe -0.154
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Table 4.9 Summary of variant subcortical MRI-based biomarkers for females.

ROI hemisferi measuretype Lobe βa

1 opticchiasm bilateral SV 0.060
2 thirdventricle bilateral SV 0.055
3 lateralventricle rh SV 0.053
4 pallidum lh SV -0.055
5 ventraldc lh SV -0.056
6 thalamus lh SV -0.058
7 corpuscallosumposterior bilateral SV -0.058
8 corpuscallosumanterior bilateral SV -0.061
9 corpuscallosummidanterior bilateral SV -0.067

10 amygdala rh SV -0.074
11 accumbensarea rh SV -0.079
12 corpuscallosumcentral bilateral SV -0.079
13 accumbensarea lh SV -0.081
14 hippocampus rh SV -0.085
15 thalamus rh SV -0.085
16 ventraldc rh SV -0.086
17 hippocampus lh SV -0.088
18 amygdala lh SV -0.090

Table 4.10 Performances of classification for current diagnosis.

Experiment Features ACC SEN SPE

Females

AD vs HC
F1 91.7 92.8 90.0
F2 94.1 95.2 92.5

MCI vs HC
F1 79.5 92.9 52.9
F2 85.7 93.6 70.0

AD vs MCI
F1 66.8 57.3 74.3
F2 81.6 80.9 82.1

Males

AD vs HC
F1 87.1 89.0 84.2
F2 94.1 97.7 88.4

MCI vs HC
F1 75.5 97.3 10.0
F2 82.5 93.5 49.7

AD vs MCI
F1 72.3 68.4 75.7
F2 73.8 64.7 81.3

F1 is the features set integrated with the MRI-based biomarkers and age; F2 is integrated
with the MRI-based biomarkers, age, MMSE (Mini-Mental Examination Score) and CDR-
GLOBAL (Clinical dementia rating global scale).
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Table 4.11 Performances of classification models built to address the prediction of future
diagnosis.

Experiment Features ACC SEN SPE

Females

AD vs HC
F1 86.6 90.7 77.7
F2 91.7 92.9 89.2

MCI vs HC
F1 70.0 70.0 70.0
F2 77.1 75.3 79.2

AD vs MCI
F1 69.8 86.5 45.0
F2 72.5 87.4 50.4

Males

AD vs HC
F1 85.6 94.8 64.4
F2 90.0 96.8 74.4

MCI vs HC
F1 62.9 83.5 29.4
F2 77.6 85.0 65.6

AD vs MCI
F1 65.4 85.0 54.0
F2 69.0 85.1 52.9

F1 is the features set integrated with the MRI-based biomarkers and age; F2 is integrated
with the MRI-based biomarkers, age, MMSE (Mini-Mental Examination Score) and CDR-
GLOBAL (Clinical dementia rating global scale).

Table 4.12 Last known diagnostic prediction advancement.

Advancement for early prediction in years
Experiment 70-74 yrs. 75-79 yrs. 80-84 yrs.

Females
AD vs HC 1.32(80.92) 1.64(83.92) 1.28(75.93)
AD vs MCI 1.35(76.52) 1.75(71.24) 1.34(77.21)

Males
AD vs HC 1.51(84.72) 1.22(82.70) 1.73(89.30)
AD vs MCI 1.68(72.91) 1.41(81.50) 1.85(79.19)

(ACC) represents the prediction accuracy of F2 method in %.



Chapter 5

Early prediction of AD: Method Mraw

5.1 Introduction

This chapter presents a second method, called Mraw, which also addresses both ageing-related
brain change understanding and the early prediction and diagnostic prediction advancement
of MCI and AD by combining univariate and multivariate statistical learning methods. In
contrast to previous proposed method (Mres), this method is focused on directly analysing
the raw MRI-based biomarkers values (without derived residuals), stratified on five-year
age group-specific atrophy. Furthermore, instead of identifying variant biomarkers, Mraw

includes a differential diagnosis-specific feature selection (FS) method, which is applied
before classification. One hypothesis of the present work is that the age of the subjects is
a factor that qualitatively influences the diagnosis of a subject. Consequently, noticeable
differences are expected to exist in the optimal subset of features related to the diagnosis in
a specific age group. In the beginning of the method, subjects with a stable last diagnostic
(dxlast), i.e., who remained as HC (sHC), MCI (sMCI) or AD (sAD) for the duration of
the study were identified and labelled as such. For each dxlast group, data were stratified
in five-year age groups, including subjects aged 55–90 years. To study the age effect on
the change of cortical brain regions, we fitted random intercepts LME models by using as
covariate the subject’s age at each visitation (age). After descriptive analysis, we focused on
a addressing the estimation of current diagnosis and the prediction of future diagnosis for
each age group, where three main experiments were established: sHC vs sAD, sHC vs sMCI
and sMCI vs sAD. First, an FS approach was applied on training data in order to identify
the MRI-based biomarkers that best discriminate comparisons in the three experiments.
The FS stage was performed with two main steps: firstly, features were ranked and sorted
according the minimum redundancy and maximum relevance (mRMR) method and, secondly,
an SVM wrapper was built to determine the inclusion or exclusion of each biomarker within
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the final set of significant features. Finally, age-associated HC/MCI/AD prediction and
diagnostic prediction advancement was performed using SVM models with radial kernels.
These models were built and evaluated on testing data including the remaining subjects with
stable diagnosis that had never been used on training and also those subjects who did not
have a stable diagnostic.

Details about ADNI database whose participants are used in this study was briefly
introduced in Section 2.3. Furthermore, ADNI MRI-based biomarkers used in this work are
previously described in Section 4.2. ADNI has been used by many number of publications
focused on the characterization of age-related brain changes [43, 44, 51] and the early
prediction of conversion to AD [29, 30, 19, 18, 111, 51]. A recent review has been published
by Weiner and colleagues in Alzheimer’s & Dementia: Journal of the Alzheimer’s Association
[122].

5.2 Data

Participants were selected from the original ADNI study if they met the following criteria
(at the time of this study , December, 2016): 1) Had all selected longitudinal MRI images
correctly processed; 2) Had completed demographic and neuropsychological data and were
clinically diagnosed at each visitation; and 3) Had available CSF-based biomarkers for at
least one visitation. ADNI features were described in Section 2.3). In total, the longitudinal
data of 456 subjects (128 HC, 135 MCI and 193 AD) was studied. The initial features set
was integrated by 174 variables including demographic (N=3), neuropsychological (N=2)
and clinical diagnostic features (N=1), as well as 166 cortical and subcortical MRI-based
biomarkers.

5.2.1 Clinical Feature Collection.

The clinical features set was integrated by demographic and neuropsychological character-
istics, as well as the ADNI clinical diagnostic at each visitation (dxage), see Section 2.3.2.
The demographic features set was integrated by gender, age at each visitation (age) and
normalized years of education (educ). For the neuropsychological features set, we included
the MMSE scores [46] and the Clinical Dementia Rating-Sum of Boxes (CDRSB)[86].

5.2.2 Morphological Features Collection.

MRI-based biomarkers were directly obtained from ADNI processed data repository avail-
able at 5 years follow-up. These biomarkers were previously described in Section 2.3.4.
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Biomarkers related to the unknown regions were excluded from further analysis. Further-
more, biomarkers with missing values for most samples were discarded, we only included the
ones correctly processed and available for at least two time points. In total, 166 longitudinal
MRI-based biomarkers, including 66 CV’s and 66 TA’s of 33 cortical regions, and 34 SV’s
of 22 subcortical regions; were used in this method.

5.3 Methods

We hypothesize that AD-related brain changes are age-dependent and as a consequence,
that certain MRI-based biomarkers are more sensitive and relevant for some age groups
as opposed to others. Furthermore, we argue these changes are also differentiated within
each disease condition. For these reasons, this study was focused on studying the brain
structures changes within stable HC, MCI and AD subjects. Then, an early estimation and
prediction of their diagnosis was also extended to those subjects with unstable diagnosis.
The proposed Mraw consists of two main stages. The first stage was focused on a descriptive
analysis of the age-specific effect on each MRI biomarkers by following two main steps
1) Data stratification, where subjects were first classified according their visitation-specific
diagnosis and last known diagnosis, then assigned within five-year age groups and, finally,
assigned to training or testing datasets, followed by 2) Analysis of age-related effect of
cortical-related biomarkers. The second stage was focused on early differential diagnosis
problems. For this purpose, three main steps were carried out: 1) Feature ranking to sort
MRI biomarkers according their significance within each experiment; 2) Feature selection,
where the most relevant MRI-based biomarkers were selected; 3) SVM classifiers building to
subjects diagnosis and diagnostic prediction advancement.

5.3.1 Data stratification.

In this study we used both dxage and dxlast diagnostic variables, which were previously
introduced in Table 4.2. In order to facilitate the analysis, classes of variable dxage were
grouped into three main classes such as HC, MCI and AD. Table 5.1 gives a brief description
of both diagnosis variables.

Once the subjects were characterized according to dxlast , five-year age groups were
established as follows: [55–60) (55 to 60 years), [60-65) (60 to 65 years), [65–70) (65 to
70 years), [70–75) (70 to 75 years), [75–80) (75 to 80 years), [80–85) (80 to 85 years),
[85–90) (85 to 90 years) and 90+ (greater than or equal to 90 years)—the given intervals are
right-open.
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Table 5.1 Diagnosis variables used in this study.

Source Diagnostic
variable

Class Class description

ADNI dxage

HC* NL Subjects diagnosed as stable normal
at current visitation

MCI*
NL to MCI Subjects diagnosed as MCI at cur-

rent visit who previously were NL
MCI Subjects diagnosed as stable MCI

at current visit who previously were
also MCI

AD*
NL to Dementia Subjects diagnosed as dementia due

to AD at current visit who previ-
ously were NL

MCI to Dementia MCI to Dementia &Subjects diag-
nosed as dementia due to AD at cur-
rent visit who previously were MCI

Dementia Subjects diagnosed as stable demen-
tia due to AD at current visit who
previously were also MCI

Our study dxlast

sHC Subjects labelled as HC who re-
mained like HC in all follow-up vis-
its (who did not become MCI or
AD)

sMCI MCI subjects who did not become
AD

cMCI Subjects initially labelled as HC
who subsequently have converted to
MCI

sAD Subjects who remained like proba-
ble or possible AD all the follow-up
visits

cAD Subjects labelled as HC or MCI who
subsequently have converted to prob-
able or possible AD

*For simplification, dxage values were grouped into three main classes.

For each 5-year group, the data from the sHC, sMCI and sAD groups were randomly
divided into training (60%) and testing (40%) datasets. Each individual only was assigned
once to training or testing dataset. The remaining data from cMCI and cAD subjects were
also included within the testing dataset.

When profiling data, the subject characteristics were compared according to age groups.
Continuous variables were described by their percentiles, while categorical variables were
described by frequencies and percentages. The years of education variable was normalized
to [0, 1].
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5.3.2 Analysis of age-related effect on brain structures change

In order to visualize the brain regions showing a level of atrophy within each stable diagnosis
group, the mean change of biomarkers related to cortical brain regions was quantified by
applying the LME approach (see Section 2.2.3). Because we hypothesize that there are
important individual-level effects and believe that subjects have similar rates of change over
time, we established random intercepts for subjects; the subject’s age at each visitation (age)
was specified as a single fixed effect. Such approach have been also applied in the method
Mres and recently published in [51]. The observed MRI biomarker r defined as yi j is assumed
to have a set of parameters β , fixed across subjects. In addition, for each individual i, a set
of random parameters υi is assigned to model the deviation from the fixed effect β . For
i = 1, ...,n, each model reads as follows:

yr
i j = Xi jβ

r +Zi jυ
r
i + ε

r
i j (5.1)

where, yr
i j is the standardized value of biomarker r measured for the ith subject in the

jth observation; i = 1, ...,n subjects, j = 1, ...,ni available observations for subject i and
r = 1, ...,nr, nr = 166 MRI biomarkers. Xi j is a ni x p design matrix, where p is the number
of covariates (age and the constant term of 1’s) on the jth observation of ith subject. β r is the
p x 1 vector of unknown fixed effects or regressor’s coefficients, which are: β r

1 (coefficient
for constant term or Intercept) and β r

a (coefficient for age). Zi j is a known design matrix of
size ni x q, where q is the number of random effects for the jth observation of subject i. υr

i is
the q×1 vector of unknown random effects coefficients ∼ Nq(0,ψ) for subject i measured
for r. εr

i j is the nix1 residual vector of errors ∼ Nni(0,σ2λi) for the jth observation in subject
i measured for r. ψ is the q×q covariance matrix for the random effects. 0,σ2λi is the ni x
ni covariance matrix for the errors in subject i.

LME modelling was performed using the lme4 package available for R. [8]

5.3.3 Feature ranking (FR)

Three differential diagnosis problems were established from dxlast classes: sAD vs sHC,
sMCI vs sHC and sAD vs sMCI. By using training data, feature ranking was applied
separately for each five-year age group to obtain lists of MRI-based biomarkers or features
(F) sorted according their significance for each experiment. Ranking used the minimum
redundancy and maximum relevance (mRMR) method described previously in Section 2.2.1.
Since MRI biomarkers are continuous values, a discretization approach was applied as
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a preprocessing step before the mutual information between r’s was computed. Feature
discretisation was applied using a threshold t = 1, which means that each continuous feature
was discretised into three classes [-1, 1, 0]. The Mutual Information Difference (MID)
method was selected to combine the relevance and redundancy values defined from the
mutual information.

5.3.4 Feature selection (FS)

Based on previous studies, where researchers have found that only specific brain regions are
significantly affected by ageing, we included a FS step to obtain the set of most significant
features for each differential diagnosis problem. FS methods are usually applied before clas-
sification because eliminating the non-informative features tends to improve the classification
performance. Therefore, a selection of significant r’s is desirable before performing classifi-
cation. Likewise, FS should help to reduce possible issues arising from high dimensionality
of data (i.e. number of features vs number of training samples).

Once the MRI biomarkers were ranked and sorted according their mRMR scores, a
forward FS scheme (based on an SVM-wrapper approach) was applied to obtain the relevant
feature set (F ′) for each five-year age group. The SVM Wrapper method was performed for
each combination of differential diagnosis problem and age group and included the following
main steps:

Null SVM model. By including only age, gender and education as initial classifiers, a
null SVM model (SV Mnull) was built on training data using the RBF (Radial Basis Function)
kernel. By using this kernel, there were two parameters used to fit the models: 1) the
cost parameter (C) of SVM models that allows some flexibility in separating the classes,
controlling the trade off between them allowing training errors and forcing rigid margins;
and 2) the Gaussian kernel width (γ). As it is not known beforehand which C and γ values
are the best for classification problem; it was necessary to apply a method to find the
optimal parameters values. For this, we applied the "grid-search" algorithm using 10-fold
cross-validation (CV). This algorithm tried various pairs of (C ,γ) by using exponentially
growing sequences of these (log2C from [−4,4] and log2 γ from [−4,0]). The combination
of parameters, which provided the best accuracy (ACC) of CV was selected. Then, the
SV Mnull model was trained again by including these parameters and its ACC was computed.

Computing performance of features. The SVM parameter searching, model re-training
and ACC computation processes described above were repeated by incrementally adding
each r from vector F (sorted from highest to lowest mRMR scores). At each iteration, the
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training data were linearly normalized to the range [-1,1]. The feature inclusion-exclusion
criterion was based on the ACC of an SVM model computed by adding that feature. Thus, if
the ACC was increased by including r, then that feature was included into the list of optimal
features for the specific age group F ′, otherwise it was excluded.

The SVM wrapper was implemented in the R package [96]. Tasks included in SVM
building were performed under the R interface to LIBSVM (http://www.csie.ntu.edu.tw/
~cjlin/libsvm)[12] available in package e1071 [83].

5.3.5 Differential diagnosis experiments

The motivation of the experiments described in this section is to use the age-specific features
selected at the previous stage, as described in Section 5.3.4, to generate an array of classifiers
whose output is the diagnosis of the subjects under study.

One hypothesis of the present work is that the age of the subjects is a factor that qualita-
tively influences the diagnosis of a subject. Consequently, noticeable differences are expected
to exist in the optimal subset of features F ′ related to the diagnosis in a specific age group.
The experiments described in this section also follow this premise, clustering the diagnosis
of the subjects in the study by age groups. For this reason, a different classifier is trained for
each combination of age group and differential diagnosis.

In order to perform reliable experiments and produce trustworthy results, the subjects
involved in the experiments described in this section have not been used on the previous
experiments, i.e. the subjects used here (referred as SE) are a subset of the subjects in the
original dataset.

The input data given to the classifiers is a set of aggregated features known as Fadd .
These feature sets were obtained by grouping the age-specific features from F ′ with the
features selected for all the previous age groups (in chronological order). When required,
categorical features were converted to real numbers.

The motivation for using Fadd instead of F ′ is twofold. Firstly, from a conceptual point
of view, if a feature has had a relevant role with respect to the diagnosis at a given age, this
implies that it is somehow related to the neurological condition. In that case, it is reasonable
to think that it will be related to the condition subsequently, even if its relative importance
may decline in favour of other features. Secondly, as the experimental results show (see
Section 5.4), the estimation of the diagnosis is better if Fadd is used rather than F ′.

Two experiments are next described: the estimation of the current diagnosis (referred to
as ECD) and the prediction of a future diagnosis (referred to as PFD).

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Estimation of current diagnosis (ECD).

The goal of this experiment is to generate an array of classifiers that correctly estimate the
current diagnosis of a subject (i.e. their dxage), given their Fadd feature set. As explained
above, a different classifier is trained for each combination of age group and differential
diagnosis. Each classifier was trained given Fadd as input variables and dxage as classification
target.

The classifiers used in the experiments are SVM with Gaussian radial basis kernel. In
order to tune their hyperparameters (γ of the Gaussian function and the misclassification
cost C), the set of subjects used in this experiment (SE) is further divided into three subsets:
training, validation and test. A grid search on the hyperparameter space is performed,
training on the training subset and measuring the ACC on the validation subset. After the
hyperparameters are set, the classifier is evaluated on the test subset. This process is repeated
10 times with different partitioning of the data (10-fold CV).

The performance of each classifier is measured by the classification ACC, sensitivity
(SEN) and specificity (SPE).

Because the remaining age groups do contain enough data to perform the experiments as
described, only the samples of subjects aged 65–90 years have been used.

Prediction of future diagnosis (PFD).

The objective of this experiment was to develop an array of classifiers that predict the future
diagnosis of a subject (dxlast), given their current features Fadd . The main difference with
respect to the ECD experiment is the use of the last known diagnosis dxlast as classification
target instead of the diagnosis at the age of the sample, dxage. The overall methodology of
this experiment was basically the same as that in ECD. There are, however, some important
differences:

• Only the subjects whose diagnosis changes in course of the ADNI study are considered,
i.e. subjects whose dxlast is either cMCI or cAD, as per to the description given in
Table 5.1;

• Therefore, only a subset SE′ ⊆ SE of subjects is used in this experiment;

• The PFD is focused on two differential diagnosis: HC to AD and MCI to AD. There
are not enough subjects to run the experiment on the HC to MCI diagnosis;

• The data available in SE′ only allows us to run this experiment on age groups 70 to 85.
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Besides the classification ACC, SPE and SEN, another relevant finding from this experi-
ment was the average number of years by which the PFD-predicted diagnosis precedes the
clinical diagnosis as stated in the dataset. This value reflects the reduced diagnostic time lag
that the method presented here may offer.

5.4 Results

In total, 214 subjects were included within training cohort with 75 sHC, 75 sMCI and 64
sAD subjects, all diagnosed as such based on the stability of their diagnosis during the study
period. The testing cohort comprised 242 subjects including 40% of subjects with stable
diagnosis (53 sHC, 51 sMCI and 39 sAD) and subjects with unstable diagnosis (9 cMCI
and 90 cAD). A summary of the number of samples, by five-year age groups, is shown in
Table 5.2. The table shows there are several age groups with few or no samples for certain
diagnosis groups. We took this issue into account when model building, discarding models
for such age groups.

Table 5.3 shows the clinical characteristics of the training dataset. Tables 5.4 and 5.5
show the clinical characteristics of the testing datasets comprising subjects with stable and
unstable diagnosis, respectively. Both cohorts were referred as SE in the diagnosis estimation
and prediction stage. Note that dxlast in Table 5.3 has no samples for cMCI and cAD subjects
because this dataset was used in the feature selection stage, which was defined for selecting
features from subjects with a stable diagnosis over the duration of the study. sHC subjects had
the greatest MMSE values as compared to other groups and their CDRSB index was always
equal to zero; however some of them were APOE-ε4 carriers. With respect to CSF-based
biomarkers, we observed that sHC subjects tend to have higher CSF-ABETA values than do
sMCI and sAD; they also showed lower CSF-TAU values than sMCI and sAD. In relation to
subjects with unstable diagnosis, we observed that CSF-ABETA values in cAD tend to be
lower than cMCI; their CDF-TAU values alsotend to be higher.

Table 5.2 Number of studied samples stratified by dxlast and age groups.

dxlast 55–60 60–65 65–70 70–75 75–80 80–85 85–90 +90
N=29 N=47 N=121 N=335 N=273 N=273 N=117 N=6
F M F M F M F M F M F M F M F M

sAD 8 4 5 7 6 11 15 22 22 32 12 27 13 8 − −
sHC − − 1 1 3 4 44 60 62 58 35 22 7 8 1 2
sMCI 1 1 15 3 16 20 22 36 19 61 20 36 2 29 − −
cMCI − − − 4 − 1 4 5 5 4 8 10 − 4 − −
cAD 10 5 1 10 34 26 55 72 36 86 33 70 8 38 − 3

F: Female, M: Male
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Table 5.3 Clinical characteristics of subjects with stable diagnostic included in training groups

stable HC
60–65 65–70 70–75 75–80 80–85 85–90 +90

N = 2 N = 5 N = 29 N = 39 N = 20 N = 6 N = 2

AGE_IMG 62.2 62.4 62.6 65.4 65.9 69.5 70.8 72.0 73.1 75.5 76.0 77.0 80.5 80.8 82.7 85.3 86.3 87.1 90.1 90.2 90.2

gender
Female 50.0% 1

2 40.0% 2
5 51.7% 15

29 53.9% 21
39 45.0% 9

20 33.3% 2
6 50.0% 1

2

Male 50.0% 1
2 60.0% 3

5 48.3% 14
29 46.1% 18

39 55.0% 11
20 66.7% 4

6 50.0% 1
2

educ 0.594 0.688 0.781 0.562 0.750 0.875 0.625 0.750 0.875 0.625 0.750 0.875 0.609 0.750 0.875 0.656 0.812 0.969 0.812 0.875 0.938

MMSE 28.5 29.0 29.5 28.0 29.0 30.0 29.0 29.0 30.0 29.0 29.0 30.0 29.0 30.0 30.0 28.0 29.0 30.0 29.0 29.0 29.0

CDRSB
0 50.00% 1

2 100.00% 5
5 100.00% 29

29 92.31% 36
39 80.00% 16

20 100.00% 6
6 100.00% 2

2

0.5 50.00% 1
2 0.00% 0

5 0.00% 0
29 5.13% 2

39 20.00% 4
20 0.00% 0

6 0.00% 0
2

2 0.00% 0
2 0.00% 0

5 0.00% 0
29 2.56% 1

39 0.00% 0
20 0.00% 0

6 0.00% 0
2

APOE4
0 50.0% 1

2 60.0% 3
5 79.3% 23

29 84.6% 33
39 70.0% 14

20 66.7% 4
6 50.0% 1

2

1 50.0% 1
2 40.0% 2

5 20.7% 6
29 15.4% 6

39 30.0% 6
20 33.3% 2

6 50.0% 1
2

ABETA 187 203 220 168 171 222 162 234 255 139 215 252 147 200 237 150 196 252 189 220 250

TAU 43.4 49.2 55.1 37.5 37.9 55.7 54.6 72.2 82.9 52.1 70.0 98.5 46.4 59.7 98.0 62.5 94.9 106.5 93.5 99.0 104.6

stable MCI
55–60 60–65 65–70 70–75 75–80 80–85 85-90

N = 2 N = 6 N = 12 N = 21 N = 26 N = 18 N = 10

AGE_IMG 55.3 55.5 55.8 61.1 62.5 62.8 65.7 66.5 68.5 71.1 72.8 73.9 75.4 76.3 78.3 80.2 81.2 83.0 85.3 85.5 86.9

gender
Female 50.0% 1

2 66.7% 4
6 58.3% 7

12 42.9% 9
21 23.1% 6

26 22.2% 4
18 20.0% 2

10

Male 50.0% 1
2 33.3% 2

6 41.7% 5
12 57.1% 12

21 76.9% 20
26 77.8% 14

18 80.0% 8
10

educ 0.781 0.812 0.844 0.750 0.781 0.906 0.500 0.625 0.828 0.500 0.750 0.875 0.578 0.750 0.875 0.625 0.750 0.875 0.656 0.875 0.875

MMSE 27.5 28.0 28.5 27.2 28.0 28.8 25.8 27.5 29.0 25.0 27.0 28.0 27.2 28.0 28.0 25.0 26.0 28.0 26.0 28.5 29.0

CDRSB 2.000 2.000 2.000 1.000 1.250 1.500 0.500 1.250 2.125 0.500 1.000 2.000 0.625 1.500 2.000 1.000 1.000 1.500 1.000 1.500 1.500

APOE4
0 50.0% 1

2 50.0% 3
6 33.3% 4

12 47.6% 10
21 46.1% 12

26 55.6% 10
18 90.0% 9

10

1 50.0% 1
2 50.0% 3

6 50.0% 6
12 52.4% 11

21 42.3% 11
26 44.4% 8

18 10.0% 1
10

2 0.0% 0
2 0.0% 0

6 16.7% 2
12 0.0% 0

21 11.5% 3
26 0.0% 0

18 0.0% 0
10

ABETA 185 209 234 152 233 240 122 142 225 127 142 224 130 150 178 131 146 226 217 237 257

TAU 76.6 97.5 118.4 46.3 57.2 74.9 47.5 95.4 140.3 63.7 99.2 170.0 65.4 90.1 114.9 55.3 81.9 109.7 55.2 57.6 81.5

stable AD
55–60 60–65 65–70 70–75 75–80 80–85 85–90

N = 4 N = 5 N = 7 N = 15 N = 20 N = 17 N = 8

AGE_IMG 58.0 58.6 59.1 62.4 62.8 64.1 65.8 67.6 68.7 70.8 71.5 72.9 75.8 77.5 78.7 80.2 80.8 83.2 85.2 85.4 87.6

gender
Female 100.0% 4

4 0.0% 0
5 42.9% 3

7 53.3% 8
15 40.0% 8

20 52.9% 9
17 37.5% 3

8

Male 0.0% 0
4 100.0% 5

5 57.1% 4
7 46.7% 7

15 60.0% 12
20 47.1% 8

17 62.5% 5
8

educ 0.594 0.688 0.781 0.750 0.875 0.875 0.594 0.750 0.812 0.500 0.562 0.750 0.562 0.750 0.812 0.625 0.750 0.875 0.469 0.625 0.906

MMSE 22.2 23.0 23.5 21.0 24.0 24.0 23.5 25.0 26.0 21.0 24.0 24.5 22.0 24.0 25.0 23.0 24.0 26.0 20.0 23.0 26.0

CDRSB 4.38 4.75 6.00 4.00 4.00 6.00 2.75 4.00 4.25 3.75 4.50 5.25 3.00 4.50 5.12 3.00 3.50 5.00 3.38 5.25 7.75

APOE4
0 25.00% 1

4 40.00% 2
5 28.57% 2

7 20.00% 3
15 20.00% 4

20 52.94% 9
17 50.00% 4

8

1 0.00% 0
4 60.00% 3

5 14.29% 1
7 46.67% 7

15 55.00% 11
20 41.18% 7

17 50.00% 4
8

2 75.00% 3
4 0.00% 0

5 57.14% 4
7 33.33% 5

15 25.00% 5
20 5.88% 1

17 0.00% 0
8

ABETA 109 126 141 118 128 136 118 130 144 106 127 147 128 140 147 131 142 171 130 139 179

TAU 122.9 161.5 207.6 56.1 76.9 146.2 84.6 109.5 130.0 68.5 111.2 138.0 76.0 109.0 133.6 113.2 141.2 193.4 60.2 107.3 150.1

Values of continuous variables are represented by the lower, the median and the upper
quartiles. Categorical variables are represented by percentages and frequencies. N is the
number of non-missing values.
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Table 5.4 Clinical characteristics of subjects with stable diagnostic included in testing groups

stable HC
N 65–70 70–75 75–80 80–85 85–90 +90

N = 2 N = 75 N = 81 N = 37 N = 9 N = 1

AGE_IMG 205 66.3 67.5 68.7 71.8 72.8 73.9 76.3 77.6 78.7 80.8 81.5 82.4 86.3 87.6 88.5 90.6 90.6 90.6

gender 205
Female 50.0% 1

2 38.7% 29
75 50.6% 41

81 70.3% 26
37 55.6% 5

9 0.0% 0
1

Male 50.0% 1
2 61.3% 46

75 49.4% 40
81 29.7% 11

37 44.4% 4
9 100.0% 1

1

educ 205 0.562 0.625 0.688 0.656 0.812 0.875 0.750 0.750 0.875 0.562 0.750 0.875 0.688 0.688 0.750 0.688 0.688 0.688

MMSE 204 29.2 29.5 29.8 29.0 30.0 30.0 29.0 30.0 30.0 28.8 29.0 30.0 28.0 28.0 29.0 27.0 27.0 27.0

CDRSB 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

APOE4 205
0 100.00% 2

2 100.00% 75
75 64.20% 52

81 86.49% 32
37 100.00% 9

9 100.00% 1
1

1 0.00% 0
2 0.00% 0

75 32.10% 26
81 8.11% 3

37 0.00% 0
9 0.00% 0

1

2 0.00% 0
2 0.00% 0

75 3.70% 3
81 5.41% 2

37 0.00% 0
9 0.00% 0

1

ABETA 205 235 236 236 173 235 257 144 161 234 153 181 216 177 230 245 245 245 245

TAU 205 66.7 72.5 78.2 51.0 60.5 106.6 45.6 57.6 82.7 52.4 78.0 97.8 97.5 97.5 111.8 97.5 97.5 97.5

stable MCI
N 60–65 65–70 70–75 75–80 80–85 85–90

N = 12 N = 24 N = 37 N = 54 N = 38 N = 21

AGE_IMG 186 61.8 62.4 63.5 67.0 68.2 69.2 71.8 73.4 74.4 76.1 77.7 79.0 81.2 82.7 83.6 85.7 86.3 87.1

gender 186
Female 91.67% 11

12 37.50% 9
24 35.14% 13

37 24.07% 13
54 42.11% 16

38 0.00% 0
21

Male 8.33% 1
12 62.50% 15

24 64.86% 24
37 75.93% 41

54 57.89% 22
38 100.00% 21

21

educ 186 0.500 0.500 0.750 0.719 0.812 0.875 0.625 0.812 0.938 0.625 0.750 0.859 0.750 0.750 0.875 0.750 0.812 0.875

MMSE 186 25.8 28.0 29.2 26.8 28.0 29.0 25.0 26.0 29.0 26.0 28.0 29.0 27.2 29.0 29.0 25.0 27.0 28.0

CDRSB 183 1.000 1.500 2.000 0.875 1.000 1.500 1.000 1.500 2.000 1.000 1.500 2.500 0.500 1.000 1.500 1.000 1.500 2.500

APOE4 186
0 8.33% 1

12 37.50% 9
24 27.03% 10

37 59.26% 32
54 89.47% 34

38 71.43% 15
21

1 83.33% 10
12 25.00% 6

24 54.05% 20
37 33.33% 18

54 5.26% 2
38 28.57% 6

21

2 8.33% 1
12 37.50% 9

24 18.92% 7
37 7.41% 4

54 5.26% 2
38 0.00% 0

21

ABETA 186 142 142 190 110 156 202 139 147 152 92 131 165 160 221 261 134 134 140

TAU 186 68.9 129.3 139.9 69.2 72.3 79.0 80.1 100.0 128.0 45.1 72.0 111.2 59.0 66.3 109.8 102.1 110.9 127.0

stable AD
55–60 60–65 65–70 70–75 75–80 80–85 85–90

N = 8 N = 7 N = 10 N = 22 N = 34 N = 22 N = 13

AGE_IMG 56.8 57.2 57.8 61.3 62.6 63.6 66.3 67.6 69.2 71.9 72.9 73.8 76.0 77.3 78.7 81.3 82.3 83.5 86.5 87.1 88.3

gender
Female 50.0% 4

8 71.4% 5
7 30.0% 3

10 31.8% 7
22 41.2% 14

34 13.6% 3
22 76.9% 10

13

Male 50.0% 4
8 28.6% 2

7 70.0% 7
10 68.2% 15

22 58.8% 20
34 86.4% 19

22 23.1% 3
13

educ 0.750 0.875 1.000 0.656 0.688 0.875 0.422 0.562 0.875 0.750 0.875 0.875 0.500 0.656 0.750 0.500 0.750 0.875 0.562 0.625 0.875

MMSE 20.5 23.0 23.8 17.0 21.0 23.0 20.0 21.5 24.5 18.0 23.5 24.8 20.0 23.0 25.0 19.0 22.5 24.0 20.0 21.0 23.0

CDRSB 4.12 5.25 6.88 3.75 4.50 6.00 4.50 5.00 5.00 3.00 3.75 6.75 4.00 5.00 7.75 3.12 4.75 7.00 6.00 7.00 9.00

APOE4
0 50.00% 4

8 71.43% 5
7 20.00% 2

10 4.55% 1
22 17.65% 6

34 18.18% 4
22 46.15% 6

13

1 0.00% 0
8 28.57% 2

7 50.00% 5
10 50.00% 11

22 64.71% 22
34 81.82% 18

22 53.85% 7
13

2 50.00% 4
8 0.00% 0

7 30.00% 3
10 45.45% 10

22 17.65% 6
34 0.00% 0

22 0.00% 0
13

ABETA 116 137 158 110 140 141 127 127 128 114 142 149 111 151 153 137 141 163 137 137 234

TAU 101.6 107.0 112.5 82.3 100.4 120.1 134.8 148.1 161.4 92.5 118.6 148.0 65.4 90.8 113.2 76.5 97.0 109.4 112.0 140.1 144.2

Values of continuous variables are represented by the lower, the median and the upper
quartiles. Categorical variables are represented by percentages and frequencies. N is the
number of non-missing values.
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Table 5.5 Clinical characteristics of subjects with unstable diagnostic included in testing
groups

Converted to MCI
60–65 65–70 70–75 75–80 80–85 85–90

N = 4 N = 1 N = 9 N = 9 N = 18 N = 4

AGE_IMG 63.0 63.4 63.9 65.7 65.7 65.7 71.5 72.7 73.5 78.0 78.5 79.0 81.1 82.1 83.2 85.4 85.9 86.6

gender
Female 0.0% 0

4 0.0% 0
1 44.4% 4

9 55.6% 5
9 44.4% 8

18 0.0% 0
4

Male 100.0% 4
4 100.0% 1

1 55.6% 5
9 44.4% 4

9 55.6% 10
18 100.0% 4

4

educ 0.500 0.500 0.500 0.500 0.500 0.500 0.562 0.750 0.750 0.562 0.938 1.000 0.516 0.625 0.891 0.688 0.719 0.750

MMSE 25.0 25.0 25.8 26.0 26.0 26.0 28.0 29.0 29.0 28.0 29.0 29.0 28.0 29.0 29.8 27.8 28.5 29.2

CDRSB
0 0.0% 0

4 0.0% 0
1 55.6% 5

9 77.8% 7
9 50.0% 9

18 33.3% 1
3

0.5 0.0% 0
4 0.0% 0

1 11.1% 1
9 22.2% 2

9 16.7% 3
18 33.3% 1

3

1 50.0% 2
4 0.0% 0

1 22.2% 2
9 0.0% 0

9 16.7% 3
18 33.3% 1

3

1.5 50.0% 2
4 100.0% 1

1 11.1% 1
9 0.0% 0

9 16.7% 3
18 0.0% 0

3

APOE4
0 100.0% 4

4 100.0% 1
1 100.0% 9

9 55.6% 5
9 61.1% 11

18 100.0% 4
4

1 0.0% 0
4 0.0% 0

1 0.0% 0
9 44.4% 4

9 38.9% 7
18 0.0% 0

4

ABETA 233 233 233 233 233 233 177 221 221 111 171 171 114 157 171 252 253 254

TAU 56.7 56.7 56.7 56.7 56.7 56.7 33.8 33.8 93.8 70.5 93.1 93.1 62.3 66.4 76.2 57.0 59.0 61.0

Converted to AD
55–60 60–65 65–70 70–75 75–80 80–85 85–90 +90
N = 15 N = 11 N = 60 N = 127 N = 122 N = 103 N = 46 N = 3

AGE_IMG 56.6 57.6 58.2 61.7 62.8 63.8 66.2 67.5 68.8 71.8 73.0 74.0 76.0 77.2 78.6 80.9 81.9 83.2 86.2 87.3 88.5 90.2 90.4 90.5

gender
Female 66.67% 10

15 9.09% 1
11 56.67% 34

60 43.31% 55
127 29.51% 36

122 32.04% 33
103 17.39% 8

46 0.00% 0
3

Male 33.33% 5
15 90.91% 10

11 43.33% 26
60 56.69% 72

127 70.49% 86
122 67.96% 70

103 82.61% 38
46 100.00% 3

3

educ 0.625 0.688 0.875 0.750 0.875 0.875 0.625 0.750 0.875 0.625 0.750 0.875 0.625 0.750 0.875 0.625 0.750 0.875 0.625 0.750 0.875 0.625 0.750 0.750

MMSE 22.5 24.0 25.0 26.0 27.0 28.5 23.0 25.0 27.0 23.0 25.0 27.5 21.0 24.0 26.0 23.0 26.0 28.0 23.0 25.0 26.0 21.5 26.0 26.5

CDRSB 2.50 3.00 3.75 2.25 3.50 4.25 2.00 2.50 4.12 2.00 2.50 4.00 2.00 3.25 4.50 1.50 3.00 4.50 2.00 3.50 4.50 4.75 5.50 7.25

APOE4
0 100.00% 15

15 72.73% 8
11 8.33% 5

60 25.20% 32
127 31.15% 38

122 59.22% 61
103 63.04% 29

46 33.33% 1
3

1 0.00% 0
15 18.18% 2

11 58.33% 35
60 47.24% 60

127 59.84% 73
122 28.16% 29

103 23.91% 11
46 33.33% 1

3

2 0.00% 0
15 9.09% 1

11 33.33% 20
60 27.56% 35

127 9.02% 11
122 12.62% 13

103 13.04% 6
46 33.33% 1

3

ABETA 123 148 154 128 128 171 131 145 149 108 131 150 128 142 162 120 134 160 129 138 153 110 138 182

TAU 79.3 90.3 146.9 68.0 89.0 100.8 112.6 122.2 159.3 76.1 107.5 136.1 76.9 104.0 143.1 67.4 81.0 110.0 97.1 118.0 119.1 97.9 98.7 142.6

Values of continuous variables are represented by the lower, the median and the upper
quartiles. Categorical variables are represented by percentages and frequencies. N is the
number of non-missing values.
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5.4.1 Annual percentage of cortical brain change

The age-related changes in 66 CV biomarkers for sHC, sMCI and sAD are illustrated in
Figure 5.1. Similarly, Figure 5.2 shows the age-related changes in 66 TA biomarkers for each
of these subject’s groups. The figures show lateral and medial views of both hemispheres
(from left to right). Brain regions are coloured according the β coefficient values of age
(βa) computed for MRI biomarkers in LME models (see Equation 5.1). These values are
presented in measurements units of mm for TA biomarkers and in mm3 for CV biomarkers

In Figure 5.1, red colours represent regions of the cortex with greater one-year reduction
as compared to the other regions. In contrast, yellow colours represent less reduced areas. For
the three kind of stable diagnostic subjects we found cortical volume reductions across the
whole brain surface. In sHC subjects, the frontal lobe (including the superior frontal gyrus),
the rostral middle frontal gyrus, and the precentral gyrus showed the highest degree of change.
Substantial changes were also observed in the temporal lobe (including the middle temporal,
the inferior temporal and the superior temporal), and the parietal lobe (inferior and superior
parietal). For sMCI subjects, the frontal lobe (superior frontal gyrus) and the temporal lobe
(inferior temporal gyrus, middle temporal gyrus, superior temporal gyrus and the fusiform
gyrus), showed the greatest reductions. Substantial reductions were also observed in several
regions of the parietal lobe (inferior parietal, superior parietal, supramarginal and precuneus).
For sAD, the temporal lobe, including the inferior temporal gyrus, the middle temporal gyrus
and the superior temporal gyrus constituted the greatest change. Important reductions were
also shown in the fusiform region and the superior frontal gyrus. For both sHC and sMCI,
age-related atrophy was significant (P ≤ 0.01) in most regions of both hemispheres with the
exception of the pericalcarine region. In contrast, for sAD there were a limited number of
regions which did not show significant longitudinal change and the cuneus was the common
not significant region for both hemispheres. For all diagnostic groups, the frontal pole, the
pericalcarine, and the transversal temporal gyrus showed the smallest volume reduction.

A well as cortical volume, accelerated or reduced estimates of decline in cortical thickness
average with increasing age were found for all brain regions. In Figure 5.2, red-orange
colours represent regions of greater cortical thinning than in the blue-cyan coloured ones.
For sHC, the most accelerated decline shows up in three regions: 1) the medial temporal
lobe including the entorhinal cortex, the temporal pole, the parahippocampal cortex (mainly
in its left hemisphere) and the bankssts (right hemisphere); 2) the lateral lobe (inferior
temporal, middle temporal and superior temporal); 3) the frontal lobe (precentral gyrus). For
sMCI, the temporal lobe also showed the most accelerated thinning in both hemispheres,
mainly including regions such as the enthorinal, the temporal pole, the parahippocampal, the
inferior temporal, the middle temporal, the fusiform and the superior temporal. As happened
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with sMCI group, sAD subject also showed the greatest thinning in the temporal lobe; and
important declines were also observed in the insular cortex, the rostral anterior cingulate
cortex and the medial orbitofrontal cortex. In comparison with sHC, the thinning of the
temporal lobe in the sMCI and sAD groups was greater.
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(a)

(b)

(c)

Fig. 5.1 Annual change in cortical volumes measured longitudinally in a sample of: (a) sHC
(N=103, 61–93 years). (b) sMCI (N=98, 55–90 years); and (c) sAD (N=93, 56–90 years).
Results are displayed on the inflated cortical surface of the FreeSurfer "fsaverage" average
brain template. Left side: left hemisphere. Right side: right hemisphere. Top: regions on
lateral view. Bottom: regions on medial views. Regions are coloured according the beta
coefficient values computed for age.
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(a)

(b)

(c)

Fig. 5.2 Annual change in cortical thickness measured longitudinally in a sample of: (a) sHC
(N=103, 61–93 years); (b) sMCI (N=98, 55–90 years); and (c) sAD (N=93, 56–90 years).
Results are displayed on the inflated cortical surface of the FreeSurfer "fsaverage" average
brain template. Left side: left hemisphere. Right side: right hemisphere. Top: regions on
lateral view. Bottom: regions on medial views. Regions are coloured according the beta
coefficient values computed for age.
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Similarly, in order to observe more clearly differences of the age effect (βa) for all CV
and TA biomarkers, these values are summarized in Figures 5.3 and 5.4, respectively.

(a) (b)

Fig. 5.3 Summary of age effect on CV biomarkers for (a) left hemisphere and (b) right
hemisphere. CV: Cortical Volume.

5.4.2 MRI features ranking

The mRMR ranking computed for each feature in the sHC vs sMCI, sHC vs sAD and sMCI
vs sAD experiments for the frontal lobe, the temporal lobe and the subcortical regions are
shown in Figures 5.5, 5.6 and 5.7, respectively. The mRMR order was coloured in a range
from yellow to red. Red colours indicate that these features were lowest in the ranking; in
contrast, blue colours were highest. The Pearson correlation was used as the distance metric.
Note that certain features which were placed in the lower half of the ranking for the early
age groups, were promoted to the highest positions for the older groups. However, other
features remained in the upper half of the ranking for all age groups. For example, for the
sHC vs sAD experiment (Figure 5.7(a)), the hippocampal volume of the left hemisphere
(Le f tHippocampus.ST 29SV ) occupied the first two positions in subjects aged 65 to 80 years
and it remained on the upper half for the other age groups. Finally, some features were
always placed in the lowest positions.
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(a) (b)

Fig. 5.4 Summary of age effect on TA biomarkers for (a) left hemisphere and (b) right
hemisphere. TA: Thickness Average

5.4.3 Selected features

The SVM wrapper method allowed us to obtain the most significant features sets F ′ for
each five-year age group and differential diagnosis problem, see Table 5.6. In total, 33 MRI
biomarkers were selected and the remaining 133 MRI biomarkers were discarded. There were
biomarkers selected for more than one age group and most of the selected ones correspond
to the temporal and frontal lobes. Regarding subcortical regions, only the volumes of left
hippocampus, right amygdala, right inferior lateral ventricle, theft choroid plexus, and the
corpus callosum central were selected. Also, the table shows that age, gender and educ were
always selected because they were included a priori. As mentioned in Section 5.3.5, for the
SVM models building for early diagnosis estimation and prediction, the aggregated set of
features Fadd (instead of F ′) was established as input. The subset Fadd was obtained by
grouping the age-specific features from previous F ′ (see Table 5.7). Observe that, within all
the SVM models, gender, age and educ were invariably included as explanatory features,
and MMSE and CDRSB were included only in several models.
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5.4.4 Classification of current diagnosis

Tables 5.8 and 5.9 show the results of models focused on the ECD problem when including
or not neuro-psychological test as input features. These models were trained on the diagnosis
at the time of the clinical tests, structured in 5-year blocks and three differential diagnosis
experiments. The last column of both tables also shows the weighted average across all the
age groups. The classification quality indicators are accuracy (ACC), sensitivity (SEN), and
specificity (SPE).

The models including the MMSE and the CDRSB features as input show very high values
for accuracy, sensitivity and specificity for all age groups, mainly for the AD vs HC results,
where all the indicators achieved values well above 86%, and values of 100% for some age
groups. For the AD vs MCI experiments, which are intrinsically harder than AD vs HC,
show an average accuracy above 84%, the performance across all age groups being quite
consistent. Finally, the MCI vs HC models show an average accuracy above 82%, with a
classification performance that apparently declines with age.

In contrast, the models that do not include the neuro-psychological features as input show
lower average accuracies than previous models, obtaining 86.23% for AD vs HC, 68.73% for
AD vs MCI and 72.75% for MCI vs AD.

By comparing these results with comparable results from the literature previously pre-
sented in Section 2.5 (see Table 7.2), our method shows the highest indicators in the AD vs
HC classification, the highest specificity in MCI vs HC, as well as the highest accuracy in
AD vs MCI.

5.4.5 Diagnosis prediction advancement

Tables 5.10 and 5.11 show the detailed results of the experiments carried out to address the
PFD problem, where classifiers were trained on the last known diagnosis of each subject
in the dataset, including or not the MMSE and the CDRSB features as model input. The
results are structured both by age group and by differential diagnosis. The absence of enough
suitable subjects necessarily limited the age groups and differential diagnoses we studied.
The diagnosis advancement rows indicate the average number of years improvement in
predicting the future diagnosis of the subjects. The possible advancement depends on the
specific clinical history of the subjects in the dataset, i.e. the difference in years from their
clinical tests to their last known diagnosis.

When including the neuro-psychological tests as input for the AD vs HC experiment,
all classification indicators are well above 95%, with a highest accuracy of 98.75% on the
70–75 age group. The diagnosis advancement ranges from 1.48 to 1.85 years. The results of
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the AD vs MCI experiments, though lower than in AD vs HC due to their intrinsic greater
difficulty, also show high performance indicators, especially for classification accuracy and
sensitivity. On the other hand, when the MMSE and the CDRSB features were excluded
from the models, accuracies for AD vs HC were lower than the accuracies obtained from the
previous model, but also remained above 90%. Furthermore, for AD vs MCI, the classifiers
achieved accuracies up to 90%, slightly lower than in the previous case.

5.5 Conclusions

To address the early diagnosis and prognosis of AD, the proposed method was focused on a
univariate and multivariate analysis of the brain structures change through data stratification
by diagnosis and age groups. The current results confirm predominant cortical fronto-
temporal patterns of atrophy in sHC subjects across the adult age-span (Figures 5.1(a) and
5.2(a)). Moreover, most selected MRI-based biomarkers corresponded to the temporal and
frontal lobes, which also support findings from the previous univariate analysis stage. This
pattern has been previously described in other cross-sectional [104] and longitudinal studies
[43, 64, 44] and could explain the ageing-related decline in specific cognitive abilities. Also,
a fronto-temporal pattern was also observed in sMCI (Figures 5.1(b) and 5.2(b)) and in
sAD (figures 5.1(c) and 5.2(c)) subjects, where the change rate observed in sAD is slightly
different from the change observed in MCI and is more differentiated than sHC. All these
results related with the brain change also coincide to a large extent with the results obtained
from Mres (see Section 4.5). As described previously by Fjell et al. [45], all these findings
could confirm that the fronto-temporal change corresponds to an inevitable process related to
normal ageing and is not necessarily an AD-specific one. Furthermore, it is possible that the
vulnerability of these areas to normal ageing-related decline contributes to their vulnerability
to AD-related atrophy.

Regarding differential diagnosis applied on the estimation of the current diagnosis,
classifiers including neuro-psychological features produce better results than comparable
methods in the literature for most classification quality indicators, specially on AD vs HC
experiment where all the indicators rank in the first place. Furthermore, when comparing to
the models performance obtained through our first method (Table 7.2), we confirmed both
the inclusion of an FS and the approach of aggregating selected features as age groups get
older, prove to be a robust approach for improving classification performance of ECD models
(over 98% ACC for AD vs HC, over 84% ACC for AD vs MCI and over 82% ACC for MCI
vs HC). In fact, the FS task not only helped us in improving model accuracy, but was also
useful for visualization and interpretation of data.
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Likewise, the methodraw also improves the prediction of future diagnosis given the current
clinical tests, both in prediction quality indicators as well as in the amount of time by which
the diagnosis is advanced. Results of models focused on the early diagnosis of disease
progression outperform results obtained by the previous method (Mres), while also increasing
slightly the span of the age advancement in the diagnosis.

In summary, these results demonstrate that Mraw focused on combining diagnosis-specific
feature selection and age stratification is an efficient approach to address the main problems
established in this thesis.
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Table 5.8 Performance of diagnostic classifier including neuropsychological features

5–yr 65–70 70–75 75–80 80–85 85–90 Weighted Average
AD vs HC

No. test subjects 12 97 115 57 22
Accuracy 100.00% 100.00% 99.13% 94.74% 100.00% 98.68%
Specificity 100.00% 100.00% 98.77% 100.00% 100.00% 99.53%
Sensitivity 100.00% 100.00% 100.00% 86.36% 100.00% 97.43%

AD vs MCI
No. test subjects 34 59 87 58 34
Accuracy 91.18% 86.44% 82.76% 75.86% 94.12% 84.56%
Specificity 95.83% 86.49% 84.91% 80.55% 90.47% 86.38%
Sensitivity 80.00% 86.36% 79.41% 68.18% 100.00% 81.17%

MCI vs HC
No. test subjects 26 112 134 71 30
Accuracy 88.46% 84.82% 79.10% 87.32% 70.00% 82.31%
Specificity 00.00% 85.33% 81.48% 97.14% 0.00% 77.38%
Sensitivity 95.83% 83.78% 75.47% 77.78% 100.00% 81.80%

Table 5.9 Performance of diagnostic classifier excluding neuro-psychological features

5–yr 65–70 70–75 75–80 80–85 85–90 Weighted Average
AD vs HC

No. test subjects 12 97 115 57 22
Accuracy 58.33% 84.53% 86.08% 89.83% 100.00% 86.23%
Specificity 0% 89.33% 82.71% 100.00% 100.00% 86.16%
Sensitivity 70.00% 68.18% 94.11% 72.72% 100.00% 81.21%

AD vs MCI
No. test subjects 34 59 87 58 34
Accuracy 73.52% 72.88% 64.77% 65.00% 73.52% 68.73%
Specificity 95.83% 94.59% 92.96% 65.78% 90.47% 77.83%
Sensitivity 20.00% 36.36% 67.65% 63.64% 46.15% 51.51%

MCI vs HC
No. test subjects 26 112 134 71 30
Accuracy 92.30% 76.78% 62.96% 78.66% 70.00% 72.75%
Specificity 00.00% 81.33% 79.01% 81.08% 00.00% 68.40%
Sensitivity 100.00% 67.57% 38.88% 76.32% 100.00% 63.87%



116 Early prediction of AD: Method Mraw

Table 5.10 Prediction of the future diagnosis including neuropsychological features

5–yr 70–75 75–80 80–85 Weighted Average
AD vs HC

No. test subjects 40 40 27
Accuracy 98.75% 97.25% 95.56% 97.38%
Sensitivity 99.60% 98.33% 95.00% 97.96%
Specificity 97.33% 95.62% 97.14% 96.64%
Time advancement (years) 1.55 1.62 1.87

AD vs MCI
No. test subjects 32 34 27
Accuracy 88.12% 85.30% 93.33% 88.60%
Sensitivity 97.60% 92.92% 99.00% 96.30%
Specificity 54.29% 67.00% 77.14% 65.57%
Time advancement (years) 1.50 1.66 1.64

Table 5.11 Prediction of the future diagnosis excluding neuropsychological features

5–yr 70–75 75–80 80–85 Weighted Average
AD vs HC

No. test subjects 40 40 27
Accuracy 92.00% 90.00% 92.96% 91.49%
Sensitivity 96.80% 96.25% 96.00% 96.39%
Specificity 84.00% 80.63% 84.28% 82.81%
Time advancement (years) 1.52 1.56 1.91

AD vs MCI
No. test subjects 32 34 27
Accuracy 88.44% 82.06% 90.00% 85.18%
Sensitivity 98.80% 87.92% 96.00% 94.00%
Specificity 51.43% 68.00% 72.86% 63.71%
Time advancement (years) 1.54 1.32 1.56



Chapter 6

Validation of methods.

6.1 Introduction

The reliability of both methods Mres and the Mraw to correctly identify AD vs HC subjects
was evaluated and compared by testing these methods on a new dataset obtained from
the publicly accessible database of OASIS cross-sectional study (Section 2.4). Because
in that dataset, the clinical diagnostic assigned to participants was directly obtained from
CDRGLOBAL scores, methods comparison tasks were focused on MRI-based biomarkers,
excluding information about neuro-psychological features (CDR-based and MMSE scores).
Furthermore, few features were customised or excluded to facilitate such comparison. Models
derived from both methods were firstly re-trained from ADNI training data and then tested
separately on remaining ADNI data, as well as, on OASIS data.

6.2 Data

Data was integrated with MRI-based biomarkers and sociodemographic variables (years of
education, gender and age) from ADNI and OASIS databases. ADNI data included 313
subjects clinically diagnosis as stable HC (N=151) and stable AD (N=162) during five years
follow up. Details about ADNI database was briefly introduced in Section 2.3. The criteria
for including MRI biomarkers and participants took into account in Mres and the Mraw have
been previously described in Sections 4.2 and 5.2, respectively. On the other hand, OASIS
data included 134 subjects (93 AD and 41 HC) observed at baseline. In this dataset, two
biomarkers associated with the inferior lateral ventricle were missed. Thus the initial set
of MRI based biomarkers (N=166) utilised in both previous methods was reduced to 164,
including measures for CV (N=66), TA (N=66) and SV (N=32).
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6.3 Methods

Preliminary data processing was necessary to match OASIS and ADNI data. Because
education variable observed in OASIS subjects correspond to the following levels of education
1: less than high school grade, 2: high school grade, 3: some college, 4: college grade and 5:
beyond college; it was necessary to convert those levels into years of education in order to
match them with ADNI subject’s education values. Thus, education levels 1, 2, 3, 4 and 5
were replaced by 8, 12, 15, 18 and 20 education years, respectively. Then, the feature educ
was normalised to [0,1].

In several cases, models derived from both Mres and Mraw methods were re-built for
adjusting them to new data characteristics. After that, ADNI data were used to train SVM
classifiers and then the performance of those models was evaluated by testing them separately
on new data from ADNI and OASIS.

For the Mres, 107 variant ROIs (vr) and 57 quasi-variant ROIs (qvr) were utilised to re-
built the female ageing-based null model from 24 women diagnosed as stable HC. Likewise,
95 variant ROIs (vr) and 69 quasi-variant ROIs (qvr) were included into the male null
model, which was built from 22 stable HC men. In Section 4.3.2 was described with more
detail the ageing-based null model approach and in Table 4.5 were described the baseline
characteristics of those 66 stable HC subjects included on building those models. After
adjustment of the null model, residuals were computed for ADNI HC and AD remainders,
as well as, for OASIS HC and AD subjects. As it was described in Section 4.3.3, residuals
represent the deviation values of observed MRI-based biomarkers from an inferred healthy
subject-specific trend computed through null models. Then, SVM models for the HC vs AD
classification experiment were trained separately for males and females residuals taking into
account the same configuration described in Section 4.3.3. For that purpose, only residuals
of vr biomarkers and age (age of the subject at the time of the visit) were included as input
features.

Likewise, for the Mraw method, which is focused on age group-depended brain changes,
it was not necessary to re-train the SVM wrapper for feature selection tasks because the
OASIS dataset included the 33 MRI-based biomarkers selected by that wrapper, see Section
5.6. Because the OASIS diagnosis label is generated directly from CDR-related scores, the
inclusion of that feature could bias and compromise the classifier. Thus, the SVM models
built for each five-year age group for the HC vs AD experiment were re-trained excluding
neuropsychological features such as the CDR-related and MMSE scores. Details about
implementation of the SVM models for the estimation of the current diagnosis (ECD) were
described in Section 5.3.5. ADNI remainders not used in feature selection tasks and all
OASIS data were used to assess the classifier performance. Because testing age groups of
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both datasets do not contain enough data to perform the experiments as described, only the
samples of subjects aged 65–90 years were analysed. As with the previous method, possible
differences between five-year age groups in ADNI and OASIS populations were examined
through quartiles representation of MRI-based biomarkers stratified by age group, diagnosis
and data source.

To evaluate possible differences between ADNI and OASIS populations, it was carried
out a normality analysis followed by statistical tests to determine whether the means of two
groups are equal to each other.

Furthermore, regardless of the method, all SVM classifiers were built through the repeated
random sampling approach described in Section 2.2.6. In summary, models were built from
80% of ADNI subjects randomly selected for training, and the ADNI remaining 20%, as
well as, the 100% of OASIS subjects were separately used for testing. This approach was
repeated ten times, then the estimates of classifiers performance were obtained by averaging
all ten accuracies, sensitivities and specificities. For splitting ADNI data, we were careful
that the subjects selected for training were not selected for testing.

6.4 Results

Tables 6.1 and 6.2 show the statistical descriptives of ADNI and OASIS data used to re-train
and test classifiers. There were not available information about APOE genotype in OASIS
subjects.
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Table 6.1 Statistical descriptors of ADNI data at baseline grouped by diagnostic group

AD HC
N = 162 N = 151

Gender
Female 48% 78

162 46% 69
151

Male 52% 84
162 54% 82

151

Age 70.7 75.3 80.4 (75.0 ± 7.5) 72.7 76.0 79.0 (76.3 ± 5.0)
Educ 0.50 0.69 0.75 (0.67 ±0.20) 0.66 0.75 0.88 (0.77 ±0.18)
APOE4

0 33.3% 54
162 70.9% 107

151

1 45.7% 74
162 26.5% 40

151

2 21.0% 34
162 2.6% 4

151

MMSE 22.0 23.0 25.0 (23.4 ± 1.9) 29.0 29.0 30.0 (29.1 ± 1.0)
CDGLOBAL

0 0% 0
162 100% 151

151

0.5 53% 86
162 0% 0

151

1 47% 76
162 0% 0

151

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous
variables. x± s represents X̄ ±1 SD.

Table 6.2 Statistical descriptors of OASIS data grouped by diagnostic group

AD HC
N = 93 N = 41

Gender
Female 58% 54

93 76% 31
41

Male 42% 39
93 24% 10

41

Age 72.0 77.0 81.0 (76.7 ± 7.3) 67.0 71.0 80.0 (73.6 ± 9.2)
Educ 0.50 0.50 0.88 (0.63 ±0.24) 0.69 0.88 1.00 (0.79 ±0.22)
MMSE 22.0 26.0 28.0 (24.5 ± 4.1) 30.0 30.0 30.0 (30.0 ± 0.0)
CDGLOBAL

0 0.0% 0
93 100.0% 41

41

0.5 73.1% 68
93 0.0% 0

41

1 24.7% 23
93 0.0% 0

41

2 2.1% 2
93 0.0% 0

41

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous
variables. x± s represents X̄ ±1 SD.
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6.4.1 Analysis of residual’s distribution in ADNI and OASIS data

Distributions of residuals for each vr biomarker in the HC group of both datasets were
checked for normality using the Shapiro-Wilks test. For many features, the null hypothesis
was rejected (at 0.05 significance level). Thus, the Wilcoxon-Matt-Whitney test was used
to test the hypothesis that distribution of each vr residual in the HC OASIS population
is the same than in the HC ADNI population without assuming them to follow a normal
distribution. At a 0.05 significance level, it was observed that the distribution of few residuals
is identical for both populations. Tables 6.3 and 6.4 show the list of biomarkers showing
identical distributions (p-value≥ 0.05) for HC females (30 out of 107 vr) and HC males (48
out of 107 vr), respectively.
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Table 6.3 Wilcoxon-Matt-Whitney test for biomarkers showing similar distribution in HC
females.

MRI biomarker Hemisphere Measure type Lobe p-value

1 rh_isthmuscingulate_volume rh CV cingulate cortex 0.061
2 lh_superiortemporal_volume lh CV temporal lobe 0.076
3 leftamygdala lh SV 0.079
4 rh_rostralmiddlefrontal_thickness rh TA frontal lobe 0.113
5 rh_bankssts_thickness rh TA temporal lobe 0.123
6 lh_superiorparietal_thickness lh TA parietal lobe 0.155
7 rh_entorhinal_volume rh CV temporal lobe 0.171
8 thirdventricle bilateral SV 0.177
9 leftpallidum lh SV 0.192

10 righthippocampus rh SV 0.202
11 rh_supramarginal_volume rh CV parietal lobe 0.229
12 rh_superiortemporal_thickness rh TA temporal lobe 0.235
13 lh_cuneus_volume lh CV occipital lobe 0.280
14 rh_temporalpole_volume rh CV temporal lobe 0.298
15 rh_middletemporal_volume rh CV temporal lobe 0.336
16 lh_middletemporal_volume lh CV temporal lobe 0.338
17 lh_lateralorbitofrontal_volume lh CV frontal lobe 0.344
18 lh_temporalpole_thickness lh TA temporal lobe 0.361
19 rh_inferiortemporal_volume rh CV temporal lobe 0.399
20 rh_parahippocampal_volume rh CV temporal lobe 0.434
21 rh_bankssts_volume rh CV temporal lobe 0.514
22 lh_lateraloccipital_thickness lh TA occipital lobe 0.569
23 lh_rostralmiddlefrontal_thickness lh TA frontal lobe 0.639
24 rh_inferiorparietal_thickness rh TA parietal lobe 0.641
25 lh_superiorparietal_volume lh CV parietal lobe 0.669
26 lefthippocampus lh SV 0.745
27 corpuscallosummidanterior bilateral SV 0.778
28 corpuscallosumcentral bilateral SV 0.818
29 lh_isthmuscingulate_thickness lh TA cingulate cortex 0.824
30 rh_inferiortemporal_thickness rh TA temporal lobe 0.961

CV: Cortical volume. SV: Subcortical volume. TA: Thickness Average. rh: Right
hemisphere. lh: Left hemisphere.
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Table 6.4 Wilcoxon-Matt-Whitney test for biomarkers showing similar distribution in HC
males.

MRI biomarker Hemisphere Measure type Lobe p-value

1 lh_lingual_thickness lh TA occipital lobe 0.059
2 rh_medialorbitofrontal_volume rh CV frontal lobe 0.069
3 rh_frontalpole_thickness rh TA frontal lobe 0.071
4 rh_middletemporal_volume rh CV temporal lobe 0.074
5 lh_superiorparietal_volume lh CV parietal lobe 0.088
6 lh_middletemporal_thickness lh TA temporal lobe 0.094
7 lh_caudalmiddlefrontal_thickness lh TA frontal lobe 0.097
8 rightaccumbensarea rh SV 0.138
9 rh_lateralorbitofrontal_thickness rh TA frontal lobe 0.141

10 rh_medialorbitofrontal_thickness rh TA frontal lobe 0.141
11 rh_parstriangularis_thickness rh TA frontal lobe 0.151
12 rh_lateralorbitofrontal_volume rh CV frontal lobe 0.182
13 lh_inferiortemporal_thickness lh TA temporal lobe 0.190
14 lh_superiortemporal_thickness lh TA temporal lobe 0.207
15 lh_rostralmiddlefrontal_thickness lh TA frontal lobe 0.210
16 rh_bankssts_thickness rh TA temporal lobe 0.224
17 lh_posteriorcingulate_thickness lh TA cingulate cortex 0.228
18 lh_parsorbitalis_thickness lh TA frontal lobe 0.233
19 lh_superiorfrontal_thickness lh TA frontal lobe 0.240
20 lh_superiortemporal_volume lh CV temporal lobe 0.265
21 rh_fusiform_thickness rh TA temporal lobe 0.277
22 rh_parsopercularis_thickness rh TA frontal lobe 0.302
23 rh_parsorbitalis_thickness rh TA frontal lobe 0.319
24 lh_superiorparietal_thickness lh TA parietal lobe 0.347
25 lh_supramarginal_thickness lh TA parietal lobe 0.347
26 lh_inferiorparietal_thickness lh TA parietal lobe 0.367
27 leftthalamus lh SV 0.373
28 lh_temporalpole_thickness lh TA temporal lobe 0.388
29 lh_lateralorbitofrontal_thickness lh TA frontal lobe 0.410
30 rh_postcentral_thickness rh TA parietal lobe 0.419
31 rh_superiorparietal_thickness rh TA parietal lobe 0.473
32 lh_supramarginal_volume lh CV parietal lobe 0.499
33 lh_middletemporal_volume lh CV temporal lobe 0.539
34 rh_rostralmiddlefrontal_thickness rh TA frontal lobe 0.550
35 corpuscallosumanterior bilateral SV 0.580
36 rh_cuneus_thickness rh TA occipital lobe 0.585
37 brainstem bilateral SV 0.597
38 lh_fusiform_thickness lh TA temporal lobe 0.718
39 rh_precuneus_volume rh CV parietal lobe 0.718
40 rh_inferiortemporal_volume rh CV temporal lobe 0.720
41 rh_superiorfrontal_thickness rh TA frontal lobe 0.790
42 rightlateralventricle rh SV 0.865
43 rh_supramarginal_thickness rh TA parietal lobe 0.876
44 rightpallidum rh SV 0.911
45 leftlateralventricle lh SV 0.924
46 rh_inferiorparietal_thickness rh TA parietal lobe 0.926
47 lh_precuneus_thickness lh TA parietal lobe 0.937
48 rh_inferiorparietal_volume rh CV parietal lobe 0.999

CV: Cortical volume. SV: Subcortical volume. TA: Thickness Average. rh: Right
hemisphere. lh: Left hemisphere.
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Furthermore, in order to visualise more specific differences between groups, quartiles
of residuals were generated for all SV, CV and TA MRI-based biomarkers stratified by
gender, diagnosis groups and five-year age groups. In many cases, it was observed that
boxplots computed for biomarkers from HC OASIS subjects are quite different from their
counterpart in ADNI, despite belonging to the same age group. For example, Figures 6.1
and 6.2 show quartiles comparison of females and males residuals, respectively, for SV
MRI-based biomarkers measured in the left hemisphere. These figures show clear differences
between ADNI and OASIS cohorts, not only regarding the gender and diagnostic group but
also within the same age group. Likewise, we observed that there are age groups with no
data for both cohorts. The remaining plots are shown in Section A1.1.
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Fig. 6.1 Left hemisphere: Quantiles comparison of SV biomarker residuals for females of
ADNI and OASIS data.
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Fig. 6.2 Left hemisphere: Quantiles comparison of SV biomarker residuals for males of
ADNI and OASIS data.
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6.4.2 AD vs HC classification experiments.

The weighted average of ACC, SEN and SPE metrics for AD vs HC models from the method
Mres is shown in Table 6.5. Although the initial SVM models built from ADNI data have
obtained slightly better accuracies (Table 4.10) than these re-trained models including fewer
biomarkers (107 vr MRI biomarkers for females and 95 vr MRI biomarkers for males),
the performances of both models are very satisfactory (weighted average ACC > 87.34%).
When evaluating models on OASIS test data, accuracies for females and males models were
62.94% and 65.71% respectively, obtaining better weighted average values for sensitivities
(SEN > 84%) than specificities (SPE ≤ 20%).

Table 6.5 Performances of classification for AD vs HC experiment from Mres method.

Gender Female Male Weighted Average
ADNI: AD vs HC

No. test subjects AD: 78, HC: 69 AD: 84, HC: 82
Accuracy 88.93% 85.94% 87.34%
Specificity 92.31% 89.38% 90.76%
Sensitivity 86.00% 82.50% 84.14%

OASIS: AD vs HC
No. test subjects AD: 54, HC: 31 AD: 39, HC: 10
Accuracy 62.94% 65.71% 63.95%
Specificity 19.03% 21.00% 19.75%
Sensitivity 88.15% 77.18% 84.14%

Regarding the method Mraw, Table 6.6 summarises the classification quality indicators
for AD vs HC classifiers structured in 5-year age groups. The last column also shows the
weighted average across all these groups. For the ADNI test data, we observed high values
for ACC, SEN and SPE for most groups, with indicators well above 68%, and values equal
to 100% for some of them. For the OASIS subjects, model’s performance varied across the
five age groups. Accuracies values were above 76% for three of five groups, but the weighted
average specificity and sensitivity were above 81.0%.

6.5 Discussion

Differences observed between residuals of many MRI biomarkers may be due to several facts
related to the diagnosis criteria, the follow-up of participants and the data source, among
others. ADNI criteria used to classify individuals are applied at each visitation by combining
various neuropsychological tests, such as the MMSE, CDR and the NINCDS/ADRDA criteria.
In contrast, classification of OASIS subjects is only based on CDR scores. Furthermore,
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Table 6.6 Performance of AD vs HC classifier from the Mraw method.

5–yr 65–70 70–75 75–80 80–85 85–90 Weighted Average
ADNI: AD vs HC

No. test subjects AD:10, HC:2 AD:22, HC:75 AD:34, HC:81 AD:22, HC:37 AD:13, HC:9
Accuracy 58.33% 84.54% 86.08% 89.83% 100.00% 86.22%
Specificity 0.00% 89.33% 82.71% 100.00% 100.00% 86.15%
Sensitivity 70.00% 68.18% 94.11% 72.72% 100.00% 81.20%

OASIS: AD vs HC
No. test subjects AD:11, HC:6 AD:24, HC:12 AD:20, HC:3 AD:22, HC:5 AD:7, HC:5
Accuracy 76.47% 50.00% 60.87% 77.77% 91.67% 66.96%
Specificity 33.33% 75.00% 100.00% 40.00% 80.00% 86.38%
Sensitivity 100.00% 37.50% 55.00% 86.36% 100.00% 81.17%

ACC: Accuracy. SEN: Sensitivity. SPE: Specificity.

ADNI subjects included in this study have been identified as diagnostic stable (stable HC or
stable AD) during five years of follow-up; however, OASIS subjects only were observed at
baseline; thus it is possible that some of them were affected with an incipient AD. Besides,
the Freesurfer versions and analysis approaches used in ADNI and OASIS studies were
different. The OASIS study used the version 4.3, and the pipeline to process images was
specific to cross-sectional studies. However, the ADNI study used the Freesurfer v.4.4 with a
processing pipeline focused on longitudinal studies.

Because OASIS diagnostic is performed directly from CDR scores, we did not include
neuro-psychological features as input within the classifiers. Thus, only those models who met
this condition were compared. In all cases, the average accuracies of models tested on ADNI
data were higher than the results obtained on OASIS test data. However, when comparing
model results from ADNI data with results presented in Tables 4.10 and 5.9, specifically, in
those classifiers built by excluding MMSE and CDR-related scores, all accuracies are lower
than results achieved by the models that included those scores. Furthermore, in most cases,
low accuracies while testing on OASIS data were due to very low values in specificity. This
fact may be because the low reliability of using only CDR score to subject diagnosis. Possibly,
several subjects from OASIS diagnosed as healthy controls have early brain changes, but
those subjects still do not have AD symptoms.
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Discussion

7.1 Summary of the results

Method Mres. Analysis of CSF biomarkers values for subjects clinically diagnostic as HC,
MCI and AD, allowed to identify cut-off values to differentiate the subjects with normal and
abnormal CSF profile. Results confirmed the cut-off values previously determined by Shaw
et al. [108], classifying as normal the CSF profile of subjects who fulfilled both conditions:
CSF-Aβ >= 192pg/ml and CSF-τ ≤ 93pg/ml. Consequently, only 46 of 119 subjects
diagnosed as HC by ADNI have shown a normal CSF profile (normal-HCcsf) over time.
Results of the comparison of the CSF profile between the diagnostic groups presented in
Figure 4.5, showed an increase in τ values when comparing normal-HCcsf and subjects with
abnormal CSF-profile, and when comparing abnormal-HCcsf with MCI and AD subjects with
abnormal profile. Concerning Aβ levels, we observed a reduction of levels when comparing
normal-HCcsf with abnormal-HCcsf and the remaining groups with an abnormal profile.

In order to identify the vr and qvr biomarkers due to ageing effects, each of the 166
longitudinal MRI-based biomarkers (66 CV, 34 TA and 66 SV) from the normal-ADcsf

subjects was modelled by applying an LME approach based on random intercepts. Here, we
used the subject age (age) at each observation and the years of education (educ) as covariates.
In this type of LME model, the measured value of ROI is assumed to have a set of parameters
β , fixed across subjects, but the y-intercept value varies by each subject. We identified 69 qvr
biomarkers for males and 57 qvr biomarkers for females. The main characteristic of these
two types is that the age’s coefficient β of the qvr ROIs is close to zero, but for vr ROIs, their
slopes are not. By looking in the set of vr biomarkers, we found reductions for most thickness
and volume biomarkers of cortical regions in both genders following a frontotemporal pattern
(Tables 4.6 and 4.8). Also, we observed atrophy in subcortical regions. In men, the greatest
atrophy was found in the hippocampus, followed by the ventral diencephalon (ventraldc),
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the thalamus, the pallidum and several regions of the corpus callosum (Table 4.7). For
females, the greatest reduction was found in the amygdala, followed by the hippocampus, the
ventraldc and the thalamus (Table 4.9). On the other hand, we also observed the expansion of
regions of the ventricular system (lateral ventricle and third ventricle). Moreover, the optic
chiasm region showed the greatest expansion in women.

During classifiers building stage, the SVM models were built using inferred residuals for
HC, MCI and AD subjects to address two problems: (1) the estimation of current diagnosis
(ECD), i.e. the subject diagnostic at each visitation, and (2) the prediction of future diagnosis
(PFD), i.e. the early prediction of progression to AD. For the first problem, in average, all
these classifiers achieved high accuracies for the AD vs HC experiment (F1: above 91%, F2:
over 94%) and the MCI vs HC experiment (F1: above 79%, F2: above 85%). Even for the AD
vs MCI experiment, which addresses the early diagnosis of prodromal AD, the models have
shown great performance, achieving accuracies values up to 81.6%, see Table 7.2. Regarding
the PFD problem, all classifiers achieved high accuracies for the AD vs HC experiment (up
to 91.7% in females). However, for the remaining experiments, the accuracies values were
up to 77.6%, being penalised by low specificities in comparison to the high sensitivities
achieved in all cases. Furthermore, in both problems were observed that models built with
the F2 configuration obtained better accuracies than the ones built on the F1 configuration.
Finally, regarding the advancement in the prediction of subject’s conversion, the greatest lead
was obtained in the early prediction from MCI to AD in males, this being 1.85 years earlier.
Likewise, for the conversion from HC to AD, these models allowed us to advance up to 1.64
years earlier for females (75–79 age group); and up to 1.73 years earlier for males (80–84
age group), see Table 4.12.

Method Mraw. We modelled the annual percentage of cortical change by applying the
LME approach on longitudinal each CV (N=66) and TA (N=66) MRI-based biomarkers
from sHC, sMCI and sAD. These subjects are characterised by having the same diagnosis
over time. Figures 5.1 and 5.2 show the age-related changes for CV and TA biomarkers for
each diagnosis group, respectively. Results confirm predominant frontotemporal patterns of
atrophy in sHC subjects across the adult age-span (Figures 5.1(a) and 5.2(a)). Furthermore,
we also observed a frontotemporal pattern in sMCI and sAD subjects, where the change
rate observed in sAD is slightly different from the change observed in sMCI and is more
differentiated than sHC. Moreover, most selected MRI-based biomarkers corresponded to
the temporal and frontal lobes, which also support findings from the LME models.

As a first step of the multivariate analysis, it was applied a SVM wrapper to select the
most powerful features of each five-year age group. Only 33 MRI biomarkers were selected,
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and the remaining 133 features were discarded, see Table 5.6. Some MRI-based biomarkers
were selected for more than one age group, and most of the selected ones correspond to the
temporal and frontal lobes. After that, the final set of MRI-biomarkers selected for each age
group was established as the union of all biomarkers previously selected for younger groups.

The final stage of this method was focused on both ECD and PFD problems. For the
AD vs HC experiment in the ECD problem, models including neuro-psychological features
obtained better results than models built without include these features. In the first case, the
SVM model performance shows very high values for accuracy, sensitivity and specificity
for all age groups, with all weighted average indicators above 97%, and values of 100%
for many age groups. For AD vs MCI, which address the diagnosis of prodromal AD and
is intrinsically harder than HC vs AD, results show a weighted average accuracy above
84%, the performance across all age groups being quite consistent. For MCI vs HC, models
achieved a weighted average accuracy above 82%, with a classification performance that
apparently declines with age. In fact, by comparing these results with comparable results
from the literature, see Section 2.5 (Table 7.2), our method Mraw shows the highest indicators
in the AD vs HC classification, the highest specificity in MCI vs HC, as well as the highest
accuracy in AD vs MCI.

For the PFD problem, models including neuro-psychological features also obtained better
results than models built without these features. From the first approach, for the AD vs HC
experiment, all accuracies are well above 88%, with an accuracy of 98.75% for the 70–74 age
group, see Table 5.10. The advancement of early prediction ranges from 1.55 to 1.87 years
for AD vs HC and from 1.50 to 1.66 years for AD vs MCI . The results of the AD vs MCI
experiment, though lower than in AD vs HC due to their intrinsic greater difficulty, also show
high-performance indicators, especially for classification accuracy and sensitivity. When
comparing these models with those in the literature, Mraw outperforms the only comparable
method on all the indicators, while also increasing the span of the age advancement in the
diagnosis slightly, see Table 7.3.

Validation of methods. We found some feature-related differences between ADNI and
OASIS datasets. In OASIS data, information related to education is a categorical feature that
corresponds to levels. In contrast, ADNI provides the total years of education. Thus, to match
OASIS data with ADNI education values, the OASIS data were converted to equivalent years
of education. On the other hand, two MRI biomarkers related to the inferior lateral ventricle,
which were selected as variant ROIs by Mres, are not available in OASIS dataset. For that
reason, the pool of vr biomarkers was reduced from 166 to 164 biomarkers.



132 Discussion

Tables 6.3 and 6.4 show the list of biomarkers from ADNI and OASIS datasets showing
identical distribution for HC females and HC males, respectively. These tables show that
when comparing both datasets, less than half of the initial number of biomarkers have
identical distribution for HC and AD subjects.

Because of the specific features of OASIS cohort, it was only addressed the ECD problem,
specifically for the AD vs HC experiment. Classification results by using Mres are summa-
rized in Table 6.5. The model achieved a weighted average accuracy above 87% on ADNI
test data. Accuracies for females and males models on OASIS test data were 62.94% and
65.71% respectively, obtaining better results in the weighted average values for sensitivity
(SEN > 84%) than specificity (SEN < 20%). Regarding Mraw, Table 6.6 summarizes the
performance of models built to address the AD vs HC experiment. For the ADNI test data,
the weighted average values for ACC, SEN and SPE were above 81.00%, and the metrics
improved as the age progressed. For the OASIS subjects, model’s performance varied across
all groups. Accuracies values were high for only three groups (ACC > 76%), but the weighted
average indicators of ACC, SEN and SPE were above 66.9% for all of them.

Summary of models performance. Results of the ECD problem previously mentioned
above are summarised in Table 7.1. Observe that classifiers which included neuro-psychological
features obtained the best performance on each method. Also, the method Mraw always
obtained the best results when models where tested.
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Table 7.1 Comparison of models built to address the ECD problem(%).

Method Type Dataset AD vs HC (%) MCI vs HC (%) AD vs MCI (%) Data used
ACC SEN SPE ACC SEN SPE ACC SEN SPE

Mres initial ADNI∗− 89.22 90.73 86.85 77.08 95.53 26.98 70.30 64.26 75.14 MRI-based
residuals, age,
gender, educ

Mres initial ADNI∗∗− 94.11 96.54 90.28 83.77 93.55 57.55 76.72 70.77 81.62 MRI-based
residuals, age,
gender, educ,
MMSE, CDR-
GLOBAL

Mres comparison ADNI∗− 87.34 84.14 90.76 - - - - - - MRI-based
residuals, age,
gender, educ

Mres comparison OASIS∗− 63.95 84.14 19.75 - - - - - - MRI-based
residuals, age,
gender, educ

Mraw initial ADNI∗−− 86.23 81.21 86.16 70.00 63.87 68.40 68.73 51.51 77.83 MRI-based
biomarkers,
age

Mraw initial ADNI∗∗−− 98.68 97.43 99.53 82.31 81.80 77.38 84.56 81.17 86.38 MRI-based
biomarkers,
age, MMSE,
CDRSB

Mraw comparison ADNI∗−− 86.22 81.20 86.15 - - - - - - MRI-based
biomarkers,
age

Mraw comparison OASIS∗−− 66.96 81.17 86.38 - - - - - - MRI-based
biomarkers,
age

* This method does not include neuropsychological features. ** This method does include
neuropsychological features. -Results of this method correspond to the average of the
performance recorded for men and women. - -Results of this method correspond to the
weighted average of the performance recorded for all five-years age group. MRI, Magnetic
Resonance Imaging-based features; MMSE, Mini-Mental Clinical Dementia Rating;
CDRSB, Clinical Dementia Rating–Sum of Boxes; CDRGLOBAL, Clinical Dementia
Rating global score.

Both Mres and Mraw achieved better results than comparable methods in the literature
for most classification quality indicators. Table 7.2 compares the prediction accuracy of
the proposed methods (by averaging the accuracy for both genders and age groups) with
existing methods, which have been mainly evaluated on the ADNI dataset. Observe that we
only showed the most significant results of those studies, mainly focusing on MRI and its
combination with other types of features.
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Table 7.2 Comparison of methods focused on the estimation of current diagnosis (%).

Method AD vs HC MCI vs HC cAD vs sMCI Data used
ACC SEN SPE ACC SEN SPE ACC SEN SPE

Kloeppel et al. [69] 95.0 95.0 95.0 - - - - - - MRI
Vemuri et al. [121] - 86.0 86.0 - - - - - - MRI

- 88.0 90.0 - - - - - - MRI, age, gen-
der

- 86.0 92.0 - - - - - - MRI, age, gen-
der, APOE

Cui et al. [18] - - - - - - 67.13 96.43 48.28 NM, CSF,
MRI

- - - - - - 62.24 92.86 42.53 NM, MRI
- - - - - - 62.24 57.14 65.52 MRI

Cuingnet et al. [19] - 81.0 95.0 - - - - 57.0 78.0 MRI
Zhang et al. [129]* 93.3 - - 83.2 - - 73.9 68.6 73.6 MRI, PET,

CSF
Suk et al. [113] 95.9 - - 85.0 - - 75.8 - - MRI,PET
Jie et al. [65] 95.03 94.90 95.00 79.27 85.86 66.64 68.94 64.65 71.79 MRI, FDG-

PET
Gaser et al. [49] - - - - - - 75.00 71.00 84.00 MRI-based

age
Spulber et al. [111] 88.4 86.1 90.4 - - - 67.7 69.6 66.8 MRI-based in-

dex
Aguilar et al. [2] - 92.0 75.0 - - - - 92.0 47.0 MRI-based in-

dex
Liu et al. [73] 94.37 94.71 94.04 78.8 84.85 67.06 67.83 64.88 70.0 MRI, PET

Suk et al. [114] 92.38 91.54 94.56 84.24 99.58 53.79 72.42 36.70 90.98 MRI
93.35 94.65 95.22 85.67 95.37 65.87 75.92 48.04 95.23 MRI, PET

*Mres 89.22 90.73 86.85 77.08 95.53 26.98 70.30 64.26 75.14 MRI-based
residuals, age

*Mres 94.11 96.54 90.28 83.77 93.55 57.55 76.72 70.77 81.62 MRI-based
residuals, age,
MMSE, CDR-
GLOBAL

*Mraw 86.23 81.21 86.16 70.00 63.87 68.40 68.73 51.51 77.83 MRI-based
biomarkers,
age

*Mraw 98.68 97.43 99.53 82.31 81.80 77.38 84.56 81.17 86.38 MRI-based
biomark-
ers, age,
MMSE,CDRSB

* Results of this method correspond to the average of performance recorded for men and
women or age groups. MRI, Magnetic Resonance Imaging-based features. CSF: Cerebral

Spinal Fluid-based biomarkers. NM: Neuro-psychological measures. PET: Positron
Emission Tomography-based features. FDG-PET: [18F]fluorodeoxyglucose uptake

measured in PET. MRI-based age: individual estimated age computed from MRI images.
MRI-based index: individual severity index computed from MRI images. MMSE:

Mini-Mental Clinical Dementia Rating. CDRGLOBAL: CDR Global Score.
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Regarding the PFD problem, Table 7.3 summarises the performance of models trained
to address that problem. Table shows Mraw outperforms Mres on all indicators, while also
increasing the span of advancement in the diagnosis slightly up to an average of 1.68 year
early for AD vs HC.

Table 7.3 Comparison of models built to address the PFD problem (%).

Method Type Dataset AD vs HC (%) AD vs MCI (%) Data used
ACC SEN SPE ACC SEN SPE

Mres initial ADNI∗− 86.10 90.75 71.05 67.60 85.75 49.50 MRI-based
residuals, age,
gender, educ

Mres initial ADNI∗∗− 90.85 94.85 81.10 70.75 86.25 28.15 MRI-based
residuals, age,
gender, educ,
MMSE, CDR-
GLOBAL

Mraw initial ADNI∗−− 91.49 96.39 82.81 85.18 94.00 63.71 MRI-based
biomarkers,
age

Mraw initial ADNI∗∗−− 97.38 97.96 96.64 88.60 96.30 65.57 MRI-based
biomarkers,
age, MMSE,
CDRSB

* This method does not include neuropsychological features. ** This method does include
neuropsychological features. -Results of this method correspond to the average of the
performance recorded for men and women. - -Results of this method correspond to the
weighted average of the performance recorded for all five-years age group. MRI, Magnetic
Resonance Imaging-based features; MMSE, Mini-Mental Clinical Dementia Rating;
CDRSB, Clinical Dementia Rating–Sum of Boxes; CDRGLOBAL, Clinical Dementia
Rating global score.

7.2 Discussion

This thesis addresses two main problems in the AD research field, i.e. the ageing-related
brain change understanding and the subject diagnosis classification of the current state, as
well as the progression to AD. The results found throughout the two proposed methods
confirm the complexity of studying this disease. Because AD affect brain regions, which



136 Discussion

also change due to ageing, even in its early stage, we aim to look by reliable techniques to
differentiate these changes taking into account factors such as age, CSF profile and gender,
and two methods were proposed. Despite the differences between techniques or the type
of data used in each method, both methods converge on firstly to outline each diagnostic
group to understand their similarities and differences. After the understanding phase, we
applied different statistical learning methods to select the most informative features and to
train SVM classifiers to address both the estimation of the current diagnosis (ECD) and the
prediction of the future diagnosis (PFD). In both cases, all classifiers were focused on three
main experiments: AD vs HC, MCI vs HC and AD vs MCI.

More in detail, as a starting point in this study, we focused on identifying and understand-
ing the brain changes over time, either due to ageing or illness. For Mres, we used cut-off
values for CSF-Aβ and CSF-τ biomarkers to outline each diagnostic group according to
a normal or abnormal CSF profile. We found that several subjects clinically diagnosed as
healthy control in the ADNI study have abnormal CSF profiling. This finding is consistent
with previous studies [108, 116, 27], where the presence of possible AD pathology has
been observed in ADNI control subjects. It may be because ADNI subject diagnosis is
made independently of the CSF biomarkers values. Once identified the HC subjects with
normal CSF profile, we were able to build LME models to study the change over five years
follow-up of an extensive set of MRI-based biomarkers obtained from cortical and subcortical
regions for these HC subjects. LME modelling allowed to classify biomarkers as variant or
quasi-variant ROIs and to build null models for ageing-related changes in men and women.
As in previous studies [104, 43, 64], regions identified in older adults as changing over time
confirm that part of these changes occurs in brain areas related with AD. Reductions found
in this study for most thickness and volume biomarkers of cortical regions coincide with the
frontotemporal change observed in previous studies [104, 43, 64]. Furthermore, the decline
in subcortical regions including the hippocampus, the amygdala, the thalamus, the ventraldc
and regions of the corpus callosum; as well as expansion in the ventricular system (lateral
ventricle and third ventricle), also have been reported by [43]. Regarding the expansion
observed in the optic chiasm from healthy females, it may be a consequence of vision loss
due to ageing [1]. On the other hand, in Mraw, the annual percentage of cortical change
was modelled by applying the LME approach on longitudinal MRI-based biomarkers from
subjects characterised by having the same diagnosis over time (i.e. sHC, SMCI and sAD). As
in the previous method, results confirm predominant frontotemporal patterns of atrophy in
sHC subjects across the adult age-span. This pattern has been previously described in other
longitudinal studies [44] and could explain the ageing-related decline in specific cognitive
abilities. Furthermore, we also observed a frontotemporal pattern in sMCI and sAD subjects,
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where the change rate in sAD is slightly different from the change observed in sMCI, and it is
more differentiated than sHC. As described previously by Fjell et al. [45], the frontotemporal
pattern observed from both methods could confirm that the observed brain structures changes
belong to an inevitable process related to normal ageing and is not necessarily an AD-specific
one. Furthermore, it is possible that the vulnerability of these areas to normal ageing-related
decline contributes to their vulnerability to AD-related atrophy.

The knowledge about how the brain regions change in each diagnosis group was used
to approach the other important part of this study, i.e. the ECD and PFD problems. Firstly,
we aimed to select the most significant MRI-based biomarkers to differentiate the subject
diagnosis groups and also reduce the data dimensionality. In Mres, residuals, established
as differences between the observed ROIs and ageing-related inferred ROIs, were valuable
to differentiate the brain change in MCI and AD subjects from ageing-related change. The
residuals from vr biomarkers were directly used as input features to build the SVM classifiers
to subject classification and early disease prediction. In contrast, Mraw was focused on
directly analysing the raw MRI-based biomarkers values, and a feature selection method
was applied on each combination of the five-year age group and the differential diagnosis to
select the most powerful features. Several MRI-based biomarkers were selected for more
than one age group, mainly as the ages increase. Then, the final feature set for each of these
combinations was obtained by grouping the age group-specific features with the features
selected for all the previous age groups (in chronological order). We applied this approach
of grouping features because we hypothesised that whether a feature has had a relevant
role concerning the diagnosis at a given age, that feature will continue being relevant to the
condition subsequently, even if its relative importance declines in favour of other features.
Also, indistinctly to the age group or the differential diagnosis, the most selected features
also correspond to the frontal and temporal lobes.

Regarding classification performance, both Mres and Mraw achieved better results than
comparable methods in the literature for most classification quality indicators. In summary,
both methods provide the following main contributions:

1. By using relatively common clinical tests such as MRI and neuropsychological tests,
as opposed to methods that rely on more expensive or invasive tests such as PET-
based, CSF-based and Genotype-based biomarkers, Both Mres and Mraw improve the
estimation of current diagnosis:

• For AD vs HC: By using Mraw, classifiers reached higher accuracy values (above
98% ) than models from other state-of-the-art methods.
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• MCI vs HC: Classification accuracies up to 83.77% obtained by Mres, where
models also achieved high sensitivities (up to 95.53%).

• AD vs MCI: By using Mraw, the model obtained the highest classification accu-
racy (84.56%) among other models from state of the art.

2. In most experiments, the sensitivity (the ability of a predictor to correctly classify
a subject as ’diseased’) was higher than the specificity (the ability of predictor to
correctly classify a subject as ’disease-free’). This fact may be because ADNI clinical
diagnosis is based on neuropsychological tests, but neurodegeneration occurs many
years before the onset of clinical symptoms. Besides, ADNI patient diagnostics are
not pathologically confirmed. Possibly, our SVM predictors may determine that
subjects are into early stages of disease (MCI and prodromal AD) but this finding is not
consistent with the clinical diagnosis because the subject does not yet present clinical
symptoms. Abnormalities of CSF profile observed in several subjects diagnosed as
HC and MCI (see Figure 4.4) may support this hypothesis.

3. When comparing models performance of both methods, we confirmed that the approach
applied by the method Mraw have proved to be more powerful and robust to improve
classification performance than the method Mres. This fact may be because AD-related
brain changes are more affected by age than gender. Also, this method includes the
training of classifiers throughout aggregating pre-selected features as age groups get
older, which seems to be the more efficient way to address this problem.

4. Both Mres and Mraw improve the prediction of future diagnosis given the current
clinical tests, both in prediction quality indicators as well as in the amount of time
by which the diagnosis is advanced. As of the date of this study, Mres and Mraw are
the first methods applied on a longitudinal study of 5 years follow-up, which provide
information about the advancement (in years) in the early disease prediction. The
greatest lead was obtained by Mraw that predicted in subjects aged 80-84 the conversion
from HC to AD up to 1.87 years earlier.

5. As of the date of this study, we were unable to find studies where ageing-related
null models and residuals-based classifiers were applied to early diagnosis or current
diagnosis. The performance obtained in all experiments suggests that Mres, which is
focused on computing ROI residuals is powerful to support ECD and PFD problems,
the fundamental challenges in AD research.

6. The reliability of both methods was evaluated by applying them to a new dataset from
the cross-sectional OASIS study. Because OASIS data only includes subjects diagnosed
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as HC or AD, and only there is one observation per subject; methods comparison only
was applied to evaluate the classifiers for the ECD problem, specifically for AD vs
HC. We found that less than half of the initial number of vr biomarkers have identical
distribution for HC and AD subjects in both datasets. These differences may be due
to several factors related to diagnosis criteria, the lack of follow-up of participants
and the data source, among others. ADNI criteria used to classify individuals is based
on combining various neuropsychological tests, such as the MMSE, CDR and the
NINCDS/ADRDA criteria. In contrast, classification of OASIS subjects is only based
on the CDR scores. Furthermore, ADNI subjects included in this comparison have
been identified as stable HC or stable AD during five years of follow-up; however, such
classification was not viable for OASIS subjects due to having only one observation at
baseline, being possible that some of them were affected with an incipient AD. Also,
the Freesurfer versions and analysis approaches used in ADNI and OASIS studies were
different. The OASIS study used the version 4.3, and the pipeline to process images
was specific to cross-sectional studies. However, the ADNI study used the Freesurfer
v.4.4 with a processing pipeline focused on longitudinal studies.

7. Finally, none of the studies reviewed of the state-of-the-art, which trained models from
ADNI data, has assessed their model’s performance using data from OASIS. Moreover,
few of them have used a different source of data for training, testing and validation
tasks of their proposed methods. This fact constitutes one of the strengths of this study
and increases the added value of the methods proposed in this thesis.





Chapter 8

Conclusions

8.1 Main Conclusions

The research presented in this thesis contributes to two fundamental challenges in AD
research, i.e. ageing-related brain change understanding, and the diagnostic classification
of the current subject state, as well as the progression to MCI or AD. This study has
investigated statistical learning algorithms to propose two methods, Mres and Mraw, which
were applied on longitudinal MRI-based biomarkers observed in HC, MCI and AD subjects
at five years follow-up. As a starting point, both methods aimed to understand the ageing-
related effects in the brain and to distinguish brain changes differences between healthy
elderly, MCI and AD subjects, to subsequently to apply that knowledge to approach the
diagnosis estimation. Longitudinal MRI-based biomarkers provide robust information about
morphological brain changes over time, not only related to the disease, but also with ageing.
Furthermore, statistical learning methods carefully applied on these biomarkers provide
valuable mechanisms to support the accurate diagnosis as well as the early diagnosis.

The main contribution of this thesis are listed below:

1. This study found significant changes in brain structures over five years in healthy
elderly people that are similar to several changes occur in brain areas related with AD.
Reductions found for most thickness and volume biomarkers of cortical structures
follow a frontotemporal pattern. Furthermore, this study also found a frontotemporal
pattern in stable MCI and stable AD subjects, where the change rate in the stable AD
subjects is slightly different from the change observed in the stable MCI and is more
differentiated than stable HC. These findings indicate that the frontotemporal pattern
of change corresponds to an inevitable process related to normal ageing, which could
be driving that those regions changing due to normal ageing-related decline are more
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vulnerable to be reduced when the disease is present. We also observed significant
changes in the subcortical region. The hippocampus, the amygdala, the thalamus, the
ventraldc and regions of the corpus callosum showed a predominant decline in HC
subjects over time. Likewise, We observed a significant expansion of the ventricular
system (lateral ventricle and third ventricle).

2. Both methods Mres and Mraw have the potential for addressing the estimation of current
diagnosis and the estimation of future diagnosis with similar o better performance than
state-of-the-art methods. Likewise, both methods show results promising even for the
prodromal AD (progression from MCI to AD). Indeed, through the method Mres it has
been introduced the concept of MRI-based Residuals, which represent the differences
between the observed MRI biomarkers and the ageing-related inferred ones.

3. This study demonstrated that applying feature selection to keep only informative fea-
tures at each age group and to reduce the data dimensionality is meaningful to improve
classifiers performance. Although studies focused on analysing neurodegeneration
biomarkers from the whole-brain have obtained better results than studies aimed at
specific brain regions, it is also a fact that not all brain regions are informative to
discriminate between subject diagnostics. Furthermore, that performance obtained by
applying an approach of aggregating selected features as age groups get older and then
using that set of aggregated features as classifier input could confirm that the effect
of the change of a region remains active over time even if there are new brain regions
showing greater significance.

4. From the longitudinal study of five years follow-up, this research attained an advance-
ment in the early diagnosis of incipient AD (progression from HC to AD) up to 1.87
years earlier. As of the date of this study, no other study focused on early diagnosis
has reported such result. In general, no study has provided the obtained diagnosis
advancement.

5. Low specificities penalised the most cases where classifiers obtained low accuracies.
Low specificities mean that our models classified as ’diseased’, subjects labelled as
healthy or in a stage previous to the disease. However, it is possible that these subjects
incorrectly classified are truly diseased, even in an early stage, but do not yet present
clinical symptoms. There exist several facts that may support this hypothesis: 1) This
study found abnormalities of CSF profile on several subjects diagnosed as HC and
MCI (see Figure 4.4); 2) The ADNI and OASIS clinical diagnosis only takes into
account neuropsychological tests; and 3) ADNI and OASIS patients diagnosis are not
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pathologically confirmed, thus some uncertainty on the subject’s diagnosis may be
introduced.

6. There exist many brain morphological differences between ADNI and cross-sectional
OASIS cohorts. Biomarkers from HC OASIS subjects are quite different from their
counterpart from ADNI, despite belonging to the same age group and gender. In fact,
very few biomarkers show an identical distribution in their respective counterparts.
These differences may be due to several factors related to diagnosis criteria, the lack of
follow-up of participants and the data source, among others.

7. In Machine Learning, a classifier not only learns the underlying patterns in the training
set to make predictions, it also could learn the "peculiarities" of that data. We addressed
that issue and attempt to assess our models by using another cohort for testing and
methods comparison. In fact, this study is one of the few studies which have addressed
the early diagnosis of AD by training and testing classifiers by using different cohorts
(i.e. ADNI and OASIS datasets).

8.2 Limitations and future work

Despite promising results, there are several limitations to our study. Data used here corre-
spond to research participants, who meet the inclusion and exclusion criteria established by
ADNI and thus are not from a general population.

The available observations of CSF biomarkers do not correspond in number or time
points with the available MRI-based observations. In most cases, we had just CSF values at
the baseline stage, so it is impossible to track the reliability of CSF profile at the final stages.

This study has only assessed neurodegeneration biomarkers based on MRI, and certain
clinical features, such as age, the gender and years of education. In fact, longitudinal
modelling of these biomarkers was only applied by fitting age and years of education. Future
work could assess the impact of other feature types such neuroimaging biomarkers from PET,
genotype data, psychometric scores, CSF markers, and might include biological markers
and other clinical and neuropsychological assessments. Besides, other feature ranking and
selection methods could be considered.

Finally, this research has only considered high-level features such as cortical volume and
thickness, subcortical volumes. Because MRI biomarkers are measures obtained from struc-
turally or functionally predefined brain regions, they could omit more specific information
due to small or subtle changes involved in the brain diseases. Recently, the Deep Learning
architecture is gaining a great attention due to its representational power. When it is applied
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to medical images, low to high-level features can be obtained, which allow building more
robust classifiers.
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Appendix A1

Supporting information: Validation of
methods.

A1.1 Boxplot of residuals for ADNI and OASIS datasets.

A1.1.1 SV biomarkers

Females

Figures A1.1-A1.3 show quartiles comparison of female’s residuals for SV MRI-based
biomarkers.

Males

Figures A1.4-A1.6 show quartiles comparison of male’s residuals for SV MRI-based biomark-
ers.

A1.1.2 CV biomarkers

Females

Quartiles comparison of female’s residuals for CV MRI-based biomarkers are presented in
Figures A1.7 and A1.8.

Males

Quartiles comparison of male’s residuals for CV MRI-based biomarkers are presented in
Figures A1.9 and A1.10.
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A1.1.3 TA biomarkers

Females

Quartiles comparison of female’s residuals for TA MRI-based biomarkers are presented in
Figures A1.11 and A1.12.

Males

Finally, quartiles comparison of male’s residuals for TA MRI-based biomarkers are presented
in Figures A1.13 and A1.14.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 167

Fig. A1.1 Right hemisphere: Quantiles comparison of the SV biomarker residuals for females
of ADNI and OASIS data.
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Fig. A1.2 Left hemisphere: Quantiles comparison of SV biomarker residuals for females of
ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 169

Fig. A1.3 Bilateral regions: Quantiles comparison of SV biomarker residuals for females of
ADNI and OASIS data.
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Fig. A1.4 Right hemisphere: Quantiles comparison of the SV biomarker residuals for males
of ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 171

Fig. A1.5 Left hemisphere: Quantiles comparison of SV biomarker residuals for males of
ADNI and OASIS data.
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Fig. A1.6 Bilateral regions: Quantiles comparison of SV biomarker residuals for males of
ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 173

Fig. A1.7 Right hemisphere: Quantiles comparison of the CV biomarker residuals for females
of ADNI and OASIS data.
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Fig. A1.8 Left hemisphere: Quantiles comparison of CV biomarker residuals for females of
ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 175

Fig. A1.9 Right hemisphere: Quantiles comparison of the CV biomarker residuals for males
of ADNI and OASIS data.
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Fig. A1.10 Left hemisphere: Quantiles comparison of CV biomarker residuals for males of
ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 177

Fig. A1.11 Right hemisphere: Quantiles comparison of the TA biomarker residuals for
females of ADNI and OASIS data.
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Fig. A1.12 Left hemisphere: Quantiles comparison of TA biomarker residuals for females of
ADNI and OASIS data.



A1.1 Boxplot of residuals for ADNI and OASIS datasets. 179

Fig. A1.13 Right hemisphere: Quantiles comparison of the TA biomarker residuals for males
of ADNI and OASIS data.
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Fig. A1.14 Left hemisphere: Quantiles comparison of TA biomarker residuals for males of
ADNI and OASIS data.
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