
JNIVERSITAT POLITECNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMATICS

PROGRAMA DE DOCTORAT EN INTEL·LIGÈNCIA ARTIFICIAL

TESI DOCTORAL

Heterogeneous Neural Networks:
Theory and Applications

June 2000

Memòria presentada per en Lluís A.
Belanche Muñoz per a optar al títol
de Doctor en Informàtica.

Directors: Julio José Valdés Ramos i Renato Alquézar Mancho



Als meus pares, per ser
unes meravelloses persones

A la meva germana, dolça alegria.

A Sonia, mi femenina conciencia



Abstract
This work presents a class of functions serving as generalized neuron models to

be used in artificial neural networks. They are cast into the common framework of
computing a similarity function, a flexible definition of a neuron as a pattern rec-
ognizer. The similarity endows the model with a clear conceptual view and serves
as a unification cover for many of the existing neural models. The framework
includes those models traditionally used for the MultiLayer Perceptron (MLP)
and most of those used in Radial Basis Function Networks (RBF). These families
of models are conceptually unified and their relation is clarified. Further, the pos-
sibilities of deriving net« instances are explored and several neuron models -which
are representative of their families- are proposed.

The similarity view naturally leads to further extensions of the models so as
to handle heterogeneous information. That is to say, information coming from
sources radically different in character, including continuous and discrete numer-
ical quantities (ordinal or nominal) and fuzzy quantities. Missing data are also
explicitly considered. A neuron of this class is called an heterogeneous neuron and
any neural structure making use of these neurons is an Heterogeneous Neural
Network (HNN), regardless of the specific architecture or learning algorithm.
Among them, in this work we concentrate on feed-forward networks, as the initial
focus of study. The learning procedures may include a great variety of techniques,
basically divided into derivative-based methods (such as the conjugate gradient)
and evolutionary ones (such as variants of genetic algorithms).

This thesis explores a number of directions towards the construction of better
neuron models within an integrant envelope, which are better adapted to the
problems they are meant to solve. The main ideas developed are:

• The integration and joint use of concepts previously separated, such as sim-
ilarity and heterogeneity, in artificial neuron models. There is also the ex-
pectancy in a thereby better understanding of these notions.

• A step forward in the unification of traditionally separated neuron models,
particularly those used in MLP and RBF networks.

• The derivation of working instances of the generic model and their validation
by extensive experimentation in a number of benchmarks. The practical con-
cern of the approach is highlighted by experiments on real-world problems.

This work also describes how a certain generic class of heterogeneous models
leads to a satisfactory performance, which is comparable to, and often better
than, that of traditional neural models. This is particularly so in the presence of
heterogeneous information and imprecise or incomplete data, and in a wide range
of domains, most of them corresponding to real-world problems.

Further, a proof for the universal approximation ability of some of the in-
troduced classes of neuron models is developed. This property has already been
proved for standard neuron models. The generic extent of the neuron models
potentially included in the framework prevents the existence of a general proof.
Instead, dedicated demonstrations are worked out on particular cases or specially
interesting models.



Acknowledgements.
Work is due to the efforts of people and I am indebted to many people for their sincere

help in getting through with the research work herein reported. I list them in a random
order, as they come to mind.

My first thanks and cheers go to Ignasi R. Roda and Quim Comas, members of the
Environmental and Chemical Engineering group of the University of Girona. We have shared
many good times, even in moments where we were busy in our everyday tasks, and they
always found excuses to show their sense of humour. Their skill and availability are very
much appreciated.

I am specially thankful to Enrique Romero, whose patience and cordiality endured to the
last minute of endless discussions on integrability and other less romantical aspects of math-
ematics. His comments shed a clarity to some concepts, that cannot be found on textbooks
and I am indebted to him for this.

I would also like to have a word of gratitude to Javier Bejars friend of mine since the old
career days, whom I have consulted about hundreds of little matters. He always seems to
have an answer or a pointer to one.

As usual in these cases, there was somebody who did their best in ironing the English.
Fortunately for them, they only had to check part of the document. I am thankful to Victoria
Arranz and to an anonymous (for me) native speaker for their contributions.

My deepest thanks and best wishes go to my two advisors, Julio Valdés and René Alquézar.
The opportunity of sharing with them so many moments, both for personal or scientific
matters, has shaped my way of being for the good.

A special mention is to Lluís Valentín, my oldest friend who still is, and a very special
soul.

Financial support by the Spanish CICYT grants AMB97-0889 and TAP99-0747 is grate-
fully acknowledged.



Contents

1 Introduction 10

1.1 Motivation 11

1.1.1 Similarity in Artificial Neural Networks 11

1.1.2 Heterogeneity in Artificial Neural Networks 12

1.2 Aims and scope 13

1.2.1 Statement of objectives 13

1.2.2 Scope of the Thesis 14

1.3 Contributions 15

1.3.1 A framework for similarity 15

1.3.2 Similarity-based neuron models 15

1.3.3 Other theoretical and methodological contributions 16

1.3.4 Practical work 16

1.4 Chronological account 17

1.5 Overview 18

2 Related Work 20

2.1 Artificial Neural Networks 21

2.1.1 Preliminaries 21

2.1.2 Neuron models 23

2.1.3 Types of Artificial Neural Networks 26

2.1.4 Learning in Artificial Neural Networks 28

2.1.5 Learning algorithms 31

2.1.6 Error-minimization methods 31

2.1.7 Learning algorithms for RBF networks 40

4



CONTENTS 5

2.1.8 Evolutionary learning algorithms for ANN 40

2.1.9 Handling heterogeneity in ANN 42

2.2 Similarity in AI 47

2.2.1 Similarity in CBR 47

2.2.2 Similarity in ANN . 48

2.3 Fuzzy Neural Networks 50

3 Similarity as a basis for Neural Computation 53

3.1 Preliminaries 53

3.2 Scalar product as a pattern recognizer 55

3.3 Similarity as a basis for Neural Computation 59

3.4 Similarity in Artificial Neural Networks 62

3.5 Heterogeneity in Artificial Neural Networks 64

3.5.1 Nominal information 64

3.5.2 Ordinal information 65

3.5.3 Missing information 65

3.5.4 Conclusions 67

3.6 A framework for similarity 67

3.7 Concluding remarks 71

4 Similarity-Based Heterogeneous Neuron Models 72

4.1 Introduction 72

4.1.1 The definition of similarity 72

4.1.2 Features of similarity 73

-1.2 Similarity measures 73

4.2.1 Distance measures 73

4.2.2 Similarity measures 78

4.2.3 Aggregation of similarities 80

4.2.4 The design of similarity measures 85

4.2.5 Proper scalar product-based similarity 87

4.2.6 Neural models of similarity 90

4.3 Heterogeneous spaces 93

4.3.1 Definition of heterogeneous measures 93



CONTENTS 6

4.3.2 Definition of heterogeneous spaces 102

4.4 A framework for general neuron models 104

4.4.1 An example of a S-neuron 109

4.4.2 Classes of s functions 112

4.4.3 Sensitivity relations 113

4.4.4 Sensitivity in practice 118

4.5 Preliminary Experimental Comparison between Similarity Measures 120

4.5.1 Experiment description 120

4.5.2 Experimental setup 122

4.6 Concluding Remarks 128

5 The Universal Approximation Property for HNN 130

5.1 Introduction 130

5.2 Preliminaries 131

5.3 Universal Approximation 134

5.3.1 Basic definitions and notation 134

5.3.2 Results in the literature 137

5.3.3 Relation to RBF networks 141

5.4 Main results 142

5.4.1 Summary of main results 142

5.4.2 Similarity-based models of type (A) 143

5.4.3 Similarity-based models of type (B) 147

5.4.4 Similarity models based on Gower's score 153

5.4.5 Similarity models based on scalar product 155

5.4.6 Extension to fuzzy numbers 157

5.4.7 Extension to missing information in Gower's measure 162

5.5 Conclusions 165

6 Evolutionary Training of Heterogeneous Networks 167

6.1 Introduction 167

6.2 Basics of an Evolutionary Algorithm 168

6.3 Genetic Algorithms 172

6.3.1 Description of the Algorithm 172



CONTENTS 9

Bibliography ~ 285

A Additional material on distances 301

B Proofs of Propositions 305

C Notes on integrability 313

C.I Integrability in R 313

C.2 Some notes on integrability in E2 . 315

C.3 Integrability in Rn 316

D Other Topics 319



Chapter 1

Introduction

This thesis deals with the development of new neuron models to be used as the basic com-
puting elements in Artificial Neural Networks (ANN). These networks are information
processing structures evolved as an abstraction of known or assumed principles of how the
brain might work. The different computing elements, called neurons or units, are linked to
one another with a certain strength, called weight. In their simplest form, each unit computes
a function of its inputs —which are either the outputs from other units or external signals—
influenced by the weights of the links conveying these inputs.

The network is said to learn when, as a result of exposure to samples of a target function,
the weights of all of its units are adapted to represent the information present in the samples,
in an optimal sense to be precised. When exposed to such a supervised training process,
the network builds an internal representation of the target function by combining certain
parameterized base functions (PBF), either forming local models, as in Radial Basis Function
networks (RBF), or making up a global model, as in the MultiLayer Perceptron (MLP). In
both cases, the network relies upon the representation capacity of the PBF (that is, of the
neuron model) as the cornerstone for a good approximation.

Research in ANN currently concerns the development of learning algorithms for weight
adaptation or, more often, the enhancement of existing ones. New architectures (ways of
arranging the units in the network) are also introduced from time to time. Classical neuron
models, although useful and effective, are lessened to a few generic function classes, of which
only a handful of instances are used in practice. In any case, biological plausibility is usually
put aside or is simply of no importance, the emphasis being put on problem solving.

The strong points of ANN are their appealing capacity to learn from examples, their
distributed computation —which helps them tolerate partial failures to a certain extent—
and the possibility —so often exploited— to use them as black-box models, with practically
no assumption or knowledge about the problem.

This last characteristic is paradoxically one of the major weaknesses, given that in practice
this autonomy of functioning acts as a requirement or precept, with no transfer of knowledge
from the designer. Therefore, with the exception of very specific architectures, the networks
are forced to learn from scratch most of the times.

10



CHAPTER 1. INTRODUCTION 11

This drawback" is related to its counterpart, namely, the extreme difficulty of extracting
significant knowledge from a trained network. The network works (in the sense that solves
a problem to satisfaction) but the weights convey information about the solution as high-
dimensional real vectors whose meaning about the problem can be intricate or at best obscure.
An additional practical obstacle is the process of finding the most adequate architecture for
a given task.

The possibility of expressing prior information in a. procedural—devising a specific neuron
model— or declarative way —telling the network about the data types, is then a means to
pave the way towards more powerful and expressive neuron models and networks.

1.1 Motivation

1.1.1 Similarity in Artificial Neural Networks

Among the several neuron models in the literature, the majority of them carry out a de-
composition of the whole work in two functions: the first function combines the inputs with
the weights (coming both in vector form) to produce a scalar value that is then non-linearly
treated by the second one.

The combination function is the core of the unit and is meant to evaluate the likeness
of two vectors (input and weight) in n-dimensional Euclidean space. By far, the dominant
functions are the scalar product and the Euclidean distance (though other distances are also
possible). Since the scalar product is a measure of the degree of colinearity between two
vectors, the more coincident these vectors are with respect to their direction and orientation,
the higher the response. As for the Euclidean distance, the interpretation for the two vectors
corresponds to a unit whose response is higher the lower the norm of their difference.

These two functions represent means to compute a very crude measure of the similarity
between the two vectors. The problem with this approach is that these measures are fixed a
priori to compute a very specific physical similarity, which regards the input variables (and
the weights) as the points in Euclidean space, given by a cartesian product of n-copies of the
reals. Therefore, patterns x that are similar to a neuron i with weight vector w' —because
the inner product x-w' is high or \\x — iu'\\ is low1— do not need to be similar at all in the
eyes of the user. The learning task consists precisely in this: showing the network what is
the actual similarity relation. In consequence, very often this measure may not correspond
to the task-dependent similarity we would like the network to perform.

In this vein, a clear shortcoming of the neuron models existent in the literature is the
difficulty of adding knowledge about the problem to be solved (or about the data themselves).
The neuron model is used as a black-box function which maps input data in raw form, from a.
space of possibly high dimension, to a new space (the hidden space, or space spanned by the
hidden units) in such a way that the problem is simpler when projected to this new space.
The internal workings of the neuron are thus obscure, because the weights have not been
set so as to shape a previously defined (and considered adequate) similarity measure, but

'These quantities are functionally related for normalized vectors.



CHAPTER 1. INTRODUCTION 12

rather to adapt alenerai physical measure to the problem at hand. In any case, the task for
such a blind processor is twofold: finding a structure in the data, as well as more convenient
relations for the problem given the data representation.

All the burden of work devoted to find the appropriate transformations, so that patterns
requiring similar responses (for the problem) are indeed similar for the network, is performed,
in theory, by the hidden layer(s) in multilayer networks. During the learning process, thus,
patterns seen as physically similar have to be told apart and vice versa. On the one hand,
there is the task of discovering the relations or structure induced by the chosen coding scheme.
On the other, the network has to find ways to accommodate the desired similarity relationship
—which is inherent in the examples with which it is being taught— to its fixed similarity
measure computation.

In practice, however, several layers may be needed for complex transformations, or a large
amount of neurons per layer if we restrict the maximum number of hidden layers, for instance,
to one or two, as is common proceeding. An increase in neurons leads to a corresponding
growth in the number of free parameters, and these are less likely to be properly constrained
by a limited size data set [Bishop, 95]. This gives support to a deeper and more precise
formulation of neuron models as similarity computing devices.

1.1.2 Heterogeneity in Artificial Neural Networks

The subject of prior knowledge is strongly related to input representation. Real-world data
come from many different sources, described by mixtures of numeric and qualitative variables.
These variables include continuous or discrete numerical processes, symbolic information, etc.
In particular, qualitative variables might have a different nature. Some are ordinal in the
usual statistical sense (i.e., with a discrete domain composed by k categories, but totally
ordered w.r.t a given relation) or nominal (discrete but without an ordering relation). The
data also come with their own peculiarities (vagueness, uncertainty, incompleteness), and
thus may require completely different treatments.

This heterogeneity is traditionally handled by preparing the data using a number of coding
methods, so that all variables are to be treated as real quantities. However, this pre-processing
is not part of the original task and may have deep consequences in the structure of the
problem. These consequences could be, for example, a change in input distribution and an
increase in dimension, with the corresponding growth in the number of weights the network
is forced to learn. This, in turn, increments the training time, eventually leading to more
complex error surfaces, etc.

In conclusion, when solving any practical problem, the fact of having the network learn
what is known in advance is a wasteful and added effort [Hinton, 89]. Nonetheless, as it lias
been seen, the ways this information can be encoded in the ANN workings are very limited.
The difficulty of the general ANN learning task is therefore exacerbated because the data,
(a.nd with them, the problem itself) are adapted to the neuron model (and, possibly, to the
learning algorithm), and not otherwise. Alternatively, we believe it is the model that has to
conform to the data, by making use of domain or prior knowledge (traditionally known in
inductive learning as background knowledge). This knowledge can be roughly defined as the



CHAPTER 1. INTRODUCTION 13

information possessed about the problem itself and about the nature of its data, besides the
raw examples themselves. If this information (which is assumed relevant) is supplied to a
neural network or included in its design, it will not need to be discovered.

1.2 Aims and scope

1.2.1 Statement of objectives

In broad terms, our work is devoted to the development of general families of neuron mod-
els cast in the framework of similarity computing devices. Moreover, data heterogeneity is
explicitly taken into account by devising specific measures that can be used to extend the
models, thereby expanding Kn to generic input spaces. The main aim is to provide a con-
ceptual guidance and to extend the richness and expressiveness of the function computed by
artificial neurons.

The resulting general models are referred to as heterogeneous neurons and any architecture
making use of them as Heterogeneous Neural Network or HNN. Among the benefits of
using a similarity measure are its bounded nature (preventing arbitrarily large values) and
the possibility of capturing higher-order relationships in the data.

A wider statement of the objectives is the following:

• The construction of better neuron models within an integrant framework, and better
adapted to the problems they are meant to solve.

• The integration and joint use of concepts previously separated, as similarity and het-
erogeneity in artificial neuron models. There is also the expectancy in a thereby better
understanding of these notions.

• A step forward in the unification of traditionally separated neuron models, particularly
those used in MLP and RBF networks.

• The derivation of working instances of the generic model and their validation by exper-
imentation in a number of benchmarks.

• Last but not least, the practical use of these neuron models in real-world problems and
applications is one of the main objectives of the work.

Learning algorithms based on derivative information (like the Back-propagation scheme
[Rumolhart, Hinton and Williams, 86], see §2.1.6 in this thesis), depend on the differentiabil-
ity of the function computed by the neural network for their application. Besides this, the
fact of having a smooth unit is essential for the application of gradient-descent techniques
[Sontag, 90], which restricts their applicability.

In our case, there is a need for a generic training procedure, due to the existence of
domains other than the real continuum, the presence of missing data and the eventual use of
a non-differentiable similarity function. The one chosen in this work for the HNN is based



CHAPTER 1. INTRODUCTION 14

on Evolutionary Algorithms (EA) [Back, 96]. Traditionally, only Genetic Algorithms (GA)
[Goldberg, 89], [Davis, 91] have been extensively used for this task. In our work, both a GA
and a Breeder Genetic Algorithm (BGA) [Mühlenbein and Schlierkamp-Voosen, 93] are used.
A further objective is the investigation of these methods as neural network trainers and their
enhancement in a number of ways.

1.2.2 Scope of the Thesis

The work is bounded by the following decisions:

1. We have limited the practical extent of the experiments to supervised learning in feed-
forward architectures, due to the richness and variety of neuron models to be studied
and in order to confine the work within definite bounds.

2. In relation to this, it should be pointed out that the experiments show only a limited
attempt to perform a model selection process (looking for a model of optimal com-
plexity), because the primary aim has been to compare the relative performance of the
different models tested, by having them compared in different architectures and exper-
imental settings. Therefore, an exploration on the architectural space in search of the
best architecture for every problem has not been performed. In fact, such a principled
search is a subject of research in itself [Moody, 94]. Hence, the results on standard
benchmarks should not be taken as state-of-the-art competitors (although they are not
out of tune) but rather as developed examples of application.

3. We have considered the inclusion of similarity measures over the most commonly en-
countered data types (such as real, nominal, ordinal, sets and forms of fuzzy informa-
tion). Nonetheless, other less usual types could also be included. Distances defined on
trees, strings or graphs are found in the literature of various fields (see, for example,
[Honavar, 92]). The derived similarities could be integrated with no modification.

4. Despite giving the initial impetus to the field, research in the ANN paradigm is no longer
guided by biological plausibility. Rather, it is guided by effectiveness and efficiency in
learning and representation, and oriented towards problem solving. These are also our
motivations.

5. The experiments in this work are confined to a few generic families of new models.
Nevertheless, the general framework allows and shows ways to construct many other
classes of generic neuron models. In this sense, given the three "design topics" in ANN
(neuron model, architecture and learning algorithm) the proposed approach is useful
for any conceivable architecture and is independent of the algorithm, in the sense that
it does not assume any specific choice for these two settings.



CHAPTER 1. INTRODUCTION 15

1.3 Contributions

1.3.1 A framework for similarity

A comprehensive framework is proposed where the notion of similarity is characterized in
the context of ANN. The concepts of similarity, dissimilarity and distance in a certain space
are formalized following their classical definitions [Chandon and Pinson, 81]. From these,
conditions for aggregating and composing partial measures are introduced. The obtained
aggregation operator can take semantic information into account and missing information is
explicitly considered. The framework is comprehensive and flexible, admitting the introduc-
tion of non-linearities, before or after the aggregation of partial measures. Any combination
is admissible as long as it fulfills the corresponding properties.

A similarity measure for a neuron model can then be constructed in several ways, ei-
ther designed directly, or from a dissimilarity, or by combination of partial distan ce-based
functions. These functions can be defined in their respective spaces and combined, or else
obtained from a global distance in the entire space.

A number of measures to compute the similarity between non-standard data types are
compiled, by integration and extension of previously used similarity measures in data analysis.
The notion of heterogeneous space is then defined as a cartesian product of single spaces of
mixed variables. As a consequence of the definition, heterogeneous similarity measures can
be devised in this space, using specific forms for aggregation operators.

The proposed framework is general enough to offer controlled means of designing models
that have a certain number of desirable properties. The definition of flexible neuron models
in the form of a general framework in which:

1. the computation performed by the model is defined explicitly as a similarity measure;

2. different data sources are directly and specifically treated,

permits a natural extension of existing models, and opens a way for devising new ones
under the general cover of similarity computing devices. It also gives a semantics to the
neuron computation (e.g., a psychological similarity) in contrast to the "syntactic" physical
similarity. It is our hypothesis that these models will add to the practical computing power
by enhancing the expressiveness, by adapting the model to the data.

1.3.2 Similarity-based neuron models

An heterogeneous neuron, or H-neuron, is defined as a mapping from elements in a hetero-
geneous input space to an also heterogeneous output space. An S-neuron is defined as an
H-ncuron whose mapping is a similarity measure.

This leads to the development of general neuron models working in heterogeneous spaces.
Within this framework, two of the most widely used neuron models (in RBF and MLP
networks) are cast as two of the basic ways of constructing a form of similarity measures



CHAPTER 1. INTRODUCTION 16

(in this case, homogeneous). As a particularly useful instance of S-neurons of the real kind
(that is, models for which the codomain is a subset of the reals), a distinguished generic
measure is created based on Gower's similarity index [Gower, 71]. A collection of newly
derived models is tested and shown to have a remarkable performance in the presence of
heterogeneity and missing values in the data. A comparable performance is displayed in
absence of these considerations.

The overall framework carries a number of additional advantages:

1. The definition of a neuron as a similarity measure permits to base the conceptual
network similarity computation on principled grounds. As a consequence, it allows a
deeper influence on the workings of a neural network, by delimiting the task performed
by each of its hidden neurons.

2. It also serves, although this is not a primary objective, as a unification cover for many
of the existent neuron models in the literature.

3. It opens the possibility of adding prior knowledge to the design of the neuron model, by
exploiting information either on known data singularities or about the problem itself.

1.3.3 Other theoretical and methodological contributions

A proof for the universal approximation ability of some of the introduced families of neuron
models is developed. This property has already been proved for standard neuron models
(see, for example, [Scarselli and Tsoi, 98] for a review). In our case, the amount and generic
extent of the potential neuron models included in the framework prevent a general proof
to be attempted. Instead, dedicated demonstrations are worked out on particular cases or
specially interesting models.

The Breeder Genetic Algorithm has been investigated in traditional testbed optimization
problems and as a neural network trainer. Proposals for its main parameters are made
based on extensive experimentation on a difficult benchmark dataset. The algorithm is also
enhanced in a number of ways, so as to accept and manipulate heterogeneous variables in
its chromosomic material. A modification to be used in standard recombination operators is
also introduced, consisting in a simple but effective method to dynamically set one of their
parameters.

1.3.4 Practical work

The neuron models derived from the approach have been tested empirically in a variety
of situations and experimental conditions. In particular, they have been explored in three
general kinds of problems:

• In real-world tasks, using data directly available to the author, and where there was a
motivation to apply the ideas developed in the present work.



CHAPTER 1. INTRODUCTION 17

• In a specificTndustrial setting, which is the operation and control of Waste Water Treat-
ment Plants (WWTP) [Lean and Hinrichsen, 94], In addition, a cooperation team has
been established with the Environmental and Chemical Engineering group of the Uni-
versity of Girona, whose members signaled several of the current WWTP problems and
supplied the necessary amount of data and skill.

• In well-known neural benchmarking databases [Prechelt, 94], displaying various degrees
of heterogeneity. These experiments are carried out in a controlled experimental setting.
The results are compared to those obtained with standard neuron models or other
methods.

As a side outcome, both the GA and BGA can be said to have been extensively tested for
the error function optimization problem. They have been found to be competitive when com-
pared to derivative-based methods, not only regarding performance (quality and variability
of the results) but also computational time.

1.4 Chronological account

The approach has been developed and validated across a variety of experiments and appli-
cations, in successive stages. In [Valdés and Garcia, 97], heterogeneous neuron models and
networks were first introduced and shown to be capable of learning from non-trivial data
sets. In particular, it is described how a certain class of heterogeneous models leads to an
effectiveness that is comparable, and often better, than that of traditional methods, such as
¿-nearest neighbours. They specially exhibited a remarkable robustness when information
progressively degrades due to the increasing presence of missing data.

The basic measure was then enhanced allowing fuzzy sets (in the form of fuzzy numbers)
to occur as part of the input and the corresponding weights. The resulting generic model
-of which a preliminary working document is [Belanche, OOa]- has been extensively tested
and applied to a wide range of domains, most of them corresponding to real-world problems:
Medicine ([Belanche and Valdés, 98c], [Belanche, Valdés and Alquézar, 98a]), Environmental
Sciences ([Valdés, Belanche and Alquézar, 00], [Belanche and Valdés, 99a]) and Engineering
([Belanche et o/., 98b], [Belanche et al., 99c], [Belanche et al., 99b], [Belanche et al., 00]). In
all these studies, a general choice of the heterogeneous neuron family of models, based on
Gower's similarity index, is shown to enhance performance with respect to the classical neuron
models, especially in the presence of heterogeneous information, imprecise or incomplete data.

The initial training method developed was a standard Genetic Algorithm (GA), modified
in a number of ways to accept a missing value as a valid alíele in the genotype. Since the
seminal work of [Montana and Davis, 89], the use of this kind of algorithm for the training of
a neural network is a recurrent theme in the literature. However, the difficulty of a truly fail-
comparison, the lack of thorough studies —except those for specific tasks— and the raised
opinions contrary to its general adequacy [Whitley, 95] have prevented a. widespread use.

In our studies, we have found that the GA is a fairly acceptable and robust tool for
neural network optimization. Nevertheless, a considerable amount of work has been devoted



CHAPTER 1. INTRODUCTION 18

to train the HNNjvith more classical derivative-based methods, whenever this was possible.
In [Nieto, 00], extensive experiments are carried out with several families of distance-based
similarity models, in data sets where all the information is real-valued and in the presence
of missing information. A general and consistent superiority of these models over scalar
product (adapted to handle missing values) is reported. In this case, the training procedure
is a combination of conjugate gradient with an annealing schedule [Ackley, 87]. This method
has also been the one chosen —besides the GA— to train the classical models in some of the
reported results (for example, in [Belanche and Valdés, 98c], [Belanche et a/., 98b]).

The basic GA was later replaced by a Breeder Genetic Algorithm (BGA), which is a
method in between the GA and Evolution Strategies -see Chapter 6. The BGA is cho-
sen because of its compromise between simplicity and efficiency, and the lack of a coding
scheme for the representation of individuals. It has been extensively studied and enhanced
[Belanche, 99d], [Belanche, 99e] to pave the way for its use in ANN error minimization
[Belanche, OOb]. In addition, its genetic operators have been extended to work with non-
standard information, in particular, with recombination and mutation of nominal, ordinal
and fuzzy quantities, and with provision for missing values. The heterogeneous BGA is used
in the more recent experiments on several widespread benchmarks [Belanche, OOc].

1.5 Overview

The thesis is structured in ten chapters, and four appendices, and is organized as follows:

In Chapter (2), a brief survey on supervised feed-forward neural networks is carried out,
emphasizing those points within this vast field that are in contact with our work. To the
best of our knowledge, there is no previous work of the kind described here. We thus proceed
to trace the touching points with related disciplines and describe connectionist approaches
concerning, to a greater or lesser degree, the explicit use of similarity. A mention to fuzzy
neural networks is included.

Chapter (3) serves as an informal discussion, where many of the later unfolded ideas are
presented. In particular, notes on how current ANN approaches deal with the concepts of
similarity and heterogeneity are surveyed and examined with reference to their merits and
defects.

Chapter (4) is an important part of the thesis, where the ideas already introduced are set
forth and formalized, to slowly construct a generic framework from which working models
can be developed. Our attention will be primarily focused on defining the basic concepts
within this conceptual framework and explore some elementary properties or advantages.

The section on similarity measures (§4.2) contains the definitions and propositions which
constitute the core of the chapter. The basic definitions of distance and similarity constitute
the departure points, and they can be found in classical textbooks on Typological Analysis
(our basic reference is [Chandon and Pinson, 81]). More complete descriptions of the var-
ious classical measures existent in the literature can also be found therein. The obtained
framework is then oriented to be used as a guidance for artificial neural models to be seen as



CHAPTER 1. INTRODUCTION 19

similarity computing devices.

The description of heterogeneous variables is the topic of the next Section (§4.3), ending
in the definition of a heterogeneous space, as well as proposals for similarity measures for it.
The introduction of a S-neuron (a neuron computing a similarity and working in one such
space) is dealt with in Section (§4.4). A worked example is therein developed. Several classes
of distance to similarity transforming functions are then displayed, leading to the concepts
of model and network sensitivity. Finally, a numerical experiment (§4.5) is carried out to
illustrate the different ideas introduced.

Chapter (5) deals with the more theoretical properties of the obtained classes of models. In
particular, the universal approximation property is proven or sketched for several subclasses.

In Chapter (6), since there is a need for a generic training procedure, an introduction to
Evolutionary Algorithms is carried out, with emphasis on the two used instances: modified
versions of a Genetic Algorithm and a Breeder Genetic Algorithm. The latter is specially
covered and enhanced, as part of the investigation, for its use as a generic neural network
trainer.

The next three Chapters embrace the practical side of the work. To begin with, Chap-
ter (7) focuses on real-world tasks, using data directly available to the author, and where
there was,a motivation to apply the ideas developed in the work. As a complement, Chap-
ter (9) is devoted to experiments with benchmarking databases, carried out in a controlled
experimental setting.

Due to its importance as a social and economical problem, the correct operation and
control of Waste Water Treatment Plants was chosen as a case-study application, in cooper-
ation with chemical engineers of the University of Girona. The subject and the undertaken
experiments are described in Chapter (8).

The Thesis ends with some reflections and concluding remarks, and a prospect for future
work.

The Appendices mainly contain proof for those Propositions and claims of the work. As
a general rule, they are developed in the main body whenever they illustrate or give further
insight to the exposition. Otherwise they have been relegated to Appendix (B).

Appendix (A) includes additional material on distances, relevant for the discussion but in
some sense secondary. Appendix (C) collects some useful properties concerning integrability.
Appendix (D) is a general store which deals with all other material. In any case, everything
for which a proof is supplied is work and responsibility of the author.



Chapter 2

Related Work

The answer to the theoretical question:
"Can a machine be built capable of doing

what the brain does?" is yes, provided
you specify in a finite and unambiguous way

what the brain does.

Warren S. McCulloch

The class of adaptive systems known as Artificial Neural Networks (ANN) were motivated
by the amazing parallel processing capabilities of biological brains (especially the human
brain). The main motivation, at least initially, was to re-create these abilities by construct-
ing artificial models of the biological neuron. The actual artificial neurons -as used in the
ANN paradigm- have little in common with their biological counterpart. Rather, they are
primarily used as computational devices, clearly intended to problem solving: optimization,
approximation of functions, identification of systems, classification, time-series prediction,
and others.

The power of biological neural structures stems from the enormous number of highly
interconnected simple units. The simplicity comes from the fact that, once the complex
electro-chemical processes are abstracted, the resulting computation turns out to be concep-
tually very simple. Artificial neurons are modeled to take profit of this by proposing simple
computing devices that resemble the abstracted original function. However, in the ANN
paradigm only very few elements are connected in most practical situations (on the order
of hundreds, to say the most) and their connectivity is low. Therefore, it seems reasonable,
once the "biological origin" is so departed, to think in compensating these low numbers by
increasing the power of single units, while retaining the conceptual simplicity of seeing a
neuron (a computational unit) as a pattern recognizer : a device that integrates its incoming
sources with its own local information available and outputs a single value expressing how
much do they match.

20



CHAPTER 2. RELATED WORK 21

2.1 Artificial Neural Networks

2.1.1 Preliminaries

Artificial Neural Networks [Bishop, 95], [Haykin, 94], [Hertz, Krogh and Palmer, 91],
[Hecht-Nielsen, 90] are information processing structures without global or shared memory,
where each of the computing elements operates only when all its incoming information is avail-
able, a kind of data-flow architectures. Each element is a simple processor with internal and
adjustable parameters. The interest in ANN is primarily related to the finding of satisfactory
solutions for problems —cast as function approximation tasks— for which there is scarce or
null knowledge about the process itself, but a (limited) access to examples of response. They
have been widely and most fruitfully used in a variety of applications during the last fifteen
years (see [Fiesler and Beale, 97] for a comprehensive review), especially after the boosting
seminal works of [Hopfield, 82], [Rumelhart, Hinton and Williams, 86], [Fukushima, 80] and
[Kohonen, 88].

The most general form for an ANN is a directed graph, where each of the nodes (called
units or neurons) has a certain computing ability and is connected to and from other nodes in
the network via labelled edges. The edge label is a real number expressing the strength with
which the two involved units are connected. These labels are called weights. The architecture
of a network refers to the number of units, its arrangement and connectivity.

In its basic form, the computation of a unit i is expressed as a function F, of its input (the
transfer function), parameterized with its weight vector or local information. The purpose of
the transfer function of a given unit is the tesselation of the input space in the most convenient
way for the problem at hand. The whole system is thus a collection of interconnected elements,
and the transfer function performed by a single one (i.e., the neuron model) is the most
important fixed characteristic of the system.

There are two basic types of neuron models in the literature used in practice. Both
decompose the overall computation of the unit in two stages, as is classically done since the
earlier model proposal of McCulloch & Pitts [McCulloch and Pitts, 43], in a characteristic
form cast as a composition of two functions:

Fi(a-) = {g(h(x, w,-)), loi € Rn), x € Rn (2.1)

where w,- is the weight vector of neuron i, h : R™, R™ —>• R is called the net input or
aggregation function, and g : R —>• R is called the activation function. All neuron parameters
are included in its weight vector. Let us denote by Sp the set of such functions.

The choice h(x,Wi) = x • w¡ + 6, where 6 6 R is an offset term that may be included in
the weights, leads to one of the most widely used neuron models. When neurons of this type
are arranged in a feed-forward architecture, the obtained neural network is called MultiLayer
Perceptron (MLP) [Rumelhart, Hinton and Williams, 86]. Usually, a smooth non-linear and
monotonie function is used as g. Among them, the sigmoidals are a preferred choice.

The selection h(x,wi) = \\\x - Wi\\i (or other distance measure), where 0 > 0 6 R



CHAPTER 2. RELATED WORK 22

is a smoothing term, plus an activation g with a monotonically decreasing response from
the origin leads to the wide family of localized Radial Basis Function networks (RBF)
[Poggio and Girosi, 89]. Localized means that they give a significant response only in a
neighbourhood of their centre Wi. A Gaussian is a usual choice for the g function.

X

X

O

Figure 2.1: A classification problem. Left: separation by spherical RBF units (R-neurons).
Right: separation by straight lines (P-neurons) in the MLP.

These two basic neuron models have traditionally been regarded as completely separated,
both from a mathematical and a conceptual point of view. To a certain degree, this is true:
the local vs. global approximation approaches to a function that they carry out make them
apparently quite opposite methods -Fig. (2.1). Besides, though a RBF can be trained like
a MLP, with a derivative-based technique, the learning algorithms usually applied are quite
different in nature [Orr, 96]. Mathematically, under certain conditions, they can be shown
to be related [Dorffner, 95]. These conditions (basically, that both vectors are normalized
to unit norm) are rarely met. We shall show in Chapter (4) that, under the unifying cover
of similarity, the two models can be seen as different instances of the same general model,
without the need of such assumptions.

Other types of neurons are obtained by generalizing the previous choices for h to take
into account correlations between input variables (components of the input vector). In the
first case, the inner product (containing no cross-product terms) can be generalized to a real
quadratic form (an homogeneous polynomial of second degree with real coefficients) or even
further to higher degrees, leading to so-called higher-order units (or Su units). A higher-
order unit of degree k includes all possible cross-products of at most k input variables, each
with its own weight. Conversely, basic Euclidean distances can be generalized to completely
weighted distance measures, where all the (quadratic) cross-products are included. However,
these full expressions are not commonly used because of the high numbers of parameters
they involve. Other models, like product units, replace the weighted arithmetic mean of the

scalar product by its geometric counterpart, h(x, io') = Y l j ^ j ' - Although more powerful,
they generate a much more difficult search space [Durbin and Rumelhart, 89].

A layer is defined as a collection of independent units (that is, not connected with one
another) sharing the same input, and of the same general shape (same F; but different ¡r'),
i.e., of the same neuron model. Multilayer feed-forward networks take the form of directed
acyclic graphs obtained by concatenation of a number of layers. All the layers but the last
(the output) are labelled as hidden. This kind of networks (shown in Fig. (2.2)) compute a



CHAPTER 2. RELATED WORK 23

parameterized function ^-¿(x) of their input vector z by evaluating the layers in order, giving
as final outcome the output of the last layer1. The vector û; represents the collection of all
weight vectors in the network.

second (hidden)

first (hidden) layer third (output)
layer layer

Figure 2.2: A two-hidden-layer ANN example, mapping a three-dimensional input space
x = (x i ,X2,X3) to a two-dimensional output space (3/1,2/2) = ^¿(x). The network has four
and three hidden units in the first and second hidden layers, respectively, and two output
neurons. The vector w_ represents the collection of all weights in the network.

Output neurons take the form of a scalar product (a linear combination), eventually
followed by an activation function a. For example, assuming a single output neuron, a one-
hidden-layer neural network with /¿i hidden units computes a function T : E" —>• R of the
form:

hi

?is(ï) = <r(^íCiFi(x) + 0) (2.2)
¿=i

where 0 € R is a possibly null offset term, c,- 6 M and a can be set as desired, including
the choice a(z) = z. Such a feed-forward network has dim(w)=(n + l)/ii + h\ + 1 parameters
to be adjusted.

2.1.2 Neuron models

We consider only the basic models (not including higher-order terms). Both RBF and MLP
networks provide parameterized families of functions suitable to function approximation on
multidimensional spaces. These two basic neuron models are sometimes described in a some-
what misleading way. A sigmoidal neuron is often explained as putting up an hyperplane that
divides its input space in two halves. In other words, the points of equal neuron activation
(with fixed weights) are hyperplanes. This behaviour is not caused by the sigmoidal, but by
the scalar product. In the same vein, the isoactivation contours for an RBF unit (in case

' For simplicity, we are not considering connections between non-adjacent layers and assume otherwise total
connectivity. The input layer is noi counted as a layer.



CHAPTER 2. RELATED WORK 24

it is using an unweighted Euclidean norm) are hyperspheres. The radially symmetric and
centered response, again, is not caused by the activation function (Gaussian, exponential or
otherwise) but by the norm. In both cases, the activation function is acting as a non-linear
and monotonie distorsion of its argument -the net input- as computed by the aggregation
function.

Definition 2.1 (Isoactivation set) Given a real function a : Rn —ï (crmin, <rmor), define
/" as the set of isoactivation points I" = {x 6 R" | <r(x) = a}.

Definition 2.2 (P-neuron) A neuron model F, 6 SF of the form:

Fi(x) = {g(wi·x + 6),wi € R " , 0 e R } (2.3)

with g a bounded, non-linear, strictly monotonie function for which \\mz^.00 g(z) = gmax 6
R and limz_f_00 g(z) = gmin G R will be denoted P-neuron (from Perceptron). For these
neurons, the sets Ip are (n-l)-dimensional hyperplanes for constant values of a, parallel
with one another for different a. This response comes from the use of scalar product as the
aggregation function.

In practice, the g are usually the well-behaved sigmoidals (logistic, hyperbolic tangent,
etc), though other activation functions are sometimes found in the literature (e.g., sinu-
soidals). The latter are not included in the above Definition.

Definition 2.3 (R-neuron) A neuron model F¿ G SF of the form:

FÍ(X] = {g(l\\x - «PH,),«;1 ' G R", Ö > O 6 R,q > l G R} (2.4)
a

lüith g a symmetric function such that g ( \ z \ ) is monotonie, and with a maximum gmax

at FÌ(WÌ) and a (possibly asymptotically reached) gmin = 0 will, be denoted R-neuron (from
Radial). For these neurons, the sets Ip. are (n-l)-dimensional hypersurfaces (centered at
w') for constant values of a (e.g., hypercubes for q = 1, hyperspheres for q = 2) concentric
with one another for different a. The radial response comes from the use of the norm as the
aggregation function.

The norm used can be any Minkowskian norm of the form:

11% = (¿N'Y (2.5)
\! = 1 /

In practice, typical choices are q = 2 and g a Gaussian function.

Definition 2.4 A feed-forward neural network —which we denote FFNNfc]— consisting
of c hidden layers, is a function f^ : Rn -> Rm made up of pieces of the form



CHAPTER 2. RELATED WORK 25

y(') = (F^yC-^J",.. .^(yi'-1))), representing the output of layer I, for I < I < c + 1.
The F' denote the neuron model of layer I and h¡ 6 N"1" their number, and each neuron F¡
has its own parameters ti;' as defined in (2.2) and (2.3), collectively grouped in the network
parameters tu.

The first output is defined as y^ = x. For the last (output) layer, /ic+i = m ano* the
Ff0"*"1,! < / < /ic-fi are P-neurons or linear units (obtained by setting g to be the identity
function in a P-neuron). The final outcome for ^¡¿(x) is the value o/y'c+1).

Definition 2.5 A single-output feed-forward neural network —denoted 1-FFNNfc]— and
consisting of c hidden layers is a function ?$_ : Rn -> R, obtained by setting m = 1 in
Definition (2-4)- For the last (output) layer, hc+i = 1 and the single Fc+1 is a P-neuron
or a linear unit. The final outcome for T^(x} is the value of y ̂ c+1) (a vector of a single
component).

Definition 2.6 (MLPNN) A Multilayer Perceptron Neural Network is a m-FFNN[cJ for
which c > 1 and all the Fl are P-neurons, 1 < / < c.

Definition 2.7 (RBFNN) A Radial Basis Function Neural Network is a m-FFNN[c] for
which c = 1 and all the F° are R-neurons.

We shall concentrate in this work on one-hidden-layer networks. For convenience, we
provide with the following proposition, as a useful and common particular case of the previous
definitions:

Proposition 2.1 A single-output one-hidden-layer neural network 1-FFNN[1] with h\ hid-
den units represents a family of functions FU_ : R" —>• R of the form:

hi

FZ(X) = {cr(£ciFi(x) + 6),ct € R,0 € R.cr : R -> R,F, e SF} (2.6)
1=1

where 6 £ R is a possibly null offset term, c¿ € R and a is to be set appropriately, including
the choice o~(z] = 2.

Proof: The expression is obtained by setting c = 1 in Definition (2.4), and making use of
Definition (2.2).

Due to their widespread use, we review here two of the most popular sigmoidals, and
show they are tightly related.

A sigmoidal function g can be defined as a monotonically increasing function exhibiting
smoothness and asymptotic properties. The two more commonly found representatives are:
the logistic:

W = - - € ( M ) (2'7)



CHAPTER 2. RELATED WORK 26

and the hyperbolic tangent:

tanh

eß(*-i) (2.8)

The offset 6 is in practice usually set to zero, because its function is realized by the bias
term 0, integrated in the aggregation function in (2.3). These two families of functions can
be made exactly the same shape (assuming B = 0) by making the ß in (2.7) be twice the
value of the ß in (2.8). For instance, for ß = 1/2:

tanh/ \ _ t a n h / ^ N _
9i.j0 \z) - #1,0 (ñ) -

1-
l,o (2.9)

is the bipolar version of gf$(z) = 1+e-«. These functions are normally chosen because of
their simple analytic behaviour, especially in what concerns differentiability, of great impor-
tance for learning algorithms relying in derivative information. In particular,

The interest in sigmoidal functions also relies in the behaviour of their derivatives. Con-
sider, for example, (2.7) with ß — 1.5,0 = 0, plotted in Fig. (2.3). The derivative of a
sigmoidal is always positive. For 0 = 0, all the functions are centered at z = 0. In this point,
the function has a medium activation, and its derivative is maximum, allowing for maximum
weight updates.

Figure 2.3: The logistic function l(z) and its first derivative l'(z) > 0. This function is
maximum at the origin, corresponding to a medium activation at / (O) = |. This point acts
as an initial "neutral" value around a quasilinear slope.

2.1.3 Types of Artificial Neural Networks

It is not our intention here to review all the existent families of ANN in the literature.
Rather, this Chapter is focused to supervised feed-forward networks, because they are the



CHAPTER 2. RELATED WORK 27

subject of study fiï the Thesis. Besides, the field has become so vast that even a complete
and clear cut description of all the approaches is a difficult task; we refer the reader to
[Fiesler and Beale, 97] for a comprehensive exposition.

One of the basic distinctions that can be made relies on the kind of architecture, basically
divided in feed-forward (for which the graph contains no cycles) and recurrent (the rest of
situations). A very common architecture, because of its simplicity, among the feed-forward
ones, contains no intra-layer connections and all possible inter-layer connections between
adjacent layers. More formally, a bipartitioned graph is a graph G whose nodes V can be
partitioned in two disjoint and proper sets Vj. and V?, Vi U Vi = V, in such a way that no
pair of nodes in V\ is joined by an edge, and the same property holds for Vi. We write then
Gni,nt, with HI = \Vi\, HI = \V-2\. A bipartitioned graph GniiU2 is complete if every node in V\
is connected to every node in V^. These concepts can be generalized to an arbitrary number
of partitions, as follows: A ¿-partitioned graph Gni,...,nfc is a graph whose nodes V can be
partitioned in k disjoint and proper sets V i , . . . , F¿, U/=i K' = V -, m sucn a waY that no pair
of nodes in V¿ is joined by an edge, for all 1 < i < k. In these conditions, a feed-forward fully
connected neural network with c hidden layers and hi units per layer /, 1 < / < c+ 1, takes
the form of a directed complete c+ 1-partitioned graph Ghl,...,hc+i •

The other fundamental distinction is given by the learning paradigm. A system can be
said to learn if its performance on a given task improves (w.r.t. some measure) as a result
of experience. In ANN, the "experience" is the result of exposure to a training set of data,
accompanied with weight modifications. Learning paradigms vary in the amount and nature
of the feedback supplied to the network. An essential difference can therefore be made on the
type of learning taking place in a ANN. In supervised learning the inputs fed to the network
are accompanied by the desired response, and the task is to find a regression function that
models the underlying function represented by these input/output pairs. In unsupervised
(also called self-organized learning), the task is to model the probability density function of
the inputs or to represent the input space in the form of cluster centers with variances.

Considering only these two grounding issues, almost all neural approaches proposed are
basically divided in the resulting four groups:

1. Supervised feed-forward networks. These include many of the most well-known and
used approaches, as the Perceptron, the MultiLayer Perceptron (MLP) and the families
of Radial Basis Function networks (RBF).

2. Supervised recurrent networks. These have also become very popular due to its capacity
to accept and model training processes composed of ordered sequences of examples.
Among them we find Elman networks [Elman, 90] and Jordan networks [Jordan, 86].

:]. Unsupervised feed-forward networks. These include, among others, Counter-
Propagation networks [Hecht-Nielsen, 87], Kohonen networks and their variants
[Kohonen, 88], and competitive learning [Rumelhart, Hinton and Williams, 86].

I. Unsupervised recurrent networks. These include the well-known Hopfield networks
[Hopfield, 82], Boltzmann machines [Hinton, Ackley and Sejnowski, 84], BAM (Bidi-



CHAPTER 2. RELATED WORK 28

rectional Associate Memory) machines [Kosko, 92], and a plethora of derivations of the
latter.

2.1.4 Learning in Artificial Neural Networks

The main problem tackled in what is known as supervised learning is that of regression,
the approximation of an (unknown) n-dimensional function / : X C R" — ̂  R by finite
superposition of known parameterized base functions (PBF) of the style in (2.1). Their
combination gives rise to expressions of the form ^(x ). This last function is the one realized
by the neural network. Usually one is interested in finding parameters w* such that J:^(x]
optimizes a cost functional £(/, Fg) called loss, such that

w* = argmin £(/, F$) (2.11)

Typically, the only information available takes the form of a finite set D of p fixed samples
of /, D = {< ¿"i, yi >, f ( x i ) = yi}, where of; € Rn is the stimulus, y,- 6 K is the target, \D\ = p.
The examples are generated taking these z,- randomly from a probability density function
p ( x ) , being p(x) = 0 for x $ X. In other words, the x are random variables and each .•?,-
is a realization of x according to p ( x ) . An estimation of £(/, jF^ can be hence obtained
as ¿(D, FÚ). This cost measure is called apparent loss; it is computed separately for each
sample in D,

(2.12)

A common form for A is that of an error function, as the squared-error ASE(U) b) = (a —6) 2 .
When using the square error, the expression (2.12) can be viewed as the (squared) Euclidean
norm in Rp of the p-dimensional error vector e= ( e i , . . . , e p ) , known as the sum-of-squares
error, with et- = y¿ — .^(x,-), as:

r — F-{x-}}2 = e- e = I lel l2 (2.13)

The usually reported quantity ^||e||2 is called mean square error (MSE), and is a measure
of the empirical error (as opposed to the unknown true error). We shall denote the error
function simply as E(w) = ¿(D,^^).

When exposed to a training process, the network builds an internal representation of
the target function by finding ways to combine the set of base functions {F¿(áf)}¿. The
network relies in the representation capacity of the PBF (that is, of the neuron model) as
the cornerstone for a good approximation.

The validity of a solution is mainly determined by an acceptably balanced performance
between data in D —that is, a low ¿(D,}7^)— and outside D —a low ¿(Z?0ut»-^tu)» Dout C



CHAPTER 2. RELATED WORK 29

X \ D, to ensure that / has been correctly estimated from the data. Network models too
inflexible or simple or, on the contrary, too flexible will generalize inadequately. This tradeoff
is reflected in £(Dout, FÚ), which can be decomposed in two opposing terms called bias
and variance [Geman, Bienenstock and Doursat, 92], The expectation for the sum-of-squares
error function, averaged over the complete ensemble of data sets D is written as [Bishop, 95]:

E(w) = ED{(^(x)- < y\x >)2} =
S)- < y\x >})2 + ED{(F<a(£) - ED{F¿(x)})2} (2.14)

where < y\x > denotes the conditional average of the target y = f (x) (which expresses
the optimal network mapping), given by:

<y\x >=Jyp(y\x)dy (2.15)

The first term in the right hand side of (2.14) is the (squared) bias and the second is the
variance. The bias measures the extent to which the average (over all D) of ̂ ¿(x) differs from
the desired target function < y\x >. The variance measures the sensitivity of ^^(x) to the
particular'choice of D. As expressed above, too inflexible or simple models will have a large
bias, while too flexible or complex will have a large variance. These are hence complementary
quantities that have to be minimized simultaneously; both can be shown to decrease with
increasing availability of larger data sets D.

The expressions in (2.14) are functions of an input vector x. The average values for bias
and variance can be obtained by weighting with the corresponding density p(x):

í ED{(^(x)- < y\x >)2}p(x) dx = (2.16)
Jx

dxI (ED{(r<s_(S)- < y \ x > } ) 2 p ( x ) d x + í
Jx Jx

The key conditions for acceptable performance on novel data are given by a training set
D as large and representative as possible of the underlying distribution, and a set Dout of
previously unseen data which should not contain examples exceedingly different from those
in D. An important additional consideration is the use of a net with minimal complexity,
given by the number of free parameters (that is, the number of components in w),

A useful and many times necessary assumption is that of smoothness of the obtained
solution, to filter out small input variations (noise) and of benefit since it biases the search
space of functions, thereby reducing it. This requirement can be realized in practice in various
ways. In regularization theory, the solution is obtained from a variational principle including
the loss and prior smoothness information, by defining a smoothing functional 4> in such a
way that lower values correspond to smoother functions. A solution of the approximation
problem is given by minimization of the following functional [Girosi, Jones and Poggio, 93]:



CHAPTER 2. RELATED WORK 30

= ¿(D, T^ + \<t>[F£ (2.17)

where A is a positive scalar controlling the tradeoff between fitness to the data and smooth-
ness of the solution. A common choice is a differential operator P(f) = f" (the second
derivative) of which the (squared) Euclidean norm is taken:

t (2.18)

The most typical learning problems are well known and • — besides determination of the
learning parameters — include [Hertz, Krogh and Palmer, 91], [Hinton, 89], [Bishop, 95]:

1. The possibility of getting stuck in local optima of the cost function, in which conventional
non-linear optimization techniques will stay forever. The incorporation of a global
scheme (like multiple restarts or an annealing schedule) is surely to increase the chance
of finding a better solution, although the cost can become prohibitedly high. A feed-
forward network has multiple equivalent solutions, created by weight permutations and
sign flips. A network with a single hidden layer of h\ units has s(h\) = hi\2hl solutions,
so the chances of getting in the basin of attraction of one of them are reasonable high2.
However, the complexity of the error surface -especially in very high dimensions- makes
the possibility of getting trapped a real one. The use of reliable and fast optimization
techniques, enhanced with a means to escape from local optima are almost always the
best choice. The quality of the solution is then determined by the finite precision of
numerical calculations and by the finite number of iterations allowed.

2. Long training times, oscillations and network paralysis. These are features highly re-
lated to the specific learning algorithm, and relate to bad or too general choices for
the parameters of the optimization technique (such as the learning rate in steepest de-
scent) . The presence of saddle points -regions where the error surface is very flat- also
provoke an extremely slow advance for extensive periods of time. The use of more ad-
vanced methods that dynamically set these and other parameters, such as the conjugate
gradient (see §2.1.6) can alleviate the problem.

3. Non-cumulative learning. It is hard to take an already trained network and re-train it
with additional data without losing previously learned knowledge.

4. The curse of dimensionality, roughly stated as the fact that the number of examples
needed to represent a given function grows exponentially with the number of dimensions.

5. Difficulty of finding a structure in the training data, possibly caused by a very high
dimension or a distorting preprocessing scheme.

6. Bad generalization, which can be due to several causes: the use of poor training data
or attempts to extrapolate beyond them, an excessive number of hidden units, too

2For a moderate hi = 10, s(hi ) » 3.7 • IO9.



CHAPTER 2. RELATED WORK 31

long training processes or the use of a too high learning rate. All of them can lead to
an overfitting of the training data, in which the ANN adjusts the training set as an
interpolation task, trying to pass the surface over each training example.

7. Not amenable to inspection. It is generally arduous to interpret the knowledge learned,
especially in large networks or with a high number of model inputs.

8. Missing data. Unlike other methods, like decision trees, missing feature values are
difficult and expensive to handle.

2.1.5 Learning algorithms

The view of ANN as systems which adapt their functionality as a result of exposure to
information has lead to the development of generic procedures and techniques, also known as
learning rules. By far the most widely used in the neural network context are those relying
in derivative information, herein called derivative-based methods (DBM). Chronologically,
the first of these is the Perceptron Learning Rule [Rosenblatt, 62], useful only for single
layer feed-forward architectures exposed to the learning of data from a linearly separable
problem. None the less, its simplicity and beauty, and the existence of a convergence theorem
(a rare situation in the ANN paradigm) make it a basic departure point in neural learning
algorithms. This algorithm is a particular case of the continuous Widrow-Hoff or delta rule
[Widrow and Hoff, 60], applicable in general to networks which can be completely continuous
(as opposed to the binary-output perceptron) and whose error function is quadratic in the
parameters. It has been very successfully used for decades in pattern recognition and signal
processing applications.

The first truly useful algorithm for feed-forward multilayer networks is the now golden
standard backpropagation algorithm [Rumelhart, Hinton and Williams, 86], reportedly pro-
posed first by Werbos [Werbos, 74] and Parker [Parker, 82]. Many efforts have been devoted
to enhance the basic algorithm in a number of ways, especially concerning speed and re-
liability of convergence (see [Haykin, 94] for a review). Other, faster and more powerful
schemes exist -though following the same basic idea of back-propagating the errors- such
as the Conjugate Gradient Descent [Shewchuck, 94] or the Levenberg-Marquardt method,
described in [Bishop, 95]. An excellent review of many of the methods in a common frame-
work is [Fiesler and Beale, 97]. For recurrent networks, a good survey of the algorithms is
[Pearlmutter, 90].

2.1.6 Error-minimization methods

Neural networks are classically trained by iteratively setting appropriate values for the net-
work parameters w so as to minimize an error function E(w), such as that in 2.13. If this
error function is quadratic in w, then the solution can be found by solving a linear system
of equations, for instance with the Singular Value Decomposition method [Press et. a/., 92]
or iteratively with the mentioned delta rule. This situation usually happens for networks
with no hidden units and linear output units, or most commonly as one of the stages of RBF



CHAPTER 2. RELATED WORK 32

network training (discussed in §2.1.7). In the general case, the minimization is realized by a
variant of a gradient descent procedure, whose ultimate outcome is a local minimum -aw*
from which any infinitesimal change makes E(w*) increase) which, as discussed in §2.1.4,
may not correspond to one of the global minima. Different solutions are likely to be found
by starting at different initial states.

The entire learning process can be depicted as a walk across a surface in a very high-
dimensional weight space. The optimal weight vector w* is in general not to be reached
because of the limited number of hidden units and learning set size. The process is also
perturbed by roundoff errors.

Iterative minimization methods are based on the following principle. Given E(v¿) to be
minimized, and an initial state w°, for each iteration, and until a stopping criteria is met,
perform the updating step:

wi+1 = wi + aiu
i (2.19)

where t| ' is the minimization direction (the direction in which to move) and a¿ € R is the
step size (how far to make a move in u'), also known as the learning rate in the context of
ANN optimization. For future convenience, we define Aw1 = w_t+1 — w_l

First-order methods

The gradient VE,j of an r-dimensional function is the vector field of first derivatives of E(w)
w.r.t. t£,

(220)(2'20)6wr

In our case, r = dim(w_). A linear approximation to E(w) in an infinitesimal neighbour-
hood of an arbitrary point wl is given by:

( w t ) · ( w -w'') (2.21)

We write VE^(w') to refer to the gradient VE^ evaluated at w!. These are the first
two terms of the Taylor expansion of E(w) around w_l . In first-order methods, this local
gradient alone determines the minimization direction u'. They are known as steepest or
gradient descent methods. Since, at any point tu' , the gradient VE,;; ( tu ' ) points in the
direction of fastest increase of E1 ( tu) t an adjustment of wp in the negative direction of the
local gradient leads to its maximum decrease. Thus, being w1 the current network weight
vector, the direction u* = — VE^üT) is taken.

In conventional steepest descent, the step size a¿ is obtained by a. line search in the
direction of £'. This concerns how far to go along u' before a new direction is chosen. To
this end, evaluations of E(tj¿) and its derivatives are carried out to locate some local or global



CHAPTER 2. RELATED WORK 33

minimum, and stop there. Although it is possible to locate the global minimum, the cost can
become prohibitely high (tens to hundreds of evaluations of E(ij¿)). It has also been argued
that perfect line minimization is not desirable because it can lead to getting stuck in local
minima of the overall error landscape.

The idea behind line search is to move in the chosen direction ul to find the minimum
of E(w_) along it. For this one-dimensional minimization problem, the simplest approach is
to proceed along u' in small steps, evaluating E(w) at each sampled point, until it starts to
increase. One often used method works out a divide-and-conquer strategy [Fletcher, 80]:

1. Bracket the search by setting three points3 a < b < c along ul such that E(a ) > £'(6)
and £'(6) < E(c). Since E(w_) is continuous, there is a local minima in the line joining
a to c.

'2. Fit a parabola (a quadratic polynomial) to 0 ,6 ,? .

3. Compute the minimum ß of the parabola in the line joining a to c. This value is an
approximation of the minimum of E(w_ ) in this interval.

4. Set three new points a, 6, c out of /? and the two points among the old a ,? ,? having
the lowest E(w). Repeat again from 2.

In standard back-propagation, the line search is replaced by a fixed step size a, which
has to be carefully chosen. A sufficiently small value is required, so that — aVE^(ul) (the
update on w') is effectively very small and the expansion (2.21) can be applied. Besides, a
too large value might cause to overshoot and quite possibly to lead to divergent oscillations
and a complete breakout of the algorithm. On the other hand, very small values translate in
a painfully slow minimization. In practice, a trial-and-error process is carried out.

A popular heuristic to enhance the basic method is to use a historic average of previous
changes to exploit tendencies and add inertia to the descent in weight space. This is accom-
plished by adding a so-called momentum term /^-Aw1"1, where At?'"1 is the previous weight
update [Rumelhart, Hinton and Williams, 86]. This term greatly helps to avoid or smooth
out oscillations in the motion towards a minimum. In practice, like the learning rate, in
standard back-propagation it is set to a constant value ß € [0.5, 1].

Altogether, for steepest descent, the update equation (2.19) reads:

wi+1 = «T + a¿u¿ + ß&w*-1 (2.22)

where u* = -VEw' and A«?*"1 = «p - w'~l .

The performance of this method is very sensitive to the chosen values for a, and ß, to the
point that different values are required for different problems and even for different stages in
the learning process of a given problem [Toolenaere, 90]. This has lead to the development of
adaptive schemes to dynamically set these values, since the optimum typically changes during

3 For ease of reading, the '•<" relation in R r is taken to be along the chosen direction.



CHAPTER 2. RELATED WORK 34

optimization. Generally speaking, the inefficiency of the overall steepest descent method
stems from the fact that both u* and a,- are somewhat poorly chosen. Unless the first step is
chosen leading straight to a minimum, the iterative procedure is very likely to wander with
many small steps in zig-zag. A method in which both parameters are well-chosen as part of
the method itself is the conjugate gradient.

Second-order methods

First-order approximations ignore the curvature of E(w_). This can be fixed by additionally
considering the second-order term of the Taylor expansion around some point zg' in weight
space, given by:

E(w) « E(wi) + VErf (w ¿) • (w - lg') + ;(w - w ] • % ( w ) • (w - to'') (2.23)

where H^ = WE^ is the Hessian matrix, or r x r matrix of cross second derivatives,

with components H^ = (/i¿j), h¡¡ = ¿w.fa • Again, H^(w_l) indicates the evaluation of H^

in ig*. The Hessian traces the curvature of the error function in weight space, portraying
information about how VE^ changes in different directions. Given a direction jT' from u> ! ,
the product H^ (w.') -u' is the rate of change of the gradient along u' from w.*. Differentiating
(2.23) w.r.t. tg, a local approximation of the gradient around tg' is obtained as:

VEa « VEj (tg1') + H£-(W- w1') (2.24)

For points close to w.* , (2.23) and (2.24) give reasonable approximations to the error
function E(w_) and to its gradient. This forms the basis of second-order algorithms. Setting
(2.24) to zero, and solving for w , we get:

jg = -^1·V%(tg í) (2.25)

Hence, knowledge of the Hessian and the gradient leads to straight optimization methods
if the error function is quadratic. However, calculating H^,1 is computationally prohibitive.
This motivates the development of alternative approximation methods.

Conjugate Gradient Descent

The conjugate gradient minimization technique (explained at length in [Shewchuck, 94]) is
based on the idea that, when a new direction tt t+1 is chosen, it should not spoil previous
minimizations in the directions u\u'~l , . . . , w 1 . This is certainly the case if we simply choose
u1 = —g', where gl = VE^ (tg*), as was found in §2.1.6 for steepest descent.

At most points on E(w), the gradient does not point directly towards the minimum.
Besides, after a line minimization, the new gradient gt+1 is orthogonal to the line search



CHAPTER 2. RELATED WORK 35

direction, that is,"*;'"1"1 • u1 — 0. Thus, successive search directions will also be orthogonal,
and the error function minimization will proceed in zig-zag, in a very undecided manner,
resulting in a extremely slow advance to a minimum [Bishop, 95].

The solution to this problem lies in determining consecutive search directions « t+1 in such
a way that the component of the gradient parallel to u\ which has just been made to be zero
because we minimized in that direction, remains zero, so that consecutive search directions
complement each other, and avoid the possibility of undoing the progress done in previous
iterations.

Let us assume a line minimization has just been made along u', starting from the current
weights «p; we have thus found a new point u>l+1 for which it holds:

V EÚ(WÍ+I) • u{ = 0 (2.26)

The next search direction ut+l is chosen to retain the property that the component of
the gradient parallel to tT, remains zero:

VEjg (w ¿+1 + aiu i+l ) • u i = 0 (2.27)

Expanding (2.27) to first order in a¿, and applying to it (2.23) and (2.26), we obtain the
condition [Bishop, 95]:

ui+1 • H¿(wi+1) • u«' = 0 (2.28)

If the error surface is quadratic, (2.28) holds regardless of the value of a,-, because the
Hessian is constant, and higher-order terms in the previous expansion vanish. Search di-
rections w'"1"1,«' fulfilling (2.28) are said to be conjugate. It can be proven that, in these
conditions, it is possible to construct a sequence u1, . . .,ur such that ur is conjugate to all
previous directions, so that the minimum can be located in at most r = dim(ü¿) steps.

The conjugate gradient technique departs from the same general expression (2.19), repro-
duced for convenience:

wi+l = w' + a,-«1' (2.29)

The method sets ut+l = —g'+1 + ßiÜ'i with ul = — i f 1 . It turns out that the coefficients
ßi can be found without explicit knowledge of the Hessian, as:

í •£
(2.30)

This is the Polak-Ribière updating: there are others. The a, can be found by line mini-
mization of ^E^w1 + Q'¿M!) w.r.t. «¿. As can be seen, all this results in a particular case
of steepest descent with momentum, in which the parameters a¿,/3¿ are determined at each



CHAPTER 2. RELATED WORK 36

iteration step. For a quadratic error surface £/(«;), the method finds the minimum after at
most r = dim(w) steps, without calculating the Hessian. In practice, E(w) may be far from
being quadratic; therefore, the technique needs to be run for many iterations and augmented
with a criterion to reset the search vector to the negative gradient direction ut+1 = —y'+1

after every r steps. A detailed description can be found in [Press et al., 92].

With these and other enhancements, such as the scaled version [M011er, 93], which takes
some account of the non-quadratic nature of the error function, the method is generally
believed to be fast and reliable. Also, contrary to steepest descent, it is relatively insensitive
to its parameters -the line search for a, and the variants of computing /?,— if they are set
within a reasonable tolerance.

The Back-propagation algorithm

The breakthrough that this algorithm represented in connectionist learning was the possibility
to compute the gradient of the network weight parameter win a sequential but distributed
way. The algorithm is so-called because the components of the gradient concerning weights
belonging to output units are computed first, and then propagated backwards (toward the
inputs) to compute the rest, in the order marked by the layers.

In its very essence, it is nothing more than the successive application of the chain rule
to compute the partial derivatives of a function like (2.13) that depends of a functional
expression like that in Definition (2.4). Intuitively, what the algorithm founds is the extent
to which the adjustment of one connection will reduce the discrepancy between the actual
and correct outputs of the network. This information is of course the partial derivative of the
error function E(w) w.r.t. the connection, and therefore the overall gradient vector VE^ is
being computed by the algorithm. This information is then used to adjust each connection
(each single weight) by any method generally conforming to (2.19).

To derive the algorithm, we first introduce some extra notation. Given / : En — >• Rm

the function to be approximated, we depart from a finite training set D of p samples of /,
D = {< afi,j7i > , . . . , < £p, tjfp >}, f(£ß)k = Vn,k- For simplicity, we assume the loss is the
square error and define:

ß=l k=l

where C£'c+1 = ^¡^(^ßik 's the k-th component of the network's response to input pattern
xft (the network has c+ 1 layers, of which c are hidden). For a given input pattern x,,, we
define:

* - C * ) ' (2-32)

so that E(v¿) = 53u=i Ell(w_). The computation of a single unit i in layer / , ! < / < <" + 1



CHAPTER 2. RELATED WORK 37

upon presentatioif of pattern x^ to the network is expressed Ç?' = <?(Cf ) > with g a smooth
function as in Definition (2.2) -as the sigmoidals (2.7) or (2.8)-, and Cf1' = Ej ^//Cf'"1-

The first outputs are defined Cf' = arMi,-. A single weight w/- denotes the connection strength
from neuron j in layer / — 1 to neuron i in layer /, 1 < / < c + 1.

The gradient descent rule (2.19) with constant a is followed, with u* = —VE^(w^t).
Together with the definition of the gradient (2.20), we find that the increment Au>,-j in a
single weight w¡- of w is:

t)

We have:

(2-34)

Proceeding from right to left in (2.34):

"~>t /-Mi'-l /o or\

^T = ̂  <2'35)

= ,'(C') (2-36)

Assuming, for example, g to be the logistic function gß (2.7), with zero offset 0, using (2.10):

- <7/KCf '')] - /3Cf''(l - Cr1') (2-37)

Tlie remaining expression ,¡ is the more delicate and constitutes the core of the
¿C, '

algorithm. We develop it in two separate cases: / = c+ 1 and / < c+ 1. The first case
corresponds to output neurons, for which an expression of the derivative is immediate from
(2.32):

(2-38)

Incidentally, if we collect all the results so far, assuming c = O (no hidden layers), the
mentioned delta rule for non-linear single-layer networks is obtained:

„,,- - Cf )</'(Cf Kf ° = « E dT*W (2-39)



CHAPTER 2. RELATED WORK 38

where we have removed the superindex I = 1, (since c = 0) for clarity, and defined
8? = (y^ — CDs'ÍCf )• A" equivalent name for the back-propagation algorithm is generalized
delta rule. Consequently with (2.39), for / > 1, the deltas (that is, the errors local to a unit)
are defined as:

(2.40)¿cr
and we have just seen that, for the last (output) layer / = c+1, 6?' = (y^,- — Cf' )5fá(C¿*' )•

In case g is (2.7), we shall have:

For the general case / < c+ 1, we proceed as follows:

5Eti(w]

¿er' k ¿er'+1 ¿er'
(2.42)

Now, / < c + 1 means that there is at least one more layer / + 1 to the right of layer /
-according to Fig. (2.2)-, that is, a layer which is posterior in the feed-forward computation,
but that precedes I in the opposite (back) direction. In other words, 6Eß(w_) functionally
depends on layer I + 1 before than on layer /, and thus the derivative computation (through
the chain rule) can be broken down in two pieces. The summation over k is due to the fact
that 6Et'(w_) depends on every neuron in layer /+ 1. Rewriting (2.42):

¿eß,l (2-43)

since C£' = Ej tffc^Cj1' and thus - r - = tcjt1. Putting together (2.35), (2.37) and

(2.43) in (2.34):

this is

where ¿^' = «/'(C,''1 ) Sfc ¿fc' + ^It*- ^s ^ can be seen, this is again a valid version of the
delta rule, but now we have a means to compute the deltas for the hidden units. To end
the presentation, we show (Fig. 2.4) an algorithmic form for the derived back-propagation
procedure, for a single training step (one presentation of the training set D):



CHAPTER 2. RELATED WORK 39

forall fj, in l < fj, < p
1. Forward pass. Present x1* and compute

the outputs Ç?' of all the units.
2. Backward pass. Compute the deltas Sf ''

of all the units (the local gradients), as follows:
a. =.
b. Kc+í : ¿f •' = /(#•') £, ¿f /+Xt'

3. A"to¿
end
Update weights as = a

Figure 2.4: Back-propagation Algorithm pseudocode.

Annealing schedules

The term simulated annealing comes from termodynamics, where a physical solid is heated
to an initially very high temperature, and slowly let to loose heat in a controlled way, until
it reaches thermal equilibrium (a state of minimum energy). The integration of simulated
annealing techniques to the workings of an ANN learning rule can give rise to enhanced algo-
rithms able to escape from local minima to a certain extent [van Laarhoven and Aarts, 87].
The idea is to perform random changes in the weights and evaluate their effect on the global
error. A decrease in error leads to the acceptance of the change. An increase leads to ac-
ceptance agreeing to a certain probability distribution, according to which the chances of
acceptance are higher in earlier stages of the learning process. This probability can be either
a Boltzmann or Cauchy:

Boltzmann: P(6v>) =

Cauchy: T(t}

where 6w is the proposed change in a given weight w, AE(6w) is the change in error
elicited by a change 6iv in w, and T(t] is the annealing temperature at time t. This variable
is updated after all weights have suffered this process, as:

for the Boltzmann distribution

for the Cauchy distribution

(2.45)

(2.46)

being T(0) the initial temperature. The change 6iv is accepted if P(Oiu) > £, where £ is
a random value uniformly drawn from [0,1].



CHAPTER 2. RELATED WORK 40

2.1.7 Learning algorithms for RBF networks

Learning in this kind of networks is characterized by the separation of the process in two
consecutive stages [Haykin, 94], [Bishop, 95]:

1. Optimize the free parameters of the hidden layer using only the {af},- in D. This is an
unsupervised method that depends on the input distribution.

2. With these parameters found and freezed, optimize the {c,-},-, the hidden-to-output
weights, using the full information in D. This is a supervised method that depends on
the given task.

There are many ways of optimizing the hidden-layer parameters. The aim is to form a
representation of the probability density function of the data, by placing the centers in only
those regions of the input space where significant data are present. One commonly used
method is the k-means algorithm [McQueen, 67], which in turn is an approximate version of
the maximum-likelihood (ML) solution for determining the location of the means of a mixture
density of component densities (that is, maximizing the likelihood of the parameters w.r.t.
the data). The Expectation-Maximization (EM) algorithm [Duda and Hart, 73] can be used
to find the exact ML solution for the means and covariances of the density. It seems that
EM is superior to k-means [Nowlan, 90].

Once these parameters are chosen and kept constant, assuming the output units are linear,
the (square) error function is quadratic in them, and thus the hidden-to-output weights can
be fast and reliably found by the mentioned delta rule (§2.1.5), based on a simple gradient
descent over the quadratic surface of the error function.

The parameters of a RBF can also be optimized with a global gradient descent procedure
on all the free parameters at once [Bishop, 95](p. 190), [Haykin, 94](p. 267). This brings back
the problems of local minima, slow training, etc, discussed in §2.1.4. However, better solutions
can be found, essentially because the unsupervised solution focuses on better estimating the
probability density function of the input data, but the resulting disposition may not be the
one minimizing the square error when one takes into account the kind of RBF unit chosen
and especially, the desired target outputs.

2.1.8 Evolutionary learning algorithms for ANN

As we have seen in (§2.1.5), derivative-based methods (DBM) make a number of assumptions
about the local error surface and its differentiability. In addition, the existence of local
minima is often neglected or overlooked entirely. In fact, the possibility of getting caught
in these minima is more than often circumvented by multiple runs of the algorithm (that is,
multiple restarts from different initial points in weight space). This "sampling" procedure is
actually an implementation of a very naïve stochastic process.

The alternative to these methods are Evolutionary Algorithms (EA) [Back, 96]. Although
the number of successful specific applications of EA is counted by hundreds (see, for example,



CHAPTER 2, RELATED WORK 41

[Back, Fogel and Michalewicz, 97] for a review), only Genetic Algorithms (GA) [Holland, 75],
[Goldberg, 89] and, to a lesser extent, Evolutionary Programming (EP) [Fogel, 92], have
been broadly used for ANN optimization, since the earlier works of [Montana and Davis, 89].
There are comprehensive review papers and guides to the extensive literature on this
subject: see [Shaffer, Whitley and Eshelman, 92], [Yao, 93], [Ku§cu and Thornton, 94] and
[Balakrishnan and Honavar, 95].

One of their main advantages over methods based on derivatives is the global search
mechanism. A global method does not imply that the solution is not a local optimum;
rather, it eliminates the possibility of getting caught in local optima. Another appealing
issue is the possibility of performing the traditionally separated steps of determining the best
architecture and its weights ai the same time, in a search over the joint space of structures
and weights. An additional advantage is the use of potentially any cost measure to assess
the goodness of fit or include structural information. Still another possibility is to embody a
DBM into a GA, using the latter to search among the space of structures and the DBM to
optimize the weights; this hybridization leads to extremely high computational costs. Finally,
there is the use of EA solely for the numerical optimization problem.

In the neural context, this is arguably the task for which continuous EA are most natu-
rally suited. However, it is difficult to find applications in which GA (or other EA, for that
matter) have clearly outperformed DBM for supervised training of feed-forward neural net-
works [Whitley, 95]. It has been pointed out that this task is inherently hard for algorithms
that rely heavily on the recombination of potential solutions [Radcliffe, 91]. In addition, the
training times can become too costly, even worse than that for DBM.

In general, Evolutionary Algorithms -particularly, the continuous ones- are in need of
specific research devoted to ascertain their general validity as alternatives to DBM in neural
network optimization. Theoretical as well as practical work, oriented to tailor specific EA
parameters for this task, together with a specialized operator design should pave the way to
a fruitful assessment of validity.

The emergence of evolutionary techniques using different selection schemes and a direct
representation of variables allows to bring new light on evolutionary approaches to supervised
neural network training. Among the latest algorithms we find the Breeder Genetic Algorithm
(BGA) [Mühlenbein and Schlierkamp-Voosen, 93], which is characterised by a truncation se-
lection procedure and direct representation of continuous variables. Truncation selection is a
simple use of rank-based selection, proven to be very useful in traditional G A [Whitley, 89].
The direct representation of variables eliminates the need for a coding scheme -that usually
changes the search space- and permits to develop new continuous genetic operators.

The GA and the BGA are the two evolutionary algorithms chosen in this Thesis for many
of the weight optimization processes carried out. To this end, an entire chapter (§6) is devoted
to them. In it, the basic algorithms are described, tested extensively (especially the BGA,
the least known of the two) and extended in a number of ways to cope with more general
kinds of neural models in ANN optimization tasks.



CHAPTER 2. RELATED WORK 42

2.1.9 Handling heterogeneity in ANN

Although a feed-forward neural network can in principle approximate an arbitrary function
to any desired degree of accuracy, in practice a pre-processing scheme is often applied to the
data samples to ease the task. Attention is specially put on continuous variables, usually
(linearly) scaled to the unit interval or to zero-mean, unit standard deviation.

However, in many important domains from the real world, objects are described by a
mixture of continuous and discrete variables, usually containing missing information and
characterized by an underlying vagueness, uncertainty or imprecision. For example, in the
well-known UCI repository [Murphy and Aha, 91] over half of the problems contain explicitly
declared nominal attributes, let alone other discrete types or fuzzy information, usually un-
reported. This heterogeneous information has to be encoded (or better, cast) in the form of
real-valued quantities. We review here traditional ways of encoding non-standard information
in ANN [Prechelt, 94], [Bishop, 95], [Fiesler and Beale, 97], [Sarle, 99].

Ordinal variables

These variables correspond to discrete (finite) sets of values wherein an ordering has been
defined (possibly only partial). They are more than often treated as real-valued, and mapped
equidistantly on an arbitrary real interval. A second possibility is to encode them using a
thermometer. To this end, let k be the number of ordered values; k new binary inputs are
then created. To represent value ¿, for ! < * ' < & , the leftmost 1,..., i units will be on, and
the remaining i + 1,..., k off.

The interest in these variables relies in that they appear frequently in real domains, either
as symbolic information or from processes that are discrete in nature. Note that an ordinal
variable need not be numerical.

Nominal variables

Nominal variables are unanimously encoded using a 1-out-of-fc representation, being k the
number of values, which are then encoded as the rows of the I^xk identity matrix.

Missing values

Missing information is an old issue in statistical analysis [Little and Rubin, 87]. There are
several causes for the absence of a value. For example, they are very common in Medicine
and Engineering, where many variables come from on-line sensors or device measurements,
or are simply too costly to be measured at the same rate as other variables (e.g., analytical
tests). The causes are so variate that we just mention but a few:

• Technical limitations (e.g. sensors working only in a limited range of values, or for given
periods of time). This includes sensor malfunctioning;



CHAPTER 2. RELATED WORK 43

• Measures costly to perform in time or money or involving destructive methods (e.g.,
maximum weight supported by a lift or data from car crash tests);

• Measures not done by a number of reasons, or done but in invalid conditions, or simply
the data item gets lost during transcription, transmission or storage.

• Senseless values, related to other variables (e.g., number of times pregnant in male
adults). These values are not missing per se. The value is not there because it does
not make sense. A value of zero for male pregnancy is also senseless and uninformative,
because it does not express that no other value is possible. In other words, it is not the
same zero than for females [Belanche, 91].

• Reluctance to supply the value (e.g., salaries, phone or credit card numbers, etc).

• Different time intervals in measurements. For example, a given variable v\ can be
measured every 1 hour, and another one v-i every two. Then, in a data set including
both, every value out of two for v-i would be missing.

Missing information is difficult to handle, specially when the lost parts are of significant
size. It can be either removed (the entire case) or "filled in" with the mean, median, nearest
neighbour, or encoded by adding another input equal to one only if the value is absent and
zero otherwise. Statistical approaches need to make assumptions about or model the input
distribution itself. We review here the current approaches.

There are two basic ways of dealing with missing data:

1. Completing the object description in a hopefully optimal way, to be defined (that is,
"fill in the holes");

2. Extend the methods to be able to work with incomplete object descriptions.

Of course, the possibility of simply discard the involved data can not be considered as a
"method" and is also frustrating because of the lost effort in collecting the information. This
can be done if the number of missing values is very small or else they are concentrated only
in some objects. In this case, the entire example is discarded.

In practice, it is not uncommon that missing values are distributed randomly (that is,
according to an unknown distribution but independently of the observed values) and hence,
if their quantity is not negligible, it is likely to affect a significant number of examples (in
the worst scenario, just one missing value per example) so that discarding them all can not
be afforded. Discarding information can be also dangerous if the missing pieces are related
with the non-missing ones (e.g. if a given variable exceeds a threshold, another variable is
always missing), because it may result in a change of input distribution.

The vast majority of methods in the literature of ANN belong to the first kind. These
include:



CHAPTER 2. RELATED WORK 44

• Fill in by a constant (e.g. 0) or a random value. A fixed constant value can only harm
the distribution and is rarely considered. In the latter case, an unconditional density
estimation method can be used, based on a single Gaussian where the mean vector
and covariance matrix are found by using the available values. Then, missing values
may be filled in by sampling the distribution. Such approach can lead to poor results
[Ghahramani and Jordan, 94].

• Fill in by the mean, median or nearest-neighbour. This is in general not a good idea,
since the most probable is that it results in a significant alteration of the distribution,
since it ignores the covariance in the observed data [Bishop, 95](p. 301). A problem
often neglected is the multimodality of the distribution: in this case these values are
entirely useless and only introduce noise.

• Fill in by the previous or next value (if the objects show temporal dependencies).

• Set a regression model for any variable having missing values over the present variables
and use the obtained regression function to fill in the holes. This tends to cause prob-
lems because, since the regression function is noise-free, it tends to underestimate the
covariance in the data, as the filled-in points will fall along the regression line.

• Create a second variable which is zero if the first variable is present, and is one otherwise.
In this latter case, the involved variable is filled by a zero. This scheme results in an
extra parameter (that will have to be estimated) and is not completely satisfactory,
because it does not reflect the fact the new input is closely tied to the old one, and does
not represent any specific value.

• Fill in by the values obtained from a maximum-likelihood estimation method, such as
the Expectation-Maximization (EM) algorithm [Duda and Hart, 73]. This algorithm
can estimate the parameters of a mixture model (e.g. of Gaussians), by maximizing their
likelihood, even in presence of missing data [Ghahramani and Jordan, 94]. Although
sound, this method requires the modeling of the input distribution itself, which can be
a difficult and time-consuming task.

Learning in this approach is an estimation problem which requires an explicit probabilis-
tic model. In general, maximum-likelihood methods cannot handle the more complex
situation of missing input distributions, namely, whenever the probability that an input
is missing is a function of this same input, unless a model of the missing data mechanism
is also learned [Ghahramani and Jordan, 94].

Other associated problems are the determination of the number of component densities,
and how to manage new data. In a typical ANN application with missing values, the
trained network is likely to encounter incomplete test patterns, which can come in a real-
time basis. These new patterns would require a periodic re-estimation of the mixture
model parameters. Another claim is that missing values should be treated by averaging
and not by maximizing, as the EM algorithm does [Ripley, 92].

Another statistical technique is based on multiple imputation, of which Bayesian back-
propagation is a special case [Buntine and Weigend, 91]. Each missing value is replaced



CHAPTER 2. RELATED WORK 45

by m values sampled from a prior distribution of inputs. After this multiple imputation,
m complete data sets exist, which can be trained with conventional methods and com-
bined to form a unique response. The prior distribution requires the use of iterative sim-
ulation methods [Schafer, 94]. A related method estimates this distribution from the data
[Tresp, Ahmad and Neuneier, 94]. In general, a principled statistical treatment of missing
values prescribes a weighted integration over the missing variables, which requires the entire
input distribution to be modeled, and is computationally intensive.

The main problem with missing data is that we never know if all the efforts devoted
to their estimation will revert, in practice, in better-behaved data. This is also the reason
why we develop on the treatment of missing values as part of the general discussion on data
characteristics. The reviewed methods pre-process the data to make it acceptable by models
that otherwise would not accept it. In the case of missing values, the data is completed
because the available neural methods only admit complete data sets.

Uncertainty

Vagueness, imprecision and other sources of uncertainty are considerations usually put aside
in the ANN paradigm. Nonetheless, many variables in learning processes are likely to bear
some form of uncertainty. In Engineering, for example, on-line sensors are likely to get
old with time and continuous use, and this may be reflected in the quality of their mea-
surements. In many occasions, the data at hand are imprecise for a manifold of reasons:
technical limitations, a veritable qualitative origin, or even we can be interested in introduc-
ing imprecision with the purpose of augmenting the capacity for abstraction or generalization
[Esteva, Godo and García, 98], possibly because the underlying process is believed to be less
precise than the available measures.

In general, therefore, it is likely that when a given continuous variable takes the value,
say, 5.1, we know that this is just a reasonable approximation and that the actual (precise)
value is unknown. Thus, the value actually supplied to the neural network (or other learning
system, for that matter) is "approximately 5.1". The important point is that we know this
is an approximate value, but have not told the system so. In Fuzzy Systems theory there are
explicit formalisms for representing and manipulating uncertainty, that is precisely what the
system best models and manages. It is perplexing that, when we supply to ANN this kind of
input data, we require the network to approximate the desired output in a very precise way,
trying to reduce the cost function to zero up to the smallest possible decimal digit.

Sometimes the known value takes an interval form: "between 5.1 and 5.5", so that any
transformation to a real value will result in a loss of information. A more common situation
is the absence of numerical knowledge. For example, consider the value "fairly tall" for
the variable height. Again, Fuzzy Systems are comfortable, but for an ANN this is real
trouble. The issue is in fact neglected because the variable is treated as ordinal (e.g., "short",
"medium" and "tall") will correspond to 1, 2 and 3. We already have seen how these values
are then treated. What is more, "fairly tall" would be encoded as just another value.

It is then interesting to review the possible situations for an input variable, following the
example of people's height: exactly 1.80551 m (rather unreal), approximately 1.81, "between



CHAPTER 2. RELATED WORK 46

1.80 and 1.81" and "fairly tall". The transition from precise to vague knowledge makes more
apparent the nature of real data.

The integration of symbolic and continuous information is also important because numeric
methods bring higher concretion, whereas symbolic methods bring higher abstraction. Their
combined use is likely to increase the flexibility of hybrid systems. For numeric data, an added
flexibility is obtained by considering imprecision in their values, leading to fuzzy numbers.

Integration of heterogeneity

There have been very few attempts to incorporate heterogeneous information into the work-
ings of a neuron in a principled way. The main contribution is perhaps that encountered in
the heterogeneous distance proposals by [Wilson and Martinez, 97], where separate distance
calculations are used for nominal and continuous variables. Their interest is, however, de-
voted to an heterogeneous ^-nearest neighbours algorithm. The idea is further developed
in [Wilson and Martinez, 96], where the authors present an extension of the RBF model to
nominal quantities and missing values. The RBF network is used in its original interpolative
definition (i.e. there is one hidden node for each example in the training set). The extension
consists in the use of the Value Difference Metric (VDM, [Stanfill and Waltz, 86]) to nomi-
nal distance computation. An Euclidean metric is used to account for the partial distances.
Missing values are handled with a pessimistic semantics, defining the distance involving a
missing value to be the maximum possible distance (actually a value of one). The results
point to an increase in performance w.r.t. standard Euclidean distance when the amount of
nominal information is significant.

This work can be seen as a particular instance of our approach, in which a specific kind
of similarity (a global distance-based) is built by Euclidean aggregation of partial measures.
The emphasis is not put on the development of a generic heterogeneous similarity measure
but in extending one of the standard distances, as a basic step towards the construction of
more valid metrics. Ordinal or vague information is not considered. Furthermore, it can
be argued that the VDM metric has two drawbacks: first, it is useful only for classification
problems, since it is a frequentisi measure. Second, stricto sensu it is not a metric on the
inpu t data, because it makes use of extra information (the class labels) and thus it cannot
be considered as a distance measure defined on the input space.

The interest in data heterogeneity not only relies in providing accurate treatment for the
continuous, discrete, symbolic and other common data forms. Making a step forward to the
future, once this heterogeneity is acknowledged, other, more complex data types could be
considered, as logical, probabilistic, pictorial, hierarchical, taking the form of a lattice, and
so on. These forms of data are commonly found in psychological tests, opinion polls, police
inquest forms, etc, and their representation is extremely delicate.



CHAPTER 2. RELATED WORK 47

2.2 Similarity in AI

The notion of similarity has been studied in its own right more thoroughly in psychology
—and, in particular, in cognitive psychology— than in artificial intelligence (AI). In cogni-
tive psychology, formulation and representation of similarity is a key issue. Understanding
how (and whether) biological (perceptual) systems represent and use similarities has been
notoriously difficult to formalize, in part because of the feature selection problem, a mani-
festation of the frame problem in AI systems. None the less, there is an agreement in that
it is easier to respond intelligently to a stimulus if one can recall previous responses made
under similar circumstances. The key point for a succeeding perceptual4 system (biological
or artificial) relies in its ability to represent internally the similarities between the different
stimuli [Edelman, 93].

Similarity apparently has a bad reputation in the scientific world, because of its general
elusive character, receiving less attention than related concepts such as fuzziness, distance
or preference [Dubois and Prade, 97]. Still, the popularity of case-based reasoning (CBR)
[Aamodt and Plaza, 94] in AI has boosted its use and signaled its key role in cognitive tasks.
As a matter of fact, some form of similarity is inherent in the majority of AI approaches,
including connectionist methods, and very specially in kernel-based methods, which exploit
the idea of distance-based similarities. This background ubiquity and a general lack of op-
erational foundations (with notable exceptions, as [Osborne and Bridge, 96]) have prevented
an explicit use outside CBR.

On the other hand, similarity coefficients have had a long and successful history in the lit-
erature of cluster analysis and data clustering algorithms [Everitt, 77], [Jain and Dubes, 88].
There are heterogeneous similarity measures —the most notable of which, those of [Gower, 71]
and [Diday, 74].

2.2.1 Similarity in CBR

A wide range of psychological theories of cognition in humans are based on the assumption
that many cognitive processes are best explained through generalization from a large number
of stored instances. This generalization capability is in turn presumed to depend on the sim-
ilarity between new and old (known) instances. Analogously, CBR systems typically retrieve
and compare information (the cases) by applying a similarity measure, usually constructed
ad hoc. Their effectiveness is known to be critically dependent on the chosen similarity mea-
sure. A given measure may maximize the accuracy of a learner in a given experiment and
perform poorly as compared to others in another one. This issue is also related to the num-
ber of examples needed to represent a particular function, and brings one to the conclusion
that there is no "universal" similarity measure that efficiently represents any target func-
tion [Globig and Lange, 96]. Rather, performance is sensitive to the goals, context and other
information on the specific task (i.e., on prior knowledge).

'Here the word perceptual can be taken as embedded in an environment, which includes neural learning.



CHAPTER 2. RELATED WORK 48

2.2.2 Similarity in ANN

Almost all neural methods are concerned, in one way or another, with the computation of a
certain type of similarity between input patterns and neurons in the network. This includes
unsupervised learning approaches, which are distance-based [Kohonen, 88]. Nevertheless,
there is little work on the explicit use of similarity measures in the context of ANN and,
among these, by far the most prominent measures are based on scalar product or Euclidean
distance.

A special focus has been given to the enhancement of the A;-nearest neighbours algorithm
(KNN) [Fukunaga, 90], which has a unique capability in the immediate addition or deletion of
pieces of knowledge, without a degradation in performance on previously acquired knowledge.
This characteristic is missing in the majority of ANN methods. The poor generalization
ability sometimes exhibited by KNN, however, is mainly due to its higher dependence on
the chosen (and fixed) similarity measure and the presence of irrelevant variables, caused
by an incorrect weighting of features. An interesting solution tries to bring the best of both
approaches by proposing a parameterized similarity measure in a variable interpolation kernel,
optimized with the conjugate gradient (§2.1.6). The similarity measure used is a Gaussian
composed to a weighted Euclidean distance and the approach lies in the side of an enhanced
KNN system [Lowe, 93].

Among connectionist systems that make an explicit use of similarity measures, work can
be divided in two independent subjects of study. The first is concerned with the development
of neural architectures capable of emulating the ability of the brain to learn smooth approxi-
mations of the function that maps a perceptual stimulus to its desired response [Poggio, 90].
Specifically, given a number of sample stimuli, the value for novel ones is found by linearly
combining a set of appropriately placed base functions. The second approach involves the
use of connectionist methods to discover distributed representations of psychological similarity
relations out of previously measured similarity data.

Perceptual similarity

It may be observed that a biological system can only base its inferences about the world
on the firing of its neurons [Bialek et al., 91]. At any stage in a flow of neural activation,
differences between input stimuli only matter insofar as they concern activity patterns of a
preceding stage. A collection of graded and highly overlapping receptive fields can collectively
form a distributed representation, sufficient for discriminating among highly complex stimuli
such as images of human faces.

In these systems, the base functions compute a similarity based on a distance between the
neuron center and the previous patterns of activity elicited by the incoming stimulus (i.e., by
the input representation). This is in general the case of artificial neural models that work out
the idea of neurons as receptive fields, centered at particular points in input space, generally
known as RBF networks [Poggio and Girosi, 89]. These functions are either centered on the
sample stimuli, orón some of their representatives. In [Edelman, Reisfeld and Yeshurun, 92],
a two-stage scheme is proposed, in which each of the units in the first stage (or layer, in ANN



CHAPTER 2. RELATED WORK 49

terminology) is trained to respond strongly only to a given face /,-, and less to the rest (ideally
lesser and lesser the less similar they are to /,•). The second stage or layer takes the collection
of graded responses and combines them to classify the input face.

The same idea is developed in [Poggio and Hurlbert, 93] by proposing modules of Hyper
Basis Functions (HBF) -a generalization of RBF- for object recognition. It is postulated
that cortical neurons are tuned to respond vigorously to specific multidimensional stimuli,
while decaying for less similar inputs. This behaviour is suitable to be captured by HBF.

Corresponding arguments have been applied to the optimization of topographic cortical
mappings. In [Goodhill, Finch and Sejnowski, 96], it is postulated that "... the cortex tries to
represent similar inputs close together, and that similarity is given by the degree of correlation
between the activities of points (cells)."

The ideal would be to transform the data (via the similarity measure) so that entities
similar in input space should elicit close values of the chosen similarity measure in the repre-
sentation space. This idea can be found behind some proposals of artificial systems for basic
visual processing (see, for example, [Weiss and Edelman, 94]), where images (visual stimuli)
are compared via their representations (as similarities) at successive levels of a processing
hierarchy, mimicking the processing known to be done by the population activities, in the
way from the retina to the non-linear cortical units.

In the same vain, [Wiirtz, 97] introduces a system for object recognition robust under
translations, distortions and changes in background. The stored images (called models) are
compared with a given input image via a global similarity function, obtained by combination
of similarities of local features at corresponding points. The correspondence maps between
the image and a, model are found by coarse-fine matching in a Gabor pyramid. The local
measures are given by modified angular similarities, which are then arithmetically averaged.

Psychological similarity

Similarity relations are in the basis of the construction of psychological spaces (PS). These
are geometric coordinate spaces in which stimuli are represented by points. The construction
of PS involves the application of one of the family of multi-dimensional scaling algorithms
(MDS. [Sheparcl. 80]) to empirically obtained data corresponding to pairwise similarities.
The objective is to map the observed similarities into a metric space in such a way that the
original relations are represented as faithfully as possible.

The use of a neural network is explored in [Lee, 97] to obtain a connectionist ver-
sion of MDS. An adapted RBF is used. In this case, the usual emphasis in func-
tion approximation is put aside in favour of cognitive interpretability. The modeling of
similarity computations —traditionally tackled in cognitive psychology by geometric and
contrast models [Tversky, 77]— has been approached by [O'Sullivan and Keane, 92] and
[Rumelhart and Todd, 93]. The ANN is used to emulate the cognitive process of produc-
ing a judgement of psychological similarity, following the presentation of two stimuli, and
using as target data the desired similarity responses.

In all these approaches, there is a specific cognitive or perceptual task for which a neural



CHAPTER 2. RELATED WORK 50

network is used as a model or simply to obtain a connectionist implementation. Furthermore,
the networks utilized are conventional, and non-standard information, if present, is encoded
in the usual way to obtain an overall Euclidean representation of input stimuli.

2.3 Fuzzy Neural Networks

Fuzzy Sets [Zadeh, 65] (see [Klir and Yuan, 95] or [Zimmermann, 92] for a modern presen-
tation) are generalizations of classical sets where the indicator function for membership is
continuous instead of binary, expressing that elements can belong to a set to a certain degree.
We review here some of the more basic concepts.

Definition 2.8 (Fuzzy set) Let X be a classical set (called the universe or reference set)
and [LA '• X —> [0,1] a function. The set of ordered pairs A = {(x, /J,A(X)) \ x € X} is a fuzzy
set on X; ¡IA is called the membership function of A.

Definition 2.9 (Support set) The support of a fuzzy set A is the (classical) set supp(A) =
{x € X | HA(X) > 0}

Definition 2.10 (a-set) The (classical) set of all elements in X that belong to a fuzzy set
A with at least a membership of a, Aa = {x G X \ HA(^) > <*}> is called an a-set of A,
a e [0,1].

Classical subsethood is extended in the following way to fuzzy sets:

Definition 2.11 (Subsethood) Let A, B be two fuzzy sets on X. The set A is said to be
a fuzzy subset of B, denoted A C/ B, if Vx £ X[IA(X) < ^B(X).

Definition 2.12 (Power set) Let A be a fuzzy set on X. The (classical) set of all fuzzy
subsets of A is denoted P (A) = {B \ B is a fuzzy set on X, B C/ A}, and denoted fuzzy
power set.

According to this definition, identifying X with the (fuzzy) set defined as X = {(x, 1) \
x G X}, then P(X) is the set of all fuzzy sets on a universe X.

Definition 2.13 (Normalization) A fuzzy set A on X is said to be normalized if 3x e
supp(X) : HA(X) = 1.

Definition 2.14 (Compact support) A fuzzy set A on X is said to have compact support
•if Vx, y, z € supp(X) : x < y < z A HA(X)HA(Z) / O => /M(y) 7e °-

Definition 2.15 (Convexity) A fuzzy set A on X is said to be convex ifVx,y,z €
supp(X) : x <y< z=> HA(y)



CHAPTER 2. RELATED WORK 51

Fuzzy Controh5ystems [Pedrycz, 93] were originally created to accept uncertain data, to
process them, and then to yield output values (crisp or fuzzy) to have control on some system,
which in turn delivers new input data. This input/process/output operation is also of the
kind performed in a feed-forward neural network. Thus, it is reasonable to think in hybrid
ways of combining the two approaches.

In recent years, the hybridization of methods has become a very popular avenue of re-
search. There are many benefits in joining different approaches, designing systems that make
full use of every method in those tasks for which it is best. In the case of neural networks and
fuzzy systems, it has lead to so-called Neuro-Fuzzy Systems [Nauck, Klawonn and Kruse, 97].
These are basically fuzzy systems (a fuzzy rule-base plus a fuzzy inference engine) enhanced
in some way by means of ANN techniques. A typical situation is the use of neural learning
algorithms to determine the parameters of the fuzzy sets in the rules. The overall system is
always to be interpreted in terms of fuzzy IF-THEN rules. These constitute the vast majority
of the approaches.

By considering fuzzy information in some of the input lines, the approach developed in
this Thesis is more related to fuzzy neural networks [Gupta and Rao, 94]. These are ANN
that use fuzzy methods to enhance the learning capabilities or to perform better in a more
general sense. The primary intention is to improve on the neural network and the above
interpretation is neither important nor possible.

These networks are fully fuzzified, in the sense that they are conventional networks where
all the information is treated as fuzzy numbers and the network is working in fuzzy arithmetic.
The corresponding learning algorithms can also be fuzzified [Lippe, Feuring and Mischke, 95].
In this latter work, which subsumes previous attempts [Hayashi, Buckley and Czogola, 92],
the authors propose a classical MLP that accepts triangular fuzzy numbers (see §4.3) as
well as crisp (real-valued) information (as degenerate fuzzy numbers). The back-propagation
algorithm is adapted as a "fuzzy back-propagation" by applying the Extension Principle
[Zadeh, 73]. These networks offer a number of advantages, of which the most obvious are
the possibility to process imprecise data and to approximate fuzzy functions. The authors
also claim that the fraction of input space covered by the (now fuzzy) training data is bigger
than in the real case. Finally, the fuzziness of the weights can be interpreted as a means
of softening the error surface, which can alleviate the possibility of getting trapped in local
minima.

This approach is appealing, though it has several inherent drawbacks. First, triangular
fuzzy numbers (TFN) lack a group structure under multiplication; specifically, the product of
two TFN is no longer a TFN. Thus, linear approximations are needed to bring back the result
of operations to the set of TFN. Second, the training times are superior because each atomic
processing (e.g., a product of input by weight) requires three times the old computation plus
the linearization operations. Third, fuzzy neural networks are not universal approximators
in the classical sense -see Chapter (5). Rather, only the fuzzy monotonie functions can be
approximated arbitrarily well by such a network [Feuring and Lippe, 95]. Monotonicity is in
the fuzzy-function sense: being x a fuzzy number and / a fuzzy function, if the fuzziness of
x increases, then the fuzziness of f ( x ) increases.



CHAPTER 2. RELATED WORK 52

In the present work, the fuzziness in the ANN is taken in the mentioned generic sense,
to directly account for vague or imprecise knowledge, and increase the overall flexibility of
the model. This may or may not imply to work in fuzzy arithmetic. An heterogeneous
neuron computes a similarity function between its input and weight vectors. The proposed
measures for computing similarity between two fuzzy numbers are functions of the form:
s : Wn(X),Fn(X) —>• [0,1], where Fn(X) is the set of all fuzzy numbers on a universe X.
Thus, if the p-dimensional input space is taken to be (Wn(X))p, we have a network that
accepts all fuzzy inputs but is still working on real arithmetic.

However, as pointed out in (§4.4), other neuron models are possible, based on other
similarity measures. In particular, if we devise an sn : ¥ n ( X ) , ¥ n ( X ) -> Fn([0,1]), then we
obtain a network that outputs a fuzzy similarity value in response of fuzzy inputs and its
fuzzy weights (a natural situation). The chosen measure sn should account for the nature
of the problem (a direct choice is the fuzzification of a measure s). In any case, we obtain
a fuzzy neural network. Thus, this kind of networks are a special case of the Heterogeneous
Neural Networks (HNN) introduced in Chapter (4).

The advantage is that in HNNs we are not tied to the MLP neuron model, or to differen-
tiate, non-linear, transfer functions and thus other, possibly simpler models can be devised
that output a TFN (expressing a similarity in [0,1]) in response of the input and weight
TFN, and that avoid the use of any product operation. The derivation of these fully fuzzified
networks, however, falls out of the scope of this Thesis.



Chapter 3

Similarity as a basis for Neural
Computation

"From causes which appear similar, we expect similar effects.
This is the sum total of all our experimental conclusions."

David Hume

The general view of an ANN as a similarity computing device is readily acknowledged in
the ANN community. However, the majority of neural networks used in practice are based
on a specific neuron model, namely the dot product one which, as seen in the Introduction,
severely restricts the similarity computing capability of the network. On the other hand,
RBF-based models narrow the guiding conception to distance-based similarities on metric
spaces. Broader, more general and richer families of models can be obtained and studied if
this general view of a neuron as a similarity computing unit is explicitly taken into account.
To begin with this line of thought, a groundwork has to be set forth in order to develop a
suitable base for a systematic investigation of the approach.

3.1 Preliminaries

The origins of learning by similarity in artificial neural systems can be traced back to the
pioneering works of Hebb and his now classic book The organization of behaviour [Hebb, 49].
He postulated that the functionality of ANN had to be determined by the strengths of the
connections between neurons and that this functionality should be adjusted to increase the
likeliness of getting a similar response to similar inputs in the future, provided the elicited
response is the desired one. In the opposite situation, the weights should be adjusted to
decrease this likeliness.

In current ANN research, there are basically three "degrees of freedom":

I. The neuron model: what is the precise function performed by a single unit . This

53



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 54

includes the_choice of the neuron's input and output spaces;

2. The architecture: how these neurons are to be arranged;

3. The learning algorithm: how the weights are to be determined.

There is a fourth element, the cost function: how is the goodness of a solution measured.
This topic is well understood and two functions (the square error and the cross-entropy) have
become fairly standard.

Undoubtedly, the most active of these three subjects is the third. Once the neuron model
and architecture are decided, the problem of choosing the most suitable way of proposing a
solution in weight space (fast and reliably) becomes the most important area of study. It is
in fact remarkable how the majority of research attention in ANN has been devoted to the
proposal of new learning algorithms or the improvement or somehow enhancement of existing
ones (much more usual). Some of the techniques have been rediscovered several times or have
been recast from methods known in statistics or other disciplines. Studying new variations
in architecture, on the other hand, is of interest mostly for recurrent systems.

Still, it can be argued that there are at least three components strongly influence the task
of finding a solution to a supervised ANN learning problem:

1. The repertoire of functions the network has, in order to approximate the target function;

2. The function that is actually being presented to the ANN via input/output examples;

3. The algorithm the network uses to select one of the functions of its repertoire.

This is true at least for the two most widespread neuron models, reviewed in (§2.1), the
one used in MultiLayer Perceptrons (MLP) —basically a scalar product between the input
and weight vectors plus an offset followed by a squashing function— and the one used in
Radial Basis Function Neural Networks (RBF) —some distance metric between the input
and weight vectors followed by a monotonie basis function (for instance, a Gaussian). In this
latter case, only a hidden layer suffices.

By focusing only in these two neuron models or variants thereof, we are actually limiting
the families of functions in point 1. In theory, very many functions can in principle work
well (because they have a universal approximation capability, for example) but in practice
the results can be very different for different selections, and the cornerstone for this selection
is precisely the neuron model. Given a certain fixed network arrangement (such as the
feed-forward), the practical computing capacity is completely determined by the repertoire
of neuron models available. Final performance is also strongly influenced by point 2.; how
exactly is the target function presented to the network will greatly condition the results. A
more elaborate discussion follows.

Regarding the first point, one marked shortcoming of the neuron models existent in the
literature is the difficulty of adding knowledge (either of the problem to be solved or of the
data themselves) to the model. The neuron is used as a function (that is, a mapping) from



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 55

Rn to K (possibly, though rarely, with an internal state) as a black-box, for which the internal
workings are often obscure. For such a blind processing element, part of the task is to find a
structure in the data, to transform it from a raw form (possibly in a space of high dimension,
only here and there covered by example cases) to a new space (the hidden space, or space
spanned by the hidden units) in such a way that the problem is simpler when projected to this
new space. The same processing is repeated for all the subsequent hidden layers. In any case,
the hidden layer's task is to find a new, more convenient representation for the problem given
the data representation chosen, and eventually performing a reduction in dimensionality.

This leads directly to the second point, the way data are represented, which is extremely
important. It not only includes which information is explicitly fed into the network —usually
in the form of vectors of selected variables— and which is not. It also includes:

1. Input (and sometimes, output) preprocessing, mostly the normalization of variables or
cases;

2. The way non-standard information is encoded, e.g. the representation of (discrete)
ordinal and nominal variables;

3. The'way missing values are handled.

Data representation can be a crucial factor for a succeeding learning process and can
also have a great impact on generalization ability [Bishop, 95]. As Hinton points out, the
correct generalization from a training set must depend on how the input and output vectors
are encoded and, once a network has been correctly trained, the same network can be used
to generalize in any other way we choose, simply by devising appropriate input and output
transformations [Hinton, 89]. The task of the hidden layer transformation is therefore twofold:
first, detection of data structure, redundancy and relative relevance of variables under the
chosen representation and, second, approximation of the actual underlying function.

The difficulty of the general learning task is then exacerbated because, in the ANN
paradigm, the data (and with them, the problem itself) are adapted to the neuron model
(and, possibly, to the learning algorithm), and not otherwise. Instead, by making use of
domain or prior knowledge, we shall be able to define a model more fit to the data. Prior
knowledge is any information we possess about the problem itself and about the nature of
its data or about the desired form of the solution, apart from the functional samples. If all
this information (which is assumed relevant) is supplied to a neural network or included in
its design, it shall not have to be discovered.

3.2 Scalar product as a pattern recognizer

Since the early days of pattern recognition, artificial neuron models were designed as com-
puters of a "recognizing function" (giving rise to the name of the field). As such, one of the
first activation function proposed was the Heaviside:



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 56

•{ 1 if z > 9
o ifz<e

This function was motivated by the logical analysis of computer circuits and the
metaphor of computers as brains. It was used in the McCulloch & Pitts model
[McCulloch and Pitts, 43], in many of the first non-linear associative memories (such as the
lernmatrix [Steinbuch, 61]) and, fundamentally, in the Perceptron [Rosenblatt, 62]. The bi-
nary output reflected the original closeness to the biological counterpart. When an input
vector (or pattern) is supplied to the neuron, its response is either 1 or 0, standing for "I do
recognize it" or "I do not recognize it" . The recognition part is dealt with by the aggregation
function, the ubiquitous scalar (or inner) product. It is worth digressing a little about the
reasons why this way of aggregating vectors has been so widely used.

In the first place, there is the once appealing analogy to the biological counterpart (the
original inspiration). The slow, analog integration of incoming connections of a neuron, each
one acting as (strong or weak) excitation or inhibition channels was modeled (see previous
remarks on the abstraction process) by an instantaneous and discrete "integration" operator:
the weighted summation. This leads to one of the definitions of scalar product.

iyi (3.2)

In the second place, the definition of the angle between two vectors can be related to their
scalar product:

Definition 3.1 The angle 0 between two non-null vectors, x, y is defined as

[M (3'3)

where || • || is the Euclidean norm.

The geometric interpretation of this definition is depicted in Fig. (3.1). Let us suppose
that x = ( x \ , X î ) and y = (2/1,1/2) and, without loss of generality, that ||a?|| < \\y\\.

From trigonometry we have Trjm = cos 0 and therefore

r = \\x\\cos 6 = ~ (3.1)

is the fraction of ||.f|| that is pointing in the direction (with sign) of y. Notice that if y
is parallel to the «-axis, then r = x\. In other words, x • y can be seen as [|y|| times the
projection of x on y, or vice versa (\\x\\ times the projection of y on x).

This bounded fraction of ||f|| gives an idea of how close or separate (in 0) are x and y. It
can also be regarded as how close are the points represented by af, y, as measured by ||y — x\\\



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 57

Figure 3.1: Two-dimensional geometric interpretation of scalar product.

the smaller the norm, the greater is r, and with it x -y (for constant y), showing the relation
between a model working on vector scalar product and one working on a norm of the vectorial
difference. The value r is bounded by

< r < \\x\\ (3.5)

The lower bound corresponds to the two vectors being colinear and going in opposite
directions. The upper bound signals colinearity and the same direction. The magnitude is
hence only a scalar factor that amplifies the value given by the angle. Therefore x • y is
greater:

1. The closer (in 9) are ,r, y;

2. The longer (in || • ||) are x, y.

Figure 3.2: The scalar product between w and the other three vectors is constant.

leading to points of constant value lying in parallel hyperplanes -Fig. (3.2). Note also that,
being the scalar product commutative, the initial assumption about their relative magnitude



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 58

Figure 3.3: (a) Co-linear vectors (0 = 0), \x\ • x^\ is maximum, (b) w • Xi < w • x? although
x\ is more similar to w than ¿2 is. (c) Normalized vectors all lie on a circumference of radius
one; w • x\ > w • x<i > 0 (0 6 [0, ̂ ]). (d) Scalar product for orthogonal vectors is 0 (0 = -|).
(e),(f) Scalar product is negative for 6 G [f, 3f].

is irrelevant. Some of the possible situations are depicted in Fig. (3.3). In general, we
have \x • y\ < \\x\\ \\y\\ (the Cauchy-Buniakowski inequality). If magnitude effects are to be
eliminated, normalization is necessary:

x' = (3.6)

so that x1 • y' = cos 6 G [—1, +1] gives a measure of how similar .T', y' are, traditionally
used in statistics (0,-mode factor analysis) as a measure that preserves proportions. This
makes scalar product a simple but effective recognition function, linear, continuous and dif-
ferentiable. A neuron model FÍ(X) with weight vector w' endowed with this measure will thus
compute the projection of x on w', multiplied by \\w'\\:

F(x) = x = v \x\\cos0
projection

(3.7)

The problem of this measure is that, although it is locally bounded for a specific pair
of vectors (the above inequality), the vectors themselves are not, and hence its usage as an
explicit recognition device is severely limited. Variable standardization can be of help. A
common input preprocessing scheme is to bring variables to zero mean and unit standard
deviation. Chebyshev's inequality -see Appendix (D)- tells us that, in these conditions, by
choosing a A; € N+,

Pr(M > A) <

and therefore we could propose a "bound" for£as£ma2; « (k,k, . . ., k) so that ||xmax||
A value of k = 7 should suffice (probability is upper-bounded by « 0.02). However, the lack of
an explicit control of the neuron (Is this really a good bound? How are the weights bounded?)



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 59

and the dependence on the k parameter1 still suggest that a modification of the model (not
of the data!) can lead to improved general (similarity) computing devices.

In conclusion, although not a proper similarity measure (we will see in (§4.2.5) that it
does not fulfill one of the basic requirements to be called such) the conceptually nice dual
view of scalar product as a weighted summation or as an "absolute" similarity (along with
its clean analytical behaviour) is the rationale behind its use from the outset until today.
Besides, both interpretations are easily linked by noting that (3.2) is in fact the Cartesian
equation of the hyperplane written in a compact form:

7T : x\wi + X2W-Ï -f . . . + xnwn = 0 (3.8)

with direction vector w (orthogonal to the plane) and constrained, in absence of an
independent term, to pass through the origin. The situations in Fig. (3.3) can now be looked
at again by taking one of the vectors as a reference and imagining a line perpendicular to it
passing through the origin: it will be the hyperplane of which this vector is a director vector.
Any other vector lying in the same side of the hyperplane as the reference will yield a positive
scalar product, greater with increasing distance to the hyperplane. The situation is analogous
for vectors lying in the opposite side and (increasingly) negative scalar products. Of course,
any vector lying on the hyperplane will be orthogonal to the reference one, and will yield a
null scalar product. This is the basic principle of the way Perceptrons work.

The basic Heaviside function was later generalized by softening it in a controlled way,
leading to the family of squashing activation functions, of which the sigmoidal functions are
well-known members. The main property of these functions (the "squashing property") is
their asymptotic behaviour in the re-axis, which implies they are bounded functions. As an
example, consider the logistic parameterized function:

It can be shown that lim/j-Kx, gp,g(z) = Hg(z). The net effect of a squashing activation
function (not considering its effects on a derivative-based learning algorithm) can be regarded
as producing a softened up recognition, a normalized (because of the boundedness character-
istic) degree of recognition. Notice that this function, being a strictly increasing monotonie
one, does not alter the discussion so far.

3.3 Similarity as a basis for Neural Computation

In theory, the design of artificial neural networks should follow the principle:

Principle 3.1 Similar patterns should yield similar outputs.

'Note that there is a compromise between high values of k (to avoid overflowing the bound) and low values
(to prevent setting an unrealistically high bound, which would make the neuron hardly sensitive).



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 60

Although the smoothness criterion in (2.17) can be taken in some sense as a functional
way to favour this principle, what "similar patterns" means is problem-dependent, and only
in counted occasions will coincide with the fixed interpretation of similarity that the network
is going to perform. There is even a more basic principle [Haykin, 94] to be satisfied:

Principle 3.2 Similar patterns should have similar representations.

The fulfillment of this principle easies the fulfillment of the former, although it does not
directly imply it, because neuron models will make use of their own fixed "similarity measure"
on the representations -see Fig. (3.4).

Principle 3.2 Network transformation

/
f ~\

Pattern
space P

\

V
("Input

"(space I

s

r x

Hidden
jipace(s) H ^

Output
space O

Principle 3.1

Figure 3.4: A Neural Network as a similarity transformer: The similarities in each space
should be such that: i) s/(i, ¿') captures the original likeness sp in pattern space, and ii)
s¡(i,i'} =£• s//(/ì, h') =>• SQ(O, o') (/¡input, H ¡hidden, O:output).

Consider the example depicted in Table (3.1), where patterns include natural numbers
(a situation much more common than not). Principle (3.2) says that their representation
(the actual input space for the network) has to be respectful with their nature. If these
pattern components are represented as, say, binary-coded bitstrings (which only respect the
characteristic of being discrete) then Principle (3.2) is being violated and, with it, Principle
(3.1). This is because the similarity behind natural numbers (possibly based on some metric
in N) does not correspond at all to that used in the same binary-coded numbers actually fed
to the neurons. For example, two correlative numbers in N as 31 and 32 (thus very similar)
are far in Hamming distance. This change of representation is not part of the original task
and has to be additionally discovered by the network.

pattern space
.. . ,30,31,32,.. .

(Metric in N)

input space
...,011110,011111,100000...

(Hamming metric)

Table 3.1: Representation of natural numbers as a binary code.

This is exacerbated in the case of scalar-product driven neurons, for which magnitude will
also be important, and with magnitude into account the computation is further distorted.
As an example, consider two vectors in fi ,f2 6 [0,1]6, depicted in Table (3.2).



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 61

x\
Case 1
111001
lililí

dn(xi,Xí) =2
¿E (x 1,12) = \/2

Case 2
001001
010001

cMzi,z2) = 2
J / -+ ~¡ \ /r\

f 1 • f 2 = 4 ¿í • £ 2 = 1

Table 3.2: Influence of magnitude in the representation (e¿£, du stand for the Euclidean and
Hamming distances, respectively).

In both cases (1 and 2), scalar product yields quite different values, despite the fact that
the vectors «1,12 are equally near in Hamming and Euclidean distance. As for RBF units
note that, denoting by 62 the "base 10 to base 2 operator", it can be checked that

N (3.10)

This means that a neuron model based on Euclidean distance (instead of Hamming) on
the bit representations will neither capture the original metric in N (assumed also Euclidean),
because trje change of representation relates all computations to the Hamming distance, thus
violating Principle (3.2). Additionally, artificially augmenting the input dimension can only
harm local approximation schemes like that performed by a RBF network.

All this means that, even if we devise a representation that is reasonably respectful to
Principle (3.2), there is no guarantee that Principle (3.1) will be respected, because of the
peculiarities induced by the neuron model. Additionally, the possibility of using a Gray code,
for instance, would only fulfill Principle (3.2) locally, rendering it almost useless2. Even if we
could make Euclidean distance behave proportionally in the representation, this would still
be based on the assumption that the actual measure that should be used in general in N or
one of its subsets is the Euclidean, certainly far from reality in some situations3.

Therefore, the two requirements to ensure that both Principles are to be satisfied can be
resumed in the following:

1. To identify and understand what does similar mean for the task at hand and propose
a neuron model that best captures this functional similarity, at least for the first layer
of neurons (the layer in contact with the input space). This deals with the pattern
similarity;

2. To choose a representation —if still needed-
do with the pattern heterogeneity;

that fulfills Principle (3.2). This has to

2 In a Gray code, two consecutive naturals would differ in only one value. This is a useful coding wherever
a small change in representation involves a small change in the represented entity (as, for example, in Genetic
Algorithms). However, medium or big differences do not elicit correspondingly high Hamming distances.

3Think of a quantity representing a date, ranging in 1..31; the circular behaviour should be realized somehow
by altering the basic distance. For a variable (taking natural values) standing for the number of children, the
distance between 7 and 9 is not the same "psychological" distance than that between 1 and 3 (which is triple).
In both situations, domain knowledge is being used.



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 62

In current approaches these two requirements are more than often neglected, or let to
the learning process. The following two sections elucidate these two topics (similarity and
heterogeneity) in more detail.

3.4 Similarity in Artificial Neural Networks

The term physical similarity is coined to reflect the fact that the practical totality of ap-
proaches interpret the collection of input variables, whatever they are meant to represent,
as the coordinates of a point in the n-dimensional Euclidean space Rn. As a consequence,
the appealingly simple and general physical similarity computation performed by a neuron
working on scalar product or Euclidean distance has already been put in doubt as being truly
general or conceptually right in all situations [Rumelhart et al., 93], because it may not be
the most suitable to capture the required functional or psychological similarity4. There are
two basic conceptual flaws with this "raw" similarity computation.

The first one is the dependence on magnitude. Since the input variables are treated as
vectors, their length is important. As we saw in previous sections, scalar product gives a
value that is greater when either the angle is smaller or the product of magnitudes is greater.
This implies that the measure is potentially unbounded, an undesirable feature, because if a
function is to express a recognition degree, this degree has to be relative to some maximum.
Of course, it can be argued that, at least in practical applications, the target function will
have a compact support, and thus the "maximum scalar product" will be bounded. This
remark is not useful since, on the one hand, we may not know the actual input distribution
(it might, as is often the case, be covering a submanifold of the input space) and thus the
theoretical maximum is an unreachable one and the actual maximum is unknown. On the
other hand, what is the maximum length of a weight vector? Although in practice small
weights are beneficial, there is no clear way of setting an a priori limit. Moreover, some
recent experiments have shown that the range of possible weights strongly conditions the
results of a learning process [Sopeña, Romero and Alquézar, 99]. In conclusion, raw scalar
product is an uninformative measure of similarity. In the classical neuron model (that of the
MLP), the squashing activation function does part of the job: its boundedness permits to
see the whole neuron computation as a bounded similarity function. However, it does not
solve the problem to satisfaction: although the activation function is bounded, its argument
is not, so that the function may be too easily brought close to its extreme values, loosing the
sensibility the neuron should have. What is more, the unit is still computing the "physical
similarity" which, quoting [Rumelhart et al., 93]:

"... may not be the best measure of the functional or psychological similarity we
would like to employ at the output." (my italics)

This is the second basic flaw, easily illustrated in the following examples. Consider the
three triangles of Fig. (3.5). To what other figure is more similar triangle number 1? To

4 The reader may be interested in a more formal explanation of why Euclidean distance and scalar product
are so closely tied to the Euclidean space R", given in Appendix (A).



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 63

number 2 (because, although is bigger, it keeps the same proportions), or to number 3
(because is of the same size, though with different proportions)? One could argue that
number 2 is the same triangle as number 1, though slightly scaled up and, thus, they should
be treated as similar or, better, equal. This first example tells us that a similarity judgement
depends on what input patterns really mean to us and how should they, as a consequence,
be treated. This is an old problem in cognitive psychology and other disciplines.

Figure 3.5: What triangle is more similar to triangle number 1?

As another example, consider a typical character recognition task, in which characters
are encoded as binary (or continuous, for what matters) pixels in a grid, which is presented
to a network as a vector in a space of very high dimension (the number of pixels in the grid)
or, better, as a vector of features in the form of pixel combinations. The classification of the
letters in the set {a,..., z, A,..., Z] is clearly problem dependent. The precise classification
the user has in mind (e.g., lower case vs. upper case or a/A vs. b/B vs. ... z/Z, or even
vowels vs. consonants, etc) will surely not be the one the network "sees". In other words,
patterns x that are similar to a neuron (because the inner product of x with its weight vector
is high) need not (surely will not) be similar in the eyes of the user (read problem). In fact,
the learning task consist precisely on this: to show the network what is the actual similarity
relation. In a practical data clustering scenario reported in [Chandon and Pinson, 81], four
skulls, one of an adult Homo Sapiens, one of an infant Homo Sapiens, one of an adult gorilla,
and one of an infant gorilla had to be told apart. One reasonable outcome is to have both
Homo Sapiens skulls grouped together (that is, to ignore the differences in skull size of adults
and infants). The other is to have the two adult skulls separated from the two infant ones.
These are different tasks; in both cases, though, the network is performing the same basic
transformation. In these examples, the main problem is the dichotomy "what input patterns
really mean to us"/"what they mean to a neuron". Much of the learning process is devoted
to narrow this gap.

What is actually needed is a transformation to another representation form in which
patterns requiring similar (for the problem) responses are indeed similar to one another (for
the network). This is classically performed, in theory, by the hidden layer(s) in multilayer
networks. Quoting again [Rumelhart et al., 93]:

"... if we use a sequence of such transformations [the hidden layers], each involving



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 64

certain non-linearities ••• we can entirely rearrange the similarity relations among
the original input vectors."

This view is conceptually right and task independent. In practice, it may be that for
complex transformations several layers are needed, or very many neurons per layer if we
restrict the maximum number of hidden layers to, say, one or two. In all, this is giving
support to a deeper and more precise formulation of neuron models as similarity computing
devices. If more information is implanted into the network design in the form of supplying a
neuron model —at least for the input layer— which captures better the required similarity
in the input space (which is also the space where the input-layer weights belong), the task of
finding the required transformations may quite possibly be simpler to learn.

3.5 Heterogeneity in Artificial Neural Networks

The requirements involved with the fulfillment of Principle (3.2) bring us straight back to in-
put representation. Real-world data come from many different sources (continuous or discrete
numerical processes, symbolic information, etc.) and have their own peculiarities (vagueness,
uncertainty, incompleteness), and thus may require different treatments. This heterogeneity
is traditionally coped with by preparing the data using a number of coding schemes. However,
this preprocessing is not part of the original task and may involve an abrupt change in input
distribution and an increase in dimension.

These new high-dimensional patterns entail a lower data density, which in turn requires
stronger, more accurate constraints on the problem solution [Cherkassky and Mulier, 98].
There is also a corresponding growth in the number of weights the network is forced to learn,
their interpretation, the increase in training time, in the complexity of the error surface, and
so on. We saw in (§2.1.9) the most commonly encountered kinds of non-standard data and
how they were handled, if at all. In the following, the flaws of these encodings are discussed
in detail.

3.5.1 Nominal information

For nominal variables with k values, the coding using a 1-out-of-fc representation introduces
the rows of the Ikxk identity matrix in the training set. This leads to an structured increase of
model input variables, which translates in a notable increment in the number of parameters.

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

Table 3.3: A slice of the data set.



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 65

Let [it-,.. . ,z¿+fc_i] be a "slice" of length k of x = (zi,. . . ,xn) (the entire input vec-
tor), corresponding to a given nominal encoding, as depicted in Table (3.3). The following
statement holds:

3j : i < j < i + k - l : (xj = 1 A V/ : i < l < i + k - 1 A / 56 j : xt = 0) (3.11)

However, this information has not been told to the network and thus part of the task
is to discover that all these inputs are strongly related and that, as a matter of fact, they
represent a single one. Besides, thanks to the commutativity property, it would have been
the same if the slice were broken in pieces and supplied in separate positions.

On the other hand, the increment in the number of network free parameters can become
acute for moderate to big numbers of hidden units. It is important to emphasize that the
problem with these extra parameters is that they are not collectively treated as an entity
with a specific meaning, but as separate, independent variables.

3.5.2 Ordinal information

For ordinal variables, one possibility was to treat them as continuous and have them equidis-
tantly mapped on an arbitrary real interval. First, this imposes a continuum where there is
not (e.g., stating that there are potentially infinite possibilities between having two or three
children) and also extends a finite to a potentially infinite range. Second, since these variables
need not represent numerical entities (they could be, for example, the letters of the alphabet,
or the days in the week), this encoding is assuring that Wednesday is three times Monday,
or that "D" plus "£" is "J".

The representation as a thermometer is probably a worse choice. If the number of
possibilities to be represented is not small (say, more than a dozen) the increase in vari-
ables may be simply not affordable. For a small such number, all the problems signaled
for nominal variables apply. In this case, the structure to be discovered is of the form:
3j : t < j < i + k - l : (V/ : l < / < j : x¡ = 1).

However, as we have seen, even this vision is misleading, since the "order" apparently
imposed on this encoding is broken by the commutativity property. In other words, a per-
mutation of the training data columns will result in an identical training set for the network.

3.5.3 Missing information

The possibilities and drawbacks of current approaches to handle missing information were
already reviewed in (§2.1.9). The main trend was formed by those methods that complete
the object description in a hopefully optimal way.

An alternative solution is simply to ignore what is not known, in such a way that it does
not affect the treatment of the known pieces of information. This can lead to much simpler
and equally intuitive schemes, based on not trying to estimate what is not known, because



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 66

we could well not_find the best estimation, in terms of the supervised learning process that
we would like to apply to the obtained data. This is reminiscent of the discussion on the first
training stage for RBF networks (§2.1.7).

This line of thought corresponds to the second type of methods explained in (§2.1.9).
The idea is not new in data analysis. The ignorance of the absent components, followed by
a simple normalization by the number of present ones, is in the base of the more classical
similarity measures [Gower, 71]; empirically, it has been found superior to other treatments
in standard data analysis experiments [Dixon, 79]. In our case, it translates in making the
neuron model handle missing data. This fits nicely in the framework for neuron models
proposed in this Thesis, because follows the principle of adapting the models to the data
and not otherwise. Besides, since an heterogeneous weight is, by definition (see §(4.4)), of
the same type than its corresponding input, a network weight can also be missing, with the
consequent increase in flexibility and possible uses for network pruning. Note that a key
assumption about this kind of treatment for missing values is that they are approximately
equally distributed in training and in future test sets. In a sense, the network gets used to
missing values from the outset, in the learning process itself.

It should be emphasized that we are not claiming that these are better ways to ultimately
cope with missing information. This would need a full comparison between all the methods
over a sufficiently large collection of data sets. Even then, the results might be inconclusive.
Rather, we propose an alternative view which follows the general ideas of missingness as
ignorance, and adaptation of the models and methods to the data. Of course, and regardless
of the neuron model, it seems clear that complete data are to increase performance of whatever
neuron model we use. Hence, methods for data completion could also be used together with
the new neuron models proposed.

Of all the reviewed non-statistical methods, one of the most extended and arguably the
less harmful is the addition of another variable. This has the appeal of being very intuitive
because it can be regarded as signaling the abnormal situation to the network in the form of a
flag th&t is turned on where appropriate. However, from the point of view of inductive learning
systems (of which ANN are a class), for a data set wherein one attribute is often unknown,
an algorithm may end basing its workings on that attribute taking the value "unknown",
certainly an undesirable feature [Quinlan, 86]. For nominal variables, for example, with k
different actual values, this technique is equivalent to an encoding with the rows of the
I(k+i)x(k+i) matrix. The missing value is treated as just another value. Consider the following
Table (3.4):

fl
£2

Vl

3.8
0

"2

0
1

Table 3.4: Two patterns with their values in a data set. Pattern x\ is present for variable v\
(with value 3.8), while pattern £2 ls absent. The variable 1*2 signals the situation.

Apart from the increase in parameters to be estimated, there is an structure, known by



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 67

the user but not By the network. For example, assuming zero is not a possible value for ui,
these two rules are fulfilled: v\ ^ 0 43- v-¿ = 0 and t>2 = 1 •£> i>i = 0. Besides, the value
imputed to the variable whenever it is missing (zero in this case) is going to entirely change
its distribution. Nevertheless, in mathematical terms, it is giving the network a chance to
overcome the problem. Let y(x¿) = $^ • WjXij, as usual. Then,

y(x2) - WiXii + W2X-22 =

That is, when the value is present, its contribution to the overall sum can be made variable
(it depends on .TU). When it is absent, there is a fixed contribution w^. This seems a good
idea in practice; hence, this is the preferred encoding method for comparisons.

3.5.4 Conclusions

Intuitive as they are, it is by no means clear what is the precise effect of these encodings
on network performance, because of the notable change in input distribution, the increase
(sometimes acute) in input dimension and other subtler mathematical effects derived from
imposing an artificial order or extending one to an infinite continuum. A further problem
is given by the significant amount of zero input values that all these methods introduce
in the treated data sets. This has two important consequences: first, it means that the
affected input is not counting at all in the aggregation function (whatever it is) and thus the
corresponding weight is irrelevant. Second, and most important, for learning methods relying
on derivatives, a null input also nullifies the updating of its weight5 and makes the affected
weight not subject to error correction.

As a consequence, in order to make data fit into the neuron model, these encodings are
prone to cause a distorsion or result in a loss of information. In the ANN paradigm, hence, the
inherent difficulty of the learning task can be aggravated by having the network to discover
the new correlations derived from an structured increase in the number of inputs. Although
the existence of prior knowledge allows for more sophisticated forms of preprocessing (e.g.,
non-linear), in most cases there is enough domain knowledge to design a more specific neuron
model, so that these and other transformations can be embodied within the corresponding
similarity measure.

3.6 A framework for similarity

Once we depart from the biological model and intend to use the artificial neuron as a com-
puting device, there is no need to treat all the inputs in the same way, as is done in the
practical totality of existing models. Scalar product and Euclidean distance are examples of

5Which is proportional to it, see the discussion on the back-propagation algorithm in (2.1.6). Roughly,
being KJ = 0, Au>,7 oc error; x, = 0.



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 68

a global aggregation measure, because they can be defined as a function of the weight and
input vectors as a whole. The former can also be conveniently defined as a linear combina-
tion of components. In this case, all of the partial recognitions are performed using the same
function (the correlation) and combined with asimple summation. In all, they are particular
cases of performing a combination of partial recognitions. There is no local information or
knowledge used to devise a particular recognition measure, specifically tuned to its input, nor
are these partial measures combined in a special way.

To illustrate this point, let us consider an arbitrary neuron i computing a function F¿(x),
according to (2.1). For simplicity, we choose the vectors x,wl € [O, l]n C R", representing
the input and weight vectors to neuron z, respectively. Let us define si(xj,Wij) = XjWij and
s2(zj,u;t-¿) = 1- \ X j - W i j \ .

The first function s\ is the correlation. The second function s2 is easily constructed from
the standard metrics in E, that is d ( x , y ) = \x — y\ for x,y 6 K, which is the base of all
Minkowskian measures (2.5) (regardless of q). This can be checked by reducing (2.5) to the
case n = 1.

These two measures can be said to compute the similarity (restricted to the domain [0,1])
between two scalars. Albeit capturing different aspects of their arguments, it is clear that
the two functions are strongly related. On the one hand, both are continuous and exhaustive
functions from [0,1]2 to [0,1]. On the other hand, both are two ways of expressing an intuitive
idea of similarity between two real numbers.

To be precise, «i is not a proper similarity measure, because it does not fulfill completely
all the required properties (this will become clear in the next chapter). The point is that
at this level —the computation of F¿(£) for single vector components—, the two measures,
though different, are actually computing the same kind of function.

Now let us define the extension to n components as a simple summation of the partial
measures:

Q* (*r • in--\ — 7 . i77l f Q 19^oi l u/ 7 . u7t1 I — £ • W I o. IZ I* \ j * fj / \ /

j=i

is the classical scalar product, whereas

n

~ ;¿ | |i (3.13)
3=1 3=1 3=1

is an inverse function of the norm of the difference (which is a distance in [0,1]). Let us
plot them one against the other, in Fig. (3.6), for n = 1:

Their relative behaviour can be described as follows. First, the two measures yield a
minimum value of 0 and a maximum of n. However, they do not have the same extrema:
while the minimum is attained in a single point (at [0, 0]) for s\, this is attained at [0,1] and
[1,0] for s2. Regarding the maximum, it is reached only at [1,1] for s l t and along the line



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 69

Figure 3.6: Left: Si(x,y) = xy, (x,y) € [O, I]2. Right: s2(x,y) = 1 - \z - y\, (at,y) € [O, I]2.
In both cases, the contours are isoactivation lines.

segment x = y for $2- Notice that s2 yields its maximum value whenever there is actually a
"perfect match", that is, when x j = w,-¿. In contrast, s? gives it only when x j = w¡j = 1.

In light of the maximum value attained, we can divide both functions by n, to obtain:

€[0,1] (3.14)

( n ) / - ~,\ T
s2 (x, w ) = 1 —

\x-w%
n

e [0,1] (3.15)

The resulting normalized measures can be said to express a degree of recognition (ranging
between zero and one) and can be shown to be kinds of similarity measures in [0,1], according
to the precise definition that will be given in (§4.2.2). Note that, since n is also the number
of components, the "normalization" is actually the average of the partial quantities.

To sum up, we emphasize the more relevant points:

• The two measures above can be said to express the same concept: a similarity degree.
The intuition behind (3.15) is that of the inverse of a distance, whereas the rationale
of (3.14) was amply sketched in (§3.2).

• They have been built following the same line of reasoning. The design process has been
given by two steps:

1. Propose a partial measure for vector components.

2. Integrate them into a global measure (in this case, with an arithmetic average).



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 70

Therefore, these two measures can be regarded as particular instances of an abstract or
generic model of similarity computation. This model can then be used as an artificial neuron
model for the degree of recognition expressed above, amply motivated in this Chapter.

Making a step beyond, and noticing that (3.14) and (3.15) are linear measures, we could
think of composing them to a further, non-linear function s, in such a way that the computa-
tion of similarity is conceptually respected (for example, a monotonie distorsion). This leads
to a generic model of the form:

Ff(x) = s(x, tu'") = s(si(x, to1')) (3.16)

where s,- is either (3.14) or (3.15). Notice that this conforms to the classical two-stage
mapping (2.1) in current neural approaches. Additionally, we see that there is actually
nothing that restrains the s¿ to be linear: a non-linear choice for the partial measures could
avoid the use of s. This is a clear departure from the classical model.

The above intuitions lead naturally to the development of more general measures, in which
a similarity-based neuron model could be conceived by considering the following issues:

• If all the components are real-valued, we could think of devising partial (that is, local)
measures of similarity other than the ones initially proposed.

• The way these partial measures are combined need not be the arithmetic average. More
general aggregation functions can be defined, to obtain a similarity in Rn.

• For input components that are not to be treated as real-valued, specific heterogeneous
partial measures should be devised.

• There is no need to use such a simple transformation s(x) = 1 — a:, from a distance
to a similarity, as is used in «2. Other, parameterized and more controllable functions
are conceivable. For instance, the choice d ( x , y ) = \x - y|2 for x,y € K, ends in the
expression «3 (x, w*) = n — \\x — wl\\\. Dividing by n as before, and making the choice

§(z) = 1 — 1/z lead to Sg '(x, M?') = 1 — Nr~T- "2 Ç [0,1], a normalized similarity in
[0, l]n, based on Euclidean distance.

Moreover, it may possibly be of interest for the local distances to be bounded or,
better, normalized, because this way the possible combination functions could be more
general (by making them independent of data particularities), and eventually easier to
formulate, so that a handful of them could serve in practically all situations.

The possibilities are many and rich to design new neuron models, provided the final
measure (to be used as a neuron model) is a similarity in its input and weight space (which
coincide). In all cases, domain knowledge can be used, to a greater or lesser degree, in the
design of the neuron model and, by extension, into the function the ANN is computing. The
objective is twofold: to gain insight into the workings of an artificial neuron model, and to
use these new models to hopefully solve problems more satisfactorily.



CHAPTER 3. SIMILARITY AS A BASIS FOR NEURAL COMPUTATION 71

3.7 Concluding remarks

In this chapter we have tried to provide a kind of overview and rationale for the design of
neuron models cast under the common framework of similarity measures. This framework is
meant to include the standard models used in MLP and RBF networks. However, unification
of the plethora of models existent in the literature is not pretended (e.g. non-localized RBFs,
or scalar product-based neurons using non-monotonic activation functions, as the sinusoidals,
are not included).

A groundwork has also been set forth, by analyzing the basic postulates in ANN design,
the extent to which current approaches deal with similarity and heterogeneity and how neuron
models can be explained in light of these two related concepts.

Among the reviewed problems we find that the network is left to face an enormous task,
including a discovery of structure, detection of relative relevance of variables under the chosen
representation and approximation of the underlying function.

A reasonable solution to ease this task —and the one followed in this work— is to have,
on the one hand, a normalized neuron computation, instead of having to normalize the inputs
and, on the other hand, a neuron computation that is explicitly defined to take the form of
an (heterogeneous) similarity measure.

There are other, additional advantages in defining a similarity function in a explicit form,
by taking into account the data peculiarities:

• Practical: understandability of the function computed by the network (because of the
domain knowledge used in its definition) and readability of the results (what do the
weights mean).

• Theoretical: taking profit of the properties of similarity measures (e.g. boundedness,
monotonicity, continuity or absence of input preprocessing).

The view of a neuron model as an explicitly defined similarity computing device allows
to work directly in pattern space, thus making the identity pattern space = input space hold.
Furt lier, the direct treatment of heterogeneity not only fits conceptually in this view —¡f
non-standard data are encoded, there is no heterogeneity— but is to lighten the learning
task, as the problems or subtleties derived from the pre-processing mechanisms chosen are
avoided.



Chapter 4

Similarity-Based Heterogeneous
Neuron Models

Rien n'est plus semblable à l'identique
que ce qui est pareil à la même chose

et réciproquement.

Pierre Dac

In this chapter we construct a framework for the development of heterogeneous neu-
ron models based on similarity relations or S-neurons, derived from a somewhat larger and
abstract class of models (called H-neurons). Our focus of study will be centered on feed-
forward architectures, though nothing would prevent the design of more general structures
(as recurrent ones) by using S-neurons as building bricks. These networks, as stated in the
Introduction, are out of the scope of the Thesis. The obtained class of feed-forward models
includes some of the most widespread network models, as MLP and RBF networks.

4.1 Introduction

4.1.1 The definition of similarity

In classical AI systems, the notion of similarity appears in learning by analogy and case-
based reasoning (CBR), where learning by analogy and instance-based learning (IBL) fuse.
In particular, similarity coefficients have had a long history in the literature of cluster analysis
and data clustering algorithms [Everitt, 77], [Jain and Dubes, 88]. However, similarity has
been studied in its own right more thoroughly in psychology -and, in particular, in cognitive
psychology- than in AI. Firstly, there is a well established school rooted in psychophysics
which takes the form of geometric models. These models represent the objects as points in
a. high-dimensional coordinate space where a distance between points is to be defined based
on the given data. This distance measure is to reflect the observed similarities and should
correspond as closely as possible to the objective similarity between the objects that are

72



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 73

represented by the points, which could be any kind of data with information about objective
or empirical similarities (proximities) between pairs of objects.

Secondly, we find the general notion of similarity defined in set-theoretic terms -generally
known as the contrast model- discussed in the work of Tversky [Tversky, 77], which sum-
marizes a large portion of relevant literature and introduces a formal theory of similarity.
According to it, a similarity judgement needs the existence of a essentially unique continuous
real-valued function s that expresses a degree of similarity in a clearly defined sense. Such a
function is presumably bounded and, taking two objects a and 6 represented by the feature
sets A and B, respectively, expresses the (bounded) degree to which a and 6 are regarded as
similar, written s(a,6). This way, one can state comparisons of the type s(a,b) > s(c,d) to
say that object a is more similar to object 6 than object c is to object d. This endows s with
a semantics expressing how much two objects resemble each other1.

4.1.2 Features of similarity

The key point for a succeeding learning system, embedded in an environment, heavily relies in
its ability to internally represent the similarities between the different stimuli and to arrange
them so that similar incoming stimuli elicit resembling outcomes. We would like to bring
to attention the analogy of this reasoning to the Principles (3.1), (3.2) formulated in the
previous Chapter.

In cognitive psychology and other disciplines, formulation and representation of similarity
has been a key issue. Understanding how (and whether) biological perceptual systems rep-
resent and use similarities has been notoriously difficult to formalize, mainly because of the
feature selection problem, relevance determination, contextual effects, transitivity, semantic
considerations and others.

In the ANN paradigm, however, these complex aspects are somewhat mitigated because,
either they are not addressed (like transitivity) or assumed discovered by the network (like
the assignment of relevance to input features). As for context, a basic assumption in ANN is
that all the patterns are measured along the same fixed set of features. This means that some
form of prior knowledge is implicit in the feature selection process and the neuron models
are designed taking this into account. Nonetheless, in some recurrent architectures there is
an explicit provision for context.

4.2 Similarity measures

4.2.1 Distance measures

Definition 4.1 (Distance) Given a set X , any function d:

d : X X X -> R+ U {0}

such that Vx, y, z 6 .Y:

'Resemblance is the term used by Hume [Hume, 47],



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 74

i) d(x, y) = 0 -^ x = y

ii) d ( x , y) = d(y, x)

Hi) d(x, y) < d ( x , z) + d(z, y)

is a distance in X.

A set X endowed with a distance d will be denoted (X, d) and referred to as a metric
space. We denote the set of distance measures of a set X as D(X). The following is a
collection of useful propositions and properties about metric spaces and distance functions.
The proofs are given in Appendix B.

Proposition 4.1 Let (X,d) be a metric space and S C X; then (5, d) t's a metric space.

Proposition 4.2 (R,ei) is a metric space for d(x,y) = \x — y\. This distance function will
be referred to as the standard metric in R.

Proposition 4.3 (Q,d), (Z,d) and (N, d) are metric spaces for the standard metric in R.

Definition 4.2 (Normalized distance) Given a setX, a distanced 6 D(X) is normalized
if:

3x*, y* € X, Vx, y € X, d(x*, y*) = dmax > d(x, y) (4.1)

We denote such distances as functions d : X x X —> [0, dmax]

The standard metric in R can be extended in various ways to R™, n £ N+. We study such
ways as particular cases of aggregation operators.

Definition 4.3 (Aggregation operator) Consider a collection of n non-negative real
quantities. For convenience, we group these quantities as a vector z — {z\, z<¿,..., zn}. An
aggregation operator Q is a. function:

0 : (R+U{0}) n -> .R + U{0}

fulfilling:

i) Minimality. Q(z) = 0 <=> Vz Z{ — 0.

ii) Symmetry. Q(z) = Q((r(z)) for any a(z) permutation of z.

in) Strict monotonicity. ©(¿0 > ©(•?') whenever 3i z¿ > ¿¿AVj' : 1 < j < n/\j ^ i : Zj = z'-.

Remark 4.1 These conditions imply that Q(z) > 0 whenever there exists a z,- > 0.



CHAPTEñ 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 75

The use of the~~horm defined in (2.5) as an aggregation operator leads to general families
of distances.

Definition 4.4 (Minkowskian aggregation) Define the "Minkowskian aggregation" op-
erator Q7'n(-), V<7 > 1 e R, for an n-dimensional vector z, as

where v is a weighting vector and n' an averaging factor, either n' = n or n' = 1 .

The choice n' = n eliminates the dependence on the number of components. It is required
that all the u,- be positive and tied to the t-th component, in order to fulfill conditions (in)
and (n), respectively, in Definition (4.3). Note that the weighting does not necessarily imply
boundedness. However, if the original 2,- are normalized distances in [O, z¿imaz], and the Vi
equals the terms ̂  so to lie in the same [0, zmax] (by choosing u,- = *max ), the choice n' = n
is mandatory so that this characteristic is kept.

Proposition 4.4 The aggregation function 0?>n in Definition (4-4) is a valid distance ag-
gregation operator in E".

Proposition 4.5 The aggregation function ©?'n in Definition (4-4) zs a norm in Rn.

On top of this general kind of aggregation operator, whole classes of distance measures
can be defined.

Proposition 4.6 The functions dq defined as:

d¡n)(S,y) = {e«'n(î? - y;0), v € (R+)n) (4.3)

make (En, dg ) a metric space.

This generic class of functions is specifically known as (weighted) Minkowskian distances.
The measure obtained for q = 1 is generally known as the City-block or Manhattan distance.
For </ = 2 we have the Euclidean measure. This class of functions is characterized by an
increasing attention to the bigger partial components r/t with increasing values of ç, to the
point that, in the limit:

lim d^(x,ff) = sup d(xi,yi)

only the biggest value is taken into account. This last measure is known (for obvious
reasons) as the supremum or Chebyshev. In general, though, we are not restricted to such



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 76

a family of distances, and can make use of many possibilities of combining the individual
distances that stem from the combinations of v, n' and q. Additionally, several other classes
of distances can be derived as, for example:

(4.4)

r) (4.5)

where all the arithmetic operations on vectors are taken to be component-wise. These
two classes are "self-normalizing" and require the vectors not having negative components
or being null vectors. The following are classical examples of specific distance measures that
can be derived from (4.3), (4.4) and (4.5). Denoting by ß, ff2 and 5¿ev, the vector of means,
variances and maximum deviations of the variables,

1. (4.3) with n' — l,c = 2, v = 1 (basic unweighted Euclidean distance)

2. (4.3) with n' = n, q = l, v = ß (mean City-block distance weighted by the inverse of the
mean)

3. (4.3) with n' = 1, q = 2, v = a"2 (Pearson distance)

4. (4.4) with n' = 1, q = 2, v = 1 (Coefficient of divergence or Clark distance)

5. (4.4) with n' = 1, q = l, v = 1 (Canberra distance)

6. (4.3) with n' = n, q = l, v — 1 (unweighted mean City-block distance)

7. (4.3) with n' = n, q = 2, v — 5¿KV (mean Euclidean distance weighted by the inverse of
the maximum deviation)

8. (4.5) with n' = n, q = 2, v = 1 (mean Duran-Odell distance)

It can be noted that (4.) and (7.) above are normalized distances, with dmax — I .
It is not our intention to devise new distance measures, albeit by combining these factors
many variations can be obtained. For convenience, the following simple ways for distance
aggregation are derived from Definition (4.4), ha.ving the additional advantage of not being
restricted to Rn.

Definition 4,5 (Linear operator) An unary operator n defined on a set X is linear if and
only if, for every or, y Ç. X :

1. TT(CX) = CTT(X), c e K

2. x(x + y) = 7T(x) + K(y)



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 77

Definition 4.6 (n-Linear operator) A n-ary operator is n-linear if it is linear on each of
its arguments.

Proposition 4.7 Given n 6 N+ and a collection of sets Xi,X2i...,Xn for which corre-
sponding distance functions d — {di, ¿2, . . .,dn} have been defined, di € D(Xi), we denote
X = Xi X Xi X . . . X Xn (the usual Cartesian product). Then, for any n-linear Q and positive
v, the pair (X, 0(d; v)) is a metric space.

Proposition 4.8 Given a positive weighting v, the following is a valid n-linear Q operator:
n

©(d; v) = yjü«^i (weighted summation) (4-6)
t'=i

In the common situation where the partial distances are all normalized to the same range
of values, it is possible to devise specific aggregation operators. Let us suppose that, under the
same assumptions of Proposition (4.7), it holds that V¿ : 1 < i < n: d¿ : X{ x Xi — > [O, dmax\.
In these conditions, any Q(d) Ç. D(X) is a function of the form: [O, dmax]

n —ï [O, dmax].

Proposition 4.9 For normalized distances d = {di,di, . . . ,dn},d, 6 [Q,dmax], the following
is a valid'Q operator:

- , c > l 6 K (4.7)

(unweighted, normalized modulus)

This expression is obtained from Definition (4.4) by setting n' = n and v = I. In general,
in the conditions of Proposition (4.9), any operator of the form Qq>n(d; v) leads to normalized
distances provided the additional condition £)™=1

 u« = 1 holds.

Proposition 4.10 For normalized distances d = {di, d^, . . . , dn}, di € [O, dmax], the following
is d valid Q operator, being also n-linear:

l n

Q(d) = — yjf/i (arithmetic mean)

These are very simple and effective possibilities for aggregation families and shall be used
through-out. Notice that an additional weight can be assigned to individual components of
distance measures -—not for normalization or standardization purposes, as in the previous list
of measures— but to express relative relevance of components, in the form Q(d; v, w) where
each Wi multiplies rf, before the application of the aggregation operator. The condition is
again that all the w¿ be positive to preserve monotonicity. Normalized distances require also
the condition:

1=1



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 78

Although it can be an interesting feature, these relevance weightings are not considered
here, because relative relevance assessment is assumed to be part of the task of the ANN.
Normalization should suffice to equal all variables to a common scale before learning takes
place; in any case, the previous Propositions are still valid by associating each u>, to ¿, so that
symmetry is kept. We now turn our attention to the problem of defining similarity measures.

4.2.2 Similarity measures

Let us represent objects, patterns, input stimuli, entities, or however we originally call them,
belonging to a space X (of which nothing is assumed, apart that X ^ 0) as a vector x,-
of n components, where each component x,-j represents the value of a particular feature
(descriptive variable) a,- for object ¿, from a predefined set of features A = {GÌ, a-¿, . . . , <in},
judged by the investigator as relevant to the problem. These "vectors" can be thought of as
points in a n-dimensional vectorial space; this is possible provided that all the components
have a dimension (i.e., there is a total order <aj for all ay € A) and is irrelevant for the
following definitions. It is assumed that the precise order of the a,j 6 A is of no importance,
provided, of course, that is kept for all the x¿. This is the usual representation system in
which the components Xij of a given object are the values that this object takes for the
variables a,- in A. Now, the main question that arises is: how like are two £,-,fj in XI

We start by calling this vague notion of "likeness" a proximity index, one expressing the
overall degree of either likeness or resemblance -the similarity- or the opposite -the dissim-
ilarity. That is, a proximity index (or proximity measure) is a unique number expressing
how like two given objects are, by only taking into account the selected set of features that
characterize them.

For simplicity, let us denote by pij the proximity between ,£,• and Xj, that is, p : X x X — >•
E+ U {0} and pij = p(xi,Xj). To begin with, we differentiate among two kinds of proximity
indexes: similarity indexes s,-j and dissimilarity indexes <5,j, defined as p above.

Definition 4.7 (Similarity, dissimilarity) A proximity index2 has to fulfill the following
properties [Chandon and Pinson, 81]:

1. Non-negativity. The pij cannot be negative.

Si, > 0 (4.8)
¿¿.í > 0 Vxi,Xj 6 A' (4.9)

2. Symmetry. The p¡j do not depend on the order of i,j.

(4.10)
(4.11)

2In this context, the terms index and function will be used interchangeably.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 79

3. Boundedness. This is where s¿j and <5,-j diverge. There is a maximum similarity
(namely, that of an object with itself) and a minimum dissimilarity (idem).

Sij < smax (4.12)

Sij>Smin Vx . - .Xj -eX (4.13)

4- Minimality (Reflexivity in the strong sense). The extreme values are attained for equal
objects, and only for them.

Sij = «max <=> Xi = Xj (4.14)

Sij = Smin &xi = Sj V x i , X j C X (4.15)

5. Semantics. The semantics of s,-j > s¡k is that object i is more similar to object j than
is to object k. Conversely, the semantics of 5,-j > ¿¿^ is that object i is more dissimilar
to object j than is to object k.

Two possible (and, otherwise, arbitrary) values are smax = 1 and ¿m,-n = 0. An index s,-j
satisfying-properties (1.) through (5.) is a similarity index. An index <J,-¿ satisfying properties
(1.) through (5.) is a dissimilarity index. If, in property (4.), we replace the «• by just •£=,
so that two different objects can be assigned smax or Smin (as if they were the same object)
then we obtain, respectively, a pseudo-similarity and a pseudo-dissimilarity index. Note that
by different objects x,-, x j we mean that 3k : 1 < k < n : xn¡ ^ Xjk-

Another interesting kind of similarity index can be defined by requiring the property:

Sij = Smax & Xi = Xj = Xk V»,', Xj € X (4.16)

where Xk is fixed in X. That is, two objects are regarded as more similar, the more similar
they are with one another and with reference to a third "ideal" or prototypical object. The
maximum similarity is attained only whenever the two objects are equal, and equal to the
ideal: in other words, it is the similarity of the ideal with itself. An index with this property
will be called point similarity.

A space A' where a proximity index p¡j has been defined forms a semi-metric space,
denoted (A",p), being p either s or 0. Other, more restrictive properties can be further
demanded to such a space:

6. Triangular inequality. This property asks that any three different objects i',j, k are
either aligned or forming a triangle, and can only be in general fulfilled by a dissimilarity.

Sij < Sik + hj Vf,-, xj,xk e X (4.17)

This is equivalent to say that, given two different objects x ^ X j , their dissimilarity must
always be less or equal than the sum of their respective dissimilarities to a third object



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 80

Xk- In other words, it is impossible for the way from objects aT,- to Xj via a third
object aft, to be less than the direct way from a?,- to Sj. A dissimilarity index fulfilling
this property is called a metric distance, which will be denoted as d. Notice that this
ultimately corresponds to the definition of distance already given in Definition (4.1).
In what regards to similarities, it is perfectly possible for a similarity to either fulfill it
or violate it -see Fig. (4.1).

7. Ultrametric inequality.

Sij < max(6ik,Skj) V x i , X j , x k G X (4-18)

This is equivalent to say that, given two different objects a?,-, Xj, their dissimilarity (now
metric distance) must always be less or equal than the maximum of their respective
dissimilarities to a third object Xk, asking that any three different objects z¿,£j,¿>
must be always forming an isosceles or equilateral triangle.

0.4 / ^ 04

0.2

0.8

Figure 4.1: Two scenarios for the same similarity measure s taking values in [0,1]. Left: i and
j are very similar between each other and both are very dissimilar to k (sij > Sik+Skj). Right:
t is moderately similar to k and k to j, and thus i is very dissimilar to j (s¡j < s¿¿t + Skj}-

The last two properties are particular cases of the more general statement:

% < {(%)'" + (Skj)
r}r V£¿,S j tx k £ X,r > 1 € E (4.19)

where (4.17) and (4.18) are obtained for r = 1 and r = co, respectively.

4.2.3 Aggregation of similarities

The way different partial similarities should be combined to give an overall score is by no
means clear. The aggregation operator fulfills also a semantic role. Semantics are very
important and is a means to express psychological aspects of similarity; for example, the
presence of a particular attribute is neither a necessary nor a sufficient condition for the
overall similarity judgement [Wallach, 58]. In these situations, a clearly defined semantics
has to be stated. In our case, the adopted posture follows:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 81

1. Even small contributions can only add something in favour for the overall measure;

2. The eventually missing pieces are regarded as ignorance and do not contribute in favour
nor against the overall measure.

The following is a proposal of similarity aggregation formalization —an elusive topic
[Hahn and Chater, 98]— through a compilation of desirable properties. Also, the definition
is made easier by the fact that the partial values are, by definition, normalized. Incidentally,
in comparison to Definition (4.3), the minimality condition can be relaxed and the other two
conditions are still useful. Notice that monotonicity reflects point (1.) above.

For z € K,n € N"1" and an operator T, define:

í z if n = l
z»[T\ = l T(z¿z1^_1z) if n > l (4.20)

V n times

Definition 4.8 (Qs aggregation operator) Consider a collection of no quantities,
grouped by convenience as a vector SQ = {$1,82,.. .,sno}, where s, € [0, smax\U {X}, with
[0,smax] C R,5mai > 0. A similarity aggregation operator 0S is a function

&s : ([0, smax] U {A"})"0 -> [O, smax] U {*}

where the symbol X denotes a missing component, for which only equality is defined,
behaving as an incomparable element w.r.t. any ordering relation. Let

FX : ([0,smor] U {A'})no -» ([0,smar])
n, (n < n0)

be a filter operator, which constructs a vector without the missing components, in the
original order. Let s = FX(SQ). For the present components, an aggregation operator for
similarities is a function fulfilling:

i) Minimality. Qs(s) = 0 => 3¿ : 1 < i < n : s,- = 0 and (V¿ : l < i < n : s¿ = 0) =>•
0s(s) = 0. This formulation allows (though not ensures) the 0 as an absorbing element.

ii) Symmetry. 0s(a(s}) = Qs(s) for any a(s) permutation of s.

Hi) Monotonicity. 0s(s) > 0s(s') whenever there exists a s¿, 1 < i < n such that

Si > s'¡ A Vj : 1 < j < n A j / i : s j = s'j

iv) Idempotency. For an (arbitrary) s¡, s"[0s] = s¿,Vn € N+- Note that this specifically
includes the boundary values Smax[0s] = smax and On[0A] = 0. Idempotency implies
s"+1[0s] = s"[0s],Vn € N+. A less restrictive condition is to require:

(a) Idempotency for boundary values;



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 82

(b) The terms {s"[6,]}n>i forming a monotonie succession.

This property will be denoted relaxed idempotency.

v) Cancellation law. 0s({si,S2}) = ©$({51,53}) and Si > 0 implies sz = s3.

vi) Continuity. Q„ should be continuous in all its arguments so the reactions to small
changes in an s,- are not "jumpy". This property also ensures that all possible values of
Q s (s) can in principle be generated:

VS:se[0,smor]:(3<r : s = 0s(s*))

vii) Compensativeness. Q3 should be a Cauchy mean, i.e.,

min Si < Qs(s) < maxs,-
t i

A Cauchy mean3 is such that a good (bad) score s,- can be compensated by a bad (good)
score on another s j .

viii) Treatment of missing components. ©S(SQ) = ©a(^v(sb)) ana> being sx = (X,...,X)
of length n0, QS(SX) = X.

These last two conditions, together with monotonicity, are a way of introducing a specific
semantics in the aggregation, and others should be possible. Note that some measures, like
the product with arguments in [0,1], would violate vii). It will thus be considered as an
optional requirement, although the majority of measures used in practice are to comply with
it. Notice also that the max and min functions would not fulfill strict monotonicity.

Remark 4.2 Weighted operators Qs(s;v) are also valid, provided they make the operator
fulfill the above conditions.

Proposition 4.11 A measure s obtained from any such aggregation operator s = ös(s),
provided s = {si,...,sn} are also similarities s¡ in Xj, fulfills the properties of Definition
(4-7), making s a similarity measure in X = X\ X X? X . . . X Xn.

Proposition 4.12 The following are valid families of similarity aggregation functions:

1. Additive measures of the form:

where f is a strictly increasing continuous function f : [0, smax] — > [0, smax] such that
/(O) = 0 and f(smax) = smax> and £3"=1 1;,- = 1, with Vi > 0. As an example, consider
f ( z ) = zm ,m e Z, m / 0. For m = 1 we get the weighted arithmetic mean, which
further reduces to a pure arithmetic average setting v¡ = l/n. For m — — 1 a weighted
harmonic mean is obtained.

3This definition has been borrowed from [Roubens, 90].



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 83

2. Multiplicative measures of the form:

e.(i-;i0 = r lm/terj (4.22)

with f and v in the same conditions. Consider again f ( z ) = zm
im Ç. Z,m ^ Q.

The choice m = n and v¡ = l/n leads to the geometric mean, whereas m = u¿ = 1
yields a pure correlation4 for smax = 1. Note that pure correlation fulfills the relaxed
idempotency.

3. The normalized modulus:

Qs(s) = -¿=11511,, g > 1 e R (4.23)

This is an interesting special case of an additive measure by taking u,- = £ and f ( z ) =
2 9 , g> 1 €R.

This last case is a simple and useful measure, unique in that it fulfills all the properties in
Definition (4.8), including the optional ones, and is general enough to be applicable in many
situations. Although other choices of f ( z ) are possible, the family f ( z ) = zg is a simple
one, and does not depend on any parameter, once q is fixed. In this sense, note that derived
choices of the form f ( z ) — azq + /3, with an a ^ 0 and ß to be found, are of no interest
since, by cancelling out, they play no significant role for additive measures, by application of
a theorem due to Jensen -see Appendix (D).

Notice also that nothing is said about the degree of linearity of the resulting measure. It is
useful to introduce a function that -regardless of its linear or non-linear character- maintains
the similarity properties when applied to one such measure.

Definition 4.9 (Similarity keeping) A similarity keeping function (denoted s) is a strictly
increasing, bounded and continuous function s : [0, smax] —» [0, smax] fulfilling:

i) s(0) = 0

Ü) S(smax) = Smax > 0

Hi) 3e > 0, V.T < es(x) < x

Example functions are shown in Fig. (4.2). Note that s(x) — x is valid, and fulfills
smar = smax. In case this last condition is met, the functions are isomorphisms in [0, smax].

These functions keep (strict) monotonicity when composed to another (strictly) monotonie
function and, since every strictly monotonie function is injective, when applied to a measure
obtained by aggregation, the original properties that the aggregation operator as a whole
could have —of particular interest, (Hi), (iv) and (vi)— are kept.

4 For Smax = 1 there are no restrictions on v.



CHAPTEfi 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 84

Figure 4.2: Different shapes for an s function. One of them has a sigmoidal shape.

Proposition 4.13 Let s be a similarity function in X defined on [0, smax] and s a similarity
keeping function (either linear or non-linear). Then sos is a similarity function in X.

The final piece for constructing general similarity measures is a transformation operator
to obtain a similarity out of a metric distance.

Definition 4.10 (Similarity transforming) A similarity transforming function (denoted
s) is a strictly decreasing monotonie and continuous function s : [0,+oo) —> [0,smaa;] such
that s(0) = smax and lim s(z) = 0.

Proposition 4.14 Let d be a distance function defined on X and s a similarity transforming
function (either linear or non-linear). Then s ( x , y ] = s ( d ( x , y ) } is a similarity function in
X, for any two x, y € X.

Proposition 4.15 Let s, s be two similarity keeping and transforming functions, respectively.
Then sos is a similarity transforming function in [0,smax].

In case the original distance is normalized, the preceding statements can be further refined.

Proposition 4.16 Let d : X —*• [0,ámax] be a normalized distance function defined on X
and s a similarity transforming function (either linear or non-linear). Then, for an s such
that s(dmax) = 0, the function s ( x , y ) = s ( d ( x , y ) ) is a similarity in X.

Proposition 4.17 For every s function defined for a non-normalized distance, there exists
another s' function defined for a normalized one in [0,f/max], of the same shape, and fulfiling
the previous Proposition (4.16).

The following are examples of s functions:

• Linear: SQ(Z) = dmax - z, for z e [0,f/maJ (smax = dmax).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 85

• Inverse function: Si(z) = -^ for z 6 [0, oo), a > 0 (smar = a).

• Cauchy function: s^(z) = j^y for z 6 [0, oo),a > 0 (smax = a).

• Exponential function: «3(2) = e~z, for z 6 [0,oo) (smax = I).

• Inverted logistic: s4(z) = a(l - v ( z ) ) , for z Ç. [0,oo),a > 0 (smax = a/2),

where a(z) is the logistic function.

Some of these functions (like ¿o> si and ¿2) are commonly found in the literature of in data
analysis [Chandon and Pinson, 81] and will later on be generalized conveniently (§4.4.2).

4.2.4 The design of similarity measures

In general, we can devise a similarity measure either directly or by conversion from another
proximity measure such as a dissimilarity, a distance or a pre-existent similarity. Measures
in more than one dimension are constructed by making use of the aggregation operators
set forth in Definitions (4.3) and (4.8). The following are basic possibilities for designing
similarity measures:

. . . í globally (A)from distance < , „ ; n:
c. . . . . i 1 locally (B)Similarity < , . v J v 'J * directly (C)

from dissimilarity (D)

The first two types (A) and (B) are distance-induced similarity functions. The difference
stands in their local/global character. In (A), similarity is globally defined from a distance
which is in turn decomposed in partial distances. In (B), similarity is built out of the aggre-
gation of local (partial) similarities, each in turn coming from a (partial) distance.

In general, using a distance as a measure of the similarity between two objects expresses
the idea that if two points are close together then they are relatively similar in terms of the
features represented by their coordinates. Let Xn be a space of dimension n built out of the
Cartesian product of one-dimensional spaces X — HÍLi -^'i m which a similarity relation has
to be defined and let x, y £ Xn. The case (A) stands for a similarity s defined by means of
a transformation from a metric distance in Xn, as follows:

s(x,i/) = s(Q(d)) (4.24)

where d — {di,.. .,dn} is the vector of partial distance measures d, 6 D(X') so that Q(d) 6
D ( X n ) and thus s is a similarity in Xn.

The case (B) stands for a similarity 5 defined by aggregation of partial similarities on one-
dimensional spaces, each one of them coming from a transformation from a metric distance
in those spaces, as follows:

(4.25)



CHAPTEfí 4. S/M/LAÄJTY-BASED HETEROGENEOUS NEURON MODELS 86

where s"= {si,..j_, sn} is the vector of partial similarity measures s,- defined on X1 as s,- =
s(d(xi,yi}) with d £ D(X1} and 0S is a similarity aggregation operator, so that s is a
similarity in Xn. In the most general situation, the partial measures need not be equal, with
s,- = s(di(xi,yi)). Eventually, a non-linear similarity keeping function s can be applied to
produce the overall similarity.

The case (C) stands for a direct measure s, either by aggregation of partial direct measures,

s(f,y) = 3(e,(s)) (4.26)

where s = {si,...,sn} is the vector of direct partial similarity measures s,-(x,-,y,-) defined
on X1 or else as a globally defined similarity that takes non-local relations into account, as
the one in example 2 below. An example of the former and perhaps the most widely used
direct similarity, the scalar product is the more basic measure of linear dependency. It fits in
this scheme by taking equal s¿(a;t, y¿) = x¡y¡ and Qs to be a simple summation. Other, more
flexible functions, are the angular similarity, the covariance, and the correlation coefficient,
which have seen a widespread and polemic use as similarity measures in classical data-analysis
techniques [Chandon and Pinson, 81]. The «-function is not strictly necessary: if the measure
obtained by aggregation is already non-linear, the choice s(z) = z is perfectly possible.

The last situation (D) depicts the case in which a similarity measure is defined by trans-
formation from a dissimilarity, in the form:

s(x,y) = s(s(6(z,y))) (4.27)

where 6 is a dissimilarity measure as in Definition (4.7), conveniently transformed onto a simi-
larity. In general, there are multiple possibilities for devising direct similarities or other weaker
indexes -as a pseudo-similarity- even in cases for which an Euclidean (or Minkowskian) metric
could in principle have been used. Consider the following two scenarios.

1. Given two vectors x , y G Z" the similarity we wish to apply should reflect the degree
to which the two vectors have all their respective components different (i.e., to what
degree the number of different x\, . . . , xn matches the number of different j/i, . . . , yn).
Euclidean distance (or any member of its family, weighted or not) will not capture this
simple relation. Even by normalizing the vectors to unit norm, the problem is still
unsolved. Denoting

N ( z ) = n-#i:l<i<n: (3j : i < j < n : z¿ = z j) (4.28)

we have

This is not a distance in Z", because it violates the first condition. However, the
transformation s(x,y) = 1 — d(x,y) is a pseudo-similarity measure in Z" (with smax =
1), since £= y =>• s(x,y) = 1, although the opposite need not be true.

2. Given two vectors x, y 6 R", possibly coding some form of a temporal data series,
we regard them as more similar the higher is their number of common elements. The
number of such points can be defined as:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 87

N(x,y) = #i: 1 < f < n:

(#3 • l < j < n : x j = Xi) = (#j : 1 < j < n : y, = x¿) (4.29)

and a direct measure can be defined:

that is a pseudo-similarity in Kn, with smax = 1.

In the first example, although the measure d(x, y) proposed fulfills the triangular inequal-
ity -the hardest of the three conditions in (4.1)- the violation of the first condition prevents
us to define a proper metric; therefore, on the one hand, scalar product or Euclidean measures
will have a hard time discovering the similarity relation, which is in fact a simple one, once
it is known. On the other, we are not able to devise an alternative distance measure that
correctly captures the similarity in pattern space. In the second example, the underlying
relation is not decomposable component-wise. In both situations, the relation can be defined
in termsxof a (in this case, pseudo) similarity and still get a working model.

An immediate derivation of the four defined types of similarity is that they can be com-
bined, as long as an overall similarity measure is devised via aggregation, so as to keep within
the introduced framework, leading to potentially more general and useful measures.

4.2.5 Proper scalar product-based similarity

In previous sections -(§3.2) and (§3.6)- we have seen how distance and similarity are opposite
concepts (the more the distance, the less the similarity, and vice versa). In order to cast
the classical neuron models defined in (2.2) and (2.3) as similarity computing devices, it is
necessary to design a proper scalar product-based measure -by proper we mean fulfilling
the required properties in Definition (4.7). To this end, it is useful to examine their precise
relationship. Recall from (§3.4) that in En scalar product is tied to Euclidean distance. Let
us assume, for simplicity, an unweighted Euclidean distance d in Ji-dimensions. We have:

At this point we see that they are effectively inverses. Now, assuming normalized vectors, as
in (3.6):



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 88

Thus, ¿/both vectors are normalized, then scalar product is a direct function of the distance,
with no other factor involved:

x'.y' = l-Ce(-l,l] (4.30)

where d 6 [0,2]. Therefore,

is a neat similarity function of type (A) in [0, 1], easily obtained by substituting (4.30) in
(4.31) and applying Proposition (4.14) to Euclidean distance using s(z) — 1 — (|) , for
z = d(x',y'}, as:

s(x',$') = s(d(x'iy'))

This is a translated and scaled form of a measure usually known as angular similarity
[Chandon and Pinson, 81]:

where 6 Ç [O, n] is the angle between x' and y'. However, the normalization condition
for both vectors is rarely found in ANN, and renders the measure expressed in (4.31) useless
in practice. Unfortunately, if this condition is not met, the expression in (4.32), although it
seems to be a "normalized" one, is not a proper similarity measure, since it does not fulfill
condition (4) in Definition (4.7). It is, instead, a pseudo-similarity. This is caused by the
fact that different vectors can be considered as maximally similar: it suffices that they are
co-linear and point in the same direction.

It has to be remarked that other approaches to unification [Dorffner, 95] have focused on
linking x-y-\-9 directly with Euclidean distance, which only requires the condition \\x\\ = 1,
by setting 20 = — ||y||2. Still, this approximation is a link between neuron models, expressing
how to make a P-neuron mimic Euclidean distance. To have a fair comparison, the smoothing
factor in a R-neuron should be considered too. Besides, notice that x • y + 0 is not a scalar
product on Rn.

As a side note observe that, for general vectors, no measure directly derived as a function
of x -y -as (4. 32)- can act as a RBF unit, because it cannot be centered in a particular point.
Still, although there is a clear-cut conceptual difference between these two kinds of models,
this does not mean that scalar product cannot be used to define a similarity measure.

To get a full-compliant scalar product-based similarity, let:

_ 1 / x - y \ mzn(||£ï|,||ü1|)
5 (*' fi = ö ( ÎFiïiRÏ + l - MM Tin € P' *2

This is a proper similarity measure only based on the scalar product operator. To see
this, making use of ||x|| = A/Ö? • x, (4.33) can be written as:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 89

if ̂ _ > ̂ _^ (4.34)

Proposition 4.18 The expression in (4-33) is a similarity measure in Rn.

Proof. Since s G [0,1], the non-negativity and boundedness conditions (with smax = 1)
are easily met. Symmetry is clearly fulfilled. Minimality deserves a special attention. For
convenience, we denote by A the first term in brackets (including the 5), and by 5 the second
(the min/max fraction).

=> Let us suppose that s(x,y) = 1. In these conditions, it is mandatory that both A = 1
and 5 = 1. The first is so only for co-linear vectors, and pointing in the same direction.
The second is so only for vectors of equal magnitude. Thus, x = y.

•£= Let us suppose that x = y. Then, A = 1 (properties of scalar product) and B = 1
(min=max). Thus, s(x,y) = 1.

This measure cannot be assumed by any existing neuron model. Therefore, a new scalar
product-based model could be obtained as:

FÍ(X) = s ( s ( x , i u i ) )

where s is as in (4.33), and s is a non-linear similarity keeping function (e.g., a sigmoidal).

From the basic scalar product, it is possible to have a bounded measure without the need
to perform vector normalizations, as follows. Let:

m = SUP
__ ^ (4.35)

7T, r - > = inf x • y(A ' '

to denote Vf, y € A" : x • y 6 [7 r//v-))7 rfA-)]· ^ ¡s then assumed that the target function
(the function to be approximated by the neural network) has a compact support A", being
E" the space where input patterns are drawn from, so that there exists a z* such that

z* = argmax \\z\\2 (4.36)
'

Since in (4.35) we have a continuous function defined in a closed interval, its high and low
bounds exist and are reached within the interval, so that rr^-> , ir7K\ € K, and the measure:

(aT, y) = -r - (-~ e [o, i], s, y e K (4.37)
V') - «(K)



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 90

is a similarity jn K. To be precise, what is obtained is a point similarity, which can serve
as a basis to construct a P-neuron, where the ideal is z* in (4.36). For simplicity, since in R"
a compact set always has the form of a closed and bounded set, let K = [m, M]n C Rn, m <
O, M > 0. In these conditions, define ß = ( / ? , • • • , / ? ) of dimension n for any scalar ß and
denote ¡j, = max(\m\, M). The maximum and minimum scalar products in K are given by:

K«>= - (438)\ -̂A., = -INI > ••">'

An offset 6 can now be incorporated into the definition, as required by a P-neuron. The
need to obtain a normalized measure compels to set definite bounds on 6. Arbitrarily, we set
0 € [0, 1]. Hence, x • y + 9 Ç. [^7K), ^nf) + 1] an^ consequently the measure:

s(x, y) = X . y
 1

 7F(5) e [o, i], áf, y e A", 0 e [0, i] (4.39)
V) + T ~ V')

is a point similarity in K. A further simplification can be obtained by considering the
particular case m = —M (a symmetric zero-centered interval). In this situation, for í, y G
A", £.y€H|M||M|M||2],and

.
^ ' 2||M|P + 1 l J ^ '

is a point similarity measure in A".

4.2.6 Neural models of similarity

We are now in a position to summarize the casting of neuron models as similarity computers,
in the following Propositions:

Proposition 4.19 A R-neuron model of the kind declared in Definition (2.8) computes a
similarity measure s in E" of the form FÍ(X) = s(f, wl).

Proof: these models, as described in (§4.2.4), fall within type (A) similarities in E", in
this case of the form s(x, w ' ) = s ( d g ( x , w t ) ) , with d q ( x , w ' ) = O?'"(£- w';v), as in
Proposition (4.3), with u¿ = #,V¿ : l < i < 7i, followed by a similarity transforming function
s — (j. By Proposition (4.14). this is a similarity in E™.

Proposition 4.20 For normalized vectors, a P-neuron model of the kind declared in Defini-
tion (2.2) computes a similarity measure s in Rn of the form F¡(x) = s(x, w').



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 91

Proof: in these conditions, this model behaves as a R-neuron, by taking q — 2 and
) = g(l — (!)

similarity in R".
s(z) = g(l — (!) ), as seen in (§4.2.5). By using Propositions (4.15) and (4.19), this is a

Proposition 4.21 For general, non-normalized vectors, a neuron model based on angular
similarity (4-32) can be constructed, of the form FÍ(X) = s(s(x, w')), computing a pseudo-
similarity measure in R".

Proof. Since the only failing condition of those in Definition (4.7) is minimality for the
left-to-right implication, s is a pseudo-similarity measure. That is, x = wl —» s(x, w') = smax

but the opposite is in general not true. The composition of a s-function to such an s, gives
a pseudo-similarity measure.

Proposition 4.22 For general, non-normalized vectors, a new scalar product-based neuron
model using the measure defined in (4-33) can be obtained as: F,-(z) = s(s(x,w1)), where
s is a similarity measure in Rn, and s is a non-linear similarity keeping function (e.g., a
sigmoidal).

Proof. Being (4.33) a proper similarity, the composition of a similarity keeping function
s to s(x, y) makes the result a similarity, by Proposition (4.13).

For general, non-normalized vectors, a P-neuron model of the kind declared in Definition
(2.2) can be shown not to compute a similarity measure, since minimality (the only failing
condition) is not fulfilled in either direction of the implication. The scalar-product based
model generically falls within type (C) or correlation-based similarities, plus an additional
similarity keeping function s(z) — g ( z ) , as described in (§4.2.4). Being this last function
bounded, a P-neuron model can be obtained computing the weaker minimality requirement
of a point similarity. Such a measure is clearly symmetric and continuous. The semantics of
this similarity was amply described in (§3.2).

Proposition 4.23 For general, non-normalized vectors, a P-neuron model of the kind de-
clared in Definition (2.2) can be constructed with the measure in (4-39) to compute a point
similarity measure in K C Rn, of the form Ft-(x) = s(s(.f, w ' ) ) .

Proof: First, we prove that s in (4.39) is a similarity. Since s G [0,1], the non-negativity
and boundedness conditions (with smax = 1) are easily met, as well as symmetry and a clear
semantics.

Let x_ = (1, x i , . . . , xn) and «¿' = (#, w i , . . . , wn), that is, for convenience offset term is
included in the summation, as is common practice. Then, (4.39) can be written:

X_ • w' — TtTj'\
s(S, tu ') = — (-^- € [0,1], x, ij 6 A', 9 <E [0, 1] (4.41)

V) + l ~ V')



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 92

Clearly, this is_a point similarity, where the ideal is z* = (1, Zj, . . ., z*), being z* in (4.36).
The required minimality is met because:

*s(x, wl) = 1 <=> x = w ' = z

Second, again the composition of a similarity keeping function s to s(x,y) in (4.39) makes
the result a similarity, by Proposition (4.13). Third, every function g -of a given parameter-
ized family- of the required form in (2.2) can be transformed to a g' by choosing a different
set of parameters (acting as constants) so that g'(x • y) = g ( s ( x , y ) ) .

For example, letting g = gß£ the classical logistic function as defined in (3.9):

and the particular case m = —M (4.40), a model of the form:

, _ _ ,x-y + 9 + \\M\\\
g (six, y)) = g( - = - - — — )

1 V " V 2||M||2 + 1 '

is a P-neuron because the above expression can be equivalently written:

g ( s ( x , y ) } =g'(x-y + 6)

where g' — Qßiß' is just another logistic, of the same shape, though with different parameters:

'
2||M||2

; e' = ||M||2(20 - 1) + e - e (4.43)
- " " V - ; - V '

This measure offers the additional advantage of being much cheaper to compute than
(4.32), because the involved factors are constant. As an additional example, consider a
collection of data properly normalized to lie in Dn C K" = [0, l]n (a. common situation in
practice, see [Prechelt, 94], [Sarle, 99]). Then irfD„\ = n, ^7Dn\ = O in (4.37), and thus:

s ( x , l j ) = ±^e[Q,l} (4.44)

is a point similarity in Dn. In later parts of the work (§4.4), the assumption in (§4.2.5)
expressed in (4.35) about a. compact support K for both vectors will be additionally justified.

In summary, scalar product-based neuron models are in general used as similarity com-
puting devices in a rather loose sense. A variety of derived measures can be obtained corre-
sponding to the different types of similarities. In particular, in practice the assumption of a
compactly supported target function is tenable, and thus a P-neuron can be effectively seen
as computing a point similarity in K".



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 93

4.3 Heterogeneous spaces

A process can be generally described by means of a set of variables that are thought to exert
an influence on it. The values of these variables are either collected by the user or generated
by a model. In the case of ANN, they are grouped in the form of input vectors, although
the term input tuple would seem to be more accurate. Among the data collected there is
information of very different nature.

4.3.1 Definition of heterogeneous measures

We consider in this work the following types of variables, for which corresponding similarity
measures are to be defined.

Nominal (categorical) : non-numerical variable on which no order relation has been de-
fined. It thus can be seen as having a set of values (finite or not).

Ordinal : variable (numerical or not) for which a linear order relation has been defined on
a finite number of values, where each value has a crisp or precise sense.

Continuous : numerical and crisp variable for which a linear order relation has been defined
on a continuum of values.

Set : variable whose values are sets.

Fuzzy Number : continuous variable whose values are expressing uncertainty in the form
of imprecision.

Linguistic : ordinal variable whose values are expressing uncertainty in the form of vague-
ness.

The values of the last two variables can be obtained —where appropriate— by converting
each of an existing set of crisp values (ordinal or continuous) into a fuzzy quantity.

Nominal variables

The basic similarity measure for these variables is the overlap. Let J\f be a nominal space
and x, y € Ai.

if £ = V 14 *r\

) if x / y (4-45)

Proposition 4.24 The function defined in (4-45) is a similarity measure in J\f.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 94

Ordinal variables

It is assumed that a linear order exists such that the values of the variable form a total
linearly ordered space. Let O be an ordinal space and x, y 6 O, with the notation ${ • } to
denote cardinality. Let ^ be the linear order in O. An equality relation = is also assumed
so that strict inequality

x' -< x = x' -< x A -i(x' = x)

is defined in the usual way. Let us define now:

as
7?(x) = #{x'e O :x 'xz} + l, x€O

Since the order ^ is linear, this is a bijection. Since every finite set can be made well-ordered,
O has a first (x/) and a last element (x/), i.e., elements such that ßx' 6 O : x' -< x/ a.nd
ßx' € O ; xi -< x', respectively. Therefore, rj(xj) = 1, TJ(X¡) = #{0} = m and:

rç(x') = 7/(x) + 1 •«> x' = succ(x)

where the •<= holds by definition of 77 and =>• by the linear character of ^. By doing this we
can devise a distance in O resorting to a metric in R, using Propositions (4.1) and (4.3) for
5 = 0, and making use of the fact that 77 is a bijection. Hence, for x, y 6 O, define d as:

A normalized distance can be obtained as:

and, by selecting s(z) = 1 — 2, s ( x , y ) = s(ri(x,y)) is a similarity measure in O, by Proposition
(4.16) (though others choices for s(z) are possible).

Proposition 4.25 Provided O is finite and linearly ordered:

is a similarity measure in O, with smax = 1.

A measure different in nature can be defined as follows:

min(ri(x} . .
s(x, y - - , , ( f , x,V€0 (4.47)max(77(x),7?(y))

which does not need any normalization in order to upper-bound it to unity. An equivalent
form for (4.47) is:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 95

í 2ÍE1 if nix) < n(y)
( \ J 771 V l » \ / — / \*/ / / ,1 ,* fi\

*>y ) = S ± .. . 4.48
-P{ otherwise^ »)(*)

The conceptual difference between this measure and (4.46) is that, while the latter is a
function of 77(3;) — T?(y), this one is a function of ^fi, which can be readily seen by rewriting
it as:

*i (4-49)

so that s(x,y) = SÍrjf))- In general, s(x,y) in (4.47) belongs to [^, 1]. Thus,

Proposition 4.26 Provided O is finite and linearly ordered:

' 8(tty)= * i m i n M } , N
m- 1 V

is a similarity measure in O, with smax = 1.

The behaviour of this measure can be best seen with an example . Consider, for simplicity,
O = {a, 6, c, d} with the usual alphabetic linear order a •< b -< c ^< d. Were it not for this
ordering (that is, for nominal variables), according to (4.45) the similarities between different
values would be:

s(a, b) = s(a, c) = s(b, c) = s(a, d) = s(b, d) = s(c, d) = 0

Taking the variables as described, and according to (4.46), these similarities are:

2 1
s(o, d) = 0; s(o, b) = s(6, c) = s(c, d) = -; s(a, c) = s(6, d) = -

ó ó

reflecting the effect of having defined an order. However, according to (4.50), they are
shown to fulfill:

s(c, d) > .5(6, c) > s(a, b) = s(6, d) > s(a, c) > s(a, d)

That is, the ordinal scale is compressed towards superior values in the scale. This could
be a desired effect in some situations. For example, in a variable standing for the number
of children, the distance between 7 and 9 is not the same psychological distance than that
between 1 and 3 (it should be less), as pointed out in (§3.3). Whereas, assuming in = 10,
5(7, 9) = s(l, 3) = § by (4.46), s(7, 9) = ¡ > s(l, 3) = i by (4.50).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 96

As another example, consider a numerical set O = [1, 1000] C N+. Now, s(101, 103) =
s(10, 12) by (4.46), but s(101, 103) > s(10, 12) by (4.50), because the difference (two) is
smaller relative to the values being compared. The decision on which measure to use should
be based on domain knowledge. Notice that (4.47) is also valid for infinite linearly-ordered
and discrete sets, such as N, still upper-bounded by unity and asymptotically reaching zero
as the low bound.

Finally note that, in a working implementation, the set O can be safely replaced by
[l,m] C N+ as long as the elements are not arithmetically operated beyond (4.46) or (4.50).

Continuous variables

Let x ,y G F = [r~,r+] C M,r+ > r~. By Propositions (4.1) and (4.2), the standard metric
d in R is a metric in F. Therefore, any s(x,y) = s ( d ( x , y ) ) is a similarity measure in F. A
normalized distance can be obtained by setting:

e[o , i ] ,deD(r ) (4.51)
\x - y\

which is the standard distance weighted by the maximum deviation.

Proposition 4.27 Given F C K as above, the function:

s(z, y) = 1 -- ^U^l - a-, y € r (4.52)
supX i y e r |x-y|

/s a similarity measure in F, with smax = 1.

Notice that this is equivalent to the ordinal case (4.50), where normalization is performed
dividing by the number of elements in the space. Again, by selecting s(z) = 1 — 2, s(x,y) =
s ( d ( x , y ) ) is a basic similarity measure in F. Other choices for s(z) are possible and eligible
by parameterizing it in appropriate ways. This is done in (§4.4.2), leading to the family SQ.

Set variables

These can be regarded as generalized nominal variables whose values are not single elements
of the space but subsets thereof. Let S be a set space and .T, y £ <S.

Proposition 4.28 Provided S is finite (so that all its subsets are),

•«"•»»-ijfuïf- *•>"*• <4-53>
is a similarity measure in S, with smax = 1.

Note that this measure reduces to (4.45) for singleton sets.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 97

Fuzzy variables"

The word fuzzy is viewed in this work taking the epistemic interpretation of a fuzzy set, i.e., as
describing the vague observation of an existing theoretically crisp object. The object is crisp,
but its observation or realization is vague [Nauck, Klawonn and Kruse, 92]. The imprecision
stems from the indétermination about the specific value of a variable, in a situation where
the set of all its possible values is known. The fuzzy extension is understood as a relaxation
of real-valued inputs, by considering more flexible situations, now tolerating imprecision.

The basic notions of fuzzy sets were reviewed in (§2.3). Recall supp(F) denotes the
support of a fuzzy set F and let [R] denote the set of all finite and closed real intervals:

[R] = {[a,6]cR | a,b£R,a<b}

Let us begin by defining a basic concept [Klir, 88]:

Definition 4.11 (Fuzzy number) A fuzzy number in X is a convex and normalized fuzzy
set F, with piecewise continuous /if, where X is the reference set, and such that 3lx £ X :
^F(X) — 1. Symmetry of HP is a useful simplifying assumption although is not required.

Let Fn(A") be the (crisp) set of all the fuzzy numbers in X:

¥n(X) = {F € P(X) I F is a fuzzy number}

where X is assumed a continuum. Normally, we will consider X to be a real interval, that is,
X 6 [R]. Notice that convexity of F ensures the compacity of supp(F).

In general, a fuzzy set F with support in [a, b] £ [R] is represented by a function of the
form:

a if

where a 6 [0, 1]. The above definition for fuzzy numbers (4.11) restricts the form /ÍF(^)
can take on [a, b] so that it represents single values attached with uncertainty or inaccuracy.
Among the several possible forms such a fuzzy set can take, two of the most popular are:

Triangular

Correspond to non-symmetric fuzzy sets of the form:

ì

¡f z € [m, m + a,] (4.55)
O otherwise



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 98

In both situations, m is the mode or center and a\ , 0-2 the left and right fuzziness, respec-
tively. In case the number is symmetric, it may be written in a more compact form:

if\z-m\<a , . f\z-m\ ^
=\ — mm\ - ,1] (4.56)

otherwise \ a J ^ 'o

Gaussian

Correspond to symmetric fuzzy sets of the form:

Mm a](z) — exp{— I — ) } (4-57)

Since it is unlikely that collected data come already in this fuzzified form, there has to
be a fuzzification process, much as is done in Fuzzy Controllers [Jang and Sun, 95]. In these
systems, crisp values UQ, in absence of other information, are transformed onto a fuzzy number
of the form:

1 if U — Wo f A K O \_ iU . (4.58)
0 otherwise v '

In this work, however, a numerical variable will be considered a fuzzy number (and treated
in a different way than a crisp one) only if additional information is available; otherwise it
is considered as continuous (and crisp). One of the forms this information can take is about
the reliability or error of measured values or expert estimates, which can be translated into
the fuzzy number's left/right fuzziness. The inaccuracy is then transformed into an interval
of possible values. The fact that not all these values equally belong to the interval makes it
a fuzzy one.

For every x € R, let x be a fuzzy number of a given form centered at x and with fuzziness
generally defined as a function of x. The transformation:

: : x G K -^ x € F„(R) (4.59)

associates a fuzzy number x to x where //£ = ti[XiQ(x)] is a membership function expressing
a fuzzy number -as (4.55) or (4.57)- and a(x) stands for as many fuzziness parameters as
required. The resulting fuzzy number is to express the degree of uncertainty. This interpre-
tation was proposed by Zadeh when introducing possibility theory [Zadeh, 78], in which a
membership expression like Hî(u) represents the degree of possibility that x has value M. In
other words, the values u € supp(x) have different degrees of uncertainty (given by / i a - (w) ) ,
characterizing the extent to which i¿ can be the possible value of the quantity.

Domain knowledge can be added to refine the transformation. For instance, let us sup-
pose that the value x comes from a measuring device known to be biased towards under-
estimating the actual value at most a 2%, and overestimating it at most a 1%. A (non-
symmetric) fuzzy number -depicted in Fig. (4.3)- could be derived, where //¿ = /ír r a(,.)],
«(.T) = (ai (z), 0-2(0:)) = (kix, k2x) and ki = 0.02,&2 = 0.01.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 99

x

Figure 4.3: Example form for /í¿ (not to scale).

Given two fuzzy numbers, the question is: how similar are they? For variables representing
fuzzy sets, similarity relations from the point of view of fuzzy theory have been defined
elsewhere [Dubois et al., 96], [Dubois et ai, 97], and different choices are possible. In thé
present case, the situation is not that of a fuzzy similarity or proximity relation defined on
real values, but a crisp relation between fuzzy entities.

In possibility theory two functions, called possibility (FI) and necessity (N), measure rank
events by the degree of unsurprisingness and acceptance, respectively [Dubois and Prade, 97].
In particular, the first of these functions expresses the possibility of co-occurrence or simul-
taneity of two vague propositions, with a value of 1 standing for absolute certainty. For two
fuzzy sets A, B possibility is defined as:

UA(B) = sup (

where ß^ng(u) = min (/Í^(M), /ttg(tí)). Notice that this measure is reflexive in the strong
sense and also symmetric, in that II ¿(B) — II¿(A), both being required properties of general
similarity measures.

Proposition 4.29 Given A', F € Fn(P),F € [K], and making use of the transformation in
(4-59), the function

s:Fn(r),Fn(r)-»[0,l]

defined as:

s(ar,y) = n*(i,y) (4.60)

where Yl*(x,y) — l\r(y), is a similarity measure in Fn(F), ivitli smax = 1.

Proof: Since 5 6 [0,1], non-negativity and boundedness conditions (with smax — I) are
easily met. There is also symmetry and a clear semantics. Minimality is met because, given
O(.T) is the same function for all x € K, it holds that x = y •& x = y & FI* (í, y) = 1.

Notice that, if one of the arguments, say ¿, is crisp, the measure yields its membership
w.r.t. the other: U*(x,y) = [iy(x). This is a simple and effective similarity measure under
the context of fuzzy numbers. For more general fuzzy sets, other measures should be defined.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 100

Linguistic variables

The integration of numeric and qualitative information —the latter in the form of fuzzy
sets— has been pointed out to have several advantages in the framework of pattern recogni-
tion [Pedrycz, 97], either enriching the basic ideas or giving rise to completely new concepts.
The addition of linguistic features for expressing vagueness both in the input patterns and
in the inner workings of the system itself can lead to new architectures with enhanced ex-
pressiveness and flexibility. The linguistic approach [Zadeh, 76] considers the variables by
means of linguistic terms (words in the most basic situation). Since words are less precise
than numbers, this approach enables the use of vague information, in cases where a precise
quantity is unknown or there is a need or convenience to abstract it out.

We set the following definitions:

Definition 4.12 (Fuzzy quantity) A fuzzy quantity in K. is a normalized fuzzy set F with
continuous \ip such that supp(F) 6 [R].

Definition 4.13 (Fuzzy interval) A fuzzy interval in X is a convex fuzzy quantity in X.
Symmetry of p.p is a useful simplifying assumption although is not required.

Definition 4.14 (Fuzzy p-quantity) A fuzzy p-quantity in X is a fuzzy interval in X,
such that /¿p can be decomposed in three parts (from left to right): a function with at most
one inflection point and a positive first derivative, a flat zone (null derivative) and a function
with at most one inflection point and a negative first derivative5.

Note that a fuzzy number is a unimodal fuzzy p-quantity. These quantities (depicted in
Fig. 4.4) are useful for modeling the linguistic terms of a linguistic variable, and should be
accurate enough in most situations. In particular, a p-quantity with support in [a, ò] models
the vague proposition "roughly between a and 6". Among the several possible forms such a
fuzzy set can take, the most popular are probably the trapezoidal and bell-shaped.

Trapezoidal

Correspond to fuzzy sets of the form:

m"m2

(m2+0·2)-Z .- r -ii — II Z 6 Lm2i ÎÎÎ2 ~r 0^2]

1 ¡f 2 G ["^li Tn2\
O otherwise

(4.61)

where m-2 > mi and 01,02 > 0 are offsets.
sThis is a special case of a fuzzy interval of the LR-type [Zimmermann, 92], defined for convenience.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 101

(a) A fuzzy (real) quantity. (b) A fuzzy interval.

(c) Two fuzzy p-quantities. (d) Two fuzzy numbers.

Figure 4.4: Several specific forms for a continuous fuzzy set in R.

Bell

Correspond to symmetric fuzzy sets of the form:

(4.62)

Let W (X) be the (crisp) set of all the fuzzy p-quantities in X:

Wg(X) = {F <E P(X) | F is a fuzzy p-quantity}

Among the possible similarity measures between these elements, given two fuzzy p-
quantities A, B 6 F7(F),F 6 R, with support sets F^,Fg € F, respectively, we define their
ratio as:

, - n.r(A, B) = . (4.63)

which is the continuous version of one of the classical measures between fuzzy sets
[Pappis and Karacapilidis, 93]. Being these measures general ones, they are not discrimi-
native enough to capture all possible forms two fuzzy sets can take. The context in which
they are applied here (fuzzy p-quantities) allows for an accurate assessment of similarity.
Note that (4.63) can be regarded as a generalization of a measure for crisp sets representing
subintervals of R, in which a value either belongs or not to the interval. The step to fuzzy sets
makes the integral operator necessary. Notice also that, although (4.60) could in principle
be applied, its behaviour in some cases, namely, whenever ${x 6 X \ l·l^f\g(x} = 1} > 1,
makes it unsuitable as a similarity index (it does not fulfill minimality).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 102

Proposition 4.3O Given À, B G F,(F), F C R, the function s(Ä, B)

as defined in (4-63), for (n = min, U = max), is a similarity measure in F7 (F), with smax = 1.

Proof: Symmetry, non-negativity and boundedness conditions (with smax = 1) hold.
There is also a clear semantics. Minimality is met because, as in crisp sets, the property
Ar\B = A(JBt$A = B holds (provided {n = min, U = max} are used).

These variables are to be used whenever there is a knowledge that moves us to define
linguistic terms instead of simple ordinals as, for example, for common situations of values
as: "small", "increasing", "young", etc. If precise membership functions are known, these
can be directly used.

Note that the so-constructed fuzzy quantities x and X are respectful with the respective
orderings in F G R and O. It is ensured that the ordering •< in O is respected, since this is a
basic knowledge. Denoting X the linguistic term associated with a given ordinal x G O, and
[X] its center of gravity —for example, mi+m2 in (4.61) and m in (4.62)— it holds that:

V z , y G 0 : [X] < [Y] & x X y

Analogous arguments can be done for z G F, F e [R] and the corresponding x e Fn(F).
Additionally, a complete coverage and a correct degree of overlap should be made sure, and
the left and rightmost values shouldered. It is thus a design decision —involving the existence
of a continuous substrate and enough domain knowledge— which variables are amenable to
be treated as linguistic and which as ordinal. All these similarity measures are conveniently
defined such that smax — 1, so to allow a simpler and more general design of aggregation
functions.

4.3.2 Definition of heterogeneous spaces

An heterogeneous space, denoted ?{n, is defined as the Cartesian product of a number n
of source sets, as follows. Consider a collection of extended sets 7£i , . . . , 7£nr, where ?t, =
R¿ U {A'}, R, G [R], and l < i < nr. Consider also collections of extended sets Oi,..., 0„0,
with Oi = Oi U {A'}, 1 < ¿ < ra0> where each Oi is a finite and linearly ordered set, and of
extended sets A/i, . . . ,A/"„n, with A/i = A/¿ U {A"}, 1 < i < nn, where each A/¿ is a finite and
unordered set [Valdés and Garcia, 97].

Consider now the collection of n j extended fuzzy sets of the form 'Jr\^...^J:
n where

fi = fi U {A-}, fi C F,(r¿), F,- G [R], and 1 < t < nj. Notice that Fn(F¿) C F, (F,-).

The respective Cartesian products can now be constructed:

fOn0 _ f) y y Ô— A ... X L/n0

•ini í" v v í "j- — j-l x . . . X J-nf



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 103

In all cases, tfte extension is given by the special symbol X', which denotes the unknown
element (missing information) for which only equality is defined and behaving as an incom-
parable element w.r.t. any ordering relation. In these conditions, the space formed by the
Cartesian aggregation of the previous sets:

7Í" = Unr x On° x J\ínn x Tn<

is such that n = nr + nf + n0 + nn, with U° = 0° = J\f° = F° = 0 and n > 0. According
to this definition, elements of Hn are general tuples of n components, among which there may
be real numbers, fuzzy sets (representing fuzzy numbers and p-quantities), ordinals, nominals
and missing data. Other data types, e.g. sets, should be accommodated in an analogous way.
We will call such a structure an heterogeneous space,

Proposition 4.31 The Definitions and Propositions in (§4-%)> referring to distance and
similarity measures, apply also to an heterogeneous space ¿in.

Proof: in all these statements, there is no assumption about the structure of the space itself,
provided basic distance and similarity functions are definable. The existence of aggregation
operators is only conditioned to the fulfillment of their respective properties.

To build an heterogeneous distance d 6 D(7in) two basic steps are needed:

1. Define the partial measures di Ç £>(?}"), 1 < i < n;

2. Define a distance ci by an aggregation operator Q(d; v) where d — { r f i , . . . , dn}.

However, with such kinds of heterogeneity, uncertainty or missing information, only in
some cases it will be possible to define a distance measure in the pattern space. The difficulties
in constructing metrics in heterogeneous spaces can in general be associated with:

• Presence of categorical variables (absence of an order);

• Presence of missing values (regardless of the data type);

• Uncertainty and imprecision in some variables.

Moreover, we have seen that in some occasions, although we could in principle define a
metric (such as an Euclidean), it is preferable to devise a direct similarity measure incor-
porating domain theory. From Propositions (4.11) and (4.31), we then derive the following
Corollary:

Corollary 4.1 Let Qs be an aggregation operator as defined in Proposition (4-8). Given a
group of partial similarities .? = {si,.. .,sn}, where:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS

Then, the measure.;

S \ rt

defined as:
äff rf\ — C)iH·ci y) — v.

for x, y e Íín, is a similarity measure in Íín, where 7in = Ííl x • • • X ?ìn.

104

4.4 A framework for general neuron models

Definition 4.15 (H- neuron) Given x € TÍ", an heterogeneous neuron or H-neuron is a
function of the form:

F¿(z) = {h(x, tZ;'), w1' G 7Ìn} (4.65)

u>¿í/i /i : ?in, a.n — > TÌ, where the domains Tin are equal heterogeneous spaces of n components,
and the codomain T-L is a single heterogeneous space.

This definition accounts for neuron models -depicted in Fig. (4.5)- performing general
mappings from an (heterogeneous) input space to an (heterogeneous) output space. There-
fore, H-neurons are classified according to the nature of their codomain (which must not be
necessarily restricted to a subset of the reals). In the present study, a model with a codomain
given by Í-L — R is called of the real kind.

Figure 4.5: The H-neuron model.

The reason to consider in a first place neuron models of the real kind is twofold. On the
one hand, there is their natural coupling with other classical neuron models (i.e. accepting
only real-valued and complete inputs), thus leading to hybrid networks in a straightforward
way. On the other hand, in this work the emphasis has been put on the definition of scalar
similarity functions acting on real subintervals. None the less, the definition makes provision
for neurons, either not working on similarity or computing similarity functions in other image
sets s : 'Hn,'Hn —>• 7¿ where in general the range of possible values of s is a subset H[s] C ~H.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 105

Definition 4.16~(S-neuron) A similarity-based neuron or S-neuron (of the real kind) is
an H-neuron computing device for which /i(-, •) is a similarity, pseudo-similarity or point
similarity in Un and U = TS(J {X}, Ta = [0, smax] € [R].

Accordingly, the S-neuron is sensitive to the degree of similarity between its inputs and
its weights. The extent of this sensitivity is determined by the precise shape of the similarity
function h, whose choice should account for the heterogeneous nature of neuron inputs and
the presence of missing data. This leads to the notion of neuron and network sensitivity,
which will be dealt in (§4.4.3).

When the model is constructed as the composition of two mappings, it is immediate to
realize that the classical neuron models defined in (2.3) and (2.2) are included in the above
definition, by setting 7/n = R", n = nr (and thus n¡ •=• n0 = nn = 0) and no missing data at
all, and making use of Propositions (4.19) and (4.23). The four types of similarities described
in (§4.2.4) are also included, since nothing is required about the precise form of h.

Within this framework, as described in (§4.2), all possible variations of localized RBF units
of the kind- described in (2.3) are included in similarity measures of type (A). It suffices to
take real-valued and complete inputs, and a metric followed by a s function. In theory, there
is no need for a RBF unit to have a localized response. Choices as g(z) = z^lnz (thin-plate
spline), g(z) = \/z2 + c2,c 6 R (multiquadric), or even simpler functions as g(z] = z3 (cubic)
are in the list of valid radial basis functions for data interpolation [Poggio and Girosi, 89],
although they require a polynomial to be added to the general expression of the network (a
linear term for the above functions). However, non-localized functions are scarcely used in
RBF networks applications because -albeit they are still radially centered- their unbounded
response departs from the clear conceptual view of setting local models that respond strongly
to a small (input) region of attraction and gently (or rapidly) fade away outside this region.
This view is in the basis of RBF networks and any conceivable distance-based localized model
fits nicely in the similarity framework.

In any case, a network formed of type (A) S-neuron models, with heterogeneous inputs,
and an output layer of P-neurons, where each partial distance d¿ is tailored to its data type,
(k Ç D(7Ì'), can be seen as an heterogeneous RBF network, thus amenable to be trained like
a standard RBF with its characteristic two-stage process (§2.1.7).

Factorizable RBF networks (F-RBFNN), an idea introduced in [Poggio and Girosi, 89],
are specifically included as particular cases of type (B) similarity measures. These networks
are conceptually seen as three layered ones. With respect to a standard RBF network, an
extra, layer is placed before the hidden layer. In this extra layer, there is a neuron per
each input dimension for every neuron in the hidden layer. These neurons compute a one-
dimonsional distance between their (scalar) input and weight, followed by a localized function.
Their outputs are then seen as "factors" and grouped by a hidden neuron. This grouping
is a product operator. This scheme is intuitively appealing for Gaussian units working on
Euclidean distance, since in this case the Gaussian can be factorized in individual terms as
follows:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 106

s(x, w j — e — e • — ' — I J. ^ v4.uoj
3 = 1

As in our framework the partial similarity measures Sj can be seen as representing a single
unidimensional unit specifically detecting similarity in one input dimension, equation (4.66)
is cast as:

s(x, w*) = Qs(s) = H e-\*i-">»\ (4.67)
3 = 1

with s = {si,...,sn}, Sj = s(d(xj,u>,-j)), s(z) = e~z and d(xj,W{j) — |xj - w¡j\ (thus
= 1 for all i) and 9S as in Proposition (4.12, 2.) with m = u,- = 1.

In the line of RBF units, other expressions have been proposed in search for new models.
For example, choosing the same Os(s) = JTLi sj> an<^ sj — $ ( d ( x j i w i j ) ) i with d(xj, w,j) =

and s(z) = TTT, the resulting expression is the neuron model:

f) = n — 7T — ̂  (4-68)

This is a type (B) measure, proposed in [Duch and Jankowski, 95]. By replacing the
product by a summation in (4.66), and adding a weighting scheme Vj, that is, by using
0s(s*; v) = 53"=1 VjSj, the resulting neuron model:

(4.69)
3=1

is known as the Gaussian bar [Park and Sandberg, 91]. In general, single units need not
be Gaussian nor their combination needs to be done in this way.

Measures of type (C) include scalar product as a special case and, by simple extension, the
sigmoidal unit defined in (2.2). As for measures of type (D), similarities from dissimilarities,
they do not correspond or include any neuron model as used in ANN. The situation makes
sense whenever it is sensible to define a distance, but the proposed index does not fulf i l l
triangular inequality. If the rest of conditions hold, the transformation functions s and s are
valid and could be applied.

The flexibility of this framework carries with it several advantages:

1. Any valid set of unidimensional similarity measures -not necessarily distance-based-
possibly designed in accordance with the nature of their respective inputs, can be
grouped by means of a similarity aggregation operator.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 107

2. There is ncrstrict order between linear/non-linear functions, as long as the overall
(similarity) measure is non-linear.

3. Domain knowledge can be put into work in the design of the model.

4. The functions s and s and the aggregation operators play analogous roles regardless of
the specific similarity type.

In addition, Definition (4.15) explicitly states that the weight w¡ associated to a given
input line x,- is an element of the same space than x¿. This in turn implies that, whenever
Ü,71 = R" and, more precisely, Hl = F,- 6 [R], then both x¡,Wi € F,-, thereby bounding
the weight to be within the same limits than the input it is weighting, giving an additional
basement to the assumption (4.35). Notice that, as a further consequence of the definition,
the presence of missing values is allowed in the weights. This can be beneficial to a learning
algorithm, since it adds for more flexibility by enabling the units to ignore some of their
inputs.

Among the many different architectures, we consider in the first place hybrid feed-forward
ones, consisting of a hidden layer of S-neurons and an output layer of P-neurons -illustrated
in Fig. (4.6)- since the outputs of the former (which are real-valued) can be directly used
as inputs fbr the latter. Although, in essence, these architectures are not fully compliant
with the ideas exposed so far6, a simple parsimony principle leads to begin by choosing the
simplest architectures, among those with enough theoretical computing capacity. The output
neurons can be regarded as performing a linear combination of the similarities reported by
the hidden layer. Applying a further non-linear function cr : R -4 R to these neurons leads
to the P-neuron model for the output units.

Figure 4.6: Intuitive composition of S-neurons with P-neurons.

More elaborated architectures, where outputs are also computed by S-neurons, would
constitute the immediate step. From a conceptual point of view, these units would be com-
puting a similarity measure between vectors of similarities, and yielding a scalar quantity in
account of the input vector fed to the network. A simple choice for the aggregation of such

"Note that, though the inputs of the P-neurons are bounded, their weights are not.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 108

similarity vectors-would be given by a weighted average, a type of additive measure (4.21),
of the form:

1 c-s? el - ^'=1 ' 's.cj- , (4.70)

where s is the vector of similarities as computed by the hidden units, and c¿ are the
hidden-to-output weights. The expression (4.70) is obtained taking /(s¿) = s¿ in (4.21) and
v = —£— to ensure normalization. Networks with more than one hidden layer of S-neurons

¿J • * C $

are also a clear choice and subject of study, albeit it is conjectured that one hidden layer
should suffice for most applications, especially if the network is acting as an (heterogeneous)
RBF network.

Definition 4.17 (HNN) A feed-forward Heterogeneous Neural Network or HNN is a m-
FFNN[c] for which c > 1, where the Fl are S-neurons, 1 < / < c, and the output units are
either S-neurons or P-neurons.

For networks with a single output unit (m = 1), the general aspect of a feed-forward HNN
is depicted in Fig. (4.7) for c = 1. If the output unit is a P-neuron, the overall computation
y(x) is given by Proposition (2.1), where the computation performed by each hidden S-neuron
is simply FÍ(X) = s(£, w1}.

In case it is a S-neuron computing a similarity measure SQ -like, for example, that in (4.70)-
then:

y(x) = s0(c,F(f))

where c = (c j , . . .,<:/,,) and F(x) = ( F i ( x ) i , . . . , Fhl (£)).

F-tit'it nut

\

Figure 4.7: A one-hidden-layer HNN with h\ hidden S-neurons and a single output unit,
either a S-neuron or a P-neuron, where Fj(x) = s ( x , tu j ) , 1 < j' < h\.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 109

4.4.1 An example of a S-neuron

A basic but very useful heterogeneous measure can be devised by making use of a Gower-like
similarity index, well-known in the literature on multivariate data analysis [Gower, 71]. This
coefficient has its values in the real interval [0, 1] and for any two objects z,-, x j given by
tuples of cardinality n, is given by the expression:

(4-71)
fczzl ijk

where:

is a similarity score for objects a?,-, x j according to their value for variable k. These
scores are in the interval [0,1] and are computed according to different schemes for
numeric and qualitative variables.

6ijk is a binary function expressing whether the two objects are comparable or not
according to their values w.r.t. variable fc, as follows:

= {
1 if xik ¿Xf^xjk¿X
0 otherwise

In particular, in Gower's original work, the partial similarity measures used are those
defined in (4.45) for nominal and (4.52) for continuous variables. For ordinal, set, fuzzy and
linguistic variables, their scores can be computed by using the measures in (4.46), (4.53),
(4.60) and (4.63), respectively. Setting g^k = X. if Sijk = 0, the expression in (4.71) can
be cast as an additive similarity aggregation operator, obtained taking /(s,-) = s; in (4.21),
n' = #k : 1 < í < n : Si j k = 1 (the number of actually performed comparisons), and a
weighting vector v = (i,..., ̂ ).

This treatment of missing values adopted respects the philosophy described in (§4.2.3).
To see this, let x\i denote the slice of a vector x minus the i-th component. Then, for two
vectors af¿,£¿ for which ¿¿¿^ = 0, it holds s(.r,-,£j) = s(.r,-|A;, Xj\k). For example, for these two
numeric vectors:

ii = {0.3, A' , . . . , 8.1}

£2 = {0.5,2.3,..., 3.1,}

This aggregation policy yields s(xi,x-2) = s ( x i \ 2 , X 2 \ 2 ) . The possibility that none of the
partial similarities can be performed has to be handled with special care. Formally, given
.-?,-,.?/, if it holds that:

Vfc : 1 < k < n : 6tjk = 0

the result of (4.71) is |j. As in Gower's original work, the measure would remain undefined.
This is unfeasible from the point of view of a neural network computation. There arc at least
two immediate solutions:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 110

1. To set s a ( x 4 , X j ) — 0, denoting that they are incomparable (corresponding to a pes-
simistic interpretation of similarity).

2. To set SG(XÍ,XJ) — 1, denoting that they are indistinguishable (corresponding to an
optimistic interpretation of similarity). This option carries with it the redefinition of
when two objects are equal.

In our framework, however, there is a third possibility, namely, to set SG(XÍ,XJ) = X,
expressing that a specific unit's computation of similarity is lacking. This missing value can
be processed by other heterogeneous neurons in the next layer.

The fact that a network weight can also be missing is interpreted by the neuron in the
same way than for the case of a missing input. In consequence, the input is ignored (as if the
connection were not there), which is consistent with the fact that a similarity measure must
be symmetric. Notice that, if at the end of a training process, a given weight is missing, then
the connection can be removed, since it is to be ignored permanently. This can be seen as a
form of network pruning.

An added advantage stems from the fact that (4.71) is not affected by any linear nor-
malization -see Appendix (D)- thus rendering this usual preprocessing step unnecessary.
Furthermore, being a linear aggregation operator, a non-linear component can be added to
in the form of a similarity keeping function s to form an S-neuron of the type described in
Definition (4.16), as follows:

SG(X, w*) — S(SG(X, w 1 ) ) x, OJ* e W1 (4.73)

The widespread logistic functions can be used to work as a non-linear s by adapting
it so as to map the real interval [0,1] on (0,1), by taking s = (711,0.5 in (3.9). However,
this function is not cheap to compute. For this reason, other parameterized families of
sigmoidal activation functions can be especially designed to operate within the [0,1] interval
[Valdés and Garcia, 97], such as s — </(• , k ) , where:

( =^ atk] if x < 0.5
g(x,k)=< '_k

... -0.5 -f- \/0.52 + 4k
«(*) = £ (4-74)

being a(k) an auxiliary function with k > O a real-valued parameter controlling the global
curvature, usually set in the experiments to k = 0.1. This family of functions meets the
conditions in Definition (4.9) and is displayed in Fig. (4.8). They correspond to isomorphisms
(monotonie bijections) in [0,1], fulfilling:

VA G R+, 0(0, k) = 0; 5(1, A) =1; lim g(x, k) = x; and g(x, 0) = H0 5 ( x )



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 111

being H the Heaviside function (3.1). The expression for a(k) is the solution of the
equation: a(fc)2 + ̂ - - k = 0, which results of imposing the above first two equalities.

1(1,100
lfx.10

Kl.025

«XÜHBS
1(11,0 01

H«.0.001

Figure 4.8: The family of sigmoidal functions g ( x , fc), for different values of A;.

Especially noteworthy is the following situation. If the heterogeneous space 7in includes
only elements of R, O or J\f, for which similarities -as shown in (4.52), (4.46) and (4.45)-can
be d ¡stance-based, and there is no missing information, then the overall measure in (4.71)
can be viewed as coming from a distance do Ç D(Hn), as follows:

SG(X, tu') = s(l - do(x, w')) x, iiï' (4.75)

The above expression fits the RBF unit scheme since it is a type (A) similarity measure
of the form (4.24) with s(z) = 1 — z applied to an aggregated distance do, built as in (4.3)
with n' — n, q = 1 and v¡ = 1. Additionally, the expression can be further simplified by
making use of Proposition (4.15) and collapsing the activation function into a single similarity
transforming one:

S'(Z) = 5(1 - Z)

where either s = ffn.o.síOi * = < / ( • ) & ) or other suitable function. In any case, the neuron
computation corresponds to a localized distance-based —the response of which is shown in
Fig. (4.9)— thereby making (4.73) an instance of a model acting as an extended RBF unit
(because it accepts ordinal data). In general, in presence of fuzziness, incompleteness and
other kinds of data peculiarities, in the components of the heterogeneous input space, the
function do in (4.75) cannot be guaranteed to be a distance in D(Hn) and the RBF philosophy
is departed. In any case, it is behaving as a similarity-driven model.

Additionally, it is noteworthy to observe how the sigmoidal-like functions are by no means
tied to the MLPNN (or, in general, to be used as s-functions). They can most conveniently
be used as an s-function by inverting its behaviour. For instance, by setting a = 2 in the
Example s4 in page (84), the function a0(z] = 2(1 - a(z}) is a similarity whenever z is a.
distance, with a response much like that in Fig. (4.9). This transformation is well-known
although scarcely used in the ANN context. In case z € [0,1], the relation is more compactly



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 112

h (x, •)

O dG(x, •) l

Figure 4.9: General response of the example S-neurons (for fixed weights).

written as CTQ(Z) = 2a(-z). Notice that in all these situations only the upper half of the
functions is being used.

The expression in (4.71) has many advantages: is a simple one, fulfills the desired prop-
erties, including the policy for missing values, is computationally cheap and is also a generic
measure, in the sense that it does not take assumptions about the partial similarities.

4.4.2 Classes of s functions

In this section, several classes of functions that can act as similarity transformers are pre-
sented, obtained by generalizing and extending the functions listed in page (84). Some of
their instances are well known and have been proposed in the context of RBF networks as
theoretically valid radial basis functions [Poggio and Girosi, 89]. In the proposed framework,
the requirement for inclusion in the list is the fulfillment of Definition (4.10). Without loss of
generality, all the functions are set to yield smax = 1. The following represent flexible classes
of s functions:

, 0 < d < l , a> l , o > 0 , z €

f ,
1 ~f~ \CLZ j

[0,oo)

(4.76)

(4.77)

(4.78)

s3(z) = , a > 0, a > O, z € [0, oo) (4.79)

s4(z) = 1 - ffn,o.5(«), c > 1, z € [0,1] (4.80)

where g in (4.80) is the logistic (3.9). The variety of such classes of functions is enhanced
by the introduction of parameters to control their precise shape within a specific analytic



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 113

expression. In practical terms, this variety translates in to how sensitive a neuron endowed
with a given function will be w.r.t. its argument. Since this argument is a distance, the
sensitivity can be thought of as a means to control how far apart (in heterogeneous distance)
two entities (in this case, an input and its weight) should be to be considered as, for example,
"half" similar (recall the similarity is always expressing a degree).

The first family of functions is designed to explicitly take this controlled sensitivity into
account. The basic distance to similarity transformation SQ(Z) = I — z being linear, this
generalization achieves also the purpose of making it non-linear in a controlled way. As
desired, s0(0) = 1, and smax, dmax are related. For smax = 1, dmai - £, and thus s0(dmax) =
0. Normally, a simple choice a = 1 can be taken, leading to smax = dmax = 1. Note that this
does not imply any specific value for d or a.

Let us show how this is a valid generalization of the standard transformation t(z) = 1 — z,
assuming z is a normalized distance in [0,1].

Proposition 4.32 Given z a normalized distance, z 6 [0,1], the family of functions

¿0(2) = (l-zd)a,0<d< l,o > 1

is a similarity in [0,1].

Proof. First, since s is a. distance, zd, for 0 < d < 1, so is, by Lemma (A.4) in the
Appendix. Second, SQ(Z) = 1 — z is a valid similarity transforming function, one of those in
the list at page (84), for dmax — 1 -Proposition (4.16). And third, s(z) = za,a > 1 is clearly
a valid similarity keeping function.

For low values of d, a, a logistic non-linearity go = #11,0.5 can be further applied, as a
s-function, like in (§4.4.1). In (4.80), the same function is used in a parameterized way, this
time as a s function. Note that, by making use of the equality 1 — gßtg(cz) = gßß(—cz],
both (4.78) and (4.80) are obtained out of the general logistic gß,e(z) (3.9), the former as
Sß,o(—2) and the latter as gnto.^(—cz). Though the general appearance of (4.78) and (4.80)
is obviously much like that of (4.79), their conception as a generalized and inverted logistic
can be conveniently instantiated into more specific functions, for which the centered and
symmetric behaviour over a diagonal axis is no longer needed. Instead, its utility stems from
its smooth and monotonically decreasing response, controlled by parameter c.

The response of functions (4.76) to (4.80) is displayed in Figs. (4.10 to 4.14), where their
diverse behaviour is plainly observed, reacting quite differently to distance values within the
same input range. Therefore, it is of interest to establish a means to compare their relative
response and a mechanism to determine which of them are more suited to be used as similarity
transformers in practice.

4.4.3 Sensitivity relations

The idea behind the sensitivity of a. s function can be informally stated as follows: given
a similarity value SQ G [O, smar], what is the required distance value f/o to yield s0? Since
SQ = s(do), we have in general d0 = S~I(SQ) 6 [0,oo).



C7fAPTEß4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 114

(a) Varying d for a• = 1 (b) Varying d for a = 2

(c) Same as (a) after applying go = 311,0.5 (d) Same as (b) after applying go = 311,0.5

Figure 4.10: Response of the class ¿0(2)- Notice the effect of g0.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 115

oi tvv-V

(a) Varying o for a = 1 (b) Varying a for a = 2

Figure 4.11: Response of the class

(a) Varying a for o = 1 (b) Varying a for a = 2

Figure 4.12: Response of the class s 2 ( z ) .



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 116

(a) Varying a for a = 1 (b) Varying a for a = 2

Figure 4.13: Response of the class ¿3(2).

(a) Plots of ¿4(2) for varying c.

Figure 4.14: Response of the class ¿4(2).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 117

Assuming s : [D, dmax] —>• [0, smar]i its inverse s"1 is guaranteed to exist, and to be strictly
increasing and continuous in [0, smax], by the properties of s. The smaller do, the less sensible
s is, since it takes a small distance value to reach a given similarity. Accumulating all this
values over all SQ 6 [0,smaJ, and applying a proper normalization, we have a measure 0 of
sensitivity for a given s function.

The accumulation is nothing more than the integral:

I s~l(z}dz
•/fO.Smail

©s
J (0,3

As long as s"1(2) € [0, dma:c] -which implies that s(dmax) = 0, by Proposition (4.16)- thé
above integral is guaranteed to exist (that is, to be finite) and 0s 6 [Q,smaxdmax]', therefore,
the sensitivity can be normalized. In addition, by making use of the following equality:

/ s ~ l ( z ) d z = í s(z)dz (4.81)
J[0,smal] J[Q,dmaI]

the inverse can be avoided. Denoting S the set of all I functions satisfying Definition
(4.10), we end by defining the sensitivity of a s function as a function: 0 : S —> [0,1] as:

L d ]ê(z)(lz
f. ** l"iU·mojf i ^ ' / t r\£^\QS = _LL L (4.82)

This measure gives a value closer to 1 the more sensible a function is; in other words,
the easier is for a distance to elicit a given similarity value, accumulated over all the possible
distance values. It is non-negative since the integrated functions are; being all the s 6 5
monotonie and continuous, they are Riemann-integrable in [0,cimar] [Jarauta, 93]. Addition-
ally. (4.82) induces an ordering relation Ç on 51, defined as:

f i E f 2 <=» ©/i < 0/2 , fi , it € 5 (4.83)

expressing that /i is less sensible than fa. It is straightforward to see that C is a preorder
(a reflexive and transitive relation) and hence (5, Ç) is a preordered set. The relation is
neither symmetric (obviously) nor antisymmetric. This is illustrated in Fig. (4.15), in which
it is assumed that 0/i = 0/2-

Mathematically, the comparison between different s makes sense because, in general:

VSe5[a,6], 3£(S)| s(z)dz = C(s)(b - a) (4.84)
J [a, b]

In our case, [a, b] = [0,(/max] and is constant for all the functions so that, being (4.81) in
[O, Smammar] i the number:

f (s) = T— í s(z)dz
"mar J[04max]

represents the fraction (w.r.t. smaa-) of area filled by s in [0,dmax], depicted in Fig. (4.16).
Dividing by smax, we get the normalized measure (4.82).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 118

Figure 4.15: An example of non-antisymmetry. Assuming both marked areas are equal, it
follows that /i Ç /z A /2 Ç f i but f i ^ f i -

max

Figure 4.16: Sensitivity as a similarity ratio.

4.4.4 Sensitivity in practice

To clarify the relationship of different instances of the proposed families of s functions and to
assess their usefulness as parts of recognition devices, a numerical experiment is performed
with a twofold purpose. On the one hand, to check whether sensitivity is an important
quantity and to what degree it exerts an influence on neuron performance. On the other,
to ascertain what is the best range of values for the sensitivity. Too sensitive a neuron
would make it useless as a recognizer because of the loss in discrimination ability, while too
unsensitive would translate in a very specialized neuron model, one yielding high outputs
only for a specific pattern (its weight vector) and vigorously decaying moving away from
it. This has to do in general with the degree of overlap between neurons, a topic already
found in RBF networks [Orr, 96]. Furthermore, Notice that the application of a s function
is not limited to the case in which the neuron as a whole is computing a distance -as in
type (A) similarities-, but can most conveniently be applied to individual neuron input lines
-specifically to those that are distance-based- as in type (B) similarities. The general form
of the function computed by the neuron allows the aggregation of partial similarities with
no assumption to their distance-based character. Therefore, in those situations where the
similarity measure is not completely of either type (A) or (B) the overall sensitivity of a
neuron has to be assessed in a different way.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 119

To this end, we define the /0-sensitivity of a S-neuron i with weight vector w', computing
a similarity measure s : K, K —ï [0,1] over a support set K C 7ín as:

ßi(K,s) = E{s(x, wtygçK, wi e K (4.85)

where E{-} denotes the statistical expectation operator. One way to evaluate the sensi-
tivity of s is by assessing its initial response in K. This can be achieved by computing the
/î-sensitivity as:

E{s(x,E{w<})} (4.86)

where WQ stands for the initial weight vector of neuron ¿ in a training process. Expanding
(4.85) we get, for (x, w¿) € K x K C 7¿2n:

ßi(K,s)= í s(x,E{w¿})p(x,w¿)dxdw> (4.87)
J K Y. K

The joint distribution can be decomposed in two, for the two variables are independent:

r . . .
ßi(K,s) = s(x,E{w¿})px(x)pw(wo) dxdw¿ (4.88)

J K x K

Let us denote by D[X,p, $](x) a set of •& samples of x drawn from a set X with proba-
bility density function (pdf) p ( x ) . The pdf pw for the initial weights is known albeit to be
determined; we can generally assume it to be uniform though it is not necessary. In any
case, we have a (finite) set W¿ — D[K,pw, $w](u?¿) of available samples at the outset of the
training process. The pdf px from which the input patterns are drawn is not known. Instead,
in general all we have is a set of samples A'0 = D[K, px, $J(x). Therefore, the integral (4.88)
has to be estimated by evaluating it on the (finite) set KQ x W0 so that:

s(x, w¿) (4.89)
x w

yields an estimate of the true ßi(K,s) in (4.85), where pw is taken to be uniform. In
practice, the measure (4.89) is likely to be more accurate the bigger the two sets of samples.
As for WQ, we have in principle an unlimited (in the sense that it can be as big as needed)
set of initial weights. With regard to KO, having a training set as large and, most important,
representative of the underlying distribution as possible is a key condition for acceptable
performance on novel data. In addition, considering a network with a layer of hi hidden
neurons allows for a supplementary source of independent estimates (at least initially), which
can in turn be averaged over. The final quantity, denoted mean initial similarity is computed
as:

ß(K, s) =< ßi(K, s) >,, l < t < /ü (4.90)

The value yielded by (4.90) gives an idea of how initially sensitive the network is to a
precise data set. The question arises: what is the most convenient value for it? There surely



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 120

is no value generally best, although, in practice, lower and upper bounds are likely to exist.
It also depends on the way partial measures (be distances or similarities) are aggregated,
and on the way these are computed. Therefore, the answer traces back to the sensitivity of
the s functions as defined in (4.82). Since smax has been set to 1, we could expect ß(K,s)
to be about 0.5, signaling a middle initial average similarity. We hypothesize that this will
certainly not be the case in general, for reasons that will soon be introduced. It will indeed
be the case for the standard P-neurons as defined in Definition (2.2) and working on point
similarities -see Proposition (4.23). As a matter of fact, it is general advice to set the initial
weights of these neurons so to elicit an activation about one half7 so that the learning process
moves the weights towards saturation, thus committing the neuron to the extreme bounds of
the non-linearity [Haykin, 94].

However, for general neuron models working on similarity, especially those using a com-
bination of different partial measures, either distance-based or direct, for each input variable,
the answer is not so obvious. Looking at it from the point of view of a similarity leads to
think that 0.5 over 1.0 corresponds to a high degree of overall similarity. It means that, by
guessing initially blind, untrained weight vectors, the expected similarity (that is, the degree
of recognition) is yet half the maximum possible. It it thus reasonable to presume that a
lower (possibly much lower, depending on the precise model) initial value would be more
tenable.

4.5 Preliminary Experimental Comparison between Similar-
ity Measures

4.5.1 Experiment description

To study the validity of the general approach and, at the same time, to preliminary assess how
well each of the proposed neuron models (acting as basis functions) is able to approximate
a sampled function, they are experimentally compared on a two-dimensional benchmark
function [Su and Sheen, 92], the non-linear system identification problem:

where

y i ( k ) =
y2(k) = u(fc)[l + «2W] (4.91)

The output y(k) depends on the previous input u(k — 1) and on the previous output
y(k — 1). A learning set of $r = 100 input/output pairs is constructed by setting y(0) = 0
and randomly exciting the system using a signal u(k) uniformly drawn from [—2.0,2.0].

In this task there is no data heterogeneity -the two variables are continuous- and there
is no missing information. It has been chosen as a preliminary case study precisely because

7That is, in the mid part of the sigmoid linear range: see the last part of (§2.1.2).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 121

of that: the primary interest being to compare the relative usefulness of several instances of
the parameterized functions (4.76) to (4.80) as bricks for constructing basic distance-based
similarity models on continuous variables, as well as to have them compared to the more
classical neural models. A fuzzy model is also investigated. The following are the explored
models:

1. The standard scalar-product neuron (SclProd) plus a trainable bias and a logistic
5i|0, and the three derived measures, (4.44) (SclProd2), (4.32) (SclProdS) and (4.33)
(SclProd4), all of them using a similarity keeping sigmoidal (4.74), with k = 0.1.

2. Two RBF models, using Euclidean distance as aggregation, and a Gaussian (¿3 for
a = 2) as activation function. The first model, StdRBF has a different variance (to be
learned) for every hidden unit. The second, NormRBF, computes a normalized distance
—that in Proposition (4.9), for q = 2 — followed by a Gaussian adapted to an argument
in [0, 1], by setting a = 2, a = 6 in (4.79).

3. A representative set of s functions -displayed in Table (4.1)- chosen from (4.76) to
(4.80), applied to partial distance computations, as explained below.

4. A fuzzy model, obtained by considering the original crisp data as triangular fuzzy
numbers.

The partial similarity measures between the two variables in point 3. above are computed
using a distance-based similarity function, obtained by application of the different s to the
basic distance (4.51) on continuous variables. Notice that S0_0 -the first obtained function- in
Table (4.1) directly corresponds to (4.52). They are all aggregated using asimple arithmetic
mean :

3(î, „.', = 911,0, . . (4.92)

complemented with a similarity keeping function, thus being type (B) similarities, whilst
the two RBF models are examples of type (A). In other words, no measure in point 3.
above, although being distance-based and accepting only real-valued and complete data, can
be seen as a classical RBF computation, because the former express a similarity formed by
aggregation of partial distance-based measures, while the RBF expresses a similarity obtained
from a global distance (in this case, in R2), which results in a different computation since the
s, except SO-0, are non-linear.

Besides, the partial non-linear measures are linearly aggregated to form a non-linear
similarity so that, in principle, there is no need to apply a further non-linearity (in the form
of a similarity keeping function). The behaviour of (4.92) is illustrated in Fig. (4.17) for
several choices of SQ. These variations are to be tested experimentally.

The fuzzy model uses (4.60) for the partial similarities, the same aggregation and s =
í/11,0,5 as above. The imprecision is roughly estimated as follows. Data is generated from
(4.91) by rounding to four significant digits (three decimal); the application of equation (4.91)



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 122

Function
Index

S0_0
SO-1
SO-2
SO-3
SO-4
S0_5
SO-6
SO-7
SO-8

Sl_0

S1.1
Sl-2
SI .3

S3-0
S3-1
S3-2

S4-0
S4-1
S4-2
S4.3

Parameters

¿o for d=l, a=l
so for d=l, c*=2

¿o for d=0.5, a=l
SQ for d=l, a=4

lo for d=0.25, a=l
SQ for d=0.5, a=2
SQ for ci=0.5, a=4
s0 for d=0.25, a=2
s0 for d=0.25, a=4
sj for a=l, a=0.25

si for a=l, a=0.5
sj for a=l, a=1.0
sj; for a=l, a=2.0

s3 for a=6, a=0.5
¿3 for a=6, a=1.0
s3 for a=6, a=2.0

s4 for c=1.0
s4 for c=1.5
s4 for c=2.0
s4 for c=2.5

Expression

1-2

(I-*)2

1- v/2

(I-*)4

1- ̂
(i - VS)a

(i - ̂ )4

(i - ̂
(i-^)4

ï+17ï~ 1

ITT?" X

i i
l+z ~ l

ÏAT-1

expj-6-v/^}
exp{— 62}

ezp{— 6z2}

l-ffn.o.s(l-0«)
1 -5ii,o.5(l-52)
1 - 011,0.5(2.0«)
1 -011,0.5(2.62)

Table 4.1: The different 5(2) used in the experiment for partial similarity computations on
continuous variables. The symbol (*) denotes the adaptation to an argument z 6 [0,1], so
that s\(z) — 2si(2) — 1. In all cases, smax = 1.

magnifies the errors up to a factor of 10. Therefore, symmetric triangular fuzzy numbers x
centered at the original value x are associated to x as [i¿ — /i[x,0(x)], a(x] = («1,0-2) =
( k x , k x ) , k = 5- 10~3.

4.5.2 Experimental setup

All of the tested models use exactly the same experimental environment, in which everything
is kept constant except the neuron model itself. The two input variables are normalized to lie
in [0, 1]. This is not needed by the heterogeneous neurons because they compute a normalized
measure, but is beneficial for the standard models. The output is not normalized. A fixed
architecture composed of hi —8 neurons arranged in a hidden layer plus an output linear
neuron is used. In general, the number of free parameters for the standard models in 1. and
2. is given by:

(7»+ = 33



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 123

(a) d = I, a = 1, no (b) d- l,a = 1, with

(c) d= l,oi = 1, no (d) d= 1,Q = 2, with

(e) c/ = 0.5.CV = 1, no (f) cf = 0.5, a = 1, with 5

Figure 4.17: Example response of (4.92) for a, reference weight vector tu' = (0,0) and £ 6
[—2,2] x [—3,3], with and without a further smoothing s = #11,0.5 non-linearity. Note how
the response in (c) and (e) is less sensitive than in (a). The same happens for (d) and (f)
against (b).



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 124

where n = 2 is the. number of inputs. For the heterogeneous neurons in 3. it is given by:

nhi + hi + l = hi(n + l) + l = 25 (4.94)

while for the fuzzy model is:

+ hi + l = hi(2n+l) + l = 41 (4.95)

The weights (including biases and standard deviations) for the models in 1. and 2. are
let to vary in [—10, 10], a sufficiently wide range given the normalization chosen. The only
exception is the measure (4.44) (SclProd2) for which, according to its definition, the weights
and bias belong to [0, 1]. The interval [-10, 10] is also used for the hidden-to-output weights
in all the networks.

The training procedure employed is the Breeder Genetic Algorithm (BGA), characterized
by truncation selection, a deterministic procedure driven by a breeding mechanism, an artificial
selection method in which only the best individuals — usually a fixed percentage T of total
population size fi — are selected and enter the gene pool to be recombined and mutated, as
the basis to form a new generation. A detailed description can be found in Chapter (6).
Notice that the training method used is not an studied aspect here. It is implicitly assumed
that different procedures are not to alter the relative behaviour of the models.

The BGA is used with the following parameters: ß = 60, r = 25, EIR recombination
with S = 0.45, and continuous mutation with p = 0.5,¿ = 8. A number of NRuns=10
independent runs are performed, each of which is allowed 10,000 error function evaluations, a
moderate amount of computation for an ANN optimization task (a total of [10, 000/60J = 166
generations are to be carried out).

Function
SO-0
SO-1
SO-2
SO-3
SO-4
S0.5
SO-6
SO-7
SO-8

Mean MSB ± a/^/n

1.228 ± 0.045
0.752 ± 0.053
0.448 ± 0.041
0.371 ± 0.037
0.273 ± 0.015
0.356 ± 0.033
0.840 ± 0.074
1.312 ± 0.060
5.315 ± 0.176 J

Best MSB

1.010
0.521
0.328
0.223
0.211
0.266
0.456
0.959
4.333

ß(K,s)

0.795
0.541
0.475
0.289
0.172
0.176
0.053
0.040
0.008

Table 4.2: Performance of the heterogeneous models using SQ.

This means that uw = /ii/iNRuns = 4,800 is the sample size of initial weights as they
are generated to form the various initial populations of individuals. For each tested model,
the mean square error is reported (as MSB) plus/minus the normalized standard deviation
in the usual form. The best MSB found is also reported. The last column is the mean initial
similarity, a measure of network sensitivity, computed as in (4.90). The results of the training
process are displayed in Tables (4.2) to (4.5) for the different models explored. The following
remarks are in order:



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 125

f-Function | Mean MSB ± cr/y'n | Best MSE| ß(K,s)

SO-0
SO-1
so^
SO -3
SO-4
SO-5
SO-6
SO-7
SO-8

0.745 ± 0.050
0.500 ± 0.029
0.362 ± 0.044
0.235 ± 0.017
0.220 ± 0.015
0.258 ± 0.045
0.309 ± 0.023
0.324 ± 0.053
3.050 ± 0.090

0.633
0.350
0.176
0.133
0.145
0.151
0.173
0.149
2.704

0.692
0.524
0.487
0.352
0.302
0.280
0.124
0.117
0.028

Table 4.3: Same as Table (4.2), without using the s = #11,0.5 non-linearity.

45
«5

4

3.75

li

3.25

3

¡.75

2.5

2.25

1

1.75

1.5

125

t

0.75

0,5

0.25

O

Figure 4.18: Left: The functions named S0_0 to SO-8. Right: Plot of Mean MSE, 0 and
ß(K.s), for the functions S0_0 to SO-8 (z-axis), according to Table (4.2).

1. The most interesting family is the SO, because of its richer set of functions, displayed in
Fig. (4.18, left). As it can be derived, the parameters d,a are in control of the overall
sensitivity of the model. Obviously, for increasing a or decreasing d, high similarities
are obtained only for really similar vectors, so that the neuron becomes less sensitive.
More precisely, the 0 sensitivities for the functions SO.O to S0_8 are, respectively,

_ _ _

*2' 3 '3 '5 '5 '6 '15'Î5170'

This is reflexed in Table (4.2) where, on the one hand, there is a correlation between the
factor ß(K, s) and the above 0 sensitivities. On the other hand, there is a deep relation
to the obtained performance. Note how 0SO_0=l/2 is half the maximum (perhaps too
high) and 0SO_8=1/70 « 0.014 is a small value, leading to an almost unsensitive neuron.
The three factors are plot together in Fig. (4.18, right). The networks using these two



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 126

.Function
Sl_0
S1.1
S1JZ
Sl_3
S3-0
S3_l
S3-2
S4_0
S4_l
S4-2
S4.3

Mean MSE ± a|^/ñ

0.491 ± 0.050
0.313 ± 0.042
0.768 ± 0.057
1.110 ± 0.022
1.676 ± 0.095
0.470 ± 0.088
1.397 ± 0.134
0.597 ± 0.025
1.514 ± 0.083
0.920 ± 0.076
0.895 ± 0.109

Best MSE

0.311
0.143
0.534
0.954
1.276
0.173
0.751
0.444
1.207
0.596
0.504

ß(K,s)
0.072
0.245
0.613
0.882
0.036
0.212
0.630
0.838
0.607
0.450
0.355

Table 4.4: Performance of the heterogeneous models using s\, ¿3 and ¿4.

extreme models SO.O, S0.8 achieve the worst results (much worse for S0_8) for different
reasons, displaying the highest (0.795) and lowest (0.008) ¡3, respectively. For this
family, the relations are the following:

(4.96)

This translates in general in the mean initial similarity ß, higher for higher 0 sensi-
tivities, as expected. In performance, which is markedly better in the middle of the
relation scale (4.96), for functions S0_3, S0_4 and S0.5, corresponding to a ß in the
range [0.176,0.289]. Notice also how the sensitivity of these three functions is very
similar (1/5, 1/5, 1/6) and different from the rest. The standard deviation of the errors
reported for these functions are also the lowest, signaling less variability, as is the best
result found (Best MSE).

2. In Table (4.3), the same experiment is repeated, this time not using the non-linear
logistic as activation function. It can be seen that the results have generally improved
those in the previous experiment, the possible reason being that the non-linearities
in the proposed measures for partial similarities are enough to capture the relation
(4.91). Notoriously, SO.O has also improved, although it is now a linear model. The
ß estimations have suffered a slight increase, due to the absence of the logistic, which
tended to lower similarity values under 0.5 and raise those above 0.5. The results
are in general accordance with Table (4.2), being again S0.3, S0_4 and S0_5 the best
performing models.

3. Results for the other s functions tested are shown in Table (4.4), related as follows
(inter-family relations not shown):

Sl.O C Sl_l C S1-2 C S1-3 (4.97)



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 127

"Function
SclProd
SclProd2

Mean MSB ± 0/,/n
0.549 ± 0.055

L 1.551 ± 0.028

L Best MSB
0.314
1.380

ß(K,s)
0.507
0.218

SclProdS
SclProd4

0.917 ± 0.026
0.968 ± 0.034

0.794
0.814

0.506

0.004

StdRBF
NormRBF

Fuzzy

1.573 ± 0.090
1.974 ± 0.052
0.482 ± 0.041

1.224
1.628
0.252

0.354
0.522
0.064

Table 4.5: Performance of the models based on scalar product, the two RBF models and the
fuzzy model.

S3-0 C S3-1 C S3-2 (4.98)

S4_3 C S4-2 C S4-1 C S4_0 (4.99)

The only acceptable performance (compared to the already found results) is that of
Sl.l (the Gaussian function) yielding a network with estimated ß = 0.245, inside the
previous range. As for the S3 family, only S3_l shows a fair performance (ß = 0.212),
while the logistic itself (S4 family) does not seem to be appropriate, possibly due to its
characteristic S-shape.

4. The classical models are displayed in Table (4.5). The first remarkable point is the poor
results achieved by the two RBF models, possibly caused by an insufficient number of
basis functions, although factors as input normalization, different standard deviation
per unit, a representative training set and the presence of only two variables are gen-
erally beneficial. Incidentally, notice how performance is comparable to that of S3_2
(which is also using a Gaussian as activation).

5. The mean result for the scalar-product (0.549) can be taken as a reference for the
similarity-driven models. For those in Table (4.2), all the models from S0_2 to S0_5
yield a better performance. For those in Table (4.3), all the models from S0_l to
S0_7 —that is, all but the two extreme ones— outperform it, in various degrees. The
standard deviation of the errors and the Best MSB are also lower. Notice how the
estimated ß = 0.507 for SclProd is close to the expected value 0.500. Interestingly, the
nearest model in performance (S0_l) yields a similar ß = 0.524.

(). The measures SclProd2 reports also relatively poor results, though in the line of those
for the RBF. We conjecture that its estimated ß = 0.218 is too low for a scalar-
product, possibly caused by the input distribution. The other two measures base on
scalar product show to be valid as neuron models, performing in between the true scalar
product SclProdO and the two RBF measures. Note that while SclProdS still behaves
as a scalar product (indicated by its ß = 0.506), SclProd4 can be seen as what it is: a



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 128

true similarity measure for reflexivity is taken in the strong sense, as indicated by its
low ß — 0.004. However, both yield an analogous performance. More work should be
devoted to study these measures, possibly by controlling their sensitivity.

7. Regarding the fuzzy model, the first notable point is its very low sensitivity (ß = 0.064),
due to the way the partial similarities are computed. The fairly good obtained results
(Mean MSE=0.482) indicate that explicitly considering uncertainty in a network leads
to valid models enjoying an added flexibility -because they work on a superset of the
reals. This compensates for the increase in the number of free parameters, less likely
to be properly constrained by a limited size data set [Bishop, 95].

This experiment has been intended as an illustrative example of how to develop neuron
models under the introduced framework. It has been chosen deliberately simple (two vari-
ables, no data heterogeneity, no missing values) and yet the variety of models permits to
elucidate many of the introduced ideas and hypotheses.

The estimated value ß(K, s) is to give a further insight into the workings of each model.
For example, for S0_0 in Table (4.2), its value of nearly 0.8 is expressing many things when
compared to that for scalar product (0.5) in Table (4.5). This value is explained when thinking
that, for scalar product, not being a proper similarity, the partial measures (the correlations)
can be negative, thus contributing negatively to the total. In contrast, the other measures are
pure similarities and the partíais are always non-negative. Besides, the adopted semantics for
partíais ensure that even small contributions can only add something to the overall measure,
thus leading easily to high values.

This is not inherently wrong —and agrees with the idea that a negative similarity is
senseless— as long as we do not allow the overall measure to easily reach these high values,
for stimuli only fairly similar. This is precisely what is achieved in asimple way by controlling
the partial measures via the parameters d, a. That is, setting less sensitive partial measures,
thereby reducing their contribution to the total, though keeping it still positive. An indication
of how sensitive on average (at least initially) is a network is given by ß(K, s).

Perhaps the most noteworthy conclusion is the relation between model sensitivity 0,
estimated network ß ( K , s ] and final network performance. In particular, sensitivity has been
shown to have a deep impact on performance. In a working model, its value is to depend on
two factors: the training set KO and the actual measure s being used. Holding the first factor
constant, varying the shape of s reflects in the resulting performance of the system, and this
is in turn related to the ß(K,s) estimation. In the presented experiment, the overall results
are only indicative because of the simplicity of this preliminary study -only two variables
(both of them significant), no missing values and no complex interactions present- but they
are in general accordance with the discussion presented.

4.6 Concluding Remarks

One of the main contributions of the approach presented in this chapter consists in provid-
ing a conceptual framework for the study of neuron models as similarity computing devices.



CHAPTER 4. SIMILARITY-BASED HETEROGENEOUS NEURON MODELS 129

The intention is riot to embody all the existing neuron models -a difficult topic about which
some excellent material exists [Reyneri, 99]. Rather, it is to provide a precise though com-
prehensive framework that fastens the most common models under the general cover of a
similarity measure, thereby exploiting the various advantages stemming from this. We use
the term Heterogeneous Neural Network for the broad class of architectures making use
of neuron models derived from the framework and show the relation between neuron models
of the kind used in MLP and RBF networks. The rationale behind the approach is that, by
replacing, whenever convenient, the traditional scalar-product by an explicit, normalized and
heterogeneous similarity measure, it is expected that the resulting model is to capture more
satisfactorily the underlying process (in terms of quality of the approximation, generalization
ability or readability of the solution found).

Perhaps a more important prospect is that it offers the possibility to develop new models,
eventually taking into account data heterogeneity, a further extension that fits nicely in
the framework. For example, standard (localized) RBF models are seen as particular cases
whenever all the partial similarity computations are distance-based and continuous, using a
specific aggregation measure and in the absence of missing values. The scheme stresses also
the fact that certain activation functions are by no means tied to specific neuron models.
Instead, what counts is the properties they fulfill and its capacity to adapt to different roles;
in this sense, the sigmoidal family of functions is a flexible means to do so.

In general, the similarity relation is to be data dependent, and possibly problem depen-
dent, since the same data could be treated differently for different tasks. In any case, it is
ensured that any derived instance is to behave as a (soft) pattern recognizer and that similar
patterns for the input units are to elicit similar responses in the hidden units. This may add
an extra insight in the processing carried out in an artificial neuron (especially in the hidden
ones) because of the known and controlled response characteristic and the possibility to add
prior knowledge in its design. The s functions proposed, being parameterized families, allow
to have a control on the exact shape of the neural response, leading to the idea of sensitivity.
In this vein, the specific analysis of the subspace within [0, smaj'

11 spanned by the hi hidden
neurons and the way it is covered should give a deeper insight in the overall process and
opens possibilities for further refinement.

All this suggests that there are useful alternatives to classical neuron models. The task of
selecting the most appropriate is however an open question. A given measure may maximize
the accuracy of a learner in an experiment but perform poorly as compared to others in
another one. This in turn relates to the number of examples needed to represent a specific
function, bringing to the conclusion that there is no "universal" similarity measure that
efficiently represents any target function [Globig and Lange, 96].

Clearly, applications on real-world size problems as well as thorough studies in ANN
benchmark data (as [Prechelt, 94, Murphy and Aha, 91]) are needed to assess the validity
experimentally. These problems and benchmarks should specially include rich forms of data,
as discrete, nominal or linguistic variables, and missing information, traditionally resistant
to classical models.



Chapter 5

The Universal Approximation
Property for HNN

All exact science is dominated by the idea of approximation.

Bertrand Russell

This Chapter is devoted to the analysis of the representational ability of Heterogeneous
Neural Networks (HNN). In subsequent chapters, it is illustrated how satisfactory solutions
can be obtained in practice, for several real-world problems, by various types of HNN.

5.1 Introduction

The universal approximation property for ANN relates to the ability of approximating an
unknown target function to any desired degree of accuracy. From a theoretical point of view,
the property is important because it ensures that a satisfactory solution is always to exist.
However, the practical concern is limited, in most occasions, to an existence proof, and it
does not address the question of the precise form of the network (as number of hidden layers
and units per layer) nor how to find adequate weights for it. For this reason, experimental
work is the best means to assess the validity of the property because it illustrates the quality
of the actually obtained approximations. Nevertheless, the property can act as a complement
to the more practical results, and at the same time give a further insight into the involved
neuron models, because it requires an additional effort of formalization.

Since HNN constitute a very generic framework of families of similarity-based models, a
common and general proof is not amenable to be obtained, unless making hypotheses about
the specific similarity functions being computed by the network. In consequence, we split the
proof into classes of functions -into the types of similarity measures worked out in previous
chapters (cf. §4)-, assuming precise decompositions of the overall computation. We show in
this chapter that, under certain conditions, several types of feedforward HNN are classes of
universal approximators. In all cases, we make use of the properties fulfilled by these neuron

130



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 131

models. This scheme is also followed to handle the different kinds of data heterogeneity.

The rest of the chapter is organized as follows. The next Section (§5.2), deals with
preliminary material, presenting the neuron models in a useful uniform notation. In (§5.3),
the formal notion of universal approximation is discussed, along with the required basic
concepts, and the basic results in the literature relevant to neural networks are reviewed.
Section (§5.4) contains the results concerning the feed-forward networks worked out in this
Thesis. Finally, some conclusions to the chapter are presented in (§5.5).

5.2 Preliminaries

The problem of learning an input/output relation from a set of examples can be regarded as
the task of approximating an unknown function f ( x ) from a set of data points, which are possi-
bly sparse. The question of approximation by classical feed-forward ANN has been addressed
by several authors: [Funahashi, 89], [Cybenko, 89], [Hornik, Stinchcombe and White, 89],
[Hecht-Nielsen, 89], [Hornik, 90], [Leshno et al., 93] and others for MLP networks, and
[Hartmann, Keeler and Kowalski, 90], [Girosi and Poggio, 89], [Park and Sandberg, 91] and
others for RBF networks. In essence, these networks are equivalent to a parametric approx-
imating function ^-¿(x) and have been shown to be able of representing generic classes of
functions —as the continuous or integrable functions— to an arbitrary degree of accuracy.

In general, there are three questions that arise when defining one such parameterized
family of functions f^(x), where w represents the whole collection of network parameters
(see §2.1):

i) What is the most adequate form of J-'^x), for a given problem?

it) How to find the best w for the chosen ^^(x)?

Hi) What classes of functions /(£) can be represented (i.e., approximated) by ^"^(f), re-
gardless of w, and how well?

The universal approximation property concerns only the third question. The other two
are usually tackled by model selection or network design techniques, and learning algorithms,
respectively. The property is shared by algebraic and trigonometric polynomials, as is shown
by the classical Stone-Weierstrass theorem [Stone, 48]. There is nothing special nor exclu-
sive about ANN in this respect. In fact, many classical approximation schemes exist that
can be represented as a "neural" network with a single hidden layer, and exhibiting the
S to ne-Weierstrass property [Girosi and Poggio, 89]. Yet, the existence of powerful learning
algorithms and the variety of neuron models endow ANN with a special practical interest
and raise the above question iii) as a natural one to be asked.

In an ANN approximation scheme, the approximating functions are members of a pa-
rameterized family. Existent work has been almost entirely devoted to the properties of
one-hidden-layer networks. A network with no hidden layer is not capable of approximating
generic non-linear continuous functions [Widrow, 90]. On the other hand, two or more hidden



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 132

layers are scarcely_used in practice and the proof that they share the property is simple, once
we have it for single-hidden-layer networks [Scarselli and Tsoi, 98]. Hence, the majority of
work in the literature deals with single-hidden-layer networks.

Consequently, in the following we shall concentrate on networks composed of one hidden
layer of hi units and one output layer consisting of a single unit, whose task is to produce
a linear combination of the outcomes for the hidden units, plus an onset term. This is the
most simple architecture which should be capable of approximating a target function, given
some very general conditions are met. It is sometimes common to consider an additional
non-linear function a in the output neuron. Such a network represents the class of functions:

Sr = {JFjjL : Rn -+ R | F*(x) = a '^(*) + c0 ,
\i=i /

(c,c0) eR'11 x R , c r : R - > R , / i i € N+,7¿ € F , 1 < i < /ij, x e R" (5.1)

where 7,- is the transfer function of neuron ¿, 1 < i < hi, in the hidden layer. The usual
definition of layer forces these 7,- to belong to the same (parameterized) family F. In the
ANN context, the 7,- have a very definite form:

F = {7¿ : R" -» R I ji(x) = g(h(S, a% af 6 A}, x 6 Rn (5.2)

where g : R — >• R is the activation function and A is the neuron parameter space. This
parameterized set of functions correspond to the type of hidden computing units in the
network. In classical models, A C R5, being s 6 N+ a function of n, denoted s(n). It is
normally required that F C C(R"), where C (A) denotes the set of all continuous functions
/ : A — > R. The general expression S¿=ic«'7«(^) 'ÌS a semiparametric characterization, also
known as a dictionary method, since the choice of the basis function family F corresponds to
a particular dictionary [Friedman, 94].

We are assuming that the 7; (a?) do not represent higher-order functions of f, because
this would require a higher-than-linear number of parameters per neuron, w.r.t. the num-
ber of inputs. In other words, we shall consider 7¿(x) such that s(n) = 8n. + 7,<5 6
Z+, 7 € N. This is consistent with the common assumptions encountered in the litera-
ture [Scarselli and Tsoi, 98]. Dedicated proofs for higher-order units can be found, based on
the proofs for linear units (see, for example, [Li and Chow, 96]).

The complexity c of the function J-^_ realized by the ANN can be measured by the length
of its overall vector of parameters w, which in turn is a linear function of the number h\ of
hidden units, as:

c(s ,n , /»i ) = /ii{s(n) + l} + l (5.3)

in the case of one-hidden-layer networks, as those in (5.1). In these conditions,



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 133

w = (a1,···,"'",ci,...,c/ l l,co) (5.4)

and \w_\ = c(s, n, hi). The fraction of weight space R^ that contains a solution depends
on two factors:

1. The capacitj' (information theoretic) of the network. This depends primarily on the
representation capacity of the neuron model, which is the cornerstone for a good ap-
proximation.

2. The complexity of the problem: the function to be approximated and the availability
of representative samples.

By far the most well-known and used in practice neuron models, the P-neuron and R-
neuron give rise to the following networks1.

• The multi-layer perceptron (MLP). «' = (tu', 0¿) € R" x R,s(n) = n + 1. This leads to:

7,-(£) = g(h(x, a1')) = g(h(x; w\ 0,-)) = g(x • w{ + 0¿) (5.5)

where g is a bounded sigmoidal function. This is the scalar product + bias model.

• The radial basis function network (RBF). We consider three basic variants:

1. Simple RBF. a' = (tu '',£7,-) G R" x R,s(n) = n + 1. This leads to:

7,-(x) = </(/»(*, 21')) = flr(M*;Ñ'>¿)) = g(-\\x - w%) (5.6)
^t

where g is a localized-response function and the || • \\g are norms. This is the center
+ variance (or smoothing factor) model.

2. Weighted RBF. a' = ( v J ' , a ' ) € R" x Rn,s(n) = In. This leads to:

7,-(i) =g(h(x,ai)) = g ( h ( x ; w i , f f i ) ) = g(\\x - w^;^) (5.7)

where the | | - ; ' | l? are weighted norms and g is as before. This is the center +
variances model.

3. Generalized RBF. a1' = («P.M1') € Rn X Rn2 ,s(7i) = 2Í±h3l . This leads to:

7;(af) = ff(/z(f,«'')) = g(h(x- w{, M«')) = 5 ((-?-«;'') • M¿ • (x - ti;'')) (5-8)

where M! is a positive definite matrix and g is as before. This is the center +
co-variances model, the most general form a RBF unit can take. This case is not
considered here because is a higher-order model; notice that s(n) is quadratic,
though smaller than n"2 + n due to the symmetric character of Ml.

'See also the introductory text in (§2.1).



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 134

It can be seenjthat the function h in all the RBF models always represents a distance in
R". Recall from (2.5) that the norm definitions are, for z € Rn and q > 1 6 R:

zii, - ' N """= ID«

and for u 6 (R+)n:

Incidentally, notice that these two norms were shown to be valid ways for the aggregation
of partial (one-dimensional) distances, with operators of the form Qq'n(z;v) = \\z;v\\q.

The expressions in (5.5) are called ridge functions. These functions are constant for input
vectors £ lying in planes orthogonal to ü;'. Almost all neuron transfer functions commonly
developed in theory and used in practice can be classified as either radial basis or ridge
functions.

The proofs existent in the literature concentrate on the approximation of scalar functions,
of the form: / : K C R™ -> R, n € N+, by means of networks with a single output neuron.
The extension to codomains of the type Rm, m Ç. N"1", in what concerns approximation theory,
is normally considered as straightforward via the use of m separate functions. We will also
follow this policy in this work.

5.3 Universal Approximation

In mathematical terms, the capacity of a class of functions Sr of arbitrarily approximating
any member of another class of functions -as, for example, C(Rn)- is called the universal
approximation (UA) property. The property is related to denseness, in the sense that
the class of functions of interest (in our case, the set Sr of functions represented by neural
networks of a given form) is dense in, say, C(Rn).

5.3.1 Basic definitions and notation

We first review some of the basic concepts related to sets, norms and denseness. The
following definitions can be found in any standard textbook on Functional Analysis
[Kolmogorov and Fomin, 75], [Yosida, 74]:

Definition 5.1 (Limit point) A point x G K is a limit or accumulation point of a subset
M C K if every neighbourhood of x contains at least one point m E M different from x.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 135

Definition 5.2 (Closure) Let K be a set of elements. The closure [K] of K is defined as
[K] = K U K um, being Knm the set of all limit points of K.

Definition 5.3 (Closed an open set) A set K is closed if[K] = K. Otherwise it is open.

Definition 5.4 (Compact set) A set K is compact if every infinite M C K contains at
least one limit point.

In spaces of finite dimension where a metric has been defined, every closed and bounded
set is compact. In fact, in R" the set of compact sets coincides with the set of closed and
bounded sets (T. of Bolzano- Weierstrass) .

Definition 5.5 (Dense set) Let M C K. The set M is dense in K if[M] = K.

This last definition means that each k G K can be approximated arbitrarily well by
elements m € M. The classical example is M = Q, that is dense in K = R (every real
number can be approximated as accurately as desired by a rational number). The set of
polynomials is also dense in the set of continuous functions in compacta.

In general, LP(A) is the set of all the measurable functions, that is, / : A — >• C, with
A C Rn measurable, such that the (Lebesgue) integral:

\f(Z)\pdx (5.11)
A

exists (i.e., is finite), where x = (xi, . . . , xn). Restricting the discussion to real functions,
defined almost everywhere in Rn w.r.t. the Lebesgue measure -that is, for which the set
{£ | f ( x ) is undefined} is of zero Lebesgue measure- three common functional norms are
used. The first one is:

The set of functions bounded by this norm (i.e., those with a finite integral) is denoted
(K"). For example, 9? £ Ll(R) means that:

The second norm is:

/

+00
|</?(.T)| dx < oo

•CO

= S»P



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 136

This one can be obtained as the limit p -> oo of (5.12), with the usual interpretation of
the oo-norm. The set of functions bounded by this norm is denoted L°°(Rn), and is known
as the set of essentially bounded functions. The third norm is:

\\f\\LW = Kn\m\p dv(x) (5.14)

The set of functions bounded by this norm is denoted Lp(fi), where fi is a finite measure
in R". Similar norms ||/||LP(K)I il/Ili,00^) an<3 corresponding sets of functions LP(K}, L°°(K)
can be defined in a compact domain K Ç E".

When a class of functions is said to be dense in Lp(Rn), L°°(Rn) or Lp(^) (the sets
defining the target functions), this is generally meant w.r.t. the corresponding norms, which
are used to evaluate the difference between two functions. For example, denseness in LP(R")
is understood w.r.t. the ¡| • [|£,P(E») norm. Hence, without an explicit statement, we say that
the class of functions 5r is dense in L* € {Lp(Rn), L°°(R"), Lp(/z), L"(/C), L°°(K)} if:

V/ € L', Ve > 0, 3<p € Sr \ \\<p - /||L- < e (5.15)

Sometimes, the denseness result will be in other sets as C(Rn) or C(A'), for compact sets
K € Rn; in these cases, and indication of the used norm will be given.

The convergence of a series of functions {/„} towards / in L* is defined by:

Km ||/»(£) -/(a?)||L.=0 (5.16)
n—»oo

The convergence in L°°(R) or L°°(K) is called uniform convergence. A subset S Ç C(R")
is said to be uniformly dense on compacta if, for every K C R", K compact set, S is dense
in C(K) w.r.t. the L°°(K) norm.

Together with (5.15), this means that:

v/ e C(K), Ve > o, 3^ e sr \ sup )</>(£) - /(f)| < e (5.1?)
ScK

Let D = { < af¿, y, ; > /(í¿) = y¿} be a set of samples of a target function /, where x¿ € Rn

is the stimulus, y¿ 6 R is its response and \D\ = p. The apparent loss £(D, <p) can be defined,
like in (§2.1.4), as:

An immediate consequence of denseness is that, for the usual loss functions of the form
\<i (a, 6) = a — 6|9,g € [l,+oo), there exists a tf> £ Sr such that ¿(D,<p) is within any
arbitrary e > 0 of the theoretical minimum or true loss (equal to zero in the noiseless case),



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 137

which is equal to ft/ — v||L«(Rn) [Fiesler and Beale, 97]. This is the usual framework in which
supervised training of ANN is carried out.

The classical example in function approximation is given by the Weierstrass theorem:

Any / € C(K),K C R" compact set, can be uniformly approximated by a polynomial.
In other words, the class P(K) = {Pn(K) | n 6 N} given by the union, for all n, of all the
polynomic functions of degree n in A', is dense in C(K), w.r.t. the L°°(K) norm.

This is also one of the examples of classes of functions having the UA or denseness
property, which are closer to the ANN approach, because they can be represented as a linear
combination of basis functions (that is, as a dictionary method). Among the polynomials,
we find:

Algebraic polynomials (in K C K)

Taking the base functions ji(x) = .T', the functions:

(5.18)

represent polynomials of degree n by making h\ = n. Comparing this expression to (5.1),
here a is the identity function, c0 is the polynomial of degree zero, and w — (CQ, cj, . . . , cn).

Trigonometric polynomials (in K C

The functions:

F£(X) = c0 + ]JP Cjsin(ix) + ̂  cf
icos(ix) (5.19)

¿=i 1=1

represent (trigonometric) polynomials of degree n by making h\ = 2n, with a and CQ in
the same conditions, and w_ = (c0 ,Ci, . . . , c n ,C j , . . ,,c'n).

5.3.2 Results in the literature

Early studies concerning universal approximation departed from Kolmogorov's celebrated
theorem2, which can be stated as follows [Kolmogorov, 57]:

Theorem 5.1 Let In = [0, l]n denote the closed unit interval of dimension n. Any continu-
ous function / : 7" —» R can be represented in the form:

2Celebrated because it answered (negatively) one of the hypotheses (No. 13) raised by Hubert in 1900.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 138

2n+l

where (f>j, ^,-j are continuous functions of one variable. In particular, the ^>¿¿ are monotone
functions not depending on f .

This result was later enhanced and rewritten by [Sprecher, 72]. The concern for neural
networks begins with R. Hecht-Nielsen, who uses the theorem to show that a network with
three layers (two hidden) can in principle represent any continuous mapping / : In — > K,
with the units in the first (hidden) layer computing the ^,-j, those in the second (hidden)
layer computing the inner summation and the <f>j, and the one in the third (output) layer
performing the outer summation [Hecht-Nielsen, 89]. The problem with this approach is that
it was far from the actually used neural networks. For example, the "units" in the theorem are
not of the smooth sigmoidal type. However, it respects the basic idea of (5.20) of representing
a continuous function of many variables by superposition of continuous functions of only one
variable.

The first formal results for ANN were obtained for single-hidden-layer sigmoidal MLP
networks by [Funahashi, 89], nearly but independently followed by [Cybenko, 89] and
[Hornik, Stinchcombe and White, 89]. Their results show that, for the scalar product-based
neuron model (5.5), if g is a sigmoidal function, that is, a continuous, monotonically increasing
and bounded real function g : R -4 (gmin,9max) fulfilling:

lim g(x)-gmin (5.21)
ÍT-4-CO

lim g(x) = gmax (5.22)
-

normally called a "squashing" function, and a is the identity function, then Sp in (5.1)
is uniformly dense in C(K), for K C E™ compact set. The result was extended to networks
with more than one hidden layer in [Hornik, Stinchcombe and White, 89]. Cybenko, inde-
pendently, showed that for any bounded sigmoidal, the class S'r in (5.1) is dense in C(K),
with A" = [O, l]n C R".

Later, these results were greatly extended in [Hornik, 93]:

1. If ij is analytic and non-polynomial, the previous results hold with a single bias 9 £ E,
common to all the hidden units, provided it is a point where g and all its derivatives
are non-null. This last condition is not difficult to be met. The key assumption is the
non-polynomial character of g.

2. If (j is Riemann-integrable and non-polynomial (the bias 9¿ 6 E being no longer a shared
one, but different for all the hidden units), the previous result still holds.

It is known that a function is Riemann-integrable if it is bounded on compact sets
having aset of discontinuities with zero Lebesgue measure [Kolmogorov and Fomin, 75].



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 139

This is one of the most general results concerning uniform convergence by MLP in the
literature. If g is a polynomial, then the input distribution must be concentrated in a
finite set (i.e., have a finite support).

3. Denoting by Sp(A, B) the same set Sp in (5.1) but restricting all the weight vectors wl

and the bias 0,- of the 7,- so that Vi : 1 < i < h\ : (tu' Ç. A A 0,- G B) then, provided B is
closed and g is defined on B, and A contains a neighbourhood of the origin, then again
Sr(A, B) is uniformly dense in C(K), for K C R™ compact set.

4. Finally, if g is essentially bounded (recall this means that its norm ||<7||L°° is finite)
instead of being Riemann-integrable, then 5p(A, B) is dense in £P(/Í), for any compactly
supported measure ¿í.

These results were complemented by [Leshno et al., 93]. They showed that if g is
Riemann-integrable and locally bounded (this means that ||<7||LP(/q is finite for every compact
set K C R) then 5r is dense in Lp(/.i) and in C(Rn) if and only if g is not a polynomial.
Also significant is the work of [Chen, Chen and Liu, 95], wherein it is shown that, for every
bounded sigmoidal, 5p is dense in C(K), for K C R™ compact set.

The first results concerning approximations by RBF networks can also be traced back
to the late 80s, where [Girosi and Poggio, 89] show, for units of the form (5.6), that the
particular choices:

k(x; w¿, a-} = —\\S - w% (5.23)
&i

and (j(z) = e~îz lead to one-hidden-layer networks showing the U A property, by ap-
plication of the Stone-Weierstrass theorem. This result was obtained in parallel though
independently by [Hartmann, Keeler and Kowalski, 90]. There is a more powerful result in
[Poggio and Girosi, 89], namely, that all networks derived from regularization theory are
dense in C(K), for K C Rn compact set. This outcome includes, in particular, RBF net-
works with the basis function being the Green's function of a self-adjoint differential operator,
associated to the Tikhonov stabilizer [Tikhonov and Arsenin, 77]. Such Green functions in-
clude most of the known classical approximation schemes, such as the Gaussian and several
types of splines. This scheme does not include the MLP, because its neuron model cannot be
obtained from regularization techniques [Girosi, Jones and Poggio, 93].

A major breakthrough was achieved by Park & Sandberg. In their work, the authors
state and prove the following theorem:

Theorem 5,2 ([Park and Sandberg, 91]) For generic neuron models of the form:

( r — iv'\
, a > 0 € R, x, iu* 6 Rn (5.24)

a /

where K : Kn —>• R is called a kernel function, then, provided the following conditions
arc met:



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 140

1. K is an integrable bounded function

2. K is continuous almost everywhere

3. ¡RnK(x)dx¿0

then Sr is dense in Lp(Rn), Vp € [l,+oo).

For future convenience, we define the integral operator [•] for functions / : Rn —ï R, as
[f]n = JKn /(£) dx. Note that the three conditions above basically require K to be integrable
(i.e., [K]n < +00) and such that [Jt']n 7^ 0. Note also that the smoothing factor a is the same
for all the hidden units.

Before examining what is the concern for RBF networks of general kinds, let us mention
some related results. The first one is an extension of (5.24) where the smoothing factors CT¿
are not necessarily equal for all i.

Theorem 5.3 ([Park and Sandberg, 91]) For generic neuron models of the form:

ji(x) = K (x~~w { , <r,- > 0 € R, £, wi € Rn (5.25)
\ °i J

where K : Rn -4 R is a kernel function, provided the following conditions are met:

1. A 'eL^R")

2. (K]n ï 0

then the class Sr is dense in L1(R").

The following four theorems were introduced in the authors's subsequent work
[Park and Sandberg, 93], and serve as a complement to the main theorems (5.2) and (5.3).

Let K : R" —> R be an integrable function. Then, for neuron models of the form (5.24),
the class Sr is dense in L^R") if and only if [K]n ^ 0.

Let A" : Rn —» R be an integrable function. Then, for neuron models of the form (5.25),
the class Sp is dense in L^R") if and only if [A"]n ^ 0.

Let A' : R" —» R be an integrable function. Then, for neuron models of the form (5.25),
for which A" € LP(R"), Vp € (1, +00) and [K]n ^ 0, the class 5r is dense in Lp(Rn).

The last one is in fact a corollary of the preceding material:

Let A' : R" —> R be an integrable, continuous function, satisfying [A']n ^ 0. Then, for
neuron models of the form (5.24), the class Sr is dense in C(W), for W C R" compact set.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 141

5.3.3 Relation to RBF networks

The concern of theorems (5.2) and (5.3) for RBF networks — understanding by such, networks
whose neuron model for the hidden units is the R-neuron — is immediate. As a preliminary
work towards our main results, we first show their applicability to classical RBF networks,
and then establish its generic applicability for more general models. For kernels K radially
symmetric, that is, whenever:

Va? ,y€R n ||£||2 = ||y||3 => ¡<(x) = K(y), (5.26)

we obtain the particular case K(z) = <7(||z||2)i where g is any continuous function g :
[0, +00) -> R. Thus, we can write kernels of the form:

(5-27)

Most often, g is a localized-response function, according to the proposed definition (5.6).

In general, we are not limited to the Euclidean norm. We can have K(z) = g(\\z\\q),q >
1 € R. The behaviour of these models is not radial anymore. Rather, it is "radial" w.r.t. the
norm || • ||Q being used. In any case, any Minkowsldan norm (5.9) is valid and leads to neuron
models of the general form:

x — w1

= S ' ' (5.28)

Values of q ^ 2 are rarely used (in this case, the most usual is to have q = 1). Notice
that the first condition for the applicability of Park & Sandberg's Theorem (5.2) is that the

neuron model be written in the general form j¡(x ) = K í x~™ ' J , where the a can (though

need not) be the same for all i : 1 < i < h\. The second condition is that [K]n < +00, and
such that [A"]n 7^ 0.

We have just seen how, for basic RBF models, h(x\ w ' , er) = £||.£ — wl\\q. Therefore,

defining K(z) = ff(||¿1|?), by (5.28) the models are of the required form 7¿(x) = K í :l?"g'" ' j in

(5.24). Similarly, for the simple models in (5.6):

we have 7,-(x) = A" í J~'"' ) , for the same definition of A", that is a neuron model of the

form in (5.25). Whereas, for the weighted models in (5.7):



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 142

we have 7,-(of)_= K ( X^T ' J i for the same definition of K, where the vector division is
performed component-wise.

Specially noteworthy is the fact that there is no requirement for radial symmetry of the
kernel function K in the above theorem; as the authors readily point out:

"The theorem is stronger than necessary [in the sense of being more gener-
ally applicable] for RBF networks, and might be useful for other purposes."
[Park and Sandberg, 91]

In our case, these other purposes involve the use of the theorem for more general ANN,
like the HNN. To begin with, more general norms || • ||£,» can be used, fulfilling \\X\\L* =
\\y\\L* => K(x) = K(y), with || • \\L* any norm in K". This means we can always see the
obtained kernels as distance-based, since a distance can be defined simply by the existence
of a norm: ci*(x, y) = ||x — y\\L* [Kolmogorov and Fomin, 75]. Notice also that, as stated
in Appendix (A), all the norms in Kn are equivalent. In the present case, we have kernels
K*(k) = g(\\z[\L'}- It then follows that:

(5.29)

and the neuron model is again a distance-based one of the general required form 7,- (.r) =

K* í^1}, where K* (z) = g (\\Z\\L*). This is the way generic RBF models are defined.

It is clear that we can make further steps in developing more general neuron models, since
there is no need for a norm of any kind. The final applicability of the theorem is only subject
to the use of generic kernels K fulfilling the conditions [K]n € R and [Ä"]n 7^ 0, and defining

neuron models of the form 7,-(af) = K I x~™ ' j , <r > 0.

Additionally, if K is a function satisfying K(cz) = cK(z), for a scalar c Ç. R+, then the
smoothing factor can be integrated in the weights c,- since, according to (5.24):

/ Y — 7/T * \ C '
c,-7,-(x) = aK - = -i K(x - w*) (5.30)

\ a ) a

5.4 Main results

5.4.1 Summary of main results

In the following Sections, proofs for the universal approximation ability of some of the intro-
duced families of neuron models are developed. It has to be noted that the versatility and
general extent of the potential neuron models included in the framework prevents a generic
proof to be attempted. Instead, dedicated demonstrations are worked out on particular cases
-corresponding to specific families of functions- or on specially interesting models, by making



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 143

corresponding assumptions. The proofs for the forthcoming propositions are mainly based on
the general applicability of Theorem (5.2) and on another theorem due to Hornik [Hornik, 93].

1. In (§5.4.2), similarity models of type (A) (globally distance-based) are considered for
real-valued variables, and a specific proof is developed for the standard metric in R,
the normalized modulus as aggregation operator, and several families of s functions,
representative of many of the neuron models constructed in this Thesis.

2. In (§5.4.3), similarity models of type (B) (locally distance-based) are considered. The
same choices are studied.

3. In (§5.4.4), the generic measure (4.73), developed in (§4.4.1), and based on Gower's
similarity index, is examined as a particular case of the previous results, for real-valued
and complete variables and for the logistic functions (4.74) and (3.9), this last one
adapted to the interval [0,1].

4. In (§5.4.5), a P-neuron computing the point similarity measure (4.39), directly derived
from scalar product, is considered.

5. In (§5.4.6), the result in (§5.4.3) is extended by considering partial similarity measures
between fuzzy numbers.

6. In (§5.4.7), the result in (§5.4.4) is extended to incorporate missing information.

The considered neuron models belong to the following class of functions:

Gs = {ji : Rn -> R | 7,-(f) = s(x, tu'"), w' G Rn}, x € Rn (5.31)

where s : R" x R" —>• [O, smax] is a similarity, pseudo-similarity or point similarity function
in R". This class corresponds to the generic S-neuron in Definition (4.16) where, in cases 1.
to 4., nn = R".

5.4.2 Similarity-based models of type (A)

These measures are of the general form s(x, w') = s(d(x, ü?1)), d Ç. £>(R"), where d(a?, w') =
0(f/(.r, w !)), with d ( x , w % ) = {f/i(.Ti, w¡i),.. .,dn(xn, w,-n)}, dj G O(R), © is a distance ag-
gregation operator, and s a similarity transforming function.

Proposition 5.1 For the neuron models in (5.31), corresponding to measures of type (A)
as above, where d.¡(x,y) = QJ\X — y\, for constant cxj £ R+ ,x, t / Ç R, l < j' < n, that is, for
distances proportional to the standard metric in R, for the distance aggregation operator Q
in Definition (4-4)> nnd for ë integrable in [0,oo) and fulfilling the (mild) condition 5(2,«) —
s(az, 1) (see below), the class Sp in (5.1) is dense in Lp(Rn), Mp 6 [l,+oo).

The proof is divided in two parts. In the first part, we show how these similarities are
valid neuron models, as kernel functions of the appropriate form in (5.24), regardless of s. hi
the second part, we show the integrability conditions, which depend on s.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 144

Kernel functions

We have that the computation of a hidden node is a (similarity) function of the form:

yi(x) = S(x,wi) = s(d(x,wi)) (5.32)

We have to show how (5.32) is a kernel function K of the form K í^~) ,cr > 0. For
xji wij £ R, we have dj(xj, Wij) = aj\Xj — Wij\. Therefore, defining:

d(x, w*) = {di(xi,wn),...,dn(xniwin)} = {ai\x1 - wn\,...,an\xn -win\}, (5.33)

the overall distance computation d(x, w') is formed out of the components of d(x, tu1) by
means of a Minkowskian aggregation operator as in Definition (4.4), with n' = n. The choice
n' = 1 would be equally valid, but by introducing an additional factor, the former is slightly
more general:

We have then d(x, wl) = Q9'n(£- t?*; c?""1) where a"1 = (-¿r ,••••>•£-}• Notice that a

does not depend on i (that is, these weightings are equal for all the hidden units). This is
reasonable, because these values typically depend on the input distribution of the variables
-e.g., the vector of variances, etc, see (§4.2.1).

Now,
s(d(x,wi)) = s(Q'!'n(x-wi;a-1)) (5.35)

The smoothing factor £ is usually provided by the s function itself (in this type of simi-
larities, the s corresponds to a classical activation function). This free parameter, according
to Theorem (5.2), can be the same for all the units (that is, it does not depend on ¿). For
convenience, we write s(z, a) to express the dependence on the a parameter in s. For exam-
ple, considering s(z) = e~^az^a , a > 0, a > 0 (5.40), this family is probably the most widely
used for RBF networks, for a = 2 (Gaussian function) and a- = 1 (exponential function). In
particular, a = 2 yields SGauss(^) = e~a z • Making the substitution a = ~, we get the usual

_.-2

«Gauss(-) = a ^ form.

Returning to the main argument, from (5.35), and using the property s(z, a) = s(az, 1):

= s ^n(a(x - w1'); ¿T1), l) (5.36)

This last step can also be done because a > 0 and 0'1" fulfills the property Qg>n(az; v) =
aQV'n(z; v), V<? > 1 € K, n € N+. Hence, by setting a = Ì in (5.36) and (5.32):



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 145

= K , (5-37)

where the kernel is more compactly written K(z) = s (Qq'n(z; a"1), l) and the neuron
model (5.37) is clearly a function of x~™' and this completes the proof. Notice that any other
constant factor coming from the © operator itself (as -4= in this case), can be integrated in

^ (or, if desired, in the a).

Integrability conditions

The integrability condition of the kernel requires two things:

1. [K]n < +00 (K is integrable)

2. [K]n 7^ 0 (its integral is non-null)

The first thing to point out is that the multiplicative constants ay (being all positive)
do not affect any of these conditions. The normalized modulus function is defined as || • ||9 :
K" -» R+ U {0}, and is continuous everywhere. On the other hand, by definition, any s € S

s : R+ U {0} ->• [O, smax], smai > O <E R

is a continuous, strictly monotonically decreasing function, fulfilling s(0) = smax, and
s(z) fades away to zero as z goes to infinity. This means that the composition of the two is
of the general form depicted in Fig. (5.1),

Figure 5.1: Plot of

and thus lirn s(||¿1|9) = 0. This guarantees (for the properties of s) that K ( z ) is always

a strictly positive and bounded function of z, implying that the integral -in case it exists- is
strictly positive and thus different than zero. It does not, however, ensure that [K]n exists,
provided we may not count on the integrability of s. It depends on the exact form of s. In
fact, it depends on the exact form of the composition of s and the || • ||g norm. In consequence,
we first focus on specific families for the functions s, and carry out a separate proof for each
family of s functions considered, though Proposition (5.1) is valid for any integrable s.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 146

We center on those s functions introduced in Chapter (§4): (4.77), (4.78) and (4.79) for the
s, reproduced here for convenience. Again, we write s(z, a) to express the dependence on the a
parameter in s. The following functions can be shown to fulfill the property s(z, a) = s(az, 1):

, a > 0 , t v > 0 > , z 6 [0, +00) (5.38)
1 ~r \OtZj

l e(,,)a . a > 0, a > 0), z € [0, +00) (5.39)

s3(z, a) = {e-(°*)a, a > O, a > 0}, z e [O, +oo) (5.40)

and let S = ¿i U ¿2 U ¿3 generically denote the set of all members of these families.

Lemma 5.1 The family of s functions (5.39) makes the kernel K(z) = s (oiiri(z; a"1), l)
integrable in Rn, where @9>n is as in (5.34).

Proof: The factors a,- of a"1 (positive and constant) can be dropped, for they do not
affect integrability. The same can be said about the factor -A-. By Proposition (C.5, 1.),
this family of functions is integrable provided a > 0, a > 0. In our case, since a = 1 and their
argument is the || • ¡I, norm, defining z = J^ • \Zj\q 6 [0, +00), the relevant part of the kernels
can most conveniently be written as:

tf(5) = S(||¿1|,,1) = - l l l

Since a > 0 and - > 0, this completes the proof.

Lemma 5.2 The family of s functions (5.40) makes the kernel K ( z ) = s (©''"(z1; a"1), l)
integrable in Rn, where ©7l" is as in (5.34).

Proof: Analogously, and by Proposition (C.5, 3.), we obtain the conditions a > 0, - > 0.

Lemma 5.3 The family of s functions (5.38) makes the kernel K ( z ) = s (09'n(z; a"1), l)
integrable in E", where @?>n is as in (5.34), provided - > 1.

Proof: Analogously, and by Proposition (C.5, 2.), we obtain the conditions a > 0, - > 1.

Immediate examples for s can be derived, with a > 0, for the simple case - 6 N+:

• s(z) = . *„; (inverse logistic) for the || • j j i or || • ||2 norms.l+e

r+• ¿(z) = l+lîzî (Cauchy function) for the || • ||i norm.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 147

• s(z) = e~az"(exponential function) for the || • ||i norm.

• s(z) = e~a2z2 (Gaussian function) for the || • ||2 norm.

This last example is one of the most classical RBF settings (a Gaussian applied to a,
possibly weighted, Euclidean distance). It is derived here as a special case. If s is integrable
in R, a simpler and more direct proof can be derived.

Proposition 5.2 For s integrable in R, the kernel K ( z ) = s (o?'n(¿';a~1)) is integrable in
Rn, where Qq'n is as in (5.34).

Proof. Again, the factors a, of a"1 (positive and constant) can be dropped, for they do
not affect integrability. The same can be said about the factor -Ä-. Making use of Proposition
(C.13), the relevant (for integrability) part of the kernel K ( z ) = s(||¿l|9) —being s a positive
and monotonically decreasing function in [0,+oo) by its definition (4.10)— is integrable in
Rn, for all 9 > 1 € K.

Since the considered neuron models 7,-(a?) in (5.32) are in the conditions of Theorem (5.2),
the class Sp in (5.1) using these 7,-(at) is dense in LP(R"), Vp G [l,+oo).

5.4.3 Similarity-based models of type (B)

These measures are of the general form s(x, wl) = s(Qs(s(x, it;*))), where s ( x , tu ') =
{si(xi,wil)i...,sn(xn,win)}, and Sj(xj,Wij) = Sj(dj(xj,wij)), dj G D(R), 1 < j < n, with
Q s a similarity aggregation operator, and s a similarity keeping function.

Proposition 5.3 For the neuron models in (5.31), corresponding to measures of type (B)
as above, where dj(x, y) = otj\x — y\, for constant (Xj € R+, x, y 6 R, l < j < n, that is, for
distances proportional to the standard metric in R, for the similarity aggregation operator Qs

in (5.34), for s j integrable in [0, oo) and fulfilling the (mild) condition e j ( z , a) — Sj(az, 1), 1 <
j < n, and for s a similarity keeping function, the class Sr in (5.1) is dense in LP(R"),
Vp e [l,+oo).

The proof is again divided in two parts. In the first part, we show how these similarities
are valid neuron models, as kernel functions of the appropriate form in (5.24), in this case
regardless of the precise form of ©s. In the second part, we show the integrability conditions,
by assuming the mentioned specific form for Qs. Notice that we could suppose all the s,Sj
to be equal (regardless of i) by definition of a neural layer, and thanks to the condition of a
unique smoothing factor in (5.24).

Kernel functions

We have:
7,-(f) = s(x, w1') = s(Q,(s(x, w''))) (5.41)



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 148

s(x,w') = {si(ai\xi -wn\),...,sn(an\xn - win\)} (5.42)

Again, the overall (similarity) computation s(£, w') is formed out of the components of
s by means of a similarity aggregation operator 0S of any of the forms in Proposition (4.11)
or of any form compliant with Definition (4.8) and Remark (4.2) -as those in (4.12)- so that
we write s(x,w*) = s(Qs(s(x, w '); v)). In any case, for notational convenience, we define the
special vector operator < • ; • >{.}'• R" X Rn X 5 — >• R" as follows:

- - - , S n ( r n Z n ) } , (5-43)

so that, extending the absolute value operator to vectors in a straightforward way as
\z\ = (l^l, . . ., |zn|), we can write s(f, w*) =< \x - w*\;a >{iJ}1<J<n and then:

w') =s(0s(< |*-t¡ñ;a>{i>}l^B;0)) (5.44)

The smoothing factor can be supplied by the §j functions, much as it was done in Propo-
sition (5.1). We again write S j ( z , a ) to express the dependence on the a Ç. R+ parameter in
the ej. Then, from (5.44), and using Sj(z, a) = ej(az, 1), 1 < j < n:

s(< \a(x- w%a >{ÍJ(.,i)}1<><B;tÍ) (5.45)

For « = ¿r, we obtain the usual dependence on x~™' for the neuron model:

= K (—¿—) (5-46)

where the kernel is more compactly written K(z) — s (@s(< \z\',a >{s (.,!)},< <„!")) and
this completes this part of the proof. Again, any other constant factor coming from the G
operator itself can be integrated in Jr. The factors t», cannot be integrated with the o, (or
vice versa) because the function ej may be non-linear.

Integrability conditions

To study the integrability conditions, since the ej are applied to each distance computation
separately, we analyze first the effect of s j on a single component of the similarity vector. This
vector of partial similarities is simply denoted by s= (s i , . . . , sn), where s j — Sj(otj\Xj — Wtj\),
1 < j < n. The overall analysis is simpler this time because each partial similarity s¡ is a
scalar function of its argument, so that we have for each Sj a similar picture as in (§5.4.2)
where, by the properties of s,-, it holds: lim Sj(z) = 0,1 < j < n.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 149

We follow witrTthe assumption that the aggregation operator Qs is specifically the family
in (4.23) -reproduced in (5.34)- corresponding to the normalized modulus. This operator,
as shown in (§4.2.3), should be general enough for most purposes and fulfills the totality of
required good properties for such operators.

A basic condition for kernel integrability is then that the partial measures ej be integrable
in [0,oo). These measures can thus be seen as partial kernels Kj(z) = Sj(|z|),l < j < n.
Note again that the constant terms t*j,v¿ (positive and multiplicative) can be ignored, for
they do not alter the integrability conditions.

We depart from the hypothesis that the integrals fRKj(z)dz exist and are non-null, for
1 < j' < "ï this last condition is always ensured being the ej positive. In practice, it is
likely that all the Sj are the same function (i.e., all the similarities between real values are
analogously computed) but this is of no importance here. Example ej functions are those in
(5.38) to (5.40), integrable in [0,oo) and thus Sj(| • |) integrable in R, by Proposition (C.5).
Nonetheless, any other ej integrable in R is possible.

Under the hypothesis of partial kernel integrability, the main task is to show that the
relevant part of the whole kernel function:

(5.47)

where K(S) = (Ki(z\),..., Kn(zn)) is integrable in R™ and its integral is non-null. By
using (5.9), we have:

(5-48)
The proof is developed by looking on the values of q. Let us begin with the simplest case,

q — 1, and let us also suppose, only for the moment, that n = 2 (i.e., we are in front of a
two-dimensional problem). For the sake of clarity, we follow the discussion with two generic
functions / and g, and later apply the results to the partial functions KJ(ZJ) in (5.48).

Now, given /, g two bounded functions defined in R, the function h ( x , y ) = f ( x ) + g(y) is
not integrable in R2, even if /, g are, by Proposition (C.8). The reason is that the integrals
w.r.t. x for constant values of y extend to infinity, and the value of these integrals is the
infini te summation of a finite, constant value (the integral w.r.t. t/), which is infinite.

To overcome this problem, we make use of a technique, to force integrability without
altering the nature of the function. Define, for a given e > O G R:

otherwise '

where G : R2 — » R is the function G (u, v) = uv, that makes G(f(x)ìg(y)) = f (x) g (y)



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 150

integrable in R2 -Proposition (C.10). A simpler and more "direct" choice would be G(u, v) =
0, but this choice will not meet future requirements (because it makes the function h nullify).
In these conditions, we make the following claim:

Theorem 5.4 Given f , g two bounded, positive and continuous functions integrable in R,
and the function G(u, v) = uv, the function h(x, y) defined in (5-49) is integrable in R2,
Ve > 0 6 R.

Proof. Let A£ = {(x, y) € R2 | f ( x ) > e A g(y) > e}.

f í h(x,y)dxdy = ! ¡ lf(x) + g(y)]dxdy + f f G ( f ( x ) , g ( y ) ) d x d y (5.50)
J JR2 J J At J JR2\Ae

The first term in (5.50) deals with a continuous function, bounded in a closed and bounded
set (a compact set) Ae that, by Lebesgue's Theorem (C.I), is integrable in Af. The second
term is an integrable function by hypothesis. Notice that the so-defined function (5.49) may
not be continuous though this does not affect integrability.

In view of this result, that is extendable to any n 6 N+, let us define the kernels Ke:

G(K(z)} \fztAe '

where Kj(z) = Sj(|,z|), ej bounded and integrable in [0,oo), 1 < j < < n by hypothesis, and
At = { ( z l t . . . , zn) e K" I Vj : 1 < j < n : KJ(ZJ) > e}, and G (it) = n"=i «j-

Lemma 5.4 The kernels (5.51) are integrable in Rn, Ve > 0 6 R.

Proof.

(5.52)/ Ke(Z)dz= í ^KJ(z3}dz+ f ll
JRn J A, j^ JR"\Ae ^=i

The first term in (5.52) deals with a continuous function, bounded in a compact set Ae

that, by Lebesgue's Theorem (C.I), is integrable in As. The second term is an integrable
function by Proposition (C.10).

Lemma 5.5 Ve > 0 € R, the kernels (5.51) are. in the conditions of Theorem (5.2).

Proof.

(i) Ve > 0 € R, the kernels K£ fulfill [Ke]n < oo, by application of Lemma (5.4).



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 151

(ii) Ve > O G K, the kernels Ke fulfill [A'£]n ^ 0. Since the A'j are positive functions,
provided the integral [A"£]n exists (point (t))¡ it must be positive.

Proposition 5.4 Let f € Z<p(Rn) be the target function to be approximated. Let 8 > 0 € R
be given. Then, Ve > 0 € R, there exist h\ e N+, u;1'*, 1 < ¿ < h\, w" € R", CT* > 0 €
c* € R , l < t < h\, such that:

Proof.

(¿) Ve > O G R, the kernels Ke are in the conditions of Theorem (5.2) by Lemma (5.5).

(ii) By application of Theorem (5.2), and using (5.15), the function / can be approximated

to any degree of accuracy 6 by an expression of the form ]T/t=i c,-A"e ( x~™' ) , according
to the Lp norm in Rn.

(Hi) For the given degree of accuracy 6 > 0 € R, let h\, w'*,<r*,c*, 1 < i < h\ denote the
set of required parameters.

The entire process can be developed for any q > 1 € K, that is, for any power of the
partial kernels, and a, corresponding inverse power of the whole kernel, because they generate
positive and bounded functions. To see this, let us define the kernels A"', for ç > 1 € R:

if z e A, (5_53)

where K j ( z ) , A f and G(u) are in the same conditions as for (5.51).

Lemma 5.6 The kernels (5.53) are integrable in R", Ve > 0 6 R.

Proof.

r r \^ \ r A/ Kï(z)dz= I \YKÍ(Z¡)\ ¿ï+ T[Kj(z
L,, IA 1^ •' í jKn\A Ll

./ítí," */ j*Ì£ I * I I l·'lt^\·'lc'«_1

(5.54)

The first term in (5.54) deals with a continuous function, bounded in a. compact set /L
that , by Lebesgue's Theorem (C.I) , is integrable in /lf. The second term is an integrable
function by Proposition (C.10).



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 152

Lemma 5,7 Ve > 0 € R, the kernels (5.53) are in the conditions of Theorem (5.2).

Proof. It can be developed analogously as for Lemma (5.5).

This means that Proposition (5.4) is still valid for the whole kernels K%,q > 1 Ç R. The
final part of the proof concerns the application of a s function to K^. In the following, we
identify /i(xi, . . , ,xn) = KJ(XI, .. .,xn), and assume it integrable in Rn.

To begin with, s is a bounded function -see Definition (4.9). Second, by the same defi-
nition, it holds that 3e > 0 | V.T < e, s(x) < x. Hence, noting that h is a positive function
h : Rn —> R, their combination is such that:

3/io > 0, Vxi,...,xn | /i(ii,...,a:n) < h0, s(h(xi,.. .,xn)) < h(xl,.. . ,xn) (5.55)

Let HQ = {(xi,.. . ,zn) 6 R" | h(xi,.. .,£„) > h0}, which has a finite measure f¿(H0}. In
these conditions, we have that:

/
jR

/ s(h(xi,...,xn))dxi,...,dxn + ¡ s(h(xi,...,xn))dxi,...,dxn (5.56)
J Ho JR"\H0

The first term in (5.56) deals again with a continuous function, bounded in a compact
set HO that, by Lebesgue's theorem (C.I), is integrable in HQ, and its integral is bounded by

o). The second term, by the previous remarks, is bounded by:

/ h(xi,...,xn)dxi,...,dxn
/]J3>n\ U*/ IK \ /in

which, since h(xt,. ..,xn) is integrable in M", Ve > 0 € R -Lemma (5.6)- is finite. The
proof is now complete for the kernels s(Kj),q > 1 Ç R.

Given any desired accuracy S > 0 6 R, any function / € Lp(Rn) can be approximated to
this accuracy, and thus the class S'r in (5.1) is dense in Z,p(Rn), Vp € [l,+oo), by application
of Theorem (5.2).

In practice (in computational terms) any target function can be approximated as accu-
rately as desired by taking a sufficiently large compact set containing At. In other words,
choosing a sufficiently small (as small as needed) e > O in Proposition (5.4) -that is valid for
alle > 0- so that the K j can be made as close as needed to the actually used A" in (5.47), by
making K j always work inside Ac. This technique ensures integrability in theory and does
not affect the neuron models in practice.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 153

5.4.4 Similarity models based on Gower's score

One of the most widely used similarity measure throughout this work has its roots on Gower's
score [Gower, 71], introduced in (§4.4.1). For real-valued and complete variables, this measure
can be seen as a special case of a distance-based type (B) similarity, as those defined in
Proposition (5.3). In the absence of missing values, from (4.73) and (4.71), these measures
correspond to functions of the form SG(£, u > f ) = S(SG(X, w*)), with:

(xj,Wij) (5.57)

where the Sj are the partial similarities defined on the j'-th components of the input and
weight vectors. We then derive the following corollary of Proposition (5.3).

orCorollary 5.1 Given the neuron model 7,-(f) = S(SG(X, w 1 ) } , with SG in (5.57), and /c.
sigmoidal s : [0,1] ->• [0,1] functions, the class Sr in (5.1) is dense in Lp(Rn), Vp 6 [1, +00).

Proof. It suffices to use Proposition (5.3) for q = 1.

We develop now a specific proof for the combination of SG with sigmoidal s functions.
This topic has already been addressed in (§5.4.3) for general forms of these functions. We
shall develop an alternative and hopefully more illustrative proof, by assuming a sigmoidal
shape for s, and then apply it to the particular choices amply used in this work.

Let if : Rn —>• [0,1] be a function of interest. In our case, <p(x) can be identified as
if>(x) = SG(X,-) in (5.57), integrable in Rn by Proposition (5.3). Since w' is constant in SG,
this renaming will add to the clarity of the discussion. Let sy be a sigmoidal-shaped and
bounded s function defined as SCT : [0,1] —» [0,1]. Hence, for our purposes, SG(Z, •) = sa((p(x)).

Let us define 0 : R -» [0,1] as:

( s Cri if r Ç- [fi 1l

«M = {o *, e M (5-58>
This function is depicted in Fig. (5.2). Contrary to sCT(a;), it is defined in R. In [0,1],

both functions coincide and thus have the same integral. Furthermore,

/ g(x)dx= I s ( r ( x ) d x - \ - I Odx = I sa(x)dx
JR J[o,i] JR\[o,i] J [0,1]

In these conditions, we have that:

Lemma 5.8

/O T
^ lfi\

x))|dx is finite.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 154

0 1/2 1

Figure 5.2: The sigmoidal function g ( x ) .

Proof. First, defining A - {x € Rn | v(x) > ¿}, we have:

í \(f(x}\dx = í <p(x)dx = f (f(x)dx + í <p(x)dx (5.59)
JRn JR" JA JRn\A

since <¿j(z) is positive. The integral fA <p(x} dx must be finite: given that <f>(x) is positive
and /K„ <f(x) dx is finite, both fA <f>(x) dx and JKn> A <f>(x) dx are positive and finite.

In addition, A is a set of finite measure p(A) < oo. To see this, let us suppose that it is
infinite. Then, being <p(x) > |, for x & A:

H(A] = oo => I p(x) dx> í -dx = -
JA JA 2 2

= oo

but fA <f>(x) dx < oo. Thus [i(A) < oo (note that this implies /¿(Rn \ A) = oo).

Second, we have, being g also positive:

/ \g(<p(£))\dx = í g(v(x))dx= í g(v(x))dx + í g(v(x)}dx < oo (5.60)
JR" JRn JA JR"\A

The first term, being g(x) 6 [0,1], is bounded by 1 • n(A). The second term, being
g(x) < x, for x < |, is bounded by /Rn\_4 <f(x)i which, as we have seen, is finite.

Intuitively speaking, we have shown that, for points <p(x] above |, which form a closed
set, the composition of the functions is bounded (by the unity function). For the rest of the
points, the composition of if with g keeps the integrability of (f because g(x) < x. Finally,
note that the definition of g as zero outside [0,1] -since our ip(-) has its image inside this
interval- is just to have it defined in R in a safe way.

There are two distinguished sigmoidal-shaped s functions, defined in (§4.4.1), that have
been used extensively in the experimental part. The first one is the family of functions
<j(-,k) : [0,1] -»• [0,1] (4.74), displayed in Fig. (4.8), where the parameter k controls the
curvature of g.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 155

It is not difficult to see that these functions fulfill the mild conditions of the previous
corollary. In particular, the functions are continuous3 and:

í g ( x , k ) > x f o r x > Ì
\g(x,k)<x for z < i lo'bij

as required, and where </(i, k) = \. This value can be identified with h0 in (5.55) and
thus taking h0 = | suffices in this case. The second sigmoidal is the widespread logistic
function which, as shown in (§4.4.1), can be used to work as a non-linear s adapting it so
that it maps the real interval [0,1] on (0,1), by taking s = 511,0.5 in (3.9). Note that the
change in codomain to the open (0,1) does not affect the discussion.

5.4.5 Similarity models based on scalar product

We now show how the denseness property is shared by a scalar product-based similarity
measure, fulfilling the required properties in Definitions (4.7) and (4.8), which is an example
of a type (C) measure. In the conditions of (§4.2.5), let / 6 Cc(R

n) (the set of compactly
supported continuous functions in R") the function to be approximated, and let K C R™ be
the compact support of /. Given a compact set W C R", define, as in (4.35):

SUP s ' yeWcR» (5

inf x • y

These values are guaranteed to exist, being the scalar product a continuous function and
W a closed and bounded set. Let us recall the similarity (4.39):

*p(ï,U)(W) = V 7r<!V) € [0, 1], f, y 6 W, O € [O, I] (5.63)

The measure sp is a point similarity in W -Proposition (4.23). This measure does not
come from any distance and we are not assuming any normalization on the vectors.

Proposition 5.5 For neuron models in (5.31), corresponding to measures of type (C), where
s(x. (r1) = J/(sp(x,n>')), with sp the similarity measure in (5.63), and g : [0, 1] — >• (<7m;„, <7ma:r),
a sif/moidal function, the class 5p in (5.1) is uniformly dense in C(K}.

To prove it, we make use of the following theorem, previously mentioned in (§5.3.2):

"'This is not strictly required: boundedness suffices.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 156

Theorem 5.5 ([Hornik, 93]) Let g(z) be a Riemann-integrable and non-polynomial func-
tion, defined in a closed interval B. Let K C K" a compact set. Denoting by Sr(A,B) the
set Sr in (5.1) with a neuron model as in (5.5), and restricting all the weight vectors w* and
the bias <?,• of the 7,- so that Vi : 1 < i < h\ : (tu' e A A o,- € B) then, provided B is closed and
g is defined on B, and A contains a neighbourhood of the origin, then Sr(A, B) is uniformly
dense in C(K).

and of the following Lemma:

Lemma 5.9 Let g : R. — > (gmim9max) o, sigmoidal function, and 7,-(x) = g(x • w* + 0¿) the
P-neuron model (5.5). The neuron model obtained by bringing g to an equivalent ~g : [0, 1] — >
(UminiHmax) °f ^e same shape, is a P-neuron model.

Proof. We develop a proof for the well-known family of logistic functions (3.9) (with
0 = 0), although any parameterized sigmoidal is conceivable, and the discussion would be
analogous. We first deal with the adaptation to [0, 1]. Let:

9ß,o(*) = - e ( 0 , l ) , j 8 > 0 (5.64)

An adapted function can be constructed as:

9a,b(z) = 9ß,o(a(z -b)), a > 0 (5.65)

with a, b such that ~g is defined in [0,1] (e.g., a = 11,6 = 0.5). We now show how the
~ga b are still logistic functions of scalar product with a bias, and of the same shape than gß>0.
First, we note that:

gß,o(a(z-b))=gß,tg,(z) (5.66)

with ß' = ßa and 9' = b. Then, using (5.65), (5.66) and (5.63):

( x-w* + 0 -TT(K)
+ . i - er-1 = 3ß",6" (x-wl + 0) (5.67)

V) + L ~

n7K\)b. Note that TT/^J + 1 - ir7Ki ^ 0, and that ß" > 0 as required. Therefore, this function
is just another member of the family of logistic functions, and (5.67) is a P-neuron.

Proof of Proposition (5.5). Let / e Cc(R
n) an arbitrary function to be approximated,

and let K G Rn its compact support. The compact set K in which / is defined can always be
transformed into a K0 that contains a neighbourhood of the origin, by asimple transformation
of the input variables, as follows:



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 157

Let t : K —» KO, with í a continuous and injective function (in each coordinate) and KQ
containing a neighbourhood of the origin. Let /o : KO -> R defined as /o = í"1 o /. Clearly,
/o G C(A"o). If we are able to approximate /o, since / = £o/0, and t is known, we will have an
approximation to / in K as accurate as desired. The neuron model used to approximate /0

in A'o is of the form: 7,-(f) = g(sp(x, tü ')(A'„))> with sp(x,wt)^W) defined in (5.63), where the
weight vectors are restricted to belong to K0. The activation function # : [0,1] -»• (<7m,-n,<7mar)
is asigmoidal function, Riemann-integrable in compacta and non-polynomial, and in this case
defined on the closed real interval [0,1].

By Lemma (5.9), the neuron model 7,-(f) = Tj(sp(x, u>')(A'0)) is a P-neuron. By application
of Theorem (5.5), the class 5r(A"o, [0,1]) (corresponding to Sr with the weights restricted to
A'o and the bias restricted to [0,1]) is uniformly dense in C (Ko). This means we can have
an approximation to /o as accurate as desired w.r.t. the L°° norm, with the neuron models
ji(x). Since / can be constructed with the /o 6 C(K), we can have an approximation to
/ G C(K) for every K € K" compact set (that is, for / e CC(R")) as accurate as desired,
and hence these neuron models lead to approximation schemes that are dense in Cc(R

n). It
is known that Cc(R

n) is dense in Lp(Rn), Vp € [l,+oo) [Rudin, 66]. The transformation í
performed can be as simple as a linear one, of the kind usually carried out as a pre-processing
in neural networks.

5.4.6 Extension to fuzzy numbers

To account for other data types, on which a similarity measure has been defined, profit can be
made of Proposition (5.3), dealing with the obtention of generic measures by aggregation of
partial ones, thereby extending the models in (5.31) to £, û;' G ?in. In general, the extension
can be achieved by showing that similarities defined on other data types lead also to integrable
partial kernels of the required form. These kernels also depart from the real-valued ones in
that they are not necessarily distance-based. An informal outline of the proof for fuzzy
numbers is given, in the understanding that a more formal demonstration should be made in
the future.

Let x,y € Fn(R). From (4.60), we have that s(i,y) = U¿(y) is a similarity in Fn(
where FI is the possibility measure. When implanted in a particular input of a neuron model,
a function of the form:

s(x,wi) = s(ni(w
i)) (5.68)

can be built , where s is a non-linear similarity keeping function, supplying the smoothing
factor. As usual, we split the discussion in two parts:

i) To show that s(x, iul) is a function AY of x~™' . For simplicity, we consider the factor
£ as provided by the s function.

it) This partial kernel AY must be integrable in E, that is, JRAY(z) dz < oo, and have a
positive integral.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 158

Part i). We assume a specific transformation from x to x, given by a function ~ : K. —»
Fn(R), so that /¿¿"represents a symmetric fuzzy number in R, where the mode is given by x,
and the spread ex by a number proportional to it, ex — kx, normally A; € [0,1].

In case the chosen representation is triangular (4.55), a number x results in a fuzzy number
x of the form depicted in Fig. (5.3, left). Another possibility is the Gaussian form (4.57),
depicted in Fig. (5.3, right).

Figure 5.3: A triangular (left) and a Gaussian (right) fuzzy number.

Note that both functions are integrable in R and their integral is positive. The expressions
for these functions are, respectively:

Hi(u) = l - min ( -, l ] , tí G K

u e R

The similarity between fuzzy numbers was defined as s(x,y) = IL^y) (4.60), with:

n£(y) = sup {mí'n(¿ií(tí),¿íy(tí))}

Since Il¿(y) = Fly(x), for the neuron model in (5.68) we can write:

(5.69)

(5.70)

s(x,w') = x,w (5.71)

hence considering x as the kernel free parameter and w* as fixed. Since x is constructed
exclusively out of a scalar x (and wl out of a scalar wl) the above expression can be seen as a
function of x and w*. It needs to be shown that it is also a function of x - tu'. Let 5 = x — «V,
defined as:

i \ i • / \x ~ w u i iH¡(u) = 1 - mm -, 1 ) , u € R (5.72)

obtained from /¿¿,/x^i thanks to the Extension Principle [Zadeh, 73]. This fuzzy number
can be cast as a function of x — w', as follows. The inner expression is:



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 159

\x — w' — u\ \x — tu' — u\ \x — w* — u\ 1
~ ~= \kx-kw*\ k\x - w¡\ I\ex-ewi

x — wl — u
x - wf 1-

u
x — w'

and thus (5.72) can be written:

[¿¡(u) = l-min í- 1-
u

X — W1
(5.73)

Therefore, the whole expression fí¡ is an analytic function of x - w1 in each point. The
value yielded by (5.71) is a function of how close z is to the fuzzy set 0. In fact, it holds that
n^,(x) = UQ(X — w'). This situation is depicted in Fig. (5.4).

Figure 5.4: An example situation of í, w1 and z = x — û)', where x > w', z = x — w1, ez =
\ex — ewi\ (5.72). Also shown is the appropriate 0 fuzzy set. The dotted line is the desired
value of similarity UQ(X - wf).

The expression for the 0 fuzzy number (whose mode is 0) is given by:

= 1- min í -^-. (5.74)

Some tedious manipulations lead to CQ = (ex + ewi] — \ex — ew>\. To be precise, GQ is
not properly a function of x — w', because (ex + ewi) depends on x + w¡ (or, alternatively,
on x — W{ and w¿). A solution to overcome this is to set a constant spread, that is, the
fuzziness of the constructed fuzzy numbers is taken to be a constant value ec > 0 € IK for the
corresponding variable in a given domain (it could be different for different variables). This
constant fuzziness may be useful in some practical situations, but certainly is not the most
general case. However, by setting a constant fuzziness, z happens to be crisp, CQ = 2ec, and
the rest of the discussion is not altered. Since both fuzzy numbers (z and 0) are built out of
x — iu', the result of ̂ (i — tu') (a scalar) also is. This leads to kernels of the form:

(5.75)

In practice, this requirement can be relaxed by letting the spreads to be variables rather
than constants. Specifically, the fuzziness of the weight ewi can be let to be another free



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 160

parameter of the model. This is not harmful in theory (we know a theoretical solution still
exists) and will certainly add to the practical flexibility.

Part ii). We first show that the kernel Kf in (5.75) is integrable w.r.t. z in R, in a
graphical way, in Fig. (5.5). Since z is crisp, we have:

/ nô(z)dz = / n-Q(z}dz = e0 = 2ec > 0 €
JR JR

(5.76)

Figure 5.5: Integrability of HQ.

The composition to an s : [0,1] -> [0, smax] keeps integrability since Kf is only defined in
the closed interval [—CQ, CQ] (being zero elsewhere) and the s is, by definition (4.9), continuous
and bounded in [0,1].

In case the fuzziness of the weight ew> is set as a free parameter of the model, the difference
z = x — w' is in general not crisp and we have a kernel of the form

We show now that this kernel is still integrable. The discussion is probably simpler by
considering instead the function H^, (x) and showing that it is integrable in R w.r.t. x. This
is analogous to the required integral Kf(z) w.r.t. z, since II¿,.(x) = UQ(X — w*) = n¿(z),
where z = x — w*.

Again, we show the function HA;(x) to be integrable w.r.t. x in R in a graphical way, in
Fig. (5.6).

For given u>,- and ewi, wl is build. Let us suppose that /i^,/^ are of the triangular form
(the proof for Gaussians is analogous). Integrating over all x e R means building an x (which
only depends on x) and calculating s(x,wt) = Yl^i(x). From the picture, it is clear that the
support of fl^ in R is z 6 [io1 - (ex + ewi),w' + (ex + ew<)]. The limits of this interval
correspond to the cases where the bases of the triangles are touching in a single point at level
0, either to the left or to the right.

Hence,

/ n,j,, (x) dx= n^, (x) dx +
JR J—oo Jw'—w<-(ex+ewi)

/-+co

\
Jwt+(ex+ewi)

(5.78)



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 161

R

Figure 5.6: Given a fixed tu', obtained from the current u>¿ and ewi, integrating means sliding
for consecutive x and calculating the similarity U^<(x). The dotted line is the value U^i(x}
for an arbitrary x.

The first and third integrals on the right-hand side of (5.78) are zero. By thinking graph-
ically, we can imagine the x triangle sliding slowly from left to right across w' (that is fixed).
For all the a; points in the above interval each similarity between x and w* yields a number in
[0,1]. The net result across R is another triangular fuzzy number ¿ij, depicted in Fig. (5.7).

x<~x.

Figure 5.7: The integral (5.78) in graphical form.

Since n^.^í) = /ÍS(.T), the above integral can be written:

dx (5.79)
u;'-(e.c

where /¿¿ is a symmetric fuzzy number centered at w¿ (like lì)*) with a spread cs = e.t. + ew,.
In any case, this last integral exists, and is clearly positive (to be precise, its value is e a ) .
Again, the composition to an s keeps integrability, for analogous reasons. This time, however,
there is an interesting remark to be done. The addition of a new free parameter (the spread
of the weight ew, > 0 G R) to the neuron model is equivalent to letting it constant to a value
of zero (that is, considering only crisp weights) and using a neuron model which is directly of



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 162

the required form Jif í x~¿u' ) , without the need of a s function. In this model, the smoothing
factor a takes the role of the spread of the weight.

To see this, we depart from the kernel (5.77) and manipulate it by setting ewi = 0,
considering no spread in the weights. This implies e0 = (ex + ew>) - \ex - ewi\ = ex — \ex\ = 0
(since ex > 0) and therefore 0 = 0. Thus, the similarity is performed between a general fuzzy
number (z) and the crisp number zero. In these conditions,

KY(Z) = s (n0(¿)) = s (n0(¿)) = s (Ui(o)) = § (^ (o)) (s.so)
For clarity, we denote this kernel Kf(z), where:

/x¿(«) = I-min — - , 1 J , u e R (5.81)

with ec > O € R as before, accounting for the constant fuzziness of x. Then, the construc-
tion of a kernel of the required form, given a > O G R, leads to:

= s 1 - min _ , = « j _ min t , , (5.82)

On the one hand, we see that the resulting expression is a function of x ¿"', with wl €
,<7 > 0 € R as required by Theorem (5.2), where the kernel can be simply written:

On the other hand, it is clear that a is taking the role of a variable fuzziness e'c — aec

in (5.82), letting it free in the positive part of R, as required. Therefore, the model is self-
contained in the number of required free parameters. This justifies the elimination of s, if
desired. The obtained model is integrable, with non-null integral equal to ec (without s) and
equal to 2 /^ s(z)dz with a s.

5.4.7 Extension to missing information in Gower's measure

In this last section, the result in (§5.4.4) is extended to incorporate missing information.
The inclusion of missing elements in heterogeneous space, as prescribed by Gower's measure
(4.71), consists in counting only the non-missing computations and normalizing by their
number. We depart from kernels of the form:

(5-83)



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 163

The extensioifof K to account for missing information implies the extension of the partial
kernels K j to accept a missing value (herein denoted X) as part of their domain. In other
words, the domain of a A"j is now 71 = RU{A'}, where X is an element defined as incomparable
w.r.t. any ordering relation in R, for which only equality is defined in Ü. Therefore, K is
extended to be defined in 7in = (R U {A*})". Specifically, Gower's prescription to aggregate
the partial measures in presence of missing values (4.71) leads to new kernels:

K (S) = s *"JZV ;v J/ , z e Kn (5.84)
V £*=!*'• /

where
- í 1 if z; T¿ X . .^ = {0 if 4 = x (5-85>

Before proceeding, we make a restriction to get through with the discussion: we only
consider missing values in the inputs, that is, in the a? and hence, wt € R". For the kernels,
this ensures that at least one Zj is non-missing, and hence the denominator in (5.84) is non-
null. It could only be null if all the components of x were missing, a situation discarded by
hypothesis.'

A simple way to achieve the extension is to place this "alien" element in a new dimension,
that is, to work in E2 for each partial kernel. We depart from the hypothesis that the Kj in
(5.83) were valid kernels, always positive, with [Kj]i < oo and [Kj]i > 0,1 < j < n. In these
conditions, let:

Kj(z) if \m\ < e
A"j(z, m) = -j 0 if (z, m) = (0, 1) (5.86)

0 otherwise

with 0 < e < 1. In particular, the point (0,1) in R2 is taken to represent the missing
element X 6 Ü. These functions are depicted in Fig. (5.8).

The Kj are defined in (R X [— f,+e]) U {(0, 1)} C R2. Once we have the missing element
represented in each partial kernel, we define the whole kernel K' as:

(5.87)

where z\->X = {z¡ : 1 < i < n : z¡ £ R}, z\X = {z{ : 1 < i < n : z,- = X) and
(¿l-vY). This kernel (5.87) is so-defined for clarity: note that the second summation

is nul l . The task is then twofold:

1. To show that the obtained kernel K' behaves analogously to (5.84).

2. To show that the obtained kernel K' is integrable.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 164

Figure 5.8: The functions (5.86).

Proposition 5.6 The function K1 is equivalent to the Gower-based aggregation of partial
similarities, in presence of missing values, defined in (5.84).

Proof. We prove that K'(z) = K(z), Vz € Un. We first note that £?=1 ¿i = # (¿I""*')-

(i) If z € R", that is, if there are no missing elements in z, we have K(z) = K(z), since
(5.83) is equivalent to (5.84). Moreover,

(n1 = nt z = z\-tf

= *(¿E?oi *;•(*,', 0))
(def. of Ify

(ii) In presence of missing elements in ¿*, we have 0 < n' < n and:

(def. of 5,-)

(def. of A'j; Ä'j always positive)

Proposition 5.7 TAe partial kernels K1: are integrable in

Proof. Let Mt = {(z,m) € K2 m < c}.



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 165

\

/ í K'Az,m)dzdm = í í K'Az,m) dzdm + í í K'Az,m) dzdm =
J JRI J JMf J JR2\MC

í 2eKj(z) dz + 0 = 2e I Kj(z) dz
JR JR

Since JR KJ(Z) dz < oo and is non-null, so is the new obtained integral, since e > 0.

Intuitively speaking, we have shown that the required extended kernels K(z),z € 72"
(5.84) can be simulated by defining

( * , ) if * -

An alternative way of dealing with the extension would have implied extending the topol-
ogy in R to a topology in 72, thereby extending the concept of integrability to 72. This
remains as an avenue of future work.

5.5 Conclusions

We have shown how several classes of similarity-based neuron models share the universal
approximation property. Some assumptions and technicalities have been worked out in order
to get through with the proofs and, wherever possible, to further illustrate the studied models.

While the Propositions are general enough to cover most of the neuron models developed
and used in this Thesis, including many previously existent in the literature, there clearly
is a potential for more generic proofs, or for the enhancement of the proposed ones. In this
vein, normalized distance-based measures, or more general measures based on scalar product
are specific avenues of future study.

In addition, the incorporation of nominal, ordinal and linguistic information has not
been considered. The first two types, being discrete, pose a problem which transcends the
scope of this work. There is also the integration of discrete and continuous information into
general approximation schemes. To this end, new theorems for neural networks, concerning
approximation in discrete or hybrid spaces should be needed. For linguistic variables, a clear
line of thinking is to consider them as generalizations of fuzzy numbers.

The approximation ability does not give clues about the effective learnability, that is,
how to build the approximation. Hence, a failure to reach a desired performance can be
due to a handful of combined causes, as an inadequate architecture, the presence of noise in
the samples, an insufficient number or lack of representativeness thereof, or an uneffective
learning algorithm. In addition, most of the universal approximation results do not take into
account the limited precision with which computers work with real numbers. In this sense,



CHAPTER 5. THE UNIVERSAL APPROXIMATION PROPERTY FOR HNN 166

it has been pointed out that current standards are not enough to meet the requirements
addressed in theory [Wray and Green, 95].

Besides, there may exist models very useful or however effective in practical applications,
but such that, for one or other reason, a proof for their U A property is difficult or cannot
be obtained with the current definition. Generally speaking, the fulfillment of the property
does not convey a clear-cut practical concern, and viceversa. All this should make us to
revise current standpoints towards more realistic settings, in which the number of samples
and hidden units, noise, computer precision, roundoff errors and related concerns are tackled.
Otherwise, the proof of the property, will remain a an issue far from everyday practice.


	TLABM00001.pdf
	TLABM00002.pdf
	TLABM00003.pdf
	TLABM00004.pdf
	TLABM00005.pdf
	TLABM00006.pdf
	TLABM00007.pdf
	TLABM00008.pdf
	TLABM00009.pdf
	TLABM00010.pdf
	TLABM00011.pdf
	TLABM00012.pdf
	TLABM00013.pdf
	TLABM00014.pdf
	TLABM00015.pdf
	TLABM00016.pdf
	TLABM00017.pdf
	TLABM00018.pdf
	TLABM00019.pdf
	TLABM00020.pdf
	TLABM00021.pdf
	TLABM00022.pdf
	TLABM00023.pdf
	TLABM00024.pdf
	TLABM00025.pdf
	TLABM00026.pdf
	TLABM00027.pdf
	TLABM00028.pdf
	TLABM00029.pdf
	TLABM00030.pdf
	TLABM00031.pdf
	TLABM00032.pdf
	TLABM00033.pdf
	TLABM00034.pdf
	TLABM00035.pdf
	TLABM00036.pdf
	TLABM00037.pdf
	TLABM00038.pdf
	TLABM00039.pdf
	TLABM00040.pdf
	TLABM00041.pdf
	TLABM00042.pdf
	TLABM00043.pdf
	TLABM00044.pdf
	TLABM00045.pdf
	TLABM00046.pdf
	TLABM00047.pdf
	TLABM00048.pdf
	TLABM00049.pdf
	TLABM00050.pdf
	TLABM00051.pdf
	TLABM00052.pdf
	TLABM00053.pdf
	TLABM00054.pdf
	TLABM00055.pdf
	TLABM00056.pdf
	TLABM00057.pdf
	TLABM00058.pdf
	TLABM00059.pdf
	TLABM00060.pdf
	TLABM00061.pdf
	TLABM00062.pdf
	TLABM00063.pdf
	TLABM00064.pdf
	TLABM00065.pdf
	TLABM00066.pdf
	TLABM00067.pdf
	TLABM00068.pdf
	TLABM00069.pdf
	TLABM00070.pdf
	TLABM00071.pdf
	TLABM00072.pdf
	TLABM00073.pdf
	TLABM00074.pdf
	TLABM00075.pdf
	TLABM00076.pdf
	TLABM00077.pdf
	TLABM00078.pdf
	TLABM00079.pdf
	TLABM00080.pdf
	TLABM00081.pdf
	TLABM00082.pdf
	TLABM00083.pdf
	TLABM00084.pdf
	TLABM00085.pdf
	TLABM00086.pdf
	TLABM00087.pdf
	TLABM00088.pdf
	TLABM00089.pdf
	TLABM00090.pdf
	TLABM00091.pdf
	TLABM00092.pdf
	TLABM00093.pdf
	TLABM00094.pdf
	TLABM00095.pdf
	TLABM00096.pdf
	TLABM00097.pdf
	TLABM00098.pdf
	TLABM00099.pdf
	TLABM00100.pdf
	TLABM00101.pdf
	TLABM00102.pdf
	TLABM00103.pdf
	TLABM00104.pdf
	TLABM00105.pdf
	TLABM00106.pdf
	TLABM00107.pdf
	TLABM00108.pdf
	TLABM00109.pdf
	TLABM00110.pdf
	TLABM00111.pdf
	TLABM00112.pdf
	TLABM00113.pdf
	TLABM00114.pdf
	TLABM00115.pdf
	TLABM00116.pdf
	TLABM00117.pdf
	TLABM00118.pdf
	TLABM00119.pdf
	TLABM00120.pdf
	TLABM00121.pdf
	TLABM00122.pdf
	TLABM00123.pdf
	TLABM00124.pdf
	TLABM00125.pdf
	TLABM00126.pdf
	TLABM00127.pdf
	TLABM00128.pdf
	TLABM00129.pdf
	TLABM00130.pdf
	TLABM00131.pdf
	TLABM00132.pdf
	TLABM00133.pdf
	TLABM00134.pdf
	TLABM00135.pdf
	TLABM00136.pdf
	TLABM00137.pdf
	TLABM00138.pdf
	TLABM00139.pdf
	TLABM00140.pdf
	TLABM00141.pdf
	TLABM00142.pdf
	TLABM00143.pdf
	TLABM00144.pdf
	TLABM00145.pdf
	TLABM00146.pdf
	TLABM00147.pdf
	TLABM00148.pdf
	TLABM00149.pdf
	TLABM00150.pdf
	TLABM00151.pdf
	TLABM00152.pdf
	TLABM00153.pdf
	TLABM00154.pdf
	TLABM00155.pdf
	TLABM00156.pdf
	TLABM00157.pdf
	TLABM00158.pdf
	TLABM00159.pdf
	TLABM00160.pdf
	TLABM00161.pdf
	TLABM00162.pdf
	TLABM00163.pdf
	TLABM00164.pdf
	TLABM00165.pdf

