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Abstract 

 

Alternative splicing is a major contributor to the variability of eukaryotic transcriptomes. 

Several works have shown evidence on how aberrant splicing is linked to various diseases, like 

cancer. Tumors originate from genetic alterations, but their progression involves phenotypic 

advantages driven by changes in the transcriptome. The study of these alterations allows 

researchers to elucidate the mechanisms occurring during cancer progression. More important, 

there is a growing interest in these alterations have resulted as new targets of cancer therapy. 

This thesis addresses two key questions: the development of computational methods for the 

study of RNA splicing alterations and their application in cancer samples for personalized 

medicine. We aimed to develop methods and perform analyses that could provide a new 

perspective on cancer analysis with the potential of opening new strategies for treatment. 

 

 

Resumen 

 

El splicing alternativo es uno de los mayores contribuidores a la variabilidad del transcriptoma. 

Varios trabajos han mostrado cómo cambios aberrantes de splicing se producen en diversas 

enfermedades, como el cáncer. Los tumores se producen por alteraciones genéticas, pero su 

progresión implica ventajas fenotípicas producidas por cambios del transcriptoma. El estudio 

de estas alteraciones permite a los investigadores dilucidar los mecanismos que ocurren durante 

la progresión del cáncer. Es importante remarcar que dichas alteraciones han ganado un gran 

interés como nuevas dianas de terapia dirigida en cáncer. 

Esta tesis aborda dos cuestiones fundamentales: el desarrollo de métodos computacionales para 

el estudio de las alteraciones del splicing en el ARN y su aplicación en muestras de cáncer para 

la medicina personalizada. Hemos aspirado a desarrollar métodos y llevar a cabo análisis que 

puedan ofrecer una nueva perspectiva sobre el análisis de cáncer con el potencial de abrir 

nuevas estrategias de tratamiento. 
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1 INTRODUCTION 

 

 

 

1.1. From DNA to RNA 

The transcriptome is the set of all RNA molecules in a cell. These molecules are defined as a 

product of the transcription from DNA. They are the connection between the genetic code and 

the functional molecules that run cells, the proteins. In the past, scientists have put the spotlight 

on the study of protein products derived from RNA. However, only focusing on protein activity 

is not telling the cell’s whole story. There is a huge variability at transcriptome level that could 

not be readily detected on proteins and that has important phenotypic effects. Therefore, 

quantification and characterization of the transcriptome is essential to understand the activity 

of genes and their regulation. 

 

Year after year, the number of total protein coding genes has been decreasing. In the last human 

GENCODE reference release (November 2017, GRCh38) there were a total of 58.381 genes, 

from which 19.901 are protein coding. A recent work suggests that the current number of 

protein coding genes is still an overestimate and should in fact be around 18.000 (Abascal et 

al., 2018). Nevertheless, the number of annotated proteins is much higher (around 90.000 (The 

UniProt Consortium, 2015)). This difference could be explained because of the large number 

of protein-coding annotated transcripts (82.335 according to GENCODE). There is a series of 

tightly regulated and conserved mechanisms that allow the synthesis of multiple transcripts 

from a single gene: alternative transcript initiation, alternative splicing and alternative 

polyadenylation. We are going to review briefly these processes. 
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1.1.1. mRNA processing 

 

Here we give a general overview for each of the processing steps from the transcription of 

DNA to the maturation of the messenger RNA (mRNA) in eukaryotes: 

 

- Synthesis of pre-mRNA: the RNA polymerase II (RNApol II) is the unit in charge 

of performing the synthesis of the complementary RNA. The place where the 

RNApol II binds is the promoter, where RNApol II interacts with other proteins 

called transcription factors (TFs). The presence of different transcription factors 

could influence the selection different promoters by the RNA pol II for cleaving 

and starting the transcription at different transcription start sites (TSSs). This could 

produce transcripts with different first exons (alternative promoter usage).  

- 5’ capping: the newly synthetized pre-mRNA is capped with a modified nucleotide. 

This protects the mRNA molecule from ribonuclease degradation and enables 

ribosome recruitment after the exportation to the cytoplasm. 

- Splicing: it is the process by which regions of the pre-mRNA are excised out 

(introns) or included (exons) in the final processed mRNA. Combinations of 

different sets of exons will give rise to different transcripts and therefore, could 

translate into different proteins (Figure 1). This process is known as Alternative 

Splicing (AS). We will review this in more depth below.  

- Polyadenylation: once the whole mRNA molecule has been synthetized, a poly-A 

tail is added to the 3’ end. This tail plays a major role on nuclear transportation and 

stability. Similarly to the selection of the promoter region, there are different sites 

where the poly-A tail could be added, i.e. alternative polyadenylation sites.  
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Figure 1: Alternative Splicing (AS) allows the synthesis of multiple transcripts from the same gene locus, and 

potentially give rise to different proteins by combining different sets of exons (Lara-Pezzi, Gómez-Salinero, Gatto, 

& García-Pavía, 2013) 

 

For a long time it was thought that the process of transcription and RNA processing took place 

independently of each other, and that splicing would not take place until the polymerase had 

not released the pre-mRNA molecule. However, it has been shown that this post-processing 

starts before the RNA molecule has been completely synthetized. This was first observed in 

1988 by Beyer and Osheim in Drosophila (Beyer & Osheim, 1988), and there is now evidence 

that splicing occurs mostly co-transcriptionally (Carrillo Oesterreich et al., 2016) and that 

transcription regulation can also influence splicing and alter the final product (Schor, Gómez 

Acuña, & Kornblihtt, 2013).  

 

The variations in the RNA processing steps mentioned above (alternative promoter usage, 

alternative splicing and alternative polyadenylation) are the major contributors to the variability 

of the transcriptome. This evidences the importance of these processes and motivates the study 

of how they contribute to molecular diversity.  
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1.2. Splicing 

 

Splicing is the process of intron removal and exon ligation. The exon and intron terms were 

coined by the Nobel laureate Walter Gilbert in 1978 (Gilbert, 1978), referring as expressed and 

non-expressed intragenic regions respectively. Some exons carry the genetic information that 

will code for a peptide sequence. Intronic sequences, as well as a subset of exons, do not encode 

protein products, but they play an important role on gene regulation.  

 

Alternative Splicing (AS) consists on the multiple ways in which introns may be excised from 

the nascent transcript, and allows the generation of multiple transcripts from a single gene. 

Several studies have shown that genes may express alternative transcripts in a cell, tissue or 

pathway specific way (Baralle & Giudice, 2017). This suggests a complex regulatory 

mechanism underneath. 

1.2.1. Splicing regulation 

 

Which exons will be spliced in is determined by many factors. Three of the major players on 

this decision are the spliceosome, cis-regulatory sequences and trans-acting factors. 

1.2.1.1. The spliceosome 

 

Splicing is catalyzed by a dynamic ribonucleoprotein complex called spliceosome, composed 

by five small nuclear RNAs (U1, U2, U4, U5 and U6), which form complexes with more than 

200 proteins (Will & Lührmann, 2011). The spliceosome recognizes 4 main sequences in the 

pre-mRNA: 

• 5’ splice site (5’ ss): present at the beginning of the intron. It is composed of a highly 

conserved di-nucleotide, mostly GT, surrounded by less conserved positions, extending 

to a motif of approximately 6-9 nt corresponding to the base-pairing with the U1 

snRNA.  

• 3’ splice site (3’ ss): present at the end of the intron. Similarly to the 5’ss, it is composed 

by a highly conserved dinucleotide, mostly AG, preceded often by a T or C (Padgett, 

2012). 
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• Branch point (BP) adenosine: located ~15-50 nucleotides upstream of the 3’ splice site. 

It is surrounded by a weaker motif that base pairs with the U2 snRNA.  

• Polypirimidine tract (PPT): usually 15-20 bases long, located downstream of the branch 

point and close to the 3’ end of the intron. This region is generally bound by the U2AF 

heterodimer (Sickmier et al., 2006). 

 

There are two types of spliceosomes: the major and the minor spliceosomes. Each one 

recognizes and processes a different type of introns: U2 and U12 introns, respectively. U2 

introns are the most abundant ones (around 99.5%). U12 introns have different sequence 

elements and they normally co-occur together in genes with U2 introns (C. F. Lin, Mount, 

Jarmoowski, & Makaowski, 2010). In spite of the low amount of U12 introns, they have 

important functions at limiting expression of their host genes (Turunen, Niemelä, Verma, & 

Frilander, 2013). The splice sites of the U2 introns have a canonical GT-AG consensus, 

whereas the U12 could also be GC-AG or AT-AC. Additionally, U12 introns present a more 

conserved BP motif and a much shorter PPT (Turunen et al. 2013).  

 

Here we give a brief overview of how the major spliceosome works, a more detailed 

explanation of the process can be found in (Matera & Wang, 2014). U1 recognizes and binds 

the 5’ ss. U2 interacts with the branch point. U2 auxiliary factors (U2AF heterodimer) 

recognize the polypyrimidine tract and the 3’ss. With the recruitment of the U4/U5/U6 tri-

snRNP the 5’ ss is cleaved and joined to the branch point forming a lariat. The 3’ end of the 

intron is next cleaved at the 3’ ss and the two exons are ligated together (Figure 2). 

 

The decision as to which exon is removed or included often involves RNA cis-regulatory 

sequence elements and trans-acting factors known as splicing factors (SFs). 
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Figure 2: Simplified illustration of the intron excision and ligation of two adjacent exons. The steps shown are: 

recognition of the 5′ and 3′ splice sites by the U1 and U2 small nuclear ribonucleoprotein complexes (snRNPs), 

assembly of the snRNPs into the active spliceosome, the excision of the intron lariat and the ligation of the two 

exons (Dvinge, Kim, Abdel-Wahab, & Bradley, 2016) 

 

1.2.1.2. Cis-regulatory motifs and trans-acting factors 

 

The spliceosome alone does not process all introns. SFs influence the process of splice site 

choice. These proteins recognize specific cis-regulatory motifs that depending on the effect 

they produce, and the location, are classified as: 

- Exonic Splicing Enhancers (ESE) or Inhibitors (ESI): enhance or inhibit the 

inclusion of the exon they are in. 

- Intronic Splicing Enhancers (ISE) or Inhibitors (ISI): enhance or inhibit the 

inclusion of an adjacent exon.  

 

Most studies have looked for motifs nearby splice sites. However, recent studies have shown 

that distant motifs could be as important as those closer to splice sites (Lovci et al., 2013). Two 

of the most important splicing factors are serine-rich (SR) proteins and heterogeneous nuclear 

ribonucleoproteins (hnRNPs). SR proteins mostly bind exonic splicing enhancers, promoting 

the inclusion of the cis-associated exons. On the other hand, hnRNPs usually bind splicing 

inhibitors, repressing inclusion. There are other SFs that depending on the region they bind 

they could have antagonistic effects (Goren et al., 2006). 
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Many of these regulatory motifs were initially identified using high-throughput computational 

methods (Barash et al., 2010; Yeo, Holste, Kreiman, & Burge, 2004) as well as experimental 

screening approaches (Stadler et al., 2006). 

 

Currently, one the most effective ways to obtain an unbiased view of the binding specificities 

of splicing factors, as well as RBPs, is crosslinking and immunoprecipitation (CLIP) method, 

in any of its different flavors (F. C. Y. Lee & Ule, 2018). CLIP detects direct RNA-protein 

interactions by inducing crosslinking with ultraviolet radiation. The use of this technology has 

been crucial for characterizing the relevant motifs associated to many of the splicing regulatory 

proteins. RNAcompete is a different method that allows the identification of preferred binding 

sequences for RBPs using synthetic sequences (Ray et al., 2017). These results have been 

gathered into databases like ATtRACT (Giudice, Sánchez-Cabo, Torroja, & Lara-Pezzi, 2016; 

Ray et al., 2009), which contains a large compendium of RNA motifs recognized by splicing 

factors, obtained from multiple experimental techniques. Additionally, high-throughput 

experimental methods have been developed to expand the catalogue of RBPs, and hence 

describe potential new RNA processing regulators (Hentze, Castello, Schwarzl, & Preiss, 

2018). There are currently around 1400 proteins estimated to be RBPs, with more than 170 

estimated as splicing factors at present (Sebestyén, Singh, Miï¿½ana, et al., 2016), many of 

which still lack a description their binding sites (X. D. Fu & Ares, 2014). The compendium of 

RBPs with new biological roles is likely to grow in the near future. It is quite challenging to 

characterize the binding specificities of RBPs and SFs, since the same genomic sequence could 

be recognized by different factors. A recent study demonstrated that, in spite of the large 

amount of identified RNA binding proteins (RBPs), the diversity of motifs is much lower that 

expected (Dominguez et al., 2018). In addition, some proteins could function in complexes 

with other proteins, influencing their binding affinities. 

 

1.2.1.3. Other regulators of splicing 

 

There are other agents that affect the regulation of the splicing machinery: 

 

• RNA Pol II processing: as splicing occurs co-transcriptionally, the speed of 

transcription can play a role in the recognition of splice sites, and in the recruitment of 

RBPs recruited, often by the RNA Poll II, to the pre-mRNA (Schor et al., 2013). 
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• Antisense RNAs (asRNAs): asRNAs are single stranded RNAs transcribed from the 

opposite strand of a gene locus that can hybridize to the pre-mRNA or mRNA blocking 

its processing. These molecules have been shown to be potential regulators of AS. For 

instance, the splicing of MSH6 gene, involved in DNA-mismatch repair, was shown to 

be correlated with expression of antisense FBXO11 (Morrissy, Griffith, & Marra, 

2011). 

• DNA methylation: It has been shown that alternatively spliced exons show lower levels 

of methylation than constitutively spliced exons (Lev Maor, Yearim, & Ast, 2015). For 

instance, CD45 exon 5 inclusion is inhibited by DNA methylation (Shukla et al., 2011). 

• Histone modifications: the chromatin state, defined by the biochemical modifications 

of nucleosome histone tails also influence the splicing of alternative exons. For 

instance, elevated levels of trimethylation of H3K9me3 have been related to the 

repression of alternative exons of several genes like CD44 (Saint-André, Batsché, 

Rachez, & Muchardt, 2011) 

• Long Noncoding RNA (lncRNA): These molecules have been shown to influence AS 

(Romero-Barrios, Legascue, Benhamed, Ariel, & Crespi, 2018). For instance, lncRNA 

MALAT1 blocks the recruitment of splicing factors to pre-mRNAs. In non-small cell 

lung cancer, MALAT1 is often depleted increasing splicing factor levels and producing 

a perturbed splicing pattern (Tripathi et al., 2010). 

• RNA editing: Deamination of adenosine to inosine in exons and/or introns has been 

shown to be related to AS. For instance, cassette exons were found to be significantly 

enriched with adenosine-to-inosine RNA editing sites by ADAR enzymes compared to 

constitutive exons (Solomon et al., 2013). 

• RNA modification: N6-methyladenosine (m6A) has been recently identified as another 

modification that influences AS; m6A can alter the structure in mRNAs by enhancing 

the binding of HNRNPC (Bartosovic et al., 2017). 

 

All these mechanisms regulate and impact splicing, thereby possibly giving rise to AS. We will 

describe next how to study AS from high-throughput RNA sequencing data.  
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1.3. Alternative Splicing quantification 

 

Alternative splicing analysis requires the quantification of the transcriptome. Next generation 

sequencing technologies have facilitated this task. Their ability to provide massively parallel 

analysis from several samples at much reduced cost has led to the explosion of RNA 

bioinformatics. Whole transcriptome shotgun sequencing, also known as RNA-seq, is the 

standard approach for transcriptome profiling nowadays. On the other hand, third-generation 

sequencers from PacBio or Oxford Nanopore Technologies use advances in nanotechnology to 

sequence full-length RNA molecules (ref). These technologies are emerging as new promising 

techniques for transcriptome analysis (de Jong et al., 2017; Tardaguila et al., 2017). Their 

longer reads could allow the direct resolution of isoform structure. On the other hand, the higher 

error rates, price, and low throughput still make these technologies not the standard in the field. 

Since short-read RNA-seq is the standard technology, we are going to focus on methods that 

use this type of data.  

 

Prior to quantifying AS, the first step is read alignment. This could be done mapping to the 

genome or to a transcriptome reference. Using an existing transcriptome has the drawback that 

possible unannotated transcripts will be excluded from the quantification. There is a plethora 

of methods to map reads. STAR (Dobin et al., 2013) or TopHat (D. Kim et al., 2013) are two 

of the most widely used mappers. Reads mapped to a genome be assembled into longer contigs 

to reconstruct potential transcripts and estimate their abundance (Pertea et al., 2015; Trapnell 

et al., 2010). Reads mapped to a transcriptome must be re-distributed into transcripts using 

optimization methods to estimate transcript abundances (ref). Recently, a new generation of 

methods has appeared that provide a pseudo-alignment or quasimapping to the transcriptome, 

like Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017) or Kallisto (Bray, Pimentel, 

Melsted, & Pachter, 2016), which have improved significantly the speed at quantifying 

transcript abundances. Other methods like Trinity (Haas et al., 2013) allows performing de 

novo transcriptome assembly and quantification, which is especially relevant in experiments 

on poorly annotated species. 

 

The task of quantifying AS could be addressed from different perspectives. One option would 

be to calculate the independent usage of each exon, or each independent exon piece, like in 

DEXSeq (Anders, Reyes, & Huber, 2012). Using this approach, it is possible to detect changes 

between conditions associated to specific exonic regions. However, this approach could mask 
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splicing changes that would not be visible unless neighboring exons are considered. In Figure 

3 we illustrate this with an example. Accordingly, methods that study the splicing variation in 

the context of the neighboring splice sites produce more reliable results.  

 

 

 

 
Figure 3: Only looking at exon usage could be masking splicing changes. The image shows a gene with four 

transcripts, with different sets of exons. In individual 1, only isoforms A and D are found with abundance of 100 

copies, whereas in individual 2, only B and C are found, with the same abundance. If we focus our analysis on 

exon usage only, we will not see any change between the two individuals on their exons abundances, whereas 

they do show differential splicing. Adapted from (Monlong, Calvo, Ferreira, & Guigó, 2014). 

 

One of the most common ways of studying splicing is through alternative splicing events, 

which involve binary choices of exons or splice sites. In Figure 4 we describe the most 

commonly studied alternative splicing patterns. Alternative first and alternative last exons are 

not pure AS events, since they are generated by the selection of alternative promoter or 

polyadenylation sites, respectively. As they often involve the interplay of splicing regulators, 

they are generally included as alternative splicing patterns.  

 

There are several methods for quantifying events using RNA-seq data. The main differences 

between them are their definition of alternative splicing events and the method of obtaining the 

inclusion level of the event or percent/proportion spliced in (PSI), which represents the 

proportion of transcripts that include an exon or splice site. In this thesis we present SUPPA2, 

a lightweight method that exploits normalized transcript abundance values for obtaining 

differential splicing on binary events. SUPPA2, like rMATS (Shen et al., 2014), obtains 

differential AS changes relying on the previous definition of events from the annotation.  Other 

methods, like MAJIQ choices (Vaquero-Garcia et al., 2016), obtain differential splicing 

changes based on local splicing variations, which are not necessarily binary.  
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Another possibility for quantifying differential splicing is to study the change in relative 

abundances of transcript isoforms. One would assign reads to isoforms and measure the 

percentage of expression explained by each isoform at different conditions. Cuffdiff, a utility 

from Cufflinks calculates the significance of differential splicing by comparing isoform 

expression estimations between conditions (Trapnell et al., 2010). MISO is another popular 

method that identifies differentially regulated isoforms using Bayesian inference (Katz, Wang, 

Airoldi, & Burge, 2010). Iso-kTSP identifies significant “switches” on isoform changes 

between conditions (Sebestyén, Zawisza, & Eyras, 2015). DRIMseq is another method to study 

differential transcript usage by modeling transcript counts with the Dirichlet-multinomial 

distribution (Nowicka & Robinson, 2016). 

 

Both perspectives, event and isoform quantification, are complementary to each other and 

provide distinct information. Events provide a local description of the splicing change, which 

is useful to perform validations by RT-PCR or to give a mechanistic hypothesis based on the 

sequence content by looking at motifs affected by mutations or enrichment of RBPs. On the 

other hand, isoforms are the actual molecules carrying function. The whole sequence of the 

transcript allows obtaining the ORF and inferring the possible changes at protein level, and 

consequently study the functional domains affected. So, both approaches are valid and useful 

for AS analysis. 

 

 

 

 
Figure 4: Most studied splicing variations (G.P. Alamancos, Pagès, Trincado, Bellora, & Eyras, 2015) 
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A different approach to study differential splicing consists of the study of associations between 

genotypes and splicing variation. Splicing quantitative trait locus (sQTL) analysis is a useful 

approach to discover genetic alterations connected with AS. The PSI values are treated as traits 

and tested for association with sequence variants, in the same way as in genome-wide 

association studies (GWAS). Some of the methods available are GLiMMPS, which identifies 

sQTLs at event level (Zhao, Lu, Park, Zhou, & Xing, 2013) or sQTLseekeR, which obtains the 

same at transcript level (Monlong et al., 2014). Notably, these methods allow the analysis for 

the discovery of any DNA alteration in cis or trans. 

 

It is important to remark that there is no single “perfect” pipeline. Each method has pros and 

cons and depending on the biological question at hand and the context of the experiment, a 

method may be better suited than others. In addition, the results provided using different 

techniques could be complementary to each other and shed light on a problem. Alternatively, 

using the overlapping results between different tools has been proven to be an effective way to 

reduce the number of false positives (Z. H. Zhang et al., 2014).  

 

With the increasing popularity of open source version control systems like Github or Bitbucket, 

users can check if a given tool has been modified after paper publication and whether it is 

actively maintained. In fact, this has been shown to be connected with higher number of 

citations and a wider community of users (Russell, Johnson, Ananthan, Harnke, & Carlson, 

2018). In addition, it gives the community an opportunity to add contributions to the code and 

improve it. The reviews Alamancos, Agirre, & Eyras, 2014 and Conesa et al., 2016 provide 

more information and interesting summaries of the most widely used methods. 
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1.4. Functional impact of alternative splicing 

1.4.1. Evidence of functional relevance  

 

Thanks to the recent advances in transcriptional profiling, it has been extendedly proved that 

alternative splicing is one of the major forces driving transcriptome diversity (Harrow et al, 

2012, Sanchez-Pla et al, 2012). It has been shown that 95% of human genes produce more than 

one isoform (Gerstein et al., 2014). What functions all these different transcripts have is still a 

question of heated debate.  

 

Most genes are considered to have a principal or“canonical”transcript. In Ensembl, this 

isoform is defined according to APPRIS, which is a database for the annotation of the principal 

isoforms per gene based on structure, function and conservation (Rodriguez et al., 2013). When 

there is no information about a gene in APPRIS, Ensembl labels the longest isoform as 

principal. On the other hand, analysis of RNA-seq from many tissues and individuals has 

shown that the most highly expressed isoform in a gene may change between normal tissues 

(Gonzalez-Porta, Frankish, Rung, Harrow, & Brazma, 2013) and between normal and tumor 

samples (Sebestyén et al., 2015). This change in the principal isoform could thus change the 

open reading frame (sequence of nucleotide triplets that are read as codons specifying amino 

acids) resulting in the generation of different proteins. This could result in acquisition of new 

functions or even the complete loss of function. In this way, AS provides functional diversity 

at the level of enzymatic activities, subcellular localizations, protein-protein, protein-DNA, and 

protein-ligand physical interactions (Kelemen et al., 2013). This is particularly illustrated by 

the fact that interaction partners specific to alternative isoforms tend to be expressed in a highly 

tissue-specific manner (Yang et al., 2016).  

 

AS regulation has been observed to have a great prominence in brain. Almost 400 splicing 

events change in cerebral cortex between embryo and adult mice, with more than 30% of the 

associated genes not showing any change at expression level (Dillman et al., 2013). AS is 

particularly relevant to neuronal development in mammals; and there is a strong evolutionary 

conservation of “microexons”, generally defined as exons of length <28nt, which modulate the 

activity of protein interaction domains in neurogenesis (Dergai et al., 2010), and are 

deregulated in Autism (Irimia et al., 2014). Several RBPs like PTBP1 or RBFOX has been 

shown to regulate brain development (X. Zhang et al., 2016). 
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AS is also crucial in striated muscle (heart and skeletal). During heart development, there are 

important expression changes in CELF1, MBNL1, RBFOX1 and 2 and RBM24, leading to 

several splicing changes (T. A. Cooper & Giudice, 2014) TTN (titin) is the gene with the largest 

number of exons in mammals. In neonates, N2BA isoform of this gene is expressed whereas 

in adults a shorter version (N2B) is the most abundant (Bang et al., 2001), and the relative 

abundance of the two isoforms is controlled by RBM20 (S. Li, Guo, Dewey, & Greaser, 2013). 

In skeletal muscle differentiation, specific splicing networks have been shown to operate 

orchestrated by RBPs like PTBP, QKI or RBFOX2 (R. K. Singh et al., 2014). 

Also important is the regulation of splicing during spermatogenesis. Mammalian testis is 

among the tissues with higher transcriptome variability (Soumillon et al., 2013). Numerous 

splicing events are differentially expressed during spermatogenesis, showing enrichment of 

several RBPs like PTBP1, PTBP2, TRA2B and STAR family proteins (Schmid et al., 2013). 

AS is involved in other biological processes like gender differentiation. A skipping exon event 

in the DSX gene has been described to be essential for gender differentiation in Drosophila. In 

males, exons 1,2,3,5 and 6 are joined to form an mRNA that encodes a transcriptional 

regulatory protein required for male development. In females, exons 1,2,3, and 4 are joined 

together instead, and a polyA signal in exon 4 causes cleavage of the mRNA at that site (Lynch 

& Maniatis, 1996). This influence in sexual differentiation has actually been used for pest 

control (G. Fu et al., 2007).  

There is also a link between T cell activation and splicing. T cells are in charge of triggering 

an immune response against antigens. Global splicing networks are coordinated during T cell 

activation, together with nucleosome occupancy and RBP activity (Gaudreau, Heyd, Bastien, 

Wilhelm, & Moroy, 2012); and it has been proposed that intron retention might regulate T cell 

activation (Ni et al., 2016).  

AS has also been seen changing under general physiological conditions of the body. Stress on 

students has been linked to the skipping of an exon in the SMG-1 kinase, having a downstream 

effects on p53 pathway (Kurokawa et al., 2010). As illustrated, AS has a strong relevance for 

life. 
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In spite of all these findings, thousands of transcript isoforms still lack a functional 

characterization. There is still a long way until we fully understand the functional roles of 

developmental splicing networks.  

 

 

1.4.2. One gene, multiple proteins; or one gene, one protein? 

 

A still largely debated point is how much is the diversity of splicing transcript variations 

reflects at proteomic level. In Tress et al. 2008  the authors confirmed the presence of multiple 

alternative gene products in two different proteomic studies on Drosophila. Nine years later, 

these same authors supported the opposite view that the fraction of splice isoforms that produce 

stably folded proteins is scarce (Tress, Abascal, & Valencia, 2017a). In Abascal et al., 2015, 

the authors revisited eight large-scale mass spec experiments on human and detected splice 

events for only 246 genes. In 2014, two large-scale proteomics analyses appeared that 

contradicted these views (M.-S. Kim et al., 2014; Wilhelm et al., 2014). In these studies, 22-

37% of the genes with multiple protein isoforms appeared to have peptide evidence for more 

than one isoform. These studies were contested with the argument that there was not sufficient 

quality in the detected peptides, hence leading to an overestimation in the number of protein 

coding genes found (Ezkurdia, Vázquez, Valencia, & Tress, 2014) 

 

Disputing this skeptic view, in Blencowe, 2017, and in other previous works (Bensimon, Heck, 

& Aebersold, 2012; Blakeley, Siepen, Lawless, & Hubbard, 2010), it was argued that mass 

spectrometry does not have enough sensitivity yet for detecting splicing variations. In addition, 

the fact that the methods for peptide identification rely on the proteins having specific ion 

signatures limits the detection of sufficiently diverse proteins. Additionally, some works have 

pointed out also the difficulty of detecting short proteins (Slavoff et al., 2013) as well as short-

lived proteins that are rapidly degraded in purification procedures (Fälth et al., 2006). Other 

techniques like ribosome profiling (Ribo-seq) are supporting the idea that a major proportion 

of the AS variants detected are engaged and possibly translated by ribosomes (Weatheritt, 

Sterne-Weiler, & Blencowe, 2016). On the other hand, as it was commented in Tress, Abascal, 

& Valencia, 2017b, detection of transcripts bound by the ribosome does not ensure that a stable 

protein will be produced. There are some machine-learning methods that make use of different 
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structural, evolutionary, regulatory and network features, which predict that around 30% of 

annotated protein isoforms are stably folded (Hao et al., 2015). 

 

The fact that there seems to be a lack of proteomic evidence for the splicing variants does not 

diminish its biological value in physiological and disease contexts. In fact, AS could generate 

alternative functional transcripts that do not all necessarily code for proteins. For instance, 

intron retention events often introduce a premature stop codon that triggers nonsense-mediated 

decay (NMD) (Green et al., 2003). NMD is a mechanism that degrades mRNAs harboring 

premature stop codons limiting the translation of abnormal proteins. During translation the 

ribosome removes the exon junction complexes formed after joining the exons. If a termination 

codon is found 50nt upstream of one of these complexes, the transcript will be subjected to 

NMD, thereby regulating the expression of genes (Zheng, 2016).  

 

Another example of the functionality of alternative splicing is the modification of the cellular 

localizations of transcripts. Splicing changes could appear in untranslated regions that would 

not affect the coding part but the transportation of the transcript. Transcripts retained in the 

nucleus would not be translated, hence affecting gene expression (S. Sun, Zhang, Sinha, Karni, 

& Krainer, 2010). Finally, there is an increasing number of splicing events in non-coding RNAs 

(Kiegle, Garden, Lacchini, & Kater, 2018).  

 

For all of this, the importance of AS goes beyond the encoding of alternative proteins. 

Moreover, the presence of AS in almost all biological functions, makes particularly relevant  

the study of its deregulation, which could give rise to various disease types. 
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1.5. Alternative Splicing in disease 

 

Understanding the role of splicing in disease is fundamental to uncover new disease 

mechanisms and to investigate new ways of therapeutic intervention. The exon-intron 

architecture of eukaryotic genes provide some evolutionary advantages (Sharp, 1994), but the 

correct processing of pre-mRNAs by the splicing machinery is susceptible to be affected by 

different genetic alterations. Since many of the mutations falling on exonic or intronic regions 

could disrupt splicing, it is predicted that between 15 and 50% of disease-causing mutations 

affect splicing (Scotti & Swanson, 2016). The most common type of alterations that disrupts 

splicing are cis-acting, meaning that they are affecting core regulatory sequences (5’ ss, 3’ ss 

or branch point) or RBP binding motifs (Vaz-Drago, Custódio, & Carmo-Fonseca, 2017).  One 

of the first discovered cases was a mutation in the 3’ ss in the gene HBB, which encodes β-

globin, which lowered the levels of this protein causing anemia (Maquat et al., 1980).  

 

Disease-causing splicing mutations are often linked to the production of aberrant protein 

products. Mutations in the LMNA gene have been related with expression of different aberrant 

transcripts, which are associated with several diseases called “laminopathies” (Luo, Mastaglia, 

& Wilton, 2014). One of these is the Progeria syndrome, which is caused by a single mutation 

in exon 11 of LMNA and activates a cryptic splice site, giving rise to a truncated protein with 

a 50 amino acid deletion (Pendás et al., 2002). Similarly, Familial Dysautonomia is a recessive 

disease caused by a mutation in the intronic region of IKBKAP gene. Most of the affected 

patients show a T to C transition in the sixth base of the intron. This mutation leads to exon 20 

skipping, causing a shift in the reading frame and degrading the transcript by NMD 

(Slaugenhaupt et al., 2001). A mutation falling on any region has thus the potential for 

triggering a disease phenotype.  

 

Recently, two splicing related diseases have attracted wide media coverage due to the 

development of new treatments. One is Duchenne muscular dystrophy, which is caused by 

mutations in the donor splice sites of exons 16 and 45 in the gene DMD, leading to the 

production of an aberrant protein (Fletcher et al., 2013). On the other hand, mutations or 

deletions of the SMN1 gene leads to Spinal Muscular atrophy in patients, as the homologue 

SMN2 does fully splice in the same way as SMN1, hence it does not produce a fully functional 

protein at the required level (Lorson & Androphy, 2000). Antisense oligonucleotides (AONs) 
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directed against the SMN2 pre-mRNA can recover the correct splicing outcome and lead to the 

necessary production of functional protein to stop motor neuron degeneration (Hua et al., 2011; 

Wein et al., 2014). 

  

Other type of alterations affecting RNA processing in disease have been described. For 

instance, mutations in PRPF6, a core spliceosome component cause global splicing 

dysregulation in patients in the retina leading to retinitis pigmentosa (Tanackovic et al., 2011); 

and mutations in RBM20 induces defects in heart development leading to cardiac disease (ref). 

The relevance of AS in the neuronal system development also reflects in roles in 

neurodevelopmental disorders. The protein nSR100 is a key regulator of microexon inclusion 

(length < 28 nt) in neurogenesis (Raj et al., 2014) and its deregulation has been linked with 

Autism Spectrum Disorder (ASD) (Quesnel-Vallières et al., 2016). In myotonic dystrophy, a 

CTG expansion in the 3′ untranslated region of the DMPK gene causes a sequestration of two 

splicing regulatory proteins: CUGBP1 and MBNL1. As a result, a network of alternative 

splicing events is changed, which causes abnormalities in heart and skeletal muscle 

development (Ranum & Cooper, 2006). Splicing alterations are not only linked to inheritable 

genetic disease, it is also observed associated to the somatic alterations that take place in 

tumors.  
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1.6. Cancer 

The systematic sequencing of the genomes from multiple cancers has highlighted cancer as a 

genetic disease (Martinocorena & Campbell, 2015). A normal cell becomes a tumor cell driven 

by changes in the DNA. These alterations range from single point mutations to copy number 

variations, insertions, deletions, translocations, inversions, etc. (Stratton, Campbell, & Futreal, 

2009). Cancer could in fact be seen as an evolutionary process in which cells undergo multiple 

mutations, not all necessarily producing a phenotypic effect. However, mutations conferring 

some selective advantage, like a more proliferative phenotype or evasion of apoptosis, are able 

to survive and keep spreading (Figure 5).  

The genetic analysis of tumor cells allows the elucidation of which mutations are the ones that 

gave rise to the cancer. But even though cancer is a disease of the genome, the impact of these 

somatic alterations are reflected through the transcriptome, which represents a first read-out of 

the cell phenotype. Additionally, not all tumoral processes can be explained through somatic 

mutations. For instance, invasive phenotypes may be influenced by the gene expression 

patterns of the microenvironment(Calon et al., 2012). As natural selection acts on the 

phenotype rather than on the genotype, it is therefore crucial to study tumor transcriptomes to 

understand the mechanisms of cell transformation. As AS is the main driver of transcriptome 

diversity, it is thus equally important to study the role of AS in cancer.  
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Figure 5: Accumulation of driver mutations gives rise to new subpopulations with different phenotypes. At certain 

point, simultaneous subclones could give rise to relapse and metastasis. Therapy can act as an additional 

selection pressure by killing some cells but allowing resistant clones to prevail (Yates & Campbell, 2012) 

 

1.6.1. Alternative Splicing in Cancer 

 

Cancer is not a single disease but rather a set of diseases, each built as a mix of different 

phenotypes. Hanahan and Weinberg defined the general properties of a malignant tumor as 

hallmarks (Hanahan & Weinberg, 2011). Later on, AS has been shown to contribute to these 

cancer hallmarks (Oltean & Bates, 2014). Several genes have been described having isoforms 

with different exon compositions carrying antagonistic functions with a role in cancer (Figure 

6). An example is the gene FAS and its role in apoptosis. The isoform including exon 6 

produces membrane-bound FAS protein, which promotes apoptosis, whereas skipping of the 

same exon produces a soluble protein that inhibits apoptosis (Cheng et al., 1994). Another 

example is VEGFA where extension of exon 8 in the transcript promotes the formation of new 

blood vessels (David & Manley, 2010). Splicing of MST1R exon 11 increases cell motility and 

promotes metastasis (Ghigna et al., 2005). Recently, new cases on emerging cancer hallmarks 

such as inflammation and avoidance of immune detection has been discovered. This is the case 
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of the CD19 antigen, which is recognized and killed by CAR-T cells. However, exon 2 skipping 

fails to trigger this defense mechanism (Sotillo et al., 2015).   

1.6.1.1. Mutations on regulatory sequences 

 

Direct cis-splicing changes could be induced if mutations fall within splice sites or regulatory 

elements. Somatic mutations at exon-intron boundaries frequently lead to intron retention 

events (Jung et al., 2015). Also, mutations that are “silent”, i.e. not altering the peptide 

sequence, could also have important tumorigenic consequences. TP53 has the highest number 

of recurrent inactivating mutations of this type compared to other cancer genes (Supek, Miñana, 

Valcárcel, Gabaldón, & Lehner, 2014). Although harder to characterize, mutations in intronic 

regions far from the exon-intron boundaries have been also related to AS misregulation in 

cancer by disrupting e.g. branch-points, polypyrimidine tracts or intronic splicing motifs 

(Diederichs et al., 2016).  

1.6.1.2. Mutations in splicing factors 

 

Mutations affecting components of the spliceosome have been identified across multiple cancer 

types. Alterations in the splicing core factor SF3B1 are associated with 3’ cryptic splice site 

recognition and altered branchpoint selection (Darman et al., 2015). SF3B1, U2AF1 and 

SRSF2 are among the most commonly mutated factors in tumors, and occur most prominently 

in hematological malignancies and uveal melanoma (Dvinge et al., 2016) . Importantly, these 

alterations are mutually exclusive with one another (S. C. W. Lee et al., 2018). In solid tumors, 

the most prevalent are SF3B1 in breast cancer and melanoma and U2AF1 in non-small cell 

lung tumors. Alterations in auxiliary splicing factors also promotes splicing deregulation, like 

RBM10 in non-small cell lung cancer or HNRNPL in colon cancer (Bechara, Sebestyén, 

Bernardis, Eyras, & Valcárcel, 2013; Sebestyén, Singh, Miï¿½ana, et al., 2016) .  

 

1.6.1.3. Expression changes in splicing factors 

 

Overexpression or downregulation of SFs have been observed to trigger also tumorigenic 

properties in cells. Indeed, it has been shown that these expression changes produce more 

splicing changes than mutations (Sebestyén, Singh, Miï¿½ana, et al., 2016). These changes 
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could come from alterations in transcription regulators, copy number alterations (Sebestyén, 

Singh, Miï¿½ana, et al., 2016) or post-transcriptional modifications (Feinberg, Koldobskiy, & 

Göndör, 2016). A commonly overexpressed factor in tumors is SRSF1, which regulates events 

participating in a wide range of processes like cell proliferation, apoptosis or signaling 

pathways (Das & Krainer, 2014). In contrast, factors like QKI are commonly downregulated 

cancer. QKI depletion in non-small cell lung cancer affects the splicing of NUMB who has a 

key role in cell proliferation (Zong et al., 2014). Especially relevant is the role of oncogene 

MYC at controlling multiple SFs. MYC overexpression is frequent in tumors, leading to 

upregulation of these SFs (Anczukow & Krainer, 2016). Several other cases have been reported 

(Dvinge et al., 2016). 

 

 

 

Figure 6: Alternative splicing of several genes have been directly implicated with each of the cancer hallmarks 
(Sveen, Kilpinen, Ruusulehto, Lothe, & Skotheim, 2016) 
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1.7. Therapeutic possibilities of Alternative Splicing 

 

We described briefly above some of the diseases that aberrant splicing could lead to. These 

alterations can in fact be turned into therapeutic opportunities. AS has been extensively studied 

as a therapeutic option. Additionally, AS has great implications at therapeutic level as 

informative signature of therapeutic vulnerability and resistance. 

 

1.7.1. Alternative Splicing and therapeutic response 

 

Alternative splicing has shown to be crucial to understand therapeutic response in cancer. A 

proportion of lung adenocarcinoma patients harbor mutations on and around exon 14 of MET 

gene, a known proto-oncogene, resulting in exon skipping of that exon. Patients having this 

alteration and no other oncogenic mutation responded to two drugs approved for targeted 

therapy in lung cancer, crizotinib and cabozantinib (Paik et al., 2015). Alterations in AS are 

also important for drug resistance. In B cell acute lymphoblastic leukemia, CD19 gene, 

expressed on this cancer, can be targeted with CART-19. Nevertheless, in 30% of the cases the 

patients are resistant to the treatment. In a recent study, it was observed that SRSF3 expression 

alteration promotes exclusion of exon 2 in CD19, preventing the targeting by CART-19 and 

failing to kill the cancer cells (Sotillo et al., 2015). Similarly, a proportion of melanoma patients 

with mutated BRAF are resistant to BRAF inhibitor vemurafenib, which was explained by a 

skipping of exons 4 to 8 that leads to the loss of the RAS-binding domain (Poulikakos et al., 

2011). These examples evidence how certain splicing alterations may confer a selective 

advantage to tumors and allow the identification of patients that may or may not benefit from 

specific therapies. 

 

1.7.2. Therapeutic targeting of alternative splicing 

 

AS alterations are possible targets for certain therapies. Here we give a brief overview on the 

most important strategies. 
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1.7.2.1. Antisense oligonucleotides (AONs) 

 

One of the most promising molecular tools for splicing therapy is AONs. These molecules are 

designed to be antisense to an RNA and through base pairing to modulate the splicing of the 

target RNA. In this way, if a specific transcript is recognized as pathogenic, the use of AONs 

could prevent the expression of the disease-related transcript, or activate the expression of a 

fully normal transcript. Some studies with AONs are showing promising results in muscular 

maladies. In myotonic dystrophy Type 1, targeting 3’ UTR region of DMPK gene in mice show 

a significant reduction of aberrant mRNA in this gene and an improvement on body weight and 

muscle strength without overt toxicity (Jauvin et al., 2017). Erythropoietic protoporphyria is 

another important case, in which 90% of people with this disease inherit a biallelic 

polymorphism in intron 3 of the FECH gene. This creates a cryptic splice site enhancing 

inclusion of exon 4, which produces a premature stop codon resulting in a decrease of the 

associated protein. Applying an AON reduces the production of the aberrant transcript and the 

increase production of FECH wild type (Oustric et al., 2014). Nusinersen, the first AON based 

therapy, and the first and most promising treating for spinal muscular atrophy (SMA), was 

approved in December 2016 by the Food and Drug Administration (FDA). This compound 

induces full inclusion of exon 7 in the SMN2 mRNA, otherwise only partial, by blocking a 

downstream intronic splicing silencer. The drug has lead to a dramatic improvement in motor 

neuron function in clinical trials (Claborn, Stevens, Walker, & Gildon, 2018).  

 

In cancer, there are several ongoing trials testing AONs. Unfortunately, the results so far do  

not show a significant reduction of cancer growth. One of the major issues is how to efficiently 

deliver the drugs into the tumors (Moreno & PÃago, 2014). In colorectal cancer, a study has 

shown that the combination of AONs and chemotherapy on patients effectively reduces mRNA 

levels of eIF4E, which is deregulated in this cancer (Duffy et al., 2016). Nevertheless, they did 

not observe a reduction on eIF4E protein expression, so it is not yet clear the applicability of 

this therapy. In a study on different cancer types, it was identified a signature of 27 miRNA 

consistently up or down regulated involved in cell growth and apoptosis (Volinia et al., 2006). 

The use of anti miRNA oligonucletoides (AMOs) on all these miRNA resulted in increased 

deaths of cancer cells (Z. Wang, 2010). These works show promising results but there is still a 

long way until AONs or AMOs will be accepted as a standard therapy in cancer.  
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1.7.2.2. Small molecule compounds 

 

Another promising strategy for cancer therapeutics is the use of small molecule compounds 

that modulate the spliceosomal core components and splicing regulators (S. C. W. Lee & 

Abdel-Wahab, 2016). Several drugs have been proposed to target SF3B1 and destabilize the 

interaction of U2 snRNP with the pre-mRNA (Kaida et al., 2007; Kotake et al., 2007; SAKAI, 

ASAI, OKUDA, KAWAMURA, & MIZUI, 2004). These molecules show promising results 

at efficiently disrupting the U2 snRNP and arresting cell cycle. In particular, H3B-8800 has 

shown promising results and is now entering phase I clinical trials (Seiler et al., 2018). 

Similarly, there is a series of small molecules (Cpd-1,2 and 3) that inhibit phosphorylation of 

SR proteins via kinase blocking. Administration of these compounds reduces SR 

phosphorylation and induces splicing alterations and protein depletion for genes involved in 

growth and survival (Araki et al., 2015). 

 

New potential therapies exploit the vulnerabilities of the tumor. Recently, it was shown recently 

that tumors with MYC overexpression are highly dependent on the splicing machinery and may 

be more sensitive to splicing-therapies (Hsu et al., 2015). For instance, knockdown of PRMT5 

gene, which methylates Sm protein components of the U2 snRNP, stop proliferation in MYC-

driven lymphomas (Koh et al., 2015). The combination of AONs with splicing-targeting small 

compounds seems to be quite promising as a therapeutic strategy, since it encapsulates the 

advantages of both approaches: being specific and having a potent effect with a small dose to 

revert oncogenic AS events (Makowski, Vigevani, Albericio, Valcarcel, & Alvarez, 2017). 

 

1.7.2.3. Cancer immunotherapy 

 

In the last few years, cancer immunotherapy has been developing rapidly, chaining a number 

of remarkable successes in new treatments for tumors with dismal prognosis. Cancer cells are 

able to avoid immune system recognition either by constitutively expressing immune 

inhibitors, or by altering the expression of mediators of immune response (Vinay et al., 2015). 

Immunotherapies exploits the fact that these cells often produce aberrant sequences 

(neoantigens) that are presented on the cell surface (neoepitopes) and can be detected by T 

cells, which would then destroy the tumor cells. These therapies attempt to “help” the immune 
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system by inhibiting the brakes (immune checkpoints) to recognize tumor neoepitopes and kill 

the cancer cells.  

Some studies on mice have shown that mutated peptides predicted to bind the MHC complex, 

which interacts with T cells to trigger the immune response, are effective at blocking tumor 

growth (Castle et al., 2012; Kreiter et al., 2015). Clinical trials are proving that these treatments 

are effective on patients with melanoma (Carreno et al., 2015; Sahin et al., 2017) and small cell 

lung cancer (ref). 

Recent studies are showing that splicing deregulation in cancer could hold a great potential as 

a source of neoepitopes. Aberrant splicing could potentially change open reading frames 

(ORFs) and generate new peptides, some of which may be presented by the MHC-I or MHC-

II complexes, thereby representing potential new triggers of immune response that can be 

awaken with the use of immune checkpoint inhibitors (Jayasinghe, Cao, Gao, Wendl, Vo, 

Reynolds, Zhao, Ding, et al., 2018; Smart et al., 2018). In this thesis, we have investigated this 

question on samples from small-cell lung cancer, one of the deadliest cancers. We have 

developed a pipeline for the exhaustive identification of neoepitopes from all non-annotated 

splicing changes, which we have validated using mass spectrometry for MHC-I associated 

proteins. We describe how splicing alterations lead not only to the generation of neo-epitopes, 

but also and to a higher extent, to the deletion of native epitopes, hence providing a new 

mechanism of immune escape. This and the other examples presented evidence how 

fundamental is to investigate the molecular mechanisms of splicing regulation at designing 

highly specific therapeutic tools. 

1.8. Molecular signatures for staging and prognosis in cancer 

Cancer staging is a systematic approach for determining the severity and prospect of a tumor 

at the time of detection. In 1977, the American Joint Committee on Cancer (AJCC) defined the 

popularized TNM cancer staging system in the 1st edition of “Manual for staging of cancer”. 

This manual guides clinicians using the size of the tumor (T), the spread to the lymph nodes 

(N) and the presence or absence of metastasis (M) for determining cancer’s anatomy stage. The

aim is that according to this staging an estimation of the patient prognosis could be given. There 

is a list of tests carried out by pathologists in order to determine the staging, but these tests 
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could be sometimes incomplete or inconclusive. Therefore, it would be desirable to have an 

unbiased method for determining staging from a molecular perspective, complementing those 

tests or even better, replacing them. 

 

Breast cancer is one of the most studied cases for staging and several classification signatures 

have been proposed. One of the most extended ones is Oncotype DX (Partin & Mamounas, 

2011) which consists of a PCR assay of 21 genes. This method quantifies risk of distant 

recurrence and predicts chemotherapy benefit in estrogen receptor positive patients. In fact, in 

2017 the AJCC adopted OncotypeDX as the first molecular signature for staging (Giuliano, 

Connolly, Edge, & Mittendorf, 2017). In other cases markers are based on microarray analysis 

of gene expression, like MammaPrint, which analyzes the activity of 70 genes in early-stage 

breast cancer for predicting the use of adjuvant chemotherapy (van de Vijver et al., 2002). 

Recently, another new signature based on five‐lncRNA has been proposed for predicting 

disease free survival (J. Li et al., 2018). There are other established biomarkers for breast cancer 

stratification, like estrogen and progesterone receptor, HER2 or Ki67. Along with these, other 

new prognostic markers have been proposed: measuring expression levels of proteins cyclin E, 

B-Myb, Twist and DMP1β is informative to predict poor survival and likelihood of metastasis 

(Inoue & Fry, 2016).  

 

Other cancers are also studied for the identification of prognostic signatures. In colorectal 

cancer, several have been proposed, from miRNA signatures (J.-X. Zhang et al., 2013) to 

lncRNA (Xue et al., 2017) or gene expression markers coupled with methylation levels (Liu et 

al., 2017). In endometrial cancer, a 12-gene expression signature was develop for predicting 

the risk of lymph node metastasis (Kang et al., 2018). Other molecular markers for different 

cancer types are described in (Nair, Sandhu, & Sharma, 2018). As expected, there is a 

remarkable overlap of biomarker genes across various cancer types, including well-known 

oncogenes and tumor suppressors, like TP53, FAS or PTEN. 

 

Many of these markers are based on measuring gene expression changes. On the other hand, 

there are works proving that using isoform-level changes is more informative for biological 

classification tasks than gene-level (Johnson, Dhroso, Hughes, & Korkin, 2018; Z. F. Zhang, 

Pal, Bi, Tchou, & Davuluri, 2013). In this thesis we present an analysis on exploiting transcript 

isoform changes for the task of predicting clinical staging and prognosis. We show that, when 
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optimizing Machine Learning classifiers, transcripts provide more informative biomarkers than 

genes.  

Other proposed markers are based on mutational signatures. These signatures are related with 

the age of patients, mutagenic exposures (like tobacco smoking) or defects in DNA repair 

(Alexandrov et al., 2013). Regarding cancer immunotherapy, some studies have found a strong 

correlation between mutational burden and clinical benefit (Van Allen et al., 2015) while some 

other did not find such a relation (Hugo et al., 2016). Recently, a pan-cancer analysis 

highlighted the relation between mutational signatures and neo-epitope burden as relevant 

markers of immune therapy response, beyond mutational burden (Miao et al., 2018). 

 

A big issue with all these markers is the lack of enough confidence and limited reproducibility 

on new samples. As a false prediction could have tragic consequences for patients, constant 

reevaluation of these predictors on new samples is thus necessary in order to obtain the most 

accurate tools for the clinicians. Nevertheless, encouraging examples like OncoptypeDX 

evidence how bioinformatics has a key role to play in cancer clinical decision-making. 
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2  RESULTS 

2.1 SUPPA2: fast, accurate, and uncertainty-aware differential 

splicing analysis across multiple conditions 

This section presents SUPPA2, a method for the calculation of differential splicing across 

multiple conditions taking into account biological variability. This method was applied on 

different sets of data, yielding results as good as, and sometimes better than, other methods in 

much less time. The method alongside an extended explanation of its usage is available online: 

https://github.com/comprna/SUPPA. The data analyzed in this manuscript is available in the 

following link: https://github.com/comprna/SUPPA_supplementary_data  

Manuscript presented in this section: 

Trincado, J. L., Entizne, J. C., Hysenaj, G., Singh, B., Skalic, M., Elliott, D. J., & 

Eyras, E. (2018). SUPPA2: Fast, accurate, and uncertainty-aware differential 

splicing analysis across multiple conditions. Genome Biology, 19(1). 

https://doi.org/10.1186/s13059-018-1417-1 

https://github.com/comprna/SUPPA
https://github.com/comprna/SUPPA_supplementary_data
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1417-1
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2.2 The prognostic potential of alternative transcript isoforms 

across human tumors

This section presents the development of models trained with splicing changes in tumor 

samples for prognosis. We investigated whether it is possible to infer signatures for clinical 

staging and survival in cancer patients by using alternative splicing variations between different 

clinical groups. All the details of the models built and signatures obtained are detailed in the 

manuscript and as additional files in the online version. 

Manuscript presented in this section: 

Trincado, J. L., Sebestyén, E., Pagés, A., & Eyras, E. (2016). The 

prognostic potential of alternative transcript isoforms across human 

tumors. Genome Medicine, 8(1). https://doi.org/10.1186/s13073-016-0339-3 

https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0339-3
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2.3 The immunogenic impacts of splicing alterations in small cell 

lung cancer 
 

 

This section presents a new method for the identification of non-annotated splicing junctions 

and their evaluation at immunogenic level. We test this methods on cell lines and small cell 

lung cancer patients. All the details of the pipeline as well as figures and supplementary tables 

are available in the following link: http://github.com/comprna/ePydoor 

 

 

Manuscript presented in this section: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trincado, J. L., Reixachs, M., Yokota, J., & Eyras, E. (2018). The immunogenic 

impacts of splicing alterations in small cell lung cancer. In preparation. 
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2.3.1.  Abstract 

 

We describe a novel approach for the exhaustive identification of neo-epitopes from tumor-

specific splicing alterations, including aberrant spliced junctions, retained introns and 

exonizations. Using mass spectrometry for MHC-I associated proteins, we show that splicing 

derived neo-epitopes are processed and presented by MHC-I complexes. We applied this 

method to a cohort of 123 small cell lung cancer patients (SCLC) and found that tumor-specific 

splicing alterations more frequently eliminate than create epitopes, hence uncovering a new 

mechanism of immune escape in SCLC.  

 

2.3.2.  Main 

 

Identification of cancer neo-antigens arising from tumor specific mutations provide an effective 

way to develop anticancer vaccines (Sahin & Türeci, 2018) and determine the efficacy of 

immune checkpoint inhibitors (Van Allen et al., 2015). Deregulation of splicing in cancer has 

been shown to represent an additional source of tumor neo-epitopes from the aberrant selection 

of splice sites (Jayasinghe, Cao, Gao, Wendl, Vo, Reynolds, Zhao, Climente-González, et al., 

2018; Kahles et al., 2018) or through intron retention (Andersen et al., 2013; Smart et al., 2018). 

Splicing alterations in cancer thus provide a general mechanism to elicit tumor-specific 

immune responses. However, it is not known yet whether splicing alterations could also 

provide a strategy for tumors to evade immune-mediated elimination.  

 

We present here a new approach to exhaustively identify the immunogenic impacts from all 

types of tumor-specific splicing alterations, including aberrant splice sites and intron retentions, 

as well as new exon skipping and exonization events. Our method identifies tumor-specific 

splicing alterations from tumor bulk RNA sequencing (RNA-seq) and tests against multiple 

potential confounding factors (Fig. 1a) (Supp. Fig. 1a) (Methods). Protein changes induced by 

the splicing alterations are predicted using a reference proteome, and peptides with binding 

affinity to the major histocompatibility complex class I (MHC-I) or II (MHC-II) are predicted 

using the corresponding human leukocyte antigen (HLA) types for each patient. The method 

further calculates candidate MHC-I and MHC-II binders that are gained or lost in the tumor as 

a consequence of the splicing alterations.  
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Figure 1. Immunogenic impact of splicing alterations. (a) Illustration of our method to identify 

splicing-related neo-epitopes. Splicing alterations are defined as variations with respect to the 

annotation and classified as aberrant splice sites, new exon skippings, new exonizations and intron 

retention. The figure illustrates an exonization. The reference open reading frame is modified 

according to the splicing alteration and the reference and modified proteins are tested for affinity with 

the MHC-I and MHC-II complexes (see Methods for details). (b) Validation of our method using the 

cell lines CA46, HL-60 and THP-1. We show the number of splicing alterations in each cell line and 

the fraction producing a change in the encoded open reading frame. (c) Number of candidate splicing-

related neo-epitopes detected (gained) and native epitopes that are depleted as a consequence of the 

splicing alterations (lost) for each of the splicing alterations in each cell line. 

 

 

To validate our method we analyzed RNA-seq data and MHC-I associated proteomics data for 

the cancer cell lines CA46, HL-60 and THP-1 (Barretina et al., 2012; Ritz et al., 2016). 

Aberrant splice sites and new exon skipping events are the most common type of alterations, 
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followed by intron retentions and exonizations (Fig. 1b). The majority of splicing alterations 

either does not affect the encoded protein or are rejected for being potentially degraded by non-

sense mediated decay (NMD). From the remaining cases, exon skippings and intron retention 

events potentially produce the largest number of protein changes compared to the other 

alterations (Fig. 1b). HLA-types for the cell lines were predicted from the RNA-seq data and 

matched those reported previously (Ritz et al., 2016). We predicted potential MHC-I binders 

(binding affinity ≤ 500nM) derived from the splicing alterations, keeping only those peptides 

that did not appear in the cell line reference proteome (Methods). This produced 830 (CA46), 

461 (HL-60) and 2072 (THP-1) candidate neo-epitopes (Supp. Table 1) (Fig. 1c). Using MHC-

I associated mass-spectrometry (MS) data available for the same cell lines (Ritz et al. 2016), 

we were able to validate 2 peptides from THP-1 in the genes PCNP (FAIGSQTTK) and RPS10 

(LLFKEGVMV) (Supp. Table 2), both appearing from aberrant splice site selection. These 

results show the potential by any splicing alteration for producing neo-epitopes. To further 

understand the impacts of splicing alterations in these cell lines, we also calculated the epitopes 

present in a reference proteome and potentially lost as a consequence of the splicing alterations. 

We found 1384 (CA46), 270 (HL-60) and 2401 (THP-1) candidate MHC-I binders that would 

be depleted as a consequence of the splicing alterations. Furthermore, we were able to validate 

a higher number of these candidate (194) using the MHC-I associated MS data (169) (Supp. 

Table 2). This suggests that splicing alterations could also deplete self-antigens in a cell.  

 

We applied our methodology to a cohort of 123 small cell lung cancer (SCLC) patients (George 

et al., 2015; Iwakawa et al., 2015; Peifer et al., 2012; Rudin et al., 2012) (Supp. Table 3) (Supp. 

Fig. 1b). SCLC is the most aggressive type of lung cancer, with a very early relapse after 

chemotherapy treatment and an average survival of 5% after 5 years of diagnosis (S. Cooper 

& Spiro, 2006). (S. Cooper & Spiro, 2006). SCLC is one of the cancer types with largest 

mutation burden (Fig. 2a), which has been found to correlate with the efficacy of immune 

therapy in SCLC (Hellmann et al., 2018). Additionally, SCLC presents a significantly higher 

density of mutations in introns compared to exons (Fig. 2a), which may be indicative of a 

widespread impact on RNA-processing. Accordingly, SCLC represents a relevant case to 

investigate how splicing alterations may contribute to neo-epitope burden and impact the 

antigenicity of tumor cells. 
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Figure 2. SCLC specific splicing alterations. (a) Mutation burden calculated separately for introns, 

coding exons and non-coding exons from whole genome sequencing (WGS) data for a number of tumor 

types, including SCLC. (b) tSNE plot based on gene expression of the SCLC and GTEX samples. (c)  

PCA/tSNE of tumor-specific junctions in SCLC, together with  lung adenocarcinoma (LUAD) samples, 

lung squamous cell carcinoma (LUSC), and pulmonary carcinoids (PUCA) samples.   

 

An exhaustive compendium of splicing alterations was calculated per sample as described 

before. To select those alterations that were specific to the SCLC tumors we had to use the 

appropriate matching controls in terms of tissue identity and cellular content (Aran et al., 2017; 

Sebestyén et al., 2015). Gene expression provides a signal of tissue identity (Saha et al., 2017) 

and can help identifying the right controls for the study of splicing alterations associated to 

cancer (Black et al., 2017). Following this principle, we compared the gene expression patterns 

of the SCLC samples with the expression from 18 different normal tissues from 7859 

individuals (GTEx Consortium, 2015) (Fig. 2b). Normal tissues separate from each other, 

except for stomach and oesophagus, and for breast and adipose tissue. SCLC patients form a 
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clearly separated group, with no clear resemblance to other tissues, although the lie close to 

normal lung samples. This suggests that a comparison with a general compendium of normal 

splicing profiles would be an appropriate way to extract SCLC specific alterations.  

 

We filtered out all splicing alterations that appeared in the annotations and splicing junctions 

from a large set of normal samples (GTEx Consortium, 2015; Nellore et al., 2016; Pertea et al., 

2018; Rudin et al., 2012) (Methods). We found a total 14643 aberrant splice sites, 7039 intron 

retentions, 1311 aberrant exon skippings, and 290 new exonizations that are tumor-specific in 

SCLC, affecting 2955, 149, 620, and 169 genes, respectively (Supp. Fig. 2). These alterations 

distribute homogeneously across all samples and show no association to tumor mutation burden 

or overexpression of MYC genes (Fig. 2d). However, the level of detection of aberrant splice 

sites, new skippings and exonizations depend on the number of spliced reads in a sample (Supp. 

Fig. 2).  

 

We used this approach to compare the new splicing junctions in our SCLC cohort, with 515 

lung adenocarcinomas (LUAD) samples (Cancer Genome Atlas Research Network, 2014), 496 

lung squamous cell carcinomas (LUSC) samples (The Cancer Genome Atlas Network, 2012), 

as well as 69 pulmonary carcinoids (PUCA) (Fernandez-Cuesta et al., 2014), which are lowly 

proliferative lung malignancies characterized by the expression of neuroendocrine 

differentiation markers, and potentially similar to SCLC (Bunn et al., 2016; Fernandez-Cuesta 

et al., 2014). Low dimensional projection of all the tumor-specific junctions from these four 

cohorts show differences between SCLC samples and the rest of tumors (Fig. 2c), indicating 

possible SCLC specific biomarkers.  

 

From the set of detected tumor-specific splicing alterations, 3890 (27%) of the aberrant 

junctions, 85 (29%) of the new exonizations, 753 (10%) of the intron retentions and 804 (61%) 

of the aberrant exon skippings occurred within the open reading frame (ORF) of the host gene 

and therefore could potentially impact the encoded protein (Supp. Table 3-6). Using a reference 

proteome for the SCLC samples we calculated the altered ORF potentially induced by the 

splicing alterations (Methods). 61% of the new skipping events, 29% of new exonizations, 26% 

of aberrant splice sites, and 10% of intron retentions, produce a protein change.  
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Figure 2. SCLC specific splicing alterations. (d) SCLC specific splicing alterations detected in each 

patient. Upper panels show the expression of the three MYC genes (MYC+ MYCL + MYCN), the 

presence of mutations in components of the spliceosomal complexes, and the mutation burden. 

Mutation data is only given in those samples for which WGS or WES is available  
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To evaluate the immunogenic impacts induced by the splicing alterations, we predicted HLA-

I and HLA-II types from the RNA-seq for the SCLC samples. To validate the identification of 

HLA-types directly from the tumor sample, we compared the HLA-type predictions from 

RNA-seq reads from tumor and matched normal samples for 24 SCLC cases (Rudin et al., 

2012) (Fig. 3a). Overall, there was 80-90% agreement between the predictions with the tumor 

and the normal RNA-seq. Next, using the altered and the reference ORFs, we searched for 

candidate MHC-I binders (binding affinity ≤ 500nM), and those specific of the altered ORFs 

were considered candidate MHC-I neo-epitopes. We identified a total of 12.422 candidate 

MHC-I neo-epitopes, with the majority (63%) associated to aberrant splice junctions (Figs. 3b 

and 3c) (Supp. Fig. 3). Using mass-spectrometry data for MHC-I associated proteins in 

lymphoblastoid cell lines (Lanoix et al., 2018a) we were able to validate 1458 (11.7%) of the 

predicted MHC-I neo-epitopes (Supp. Tables 7 and 8). As MHC-II neo-epitopes may be 

relevant for immunotherapy (Sun et al. 2017; Lu et al. 2017), we also measured the binding 

affinities with the sample-specific HLA class II alleles. We identified a total of 6618 (7.9%) 

candidate MHC-II neo-epitopes, with the majority (82%) associated to aberrant splice sites 

(Supp. Tables 9 and 10 ). We did not observe any significant correlation of the expression of T 

cell markers or immune checkpoint genes with the presence of predicted MHC-I or MHC-II 

neo-epitopes  (Supp. Fig. 3). Thus, although splicing-related neo-epitopes may indicate 

vulnerability for immune therapy in some tumor types (Jayasinghe et al. 2018; Kahles et al. 

2018), this might not be the case for SCLC.  

 

Studies so far have focused on the creation of neo-epitopes through splicing alterations 

(Jayasinghe et al. 2018; Kahles et al. 2018; Smart et al. 2018). However, splicing alterations in 

cancer frequently remove protein coding regions (Climente-González, Porta-Pardo, Godzik, & 

Eyras, 2017); hence, they could lead to the depletion of peptides with immunogenic potential. 

To test this hypothesis, we calculated whether the splicing alterations would delete MHC-I or 

MHC-II epitopes that are present in the reference proteome, i.e. they are would not appear in 

the altered ORFs (Methods). Interestingly, we observed that splicing alterations in SCLC 

patients more frequently eliminate epitopes than create them. In total, we observed around 7 

times more epitopes removed than gained by splicing alterations (Figs. 3b and 3c)(Supp. Fig. 

3). This imbalance towards the elimination of epitopes occurred at the level of the number of 

predicted immunogenic peptides, the number of events producing immunogenic peptides, and 

the number of genes involved. Moreover, this effect is not specific of any type of splicing 
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alteration. Finally, mass-spectrometry data for MHC-I associated proteins in lymphoblastoid 

cell lines validated many more depleted epitopes than neo-epitopes. This suggests that splicing 

alterations in SCLC could provide a general mechanism for the cancer cell to evade potential 

immune responses.  

 

2.3.3.  Discussion 

 

We have described a new tool to exhaustively determine how splicing alterations may impact 

the antigenicity of tumor cells, and showed that splicing alterations can contribute with new 

epitopes as well as eliminate native ones. Our method presents a number of novelties and 

advantages with respect to previous approaches. It is exhaustive in the type of alterations tested, 

including new spliced junctions, retained introns and exonizations, making possible an 

assessment at unprecedented scale of the splicing-derived neo-epitope burden. As the method 

only requires RNA-seq data from a tumor sample, it is applicable in the absence of DNA 

sequencing from the patient. Unlike previous studies (Jayasinghe, Cao, Gao, Wendl, Vo, 

Reynolds, Zhao, Climente-González, et al., 2018; Kahles et al., 2018; Smart et al., 2018), our 

analysis describes tumor-specific alterations by comparing to a large compendium of normal 

samples, and testing for potential MHC-II neo-epitopes, which are also relevant for 

immunotherapy (Lu et al., 2017; Z. Sun, Chen, Meng, Wei, & Liu, 2017).  
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We found that tumor-specific splicing alterations in SCLC more frequently eliminate epitopes 

than generate new ones, providing a new mechanism of immune escape. Unlike non-small cell 

lung cancers (NSCLC), SCLC genomes lack known actionable alterations (Bunn et al., 2016; 

George et al., 2015). Immune checkpoint inhibitors are effective against SCLC (Antonia et al., 

2016), and biomarkers of response to therapy are being developed (Hellmann et al., 2018). Our  

findings provide a new signature of the immunogenic status of SCLC, which could prove 

relevant for future clinical decision-making.   

 

Tumor specific splicing alterations in SCLC may appear through multiple mechanisms. We 

only observed a small fraction stemming from somatic mutations in cis or in trans. However, 

other mechanisms are possible. MYC genes are frequently amplified and/or overexpressed in 

SCLC, and there is a established link between overexpression of MYC and splicing alterations 

in cancer through different mechanisms (Hsu et al., 2015; Koh et al., 2015). There are moreover 

multiple splicing alterations in cancer in the absence of mutations on splicing factors, and these 

appear lineage specific (Dvinge & Bradley, 2015; Sebestyén, Singh, Miñana, et al., 2016). Thus 

the SCLC-specific splicing alterations described could be related to lineage specific 

characteristics.  

 

As the ability of the immune system to identify malignant cells relies on the tumor cells 

maintaining sufficient antigenicity, it is thus essential to exhaustive explore all potential 

immunogenic impacts through the variety of splicing alterations that may rise specifically in 

tumors. We have shown here that tumor-specific splicing alterations contribute not only to the 

generation of neo-epitopes, but also and in greater proportion to their depletion, hence 

uncovering a new mechanism to evade recognition by immune cells. 

 

Figure 3. Epitope production and depletion in SCLC patients. (a) For each MHC Class I (HLA-

A, HLA-B, HLA-C) and II (HLA-DQA, HLA-DQB, HLA-DRB) prediction from PHLAT (red) or 

SeqHLA (blue), we show the proportion of RNA-seq samples (over a total of 24) in which the 

prediction on the tumor sample coincides with the prediction on the matched normal sample. (b) 

Upper panel: Number of exonizations per SCLC sample that impact the open reading frame 

(upper panel). Middle panel: Number of candidate MHC-I binders per sample that are created 

(blue), i.e. neo-epitopes, or depleted (red) through exonizations. Lower panel: Number of 

candidate MHC-II binders per sample that are created (blue), i.e. neo-epitopes, or depleted (red) 

through exonizations. (c) Same as in (b) but for aberrant splice sites.  
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2.3.4.  Methods 

 

Datasets  

 

We gathered whole genome sequencing (WGS) data for 100 SCLC patients (George et al., 

2015), and whole exome sequencing data (WES) for 103 (Rudin et al., 2012) and 19 (Iwakawa 

et al., 2015) SCLC patients. Additionally, we gathered RNA sequencing (RNA-seq) data from 

123 patients (George et al., 2015; Iwakawa et al., 2015; Peifer et al., 2012; Rudin et al., 2012), 

72 of which with WGS data available and 111 with WES data available. We estimated the 

tumor purity of the SCLC samples from the gene expression data using ESTIMATE R package 

(v.1.0.13) (Yoshihara et al., 2013). All t-SNE plots have been produced using the package 

sklearn (Pedregosa et al., 2012). Samples with more than 30% of junctions with missing values 

were filtered. Remaining missing values were mean-imputed. We used the 100 first principal 

components for the tSNE generation. For visualization, we used a learning rate of 300 and 

perplexity of 30. 

 

 

Identification of tumor-specific splicing alterations 

 

All RNA-seq samples were mapped to the genome (hg19) using STAR (Dobin et al., 2013). 

As described before (B. Singh, Trincado, Tatlow, Piccolo, & Eyras, 2018), mapped spliced 

reads with at least a common splice site across two o more samples were clustered using 

LeafCutter (Y. I. Li et al., 2018), with a minimum of 30 reads per cluster and a minimum 

fraction of reads of 0.01 in a cluster supporting a junction. Read-counts per junction were 

normalized over the total of reads in a cluster. Junction clusters were defined across all patients, 

but normalized read counts were calculated per patient. Junctions were classified as novel if 

either or both of the splice-sites were not present in the annotation (Gencode v19) (Harrow et 

al., 2012), they had at least 10 supporting reads it in at least one tumor sample, and did not 

appear in normal samples (GTEx Consortium, 2015; Nellore et al., 2016; Rudin et al., 2012). 

For the cancer cell line data we proceeded in the same way, defining junction clusters 

independently for each cell line. To define exonizations, we considered all pairs of junctions 

not present in normal samples (GTEx Consortium, 2015; Nellore et al., 2016; Rudin et al., 

2012) that would define a potential new internal exon no longer than 500nt, with flanking 

canonical splice site motifs (AG-GT) on the same strand of the host gene. We kept only cases 

with more than 5 reads validating each splice site.  Tumor specific new exon skippings, we 
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considered those junctions selected before that moreover were skipping known exons and 

defining new connections between adjacent exons not present in the normal samples. To define 

retained introns we used KMA (Pimentel, Conboy, & Pachter, 2015) to extend the Gencode 

(v19) transcriptome with new potential retained introns (RIs), which we quantified for each 

RNA-seq sample with Kallisto (Bray et al., 2016). To filtered out RIs that are not tumor 

specific, we calculated RI events with SUPPA (Trincado et al., 2018) from the Gencode 

(Harrow et al., 2012) and the CHESS 2.0 (Pertea et al., 2018) annotations, and removed 

predicted RIs that appeared in these annotations. We also removed RIs that we predicted in 

normal lung (Rudin et al., 2012). To control for confounding signals due to overall lack of 

transcript processing, for each splicing alteration, for all types, we compared the expression of 

the alteration with 100 randomly cases from the same gene, and compared the expression the 

observed event with the control distribution using an (Empirical Cumulative Distribution 

Function) ECDF test. Junctions were compared with other junctions, exonizations were 

compared with genic regions of similar length, and retained introns were compared with other 

introns. For the cell line data we proceeded in a similar way, but without removing the 

alterations in normal samples, as those tests were focused on the presentation of splicing-

derived neo-epitopes.   

 

Association with somatic mutations 

 

Somatic mutations were filtered out if they overlapped with frequent (>1% allele frequency) 

SNPs (dbSNP 144). The association of splicing changes to cis mutations was tested by 

comparing the inclusion value (for the junction), normalized expression (for the RI), or exon 

coverage (for novel exon) in the mutated sample against the distribution of values in samples 

without mutations in the same region to obtain a z-score. From the z-score a p-value was 

obtained, which was corrected for multiple testing using the Benjamini-Hochberg method. We 

considered mutations falling in the region covering the exon, junction or RI, plus 200nt on 

either side. This test was carried out for all splicing alterations with mutations nearby, and then 

the intersection with tumor-specific events was considered.  

 

Protein impact of the splicing alterations 

 

We built a reference transcriptome using the most abundant isoform for each gene, measured 

as the transcript isoform with the largest and greater than 1 mean expression, in transcripts per 

million (TPM) units, across all patients. Transcript abundance was calculated using Salmon 
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(Patro et al., 2017). A reference proteome was defined using the proteins encoded by these 

reference transcripts. For each splicing alteration, a modified transcript was then built using as 

scaffold the reference transcript. Unless the splicing alteration only affected the untranslated 

region (UTR), an altered protein was calculated from the longest open reading frame (ORF) 

(start to stop) predicted on the modified transcript. If no ORF was predicted, the splicing 

alteration was not considered. If the splicing alteration deleted the region of the start codon, 

the closes downstream start codon was used. Further, if the stop codon in the altered ORF was 

located further than 50nt to a downstream splice site, the case was discarded as potential NMD 

target. This method is available at http://github.com/comprna/ePydoor 

 

Prediction of neo-epitopes from splicing alterations 

 

We inferred the HLA-type from the tumor RNA-seq for each patient, or from the cell RNA-

seq for tested cell lines, using PHLAT (Bai, Ni, Cooper, Wei, & Fury, 2014). We predicted 

potential MHC-I binders with NetMHC-4.0 (Andreatta & Nielsen, 2016), and with 

NetMHCpan-4.0 (Jurtz et al., 2017) for the classes missing in NetMHC-4.0.0. Those peptides 

in common between the reference and the altered protein were discarded. Peptides in the altered 

protein with binding affinity ≤ 500nM, but not present in the reference protein, were considered 

candidate neo-epitopes; whereas peptides in the reference protein with binding affinity ≤ 

500nM, but not present in the altered protein with binding affinity ≤ 500nM, were considered 

deleted native epitopes. We performed the same analysis for MHC-II binders using predictions 

from NetMHCII-2.3, and complementing them with the predictions from NetMHCIIpan-3.2 

for the missing types (Jensen et al., 2018). Candidate epitopes created or eliminated by splicing 

alterations are given in the supplementary material.  

 

Validation of neo-epitope prediction 

 

We used RNA-seq data and MHC-I associated mass-spectrometry (MS) data for the cell lines 

CA46, HL-60 and THP-1. Peptides from the MS experiments were compared against the 

candidate MHC-I binders derived from the splicing alterations in each cell line. A match was 

considered if the MHC-I binder was exactly equal to of was completely included in the MS 

peptide. For the SCLC samples we used MHC-I associated MS from lymphoblastoid cell lines 

(Lanoix et al., 2018a). Candidate MHC-I binders, either generated or deleted by the splicing 

alterations, were validated in a similar way.  

http://github.com/comprna/ePydoor
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2.3.5.  Supplementary figures 

 

Supp. Figure 1. (a) Length distributions of the new exons produced as a consequence of aberrant 

splice sites (upper panel) or new exonizations (lower panel). The lengths follow a extreme value 

distribution with mean value 100, similar to known exons.  (b) Purity of the SCLC samples. For each 

one of the three cohorts used for this study, we give the distribution of tumor purity values (between 0 

and 1), calculated with ESTIMATE (Yoshihara et al., 2013). 
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Supp. Fig. 2. SCLC specific splicing alterations that impact encoded proteins. For each SCLC sample 

we plot the number of SCLC specific alterations that impact the encoded protein of the host gene (after 

removing the cases leading to NMD), as a function of the number of spliced reads mapped in the sample 

(top panel) and the total number of reads mapped uniquely (second panel).  
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Supp. Fig. 3. Epitope production and depletion in SCLC patients. (a) Upper panel: Number of intron 

retentions per SCLC sample that impact the open reading frame (upper panel). Middle panel: Number 

of candidate MHC-I binders per sample that are created (blue), i.e. neo-epitopes, or depleted (red) 

through exonizations. Lower panel: Number of candidate MHC-II binders per sample that are created 

(blue), i.e. neo-epitopes, or depleted (red) through exonizations. (b) Same as in (a) but for new exon 

skippings. (c) Expression of various immune cell markers and immune checkpoint genes in samples 

with (case) and without (control) predicted MHC-I neo-epitopes.  
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3                                                                                    DISCUSSION 

 

 

 

 

This thesis could be summarized as producing two main outputs: The elaboration of methods 

for the study of alternative splicing changes and their application in real data for the extraction 

of RNA alterations from cancer patients that could be relevant for clinical therapeutics. Chapter 

2.1 presented a method for the study of differential splicing across multiple conditions: 

SUPPA2. We showed that this method allows for rapid and accurate quantification of splicing 

changes and offer useful functionalities not provided by previous existing methods. Chapter 

2.2 provided evidence about how we can use these splicing changes to train models for the 

prediction of clinical staging and survival in cancer patients. Importantly, these models 

highlight the higher granularity of transcriptomic changes compared with gene expression 

changes and how they could be useful for obtaining new biomarkers. Finally, chapter 2.3 

expanded the study of alternative splicing to all non-annotated changes to detect aberrant 

spliced products that could be relevant for cancer immunotherapy. All these points are 

thoroughly analyzed in the discussion of the manuscripts. The following discussion is focused 

on analyzing the impact of the results for the scientific community, reviewing the limitations 

of the analyses and commenting future perspectives. 
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3.1. SUPPA2: fast, accurate, and uncertainty-aware differential 

splicing analysis across multiple conditions 

3.1.1  Main findings 

 

In a previous version of this method, we developed a software oriented to exploit the high speed 

of state-of-the-art transcriptome quantification algorithms, like Salmon or Kallisto (Bray et al., 

2016; Patro et al., 2017) to quantify alternative splicing events. We proved that SUPPA was 

able to analyze splicing with comparable or higher accuracy than other methods but at an 

unforeseen speed (G.P. Alamancos et al., 2015). In this new version, SUPPA2, we incorporated 

new necessary functionalities, including differential splicing calculation and event clustering. 

Additionally, we showed again the speed improvement respect other methods without 

compromising accuracy, and demonstrated experimentally the veracity of the values predicted. 

The method is open source and available to all scientific community.  

 

3.1.2.  Impact of the presented research 

 

There is a great variety of methods for splicing quantification (subsection 1.3). To our 

knowledge, SUPPA2 is the first one that makes use of transcript quantification to infer 

differential splicing. This make this method incredibly fast compared with others. In addition, 

the tool is agnostic of the transcript quantification method making it easier to integrate in other 

pipelines.  

 

SUPPA2 provides a fast way of quantifying splicing events and isoforms. Nevertheless, the 

fact of finding significant PSI changes does not necessarily mean they are biologically 

meaningful. It is necessary to perform downstream analysis to put in context this information, 

e.g. by finding possible mechanisms that would explain these changes. In order to fulfill this 

aspect, we incorporated the ability to perform event clustering. This is an interesting feature 

that could be useful for identifying splicing networks of events sharing common mechanisms 

or functions. Since not all the significant events are generally driven by the same mechanisms, 

this clusters could be helpful for guiding downstream RBP motif discovery (Carazo, Romero, 

& Rubio, 2018).   
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Since we released SUPPA2, we have noticed a great feedback from many users. Several labs 

are using it for their analysis and they have helped us to keep on improving the method by 

detecting possible issues or suggesting new features. This makes us think that this tool is 

appreciated and useful for the scientific community. 

 

3.1.3. Limitations 

 

SUPPA2 relies on a genome annotation to define events. For species poorly annotated, this 

could be a problem since a lot of the transcripts are not annotated, hence cannot be measured. 

Depending on the species, a method that is not dependent on the annotation could be more 

suitable. 

 

Another limitation, already commented in the introduction (subsection 1.3), is that there is no 

clear agreement between different methods. In spite of this, the results from each method made 

sense biologically. This highlights how crucial it is to try different approaches and avoid relying 

on a single method. The differences in the definition of what a splicing change is or how to test 

for differential splicing probably leads to each method detecting a different portion of the 

biological variability. Since this an intrinsic limitation for any method, we encourage users not 

to rely on a single method.  

 

SUPPA2 is coded in python. This is currently one of the most used languages in bioinformatics 

(Russell et al., 2018). The growing community of developers behind python tools for 

bioinformatics is one of their strengths. Nevertheless, there are faster programming languages, 

like C, that could improve even more SUPPA2 performance. In addition, we have noticed an 

excess of RAM usage when dealing with big datasets (>500 samples) that could be improved 

in future implementations. 

 

Finally, the definition of the splicing events measured by SUPPA2 is based on the most 

common binary variations (subsection 1.3, figure 4). Nevertheless, other complex splicing 

changes may occur that may be left undetected. Other methods, like MAJIQ (Vaquero-Garcia 

et al., 2016), are not restricted to a set of predefined events an allow the discovery of these 

complex events (Figure 7). 
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Figure 7: Complex splicing patterns involving non-binary choices of splice site or exons 

(Park, Pan, Zhang, Lin, & Xing, 2018) 

 

3.1.4. Future perspectives 

 

There are some improvements to be made on SUPPA2. As we have mentioned, downstream 

analysis is necessary for explaining the possible PSI changes (Subsection 3.1.2.). In our lab, 

we developed a tool for exploiting the PSI changes from SUPPA2 to perform a motif scan and 

enrichment analysis of RBPs: MoSEA (B. Singh et al., 2018). This method is available online: 

https://github.com/comprna/MoSEA. In the same way, we want to extend the functionalities of 

SUPPA2 with some other methods for RBP/SF discovery. 

 

The method has been tested on Illumina bulk RNA-seq data. This is still the standard 

technology for splicing analysis. Nevertheless, the emergence of single cell technologies are 

opening new horizons in research, especially in cancer (Liang & Fu, 2017). There are some 

methods propose for analyzing splicing in single cell RNA-seq experiments (Huang & 

Sanguinetti, 2017; Song et al., 2017). A prospective work would be to test how well performs 

SUPPA2 on single cell data. Since SUPPA2 relies on transcript quantification, if these values 

are adapted for their proper calculation with this technology, our method could work 

accurately. Kallisto has already an option for this 

(https://pachterlab.github.io/kallisto/singlecell.html) and Salmon authors have developed a 

new method for this purpose (Srivastava, Smith, Sudbery, & Patro, 2018). Long read 

technologies also offer new opportunities to interrogate the transcriptome in multiple contexts 

(Garalde et al., 2018). Provided a normalized molecular count from long reads, SUPPA2 can 

already be used to study differential splicing and differential transcript usage with a reference 

annotation. The adaptation to new transcriptomes derived from the long-read sequencing will 

require further developments. 

 

https://github.com/comprna/MoSEA
https://pachterlab.github.io/kallisto/singlecell.html
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3.2. The prognostic potential of alternative transcript isoforms 

across human tumors 

3.2.1  Main findings 

 

This chapter presented a study of the predictive power that splicing changes hold regarding 

staging and survival of cancer patients. Transcript and event signatures were derived from 

RNA-seq samples from 12 cancer types from TCGA. These signatures yielded good accuracies 

to separate between early and late stage patients, especially at predicting metastasis and lymph 

node invasion. Blind prediction on non-labelled samples was validated by finding a significant 

separation according to survival. The same methodology was applied for extracting signatures 

in tumor subtypes in breast cancer and melanoma. 

 

3.2.2.  Impact of the presented research 

 

The presented study is a proof of concept on the relation between splicing and clinical staging. 

Previous works have investigated the possibility of finding cancer biomarkers for stratification 

of patients using gene expression (Subsection 1.8). In Z. F. Zhang et al., 2013 the authors show 

how isoform expression changes discriminate better between cancer and non-cancer cell lines 

than gene expression changes. Our study is the first one that explores the possibility of using 

inclusion levels of isoforms and events for patient classification.  

 

The obtained signatures are available as supplementary data. The importance of this study lies 

not on the specific signatures, but on the fact that relative isoform expression describes a more 

detailed picture of the underlying mechanisms of cancer progression than gene expression. We 

did not observe a conserved signature across cancer types, indicating lineage specific 

mechanisms. However, we saw a consistent enrichment of genes involved in DNA repair, 

MYC targets and mTORC signaling for all cancer types, evidencing a phenotypic convergence 

related to the RNA processing alterations. Additionally, we observed splicing changes 

previously described in the literature related with cancer progression.  

 

We performed this analysis by comparing samples classified as early and late according to 

TNM staging. Clinicians normally perform this classification without prior molecular 
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characterization. Recently, albeit only for certain cancer types like breast cancer, molecular 

characterization has started to be used to assess patient staging (Giuliano et al., 2017). 

Importantly, we also applied this methodology for ER- subtypes in breast cancer patients, 

identifying a transcript signature that separates between early and late patients with a 

significant association with survival. This is especially interesting since gene markers for this 

subtypes are harder to determine (Taherian-Fard, Srihari, & Ragan, 2014). The results of this 

work support the use of splicing changes as possible molecular markers for cancer staging. Our 

results also indicate that these models could be particularly useful in cases where it is not 

possible to determine if there is metastasis or lymph node invasion. 

 

3.2.3. Limitations and future work 

 

The described workflow extracts features (isoforms or events) that hold a predictive value 

individually and obtains the minimum set of features that explains the greater variance of the 

dataset. We used subsampling and randomization through the process and assessed the 

performance of the models via cross-validation to reduce as much as possible potential biases. 

Nevertheless, we are conscious that there could be still potential confounding factors. These 

are more likely to have an impact in the tumor types with a low number of patients available.  

 

A possible limitation is the fact that we used univariate feature selection, i.e. we tested the 

contribution of each feature (isoform) individually. However, several works have evidenced 

how splicing factors intervene in cellular programs by remodeling entire splicing networks in 

cancer (Germann, Gratadou, Dutertre, & Auboeuf, 2012). It would be interesting to improved 

the analysis by combining the contribution of potentially related features at discriminating 

across stages. In this context, multivariate feature selection techniques would be effective, 

although they would imply a higher computational burden. 

 

We built our predictive models using logistic model tress. The election of this or another model 

in this and similar studies is usually based on the accuracy observed in the cross-fold validation, 

but can be considered to be an arbitrary choice, hence introducing potential biases. A 

comparison with other classifiers (random forests, neural networks) would be helpful to assess 

the objectivity of the predictive models. 
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Each cancer type presents very different cellular and molecular characteristics; and the same 

stage in different cancer types could have different implications for the patient. Moreover, 

within each cancer stage there may be additional molecular subgroups and substages that could 

be critical for the patient outcome. Therefore, some of the signatures obtained here could be 

too coarse-grained and therefore less relevant for prognosis. On the other hand, we have shown 

that our methodology is applicable also for each substage. For some cancer types, it could be 

more interesting to focus on specific subtypes that are still difficult to characterize, like ER- 

breast cancer. 

 

If clinicians have access to the tumor, TNM staging is generally simple to perform and robust. 

Therefore, molecular markers might not be necessary. However, there are some cancer types 

for which access to the affected organ and extraction of the tumor mass is difficult or 

impossible, like liver or biliary cancer. For these cancers biopsies are difficult to perform. 

Alternatives like liquid biopsies are a promising way to follow cancer progression and to 

perform regular screenings. Recent works are obtaining splicing changes using this technology 

(Bao et al., 2018). Since we have performed this analysis on solid tumors from TCGA, an 

interesting improvement would be to apply the same methodology on liquid biopsies for 

determining the stage of a tumor. 

 

As we mentioned in the introduction, all these markers need a constant evaluation on new sets 

of patients. Since we finished this work, more databases of cancer samples have become 

available, e.g. through the International Cancer Genome Consortium (ICGC). Prospective work 

would include the reevaluation of the signatures on new sets of patients. 
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3.3. The immunogenic impacts of splicing alterations in small cell 

lung cancer 

3.3.1.  Main findings 

 

This chapter presented an in silico strategy for the study of epitopes produced by splicing 

alterations. We developed a pipeline that allows for the identification of aberrant splice sites, 

exonizations, new exon skippings and intron retentions that are tumor specific and measure 

their individual immunogenic impact. We tested this method on cell lines and tumor samples 

from small cell lung cancer (SCLC) obtaining epitopes produced by these alterations and 

validating them by proteomics data. 

3.3.2.  Impact of the presented research 

 

During the last few years, cancer immunotherapy has become a topic of great interest. Recent 

works have investigated to what extent splice site creating mutations or intron retention events 

are responsible for the origin of neo-epitopes. The method developed in this work allows for 

genome-wide inspection of all possible non-annotated splicing alterations, including those 

previously tested (aberrant splice site and intron retention) and new ones (exon skipping and 

exonization).  

 

In addition, this approach takes also into account the possible epitopes that could be lost due to 

the splicing alteration. We observed that these alterations tended to delete more epitopes than 

create new ones, suggesting a mechanism of immune escape. 

 

This is the first analysis that explores the immunogenic impact of splicing in SCLC. Since this 

cancer is one of the most mutated and no targeted alterations has been found yet, this analysis 

opens a new perspective for SCLC clinical management that should be explored further. 
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3.3.3. Limitations and future work 

 

For the validation with the cell lines we used proteomics data generated with the same cell lines 

(Ritz et al, 2016). For the SCLC epitopes we did not have mass-spectrometry data available 

from the same samples. Because of this, we decided to use a set of peptides from Lanoix et al., 

2018. A potential future development will be to obtain peptides binding MHC complexes and 

T-cell receptor repertoires from the same tumor samples studied. This would provide a better 

validation of the putative epitopes. 

 

There are several questions for the SCLC samples that require further investigation at the light 

of the results. Although we observed many SCLC specific splicing alterations, very few were 

associated with cis-mutations. Future work would involve looking for trans-mutation on 

spliceosome components or splicing factors and disrupted motifs to explain the observed 

splicing alterations. Also important will be to investigate the functional impact that all these 

alterations cause at the level of protein domains or protein-protein interactions. We observed 

some degree of mutual exclusion between the expression of MYC genes and mutations in the 

spliceosome. Finally, prospective work would be to investigate if these behaviors occurs in 

other cancer types. SCLC tumors present very different etiological and molecular 

characteristics from the lung tumors. Understanding further the molecular similarities with 

pulmonary carcinoids, a possibly related condition, may help improving our understanding of 

SCLC. 
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4                                                                           CONCLUSIONS 

 

 

1. We developed SUPPA2, a tool for fast calculation of differential splicing across multiple 

conditions taking into account biological variability. 

 

2. We implemented a clustering method that detects groups of events with similar splicing 

patterns. We proved that this method obtains meaningful groups previously reported in 

the literature with the potential of finding new regulatory features. 

 

3. Using machine learning techniques, we exploited splicing changes across patients for 

deriving signatures for cancer staging and prognosis. We showed that these signatures 

yielded good accuracies at discriminating between patients at early and late cancer stage, 

and especially at predicting metastasis and lymph node invasion. 

 

4. We developed a pipeline for the identification of all type of tumor-specific splicing 

changes and the subsequent evaluation of their immunogenic impact.  

 

5. We have applied this method to SCLC samples and described a widespread elimination 

of native epitopes, in contrast to the birth of neo-epitopes, in relation to splicing.  This 

could suggest a mechanism for the cancer cell to evade immune responses.  
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