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Abstract 

 

The present doctoral thesis proposes a series of methods that have as a general 

objective the non-contact evaluation of heart rate variability (HRV) and 

respiratory rate (BR) through video imaging. The proposal of this technique has 

emerged in the last few years as an alternative to the traditional measurement 

systems, which assess these and other physiological parameters through direct 

contact with the person’s body. Due to this condition, the traditional systems 

may cause some complications in people who present a sensitive or fragile skin, 

such as neonates or patients with burn injuries. 

Furthermore, although the video imaging technique could be an excellent 

alternative, as in the cases mentioned above, it also aims at being a monitoring 

instrument for the general population in non-clinical environments. In fact, 

nowadays, the use of electronic devices such as the video cameras, smartphones, 

tablets and others, it starts being part of a healthy lifestyle. Thus, this promising 

technique, which could provide advantages such as the contactless measurement, 

portability, easy use and low-cost, it could be employed in the near future as part 

of the evaluation of the person’s health status in everyday life. 

On the other hand, despite the aforementioned advantages, the measurements 

obtained by this technique may be greatly affected by factors such as the 

movement of the person, lighting conditions, camera settings, among others. 

Hence, an analysis of the influence of various factors and conditions is carried 

out in this research study in order to obtain a better insight of the scope and 

limitations of the technique. For this purpose, a series of methods were 



vi 
 

developed and implemented in which face detection and tracking algorithms are 

employed, as well as image and signal processing techniques. 

The results obtained in each study are evaluated by using various statistical 

parameters and plots with the aim of measuring the agreement between the 

proposed methods and the reference systems. In general, the statistical analysis 

carried out shows a good level of agreement between the measurement systems. 

It is important to note the presence of an impact on the results, to a greater or 

lesser extent, by the factors and conditions analyzed in the different studies. In 

several cases, the results show a significant improvement in comparison with the 

data reported in related studies. By contrast, the results achieved in scenarios 

with a greater presence of artifacts show a decrease in the agreement of the 

measurements. 

This contactless technique may eventually become an instrument to detect 

physical or psychological disorders in the future. Nevertheless, its use for this 

purpose will depend on the progress of the technique over the coming years, 

since it is still in the research and development phase. Therefore, more 

improvements are necessary to reach the reliability achieved by the current 

reference systems and, particularly, if its application in real-life scenarios is 

considered. The development of more robust algorithms is required in order to 

suppress, as much as possible, the contribution of artifacts present in a real 

environment. Consequently, the acquisition of measurements in several real-life 

scenarios, longer recordings, and the analysis of more factors that could 

influence the performance of the technique constitute some objectives for future 

work. 
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Abstract 

 

En la presente tesis doctoral se proponen una serie de métodos los cuales tienen 

como objetivo general la evaluación sin contacto de la variabilidad de la 

frecuencia cardíaca y la frecuencia respiratoria mediante imagen de video. La 

propuesta de esta técnica ha surgido en los últimos años como una alternativa a 

los sistemas de medida tradicionales, los cuales evalúan estos y otros parámetros 

fisiológicos a través de contacto directo con el cuerpo de la persona. Debido a 

esta condición, los sistemas tradicionales podrían ocasionar algunas 

complicaciones en personas que presentan una piel sensible o frágil, tal como los 

recién nacidos o pacientes con lesiones por quemaduras. 

Además, aunque la técnica de imagen de video podría ser una excelente 

alternativa, como en los casos mencionados previamente, ésta también tiene 

como objetivo ser un instrumento de monitorización para la población en general 

en entornos no clínicos. De hecho, hoy en día, el uso de dispositivos electrónicos 

tales como las cámaras de video, teléfonos inteligentes, tabletas y otros, empieza 

a ser parte del seguimiento de un estilo de vida saludable. Así, esta prometedora 

técnica, la cual podría proporcionar ventajas tales como la medición sin 

contacto, portabilidad, fácil uso y bajo costo, podría ser utilizada en un futuro 

cercano como parte de la evaluación del estado de salud de una persona en la 

vida cotidiana. 

Por otra parte, a pesar de las ventajas mencionadas, las mediciones 

adquiridas mediante esta técnica pueden ser afectadas en gran medida por 

factores tales como el movimiento de la persona, las condiciones de iluminación, 

las ajustes de la cámara, entre otros. Por tanto, en este trabajo de investigación se 
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lleva a cabo un análisis de la influencia de varios factores y condiciones para 

obtener una mejor comprensión del alcance y las limitaciones de la técnica. Para 

este propósito, se han desarrollado e implementado una serie de métodos en los 

cuales se aplicaron algoritmos de detección facial y seguimiento, así como 

también técnicas de procesamiento de imágenes y señales. 

Los resultados obtenidos en cada estudio son evaluados a través de distintos 

parámetros estadísticos y gráficos con el objetivo de medir el acuerdo entre los 

métodos propuestos y los sistemas de referencia. En general, el análisis 

estadístico llevado a cabo muestra un buen nivel de concordancia entre los 

sistemas de medida. Es importante tener en cuenta la presencia de un impacto en 

los resultados, en mayor o menor medida, por los factores y condiciones 

analizados en los distintos estudios. En varios casos, los resultados muestran una 

mejoría significativa en comparación con los datos reportados en estudios 

relacionados. Por el contrario, los resultados adquiridos en escenarios con una 

mayor presencia de artefactos muestran una disminución en el acuerdo de las 

medidas. 

Esta técnica sin contacto podría eventualmente convertirse en un instrumento 

para detectar trastornos físicos o psicológicos en el futuro. No obstante, su uso 

para este objetivo dependerá del progreso de la técnica en los próximos años, ya 

que ésta se encuentra aún en fase de investigación y desarrollo. Por lo tanto, 

mayores mejoras son necesarias para alcanzar la fiabilidad que se consigue con 

los sistemas de referencia actuales y, particularmente, si se plantea su aplicación 

en escenarios reales. El desarrollo de algoritmos más robustos es requerido a fin 

de suprimir, tanto como sea posible, la contribución de artefactos presentes en 

un entorno real. Por consiguiente, la adquisición de medidas en varios escenarios 

de la vida real, registros de más larga duración, y el análisis de una mayor 

cantidad de factores que podrían influir al desempeño de la técnica constituyen 

algunos de los objetivos para trabajo futuro. 
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Introduction 

 

 

 

 

1.1 Introduction 

The measurement of physiological parameters is an important part of the 

evaluation of a person’s health status in a medical examination. For instance, 

parameters such as heart rate (HR), heart rate variability (HRV), and breathing 

or respiratory rate (BR) can be used for assessing the physical and psychological 

condition of a person. The evaluation of these and other physiological 

parameters may provide relevant information on the health status, as well as a 

possible relation to disorders and diseases. 

Chapter 1 
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On the other hand, nowadays, the interest of the population in following a 

healthy lifestyle has been growing with the aim of preventing diseases and 

improving the quality of life. The use of technology has become part of this 

lifestyle as a tool for assessing the health status. Certainly, the progress in 

technology in the last years has facilitated that commercial electronic devices 

such as video cameras, smartphones, tablets and others can be used as 

instruments to measure physiological parameters in our daily lives. 

 

1.2 Problem statement 

The measurement of physiological parameters such as HR, HRV, and BR by 

using traditional measurement systems is performed in direct contact with the 

body, for example, through the use of transducers and electrodes. Nevertheless, 

this monitoring condition may cause some complications in people who present 

a sensitive or fragile skin, such as neonates or patients with burn injuries. Hence, 

in cases like these, the patient monitoring without physical contact could be an 

excellent alternative. 

Furthermore, the interest in measuring physiological parameters in non-

clinical environments by using commercial electronic devices has increased in 

the last few years. In this respect, the use of a video camera as a measuring 

instrument has gained attraction. The proposal of the video imaging technique, 

which could provide advantages such as the contactless measurement, 

portability, easy use and low-cost, it emerged in recent years as an alternative to 

the traditional systems. However, on the other hand, the measurements obtained 

by this technique may be greatly affected by factors such as the movement of the 

person, lighting conditions, camera settings, among others. 
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1.3 Objectives 

Because the video imaging technique is a recent field of study, an analysis of the 

influence of various factors and conditions is carried out in this research study, 

with the aim of obtaining a better insight of the scope and limitations of the 

technique. For this purpose, a series of methods are developed and implemented 

as detailed throughout the chapters of this thesis.  

Based on the problem statement, several objectives are raised in this research 

study, as summarized below: 

§ Development of algorithms to measure physiological parameters such as 

HR, HRV, and BR by employing the video imaging technique. The 

corresponding measurements will be evaluated by using various statistical 

parameters and plots in order to measure the agreement between the 

proposed methods and the reference systems. 

§ Implementation and evaluation of image and signal processing techniques in 

order to improve the acquisition of signals by video imaging. These 

techniques should be aimed at improving the quality of the signals by 

focusing on the regions of the body that could provide more information on 

the physiological parameters and on the characteristics of the signals, 

respectively. 

§ Comparative analysis of video cameras and settings with the aim of 

assessing their performance to measure physiological parameters. Different 

commercial cameras and settings such as the video resolution and frame 

rate will be evaluated in order to improve the measurements achieved with 

the proposed methods. 
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§ Implementation and evaluation of face detection and tracking algorithms in 

order to measure physiological parameters both in stationary and motion 

conditions. The application of these algorithms would enable the automatic 

detection of the regions and reference marks of interest along the video 

sequences and, particularly, in the motion scenarios. 

§ A real-time implementation of the developed algorithms with the aim of 

performing a quick analysis of the physiological parameters and, also, the 

feasibility of real-time monitoring of the signals under influences such as 

the motion and the lighting conditions. 

§ Comparative analysis of natural and artificial lights in order to assess their 

influence on the measurements. Some of the most common light sources 

will be evaluated to find out which light option achieves the best results 

among them. 

§ Implementation and evaluation of the developed algorithms in order to be 

applied in a real-life scenario. The application of the video imaging 

technique in such scenarios could provide the possibility in the future of the 

non-contact measurement of physiological parameters in a real-life 

environment. 
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Theoretical framework 

 

 

 

 

2.1 Official statistics of cardiovascular diseases 

Nowadays, the mortality statistics show that cardiovascular diseases (CVDs), 

which are defined as disorders of the heart and blood vessels, are the leading 

cause of death in the world. According to recent data reported by the World 

Health Organization (WHO), 15 million of deaths occurred in 2015, 8.76 million 

of which were from ischemic heart diseases and 6.24 million from strokes [1]. 

These diseases were the leading causes of death in the 2000-2015 period (Fig. 

2.1). It is estimated that around 23.4 million people will die from CVDs in 2030 

and it is also expected that they remain as the leading cause of death. 

Chapter 2 
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It is well known that risk factors such as bad diet habits, a lack of physical 

activity, stress, and a high consumption of alcohol and tobacco increase the 

chances of developing a CVD. Thus, most of these diseases could be prevented 

if actions are taken over these risk factors following a healthy lifestyle. 

 

Fig. 2.1   The 10 leading causes of death in the world: (left) in 2000; (right) in 2015. (Source: “The 

top 10 causes of death”. World Health Organization (WHO), [1]). 

The CVDs are the leading cause of death in countries with diverse economic 

status. Ischemic heart disease and stroke were the top leading causes of death in 

lower-middle-income, upper-middle-income, and high-income economies in 

2015 (Fig. 2.2). Based on these data, the chances of developing a CVD is not 

related to the economic status of the countries, which makes them a global 

problem. 

The awareness-raising of these statistics represents a great interest to the 

health system of the countries in decision-making and resources management. 

The high mortality rate from particular diseases can help to allocate more 

economic resources in order to combat them. The creation of preventive health 
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care programs may help to decrease the high mortality rates and the health costs 

caused by CVDs. 

 

Fig. 2.2   The 10 leading causes of death in 2015: (left) lower-middle-income economies; (right) 
high-income economies. (Source: “The top 10 causes of death”. World Health Organization 

(WHO), [1]). 

Being aware of the problem, the interest of the population in following a 

healthy lifestyle has notably increased in the last years. Therefore, research in 

novel methods to measure physiological parameters such as heart rate, HRV or 

respiratory rate is important, with the aim of performing an early detection of 

disorders and diseases. 

 

2.2 Heart rate and HRV 

Heart rate and HRV are two closely related parameters which are considered 

excellent indicators of the cardiovascular health status. Heart rate is a widely 

known parameter that represents the number of times the heart beats per minute, 
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and HRV is defined as the oscillation in the time interval between consecutive 

heartbeats (RR) [2] (Fig. 2.3). Variations in heart rate make it a nonstationary 

parameter whose regulation influences the HRV [3]. 

HRV is a physiological parameter that has gained importance due to its 

relations with the autonomic nervous system (ANS) and CVDs. It is a 

noninvasive measurement, reliable, and easy to obtain [3]. In general, a high 

HRV is related to a good health status, wellness, and optimal adaptation to 

physical activity performance [4]. Conversely, a low HRV is related to CVDs, 

poor fitness, and a non-adaptation to physical and psychological stress [5, 6]. 

 

Fig. 2.3   Representation of HRV in seconds (s) and as instantaneous heart rate in beats per minute 
(bpm). (Source: G. Rodas et al., “Variabilidad de la frecuencia cardíaca: concepto, medidas y 
relación con aspectos clínicos (I)” [7]). 

HRV has a close relation with the ANS, which is responsible for the heart 

activity through its branches: the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PSNS). These two branches have opposite 

actions in the heart rate activity. On the one hand, the SNS increases the heart 

rate during physical and psychological stress, and on the contrary, the PSNS 

decreases the heart rate in a resting state (Fig. 2.4) [8]. Therefore, the 

predominance of stimulation of these two divisions will depend on the physical 

and psychological status of the person. 



2.2   Heart rate and HRV 
 

9 
 

HRV is inversely proportional in relation to the heart rate and workload, 

thus, an increase in them would cause a decrease in HRV. There are several 

factors that can influence the HRV analysis such as the thermoregulation, the 

respiratory system or the baroreceptor reflex. Moreover, there are other factors 

that affect the heart rate such as the age, the gender, the posture, the temperature, 

the alcohol consumption, among others [7]. 

 

Fig. 2.4   Motor neuron pathways in the autonomic nervous system (ANS): (top) the sympathetic 
division is responsible for increasing the heart rate during physical and psychological stress; 
(bottom) the parasympathetic division is responsible for decreasing the heart rate in a resting state. 
(Source: Tortora, G. and Derrickson, B. Principles of anatomy and physiology [8]). 

HRV analysis can provide relevant information on the cardiovascular and 

psychological health. For example, the HRV parameters can give information 

about the prediction or evolution of a CVD, as well as more knowledge of the 

adaptation to physical or psychological stress in a person. 



Chapter 2 – Theoretical framework 
 

10 
 

2.2.1 Time-domain parameters of HRV 

Time-domain parameters are possibly the simplest assessment to perform a HRV 

analysis. These components can be divided into two types: the parameters that 

are obtained directly from the sequence of RR intervals (or normal-to-normal 

(NN) intervals), and those that are calculated from the differences between 

adjacent RR intervals [2]. Some of the most common time-domain parameters 

are presented in Table 2.1. 

Table 2.1   Time-domain parameters of HRV [2]. 

Parameter Units Description 

NNmean ms Mean of all NN intervals. 

SDNN ms Standard deviation of all NN intervals. 

RMSSD ms Square root of the mean of the sum of the squares of 
differences between adjacent NN intervals. 

SDSD ms Standard deviation of differences between adjacent NN 
intervals. 

NN50 count Number of pairs of adjacent NN intervals differing by 
more than 50 ms. 

pNN50 % NN50 count divided by the total number of all NN 
intervals. 

 

The estimation of each parameter provides important information of a HRV 

analysis. In the case of the parameters obtained from the sequence of NN 

intervals, the NNmean parameter is the average of all NN intervals and the 

SDNN represents the total variability of the recording [7]. Due to the total 

variance of HRV increases with the record length [2], it is important to compare 

the SDNN values obtained from recordings of the same length. 
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Regarding the second type of time-domain parameters, the RMSSD 

component provides information on short-term variations of the NN intervals 

and, it is also used to analyze the influence of the PSNS over the cardiovascular 

system [7]. A high pNN50 value describes high spontaneous variations in heart 

rate [7], which is related to a high HRV. These last three parameters of short-

term variations measure high-frequency changes in heart rate, therefore, they 

present a strong correlation (Fig. 2.5) [2]. 

 

Fig. 2.5   HRV measurements from 857 nominal 24-h Holter records in survivors of acute 
myocardial infarction: (top) Relationship between RMSSD and pNN50; (bottom) relationship 
between pNN50 and NN50. (Source: Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of 
measurement, physiological interpretation, and clinical use” [2]). 
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2.2.2 Frequency-domain parameters of HRV 

The power spectral density (PSD) of HRV allows the analysis of power 

distribution in accordance with frequency. The calculation of the PSD can be 

obtained by parametric and non-parametric methods. The parametric methods 

present some advantages such as smoother spectral components, easy detection 

of the central frequency of the components, and accurate estimation of PSD even 

on a small number of samples in which the stationarity of the signal is assumed. 

On the other hand, the non-parametric methods have advantages such as the 

simplicity of the algorithm utilized (fast Fourier transform (FFT), in most of the 

cases) and the high processing speed [2]. 

The spectrum of HRV is mostly distributed between the 0.003 to 0.4 Hz 

range, in which different parameters can be distinguished as shown in Table 2.2. 

Table 2.2   Frequency-domain parameters of HRV (analysis of short-term recordings) [2]. 

Parameter Units Description Frequency range 

VLF ms2 Power in very-low-frequency range. ≤ 0.04 Hz 

LF ms2 Power in low-frequency range.  0.04 - 0.15 Hz 

LF norm n.u. LF power in normalized units 

LF/(Total power - VLF) x 100 

 

HF ms2 Power in high-frequency range. 0.15 - 0.4 Hz 

HF norm n.u. HF power in normalized units 

HF/(Total power - VLF) x 100 

 

LF/HF  Ratio LF [ms2]/HF [ms2]   

n.u.: normalized units. 

These components provide relevant physiological information [7]: 
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§ VLF (very-low-frequency): it represents hormonal, vasomotor, and 

thermoregulatory influences. 

§ LF (low-frequency): it mainly represents the influence of the SNS, which is 

the branch that controls an increase in heart rate, though, it could have 

influences of both divisions of the ANS. It also represents the baroreceptor 

activity, which has a frequency of 0.1 Hz approximately. 

§ HF (high-frequency): it represents the influence of the PSNS, which is the 

division that controls a decrease in heart rate. The changes in the respiratory 

rate have an effect on this component by modifying the HF peak. 

§ LF/HF ratio: it provides information about the balance between the SNS 

and PSNS divisions. Thus, it is possible to know the predominance of 

activity of the divisions of the ANS and, therefore, the interpretation of a 

low or high HRV of a person. 

 

The VLF, LF and HF components are distinguished in short-term recordings 

(2 to 5 min) and, additionally, it is possible to identify an ultra-low-frequency 

component (ULF) in long-term recordings (24 h), which is below 0.003 Hz [2]. 

The VLF, LF, and HF can be measured in absolute values of power (ms2) 

and the last two components also in normalized units (n.u.). The parameters in 

n.u. represent their relative value in proportion to the total power (minus the 

VLF component). The representation of LF and HF parameters in n.u. 

accentuates the balanced behavior of the two divisions of the ANS. 

The effect of the units in a spectral analysis is represented in Fig. 2.6 using 

HRV data from a healthy subject at rest and 90º head-up tilt [2]. At rest, the LF 

and HF components were 310 ms2 (48.95 n.u.) and 302 ms2 (47.78 n.u.) 

respectively with an LF/HF ratio of 1.02. At 90º head-up tilt, the values were 
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308 ms2 (75.96 n.u.) and 95 ms2 (23.48 n.u.) respectively with an LF/HF ratio of 

3.34. It is noted that the LF component had a slight decrease from rest to tilt in 

absolute values of power (from 310 ms2 to 308 ms2), and conversely, it had a 

notable increase in normalized units (from 48.95 n.u. to 75.96 n.u.). 

 

Fig. 2.6   Spectral analysis of HRV in a healthy subject at rest and 90º head-up tilt. (Source: Task 
Force of the European Society of Cardiology and the North American Society of Pacing and 
Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation, 

and clinical use” [2]). 

2.2.3 Technical requirements and recommendations 

In order to perform an appropriate HRV analysis, it is important the 

accomplishment of technical requirements and recommendations established by 

the Task Force of The European Society of Cardiology and The North American 

Society of Pacing and Electrophysiology [2]. According to the 

recommendations, it is necessary to choose a minimum sampling rate to record 

the ECG signal. An optimal range is established between 250-500 Hz or even 

higher. If the signal is recorded at a lower sampling rate (in any case ≥ 100 Hz), 

it is necessary to carry out an interpolation to refine the R wave fiducial point. 
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It is required the use of a well-tested algorithm to perform the detection of 

the R wave fiducial point in order to calculate the RR intervals. Some issues 

such as an incorrect detection, the presence of ectopic beats, arrhythmias, 

missing data or noise artifacts would generate errors in the RR tachogram (RR 

time series). In these cases, an appropriate detection and correction of outliers is 

an option to reduce the error in the HRV analysis. 

In the frequency domain, an important recommendation is to check the 

frequency response of the applied filter in order not to affect the components of 

interest. Moreover, it is recommended 5 min recordings with the aim of 

standardizing short-term studies of HRV, unless the study has other objectives. 

Traditionally, a HRV analysis has been carried out using the ECG signal, 

though some authors have investigated the possibility of measuring pulse 

rate variability (PRV) as a surrogate of HRV [9, 10]. In summary, these 

studies have shown that PRV is sufficiently accurate as a calculation of 

HRV, especially, in healthy subjects at rest. Moderate physical activity 

and mental stress are some factors that may decrease the agreement 

between these two measurements. A more intense physical activity such 

as walking or physical exercising could greatly affect the agreement due 

to motion artifacts. 

 

2.3 Heart rate and HRV analysis by video imaging 

In recent years, the evaluation of physiological parameters by video imaging has 

attracted great interest because it is a low-cost method that is contactless and 

easy to implement. Certainly, the technological advances in electronics and 

optics fields have allowed the possibility of using video cameras as monitoring 

devices of physiological parameters. 
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2.3.1 Functional principle 

In the last few years, some studies have measured heart rate or HRV parameters 

using a video camera [11-14]. This technique may be known as video imaging 

photoplethysmography (iPPG) and focuses on the measurement of the small 

changes in skin color caused by blood perfusion. Diverse factors may influence 

this technique such as the anatomical and physiological characteristics of the 

person involved, the motion, the lighting conditions, the camera settings, among 

others. 

Similarly to the photoplethysmography (PPG) method, the iPPG technique is 

based on the interaction of light through the tissues and the changes in blood 

perfusion. The tissues and the blood, and particularly the hemoglobin, absorb 

part of the light that passes through the skin and other parts can be scattered and 

reflected towards the skin surface [15, 16]. Consequently, the reflected light can 

be detected by the optical sensors of the cameras. Thus, mainly due to the 

pulsatile component of the arterial blood, which causes changes in light 

absorption, variations in reflected light occur which can be measured by the 

optical sensors. 

Fig. 2.7 shows the absorption spectrum of oxyhemoglobin (HbO2) and 

deoxyhemoglobin (Hb) within the visible region of the electromagnetic spectrum 

[15]. The wavelength range within the visible region is from 380 to 750 nm 

approximately in which the red (620-750 nm), green (495-570 nm), and blue 

(450-495 nm) colors are present. As noted in the absorption spectrum, the 

wavelengths corresponding to the green and blue colors present higher 

absorption levels of the Hb and HbO2 in comparison with the red light. Also, the 

green and blue colors show larger differences of absorption between the Hb and 

HbO2 at some specific wavelengths. 



2.3   Heart rate and HRV analysis by video imaging 
 

17 
 

 

Fig. 2.7   Absorption spectrum of deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2) within the 
visible region of the electromagnetic spectrum. (Source: T. Lister et al., “Optical properties of 

human skin” [15]). 

The penetration depth of light into the tissues is related to its wavelength, 

where longer wavelengths reach deeper penetrations into the skin than shorter 

ones [16]. For this reason, the green light has a minor penetration into the skin in 

comparison with the red wavelength. Thus, the signals obtained from the red 

light source may have significant part of their origin from deeper blood vessels, 

while the signals acquired from the green light could have a more superficial 

influence. Based on their results, Cui et al. states that the pulsatile response of 

the green light PPG is improved for lower blood fractional volumes in tissue in 

comparison with the red PPG. They concluded that the reduced penetration of 

the green light source results in a better signal-to-noise ratio (SNR), as well as 

the pulsatile blood volume changes can be more reliably detected with the use of 

light within the range of 510-590 nm, when compared with longer wavelengths.  
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Other authors have shown through a comparative analysis that the green 

light PPG achieved the best results for heart rate monitoring [17, 18]. Thus, 

these studies are some evidence that may explain why the green channel of the 

video gives the best iPPG signal in comparison with the other channels. 

2.3.2 State of the art 

Although this research area has attracted great interest, the number of studies 

that have measured HRV parameters has so far been very limited. One of the 

first and highly cited works in the field is the study presented by Poh et al. [19]. 

In this work, the method of blind source separation by Independent Component 

Analysis (ICA) was proposed to obtain the iPPG signals. The algorithm based on 

work by Viola and Jones [20] and Lienhart and Maydt [21] was used to detect 

the region of interest (ROI). HR was measured in 30-s moving windows with 1-s 

of overlap by applying the FFT. The study was conducted in stationary and 

motion conditions.  

Along the same lines, Monkaresi et al. [22] proposed an algorithm for 

measuring HR in sitting still and naturalistic human-computer interaction (HCI) 

scenarios. The aim of the study was to improve the HR estimation by employing 

the Poh et al. method [19] in combination with machine learning techniques: 

linear regression and k-nearest neighbor (kNN). HR measurements were also 

extracted from 30-s moving windows with 1-s of overlap by a power spectral 

analysis. 

Other works that also used the video imaging technique have measured the 

interbeat intervals (IBIs) or HRV parameters [23-32]. Poh et al. [23] presented a 

multiparameter physiological measurement work in which HR and HRV 

parameters were obtained by using the ICA method. Unlike in their previous 

work, HR measurements were estimated by calculating the mean of the IBIs. 
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The frequency-domain components were estimated by a PSD using the Lomb 

periodogram. Alternatively, Sun et al. [24] conducted a PRV analysis focused on 

the palm of the subject’s hand. Since the measurements obtained from this body 

part are also affected by the motion, the study was performed in stationary 

conditions by using a cushion placed under the hand to minimize artifacts. 

However, a procedure of reduced frames by pixel averaging was carried out to 

attenuate small motion artifacts. The iPPG signals were obtained from each 

averaged position across the sequence of reduced frames. Subsequently, a 

technique based on wavelet transforms was employed to detect the pulse-to-

pulse (PP) intervals. 

McDuff et al. [25, 26] have proposed the use of a five band digital camera 

with the aim of evaluating alternate combinations of frequency bands that yield 

better results in the measurement of physiological parameters. Correlations for 

all combinations of the color channels were calculated in [25]. The 

measurements of both works were obtained at rest and under stress conditions. 

In another study, Moreno et al. [27] conducted a HRV analysis in supine and 

sitting postures with controlled illumination, synchronized breathing, and eyes 

closed. This work presented a cross-correlation analysis with the aim of finding 

the face areas on averaged frames that could provide more information on HR. 

Some of the most common time and frequency domain parameters of HRV were 

reported in the study. Alghoul et al. [28] presented a comparison between two 

approaches to measure HRV parameters from the face in stationary conditions. 

These approaches are based on the ICA and Eulerian Video Magnification 

(EVM) methods, respectively. 

In addition to stationary conditions, some authors also have conducted the 

acquisition of the IBIs in motion scenarios. Bousefsaf et al. [29] proposed a 

motion-tolerant method to measure the instantaneous HR. This method employs 

a skin detection filter and the u* component of the CIE L*u*v* color space to 
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improve its robustness in presence of motion or illumination changes. A 

wavelet-based filtering is applied in order to remove noise components from the 

raw iPPG signals. The recordings were obtained at rest and with predefined head 

movements. The study of Kumar et al. [30] proposed a method of combining 

skin-color change signals from different regions of the face. This method uses a 

weighted average to improve the SNR in which the weights depend on the blood 

perfusion and the incident light intensity in the region. PP interval estimations 

were carried out in stationary, reading, watching video, and talking scenarios. 

In another study, Antink et al. [31] performed a beat-to-beat estimation by 

using different signals and their fusion. The assessed signals were obtained from 

the changes of the skin color and the head motion, both by video and from a 

ballistocardiographic mat sensor, which were fused using a Bayesian approach. 

Evaluations of each signal and their fusion are presented in the paper. The trials 

performed in this study were: sitting still, reading without motion, and reading 

without further instructions. 

Huang and Dung [32] proposed the application of the chrominance-based 

remote PPG (C-rPPG) method followed by a continuous wavelet transform 

(CWT)-based denoising technique. A data acquisition procedure was carried out 

before employing C-rPPG and CWT. The procedure included face and skin 

color detection, the computing of the averaged RGB values within the ROI, and 

the upsampling of the signals. The face tracking was performed by means of 

nose detection for purposes of robustness. HRV parameters were obtained in 

static postures and occasional/frequent motion. A summary of the measurement 

set-up, signal domain analysis, and results of the previously cited works has 

been compiled and presented in Table 2.3. 
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Table 2.3   Summary of the measurement setup, signal domain analysis, and results of reference works. 

Ref. 
Activity 

condition/method  
Subj.  
(N) 

Recording 
time 

Resolution 
(fps) 

SA Overall results 

[19] 

1 = sitting still                                                                                                                       
2 = natural motion 
(no large or rapid 
movements) 

12 1 min 
640x480 
(15 fps) 

FD        

  r 
RMSE 
(bpm) 

HR 
(1) 0.98* 2.29 

(2) 0.95* 4.63 
 

[22] 
1 = sitting still                                                                                    
2 = natural human-
computer interaction 

10 
(1)  1 min                
(2) 20 min 

640x480 
(30 fps) 

FD          

  r 
RMSE 
(bpm) 

HR 
(1) 0.99* 1.69 

(2) 0.93* 3.64 
 

[23] 
Sitting still in front  
of a laptop 

12 1 min 
640x480 
(15 fps) 

TD, 
FD† 

 r RMSE 

HR (bpm) 1.00* 1.24 

LF (n.u.) 0.92* 12.3 

HF (n.u.) 0.92* 12.3 

LF/HF 0.88* 1.1 
 

[24] 
Resting conditions 
(palm of the subject’s 

hand) 
10 4 min 

384x256 
(200 fps) 

TD, 
FD† 

 r 

NNmean 0.998* 

SDNN 0.874* 

LF (n.u.) 0.971* 

HF (n.u.) 0.978* 

LF/HF 0.875* 
 

[25] 
1 = sitting at rest 
2 = sitting under 
stress 

(1)  9 
(2) 10 

2 min 
960x720 
(30 fps) 

TD, 
FD† 

 r 

 (1) (2) 

HR (bpm) 1.00x 1.00x 

LF (n.u.) 0.87x 0.97x 

HF (n.u.) 0.87x 0.97x 

LF/HF 0.86x 0.95x 

 

[26] 
1 = sitting at rest 
2 = sitting under 
stress 

11 2 min 
960x720 
(30 fps) 

TD 

  
MAPE 

(%) 
MAE 

(s) 

IBIs 
(1) 3.11 0.027 

(2) 3.10 0.025 
 

[27] 

1 = supine position 
2 = sitting position 
(controlled 
illumination, 
synchronized 
breathing and closed 
eyes) 

(1) 12        
(2)   8 

5 min 
640x480 
(30 fps) 

TD, 
FD† 

 ρc 

 (1) (2) 

NNmean 0.9999 0.9999 

SDNN 0.9544 0.9108 

RMSSD 0.8398 0.5180 

pNN50 0.8635 0.5385 

LF (n.u.) 0.9752 0.7934 

HF (n.u.) 0.9498 0.7838 

LF/HF 0.8662 0.3186 
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Table 2.3   Continued 

Ref. 
Activity 

condition/method  
Subj.  
(N) 

Recording 
time 

Resolution 
(fps) 

SA Overall results 

[28] 

Sitting still in front  
of a camera  
(1 = ICA-based 
method  
 2 = EVM-based 
method) 

12 2 min 
720x480 
(30 fps) 

TD, 
FD† 

 r 

 (1) (2) 

NNmean 0.999* 0.999x 

LF (n.u.) 0.8* 0.831x 

HF (n.u.) 0.84* 0.789x 

LF/HF 0.74* 0.256x 

 

[29] 

1 = sitting still and 
calm 
2 = sitting with pre-
defined head 
movements 

12 35 s 
320x240 
(30 fps) 

TD 

  r 
RMSE 
(bpm) 

1 
HRmean 1.00* - 

IBIs 0.889* 1.97 

2 
HRmean 1.00* - 

IBIs 0.853* 2.33 
 

[30] 

1 = stationary 
2 = reading 
3 = watching video 
4 = talking 

5     80 s 
1280x1024 

(30 fps) 
TD 

 RMSE (ms) 

 PRV 

(1) 15.74 

(2) 55.34 

(3) 67.08 

(4) 97.51 
 

[31] 

1 = sitting still 
2 = reading without 
motion 
3 = reading without 
further instructions 

4       2 min 
800x600 
(30 fps) 

TD 

  
MAE 
(ms) 

IBIs 

(1) 23.00 

(2) 27.38 

(3) 32.83 
 

[32] 

1 = static                                                                      
2 = static with 
makeup                                                             
3 = occasional motion                                                                           
4 = frequent motion 

(1) 4      
(2) 3      
(3) 3      
(4) 2 

1 min 
640x480 
(30 fps) 

TD 

 MAE (ms) 

 SDNN RMSSD 

(1) 2.01 4.33 

(2) 3.61 3.54 

(3) 11.94 24.00 

(4) 6.05 12.37 
 

N: number of subjects; fps: frames per second; SA: signal analysis; FD: frequency-domain; TD: time-domain 

(NN or PP time series); r: Pearson correlation coefficient; ρc: concordance correlation coefficient; *: p<0.001; 

n.u.: normalized units; †: only for the acquisition of frequency-domain parameters of HRV; PRV: pulse rate 

variability (time series between consecutive pulse beats). The MAE results from [31, 32] are calculated in this 

thesis to obtain a mean value of the individual results (note: the recordings of the occasional and frequent 

motion categories [32] were performed by the same subject). For comparison purposes, only were included the 

parameters that were calculated in this thesis. 
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2.4 Respiratory signal analysis by alternative methods 

The interest of measuring physiological parameters using alternative methods 

also involves the respiratory signal analysis. In this respect, some authors have 

proposed several non-contact methods through the use of recording devices such 

as video [23-25, 29, 33-67], thermal/infrared [68-78] and depth imaging cameras 

[79-84], as well as other sensors [85-87] with the aim of measuring respiratory 

parameters. In these studies, several applications have been presented such as the 

monitoring of respiration in neonates in order to prevent the sudden infant death 

syndrome (SIDS) [44, 47, 51], as part of a non-contact vital sign monitoring 

system in a clinical environment [42, 54, 64], for sleep monitoring [77, 78], as a 

spirometry test [60], in telemedicine [40], for detection of vital signs in 

hazardous environments [66], etc. 

Alternatively, other authors have acquired the respiratory signal from the 

ECG or PPG signal [88-99] or through the signals recorded with the built-in 

cameras of smartphones or tablets [100-105]. In these cases, the respiratory 

signal can be obtained because some components of the respiration such as the 

amplitude and frequency can be extracted from these recordings by performing 

an appropriate signal processing. 

In the interest of our study, some works have proposed non-contact video 

camera-based methods to estimate the instantaneous and average respiratory rate 

and have reported statistical results of the measurements. Bousefsaf et al. [29] 

proposed a motion-tolerant method to measure the instantaneous breathing rate 

from the face area at rest and with predefined head movements. In this study, the 

respiratory signal was recovered from the instantaneous heart rate series. To 

achieve this, a linear interpolation was carried out on the beat-to-beat series and 

then a CWT was performed between 0.15 and 0.4 Hz, which is a frequency band 

commonly assessed in a HRV analysis. The respiratory signal was obtained 
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through a weighted reconstruction from the CWT and, subsequently, the 

instantaneous breathing rate was measured by computing the intervals between 

the respiratory cycles. 

Alternatively, van Gastel et al. [53] presented a non-contact camera-based 

method to detect the instantaneous respiratory rate both in visible and dark 

lighting conditions. In both conditions, the subjects were in a sitting position and 

were asked to follow a breathing pattern that was displayed on a screen. The 

proposed algorithm by van Gastel et al. consisted of three processing steps: the 

tracking of a ROI (face) that is divided into subregions, a processing step in 

which weights are calculated for each subregion and the best are selected 

according to the SNR values of the pulse signals, and a scaling step for removing 

the influence of the pulse signal and thus only extract the respiratory signal. 

Cobos and Abderrahim [58] proposed a method for the contactless 

measuring of heart and respiratory rates by employing the iPPG technique 

through wavelets. This method allows the analysis of variations within a ROI 

corresponding to the face and abdomen of the subject. In this study, the 

experiments were carried out in a sitting position in front of a computer with a 

built-in camera. The subjects were asked to follow an ascending controlled 

respiration from 14 to 16 breaths/min and, then, a descending pattern from 16 to 

13 breaths/min. A manual selection of the ROI was performed in which the 

abdomen area was chosen to be analyzed by pixel averaging. The respiratory 

rate was measured by calculating the time interval between two peaks in the 

filtered signal. 

In another study, Al-Naji and Chahl [57] presented a non-contact monitoring 

system using a digital camera to simultaneously obtain the cardiorespiratory 

signal from a group of people. The algorithm proposed by Al-Naji and Chahl is 

based on the skin color changes and head motion which are consequences of the
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activities of the cardiovascular and respiratory system. The measurements were 

carried out in a stationary condition with as little movement as possible, and in a 

non-stationary scenario in which the subjects were allowed to move naturally, 

talking, blinking, and performing facial expressions. In general, the proposed 

algorithm includes the following processing methods: video magnification (color 

and head motion magnification based-methods), face detection, methods for 

removal of noise artifacts, frequency analysis and temporal filtering, and peak 

detection. 

Moreover, some works that have proposed non-contact methods using a 

video camera have estimated other different respiratory parameters such as 

dynamic volume measurements [38], forced expiratory volume in the first 

second (FEV1), forced vital capacity (FVC), peak expiratory flow rate (PEF) 

[60] and tidal volume (VT) [62]. Although most of the previously cited works 

have estimated respiratory parameters in humans, a few of them have obtained 

their corresponding measurements from animals [55, 56]. 

All these studies represent a promising alternative technique in which the 

respiratory parameters can be measured by employing non-contact methods and 

using low-cost devices. The wide variety of potential applications of the 

technique encourages its implementation for measuring several respiratory 

parameters in the near future. To this end, novel methods are needed in order to 

obtain a higher accuracy in the measurement of these parameters such as that 

achieved by current reference systems. 

 

2.5 Facial detection approaches 

Nowadays, object detection algorithms are employed in many computer vision 

applications such as facial and activity recognition, information security, 
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automotive safety, surveillance, among others. The interest of applying these 

algorithms in our daily life activities has increased in the last few years in order 

to provide novel solutions to diverse problems. In this respect, several 

approaches have been proposed with the aim of detecting a human face on an 

image [106-109]. 

Since these algorithms are based on different methods, some authors have 

reviewed and classified them into categories according to their technical 

approach. Hjelmås and Low [106] classified the face detection methods as either 

feature-based or image-based algorithms. In summary, they stated that the 

feature-based approaches are appropriate for real-time systems in which the 

color and motion is present and, in the case of the image-based methods, these 

were considered more robust for detecting faces on gray-scale static images. In 

the study, a comparative assessment of the algorithms was not provided due to 

the lack of standardized tests. 

Yang et al. [107] reviewed several techniques used to detect faces from a 

single intensity or color image, which were classified into four categories: 

knowledge-based methods (which encode information of a typical face), features 

invariant approaches (which look for structural features that remain in variations 

of pose, viewpoint or lighting conditions), template matching methods (which 

correlate an input image and stored patterns of faces), and appearance-based 

methods (which use models learned from a set of training images which 

constitute the variability of facial appearance). Yang et al. also declared the lack 

of consistency in the evaluation of the algorithms, which makes it difficult to 

conclude which face detection methods present the lowest error rates. 

More recently, Zhang and Zhang [108] reviewed and evaluated the face 

detection algorithms proposed in the first decade of the 21st century. This 

evaluation showed that the state of the art achieved about 50-70% detection rate 
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with 0.5-3% of false positives. Among these methods, the Viola and Jones 

approach [20] was presented as the algorithm that had the most impact in the 

2000’s. This method is able to run in real-time [110] and suitable to be used in 

applications such as digital cameras and photo organization software. To achieve 

this, the work proposed by Viola and Jones introduced three contributions: the 

integral image, the AdaBoost-based algorithm, and the cascade classifier. These 

contributions and other information related to the algorithm are detailed in 

section 2.5.1. 

Zafeiriou et al. [109] assessed several face detection methods in 

unconstrained conditions in a linked review to [108]. In this study, due to more 

recently developed methodologies, it was proposed to classify the algorithms 

into two major categories: rigid templates, which learned mainly by boosting-

based methods or by using deep neural networks, and deformable models, which 

represent the face by its parts. The Viola and Jones approach and its variations 

[20, 110] is the main representative work of the boosting-based algorithms 

family, which, in turn, belongs to the category of rigid templates. A comparative 

analysis of performance is presented in this study, which includes a comparison 

of recent and older popular representative techniques such as the OpenCV 

version of the Viola and Jones approach [110, 111]. In this analysis, it is noted 

an increase in performance in the last few years attributed to contributions from 

the Viola and Jones algorithm and robust features [112]. 

The Viola and Jones algorithm is a well-known face detection approach that 

is able to run in real-time, characterized by processing images much faster and 

achieving high detection rates and, until today, it is widely used in several 

applications and research. Therefore, the implementation of this algorithm is 

proposed in this investigation to detect the ROI of the subjects in order to obtain 

the iPPG signals. But, as a drawback, the method is less effective in detecting 

faces in non-frontal poses because of the Haar features employed by the 
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algorithm [108]. For instance, the application of this approach may not be 

suitable for tracking the face of a subject in a real-life scenario. Hence, it is also 

proposed the application of the KLT algorithm [113-115] in conjunction with the 

Viola and Jones approach as a more robust face detection-tracking method. 

2.5.1 Viola and Jones algorithm 

Within the face detection approaches, the algorithm proposed by Viola and 

Jones [20] is a relevant and very commonly used method in computer vision 

software. It enables regions of the face to be detected on a video frame by using 

rectangular Haar-like features (Fig. 2.8). Different types of rectangle features are 

employed by the algorithm, which are classified according to the number of 

rectangles that compose them. These features can consist of two, three or four 

adjacent rectangles located on a horizontal or vertical position. 

 

Fig. 2.8   Some examples of rectangle features: (top) two-rectangle features; (bottom-left) three-
rectangle feature; (bottom-right) four-rectangle feature. (Source: P. Viola and M. Jones, “Rapid 

object detection using a boosted cascade of simple features” [20]). 
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The features values are obtained from the difference between the sums of 

intensities of the pixels within the white and grey rectangles. For example, the 

value of a three-rectangle feature is the difference between the sum within the 

outside rectangles and the corresponding sum of the central rectangle. The 

employed detector of the algorithm has a base resolution of 24x24, which cause 

a very large number of rectangle features. Therefore, in order to perform a fast 

and efficient object detection, the Viola and Jones algorithm provides three main 

contributions: the integral image, the AdaBoost-based algorithm, and the 

cascade classifier. 

§ Integral image: because of the number of rectangle features is very large, 

which means a high computational cost, it was introduced the integral 

image (ii). By using this approach, it is possible to calculate the values of 

the rectangle features much faster. The integral image contains at the 

location (x, y) the sum of pixels both above and to the left of this location of 

the original image (i) 

 

Thus, by using the values of the locations of the integral image, it is 

possible to obtain the sum of the pixel values within a specific region. For 

example, the sum of pixels of a rectangle D is calculated as D=4+1-(2+3), 

in which the locations 1, 2, 3 and 4 are the sum of pixels of their 

corresponding rectangles (Fig. 2.9). 
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Fig. 2.9   The sum of pixels in a specific region using the integral image values. The sum of 
pixels in the rectangle D is calculated as D=4+1-(2+3), in which the location 1 is the sum of 
pixels in A, 2 is the corresponding sum in A+B, 3 is the sum in A+C, and 4 is the sum in 
A+B+C+D. (Source: P. Viola and M. Jones, “Rapid object detection using a boosted 
cascade of simple features” [20]). 

§ AdaBoost-based algorithm: because not all features are relevant, a 

learning algorithm based on AdaBoost is used to find relevant ones and to 

construct a strong classifier with the selected features. A relevant feature is 

that which causes a good distinction between an object and one that is not. 

The feature is part of a weak classifier only if it is able to detect more than 

half of the cases. It is defined as follows

  

in which hj(x) is the weak classifier, x is the 24x24 pixel sub-window of the 

original image, pj is a parity, fj is the feature, and θj is a threshold. Fig. 2.10 

shows examples of features selected by the AdaBoost-based algorithm and 

the comparison of intensities with regions of a face. 
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Fig. 2.10   Examples of features selected by the algorithm based on AdaBoost and the 
comparison of intensities with regions of a face: (top-left, bottom-left) feature with 
resemblance to the regions of eyes and cheeks (eyes are usually darker than the cheeks); 
(top-right, bottom-right) feature with resemblance to the regions of eyes and the bridge of 
the nose (eyes are usually darker than the nose). (Source: P. Viola and M. Jones, “Rapid 

object detection using a boosted cascade of simple features” [20]). 

§ Cascade classifier: due to most of the sub-windows of the original image 

are negatives, a cascade classifier is used to find out quickly if the sub-

window has the object or not. The cascade classifier is divided into several 

stages (classifiers), in which each stage contains a certain number of 

relevant features. The features are distributed into the stages instead of 

evaluating all of them in each sub-window. Each stage evaluates if the sub-

window contains the object or not. If so, the sub-window passes to the next 

stage, otherwise, the sub-window is rejected (Fig. 2.11). The first stage of 

the cascade may include some of the most basic features with a 

resemblance to the regions of a face, as shown in Fig. 2.10. 
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Fig. 2.11   Schematic representation of the cascade classifier. Each stage evaluates if the sub-
window contains the object or not. If so, the sub-window passes to the next stage, otherwise, 
the sub-window is rejected. Further processing may vary depending on the detection system. 
(Source: P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple 

features” [20]). 

This cascade structure allows the fast rejection of a sub-window that does 

not contain the object, which reduces considerably the computational cost. 

The AdaBoost-based algorithm trains the stages of the cascade by adjusting 

the threshold in order to reduce the false negative cases. 

2.5.2 KLT algorithm 

Some studies of the state of the art have proposed the use of the Viola and Jones 

algorithm to carry out the ROI detection in each frame of the video sequence. 

However, the application of this algorithm to detect the ROI along a video 

sequence may be computationally expensive and not always robust, especially in 

the detection of faces in non-frontal poses. One approach proposed to deal with 

the high computational cost is the KLT algorithm [113-115]. This approach 

allows the tracking of a set of feature points along a video sequence. It is a 
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robust algorithm that is able to track objects during changes of factors such as 

the scale and orientation. Thus, the algorithm can be employed to track a moving 

object such as a person, and particularly, the face of the subject along a video 

sequence. 

With the aim of performing a reliable tracking of an object, it is important to 

select good features to track. For this purpose, Shi and Tomasi [115] developed 

an algorithm in order to identify features points that could be reliably tracked. 

To achieve this, the criterion for selecting a good feature is established according 

to the following equation, which should be solved during the tracking 

                                            

in which Z is a symmetric 2x2 matrix, d is the translation of the feature 

window’s center, and e collects the last two entries of an error vector that 

depends on the difference between the two images involved. According to Shi 

and Tomasi, it is possible to track a window from frame to frame if the equation 

2.3 represents good measurements, as well as if it can be solved reliably. In that 

case, the symmetric matrix Z has to be superior to the noise level and well-

conditioned. In the noise level condition, the two eigenvalues 1 and of Z 

must be large, which can represent features that can be tracked in a reliable 

manner. On the side of the well-conditioned requisite, both eigenvalues cannot 

be very different in terms of magnitude. Thus, if the criterion shown as follows 
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is met, in which  is a predefined threshold, then, the window is accepted. The 

value of is chosen halfway between lower and upper bounds, which are 

previously obtained by measuring the eigenvalues from a region of 

approximately uniform brightness and from a set of various types of features, 

respectively. Thus, this method for feature selection is focused on distinguishing 

between good and bad features in order to maximize the robustness of the 

tracking. 

Furthermore, in order to make more robust the tracking, it is possible to 

enable a maximum bidirectional error due to the presence of noise along the 

video sequence. This bidirectional error is the distance calculated in pixels from 

the original location of the feature points to their final position after the 

backward tracking [116, 117]. If the error calculated is greater than the 

maximum bidirectional error set in the algorithm, then, the corresponding 

features points are dropped. 

The estimation of a geometric transformation between the feature points of 

adjacent frames is established in the implementation of the algorithm in order to 

exclude outliers [118]. The M-estimator sample consensus (MSAC) algorithm 

[119] is the method employed to run this function. In case of a considerable loss 

of feature points during the tracking, the reacquisition of points could be 

performed as often as necessary. 
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Materials and methods 

 
 

 

 

This chapter describes the materials and methods used throughout the research, 

which are referenced in the thesis to provide a quick access to their description. 

Other specific information is described in the corresponding chapters. 

 

3.1 Instrumentation 

All measurements of this thesis were performed on a simultaneous recording of 

a video camera and a reference system in a sitting position. A representation of 

Chapter 3 



Chapter 3 – Materials and methods 

36 
 

this configuration is illustrated in Fig. 3.1. The measurements were conducted 

according to the principles defined in the Declaration of Helsinki. 

 

Fig. 3.1   Data acquisition set-up of the measurements. 

3.1.1 Reference systems 

A reference signal was recorded to evaluate the agreement of the measurements 

obtained by the video imaging method. The reference systems used to record the 

data were: 

§ MP36 BIOPAC Systems, Inc.: two input channels were used on this 

reference system (Fig. 3.2). The first channel was used to record the 

reference signal, and the second one to record a sawtooth signal in order to 

facilitate the synchronization of the heart rate signals (see section 4.2.4).  

 

Fig. 3.2   MP36 BIOPAC Systems, Inc. reference system. 
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The ECG or PPG signal was recorded as the reference data of the 

measurements. The SS2LB BIOPAC Systems, Inc. lead set (Fig. 3.3 (left)) 

is a fully-shielded cable that was used to record the ECG signal and that 

minimizes interferences during the recording of the ECG signal. The lead II 

configuration, which consists of three electrodes around the chest area (Fig. 

3.3 (right)), was used to record the ECG signals. 

 

Fig. 3.3   (Left) SS2LB BIOPAC Systems, Inc. lead set.; (right) lead II ECG configuration 
(source: © RnCeus.com). 

It is one of the most common monitoring configurations because it has a 

positive and well pronounced R wave to detect the RR intervals. The 

terminals of this configuration are connected to the corresponding lead set 

cables as follows: 

§ Positive terminal (+) → red cable 

§ Negative terminal (-) → white cable 

§ Ground terminal (G) → black cable 
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The SS4LA BIOPAC Systems, Inc. finger pulse sensor (Fig. 3.4 (left)) was 

used to record the PPG signal. This reflectance-mode PPG sensor is a 

transducer that consists of an infrared emitter and a photodiode detector 

(Fig. 3.4 (right)). It converts the capillary blood volume variations to an 

electrical pulse signal via optical methods. The reflected infrared light, 

which depends on the blood volume changes, is detected by the photodiode 

in order to measure these variations. 

 

Fig. 3.4   (left) SS4LA BIOPAC Systems, Inc. finger pulse sensor; (right) diagram of the 
reflectance-mode PPG sensor. 

In both reference signals, the data was recorded at a sampling frequency of 

1 kHz in order to satisfy the established recommendations by the Task 

Force of the European Society of Cardiology and The North American 

Society of Pacing and Electrophysiology [2]. For a more detailed 

description of this requirement refer to section 2.2.3. 

§ ECG acquisition system: it was used as an alternative option to record the 

ECG signal. It consists of an ECG acquisition board, an isolated amplifier, 

and a NI USB-6212 DAQ device (Fig. 3.5), which are described below. 

Infrared 
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Fig. 3.5   ECG acquisition system that consists of an ECG acquisition board, an isolated 
amplifier, and a NI USB-6212 DAQ device. 

Ø ECG acquisition board: in general, it consists of four circuit stages: a 

preconditioning and first amplification stage, a high-pass filter and second 

amplification stage, a notch filter, and a low-pass filter. For a more detailed 

description of each stage and its corresponding electrical diagram, refer to 

the appendix (section A.1). The input signal of the ECG acquisition board is 

obtained from an ECG lead set and the corresponding output is connected to 

the isolated amplifier (Fig. 3.6). 

 

Fig. 3.6   ECG acquisition board. 
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Ø Isolated amplifier: its main function is to protect the subject from any 

accidental contact with the electrical power line (Fig. 3.7). Its input is 

supplied from the output of the ECG acquisition board and its output is 

connected to the NI USB-6212 DAQ. It is powered by a ± 12 V power 

supply and the ± 9 V isolated output powers the ECG acquisition board. 

The gain of the amplifier is 1. 

 

Fig. 3.7   Isolated amplifier powered by a ± 12 V power supply. The ± 9 V isolated output 
powers the ECG acquisition board. The gain of the amplifier is 1. 

Ø NI USB-6212 DAQ: it is a multifunction data acquisition device that has 

16 analog inputs (16-Bit, 400 kS/s), 2 analog outputs (16-Bit, 250 kS/s), 

and 32 digital I/O (Fig. 3.8). It is bus-powered which provides an easy 

portability and data transfer to computers. 

 

Fig. 3.8   NI USB-6212 DAQ device. 
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Likewise, two inputs of this device were used for data acquisition. One 

input was utilized to record the ECG signal obtained from the isolated 

amplifier and the second one to record a sawtooth signal. The data were 

recorded at 1 kHz using the LabVIEW software. 

§ RespiBand by plux of FICOSA International S.A.: it is an inductive 

chest band capable of measuring the respiratory signal (Fig. 3.9). The band 

measures the displacements of the chest or abdomen caused by the 

respiration. A module is connected to the band, which records and sends the 

data by Bluetooth to the computer. The sampling frequency of the inductive 

band is 40 Hz. 

 

Fig. 3.9   (Left) RespiBand by plux of FICOSA International S.A.; (right) subject using the 
band during the recordings. 

3.1.2 Video cameras 

One of the objectives of this research is the performance analysis of commercial 

cameras in obtaining the iPPG signal. Three camera models with different 

features were evaluated in the measurements (Fig. 3.10): 
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§ GoPro HERO3 silver edition: it is a versatile model that has been widely 

used lately in different scenarios and has the capability of diverse video 

resolutions. Depending on the resolution, it is possible to record videos 

from 24 to 120 frames per second (fps). It has the capability of Wi-Fi 

connection which enables its operation by using its own mobile phone 

application. Its small size facilitates its portability. 

§ Logitech HD Pro Webcam C910: similarly to the GoPro model, this 

camera also has the capability of different video resolutions but with a 

lower number of fps. The maximum frame rate achievable is 30 fps, which 

is reached at the video resolution of 640x480 pixels. The camera enables 

the manual adjustment of diverse parameters such as focus, gain, exposure 

time, and others. It can only be operated by using a computer with a USB 

connection. 

§ iPhone 4s: it is a phone model that has back and front built-in cameras with 

the capability of recording at two video resolutions. The front camera 

records at 640x480 pixels and the back camera at 1920x1080 pixels, both 

up to 30 fps. It has the capability of autofocus, which may be disabled. 

   

Fig. 3.10   Camera models: (Left) GoPro HERO3 silver edition; (middle) Logitech HD Pro 
Webcam C910; (right) iPhone 4s. 
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3.1.3 Function waveform generator 

An Agilent 33220A function waveform generator (Fig. 3.11) was used to 

facilitate the synchronization of the heart rate signals. A sawtooth signal of 1 Hz 

was provided by the function waveform generator in order to achieve the 

alignment of the signals, as described in section 4.2.4. 

 

Fig. 3.11   Agilent 33220A function waveform generator. 

3.1.4 Light meter 

An Amprobe LM-100 light meter (Fig. 3.12) was utilized to measure the light 

intensity in lux units that illuminated the face of the subjects (refer to section 

6.1.2). Thus, it is possible to ensure the same illuminance, for example, between 

subjects or when different sources of illumination are compared. 

 
Fig. 3.12   Amprobe LM-100 light meter.
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3.2 Statistical parameters and plots 

The following statistical parameters and plots were calculated to measure the 

agreement and the error between the reference system and the proposed method 

by video imaging. 

3.2.1 Correlation coefficients 

§ Pearson’s correlation coefficient (r): it is a statistical parameter used to 

measure the linear association between two continuous variables x and y. It 

is defined by 

 

in which r ranges from the -1 to +1 interval. A value of +1 indicates a 

perfect positive association, 0 means no association, and -1 indicates a 

perfect negative association. 

§ Intraclass correlation coefficient (ICC): it is a statistical parameter that 

measures absolute agreement between two continuous variables 

 

in which T represents the mean of the replicate measurements of the 

variable of interest and, e is the difference between a single measurement X 
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and its underlying mean value T. In general, ICC values below 0.4 represent 

poor agreement, values between 0.4 and 0.75 indicate a good agreement, 

and values above 0.75 represent an excellent agreement in the 

measurements [120]. 

3.2.2 Measurement errors 

§ Mean bias error (MBE): it is a measure used to indicate the presence of 

bias in the measurements. It is defined as 

 

in which pi is the predicted value and oi is the observed value. 

§ Mean absolute error (MAE): it is a measure that represents the average of 

the absolute errors between two continuous variables. It is defined as 

 

in which pi is the predicted value and oi is the observed value. 
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§ Mean absolute percentage error (MAPE): it is a measure that expresses 

accuracy as a percentage of the error between two continuous variables. It is 

defined as 

 

in which pi is the predicted value and oi is the observed value. 

§ Root mean square error (RMSE): it is a common measure of the 

differences between two continuous variables, but in comparison with MAE, 

RMSE punishes large errors. It is defined as 

 

in which pi is the predicted value and oi is the observed value. 

3.2.3 Bland-Altman plot 

Bland-Altman plots with limits of agreement (LoA) of 95% were obtained to 

compare the measurements from the reference system and video, as well as to 

detect the presence of systematic errors. It is a plot used to assess the agreement 

between two methods of clinical measurement [121]. Each point on the plot is 

represented by the mean of the measurements x and y obtained by the two 
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methods on the X-axis, and by the difference between these measurements on 

the Y-axis  

                      

The LoA of 95% were calculated as the mean difference ± 1.96 the standard 

deviation of the differences 

 

If the differences obtained between the methods are not considered clinically 

important, both may be used interchangeably. 
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Video HRV analysis: initial 

measurements 

 

 

 

In the last few years, some studies have measured HR or HRV parameters using 

a video camera [11-14]. This technique focuses on the measurement of the small 

changes in skin color caused by blood perfusion. In this chapter, the HR and 

HRV were measured using a video of the face of the subject. A cross-correlation 

analysis was performed with the aim of finding the face regions that provide 

more information on HR. The face areas that obtained high correlation values 

were the chosen positions to obtain the iPPG signal. The video recordings were 

obtained with two cameras at different video resolution. The statistical analysis 

showed a good agreement between the reference system and the video, as well 

as notable differences in performance between both cameras. 

Chapter 4 
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4.1 Data acquisition set-up 

A summary of the measurement set-up is shown below: 

§ 12 subjects (3 women, 9 men) between 23 and 35 years old were recorded 

with an iPhone 4s camera at 640x480 pixels (low-resolution video) and 30 

fps (see section 3.1.2).  

§ 15 subjects (3 women, 12 men) between 23 and 35 years old were recorded 

with a Logitech webcam at 1920x1080 pixels (high-resolution video) and 

15 fps (see section 3.1.2). 

§ The recordings were obtained in stationary conditions (see Fig. 3.1).    

§ The recording length was 50 s. 

§ The approximate distance between the camera and the face was 40 cm in 

the iPhone 4s videos and 30 cm in the case of the Logitech recordings. 

§ The videos of both cameras were not performed on simultaneous recording. 

§ The recordings were performed indoors with sunlight as the lighting source. 

 

4.2 Video and signal processing 

4.2.1 Frame averaging 

Although the measurements were performed in stationary conditions, a 

procedure of pixel averaging was carried out in order to attenuate small motion 

artifacts [24, 27]. The average of a number of rows and columns of pixels was 

performed to obtain a representative mean value by zone. The green channel of 

the video was used to perform the pixel averaging, as well as in the acquisition 

of the iPPG signals of this thesis [17, 18]. The videos recorded with the Logitech 

model were averaged on blocks of 40 pixels and those of the iPhone camera on 

blocks of 20 pixels. The frame average procedure was carried out on each frame 
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of the video sequence. For example, the video frames of 1920x1080 pixels were 

averaged to obtain reduced images of 48x27 blocks (Fig. 4.1). 

 

Fig. 4.1   (Left) frame of 1920x1080 pixels; (right) averaged frame of 48x27 blocks. 

Once the video frames were averaged, a manual selection of the ROI was 

carried out by including most of the face area (Fig. 4.2). The selected ROI 

allows the acquisition of an iPPG reference signal in order to be employed in the 

cross-correlation analysis. 

 

Fig. 4.2   (Left) selected ROI on video frame; (right) equivalent ROI on the averaged frame. 
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The values of the blocks within the ROI were averaged along the sequence 

of reduced images to obtain an iPPG reference signal. A first-order bandpass 

Butterworth filter between 0.6 and 2 Hz was applied to remove low-frequency 

(respiration and motion) and high-frequency components (electronic noise in the 

optical sensor of the camera) (Fig. 4.3). These cut-off frequencies correspond 

from 36 to 120 bpm, which cover normal values of heart rate at rest. 

 

Fig. 4.3   (Top) raw iPPG reference signal; (bottom) iPPG reference signal after applying the filter. 

4.2.2 Cross-correlation analysis  

A cross-correlation analysis (Eq. 4.1) was performed with the aim of finding the 

blocks positions that could provide more information on HR 

 



4.2   Video and signal processing 
 

53 
 

in which x(n) is the iPPG reference signal and y(n-l) correspond to the signals 

formed by the values of each block position along the sequence of averaged 

frames. The similarity between the iPPG reference signal and all signals 

corresponding to each block position were measured by this method. The noise 

components of all these signals were removed by using the bandpass filter 

applied previously to the iPPG reference signal. 

Clearly, the signals obtained from a distant block position from the face area 

achieved lower correlation results. As an example, the signal obtained from the 

first block position (row=1, column=1) achieved a maximum cross-correlation 

value of 0.2271 (Fig. 4.4). 

 

Fig. 4.4   (Top) iPPG reference signal; (middle) signal obtained from the first block position 
(row=1, column=1) along the sequence of averaged frames; (bottom) result of the cross-correlation 
analysis with a maximum value of 0.2271. 
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By contrast, the signals obtained from a block position of the face area 

achieved higher correlation results, especially from the forehead and cheek 

regions. These regions have a major blood perfusion in the face which provides 

more information on the heart rate [27]. Fig. 4.5 shows the signal obtained from 

a block position of the forehead region (row=9, column=24) and the result of the 

cross-correlation analysis, which achieved a maximum value of 0.9409. 

 

Fig. 4.5   (Top) iPPG reference signal; (middle) signal obtained from a block position of the 
forehead region (row=9, column=24) along the sequence of averaged frames; (bottom) result of 
the cross-correlation analysis with a maximum value of 0.9409. 

The maximum value of the cross-correlation of each block position was 

stored in a matrix. These values were compared with a threshold of 0.7, within a 

range from 0 to 1, to distinguish between positions with high and low correlation 

results. On average, this threshold achieved better correlation and error results 

for all the video signals in comparison with lower and higher threshold values. It 
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presents a good compromise that allows a distinction between regions with a 

greater cardiac component (forehead and cheeks) in comparison with other parts 

of the face (eyes, mouth, and nose) and zones with the absence of a cardiac 

component. The values of block positions that were above the threshold and 

within the ROI were classified as high cross-correlation positions (Fig. 4.6). 

 

Fig. 4.6   (Left) matrix of maximum cross-correlation values; (right) matrix of high cross-
correlation positions (yellow blocks). 

4.2.3 iPPG signal acquisition  

The values of the high cross-correlation positions were averaged on each 

reduced frame to obtain a raw iPPG signal. A first-order bandpass Butterworth 

filter between 0.6 and 2 Hz was applied to remove low and high-frequency noise 

components. Then, a cubic spline interpolation was performed to improve the 

temporal resolution from the sampling frequency of video to 1 kHz. Fig. 4.7 

shows the iPPG signal results obtained from a subject. 

According to the Task Force of the European Society of Cardiology and the 

North American Society of Pacing and Electrophysiology, a minimum sampling 

rate is required to perform an appropriate HRV analysis [2]. An optimal range is 

established between 250-500 Hz or even higher. Therefore, the frequency of 1 

kHz was chosen to record the reference signal, as well as to improve the 
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temporal resolution of the iPPG signal. The signal processing described 

hereinafter was carried out in all measurements of this study. 

 

Fig. 4.7   iPPG signals obtained from a subject: (top) raw signal; (middle) filtered signal; (bottom) 
interpolated signal. 

4.2.4 Synchronization of the signals  

The alignment of the heart rate signals was necessary to perform a comparative 

HRV analysis since the camera and the reference system were not synchronized 

in time. A sawtooth signal of 1 Hz was obtained from a function waveform 

generator and recorded by the reference system. The sawtooth signal was also 

obtained by video from the green light emitting diode (LED) connected to the 

function waveform generator and positioned close to the participants (Fig. 3.1). 

The LED was turned on when both systems were recording and then turned off 

before the recordings ceased. 
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The sawtooth signal by video was obtained by measuring the changes in the 

light intensity of the LED along the video sequence (Fig. 4.8). Thus, by 

calculating the time offset between the sawtooth signals, the heart rate signals 

were synchronized adjusting the same delay between them (Fig. 4.9). 

  

Fig. 4.8   Sawtooth signal acquisition: (top) frame with LED off; (bottom) frame with LED on. 

 

Fig. 4.9   Synchronized signals: (top) sawtooth signals; (bottom) heart rate signals. 
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4.2.5 Artifacts correction  

Once the signals were synchronized, the local maxima were detected in order to 

calculate the NN intervals. The Pan-Tompkins algorithm was employed to detect 

the peak of the QRS complexes of the ECG signals [122]. In the case of the PPG 

and iPPG signals, the local maxima were detected. A representation of the local 

maxima detection is shown in Fig. 4.10. Subsequently, an artifact correction was 

carried out when false positive or false negative measurements affected the NN 

time series. The NN intervals falling outside established thresholds were 

identified as artifacts and replaced with new values. The thresholds were defined 

as the median ± 4 standard deviations of the NN time series. 

 

Fig. 4.10   Local maxima detection on the heart rate signals. 

When a false positive (false beat) was detected, two incorrect intervals were 

originated in the NN time series. These erroneous measurements are usually 

shorter than the expected values because they correspond to one NN interval. 

Thus, the incorrect measurements were replaced with the sum of their 

corresponding values. In the case of NN measurements above the upper 

threshold caused by a false negative (missing beat), they were replaced with the 

average of the five previous NN intervals. 
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Furthermore, the absolute values of the differences between adjacent NN 

measurements (NN-NN) that were above the median + 4 standard deviations of 

the NN-NN series were identified as outliers. These outliers were also replaced 

by following the same procedure as that in a false negative case. 

 

4.3 HRV analysis 

A HRV analysis was performed according to the established recommendations 

(refer to section 2.2.3). Some of the most common time and frequency domain 

parameters of HRV were calculated in the analysis (refer to sections 2.2.1 and 

2.2.2). The time-domain parameters were calculated in MATLAB® and the 

frequency-domain parameters were obtained with the Kubios HRV software 

(version 2.2) by using the calculated NN time series. A comparative example of 

the NN intervals obtained by the calculation of time between consecutive local 

maxima is illustrated in Fig. 4.11. The LF and HF components were reported in 

n.u. These parameters were obtained by the Welch’s method, which employs the 

FFT for the calculation of PSD.    

 

Fig. 4.11   NN intervals of reference and video obtained from a subject. 
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4.4 Results and discussion 

4.4.1 Low-resolution video 

Table 4.1 presents the statistical results of the NN time series achieved by each 

subject using the iPhone 4s front camera (640x480 pixels and 30 fps). It is noted 

a wide variety of results. The correlation coefficients reached maximum values 

of 0.984 and 0.973 and, in contrast, lower correlation values of 0.736 and 0.753 

were obtained as well. The mean ± standard deviation (x̄ ± s) of the individual 

results were calculated to obtain an overall perspective of the data. The Pearson 

and ICC measures were 0.847 ± 0.088 and 0.837 ± 0.096, respectively. The 

mean of the errors achieved a MAPE = 2.49 %, which corresponds to a MAE = 

22.27 ms or an RMSE = 29.44 ms.    

Table 4.1   Statistical results of the NN time series by subject (iPhone 4s) 

1 0,917 0,912 -0,80 0,01 19,41 1,04 1,83 24,31 1,31

2 0,861 0,852 -0,32 -0,01 20,07 0,88 1,71 25,90 1,16
3 0,779 0,766 -0,25 -0,06 24,02 1,65 2,57 33,48 2,30
4 0,984 0,984 0,15 -0,03 11,07 0,61 1,06 13,62 0,75
5 0,973 0,972 0,12 -0,05 10,88 0,94 1,30 13,70 1,23
6 0,736 0,704 0,52 -0,34 28,88 3,86 4,28 36,06 4,94
7 0,784 0,752 -0,14 -0,20 29,09 3,17 3,89 35,58 3,93
8 0,925 0,924 1,24 -0,17 24,98 1,97 2,85 31,54 2,56
9 0,785 0,772 0,55 -0,13 35,64 1,77 3,23 51,80 2,57
10 0,753 0,750 0,29 -0,06 21,79 1,47 2,31 34,26 2,20
11 0,778 0,776 0,79 -0,11 25,96 1,89 2,84 33,51 2,51
12 0,883 0,874 -0,16 -0,05 15,40 1,58 2,01 19,49 2,05

Mean 0,847 0,837 0,17 -0,10 22,27 1,74 2,49 29,44 2,29

S.D. 0,088 0,096 0,55 0,10 7,44 0,95 0,99 10,78 1,20

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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Fig. 4.12 shows the correlation scatter plots of the HR and HRV parameters 

obtained by the iPhone 4s camera, and Table 4.2 presents the corresponding 

statistical results of the data. The HR, NNmean, SDNN, and frequency-domain 

parameters achieved the best correspondence results and, conversely, the time-

domain parameters RMSSD and pNN50 obtained a noticeable lower agreement. 

 
 

Fig. 4.12   Correlation scatter plots of the HR and HRV parameters (iPhone 4s). Refer to Table 4.2 
for r and ICC results. 

Table 4.2   Statistical results of the HR and HRV parameters (iPhone 4s)  

HRmean (bpm) 1,000* 1,000* 0,10 0,14

NNmean (ms) 1,000* 1,000* 0,44 0,56
SDNN (ms) 0,948* 0,811* 8,29 9,39
RMSSD (ms) 0,729** 0,425** 22,41 25,96
pNN50 (%) 0,716** 0,453** 17,11 20,86
LF (n.u.) 0,900* 0,872* 9,69 12,96
HF (n.u.) 0,900* 0,873* 9,62 12,88
LF/HF 0,940* 0,826* 0,86 1,33

Parameter r ICC RMSEMAE

 
*: p < 0.001, **: p < 0.05. Refer to section 3.2 for statistical parameters definitions. 
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Moreno et al. [27] also performed a video HRV analysis carrying out a 

procedure of pixel averaging prior to obtaining the iPPG signals. In this study, 

the video resolution and frame rate were the same as those used in our work. In 

the case of the sitting posture results (refer to Table 2.3), the time-domain 

parameters reported by Moreno et al. achieved a higher correlation agreement in 

comparison with the ICC results presented in Table 4.2. By contrast, the 

frequency-domain parameters obtained lower correlation values than those 

reported in our study, particularly the LF/HF component. 

With the aim of conducting the analysis in as fair a way as possible, the 

results obtained throughout this work are contrasted with data reported in 

reference works carried out in similar conditions. Therefore, in this case, only 

the results obtained in the sitting position by Moreno et al. are discussed in this 

section. Also, it is important to note that in terms of agreement measurement, the 

ICC measure is almost identical to the concordance correlation coefficient (ρc) 

[123] measured by Moreno et al. Nevertheless, in both works, the RMSSD and 

pNN50 parameters obtained a significant low agreement among all the HRV 

parameters. 

On the other hand, Sun et al. [24] conducted a PRV analysis focused on the 

palm of the subject’s hand. In the study, a procedure of reduced frames by pixel 

averaging was carried out to attenuate small motion artifacts. The PRV 

parameters achieved good Pearson’s correlation values (refer to Table 2.3), 

which present a better correspondence in comparison with the results reported in 

Table 4.2. The correlation data of the RMSSD and pNN50 components were not 

reported in the study, which are two parameters usually more affected in the 

statistical analysis. Based on the results reported by Sun et al., the method 

proposed by them seems a good option to perform a video PRV analysis.  
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4.4.2 High-resolution video 

Table 4.3 presents the statistical results of the NN time series achieved by each 

subject using the Logitech camera (1920x1080 pixels and 15 fps). In comparison 

with the results obtained with the iPhone 4s, most of the subjects obtained 

correlation coefficients above 0.9. The x̄ ± s of the Pearson and ICC measures 

increased to 0.926 ± 0.030 and 0.924 ± 0.032, respectively. The mean of the 

errors was improved to a MAPE = 1.99 %, which corresponds to a MAE = 16.85 

ms or an RMSE = 22.02 ms. 

Table 4.3   Statistical results of the NN time series by subject (Logitech) 

1 0,943 0,942 0,20 -0,04 18,64 0,96 1,72 24,95 1,28

2 0,926 0,926 0,39 -0,05 11,57 0,93 1,33 16,02 1,28
3 0,892 0,889 0,29 -0,07 10,88 1,27 1,52 15,26 1,81
4 0,877 0,875 0,06 -0,17 27,88 3,12 3,78 37,14 4,24
5 0,930 0,926 0,25 -0,13 16,32 1,67 2,11 21,54 2,37
6 0,975 0,976 -0,30 0,00 12,98 1,04 1,49 16,31 1,35
7 0,915 0,908 0,16 -0,17 20,77 2,07 2,67 27,37 2,80
8 0,960 0,960 -0,21 0,00 13,24 1,29 1,68 16,04 1,60
9 0,920 0,917 -0,43 -0,06 22,06 1,71 2,52 29,96 2,31
10 0,923 0,921 0,34 -0,10 15,91 1,66 2,09 21,23 2,25
11 0,950 0,951 1,11 -0,05 15,50 0,86 1,49 19,83 1,15
12 0,954 0,955 -0,40 0,01 17,84 0,84 1,58 21,70 1,03
13 0,879 0,870 1,12 -0,13 22,39 1,42 2,29 28,44 1,86
14 0,902 0,900 0,11 -0,07 17,38 1,89 2,33 22,09 2,41
15 0,949 0,947 0,06 -0,03 9,37 0,91 1,19 12,49 1,19

Mean 0,926 0,924 0,18 -0,07 16,85 1,44 1,99 22,02 1,93

S.D. 0,030 0,032 0,46 0,06 5,00 0,61 0,67 6,64 0,85

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p < 0.001. Refer to section 3.2 for statistical parameters definitions. 

Fig. 4.13 shows the correlation scatter plots of the HR and HRV parameters 

obtained by the Logitech camera, and Table 4.4 presents the corresponding 

statistical results of the data. High correlation results were obtained in all 



Chapter 4 – Video HRV analysis: initial measurements 

64 

 

parameters with values above 0.9 in most of them. The correlation scatter plots 

show an excellent correspondence in all parameters. 

 

Fig. 4.13   Correlation scatter plots of the HR and HRV parameters (Logitech). Refer to Table 4.4 
for r and ICC results. 

Table 4.4   Statistical results of the HR and HRV parameters (Logitech) 

HRmean (bpm) 1,000 1,000 0,07 0,09

NNmean (ms) 1,000 1,000 0,36 0,48
SDNN (ms) 0,977 0,935 4,41 5,11
RMSSD (ms) 0,962 0,867 10,21 11,54
pNN50 (%) 0,934 0,865 10,66 11,91
LF (n.u.) 0,974 0,954 4,30 6,49
HF (n.u.) 0,975 0,954 4,27 6,47
LF/HF 0,957 0,900 0,23 0,43

Parameter r* ICC* RMSEMAE

 
*: All p < 0.001. Refer to section 3.2 for statistical parameters definitions.  

By comparing the data showed in Table 4.4 with the corresponding results 

obtained with the iPhone 4s camera, it is noted an improvement of the statistical 
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data, especially in the RMSSD and pNN50 parameters. Likewise, the correlation 

results were improved in comparison with those obtained in the studies of 

Moreno et al. [27] and Sun et al. [24], which are discussed in section 4.4.1. 

Despite the higher frame rate of 200 fps utilized in the work of Sun et al., the 

results did not prove to be better. The lower video resolution and the analyzed 

ROI may have affected the measurements. Also, it is important to note that the 

sample size was larger in our work, but the recording length was longer in the 

study performed by Sun et al. 

In the case of the study of Moreno et al., one of the factors that may have an 

influence on the measurements is the video resolution, as the results obtained 

with the iPhone 4s camera. Moreno et al. recorded the videos with a resolution 

of 640 × 480 pixels, which is lower in comparison with the video resolution of 

the Logitech camera recordings. Moreover, it seems that the higher frame rate of 

30 fps has not been significant in improving the measurements. 

4.4.3 Bland-Altman plots 

Fig. 4.14 shows the Bland-Altman plots with LoA of 95% representing the 

agreement between the NN measurements of reference and video obtained by 

the two cameras. As expected, it is noted a difference in results between both 

datasets. The measurements obtained with the low-resolution videos presented 

larger differences between the reference and video than those achieved with the 

high-resolution recordings. The low-resolution recordings obtained LoA from -

60.82 to 61.19 ms (-5.45 to 5.23 bpm), and the high-resolution recordings 

achieved LoA from -44.72 to 45.07 ms (-4.30 to 4.16 bpm). Practically, no 

systematic errors were identified in the measurements obtained by both cameras. 
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Fig. 4.14   Bland-Altman plots with LoA of 95% representing the agreement between the reference 
and video (data of all subjects combined in one dataset): (left) low-resolution video (iPhone 4s 
camera) with a mean difference of 0.18 ms (-0.11 bpm) and LoA from -60.82 to 61.19 ms (-5.45 to 
5.23 bpm); (right) high-resolution video (Logitech camera) with a mean difference of 0.17 ms (-
0.07 bpm) and LoA from -44.72 to 45.07 ms (-4.30 to 4.16 bpm). 

4.5 Conclusions 

In this chapter is presented a video HRV analysis performed in stationary 

conditions. The method employs a cross-correlation analysis with the aim of 

finding the face regions that could provide more information on heart rate. The 

high cross-correlation positions of the averaged frames were the regions of the 

face that presented a greater cardiac component. Mainly, the forehead and 

cheeks were the areas that achieved high cross-correlation values, in comparison 

with other regions of the face such as the nose and eyes. 

The videos were recorded with two video cameras at different video 

resolutions, in which the results achieved by them presented noticeable 

differences. The low-resolution recordings obtained a wider variety of results 

between subjects on the measurement of the NN time series. The statistical 

results of the HR and HRV parameters also presented differences among them. 

The HR, NNmean, SDNN, and frequency-domain parameters achieved higher
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correlation results and, in contrast, the RMSSD and pNN50 components 

obtained a lower correspondence. 

In the case of the high-resolution recordings, the results were considerably 

better. Most of the subjects obtained correlation coefficients above 0.9 on the 

measurement of the NN time series. Also, high correlation values were obtained 

on the HR and HRV parameters with values above 0.9 in most of them. In this 

case, although the RMSSD and pNN50 components achieved good statistical 

results, they presented the lower correspondence among all parameters. In 

general, the correlation results of the HR and HRV parameters measured with 

the Logitech camera were improved in comparison with the corresponding data 

obtained in the studies of Moreno et al. [27] and Sun et al. [24]. 

Despite the higher frame rate of the low-resolution recordings, this feature 

did not yield better results. Taking into account that the same method was 

carried out to obtain the measurements of the low-resolution and high-resolution 

recordings, the video resolution seems to be significant in the difference of 

results. A higher resolution presents a major number of pixels to be analyzed 

and, hence, more data to obtain reliable measurements. Moreover, the frame 

reduction by pixel averaging could affect the results of the low-resolution 

recordings more, since the amount of data available to obtain the iPPG signal 

was reduced. 

Although the high-resolution recordings obtained good results, the employed 

method has the limitation that it can only be used in stationary conditions due to 

it identifies and evaluates fixed positions on the averaged frames to obtain the 

iPPG signal. Therefore, alternative methods are necessary to perform a video 

HRV analysis in motion conditions. 
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Video HRV analysis in stationary 

and motion conditions 

 

 

 

The state of the art shows that most of the works that have employed the video 

imaging technique have obtained HRV parameters in stationary conditions (refer 

to section 2.3.2), and there are practically no studies that obtain these parameters 

in motion scenarios and by conducting an in-depth statistical analysis. Therefore, 

this chapter proposes a selective tracking method using the Viola-Jones and KLT 

algorithms, with the aim of carrying out a robust video HRV analysis in 

stationary and motion conditions. Furthermore, given the importance of the 

sampling rate in a HRV analysis and the low temporal resolution of commercial 

cameras, an analysis of two models was carried out to evaluate their 

performance in the measurements. 

Chapter 5 
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5.1 Data acquisition set-up 

A summary of the measurement set-up is shown below: 

§ 15 subjects (3 women, 12 men) between 23 and 35 years old were recorded 

with a Logitech webcam at 1920x1080 pixels and 15 fps (see section 3.1.2). 

§ 5 subjects (1 woman, 4 men) between 23 and 35 years old were recorded 

with a GoPro camera at 1280x720 pixels and 60 fps (see section 3.1.2). 

§ The analyzed recordings were obtained in stationary and motion conditions 

(refer to section 5.1.2).   

§ The recording length was 50 s.  

§ The distance between the camera and the face was 0.3 m approximately. 

§ The videos of both cameras were performed on simultaneous recording. 

§ The recordings were performed indoors with sunlight as the lighting source. 

 

5.1.1 Performance analysis of video cameras 

The first study consisted of a comparative analysis of two commercial cameras 

with different features in order to evaluate their performance in the 

measurements. In this analysis, 5 subjects (1 woman and 4 men) were assessed 

in stationary and motion conditions (refer to section 5.1.2). 

One of the cameras (GoPro HERO3 silver edition) is a versatile model that 

has been widely used lately in different scenarios and has the capability of 

diverse video resolutions. Depending on the resolution, it is possible to record 

videos at different fps. A resolution of 1280x720 pixels was chosen in order to 

record at 60 fps, a higher number of fps than most of the commercial video 

devices are able to record. The aim of recording at a higher frame rate was to 

assess its influence on the measurements. 
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The other camera (Logitech HD Pro Webcam C910) also has the capability 

of different video resolutions, but with a lower number of fps. In this model, the 

videos were recorded at 1920x1080 pixels and 15 fps, which is the maximum 

frame rate achievable at this video resolution. This camera was chosen because it 

enables the manual adjustment of diverse parameters. The focus, gain, and 

exposure time were fixed in order to obtain an adequate focus and illumination 

of the face. Fixing these parameters also avoids automatic adjustments caused by 

the movements of the subject or ambient light changes. This manual 

configuration was not possible in the GoPro model. 

5.1.2 Stationary and motion analysis 

The recordings analyzed in this chapter were carried out in stationary and 

motion conditions. Firstly, a video was recorded asking the participants to 

remain still throughout the acquisition. Since the application of a tracking 

algorithm and the influence of motion were under evaluation, it was necessary to 

conduct an analysis in stationary conditions for comparison. Secondly, the 

participants were asked to perform lateral and forward/backward movements, 

always looking toward the camera and avoiding fast gestures. A total of 15 

subjects (3 women and 12 men) were analyzed in this chapter. The recordings of 

the Logitech webcam that were analyzed in chapter 4 are part of this study. 

5.2 Video and signal processing 

5.2.1 ROIs detection 

In order to perform an automatic ROI detection, instead of the manual selection 

done in chapter 4, the Viola and Jones algorithm was employed to detect the 

ROIs on the video recordings (refer to section 2.5.1). Once the algorithm was 

implemented, some problems arose such as multiple, incorrect or misdetections 
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of face or eyes. As shown in Fig. 5.1, the algorithm can incorrectly detect more 

than one ROI due to the eyebrows (Fig. 5.1 (left)) and the nose region (Fig. 5.1 

(right)) present a resemblance with the eyes area from the algorithm perspective. 

This occurs because the Viola and Jones approach employs Haar-like features 

that are compared in similarity to the image in terms of intensity (see Fig. 2.10), 

which may lead to an incorrect ROI detection. 

 

 
 

Fig. 5.1   Examples of multiple and incorrect ROIs detection using the Viola and Jones algorithm. 
The shown boxes aim to enclose the ROIs corresponding to the face and eyes regions. 

Some conditions were then established on the basis of the four-element 

vector specified in pixels, which defines the top-left coordinate (x, y), width (w), 

and height (h) of the ROI. The w and h of the ROI of the face (ROIf) and eyes 

(ROIe) were verified within the following pixel values: 

450 > ROIfw > 800,     450 > ROIfh > 800 

250 > ROIew >550,      50 > ROIeh > 150 

If the w or h value failed to meet the criterion, the ROI was rejected. In this case, 

a new detection attempt was carried out in the following frame until both ROIs 

were found. Fig. 5.2 shows examples of the ROIs selected in two subjects based 

on the established pixel values of w and h. 
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Fig. 5.2  Selected ROIs in two subjects based on the established values of width (w) and height (h). 

If both ROIs were within the established values, the four-element vectors [x, 

y, w, h] were modified according to the following percentages: 

ROIf = [ROIfx + 0.2 ROIfw,    1.1 ROIfy,    0.6 ROIfw,    0.6 ROIfh] 

ROIe = [ROIex - 0.1 ROIew,   0.85 ROIey,   1.2 ROIew,   1.8 ROIeh] 

The coordinates were modified with the aim of analyzing only the forehead 

and cheek regions (Fig. 5.3). Moreno et al. [27] showed that the forehead and 

cheeks have a greater cardiac component in comparison with other regions of the 

face. By using the coordinates of the ROIe, the eye area was excluded in order to 

reduce the artifacts produced by blinking. 

 
Fig. 5.3   Modified ROIs in two subjects according to the established percentages of the initial 
four-element vectors [x, y, w, h]. 
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5.2.2 Tracking of feature points 

The KLT algorithm was used to perform the tracking of the face and eyes along 

the video sequence (refer to section 2.5.2). In a study of the state of the art, 

Huang and Dung [32] proposed the Viola and Jones algorithm to detect the ROI 

in each frame of the video. This ROI detection method can be computationally 

expensive and not always robust, especially if the subject makes some type of 

movements. Therefore, the KLT algorithm was applied in this work as a more 

efficient tracking method. This approach enables the tracking of feature points in 

a video sequence, which gives the possibility to detect the ROI in each frame, 

even if the subject performs a tilting of the head (Fig. 5.4). 

 

Fig. 5.4   Tracking of the face and eyes in a subject: (left) lateral movement to the right; (middle) 
forward movement; (right) lateral movement to the left. 

The ROI size is adaptable in accordance with movements of the head or 

some facial expressions. For this reason, the feature points detected within the 

ROIe were eliminated to avoid changes in the ROI size caused by blinking, 

which may affect the measurements (Fig. 5.5). A great loss of feature points did 

not occur during the tracking, but the performing of faster and sudden 

movements would likely result in a major loss of points. In such a case, a 

reacquisition of feature points would be necessary in order to ensure a reliable 

tracking of the ROI. 
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Fig. 5.5   (Left) frame with feature points (in yellow) detected within the ROIf; (right) frame 
without feature points within the ROIe. 

5.2.3 Video image processing and signal acquisition 

The video image processing was aimed at analyzing the pixels corresponding to 

the skin and excluding regions that may contribute with artifacts. The frames 

were therefore converted into threshold-based binary images to highlight the 

skin from darker areas. Thus, the pixels within the ROIf and corresponding to the 

skin were analyzed and areas such as hair, eyebrows, and beard were excluded 

from the analysis. The pixels outside the ROIf and within the ROIe were also 

excluded. The corresponding image results were multiplied to obtain the final 

image to be processed, as illustrated in Fig. 5.6. 

 
Fig. 5.6   Video image processing: (a) original frame; (b) ROIf and ROIe; (c) feature points 
detected on frame; (d) ROI filter; (e) green channel of frame; (f) binary image; (g) resulting image 
of multiplication of (d), (e), and (f) images. 

In the resulting image, all non-rejected pixels (pixels with non-zero values) 

were averaged across all the video sequence to obtain a raw iPPG signal. The 

(a) (b) (c) (d) (e) (f) (g) 
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filtering, interpolation, and further signal processing steps were carried out 

according to the section 4.2.3. 

5.3 Results and discussion 

5.3.1 Performance analysis of video cameras 

Fig. 5.7 shows the Pearson’s correlation coefficient of the NN measurements 

obtained by the two cameras in stationary and motion conditions. Table 5.1 

shows the statistical results of the NN measurements achieved by both cameras. 

Based on data results, it should be pointed out that the Logitech model achieved 

better results than the GoPro camera in both conditions. Moreover, the results of 

the webcam were similar in both conditions of the study. 

 

Fig. 5.7   Pearson’s correlation coefficient (r) of the NN measurements obtained by the cameras: 
(left) stationary conditions; (right) motion conditions. All p-values < 0.001. 

A determining factor that greatly affected the recordings obtained by the 

GoPro camera was the lighting condition on a partly cloudy day. Although 

recordings were carried out indoors with sunlight as the only source of 

illumination, some unpredictable lighting changes influenced some video
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recordings. After video processing, it was observed that some of the signals 

obtained by the GoPro model were more affected by these illumination 

disturbances. Because of the small changes in skin color are being measured, 

these disturbances cause alterations in the signal that make the acquisition of 

reliable measurements difficult. A comparative illustration of the iPPG signals 

obtained by the two cameras under lighting disturbances is shown in Fig. 5.8. 

Table 5.1   Statistical results of the NN measurements obtained by the cameras ( ) 

STATIONARY CONDITIONS 

Camera r ICC MAE MAPE RMSE 

GoPro 0.813 ± 0.129 0.794 ± 0.154 
23.65 ± 8.58 ms 

(2.10 ± 0.61 bpm) 
2.83 ± 0.75 % 

36.16 ± 21.70 ms 
(3.14 ± 1.18 bpm) 

Logitech 0.951 ± 0.028 0.950 ± 0.028 
12.55 ± 5.66 ms 

(1.16 ± 0.72 bpm) 
1.54 ± 0.82 % 

17.03 ± 8.97 ms 
(1.57 ± 1.08 bpm) 

MOTION CONDITIONS 

Camera r ICC MAE MAPE RMSE 

GoPro 0.755 ± 0.131 0.729 ± 0.151 
34.76 ± 12.11 ms 
(2.80 ± 1.32 bpm) 

4.03 ± 1.69 % 
45.54 ± 18.53 ms 
(3.66 ± 1.92 bpm) 

Logitech 0.958 ± 0.017 0.957 ± 0.017 
13.23 ± 4.52 ms 

(1.09 ± 0.48 bpm) 
1.54 ± 0.59 % 

16.76 ± 5.52 ms 
(1.39 ± 0.59 bpm) 

Refer to section 3.2 for statistical parameters definitions. 

Although the lighting condition is an external factor, it is very important to 

take into account because it may affect the camera sensors differently. Lighting 

conditions should also be taken into consideration if the application in real 

environments is contemplated. Additionally, a slight blur in the videos obtained 

by the GoPro model was observed that could affect the measurements. This issue 

arose because the face was positioned at a short distance from the camera and 

the impossibility to adjust the focus. The Logitech model did not present this 

problem because the focus was manually adjusted before the recordings. 
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Despite the difference in the frame rate of the cameras, it appears that this 

parameter has little effect on the measurements. As shown, the signals acquired 

with the higher frame rate did not yield better results, at least in stationary 

conditions and without the presence of lighting disturbances. Thus, the better 

overall results obtained by the webcam and the possibility of making manual 

settings were decisive for choosing this camera in the later recordings. 

 

Fig. 5.8   iPPG signals obtained by the cameras in simultaneous recording under lighting 
disturbances: (top) GoPro signal; (bottom) Logitech signal. 

5.3.2 HRV analysis in stationary conditions 

Once the first part of the study was completed, a HRV analysis was conducted 

under the same conditions using the chosen camera (Logitech model). Table 5.2 

shows the statistical results of the NN measurements obtained by each subject in 

stationary conditions. As shown, most of the subjects achieved correlation 
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coefficients above 0.9. The  of the individual data presented Pearson and 

ICC measures of 0.937 ± 0.035 and 0.935 ± 0.036, respectively. The mean of the 

errors achieved a MAPE = 1.83 %, a MAE = 15.45 ms, and a RMSE = 19.99 

ms. In general, these mean results are slightly better that those reported in 

chapter 4 using the same video records. 

Table 5.2   Statistical results of the NN measurements in stationary conditions 

1 0,978 0,979 0,42 -0,02 10,91 0,56 1,00 14,57 0,73

2 0,956 0,956 0,41 -0,04 9,30 0,74 1,07 12,32 0,99
3 0,959 0,956 0,04 -0,03 7,69 0,90 1,07 9,51 1,11
4 0,904 0,903 -0,03 -0,10 22,09 2,36 2,95 32,41 3,42
5 0,957 0,955 0,16 -0,07 12,73 1,26 1,63 16,33 1,61
6 0,970 0,970 -0,43 0,02 14,43 1,15 1,66 17,86 1,46
7 0,906 0,896 -0,58 -0,13 23,71 2,40 3,06 29,31 3,11
8 0,958 0,956 -0,45 -0,01 13,42 1,30 1,70 17,06 1,68
9 0,952 0,951 -0,56 -0,01 17,33 1,33 1,96 22,51 1,75
10 0,939 0,934 0,25 -0,11 15,50 1,62 2,04 19,61 2,08
11 0,932 0,933 1,52 -0,07 18,48 1,00 1,75 23,09 1,27
12 0,949 0,950 0,44 -0,02 17,84 0,85 1,59 22,43 1,09
13 0,951 0,950 1,71 -0,12 12,33 0,76 1,24 16,68 1,03
14 0,846 0,845 -1,38 0,08 22,06 2,41 2,97 27,95 3,12
15 0,898 0,893 0,29 -0,08 14,00 1,40 1,81 18,27 1,85

Mean 0,937 0,935 0,12 -0,05 15,45 1,34 1,83 19,99 1,75

S.D. 0,035 0,036 0,79 0,06 4,76 0,62 0,68 6,35 0,84

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 

Some participants were observed to have achieved better results than others. 

Since the analysis was carried out in stationary conditions, some factors such as 

the different anatomical and physiological characteristics of the participants may 

have influenced the measurements. Kumar et al. [30] performed PRV 

estimations for different skin tones (fair, olive, and brown) in which 4 subjects 

were analyzed according to the skin category. The fair and olive skin tones 

presented quite similar results with RMSE values of 13.61 ms and 13.36 ms, 
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respectively, while for the brown category a higher RMSE of 48.91 ms was 

obtained. Based on the results obtained from the fair and olive skin categories 

and the similarity of fair skin tone of the subjects in our study, the differences in 

the results between subjects may not be due to this physical characteristic. 

There are other factors besides skin color which may also influence the 

measurements such as blood pressure, heart rate, respiration, etc. Moreover, 

although the participants were asked to keep still during the recording, some had 

difficulties in remaining motionless or avoiding facial expressions. Sunlight 

affected some subjects causing a major blinking in them. 

Some authors have reported statistical results of the NN measurements (or 

IBIs) obtained in stationary conditions [26, 29–31], whose corresponding results 

are summarized in Table 2.3. By examining these data and the corresponding 

mean results presented in Table 5.2, it is noted that our method achieved a good 

performance. The NN time series measured by our method achieved a higher 

correlation in comparison with the result presented by Bousefsaf et al. [29]. With 

regard to the error results reported in these works, only the study of Kumar et al. 

[30] achieved a lower error compared with the 19.99 ms obtained by our 

method. It is important to note that our study presented a larger sample size than 

the cited works. Thus, the sample size should also be taken into account since 

the results may vary considerably between subjects, even if there is a minimal 

presence or an absence of motion artifacts (Table 5.2). 

Fig. 5.9 shows the correlation scatter plots of the HR and HRV parameters 

obtained in stationary conditions, and Table 5.3 presents their corresponding 

statistical results. High correlation values were obtained by the proposed 

method, most of which achieved results above 0.9. In general, these parameters 

present similar statistical results than those obtained with the Logitech camera in 

chapter 4. Taking into account this, the conclusions obtained in contrast with the 
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studies discussed in section 4.4.1 are very similar (Moreno et al. [27] and Sun et 

al. [24]). In comparison with the results presented by Poh et al. [23], the RMSE 

of HR was reduced from 1.24 bpm to 0.07 bpm and the frequency-domain 

parameters also presented lower errors. 

 

Fig. 5.9   Correlation scatter plots of the HR and HRV parameters obtained in stationary 
conditions. Refer to Table 5.3 for r and ICC results. 

Table 5.3   Statistical results of HR and HRV parameters in stationary conditions 

HRmean (bpm) 1,000 1,000 0,06 0,07

NNmean (ms) 1,000 1,000 0,58 0,77
SDNN (ms) 0,975 0,948 3,64 4,40
RMSSD (ms) 0,974 0,911 7,61 8,92
pNN50 (%) 0,925 0,877 9,79 11,46
LF (n.u.) 0,970 0,930 5,65 7,67
HF (n.u.) 0,970 0,930 5,63 7,66
LF/HF 0,944 0,724 0,35 0,65

Parameter r* ICC* RMSEMAE

 
*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 



Chapter 5 – Video HRV analysis in stationary and motion conditions 
 

82 
 

McDuff et al. [25], besides the HR measurement, they presented the results 

of the frequency-domain parameters of PRV at rest and under stress. They used 

a five band digital camera in which the combination of cyan, green and orange 

bands yielded a higher correlation with the reference sensor. Curiously, the 

results under stress achieved higher correlation values than those obtained at 

rest. The best results obtained of this work were similar in comparison with the 

data achieved in our study, in which only the green channel of the video was 

analyzed. 

The study of Alghoul et al. [28] presented a comparison between two 

approaches to measure HRV parameters from the face in stationary conditions. 

On one side, the results reported in the study showed that ICA-based method 

yielded lower errors in the HF and LF/HF components and, on the other hand, 

the LF parameter achieved better results with the EVM-based approach. 

Although the correlation values presented by Alghoul et al. were lower than 

those achieved by our method, some corresponding errors were better than the 

data in our study, which appear to make no sense, likely, due to a transcription 

error. 

Huang and Dung [32] only presented single results of HRV parameters using 

absolute error measures. Therefore, the MAE results shown in our study were 

calculated to obtain a mean value of the individual results. These data are 

slightly better than the corresponding results achieved by our method, but using 

a smaller sample size in comparison with our analysis. Thus, the application of 

the proposed method by Huang and Dung appears promising in the acquisition 

of measurements in stationary conditions. It would be interesting the application 

of this approach to estimate time and frequency domain parameters of HRV with 

a larger sample size. 
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5.3.3 HRV analysis in motion conditions 

Although HRV is normally measured at rest, recently, the interest of measuring 

physiological variables in everyday activities by using alternative methods has 

increased. Most of the daily life scenarios present the motion inherently, which 

must be considered because it may affect the measurements, especially when is 

used the video imaging technique. For example, the drowsiness in drivers is one 

the causes of traffic accidents all over the world. Therefore, some works [124, 

125] have proposed the measurement of HRV parameters in drivers during alert 

and drowsy or fatigued periods, in which some parameters showed significant 

differences between both states. 

Other studies have proposed the analysis by video to measure physiological 

parameters while driving [126–128] and other ones to detect cardiac arrhythmias 

[129, 130]. Thus, the video imaging technique may eventually become a method 

to detect these events in drivers with the aim of preventing traffic road accidents. 

Also, since the HRV analysis is an excellent indicator of physical and 

psychological stress, this technique may be used to evaluate the stress level of 

people during working hours or as part in a polysomnography study. 

In this part of the study, the same analysis was conducted as that for 

stationary conditions. Table 5.4 shows the statistical results of the NN 

measurements obtained by each subject in motion conditions. In general, the 

correlation results were lower in comparison with the stationary conditions, but 

they also varied according to the participant; even so, results of above 0.9 were 

obtained with several subjects. The  of the individual data presented 

Pearson and ICC measures of 0.912 ± 0.048 and 0.910 ± 0.050, respectively. 

The mean of the errors achieved a MAPE = 2.00 %, a MAE = 17.26 ms, and a 

RMSE = 21.64 ms. In comparison with the stationary conditions, these mean 

results were not greatly affected by the presence of motion. 
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Table 5.4   Statistical results of the NN measurements in motion conditions 

1 0,978 0,979 0,14 -0,01 11,90 0,55 1,04 15,27 0,69

2 0,951 0,952 0,07 -0,01 9,17 0,81 1,11 11,98 1,08
3 0,942 0,940 -0,02 -0,03 10,67 0,99 1,33 13,72 1,29
4 0,944 0,944 0,52 -0,04 20,76 1,78 2,46 26,11 2,23
5 0,972 0,973 0,36 -0,05 13,64 1,33 1,74 16,71 1,68
6 0,972 0,970 0,64 -0,16 14,34 1,28 1,74 19,47 1,72
7 0,901 0,899 -0,74 0,00 18,54 1,79 2,34 25,07 2,59
8 0,926 0,927 -0,30 0,00 18,12 1,49 2,13 22,54 1,86
9 0,886 0,888 -0,07 0,02 19,84 1,83 2,46 23,46 2,17
10 0,878 0,879 0,68 -0,07 15,75 1,67 2,09 19,11 2,02
11 0,906 0,904 1,85 -0,12 15,98 0,87 1,52 19,15 1,03
12 0,829 0,825 -1,96 0,06 30,84 1,60 2,87 36,45 1,88
13 0,884 0,885 0,78 -0,07 17,37 1,19 1,85 23,12 1,62
14 0,865 0,866 0,61 -0,10 26,18 2,49 3,27 32,09 3,14
15 0,844 0,823 0,65 -0,13 15,73 1,53 2,00 20,31 1,98

Mean 0,912 0,910 0,22 -0,05 17,26 1,41 2,00 21,64 1,80

S.D. 0,048 0,050 0,84 0,06 5,67 0,49 0,63 6,58 0,63

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 

In comparison with the stationary posture, it is noted how some subjects 

obtained similar results; on the other hand, some subjects did not present results 

as good as those under the stationary condition. The motion conditions of our 

study consisted of lateral and forward/backward movements that added the 

difficulty of obtaining the iPPG signal at different positions and distances from 

the camera. These are common movements that are performed while working in 

front of a PC or in other activities with similar moves. Moreover, these 

movements presented the particularity that they were performed at a steady and 

non-stop pace. 

The employed tracking algorithm performed very well in accordance with 

the different movements carried out by the subjects. However, despite the 

participants were asked to execute the same type of movements, in practice, their 

gestures tended to vary slightly; the type of head inclination, the pace of the 
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movements or the distance between the camera and the face during the 

forward/backward motions are some examples of these variations. Thus, it 

should be pointed out that some particular movements may significantly affect 

the iPPG signals, thereby making the acquisition of NN measurements more 

difficult. 

To date, most of the works of the state of the art have obtained HRV 

measurements in stationary conditions, therefore, the number of studies that 

have performed an in-depth statistical analysis in motion conditions is very 

limited. In the literature, there are works that have measured physiological 

parameters by video in motion scenarios [36, 131–134], but with assessments 

that make difficult a comparative analysis with the studies reviewed in this 

thesis. In other works, some authors have reported statistical results of the IBIs 

obtained in motion conditions [29–31], whose corresponding results are 

summarized in Table 2.3. 

Bousefsaf et al. [29] obtained IBIs measurements with predefined head 

movement conditions. Although the results obtained in a sitting still and calm 

condition were better, it seems that the motion scenario did not affect to a great 

extent the measurements. These results obtained a lower correlation than that 

presented in Table 5.4. The motion-tolerant method proposed by Bousefsaf et al. 

appears to perform well in both conditions, although the low video resolution of 

the recordings could have influenced the measurements. 

The study of Kumar et al. [30] performed the acquisition of signals in three 

natural motion scenarios. The reading scenario achieved an RMSE of 55.34 ms 

and the watching video and talking activities obtained the higher errors (see 

Table 2.3). Although none of the three motion scenarios is equivalent to the 

motion conditions of our study, the reading scenario may have a closer 

resemblance due to a greater presence of moderated movements. This may 
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explain the better result achieved by this scenario. Nevertheless, a reasonably 

higher error was obtained in comparison with the result achieved in our study 

(21.64 ms). Besides the difference of the motion scenarios, it is also important to 

take into consideration the difference in the sample size of both studies, as 

mentioned in other cases. 

Antink et al. [31] performed a beat-to-beat estimation by means of different 

signals and their fusion. Within these signals, we have focused on the video 

signal obtained from the changes of the skin color. The conditions of the third 

trial of the study consisted in the acquisition of measurements during reading 

without further instructions, unlike the second trial (reading-task without 

motion). Thus, the difference in results between the trials 2 and 3 is, likely, 

because of the presence of motion artifacts during the reading task. The MAE 

results shown in Table 2.3 are calculated in this work to obtain a mean value of 

the individual results reported by Antink et al. in each trial. The MAE achieved 

by our method in motion conditions was lower than the mean error calculated in 

the third trial, as well as in comparison with the recordings performed without 

motion. 

Likewise, the acquisition of HR and HRV parameters was carried out for 

purposes of comparison with data reported in other works and the results 

obtained in stationary conditions. Fig. 5.10 shows the correlation scatter plots of 

the HR and HRV parameters obtained in motion conditions, and Table 5.5 

presents their corresponding statistical results. Most of the parameters obtained 

correlation results above 0.9, but with lower values in comparison with the 

stationary condition. The RMSSD, pNN50, and frequency-domain parameters 

yielded the lower correlation results, in particular, the LF/HF ratio that was the 

more affected component in both conditions. 
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Fig. 5.10   Correlation scatter plots of the HR and HRV parameters obtained in motion conditions. 
Refer to Table 5.5 for r and ICC results. 

Table 5.5   Statistical results of HR and HRV parameters in motion conditions 

HRmean (bpm) 1,000* 1,000* 0,06 0,07

NNmean (ms) 1,000* 1,000* 0,62 0,84
SDNN (ms) 0,986* 0,970* 2,91 3,77
RMSSD (ms) 0,943* 0,886* 7,97 9,59
pNN50 (%) 0,921* 0,861* 7,76 10,20
LF (n.u.) 0,937* 0,929* 5,18 7,23
HF (n.u.) 0,938* 0,931* 5,13 7,14
LF/HF 0,858* 0,449** 1,08 3,28

Parameter r ICC RMSEMAE

 
*: p < 0.001; **: p < 0.05. Refer to section 3.2 for statistical parameters definitions. 

Huang and Dung [32] recently presented a study with measures of HRV 

parameters obtained during occasional and frequent motion. Only single results 

of HRV parameters using absolute error measures were reported in their study. 

The sample size of the motion categories were N = 3 and N = 2, respectively, 

which were performed by the same subject. In comparison with both categories, 
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the MAE results of our study were lower than the data calculated from the 

results reported by them. 

The occasional motion category consisted of three different recordings. One 

of them presented motions that were very similar to some of the movements 

performed in our study, in which the subject moved away from the camera and 

then moved back. In another recording, the subject shook the head three times 

but it was not specified how these movements were performed and, in the last 

one the subject talked and turned the head. In the case of the frequent motion 

category, the two recordings presented movements that were repeated along the 

video sequence. 

In the case of the occasional motion category, this presented a higher MAE 

in comparison with the corresponding data of the frequent motion condition. 

This occurred because of the third recording of the occasional motion category 

obtained a considerable absolute error of 28.87 ms, likely, due to the presence of 

motion artifacts caused by the talking scenario. The face detection method could 

also affect the measurements because it is not always robust if the subject makes 

some type of gestures. Moreover, the small sample size with one subject and the 

motion conditions of the recordings, which were completely different from each 

other, make the data not suitable for obtaining reliable statistical results. 

5.3.4 Bland-Altman plots 

Fig. 5.11 shows the Bland-Altman plots with LoA of 95% representing the 

agreement between the NN measurements obtained by the reference system and 

the video in stationary and motion conditions. The stationary posture achieved 

LoA from -41.25 to 41.37 ms (-3.97 to 3.87 bpm), and the motion scenario 

obtained LoA from -43.69 to 44.15 ms (-3.84 to 3.74 bpm). No large differences 
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were found between both conditions of the study, and also, no systematic errors 

were identified in the measurements. 

 

Fig. 5.11   Bland-Altman plots with LoA of 95% representing the agreement between the reference 
and video (data of all subjects combined in one dataset): (left) stationary conditions with a mean 
difference of 0.06 ms (-0.05 bpm) and LoA from -41.25 to 41.37 ms (-3.97 to 3.87 bpm); (right) 
motion conditions with a mean difference of 0.23 ms (-0.05 bpm) and LoA from -43.69 to 44.15 
ms (-3.84 to 3.74 bpm). 

The LoA obtained in stationary conditions were slightly improved in 

comparison with the results achieved in chapter 4 using the same camera (from -

44.72 to 45.07 ms (-4.30 to 4.16 bpm)). Thus, the method proposed in this 

chapter seems a good alternative to obtain HRV measurements in stationary 

conditions, as well as in motion since no large differences were obtained 

between both scenarios. According to the Bland-Altman analysis, if the 

differences obtained by the measurement systems are not regarded as clinically 

important, both may be used interchangeably. 
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5.4 Conclusions 

In this chapter, a video HRV analysis was carried out in stationary and motion 

conditions. An initial performance analysis of cameras validates the use of the 

webcam as a better option in this study. In the GoPro camera, it is noted a 

limitation to set parameters such as the focus or the automatic gain control that 

influenced its performance in comparison with the Logitech model. Some 

feature differences such as these could be related to the aim for which the 

cameras were designed. It is shown that it is possible to obtain good results by 

using a video recorded at a lower frame rate. Moreover, the higher the frame 

rate, the higher the computational cost of the video processing. In addition to 

analyzed factors such as frame rate and motion, it is also shown that the 

measurements could be affected by some physiological characteristics of the 

participants, lighting conditions, focus, resolution or the measuring distance. 

The statistical analysis shows a good agreement between the reference 

system and the proposed method. In stationary conditions, the results of HRV 

parameters are improved by our method in comparison with data reported in 

related works, in which most of the parameters obtained correlation results 

above 0.9. Most of the HRV parameters also achieved good correlation results in 

the motion analysis, but with lower values in relation to the stationary condition. 

Although the participants were asked to perform the same type of movements, 

some differences such as the head inclination, the speed of the movements or the 

distance between the camera and the face during the forward/backward motions 

could also influence the results between the subjects. An overall comparative 

analysis of HRV parameters in motion conditions was more limited due to the 

lack of studies or studies containing insufficient data analysis. The larger sample 

size and the in-depth statistical analysis of our study provide greater reliability of 

the data. 
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The RMSSD, pNN50, and frequency-domain parameters yielded the lower 

correlation results, in particular, the LF/HF ratio that was the more affected 

component in both conditions of the study. Based on the similar results obtained 

using this approach in comparison with the method employed in chapter 4, the 

method proposed herein seems a good alternative for measuring HR or HRV 

parameters in stationary and motion conditions. Thus, the method appears to be 

a better option than the proposed approach in chapter 4, which requires 

additional video and signal processing and can only be applied in stationary 

conditions. 

This study is a first assessment of the proposed method in motion conditions, 

with movements that can be performed while working in front of a PC or in 

other activities with similar moves. In general, the results between stationary and 

motion conditions do not differ significantly, although it is important to note that 

the measurements were carried out following specific movements. It is therefore 

necessary to conduct an evaluation of the proposed method considering a wider 

variety of motion, as well as the development of more robust algorithms in order 

to be applied in more realistic scenarios. 
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Video HRV: real-time acquisition 

and lighting conditions analysis 

 

 

 

In this chapter, a video HRV analysis is performed through the iPPG signal 

acquisition in real-time. A real-time acquisition has some advantages such as a 

quick video HRV analysis and the assessment of video parameters, motion or 

lighting influences to the iPPG signal in real-time. The recordings were carried 

with three sources of illumination separately: sunlight, LED light, and 

fluorescent light. The lighting conditions analysis allows the evaluation of 

different sources of illumination on the measurements and, based on the results, 

the choice of the best lighting source in order to perform a video HRV analysis. 

Chapter 6 
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6.1 Data acquisition set-up 

A summary of the measurement set-up is shown below: 

§ 25 subjects (12 women, 13 men) between 22 and 54 years old were 

recorded with a Logitech webcam at 1280x720 pixels and 30 fps (see 

section 3.1.2). 

§ The videos frames were obtained via the MATLAB® software. 

§ The recordings were obtained in stationary conditions (see Fig. 3.1). 

§ The recording length was 5 min.  

§ The distance between the camera and the face was 0.3 m approximately. 

§ The recordings were performed indoors using three lighting sources: 

Ø Sunlight   

Ø LED light (bulb: Verbatim, ref. 52130; color: warm white; wattage: 

6.5 W; luminous flux: 480 lm; beam angle: 130º, CCT: 3000 K).  

Ø Fluorescent light (bulb: Pro-Lite, ref. HELIXT2/20W/ES/64; wattage: 

20 W; luminous flux: 875 lm, CCT: 6400 K). 

§ The technical characteristics of the PC used to record the measurements are: 

processor: Intel® Core™ i7 @ 3.40 GHz; RAM: 8 GB; operating system: 

Windows 7 Enterprise 64 bits; graphics card: Intel® HD Graphics 4000. 

  

6.1.1 Video camera settings 

First, the webcam settings were established in order to ensure the video 

acquisition in real-time. A video input object was created using the videoinput 

function of MATLAB®. This object is the connection between MATLAB® and 

the video camera. It is necessary to specify the adaptor name available on the 

system, in our case winvideo (Windows video), to carry out the communication 
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with the camera. By default, the acquisition parameters of the video input object 

were: 

Summary of Video Input Object Using 'Logitech HD Pro Webcam C910'. 

 

 Acquisition Source(s): input1 is available. 

 

Acquisition Parameters: 'input1' is the current selected source. 

                        10 frames per trigger using the selected source. 

                        'RGB24_1280x720' video data to be logged upon START. 

                        Grabbing first of every 1 frame(s). 

                        Log data to 'memory' on trigger. 

 

    Trigger Parameters: 1 'immediate' trigger(s) on START. 

 

                Status: Waiting for START. 

                        0 frames acquired since starting. 

                        0 frames available for GETDATA. 

Some of these default parameters were changed before the video acquisition. 

The number of frames per trigger was set to 1 in order to acquire only one frame 

when it is executed. The trigger was executed until the stop function was called 

to stop the video input object. The trigger type was set to immediate, so the 

trigger was executed automatically after calling the start function in order to use 

the video camera associated with the video input object. 

Using the getselectedsource function, some specific camera properties were 

set as summarized below: 

Display Summary for Video Source Object: 

      General Settings: 

        Parent = [1x1 videoinput] 

        Selected = on 

        SourceName = input1 

        Tag = [0x0 string] 

        Type = videosource 

 

      Device Specific Properties: 

        BacklightCompensation = off 

        Brightness = 128 

        Contrast = 128 

        Exposure = -7 

        ExposureMode = auto 
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        Focus = 68 

        FocusMode = manual 

        FrameRate = 30.0000 

        Gain = 64 

        HorizontalFlip = on 

        Saturation = 128 

        Sharpness = 128 

        Tilt = 0 

        VerticalFlip = off 

        WhiteBalance = 4000 

        WhiteBalanceMode = manual 

        Zoom = 100 

6.1.2 Lighting conditions 

Due to the lighting conditions may affect the signal acquisition by video, it is 

proposed the assessment of different light sources. The face of the subjects was 

illuminated using three light sources separately: sunlight, LED light, and 

fluorescent light (Fig. 6.1). The room blinds were closed with the LED and 

fluorescent light sources to avoid the influence of sunlight. In these two light 

sources, a lamp with a shadow was used to power and hold the bulbs. 

 

Fig. 6.1   A subject’s face illuminated using different sources of illumination: (left) sunlight; 
(middle) LED light; (right) fluorescent light. The videos were recorded at 200 lux of illuminance 
with each lighting source. 

The videos were recorded at 200 lux in order to have an adequate and the 

same illuminance of the face with the three lighting sources. To ensure this, 

before each recording, an Amprobe LM-100 light meter (refer to section 3.1.4) 

was utilized to measure the light intensity that reached the face. The subjects 

were allowed to close the eyes during the recordings obtained using artificial
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light in order to avoid discomfort. Fig. 6.2 shows the spectrums of the sunlight, 

LED light and fluorescent light sources.

 

Fig. 6.2   Spectrums of the sunlight, LED light and fluorescent light sources. 

 

6.2 Video and signal processing 

6.2.1 ROIs detection 

Once the camera settings were defined, the video acquisition began by using the 

start function. A first video frame was acquired by using the getdata function in 

order to detect the face and eyes (refer to section 5.2.1). As in previous chapters, 

the forehead and cheeks were analyzed because they have a greater cardiac 

component in comparison with other regions of the face [27]. 

6.2.2 Real-time acquisition 

The video and signal acquisition started when both ROIs were found. The time 

stamp of each frame was stored to be used in the interpolation of the signal. The 

video frames captured were composed of the RGB components, but only the 
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green channel was analyzed because it has the best iPPG signal in comparison 

with the other channels [17, 18]. The video image and signal processing were 

performed as detailed in section 5.2.3. An example of the video image and the 

iPPG signal obtained in real-time are shown in Fig. 6.3. 

 

Fig. 6.3   Video and signal acquisition in real-time: (top) video image showing the face regions 
under analysis; (bottom) iPPG signal obtained from the video image. 

Taking into account the aim of the real-time acquisition, it was important 

that the video and signal processing were performed within specified time 

conditions. Then, some test calculations were carried out to evaluate the video 

and signal acquisitions. The technical characteristics of the PC used to record the 

measurements are listed in section 6.1. The average calculation time to obtain 

the iPPG signal values from the video frames was around 3 ms, a value 

considerably lower than the theoretical sampling period of 33.3 ms, according to 

the frame rate of 30 fps.  
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The test calculations that were performed using the stored time stamp proved 

that the records were obtained at the specified recording length and frame rate. 

Theoretically, the time elapsed between frames should be 33.3 ms (0.0333 s) 

but, in practice, the sampling period was not constant (Fig. 6.4). It is noted that 

most of the frames were captured a slight instant before (around 0.032 s) the 

ideal time, as well as the sampling period suffered a periodic delay every 12 

frames. Even so, the mean of the sampling period was 0.0333 s. 

 

Fig. 6.4   Time between video frames obtained during the real-time acquisition in a subject. The 
sampling period was not constant (red plot) as the expected value of 0.0333 s (blue plot). 

In order to evaluate the acquisition method, a test was carried out in which a 

sawtooth signal of 1 Hz was obtained from a function waveform generator and 

recorded by video at 30 fps from a green LED, similarly to the method explained 

in section 4.2.4. The sawtooth signal presents 30 samples between peaks of the 

signal, which ensures no loss of samples during the signal acquisition (Fig. 6.5). 

Representatively, Fig. 6.6 shows the signals obtained from a subject, in which 

the filtering and interpolation were carried out according to the section 4.2.3. 
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Fig. 6.5   (Top) sawtooth signal of 1 Hz obtained from a function waveform generator and 
recorded by video at 30 fps from a green LED; (bottom) sawtooth signal shown on top after 
interpolation to 1 kHz (the signals were shifted to visually match the peaks with the values in 
samples and seconds, respectively). 

 

Fig. 6.6   iPPG signals of a subject obtained with the real-time acquisition: (top) raw signal; 
(middle) filtered signal; (bottom) interpolated signal. 
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6.2.3 Synchronization of the signals 

The start time of the reference and video recordings were stored in order to 

perform the synchronization of the signals. These starting times corresponded to 

the computer’s operating system in which were obtained both recordings. The 

corresponding data were obtained with the BSL PRO 3.7 (MP36 BIOPAC 

Systems, Inc. software) and MATLAB® for each recording. Thus, the difference 

between the respective start times was the required synchronization of the heart 

rate signals. 

6.2.4 Artifacts correction 

Once the signals were synchronized, the local maxima detection and artifacts 

correction were carried out according to the section 4.2.5. The NN intervals were 

obtained by calculating the time between consecutive local maxima. Fig. 6.7 

shows a comparative of the NN time series obtained from a subject. The 

posterior HRV analysis was performed according to the section 4.3. 

 

Fig. 6.7   NN intervals of reference and video obtained from a subject. 
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6.3 Results and discussion 

6.3.1 Sunlight condition 

Table 6.1 presents the statistical results of the NN time series obtained by each 

subject in sunlight condition. All subjects achieved correlation coefficients 

above 0.9. The x̄ ± s of the Pearson and ICC measures were 0.962 ± 0.023 and 

0.961 ± 0.023, respectively. The MAPE achieved a mean value of 1.14 %. 

Table 6.1   Statistical results of the NN time series by subject (sunlight condition) 

1 0,970 0,970 0,29 -0,01 12,24 0,39 0,89 17,46 0,55

2 0,975 0,974 0,64 -0,09 11,70 0,92 1,33 16,68 1,33
3 0,972 0,970 0,01 -0,03 8,06 0,81 1,04 10,52 1,07
4 0,989 0,989 0,15 -0,04 8,68 0,74 1,03 11,14 0,95
5 0,934 0,929 0,02 -0,04 11,06 1,19 1,48 13,94 1,52
6 0,961 0,961 0,50 -0,04 9,45 0,66 1,01 13,01 0,90
7 0,947 0,945 0,10 -0,03 11,06 0,88 1,27 14,90 1,20
8 0,990 0,990 0,13 0,03 15,44 0,69 1,32 19,70 0,87
9 0,994 0,994 0,08 -0,01 7,70 0,43 0,74 9,74 0,56
10 0,945 0,943 0,07 -0,05 12,83 1,30 1,66 16,32 1,66
11 0,969 0,969 -1,80 0,13 11,03 1,00 1,36 18,19 1,67
12 0,957 0,957 -0,45 0,04 6,73 0,57 0,81 11,03 1,06
13 0,963 0,962 0,15 -0,02 9,03 0,78 1,08 11,07 0,97
14 0,965 0,965 0,08 -0,01 9,89 0,65 1,03 12,95 0,86
15 0,933 0,933 0,14 -0,02 9,13 0,66 1,00 11,48 0,83
16 0,913 0,909 0,08 -0,03 9,87 0,97 1,26 12,65 1,24
17 0,970 0,970 0,20 -0,01 10,45 0,54 0,97 13,56 0,71
18 0,939 0,939 -1,42 0,07 18,27 0,85 1,63 29,43 1,57
19 0,933 0,929 0,07 -0,02 8,26 0,70 0,98 10,73 0,91
20 0,927 0,927 1,16 -0,13 10,46 1,00 1,30 20,63 1,93
21 0,975 0,974 0,16 -0,03 9,22 0,71 1,04 11,99 0,94
22 0,976 0,976 0,13 -0,03 9,12 0,81 1,11 11,66 1,06
23 0,985 0,985 0,10 -0,01 8,12 0,60 0,90 10,22 0,76
24 0,977 0,977 0,16 0,02 14,57 0,74 1,33 18,03 0,91
25 0,992 0,992 0,13 0,01 8,96 0,64 0,98 11,18 0,82

Mean 0,962 0,961 0,04 -0,01 10,45 0,77 1,14 14,33 1,07

S.D. 0,023 0,023 0,57 0,05 2,63 0,21 0,24 4,47 0,36

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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Fig. 6.8 and Table 6.2 show the correlation scatter plots and the 

corresponding results of the HR and HRV parameters, respectively. It is noted 

an excellent correspondence in which very high correlation values were obtained 

in all HRV parameters. Most of the parameters achieved correlation coefficients 

above 0.99. The RMSSD and pNN50 components obtained the higher errors 

among the time-domain parameters. In general, the results were improved in 

comparison with the data obtained in stationary conditions in chapters 4 and 5. 

 

Fig. 6.8   Correlation scatter plots of the HR and HRV parameters (sunlight condition). Refer to 
Table 6.2 for r and ICC results. 

Table 6.2   Statistical results of the HR and HRV parameters (sunlight condition) 

HRmean (bpm) 1,000 1,000 0,04 0,05

NNmean (ms) 1,000 1,000 0,33 0,56
SDNN (ms) 0,998 0,996 1,80 2,17
RMSSD (ms) 0,997 0,989 5,41 6,22
pNN50 (%) 0,992 0,972 5,31 5,88
LF (n.u.) 0,994 0,990 2,77 3,82
HF (n.u.) 0,994 0,990 2,73 3,78
LF/HF 1,000 0,956 0,67 2,12

Parameter r* ICC* RMSEMAE

 
*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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6.3.2 LED light condition 

Table 6.3 presents the statistical results of the NN time series achieved by each 

subject in LED light condition. In comparison with the sunlight source, in this 

case, not all subjects obtained correlation coefficients above 0.9, although most 

of them did it. The x̄ ± s of the Pearson and ICC measures decreased to 0.922 ± 

0.058 and 0.918 ± 0.063, respectively. The mean of the errors achieved a MAPE 

= 1.45 %, a MAE = 13.34 ms, and an RMSE = 19.11 ms. 

Table 6.3   Statistical results of the NN time series by subject (LED light condition) 

1 0,967 0,967 -0,44 0,00 15,31 0,45 1,07 20,93 0,63

2 0,970 0,968 0,14 -0,05 11,16 0,85 1,25 15,30 1,21
3 0,943 0,939 0,19 -0,04 9,24 0,83 1,13 12,14 1,09
4 0,973 0,972 0,10 -0,04 12,01 1,00 1,41 17,64 1,55
5 0,841 0,825 0,11 -0,10 15,72 1,71 2,11 23,19 2,54
6 0,896 0,896 -0,32 0,01 14,47 1,06 1,60 22,14 1,67
7 0,805 0,794 -0,20 -0,02 14,11 1,06 1,58 20,95 1,60
8 0,985 0,983 0,09 0,09 17,24 0,90 1,60 22,93 1,21
9 0,979 0,979 0,11 0,00 9,52 0,50 0,89 13,51 0,73
10 0,900 0,893 -0,40 -0,02 13,72 1,53 1,87 19,23 2,16
11 0,883 0,873 0,69 -0,13 14,60 1,25 1,74 23,38 2,09
12 0,969 0,969 0,43 -0,05 7,33 0,60 0,85 9,60 0,78
13 0,904 0,901 0,07 -0,06 15,61 1,47 1,95 23,75 2,26
14 0,833 0,821 0,21 -0,07 18,61 1,34 2,04 27,60 2,01
15 0,777 0,758 0,15 -0,05 15,52 1,15 1,72 21,61 1,63
16 0,915 0,912 0,08 -0,03 11,56 1,00 1,39 14,87 1,29
17 0,926 0,924 0,55 -0,05 17,11 0,87 1,57 23,71 1,22
18 0,959 0,958 0,06 -0,06 18,04 0,93 1,67 28,72 1,55
19 0,912 0,907 0,17 -0,04 10,83 0,82 1,21 14,56 1,12
20 0,919 0,917 -0,01 -0,04 12,32 1,30 1,63 17,14 1,83
21 0,966 0,966 0,03 -0,02 10,71 0,72 1,13 15,23 1,02
22 0,984 0,984 0,09 -0,01 6,45 0,57 0,78 8,33 0,75
23 0,980 0,980 0,12 -0,01 6,48 0,48 0,72 8,42 0,62
24 0,929 0,929 0,13 0,00 21,73 1,16 2,05 30,34 1,63
25 0,928 0,928 0,10 -0,02 14,18 0,85 1,41 22,42 1,32

Mean 0,922 0,918 0,09 -0,03 13,34 0,98 1,45 19,11 1,42

S.D. 0,058 0,063 0,25 0,04 3,87 0,34 0,41 6,09 0,53

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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Fig. 6.9 and Table 6.4 show the correlation scatter plots and the 

corresponding results of the HR and HRV parameters, respectively. It is noted 

that the correspondence of the data decreased in comparison with the sunlight 

condition, particularly in the pNN50 and frequency-domain components. Even 

so, high correlation values were obtained in the HRV parameters. The RMSSD 

and pNN50 components also obtained the higher errors among the time-domain 

parameters and almost twice as the results achieved in the sunlight condition. 

 

Fig. 6.9   Correlation scatter plots of the HR and HRV parameters (LED light condition). Refer to 
Table 6.4 for r and ICC results. 

Table 6.4   Statistical results of the HR and HRV parameters (LED light condition) 

HRmean (bpm) 1,000 1,000 0,04 0,05

NNmean (ms) 1,000 1,000 0,20 0,26
SDNN (ms) 0,993 0,981 3,68 4,41
RMSSD (ms) 0,981 0,944 10,78 13,07
pNN50 (%) 0,969 0,903 8,60 11,14
LF (n.u.) 0,952 0,930 5,52 8,62
HF (n.u.) 0,953 0,932 5,39 8,48
LF/HF 0,903 0,846 0,41 0,84

Parameter r* ICC* RMSEMAE

 
*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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6.3.3 Fluorescent light condition 

Table 6.5 presents the statistical results of the NN time series achieved by each 

subject in fluorescent light condition. Similarly to the LED light condition, most 

of the subjects obtained correlation coefficients above 0.9. The x̄ ± s of the 

Pearson and ICC measures were 0.951 ± 0.032 and 0.950 ± 0.033, respectively. 

These results are better in comparison with the LED light condition, but lower 

than the sunlight condition. The mean of the errors achieved a MAPE = 1.23 %, 

a MAE = 11.55 ms, and an RMSE = 16.43 ms. 

Table 6.5   Statistical results of the NN time series by subject (fluorescent light condition) 

1 0,967 0,964 0,23 -0,03 15,64 0,47 1,11 21,39 0,66

2 0,968 0,967 1,04 -0,11 11,96 0,85 1,29 18,63 1,30
3 0,967 0,965 0,13 -0,04 8,31 0,82 1,06 10,64 1,06
4 0,988 0,988 0,18 -0,03 9,88 0,74 1,10 14,27 1,08
5 0,959 0,958 0,11 -0,04 10,09 1,00 1,29 12,87 1,28
6 0,983 0,982 0,07 -0,02 8,47 0,63 0,94 12,22 0,91
7 0,913 0,911 0,27 -0,04 10,95 0,85 1,25 14,90 1,15
8 0,983 0,982 0,00 0,06 14,73 0,76 1,36 22,66 1,21
9 0,951 0,950 0,06 -0,01 12,39 0,73 1,23 16,46 0,97
10 0,952 0,951 -0,27 -0,01 12,37 1,30 1,63 16,12 1,72
11 0,976 0,976 0,16 -0,03 9,40 0,69 1,04 12,50 0,94
12 0,967 0,965 0,21 -0,03 6,48 0,52 0,75 8,71 0,72
13 0,943 0,943 0,67 -0,06 10,04 0,83 1,17 14,66 1,20
14 0,865 0,863 0,42 -0,05 15,02 1,06 1,63 20,91 1,47
15 0,936 0,935 0,06 -0,01 9,21 0,64 0,99 11,46 0,81
16 0,869 0,861 0,17 -0,05 15,42 1,28 1,81 19,33 1,59
17 0,937 0,936 0,17 -0,02 14,89 0,71 1,32 20,42 0,98
18 0,921 0,921 -0,02 -0,01 19,62 0,88 1,70 33,57 1,52
19 0,952 0,950 0,17 -0,03 9,57 0,72 1,07 11,94 0,90
20 0,931 0,931 0,15 -0,03 11,58 1,15 1,48 20,12 1,88
21 0,982 0,982 0,02 -0,02 9,46 0,64 1,00 12,25 0,83
22 0,966 0,966 0,16 -0,01 9,92 0,82 1,16 16,57 1,34
23 0,955 0,955 0,12 -0,01 8,24 0,56 0,87 10,28 0,70
24 0,978 0,978 0,17 0,01 12,65 0,77 1,27 16,07 1,00
25 0,969 0,969 0,02 0,00 12,56 0,83 1,31 21,81 1,46

Mean 0,951 0,950 0,18 -0,02 11,55 0,81 1,23 16,43 1,15

S.D. 0,032 0,033 0,24 0,03 3,02 0,21 0,26 5,39 0,33

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

Subj. r* ICC*
MBE 
(bpm)

MBE 
(ms)

MAE 
(ms)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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Fig. 6.10 and Table 6.6 show the correlation scatter plots and the 

corresponding results of the HR and HRV parameters, respectively. The 

correspondence of the parameters increased compared to the LED light source, 

but not as the results of the sunlight condition. High correlation results were 

obtained in the HRV parameters and most of them achieved values above 0.98. 

The RMSSD and pNN50 remained as the time-domain parameters with higher 

errors, whose results were closer to the sunlight condition.  

 

Fig. 6.10   Correlation scatter plots of the HR and HRV parameters (fluorescent light condition). 
Refer to Table 6.6 for r and ICC results. 

Table 6.6   Statistical results of the HR and HRV parameters (fluorescent light condition) 

HRmean (bpm) 1,000 1,000 0,03 0,04

NNmean (ms) 1,000 1,000 0,20 0,30
SDNN (ms) 0,997 0,994 2,10 2,55
RMSSD (ms) 0,994 0,981 6,25 7,13
pNN50 (%) 0,983 0,951 6,53 7,79
LF (n.u.) 0,993 0,979 3,65 4,67
HF (n.u.) 0,993 0,980 3,61 4,62
LF/HF 0,984 0,878 0,46 0,91

Parameter r* ICC* RMSEMAE

 
*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 
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Some authors also employed sources of artificial light to perform their 

experiments [27, 30]. In the case of Moreno et al. [27], the artificial light was 

used in order to control the effect of light on the video recordings. The lamp 

used in the experiments (Sylvania Satin H7/H 230V 40W) was chosen for its 

low amplitude variations in illumination, which can produce low-frequency 

components in the iPPG signal. The measurement set-ups of this work and our 

study present some similarities such as the same recording length and frame rate, 

the artificial illumination and recordings that were carried out in a sitting still 

position with closed eyes. By comparing the results achieved in both works, it is 

noted that our study achieved considerable better results with the two artificial 

light sources. Therefore, as the video resolution differed in both works, it could 

be a determinant factor in the obtained results, as discussed in previous chapters. 

In the study of Kumar et al. [30], it was carried out an experiment in which 

the illumination level was varied from 50 lux up to 650 lux using fluorescent 

light (no other information of the light source was detailed), with increments of 

50 lux and duration of 40 seconds in each light level. Two subjects with pale-

white and brown skin tones were measured in this study. The experimental 

results show SNR (dB) variations at the different light levels, although they were 

mostly due to uncontrolled experimental conditions.  

The method proposed by Kumar et al. (distancePPG) achieved on average an 

SNR improvement of 6.5 dB for the brown skin tone and 1.9 dB in the case of 

the pale-white tone, both in comparison with the results obtained by employing 

the face averaging method. No other results of this experiment were reported in 

the study. On the other hand, the results obtained in the ambient light condition 

show that our method achieved an improvement in the NN intervals 

measurement by obtaining an average RMSE value of 14.33 ms, compared with 

the 19.99 ms achieved in chapter 5 and the 15.74 ms obtained in the work of 

Kumar et al. 
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6.3.4 Bland-Altman plots 

Fig. 6.11 shows the Bland-Altman plots representing the agreement between the 

NN intervals of the reference system and video in the three lighting conditions. 

 

Fig. 6.11   Bland-Altman plots with LoA of 95% representing the agreement between the reference 
and video in the three lighting conditions (data of all subjects combined in one dataset): (top) 
sunlight condition; (middle) LED light condition; (bottom) fluorescent light condition. 

Sunlight condition results: 
Mean difference = 0.04 ms (-0.02 bpm) 

Lower LoA = -28.74 ms (-2.28 bpm) 
Upper LoA = 28.82 ms (2.25 bpm) 

 

LED light condition results: 
Mean difference = 0.09 ms (-0.03 bpm) 
Lower LoA = -38.64 ms (-3.08 bpm) 

Upper LoA = 38.82 ms (3.01 bpm) 
 

Fluorescent light condition results: 
Mean difference = 0.18 ms (-0.03 bpm) 
Lower LoA = -32.84 ms (-2.40 bpm) 

Upper LoA = 33.19 ms (2.34 bpm)  
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As the plots show, the sunlight condition achieved the minor differences 

between the measurements obtained by the reference system and video, while 

the LED light source obtained the larger differences. No systematic errors were 

identified in any of the three cases. 

 

6.4 Conclusions 

In this chapter was presented a video HRV analysis through the iPPG signal 

acquisition in real-time. The analysis performed in this chapter demonstrates a 

reliable signal acquisition in this condition. The real-time acquisition offers a 

quick video HRV, as well as the monitoring of the iPPG signal under external 

influences in real-time. The recordings of this study were carried out indoors 

with three different light sources in order to evaluate their influence on the 

measurements. In general, the three lighting conditions obtained good 

measurements but the sunlight achieved the best results. 

The statistical results show that the NN time series and the HRV parameters 

obtained in the sunlight condition achieved an excellent agreement compared to 

the reference data. These results were improved in comparison with the data 

obtained in stationary conditions in chapter 4 and 5, in which the sunlight was 

also used to illuminate the face of the participants. A factor that could have 

influenced the results is a lesser amount of small movements of the head. Due to 

the recording length was longer, the subjects rested the head on the seat back in 

order to minimize the motion. Furthermore, the videos were recorded at a higher 

frame rate but with a lower video resolution in comparison with the recordings 

in chapter 5. By finding a balance between these two parameters could provide 

better results compared to other settings. 
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Most of the HRV parameters achieved correlation coefficients above 0.99 in 

the sunlight condition. These results are considerably better than those reported 

in most of the works of the state of the art. Conversely, the LED light source 

obtained the minor agreement in the measurements, but still with very good 

results. The sunlight source has an energy spectrum that is more evenly 

distributed in comparison with the LED and fluorescent lights, which present 

their energy more concentrated in some wavelengths. Thus, hypothetically, the 

energy level provided by the light source at the analyzed wavelength could be a 

factor that influences the quality of the signals. 

Therefore, based on the results, the sunlight condition seems the best light 

option to perform a video HRV analysis. Moreover, this lighting condition is 

clearly more accessible anywhere than other sources, besides the cost involved. 

Additionally, the sunlight source avoids the contribution of high-frequency 

artifacts from some artificial sources to the iPPG signal. Even so, this study 

shows that some artificial lights can achieve very good and close results as those 

obtained with the sunlight source. 

 

 

 

 

 

 

 



 

112 
 

 

 



113 
 

 

 

 

Video HRV analysis in a real HCI 

scenario 

 

 

 

Although HRV is normally measured at rest, recently, the interest of measuring 

physiological parameters in everyday activities by using alternative methods has 

increased. In this chapter is presented a video HRV analysis performed in a real 

HCI scenario. Most of these scenarios present a great amount and variety of 

motion and other environmental factors, which must be taken into account as 

they may significantly affect the measurements. In this respect, the progress of 

the video imaging technique may eventually provide an innovative, low-cost, 

contactless, and reliable alternative for measuring HR or HRV parameters in 

real-life scenarios. 

Chapter 7 
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7.1 Data acquisition set-up 

A summary of the measurement set-up is shown below: 

§ 28 subjects (13 women, 15 men) between 22 and 56 years old were 

recorded with a Logitech webcam at 1920x1080 pixels and 15 fps (see 

section 3.1.2). 

§ The recordings were carried out in a sitting position with complete freedom 

of movement. 

§ The recordings included two tasks in front of a computer: a video viewing 

and the completion of a questionnaire. 

§ The recording length was variable according to the time required to 

complete the tasks (see Table 7.1). 

§ The distance between the camera and the face was 0.5 m approximately. 

§ The recordings were performed indoors with sunlight as the lighting source. 

7.1.1 Human-computer interaction scenario  

The aim of this study is to perform a video HRV analysis on a subject in a real 

HCI scenario. In order to assess the proposed method in this scenario, this 

chapter proposes the completion of two tasks in front of a computer, one after 

the other, while a video and the ECG signal of the subject are recorded. During 

the recordings, the subjects were allowed a complete freedom of movement. 

The first task consisted of watching a video of the TED organization called 

“The happy secret to better work”, which is one of the most popular TED talks. 

In this activity, the subjects were asked to watch the entire video and, once the 

video finished, the subjects were allowed to start the second task. The length of 

the video was 12 min 17 s. 
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In the second task, the subjects were asked to fill in a questionnaire that 

contains questions related to the psychological status, dietary habits, physical 

activity, and general data such as age, gender, weight, among others. In order to 

facilitate the filling out of the questionnaire, some inquiries presented a pull-

down list with various answers to be selected. The complete questionnaire is 

included in the appendix (section A.2). 

 

7.2 Video and signal processing 

7.2.1 ROIs and feature points detection 

The first step to perform the tracking of the subject is the ROIs detection. The 

automatic detection of the ROIs was carried out according to the section 5.2.1, in 

which the Viola and Jones algorithm was employed [20]. The conditions 

established in the aforesaid section were also applied to obtain the ROIf and 

ROIe. The ROIs detection is required in order to obtain the feature points, which 

are necessary to perform the tracking of the subject along the video sequence. 

The KLT algorithm [113-115] was the approach used to carry out this task, as 

detailed in section 5.2.2. Fig. 7.1 shows the ROIs and feature points detected in 

one participant of the study. 

 

Fig. 7.1   (Left) ROIs detected in a subject during the HCI scenario; (right) feature points detected 
in the face to carry out the tracking of the subject along the video sequence. 
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7.2.2 Face tracking improvements 

A real-life scenario is very likely to include a great amount and variety of 

motion. Clearly, the presence of this factor makes more difficult the tracking of 

the subject and, subsequently, the acquisition of a reliable iPPG signal. 

Therefore, some improvements are necessary to carry out a more robust face 

tracking and thus avoid issues such as a distortion or a loss of the ROIs. 

In this chapter, some conditions were established with the aim of achieving a 

more robust face tracking. A great loss of feature points is likely to occur when a 

subject is tracked using the KLT algorithm in a real-life scenario. In such a case, 

a reacquisition of points is necessary in order to ensure a reliable tracking of the 

face. If the number of feature points falls below a certain amount, the risk of 

having an unreliable tracking increases. Then, in this study, if the number of 

feature points was below 100 at some time during the tracking, a reacquisition of 

points was carried out to improve the face tracking. 

During the tracking, if the condition of the minimum number of feature 

points was met, then, the tracking of these points was carried out in the current 

frame. If not, a reacquisition of feature points was performed, in which the ROIs 

detection was first required in order to obtain the points. The ROIs detection and 

the reacquisition of the feature points were performed in the same way as 

described in section 7.2.1. If both ROIs were not detected, the current ROIs and 

remaining feature points were kept until the two ROIs were found in following 

frames. The ROIf coordinates obtained in each frame were stored to be used in a 

posterior analysis. 

However, despite a great amount of motion during the recordings, a high 

number of points could remain along the video sequence. In such a case, a 

possible consequence is the distortion of the ROIs, which may influence the 

acquisition of the iPPG signal. Therefore, an automatic ROIs detection was only 
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carried out in case there were large movements. For this purpose, the face 

displacements were measured every second by calculating the pixel differences 

of the top-left coordinate of the ROIf between the current and the corresponding 

previous frame. The presence of a large movement was considered when there 

was a difference superior to 100 pixels in any of the two axes (x or y) of motion. 

Likewise, if both ROIs were not detected in this step, the current ones were kept 

until the two ROIs were found in following frames. 

7.2.3 Video image processing and signal acquisition 

The video image processing and signal acquisition were carried out as described 

in section 5.2.3, in which only the pixels that correspond to the skin were 

analyzed and those that may contribute with artifacts were excluded. The signal 

filtering and interpolation were carried out according to the section 4.2.3. In the 

case of the presence of a Not-a-Number (NaN) in the vector containing the video 

signal, these values were replaced with zeros. The NaN values could result from 

frames in which were not possible to calculate the signal values because of the 

ROIs were not detected. 

7.2.4 Quality distinction of the video signal 

In this chapter, the subjects were allowed to perform natural movements during 

the recordings. The amount and type of motion carried out by the participants 

varied from person to person, which in some cases considerably affected the 

video signals. For this reason, the presence of a great amount of motion artifacts 

incurred a more difficult acquisition of the measurements. Therefore, a quality 

distinction of the video signal is proposed in this chapter in order to only analyze 

the segments that contain a minor amount of motion artifacts. 
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The ROIf coordinates obtained along the face tracking provided relevant 

information of the motion performed by the subjects. In order to identify the 

segments with a minor amount of motion artifacts, every 5 frames it was 

checked if the values of the top-left coordinate of the ROIf, both on the x-axis or 

y-axis, presented a difference equal to or less than 3 pixels (Fig. 7.2). If the 

differences met this condition, the corresponding indexes were identified with a 

value of 1; otherwise, the assigned value was 0 (Fig. 7.3 (a, b)). These x and y 

values were multiplied to analyze both axes of motion in one variable (Fig. 7.3 

(c)). 

 

Fig. 7.2   Differences measured every 5 frames from the top-left coordinate values of the ROIf of a 
subject. If the differences presented a difference equal to or less than 3 pixels, the corresponding 
indexes were identified with a value of 1; otherwise, the assigned value was 0 (see Fig. 7.3 (a, b)). 

This last variable of motion information represents a preliminary sequence 

of segments. The final selection was obtained according to the segments that met 

a corresponding minimum length of 5 s (Fig. 7.3 (d)). Half a second at each end 

of the segments was excluded to avoid the presence of remaining artifacts. Thus, 

the video signal is analyzed where the segments present values equal to 1 and, 

conversely, it is not assessed where the corresponding values are 0. 
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Fig. 7.3   (a, b) representation of the values obtained in a subject according to the motion condition 
on the x-axis and y-axis, respectively (see Fig. 7.2); (c) result of the multiplication of (a) and (b); 
(d) final sequence of segments (the signal is analyzed where the segments present values equal to 1 
and, conversely, it is not assessed where the corresponding values are 0). 

Fig. 7.4 compares the final selection of the segments with the corresponding 

amount of motion performed by a subject during the recording. It is shown that 

the segments with a large amount of motion are not considered in the analysis. 

Fig. 7.5 shows the illustration of a video signal and the corresponding sequence 

of segments to be analyzed, as well as a zoomed section of them. The sequence 

of segments was adjusted according to the length of the video signal. The 

zoomed section shows more clearly the motion artifacts affecting the iPPG 

signal. The local maxima were only detected in the segments that presented a 

minor amount of motion. The Pan-Tompkins algorithm was employed to detect 

the peak of the QRS complexes of the reference signal [122]. 
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Fig. 7.4   (Top) differences measured every 5 frames from the top-left coordinate values of the 
ROIf of a subject; (bottom) final sequence of segments (the signal is analyzed where the segments 
present values equal to 1 and, conversely, it is not assessed where the corresponding values are 0). 

 

Fig. 7.5   (Top) video signal and the sequence of segments; (bottom) zoomed section of the video 
signal and the sequence of segments showing the motion artifacts affecting the signal (the signals 
were analyzed where the segments presented values equal to 1). 
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7.2.5 Artifacts correction 

The NN intervals of the video and reference were obtained by calculating the 

time between consecutive local maxima and the subsequent artifacts correction 

was carried out according to the section 4.2.5. The NN-NN intervals that were 

above the median + 6 standard deviations of the NN-NN series were also 

identified as outliers, and the corresponding NN intervals were replaced with the 

average of the five previous NN intervals (Fig. 7.6). This correction step was 

repeated until no more outliers were found. 

 

Fig. 7.6   (Top) absolute values of the differences between adjacent NN measurements (NN-NN) 
of a subject; (bottom) NN intervals of reference and video, which correspond to the NN-NN 
intervals shown on the top of the figure, before and after the correction of artifacts. 

In this case, only the NNmean and SDNN parameters were calculated as part 

of the HRV analysis (refer to section 2.2.1). The other time-domain parameters 

and the frequency-domain components were not obtained due to the 

discontinuity of the NN intervals sequence. 
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7.3 Results and discussion 

Table 7.1 presents the statistical results of the NN time series obtained by each 

subject. A high variety of results were obtained by the participants, in which 

most of them achieved correlation coefficients above 0.8. The x̄ ± s of the 

Pearson and ICC measures were 0.830 ± 0.088 and 0.819 ± 0.098, respectively. 

Table 7.1   Statistical results of the NN time series obtained by subject in the HCI scenario 

1 0,831 0,816 17,22 1,32 1,94 23,13 1,83 57
2 0,928 0,922 15,36 1,12 1,69 19,72 1,44 22
3 0,938 0,935 17,31 1,34 1,96 22,62 1,79 20
4 0,815 0,806 18,58 1,47 2,13 25,19 2,02 24
5 0,707 0,700 29,65 3,22 3,99 44,55 4,64 23
6 0,912 0,911 21,30 1,32 2,16 28,35 1,77 41
7 0,865 0,855 20,05 1,62 2,31 26,41 2,19 29
8 0,947 0,946 14,26 0,76 1,34 19,12 1,02 14
9 0,740 0,716 20,56 2,68 3,01 27,43 3,62 34
10 0,740 0,718 27,89 1,63 2,75 35,05 2,05 69
11 0,901 0,899 19,36 1,82 2,42 25,32 2,46 56
12 0,774 0,763 29,96 1,58 2,82 39,22 2,10 53
13 0,800 0,781 15,62 1,48 1,96 21,02 2,03 16
14 0,649 0,620 41,04 2,75 4,32 54,46 3,70 37
15 0,725 0,712 18,74 2,16 2,58 25,91 3,03 23
16 0,859 0,855 21,48 2,19 2,81 28,07 2,86 19
17 0,852 0,847 11,92 1,03 1,43 15,55 1,35 57
18 0,763 0,745 27,41 2,31 3,25 38,83 3,31 35
19 0,892 0,887 14,47 1,10 1,63 19,05 1,45 62
20 0,913 0,911 14,67 1,37 1,83 19,06 1,78 38
21 0,856 0,847 15,72 1,11 1,70 19,29 1,37 15
22 0,656 0,597 31,69 4,01 4,59 41,94 5,39 40
23 0,807 0,789 24,16 1,92 2,78 31,95 2,59 77
24 0,961 0,962 20,68 1,32 2,12 28,33 1,97 32
25 0,811 0,810 27,88 2,03 3,08 38,88 2,95 21
26 0,960 0,959 20,23 0,94 1,77 25,74 1,20 53
27 0,836 0,825 16,78 1,45 2,01 22,53 1,98 49
28 0,802 0,793 21,99 1,80 2,56 28,81 2,37 64

Mean 0,830 0,819 21,28 1,74 2,46 28,41 2,37 39

S.D. 0,088 0,098 6,60 0,73 0,83 9,21 1,03 18

15:40

0:42

R. length 
analyzed (%)

RMSE 
(bpm)

MAE 
(bpm)

MAPE 
(%)

RMSE 
(ms)

15:47

14:35
16:16
15:05
14:54
15:01
15:32
15:43
15:09

Subj. r* ICC*
MAE 
(ms)

R. length

(min:s)

15:24
16:05
15:10
16:59
17:12
15:22
15:22
15:44
15:32
15:48
17:02

15:06
15:47

15:53

17:04
15:59
14:59
14:56
15:30

*: All p < 0.001. R. length: record length. Refer to section 3.2 for statistical parameters definitions.
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The variety of results obtained by the participants in this study is wide, in 

which some subjects achieved high correlation results and, on the other hand, the 

results obtained by other participants were not as good as expected. Clearly, due 

to the conditions of the study, a relevant factor to take into account in these 

measurements is the motion. The subjects were allowed a total freedom of 

movement during the recordings, which influenced the analyzed record length, 

as shown in Table 7.1. 

On one side, some subjects with a higher percentage of analyzed record 

length, for instance, the participants 11 and 26 achieved good correlation results 

and others obtained a lower agreement in the measurements, as the participants 

10 and 12, for example. On the other side, some subjects with a lower 

percentage of analyzed record also obtained both good and lower agreement 

results, as noted in the participants 3, 8, and 5, 15, respectively. Therefore, in 

this study, the analyzed record length was not related to the agreement achieved 

in the measurements. 

Unlike the proposed HCI scenario, the motion conditions of chapter 5 were 

certainly more specific in which the subjects performed lateral and 

forward/backward movements, always looking toward the camera, and avoiding 

fast gestures. In contrast to these conditions, some recordings of this chapter 

presented a wider variety of motion that included faster movements, different 

positions of the face, more changes in shape and size of the ROIs, as well as a 

less uniform illumination over the face, which could affect the results. 

Moreover, based on the quality distinction of the signal, the segments with a 

minor amount of motion were identified with the aim of excluding the segments 

with more motion artifacts. However, some subjects performed particular facial 

expressions or laughed during the recordings which could also have influenced 

the measurements. Based on the above, the difference in results may be 
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influenced by the aspects discussed here, but also, due to other factors such as 

the particular anatomical and physiological characteristics of the subjects. 

Fig. 7.7 and Table 7.2 show the correlation scatter plots and the 

corresponding results of the NNmean and SDNN parameters, respectively. Due 

to the discontinuity of the NN intervals sequence, other time-domain parameters 

and the frequency-domain components were not calculated in this chapter. 

 

Fig. 7.7   Correlation scatter plots of the NNmean and SDNN parameters. Refer to Table 7.2 for r 
and ICC results. 

Table 7.2   Statistical results of the NNmean and SDNN parameters 

NNmean (ms) 1,000 1,000 0,59 0,89

SDNN (ms) 0,964 0,886 7,04 8,28

Parameter r* ICC* RMSEMAE

 
*: All p < 0.001. Refer to section 3.2 for statistical parameters definitions. 

The SDNN parameter achieved a good Pearson’s correlation coefficient but 

the ICC measure was more affected in comparison with the results reported in 

previous chapters, in which the component obtained ICC values above 0.9. Only 

the measurements obtained with the iPhone 4s camera in stationary conditions in 
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chapter 4 achieved a lower agreement. The agreement achieved in this parameter 

is also reflected in the increase of the reported error results. 

Some authors also obtained measurements by video imaging that included a 

HCI scenario or the presence of natural movements [19, 22, 30, 31]. Firstly, Poh 

et al. [19] conducted a study in which the subjects were asked to move naturally 

by simulating the interaction with a laptop (no large or rapid movements were 

allowed). In the study of Monkaresi et al. [22], the measurements were obtained 

in a natural HCI scenario in which the participants were allowed to explore the 

internet and other resources in order to complete a requested task. In both works, 

it is important to note that the measurements were acquired by a frequency-

domain signal analysis, which is not comparable with the signal analysis of our 

study. 

The work of Kumar et al. [30] included recordings carried out in three 

different motion conditions: reading, watching video and talking. From these 

scenarios, the watching video situation presents a greater similarity with the HCI 

scenario of our study. According to the description in the study of Kumar et al., 

this scenario involved intermittent facial expressions such as smiling, getting 

amazed, sad, etc., and lateral movement of the head. 

Unlike the works of Poh et al. and Monkaresi et al., Kumar et al. performed 

a time-domain signal analysis in which the PP intervals were measured. Due to 

the presence of large motion, some peaks were not detected in the iPPG signal 

(5.68 % in the watching video scenario). These PP measurements achieved an 

average RMSE of 67.08 ms, which is more than twice the error achieved in the 

measure of the NN time series in our study. Taking into account the more similar 

results achieved in stationary conditions in both works, some particular 

movements performed by the participants could greatly affect the statistical 

results in the study of Kumar et al. 
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On the other hand, Antink et al. [31] performed a beat-to-beat heart rate 

estimation in a reading scenario without motion and without further instructions. 

This work involved the acquisition of different signals and their fusion, which 

include the video signals obtained from the changes of the skin color. In the case 

of the reading scenario without further instructions, although the average MAE 

result (see Table 2.3) is higher than the corresponding error achieved in the HCI 

scenario of our study, it is closer in comparison with those obtained in other 

reference works. The results are improved when considering the data achieved 

from the fusion of all the different signals, although the error continues to be 

higher. It is important to note that the works of Antink et al. and Kumar et al. 

present a smaller sample size in comparison with other reference works, which 

makes it more difficult to obtain a reliable statistical analysis. 

Fig. 7.8 shows the Bland-Altman plot with LoA of 95% representing the 

agreement between the NN intervals of reference and video. The results 

presented a mean difference of -0.11 ms (-0.06 bpm) and LoA from -58.82 to 

58.61 ms (-5.16 to 5.04 bpm).  

 

Fig. 7.8   Bland-Altman plot with LoA of 95% representing the agreement between the NN 
intervals (data of all subjects combined in one dataset). The results presented a mean difference of 
-0.11 ms (-0.06 bpm) and LoA from -58.82 to 58.61 ms (-5.16 to 5.04 bpm). 
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No systematic errors were identified in the measurements. The differences 

between the measurements obtained by both methods were increased compared 

with the results achieved in chapter 5 in which the subjects performed specific 

movements. Some sort of movements performed by the subjects, facial 

expressions, as well as the particular results of some participants not influenced 

by the motion could affect these overall data. 

 

7.4 Conclusions 

In this chapter is proposed a method to perform a video HRV analysis on a 

person in a real HCI scenario. During the proposed tasks, the amount and type of 

motion carried out by the participants varied from person to person, which in 

some cases greatly affected the video signals. Therefore, the method employed 

in this study is a selective algorithm which aims to analyze the segments of the 

video signal that contain a minor amount of motion artifacts. 

Due to the wider variety of motion, some improvements are proposed in 

order to achieve a more robust face tracking of the participants. An automatic 

reacquisition of feature points was established in case of a great loss of points 

during the motion scenarios. Also, a distortion of the ROIs is very likely to occur 

in presence of a great amount of motion, which subsequently may affect the 

acquisition of the signal. Therefore, an automatic ROIs detection was carried out 

every second in the case that the subjects performed certain large movements. 

The statistical analysis of the NN time series obtained by each participant 

shows a high variety of results, both good and bad, however, most of the 

subjects achieved correlation coefficients above 0.8. The difference in results 

between subjects may be influenced by several aspects related to the motion 

conditions of the HCI scenario but, also, due to other factors such as the 
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particular anatomical and physiological characteristics of the subjects. In this 

study, the analyzed record length was not related to the agreement achieved in 

the measurements. Based on the general results, the proposed method achieved 

lower errors in comparison with those obtained in related works, which obtained 

measurements in a HCI scenario or in the presence of natural movements. 

The NNmean and SDNN parameters obtained Pearson’s correlation 

coefficients above 0.9, of which, the SDNN parameter was particularly affected 

in the measure of ICC. The Bland-Altman plot shows larger differences between 

the NN intervals of reference and video, compared with the results achieved in 

chapter 5 in which the subjects performed specific movements. 

The proposed quality distinction of the video signal performed very well but, 

in a few cases, the distinction was not completely accurate because it is based on 

the amount of motion. On one side, some segments of the signal with good 

quality were rejected due to the presence of a great amount of motion. 

Conversely, some segments were analyzed because of the subject did not 

perform large movements of the head, despite some facial expressions or the 

laugh affected the measurements. In this respect, an objective for future work 

could be the implementation of an automatic identification of facial expressions 

in order to exclude the artifacts produced by them. 

Based on the above, more improvements are needed in order to carry out a 

better analysis in a real-life scenario. The development of more robust 

algorithms is necessary to suppress, as much as possible, the contribution of 

artifacts caused by the factors present in a real environment, as well as a better 

signal quality distinction with the aim of performing a more reliable video HRV 

analysis in these scenarios. 
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Respiratory rate analysis by video 

imaging 

 

  

 

The respiratory signal analysis by video, just as the heart rate and HRV analysis, 

also has been explored in the last few years (refer to section 2.4). In this chapter 

is proposed the application of a tracking algorithm in order to obtain the 

respiratory signal by video. The tracking of the body movements caused by the 

respiration, which are reflected mostly in the torso area, may have a 

correspondence to the respiratory signal of the subject. Thus, the respiratory rate 

analysis by video could provide a low-cost, contactless, and reliable alternative 

to traditional methods, just as the video HRV analysis. 

 

Chapter 8 
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8.1 Data acquisition set-up 

A summary of the measurements set-up is shown below: 

§ 25 subjects (13 women, 12 men) between 22 and 54 years old were 

recorded with a GoPro camera at 1920x1080 pixels and 30 fps (see section 

3.1.2). 

§ The reference signal was recorded using the RespiBand by plux of FICOSA 

International S.A. at a sampling frequency of 40 Hz (see section 3.1.1). 

§ The recordings were obtained at rest by using a seat belt of a car seat. 

§ The recording length was 5 min. 

§ The distance between the camera and the torso was 0.5 m approximately. 

§ The recordings were performed indoors with sunlight as the lighting source. 

 

8.2 Video and signal processing 

8.2.1 Selection and tracking of feature points 

The respiratory signal by video was obtained using the KLT algorithm [113-

115], which has also been employed previously to track the face of the subjects. 

As mentioned earlier, this algorithm allows the tracking of feature points along a 

video sequence. In this study, a seat belt of a car seat was used as a reference, 

which was marked with small white spots in order to obtain the feature points. 

The tracking of a different number (n) of reference marks was carried out in 

each subject because of the different physical constitution of the participants. 

Fig. 8.1 shows an example of two people with a different number of reference 

seat belt marks. 
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Fig. 8.1   Subjects with a different number (n) of reference seat belt marks (inside the green 
circles): (left) subject with six marks; (right) subject with ten marks. The reference marks were 
numbered from left to right and from top to bottom. 

The acquisition of feature points was carried out through the manual 

selection of n seat belt marks on the first video frame. Then, eight extra feature 

points were obtained around the locations (xi, yi) of the selected points in order 

to perform a more robust tracking as follows 

   

in which i = 1,2,3,…n. Fig. 8.2 shows the feature points obtained on the seat belt 

marks in a subject. 

 

Fig. 8.2   (Left) features points (green marks) obtained on the seat belt marks (red rectangle 
encloses the image on the right); (right) set of features points on a seat belt mark. 
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The presence of additional features points allows a more reliable signal 

acquisition, given the possibility of loss of points along the video sequence. A 

point tracker was established which enables the bidirectional error of the feature 

points due to the presence of noise. The maximum bidirectional error was set at 

3 pixels. Once the tracking of points was accomplished along the video 

sequence, the locations of the feature points of each reference mark were 

averaged to obtain a central position by frame. 

 

8.2.2 Respiratory signal acquisition 

With the aim of measuring the body displacements caused by the respiration, the 

distances between feature points were calculated as shown in Fig. 8.3. Thus, a 

longer distance between points corresponds to the inspiratory phase of the 

breath, and conversely, a shorter distance to the expiratory phase. The 

calculation was carried out in all frames to obtain the raw respiratory signals. 

 

Fig. 8.3   Distances calculated between features points (dashed green arrows) to obtain the 
respiratory signals. The number of signals depended on the number of available feature points. 
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Given the averaged locations of the feature points on each frame, the 

distance between two points was calculated by using the following formula 

 

The number of respiratory signals depended on the number of available feature 

points of each subject. Fig. 8.4 shows the respiratory signals obtained from a 

subject by calculating the corresponding distances between the feature points. 

 

Fig. 8.4   Respiratory signals obtained from a subject by calculating the distances between the 
feature points (first 100 s). The signals (s) are named with subscripts according to the two 
reference marks numbers used for their calculation (see Fig. 8.1): (a) s13; (b) s24; (c) s15; (d) s26; (e) 
s35; (f) s46. 
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A second-order bandpass Butterworth filter between 0.05 and 0.5 Hz was 

applied to remove low and high frequency noise components. The cutoff 

frequencies correspond to the range from 3 to 30 breaths per minute (BPM). A 

cubic spline interpolation was performed to improve the temporal resolution of 

the video (30 fps) to the sampling frequency of the reference signal (40 Hz). The 

reference and video signals were normalized. Fig. 8.5 shows the respiratory 

signals of a subject after applying the filter and the interpolation. 

 

Fig. 8.5   Respiratory signals obtained from a subject after applying the filter and the interpolation 
(first 100 s): The signals (s) are named with subscripts according to the two reference marks 
numbers used for their calculation (see Fig. 8.1): (a) s13; (b) s24; (c) s15; (d) s26; (e) s35; (f) s46. 
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8.2.3 Synchronization of the signals 

The synchronization of the respiratory signals was performed because of the 

camera and the inductive chest band were not aligned in time. This step was 

carried out by a cross-correlation analysis (Eq. 4.1) between the reference and 

video signals (Fig. 8.6). 

 

Fig. 8.6   Cross-correlation analysis performed between the respiratory signals: (top) reference 
signal; (middle) video signal; (bottom) result of the cross-correlation in absolute values. 

The maximum absolute value of each cross-correlation and its corresponding 

time offset were calculated in the analysis. Thus, the synchronization of all 

signals was carried out by adjusting the time offset of the signal that achieved 

the highest correlation value. 
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8.2.4 Breathing rate time series 

In order to calculate the BR time series, the local maxima were detected on the 

respiratory signals. The maximum possible value of a respiratory cycle was 

defined as 30 BPM, which corresponds to 2 seconds. Taking into account this 

minimum time between peaks of the respiratory signal, the local maxima were 

detected to obtain the BR intervals (Fig. 8.7). 

 

Fig. 8.7   Local maxima detection on the respiratory signals: (top) reference signal; (middle) video 
signal; (bottom) breathing rate (BR) time series of reference and video. 

After the synchronization of the signals, which in a few cases resulted in 

non-synchronized intervals of reference and video, a synchronization of the BR 

intervals was carried out by means of a cross-correlation analysis (Eq. 4.1). 
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8.2.5 Selection of the respiratory signal 

Due to the existence of several respiratory signals of video, only one of them 

was chosen in order to be compared with the reference data. To this end, the BR 

time series of video that achieved the minimum MAPE (Eq. 3.5) were chosen to 

perform the posterior statistical analysis. Moreover, the BR intervals of video 

that obtained the three minimum and three maximum MAPE were identified 

with the aim of finding the seat belt marks that achieved the best and worst 

results. 

 

8.3 Results and discussion 

Several parameters were calculated to evaluate the BR time series that achieved 

the minimum MAPE. Table 8.1 presents the statistical results of the BR time 

series obtained by each subject. As shown, all subjects achieved excellent results 

with correlation coefficients above 0.9. The x̄ ± s of the Pearson and ICC 

measures were 0.968 ± 0.029 and 0.967 ± 0.030, respectively. The mean of the 

errors achieved a MAPE = 1.94 % value, which corresponds to a MAE = 0.09 s 

or an RMSE = 0.15 s. 

Fig. 8.8 and Table 8.2 show the correlation scatter plots and the 

corresponding statistical results of the mean and standard deviation of the 

breathing rate intervals (BRmean and SDBR), respectively. It is noted an 

excellent correspondence in these parameters which achieved very high 

correlation coefficients with values above 0.99. Fig. 8.9 shows the Bland-

Altman plot with LoA of 95% representing the agreement between the BR 

intervals of reference and video. The mean difference was -0.004 s (0.01 

breaths/min (BPM)), and the LoA from -0.33 to 0.32 s (-0.88 to 0.90 BPM), 

therefore, no large differences were found between both methods. 
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Table 8.1   Statistical results of the BR time series by subject 

1 0,988 0,988 0,00 -0,01 0,08 0,25 1,82 0,11 0,36

2 0,990 0,990 -0,02 0,04 0,16 0,19 2,17 0,24 0,29
3 0,991 0,991 0,00 0,00 0,08 0,16 1,43 0,11 0,23
4 0,995 0,995 0,00 0,00 0,03 0,14 0,80 0,04 0,18
5 0,988 0,988 0,00 0,02 0,04 0,22 1,27 0,06 0,31
6 0,992 0,992 0,00 0,00 0,03 0,18 0,93 0,04 0,25
7 0,904 0,901 -0,04 0,10 0,11 0,34 2,71 0,39 0,83
8 0,971 0,971 0,00 0,01 0,06 0,22 1,48 0,07 0,29
9 0,922 0,923 0,00 0,00 0,06 0,28 1,73 0,12 0,54
10 0,980 0,979 0,00 0,02 0,04 0,32 1,54 0,06 0,43
11 0,940 0,935 -0,08 0,06 0,47 0,24 4,27 0,59 0,31
12 0,918 0,918 0,00 0,03 0,14 0,39 2,95 0,21 0,58
13 0,914 0,911 0,00 0,02 0,05 0,35 1,73 0,10 0,60
14 0,984 0,985 0,00 0,01 0,12 0,25 2,18 0,16 0,33
15 0,954 0,951 0,00 0,01 0,10 0,56 3,07 0,18 0,75
16 0,991 0,991 0,00 0,00 0,03 0,13 0,86 0,04 0,17
17 0,993 0,993 0,00 0,00 0,04 0,14 0,96 0,06 0,19
18 0,987 0,987 0,00 -0,02 0,19 0,39 3,42 0,40 0,69
19 0,996 0,996 0,00 0,00 0,03 0,12 0,79 0,04 0,17
20 0,960 0,960 0,00 0,01 0,06 0,33 1,77 0,07 0,43
21 0,970 0,970 0,00 0,01 0,10 0,30 2,17 0,15 0,42
22 0,930 0,928 0,00 0,02 0,11 0,38 2,59 0,14 0,49
23 0,966 0,966 0,00 -0,01 0,10 0,43 2,59 0,13 0,60
24 0,984 0,983 0,00 -0,02 0,09 0,33 2,13 0,11 0,40
25 0,995 0,995 0,00 0,01 0,04 0,15 1,03 0,07 0,27

Mean 0,968 0,967 -0,01 0,01 0,09 0,27 1,94 0,15 0,40

S.D. 0,029 0,030 0,02 0,03 0,09 0,11 0,90 0,13 0,19

RMSE 
(BPM)

MAE 
(BPM)

MAPE 
(%)

RMSE  
(s)

Subj. r* ICC*
MBE 

(BPM)
MBE   

(s)
MAE   

(s)

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 

 

Fig. 8.8   Correlation scatter plots of the BRmean and SDBR parameters. Refer to Table 8.2 for r 
and ICC results. 
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Table 8.2   Statistical results of the BRmean and SDBR parameters 

Parameter r* ICC* MAE RMSE 

BRmean (s)  1,000 1,000 0,01 0,02 

SDBR (s) 0,997 0,997 0,02 0,04 

*: All p-values < 0.001. Refer to section 3.2 for statistical parameters definitions. 

 

Fig. 8.9   Bland-Altman plot with LoA of 95% representing the agreement between the BR 
intervals of reference and video (data of all subjects combined in one dataset). The mean 
difference was -0.004 s (0.01 BPM) and the LoA from -0.33 to 0.32 s (-0.88 to 0.90 BPM). 

Some authors proposed different non-contact video camera-based methods 

to estimate the instantaneous and average respiratory rate and reported statistical 

results of the measurements, which are summarized below. Bousefsaf et al. [29] 

proposed a motion-tolerant method to measure the instantaneous breathing rate 

from the face at rest and with predefined head movements. In this work, 12 

healthy volunteers were recorded with a webcam during 35 s. In the two 

conditions of the study, the measurement of the average breathing rate achieved 

Pearson’s correlation results of 0.99 and 0.98, respectively. In the case of the 

Bland-Altman plots, the results show LoA of 95% from -5.36 to 4.82 BPM at 

rest and during motion from -4.6 to 4.58 BPM. 
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In the study of van Gastel et al. [53], a non-contact camera-based method 

was presented to detect the instantaneous respiratory rate both in visible and 

dark lighting conditions. In this work, three subjects in a sitting position were 

recorded in the visible lighting condition during 120 or 150 s depending on 

different guided breathing scenarios. Including all these scenarios, the best 

statistical results reported in the visible light condition were r = 0.962, MAE = 

1.74 BPM and RMSE = 2.67 BPM. In particular, the constant 20 BPM scenario 

achieved the best results with a MAE = 1.15 BPM and RMSE = 1.61 BPM. 

Cobos and Abderrahim [58] proposed a method for the contactless 

measuring of the respiratory rate by employing the iPPG technique through 

wavelets. 10 healthy subjects in a sitting position were assessed in this work, in 

which 60 s were analyzed in their corresponding recordings. The Bland-Altman 

plot was used to evaluate the proposed method with results showing LoA of 95% 

from -1.8 to 2.0 BPM. 

Alternatively, Al-Naji and Chahl [57] presented a non-contact monitoring 

system to simultaneously obtain the cardiorespiratory signal from a group of 

people. In total, 18 participants were recorded during 20 s with a digital camera. 

In this work, the respiratory rate per minute was measured in a stationary and 

non-stationary scenario by employing an iPPG-based method (color) and a 

motion-based method. The statistical results achieved in this study were as 

follows: (stationary scenario, iPPG-based method) r = 0.9893 and RMSE = 0.32 

BPM; (stationary scenario, motion-based method) r = 0.9706 and RMSE = 0.64 

BPM; (non-stationary scenario, iPPG-based method) r = 0.8455 and RMSE = 

1.25 BPM; (non-stationary scenario, motion-based method) r = 0.6209 and 

RMSE = 2.08 BPM. 

In comparison with the statistical data reported by these authors in stationary 

conditions, it is noted that our proposed method achieved better results. 
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Moreover, our study includes a larger number of subjects under analysis and the 

video recordings were longer. It is important to note that most of the works cited 

previously did not analyze the chest or abdomen area to obtain the respiratory 

signal (refer to section 2.4). Among these studies, only the work presented by 

Cobos and Abderrahim [58] analyzed the abdomen area in order to obtain the 

respiratory signal. On the other hand, it is not possible to compare the results 

obtained in these works in motion scenarios because our method was not 

evaluated in this condition. 

On another note, the video signals that obtained the three minimum and three 

maximum MAPE were chosen by calculating the mode, with the aim of finding 

the seat belt marks that achieved the best and worst results. These results were 

divided according to the number of seat belt marks analyzed in the subjects 

(Table 8.3). 

Table 8.3   Signals with the three minimum and three maximum MAPE of the BR intervals 

No. seat 
belt marks 

Subj. (N) 
Minimum (best) MAPE Maximum (worst) MAPE 

1st 2nd 3rd 1st 2nd 3rd 

6 8 s46 s26 s24 s15 s15 s13 

8 12 s48 s28 s37 s15 s13 s57 

10 5 s68 s48 s37 s13 s24 s15 

Refer to Fig. 8.1 for examples of the reference seat belt marks (the location of the seat belt marks 
over the body depended mainly on the physical constitution of the participants). Refer to section 
3.2 for statistical parameters definitions. 

Based on the data presented in the table, it is noted that the signals which 

achieved better results were obtained from marks mainly located on lower-

central positions (s46, s48, s68), while the worst results were calculated from upper-

central marks (s15, s15, s13). In most of the subjects with 8 seat belt marks, who 

were the majority (N=12), and subjects with 10 marks, the signal s48 presented 
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low errors. These two reference points are not adjacent and it is also noted that 

six signals with minimum errors were obtained from non-adjacent reference 

points. Therefore, the acquisition of signals from reference points within a 

certain distance between them may be a good option. 

 

8.4 Conclusions 

In this chapter is presented a respiratory rate analysis by video using the KLT 

algorithm. The respiratory signals by video, which were obtained by using a seat 

belt of a car as a standard reference for all subjects, achieved a high 

correspondence compared to the reference signal. From the perspective of the 

video image, the body displacements caused by the respiration produce a 

variation visual effect on the distance between the reference marks. The 

inspiratory phase of the breath cause an approach of the reference marks to the 

camera that is interpreted as a longer distance between the reference points, and 

vice versa in the case of the expiratory phase. However, despite the high 

agreement between the measurements of the reference and video, it is important 

to note that the signals were obtained by measuring inductive changes and 

distances between reference points, respectively. 

All subjects achieved excellent results in the BR time series with correlation 

coefficients above 0.9. The x̄ ± s of the Pearson and ICC measures were 0.968 ± 

0.029 and 0.967 ± 0.030, respectively, and the mean of the individual MAPE 

results was 1.94 %. The BRmean and SDBR parameters achieved very high 

correlation coefficients with values above 0.99. In the case of the Bland-Altman 

plot, the measurements did not present large differences between the methods, 

which give the possibility to use them interchangeably, at least under the 

conditions of the study. Our proposed method achieved better results in 

comparison with those reported in other studies in stationary conditions. But, on
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the other hand, it is not possible to compare the results obtained in motion 

scenarios in these works because of our method was not evaluated in this 

condition. Therefore, the acquisition of measurements in a non-stationary 

scenario is necessary to provide more clearly the scope and limitations of the 

proposed method in this condition in comparison with other related studies. 

The video signals with the minimum and maximum errors assisted in 

identifying which regions of the body and distances between marks could 

provide better results. The signals that achieved better results were obtained 

from reference marks mainly located on lower-central positions, while the worst 

signals were calculated from upper-central marks. In general, the lower-central 

area of the torso could be the region that better reflects the movements of the 

respiration, although this depends on the subject. Moreover, the best results were 

obtained mostly from non-adjacent reference points. Therefore, the acquisition 

of signals from reference marks with a certain distance between them, as well as 

located on the lower-central region of the torso could be the best option using 

the proposed method. As an objective for future work, due to a seat belt of a car 

is used as a standard reference, an adaptation of the proposed method could be 

an alternative to measure the respiratory rate in subjects while driving, as well as 

in other conditions by tracking different reference marks. 
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This thesis presents a series of methods that aim at measuring physiological 

parameters such as heart rate, HRV, and respiratory rate through video imaging. 

The proposed methods employ image and signal processing techniques that 

focus on regions of the body that could provide more information on these 

physiological parameters and on the characteristics of the signals, respectively. 

Furthermore, an analysis of factors and conditions that influence the 

performance of this technique is carried out in this research study. The 

assessment of different cameras and settings, the acquisition of measurements in 

stationary and motion scenarios, and the evaluation of different light sources are 

some examples, as detailed throughout the chapters of this thesis. 

Conclusions  
and future work 
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The initial measurements of this research study are obtained by performing a 

frame averaging and a cross-correlation analysis achieving a good agreement on 

heart rate and HRV measurements. In general, these results are improved in 

comparison with the data reported by authors who employed a similar method. 

However, not all the reported results achieved a good correspondence on the 

measurements. A comparative analysis of low-resolution and high-resolution 

recordings shows that the video resolution has a significant impact on the overall 

results. Certainly, a higher resolution video presents more pixels to be analyzed 

and, therefore, a greater amount of data to obtain more reliable measurements. 

Moreover, the frame averaging could affect the results of the low-resolution 

recordings more, since the amount of data available to obtain the measurements 

was reduced. 

Despite the good performance of the aforementioned method, it has the 

limitation that it can only be used in stationary conditions, thereby affecting its 

application in real-life scenarios. Then, a method for performing a video HRV 

analysis in motion conditions is proposed, in which the application of face 

detection approaches plays a key role in the achievement of this objective. The 

Viola and Jones and the KLT algorithms are employed in this work as part of the 

face detection and tracking method. Even at present, the Viola and Jones 

algorithm is widely used in several applications and research, since it is able to 

run in real-time and it is characterized by achieving high detection rates. In the 

case of the KLT algorithm, the approach is able to track the face of a subject 

during changes of scale and orientation, as occurred in the motion scenarios of 

this study. 

The proposed method, which applies face detection and tracking approaches, 

aims to analyze the regions that contain a greater cardiac component (forehead 

and cheeks) and exclude those that may contribute with artifacts. A frame 

averaging is not necessary in this case, which allows having a greater amount of 
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data for the acquisition of the measurements. A first assessment included 

stationary and motion conditions that were performed by the participants. The 

statistical analysis shows a good agreement between the reference system and 

the proposed method by video imaging. The results obtained in stationary 

conditions are improved in comparison with the data reported in related works. 

In the case of the motion condition analysis, the reported results also achieved a 

good correspondence but with lower values in relation to the stationary 

condition. An overall comparative analysis of HRV parameters in motion 

conditions was more limited due to the lack of studies or studies containing 

insufficient data analysis. 

Taking into account the similar results obtained in stationary conditions by 

employing the two methods mentioned above, the last one seems to be a better 

alternative for measuring heart rate and HRV parameters in conditions as those 

carried out in the study. Accordingly, the method could be applied while 

working in front of a PC or in other activities with similar moves. It is important 

to note that the measurements were performed by following specific movements, 

therefore, its application in a more real-life scenario was also proposed in this 

research study. 

On the other hand, a video HRV analysis was carried out through the 

acquisition of the iPPG signal in real-time. This option offers a quick analysis of 

the HRV parameters by video, as well as the feasibility of real-time monitoring 

of the iPPG signal under influences such as the motion and the lighting 

conditions. In this analysis, the recordings were obtained using three different 

light sources in order to evaluate their influence on the measurements. Although 

good results were obtained using the three light sources, the statistical analysis 

shows that the sunlight achieved the best results in comparison with the LED 

and fluorescent light alternatives. The sunlight source has an energy spectrum 

that is more evenly distributed compared with the LED and fluorescent lights, 
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which present their energy more concentrated in some wavelengths. Thus, 

hypothetically, the energy level provided by the light source at the analyzed 

wavelength could be a factor that influences the quality of the signals. Even so, 

this study shows that some artificial lights can achieve very good and close 

results as those obtained with the sunlight source. 

Furthermore, the interest in measuring physiological parameters in everyday 

activities by using alternative methods has increased in the last few years. 

Hence, a HCI scenario is performed in this work with the aim of assessing the 

proposed method in a real-life condition. Due to the wider variety of motion, 

some improvements are introduced in order to achieve a more robust face 

tracking of the participants. This motion scenario adversely affected the quality 

of the video signals and, thus, the reliability of the HRV measurements. A 

quality distinction of the video signal is proposed in order to only analyze the 

segments that contain a minor amount of motion artifacts. In general, the 

statistical analysis shows a lower agreement on the measurements in comparison 

with the results obtained in the preceding chapters. Likewise, based on the 

overall results, the proposed method achieved lower errors in comparison with 

those obtained in some related works. 

Besides the measurement of heart rate and HRV, the respiratory rate analysis 

by video also has been explored in the last few years. In this study, the KLT 

algorithm is applied to track the body movements caused by the respiration in 

order to obtain the respiratory signal. All participants obtained excellent results 

in measuring the instantaneous respiratory rate, as well as in BRmean and SDBR 

parameters. These measurements achieved a better agreement in comparison 

with studies that were also performed in stationary conditions. However, the 

proposed method was not evaluated in a motion scenario, which does not allow 

knowing its scope and limitations in this condition. Since a seat belt of a car is 

used as a standard reference to obtain the respiratory signals, an adaptation of 
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the method could be an alternative to measure the respiratory rate in subjects 

while driving, as well as in other conditions by tracking different reference 

marks. 

Based on the statistical analysis conducted in this thesis, the methods 

proposed herein could provide a low-cost, contactless, and reliable alternative 

for measuring physiological parameters in non-clinical environments. These 

results and data reported in related studies are strong evidence that the video 

imaging technique is a promising approach that could be used in the near future. 

Moreover, although the technique aims to be used by everyone, it may have a 

potential application in people with sensitive or fragile skin (neonates or patients 

with burn injuries, for example). 

This contactless technique may eventually become an instrument to detect 

physical or psychological disorders in the future. Nevertheless, its use for this 

purpose will depend on the progress of the technique over the coming years, 

since it is still in the research and development phase. Therefore, more 

improvements are necessary to reach the reliability achieved by the current 

reference systems and, particularly, if its application in real-life scenarios is 

considered. The development of more robust algorithms is required in order to 

suppress, as much as possible, the contribution of artifacts present in a real 

environment. Consequently, the acquisition of measurements in several real-life 

scenarios, longer recordings, and the analysis of more factors that could 

influence the performance of the technique constitute some objectives for future 

work.          
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In this appendix is included supplementary information that is cited in the thesis. 

 

 

A.1 Electrical diagram of the ECG acquisition board 

Fig. A.1 shows the electrical diagram of the ECG acquisition board used to 

record the reference ECG signal (refer to section 3.1.1). 
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Fig. A.1   Electrical diagram of the ECG acquisition board: (A) Preconditioning and first 
amplification stage; (B) high-pass filter and second amplification stage; (C) notch filter; (D) low-
pass filter. 

Each stage of the shown electrical diagram is more detailed below:  

A. Preconditioning and first amplification stage: this circuit stage has an 

instrumentation amplifier AD627 in which the gain depends on the resistor 

connected between the pins 1 and 8. The gain is set according to: 

 

in which RG is selected between 5.6 kΩ or 2.7 kΩ with the jumper JP1. 
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B. High-pass filter and second amplification stage: an RC high-pass filter is 

applied in order to eliminate low-frequency noise components such as 

random movements or the respiration component (Fig. A.2). 

 

Fig. A.2   RC high-pass filter. 

Its cutoff frequency is determined by: 

 

in which C = 1 μF and R is selected between 3.3 MΩ, 330 kΩ or 81 kΩ 

with the jumper JP2. Thus, the cutoff frequencies are 0.048 Hz, 0.482 Hz or 

1.965 Hz, respectively. After the high-pass filter, an amplifier TL082 is 

used as part of a second amplification stage. The gain of the corresponding 

non-inverting amplifier configuration is set according to: 

 

in which RF = 36 kΩ and RG = 1 kΩ. 
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C. Notch filter: this band-stop filter is used to eliminate the presence of the 

electrical power line noise (50 Hz). The frequency response shown in Fig. 

A.3 is set with the potentiometers POT1 and POT2. The POT2 sets the 

center frequency and the POT1 sets its attenuation. 

 

Fig. A.3   Frequency response of the notch filter. 

D. Low-pass filter: an RC low-pass filter is applied in order to eliminate high-

frequency noise components such as electronic noise or electromyogram 

(EMG) components (Fig. A.4). The values of the filter components are R = 

75 kΩ and C = 100 nF, therefore, the cutoff frequency is 21.22 Hz. 

 

Fig. A.4   RC low-pass filter. 
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A.2 Questionnaire of the HCI scenario 

The questionnaire completed by the participants during the HCI scenario (refer 

to section 7.1.1) is shown below. This questionnaire contains questions related to 

the psychological status, dietary habits, physical activity, and general data such 

as age, gender, weight, among others. 

DATOS GENERALES 

Instrucciones: rellene (datos entre paréntesis) o seleccione de acuerdo a la 

información solicitada. Se detallan las opciones de respuesta entre llaves en 

cada pregunta, cuando corresponda.  
 

§ Edad (años)  

§ Sexo {M; F} 

§ Peso (kg) 

§ Estatura (cm) 

§ ¿Fuma? ¿Cantidad de cigarros al día? {No fumo; Menos de 5; Entre 5 y 10; 
Entre 10 y 15; Más de 15} 

§ ¿Consume alcohol? ¿Cuántos días a la semana?{No bebo; 1; 2; 3; 4; 5; 6; 7} 

§ ¿Tiene alguna enfermedad cardiovascular? {Sí; No} 

§ ¿Está tomando actualmente algún tipo de medicamento? {Sí; No} 

 
 
ESTADO PSICOLÓGICO 

Instrucciones: seleccione en el rango de 0 a 10 (0=nada, 10=máximo) para 

indicar cómo te sientes en este momento. 
 

§ Tenso/a 

§ Enfadado/a 

§ Enérgico/a 

§ Nervioso/a 

§ Ansioso/a 

§ Deprimido/a 
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HÁBITOS ALIMENTICIOS 

Instrucciones: seleccione de acuerdo a la información solicitada. Se detallan 

las opciones de respuesta entre llaves en cada pregunta. 
 

§ ¿Sigues una alimentación saludable? {Sí; Regular; No} 

§ En caso afirmativo ¿hace cuánto tiempo aproximadamente? {N/A; 1 
semana; 1 mes; 3 meses; 6 meses; Más de 6 meses}  

§ ¿Cuántas veces comes al día? {1; 2; 3; 4; 5; Más de 5} 

§ ¿Cuál es la comida principal para ti? {Desayuno; Comida; Cena} 

§ ¿Regularmente en qué consiste tu comida entre semana? {Comida casera; 
Comida en bares/restaurantes; Comida precocinada y/o congelada; Otro} 

§ ¿Regularmente en qué consiste tu comida los fines de semana? {Comida 
casera; Comida en bares/restaurantes; Comida precocinada y/o congelada; 
Otro} 

 

 

ACTIVIDAD FÍSICA 

Instrucciones: seleccione de acuerdo a la información solicitada. Se detallan 

las opciones de respuesta entre llaves en cada pregunta. 

 

§ ¿Cómo es tu actual condición física? {Estoy sin forma; Débil; Regular; 

Buena; Perfecta} 

§ ¿Realizar algún deporte/actividad física de forma regular? {Sí; No} 

§ ¿Cuántos días por semana? {N/A; 1; 2; 3; 4; 5; 6; 7} 

§ ¿Cuánto tiempo al día (aproximadamente)? {N/A; Menos de 30 min; 30 

min; 1 hora; 2 horas; Más de 2 horas} 

§ ¿Cuánto tiempo hace que lo practicas (aproximadamente)? {N/A; 1 semana; 

1 mes; 3 meses; 6 meses; Más de 6 meses} 

§ ¿Qué nivel de esfuerzo realizas en la actividad física? {N/A; Ligero; 

Moderado; Intenso; Máximo} 
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A.3 Research publications 

§ A. Melchor Rodríguez and J. Ramos-Castro, “Video pulse rate variability 

analysis in stationary and motion conditions”, BioMedical Engineering 

OnLine, 17:11, 2018. 
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International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), Milan, pp. 5696-5699, 2015. 
 

§ A. Melchor Rodríguez and J. Ramos-Castro, “Análisis de la Variabilidad de 

la Frecuencia Cardíaca mediante Fotopletismografía por imagen”, XXXII 

Congreso Anual de la Sociedad Española de Ingeniería Biomédica 

(CASEIB), Barcelona, 2014. 
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