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Abstract 

Chronic pain is a major clinical issue producing huge economic and social 

burdens. Currently, chronic neuropathic pain treatment has limited 

efficacy and significant side effects. One of the reasons of this unmet 

clinical need is the insufficient knowledge of the exact mechanisms 

involved in the development and maintenance of neuropathic pain. 

Additionally, therapeutic approaches often overlook pain comorbidities 

that definitely impair nociceptive manifestations. Thus, addressing 

affective and cognitive disorders associated to neuropathic pain also 

represents an important challenge that may improve the efficacy of 

treatments. The high inter-individual variability in the neuropathic pain 

manifestations may lead to differential response of patients to 

treatments, and suggest the suitability of more personalized therapies 

rather than general guidelines. In the present thesis we have first studied 

the influence of behavioural traits on chronic neuropathic pain 

manifestations using different behavioural, electrophysiological and 

genetic approaches. The endogenous opioid system is a crucial 

therapeutic target for the management of moderate to severe 

nociceptive and inflammatory pain. However, the function of the opioid 

system during neuropathic pain is not well understood. Thus, we have 

evaluated the involvement of specific central and peripheral mu and 

delta opioid receptors populations modulating nociceptive, emotional, 

cognitive and neurochemical manifestations of chronic neuropathic pain. 

We have identified the endogenous delta opioid receptor as an 

interesting pharmacological target to limit nociceptive and affective 

phenotypes associated to neuropathic pain, whereas adverse 

consequences of mu opioid receptor activity after nerve injury were 

revealed. 
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Resumen 

El dolor crónico es un problema clínico grave con una enorme carga 

económica y social. Actualmente, el tratamiento del dolor neuropático 

crónico presenta una eficacia limitada y efectos adversos significativos. 

Una de las razones de esta necesidad clínica insatisfecha es el escaso 

conocimiento de los mecanismos exactos que están involucrados en el 

desarrollo y mantenimiento del dolor neuropático. Además, los enfoques 

terapéuticos a menudo subestiman la importancia de las comorbilidades 

que acompañan al dolor, las cuales indudablemente deterioran las 

manifestaciones nociceptivas. Por ello, tratar los trastornos afectivos y 

cognitivos asociados al dolor neuropático también representa un desafío 

importante que puede mejorar la eficacia de los tratamientos. La alta 

variabilidad interindividual en las manifestaciones de dolor neuropático 

puede conducir a una respuesta diferencial de los pacientes a los 

tratamientos, y sugiere la idoneidad de terapias más personalizadas en 

lugar de pautas generales. En esta tesis hemos estudiado en primer lugar 

la influencia de los rasgos conductuales en las manifestaciones del dolor 

neuropático crónico utilizando aproximaciones conductuales, 

electrofisiológicas y genéticas. El sistema opioide endógeno es una diana 

terapéutica crucial para el tratamiento del dolor inflamatorio y 

nociceptivo moderado o intenso. Sin embargo, la función del sistema 

opioide en el dolor neuropático no está del todo clara. Por ello, hemos 

evaluado el papel de poblaciones específicas de receptores mu y delta 

opioides a nivel periférico y central en la modulación de las 

manifestaciones nociceptivas, emocionales, cognitivas y neuroquímicas 

del dolor neuropático. Así, hemos identificado el receptor delta opioide 

como una diana farmacológica interesante para restringir los síntomas 

nociceptivos y afectivos asociados al dolor neuropático, mientras que se 

demostraron las consecuencias adversas de la actividad del receptor mu 

opioide tras una lesión nerviosa. 
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1. Physiology of pain 

1.1 Definition 

Pain is defined by the International Association for the Study of Pain 

(IASP) as “an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, or described in terms of such 

damage” (Merskey and Bogduk, 1994). It is important to note that, as a 

subjective experience, the lack of expression or communication of pain 

does not preclude its existence, as happens in particular populations, 

such as newborns, unconscious people and demented people. Under 

physiological conditions, pain is aimed to alert from external or internal 

stimuli that can potentially induce tissue damage, so it has a clear 

protective role. However, pain can also be considered itself a disease, 

when it loses its warning function.  

Perceived painful experience results from the integration of two main 

components (Aliaga et al, 2002): 

• Nociceptive or sensorial: painful sensation secondary to the 

transmission of painful stimuli from nerves to the brain cortex. 

• Affective or reactive: the suffering associated to pain, which 

depends on the cause of pain and the subjective assessment of the 

situation, the limitations that pain implies and the consequences. 

Many psychological factors can also modify the perception of the 

painful experience. 

 

1.2 Classification 

Pain has been classified in many ways considering the duration (acute, 

chronic), the intensity (mild, moderate, severe), the localization (cervical, 

spinal, pelvic, leg, arm, shoulder), the association to disease 
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(rheumatism, cancer, neuropathic) or the underlying pathophysiological 

mechanisms (nociceptive, inflammatory and neuropathic). For the 

purpose of the aims of this thesis, we focus on duration and 

pathophysiological classifications. 

 

1.2.1 Acute vs chronic pain 

The distinction between acute and chronic pain is due to a temporally 

issue, but also because of the essential differences in the physiological 

and pathophysiological mechanisms of these two pain modalities (Aliaga 

et al, 2002). Generally, acute pain is defined as an immediate sensorial 

event in the nociceptive system. Somatic or visceral tissue damage leads 

into acute pain that is maintained during the process of tissue healing. 

Thus, a good relationship exists between pain and injury. Chronic pain is 

described as a pain that lengthens beyond the injury and remains once 

the lesion disappears. Persistent pain is accompanied by physical, 

emotional, social or cognitive abnormalities that diminish the quality of 

life of patients (Aliaga et al, 2002). 

The transition from acute to chronic pain has been the focus of intense 

study. Chronic pain is characterized by peripheral, spinal cord and 

cortical reorganization processes (Apkarian et al, 2013). In addition to 

neuronal mechanisms, the involvement of immune and glial cells in the 

development of chronic pain from acute tissue injury is also currently 

well accepted (Austin and Moalem-Taylor, 2010; Ren and Dubner, 2010; 

Scholz and Woolf, 2007). Further details of these mechanisms are 

described below, when reporting the pathophysiology of chronic 

neuropathic pain. 

 



Introduction 

5 

1.2.2. Classification based on pathophysiology 

According to the pathophysiological mechanisms underlying pain, it can 

be divided into nociceptive, inflammatory and neuropathic pain (Cervero, 

1991). Briefly, nociceptive pain refers to that caused by short and 

noxious stimuli, which are followed by transient stimulation of 

nociceptive pathways without significant tissue injury. In this case, 

painful sensation should continue as long as the stimulus is present.  

By contrast, in inflammatory and neuropathic pain the injury triggers 

mechanisms of repair and the release of many molecules that produce 

pain and sensitize nociceptive fibres, by reducing their activation 

threshold. As a consequence of peripheral or central sensitization, 

inflammatory and neuropathic pain present sensory aberrations and the 

relationship between stimulus and painful response is almost completely 

lost. Once the process of healing has finished, inflammatory pain usually 

disappears, although in some cases it may persist leading to chronic pain. 

However, neuropathic pain usually lengthens beyond the injury and 

remains once the lesion disappears, thereby losing the protective role of 

pain (Costigan et al, 2009). 

 

1.3 Nociceptors and nociceptive fibres 

Nociceptors are sensory structures specialized in detecting different 

modalities of noxious stimuli and converting them into a membrane 

depolarisation and action potentials (Serra Catafau, 2007). They are 

located in peripheral terminals of afferent neurons responsible for the 

pain stimuli transmission. All primary afferent neurons have the cellular 

body in the dorsal root ganglion (DRG) and two axonal prolongations 

with pseudo-unipolar morphology. The central prolongation ends into 
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the dorsal horn of the spinal cord, whereas the peripheral axon ends in 

peripheral organs and constitutes the sensory fibre (Basbaum et al, 

2009). There are two main types of nerve fibres conveying pain 

information: C fibres and Aδ fibres (Table 1). In both cases the stimuli 

come from the skin, muscle and joint tissues or certain visceral structures 

(Dubin and Patapoutian, 2010). They do not present a clear ending 

receptor structure and are commonly identified as free nerve endings. 

High activation threshold and multimodal stimuli detection are features 

of nociceptive fibres that differ them from other sensory fibres 

transmitting innocuous information (Serra Catafau, 2007; Woolf and Ma, 

2007). 

Aδ fibres are thinly myelinated, so they can conduct a first and fast (5-30 

m/s) well-localized mechanical and cold pain signal. They can also convey 

information coming from intense mechanical or thermal stimulation 

(Basbaum et al, 2009). By contrast, C fibres are unmyelinated and 

conduct impulses at less than 2 m/s. They are related with slow, diffuse 

and long-lasting pain. According to the cytochemical content, they can be 

divided into non-peptidergic and peptidergic fibres.  Both of them 

express the transient receptor potential vanilloid 1 (TRPV1), which 

responds to heat and capsaicin, but only peptidergic C fibres contain 

peptides such as substance P and calcitonin gene related peptide 

(Usoskin et al, 2015).  While peptidergic C fibres mainly mediate thermal 

pain transmission, non-peptidergic C fibres are polymodal nociceptors 

that transmit noxious information regarding heat, cold, mechanical and 

chemical stimuli (Basbaum et al, 2009; Cavanaugh et al, 2009). 
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Table 1. Primary afferent axons arriving to the spinal cord (adapted from Serra 

Catafau, 2007) 

 

The transduction of the nociceptive information starts in the periphery, 

where a noxious stimulus activates the nociceptor endings by stretching 

or bending the nociceptor surface or by promoting the activation of 

membrane ion channels. Anyhow, nociceptor activation induces the 

generation of action potentials that are transmitted to the spinal cord, 

where the signals are integrated and transmitted to other areas. 

 

1.4 Ascending pain pathways and supraspinal integration 

Nociceptive information arising in the periphery travels along the primary 

nociceptive neurons, whose soma are located in the DRG, and enters into 

the spinal cord by the dorsal roots. Following the dorsal root entry, 

nociceptive inputs travel within the zone of Lissauer before entering the 

grey matter of the spinal cord (substantia gelatinosa). Central terminals 

of Aδ fibres contact to second order neurons mainly placed in laminae I, 

II and V. Peptidergic C fibres mostly terminate in laminae I and outer II, 

Fibre Myelin
Diameter

(µm)

Velocity

(m/s)
Function

Dorsal 

horn

lamina

Aα Yes 13-20 80-120 Propioception of skeletal muscle III-VI

Aβ Yes 6-12 35-75
Touch, Low Threshold

MechanoReceptors (LTMR)
III-VI

Aδ Yes 1-5 5-30

Touch and temperature
perception

I, IIo
and V

Pain, Mechanical and cold

nociceptors

I, IIo

and V

C No 0.2-1.5 0.5-2

Polymodal nociceptors (Non-

peptidergic C-fibres: mechanical, 

heat, cold and chemical pain)

IIi

Thermal nociceptors (Peptidergic

C-fibres: pain) 
I-IIo
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whereas non-peptidergic C fibres synapse with second order neurons in 

inner lamina II Figure 1 (Willis and Coggeshall, 2004). Excitatory amino 

acids (glutamate and aspartate) are the main neurotransmitters involved 

in these first relays, but neuropeptides (substance P and calcitonin gene 

related peptide) and purines (ATP) act as co-transmitters in peptidergic 

and non-peptidergic nociceptors, respectively, to enhance pain 

transmission (Julius and Basbaum, 2001). 

 

 

Figure 1. Termination sites of Aδ, peptidergic and non-peptidergic C fibres in 

the spinal cord. 

 

Second order neurons decussate at the spinal level to the contralateral 

side and project nociceptive information directly to thalamic structures 

(spinothalamic tract) or indirectly making synapse first with the bulbar 

reticular formation (spinoreticular tract) or mesencephalic superior 

colliculus and periaqueductal grey matter (PAG, spinoencephalic tract). 

These three tracts constitute the anterolateral system, the main 

ascendant pathway involved in the transmission of nociceptive 

information to supraspinal areas. Painful ascending signals can relay in 
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lateral or medial thalamic nuclei to finally project to cortical areas, where 

the different components of pain are integrated. The thalamus is not 

merely a relay centre but is involved in processing nociceptive 

information. Generally, each group of thalamic nuclei has prominent 

functions in different components of pain perception. The ventral 

posterior nucleus is one of the lateral nuclei that includes the ventral 

posteromedial and posterolateral regions, which has somatotopic 

representations of the head and the trunk and limb, respectively. The 

posterior complex, which consists of many territories, is another lateral 

thalamic nucleus implicated in pain perception. On the other hand, the 

dorsomedial nucleus and intralaminar nuclei belong to medial thalamic 

structures involved in pain processing (Ab Aziz and Ahmad, 2006). The 

lateral pathway terminates in the primary and secondary 

somatosensorial, insular and orbitofrontal cortices and is associated with 

sensory-discriminative aspects of pain (location, intensity and quality). 

The medial system ends in the anterior cingulate cortex and the nucleus 

accumbens and is involved in the affective-motivational component of 

pain (unpleasant feelings, fear, anxiety) (Serra Catafau, 2007). The 

anterior cingulate cortex, in addition, is important for certain cognitive 

aspects of pain, including anticipation, attention and evaluation (Figure 

1) (Seminowicz et al, 2004). The spinoreticular and spinomesencephalic 

tracts are also considered components of the medial system. Since these 

tracts send collaterals to several areas related to vegetative and 

homeostatic processes, such as the reticular formation, PAG, 

hypothalamus and superior colliculus (tectum), the medial system is also 

involved in autonomic reactions secondary to pain (Serra Catafau, 2007). 

Subsequently, other prefrontal cortical areas and subcortical structures, 

such as the amygdala, have been included in the so-called “pain matrix” 
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or the “homeostatic afferent processing network” (Neugebauer et al, 

2004). These brain areas may play a role in “secondary pain affect”, 

which includes the conscious awareness and cognitive evaluation of pain 

(Price, 2000). Purely nociceptive information reaches the central 

amygdala (CeA) directly from spinal cord and brainstem (parabrachial 

area, PB), thus bypassing the thalamus. Polymodal sensory, including 

nociceptive, inputs from thalamus and cortex (insular cortex and 

association cortices) target the lateral amygdala. Associative processing 

in the lateral-basolateral amygdala network is believed to attach 

emotional significance to sensory information and play an important role 

in fear and anxiety (Phelps and LeDoux, 2005). Highly processed affect-

related information is then transmitted to the CeA, which can modulate 

pain behaviour through projections to descending pain control centres in 

the brainstem (Neugebauer, 2006) (Figure 2). The amygdala may also 

contribute to certain cognitive aspects of pain, since the neural circuit 

between basolateral amygdala and prefrontal cortex is crucial for 

decision-making based on reward expectancy, risk anticipation and 

punishment avoidance (Floresco and Ghods-Sharifi, 2006). 
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Figure 2. Ascending pain transmission and supraspinal integration of different 

aspects of pain. ACC, anterior cingulate cortex; BLA, basolateral amygdala; CeA, 

central amygdala; DM, dorsomedial nucleus; Hyp, hypothalamus; IL, intralaminar 

nuclei; LA, lateral amygdala; NAc, nucleus accumbens; OF, orbitofrontal cortex; 

PAG, periaqueductal grey matter; PFC, prefrontal cortex; RT, reticular formation; 

Po, posterior complex; S1, primary somatosensorial cortex; S2, secondary 

somatosensory cortex; SC, superior colliculus; TH, thalamus; VPL, 

ventroposterolateral nucleus. Adapted from (Neugebauer et al, 2009; Serra 

Catafau, 2007). 
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1.5 Descending control of pain 

Once the nociceptive information arrives to the higher-level centres, it is 

integrated in order to elicit a complex physiological response in front of 

the noxious stimuli, and this information is modulated to reduce the 

intensity of the painful sensation. The main mechanisms for pain 

modulation are organized in the descending pathway (Figure 3). Several 

areas in the midbrain and the brainstem are involved: PAG, parabrachial 

nucleus, medullary reticular formation, locus coeruleus and rostral 

ventromedial medulla (RVM). Chemical neurotransmission of the 

neurons of these encephalic structures involves noradrenaline, 

serotonin, dopamine, opioid, cannabinoid and histamine, among others 

(Fields et al, 1991; Purves et al, 2012). They exert both excitatory and 

inhibitory effects on different sets of dorsal horn neurons. They can act 

by monosynaptic connections or intraspinal circuits on central terminals 

of primary nociceptive afferents, interneurons (excitatory and inhibitory), 

synaptic terminals of other descending pathways, and second order or 

projection neurons. These contacts control the balance between 

excitation and inhibition in the spinal cord. 

PAG receives afferences from cortical (primary and secondary 

somatosensory as well as insular cortices) and subcortical (amygdala and 

hypothalamus) structures involved in pain processing, and triggers 

different analgesic descending systems (Purves et al, 2012). One of them 

is the classical PAG-RMV-dorsal horn pathway, which is predominantly 

serotonergic and opioid dependant. The spinal tract containing 

descending pathways from the RVM is the ipsilateral dorsolateral 

funiculus. Briefly, there are two main cell subpopulations in the RVM, 

OFF and ON cells, which exhibit phasic reciprocal changes in firing that 

precede nociceptor-elicited withdrawal reflexes (Fields et al, 1983; Fields 
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and Heinricher, 1985). Endogenous opioids released by PAG inhibit ON-

cells and disinhibit OFF-cells. Activation of OFF-cells correlates with 

inhibition of nociceptive input, whereas ON-cell action is to facilitate 

nociceptive transmission in the dorsal horn of the spinal cord (Fields, 

2004; Porreca et al, 2002). The facilitating or inhibitory effect at dorsal 

horn level will depend on the type of serotonergic receptor (inhibitory [5-

HT1] or excitatory [5-HT3]) to which serotonin binds.  

PAG also sends projections to locus coeruleus, parabrachial nucleus and 

medullary reticular formation, which represent the starting point of 

additional non-opioid analgesic pathways (Purves et al, 2012). For 

example, locus coeruleus neurons, once depolarised, release 

noradrenaline that hyperpolarizes nociceptive second order neurons by 

binding to α-adrenergic receptors.  

Local circuits within the dorsal horn also play a role in modulating the 

nociceptive system. One of these systems was early proposed by Wall 

and Melzack, and was conceptualized under the called gate control 

theory of pain (Melzack and Wall, 1965), which actually is included in the 

afferent regulatory system of pain. This theory states that the activation 

of mechanoreceptors (Aβ fibres) can act on local interneurons to inhibit 

the transmission of information from C fibres to the dorsal horn 

projection neurons. This would explain how a mechanical stimulus, such 

as scratching, can temporarily give relief from pain in the same area.  
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Figure 3. Descending control of pain. S1, primary somatosensory cortex; S2, 

secondary somatosensory cortex (adapted from Purves, 2012). 

 

1.6 Management of pain 

From a pharmacological point of view, drugs can be classified depending 

on the chemical structure, mechanism of action or the pharmacological 

effects. All these classifications often present some limitations, such as in 

the case of drugs with analgesic effects. Thus, we choose the 

classification that divides analgesics in primary and secondary (Table 2), 

as previously described (Aliaga et al, 2002). The primary are usually 

known as analgesics and are mainly used for this purpose. They basically 

include cyclooxygenase (COX) inhibitors and opioid agonists. The 

secondary analgesics were not developed for pain treatment and later 

have been used as analgesics. Many secondary analgesics are used as 

main analgesics for resistant pain or used as co-adjuvants.  
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Table 2. Classification of analgesic drugs according to their main therapeutic use 

(Aliaga et al, 2002) 

 

 

1.6.1 Primary analgesics 

Non-steroidal antiinflammatory drugs (NSAID) inhibit COX, which 

converts arachidonic acid in prostaglandins (PG) and thromboxanes. 

Their analgesic effect is based on the reduction or prevention of 

nociceptor and spinal sensitization to algogens (e.g. bradykinin), due to 

the inhibition of PGE2 and PGI2 synthesis. In the case of paracetamol, its 

mechanism of analgesic action is not completely known. It is a weak 

inhibitor of COX1 and COX2 and it has been suggested that it may induce 

analgesia by acting on central COX3, a COX1 isoform, given that it has not 

peripheral anti-inflammatory effect (Aliaga et al, 2002). 

Opioid analgesics act on classical mu opioid receptors (MOR), which are 

G protein-coupled receptors widely expressed at central and peripheral 

sites within the pain control circuits. MOR inhibit pain transmission at 

different levels of the ascending pain pathways (Stein and Machelska, 

2011), supraspinal areas related to pain integration (Ossipov et al, 2010) 

and also participate in inhibitory and facilitating descending pathways by 

being recruited in PAG and RVM (Fields, 2004; Ossipov et al, 2010). 

Primary:

NSAID (ibuprofen, naproxen, metamizole, sulindac)
analgesic-antipyretic (paracetamol)
selective inhibitors of cox-2 (celecoxib)
opioid analgesics (morphine)

Secondary:

psychoactive drugs (benzodiazepines, antidepressants)
antiepileptic (gabapentin, pregabalin)
vasodilator and vasoconstrictor agents
glucocorticoids
local anaesthetics (lidocaine)
other (capsaicin, caffeine, guanethidine)
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Basically they inhibit neuronal transmission by hyperpolarizing and 

decreasing transmitter release. Opioid drugs can be classified according 

to their affinity to opioid receptors and intrinsic activity or in accordance 

to their relative efficacy. Table 3 shows a classification of the main opioid 

analgesics considering both criteria. The route of administration depends 

on the specific opioid drug ranging from enteral to parenteral and 

transdermal (Aliaga et al, 2002). The role of opioids as painkillers is 

further described in section 4.5 (role of endogenous opioid system in 

pain). 

 

Table 3. Classification of opioid analgesics according to their affinity to opioid 

receptors, intrinsic activity and relative efficacy (Aliaga et al, 2002) 

 

 

1.6.2 Secondary analgesics 

Antidepressants are drugs with proven analgesic properties, although 

this action is not extendable to the entire pharmacological group. 

Tricyclic antidepressants, especially amitriptyline, and serotonin-

norepinephrine reuptake inhibitors (SNRIs), such as duloxetine, are those 

Pure agonists (MOR agonists)

̵ High analgesic potency, used for moderate to severe pain
• Morphine
• Heroine
• Oxicodone
• Fentanyl and derivatives (remifentanyl)
•Tramadol
• Methadone

̵ Low analgesic potency, used for mild to moderate pain
• Codeine and dihydrocodeine
• Dextropropoxyphene

Mixed agonist-antagonists (KOR agonists, MOR antagonists)

-Nalbuphine, butorphanol

Parcial agonists

-Buprenorphine (high intrinsic activity)
-Pentazocine (low intrinsic activity)
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that present greater analgesic power (McCleane, 2008; Micó et al, 2006). 

It should be noted that only some particular conditions of chronic pain 

are susceptible to being controlled with antidepressants. The medical 

condition that better responds to this pharmacological group is the 

chronic neuropathic pain, although encouraging results have been 

obtained in some cases of fibromyalgia (Acuña, 2008; Saarto and Wiffen, 

2007). Serotonin and noradrenaline are two main transmitters released 

in the spinal cord by the descending analgesia system to inhibit pain 

transmission. Thus, the restoration of the descending inhibitory 

pathways by increasing spinal serotonin and noradrenaline levels 

constitutes the main mechanism of analgesic action of these drugs 

(Baron et al, 2010; Kremer et al, 2016). 

Antiepileptic drugs are another pharmacological group considered as 

secondary analgesics. These drugs were developed to counteract 

seizures, which reflex neuronal hyperexcitability. Therefore, 

antiepileptics inhibit the excitability by blocking excitatory 

neurotransmission or favouring the action of inhibitory mediators such as 

gamma-Aminobutyric acid (GABA) (Aliaga et al, 2002). The potentiation 

of GABA-mediated inhibitory mechanisms includes the inhibition of 

GABA transaminase, GABA synergy, modulation of enzymes involved in 

the synthesis and metabolism of GABA and inhibition of GABA reuptake 

(Battistin et al, 1984). Regarding the inhibition of excitatory processes, a 

common mechanism shared by many antiepileptic drugs is the blockade 

of voltage gated cation (Na+, Ca2+) channels or the inhibition of α-amino-

3-hydroxyl-5-methyl-4-isoxazeloproprionic acid (AMPA) or N-methyl-D-

aspartate (NMDA) receptors-mediated responses (Tomić et al, 2018). 

These mechanisms are also responsible for the analgesic effect of 

antiepileptic drugs in some pain conditions, such as neuropathic pain 
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(gabapentin, pregabalin, carbamazepine, oxcarbacepine) and migraines 

(valproate, topiramate), which might share pathophysiological 

similarities with seizures (Aliaga et al, 2002). 

Glucocorticoids are used as analgesics due to their potent and unspecific 

anti-inflammatory effect. The mechanism of action is based on their 

interaction with α glucocorticoid receptors that enhance the 

transcription of genes encoding anti-inflammatory proteins, such as the 

lipocortin I, secretory leukocyte protease inhibitor, antagonist of 

interleukin 1 receptor and interleukin 10. Glucocorticoids also inhibit the 

synthesis of pro-inflammatory genes by interacting with AP-1 and NF-κB 

transcription factors. These effects lead to the restriction of 

inflammatory responses and the subsequent attenuation of pain. 

Glucocorticoids are often administered by epidural or intraarticular route 

for non-cancer pain and usually by systemic route for cancer pain in 

combination with other analgesics (Aliaga et al, 2002). 

Capsaicin produces analgesia by activating first and subsequent 

desensitisation of the TRPV1 following repeated administration. Topical 

application of capsaicin cream was effective in alleviating neuropathic 

pain, but its side effects, such as burning sensation, limit its use as first or 

second line treatment (Mason et al, 2004). 

 

1.6.3 Cannabinoids as analgesics 

The endogenous cannabinoid system is an important endogenous 

analgesic system. Cannabinoid drugs induce analgesic effects in multiple 

pain models including inflammatory and neuropathic pain. The action of 

both endogenous and exogenous cannabinoids is due to the interaction 

with cannabinoid receptor type 1 (CB1) and type 2 (CB2). CB2 receptors 
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are mainly expressed in immune and glial cells. Thus, CB2 receptor 

activation produces peripheral (Ibrahim et al, 2005) and spinal (Taylor, 

2009) analgesic effect, without psychotropic effects. Analgesic action of 

CB1 receptors is predominantly mediated by the central inhibition of 

painful stimuli, with a lower peripheral involvement (Ledent et al, 1999; 

Meng et al, 1998). At the spinal level, CB1 receptors are found mainly in 

the dorsal horn. Most of the primary afferent neurons that express CB1 

receptor mRNA are large diameter fibres involved in the non-nociceptive 

sensitivity (Hohmann and Herkenham, 1999). However, CB1 receptor is 

also expressed in nociceptive C fibres, where it inhibits the release of 

neurotransmitters involved in pain transmission (Drew et al, 2000; 

Wilson and Nicoll, 2002). At the supraspinal level, the endocannabinoid 

system inhibits pain transmission acting on the ascending pathways, 

mainly at the thalamus level (Martin et al, 1999) and modifies the 

subjective interpretation of pain by modulating neuronal activity in limbic 

structures, such as amygdala (Manning et al, 2003). CB1 receptors in the 

prefrontal cortex participate in stress-induced analgesia (Woodhams et 

al, 2017). Another central mechanism for endocannabinoid system-

mediated antinociception is the modulation of the descending inhibitory 

pathways. CB1 receptors are recruited in the PAG and RVM where they 

inhibit GABA release and enhance OFF-cells activity (Marinelli et al, 

2002). One of the limitations of the CB1 receptor agonists are the 

intrinsic psychotropic effects, which cannot be separated from the 

antinociceptive effects and are not tolerated by many patients (Burns 

and Ineck, 2006; Rodríguez de Fonseca et al, 2005). Consequently, CB2 

agonists devoid of these side effects represent a potential analgesic 

target that has been extensively investigated in animal models of chronic 

pain in the last years (Ibrahim et al, 2005; Romero-Sandoval et al, 2008). 
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2. Neuropathic pain 

2.1 Definition and classification 

IASP defines neuropathic pain as pain that arises as a direct consequence 

of a lesion or diseases affecting the somatosensory system (Treede et al, 

2008). According to the location of the injury, neuropathic pain is 

classified as central (from damage to the brain or spinal cord) or 

peripheral (from damage to the peripheral nerve, plexus, dorsal root 

ganglion, or nerve root). Neuropathic pain is also classified on the basis 

of the aetiology of the insult to the nervous system (Table 4) (Cousins et 

al, 2010). 

Table 4. Classification of neuropathic pain (adapted from Cousins et al, 2010) 

 

The reason why the same condition can be painful in some patients and 

painless in others remains unknown. Currently a comprehensive 

mechanism-based classification of neuropathic pain is not possible, 

because specific pain mechanisms in each patient cannot be always 

revealed. Moreover, one mechanism can be responsible for many 

different symptoms, and the same symptom can be caused by different 

mechanisms (Woolf and Mannion, 1999). There is not either a clear 

relationship between the symptoms and the causative disease. Thus, it is 

Location:

peripheral (nerve, plexus, dorsal root ganglia, root)
central (spinal, brainstem, thalamus, cortex)

Aetiology:

trauma
ischemia or haemorrhage
inflammation
neurotoxic
neurodegeneration
paraneoplastic
metabolic
vitamin deficiency
cancer
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not possible to determine the aetiology of neuropathic pain exclusively 

from the clinical characteristics of the pain (Attal et al, 2008). 

 

2.1 Epidemiology  

Neuropathic pain is usually underdiagnosed and undertreated. This 

common type of pain is associated with suffering, disability and impaired 

quality of life, which represents a large economic burden for the whole 

society and a challenge to health care. Thus, the current estimates of the 

direct and indirect costs for Europe run into the billions of euros (Breivik 

et al, 2013). 

Nearly one in five Europeans (19%) suffers from chronic pain. The exact 

prevalence of neuropathic pain is unknown. According to general 

European population studies, 7–8% of adults currently have chronic pain 

with neuropathic characteristics (Bouhassira et al, 2008; Torrance et al, 

2006). The prevalence is even higher in specific subpopulations (Table 5). 

Aged people, female gender and the prevalence of mental disorders may 

be susceptible factors to promote chronic neuropathic pain (Butler et al, 

2013). 

 

Table 5. Prevalence of neuropathic pain in European population (adapted from 

Cousins et al, 2010) 

General population  7-8%  Bouhassira et al., 2008; Torrance et 

al., 2006 

Specific subpopulations  
  

postsurgical herniotomy  
herpes zoster  
stroke  
multiple sclerosis  
spinal cord injury  
diabetes  
HIV  
cancer  

10%  
8%  
8%  
28%  
67%  
26%  
50%  
~20%  

Aasvang et al., 2008 

Galil et al., 1997 

Andersen et al., 1995 

Österberg et al., 2005 

Finnerup et al., 2001 

Abbott et al., 2011 

Schütz and Robinson-Papp, 2013 

Bennett et al., 2012  
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2.2 Clinical characteristics 

2.2.1 Nociceptive and sensorial manifestations 

Neuropathic pain is characterized by altered sensation comprising 

negative and positive symptoms (Figure 4). Negative symptoms include 

deficits of different somatosensory qualities, such as tactile and thermal 

hypoesthesia or anaesthesia, pinprick hypoalgesia, and loss of vibratory 

sensation. These symptoms are uncomfortable but not painful. Positive 

symptoms refer to enhanced or painful sensations, which can be 

spontaneous or evoked by stimulation. Spontaneous positive symptoms 

include paraesthesia and dysesthesia, as well as paroxysmal and ongoing 

superficial pain. Two of the most typical clinical manifestations of 

patients with neuropathic pain are hyperalgesia and allodynia, two 

stimuli-evoked positive symptoms (Nickel et al, 2012). Definitions of 

these pain terms are listed in Table 6. 

 

 

Figure 4. Nociceptive and sensorial manifestations of neuropathic pain 

(adapted from Nickel et al, 2012). 
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Table 6. Definitions of common symptoms suggestive of neuropathic pain 

(Merskey and Bogduk, 1994) 

 

Another characteristic that can be used to distinguish nociceptive pain 

from neuropathic pain is the quality of the pain. There are plenty of 

descriptors referred by patients that can help clinicians to diagnose 

neuropathic pain: sharp, shocking, burning, shooting, pressing, pricking, 

pulsating, crushing, cramping dull, electric, radiating, stabbing, cold, 

penetrating or stinging, among many other (Merskey and Bogduk, 1994). 

Other symptoms and clinical findings (e.g., motor paresis, muscle cramps, 

and autonomic nervous symptoms) may also appear depending on the 

injury site. 

 

2.2.2 Emotional manifestations 

Neuropathic pain felt by patients is usually described as severe painful 

sensation that greatly influences their daily activities, such as walking, 

climbing stairs or housekeeping. Like other chronic pain conditions, 

neuropathic pain is frequently accompanied by emotional disorders with 

prevalence that range from 33% to 42% (Langley et al., 2013). Clinical 

studies consistently reported that these patients suffer fatigue, anxiety 

Negative symptoms:

Hypoesthesia
Anaesthesia
Hypoalgesia

Decreased sensitivity to stimulation (tactile or thermal)
Lack of sensitivity to stimulation (tactile or thermal)
Diminished pain response to a normally painful stimulus

Positive symptoms:

Paraesthesia
Dysesthesia
Paroxysmal pain
Ongoing pain
Hyperalgesia
Allodynia

An abnormal sensation
An unpleasant sensation
Intermittent spontaneous pain
Continuous spontaneous pain
An increased response to a stimulus that is normally painful
Pain due to a stimulus that does not normally activate the 
nociceptive system
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and sadness, as well as high rate of depression and suicide (McWilliams 

et al, 2003; Nicolson et al, 2009; Soler et al, 2007). These comorbid 

affective disorders exert a major negative effect on their quality of life 

and negatively impact response to pain treatment. 

Multiple animal studies using different neuropathic pain models showed 

increased anxiety-like behaviours in mice with a peripheral nerve injury 

(Narita et al, 2006a, 2006b; La Porta et al, 2016; Roeska et al, 2008). The 

development of depressive-like behaviour following a nerve injury was 

also reported in preclinical studies, as shown by increased behavioural 

despair in the forced swimming test and decreased sucrose preference 

(indicative of anhedonia) in neuropathic animals (Gonçalves et al, 2008; 

Leite-Almeida et al, 2009; La Porta et al, 2016; Suzuki et al, 2007; Wang 

et al, 2011). However, no effect of nerve injury on behavioural despair 

was previously reported using the tail suspension test (Benbouzid et al, 

2008b; Hasnie et al, 2007), suggesting paradigm-related differences in 

the assessment of neuropathic pain-induced depressive-like behaviour.  

Many evidences point to the amygdala as an important neural substrate 

of the interaction between pain and emotion (Meagher et al, 2001). 

Neuroimaging pain studies using positron emission tomography (PET) 

and functional magnetic resonance imaging (fMRI) have revealed 

amygdala hyperactivation in humans (Petrovic et al, 1999) and animals 

(Paulson et al, 2002). Pain-related amygdala plasticity has also been 

reported in animal models of neuropathic pain (Ikeda et al, 2007). 

Enhanced membrane excitability and increased neurotransmission at the 

CeA synapses  through NMDA receptor-independent synaptic plasticity 

were revealed in neuropathic rats (Ikeda et al, 2007). Pain-related 

changes in other amygdala projecting areas, such as the prefrontal 
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cortex, have also been suggested to contribute to the emotional and 

emotion-based cognitive consequences of chronic pain (Neugebauer et 

al, 2009). 

The causal relationship between persistent pain and negative affective 

states is difficult to establish because of their reciprocal influence. 

Experiencing pain contributes to a negative affective state and, 

conversely, a negative affective state magnifies and worsens pain 

perception. Thus, an integrative therapeutic approach targeting also 

emotional comorbidities of neuropathic pain seems crucial to improve 

the quality of life of these patients. 

 

2.2.3 Cognitive manifestations 

Chronic pain is commonly associated with the impairment of cognitive 

functions (prevalence of 11.4%), which makes difficult its clinical 

management (Langley et al, 2013; Moriarty et al, 2011). Dysfunction of a 

wide range of cognitive outputs have been reported in chronic pain 

patients including attention, concentration, speed processing, memory, 

learning, psychomotor ability, decision-making and executive function 

(Apkarian et al, 2004; Dick et al, 2002; Muñoz and Esteve, 2005). The 

negative impact of neuropathic pain on the attention capability (Low et 

al, 2012), recognition and working memory (Kodama et al, 2011; Leite-

Almeida et al, 2009; Ren et al, 2011), cognitive flexibility (Moriarty et al, 

2016), decision-making (Neugebauer et al, 2009) and hippocampal-

dependent fear extinction (Mutso et al, 2012) has also been 

demonstrated in rodents, providing further support for the human 

reports in clinical settings. 
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Strong resemblances and associations have been found between pain 

and cognitive processing. Some neuroanatomical substrates involved in 

cognition, such as the medial prefrontal cortex and the hippocampus, 

also participate in pain processing, which suggests a reciprocal 

modulation of each other. Central sensitization is a mostly accepted 

cellular model of pain hypersensitivity (Woolf, 2011). On the other hand, 

long-term potentiation (LTP) is a synaptic plasticity phenomenon 

involved in learning and memory (Collingridge et al, 2010; Neves et al, 

2008). Striking similarities in the mechanisms of central sensitization and 

LTP were revealed after pain induction and during the maintenance 

phase of chronic pain (Ji et al, 2003), raising the possibility of shared 

cellular/molecular substrates between pain and cognition. In addition, 

the presence of LTP has been demonstrated in many pain-related central 

nervous system (CNS) areas, such as the spinal cord (Sandkühler, 2007), 

primary somatosensory cortex (Wang et al, 2010a), anterior cingulate 

cortex (Lu et al, 2014), insular cortex (Liu et al, 2013; Qiu et al, 2013), the 

amygdala (López de Armentia and Sah, 2007) and the hippocampus (Liu 

and Chen, 2009; Zhao et al, 2009).  

Several theories have arisen regarding the mechanisms that mediate 

cognitive impairment in persistent pain. One of them claims that the 

neurochemical mediators and neuroplastic changes produced under 

chronic pain may alter neural circuitries and interfere with cognitive 

functioning (Hart et al., 2000). In its favour, many authors reported 

functional synaptic plasticity in cognition-related brain areas under 

neuropathic pain conditions. Several models of peripheral nerve injury 

showed LTP deficits (Kodama et al, 2007; Liu and Chen, 2014; Ren et al, 

2011; Tanabe et al, 2008) and short-term plasticity impairment in 

hippocampal synapses (Mutso et al, 2012; Ren et al, 2011), which may 
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correlate with cognitive deficits. Impaired LTP in the hippocampus was 

also observed in streptozotocin-induced diabetic neuropathy models 

(Biessels et al, 1998; Kamal et al, 2000). Similarly, the loss of long-term 

depression (LTD) and reduced LTP were reported in the anterior 

cingulate cortex in peripheral nerve injury-induced neuropathic pain 

models (Li et al, 2010; Wei et al, 1999; Zhao et al, 2006). Other pain-

related functional changes were observed in the anterior cingulate cortex 

of neuropathic animals, such as increased excitatory synaptic 

transmission and enhanced neuronal excitability (Xu et al, 2008). Besides 

these functional changes, peripheral nerve injury induces various forms 

of structural plasticity in the amygdala, prefrontal cortex, primary 

somatosensory area, anterior cingulate cortex, insular cortex and the 

hippocampus of neuropathic animals (Gonçalves et al, 2008; Mutso et al, 

2012; Ren et al, 2011; Seminowicz et al, 2009). Therefore, it is reasonable 

to suggest that chronic pain-induced cortical and hippocampal plasticity 

may be a triggering factor of cognitive impairment under such 

conditions. 

 

2.2.4 Other manifestations 

Beside emotional disorders and cognitive impairment, sleep disturbances 

(prevalence of 37%-60%), pain-related fear or deficits in social behaviour 

are other important comorbid manifestations of neuropathic pain 

(Langley et al, 2013). These symptoms may be independent of sensorial 

manifestations (Dimitrov et al, 2014). Thus, a further effort must be 

made to evaluate these comorbid symptoms in animal models of 

neuropathies.  
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Therefore, it is of great importance the design and development of 

therapeutic strategies that not only tackle nociceptive alterations, but 

also deal with the comorbid manifestations associated with long-lasting 

pain experience. 

 

2.3 Mechanisms of neuropathic pain after peripheral nerve injury 

Neuropathic pain is characterized by pain in the absence of stimulus and 

reduced nociceptive thresholds so that normally innocuous stimulus 

produces pain. Knowledge of the cellular and molecular mechanisms of 

neuropathic pain has advanced with the development of many 

experimental models of nerve injury (Kumar et al, 2018). These models 

have shown that the development of neuropathic pain involves not only 

neuronal alterations, but also immune and glial cells that share reciprocal 

signalling pathways with neurons, as described below.  

 

2.3.1 Peripheral and central sensitization 

Mechanisms perpetuating neuropathic pain can be divided in six types of 

maladaptive changes in the peripheral, central and autonomous nervous 

system: sensitization of nociceptors, abnormal ectopic excitability of 

affected neurons, pronociceptive facilitation at the spinal dorsal horn, 

disinhibition of nociception at the spinal inhibitory network, 

sympathetically maintained pain, and CNS reorganization processes 

(Figure 5) (Nickel et al, 2012). 

 

Sensitization of nociceptors 

A great variety of sensitizing agents are released after nerve injury, 

leading to the overactivation of nociceptors and lowering their activation 

threshold. These endogenous substances comprise inflammatory 
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mediators (bradykinin, prostaglandins and other derivates eicosanoids), 

neurotransmitters (excitatory amino acids, neurokinins, serotonin, 

noradrenaline, histamine), growth factors (nerve growth factor), protons 

and lipid metabolites (lysophosphatidic acid) (Julius and Basbaum, 2001; 

Ueda, 2008). These agents act on different receptors and alter 

intracellular signalling including second messengers (cyclic adenosine 

monophosphate, cAMP), protein kinases A and B (PKA, PKB), mitogen-

activated protein kinase (MAPK), and nitric oxide signalling pathways 

(Hucho and Levine, 2007). The TRP ion channel family (TRPV1, TRPA1, 

TRPM8, among others) sense a broad repertoire of harmful signals 

released following neve injury, and therefore play a crucial role in the 

nociceptor sensitization process (Basso and Altier, 2017). Specifically, the 

well-known dysregulated expression and function of TRPV1 after 

peripheral nerve injury (Hong and Wiley, 2005) has been recently 

attributed to upregulated deubiquitinase USP5 under such conditions 

(Stemkowski et al, 2016). In summary, all these factors contribute to 

functional and structural changes in peripheral nociceptors, which 

perpetuate pain experience. 

 

Abnormal ectopic excitability of affected neurons 

After nerve injury, the concentration of voltage-gated sodium (Nav1.1 to 

Nav1.9) and calcium channels rises at the site of injury and in the whole 

axon (Luo et al, 2001; Yang et al, 2018). Consequently, a significant 

increase of sodium and calcium currents occurs in these neurons leading 

to spontaneous discharges of primary afferent sensory fibres and the 

release of substance P and glutamate, that further sensitize nociceptors 

(Hong et al, 2004; Misawa, 2012). Spontaneous discharge of Aδ and C 

fibres results in lancinating and burning pain, whereas paraesthesia and 
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dysesthesia are caused by altered excitability in Aβ fibres (Nickel et al, 

2012). 

The two abovementioned mechanisms usually lead to spontaneous 

painful sensations, whereas enhanced stimulus-evoked painful 

sensations, such as hyperalgesia and allodynia, are clinical signs mainly 

related to central sensitization (Woolf and Mannion, 1999). 

 

Pronociceptive facilitation at the spinal dorsal horn 

The major excitatory neurotransmitter of the pain system is glutamate 

and both ionotropic and metabotropic glutamate receptors are involved 

in the transmission of peripheral pain signals (Nickel et al, 2012). 

Activation of AMPA receptor in the dorsal horn neurons mediates the 

basic response to acute painful stimuli. Under pathological conditions, 

such as in neuropathic pain, ongoing nociceptive input triggers several 

mechanisms that result in LTP of noxious stimuli and hyperexcitability of 

spinal dorsal horn projecting neurons (D’Mello and Dickenson, 2008). 

Calcitonin gene related peptide and substance P released from C fibre 

terminals promote the disinhibition of spinal NMDA receptors and the 

ensuing calcium-dependent neurochemical changes in the postsynaptic 

neurons (Sandkühler, 2009; Suzuki et al, 2003). There are three classes of 

metabotropic glutamate receptors. Receptors of group I (mGluR1 and 5) 

activate phospholipase C (PKC), thereby enhancing synaptic transmission 

and neuronal discharge. In contrast, group II (mGluR2 and 3) and III 

(mGluR 4, 6, 7 and 8) receptors inhibit the adenylyl cyclase and reduce 

transmission of nociceptive signals (Pan et al, 2008). As a response to 

ongoing nociceptive input, metabotropic glutamate receptors of group I 

elicit adaptive changes (e.g. PKC-mediated activation of NMDA receptors, 
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activation of MAPK pathways, upregulation of c-fos expression, crosstalk 

with 5-HT2A receptors) that contribute to synaptic plasticity (Aira et al, 

2012; Vincent et al, 2016; Xie et al, 2017). Inflammatory mediators 

released from activated microglia also contribute to the pathologically 

enhanced pain signalling (Inoue et al, 2004), which will be described in 

more detail in section 2.3.2. As a result, nociceptive central neurons 

become activated not only by low level stimulation of C and Aδ fibres, 

but also by Aβ fibres. This fact is reflected in widespread peripheral 

receptive fields of nociceptive fibres and exaggerated stimulus-evoked 

painful sensations like hyperalgesia and allodynia (Nickel et al, 2012). 

Increased spinal release of dynorphin also contributes to neuropathic 

pain by enhancing pain transmission in the spinal dorsal horn (Ossipov et 

al, 2000). The mechanisms of dynorphin-induced pronociceptive effects 

are diverse. Elevated levels of spinal dynorphin modulate NMDA receptor 

activity and promote further release of excitatory transmitters 

(glutamate, substance P and calcitonin gene related peptide) from 

primary afferent neurons, contributing to LTP at C-fibres synapses (Bian 

et al, 1999; Gardell et al, 2002; Labombarda et al, 2008). The activation 

of spinal bradykinin receptors by elevated spinal dynorphin has been 

correlated with maintenance of neuropathic pain-induced 

hypersensitivity (Bannister et al, 2014). Dynorphin-induced production of 

PGE2 in the spinal cord (Koetzner et al, 2004) also contributes to its 

pronociceptive effect.  

 

Disinhibition of nociception at the spinal inhibitory network 

Dorsal horn projecting neurons play a pivotal role in pain transmission 

and their activity is modulated by several factors. Descending 

serotonergic, noradrenergic and dopaminergic pathways originating from 
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the PAG, locus coeruleus, and the RVM inhibit dorsal horn nociceptive 

neurons mainly by recruiting the endogenous opioid system (Nickel et al, 

2012). Inhibitory interneurons within the dorsal horn constitute local 

circuits that also play a role in inhibiting nociceptive transmission (Nickel 

et al, 2012). Animal models of neuropathic pain showed a reduced 

activity and efficacy of descending inhibitory pathways (Zimmermann, 

2001). Similarly, chronic pain is accompanied by a loss of glycinergic and 

GABAergic spinal inhibitory network (Zeilhofer, 2008). These adaptive 

mechanisms account for the disinhibition of the nociceptive input and 

the increased pain sensitivity.  

 

Sympathetically maintained pain 

Sympathetic nervous system interacts with the somatosensory system by 

direct and indirect mechanisms. The coupling between nociceptive 

afferent fibres and efferent sympathetic signalling at DRG level has been 

shown in animal studies and humans (Nickel et al, 2012). Histological 

studies showing sympathetic sprouting into DRGs provide evidence for 

increased coupling of sympathetic fibres to DRG neurons following 

peripheral nerve lesions (Shinder et al, 1999). Moreover, the expression 

of α-adrenoceptors on primary nociceptive fibres has also been 

demonstrated after nerve injury (Sato and Perl, 1991). Several studies 

suggested that sympathetic activity may directly induce nociceptive 

activation (Baron et al, 2002; Torebjörk et al, 1995). Therefore, these 

adaptive mechanisms may account for sympathetically-maintained pain 

in neuropathic pain syndromes. 

The sympathetic system can also regulate vasomotor activity and 

inflammation. Under neuropathic pain conditions, increased 

sympathetically-mediated vasomotor activity impairs oxygenation and 
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leads to acidotic environment, in which protons act as a potent 

nociceptive stimulus (Birklein et al, 2000; Kurvers et al, 1995). 

Bradykinin-induced plasma extravasation, a key step in inflammatory 

processes, directly depends on sympathetic activity (Miao et al, 1996). All 

these mechanisms may indirectly contribute to sympathetically-

maintained pain. 

 

CNS reorganization processes 

Finally, adaptive changes in the CNS have also been reported in 

neuropathic pain syndromes and experimental animal models. Cortical 

reorganization processes, including the primary somatosensory cortex, 

the somatosensory thalamus and motor cortices were revealed in 

patients with phantom limb pain (Flor et al, 1995), patients with complex 

regional pain syndrome (Maihöfner et al., 2003) and in rats following a 

partial sciatic nerve ligation (PSNL) (Brüggemann et al., 2001). These 

changes in the somatotopic representation areas of specific body parts 

lead to phenomena that cannot be explained by peripheral mechanisms, 

such as referred sensations in the amputated limb by tactile stimulation 

of other body parts (Ramachandran et al, 1992), hemisensory 

phenomena and neglect-like symptoms (Frettlöh et al, 2006) and 

allodynia/hyperalgesia in adjacent innervation areas of that of damaged 

nerve (Brüggemann et al, 2001). 

Aside cortical reorganization, neuroplastic changes in thalamus and brain 

stem nuclei may also occur in neuropathic pain. PET studies revealed 

reduced regional cerebral blood flow in the contralateral thalamus in 

patients with mononeuropathy and post-traumatic neuropathic pain 

(Hsieh et al, 1995; Iadarola et al, 1995), which may reflect a protection 

mechanism against ongoing nociceptive input. Physiological and 
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biochemical changes in PAG and RVM under neuropathic pain conditions 

have been also reported (Seifert and Maihöfner, 2009; Vanegas and 

Schaible, 2004). More recently, maladaptive dendritic spine plasticity 

within dorsal horn neurons was observed in spinal cord and peripheral 

nerve injury models as well as in streptozotocin-induced peripheral 

diabetic neuropathy (Tan et al, 2009, 2011, 2012). 
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Figure 5. Synopsis of molecular mechanisms contributing to neuropathic pain. 

5HT2a,3,4,7, serotonin receptors; AC, adenylate cyclase; AMPA, α-amino-3-

hydroxyl-5-methyl-4-isoxazeloproprionic acid receptor; ASIC, acid-sensing cation 

channel; B1-B2, bradykinin receptors 1 and 2; Ca, calcium; CGRP, calcitonin gene 

related peptide; CNS, central nervous system; DRG, dorsal root ganglia; EP2-4 

and IP, prostaglandin receptors; H1, histamine receptor 1; IL-1, interleukin 1; K, 

potassium; LPA1, lysophosphatidic acid receptor 1; MAPK, mitogen-activated 

protein kinase; mGlu, metabotropic glutamate receptors; Na, sodium; Nav, 

voltage gated sodium channel; NGF, nerve growth factor; NK1, substance P 

receptor; NMDA, N-methyl-D-aspartate receptor; NOS, nitric oxide synthase; 

PKA, protein kinase A; PKC, protein kinase C; PNS, peripheral nervous system; 

TNFα, tumor necrosis factor α; Trk, NGF receptor; TRPV1, transient receptor 

potential vanilloid 1 (adapted from Nickel et al., 2012). 

 

2.3.2 Neuroimmune interactions and neuropathic pain 

Great body of evidence has shown that the pathogenesis of neuropathic 

pain is not restricted to an aberrant neuronal activity. Immune and glial 

cells also play an important role in the establishment and maintenance of 

neuropathic pain, as well as proinflammatory mediators released after 

nerve injury. Indeed, the similarities between neuropathic pain and 

neuroimmune disorders are increasingly accepted (Scholz and Woolf, 

2007). 

At peripheral level, damaged primary sensory neurons release 

“endogenous danger signals” as well as nociceptive and vasoactive 

mediators (substance P, bradykinin, nitric oxide and calcitonin gene 

related peptide) that activate resident mast cells and macrophages and 

promote the infiltration of circulating T lymphocytes, monocytes and 

neutrophils to the site of injury (Scholz and Woolf, 2007). Activated 

immune cells release several pro-inflammatory mediators, including 
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cytokines (TNFα, IL-1β, IFN-γ, IL-6, IL-17), chemokines (CXCL1, CCL2), 

nociceptive substances (histamine, bradykinin), reactive oxygen species, 

PGE2 and PGI2 and effectors of the complement cascade (C3a and C5a). 

These mediators promote neuroimmune activation and sensitise primary 

afferent neurons, contributing to pain hypersensitivity (Austin and 

Moalem-Taylor, 2010; Ellis and Bennett, 2013). At DRG level, damaged 

neurons, activated satellite glial cells and infiltrating blood-derived 

immune cells interacts with each other to enhance painful sensitivity, by 

releasing pro-inflammatory and algesic mediators and by disrupting 

tissue homeostasis (Capuano et al, 2009; Hu et al, 2007; Hu and 

McLachlan, 2002; Morin et al, 2007; Xie et al, 2009). 

Sustained nociceptive input from peripheral tissues as well as the release 

of nociceptive and pro-inflammatory mediators from central terminals of 

primary afferent neurons activate not only spinal postsynaptic neurons, 

but also trigger glial reactivity (Deleo et al, 2004; Ren and Dubner, 2010). 

Activated microglia is characterized by the expression of several markers, 

such as type 3 complement receptors (CR3 or the subunit CD11B), 

ionized calcium binding adaptor molecule 1 (IBA1), cluster of 

differentiation molecule 14 (CD14) and toll-like receptor 4 (TLR4) as well 

as the activation of p38 MAPK, extracellular signal-regulated kinase (ERK) 

isoforms 1 and 2, and the Src-family kinases (Src, Lck and Lyn) (Jin et al, 

2003; Katsura et al, 2006; Zhuang et al, 2005). In turn, microglial 

activation leads to further release of pro-inflammatory cytokines (IL-1β, 

IL-6, IL-18, TNFα), chemokines, brain-derived neurotrophic factor (BDNF), 

PGE2, and upregulated expression of enzymes (inducible nitric oxide 

synthase, COX2), adhesion molecules, proteases (cathepsin S) and 

membrane receptors (P2X4, CB2, CX3CR1). All these mediators acting in 

the dorsal horn increase neuronal excitability and are crucial for the pain 
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enhancing role of microglia (Ren and Dubner, 2010; Scholz and Woolf, 

2007). Microgliosis is followed by further activation and spread of 

inflammation by astrocytes, which are involved in the maintenance of 

neuropathic pain. When activated, astrocytes are characterised by 

hypertrophy, increased production of intermediate filaments, glial 

fibrillary acidic protein (GFAP), vimentin and/or nestin and the activation 

of JNK pathway (Austin and Moalem-Taylor, 2010). Reactive astrocytes 

release pro-inflammatory cytokines (IL-1β and TNFα), glutamate, D-

serine, substance P, ATP, nitric oxide, CCL2, prostaglandins, IFN-γ and the 

matrix metalloprotease 2 (MMP-2) that cleave and activate IL-1β 

released from microglia (Benarroch, 2010). Overall, changes in the 

astrocyte network signalling that occur during neuroinflammation disturb 

the two-way interaction between astrocytes and neurons. This 

disturbance results in increased neuronal excitability and enhanced and 

prolonged synaptic pain transmission. Figure 6 shows interactions 

between neurons and glial cells in the dorsal horn of the spinal cord. 

Neuronal-glial interaction has also been reported in supraspinal sites 

after peripheral nerve or spinal cord injury, including the 

ventroposterolateral nucleus of the thalamus (Saab and Hains, 2009), 

RVM (Cunha and Dias, 2009), PAG (Mor et al, 2010) and hypothalamus 

(Takeda et al, 2009). 

Infiltration of haematogenous macrophages and T-cells in the spinal cord 

has been also demonstrated in models of peripheral neuropathic pain 

(Cao and DeLeo, 2008; Hu et al, 2007; Zhang et al, 2007b). Therefore, 

immune cells not only contribute to peripheral sensitization of 

nociceptors, but also interact with glial cells in the spinal cord to increase 

the excitability of the dorsal horn neurons, thus contributing to the 

maintenance of neuropathic pain. 
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Figure 6. Recruitment and activation of spinal microglia and astrocytes. (a) 

Microglial recruitment depends on signalling pathways involving TLR4 and on 

the chemokine CCL2 acting on CCR2. The neuronal protein fractalkine has a 

chemokine domain that can be cleaved from its membrane-bound portion. Both 

bound and soluble fractalkine have chemokine function and may attract 
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microglia as well as astrocytes by acting on CX3CR1. Because the microglial 

response to nerve injury precedes the proliferation of astrocytes, a direct path 

of communication may exist between these two glial cell types to coordinate 

their sequential temporal patterns of activation. (b) Main features of activated 

spinal glial cells. ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic 

factor; catS, cathepsin S; CCL2, C-C motif chemokine ligand 2; CCR2, C-C 

chemokine receptor type 2; CX3CR1, CX3C chemokine receptor 1; GABA, gamma 

aminobutyric acid; P2RX4, P2X purinoceptor 4; TLR4, toll-like receptor 4 

(adapted from Scholz and Woolf, 2007). 

 

2.4 Therapeutic approaches for neuropathic pain 

Neuropathic pain is often underdiagnosed and undertreated. 

Epidemiological surveys have shown that many patients with 

neuropathic pain do not receive appropriate treatment (Attal et al, 2011; 

Torrance et al, 2013) and none of the available treatments prevent the 

development of neuropathic pain nor completely eliminate it when 

established (Woolf and Mannion, 1999). In addition, the inter-individual 

variability of neuropathic pain mechanisms and symptoms as well as the 

emotional and cognitive comorbidities further complicate the 

management of this clinical entity. Therefore, treatments are often 

directed to lessen pain and help the patients to cope with their 

symptoms by means of psychological or occupational therapy, rather 

than to supress the pain.  

The current management of neuropathic pain comprises pharmacological 

and nonpharmacological therapies. Some reports suggest benefits of 

several non-drug therapies such as exercise (Sherry et al, 1999), 

transcutaneous electrical nerve stimulation (Kumar and Marshall, 1997), 

percutaneous electrical nerve stimulation (Ghoname et al, 1999) and 
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graded motor imagery (Moseley, 2004), as well as cognitive behavioural 

therapy or supportive psychotherapy (Evans et al, 2003). Electrical nerve 

stimulation is effective against neuropathic pain by modulating the 

inhibitory influence of pain transmission, enhancing the inhibitory 

GABAergic signalling at the spinal dorsal horn and inhibiting spontaneous 

discharge (Cui et al, 1997; Guan et al, 2010). 

Regarding pharmacotherapy, neuropathic pain is usually refractory to 

traditional pain therapies (Costigan et al, 2009). Systemic drugs approved 

for neuropathic pain treatment include tricyclic antidepressants, SNRIs, 

antiepileptics and opioids, while topically administered lidocaine and 

capsaicin are only indicated for peripheral neuropathic pain (Figure 7) 

(Attal et al, 2010; Baron et al, 2010). Other drugs, such as cannabinoids, 

are used as analgesics for this purpose despite not being approved.  

Some tricyclic antidepressants (amitriptyline) and SNRIs (duloxetine) 

have analgesic effects that are independent of their antidepressant 

effect. The restoration of descending inhibitory pathways by elevating 

the endogenous levels of serotonin and noradrenaline constitutes the 

main mechanism of analgesic action of these drugs (Baron et al, 2010; 

Kremer et al, 2016). Another mode of action of tricyclic antidepressants 

that contributes to their analgesic effect is the blockade of sodium 

channels, thus inhibiting abnormal ectopic excitability of afferent 

neurons (Dick et al, 2007). Different studies evidenced an involvement of 

the opioid system in the action of antidepressants on neuropathic pain 

(Kremer et al, 2016). Both the identity and the location of the opioid 

receptors implicated in antidepressants’ action have been studied. The 

activation of MOR in the spinal cord and of DOR at supraspinal levels 

seemed to be required for the antiallodynic effect of antidepressants 
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(Marchand et al, 2003), although more recent research showed a 

preferential involvement of DOR rather than MOR (Benbouzid et al, 

2008a; Choucair-Jaafar et al, 2014). However, the link between 

monoaminergic and opioid systems remains unclear. The respective 

location of adrenergic and opioid receptors is a critical point. If both 

receptors were to be expressed by the same cells, direct interactions 

might be possible. Indeed, a functional cross-talk between MOR and α2A 

adrenoceptors, with inhibition of one receptor by the other, has been 

proposed (Vilardaga et al, 2008). On the other hand, if adrenergic and 

opioid receptors are on different cells, a cascade mechanism implying 

opioid peptide synthesis and/or opioid receptor regulation would be 

more likely. Accordingly, antidepressant treatment may increase the 

production of opioid peptides in the spinal cord and in some supraspinal 

structures (Binder et al, 2004; Böhm et al, 2006; Hamon et al, 1987) and 

it may increase the densities of MOR and DOR binding sites in the spinal 

cord (Hamon et al, 1987). However, the impact of chronic antidepressant 

treatment on the opioid system in neuropathic pain conditions is still to 

be addressed. Antidepressant drugs can also attenuate proinflammatory 

and favour anti-inflammatory cytokine production in neuropathic pain 

(Sud et al, 2008; Zhu et al, 2008), even though the exact mechanism is 

still to be detailed. In addition to the analgesic effects, their 

antidepressant properties may be also beneficial due to the emotional 

comorbidities associated to chronic neuropathic pain. 

Gabapentin and pregabalin are two antiepileptic drugs commonly used 

for neuropathic pain treatment. Both compounds prevent transmitter 

release through a direct inhibition of the α2δ1 subunit of the voltage 

gated calcium channels. Thus, gabapentinoids contribute to improve 

neuropathic pain by inhibiting neuronal transmission at the level of the 
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spinal dorsal horn, reducing excitability of afferent neurons and favouring 

descending control of pain (Patel and Dickenson, 2016).  

Opioids are effective and widely used in clinical management of chronic 

pain. However, opioid compounds are often discouraged in neuropathic 

pain due to its uncertain efficacy and its potential for the development of 

tolerance and other important side effects, as it is further discussed in 

section 4.5.2. Briefly, the analgesic effects of opioid agonists in 

neuropathic pain are mediated by reducing the excitability of afferent 

neurons, increasing descending and segmental inhibition of pain 

transmission in the dorsal horn and modulating pain integration in 

supraspinal areas (Nadal et al, 2013).  

Capsaicin and lidocaine patches have been shown to relieve localized 

neuropathic pain (Gilron et al, 2006), but the therapeutic gain is modest 

against placebo and the level of evidence is lower than for systemic drugs 

(Attal et al, 2010). Capsaicin alleviates neuropathic pain by activating and 

desensitising TRPV1 receptors in the nociceptors, thus reducing 

peripheral sensitization. Lidocaine analgesic effect in neuropathic pain 

conditions is due to its properties as a sodium channel blocker. It reduces 

neuronal depolarization and therefore attenuates nociceptor excitability 

and ectopic discharges (Baron et al, 2010). 

Recent preclinical studies revealed the crucial role of the 

endocannabinoid system in the development and maintenance of 

neuropathic pain (reviewed in Maldonado et al., 2016). These studies 

have provided important findings, showing the potential analgesic effect 

of cannabinoid agonists in different neuropathic pain models and 

identifying specific targets in the endocannabinoid system to develop 

more effective and safe drugs (Maldonado et al, 2016). Although 
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moderate evidence supports the use of cannabinoid compounds in 

neuropathic pain, some clinical trials with oromucosal spray Sativex® 

(containing delta-9-tetrahydrocannabinol and cannabidiol) showed 

beneficial effects of these compounds in different chronic neuropathic 

pain syndromes (Hoggart et al, 2015; Serpell et al, 2014). Cannabinoids 

inhibit pain transmission by reducing neurotransmitter release in the 

dorsal horn, thus inhibiting neuronal transmission, and by stimulating the 

descending inhibitory pathway, and modify other components of pain 

perception acting in cortical and limbic areas (Nadal et al, 2013). 

Last international therapeutic guidelines for neuropathic pain 

recommend antiepileptic (pregabalin and gabapentin) and 

antidepressants drugs (amitriptyline and duloxetine) as first line therapy 

(Finnerup et al, 2015). They restrict the clinical use of opioid drugs with 

low efficacy/side effect profile such as tramadol to second line therapy 

for neuropathic pain, in the same group than lidocaine and capsaicin 

patches (for peripheral neuropathies), while strong opioids are relegated 

to third line therapy (Finnerup et al., 2015). According to this systematic 

review and meta-analysis, cannabinoids showed weak recommendations 

against use for neuropathic pain treatment due to their small size effect 

and low tolerability and safety, whereas the evaluation of NMDA 

receptor antagonists and tapentadol lead to inconclusive results. 
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Figure 7. Summary of the modes of action of available pharmacological 

therapies for neuropathic pain.  

 

2.5 Experimental models for neuropathic pain evaluation 

Animal models of neuropathic pain have been crucial in the last decades 

to improve our understanding of the mechanisms underlying the 

pathophysiology of this disease and to test novel druggable targets to 

design new therapeutic strategies for clinical use (Bridges et al, 2001). 

Many experimental animal models of neuropathic pain caused by 

damage to central or peripheral nervous system have been developed. 

They can be classified into four categories, namely nerve injury models, 

drug-induced neuropathic pain, disease-induced neuropathy and 

miscellaneous ones. Table 7 summarises the main neuropathic pain 

experimental models. A schematic view of the site of injury of the most 

used peripheral nerve injury models is depicted in Figure 8. 
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Table 7. Classification of neuropathic pain models (adapted from Kumar et al., 

2018) 

 

1. Nerve injury

Central pain

• Spinal cord injury

Excitotoxins, Contusion, Photochemical model
• Spinal hemisection

• Thalamic syndrome

Peripheral pain

• Complete lesion

Sciatic nerve transection (neuroma model)
Brachial plexus avulsion

• Partial lesion

Sciatic nerve chronic constriction injury (CCI)

Partial sciatic nerve ligation (PSNL)
Spinal nerve ligation (SNL)

Photochemically induced ischemia in sciatic nerve
Cuffing of sciatic nerve
Caudal trunk resection
Spared nerve injury (SNI)
Sciatic cryoneurolysis
Sciatic inflammatory neuritis
Trigeminal neuralgia

2. Drug-induced neuropathy

• Anti-cancer agents

Vincristine
Cisplatin
Taxanes

• Anti-retroviral drugs

Didanosine

Zalcitabine
Stavudine

3. Disease-induced neuropathy

Diabetes (streptozotocin-induced peripheral diabetic neuropathy)

Cancer pain model
HIV-induced
Post herpetic neuralgia model

4. Miscellaneous

Ethanol consumption/withdrawal-induced neuropathy
Pyridoxine (vitamin B6)-induced neuropathy
Inherited-induced neuropathies (Charcot-Marie-Tooth)
Uremic peripheral neuropathy (end stage kidney disease)
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Figure 8. Schematic drawing of the most used peripheral nerve injury models. 

SNI, spared nerve injury; CCI, chronic constriction injury; PSNL, partial sciatic 

nerve ligation; SNL, spinal nerve ligation (Kumar et al, 2018). 

 

Although animal models of neuropathic pain do not completely mimic a 

human lesion and its consequences, they are useful since they can 

reproduce most of the acute and long-term pathophysiological 

mechanisms arising following the damage of the nervous system and can 

provide essential information for the development of future therapies. 
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3. Influence of personality traits in neuropathic pain 

manifestations 

There is a lack of relationship between the aetiology of neuropathic pain 

and the symptoms (Woolf and Mannion, 1999), as discussed above. In 

fact, only some individuals subjected to nerve injury actually develop 

chronic pain (Kehlet et al, 2006). Once neuropathic pain is established, 

pain intensity and analgesic response are also high variable among 

patients with the same condition. These individual differences could be 

explained by environmental, personality and genetic factors. Human twin 

studies of chronic pain syndromes were performed to unravel these 

possibilities and most of them demonstrated at least moderate 

heritability (Mogil, 2012). Large-scale association studies revealed a wide 

variety of genes that are potentially associated with both experimental 

and clinical pain states (Mogil, 2012).  

Interestingly, clinical evidences support that personality traits of patients 

contribute to magnify the high inter-individual variability of neuropathic 

pain manifestations. Personality traits contribute to determine our 

emotional-driven states, which in turn play a key role modulating pain 

(Asghari and Nicholas, 2006). A reciprocal relationship has been reported 

between pain and negative affect. Chronic pain not only lead to 

emotional alterations, but pain can be positively and negatively 

modulated by personality traits such as sociability, anxiety and 

depression as summarized in Figure 9.  
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Figure 9. Schematic view of the effect of personality trait-dependant emotional 

states on pain modulation according to preclinical and clinical data. 

 

3.1 Anxiety and fear 

In order to understand the effect of emotional traits on pain modulation, 

it is worth noting the difference between two qualitatively distinct 

emotional states: fear and anxiety. Fear is an immediate alarm reaction 

to present threat, that induces high levels of arousal and mobilizes the 

organism to take action (fight/flight response). In contrast, anxiety is a 

future-oriented emotion produced by relatively diffuse threat and 

characterized by negative affect and apprehensive anticipation, which 

leads to hypervigilance and somatic tension (e.g. muscle tension) that 

facilitates sensory receptivity (Rhudy and Meagher, 2000a).  

Animal studies suggested that exposure to conditioned or unconditioned 

fear decreases pain sensitivity by a mechanism known as “stress-induced 

analgesia” (Basbaum and Fields, 1984; Bodnar et al, 1980), a 

phenomenon linked to the release of endogenous opioids (Terman et al, 

1984). The same inhibitory effect of fear on pain reactivity was later 

generalized to humans (Janssen and Arntz, 1996; Rhudy et al, 2004). 
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Clinical studies also revealed a divergent effect of fear and anxiety on 

pain intensity modulation, since experimentally induced-anxiety (Arntz et 

al, 1994; Ploghaus et al, 2001; Rhudy and Meagher, 2000a, 2003) and 

high anxiety sensitivity (Keogh and Mansoor, 2001) increased 

nociception. These results agreed with those obtained from patients with 

generalized anxiety or post-traumatic stress disorder, whose 

hypervigilant states led to increased attention to pain, thus amplifying 

pain intensity (Barlow et al, 1996; Defrin et al, 2008). Although the 

negative influence of anxiety on pain perception was consistently 

reported in human, conflicting results were obtained from preclinical 

research. Thus, enhanced nociceptive behaviour to the subcutaneous 

injection of formalin was shown in rats with experimentally-induced 

anxiety (Andre et al, 2005). However, rats with a genetic predisposition 

to high anxiety-related behaviour showed reduced pain response to 

thermal stimuli (Jochum et al, 2007). A possible explanation for the 

apparently contradictory relationship between pain and anxiety could be 

the existence of relevant and irrelevant anxiety in the reaction to pain 

according to the source of anxiety, as previously suggested (Weisenberg 

et al, 1984). When the source is related to pain experience, anxiety can 

exacerbate pain perception, while if the source is related to something 

else, anxiety may reduce pain sensitivity (Weisenberg et al, 1984). 

Less is known about the involvement of anxiety trait in the 

manifestations of chronic pain syndromes. Anxiety trait increased 

mechanical hypersensitivity in neuropathic rats during the chronic phase 

of pain (Roeska et al, 2009). In humans, different anxiety sensitivities did 

not modify pain intensity of patients with chronic low back pain 

(Asmundson and Norton, 1995). However, high anxiety sensitivity 

patients were more negatively affected by their pain experience (greater 
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cognitive disruption, anxiety, fear and negativity of affect) compared to 

patients with medium or low anxiety sensitivity (Asmundson and Norton, 

1995). Therefore, the consideration of emotional and cognitive aspects 

of pain in pre-clinical and clinical research is necessary for a 

comprehensive evaluation of any possible target to modulate pain. 

Further studies are required to elucidate the effect of anxiety on 

emotional and cognitive aspects of neuropathic pain. 

The brain areas responsible for the influence of anxiety and fear on pain 

sensitivity are not well known, although several evidences strongly 

support a crucial role of the amygdala in the emotional-affective 

dimension of pain (Ikeda et al, 2007; Neugebauer et al, 2004, 2009). The 

amygdala plays a key role in the formation of fear-related memories and 

emotional processing (Phelps and LeDoux, 2005) and contains several 

nuclei, including the lateral, basolateral and central nuclei, which are 

important for sensory processing (Neugebauer et al, 2009). Strong 

neuronal responses to peripheral nociceptive stimuli have been reported 

in the CeA, defined as the ‘nociceptive amygdala’ (Neugebauer et al, 

2004). Indeed, increased excitability of CeA neurons has been reported in 

arthritic (Neugebauer et al, 2003), visceral (Han and Neugebauer, 2004) 

and neuropathic pain models (Gonçalves and Dickenson, 2012; Ikeda et 

al, 2007), as well as in patients with generalized anxiety, social phobia, 

panic and post-traumatic stress disorder (Etkin and Wager, 2007). 

 

3.2 Depression 

Complex and reciprocal relationships also exist between depression and 

pain. Chronic pain can promote the appearance of depressive symptoms, 

while on the other hand, depression can modulate pain-related 

behaviours (Kroenke et al, 2011). However, whether depression exerts a 
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positive or negative influence on pain perception has not been yet 

clarified. 

Large body of preclinical research was performed trying to clarify this 

topic, but they brought out conflicting results. Multiple animal models of 

depression were used in these studies inducing depressive-like behaviour 

by different experimental procedures (unpredictable chronic mild stress 

and bilateral olfactory bulbectomy) or by using a specific rat strain with 

genetical predisposition to depressive-like behaviour (Wistar-Kyoto). 

Some authors showed that modelled depression resulted in enhanced 

nociceptive responses under physiological conditions (Burke et al, 2010, 

2013; Nagakura et al, 2009). However, divergent effects of depression on 

evoked and spontaneous pain behaviours have been reported, since pre-

established depression state exacerbated formalin-induced spontaneous 

licking behaviours, but it attenuated heat and mechanical evoked 

nociception (Shi et al, 2010a, 2010b; Wang et al, 2010c). The distinctive 

effects of depression depending on pain modality were in accordance 

with the human data obtained on patients with major depressive 

disorders (Bär et al, 2005). Other human studies also supported the 

inconsistent effect of depression on physiological nociception observed 

in animals. Two studies agreed that patients with depressive disorders 

showed decreased nociceptive responses (Bär et al, 2006; Schwier et al, 

2010), whereas another revealed the opposite effect of depression 

enhancing nociception under normal conditions (Chiu et al, 2005). 

Some preclinical research was performed in the last years to evaluate the 

involvement of depression in the manifestations of chronic pain. The 

conflicting results concerning the influence of depression on pain 

reactivity obtained in naïve state were also observed within 



Introduction 

52 

inflammatory or neuropathic pain syndromes. Unpredictable chronic 

mild stress-induced depression decreased the perceived intensity of 

painful stimulation in rats exposed to complete Freund’s adjuvant (CFA)-

induced inflammatory pain (Shi et al, 2010b) and spinal nerve ligation-

induced neuropathic pain (Shi et al, 2010a). However, modelled 

depression was also shown to enhance mechanical and cold allodynia as 

well as heat hyperalgesia under both chronic inflammatory (Kim et al, 

2012; Wang et al, 2012) and neuropathic pain conditions (Bravo et al, 

2012; Burke et al, 2013; Zeng et al, 2008). To our knowledge, no clinical 

studies have addressed so far specifically this issue. Based on the 

controversial preclinical results, further comprehensive studies should be 

performed to understand the role of depression in the predisposition to 

develop chronic pain. 

Several mechanisms acting in distinct neuroanatomical substrates have 

been proposed to account for the positive interaction between pain and 

depression. The melatonin system in the anterior cingulate cortex 

through modulation of NMDA receptor was suggested to play a role in 

the mechanisms of comorbidity between depression and pain (Wang et 

al, 2012; Zeng et al, 2008). Increased accumulation of 

phosphorylation/activation of the ERKs and a decrease in neuronal 

density in the anterior cingulate cortex were also proposed to contribute 

to the pain-enhancing effect of depression (Bravo et al, 2012). The 

upregulation of the brain indoleamine 2,3-dioxygenase 1 and the 

subsequent altered tryptophan metabolism was observed in bilateral 

hippocampus in both models of depression and chronic pain, and was 

thus suggested as a regulatory mechanism underlying their comorbidity 

(Kim et al, 2012). Furthermore, depression-induced enhanced 

nociception was inversely correlated with monoamine (serotonin and 5-
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hydroxyin-doleacetic acid) levels in the hippocampus, amygdaloid cortex 

and the hypothalamus (Burke et al, 2010). Changes in the expression of 

neuroinflammatory genes in the amygdala may also account for the 

enhanced cold allodynia under neuropathic pain conditions (Burke et al, 

2013). Interestingly, no mechanisms underlying pain-attenuating effect 

of depression have been suggested. 

 

3.3 Sociability 

The importance of social factors to modulate pain perception is widely 

accepted in humans (Sturgeon and Zautra, 2016). Social interactions can 

provide support and be related to pain attenuation or enhance pain 

behaviour by emotional contagion. The amelioration of aversive stimuli 

by the presence of a supportive accompanying person (i.e., social 

buffering) can reduce acute pain ratings (Brown et al, 2003) and 

emotional expressions of fear (Epley, 1974). Greater social support has 

been associated with lower pain intensity in response to experimental 

stimuli, both if the supportive is physically present or not (Montoya et al, 

2004). Social buffering can also reduce pain and outcomes in chronic pain 

patients. Clinical studies revealed that social relationships may improve 

coping responses and overall function in chronic pain, promoting pain-

specific resilience (Sturgeon and Zautra, 2016). Meaningful social ties 

may play a protective role by engaging neural networks associated with 

more adaptive responses to pain, such as reward circuitry (Younger et al, 

2010). Social support also protects patients against pain-related 

exacerbations in negative mood (Onoda et al, 2009). However, the effect 

of social support on pain seems to depend on the beliefs about potential 

threat of pain, context of the pain, level of stress associated with the 
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painful event, and the communication and relationship status between 

individuals (Jackson et al, 2009; Krahé et al, 2013). 

On the other hand, the observation of another’s pain can trigger it in the 

observer (Craig et al, 1975; Craig and Weiss, 1971). In addition to 

representing a physical sensation, pain elicits psychological and 

behavioural responses that serve as social cues with communicative 

functions. The ability of others to perceive such social cues is commonly 

called empathy (Martin et al, 2014). Many studies have investigated the 

neuroanatomical substrates of human empathy. Shared activation of the 

rostral anterior cingulate cortex and anterior insular cortex, cortical areas 

associated with motivational-affective dimensions of pain, was observed 

in individuals experiencing pain first-hand or watched someone in pain 

(Botvinick et al, 2005; Morrison et al, 2004; Rainville et al, 1997; Singer et 

al, 2004). These findings suggest that empathy does not require the use 

of memory, mentalization, and cognitive reasoning. 

It is commonly assumed that psychosocial aspects of pain can only be 

studied in human beings, but recent data from preclinical studies is 

beginning to challenge this assumption. Increasing reports support the 

ability of housing, social buffering and emotional contagion (a form of 

empathy) to modulate pain sensitivity and pain behaviour in mice and 

rats (Martin et al, 2014). When rodents are isolated, their behaviour, 

including pain behaviour, is drastically altered. Autotomy after dorsal 

rhizotomy is frequent in male rats housed in isolation, but it was almost 

completely prevented by co-housing with a female rat (Berman and 

Rodin, 1982). A few studies have shown that social isolation decreases 

pain sensitivity and increases analgesic responding by enhancing µ-opioid 

activity (Becker et al, 2006; Coudereau et al, 1997). At the opposite, 
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crowding can affect pain sensitivity and opioid analgesia with different 

outcomes depending on the modality of the stimulus (Pilcher and 

Browne, 1982). A more recent study revealed an overwhelming effect of 

housing and the identity of cagemates on chronic pain behaviour, even 

counteracting genetic predisposition to pain (Raber and Devor, 2002). 

The contact with rats genetically predisposed to neuropathic pain was 

sufficient to enhance neuropathic pain in rats exposed to a neuroma 

(Raber and Devor, 2002). However, this phenomenon does not seem to 

be due to a behavioural contagion, since it was apparently mediated via 

olfaction (Raber and Devor, 2002).  

Contact with conspecifics and the subsequent affiliative behaviours were 

reported to decrease pain sensitivity in an opioid-dependent manner in 

rodents (D’Amato, 1998; D’Amato and Pavone, 2012). Social approach 

behaviour to a conspecific in pain decreases pain behaviours in the 

affected mouse (Langford et al, 2010b). Another evidence of social 

buffering is the modulation of painful environmental threats by the 

presence of other animals. Thus, the presence of naïve rat blocked 

freezing behaviour of a test rat in response to a foot-shock (Kiyokawa et 

al, 2004). 

The ability to share emotional states relies on a so-called perception-

action mechanism (Preston and de Waal, 2002) that includes mimicry 

and/or emotional contagion. Emotional contagion is a form of empathy 

that can operate without the presence of evolved ‘theory of mind’ 

(Hatfield et al, 1993). A variety of animals may be able to socially transfer 

emotional states to others. Thus, mice have the ability to transmit pain 

status between cagemates, resulting in contagious pain hypersensitivity, 

only when both mice in the dyad are in pain, while no effects are 
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observed among strangers (Langford et al, 2006). This study showed that 

the transmitting sensory modality was vision, as blockade of vision, but 

not of other sensory modalities including touch, olfaction, and audition 

was effective in blocking the phenomenon (Langford et al, 2006). In fact, 

it is now known that mice and rats display facial expressions of pain, 

which combined with other body cues have been suggested to be the 

primary drivers of pain contagion effects (Keating et al, 2012; Langford et 

al, 2010a; Sotocinal et al, 2011). 
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4. Endogenous opioid system 

Opioid receptors, their endogenous peptide ligands and the enzymes 

involved in their metabolism comprise the endogenous opioid system. 

This system is extensively distributed through the CNS and peripheral 

tissues. The wide distribution of the endogenous opioid system is 

determinant to its involvement in multiple physiological responses 

including control of pain, emotional behaviour, learning and memory 

functions or regulation of reward circuitry, among others (Bodnar, 2017). 

 

4.1 Discovery of the endogenous opioid system 

The isolation and purification of morphine from opium in 1806 by 

Friedrich Sertürner established the starting point for the modern 

pharmacognosy. For the first time, the main active principle of a plant 

was isolated and could be used in therapeutics. After this discovery, the 

pharmacology of natural substances advanced quickly with the 

identification and isolation of different plant compounds with a great 

spectrum of activities. This fact generated the possibility of using these 

compounds to investigate their effects, identify their mode of action, and 

use them both as therapeutic drugs and as chemical template to develop 

new drugs. At the end, it allowed the identification of opioid receptors 

almost one hundred and seventy years later. 

In the decade of 1960s, it became apparent that opioid drugs were likely 

to exert their actions at specific receptor sites (McClane and Martin, 

1967). In 1971, a new radiobinding methodology was described to 

analyse the association between the morphine derivative levorphanol 

and the brain tissue, suggesting that opioid receptors were in specific 

membrane fractions of brain homogenates (Goldstein et al, 1971). Few 
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years later, three laboratories simultaneously succeeded in 

demonstrating the existence of opioid binding sites in the CNS (Pert and 

Snyder, 1973; Simon et al, 1973; Terenius, 1973). The first definitive 

evidence that opioid receptors did not form an homogeneous population 

was presented by Martin and his colleagues in 1976, who identified MOR 

and KOR (Martin et al, 1976). The DOR was identified one year later in 

mouse vas deferens (Lord et al, 1977). With those discoveries, 

researchers reasoned that the opioid receptors might be the binding 

sites of endogenous neurotransmitters. Soon, the first endogenous 

opioid compounds that bind to opioid receptors, named enkephalins, 

were isolated from guinea pigs brain extracts and identified based on the 

determination of the amino acid sequence (Hughes et al, 1975). One year 

later, endorphin, a second endogenous opioid peptide derivative from 

enkephalin sequence was isolated (Cox et al, 1976). Finally, dynorphins 

were identified in 1979 (Goldstein et al, 1979). The demonstration of the 

existence of the opioid receptors and the endogenous opioid ligands, was 

the first step of the endogenous opioid system characterization. During 

the mid-1990s, the molecular characterization and cloning of the 

different opioid receptors widely improved the knowledge and advances 

in this system (Kieffer, 1995). 

 

4.2 Opioid receptors 

Three classical opioid receptors have been identified and cloned in 

experimental animals and humans (Kieffer, 1999): mu (MOR), delta 

(DOR) and kappa (KOR) opioid receptors. A non-classical opioid receptor, 

the nociceptin or orphanin receptor (NOR or opioid receptor like 1, ORL-

1) was identified later on and was accepted to be part of the opioid 

receptors family (Bunzow et al, 1994; Mollereau et al, 1994). 
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Opioid receptors belong to the superfamily G protein-coupled receptor 

(GPCR). They are seven-transmembrane domain proteins with an 

extracellular N-terminal domain and an intracellular C-terminal domain. 

Each receptor is encoded by a unique gene (Oprm1, Oprd1, Oprk1, Oprl1) 

but present a high homology in the sequence identity in both, 

transmembrane (73%-76%) and intracellular domains (63%-66%). In 

contrast, a large divergence is reported in the extracellular N-domains 

(34%-40% identity) (Al-Hasani and Bruchas, 2011; Pogozheva et al, 2005; 

Toll et al, 2016). The crystal structures for the inactive and active state of 

each receptor have been identified with atomic-level details, which allow 

the definition of the unique opioid binding pockets that maintain ligand 

preferences (Figure 10) (Granier et al, 2012; Manglik et al, 2012; 

Thompson et al, 2012; Wu et al, 2012). These findings provide insight 

into how different agonists distinctly alter receptor conformations to 

direct downstream intracellular cascades, which may ultimately lead to 

more effective pharmacological treatments. 

 

 

Figure 10. Opioid receptor family. Crystal structures of the inactive state of all 

four opioid receptors (DOR, KOR, NOR, and MOR). When an opioid agonist 

enters the binding pocket of its cognate receptor, a conformational change in 

the transmembrane domains allows for intracellular effector molecules to bind 
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and activate signalling cascades that modulate neural function. The addition of 

stabilizing nanobodies to the crystal preparation has elucidated the active state 

of MOR (Corder et al, 2018). 

Opioid receptors are coupled to pertussis toxin sensitive G-proteins (Gαi 

and Gαo). Activation of opioid receptors leads to the dissociation of the G 

protein into two different subunits, Gα and Gβγ, which subsequently 

engage a variety of effectors and intracellular signalling cascades that 

typically depress neural functions. Thus, Gβγ subunit positively modulates 

the G protein-coupled inwardly rectifying potassium channels (GIRK) 

(Torrecilla et al, 2002; Wickman and Clapham, 1995) and inhibits N-, P/Q- 

and L-type voltage-gated calcium channels (Zamponi and Snutcht, 1996). 

In turn, the Gα subunit inhibits adenylate cyclase activity and reduces the 

cAMP (Law et al, 2000). These processes lead to neuronal 

hyperpolarization and inhibition of neurotransmitter release, which 

result in reduced neuronal excitability. Although these were considered 

the primary actions of opioid receptors in the nervous system, more 

recent studies have shown that phosphorylated GPCRs recruit β-arrestin, 

which is a key signal effector at these receptors, mediating an array of 

cellular and behavioural responses. Phosphorylated arrestin-bound GPCR 

complexes trigger critically important downstream signalling cascades, 

including the MAPK cascade (Al-Hasani and Bruchas, 2011). These 

MAPKs, which consist of three major proteins [extracellular signal 

regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase 1–3 (JNK1–3), 

and p38], notably modulate cell proliferation, differentiation, apoptosis, 

transcription factor regulation, ion channel regulation, neurotransporter 

regulation, and protein scaffolding (Raman et al, 2007). Arrestin also 

regulate the G protein signalling through desensitization and 
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internalization of the opioid receptors (Corder et al, 2018). It was 

generally accepted that internalised receptors were inactive (Bohn et al, 

1999), but more recent studies have shown that opioid receptors may 

still signal, including from endosomal compartments (Eichel et al, 2016; 

Irannejad et al, 2013). Figure 11 summarises the basic signalling 

properties of the four opioid receptors. 

 

 

Figure 11. Opioid modulation of signalling and synaptic transmission. 

Activation of opioid receptors promotes dissociation of inhibitory Gα and Gβγ 
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protein subunits. Gα subunits suppress adenylate cyclase, and Gβγ subunits 

presynaptically inhibit voltage-gated calcium channels opening and 

postsynaptically activate GIRK channels, resulting in reduced neurotransmitter 

release and membrane hyperpolarization, respectively. Thus, G proteins mediate 

the inhibitory action of opioid signalling on neurotransmission. Additionally, 

agonist binding to opioid receptors causes conformational changes that promote 

recruitment of arrestin effector signalling cascades. Arrestin signaling is required 

both for internalization of opioid receptors and for kinase activities. AMPA, α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; cAMP, cyclic 

adenosine monophosphate; ERK, extracellular signal regulated kinase; GIRK, G 

protein-coupled inwardly rectifying potassium channels; JNK, c-Jun N-terminal 

kinase; NMDA, N-methyl-D-aspartate receptor; NT, neurotransmitter 

(Glutamate); P, phosphate; VGCC, voltage-gated calcium channels. 

Opioid receptors are widely distributed all over central and peripheral 

nervous system (Mansour et al, 1988; Stein, 1993). Importantly, each 

receptor has a distinct expression pattern throughout the brain, where 

they are expressed primarily in the cortex, limbic system, and brain stem 

(Mansour et al, 1994; Neal et al, 1999). Ligand autoradiography studies 

have determined the opioid binding sites (receptor protein), whereas in 

situ hybridization studies characterised the distribution of cell bodies 

expressing opioid receptors, based on the detection of mRNA (Le Merrer 

et al, 2009). The sites of opioid receptor expression (mRNA) generally 

match the distribution of binding sites (protein), suggesting that many 

neurons synthesizing opioid receptors are local neurons. Binding sites for 

the three opioid receptors overlap in most structures, but some 

structures exhibit higher expression of one receptor over the others. 

MOR is the most expressed opioid receptor in the amygdala, but not in 

the CeA, thalamus, mesencephalon, and some brain stem nuclei. KOR is 

the most represented receptor in the basal anterior forebrain, including 
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the claustrum and endopiriform cortex, olfactory tubercle, striatum 

(caudate putamen and nucleus accumbens), preoptic area, 

hypothalamus, and pituitary gland. DOR is the most abundant receptor in 

the olfactory tract (olfactory bulbs, anterior olfactory nucleus, olfactory 

tubercle, medial amygdala) and in the cortices, including whole 

neocortex and regions of the amygdala that derive ontogenically from 

the cortex (basolateral, cortical, and median nuclei), and is also highly 

expressed in the striatum (Figure 12) (Lutz and Kieffer, 2013; Le Merrer 

et al, 2009). 

Opioid receptors also show mostly divergent expression in spinal cord 

dorsal horn and DRG neurons. MOR are mainly present in thermo 

nociceptive transmission pathways, that is, in small diameter C-fibres and 

superficial lamina I and outer II of the dorsal horn (Scherrer et al, 2009). 

Conversely, DOR are expressed in myelinated Aβ primary afferents, 

where it inhibits mechanical transmission, as well as in deeper laminae of 

the dorsal horn (inner II, III, IV and V) (Bardoni et al, 2014; François and 

Scherrer, 2018). Only a percentage of myelinated neurons positive for 

the calcitonin gene related peptide, which belong to polymodal Aδ fibres, 

co-express MOR and DOR receptors (François and Scherrer, 2018; Wang 

et al, 2010b). 

Opioid receptors have also been found in immune cells and various 

peripheral tissues including gastrointestinal system, dermis and 

epidermis (around hair follicles), bone, joint tissue and in dental pulp 

(Bigliardi and Bigliardi-Qi, 2014). In these tissues, they are located in 

sensory and sympathetic fibres where they modulate different 

physiological effects (Mansour et al, 1988; Przewłocki and Przewłocka, 

2001). 
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Figure 12. Anatomy of the opioid receptors in the rodent brain (rat and 

mouse). Amb, nucleus ambiguus; AD, anterodorsal thalamus; AL, anterior lobe 

pituitary; AON, anterior olfactory nucleus; Arc, arcuate nucleus, hypothalamus; 

BLA, basolateral nucleus, amygdala; BNST, bed nucleus of the stria terminalis; 

CeA, central nucleus, amygdala; Cl, claustrum; CL, centrolateral thalamus; CM, 

centromedial thalamus; CoA, cortical nucleus, amygdala; CPu, caudate putamen; 

CrbN, cerebellar nuclei; DMH, dorsomedial hypothalamus; DMR, dorsal and 

medial raphe´; DTN, dorsal tegmental nucleus; En, endopiriform cortex; Ent, 
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entorhinal cortex; FrCx, frontal cortex; G, nucleus gelatinosus, thalamus; G/VP, 

globus pallidus/ventral pallidum; HbL, lateral habenula; HbM, medial habenula; 

HPC, hippocampus; IL, intermediate lobe, pituitary; IP, interpeduncular nucleus; 

LC, locus coeruleus; LD, laterodorsal thalamus; LG, lateral geniculate, thalamus; 

LH, lateral hypothalamus; LRN, lateral reticular nucleus; MD, mediodorsal 

thalamus; Me, median eminence; MEA, median nucleus, amygdala; MG, medial 

geniculate; MM, medial mammillary nucleus; MV, medial vestibular nucleus; 

NAc, nucleus accumbens; NL, neuronal lobe, pituitary; NRGC, nucleus reticularis 

gigantocellularis; NTS, nucleus tractus solitarius; OCx, occipital cortex; PAG, 

periaqueductal gray; PCx, parietal cortex; Pir, piriform cortex; PN, pontine 

nucleus; PnR, pontine reticular; PO, posterior thalamus; POA, preoptic area; 

PPTg, pedunculopontine nucleus; PrS, presubiculum; PV, paraventricular 

thalamus; PVN, paraventricular hypothalamus; RE, reuniens thalamus; RN, red 

nucleus; RM, raphe´ magnus; SON, supraoptic nucleus; SN, substancia nigra; 

SNT, sensory trigeminal nucleus; STN, spinal trigeminal nucleus; TCx, temporal 

cortex; Th, thalamus; Tu, olfactory tubercle; Tz, trapezoid nucleus; VL, 

ventrolateral thalamus; VM, ventromedial thalamus; VMH, ventromedial 

hypothalamus; VPL, ventroposterolateral thalamus; VTA, ventral tegmental area; 

ZI, zona incerta (Le Merrer et al, 2009). 

 

4.2 Endogenous opioid peptides 

There are four major families of endogenous opioid ligands: β-

endorphins, enkephalins, dynorphins, and nociceptin/orphanin FQ 

(Figure 13).  
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Figure 13. Endogenous opioid peptides. Chemical structures of the four main 

classes of opioid peptides: met-enkephalin, dynorphin-A, nociceptin, and β-

endorphin (Corder et al, 2018). 

The formation of the opioid peptides results from enzymatic splicing of 

precursor proteins, namely, proopiomelanocortin (POMC), 

preproenkephalin (PENK), prodynorphin (PDYN) and pronociceptin 

(PNOC), respectively (Corder et al, 2018). These proteins are 

characterized by repeatedly having certain amino acid sequences along 

their structure and generate several active peptides. Both POMC, PENK 

and PDYN contain one or more repetitions of met- or leu-enkephalin 

(Figure 14) (Flórez, 2007). 
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Figure 14. Precursor proteins of opioid peptides. ACTH, adrenocorticotropic 

hormone; CLIP, corticotropin-like intermediate peptide; MSH, melanocyte 

stimulating hormone (adapted from Flórez, 2007). 

These opioid peptides along with their cognate receptors are widely 

expressed across the neuraxis and, in particular, pain pathways. The 

distribution of opioid peptide containing neuronal fibres and cell bodies 

has been assessed by immunohistochemistry, while in situ hybridization 

studies completed the mapping of opioid cell bodies (Le Merrer et al, 

2009). Mismatches exist between the distribution of opioid peptide 

immunoreactivity and the localization of cell bodies. These discrepancies 

between peptide and cell body maps suggest that an important 

proportion of opioid peptides is released by projecting neurons (Le 

Merrer et al, 2009). Indeed, the opioid precursors are packaged into 
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dense core vesicles in the soma and transported down to axon terminals. 

Precursor proteins are cleaved during this process into opioid peptides 

(Corder et al, 2018). PENK-expressing cell bodies are the most abundant 

in the brain. PDYN cell bodies are also widespread, with a hot spot in the 

hypothalamus matching high KOR density. In contrast, POMC cell bodies 

are highly restricted and only detected in three regions of the brain: the 

arcuate nucleus of the hypothalamus, nucleus tractus solitarius (in the 

brain stem), and pituitary gland (anterior and intermediate lobe) (Le 

Merrer et al, 2009). The distribution of opioid precursors in the rodent 

brain is shown in Figure 15. 

The endogenous ligands exhibit different affinities for each opioid 

receptor. β-endorphin acts on both MOR and DOR with similar affinity. 

Enkephalins act on DOR and MOR, with greater affinity for DOR. 

Dynorphins can activate KOR, MOR and DOR with a greater affinity for 

KOR (Table 8) (Kieffer, 1995; Meunier et al, 1995). Contrasting with the 

tight, spatially controlled synaptic transmission of small-molecule 

transmitters such as glutamate or dopamine, opioids are thought to rely 

on volumetric release into synaptic and extrasynaptic spaces and diffuse 

toward their receptors (Banghart and Sabatini, 2012; Chavkin, 2013; 

Duggan, 2000). Indeed, electron microscopy illustrates that most MOR 

are extrasynaptic, being hundreds of microns away from release sites 

(Glass et al, 2009; Svingos et al, 1996). This implies that opioid synapses 

may include a much broader area than typical fast transmitter synapses. 
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Figure 15. Anatomy of the endogenous opioid peptides in the rodent brain (rat 

and mouse). See abbreviations in Figure 10 caption (Le Merrer et al, 2009). 
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Table 8. Selectivity of opioid ligands for opioid receptors, represented from - (no 

selectivity) to +++ (high selectivity) (adapted from Kieffer, 1995; Meunier et al., 

1995) 

 

 

4.3 Enzymes involved in opioid peptides degradation 

Opioid peptides catabolism results in the production of inactive 

metabolites. Once released into the synaptic cleft, opioid ligands are 

metabolized by two zinc metallopeptidases, the endopeptidase neprilysin 

and the aminopeptidase N, that catalyses the cleavage of peptide bonds 

on the N-terminal side of Tyr-Gly-Gly and Tyr residues, respectively 

(Figure 16) (Roques et al, 2012). The distribution of both enzymes 

coincides with the same brain areas of the opioid receptors expression. 

Aminopeptidase N is distributed throughout the cerebral cortex, the 

caudate, and moderately expressed in the hippocampus, and neprylisin 

distribution coincides with that of the MOR and DOR (de Gortari et al, 

2007). In situ hybridization studies reported that neprylisin is mainly 

expressed in the hippocampus, cerebral cortex, caudate nucleus, 

substantia nigra and the nucleus accumbens, among others (Gaudoux et 

al, 1993). 

Endogenous ligands MOR DOR KOR NOR/ORL-1

β-endorphin +++ +++ - -

Enkephalins +/++ +++ - -

Dynorphins ++ + +++ -

Nociceptin - - - +++
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Figure 16. Schematic representation of the endogenous opioid catabolism. The 

arrows indicate the sites of the opioid peptide cleavage by aminopeptidase N 

(APN) and neprylisin (NEP) of the peptide bonds on the N-terminal side Tyr-Gly-

Gly and Tyr, respectively. In this case, enkephalins are synthesized intracellularly 

from enzymatic processing of the gene-derived precursor preproenkephalin 

(PENK). Stored in large synaptic vesicles, they are released (under basal or phasic 

conditions) by a Ca2+-dependent exocytosis mechanism. Outside the cells, 

enkephalins interact with opioid receptors, and their signal is interrupted by the 

concomitant action of NEP and APN that generate inactive metabolites (Roques 

et al, 2012) 
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4.4 Physiological functions of the endogenous opioid system 

The broad role of the endogenous opioid system in the control of 

multiple physiological responses has been the subject of a vast number 

of investigations. The control of pain is probably the most well studied 

physiological function of the EOS. However, this system is involved in a 

wide range of functions related to behaviour, such as reward and 

addiction, stress and social status, learning and memory, mental and 

mood disorders, food intake, gastrointestinal transit, respiratory, 

cardiovascular and immunological functions, among others (Bodnar, 

2017). For the aim of this Thesis, we will focus our attention on the role 

of the endogenous opioid system in pain, mood disorders and memory. 

The role of the endogenous opioid system inhibiting pain will be 

described in detail in the next section 4.5. 

 

4.4.1 Role of the endogenous opioid system in mood disorders 

Mood disorders are defined as a group of diagnoses where mood 

disturbance is the main underlying feature, and are a worldwide leading 

cause of disability recognized in the fifth edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-V) (American Psychiatric 

Association, 2013). The high density of endogenous opioid peptides and 

receptors in different limbic brain areas identifies this system as a crucial 

contributor in mood control. The implication of endogenous opioid 

system in the aetiology of mood disorders was reported some decades 

ago. Enkephalins and endorphins administration induced antidepressant-

like effects (Kastin et al, 1978; Peppin and Raffa, 2015) and inhibitors of 

enkephalin metabolism also reduced anxiety levels and depressive-like 

responses (Jutkiewicz et al, 2006; Nieto et al, 2005; Tejedor-Real et al, 

1993).  
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Pharmacological studies using selective MOR, DOR and KOR drugs 

allowed to characterize the distinct roles for each opioid receptor. Thus, 

acute pharmacological activation of MOR reduced depressive-like 

behaviours in some (Berrocoso et al, 2013; Berrocoso and Mico, 2009; 

Rojas-Corrales et al, 2002), but not all the preclinical studies (Zhang et al, 

2006). In contrast, the preferential MOR-antagonist naloxone worsened 

depressive-like behaviour in the learned-helplessness paradigm in rats 

(Besson et al, 1996; Tejedor-Real et al, 1995). Clinical reports describe 

the effectiveness of the MOR agonists, oxycodone and oxymorphone, 

and the partial agonist buprenorphine, in patients with refractory major 

depression (Bodkin et al, 1995; Stoll and Rueter, 1999). In addition to this 

antidepressant effect of MOR agonists, a secondary mechanism has been 

suggested involving the serotoninergic system. Thereby, MOR activation 

in the dorsal raphe nucleus disinhibited serotonergic neurons, leading to 

the subsequent increased release of serotonin in forebrain projecting 

areas related with emotional integration, including the thalamus, nucleus 

accumbens, amygdala, frontal cortex, striatum, hypothalamus and 

ventral hippocampus (Tao et al, 1996; Tao and Auerbach, 1995). 

Tramadol is an atypical MOR agonist that also involves monoaminergic 

mechanism of action, by enhancing the extraneuronal concentration of 

noradrenaline and serotonin. It is widely used in clinical pain practice, 

especially for the treatment of neuropathic pain (Hollingshead et al, 

2006). In addition to its well-known analgesic effect, some clinical and 

preclinical evidence has suggested that it elicits antidepressant-like 

effects (Rojas-Corrales et al, 1998, 2002; Shapira et al, 2001; Yalcin et al, 

2007). Tramadol has also been used with positive effects in anxiety and 

anxiety-like disorders such as obsessive-compulsive disorders (Shapira et 

al, 1997). In addition, tramadol induces changes in the CNS similar to 



Introduction 

74 

those induced with conventional antidepressants (Berrocoso et al, 2009). 

Therefore, tramadol could be important in refractory cases of depression 

when pain is also present. 

The anxiolytic- and antidepressant-like activities of DOR agonists are the 

most well-documented. DOR receptor activation by several selective 

peptidic and non-peptidic agonists consistently reduced anxiety and 

depressive-like behaviour in mice and rats across multiple behavioural 

paradigms (Broom et al, 2002; Naidu et al, 2007; Perrine et al, 2006; 

Saitoh et al, 2004; Vergura et al, 2008). The antidepressant-like effects 

were blocked by the selective DOR antagonist naltrindole, demonstrating 

that these behaviours were mediated by DOR (Torregrossa et al, 2006). 

Unfortunately, seizures have limited their therapeutic potential and 

clinical evidence is still lacking (Berrocoso et al, 2009). Nonetheless, a 

recent pilot study showed promising anxiolytic effects of the selective 

DOR agonist AZD2327 in patients with anxious major depressive disorder 

(Richards et al, 2016). The mechanism responsible for antidepressant-like 

effects induced by DOR agonists remains unknown. An increase in 

monoaminergic activity seems to participate in these behavioural 

responses produced by the activation of DOR. Preclinical findings suggest 

that DOR activation could restore serotoninergic dysfunction in 

depressive states (Jenny et al, 2008; Saitoh et al, 2008). Whether DOR 

agonists also increase dopaminergic pathway activity is not clear since 

results for and against this hypothesis have been reported (Jutkiewicz et 

al, 2004; Longoni et al, 1998; Spina et al, 1998). Interestingly, it has also 

been described that the effects of tricyclic antidepressants on 

neuropathic pain in mice require DOR stimulation (Peppin and Raffa, 

2015). Therefore, all these findings suggest a mutual relationship 

between monoamine and DOR systems. The neurotrophic factor 
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hypothesis is another possible mechanism of action for antidepressant-

like effects induced by DOR stimulation. Thereby, acute DOR agonist 

treatment increases BDNF expression in the frontal cortex and the 

hippocampus, similar to the effect of classic antidepressants (Torregrossa 

et al, 2004, 2006). BDNF plays an important role in the therapeutic 

actions of antidepressants by regulating neuronal survival, 

differentiation, and plasticity (Tardito et al, 2006). On the other hand, the 

anxiolytic effect of DOR may be exerted at the level of amygdala circuits, 

since microinjections of the delta selective agonist D-Pen2-D-Pen5-

enkephalin into the amygdala reduced anxiety, and this effect was 

blocked by naltrindole (Randall-Thompson et al, 2010).  

Preclinical data showed that systemic administration of KOR agonists 

induced anxiogenic and pro-depressant-like effects (Carlezon et al, 2006; 

Knoll et al, 2007; Mague et al, 2003). More interesting, central 

administration of KOR antagonists produced antidepressant- and 

anxiolytic-like behavioural effects in animal studies (Beardsley et al, 

2005; Knoll et al, 2007; Shirayama et al, 2004; Zhang et al, 2007a). In 

humans, pharmacological activation of KOR produces dysphoria, anxiety 

and psychotomimetic effects (Pfeiffer et al, 1986). The neurobiological 

mechanisms by which KOR antagonists induce antidepressant-like effects 

and KOR agonists produce pro-depressant effects are not currently 

known. The blockade of KOR may produce, similar to MOR and DOR, an 

increase in monoaminergic signalling pathways. Indeed, some lines of 

evidence suggest that KOR agonists may reduce extracellular dopamine 

levels within the nucleus accumbens (Carlezon et al, 2006), which has 

been implicated in the pathophysiology of depressive conditions (Nestler 

and Carlezon, 2006). It was also hypothesized that KOR antagonists 

attenuate the behavioural effects of elevated cAMP response element-
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binding (CREB) expression within the nucleus accumbens, most likely by 

blocking KOR that normally inhibit neurotransmitter release from 

mesolimbic dopaminergic neurons, contributing to an antidepressant-like 

effect (Pliakas et al, 2001). Activation of KOR in the locus coeruleus may 

diminish neural discharge evoked by engaging either glutamate or 

corticotropin-releasing factor inputs. This results in decreased 

noradrenergic innervations in forebrain areas, which could contribute to 

the pro-depressive effect (Kreibich et al, 2008). 

In summary, DOR agonists and KOR antagonists have promising 

antidepressant potential. In contrast, data from MOR analysis appear 

more complex and the risk-benefit ratio of currently available MOR 

agonists as antidepressants remain difficult to evaluate, in addition to 

their inherent abuse liability (Lutz and Kieffer, 2013). 

 

4.4.2 Role of the endogenous opioid system in cognition 

The role of the endogenous opioid system in learning and memory is well 

documented. Systemic pharmacological activation of MOR has been 

reported to produce learning and memory impairments in rodents 

following acute (Castellano and Pavone, 1985; Stone et al, 1991) and 

chronic treatment (Sala et al, 1994; Spain and Newsom, 1991). This 

opioid-induced impairment can be modulated by opioid antagonists 

(Canli et al, 1990; Introini and Baratti, 1984). several lines of evidences 

suggest that molecular and synaptic plasticity changes in the 

hippocampus are also modulated by endogenous opioids (Dacher and 

Nugent, 2011). In agreement, clinical studies have shown that opioid 

addicts may have significant cognitive impairments with the duration of 

the addiction (Curran et al, 2001). The nucleus accumbens has been 

recognized for its role in motivational learning associated with goal-
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directed actions and decision making that involves reward outcome (Da 

Cunha et al, 2012; Day et al, 2007). MOR are expressed in GABAergic 

medium-sized spiny neurons of the nucleus accumbens, suggesting that 

their contribution to these behaviours primarily involves effects on 

inhibitory input into the nucleus accumbens (Ma et al, 2012). Indeed, the 

MOR agonist DAMGO produced inhibition of spontaneous excitatory and 

inhibitory postsynaptic currents in medium-sized spiny neurons of the 

nucleus accumbens containing dopamine D1 and D2 receptors, leading to 

depolarization and enhanced intrinsic cell excitability (Ma et al, 2012). 

DOR have also been shown to play an essential role in learning and 

memory processes. They are highly expressed in brain regions involved in 

cognitive functions, such as hippocampus, amygdala, striatum and other 

basal ganglia structures (Klenowski et al., 2015). The physiological effects 

of DOR within the hippocampus are well defined. DOR are mainly 

localized presynaptically in GABAergic interneurons that form afferent 

connections to glutamatergic pyramidal cells (Rezaï et al, 2012). Thus, 

DOR activation inhibits presynaptic neurotransmitter release and 

increases excitation of pyramidal cells in CA1, CA3 and dentate gyrus 

regions, leading to the facilitation of the LTP in the hippocampus 

(Klenowski et al, 2015). Strong evidence implicates the amygdala in 

incentive learning and motivational behaviours associated with the 

rewarding effects of addictive substances (Robbins and Everitt, 2002). 

DOR activity within the CeA contributes to learned associations that are 

formed during drug-context conditioning paradigms (Marinelli et al, 

2009). Similar to MOR, DOR expressed in the nucleus accumbens 

contribute to motivational learning and processes that reinforce drug-

seeking behaviour. Indeed, infusion of DOR agonists into the nucleus 

accumbens promotes cocaine seeking (Simmons and Self, 2009) and 
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feeding behaviour in rodents (Zhang et al, 2003; Zhang and Kelley, 2000). 

Conversely, the reduction in performance mediated by DOR antagonism 

was attributed to a deficit in predictive learning required to guide choice 

based on paired stimulus-reward outcomes (Klenowski et al, 2015). The 

expression of DOR within the rat nucleus accumbens is presynaptic 

(Cahill et al, 2001) and also postsynaptic in medium-sized spiny neurons 

and cholinergic interneurons (Bertran-Gonzalez et al, 2013). Preclinical 

evidence suggests that the effect of DOR on drug reward-related learning 

results from plastic changes affecting cholinergic interneurons synapses 

in the nucleus accumbens shell (Bertran-Gonzalez et al, 2013). The dorsal 

striatum and associated basal ganglia circuitry have key roles in motor 

and habit learning (Grahn et al, 2009; Graybiel, 2008; Lovinger, 2010). 

DOR-expressing neurons in the dorsal striatum also expressed D1 

receptors, indicating that these dopamine receptors may mediate DOR 

influence on these cognitive functions (Ambrose et al, 2006).  

The involvement of KOR in memory function has been also reported. 

Both KOR and its endogenous ligand dynorphin are present in the 

hippocampus and amygdala (Schwarzer, 2009). Dynorphins modulate the 

information between the dentate gyrus and the CA3 region of the 

hippocampus decreasing excitatory glutamatergic signalling and 

therefore diminishing hippocampal activity (Bilkei-Gorzo et al, 2014). In 

addition, pharmacological KOR activation produces aversive emotional 

behaviours that contribute to the stress-induced learning and memory 

dysfunctions in mice (Carey et al, 2009), including reduced social memory 

(Bertran-Gonzalez et al, 2013). Interestingly, a human genetic study also 

revealed that subjects with a rare gene polymorphism associated with 

reduced PDYN expression is associated with a better episodic memory 

(Kölsch et al, 2009). 
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4.5 Role of the endogenous opioid system in pain 

4.5.1 Acute nociception 

The endogenous opioid system plays a crucial role modulating pain 

transmission at peripheral, spinal and supraspinal level (Corder et al, 

2018). At the peripheral level, opioid peptides released by immune cells 

during inflammation locally inhibit pain transmission (Rittner et al, 2008). 

Initial studies suggested that the different types of opioid receptors, 

specially MOR and DOR, were co-expressed by the same class of DRG 

neurons. However, the emergence of novel techniques to investigate 

opioid receptor expression, particularly reporter mice expressing 

fluorescent opioid receptors and single-cell RNA sequencing has revealed 

that each opioid receptor is specifically distributed among different DRG 

neuron classes, implying that receptor classes preferentially control 

distinct types of pain and somatosensory modalities (Figure 17). Thus, 

DOR is enriched in myelinated mechanosensory neurons that project to 

the skin and that have been implicated in tactile hypersensitivity 

(allodynia) in the setting of chronic inflammatory or neuropathic pain 

(Bardoni et al, 2014; Scherrer et al, 2009; Usoskin et al, 2015). MOR in 

DRG are mainly expressed in unmyelinated peptidergic nociceptors that 

express substance P and TRPV1 (Chen and Pan, 2008; Ueda, 2006; Vetter 

et al, 2006). These neurons detect heat and chemical noxious stimuli in 

skin and internal organs. MOR in DRG can be targeted by peripherally 

restricted agonists (i.e., limited blood–brain barrier permeability) to 

produce analgesia without CNS-derived side effects (DeHaven-Hudkins 

and Dolle, 2004; Vadivelu et al, 2011), but these findings were not 

supported by studies using conditional knockout mice (see section 4.6.3) 

(Araldi et al, 2018; Corder et al, 2017). Animal studies provided evidence 
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that KOR in DRG may control visceral pain and proposed the use of 

peripherally acting KOR agonists for these pain modalities (Kivell and 

Prisinzano, 2010; Vanderah, 2010). The role of NOR in DRG is not 

completely understood, but the recent generation of a knock-in mice 

expressing NOR in fusion with the enhanced green fluorescent protein 

(NOR-eGFP) revealed a broad distribution of NOR in DRG neurons, 

including in unmyelinated peptidergic nociceptors, and in several 

populations of myelinated neurons that may include cutaneous 

mechanoreceptors and proprioceptors (Ozawa et al, 2015). 

 

 

Figure 17. Opioid receptors distribution in DRG (A) and dorsal horn neurons 

(B). NF marking large-diameter DRG neurons with myelinated axons. Striped 

neurons coexpress different opioid receptor types. Abbreviations: CGRP, 

calcitonin gene-related peptide; DOR, delta opioid receptor; KOR, kappa opioid 

receptor; MOR, mu opioid receptor; MrgD, Mas-related G protein–coupled 
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receptor member D; NF, neurofilament; NOR, nociceptin opioid receptor; Ret, 

Ret proto-oncogene; TrkC, tropomyosin receptor kinase C; TRPV1, transient 

receptor potential vanilloid 1 (adapted from Corder et al, 2018). 

 

At the spinal level, opioids control nociceptive responses by inhibiting the 

synapse between primary afferent nociceptive neurons and second-order 

neurons. The stimulation of presynaptic opioid receptors inhibits the 

release of neurotransmitters from nociceptors, whereas the activation of 

postsynaptic opioid receptors reduces the excitability of spinal cord 

dorsal horn projection neurons (Stein and Machelska, 2011). Opioid 

receptor are also distributed in distinct subpopulations of spinal cord 

dorsal horn neurons (Figure 17). MOR are expressed by nociceptive 

dorsal horn neurons, including excitatory interneurons and lamina I 

projection neurons (Aicher et al, 2000; Spike et al, 2002). DOR are 

expressed in somatostatin+ excitatory interneurons, which gate 

mechanosensory inputs (Duan et al, 2014), and in projection neurons, 

where it partially overlap with MOR (Wang et al, 2018). This co-

expression suggests that these two receptors may cooperate 

postsynaptically in neurons receiving convergent inputs from segregated 

DOR+ and MOR+ afferents. Definitive identification of KOR distribution in 

specific neurons of the spinal cord dorsal horn circuits is still lacking, 

although the existence of responsive neurons to the KOR-selective 

agonist U50488H in the dorsal horn have been documented (Eckert and 

Light, 2002). NORs were shown to be expressed throughout laminae I–III 

dorsal horn neurons (Ozawa et al, 2015), but the precise identity of these 

neurons, as well as the endogenous source of nociceptin peptide that 

acts on these receptors remain to be established. Dynorphin and 

enkephalin are expressed by distinct classes of dorsal horn interneurons 

(Boyle et al, 2017; François and Scherrer, 2018) and under certain 
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conditions spinal dynorphins can have pronociceptive effects (Podvin et 

al, 2016). 

At supraspinal level, the endogenous opioid system participates in 

descending inhibitory and facilitatory pathways by acting in the PAG and 

RVM (Fields, 2004; Ossipov et al, 2010). In the RVM, On and Off neurons 

have axons that reach the dorsal horn of the spinal cord to facilitate (On 

cells) or inhibit (Off cells) nociceptive transmission (Ossipov et al, 2010). 

Opioid receptor activation in the PAG produces the disinhibition of Off 

cells in the RVM, whereas On cells are directly inhibited by opioids in the 

RVM (Fields, 2004), both activities resulting in antinociceptive effects. At 

this level, the endogenous opioid system also increases the activity of 

noradrenergic neurons in the locus coeruleus, which inhibits synaptic 

transmission in the spinal cord. At supraspinal level, MOR also modulate 

pain processing by being recruited in nociceptive thalamic regions, 

including the ventral posterior nucleus and the intralaminar nuclei (Abdul 

Aziz et al, 2005; Pozza et al, 2010; Tamaddonfard and Erfanparast, 2017). 

Opioid receptors and peptides are expressed in limbic and cortical areas 

involved in affective processing of pain, as well as in the affective and 

rewarding aspects of pain analgesia (Cahill et al, 2013; Hummel et al, 

2008; Kupers et al, 1991; Price et al, 1985). MOR signalling in the anterior 

cingulate cortex relieves pain affect (LaGraize et al, 2006; Navratilova et 

al, 2015). MOR system also acts on multiple cortical and subcortical sites 

to influence dopaminergic neurotransmission between the ventral 

tegmental area and nucleus accumbens to reduce pain aversion 

(Navratilova et al, 2012). MOR is expressed by GABAergic neurons of the 

central nucleus and intercalated cell masses of the amygdala, which 

represents a crucial node in affective brain circuits (Winters et al, 2017). 

Inhibition of these neurons by MOR stimulation may reduce aversive 
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behaviour and amygdala inhibitory input onto descending brainstem pain 

pathway responses (Han et al, 2015; Namburi et al, 2015). However, the 

precise aspects of the pain experience that are encoded in the nucleus 

accumbens and amygdala (salience, valence, motivation, analgesia), and 

the identity of MOR-expressing neurons that modulate pain in the 

anterior cingulate cortex, nucleus accumbens, amygdala, and ventral 

tegmental area, remain to be determined. KOR, DOR, and NOR also 

modulate pain supraspinally (Miaskowski et al, 1991; Yamamoto et al, 

2001). KOR activation in the dorsal raphe nucleus mediates descending 

antinociception (Land et al, 2009; Zhao et al, 2007). The dynorphin–KOR 

system within the nucleus accumbens circuitry is known to modify the 

hedonic value of nociceptive events and shape motivational behaviours 

in response to painful experiences (Al-Hasani et al, 2015; Castro and 

Berridge, 2014). This system may also contribute to shaping pain-induced 

negative emotional disorders (Massaly et al, 2016). DOR and NOR are 

also distributed across the pain affect and descending control circuits, 

particularly in the anterior cingulate cortex and the amygdala (Goody et 

al, 2002; Ozawa et al, 2015; Scherrer et al, 2006; Toll et al, 2016), but 

how these opioid receptor populations modulate the affective 

dimensions of pain experience requires further clarification. 
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Figure 18. Schematic view of ascending and descending pain pathways, opioid 

locations and main effects in physiological conditions. A, A primary afferent 

fibres; ACC, anterior cingulate cortex; C, C primary afferent fibres; Enk, 

enkephalins; β-end, β-endorphin; Dyn, dynorphins; Hipp, hippocampus; mPFC, 

medial prefrontal cortex; NAcc, nucleus accumbens; NMDAR, OFF, off cells; ON, 

on cells; PAG, periaqueductal gray; PCx, parietal cortex; RVM, rostral 

ventromedial medulla; S1 and S2, primary and secondary somatosensory 

cortices; TH, thalamus (Maldonado et al, 2018). 
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When opioids are given for pain treatment, analgesia usually appears 

associated to a wide range of possible side effects including constipation, 

nausea, vomiting, somnolence, mental clouding, respiratory depression 

and dysphoria or euphoria (Galanter et al, 2014). Central opioid 

mechanisms can also lead to analgesic tolerance and hyperalgesia, and 

due to their reinforcement properties, opioids have important abuse 

liability as revealed by the opioid abuse epidemy currently affecting USA 

with dramatic consequences (Volkow and McLellan, 2016). Opioid 

epidemic began two decades ago with the promotion of a sustained-

release oxycodone preparation, which was supposed to have reduced 

abuse liability according to the manufacturer (Van Zee, 2009). This claim 

was used to convince physicians to prescribe this oxycodone preparation 

for many years and the agent became one of the most prescribed opioids 

in USA (FindLaw, 2018). The high availability of oxycodone correlated 

with increased abuse, diversion, and addiction, and by 2004 oxycodon 

had become a leading drug of abuse in the United States (Cicero et al, 

2005). In 2010, a new formulation of sustained-release oxycodone was 

developed using an abuse-deterrent formulation to be harder to crush 

and abuse (Hwang et al, 2015). Although this formulation did reduce the 

abuse capability of oxycodone, it pushed people toward other opioid 

drugs, including heroin (Cicero and Ellis, 2015). Oxycodone has now 

become a highly likeable analgesic by drug abusers, possibly more so 

than hydrocodone and morphine (Wightman et al, 2012). Thus, 

controlled drugs with potential for abuse and diversion can pose public 

health risks that may be more problematic than those of uncontrolled 

drugs when they are overpromoted and highly prescribed. Despite their 

severe side effects, the use of opioids in the management of severe 
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pain is considered the standard of care in most countries (Rosenblum et 

al, 2008). 

 

4.5.2 Chronic pain 

Chronic pain is not a symptom of a disorder but a pathological condition 

that results from maladaptive changes in the nociceptive transmission 

pathways. Alterations of the endogenous opioid system under such 

conditions may lead to different effects of opioid activity than in 

physiological pain. While moderate to severe acute pain can be 

efficiently treated with opioids, opioid treatment of chronic pain has 

many deleterious consequences for the patients. Blunted efficacy of 

opioids, tolerance, physical dependence, hyperalgesia and abuse liability 

undermine the efficiency of these treatments (Trang et al, 2015).  

During chronic inflammatory pain, MOR have an important function 

limiting nociceptive inputs (Severino et al, 2018; Walwyn et al, 2016). 

Indeed, opioid analgesics continue to be the cornerstone for the 

management of moderate to severe nociceptive and inflammatory pain 

(Carroll et al, 2004). However, MOR agonists show low antinociceptive 

efficacy in animal models of neuropathic pain (Idänpään-Heikkilä et al, 

1997; Kimura et al, 2014; Obara et al, 2004, 2007; Rashid et al, 2004). It 

has been even shown that subchronic treatment with systemic 

morphine, not only did not attenuate but may also aggravate cold and 

mechanical allodynia in nerve-injured mice (Roeckel et al., 2017). 

Preclinical studies with nerve-injured animals seem to indicate an effect 

of the route of administration on the analgesic activity of morphine. No 

decrease in morphine potency at the supraspinal level was reported, 

suggesting intact antinociceptive activity of supraspinal MOR (Bian et al, 

1995; Lee et al, 1995). However, the lack of analgesic effect of intrathecal 
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morphine in such conditions suggests altered functionality of spinal MOR 

following nerve injury (Bian et al, 1999; Mao et al, 1995; Ossipov et al, 

1995a, 1995b). The role of peripheral MOR is controversial since 

evidences for (Chung et al, 2012; Guan et al, 2008; Obara et al, 2004, 

2007; Pertovaara and Wei, 2001) and against (Corder et al, 2017; Rashid 

et al, 2004; Weibel et al, 2013) the analgesic efficacy of peripheral MOR 

stimulation under neuropathic pain conditions have been reported. 

Furthermore, recent studies have shown that MOR in DRG are important 

contributors to two of the adverse side effects associated with chronic 

MOR agonist treatments, tolerance and opioid-induced hyperalgesia 

(Araldi et al, 2018; Corder et al, 2017; Tiwari et al, 2018), although these 

results are not supported by other studies (Roeckel et al, 2017; Weibel et 

al, 2013). However, preclinical data do not correlate well with clinical 

experience in neuropathic pain. Indeed, some severe neuropathic pain 

conditions are still treated by systemic MOR agonists, despite the 

important side effects, and intrathecal opioids have been shown to be 

effective in some intractable clinical cases of non-cancer neuropathic 

pain, alone or in combination with other drugs (Martin Paiz et al, 2015; 

Sadiq and Poopatana, 2007; Vigneri et al, 2016; Warner et al, 2018; Wu 

et al, 2013). Although peripheral opioid analgesia is of clinical relevance 

in inflammatory pain conditions, it is difficult to ascertain if peripheral 

MOR provide any contribution in opioid analgesia in neuropathic pain 

patients. However, long-term administration of systemic methyl-

naltrexone, a peripherally acting MOR antagonist, to neuropathic pain 

patients was safe and effective against opioid-induced constipation 

without affecting analgesia (Webster et al, 2017; Webster and Israel, 

2018), suggesting a minimal role of peripheral MOR in opioid analgesia 

under such pain conditions. 
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Many studies have examined the molecular mechanisms behind the 

decreased effectiveness of MOR agonists in neuropathic pain, focusing 

on spinal mechanisms. They include reduction in MOR expression in the 

spinal dorsal horn (Porreca et al, 1998), enhanced spinal release of 

dynorphin (Bian et al, 1999; Nichols et al, 1997) and cholecystokinin 

(Nichols et al, 1996; Zhang et al, 2000), increased NMDA activity and the 

subsequent intracellular activation of PKC and nitric oxide synthesis (Bian 

et al, 1999; Mao et al, 1995), upregulated expression of spinal mGluR1 

(Fundytus et al, 2001), and activation of tonic descending facilitation 

pathways from the brain (Vanderah et al, 2001). Alternatively, several 

peripheral dysregulations that operate after nerve lesion and may 

contribute to the reduction in systemic morphine potency have been also 

suggested. Drastic decrease of MOR expression in DRG neurons due to 

primary afferent fibres damage was reported years ago (Li et al, 1996; 

Obara et al, 2010; Ossipov et al, 1995b; Rashid et al, 2004; Zhang et al, 

1998). More recently, epigenetic alterations have been suggested to be 

responsible for this down-regulation of MOR gene expression in the DRG 

and in the dorsal horn of the spinal cord, leading to limited morphine 

effectiveness (Rivat, 2016; Uchida et al, 2010, 2015; Zhang et al, 2016). 

Dysfunctional coupling of MOR to G protein in the DRG following nerve 

injury was also reported and related to the diminished analgesic efficacy 

of morphine in neuropathic pain (Obara et al, 2010). Interestingly, these 

pathophysiological mechanisms that underly pain hypersensitivity are 

triggered by both nerve injury and opioid treatment, which may 

modulate each other. Therefore, it would account for the low opioid 

analgesic efficacy in neuropathic pain conditions. 
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Figure 19. Peripheral and spinal molecular mechanisms that may account for 

the reduced effectiveness of MOR agonists in neuropathic pain. CCK, 

cholecystokinine; DRG, dorsal root ganglia; MOR, mu opioid receptor; mGluR1, 

metabotropic glutamate receptor subtype 1 (adapted from Rivat and Ballantyne, 

2016). 

 

Additionally, chronic pain is accompanied by changes in plasticity in 

supraspinal pain related areas, such as the mesolimbic dopaminergic 

system. Inflammatory pain desensitizes MOR in the ventral tegmental 

area, promoting opioid consumption (Hipólito et al, 2015; Narita et al, 

2005), and neuropathic pain is accompanied by decreased nucleus 

accumbens dopamine release, an effect that involves microglial 

activation in the ventral tegmental area (Taylor et al, 2015), as well as 

other negative regulators of dopamine transmission. These findings 
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suggest that chronic pain may reduce the involvement of MOR 

modulating the hedonic value of nociceptive inputs. In this line, it would 

be interesting to elucidate the contribution of MOR shaping pain-induced 

negative emotional disorders under chronic pain conditions. 

On the other hand, several distinct chronic pain models are sensitive to 

DOR agonists, including inflammatory, neuropathic, cancer and diabetic 

pain, since DOR activation reduces hypersensitivity in heat, cold and 

mechanical modalities (Gavériaux-Ruff and Kieffer, 2011). Indeed, DOR-

mediated antinociception seems to be more efficient under chronic pain 

than in acute pain conditions, and clinical trials should be performed to 

validate their translational potential to patients. However, the function 

of DOR modulating affective responses associated to neuropathic pain 

has not been thoroughly explored in animal models. 

KOR activation produces analgesia (Cahill et al, 2014) and this receptor is 

involved in chronic pain states, including neuropathic and osteoarthritis 

pain. Pharmacological evidences demonstrate that selective KOR agonists 

attenuate mechanical allodynia and inflammation during osteoarthritis 

(Shen et al, 2005). Indeed, reduced KOR expression in osteoarthritis 

patients might be critical in the progression and maintenance of the 

osteoarthritis disease (Shen et al, 2005). Neuropathic pain is also 

sensitive to KOR-mediated analgesia although the antinociceptive effects 

appear to be weaker than that evoked by MOR or DOR agonists 

(Przewlocki and Przewlocka, 2005). Intraplantar injection of peripherally-

selective KOR agonists induced antinociceptive effects in a rat model of 

neuropathic pain, indicating a peripheral component of this KOR-

mediated analgesia during such conditions (Catheline et al, 1998; Walker 

et al, 1999). Accordingly, mechanical and thermal allodynia were 
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significantly enhanced after treatment with KOR antagonists 

norbinaltorphimine and 5'-guanidinonaltrindole (GNTI) in rodent models 

of neuropathic pain (Obara et al, 2003). However, enhanced expression 

and pronociceptive actions of spinal dynorphin have been reported 

following nerve injury (Lai et al, 2008; Podvin et al, 2016; Xu et al, 2004), 

suggesting that spinal dynorphin can act as an anti-opioid under such 

conditions, promoting the development of neuropathic pain. 

 

Table 9. Role of opioid receptors in acute nociception and chronic pain based on 

pharmacological studies 

 

  

Opioid

receptor
Acute nociception Chronic pain

MOR
↓ heat nociception
↓ chemical nociception

↓ inflammatory pain
Low efficay in neuropathic pain

DOR ↓ mechanical nociception
↓ inflammatory pain
↓ neuropathic pain

KOR ↓ visceral nociception
↓ osteoarthitis pain
↓ neuropathic pain
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4.6 Generation of knockout models of the endogenous opioid 

system 

In addition to pharmacological studies, knockout mouse models 

represented excellent tools to better understand the physiological role of 

each component of the endogenous opioid system. 

4.6.1 Usefulness of knockouts to clarify the role of the opioid system in 

mood disorders 

The deletion of MOR in mice produced an anxiolytic-like effect in the 

elevated plus maze, but not in the light/dark box paradigm (Filliol et al, 

2000; Yoo et al, 2004). MOR knockouts also showed decreased 

immobility time in the forced swimming test, suggesting that the 

blocking of MOR contributes to the establishment of antidepressant-like 

effects in mice (Filliol et al, 2000; Yoo et al, 2004). These results are in 

contrast with pharmacological findings (Besson et al, 1996; Tejedor-Real 

et al, 1995) and may indicate the possibility of a paradoxical depressant 

role of MOR in regulating emotional responses. Since the attenuation of 

conditioned suppression of motility, another model of depressive-like 

behaviour, observed in MOR knockouts was reversed by the DOR 

antagonist naltrindole (Filliol et al, 2000), a predominant tonic activation 

of DOR may be involved in the behavioural changes of MOR knockout 

mice. Furthermore, the phenotypic modifications were observed for 

males only, opening the possibility of sexual dimorphism in the activity of 

opioid receptors for these behaviours. Mice lacking β-endorphin did not 

show any alteration in levels of anxiety (Rubinstein et al, 1996; Trigo et 

al, 2009). 

DOR deficient mice exhibited opposing affective responses than MOR 

knockout mice. DOR knockouts showed anxiogenic-like responses in both 
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elevated plus maze and light/dark box (Filliol et al, 2000), suggesting that 

the activity of DOR may contribute to diminish anxiety-like responses. 

This is also in accordance with the enhanced anxiety-like behaviour 

revealed in mice lacking preproenkephalin gene (König et al, 1996). The 

anxiolytic activity of DOR was proposed to be mediated by DOR in the 

amygdala, since conditional DLX5/6 DOR knockouts lacking DOR in 

forebrain areas, but not in the amygdala, did not replicate the anxiogenic 

phenotype of constitutive DOR knockouts (Chu Sin Chung et al, 2015). 

DOR knockouts also showed a pro-depressive phenotype as shown by 

increased immobility time in the forced swimming test (Filliol et al, 

2000), suggesting that the blockade of DOR may contribute to the 

development of depressive-like behaviour. In this case, DOR knockout 

models and pharmacological studies using DOR selective drugs agreed to 

show a mood-enhancing activity of the enkephalin/DOR system. PENK 

suppression also enhanced aggressiveness and anxiety-like behaviour 

(Bilkei-Gorzo et al, 2004; König et al, 1996; Ragnauth et al, 2001), while 

depressive-like behaviour was normal in PENK-deficient mice under 

normal conditions (Bilkei-Gorzo et al, 2007). 

Finally, the deletion of Pdyn gene increased anxiety-like responses, in 

contrast to the pharmacological data observed with KOR antagonists 

(Bilkei-Gorzo et al, 2008; Femenía et al, 2011). Conversely, KOR knockout 

mice did not display altered anxiety-like behaviours (Filliol et al, 2000; 

Simonin et al, 1998). Disruption of the gene coding for PDYN significantly 

reduced depressive-like behaviour (McLaughlin et al, 2003, 2006), 

supporting the above findings about the anti-depressant effect of KOR 

antagonists. However, KOR knockouts showed similar responses to those 

of wild-type mice in the forced swimming test, suggesting minor 

involvement of endogenous KOR activation modulating depressive states 
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(Filliol et al, 2000). These discrepancies between studies may be due to 

the use of different experimental paradigms and test conditions. 

Taking together, findings from knockout models and pharmacological 

studies reveal that MOR, DOR and KOR exert highly distinct controls over 

mood-related processes as summarized in Table 10.  

Table 10. Role of the opioid System in mood disorders based on pharmacological 

and genetical studies 

 

  

Opioid

component
Effect on emotional responses

Pharmacological MOR Antidepressant-like effects??

DOR Anxiolytic & antidepressant-like effects

KOR Anxiogenic & pro-depressant-like effects

Genetical

(knockout mouse
models)

MOR Anxiogenic- & pro-depressant-like effects

DOR Anxiolytic- & antidepressant-like effects

KOR No major role (unchanged anxiety & depressive-like behaviours)

POMC No major role in anxiety (unchanged behaviour)

PENK Anxiolytic & no major role on depression (unchanges behaviour)

PDYN Anxiolytic & pro-depressant-like effects
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4.6.2 Usefulness of knockouts to clarify the role of the opioid system in 

cognitive functions 

The lack of MOR decreased LTP in the dentate gyrus of the hippocampus 

(Matthies et al, 2000), suggesting the possibility that it may accompany a 

change in learning and memory. LTP deficits were correlated later with 

spatial memory impairment in MOR knockouts (Jang et al, 2003). 

Similarly, the impairment in the maintenance of LTP in mossy fibres in 

the CA3 area of the hippocampus was also associated with the impaired 

spatial learning observed in MOR null mutants (Jamot et al, 2003). 

DOR knockouts showed impaired place conditioning in both appetitive 

and aversive conditions, indicating disrupted context-drug association (Le 

Merrer et al, 2011). This agree with a role of DOR facilitating context-

drug association. According to pharmacological and electrophysiological 

studies, mice lacking DOR displayed impaired performance in two 

hippocampal-dependent tasks, including contextual and spatial learning, 

which suggests that DOR-mediated LTP in the hippocampus may be 

associated with the acquisition and consolidation of this form of 

declarative memory (Le Merrer et al, 2013). Alternatively, DOR knockouts 

showed facilitated striatum-dependent responses (Le Merrer et al, 2013). 

This study suggests that DOR activity tonically inhibits striatal function, 

and that DOR modulate learning and memory performance by regulating 

the hippocampal/striatum balance (Le Merrer et al, 2013). 

In agreement with a negative impact of the PDYN/KOR system on 

memory function, genetic ablation of Pdyn gene enhanced social 

memory in mice (Bilkei-Gorzo et al., 2014). Spatial memory was 

unaffected in constitutive KOR knockout mice (Jamot et al, 2003). 
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Table 11. Opioid system knockout mice phenotypes in models of cognitive 

performance. Behavioural modifications are summarized for each receptor and 

PDYN constitutive KO mouse line. 

 

 

4.6.3 Usefulness of knockouts to clarify the role of the opioid system in 

pain 

Acute pain 

The acute nociceptive responses of mice lacking opioid receptors and 

opioid peptide precursors have been examined in several pain models. 

These evaluations revealed an antinociceptive opioid tone and distinct 

pattern of activities of each opioid receptor (Martin et al, 2003).  

Baseline mechanical sensitivity was generally unaltered in constitutive 

MOR knockouts when assessing light touch sensitivity with von Frey 

hairs, although nociceptive responses to stronger mechanical stimuli 

were increased (Fuchs et al, 1999; Martin et al, 2003). MOR-deficient 

mice displayed increased nociceptive sensitivity to heat and in the early 

phase of the formalin test (Martin et al, 2003; Matthes et al, 1998). MOR 

suppression also disrupted analgesic effects of MOR agonists (Ide et al, 

Opioid 

component
Behavioural modifications

MOR - Impaired spatial learning

DOR

- Disrupted context-drug association
- Impaired performance in hippocampal-
dependent tasks (contextual & spatial learning)
- Facilitated striatum-dependent responses 
(including skill motor learning)

KOR - Unaffected spatial memory

PDYN
- Increased social memory
- Unchanged spatial memory
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2006, 2008; Kögel et al, 2011; Pan et al, 2009). All these findings indicate 

that MOR influence responses to thermal, mechanical and chemical 

nociception. Conditional knockouts lacking MOR in Nav1.8+ primary 

afferent fibres displayed no behavioural alterations in baseline 

nociceptive thresholds, suggesting the lack of participation of peripheral 

MOR in acute antinociception (Corder et al, 2017; Weibel et al, 2013). On 

the other hand, POMC deficit induced no change (Fell et al, 2014; 

Gendron et al, 2007; Petraschka et al, 2007; Walwyn et al, 2016) or slight 

increase (Mogil et al, 2000; Trigo et al, 2009) in baseline heat and 

mechanical nociceptive thresholds. 

In constitutive DOR knockouts, baseline nociceptive thresholds to 

somatic thermal or mechanical stimuli were not modified (Filliol et al, 

2000; Gavériaux-Ruff et al, 2008; Nadal et al, 2006). However, DOR-

deficient mice showed increased response in the late phase of the 

formalin test and in the tail pressure test, indicating a role of DOR 

modulating inflammatory pain and responses to certain mechanical 

nociceptive stimuli (Martin et al, 2003). Moreover, DOR Nav1.8 

conditional knockouts revealed no behavioural alterations in acute 

nociception, indicating no role of this peripheral DOR population on 

acute nociception (Gaveriaux-Ruff et al, 2011). PENK-deficient mice 

showed increased supraspinal responses to nociceptive stimulation but 

unaltered reflex responses to heat or mechanical stimuli (Chen et al, 

2008; Gendron et al, 2007; Kingery et al, 2001).  

Total KOR knockouts displayed normal (Martin et al, 2003; Negrete et al, 

2017; Simonin et al, 1998; Xu et al, 2004) or slightly enhanced 

(Gavériaux-Ruff et al, 2008; Martin et al, 2003) baseline sensitivity to 

mechanical and thermal stimuli. Inflammatory and nociceptive responses 
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were unchanged in the formalin test, whereas visceral pain was 

increased in the writhing test (Martin et al, 2003; Simonin et al, 1998). All 

these findings suggest the involvement of KOR in spinally mediated 

thermal nociception and chemical visceral pain. Accordingly to KOR 

knockouts, baseline sensitivities to heat and mechanical stimuli were not 

modified in constitutive PDYN knockouts (McLaughlin et al, 2003; Parikh 

et al, 2011; Wang et al, 2001; Zimmer et al, 2001), although certain 

experimental conditions have revealed increased sensitivity to 

mechanical (Walwyn et al, 2016) and heat stimuli (Wang et al, 2001). 

 

 

Figure 20. Summary of the results obtained from opioid receptor knockout 

mice in acute pain models. Heat, heat sensitivity; KO, knockout; Mechano, 

mechanical sensitivity (adapted from Maldonado et al., 2018). 
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Figure 21. Summary of the results obtained from opioid precursors knockout 

mice in acute pain models. Heat, heat sensitivity; KO, knockout; Mechano, 

mechanical sensitivity (adapted from Maldonado et al., 2018). 

 

Chronic pain 

Knockout mice were certainly useful for the elucidation of the role of 

opioid receptors and opioid peptide precursors in chronic pain. In the 

case of constitutive MOR knockouts, partly conflicting results were 

obtained in different models of chronic inflammatory pain and 

neuropathic pain. Increased, no difference or decreased nociceptive 

behaviour have been reported depending on each specific study 

(Maldonado et al, 2018). Divergent results may indicate a complex role 

for MOR in the pathophysiology of chronic pain that could be explained 

by the multiplicity of MOR knockout models or also by methodological 

differences (Maldonado et al, 2018). Conditional knockouts with a 

selective deletion of MOR in Nav1.8+ nociceptors did not show altered 

hypersensitivity induced by CFA (Weibel et al, 2013). MOR in these fibres 

participated in the analgesic effects of classical MOR agonists during 

chronic inflammation induced by CFA, but not in basal conditions (Weibel 
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et al, 2013). However, another study using conditional knockouts lacking 

MOR in TRPV1+ nociceptors revealed that these peripheral MOR were 

not necessary for the antinociception resulting from systemic morphine 

(Corder et al, 2017). Instead, MOR in DRG were important contributors to 

two of the adverse side effects associated with chronic MOR agonist 

treatments, tolerance and opioid-induced hyperalgesia (Araldi et al, 

2018; Corder et al, 2017). POMC knockouts displayed normal nociceptive 

sensitization to thermal and mechanical stimuli in inflammatory 

(Gendron et al, 2007; Walwyn et al, 2016) and peripheral neuropathic 

pain models (Labuz et al, 2016; Niikura et al, 2008a, 2008b; Petraschka et 

al, 2007). However, these mice retained sensitivity to analgesic effects of 

MOR agonists and showed decreased tolerance to MOR agonists during 

neuropathic pain. Therefore, β-endorphin activity would not be sufficient 

to modulate the nociceptive manifestations of chronic pain, but it could 

affect the functionality of opioid receptors. 

In agreement with pharmacological studies, the use of genetic 

approaches confirmed that the role of DOR acquires more relevance in 

chronic pain conditions (Maldonado et al, 2018). Thus, constitutive DOR 

knockout mice showed enhanced mechanical and cold allodynia as well 

as heat hyperalgesia following CFA or after peripheral nerve injury 

(Gavériaux-Ruff et al, 2008; Nadal et al, 2006). These studies agreed on a 

protective function of DOR for the development of these chronic pain 

manifestations (Maldonado et al, 2018). It is not yet known if the 

heightened chronic pain sensitivity in constitutive DOR knockouts could 

be influenced by their inherent depressive and anxious phenotype (Filliol 

et al, 2000). Conditional DOR deletion in primary afferent fibres 

expressing Nav1.8 revealed the involvement of these receptors in chronic 

pain (Gaveriaux-Ruff et al., 2011). Indeed, these conditional mutants 
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showed unchanged heat hyperalgesia but increased mechanical allodynia 

after CFA and enhanced mechanical and cold hypersensitivity after PSNL 

(Gaveriaux-Ruff et al, 2011). As constitutive DOR knockouts showed 

increased sensitivity to heat and this increase was absent in the 

conditional lines, this result suggests that DOR in central structures 

modulate heat hypernociception, whereas DOR from peripheral neurons 

control mechanical and cold hypersensitivity. DOR in peripheral fibres 

also participated in the analgesic effects of SNC80 during both chronic 

inflammatory and neuropathic pain conditions (Gaveriaux-Ruff et al, 

2011). On the other hand, no major modifications in heat and mechanical 

sensitization induced by chronic inflammatory or neuropathic pain were 

revealed after the constitutive genetic deletion of PENK (Labuz et al, 

2016; Walwyn et al, 2016). This is in contrast to the changes on these 

chronic pain manifestations revealed in DOR knockouts. These 

controversial findings have suggested the possibility of ligand-

independent opioid receptor constitutive activity in the control of 

nociceptive responses during chronic pain (Corder et al, 2013; Walwyn et 

al, 2016).  

Removal of KOR favours a phenotype prone to nociceptive sensitization 

in chronic pain. These mutants showed increased heat sensitization after 

streptozotocin-induced diabetic neuropathy (Rutten et al, 2014) and 

enhanced heat and mechanical sensitivity as well as a contralateral 

mirror image sensitization after PSNL (Xu et al, 2004). Increased and 

contralateral sensitization was also reported in the CFA model of chronic 

inflammatory pain (Schepers et al, 2008), although another study did not 

show abnormal sensitivity in the same CFA model probably due to the 

high baseline sensitivity of the mice used (Gavériaux-Ruff et al, 2008). 

The model of monoiodoacetate-induced osteoarthritis pain also revealed 
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enhanced mechanical sensitivity in these mutants, although anxiety-like 

behaviour and cognitive impairment associated to these chronic pain 

manifestations were attenuated (Negrete et al, 2017). Another model of 

osteoarthritis showed enhanced joint damage in KOR knockouts (Wu et 

al, 2017), and increased formation of cancellous bone in these mutants 

(Baldock et al, 2012), suggesting that the effects of KOR deletion on 

chronic osteoarthritis pain could also be local. However, no histological 

modifications were found on the articular cartilage in KOR knockouts 

after monoiodoacetate (Negrete et al, 2017). Taking all the results 

together, KOR seem to have protective effects against nociceptive 

sensitization and detrimental effects promoting anxiety-like behaviour 

and cognitive impairment associated with chronic pain. PDYN knockouts 

have also been evaluated in different chronic pain models. In accordance 

to KOR knockouts, PDYN-deficient mice showed enhanced mechanical 

allodynia (Walwyn et al, 2016) or no change in mechanical and heat 

hypersensitivity after CFA (Gendron et al, 2007). Similarly, mice lacking 

PDYN showed increased sensitization to mechanical stimuli, but 

developed less anxiety-like behaviour during osteoarthritis pain induced 

by monoiodoacetate (Negrete et al, 2017), revealing the antinociceptive 

effects of KOR in chronic inflammatory pain models. However, PDYN 

knockouts showed decreased mechanical allodynia after chronic sciatic 

nerve constriction (Labuz et al, 2016) and decreased mechanical and heat 

hypersensitivity after spinal nerve ligation or PSNL (Wang et al, 2001; Xu 

et al, 2004), suggesting pronociceptive effects of dynorphins in 

neuropathic pain. Likewise, PDYN-deficient mice showed reduced KOR 

agonists-mediated analgesia in neuropathic pain conditions (Xu et al, 

2004). Thus, dynorphins seem to play a complex role during chronic pain, 

dependent on the pain condition. 
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Despite the well-known influence of opioid receptors on mood disorders 

and cognitive functions, their roles in affective and cognitive 

manifestations of chronic pain states have not been examined in depth 

yet. 

 

Figure 22. Summary of the results obtained from opioid receptor knockout 

mice in chronic pain models. Cold, cold sensitivity; DOR, delta opioid receptor; 

Heat, heat sensitivity; KO, knockout; KOR, kappa opioid receptor; Mechano, 

mechanical sensitivity; MIA, monoiodoacetate model; MOR, mu opioid receptor; 

TCA, triciclic antidepressants (adapted from Maldonado et al., 2018). 
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Figure 23. Summary of the results obtained from endogenous opioid peptide 

precursors knockout mice in chronic pain models. DOR, delta opioid receptor; 

Heat, heat sensitivity; KO, knockout; KOR, kappa opioid receptor; Mechano, 

mechanical sensitivity; MIA, monoiodoacetate model; MOR, mu opioid receptor 

(adapted from Maldonado et al., 2018). 
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Objective 1 

To evaluate the influence of sociability, anxiety-like and depressive-like 

behavioural traits on the nociceptive, emotional and cognitive 

manifestations of neuropathic pain, using an out-bred mouse line that 

resembles human genetic heterogeneity. 

 

Study 1 

Influence of behavioural traits on the inter-individual variability of 

nociceptive, emotional and cognitive manifestations of neuropathic 

pain 

 

 

Objective 2 

To investigate the participation of mu (MOR) and delta (DOR) opioid 

receptors expressed in specific central and peripheral neuronal 

populations modulating the different manifestations of neuropathic pain. 

 

Study 2 

Mu and delta opioid receptors play opposite nociceptive and 

behavioural roles on nerve-injured mice 
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The Annex includes a review related to the role of the opioid system in 

neuropathic pain, which has been published in European Journal of Pain. 

Why mu-opioid agonists have less analgesic efficacy in neuropathic 

pain? 

Martínez-Navarro M1, Maldonado R1, Baños JE1. 

Eur J Pain. 2018 Oct 14. doi: 10.1002/ejp.1328. 
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Animals 

In a first study, Swiss albino outbred male mice with an initial body 

weight between 20-22g (Charles River, Lyon, France) were used. In a 

second study, adult male and female mice (8-18 weeks old) of six 

different lines of genetically modified mice were used, all of them 

generated in the Institut Clinique de la Souris - Institut de Génétique et 

de Biologie Moléculaire et Cellulaire, Illkirch, France (IGBMC). 

Constitutive knockout lines of MOR (referred as CMV-MOR) (Weibel et al, 

2013) or DOR (referred as CMV-DOR) (Gaveriaux-Ruff et al, 2011), and 

four different conditional knockout lines with specific deletion of MOR 

and DOR at peripheral and central sites. Two of them had the deletion of 

MOR or DOR restricted to Nav1.8+ primary afferent neurons and are 

referred to as Nav1.8-MOR and Nav1.8-DOR knockouts, respectively 

(Gaveriaux-Ruff et al, 2011; Weibel et al, 2013). The other two had a 

genetic inactivation of MOR or DOR in GABAergic interneurons of the 

forebrain and are identified thereafter as DLX5/6-MOR and DLX5/6-DOR 

knockouts (Charbogne et al, 2017; Chu Sin Chung et al, 2015). The Cre-

negative littermates of conditional knockout mice for MOR and DOR 

were used as wildtype control groups (WT-MOR and WT-DOR). 

In both studies mice were group-housed (2-4 animals) with free access to 

water and food. The housing conditions were maintained at 22 ± 1˚C and 

55 ± 10% relative humidity in a controlled 12-12-hour light/dark cycle 

(light on between 8:00 A.M. and 8:00 P.M.). Animals were handled for 1 

week before starting the experimental sequence. All experimental 

procedures and animal husbandry were conducted according to standard 

ethical guidelines (European Community Guidelines on the Care and Use 

of Laboratory Animals 86/609/EEC) and were approved by the local 
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ethical committee. All the experiments were performed under blinded 

conditions. 

 

Experimental procedures 

Study 1 

Two hundred and fifty mice were exposed to locomotion, sociability, 

anxiety-like and depressive-like behavioural tests as indicated in Figure 

24. Animals displaying high, intermediate and low social, anxious- and 

depressive-like responses were chosen for further experiments (see 

Results from study 1, ‘Selection of the extreme phenotypes’ for details of 

the selection procedure). The selected animals were homogeneously 

distributed in two experimental cohorts with representation of all the 

phenotypic groups. Spontaneous CeA neuronal activities were recorded 

in mice selected for each phenotype of the first cohort. Animals from the 

second cohort were exposed to a PSNL or sham surgery to induce 

neuropathic pain. Mechanical, heat and cold nociceptive responses were 

assessed under basal conditions (day -1) and on days 3, 6, 11, 16 and 21 

after nerve injury using the von Frey, plantar and cold plate. Anhedonic 

state, anxiety like behaviour and cognitive performance were evaluated 

on day 10, 15 and 20 post-surgery, respectively, using different 

paradigms than in the initial screening step to reduce behavioural 

adaptation of the mice (Yalcin et al, 2011) (Figure 24). Finally, amygdala 

samples were freshly dissected at day 41 after neuropathic pain 

induction from animals used for the behavioural study. Transcriptional 

modifications in this area were examined. 
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Figure 24. Experimental procedure (study 1). Extreme phenotypes selection for 

the assessment of electrophysiological correlates and for the evaluation of the 

nociceptive, affective and cognitive behaviours in mice exposed to neuropathic 

pain. 

 
Study 2 

The effects of genetic inactivation of MOR and DOR on neuropathic pain 

manifestations were evaluated using a battery of tests to assess 

nociception, anxiety-like behaviour, depressive-like behaviour and long-

term memory, as previously reported (Liu and Chen, 2014; La Porta et al, 

2016). Briefly, animals were habituated three times on alternative days 

to the environment of nociceptive tests (von Frey and plantar). PSNL or 

sham surgery were performed the day after the measurement of 

nociceptive baseline responses (day -1) and nociception was assessed 

again on days 5, 10, 16 and 21 after the surgery. Anxiety-like 

manifestations of neuropathic pain were evaluated at two different time 

points (days 11 and 23) using the elevated plus maze and the light/dark 

box. Depressive-like behaviour was assessed on day 13 with the forced 

swimming test and long-term memory was evaluated on day 20 after the 

surgery using the novel object recognition test (Figure 25). 
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Figure 25. Experimental procedure (study 2). Baseline mechanical and heat 

nociceptive thresholds were measured the day before PSNL or sham surgery. 

Mechanical and heat nociception was assessed again on days 5, 10, 16 and 21 

after the surgery. Affective behaviour and cognitive performance were 

evaluated under sham and neuropathic pain conditions. Anxiety-like behaviour 

was assessed at two different time points (days 11 and 23) using different 

paradigms. Depressive-like behaviour was assessed on day 13 and long-term 

memory was evaluated on day 20 after the surgery. 

 

Neuropathic pain model 

PSNL was performed as previously described (La Porta et al, 2016) to 

induce neuropathic pain. Briefly, mice were anaesthetized with 

isoflurane (induction 5% V/V, surgery 2% V/V; Virbac, Barcelona, Spain) 

and a tight ligature was created around 33-50% of the sciatic nerve ~1 cm 

proximal to the nerve trifurcation, using an 18 in (9-0) non-absorbable 

virgin silk suture (Alcon® Surgical Inc., Fort Worth, TX, USA). The rest of 

the nerve was left untouched. The muscle was stitched and the incision 

was closed with wound clips (AgnTho’s, Lidingo, Sweden). Sham-

operated control mice underwent the same surgical procedure but 

without manipulation nor ligation of the nerve.  
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Behavioural tests  

Nociceptive behaviours 

Mechanical allodynia, heat hyperalgesia and cold allodynia (only in the 

first study) were used as outcome measures of neuropathic pain, as 

previously reported (La Porta et al, 2016). Mice were tested in each 

paradigm at different time points (see experimental procedures), using 

the same sequence. 

Mechanical allodynia was evaluated by measuring the hind paw 

withdrawal response to von Frey filaments stimulation, after 1h of 

habituation period. Animals were placed in Plexiglas cylinders (20 cm 

high, 9 cm diameter) on a grid surface through which the von Frey 

calibrated filaments (North Coast Medical, USA) were applied by 

following the up–down paradigm. The threshold of response was then 

calculated using the up–down Excel program provided by Dr A. Basbaum 

(University of California, San Francisco, CA), which applies a Dixon non-

parametric test (Chaplan et al, 1994). Clear paw withdrawal, shaking, or 

licking was considered as a positive nociceptive response. Both hind 

paws were tested. 

Heat hyperalgesia was evaluated by measuring the hind paw withdrawal 

latency in response to radiant heat with the Hargreaves plantar test 

apparatus (Ugo Basile, Italy). Mice were placed in Plexiglas cylinders (20 

cm high, 9 cm diameter) positioned on a glass surface and habituated to 

the environment for 30 min before testing. The mean paw withdrawal 

latencies for the ipsilateral and contralateral hind paws were determined 

from the average of 3 separate trials, taken at 5-10 min intervals to avoid 

thermal sensitization (Hargreaves et al, 1988). A cut-off time of 20 s was 

used to prevent tissue damage. Both hind paws were tested. 
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Cold allodynia was assessed with the hot/cold plate analgesia meter 

(Columbus, USA). A glass cylinder (25 cm high, 20 cm diameter) was used 

to keep mice on the cold surface of the plate, which was maintained at 

5±0.5º C. The number of each hind paw elevations, defined as clear paw 

lift without displacement, was recorded for 5 min. Walking/stepping 

movements were not considered. A score was calculated as the 

difference of number of elevations between ipsilateral and contralateral 

paws. 

In the second study, for the comparative evaluation of MOR and DOR 

contributions to nociceptive sensitivity, we calculated the area under the 

curve (AUC) of the mechanical thresholds and withdrawal latencies of the 

time course after PSNL and sham surgery (days 5 to 21) and normalized 

them to their respective WT values. 

 

Locomotion activity 

Locomotor activity was evaluated as previously described (Martin et al, 

2000) by using actimetry boxes (9 × 20 × 11 cm) (Imetronic, Lyon France) 

in a low luminosity room (5 lux), and with white noise. Each box 

contained two lines of photocells located 2 cm and 6 cm above the floor 

to measure horizontal and vertical movements, respectively. Mice were 

individually placed in the boxes and the number of activity counts was 

recorded for a period of 30 min. 

 

Sociability behaviour 

Sociability test was performed the day after the locomotor activity 

evaluation to determine the extreme phenotypes. A black Plexiglas V-

maze was used with 15 cm bars of transparent Plexiglas placed at 6.5 cm 
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of the end of each arm that separate both sides, although allowing 

exploration (Panlab, Barcelona, Spain). The mouse was first habituated to 

the empty maze during 5 min. In a second step, sociability behaviour was 

evaluated during 5 min by placing one stranger animal in the maze, 

behind the Plexiglas bars. A sociability index was calculated as the 

difference between the time spent exploring either the stranger mouse 

or the empty space divided by the total exploration time, onwards 

considered as “social preference”. 

 

Anxiety-like behaviour 

In the first study, the elevated plus maze and light/dark box tests were 

used to determine the extreme anxiety phenotypes, whereas the 

elevated zero maze was performed after sciatic nerve injury. The 

elevated plus maze and light/dark box tests were also used in the second 

study. 

The elevated plus maze test was performed using a black Plexiglas 

apparatus with 2 open (45 lux) and 2 closed (5 lux) arms, set in cross 

from a neutral central square that was elevated 40 cm above the floor. 

The percentage of entries and time spent in the open arms were 

determined during 5 min, as previously reported (La Porta et al, 2015). 

The light/dark box was carried out as previously described (Filliol et al, 

2000). A Plexiglas box comprising a small dark compartment (10 lux) and 

a large lit compartment (500 lux) separated by a connecting 4 cm long 

tunnel was used. Floor lines separated the light compartment into three 

equal zones, from the tunnel to the opposite wall, designated as 

proximal, median and distal zones. The time spent in the lit compartment 
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as well as total and distal entries to the lit compartment were registered 

for 5 min. 

The elevated zero maze was performed as previously described (Valverde 

et al, 2004), using a circular black Plexiglas apparatus with 2 open (100 

lux) and 2 wall-enclosed sections (10 lux) elevated above the floor (50 

cm). The percentage of time in open arms was measured during 5 min.  

 

Depressive-like behaviour 

In the first study, the tail suspension test and forced swimming test were 

used to determine the extreme depressive phenotypes, while the 

sucrose preference test was performed after sciatic nerve injury. In the 

second study, the forced swimming test was the paradigm used for 

depressive-like behaviour evaluation. 

The tail suspension test was performed as previously described (Steru et 

al, 1985). Mice were suspended by their tails with tape, in such a position 

that escape or hold on to nearby surfaces were not allowed during 6 min. 

The immobility time was recorded during the last 4 min of the test, when 

mice show a sufficiently stable level of immobility. 

The forced swimming test was performed in a narrow (17.5 x 12.5 cm) 

Plexiglas cylinder containing water to a depth of 15 cm (22 °C ± 0.2 °C) 

(Porsolt et al, 1977). Mice were subjected to a forced swimming during 6 

min and the total duration of immobility, disregarding small maintenance 

movements, was measured during the last 4 min, when mice show a 

sufficiently stable level of immobility. 

The sucrose preference test was performed using an extremely high 

sensitivity (0.02 g) monitoring system (Phecomp, Panlab, ES), recently 
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validated in our laboratory (Bura et al, 2013). Two-bottle choice 

procedure allows for a comparison between behavioural preference for 

sucrose solution (2%) in drinking water compared to water only. Three 

days before the test day, a 24 h session was performed to habituate the 

mice to the environment and the different drink solutions. During a test 

session of 24 h, preference is measured by volume of liquid consumed, 

which is then converted to a percent preference calculated as the ratio of 

the sucrose solution intake to total liquid intake x 100. Sucrose is a 

natural reinforcer and sucrose preference is attenuated by a diversity of 

chronic stressors, which is indicative of anhedonic-like state (i.e., inability 

to feel pleasure). Thus, sucrose preference test is useful to investigate 

anhedonia, a commonly-accepted symptom of depressive-like behaviour.  

 

Cognitive evaluation 

The novel object recognition test was performed as previously described 

(Puighermanal et al, 2009) in the same V-maze used for sociability 

behaviour evaluation without the transparent Plexiglas bars. Three 

phases of 9 min were performed on consecutive days. On day 1, mice 

were habituated to the empty maze. On the second day, mice were 

introduced in the maze where two identical objects were presented in 

the extremes of the maze. For the memory test, on third day, one of the 

familiar objects was replaced with a novel one, and the total time spent 

exploring each of the two objects (novel and familiar) was measured. 

Object exploration was defined as the orientation of the nose towards 

the object at a distance of less than 1 cm. A discrimination index (DI) was 

calculated as the difference between the time spent exploring either the 

novel (Tn) or familiar (Tf) object divided by the total time exploring both 

objects: (DI = (Tn − Tf)/(Tn + Tf)). 



Materials & Methods 

120 

Electrophysiological procedures 

Extracellular single-cell in vivo recordings were made from single neurons 

in the right CeA after the behavioural test used to select extreme 

phenotype mice. Parylene coated tungsten electrodes were applied (A-M 

Systems, USA) using the following stereotaxic coordinates (Franklin and 

Paxinos, 2008): 4.4 mm dorsoventral, 2.4 mm lateral and 1.06 mm caudal 

to bregma. The animals were anesthetized with isoflurane (1.5–1.7%) 

delivered in a gaseous mix of N2O (66%) and O2 (33%). Under 

anesthesia, animals were fixed in the stereotaxic device, the skull was 

exposed and the CeA coordinates found. A small craniotomy was 

performed and the dura mater taken, allowing access to the brain. 

Anesthesia was maintained with isoflurane (1.5–1.7%) delivered in a 

gaseous mix of N2O (66%) and O2 (33%) for the entire duration of the 

recordings. All the neurons found in the CeA that fired spontaneously for 

at least 20 min were recorded (2-5 neurons/animal). Besides 

spontaneous activity, neuronal firing evoked by von Frey filaments 

(0.008g, 1g, 4g, 8g, 15g, 26g and 60g), pinch, heat (48oC) and cold (4oC) 

applied to both paws as well as by pinch, heat (48oC) and cold (4oC) 

applied to the tail and both ears was recorded. Each stimulus was applied 

continuously during 5 seconds. Data was captured and analysed by a CED 

1401 interface coupled to a Pentium computer with Spike 2 software 

(Cambridge Electronic Design; PSTH and rate functions). At the end of 

each experiment, after a lethal level of isoflurane had been delivered, the 

brains were extracted and sliced, the recording sites verified through the 

placement of the electrode and plotted on a standardized section from 

the mouse brain atlas (Franklin and Paxinos, 2008). All neurons included 

were located within the CeA. 
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RNA extraction and reverse transcription 

At the end of the experimental procedures, mice were sacrificed and 

amygdala (study 1) or L3-L4 DRG (study 2) tissues were freshly dissected. 

The samples were rapidly placed in individual tubes with the tissue 

storage reagent RNAlater (Qiagen Inc., Valencia, CA, USA) and stored at 

−80°C unyl RNA isolayon. Amygdala samples (study 1) were thawed at 

room temperature and homogenized in 1 ml Trizol reagent (Invitrogen, 

Carlsbad, CA, USA). RNA extraction was performed in accordance with 

the manufacturer’s protocol. Isolation of RNA from DRG samples (study 

2) was performed using the RNeasy Micro kit (Qiagen) according to the 

manufacturer’s instructions. In both studies total RNA concentration was 

measured using a NanoDrop ND- 1000 Spectrophotometer (NanoDrop 

Technologies Inc., Montchanin, DE, USA). RNA quality was determined by 

chip-based capillary electrophoresis using an Agilent Bioanalyzer 2100 

(Agilent, Palo Alto, CA, USA). Reverse transcription (RT) was performed 

using Omniscript reverse transcriptase (Qiagen Inc.) at 37°C for 60 min. 

 

Quantitative real-time PCR analysis 

The qRT-PCR reactions were performed using Assay-On-Demand TaqMan 

probes: Hprt1 Mm01545399_m1, Gadd45g Mm00442225_m1, Il6 

Mm00446190_m1, Nr3c1 Mm00433832_m1, Pdyn Mm00457573_m1 

and Tsc22d3 Mm00726417_s1 in the first study, and Hprt1 

Mm01545399_m1, Oprd1 Mm01180757_m1, Oprm1 Mm01188089_m1, 

Tac1 Mm01166996_m1 in the second study (all from Applied Biosystems, 

Carlsbad, CA, USA) and were run on the CFX96 Touch Real-Time PCR 

machine (BioRad, Hercules, CA, USA). Each template was generated from 

an individual animal, and the amplification efficiency for each assay was 

determined by running a standard dilution curve. The expression of the 
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hypoxanthine guanine phosphoribosyltransferase 1 (Hprt1) transcript 

was quantified at a stable level between the experimental groups to 

control for variations in cDNA amounts. The cycle threshold values were 

calculated automatically by the CFX MANAGER v.2.1 software with 

default parameters. RNA abundance was calculated as 2−(Ct). The 

transcript levels were normalized against the housekeeping gene, Hprt1, 

and interpreted using the comparative Ct method (study 1) or the 

comparative ∆∆Ct method (Livak and Schmittgen, 2001) (study 2). 

 

Tissue preparation for immunofluorescence 

At the end of the experimental procedure of the study 2, some male 

mice from MOR genotypes (WT, CMV, Nav1.8 and DLX5/6, n=4-5/group) 

were deeply anesthetized by i.p. injection (0.2 ml/10 g of body weight) of 

a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg). Immediately 

after, intracardiac perfusion of 17ml of Na2HPO4/NaH2PO4/NaCl buffer 

(PBS) 0.1M, pH 7.4, 4°C, followed by perfusion of 30 ml 4% PFA in PBS 

4°C, were delivered with a peristaltic pump at 15ml/minute. Spinal cords 

were quickly removed and postfixed for 4 hours in the same fixative 

solution at 4°C. Then spinal cords were rinsed 3 times for 5 minutes in 

PBS 0.1M before being cryoprotected in 30% sucrose in PBS and stored 

overnight at 4°C. After that, tissues were frozen at -80ºC in O.C.T. 

(Sakura, Finetek, Europe B.V., Alphen aan den Rijn). Spinal cords were 

cryosectioned coronally (20 µm) and sections were collected directly 

onto gelatine-coated slides in a 1:8 series, with slides stored at -20ºC 

until used. 
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Immunofluorescence 

Staining was performed directly onto slides, with sections first air-dried 

at 37°C for 20 minutes and washed with PBS for 15 minutes. Sections 

were blocked for 2 hours in blocking buffer containing PBS, 0.3% triton 

and 5% normal goat serum (Vector Laboratories; Burlingame) for 

microglia analysis, or 5% normal donkey serum (Sigma-Aldrich; Saint 

Louis) for astrocyte analysis. Spinal cord sections were stained for 

microglia with rabbit IBA1antibody (1:500; Wako; Japan), and for 

astrocytes with rabbit GFAP antibody (1:500; DAKO; Glostrup), both 

diluted in their respective blocking buffer solutions, and incubated for 2 

hours at room temperature. Sections were rinsed 3 times in PBS for 10 

minutes and then incubated for 2 hours with Alexa Fluor 555 goat anti-

rabbit antibody for microglia staining (1:1000; Abcam; Cambridge) and 

with Alexa Fluor 488 donkey anti-rabbit antibody for astrocytes (1:500; 

Thermo Fisher Scientific, Waltham) in the same buffer as the primary 

antibody. The sections were then washed 5 times in PBS for 10 minutes 

before cover-slipping with Mowiol mounting media (0.5 M Mowiol 40-88 

[Sigma-Aldrich], 20% glycerol, 0.1 M Tris pH 8.5).  

 

Image analysis 

Images were acquired using a confocal microscope (Leica TCS Sp5 STED). 

Alexa Fluor 555 and 488 were excited with the 543-nm line of a green 

neon laser and the 488-nm line of an argon laser, respectively. Images of 

the ipsilateral dorsal horn were taken at different z levels (0.5-µm depth 

intervals) with an oil immersion lens (x40 objective; 1 zoom) from 4 

different L3-L5 coronal spinal cord sections. Glial reactivity of superficial 

(I-II) and deep (IV-V) laminae of the dorsal horn was analysed separately 

in 16 to 20 images from 4 to 5 animals (4 images per animal) for each 
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experimental group. All image analyses were performed by an 

experienced observer blind to the experimental conditions. 

Microglial reactivity: Perimeter measurements of the microglial soma 

were made by applying the Z-projection of 35 images taken at 

consecutive z levels and using the ‘Freehand selections’ tool from ImageJ 

software (National Institutes of Health, Bethesda, MD, USA). Mean 

perimeter of superficial and deep fields from each image were averaged 

for each animal. 

Astrocytic reactivity. The number of astrocytic cells was quantified by 

densitometry in the most representative image at one z level for each 

section. Densitometry measurements were made using the ImageJ 

software, by applying the auto-threshold function to the images and 

measuring the percentage of immunopositive area. Densitometry 

measurements were averaged for each animal. Data were plotted as 

percentage immunoreactive area of superficial and deep laminae.  

 

Statistical analysis 

Study 1 

All data are presented as mean ± SEM. Statistical analyses were 

performed using the Statistica 6.0 software (StatSoft, Tulsa OK, USA). For 

behavioural studies one or two-way ANOVA were performed followed by 

Bonferroni post hoc analysis. Electrophysiological data were analysed 

with a one-way ANOVA followed by Dunn's multiple comparison test. RT-

qPCR data were analysed for PSNL and phenotype differences with one-

way ANOVA followed by Bonferroni post hoc test. Correlation analyses 

between the behavioural traits and the neuropathic pain manifestations 

as well as between gene expression and the behavioural traits were 
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performed with the IBM SPSS 19 (SPSS Inc., Chicago, IL, USA) software. A 

probability of 0.05 or less was considered statistically significant. Detailed 

statistical analyses are presented in Supporting Tables S1-S3. 

 

Study 2 

Non-parametric analysis was used for all behavioural and molecular 

studies, since most of the groups did not follow normal distribution. The 

time course of nociceptive thresholds was analysed using a linear mixed 

model with three factor (surgery, genotype, time) or four (same three 

plus sex) and their interactions. A random intercept was considered, but 

random effects were not included. For the covariance structure of the 

repeated measures, a diagonal matrix was chosen. Bonferroni post hoc 

analysis was performed when pertinent. Baseline nociceptive thresholds, 

the AUC of the post-surgery nociceptive thresholds, the affective and 

cognitive behavioural measures, data from qPCR and 

immunofluorescence outcomes were analysed with a Kruskal-Wallis 

followed by U Mann Whitney with Bonferroni adjustment. A probability 

of 0.05 or less was considered statistically significant. IBM SPSS 19 (SPSS 

Inc., Chicago, IL, USA) was used to analyze the data. Detailed statistical 

analyses are presented in Supporting Tables S4-S12. 
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Our first study reveals that some specific behavioural traits may influence 

spontaneous and evoked CeA neuronal activity and basal nociceptive 

responses, and seem to be crucial for the nociceptive, emotional and 

cognitive manifestations of neuropathic pain. They also show that these 

behavioural traits may be linked to gene expression changes in the 

amygdala. 

The amygdala is a critical integrator for affective processing. Indeed, 

alterations in amygdala activation have been found in a variety of 

neuropsychiatric disorders, including autism and social phobia (Wellman 

et al, 2016). Both amygdala hyperactivity and hypoactivity have been 

associated with altered social processing (Becker et al, 2012; Sladky et al, 

2012), which have placed the amygdala at the centre of the social 

brain. Our results revealed a direct association between spontaneous 

and evoked CeA activity and sociability behaviour. Indeed, higher CeA 

activity was observed in high sociable than in low sociable mice. In 

agreement with a prosocial role of the amygdala, many previous studies 

reported loss of social interactions following permanent damage to the 

amygdala in nonhuman primates. These deficits in social behaviour 

included loss of social status, decreased affiliative interactions, and 

decreased response to threats following amygdala ablation (Kalin et al, 

2004; Meunier and Bachevalier, 2002), and less severe behavioural 

alterations after more circumscribed excitotoxic amygdala lesions 

(Machado et al, 2008; Machado and Bachevalier, 2006). In our 

experimental settings, CeA function was unrelated to the anxiety- and 

depressive-like traits. Several studies agreed that the CeA has a crucial 

role in fear, but not in the control of anxiety- and depressive-like 

behaviour (Davis et al, 1997, 2010). 



Discussion 

198 

CeA neuronal hyperactivity has also been reported under pain conditions 

(Gonçalves and Dickenson, 2012). The maintained activation of CeA due 

to sustained nociceptive input may trigger anxious and depressive 

alterations associated to chronic pain (Gonçalves and Dickenson, 2012). 

Thus, we hypothesized that the CeA might be the brain area that allows 

for a bridge between the nociceptive and affective-motivational 

dimensions of neuropathic pain. Therefore, it would be of interest to 

evaluate amygdala function under neuropathic pain conditions. 

Unfortunately, there were not enough animals after selection of extreme 

phenotype mice to perform electrophysiological recordings in naïve, 

neuropathic and sham conditions. Since the results in the pain model 

cannot be interpreted without the baseline recording in naïve conditions, 

we decided to perform recordings in the absence of chronic pain. 

We revealed that low sociability was associated to enhanced mechanical 

sensitivity (sham conditions), whereas low depression trait increased 

responding to heat and cold stimulation in sham mice. Therefore, low 

sociability and low depression phenotypes could represent vulnerability 

factors to enhance nociceptive responses. Decreased pain sensitivity was 

previously demonstrated by social interaction with conspecifics in 

rodents (D’Amato and Pavone, 2012). Greater social support was 

associated with lower nociceptive manifestations to painful experimental 

stimuli (Montoya et al, 2004), and social relationships were suggested to 

promote pain-specific resilience in humans (Sturgeon and Zautra, 2016). 

Therefore, our results also suggest that individuals prone to social 

interaction may engage neural networks associated with adaptive 

responses to pain, leading to decreased pain perception. In agreement 

with our findings, depressive-like behaviour was previously shown to 

decreased the perceived intensity of painful stimulation in rats (Shi et al, 
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2010a), and individuals with depressive disorders showed decreased 

sensitivity to noxious stimulation (Bär et al, 2006; Schwier et al, 2010). 

One interpretation for this unexpected result could be that the 

generalized emotional suffering of depressed individuals may become 

their baseline threshold of discomfort. Thus, normally noxious stimuli 

could go unnoticed for them compared to non-depressed individuals. 

Our behavioural results also indicate that sociability, anxiety and 

depression traits modulate nociceptive manifestations after PSNL. Low 

sociability trait was associated to enhanced mechanical and cold 

allodynia. To our knowledge, the influence of social behaviour in chronic 

pain has only been addressed in one study of a neuroma rat model 

(Raber and Devor, 2002). The authors investigated how pain can be 

transferred by emotional contagion from one rat in pain after nerve 

injury to another. However, we specifically evaluated how pain 

behaviour of a nerve-injured mouse was affected by the ability of the 

mouse to interact with conspecifics. Our results suggest high sociability 

as an attenuating factor of chronic pain hypersensitivity. Clinical studies 

revealed that social factors may improve coping responses and overall 

function in chronic pain (Sturgeon and Zautra, 2016). It was also reported 

that social support protects patients against pain-related exacerbations 

in negative mood (Onoda et al, 2009). Thus, we can hypothesise that 

social relationships may provide chronic pain patients with a way to 

alleviate their current situation, and the feeling of company may reduce 

catastrophising. 

We have demonstrated that anxiety-like behaviour has a modulatory 

effect on nociception after PSNL that depends on the modality of the 

stimuli. A positive correlation between anxiety trait and mechanical 
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allodynia was revealed. However, mice displaying low anxiety-like 

behaviour showed higher cold sensitivity. Different noxious sensory 

modalities are transduced by distinct nociceptive primary fibres. 

Therefore, anxiety could have a particular impact in specific sensory 

pathways. In agreement, opposite effects of the anxiety trait depending 

on the nociceptive modality were previously reported in animals. Indeed, 

high anxiety increased mechanical hypersensitivity in neuropathic rats 

(Roeska et al, 2009), but decreased thermal pain sensitivity (Jochum et 

al, 2007). However, a negative influence of anxiety on pain perception 

was consistently reported in humans. In clinical studies, both 

experimentally induced-anxiety (Rhudy and Meagher, 2000b, 2003) and 

high anxiety sensitivity (Keogh and Mansoor, 2001) increased 

nociception. In agreement, amplified pain intensity was reported in 

patients with generalized anxiety or post-traumatic stress disorder 

(Barlow et al, 1996; Defrin et al, 2008). A possible explanation would be 

that the alertness characteristic of anxious people may lead them to pay 

enhanced attention to any stimulus, including noxious ones, thus 

amplifying pain intensity. 

Depression trait negatively correlated with mechanical allodynia and 

similarly, mice with low depressive-like behaviour also showed enhanced 

cold allodynia in our experimental conditions. The consistent influence of 

low depression phenotype enhancing different pain modalities suggests 

that depressive trait is not directly related to pain severity. In agreement, 

decreased mechanical allodynia was previously reported in neuropathic 

rats with depressive-like behaviour (Shi et al, 2010a). Pain is among the 

most common physical symptoms in patients with depression, and a 

common complaint reported to specialists (Leo, 2005). However, patients 

with depressive disorders are often less sensitive to experimental pain. 
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Indeed, decreased sensitivity to thermal and electrical pain was reported 

in patients with depressive disorders (Bär et al., 2006). Similarly, patients 

with major depressive disorder also showed decreased sensitivity for 

cold pain (Schwier et al., 2010). Although none of these studies evaluated 

the role of depression in chronic pain, our findings suggest that 

depression may also decrease neuropathic pain-induced hypersensitivity. 

Avoidance of noxious stimulation is considered a motivation-driven 

behaviour. Therefore, the inhibitory effect of depression on the stimulus-

evoked pain, may be related to the loss of motivation, a key symptom of 

depression reported in neuropathic mice (La Porta et al, 2016).  

We further evaluated the influence of behavioural traits on emotional 

and cognitive dimensions after PSNL. We first confirmed different 

behavioural outcomes used in our laboratory as reliable measurements 

of emotional and cognitive manifestations of neuropathic pain. The post-

surgery evaluation of emotional behaviours revealed the stability of 

previously selected extreme phenotypes. The retention of extreme 

anxiety traits in sham-operated mice 3 weeks after phenotyping 

demonstrated that the defined extreme phenotypes referred to actually 

extreme behavioural traits. The lack of consistency between the extreme 

depression phenotypes and the responses in sham-operated mice may 

be related to the different behavioural responses evaluated in each 

paradigm. The immobility measured in the forced swimming and tail 

suspension tests reflects a behavioural despair, directly related to the 

reduced motivation to maintain effort in an inescapable situation, 

whereas the sucrose preference test includes different components of 

the reward processing that are related to the pleasure cycle (Thomsen, 

2015). We found that high sociable mice developed enhanced anxiety 

and cognitive manifestations of neuropathic pain, while low sociable 



Discussion 

202 

mice developed more intense nociceptive hypersensitivity. In contrast to 

the enhancer effect of low depression trait on nociceptive 

manifestations, high depressive neuropathic mice were the most anxious 

and had the worst memory index. Anxiety trait modulated emotional and 

cognitive neuropathic pain manifestations in the same direction as 

mechanical nociception, since mice with high anxiety prior to the lesion 

were the most anxious and showed the most severe memory impairment 

after PSNL. These results indicate that high sociability, high anxiety and 

high depression play a crucial role in anxiety manifestations related to 

neuropathic pain, while high anxiety and high depression are also crucial 

factors for neuropathy-induced cognitive impairment. Collectively, our 

findings show that certain behavioural traits in mice, which can be 

translated into human personality traits, are crucial factors in modulating 

sensory processes and affective and cognitive comorbidities of 

neuropathic pain that do not need to be proportional to allodynia and 

hyperalgesia. These findings support once more the importance of 

evaluating not only simple nociceptive endpoints, but also complex 

behavioural manifestations of pain in animal models of neuropathies. 

We also revealed that extreme sociability, anxiety and depression traits 

influence gene expression in the amygdala in the absence of pain. Pdyn 

expression correlated negatively with sociability and positively with 

anxiety trait. In agreement, several studies have shown that low 

sociability is related to higher levels of anxiety (Kudryavtseva et al, 2004; 

Tõnissaar et al, 2008). PDYN deletion and blockade of KOR enhanced 

social memory (Bilkei-Gorzo et al, 2014). The PDYN system may play a 

role in anxiety (Knoll et al, 2011), but currently available data do not 

provide a consistent picture of the PDYN functions in anxiety. Consistent 

with our results, PDYN deletion and KOR blockade decreased anxiety in 
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mice, and treatment of PDYN knockouts with a KOR agonist reversed 

their anxiolytic phenotype (Wittmann et al, 2009). However, increased 

anxiety-like behaviours was also observed in PDYN knockouts (Femenía 

et al, 2011). Considering the role of the dynorphin system in limbic areas 

in driving dysphoric and aversive behaviour (Palmisano et al, 2018), it 

seems reasonable that high Pdyn expression in the amygdala could 

facilitate the development of social disability and anxiety disorders. 

The depression trait was negatively correlated with Nr3c1 levels in the 

amygdala. This observation agrees with the association of glucocorticoid 

receptor with depressive disorders. Thus, high levels of Nr3c1 promoter 

methylation have been associated with major depressive disorder 

(Nantharat et al, 2015). As DNA methylation usually represses gene 

transcription, our results support the hypothesis that decreased Nr3c1 

receptor level could be an indicative factor for depressive-like behaviour. 

Gadd45 expression in the amygdala showed a positive correlation with 

depression trait. GADD45 protein is considered a molecular player for 

active DNA demethylation under stressful situations, which may suggest 

that GADD45 is inducing stable changes in amygdala gene expression, 

neural circuit function, and ultimately behaviour in mice with depression. 

Indeed, aberrant epigenetic regulation induced by environmental factors 

and subsequent transcriptional dysregulation is a unifying topic in 

psychiatric disorders, including depression (Bagot et al, 2014).  

Changes in the amygdala gene expression profiles were also observed 

after PSNL. The up-regulation of spinal dynorphin and its precursor 

(PDYN) expression is a common critical feature in neuropathic pain, and 

seems to be required for the maintenance phase rather than for its 

initiation (Laughlin et al, 2001; Wang et al, 2001). In this regard, Pdyn 
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knockout mice showed similar pain threshold than WT mice immediately 

after spinal nerve ligation. However, Pdyn knockout animals returned to 

nociceptive baseline values only 10 days after the nerve injury, 

suggesting that dynorphin could play a pronociceptive role through the 

maintenance of central sensitization (Wang et al, 2001). Here, we show 

that Pdyn up-regulation after PSNL also takes place in the amygdala, in 

agreement with a recent study showing alterations of the dynorphin 

system in the corticostriatal circuitry (Palmisano et al, 2018). Specifically, 

marked increase of Pdyn mRNA was observed in the anterior cingulate 

and prefrontal cortices, in parallel with enhanced Bdnf mRNA expression 

in the same cortical regions (Palmisano et al, 2018). The relationship 

between dynorphin and BDNF (Kim et al, 2000), and the role of this 

neurotrophin in chronic pain-related neuroplasticity had previously been 

reported (Smith, 2014; Vanelderen et al, 2010). These findings together 

with ours indicate that the dynorphin system undergoes alterations 

during neuropathic pain involving limbic areas, which could contribute to 

the negative affective component of pain. Moreover, parallel increases in 

Pdyn and Bdnf mRNA at cortical level suggest the possible occurrence of 

interactions between these systems in neuropathic pain maladaptive 

neuroplasticity (Palmisano et al, 2018). 

Increased Gadd45 expression in the spinal cord and the DRG have also 

been reported during neuropathic pain (Lacroix-Fralish et al, 2011; 

Perkins et al, 2014). Our results revealed that these changes can be 

spread to more distant brain areas, since we show for the first time 

upregulated Gadd45 mRNA expression in the amygdala of nerve-injured 

mice. Gadd45 expression is induced after ischemic damage and 

neurodegenerative processes with anti-apoptotic properties (Chen et al, 

1998; Torp et al, 1998). Therefore, we speculate that Gadd45 could be 
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induced after PSNL to maintain genomic stability. Npas4 is an early-

response transcription factor that represents a homeostatic switch 

regulating excitatory-inhibitory neural balance (Spiegel et al, 2014). The 

increase in Npas4 following PSNL indicates an amygdala overactivation, 

which may contribute to the nociceptive and emotional manifestations 

of neuropathic pain. Our results also revealed the up-regulation of 

Tsc22d3 in the amygdala after PSNL. Tsc22d3 encodes a glucocorticoid-

induced leucine zipper protein that functions as transcriptional regulator. 

The reason for including this gene in the analysis of gene expression 

profiles in the amygdala was based on a potential relationship with the 

affective behavioural traits. However, no evidence linking this gene with 

chronic pain has been reported so far. Thus, further studies should be 

performed to elucidate the biological meaning for the enhanced 

expression of this transcriptional regulator during neuropathic pain.  

Neuropathic pain-induced gene expression changes in the amygdala 

varied in line with the behavioural traits. Pdyn expression showed a 

negative and a positive correlation with sociability and anxiety traits, 

respectively, also under conditions of neuropathic pain. Interestingly, the 

groups with higher Pdyn levels (low sociability and high anxiety) also 

showed enhanced nociceptive manifestations of neuropathic pain and/or 

enhanced related comorbidities. These findings suggest a role of 

amygdala Pdyn in aggravating neuropathic pain syndrome, in agreement 

with a recent publication (Palmisano et al, 2018).  
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Figure 42. Influence of Pdyn expression profiles in the amygdala modulating 

behavioural traits and neuropathic pain syndrome. 

We previously suggested that Gadd45 expression could be induced after 

PSNL to restrain the stress response resulting from the lesion. In 

agreement with this hypothesis, the induction of Gadd45 expression 

following PSNL was almost restricted to mice with low anxiety- and low 

depressive-like behaviour, the experimental groups showing milder 

emotional and cognitive manifestations of neuropathic pain. Therefore, 

Gadd45 induction in the amygdala after PSNL may play a protective role 

against emotional and cognitive chronic pain manifestations, probably by 

promoting genomic stability and protecting neurons from apoptosis. The 

role of Gadd45 in chronic pain has previously been unexplored.  

Although PSNL did not globally modify Il6 expression in the amygdala, it 

differentially modulated Il6 expression depending on anxiety and 

depression traits. Thus, Il6 transcript levels showed under neuropathic 

pain conditions a positive and a negative correlation with anxiety and 

depression traits, respectively. Higher levels of Il6 were observed in 

nerve-injured mice with high anxiety and low depression traits, both 

showing enhanced nociceptive hypersensitivity. These results agree with 

previous data demonstrating lower Il6 expression in the amygdala of 

depressed-like compared to non-depressed-like nerve-injured rats (Burke 

 Pdyn expresión 
in the amygdala

Aggravates neuropathic
pain syndrome
• Mechanical allodynia
• Anxiety-manifestations
• Cognitive impairment

 Anxiety
 Sociability
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et al, 2013). Considering this interleukin as an inflammatory marker, 

these findings suggest that neuroinflammatory processes in the 

amygdala may contribute to enhance neuropathic pain, what may be 

favoured by anxiety and attenuated by depression. In agreement, various 

pathological pain models have recently shown elevated expression levels 

of IL-6 and its receptor in the spinal cord and dorsal root ganglia (Zhou et 

al, 2016). Additionally, the administration of IL6 has been reported to 

cause mechanical allodynia and thermal hyperalgesia, and an intrathecal 

injection of anti-IL-6 neutralizing antibody alleviated these pain-related 

behaviours (Murakami et al, 2013). In the present study, we demonstrate 

that changes in inflammatory gene expression following nerve injury may 

also take place at supraspinal pain-related structures, such as the 

amygdala. Further determination of protein level expression would 

strengthen the biological meaning of the observed transcriptional 

changes. 

 

Our second study provides a comprehensive assessment of MOR and 

DOR contributions to nociceptive, emotional and cognitive consequences 

of neuropathic pain, which operate at the level of either peripheral 

nociceptors, central GABAergic forebrain neurons, or throughout the 

entire nervous system. Behavioural results are summarised in Table 17. 

Most strikingly, this work reveals detrimental effects of MOR activity and 

protective effects of DOR in a mouse model of neuropathic pain. 

Unexpectedly, constitutive deletion of MOR prevented mechanical 

hypersensitivity of nerve-injured mice, regardless of their gender. MOR-

induced pronociception was not due to Nav1.8+ fibres or to GABAergic 

forebrain neurons, since conditional MOR knockouts in these locations 
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and WT mice showed similar mechanical sensitivity. The pain-sensitizing 

effects of MOR are in contrast with the analgesic effects of exogenous 

MOR opioid agonists and with the antinociceptive effect of MOR 

described in models of inflammatory pain (Corder et al, 2013; Severino et 

al, 2018; Walwyn et al, 2016). Indeed, a recent work investigating 

inflammatory pain showed increased mechanosensitivity in conditional 

Nav1.8-MOR knockouts (Severino et al, 2018). Opposing to these results, 

unaltered nociception was previously observed in these conditional 

Nav1.8-MOR knockouts after CFA injection, although they showed 

decreased systemic morphine, fentanyl and loperamide-induced 

analgesia under these conditions (Weibel et al, 2013). However, previous 

studies have described attenuated nociceptive manifestations of nerve-

injured full MOR knockout mice,  in agreement with our results (Kögel et 

al, 2011; Maldonado, 2016), suggesting pronociceptive activity of MOR 

under neuropathic pain conditions. Unchanged or increased pain 

sensitization in different MOR knockout lines and animal models of 

neuropathic pain have also been reported (Bohren et al, 2010; Mansikka 

et al, 2004; Roeckel et al, 2017; Wieskopf et al, 2014). These divergent 

results could be explained by the heterogeneous genetical constructs 

used to generate the full MOR knockouts (targeting exon 2, exons 2 and 

3, exon 1 or exon 11) and the different neuropathic pain models used in 

each study. These conflicting findings may also suggest a complex role for 

MOR in the pathophysiology of chronic neuropathic pain. 
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Knockout
line

Nociceptive behavior Affective behavior Cognitive behavior

Mechanical nociception Heat nociception Anxiety Depression Long-term memory

Naïve/sham
conditions

Neuropathic
pain

Naïve/sham
conditions

Neuropathic
pain

Sham
conditions

Neuropathic
pain

Sham
conditions

Neuropathic
pain

Sham
conditions

Neuropathic
pain

CMV MOR
♂
♀

NC
♂
♀


♂
♀


♂
♀


♂ NC/ ♂ NC/ ♂

♀


♂
♀

NC ♂ NC ♂ NC
♀  ♀ NC

Nav MOR
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC ♂ NC ♂ NC

DLX MOR
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂  ♂ NC ♂

♀


♂
♀

NC
♂
♀

NC ♂ NC ♂ NC
♀ NC ♀ 

CMV DOR
♂  ♂

♀


♂
♀

NC
♂
♀

NC
♂
♀


♂
♀

NC
♂
♀





♂
♀




♂




♂ NC

♀ NC

Nav DOR
♂  ♂

♀


♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀

NC ♂ NC ♂ NC
♀ NC

DLX DOR
♂
♀

NC
♂  ♂

♀
NC

♂
♀

NC
♂
♀

NC
♂
♀

NC
♂
♀


♂
♀

 ♂  ♂ NC
♀ NC

Table 17. Summary of the behavioural results obtained in each knockout line, compared to WT group. 

/: increase/decrease; NC: no change 
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On the other hand, repeated MOR stimulation has been associated with 

opioid-induced hyperalgesia and reduced opioid-antinociception in 

models of inflammatory and neuropathic pain (Roeckel et al, 2016). 

Indeed, full MOR knockout mice failed to develop hyperalgesia after 

repeated morphine treatment (Corder et al, 2017; Roeckel et al, 2017), 

suggesting MOR implication in this morphine-induced detrimental effect. 

Our results with the Nav1.8-MOR knockout mice show lack of 

pronociceptive effects of MOR expressed in primary afferents, in contrast 

to the involvement of peripheral MOR in opioid-induced pronociception 

previously described (Corder et al, 2017). These discrepancies may be 

attributed to the different conditions of neuropathic pain instead of 

repeated opioid administration. Potentiation of C-fibre synapses and 

descending facilitation (Dogrul et al, 2009; Heinl et al, 2011), coupling of 

MOR to excitatory G proteins (Tsai et al, 2009; Wang et al, 2005) or 

recruitment of spinal glutamate receptors (Cabañero et al, 2013) are 

some of the mechanisms triggered by MOR activation that may 

contribute to the excitatory effects of MOR in mice with chronic 

neuropathic pain (Martínez-Navarro et al, 2018). Furthermore, it is clear 

that MOR activity mediates additional deleterious effects of opioid drugs 

including addiction, respiratory depression or constipation (Corder et al, 

2018). Thus, our data show a maladaptive pronociceptive effect of MOR 

in conditions of chronic neuropathic pain. 

Nerve-injured constitutive MOR knockout mice showed a 2.6-fold 

increase of Oprd1 mRNA in the affected DRG when compared to nerve-

injured WT mice. DOR is expressed in myelinated and subsets of 

unmyelinated primary afferents, where it inhibits mechanical tactile and 

nociceptive transmission (Bardoni et al, 2014; François and Scherrer, 

2018; Usoskin et al, 2015). Data from conditional knockout mice showed 
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that Oprd1 overexpression was not due to the absence of MOR in 

Nav1.8+ fibres. From our results, we cannot conclude whether this 

upregulation is due to molecular, synaptic, or network-level adaptations 

resulting from constitutive MOR deletion. While MOR and DOR are often 

expressed in different subsets of peripheral neurons, a percentage of 

myelinated neurons positive for the calcitonin gene related peptide co-

express both opioid receptors (Bardoni et al, 2014; François and 

Scherrer, 2018; Wang et al, 2010b). It is unknown whether MOR and DOR 

co-expression could be different in conditions of peripheral nerve injury 

or whether spinal MOR-expressing neurons could modulate DOR+ 

primary afferent fibres. The upregulated DOR expression in primary 

afferents sensitive to mechanical stimuli may contribute to limit nerve 

injury-induced mechanical allodynia.  

Our study confirms that microgliosis develops following nerve injury as 

previously shown (Denk et al, 2016; Gu et al, 2016; Guan et al, 2016). 

Oprd1 overexpression in DRG of CMV-MOR knockouts concurred with 

absence of neuropathic microgliosis in deep laminae of spinal cord and 

lack of astrocytosis in superficial and deep laminae, suggesting a role of 

MOR promoting PSNL-induced gliosis. Since DOR+ myelinated 

nociceptors project widely from spinal laminae I to V (Bardoni et al, 2014; 

Woodbury and Koerber, 2003), it is likely that the enhanced Oprd1 

expression prevented the neuropathic gliosis. In agreement with a 

participation of MOR favouring glial reactivity in the spinal cord, previous 

studies have revealed that intrathecal or subcutaneous ultra-low doses 

of MOR antagonists alleviated neuropathic pain by diminishing glial 

activation and neuroinflammation (Rivat and Ballantyne, 2016; Roeckel 

et al, 2016). The absence of neuropathic gliosis in the CMV-MOR 

knockouts is in contrast with the results obtained in a recent study 
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showing unaltered morphine-induced gliosis in the full MOR knockout 

mice (Corder et al, 2017). This difference could be due to the distinct 

triggers involved (neuropathic pain vs morphine). Our results show 

similar glial reactivity in WT and Nav1.8-MOR knockout mice and 

therefore, do not support a participation of peripheral MOR in 

microgliosis associated with neuropathic pain. 

Constitutive deletion of MOR also increased sensitivity to heat before 

and after the nerve injury, in agreement with previous literature 

describing a primary role of MOR limiting heat sensitivity (Matthes et al, 

1996; Scherrer et al, 2009). These studies showed a preferential role of 

MOR influencing acute heat and chemical nociception rather than 

responses to mechanical stimulation (Martin et al, 2003; Scherrer et al, 

2009). In the present study, increased thermosensation was partly 

replicated when MOR was removed from GABAergic forebrain neurons 

of male mice. This male-specific exacerbated sensitivity to heat was 

restricted to the neuropathic condition, since naïve DLX5/6 male mice did 

not show significant nociceptive enhancement in our settings or in 

previous nociceptive assays (Charbogne et al, 2017). Increased heat 

sensitivity was unrelated to the absence of MOR in Nav1.8+ fibres, which 

is consistent with previous studies describing absence of peripheral 

involvement of MOR in acute heat perception (Corder et al, 2017; Weibel 

et al, 2013). However, the enhanced thermal hyperalgesia involved an 

overexpression of Tac1 in the DRG of nerve-injured constitutive mutants 

that was absent in Nav1.8 or DLX5/6-MOR knockouts. Tac1 gene encodes 

the precursor of the excitatory neuropeptide substance P, which is 

restricted to peptidergic unmyelinated fibres that respond to heat. 

Hence, this would be consistent with the exacerbated 

thermonociception. Since most of Substance P+ fibres express Nav1.8 
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(Usoskin et al, 2015) and Nav1.8-MOR knockouts did not show Tac1 

overexpression, this molecular change may be attributed to spinal MOR-

related circuits that modulate primary afferent activity. In this line, 

recent research investigating MOR and DOR thorough the CNS suggest 

reciprocal modulation of MOR and DOR expressed in different cell types 

(Wang et al, 2018). Interestingly, Tac1 overexpression did not produce 

further gliosis in superficial or deep spinal laminae, suggesting absence of 

glial involvement on the heat hyperalgesia of CMV-MOR constitutive 

knockouts.  

Mice lacking MOR systemically and subjected to the sham surgery 

showed responses of negative affect in the forced swimming and the 

light/dark box tests. This is in contrast with the decreased anxiety- and 

depressive-like behaviour previously described in naïve MOR knockout 

mice (Filliol et al, 2000), which attributed anxiogenic and pro-depressive 

properties to MOR. In contrast to these effects, other studies showed 

effects of MOR inhibiting affective responses during inflammatory pain 

and other stressful conditions (Corder et al, 2013; Ghozland et al, 2005; 

Taylor and Corder, 2014). Since our experimental settings involve an 

inflammatory response associated to the resolution of the surgical 

incision in the mid-thigh, it is likely that central MOR could mask the 

affective consequences of inflammatory pain in sham-operated WT mice. 

In contrast, sham-operated mice lacking MOR constitutively lack this 

protective mechanism and develop the increased affective responses 

after the sham surgery. The induction of the neuropathic condition 

showed a different participation of MOR on the affective responses to 

pathological neuropathic pain. Both constitutive and conditional DLX5/6-

MOR knockouts showed decreased anxiety-like responses to the 

neuropathic injury, suggesting anxiogenic functions of MOR in this 
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maladaptive chronic pain condition. Previous studies suggested 

participation of MOR from amygdalar and striatal regions on the affective 

component of pain (Martikainen et al, 2015; Wang et al, 2018), however 

our data adds information on the consequences of MOR activity in a 

specific GABAergic population involved in the affective manifestations of 

pathological pain. 

The effects of DOR on nociceptive sensitivity of nerve-injured mice were 

to some extent opposite to the effects of MOR. As previously reported, 

constitutive deletion of DOR increased mechanical hypersensitivity in 

nerve injured male and female mice, whereas it had no overt effects on 

basal nociception or heat sensitivity after the nerve injury (Bardoni et al, 

2014; Martin et al, 2003; Nadal et al, 2006). This effect restricted to 

mechanosensation is in agreement with a predominant distribution of 

DOR in fibres sensitive to touch and a relative absence in fibres sensitive 

to heat (Bardoni et al, 2014). According to our nociceptive data, similar 

distribution could be expected during neuropathic conditions. Nav1.8 

and DLX5/6-DOR knockouts showed partial increases in 

mechanosensitivity, being these effects restricted to males. Peripheral 

DOR involvement on mechanical nociception was previously described in 

models of chronic inflammatory and neuropathic pain (Gaveriaux-Ruff et 

al, 2011). Thus, Nav1.8-MOR knockouts displayed enhanced mechanical 

allodynia and unaltered heat hyperalgesia induced by both CFA and PSNL 

(Gaveriaux-Ruff et al, 2011). The analgesic effects of the DOR agonist 

SNC80 administered either systemically or into the injured paw were 

absent in these conditional knockout mice, suggesting the involvement of 

peripheral DOR in opioid-mediated analgesia under these chronic pain 

conditions (Gaveriaux-Ruff et al, 2011). However, a contribution of DOR 



Discussion 

215 

from GABAergic forebrain neurons on mechanical nociception during 

neuropathic pain was not described before.  

Interestingly, constitutive CMV-DOR knockouts showed increased 

affective and cognitive impairment in sham conditions and enhanced 

depressive-like manifestations of neuropathic pain. Anxiolytic and 

antidepressant effects of DOR activation in the absence of pain have 

consistently been reported (Pradhan et al, 2011), and our results now 

provide further evidence of the role of DOR attenuating depressive-like 

behaviour associated with chronic neuropathic pain. The memory deficit 

of sham-operated CMV-MOR knockouts is consistent with the previously 

reported impaired performance of full DOR knockout mice in 

hippocampal-dependent tasks (Le Merrer et al, 2013). Our findings 

suggest the participation of forebrain DOR in depressive-like behaviour 

and memory performance, but not in anxiety-like behaviour. Striatum 

and olfactory bulb are the areas where DLX5/6-DOR knockouts show 

major DOR protein deletion. Considering the association between these 

two structures and depressive disorders (Minami et al, 2017; Takamura 

et al, 2017; Zhu et al, 2017), it is reasonable to postulate that DOR 

activity in GABAergic neurons of the striatum and olfactory bulb may 

modulate depressive-like behaviour. Since the novel object recognition 

test evaluates hippocampal-dependent learning, we can assume that 

DOR expressed in GABAergic interneurons in the hippocampus may be 

responsible for the pro-cognitive effects of DOR. The partial amnesic 

phenotype observed in the DLX5/6-DOR knockouts may be due to the 

partial deletion (-56%) of DOR in the hippocampus in these mice (Chu Sin 

Chung et al, 2015). Our results also agree with the lack of involvement of 

DOR in the olfactory bulb and striatum in the anxiolytic role of DOR (Chu 

Sin Chung et al, 2015). Several lines of evidence support the influence of 
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negative affect increasing mechanical nociception (Burke et al, 2013; 

Roeska et al, 2009; Zeng et al, 2008). Thus, our findings suggest that the 

altered emotional responses shown by CMV-DOR knockout mice could 

have an impact increasing mechanical sensitivity after the nerve injury. 

Overall, our results with DOR knockout mice depict DOR as a component 

of the endogenous opioid system that protects against nociceptive and 

affective dimensions of chronic neuropathic pain. 

In terms of sex-differences, a slightly higher mechanical and heat 

sensitivity in females compared to males was observed in particular 

experimental measurements. These results agree with previous studies 

showing sex-differences in pain responses, with females displaying 

greater sensitivities (Bartley and Fillingim, 2013; Riley et al, 1998). 

Interestingly, a sex-dependent involvement of MOR and DOR in the 

modulation of acute mechanical transmission was also observed. Total 

deletion of MOR induced a slight attenuation of mechanical nociception 

only to uninjured females, but no differences were revealed in males. 

Similarly, constitutive deletion of DOR enhanced mechanical nociception 

in uninjured males, but not in females. These results suggest a 

differential role of the endogenous opioid tone acting on MOR and DOR 

in male and female mice under physiological conditions. Both 

pharmacokinetic and pharmacodynamic factors have been reported to 

participate in sex-differences in opioid analgesia in animals and humans 

(Craft, 2003; Doyle and Murphy, 2017). In rodents, MOR agonists were 

more potent or effective in males than females, but in humans, opioids 

with MOR agonist activity were often more potent or effective in females 

than males (Craft, 2003). Whether these discrepancies are due to a true 

genetic difference or due to the widely variant analgesic testing 

procedures used in rodents versus humans is not yet known. Little 
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evidence exists for sex differences in analgesia produced by DOR 

agonists. One study reported greater DOR-mediated analgesia in males 

than in females (Bartok and Craft, 1997), while other two revealed no 

differences (Craft et al, 2001; Kepler et al, 1991). Although male and 

female mice achieve similar levels of pain hypersensitivity after nerve 

injury, sexual dimorphism in the underlying mechanisms leading to 

chronic pain can exist (Sorge et al, 2015). Further investigation of sexual 

dimorphism in molecular mechanisms underlying pronociceptive effects 

of MOR under neuropathic pain conditions would be of great interest in 

the future. 

This work describes participation of MOR and DOR on the behavioural 

phenotypes triggered by persistent nerve damage. MOR showed 

unexpected detrimental effects including heightened mechanical 

sensitivity and increased affective responses to neuropathic pain, 

whereas DOR demonstrated opposing roles limiting both mechanical 

pain and emotional impairments. The absence of phenotypes in 

peripheral MOR knockouts suggests participation of central MOR on the 

increased nociceptive responses associated to the neuropathic injury. 

One of the mechanisms involved is the inhibition of DOR and Tac1 

expression in primary afferent neurons, which may occur through spinal 

MOR-related circuits. However, the precise cellular entity involved in 

these pain-sensitizing effects of MOR remains to be elucidated. The 

anxiogenic function of MOR during neuropathic pain could be located in 

a population of GABAergic neurons of the forebrain, the same cell type in 

which DOR have opposite effects limiting depressive-like behaviour. 

These results contribute to explain the renowned lack of efficacy of MOR 

opioid agonists for the treatment of chronic neuropathic pain (Bian et al, 

1999; Huffman et al, 2017; Kimura et al, 2014; Mao et al, 1995; Rashid et 
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al, 2004; Wegert et al, 1997) and suggest the need for searching 

alternatives to MOR opioids. The identification of neuropathic pain as a 

pathological entity aggravated through MOR activity could be relevant to 

mitigate the use of opioid drugs and to limit the clinical damage 

associated with the current opioid crisis (Volkow and McLellan, 2016). 

The protective function revealed in this study of DOR minimizing the 

nociceptive and affective consequences of neuropathic pain underlines 

the potential interest of DOR agonists for neuropathic pain treatment. 
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The main conclusions of the work presented in this Thesis can be 

summarized as follows:  

1. Social and emotional behavioural traits contribute to the inter-

individual variability of the neuropathic pain manifestations in mice, 

which suggest the potential benefit of efficient personalized 

treatments for chronic pain. 

2. Indeed, anxiety trait might be a vulnerability factor to develop 

enhanced nociceptive, affective and cognitive manifestations of 

neuropathic pain. 

3. Sociability and depressive traits may decrease neuropathic pain-

induced hypersensitivity, whereas they increase vulnerability to 

affective and cognitive manifestations of neuropathic pain. 

4. Nociceptive hypersensitivity does not seem to be proportional to 

affective and cognitive manifestations of neuropathic pain, which 

supports the importance of evaluating the different behavioural 

manifestations associated to pain in animal models of neuropathies. 

5. The impact of behavioural traits on pain manifestations may be 

partially due to the modulation of gene expression in the amygdala. 

6. Pdyn and Il6 expression in the amygdala may be involved in aggravating 

neuropathic pain syndrome, while Gadd45 may play a protective role 

against emotional and cognitive chronic pain manifestations, probably 

by promoting genomic stability and protecting neurons from 

apoptosis. 

7. We confirm a primary role of MOR limiting heat sensitivity in a mouse 

model of neuropathic pain, which may be attributed to spinal MOR-

related circuits that modulate substance P neurotransmission from 

peptidergic unmyelinated afferent fibres. 
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8. However, MOR activity may induce detrimental effects under 

neuropathic pain conditions including heightened mechanical 

sensitivity and increased affective responses to neuropathic pain. 

9. MOR-induced modulation of DOR expression and function in the DRG, 

and direct or indirect promotion of microgliosis and astrogliosis in the 

spinal cord dorsal horn may underly pain sensitizing effects of MOR.  

10. MOR from Nav1.8+ primary afferent fibres do not seem involved in 

basal nociception or in nerve injury-induced hypersensitivity, while 

the anxiogenic function of MOR during neuropathic pain could be 

mediated by a population of GABAergic neurons of the forebrain. 

11. Conversely, our results depict DOR as a component of the 

endogenous opioid system that protects against nociceptive and 

affective dimensions of chronic neuropathic pain, which underlines 

the potential interest of DOR agonists for neuropathic pain treatment. 

12. Both DOR from Nav1.8+ primary afferent fibres and forebrain 

GABAergic neurons contribute to limit the mechanical allodynic 

manifestations, while DOR in forebrain GABAergic neurons are 

involved in limiting the depressive-like manifestations associated to 

neuropathic pain. 

13. These results contribute to explain the renowned lack of efficacy of 

MOR opioid agonists for the treatment of chronic neuropathic pain 

and suggest the need for searching alternatives to MOR opioids for 

these pain conditions. 

14. The identification of neuropathic pain as a pathological entity 

aggravated through MOR activity could be relevant to mitigate the 

use of opioid drugs and to limit the clinical damage associated with 

the current opioid crisis. 
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