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Abstract

The secondary structure of an RNA molecule is fundamental for its function.
However, structural conservation and the structure of RNA in vivo are
still poorly understood. Data from recent high-throughput experiments
can provide new insights, but they have not yet been systematically
exploited. The aim of my doctoral studies was to exploit these experimental
data to develop computational approaches for discovering and analyzing
structural properties of RNA. I developed two algorithms: CROSS predicts
the secondary structure propensity profile of an RNA, and CROSSalign
discovers structural similarities among different RNAs. In addition, I
studied the effect of the presence of protein binding motifs on the prediction
of the RNA structure in vivo and investigated how the propensity of RNAs
to bind to proteins could be exploited to create a predictive tool. The
suite of tools that I developed opens new possibilities for studying the
structural properties of long RNA molecules and for investigating structural
conservation in large-scale analyses.
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Resumen

La estructura secundaria del ARN es fundamental para su función. Sin
embargo, la conservación estructural y la estructura del ARN in vivo
son poco conocidas. Los datos provenientes de experimentos de alto
rendimiento pueden proporcionar nuevos conocimientos, pero aún no han
sido usados sistemáticamente. El objetivo de mis estudios de doctorado
fue emplear estos datos experimentales con el fin de desarrollar metodos
computacionales para el descubrimiento y el análisis de las propiedades
estructurales del ARN. Como resultado de mi tesis desarrollé dos algoritmos:
CROSS, que predice el perfil de propensión de estructura secundaria de un
ARN; y CROSSalign, que busca similitudes estructurales entre diferentes
ARNs. Además, estudié el efecto de la presencia de dominios de unión
proteı́nica en la predicción de la estructura del ARN in vivo; e investigué
cómo la propensión de los ARNs a unirse a las proteı́nas podrı́a usarse para
crear un modelo predictivo. El conjunto de herramientas que desarrollé
abren nuevas posibilidades para estudiar las propiedades estructurales de
moléculas de ARN largas y para investigar la conservación estructural en
análisis a gran escala.
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Preface

The RNA secondary structure (RSS) is crucial for the biological activity of
the RNA, from the interaction with proteins to the correct three-dimensional
folding. Crystallographic techniques such as NMR and X-ray, which set the
standard for the understanding of protein structures, can also be employed
to probe the structure of RNA, but up to date there are very little NMR/X-ray
structural data available for RNA.

To compensate for this lack of data, an increasing number of computational
approaches for predicting the secondary structure based on the sequence
were developed. However, the vast majority of these approaches are based
on the thermodynamic properties of isolated RNA, prohibitively slow for
long (>10’000 nucleotides) sequences, and built on limited low-throughput
data.

In the last years, several novel experimental techniques that are based on
chemical probes or on enzymes were able to profile the RNA structure
genome-wide. The new results provided the scientific community with an
extensive view of the functionality of the RNA secondary structure. Also
the experimental profiling of several long non-coding RNAs (lncRNAs)
provided information on the complex structure of these large molecules.

The recent flow of data from high-throughput experimental techniques has
not yet been systematically exploited for the development of computational
approaches to predict structural properties of the RNA. In Chapter I, I will
present CROSS, an algorithm trained on high-throughput experimental data.
The tool is able to profile multiple RNAs at single nucleotide resolution
and without sequence length restriction. CROSS was trained on multiple
experimental datasets and each model can reproduce a specific technique.
CROSS is a powerful tool that can be applied on long non-coding RNAs or on
complete transcriptomes. CROSS technology was also applied to study other
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complex structural properties of the RNA. The conservation of the RNA
secondary structure is still a debated topic, especially in lncRNAs, where also
sequence conservation is not well established. In Chapter II I will present
CROSSalign, an algorithm based on CROSS that is able to assess structural
similarities between RNAs of different lengths. The tool was applied to
study the structural conservation of important lncRNAs such as HOTAIR
and Xist, and also to identify possible regulatory regions common to single-
stranded RNA viruses.

While the processes behind the RNA folding in vitro are well defined, the
in vivo folding is a complex system affected by several features. However,
although some techniques are able to profile the RNA structure in vivo,
computational approaches are still not able to use and to predict the in vivo
data. In Chapter III, I present an analysis of the effect of the presence of
proteins and of a crowded environment on the RNA secondary structure in
vivo. The results have indicated for the first time that binding to proteins
has an influence on secondary structure folding and that knowledge of
protein binding properties can thus improve the RNA secondary structure
prediction. The approach behind this analysis will be used to build
CROSSalive, an algorithm able to predict in vivo structural data with higher
performances.

The Discussion of my thesis will highlight the main results of Chapter
I, Chapter II, and Chapter III, and their importance for the scientific
community. In Future perspectives I will give an overview of my personal
opinion regarding the possible future development of the field. I will close
my thesis with the Conclusions, where I will summarize my findings and
their importance. In the Appendix section I will include the complete list of
publications and the supplementary materials of the main chapters.
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1 The RNA and its structure

1.1 The nucleotides and the primary structure

The RNA is a single stranded molecule composed of four base nucleotides.
Each nucleotide is formed of a heterocyclic base, a pentose sugar (ribose) and
a phosphoric acid (H3PO4) (Watson and Crick, 1953).

The bases are classified according to their core structure in pyrimidines, with
only one heterocyclic ring, and purines, with two heterocyclic structures.
The pyrimidines present in RNA are uracil (U) and cytosine (C), while the
purines are adenine (A) and guanine (G). Uracil is absent in the DNA and it
is replaced by thymine (T).

The ribose of the RNA is also different from the sugar of the DNA
(deoxyribose). The ribose contains a hydroxy group in the position 2’, which
is absent in the deoxyribose.

Different layers of structure exist inside the nucleotides. The glycoside
binding between a base and the ribose forms a nucleoside. The nucleoside
with the addition of a phosphate group becomes a nucleotide. The ordered
concatenation of nucleotides defines the RNA primary structure. To form the
primary structure, the nucleotides are connected by phosphodiester bonds
through the oxygen on the 5’ carbon of one and the 3’ carbon of another
(Figure 1). The primary structure is often considered a synonymous of
‘sequence’, usually represented as a consecutive list of nucleotide symbols
(ACGU). The directionality is a fundamental characteristic of the primary
sequence, and it is always defined from the 5’ to the 3’, till the end of the
sequence.

The primary structure encodes the necessary properties for the formation of
the secondary structure.
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Figure 1: Primary sequence example with directionality highlighted (adapted
from Schowen (1993)).
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1.2 The secondary structure

1.2.1 Binding types

The secondary structure of nucleic acids is formed by base pairing in-
teractions between nucleotides. In the DNA molecules, two strands of
complementary nucleotides are interacting through strong hydrogen bonds
between the Watson-Crick pairs Adenine-Thymine (A-T) and Cytosine-
Guanine (C-G) to form the regular double helix (Watson and Crick, 1953).

Contrary to the DNA, the RNA in its native state exists in a single-stranded
conformation. This feature allows the RNA to be more dynamic and with
more degrees of freedom than the double-stranded DNA. The flexible native
RNA in single-stranded conformation is able to form self-interactions along
its primary structure. The pattern of the internal interactions for an entire
RNA molecule is defined as its secondary structure (Doty et al., 1959).

The base-pairing interactions between the four RNA bases (Adenine,
Cytosine, Guanine, Uracil) can be classified in different ways.

In the 1980s, with few experimentally determined structures available and
the information coming only from the transfer RNA, short RNAs composed
of 70 to 90 nucleotides and key elements for the translation (tRNA), the
classification of the bonds was only based on the type of nucleotide involved
(Saenger W. (1984) Principles of Nucleic Acid Structure. Springer-Verlag,
New York, NY).

A more extensive classification from 1993 defined 28 possible pairings based
on the type of the interacting bases (Tinoco, 1993). These base-pairing types
can be grouped into 4 subclasses: purine-pyrimidine (10 pairings, including
Watson-Crick, Wobble, and Hoogsteen interactions), homo purine-purine (7
pairings), hetero purine-purine (4 pairings) and pyrimidine-pyrimidine (7
pairings). A thorough description of these base pairs is beyond the scope of
this thesis; it can be found in Tinoco, Jr. In Appendix 1 of: The RNA World,
Cold Spring Harbor Laboratory Press, 1993, pp. 603-607.

Of the 28 possible base pairings, only six (AU, GU, GC, UA, UG, CG)
interactions are stable. Accordingly, they are the most common interactions
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within RNA molecules. The CG/GC pairs are the strongest and thus the
most stable ones as they are formed by 3 hydrogen bonds. The other pairs
are formed by only 2 hydrogen bonds.

More recently, crystallographic experiments showed that the majority of base
pairs in structured RNAs show recurrent geometric patterns (Leontis and
Westhof, 2001). These patterns arise because RNA nucleotides have three
interactive edges that can form hydrogen bonds: the Watson-Crick edge,
the Sugar edge (including the hydroxyl group), and the Hoogsteen edge for
purines or ‘CH’ edge for pyrimidines. Interactions can thus be grouped into
12 classes characterized by the interactive edges involved in the hydrogen
bonds and the relative orientation (cis/trans) of the glycosidic bonds of the
two bases (Leontis and Westhof, 2001) (Figure 2).

Figure 2: The three edges and the orientation of the bond (extracted from
Schroeder et al. (2004)).
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1.2.2 Structural elements

The RNA is able to form different structural elements of various lengths
(Figure 3). Structural elements that can be present in the RSS are:

• Stem: double-stranded regions. The most stable RNA structural motif
and usually the longest one.

• Hairpin-loop (H-loop): a very common structure. It is a combination
of strong-complementary bases separated by unpaired nucleotides.
For example, a common H-loop is AAAAACCCCUUUUU, where
the complementary multi-A and multi-U segments form a stem,
interrupted by a single-stranded region of multi-C.

• Internal-loop (I-loop): a loop that is internal to consecutive stems. The
loop has the same number of nucleotides on the left (il) and on the right
side (ir) (il = ir = n, where n ∈ N).

• Bulge: a specific sub-class of I-loop, where only one side of the loop
has unpaired nucleotides and the other is connected to the stem (e.g. il
> 0, ir = 0).

• Multibranch-loop (M-loop): a complex structure composed of different
sub-loop structures. The main architecture is usually composed of
several branches combined together to a central loop.

• Pseudoknots: the most complex structure. A pseudoknot is formed
when a loop region and bases outside of the loop interact. Due to
their non-nested nature, the pseudoknots are an exception and for this
reason cannot be predicted by dynamic programming algorithms (see
Introduction 5.1 for more details).
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Figure 3: Structural motifs formed by the RNA secondary structure (extracted
from RNAstrand webpage (Andronescu et al., 2008)).

1.3 The tertiary structure

The tertiary structure is the arrangement of the RNA in space where
interactions between two-dimensional secondary structure elements create
three-dimensional structural motifs such as helices (Batey et al., 1999).

During the folding of the tertiary structure, the secondary structure elements
interact through van der Waals contacts, hydrogen bonds, and interactions
between hairpin loops and bulges (Batey et al., 1999). The tertiary structure
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interactions can be divided into 3 major categories: 1) interactions between
two double-stranded helical regions (coaxial stacking, adenosine platform,
and 2’-hydroxy-mediated helical interactions); 2) interactions between
helical and unpaired regions (base triplex/triplexes, tetraloop motif, metal-
core motif and the ribose zipper); 3) interactions between unpaired regions
(loop-loop interactions and pseudoknots) (Batey et al., 1999).

The tertiary structure was thoroughly studied for tRNAs and ribozymes,
such as the Tetrahymena self-splicing group I intron (Th-intron)(Rook et al.,
1998; Lehnert et al., 1996). It was also discovered that specific ions have an
effect on the RNA tertiary structure, such as magnesium (Mg2+), which is a
fundamental element for the formation and the stabilization of the tertiary
structure (Brion and Westhof, 1997). For example the Th-intron ribozyme
needs to bind to at least 3 magnesium ions to be able to fold into an active
tertiary structure (Batey et al., 1999).

More details regarding the RNA folding will be provided in Introduction 3.1.

2 The RNA secondary structure and its function in cellular
processes

The secondary structure is fundamental for many aspects of the RNA
biology such as correct functionality, but also for the interaction with
proteins or other RNA molecules (Bellucci et al., 2011).

The ability of an RNA molecule to assume different secondary structures and
its dynamicity are at the base of the theory of the ‘RNA world’ (Robertson
and Joyce, 2012). This theory got more attention after the discovery of the
ribozymes. The ribozymes are RNAs with enzymatic activity, something
that was considered exclusive to proteins (Robertson and Joyce, 2012; Kruger
et al., 1982). Interestingly, further theories speculate that a ribozyme of
40-60 nucleotides that form 3 stem-loops could be potentially enough to
work as replicase, giving the base for a RNA-first world and highlighting
the importance of the secondary structure for the functionality of the RNA
(Robertson and Joyce, 2012).

The secondary structure is fundamental for the biological function of the
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RNA, but it is also crucial for the activity of specific non-coding RNA
classes. For example disrupting the secondary structure of a tRNA will affect
translation, a basic step essential for life (Bernat and Disney, 2015).

The RSS is also crucial for the splicing of many pre-mRNAs, since the
removal of the introns is also determined by the specificity of the secondary
structure in proximity of the intron-exon junction (Shepard and Hertel, 2008;
Buratti and Baralle, 2004).

The interaction of an RNA with proteins is one of the most important
biological functions that can be influenced by the RNA secondary structure.
Many RNA binding proteins (RBPs) contain specific domains that are able
to bind the RNA, with selective specificity also for the RNA structure. For
instance, RNA recognition motifs (RRM) (Auweter et al., 2006) and the K-
homology domain are more prone to bind single-stranded RNA (ssRNA),
while the double-stranded RNA binding domain (dsRBD) binds to dsRNA
regions (Masliah et al., 2013). Furthermore, even in cases where the binding
is only related to the sequence, the structure plays an important role since
a specific sequence is only accessible to the binding when it is located at
the bulge of a stem-loop structure (Lu et al., 2003). RBPs that are more
promiscuous (i.e. able to bind many RNAs) are usually more prone to bind
single-stranded regions (Dominguez et al., 2018).

Recent results also suggest that long and highly structured (i.e. enriched
in double-stranded regions) RNA molecules can have an important role as
scaffolding elements inside RNA granules (Maharana et al., 2018).

Due to its importance (see Introduction 1), the secondary structure is highly
conserved (Pedersen et al., 2006; Washietl et al., 2005). The conservation of
the RNA secondary structure is often associated to functionality (Ilyinskii
et al., 2009; Ganot et al., 1997; Washietl et al., 2005; Pedersen et al., 2006),
since the correct matches of the nucleotides add another level of complexity
compared to the sequence conservation. The secondary structure is crucial
for the function of many non-coding RNAs (ncRNAs) such as tRNAs, small
nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) (Vandivier et al.,
2016; Ganot et al., 1997; Washietl et al., 2005). For these classes, the secondary
structure is more likely to be conserved than the secondary structure of other
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ncRNAs such as lncRNAs (Rivas et al., 2017; Delli Ponti et al., 2018).

The ribosomal RNAs (rRNAs) have an interesting evolutionary history
regarding their structure. It was recently proposed that the small subunit
(SSU) of the rRNAs evolves in a self-contained environment, where the
secondary structure of the RNA of ancient species is conserved in the rRNA
of the more evolved ones (Petrov et al., 2015). Regarding the long non-
coding RNAs (lncRNAs), non-coding RNAs longer than 200 nucleotides, the
secondary structure conservation is still a debated topic (Rivas et al., 2017;
Somarowthu et al., 2015). The conservation of the RSS, especially for the
lncRNAs, will be discussed in more details in Chapter II.

Disrupted structures or misfolded RNAs are also related to several patholo-
gies (Bernat and Disney, 2015). Different studies suggested that SNPs are
more prone to be related to a disease phenotype when the mutation is also
affecting the secondary structure (Halvorsen et al., 2010; Bernat and Disney,
2015).

3 The RNA secondary structure in vitro

3.1 In vitro folding

The RNA folding is a hierarchical process (Brion and Westhof, 1997). The
primary structure defines the RNA secondary structure (RSS), and the RSS
is necessary to fold into tertiary structure.

The RNA folding in vitro follows a set of rules well studied and defined by
the scientific community. The absence of a crowded cellular environment
and the controlled conditions allow the study of a simplified model of the
RSS folding, where the folding is guided prevalently by the sequence.

The in vitro folding of the RNA can be modeled as a stochastic search of
the most energetically favorable and stable structure, passing through many
other probable conformations, in a process similar to the protein folding
(Wolynes et al., 1995)(Figure 4). The free energies of all possible conforma-
tions define an energy landscape, which is explored while searching the op-
timal structure that minimizes the free energy.
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Figure 4: Representation of the RNA folding in vitro. The path toward
the native structure could be complex or direct, and could lead to misfolded
intermediates (adapted and modified from Incarnato et al. (2017)).

As previously explained, the RNA folding is considered a hierarchical
process, since the secondary structure forms before the tertiary structure
(Brion and Westhof, 1997). For this reason the two folding events can
be treated as independent processes. The observation that the secondary
structure is also faster to fold (µs to ms, depending on the length of the
sequence) than the tertiary structure (ms to s) gives more support to the
concept of a temporal hierarchy of the processes (Leamy et al., 2016).

The folding of an RNA into its secondary structure is also a hierarchical
process where the stem-loops tend to form first. The folding dynamic of the
early RNA stem-loops is also very similar to the beginning stage of protein
folding, specifically the ‘molten globule’ state (Freisner and Gunn, 1996;
Levitt et al., 1997). Hairpins with short loops have folding times between
10 and 100 µs (Crothers et al., 1974).
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The folding of a transcript in vitro usually starts with the denaturation of its
random coil conformation using different melting temperatures. The next
folding step is in presence of different temperatures and salt concentrations,
depending on the aim of the experiment (Baird et al., 2005). The presence
of ions can also be fundamental for a fast folding. For example the presence
of Mg2+ promotes the folding (London, 1991; Truong et al., 2013; Stein and
Crothers, 1976) and the formation of tertiary interactions (Batey et al., 1999).

The majority of the in vitro folding studies were conducted on tRNAs
(Crothers et al., 1974; Hilbers et al., 1976) and ribozymes (Banerjee and
Turner, 1995; Mitchell et al., 2013; Rook et al., 1998) due to their known
functionality and their moderate size (< 100 nt).

The folding of long RNA molecules is a more complex procedure that can
take up to minutes or hours (Chadalavada et al., 2002; Banerjee and Turner,
1995). This is mainly due to the formation of stable unfolded intermediates
that have conformations very similar to the native structure (Treiber et al.,
1998; Mitchell et al., 2013).

The in vitro folding was prevalently studied in conditions far from the ones
present in the cellular environment, not only for the absence of the crowding
effect (i.e. the presence of proteins and ligands) but also for the non-
physiological salt concentrations (London, 1991; Truong et al., 2013)(Table 1).

Due to the many variables that are impossible to simulate, the study of the
thermodynamics and the complete folding landscape of the RNA in vivo is
still a challenge. To solve this problem, scientists are starting to work on
an artificial cytoplasm that is able to mimic specific cellular characteristics.
In the last years, several studies using artificial cytoplasm with crowding
agents and physiological concentrations of ions and salt were developed
(Desai et al., 2014; Dupuis et al., 2014; Nakano et al., 2014; Paudel and Rueda,
2014; Strulson et al., 2013; Tyrrell et al., 2015). I will explain in vivo effects
such as the crowding in more detail in Introduction 4.1.
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Table 1: Main differences of the in vitro and in vivo environment (obtained
adapting the data from Leamy et al. (2016)).

3.2 Experimental techniques in vitro

Until now, as for proteins and DNA, the most accurate way to assess the
RNA structure is using NMR or X-ray techniques (Latham et al. 2005).
However, there are very few crystals available for RNA, most of them for
RNA of bacteria and synthetic organisms. For example, from the 1,059 RNA
crystals validated with NMR/X-ray available in the RNAstrand database
(Andronescu et al., 2008), 39% originate from synthetic constructs, while
only 0.09% are from mouse (1 crystal) and 2.8% are from human (30 crystals).
Moreover, the majority are rRNAs (26%; 276) and tRNAs (8%; 85). In
addition, 84% of all available crystals are composed of complexes of the
RNA with one or multiple ligands, while only 16% (175) are crystals of a
single RNA, and 100% of these are from synthetic systems. Thus, the poor
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availability of experimentally determined RNA structures, the complexity of
the experiments and their high costs in terms of both time and money drove
the scientific community toward the search for new techniques to assess the
RSS.

In the last 10 years several experimental techniques were developed to study
the RNA secondary structure at low-throughput and more recently also
at high-throughput level (Mortimer et al., 2014; Strobel et al., 2018). The
rapid evolution of omics techniques allowed the development of specific
protocols able to profile the secondary structure landscape of complete
transcriptomes of several organisms (Mortimer et al., 2014; Strobel et al.,
2018)(Table 2). These experimental high-throughput techniques can be
divided into chemical-based and enzymatic-based approaches.

Table 2: Main characteristics of the most known experimental techniques.
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3.2.1 Chemical-based techniques

Chemical-based techniques use small and highly reactive probes that are
able to bind the RNA in order to obtain information on the RNA secondary
structure. Peattie and Gilbert in 1980 performed the first chemical-probing
experiment to study the structure of the tRNA (Peattie and Gilbert, 1980;
Strobel et al., 2018). Since that year, several other techniques were developed,
but the technologies became more popular with the discovery of SHAPE
(Selective 2’-hydroxyl acylation analyzed by primer extension) chemistry in
2005 (Merino et al., 2005).

SHAPE is a technique based on chemical probes that are able to assess
several features of a RNA molecule (Wilkinson et al., 2006; Merino et al.,
2005). SHAPE chemistry is based on the activity of acylating agents, such
as 1-methyl-7-nitroisatoic anhydride (1M7), which is able to react with
flexible nucleotides forming a 2’- O-adduct. In contrast, nucleotides that
are constrained by base pairing or tertiary interactions are unable to bind
the chemical probe and appear as unreactive. Sites of 2’-O-adduct formation
are then detected as stops to primer extension. The quantification of the
reactivity helps to identify nucleotides that are in a double- or single-
stranded conformation. Figure 5 gives an overview on the general active
mechanism and provides more information regarding the probes.
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Figure 5: General mechanism and examples of probes for the SHAPE chemistry
(adapted from Spitale et al. (2014)).

SHAPE was successfully applied to several RNA molecules (Rausch et al.,
2017; Duncan and Weeks, 2008; Rice et al., 2014), including the complete
HIV-1 genome (Wilkinson et al., 2008). The SHAPE protocol was modified
and adapted for several tasks as the use of different probes allows the
identification of several RNA properties. For example, SHAPE-seq is a
variation of the technique that is optimized for NGS technologies (Lucks
et al., 2011; Loughrey et al., 2014). SHAPE-map is based on the use of several
probes (1M7, 1M6 and NMIA) to detect also long range interactions, stacked
nucleotides, and pseudoknots (Siegfried et al., 2014; Smola et al., 2015). The
Map-Seq protocol permits the quantitative probing of thousands of RNAs at
once using Illumina technology (Seetin et al., 2014). The high-throughput
protocol icSHAPE (in vivo click selected SHAPE) takes advantage of the
probe NAI-N3 to profile the secondary structure of RNAs also in vivo (Spitale
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et al., 2015).

SHAPE chemical probes are only able to bind to single-stranded nucleotides.
A lack of signal is usually associated with double-stranded nucleotides,
but with this lack of specificity it is impossible to distinguish between
protected and interactive regions, especially in vivo where the protein-RNA
interactions are more frequent.

There are other chemical-probing techniques that are not based on SHAPE
chemistry. The most well-known and used one is probably DMS (dymethil
sulfate). DMS chemical probing is often used in vivo (see Introduction 4.2
for details) due to the small size of the probe ((CH3O)2SO3). However,
this technique has a strong bias since the alkylating agent can only bind to
adenine and cytosine and it is thus unable to provide structural information
for all the nucleotides. Regardless of its limitation, DMS probing was applied
to different organisms and conditions (Rouskin et al., 2014; Ding et al., 2014)

3.2.2 Enzyme-based techniques

The discovery of enzymes that are able to cut the RNA based on its local
secondary structure allowed the development of several enzyme-based
techniques. In this part I will focus on the most used techniques.

The RNase V1 is one of the first enzymes used to probe the RSS (Wyatt
and Walker, 1989). It is able to cut the double-stranded nucleotides, with
at least 3 nucleotides upstream and downstream of the cutting point (Wyatt
and Walker, 1989).

PARS (parallel analysis of RNA structure) is one of the most used enzymatic
techniques, able to distinguish double- and single-stranded regions using
the catalytic activity of two enzymes: RNase V1 (able to cut double-stranded
nucleotides, as previously specified) and S1 (able to cut single-stranded
nucleotides). This technique was successfully applied high-throughput on
entire transcriptomes (Kertesz et al., 2010; Wan et al., 2014). Recently, it was
also modified for the use with Illumina technology (Saus et al., 2018). PARS is
the only technique able to actually profile both single- and double-stranded
nucleotides. This technique gives more coverage than SHAPE, which can
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only probe flexible regions, as explained in the previous section. However,
PARS also has limitations: since the size of the enzymes is large compared to
the size of the small chemical probes, it could cause problems of resolution,
and it still cannot be applied in vivo.

PARTE (parallel analysis of RNA structures with temperature elevation)
is an extension of the PARS methodology. PARTE allows the genome-
wide measurement of RNA folding energies. It was successfully used
in Saccharomyces cerevisiae mRNAs by probing the secondary structure at
temperatures ranging from 23◦C to 75◦C (Wan et al., 2012).

FragSeq (fragmentation sequencing) is a high-throughput enzyme-based
RNA structure probing method. It uses fragments generated by digestion
with the nuclease P1, which specifically cleaves only single-stranded nucleic
acids (Underwood et al., 2010). This technique has huge limitations, since
it can only cut single-stranded RNA and has thus the same limitations as
SHAPE chemistry approaches, but without the advantage of using a small
chemical probe. A summary of the general mechanisms of chemical-probes
and enzymatic techniques is provided in Figure 6.
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Figure 6: Modifications and sites of the interactions of the chemical-probes
(SHAPE reagents and DMS) and enzymes (V1 and S1 for example) (adapted
from Leamy et al. (2016)).
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4 The RNA structure in vivo

4.1 In vivo folding

The RNA folding in vivo is a complex process, where many contributors
could potentially affect the folding. While the RNA in vitro tends to fold
incrementally by small conformation changes until it finds the structure that
minimizes the free energy, (see Introduction 3.1), the folding in vivo is far
more complicated and it can lead to a different structure. The in vivo folding
is affected by different external contributors, such as general interactors or
chaperones, which can actively influence the resulting structure (Figure 7).
In general, the cellular environment has an effect on the RNA folding at
a temporal (for example: co-transcriptional folding) and spatial level (for
example: crowding effect).

Figure 7: Simplified example of the possible external forces that can affect the
RNA structure in vivo (adapted from Kwok et al. (2015)).

In contrast with the controlled in vitro environment, the cell is a crowded
and complex environment where 30-40% of the cytosol is occupied by macro-
molecules (Minton, 2001; Zimmerman and Trach, 1991). This crowding effect
is one of the most influential spatial contributors for the RNA folding.
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The crowding effect of the cytoplasm has by itself an effect on the
RNA folding in vivo. The presence of cosolutes and proteins, occupying
a huge volume of the space available in the cytoplasm, reduces the
degrees of freedom for macromolecule folding. This phenomenon is
especially studied for the protein folding: having fewer degrees of freedom
and thus a reduced number of possible intermediate structures available
in the conformational space constrains the folding process (Zhou, 2004;
Zhou et al., 2008). The crowding effect, or more precisely the excluded
volume (i.e. the volume not available to be explored by flexible folding
structures), was also studied for the thermodynamics of nucleic acids,
including DNA duplex/hairpin motifs, RNA ribozymes, and telomerase
pseudoknot RNA (Dupuis et al., 2014). A consensus of these studies is
that highmolecular-weight polyethylene glycols (PEGs), used to simulate a
crowding environment, increases the thermodynamic stability of the folded
structures. The thermodynamics and kinetics of this phenomenon were
studied at single molecule level in RNA for the folding of the GAAA tetra-
loop receptor, were the effect of the PEGs promote a >60-fold increase in the
folding equilibrium constant (Dupuis et al., 2014).

Regarding the temporal effects on the in vivo RNA folding, it was shown
that active transcription processes can affect the secondary structure, since
the in vivo folding can happen at the same time (Boyle et al., 1980; Brehm
and Cech, 1983). This phenomenon affects the folding rate and thus leads
to different folding times for different RNAs, and it can also influence the
final and the intermediate structures (Pan et al., 1999; Heilman-Miller and
Woodson, 2003). The first in vivo genome-wide data on the cotranscriptional
folding of E. coli suggest as a general rule that the short-range interactions are
fast and the related structures are formed early, while long-range interactions
require intermediate structures to fold into their final structure (Incarnato
et al., 2017).

As previously described in Introduction 3.1, one of the critical steps for the
in vitro folding is the presence of misfolded structures that are energetically
very similar to the native structure. These structures are very stable and
can remain for hours, trapping the RNA in a wrong folding-pathway
behind high energetic walls (Zemora and Waldsich, 2010). These misfolded
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intermediates are also common in vivo (Jackson et al., 2006). However, it was
shown that the folding of the RNA in vivo is generally faster than the folding
in vitro (Mahen et al., 2010).

One of the possible explanations for the faster folding of the RNA in vivo
is the presence of RNA chaperones, a class of proteins described in several
contexts and with different main functions (Schroeder et al., 2004; Tompa and
Csermely, 2004). Even though the proteins with chaperone activity are very
different and difficult to catalog, they have two characteristics in common:
1) the ability to bind RNA; 2) the ability to destabilize RNA structures. The
details of the mechanics behind the RNA chaperones are not completely
understood, but few details are known or speculated (Zemora and Waldsich,
2010). The RNA chaperones are able to bind RNA, as previously stated, but
with low affinity and in a promiscuous way (Herschlag, 1995). A weak
interaction is necessary for the chaperones to be released after unfolding
the RNA structure, allowing the RNA to fold again, and the non-selective
binding is the key for the chaperone being functional for any kind of
misfolded RNA (Zemora and Waldsich, 2010). It was also suggested that the
RNA chaperones are enriched in disordered domains, which makes them
more flexible and thus prone to bind RNAs promiscuously (Tompa and
Csermely, 2004).

Similar to the chaperones, also the RNA helicases are active in unfolding
the RNA structures to avoid kinetic traps. However, in contrast to the RNA
chaperones, their activity is ATP-dependent (Bleichert and Baserga, 2007).

4.2 Experimental techniques in vivo

In contrast to the RNA in controlled in vitro conditions, the RNA in
vivo is subject to a complex environment that can alter its structure by
external forces. Several in vitro experimental techniques were also applied
in vivo, but their applicability is not only subject to the limitations of the
techniques themselves, but also to adverse influences by the complexity of
the environment.

DMS was the first technique to be applied in vivo in 1988 (Climie and Friesen,
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1988; Moazed et al., 1988). More recently it was also applied on the human
transcriptome in vivo (Rouskin et al., 2014), and on Arabidopsis and yeast
(Ding et al., 2014; Rouskin et al., 2014). Strikingly, the results suggested an
almost complete lack of structure for the RNAs in vivo, especially in human
(Rouskin et al., 2014). However, as previously highlighted, DMS chemical
probing is only able to profile two nucleotides, with a partial coverage on
the human transcriptome.

In contrast to DMS, icSHAPE is able to profile all nucleotides, and the small
probe NAI-N3 was also successfully applied in vivo (Spitale et al., 2015). The
results suggested a lack of structure in the coding RNAs, but this lack is
not as drastic as was previously suggested by DMS studies. The icSHAPE
technique was also used to show that especially the non-coding RNAs tend
to be structured also in vivo (Spitale et al., 2015).

SHAPE-MaP was also successfully applied in vivo, but the measured
structural profiles showed a low correlation with the profiles determined
by icSHAPE (Smola et al., 2016). However, it was recently shown that the
chemical probe 1M7, used by SHAPE-MaP, is not able to pass through a
living cell membrane (Lee et al., 2017). This result suggests that the overall
signal for SHAPE-MaP secondary structure measurements is coming from
dead cells, where the structure is not informative since it could have been
altered by post-mortem and stress activities.

PARS is still unable to profile the RNA genome-wide in vivo, but it was
successfully applied under near-in vivo conditions to deproteinized natively
folded RNAs extracted from lymphoblastoid cells (Wan et al., 2014).

In addition to the previously discussed limitations, all chemical probes are
generally unable to distinguish between double-stranded regions and single-
stranded regions that are bound to proteins, since both lead to a lack of
signal (Mortimer et al., 2014). The experimental techniques are in general
limited to the extent of establishing the interface and the effect of the proteins
on the RNA structure. The complex conditions and the lack of a complete
understanding of all the forces influencing the RNA in vivo are still a major
problem, undermining the success of the RNA secondary structure probing
in vivo.
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A summary of the experimental techniques and their characteristics was
provided in the Table 2.

5 The RNA structure in silico

Information on the secondary structure is crucial for understanding the
function of an RNA and its role in cellular processes. However, structures
determined by crystallographic experiments are available for only very few
RNAs, among them only a small fraction from more evolved species such
as human and mouse (see Introduction 3.2), and chemical- and enzymatic-
based techniques alone are not able to provide the complete structural
profile. In addition, these techniques must rely on computational approaches
for the graphical overview, and SHAPE and PARS are not completely
accurate when tested on RNAs for which crystallographic data are available
(Delli Ponti et al., 2017; Wu et al., 2015). Thus, the development of in silico
predictive models that can provide an alternative to expensive and time
consuming experiments has always been of great importance (Zuker and
Sankoff, 1984).

The two most widely used types of computational methods for predicting
the secondary structure of an RNA are thermodynamics-based folding
algorithms and comparative sequence analysis approaches. The main
advantage of thermodynamics-based folding algorithms is that they can
predict the structure based on the sequence only, without requiring any
experimental data or homologous sequences. Comparative approaches can
achieve higher performances, but they need information about homologous
sequences. In addition to these approaches, there are thermodynamics-based
algorithms that can use experimental constraints, such as SHAPE-profiles, to
improve their predictive power. These hybrid methods will be discussed in
Introduction 5.3.

5.1 Thermodynamic approaches

The RNA in vitro tends to spontaneously fold into the structure with
the minimal free energy. However, an RNA can also fold into various
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suboptimal structures with a low free energy, and it can assume different
intermediate structures during the folding process (Treiber et al., 1998).
Thermodynamics-based prediction applications are usually developed to
search the minimum free energy (MFE) structure, although some can also
provide suboptimal structures and their associated free energies (Gruber
et al., 2008).

To compute the free energy of an RNA secondary structure, thermodynamics-
based algorithms use a set of parameters that were first determined by op-
tical melting experiments (Martin et al., 1971). The pioneering experiments
described a set of 12 energetic parameters for Watson-Crick pairs (Xia et al.,
1998). Other sets of parameters were measured for loops and GU pairs
(Mathews et al., 2004, 1999). Thermodynamic parameters are available at
the Nearest Neighbor Database (NNDB, https://rna.urmc.rochester.edu/
NNDB/) (Turner and Mathews, 2010).

The most used computational approaches are based on dynamic program-
ming algorithms (Nussinov and Jacobson, 1980). These algorithms sample
every structure that can be obtained from the primary structure under a set
folding rules (i.e. allowed nucleotide matches), searching for the conforma-
tion with the lowest free energy, which is considered the most probable na-
tive structure.

Three folding rules are at the core of any thermodynamics-based dynamic
programming algorithm:

1. A nucleotide cannot participate in more than one base pairing interac-
tion.

2. Based on sterical constraints, if two nucleotides are paired with each
other, at least 3 unpaired bases should separate them.

3. For any two pairs of nucleotides (A, B) and (C, D) with position indices
(a, b) and (c, d), the base pairing interactions are not allowed to cross
and break the nested structure, i.e. if a < c, then a < c < d < b has to
hold.

The third rule also excludes pseudoknots, thus limiting the predictive power

https://rna.urmc.rochester.edu/NNDB/
https://rna.urmc.rochester.edu/NNDB/
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of dynamic programming algorithms.

The most cited dynamic programming algorithms are RNAstructure (Reuter
and Mathews, 2010) and RNAfold (Gruber et al., 2008), which are considered
the gold standards of the field.

Thermodynamics-based dynamic programming algorithms are heavily lim-
ited by the length of the RNA molecule. On shorter molecules (< 700 nu-
cleotides), they can achieve accuracies of ∼0.70, but when the sequence is
longer than 700nt, the performances drop drastically (Hajiaghayi et al., 2012;
Lu et al., 2009). These algorithms are thus not well suited for predicting the
secondary structure of long RNAs such as rRNAs or lncRNAs, which can
have a total length of thousands of nucleotides. Moreover, as previously ex-
plained, the energy parameters of the thermodynamic models are based on
in vitro data and thus unable to reflect the in vivo environment (Martin et al.,
1971). The in vivo structure of an RNA molecule can be very different from
the predicted one, since the presence of a cellular environment with protein
interactions and external forces actively influences the folding (see Introduc-
tion 4.1). In general, thermodynamics-based folding algorithms are unable
to consider these effects, since they treat the RNA molecule as isolated from
any external forces.

Due to the limitations of free energy minimization algorithms, a number of
other approaches were developed, among them an algorithm that maximizes
the expected accuracy (MEA)(Lu et al., 2009),

Other approaches apply stochastic searching of the possible RNA structure
generated using a Boltzmann distribution (Harmanci et al., 2009) or partition
function based on probabilities (McCaskill, 1990).

Between the many tools based on different principle to predict the RNA
structure only from the sequence, worth to mention: CONTRAfold (Do et al.,
2006), Sfold (Ding et al., 2004), CentroidFold (Sato et al., 2009), Mfold (Zuker,
2003), RNAShapes (Steffen et al., 2006), GTFold (Swenson et al., 2012).

Dynamic programming algorithms can also be designed such that they
can predict pseudoknots. However, to achieve this level of prediction,
the tools have to sacrifice optimality and they usually require more
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computational time than classic dynamic programming algorithms that
exclude pseudoknots. An example is Pknots (Rivas and Eddy, 1999), which
is part of the RNAstructure suite and one of the most used algorithms
for pseudoknot prediction. Pknots is a thermodynamics-based dynamic
programming algorithm that employs a diagram representation borrowed
from quantum field theory (Rivas and Eddy, 1999). Due to the complexity of
this approach, the computational time for predicting the secondary structure
of a sequence of length n scales with n6, and the required storage scales with
n4 (Rivas and Eddy, 1999; Jabbari et al., 2018).

The following programs are designed to also predict pseudoknots: KineFold
(Xayaphoummine et al., 2005), CyloFold (Bindewald et al., 2010), pKiss
(Janssen and Giegerich, 2015), and Knotty (Jabbari et al., 2018).

5.2 Comparative sequence analysis

As explained in Introduction 2 the secondary structure is conserved
especially for specific non-coding RNAs. Therefore, information coming
from homologous sequences can be exploited to build predictive algorithms
with very high performances. This approach is well suited for RNAs that
have many homologues, such as entire RNA families, and that have a
known strong RSS conservation, for example the ancient rRNAs (Bokov and
Steinberg, 2009). The basic approach is to align this large set of evolutionarily
related RNA sequences and to scan them for sequence covariation. This
approach is always combined with a predictive step. There are three
different approaches for combining the alignment with the predictive step:

1. The sequences are first aligned and then the alignment is used as
a constraint for the prediction. This approach is fast, but only
when the sequence identity within the RNA family is high (75% or
higher). Example programs are RNAalifold (Bernhart et al., 2008) and
TurboFold (Harmanci et al., 2011).

2. The predictive step is done before the alignment. After all the predicted
structures are generated, a consensus is selected as the best structure.
This approach is ideal when the RSS is highly conserved, for example
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in a family set. An example tool is RNAcast (Reeder and Giegerich,
2005).

3. The last approach is executing the predictive step and the alignment
at the same time. Algorithms of this type are broadly applicable,
even when there is low sequence or structural identity. Examples
are Dynalign/Multilign (Fu et al., 2014; Xu and Mathews, 2011),
Foldalign (Torarinsson et al., 2007), LocARNA (Will et al., 2007), PARTS
(Harmanci et al., 2008), and RAF (Do et al., 2008).

Comparative sequence analysis is very limited by prior knowledge about the
case-study RNA. Not only known homologues should be available in many
different organisms to achieve the large number of sequences required, but
they should also be characterized by a high sequence or structural similarity.
With all these limitations, comparative sequence analysis-based approaches
cannot be applied on novel discovered RNAs, or on debated and complex
classes such as lncRNAs, where already defining the concept of homology is
a challenge.

5.3 Integrative models: when the experiments meet the predictions

High-throughput experimental techniques such as SHAPE or PARS are able
to profile the RNA at single nucleotide resolution. However, they can only
provide a score for the propensity of each nucleotide to be in single- or
double-stranded conformation, i.e. they cannot provide information on the
actual base pairings. Since folding based on the structural profile alone does
not have a unique solution, an algorithm is needed for predicting the actual
base pairings and for visualizing the secondary structure.

Recently, it was shown that experimental data can be used as additional
constraints for thermodynamics-based algorithms (Lorenz et al., 2016; Low
and Weeks, 2010). Hard constraints force the algorithm to assign a specific
conformation to a nucleotide and thus reduce the degrees of freedom of
the tool. Soft constraints work as guideline, using the experiments as a
continuous signal, where a weak signal allows more degree of freedom to
the algorithm without imposing a structure. Due to their flexibility, soft
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constraints are widely used and accepted by the majority of the algorithms.
RNAstructure and RNAfold both accept DMS and SHAPE data as soft
constraints (Lorenz et al., 2016; Hajdin et al., 2013). SHAPE data were
successfully integrated into these thermodynamic algorithms to produce
an improved visualization of the structure as well as to improve the
performances of the algorithm. In some cases, incorporating experimental
data improved the accuracy to up to 90% (Low and Weeks, 2010; Hajdin
et al., 2013).

While the use of in vitro chemical-probed data to improve the predictive
power of in silico prediction algorithms is well established (Delli Ponti
et al., 2017; Wu et al., 2015), the use of in vivo data combined with
predictive algorithms is still not well studied. At the time of the writing
the thermodynamics-based approaches are still blind regarding the features
guiding the in vivo RSS. A simple understanding of the structure in vitro
could be not significant if the active in vivo structure has a different
conformation prioritized by the environment. For example, machine-
learning approaches could integrate multi-variables characterizing the RNA
structure in vivo. This not only will be crucial to define the complex set
of features influencing the RNA structure in vivo, but also would improve
the predictive power of in vivo data. A piece of the in vivo puzzle will be
provided in Chapter III and further analyzed in the General Discussion.

6 Toward the RNA Structurome

The genome-wide application of high-throughput profiling experiments (In-
troduction 3.2 and 4.2) is leading to the discovery of general structural prop-
erties of entire transcriptomes. Genome-wide analyses of RNA secondary
structures can identify structural patterns and motifs in coding and non-
coding RNAs from various organisms, and can thus help to understand how
the structure is related to the function and to the expression of different types
of RNA (Mortimer et al., 2014).

Experimental high-throughput techniques were applied to probe the struc-
tural profiles of the entire transcriptome of several different organisms and
under different conditions. To date, the ‘RNA Structurome’ of the following
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organisms is available: Saccharomyces cerevisiae (in vitro) (Kertesz et al., 2010),
Mus musculus (in vitro/in vivo) (Spitale et al., 2015), Homo sapiens (in vitro)
(Wan et al., 2014), Danio rerio (in vitro) (Kaushik et al., 2018), Oryza sativa
(in vivo) (Deng et al., 2018), Arabidopsis thaliana (in vivo) (Ding et al., 2014),
Caenorhabditis elegans (in vitro) (Li et al., 2012) and Drosophila melanogaster (in
vitro) (Li et al., 2012).

Among the results of these studies there are interesting general findings. In
human, Drosophila, zebrafish and C. elegans the UTRs are more structured
(i.e. enriched in double-stranded nucleotides) than the coding regions, but
this is not true for Arabidopsis and yeast. Also a three-nucleotide periodicity
(unstructured followed by highly structured nucleotides; Kertesz et al. 2010)
in the secondary structure data was detected in yeast, Arabidopsis, zebrafish,
and human (Mortimer et al., 2014; Kaushik et al., 2018). This result suggests
that, on average, the second nucleotide in a codon is the most likely to be
involved in secondary structural interactions, since it is the highly-structured
in the period (Mortimer et al., 2014; Kertesz et al., 2010). Moreover, since
the ribosome density in translated sequences was shown to also have a
periodicity of 3-nucleotides (Ingolia et al., 2009), the structural periodicity
could be related to a facilitated translation (Kertesz et al., 2010). Consistently,
in all the aforementioned organisms (yeast, human, C. elegans, Arabidopsis,
Drosophila) there is a depletion of structure close to the start and the stop
codon (Mortimer et al., 2014). This pattern was also found in yeast using the
melting temperatures (see Introduction 3.2) (Wan et al., 2012).

In addition to high-throughput profiling experiments, also in silico method-
ologies were applied on multiple RNAs, offering an interesting and large col-
lection of data that is available in public databases. The database compaRNA
(Puton et al., 2013) offers RNA secondary structure predictions from 44 al-
gorithms (http://iimcb.genesilico.pl/comparna/methods/) benchmarked
against 265 RNA structures coming from PDB data. A past version of LNCi-
pedia (Volders et al., 2013) contained information on 21,488 unique lncR-
NAs in human, including their secondary structure as predicted by RNAfold
(Gruber et al., 2008). The current version of the database includes informa-
tion on 107,039 lncRNAs (https://www.lncipedia.org/), but the predictions
of the secondary structure were not yet available at the time of the writing.

http://iimcb.genesilico.pl/comparna/methods/
https://www.lncipedia.org/
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The rapid increase of the amount of available high-throughput data, both
experimental and predicted, is not only helping the scientific community to
understand the folding rules and the influence of the secondary structure of
an RNA on its function, but it is also opening novel and not yet completely
explored possibilities for data based prediction approaches (e.g. machine
learning) and large-scale analyses. In addition, applying genome-wide
structure probing techniques both in vitro and in vivo, as was done for
icSHAPE (Spitale et al., 2015), can be the next step to understand the
structural differences between RNA in vitro and RNA in vivo.
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A high-throughput approach to profile RNA structure

The main goal when I started my PhD was to use high-throughput data from
the yeast transcriptome to build a predictor of RNA secondary structure
(Kertesz et al. 2010). At that time, a predictive tool trained on large-scale
experimental data was still not available, as it was instead common for other
fields, such as for instance protein-RNA interaction (Bellucci et al. 2011). The
majority of the algorithms of RNA secondary structure (RSS) prediction were
based on dynamic programming or on comparative analysis, as I explained
in Introduction 5.

During the development of my algorithm, several new experimental
techniques started to be published. A new PARS protocol was applied on
the complete human transcriptome (Wan et al. 2014), while SHAPE, even
if was only applied genome-wide on HIV-1, continued to be the standard
in the field. icSHAPE was a change: a SHAPE chemistry-based technique
applied high-throughput on mouse, also in vivo (Spitale et al. 2015).

All these new techniques, datasets and organisms were integrated as training
set in my algorithm. CROSS (computational recognition of RNA secondary
structure) is the first tool to predict the RNA secondary structure trained
on high-throughput experimental data. Each technique was selected as
independent set, and a Neural Network was trained to simulate each
technique.

CROSS is able to profile an RNA molecule using only the sequence, at
single nucleotide resolution and without sequence length restriction. This
is especially important since the majority of the thermodynamics-based
algorithms are restricted up to 1000 nucleotides.

CROSS simulates SHAPE data. As SHAPE, it can be used to increase
the predicted power of thermodynamic softwares such as RNAstructure,
generating in silico SHAPE-like constraints.

The ability of CROSS to profile long RNA molecules made it the perfect
candidate to assess the RSS of lncRNAs. For this reason, several collaborators
working on novel discovered or poorly characterized lncRNAs already
employed the tool. Moreover, several tools of the laboratory, such for
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example CROSSalign (see Chapter II) or a future version of catRAPID will
rely on CROSS architecture. Moreover, CROSS helped several lines of
research in the lab, for example it was employed to study the scaffolding
properties of the lncRNAs in stress granules, showing how the secondary
structure is an important component for their functionality (Botta et al. 2018).

CROSS was published in Nucleic acids research in 2017.

Riccardo Delli Ponti, Stefanie Marti, Alexandros Armaos & Gian Gaetano
Tartaglia. A high-throughput approach to profile RNA structure. Nucleic
Acids Research. 2017, Vol. 45, No. 5. doi:10.1093/nar/gkw1094. PMID:
27899588.

Delli Ponti R, Marti S, Armaos A, Tartaglia GG. A high-
throughput approach to profile RNA structure. Nucleic 
Acids Res. 2017 Mar 17;45(5):e35–e35. DOI: 10.1093/nar/
gkw1094

doi: 10.1093/nar/gkw1094
https://academic.oup.com/nar/article/45/5/e35/2605731
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A method for RNA structure prediction shows evidence for
structure in lncRNAs

In this Chapter, I will introduce CROSSalign, a new tool developed as a
further application of the CROSS algorithm. As specified in the previous
Chapter, CROSS is a powerful tool, able to profile long and complex RNA
molecules in short computational time. The profiles produced by CROSS are
also an interesting resource, that can be exploited by other tools. Knowing
this potential, in the laboratory we wanted to developed a new algorithm
based on CROSS technology.

There are few algorithms available able to structural align RNAs of different
length, especially for long molecules. The combination of the structural
profiles of CROSS with a dynamic time warping algorithms (DTW), which
allows comparison of profiles of different length, is the core of my new
algorithm: CROSSalign. CROSSalign is able to compute the structural
distance of one or many RNA sequences, regarding of their length, to
assess the secondary structure similarity between them. The application of
CROSSalign could shine new light on the similarities and the conservation
of complex RNA molecules.

The structural conservation of lncRNAs is still debated. The structural
conservation was supported for specific regions of lncRNAs such as HOTAIR
(Somarowthu et al. 2015) and the RepA of Xist (Maenner et al. 2010).
However, a recent statistical analysis suggested that the secondary structure
conservation in the previous cases is not statistical significant (Rivas et al.
2017). To help unfold the mystery, I decided to apply CROSSalign to study
structural conservation of lncRNAs.

The results of my analysis reveal a structural conservation between known
lncRNA domains including Xist RepA and HOTAIR D2, supporting a
structural conservation for lncRNAs. CROSSalign was also applied on
single-stranded RNA (ssRNA) viruses, specifically on HIV. The results
highlight regulatory regions with a similar structure in HIV and other ssRNA
viruses, opening new questions regarding similar mechanisms mediated by
the secondary structure. Worth to specify that RepA and D2 profiles were
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accurately recognized in a pool of RNAs reverse engineered to have the same
structure but different sequences.

CROSSalign is able to identify thousands of matches between long RNA
molecules. The algorithm can be applied to build a ‘structural homologome’
among RNAs of different organisms (see General Discussion for more
details). At the lab we are currently computing the structural homologome
between all the long intergenic non-coding RNAs (lincRNAs) of human and
mouse (32x106 interactions).

CROSSalign was recently submitted to Frontiers in Molecular Biosciences.

Riccardo Delli Ponti, Alexandros Armaos, Stefanie Marti & Gian Gaetano
Tartaglia. A method for RNA structure prediction shows evidence for
structure in lncRNAs. Frontiers in Molecular Biosciences (under review).

Riccardo Delli Ponti, Alexandros Armaos, Stefanie Marti & Gian Gaetano
Tartaglia. A method for RNA structure prediction shows evidence for
structure in lncRNAs. bioRxiv. 2018 July. doi:https://doi.org/10.1101/
284869.

Delli Ponti R, Armaos A, Marti S, Tartaglia GG. A Method 
for RNA Structure Prediction Shows Evidence for Structure 
in lncRNAs. Front Mol Biosci. 2018 Dec 3;5. DOI: 10.3389/
fmolb.2018.00111

doi: https://doi.org/10.1101/284869
doi: https://doi.org/10.1101/284869
https://www.frontiersin.org/articles/10.3389/fmolb.2018.00111/full
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Predicting the in vivo structure of RNA molecules

As explained in Introduction 4.1, the RNA structure in vivo is a complex
puzzle. If proteins are now accepted as pieces in the puzzle, their
contribution to the in vivo folding is still poorly understood. At the moment
of the writing, the use of in vivo data by computational approaches is still not
explored.

Few trustable in vivo experimental data are available, and even less experi-
ments provide both in vivo and in vitro data for the same dataset/condition.
icSHAPE is one of the few techniques providing high-quality data, genome-
wide and both in vitro and in vivo (Spitale et al. 2015).

For this project, I used icSHAPE data and high-throughput predictions to
assess the contributions of the proteins and of the crowding effect on the
RNA secondary structure in vivo. The idea behind the new approach is
also to combine the contribute of the RNA sequence and the interacting
proteins to achieve a better understanding of the RNA secondary structure
in vivo. The sequence contribution is exploited using the same machine
learning approach behind CROSS (see Chapter I), while to understand the
protein contribution we used catRAPID, an algorithm developed in our lab
to predict protein-RNA interactions (Bellucci et al. 2011), and a filtering
procedure based on RNA binding domains (Ray et al. 2009).

While it is possible to predict in vitro data using only the sequence
contribution, for the in vivo data to achieve better performances it is
necessary to provide extra layers of information. The results shows a positive
influence of the potential to form a crowded environment, where RNA
fragments discriminated by the enrichment in protein binding domains are
easier to be predicted than RNA fragments depleted of binding domains.
Moreover, the implementation of protein data during the training of the
algorithm shows a small improvement in the prediction of in vivo structural
data.

My computational analysis is a small contribution to the understanding
of the RNA secondary structure in vivo, but it is the first computational
approach that uses the experimental in vivo data and that connects the
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proteins and their effect on the RNA structure. During the next months I
plan to improve and refine the analysis with the aim to build CROSSalive,
the first predictor of structural in vivo data.

The algorithm could be combined with CROSS to provide the differences
between the in vivo and in vitro structure of RNA molecules. The process
behind the analysis can be refined and applied to more complex integrative
approaches as Deep Learning procedure employing more contributors, not
only the proteins, to achieve a comprehensive knowledge of the RNA
structure in vivo. I will talk more extensively about this in the General
Discussion.

The final manuscript will be submitted to Bioinformatics.

Riccardo Delli Ponti, Alexandros Armaos, Fernando Cid & Gian Gaetano
Tartaglia. Predicting the in vivo structure of RNA molecules. Bioinformatics
(in preparation).



Predicting the in vivo structure of RNA molecules

Riccardo Delli Ponti, Alexandros Armaos, Fernando Cid & Gian Gaetano
Tartaglia

Introduction

The RNA secondary structure (RSS) is fundamental for its biological
function, especially for the interaction with proteins (Bellucci et al., 2011).
The secondary structure of the RNA is altered from in vitro to in vivo
conditions due to the presence of a different environment and the action of
external interactors, such as RNA binding proteins and ions (Minton, 2001).

Several experimental techniques probed the secondary structure of tran-
scriptome of different organisms (Strobel et al., 2018). Specific techniques
such as icSHAPE, DMS and SHAPE-MaP were applied in vivo (Spitale et al.,
2015; Rouskin et al., 2013; Siegfried et al., 2014; Smola et al., 2015). However,
the complex mechanisms contributing to the formation of the secondary
structure in vivo are still poorly characterized. Previous analysis suggested
a lack of structure for the RNA in vivo (Rouskin et al., 2013), while recent
results proposed a structural conservation from in vitro to in vivo, especially
for non-coding RNAs (Spitale et al., 2015).

If in vitro experimental data are well integrated in thermodynamic ap-
proaches, predicting the structure in vivo is very difficult (Delli Ponti et al.,
2017). Indeed, computational methods cannot predict all the forces driv-
ing the RNA structure in vivo (Eddy, 2004) and the scientific community
can rely only on few experimental techniques able to assess the RNA sec-
ondary structure in vivo. RNA undergoes a number of modifications in the
cellular environment, including methylation (m6a), which is important for
post-transcription regulation of gene expression (Wei and Moss, 1977). In
the methyl-tranferase complex in mammals, Mettl3 is the active component
responsible of the majority of RNA methylation modifications (Meyer et al.,
2012). Recently, icSHAPE in vivo data upon Mettl3 knockdown indicated an
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influence of m6a on the RNA secondary structure with a helicase-like activ-
ity, promoting a transition toward unpaired nucleotides (Spitale et al., 2015).

Through analysis of transcriptome-wide data we are building a method for
the prediction of RNA secondary structure in vivo. One key element in
our approach is the prediction of protein interactions (Cirillo et al., 2016)
which allows us to mimic the complex cellular environment. For the first
time we introduce a large-scale analysis of in vivo data and highlight a
relationship between proteins and RNA structure, predicting in vivo data
with an accuracy of 0.80 or higher.

Results and Discussion

DMS can study the contributions of adenine and cytosine to RNA structure
(Mortimer et al., 2014) and the 1M7 and NMIA reagents of SHAPE-MaP
have poor solubility and reactivity (Lee et al., 2017), icSHAPE is, at present,
the most reliable in vivo technique. Following the strategy applied on our
previous work (CROSS)(Delli Ponti et al., 2017), we selected 105 RNA regions
encoding the highest icSHAPE signal for single- (reactivity=1) and double-
stranded conformation (reactivity=0 or lack of signal). These fragments were
used to assess the sequences contribution during the training process (see
Methods: Training of the network).

Artificial neural networks (ANN) were initially trained only using sequence
contributions: icSHAPE in vitro data and icSHAPE in vivo with and without
Mettl3 knockdown (m6a+/m6a-) (Spitale et al., 2015). Three ANNs (in vitro,
in vivo m6a+, in vivo m6a-) were trained on the same conditions (training and
testing sets of the same size), and cross-validated between each other (Figure
1a). The in vitro model is the one with the best performances in 10-fold
validation during the training step, showing how it is easier to predict the
RNA structure in vitro (0.86 accuracy or ACC; Figure 1b). However, during
the cross-validation with the other datasets, we noticed that the in vitro
model is not able to correctly predict the in vivo datasets. This is because of
the complexity of the in vivo conditions, which cannot be predicted using the
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sequence information only (Delli Ponti et al., 2017), since RNA structure is
altered by the presence of proteins. To correctly predict the RNA secondary
structure in vivo, we integrated additional contributions into the predicted
model.

Figure 1: (A) Cross-validation between ANN trained on top/bottom 100’000
icSHAPE fragments. The accuracy is reported for the 5% of the testing dataset.
Each comparison is done between the best 10 cross validated network against
the other datasets. (B) Cross validation inside each specific (in vitro, in vivo
m6a+, in vivo m6a-) dataset with the same training and testing conditions. The
accuracies are reported for the top and bottom percentage of the testing set,
where 50% is the complete set.
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It is known that the crowding effect or presence of other molecules
characterize the difference between in vitro and in vivo (Minton, 2001). The
crowding environment, for instance, has a positive influence on the RNA
folding, reducing the degree of freedom toward the structure taken in the
cellular milieu (Dupuis et al., 2014). To study how the information coming
from protein interactions is related to secondary structure predictions, we
analyzed the RNA fragments enriched in RNA binding proteins (RBPs)
domains (eg. ACACA for HNRNPL; see Methods: Motifs enrichment
selection; Figure 2a). The presence of binding domains inside a RNA
fragment could be intended as the potential binding and of a resulting
crowded environment with more possible interactors. Our results indicate
that it is easier to predict the secondary structure of RNA fragments
enriched in RBPs motifs, while it is more difficult to predict the structure
of fragments depleted of binding domains (Figure 2b). This finding suggests
the important contribution of proteins for the predictions of RNA structure
in vivo. The result also highlights the importance of the crowding effect,
since the more a fragment is prone to bind proteins, the easier is to predict
its structure. We note that the direct binding of proteins to an RNA could
alter and affect the structure, especially if the binding is strong and specific,
bringing to a huge difference between the native structure in vitro and in vivo.
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Figure 2: (A) Pipeline explaining the process of filtering for the RNA fragments
according to their propensity to bind many RBPs (crowding effect). The RNAs
are selected for the presence of known RBDs extracted from RNAcompete (Ray
et al., 2009). Fragments with more than 5 motifs in their sequence are selected
as highly contacted by proteins in vivo (enriched), while the ones with 0 motifs
as poorly contacted (depleted). (B) Cross validation inside each specific dataset.
The accuracies are reported for the top and bottom-ranked parts of the testing
set using the predicted score as a sorting variable, where 50% is the complete
set. Filtering the quality of the RNA fragments using as positive RNAs highly
contacted and as negative RNA poorly contacted increases the predictive power
of the network, comparing to use both classes enriched or depleted of contacts.

To further prove the protein contribution to predict the RNA secondary
structure in vivo and how it is affected by the direct binding, we exploited
RBPs prediction. This step is fundamental because it allows to directly
compute binding of all proteins from first principles (Bellucci et al., 2011),
without the use of binding domains retrieved from previous experiments
(Agostini et al., 2013).

We used catRAPID to predict the interaction of several fragments of 640
proteins (described in Agostini et al. (2013) and Cirillo et al. (2013) if
uniform) with 105 double/single-stranded in vivo RNA fragments (a total
of 12.8x107 interactions; Methods: Selection of the protein contribution in
the in vivo data). The protein fragments were firstly selected for their ability
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to discriminate single and double-stranded RNA using icSHAPE data. We
found that the dataset was enriched for proteins with GO terms associated to
RNA structure, and further selected cases with strong signals (see Methods:
Selection of the protein contribution in the in vivo data; Figure 3a). The
101 selected proteins were included into the training of the algorithm, to
complement the information coming from the sequences. Using also the
protein contributions leads to an improvement of the predictive power of
the algorithm, up to an ACC of 0.88 during the 10-fold validation (Figure
3b).

Figure 3: (A) Pipeline summarizing the process of filtering for protein
contributions. (B) Cross validation inside each specific dataset (in vivo only
sequence, in vivo sequence with proteins). The accuracies are reported for the
top and bottom percentage of the testing set, where 50% is the complete set.
Using the protein information coming from the catRAPID score of the best 101
proteins previously selected increases the predicting power in vivo.

With these novel approaches we plan to build CROSSalive, an algorithm able
to improve the prediction of RNA secondary structure in vivo data. Although
we fully understand the limits of our approach to completely understand
the features influencing the RNA structure in vivo, we have shown for the
first time a direct relation between protein interaction and RSS prediction.
Future multi-features approaches, such as convolutional neural networks,
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could integrate many properties of the in vivo environments, including the
proteins, to provide a more complete understanding of the RNA secondary
structure in vivo.

Our approach could be refined in several ways. The proteins could be further
filtered or differently normalized to improve the predictive power of the
ANN trained joining sequence and protein contributions. Moreover, the
potential of crowding environment could be also integrated in the predictive
process. The methodology could be tested on other in vivo structural data to
further prove its predictive power.

The procedure reported for in vivo m6a+ data could be also applied for in
vivo m6a- to predict structural changes related to RNA methylation. The
combination of the two predictive approaches (m6a- and m6a+) would
lead to a complete understanding of the RNA structure in vivo and the
methylation pattern related to the structure.

Materials and Methods

Selection of the protein contribution in the in vivo data

We used catRAPID omics (Agostini et al., 2013) to select the proteins with
a stronger binding with the RNA fragments having a higher propensity to
be double or single-stranded, according to icSHAPE in vivo data (200’000
double- and single stranded fragments). From a starting pool of 630
proteins, we selected the fragments of proteins with a strong predictive
power on RBPs domains. The fragments were then divided in enriched (>
5 domains; at least 1/10 of the fragment length) or depleted (0 domains)
of binding domains. Neural networks were trained, using the information
coming from the sequence only, on different datasets using the combination
of depleted/enriched fragments for the two classes (single-stranded and
double-stranded secondary structure). The training sets were balanced and
of the same size. Anyway, it is easier to predict the secondary structure
of fragments when enriched vs depleted fragments define the two classes.
On the contrary, when both classes are defined by depleted fragments (i.e.
without any binding domains), it is more difficult to predict them.
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Training of the network

For more information about the component of the ANN, check our previous
paper Methods (CROSS; (Delli Ponti et al., 2017)). We selected the 100’000
fragments of 51 nucleotides with the middle nucleotides with a higher
propensity to be single-stranded for icSHAPE reactivity, and the 100’000
with a higher propensity to be double-stranded. The window size is
enough to capture the combinatorial complexity of icSHAPE data on mouse
transcriptome (i.e., 451 > 12x106), which is also an accepted size for catRAPID
algorithm. The sequence component was coded using a ‘one hot encoding’
procedure, where each nucleotide is converted in a 4mer notation: A = (1, 0,
0, 0), C = (0, 1, 0, 0), G = (0, 0, 1, 0) and U = (0, 0, 0, 1). This approach was
used to train the ANNs using the sequence only, including the ones based
on the RBP motifs enrichment.

To study the protein binding, the catRAPID scores of the 111 discriminative
proteins were integrated in the training step. First, the youden cut-off
was computed for each protein on the complete dataset of RNA fragments
(single/double-stranded). Then the score of each protein was normalized
using the cut-off, setting the scores higher to 1, and the lower to -1. The
following 111 normalized scores were integrated for each RNA with the
information coming from the sequence, for a total training complexity of 305
variables.
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Limits of the understanding of the RNA structure

The RNA secondary structure (RSS) is crucial for understanding the
functionality, the role and the interactions of a RNA molecule (Bellucci et al.,
2011). The folding process in vitro is controlled by primary structure alone
while in vivo there is a complex environment in which multiple components
may exert a strong influence (Rouskin et al., 2014). While computational
approaches are still unable to understand the complex mechanisms of
the folding in vivo, several thermodynamic algorithms are able to predict
the RNA secondary structure in vitro using dynamic programming (for
more details check Introduction). Regarding the computational approaches,
RNAstructure (Reuter and Mathews, 2010) and Vienna (Gruber et al.,
2008) are considered the golden standard for RNA secondary structure
prediction. Even if they are constantly updated with new modules and
features, the core of the thermodynamic approaches is still very similar to
the first algorithm introduced by Zucker and Siegler almost four decades
ago (Zuker and Sankoff, 1984; Stormo, 2006). Most of the biological rules
of the thermodynamics-based algorithms are extracted from optical melting
experiments, which provide energetic constraints for the parameterization
of the free energies (Martin et al., 1971). These parameters, even if updated,
are still based on few RNA structures, usually tRNAs, rRNAs and ribozymes
(Martin et al., 1971).

NMR and X-ray are still considered the universal standards for the definition
of a structure (Latham et al., 2005). If this is vastly true and accepted
for proteins, the RNA crystals are instead few and limited, as I discussed
in the Introduction 3.2 referring to the RNAstrand database. Analyzing
the complete PDB database (https://www.rcsb.org/), only 1,276 RNA
structures are available at the time of the writing. Of this pool, 808 crystals
are of unknown taxonomy, with only 39 crystals coming from human. The
crystals are limited in length, with only 47 RNA structures longer than
200 nucleotides, with a maximum of 2,880nt for 23S rRNA of Deinococcus
radiodurans (ID 2O43).

Computational approaches are also limited by the length of the sequence,
with an accuracy that drops for sequences larger than 700 nucleotides
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(Hajiaghayi et al., 2012; Lu et al., 2009). Even if the algorithm can process
large sequences, the computational times are huge and these approaches are
usually not suited for high-throughput analysis (Agostini et al., 2013).

High-throughput characterization of the RNA structure

Limitations and restricted applicability of crystallographic techniques for the
RNA polarized the scientific community toward the developing of new high-
throughput technologies (for details check Introduction 3.2).

As I discussed in the Introduction 3.2 and 4.2, high-throughput techniques
were applied on complete transcriptomes. The comparison of the results
would lead to build an RNA structurome (see Introduction 6). This is
achievable only using genome-wide data, which was impossible in the
past having because only low-throughput crystallographic structural data
were available. The advent of genome-wide techniques is bringing a major
understanding of the universal role of RSS.

The majority of the predictive algorithms in different fields (for example
protein RNA interaction) are based on machine learning approaches trained
on experimental data, not on thermodynamic principles (Bellucci et al., 2011;
Alipanahi et al., 2015; Cirillo et al., 2015; Livi et al., 2016; Danko et al.,
2015; Mort et al., 2014). With the lack of experimental data regarding
RNA structures, training a machine learning approach was an almost
impossible task. However, the new flow of data coming from high-
throughput techniques could be used to train machine-learning approaches.
For example, the predictive power of icSHAPE data was already explored
not to predict the RSS, but to improve the predictive power of protein-RNA
interactions (Spitale et al., 2015).

SeqFold was one of the first tools based on experimental data (Ouyang et al.,
2013). The algorithm is not a proper machine learning approach trained
on the experimental data, but it uses the experimental profiles to select
the best structure. Thermodynamic-based methodologies use experimental
data, mainly to guide and improve their predictive power. These integrative
approaches combine experimental data as constraints for thermodynamics-
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based approaches, as done in other fields (Vendruscolo et al., 2003). These
methods are able to improve performances with very good reliability (Low
and Weeks, 2010; Hajdin et al., 2013; Lorenz et al., 2016), but the algorithms
lose all their benefits since they would need an experiment to set the
constraints.

Integrative approaches exploit experimental data to refine theoretical mod-
els. A direct result is an improvement in the predictive power of the algo-
rithms, such as the use of SHAPE data inside thermodynamics-based ap-
proaches (Low and Weeks, 2010; Lorenz et al., 2016). Experimental data,
used as a soft-constraint (see Introduction 5.3 for details), allow a reduction
of the conformational space, with less folded intermediates to be sampled
by the algorithm. In Chapter I I presented my algorithm, CROSS, a tool
designed to high-throughput predict the RSS and trained on experimental
data. One interesting feature of CROSS is the ability to simulate in silico
SHAPE constraints, which can be used to improve the predictive power of
RNAstructure and Vienna. This unique feature can lead to further develop-
ments in which algorithms can be used to generate new constraints to im-
prove thermodynamic approaches. Alternatively, experimental techniques
should be used to provide constraints to improve the predictive power of
thermodynamic approaches. For instance, NMR chemical shift data were
used as soft-constraints to improve the accuracy of secondary structure pre-
dictive approaches (Zhang and Frank, 2018).

SHAPE data are integrated in other computational approaches. The use
of soft-constraint can be a guideline to improve different computational
fields. For instance SHAPE score was used to discover structural domains
that could not be identified using single-nucleotide resolution (Pollom et al.,
2013). Moreover, SHAPE data were used to study structural conservation
(Lavender et al., 2015b) and they were also combined with the sequence
as guideline for multiple alignments (Lavender et al., 2015a). Since the
structural score of CROSS can also be used as in silico alternative to
SHAPE data to improve the predictive power of RNAstructure and Vienna,
new applications of CROSS profiles can lead to novel improvements,
as for SHAPE data. CROSS is the first algorithm to predict the RNA
secondary structure trained on experimental data, without any sequence
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length restriction and at single nucleotide resolution. The high-throughput
application of CROSS can profile in few days entire transcriptomes, leading
to the possibility of developing in silico structuromes.

During the developing of CROSS, five datasets of different techniques and
organisms were trained using Neural Networks (see Chapter I). The models
learned basic rules of the techniques and interesting characteristics arise
from the cross-validation of the models.

The ability of CROSS to reproduce different experimental techniques is
one of the most interesting feature that should be further exploited.
Using more than one model on the same RNA allows to sample multiple
conformations of the same structure, based on the characteristics learned
from each technique. Sampling multiple conformations is a relevant point to
understand the folding and the functionality of an RNA molecule. Indeed,
SHAPE data were already used to sample multi structural conformations
(Kutchko et al., 2015). Moreover, to sample long and complex RNA
molecules, such as lncRNAs, different experimental techniques can be used
to obtain multiple profiles, which can be combined to have a more complete
view of the secondary structure (Novikova et al., 2012). The different
modules of CROSS can be applied in the same way on long and complex
RNA to extract useful structural information on regions with consensus (i.e.
stable conformation) or disagreement (i.e. regions of variability) between the
models trained on different techniques.

Worth to specify that the genome-wide techniques are not completely
accurate (Delli Ponti et al., 2017; Wu et al., 2015). During the training of
the ANNs (artificial neural networks) at the core of CROSS methodology,
a fundamental step was the filtering and the assessment of high-quality
data. Training fragments not consistently associated to a high-signal were
discarded from the set. The quality of the data is a critical step to achieve
better predictive power for an ANN (Najafabadi et al., 2015).

CROSS is not only a suggested application to profile the secondary structure
of lncRNAs but, thanks to its high-throughput applicability, can be used
to generate genome-wide in silico data that can be the base to a bigger
understanding of the RNA structurome.
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Toward the structural homologome

Having a powerful methodology to profile the RSS of very large molecules
opens many possibilities and applications. To understand RNA folding, the
simple prediction of secondary structure is not enough, but other related
properties can be explored, such as for instance conservation. Indeed, the
conservation of the secondary structure is an important property for the
understanding of the functionality and the importance of a specific structure
across the species.

CROSSalign was introduced in Chapter II and it represents the natural
evolution of the CROSS method. The algorithm is not a new method,
but a combination of CROSS and DTW (dynamic time warping) algorithm
(Giorgino, 2009). The two approaches together allow the comparison of
structural profiles providing a structural distance to evaluate the similarity.
In essence, CROSSalign computes pairwise distances, evaluating structural
homology only on the base of the predicted secondary structure of the
two RNAs. This approach differs from the multiple-alignment, where it
is necessary to use a large number of homologs to establish conservation
(Tavares et al., 2018).

The ability of CROSSalign to provide pairwise alignments for large
molecules and domains offers a huge versatility to understand structural
conservation and similarity. Indeed, finding global structural similarities be-
tween different RNAs can lead to discover molecules that can share similar
mechanisms or functionality, or even a class of molecules (Ganot et al., 1997).

Even if the overall sequence is not conserved for long and complex
RNA molecules, specific important regions can be conserved in structure
(Somarowthu et al., 2015). The search of conserved structural domains
could be fundamental to discover regulatory regions (Lu et al., 2011). Given
the importance of these domains, CROSSalign also allows the division of a
profile into subdomains to search for specific structural conserved regions.

CROSSalign was build focusing on its high-throughput applicability. At the
time of the writing, the structural profile of a target RNA can be compared
with the complete set of long-intergenic non-coding RNAs (lincRNAs)
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of several organisms (zebrafish, human, mouse, macaque and rat). The
resulting compendium of interactions is a prime example of what can be
called in silico ‘structural homologome’, based on the secondary structure
similarities. This ‘structural homologome’ is a powerful instrument to
identify RNAs with strong similarity in complete organisms. Indeed,
novel RNAs could be clustered into structural families and their unknown
functionality could be associated to their homologs in structure. The
structural homology adds a new level of characterization, especially for
molecules in which the sequence is not well conserved, such as for instance
the lncRNAs. If CROSS profiles long and multiple RNAs to build an in silico
‘structurome’, CROSSalign lead to the high-throughput characterization of
the complete set of a ‘structural homologome’. For example, to gather
further knowledge in how much human and mouse are truly similar, the
complete set of human and mouse ncRNAs could be checked for structural
homology using CROSSalign.

Rivas et al. in 2017 assessed that the secondary structure conservation
previously reported for the lncRNAs (Somarowthu et al., 2015) was not
statistically significant (Rivas et al., 2017). This assumption brought new
skepticism regarding the already debated structural conservation for the
lncRNAs. As I previously introduced in Chapter II, with the use of
CROSSalign I found a strong structural homology among primates. Recent
works supported the results, suggesting a structural conservation for a
number of lncRNAs (Tavares et al., 2018). At present, more studies and
analysis are needed to understand the complex pattern of the structural
conservation of the lncRNAs.

In conclusion, CROSSalign is a useful and powerful approach that can
establish in a high-throughput way the pairwise structural similarities of
different RNAs. The algorithm can lead to novel discoveries and a deep
understanding of the conservation of long and complex RNA molecules such
as lncRNAs or ssRNA viruses, or to identify homologues in function through
the homology in structure.
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A piece toward the solution of the in vivo puzzle

If the rules behind the in vitro folding of the RSS could be considered a
solved problem (Tinoco and Bustamante, 1999), the puzzle of the in vivo
RNA structure and the complete set of cellular components influencing it
is still a mystery (Leamy et al., 2016). As in a proper puzzle, many pieces
can contribute to the formation of the in vivo structure of a specific RNA. The
sequence is unconditionally a piece of the puzzle, but other components are
still unknown.

Crowding component, chaperones and ligands have an effect on the correct
in vivo folding (for details see Introduction 4.1). However, there is not a direct
quantification of the contributions of these factors for the in vivo RSS folding.
Moreover, computational approaches are not able to use in vivo constraints,
and also at the time of the writing there are no algorithms to predict the RSS
in vivo.

As introduced in Chapter III, the proteins and the crowding are an important
component, and their computational contribution is fundamental to increase
the performances of in vivo predictions. Combining sequence and protein
information, and using icSHAPE in vivo data will lead to the building of
CROSSalive, the first algorithm able to predict RSS in vivo data.

CROSS and CROSSalive could be used to provide profiles for the RSS
both in vivo and in vitro. Comparing this information will lead to a major
understanding of structural changes of the RNA, identifying regions with a
different conformation in vivo and in vitro.

The results of Chapter III could be further improved with additional steps
of proteins selection and a refined training. Moreover, the analysis could
be applied also for in vivo data with an altered methylation pattern, trying
to correctly predict for the first time structural modifications affected by
methylation.

However, the complex puzzle of the in vivo folding is far to be solved.
Multiple components can be necessary for the correct folding of the RNA, not
only the proteins. A deep learning approach could be used to prioritize and
integrate multiple components into a predictive approach. Deep learning
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algorithms were successfully implemented in several biological analysis
(LeCun et al., 2015). I will continue to talk about deep learning in the section
of Future perspectives.

In summary, the algorithms that I developed during my PhD can be used
to provide several layers of high-throughput information for the RSS. For
example, using all the algorithms on a novel transcript it is possible to: 1)
discover its secondary structure both in vitro and in future in vivo; 2) to
obtain multiple structures based on multiple experimental techniques; 3) to
discover structural homologs in different species.

Future perspectives

To understand and discover the characteristics of the RSS, it is necessary
to have a continuous and abundant flow of experimental data. Indeed,
genome-wide techniques will soon provide a complete understanding of the
structural modifications for the RNA both in vivo and in vitro. Only in 2018
two new transcriptomes were profiled by an experimental technique (Deng
et al., 2018; Kaushik et al., 2018). Yet, at the time of the writing, only icSHAPE
was performed both on the in vitro and in vivo murine transcriptome (Spitale
et al., 2015). Although XIST was profiled in both conditions using SHAPE
reactives (Smola et al., 2016), many other transcripts have not yet been
studied. To truly understand the in vivo ‘structurome’, we need more of
these data. Information on the human transcriptome coming from the same
technique, in the same conditions, and both in vivo and in vitro, is still
missing.

The development of new experimental techniques is fundamental for the
future of the field. Evolution of techniques in vivo is crucial and the
accuracy of the measurements is essential, especially to train machine-
learning algorithms. The search for new chemical-probes would be the
key to understand RNA structural mechanics and to open the door to
the developing of new techniques. The SHAPE probes already provide
information on stacked nucleotides and long-range interactions (Siegfried
et al., 2014). A recent study indicates a deeper complete understanding
of the probing ability of SHAPE reactives, using molecular simulations to
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unravel the binding mechanics (Mlýnský and Bussi, 2018). New probes
will indeed provide important information for pseudoknots and tertiary
structures. Importantly, SHAPE reactivities could be further investigated
to discriminate in vivo between double-stranded nucleotides and regions
inaccessible to the probe because bound to proteins. This discrimination of
the data will also improve the predictive power of algorithms to predict the
RSS in vivo.

I envisage that the scientific community will soon put more effort to solve
the mystery regarding the structural conservation of lncRNAs. I speculate
that the additional level of complexity coming from the RSS, compared
to the sequence only, will be key to establish the conservation for the
lncRNAs. To achieve this objective, new experiments will be done in order
to obtain more structural data for the RNAs of different organisms. In this
scenario, the high-throughput structural distances from CROSSalign could
help to understand which RNAs are structurally similar in different species,
reducing the number of samples for the experiments.

Importantly, fast computational approaches will be used to exploit informa-
tion from in silico transcriptomes. High-throughput algorithms will be devel-
oped for this task, providing a new flow of in silico structural data that could
be implemented in comprehensive databases. CROSS is one of the tools that
is already deployed for this task and it could provide a big database of in
silico structural profiles. A possible application of CROSS will lead to an im-
proved dataset with the structural profiles for all the lncRNAs from LNCi-
pedia (Volders et al., 2013) or for the recently curated FANTOM5 data (Hon
et al., 2017).

With the recent increase of deep learning bioinformatic algorithms, a tool
based on this architecture is still missing for the prediction of the RSS.
Complex architectures, such as convolutional neural networks (CNN),
would benefit from the huge amount of data coming from high-throughput
experiments. Moreover, multiple features of the RNA structures can be
converted into training data for the CNN to improve the predictive power
on the RSS. Multiple features such as protein interactions, crowding effect,
and ions concentration will improve the predictions, building an algorithm
able to quantify the contributions of each external force on the RSS in vivo.



104 General discussion

These algorithms could take advantage from meta-predictions, using in silico
data for their training set using data coming from structural conservation
(CROSSalign) or energetic values (RNAstructure).

The ‘structural content’ of an RNA defines important properties of the
molecule that have not been investigated in this thesis. The concept was
used in recent papers as discriminative feature especially in RNA granules
(Botta-Orfila et al., 2018). While, the classification of lncRNAs is mainly
based on their length, a novel structural classification will highlight their
role in formation of biological condensates (Van Treeck and Parker, 2018).



Conclusions
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During my PhD I focused on the discovery of structural properties of
the RNA through developing novel algorithms and methodologies. The
understanding of the predictive power of high-throughput experimental
data was the basis for the development of my algorithms. The tools were
all designed for high-throughput applicability, i.e. they are fast and without
sequence length restriction. In the following points I will describe the main
findings of my thesis:

• CROSS is the first algorithm trained on high-throughput experimental
data (Chapter I) coming from different techniques (SHAPE, icSHAPE,
PARS and also low-throughput NMR/X-ray data) and organisms
(human, mouse, HIV and yeast). Five different models were built
on these datasets to be applied as in silico alternative to experimental
techniques or as a global consensus to profile the RSS.

• CROSS was successfully applied to profile the entire murine Xist and
to understand the differences in structure in the complete set of human
CDS and UTR regions. The high-throughput nature of CROSS makes
it suitable to profile long and complex molecules such as lncRNAs or
complete transcriptomes.

• CROSS was combined with a dynamic time warping algorithm (DTW)
to build CROSSalign (Chapter II), a methodology able to assess the
structure similarities of RNAs with different lengths. The algorithm
identified a strong structural conservation for the RepA of Xist and the
D2 of HOTAIR, especially for primates.

• The novel approach of CROSSalign and its high-throughput applica-
bility allow assessing the structural similarities of thousands of RNAs
by comparing them pairwise. The tool can be applied to understand
and to build in silico ‘structural homologome’.

• Interaction with other molecules alter RNA structure in vivo. The
proteins and the crowded environment should indeed be taken into
account for the prediction of RNA secondary structure in vivo data. The
structure of RNAs where protein binding motifs are present is easier
to predict, while the integration of protein prediction data using the
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catRAPID method leads to an improvement in the predictions of the
RSS in vivo. The approach is still being developed.

• The in vivo analysis could lead to build CROSSalive, a predictive
approach to profile the RNA structure in vivo.

The suite of tools that I developed during my PhD has a wide applicability
and can be employed to predict the structural profile of novel lncRNAs or
to obtain entire ‘in silico structurome’. Combining the two algorithms on a
novel RNA, it is possible to obtain the secondary structure profile in vitro and
the structural homologs at transcriptome level. The application of the in vivo
findings will lead to an algorithm that is able to predict the RNA secondary
structure in vivo.
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