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The nervous system is a complex network that carries messages to the brain and to various 
parts of the body. It is the center of all mental activity, including thought, learning, and memory 
and it keeps us in touch with our environment. The basic unit of the nervous system is the 
neuron, an electrically excitable cell, that receives, processes, and transmits information 
through electrical and chemical signals (Reviewed in: Sidiropoulou et al. 2006; Galic et al. 
2012; Camp 2012). For many years, neurons were considered the unique functional unit of 
the nervous system.

the Greek for “glue”), and described these, as a connective tissue. Historically, glial cells 
have only been associated with a physically supportive role, whereas neurons have been 
considered essential for brain function and behavior. Therefore glial cells were never studies 
as much as neurons. However, very recently, new glial roles have been recognized and glia 
are now being considered as active players in the nervous system. Nowadays, we know 
that glia are the most abundant cell type in the mammalian nervous system and have vital 
roles in neural development, function, and health (Reviewed in: Barres 2008; Reemst et al. 
2016). However, our understanding of the biology of glia is only starting to grow..

Both, neurons and glia, are continually generated by neural stem cells (NSCs) in the 
developing central nervous system (CNS) and in some other select regions of the adult 
brain (Reviewed in: Temple 2001; Bond et al. 2015). The process of formation of new 
neurons and glia is called neurogenesis and includes cell division, production of migratory 
precursors and progeny, differentiation, and integration into circuits. Many features of 
neurogenesis are controlled by intrinsic signals of NSCs. Nevertheless, it is essential to 
consider the whole developmental context of an organism and not just the NSC as an 
isolated entity to understand its physiology. During development, neurogenesis has to adapt 
to each developmental stage and has to react to systemic changes. There is emerging 
evidence, that extrinsic signals from the NSC microenvironment, referred to as neurogenic 
niche, regulate multiple neurogenesis steps, adapting it to the developmental context. In 
mammals, such a microenvironment is composed by different cell types, such as, glial cells, 
meningeal cells, pericytes, endothelial cells and choroid plexus. Niche cells are responsible 
for modulating NSC behavior through mechanical and diffusible signals that pass between 
cell populations. Indeed, s released by niche cells regulate NSC proliferation, 
self-renewal, differentiation, or migration (Reviewed in Bjornsson et al. 2015).

It is well known, that different ion channels and transporters are expressed in glial cells of the 
mature CNS to regulate their homeostasis (Reviewed in Olsen and Sontheimer 2009). Such 
ion channels also regulate neuronal behavior. They do so by controlling the extracellular 
ionic concentration, secretion, and/or uptake of different organic compounds (Djukic et al. 
2007; Reviewed in Kirischuk et al. 2015). Glial cells also act as niche cells in the neurogenic 
niche, but the possible implication of ion channels for a correct regulation of the niche 
microenvironment remains to be elucidated. Ion channels are expressed in stem cells and 
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it has been shown that they can intrinsically regulate their proliferation and differentiation 
(Reviewed in Li and Deng 2011). Thus, ionic balance in the niche microenvironment should 
be tightly regulated by niche cells. 

To investigate the possible function ion channels have during CNS development, we used 
a simple model, the developing brain of Drosophila melanogaster. We chose the chloride 
channel ClC-a as a candidate to investigate, since it might be associated to possible 
developmental CNS defects in humans.

DROSOPHILA CENTRAL NERVOUS SYSTEM

Drosophila start as an embryo and after going through 
different larval stages (L1-L2-L3), it pupariates and after some days, emerges as an adult 

his also implies progressive development of the CNS, such as its growth and 
substantial structural changes.

Ventral nerve 
cord

Central brain Optic lobeOptic lobe

Central brain Optic lobeOptic lobeLarval brain

Adult brain

Ventral nerve 
cord

Embryo L1

L2

Mid L3
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Egg-lay PupariationLarva hatch

0hAEL 24hAEL 48hAEL 120hAEL
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A

B C

OPC
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IPC

Neuroblasts
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During larval development the CNS comprises the optic lobe (OL), central brain (CB), and 
the ventral nerve cord (VNC). All of these will give rise to the equivalent structures in the 
mature CNS (Figure 1). The adult optic lobe is composed by four major synaptic ganglia 
or neuropils (lamina, medulla, lobula and lobula plate), and receives visual input from the 
eye, processing it for higher order visual functions, like motion detection and color vision. 
Photoreceptors, light-sensitive neurons that collect visual information, are responsible for 
sending visual information to the optic lobe. During larval stages, they innervate the optic 
lobe and project to lamina and medulla neuropils at adult stage.

The central brain is far more complex, composed by more neuropils than the optic lobe. 
These accomplish a higher variety of functions. For example, the mushroom body (MB) is 
a structure in the central brain involved in learning and memory (Davis 1993; Heisenberg 
1998; Pascual and Préat 2001). Additionally, the central complex is, for example, involved 
in the control of walking (Strauss and Heisenberg 1993).

NEUROGENESIS IN DROSOPHILA

During the dynamic development of the organism, environmental stimuli and behavior 
completely change requiring the CNS development to adapt to these variations. For example, 

eye. Therefore the nervous system has to adapt, to process all visual information, received 
through this complex structure. Neurogenesis plays an important role in this adaptation, 

The CNS, together with an embryonic brain, starts developing at the embryonic stage, 
and will accomplish basic larval functions. Neurons with embryonic origin are called 
primary neurons and, while development goes on at larval stages, secondary neurons are 
generated. After metamorphosis, these secondary neurons are responsible for the adult 
brain to accomplish more complex tasks. Determination of the number of neuroblasts and 
the number of cell divisions suggest that there are 10,000–15,000 neurons in the larval 
brain, a number 10- to 20-fold lower than in the adult (Hartenstein and Campos-Ortega 
1984; Hartenstein et al. 1987; Truman et al., 1993). The second wave of neurogenesis at 
larval stages makes the Drosophila CNS a good system to study the potential role ionic 
homeostasis has in the neurogenic niche.

Figure 1. Structure of a larval and adult brain. (A) The developmental stages of Drosophila and the CNS 

are shown. (B) Illustration of a larval brain, where two hemispheres are composed by the optic lobe and the 

central brain. Connected to these structures, the ventral nerve cord is illustrated. (C) Adult Drosophila brain 

pheres any more, since the optic lobe has been separated from the central 

’s head, while the ventral nerve cord moved to the 

thorax. AEL, after egg lay.
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Two different strategies have been evolved to create the complexity of the central nervous 
system in Drosophila (Figure 1). On the one hand, two neuroepithelia are present in the optic 
lobe, which at late larval stages differentiate to neuroblasts (the stem cells of the developing 

(Reviewed in Suzuki 
and Sato 2014; Apitz and Salecker 2015). On the other hand, neuroblasts differentiated at 
embryonic stages, give rise to the central brain and ventral nerve cord (Reviewed in Homem 
and Knoblich 2012). Hence, since two different mechanisms of neurogenesis are used, the 
extrinsic signals necessary in the neurogenic niche must also be different. For this reason, 
we will consider neurogenesis of both the optic lobe and the central brain separately.

Optic lobe neurogenesis

The optic lobe comes from two different neuroepithelia, the outer proliferation center (OPC) 
and the inner proliferation center (IPC), which are originated from an optic placode of about 
30–40 epithelial cells (Hofbauer and Campos-Ortega 1990). After larval hatching, the 
neuroepithelial stem cells start to divide symmetrically and quickly separate into the two 

division to a size of several thousand epithelial progenitor cells (Hofbauer and Campos-
Ortega 1990; Egger et al. 2007; Ngo et al. 2010). During the second phase, which begins 
at late L2 stage, the progenitors undergo an epithelial-mesenchymal transition (EMT), 
becoming neuroblasts, that enter a phase of asymmetric cell division, with each neuroblast 
producing a neuronal lineage. The asymmetric cell division generates a self-renewing 
neuroblast and a ganglion mother cell (GMC), which divides once to produce two neurons. 

Neuroepithelial cells at the medial edge of the OPC sequentially transform into medulla 
neuroblasts (Figure 2), while cells at the opposite lateral edge of the OPC become lamina 
precursor cells (LPCs) (Figure 2) (Selleck and Steller 1991; Egger et al. 2007). When 
photoreceptor innervation begins, LPCs will differentiate to lamina neurons. 

The neuroepithelial cell to medulla neuroblast transition at the medial edge is controlled by a 
proneural wave of lethal of scute (l’sc) expression, that sweeps across the neuroepithelium 
(Yasugi et al. 2008)
sequential order: Homothorax (Hth), Eyeless (Ey), Sloppy paired 1 and 2 (Slp), Dichaete (D) 
and Tailless (Tll
identities (Li et al. 2013). Ahead of the wave that produces neuroblasts, uncommitted 
neuroepithelial cells continue to divide symmetrically, expanding the pool of prospective 
neuroblasts.

The IPC gives rise to the lobula plate and lobula neurons and is subdivided into three 
different domains, proximal (p-IPC), surface (s-IPC) and distal (d-IPC) domains. In the p-IPC, 
neuroepithelial cells differentiate into progenitors and migrate to a secondary proliferation 
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zone, the d-IPC, where they mature into neuroblasts and give rise to lobula plate neurons 
and distal cells (Figure 2). The s-IPC extends toward the optic lobe surface and produces 
lobula neurons (Apitz and Salecker 2015). 

Several pathways are responsible for neuroepithelial maintenance and neuroepithelia to 
neuroblast transition regulation in the OPC. Similar mechanism might be used in the IPC, 
although not much work has focused on this aspect. The progression of l’sc expression 
is positively regulated through epidermal growth factor receptor (EGFR) signaling and 
negatively, through Notch signaling (Egger et al. 2010; Ngo et al. 2010; Reddy et al. 
2010; Yasugi et al. 2010; Wang et al. 2011b). Increased signaling from the JAK/STAT and 
EGFR pathways (Yasugi et al. 2008; Ngo et al. 2010; Wang et al. 2011a), or loss of Hippo 
pathway activity (Reddy et al. 2010; Kawamori et al. 2011) cause delay in the emergence 

Figure 2. Neurogenesis in the optic lobe. Illustration of a late third instar larval optic lobe. Medulla and lamina 

neurons are generated from the OPC neuroepithelium. On its lateral side, after the lamina furrow (LF), lamina 

precursor cells (LPC) are generated. On its medial side, medulla neurons (Mn) originate from a proneural 

wave that transforms the NE into neuroblasts (Nb). As Nb age, their progeny expresses distinct transcription 

factors (different colors refer to different TF expression), giving rise to different types of medulla neurons. These 

integrate into developing columns. Another neuroepithelium, the proximal inner proliferation center (pIPC) 

generates migratory progenitors, that will migrate to the distal inner proliferation center (dIPC), where they 

convert into neuroblasts and generate distal cells (dc) and lobula plate neurons (lopn). dc, distal cell; dIPC, distal 

inner proliferation center; GMC, ganglion mother cell; lc, lobula complex; LF, lamina furrow; Ln, lamina neuron; 

lopn, lobula plate neuron; LPC, lamina precursor cell; me, medulla; Mn, medulla neuron; Nb, neuroblast; OPC, 

outer proliferation center; pIPC, proximal inner proliferation center.
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of neuroblasts. In contrast, loss of the Notch pathway, advances neuroblast progression 
and causes a premature termination of neuroepithelial growth (Egger et al. 2010; Ngo et al. 
2010; Reddy et al. 2010; Yasugi et al. 2010; Wang et al. 2011a).

Central brain and ventral nerve cord neurogenesis

undergo EMT, meaning delamination from the embryonic neuroepithelium (Hartenstein et 
al. 1994).

Delaminated neuroblasts divide asymmetrically several times, generating a self-renewing 
neuroblast and a differentiating GMC. GMCs will divide once more, giving rise to glia, 
neurons, or both. Each embryonic neuroblast will form 10 to 20 primary neurons, giving 
rise to all the neurons of the Drosophila (Reviewed 
in Homem and Knoblich 2012; Kang and Reichert 2015). Towards the end of embryonic 
neurogenesis, most neuroblasts in the central brain and VNC exit the cell cycle and enter 
a mitotic dormancy stage. This is known as quiescence, separating the embryonic and 
postembryonic phase (Hartenstein et al. 1987; Truman and Bate 1988; Prokop and Technau 
1991; Ito and Hotta 1992). Only four neuroblasts, which do not enter quiescence, will keep 
dividing and generate the mushroom body lineage (Ito and Hotta 1992; Ito et al. 1997).

Further, neuroblasts emerge from quiescence and reenter mitosis during late L1 stage, 
approximately 8 to 10 h after larval hatching. This second wave of neurogenesis gives rise 
to secondary neurons. Neurogenesis continues throughout all larval stages up until at pupal 
stage, neuroblasts exit the cell cycle and disappear (Reviewed in: Knoblich 2010; Homem 
and Knoblich 2012).

There are two distinct types of neuroblasts, which differ in their asymmetric division mode. 
Type I neuroblasts make up the majority in the central brain (about 90 per brain lobe) 
and VNC, and divide asymmetrically generating a GMC and a self-renewing neuroblast 
(Figure 3) (Reviewed in Homem and Knoblich 2012). The central brain also contains eight 
mushroom body neuroblasts (4 per brain lobe), which belong to type I neuroblasts. They 
exclusively generate neurons and glial cells of the mushroom body (Ito and Hotta 1992; Ito 
et al. 1997). Furthermore, eight type II neuroblasts are located in the dorso-posterior side 
of the brain hemisphere. They also divide asymmetrically, but generate an intermediate 
neural progenitor (INP), which generates a GMC as well as another INP, after asymmetric 
division (Figure 3) (Bello et al. 2008; Boone and Doe 2008; Bowman et al. 2008; Bayraktar 
et al. 2010; Weng and Lee 2011). INPs divide several times, generating between 6 and 12 
neurons or glia. Due to the presence of INPs, type II neuroblast lineages contain many more 
cells than type I lineages (Bowman et al. 2008; Bello et al. 2008; Boone and Doe 2008).
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Similarly to neuroblasts of the optic lobe, each central brain neuroblast sequentially 
expresses a series of temporal TFs, which dictate the fate of the neurons and glia in the 
lineage (Kambadur et al. 1998; Brody and Odenwald 2000; Isshiki et al. 2001; Pearson and 
Doe 2003; Grosskortenhaus et al. 2005).

Despite the differences in lineage output size, the division patterns of type I and type II 
neuroblasts are both similar to those seen in the mammalian cerebral cortex. Apical stem 
cells in the cortex divide to generate another apical stem cell and either a neuron or a basal 
progenitor cell, with the latter typically dividing once to generate two postmitotic neurons 
(Haubensak et al. 2004; Miyata et al. 2004; Noctor et al. 2004).

DROSOPHILA GLIA: FUNCTIONAL SIMILARITIES WITH VERTEBRATE GLIA 

As aforementioned, NSCs (both neuroepithelial cells and neuroblasts) cannot be considered 
as isolated entities, as they have to adapt to systemic changes during nervous system 
development. Extrinsic signals from the neurogenic niche, together with stem cell intrinsic 
signals are also necessary for the correct regulation of both, optic lobe and central brain 
neurogenesis. In Drosophila, the neurogenic niche is composed exclusively by glial cells, 

Figure 3. Neurogenesis in the central brain. Illustration of late third instar larval brain. Two different types 

of neuroblasts exist. All neuroblasts in the VNC and the majority in the central brain, are type I neuroblasts. 

These divide asymmetrically generating a GMC and self-renewing neuroblast. 8 neuroblasts in each central 

brain hemisphere are type II neuroblasts.These generate INPs, dividing asymmetrically and generating a GMC 

and self-renewing INP. GMCs divide into two neurons or glia. GMCs, ganglion mother cells; INPs, intermediate 

neural progenitors; OPC, outer proliferation center; IPC, proliferation center.
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role. 
mechanisms in vertebrates and invertebrates, later molecular aspects of glial morphogenesis 
and function in the mature CNS are very similar.

Drosophila glia are
Three groups exist, being surface glia, associated with the surface of the nervous system, 
cortex glia, linked to neuronal cell bodies and neuropil glia, associated with neuropil 
structures (Figure 4) (Reviewed in Hartenstein 2011). 

Surface glia

Surface glia isolate neural elements from surrounding tissues and hemolymph in both, CNS 
and peripheral nervous system (PNS), forming the blood-brain-barrier (BBB). Two different 
glial types are responsible for creating the barrier, each one forming one layer: the perineural 
glial layer lies on top of the subperineural glial layer. The BBB plays a dual role by offering 
chemoprotection, as well as selective transcellular transport of nutrients (Featherstone 
2011; Hindle and Bainton 2014). At early larval stages subperineural glia also trophically 
support neuroblasts during their reactivation through extrinsic signals (Chell and Brand 
2010; Spéder and Brand 2014). In vertebrates, astrocytes, together with endothelial cells, 
create the BBB, which provides a link between the blood vessels and neurons transporting 
glucose and other substances out of the bloodstream (Tsacopoulos and Magistretti 1996; 
Magistretti and Pellerin 1999). 

Figure 4. Drosophila glial types. Drosophila glia are

neuropil glia. Surface glia create the blood-brain-barrier, being composed of two glial layers, the perineural 

and subperineural glia. Cortex glia wrap neuroblasts and neuronal cell bodies in chambers. Neuropil glia are 

associated with neuropils, and can be subdivide into two groups, ensheathing glia, wrapping different neuropils 

and axon tracts, and astrocyte-like glia, being in close contact to synapses. GMC, ganglion mother cell; Nb, 

neuroblast; N, neuron.
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Cortex glia

Cortex glia have extended membranes, wrapped around neuronal cell bodies. The glial 
processes form a honey-combed like structure, called trophospongium, which invades 
spaces between neuronal cell bodies, (Hoyle 1986; Hoyle et al. 1986; Dumstrei et al. 2003). 
They are responsible to trophically support neurons, a role accomplished by astrocytes in 
vertebrates. Cortex glia also propagate cellular processes to the brain surface and establish 
close contacts to the BBB and trachea (Ito et al. 1995; Pereanu et al. 2007). Thus, cortex 
glia might contribute to nutrient/oxygen supply and metabolism. Interestingly, it exhibits 
activity-dependent calcium oscillations and regulates seizure susceptibility (Melom and 
Littleton 2013). Many of those functions are accomplished by astrocytes in vertebrates. 
During development, cortex glia also ensheath the optic lobe neuroepithelia and central 
brain neuroblasts, creating a glial niche for those stem cells. 

Neuropil glia

Neuropil glia are present in neuropil regions and subdivided into two types, ensheathing glia 
and astrocyte-like glia. Ensheathing glia wrap the neuropils and axon bundles. By contrast, 
astrocyte-like glia project to the neuropil, forming a dense net, having
to synapses (Stork et al. 2012; Muthukumar et al. 2014). Similar to axon ensheathing glia, 
in vertebrates, oligodendrocytes wrap axons and generate sheaths for saltatory conduction 
of action potentials (Ransom and Sontheimer 1992; Edgar and Garbern 2004), electrically 
insulating axons and regulating conduction velocity. An important role of neuropil gila has 
been described in ionic and neurotransmitter homeostasis (Edwards et al. 2012; Stork et 
al. 2012, 2014) as well as synapse regulation (Tasdemir-Yilmaz and Freeman 2014). This 
function is accomplished by astrocytes and microglia in vertebrates (Reviewed Chung et 
al. 2015). Additionally, neuropil glia are responsible for correct axon guidance (Spindler et 
al. 2009) during development. In the PNS, a type of ensheathing glia, called wrapping glia, 
ensheath and support peripheral nerves containing motor and sensory axons, much like 
mammalian Schwann cells (Reviewed in Rodrigues et al. 2011).

Thus, although different glial types are present in vertebrates and invertebrates, the functions 
they accomplish are conserved (Figure 5). 
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THE NICHE: A CLOSE RELATIONSHIP BETWEEN NEUROGENESIS AND GLIA

The stem cell niche

using haematopoietic stem cell as a model . He hypothesized that the 
continuous proliferation of a stem cell population depends on the surrounding cells, which 
constitute a specialized microenvironment. It is referred to as a niche, and is involved in 
sustaining long-term cell proliferative capacity.

Today, we know that stem cell niches support the normal function of neural stem cells. In 
the mammalian CNS, both mechanical and diffusible signals pass between cell populations 

blood vessels, pericytes, microglia, etc) provide a permissive environment for appropriate 
neurogenesis (Reviewed in: Silva-Vargas et al. 2013; Bjornsson et al. 2015). Until today, 
most of the described extrinsic signals are signaling molecules. For example, microglia 
secrete several growth factors and cytokines, such as 
(Battista et al. 2006). Moreover, other factors, such as ox
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Synapse pruning
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Figure 5. Comparison of vertebrate and invertebrate glia and their roles. Although glial types vary from 

vertebrates to invertebrates, their roles are very similar. For example, different astrocyte roles in vertebrates 

are covered by different glial types in invertebrates  but the functions are 

conserved. 
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environment (Reviewed in Mohyeldin et al. 2010). These are also important regulators of 
stem cell characteristics.

In Drosophila
Some examples are the niches of male and female germline stem cells and intestinal stem 
cells (Reviewed in Morrison and Spradling 2008). In these tissues, stem cells reside in close 
proximity to their surrounding cells, which provide external signals leading to the long-term 
maintenance of the stem cell identity (Fuller and Spradling 2007).

In the brain, neuroepithelia and neuroblasts also establish a complex cellular 

niche, the niche in Drosophila is exclusively composed by glial cells, and is often referred 
to as the “glial niche”. It is yet to be determined how the niche controls different aspects 
of neurogenesis. However, some studies have already started to decipher the interactions 
between glia and neurogenesis.

The glial niche and neuroepithelia

The neuroepithelia grow by symmetric divisions and they convert into asymmetrically 
dividing neuroblasts. These processes are tightly regulated. Notch, EGFR and JAK/STAT 
signaling pathways were described to control the transition intrinsically (Yasugi et al. 2008; 
Egger et al. 2010; Ngo et al. 2010; Reddy et al. 2010; Yasugi et al. 2010; Wang et al. 
2011b, 2011a). Nevertheless, recently, some extrinsic signals regulating these pathways 
have been described as well.

Morante and colleagues (Morante et al. 2013) described the “optic-lobe-
associated cortex glia” or “surface-associated cortex glia”, a glial cell layer ensheathing 
the OPC neuroepithelium. This third glial layer lies under the two previously characterized 
surface glial layers, described as the perineural and subperineural glia. It was shown, that 
these glia are the source of the EGFR ligand Spitz. Spitz production is regulated by the 
mir-8 microRNA, 
(Brabletz et al. 2011; Vallejo et al. 2011). mir-8 negatively regulates Spitz levels, preventing 
premature and excess signaling in the underlying neuroepithelium (Figure 6). The surface-
associated cortex glia play a role in regulating EGFR signaling, controlling the balance 
between neuroepithelial proliferation and neuroblast emergence. Thus, these glial cells 
represents a niche that sends signals for neuroepithelial growth and morphogenesis.

Furthermore, it has been shown that the Notch ligand Serrate (Ser), which is expressed in glia, 
is crucial for determining the correct spatial activation of Notch in the OPC neuroepithelium. 
The interaction between Ser and Notch restricts EGFR–Ras–PntP1 signaling and hence, 
l´sc expression in the transition zone. Therefore, Ser (present in glia) creates a complex with 
Cno and Notch (present in neuroepithelial cells), controlling the progression of the proneural 
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wave in the OPC (Figure 6) (Perez-Gomez et al. 2013). Although the publication suggests 
that Ser is expressed in subperineural glia, published images support the hypothesis that 
Ser expression can be associated to surface-associated cortex glia.

Overall, the glial niche plays a role in regulating neuroepithelial proliferation and their 
transition to neuroblasts. However, to unravel aspects associated to the interactions 
between those cell types more studies are needed.

The glial niche and neuroblasts

The most studied process, in which glia control neuroblast behavior, is related to quiescence 

glycoprotein, played a critical role in maintaining neuroblasts in quiescence (Figure 7) 
(Ebens et al. 1993; Datta 1995). Which glial type is responsible for Ana secretion is still 
unknown.

Moreover, the BBB regulates neuroblast reactivation. Essential amino acids in the larval diet 
trigger the local production and secretion of insulin-like peptides (dILPs) released by the 
subperineural glia of the BBB (Figure 7) (Chell and Brand 2010; Spéder and Brand 2014). 
dILPs bind to Insulin receptors on neuroblasts and activate the PI3K/Akt pathway, leading to 
neuroblasts exit from quiescence (Chell and Brand 2010; Sousa-Nunes et al. 2011). Early 

Figure 6. Illustration of known extrinsic signals in the neuroepithelial glial niche. Surface-associated 

cortex glia secretes Spitz, which controls EGFR signaling in neuroepithelial. This extrinsic signal controls the 

balance between neuroepithelial proliferation and neuroblast emergence. Spitz levels are regulated by mir-8. 

Surface-associated cortex glia also expresses the Notch ligand Serrate, which creates a complex with Notch 

and Cno, expressed in neuroepithelial cells. This complex is important for the progression of the proneural 

wave. LPCs, lamina precursor cells; Nbs, Neuroblasts; NE, neuroepithelia; TZ, transition zone.
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in larval development, during reactivation, cortex glia architecture allows subperineural 
glia derived dILPs to reach neuroblasts. After that, cortex glial chamber formation is fully 
achieved (Figure 7) (Spéder and Brand 2018). 

Another pathway regulating the reactivation of neuroblasts is the Hippo signaling pathway 
(Ding et al. 2016; Poon et al. 2016). Cell–cell contact proteins, Crumbs and Echinoid, are 
expressed in glial cells and neuroblasts, and by homophilic interactions in trans (Figure 7) 
regulate Hippo and Warts. During reactivation, Crumbs and Echinoid are downregulated 
in glia. This is a response to nutrition, which inactivates the Hippo pathway and activates 
Yorkie in the neuroblast (Ding et al. 2016). Echinoid and Crumbs are expressed in glial cells, 
however,  in which glial types.

It has been described, that overexpression of a dominant negative of the cell adhesion 
molecule DE-cadherin in cortex glial cells results in reduced proliferation of neuroblasts. 
Hence, once neuroblasts emerge from quiescence and are mitotically active, the niche 
keeps controlling their mitotic activity (Dumstrei et al. 2003). 

Later during development, the growth of neuroblast lineages becomes largely independent 
of all dietary nutrients. At this stage, niche glia express a secreted growth factor, jelly belly 
(Jeb), which activates its receptor, anaplastic lymphoma kinase (Alk) in neuroblasts (Figure 
7), thus promoting constitutive, rather than nutrient-dependent PI3K signaling and growth 
(Cheng et al. 2011). Based on published images, it looks like Jeb is expressed in cortex glial 
cells, nevertheless the authors do not specify if this is the case.

Figure 7. Illustration of known extrinsic signals in the neuroblast glial niche. During neuroblast quiescence 

and reactivation, cortex glial encasing of neuroblasts is not completed. This allows subperineural glial signals to 

directly reach neuroblasts. After neuroblast reactivation and niche cell remodeling, neuroblasts encasing is fully 

achieved. The glial type requirement of some signals is unknown, so they are highlighted with a question mark. 

Also, it is still unknown how Dlp is transported from the perineural glia to Nb.
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Furthermore, the glial cell niche also preserves neuroblast proliferation under hypoxia and 
oxidative stress conditions. Subperineural glia and cortex glia accumulate lipid droplets 
(Figure 7), which work as antioxidant organelles, defending membrane polyunsaturated 
fatty acids (PUFAs) from damage by reactive oxygen species (ROS)-induced peroxidation. 
This helps to safeguard, not only glial cells of the niche, but also neighboring neuroblasts 
and their neuronal progeny (Bailey et al. 2015). 

Perineural glia has also been associated to the , that cellular 
communication between NBs and surface glia is critical for the development of both cell 
types. Also, Dally-like (Dlp), a heparan sulfate proteoglycan is required in surface glia for 
proper NB proliferation (Figure 7) (Kanai et al. 2018).

In summary, the glial niche controls neuroblast maintenance at quiescence and neuroblast 
reactivation. Also, once a neuroblast is reactivated, the glial niche keeps controlling their 
proliferation and well-being.

ROLES OF ION CHANNELS IN GLIA 

In the CNS, both neurons and glia express ion channels and transporters. However, 
neurons are excitable cells and glia are not. This means, that channels can accomplish 
different functions in distinct cell types. While in neurons ion channels and transporters are 
responsible for the transmission of action potentials (Reviewed in Kress and Mennerick 
2009), in glia they accomplish different functions. For example, they regulate the neuronal 
synaptic activity (Reviewed in Kirischuk et al. 2015). Glia is the cell type that creates the 
neurogenic niche of Drosophila, so the many ion channels in glia could be responsible for 
niche microenvironment regulation and stem cell well-being. 

Further, recent studies have demonstrated that multiple ion channels are present in 
different mammalian stem cells. They include different K+, Na+, Ca2+, and Cl- channels and 
have been found heterogeneously expressed in embryonic stem (ES) cells, mesenchymal 
stem cells from bone marrow, fat tissue and human umbilical cord vein, neural progenitor 
cells, cardiac progenitor cells, or induced pluripotent stem (iPS) cells derived from different 
species (Reviewed in Li and Deng 2011). Interestingly, it has been shown, that those ionic 
channels can regulate proliferation and differentiation of stem cells (Reviewed in Li and 
Deng 2011). This intrinsic role of ion channels in stem cell regulation is very interesting 
and supports the hypothesis, that niche ionic concentrations (Ca2+, Na+, K+, Cl- or H+) are 
important for stem cells. Because of the lack of information regarding ion channel function 
in niche cells, this part of the introduction will focus on the functions ion channels carry out 
in glia. It is possible, that similar functionalities are responsible for the regulation of stem cell 
behavior in the niche
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Glial ionic regulation

ical studies examining glial cells 
. These studies showed, 

that glial cells rest at a more hyperpolarized resting membrane potential, relative to neurons 
(Figure 8). 50 years later, we know that glial cells express a high variety of ion channels (K+, 
Na+, Ca2+, and Cl- channels). Although expression and currents of different ion channels 
have been described in glia, most of their roles remain unknown. Due to the close link 
between different ion channels and some brain pathologies, studying these in the mature 
CNS became of great interest (Reviewed in Kim 2014). However, there are almost no 
examples of ion channels required during CNS development.

Some examples of ion channel functions in glia are described below, when possible, 
focusing on functions in the developing CNS. As ion channels in Drosophila glia are almost 
unstudied, examples are predominantly taken from mammalian glia. 

Potassium (K+):

In glia, the membrane potential is largely determined by the transmembrane K+ gradient, 
because of the predominating K+ conductance of the glial membrane 
1966). The most important and abundant potassium channel in glia is the inwardly rectifying 
K+ (Kir) channel Kir4.1, which is responsible for setting and maintaining the resting 
potential. It is expressed exclusively in glial cells in the nervous system and apart from 
setting the resting potential, its putative functions include buffering excess extracellular K+, 
the facilitation of glutamate uptake from synapses, and glial cell volume regulation (Olsen 
et al. 2006; Dibaj et al. 2007; Djukic et al. 2007; Kucheryavykh et al. 2007; Seifert et al. 

Figure 8. Extracellular and intracellular ion concentrations of astrocytes. The resting membrane potential 

(RMP) is more hyperpolarized than the neuronal one. Potassium (K+) and calcium (Ca2+) have higher intracellular 

concentrations, while sodium (Na+) and chloride (Cl-) concentrations are higher in the extracellular compartment.
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2009). K+ has been related to several pathologies, such as, epilepsy, Alzheimer’s disease, 
amyotrophic lateral sclerosis,  spinal cerebellar ataxia, among others. Interestingly, the 
neurodevelopmental syndromes SeSAME/EAST (Bockenhauer et al. 2009; Scholl et al. 
2009) and RTT (Kahanovitch et al. 2018) have been related to Kir4.1. In both syndromes, 
mutations or alteration on Kir4.1 expression lead to neurodevelopmental defects. Underlying 
mechanisms responsible for these defects are yet to be elucidated.

Furthermore, TWIK1 and TREK1 (K2P channels) play a role in the glutamate release from 
astrocytes (Woo et al. 2012; Mi Hwang et al. 2014). This could facilitate the glutamine-
glutamate cycle for replenishment of neurotransmitters in neurons.

Also, some studies have shown, that Ca2+-activated K+ channels (BK channels), in astrocytes, 
are crucial regulators of blood vessel dilation and constriction (Filosa et al. 2006; Girouard 
et al. 2010).

Sodium (Na+):

The extracellular concentration of neurotransmitters in the CNS is mainly regulated by 
+ gradient as a driving force.  

GlyT2) transporters, which take up sodium together with the neurotransmitter (Figure 9) 
(Reviewed in Kirischuk et al. 2015). This Na+ dependent neurotransmitter clearance, after 
a synaptic transmission, is essential for correct signaling between neurons. Moreover, 
glutamine, released from astrocytes through sodium dependent SNAT3, can be transported 
directly into presynaptic terminals, to support glutamatergic neurotransmission (Billups et 
al. 2013).

Na+ play a role in the regulation of the astrocytic energy metabolism. This 
complex mechanism, involving different Na+ channels and transporters, is used in astrocytes 
to modulate glucose transport, glycolysis, glycogen degradation, glucose oxidation, and the 
production of lactate (Reviewed in Chatton et al. 2016). 

Figure 9. Na+ dependent organic molecule transporters. These channels use the sodium gradient between 

intracellular and extracellular compartments to transport different organic compounds through the membrane 

Kirischuk et al. 2015).
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Upon CNS injury, sodium channels the response of reactive glia. In astrocytes, 
Nav1.5 plays an important role in astrogliosis, where the channel is necessary for correct 
proliferation and motility (Pappalardo et al. 2014). During microglial response, Nav1.6 
is involved in phagocytosis (Craner et al. 2005; Black et al. 2009), chemokine/cytokine 
release (Black et al. 2009; Morsali et al. 2013), and migration (Black et al. 2009; Persson 
et al. 2014). 

Calcium (Ca2+):

Ca2+ ions act as signaling molecules in all living cells. Activation of metabotropic receptors 
in the plasma membrane trigger production of inositol 1,4,5-trisphosphate (IP3). IP3 triggers 
Ca2+ release from the endoplasmatic reticulum via IP3R channel. Ca2+ also enters the 
cell through Ca2+ permeable ionotropic glutamate channels (iGluRs) or voltage-gated 
calcium channels (VGCCs) in the plasma membrane (Reviewed in Achour et al. 2010). 
The increase in intracellular calcium concentration leads to exocytosis of neurotransmitters, 
such as, glutamate, ATP, D-serine, GABA, and prostaglandins, from astrocytes (Figure 10) 
(Parpura et al. 1994; Bezzi et al. 1998; Newman 2001; Mothet et al. 2005). This mechanism 
is very important for synapse modulation, where astrocytes are directly activated by 
neurotransmitters and signal back to neurons to modulate their output. Alterations in glial 
calcium signaling could also lead to epilepsy (Reviewed in Carmignoto and Haydon 2012).

 

Figure 10. Ca2+ regulated secretion of neurotransmitters. Activation of metabotropic receptors in the plasma 

membrane trigger the production of inositol 1,4,5-trisphosphate (IP3). G-protein activated phospholipase PKC 

transforms PIP2 into DAG and IP3. IP3 induces Ca2+ release from the endoplasmatic reticulum, via IP3R channel. 

The increase in intracellular Ca2+ concentration triggers exocytosis of neurotransmitters, such as, ATP.
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In Drosophila, Tdc2+ neurons release tyramine or octopamine, the invertebrate analogues 
of norepinephrine, and activate Ca2+ signaling in astrocyte-like glia, through a metabotrophic 
receptor. This intracellular calcium increase triggers ATP exocytosis, which inhibits 
dopaminergic neurons. Hence, neuromodulatory signaling, in at least some cases, passes 
through astrocytes-like glia (Ma et al. 2016).

+/Ca2+, K+ exchanger (zydeco) is required for microdomain 
Ca2+ oscillatory activity in cortex glia during development and adult stages. When removed, 
animals exhibit increased susceptibility to seizures, in response to a variety of environmental 
stimuli (Melom and Littleton 2013). 

Chloride (Cl-):

Chloride is the only anion between the most important ions. However, it is important to 
highlight that most Cl- channels are also permeable for other anions, including amino acids 
and other organic and inorganic anions. Only very limited information is available regarding 
chloride channels in glia, since amongst channels, these are the  least studied ones.

It is known that volume-regulated anion channels (VRACs) open upon cell swelling and play 
a role in regulating glial cell volume. In astrocytes, the activity of the VRAC is crucial for 
restoring astrocyte cell volume, after a hypotonic shock (Hoffmann et al. 2009). Apart from 
chloride, this channel can also release other organic anions, such as taurine, glutamate, 
and even ATP (Qiu et al. 2014; Voss et al. 2014; Gaitán-Peñas et al. 2016; Lutter et al. 
2017). 

In Drosophila, the K+/Cl  cotransporter Kcc and Na+/K+/2Cl- cotransporter Ncc69 are 
expressed in glia, and exclusive removal of either of them from glia, lead to an increase in 

accumulation between glia and axons (Leiserson et al. 2010; 
Rusan et al. 2014). 

Apart from these channels, some members of the Chloride Channel (ClC) family have been 
described to be expressed in glia as well.  During last years, extensive work focused on 
elucidating possibles ClC-2 roles in the mature CNS. ClC-2’s Drosophila homologue, ClC-a, 
is the chloride channel that has been studied in this thesis. 
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THE CLC FAMILY

ClCs form a large family of proteins that mediate voltage-dependent transport of Cl  ions 
across cell membranes. They are present in all phyla, with nine members present in 

appear in intracellular membranes functioning as Cl /H+ exchangers (Table 1). Interestingly, 
some of ClCs are expressed in glia, such as ClC-2, ClC-3 and ClC-7.

ClCs are involved in a wide range of physiological processes, including the regulation 
of resting membrane potential in skeletal muscle, the facilitation of transepithelial Cl  
reabsorption in kidneys, and the regulation of pH and the Cl  concentration in intracellular 
compartments through coupled Cl /H+ exchange mechanisms (Poroca et al. 2017). 

Gene Tissue Function Disease

Cl- channels (cell surface)

ClC-1

ClC-2

ClC-Ka

ClC-Kb

ClC-3

ClC-4

ClC-5

ClC-6

ClC-7

Cl-/H+ exchangers (Endo/lysosomes)

Skeletal muscle

Glia, neurons, kidney, 
liver,hear, pancreas, 
skeletal muscle, lungs

Inner ear, kidney

Glia, Broad

Skeletal muscle, 
brain, heart

Kidney, intestine

Neurons

Glia, neurons, 
kidney,liver, bone

Transepithelia 
transport

Ion homeostasis of
intracellular vesicles

Ion homeostasis of
endosomes

Ion homeostasis of
early endosomes

Ion homeostasis of
late endosomes

Acidification of resorption 
lacuna in osteoclasts;

ion homeostasis
of lysosomes

Recover resting
 membrane potential

Transepithelia 
transport

Leukodystrophy,
azoospermia,

retinal degeneration

Intelectual
disabilities?

Dent’s disease

Osteopetrosis,
retinal degeneration,
lysosomal storage

disease

Myotonia
congenita

Loss of both: Bartter IV
Loss of ClC-Kb: Bartter III

Gene

Human ClCs

ClC-a

ClC-c

ClC-b

Malpighian tubules
?

Tissue

Malpighian tubules
?

Function

Transepithelia 
transport

?

?

?

?

Drosophila ClCs

Disease

Human ClCs

Drosophila ClCs

A

B

Table 1. A summary of human and Drosophila ClCs. ClC Cl- channels (A) and intracellular Cl-/H+ exchangers 

(B) of humans and Drosophila are shown. Their function, and the tissue they are expressed in, is also included. 

In the case of human ClCs, links to human diseases are shown.
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Drosophila have three different ClCs, one is expressed in the plasma membrane (Cabrero 
et al. 2014), while the other two are expressed intracellularly (Table 1) (Saha et al. 2015). 
Their tissue expression, as well as their functions are still unknown, since only very few 
studies have addressed these topics.

Mammalian ClC-2

Mammalian ClC-2 is a two-pore homodimeric voltage gated plasma membrane chloride 
channel (Middleton et al. 1996) (Figure 11) and possesses unique biophysical characteristics 
and pharmacological properties. These confer its unique cellular functions and distinguish 
it from other ion channels, mainly through its activation during hyperpolarization conditions 
and its creation of inwardly rectifying currents. Its voltage dependent gating is modulated 
by the concentration of Cl  and H+. An increase in the intracellular concentration of Cl  
shifts the voltage-dependence to a more positive voltage, activating the channel. ClC-2 
is also activated by mild decreases in extracellular pH, although a stronger decrease in 
pH reduces the current (Niemeyer and Yusef 2004). It is expressed in many tissues and 
published studies point towards a high degree of conservation and regulation across various 
species from nematodes to humans (Cid et al. 1995). However, its function in vivo is not 
well understood.

A lot of cellular functions have been suggested for ClC-2. One example is its essential 
role in lung development (Murray et al. 1995), where it acts as an alternative pathway for 

Figure 11. Molecular/structural features of ClC-2 channels. The predicted membrane topology of a ClC-2 

Bi et al. 2014).

ClC-2

NH2

COOH

Two pores
Extracellular

Intracellular
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Cl- (Thiemann et al. 1992), or its link to nephrogenesis, where it 
plays a key role during early stages (Huber et al. 1998). Moreover, some functions related to 
neurons, such as the participation in modulation of post-synaptic responses to GABA, have 
been suggested (Smith et al. 1995). 

ClC-2 also shows functions in glia. Knock-out mice develop leukodystrophy (the general term 
for diseases affecting the growth or maintenance of the brain white matter), which culminates 
in gradual development of vacuoles in the glial myelin sheath of the central nervous system, 
worsening with age (Blanz et al. 2007a). Human patients, carrying mutations that disrupt 
ClC-2 function develop similar leukodystrophy symptoms (Depienne et al. 2013). Hence, 
human CLCN-2 mutations have been related to different leukodystrophies.

CLCN2-related leukoencephalopathy (CC2L), also referred to as leukoencephalopathy with 
ataxia (LKPAT), is one of those leukodystrophies. Most affected individuals have coordination 

during childhood usually also suffer 
from learning disabilities and mild to moderate mental retardation. Patients with symptoms 
starting in adulthood typically show additional vision problems. As a result of the reduction 
in ClC-2 channel activity, certain brain cells and the myelin that surrounds neurons, become 

.  in 
mice. Since 
neurological problems (Depienne et al. 2013; Zeydan et al. 2017).

Another related leukoencephalopathy is the Megalencephalic Leukoencephalopathy with 
subcortical Cysts (MLC), a rare type of leukodystrophy characterized by dysfunction of the 
glial cell role
macrocephaly, cysts, and white matter vacuolation, which lead to motor and cognitive 
impairments. In MLC, ClC-2 works as a subunit of GLIALCAM and mutations on the subunit 
eliminate
myelin vacuolization (Jeworutzki et al. 2012). ClC-2 is necessary in glia to compensate the 
considerable increase in intracellular K+ due to potassium buffering mechanisms (Reviewed 
in Estévez et al. 2018).

Interestingly, some ionic homeostatic roles in supporting cells have been described for ClC-
2. ClC-2 knock-out mice are blind and sterile. In the retina and male gonads, ClC-2 is 
required in the supporting cells to avoid photoreceptor or male germ cell degeneration. 
In the testes, Sertoli cells are responsible to nurture germ cells during maturation and 
differentiation of spermatogonia, creating a niche. Disruption of ClC-2 function results 
in transepithelial transport defects in Sertoli cells and subsequent degeneration of male 
germ cells (azoospermia) (Bösl et al. 2001; Edwards et al. 2010). In the retina, the retinal 
pigment epithelia (RPE) is responsible for forming the blood–organ barrier in the eye, 
creating the optimal microenvironment for photoreceptor function. ClC-2 is involved in the 
ionic homeostasis of the narrow subretinal space, that is formed between the RPE and 
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photoreceptors. The lack of the channel leads to photoreceptor degeneration (Bösl et al. 
2001; Edwards et al. 2010). In this case, the channel is necessary for microenvironment 
regulation for cell survival. Hence, even though not being a niche, the same functional 
principles are applied. 

Keeping this scenario in mind
during CNS development, which might explain some of the learning disabilities and mild to 
moderate mental retardation symptoms observed in human patients.

ClC-a

In Drosophila melanogaster three potential ClC genes are present, ClC-a, ClC-b and ClC-c, 
but only ClC-a shows homology with mammalian plasma membrane ClC genes. ClC-b 
and ClC-c are close to mammalian homologs coding for intracellular proteins. ClC-a shows 
high homology (41% residue identity) to the mammalian ClC-2 Cl- channel (Flores et al. 
2006). Also, ClC-a generates inwardly rectifying Cl- currents, similar to ClC-2’s activation 
and deactivation characteristics (Flores et al. 2006). 

ClC-a has been poorly studied in Drosophila melanogaster, with very few studies and only 
one about its functions. ClC-2-like currents have been recorded via patch-clamp technology 
in photoreceptors (Ugarte et al. 2005) and muscle (Rose et al. 2007). However, ClC-a was 
not expressed in those tissues. Moreover, similar to ClC-2, ClC-a is 
necessary for transepithelial transport in the Malpighian tubules. It is exclusively expressed 
in the stellate cells and is required for Drosophila kinin-mediated induction of diuresis and 
chloride shunt conductance (Denholm et al. 2013; Cabrero et al. 2014).

Interestingly, some studies point towards the expression of ClC-a in the nervous system, 
where, by in situ hybridization in the embryo, it could be concluded, that the channel may be 
involved in glial function (Kearney et al. 2004). Also, some RT-PCR experiments, done with 
larval central nervous system RNA extracts (Rose et al., 2007), suggest ClC-a expression 
in this tissue. 

In summary, ClC-a makes a good candidate to investigate the role of ion channels during 
Drosophila CNS development and it could help to describe chloride channel functions in glia 
during this process.



OBJECTIVES
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Glia act as niche cells in the neurogenic niche of both vertebrates and Drosophila during 
development. The chloride channel ClCN2 is expressed in glia in the mature nervous 
system of vertebrates and some physiological functions have been proposed. In addition, 
human patients with mutations in the gene or dysfunction of the protein, have, among other 
defects, learning disabilities and mental retardation. Since these later symptoms usually 
arise from errors in the assembly of neural circuits during development, it is possible that 
ClC-2 has a role in glia during development. Our main goal has been to study the role of its 

ClC-a during CNS development.

-  Describe ClC-a expression pattern during CNS development, from early larva to 
adulthood.

ClC-a mutants. 

-  Study in detail any observed developmental phenotype in ClC-a mutants. 





MATERIALS AND 
METHODS
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MATERIALS

Drosophila strains

The Drosophila strains used in this work and their origin are indicated in Table 2:
Stock Origin

MiMIC 14007 Bloomington Stock Center (BL 59247)
MiMIC 05423 Bloomington Stock Center (BL 43680)
ClC-aGFP Bloomington Stock Center (BL 59296)
05423 ClC-aGal4 Bloomington Stock Center (BL 66801)
Df(3R)PS2 Bloomington Stock Center (BL 37742)
repoGal4 II A gift from B. W. Jones
repoGal4 III Bloomington Stock Center (BL 7415)
repoFLP6:2 A gift from C. Klämbt
GMRGal4 Bloomington Stock Center (BL 1104)
mir8Gal4 A gift from J. Morante
UASH2BRFP A gift from J. Morante
UASH2BYFP A gift from J. Morante
UASmCD8GFP A gift from L. Zipursky
UASmCD8RFP.LG Bloomington Stock Center (BL27398)
25A01Gal4 Bloomington Stock Center (BL49102)
43H01LexA Bloomington Stock Center (BL47931)
38H02Gal4 Bloomington Stock Center (BL47352)
G-trace Bloomington Stock Center (BL 28280)
54H02Gal4 (wrapperGal4) Bloomington Stock Center (BL 45784)
wrapper932i-Gal80 A gift from M. R. Freeman
wrapper932i-LexA A gift from M. R. Freeman
UAS RNAi ClC-a Vienna Drosophila RNAi Center (110394)
UAS RNAi Slit Vienna Drosophila RNAi Center (108853)
Slit dui Bloomington Stock Center (BL 9284)
slit 05428 (Slit lacZ) Bloomington Stock Center (BL 12189)
SlitGFP Bloomington Stock Center (BL 64472)
UAS-mCD8GFP, lexO-CD2RFP Bloomington Stock Center (BL 67093)
UAS-Nslmb-vhhGFP4(deGradFP) Bloomington Stock Center (BL 38422)
UAS-Slit A gift from I. Salecker
tubGAL4,UASmCD8GFP A gift from C. Gonzalez
UASsyteGFP A gift from L. Zipursky
hsFLP,FRT19A,tubGal80 A gift from C. Gonzalez
UASGal80 Bloomington Stock Center
Rh1Gal4 A gift from M. Wernet
Rh4EGFP Bloomington Stock Center (BL 7462)
Rh6lacZ Bloomington Stock Center (BL 8117)
UASClC-a This study
UASRatClC-2 This study
Tub>Gal80> Bloomington Stock Center (BL 38879)
FRT82B Bloomington Stock Center (BL 2051)
EGUF-hid Bloomington Stock Center (BL 5253)
UAS-Dcr2 Vienna Drosophila RNAi Center
Ey3,5Flpg5d A gift from L. Zipursky

Table 2. List of Drosophila strains utilized in this work. The genotype is indicated in the left column and 

origin in the right one.
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Fly strains utilized in this work were maintained in temperature-controlled chambers at 
(Table 3).

Antibodies and dyes:

Primary antibodies and dyes used in this work are depicted in Table 4:

MiMIC mutants and MiMIC derived strains

attP sites. The gene trap cassette consists of a splice acceptor followed by 
stop codons in all reading frames and the EGFP coding sequence with a polyadenylation 

Ingredient Quantity per litre
Distilled water 1 L

Yeast 64 g
Dextrose 67,2 g

Agar 8,8 g
Flour 40 g

Nipagin (methyl p-hydroxibenzoate) 1,6 g
Propionic Acid 5 ml

In the left column ingredients are detailed and in the right the 

quantity of each one for 1L. 

Antigen Host Concentration Origin
Chaoptin Mouse 1:50 DSHB (24B10)

Repo Mouse 1:50 DSHB (8D12)
DE-cadherin Rat 1:50 DSHB (DCAD2)

ClC-a Rabbit 1:100 (Cabrero et al., 2014)
ClC-a Rabbit 1:100 Gift from R. Estévez
Dpn Guinea pig 1:2000 Gift from A. Carmena

Lethal of scute Rat 1:5000 Gift from A. Brand
P-Histone-H3 Rat 1:1000 Abcam (HTA28)

Mira Rabbit 1:500 Gift from C. Gonzalez
GFP Chicken 1:800 Abcam (ab13970)
RFP Rabbit 1:200 Clonetech (632496)

β-Galactosidase Mouse 1:1000 Promega (Z3783)
Slit Mouse 1:20 DSHB (C555.6D)

Fas II Mouse 1:20 DSHB (1D4)
Neurotactin Mouse 1:10 DSHB (BP106)

Dcp-1 Rabbit 1:200 Cell Signaling (Asp 216)
Cappl (0855976, Out of market) 

TOPRO-3 - 1:1000 Life technologies (T3605)
β-Galactosidase Rabbit 1:1000

Table 4. List of used primary antibodies and dyes. Characteristics of each antigen as host, concentration 

and origin are detailed.
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signal (Figure 12). When the transposon is inserted in an intron between coding exons and 
in the orientation of gene transcription, the splice acceptor in the transposon is used instead 
of the endogenous acceptor in the next exon. The incorrect splicing results in the formation 
of truncated transcripts (Venken et al. 2011). In some few cases, the splicing machinery can 

ClC-a-GFP and the 05423ClC-aGal4 Mi(MIC)ClC-a05423. 
The attP

exchange (RMCE) (Figure 12). The protein trap cassette used to generate ClC-a-GFP 

both sides in the appropriate phase (Nagarkar-Jaiswal et al. 2015a, 2015b). The ClC-a 
tagged protein generated includes the GFP sequence in frame in an extracellular loop that 

ClC-a-GFP protein is functional. 

To generate the 05423ClC-aGal4 line a Trojan-Gal4 cassette in the appropriate phase was 
used. This cassette contains a splice acceptor that ensures that the T2A-Gal4 open reading 
frame is included in the mRNA of the ClC-a gene (Figure 12). The T2A sequence truncates 

a mutant allele is generated that expresses Gal4 under the control of ClC-a regulatory 
sequences. 

MI{MIC}ClC-a05423

EGFP SV40 yellow +SA Stop Stop Stop attPattP5’Mi 3’Mi

L EGFP (FlAsH-StrepII-TEV-3xFlag)SA attBattB L SD

MI05423-GFSTF.0

linker Gal4SA attBattB pA SD2A

MI05423-TGF4.0

MI{MIC}ClC-a05423

RMCE 2

RMCE 1

RMCE 2

RMCE 1

Figure 12. Genetic structure of MiMIC05423, ClC-aGFP and 05423ClC-aGal4 insertions. MiMIC insertions in 

coding introns truncate the protein by addition of a splice acceptor, followed by STOP codons. By recombinase-

mediated cassette exchange (RMCE), it can be exchanged for other transgenes. In this case the MiMIC05423 

is turned into ClC-aGFP (RMCE 1), which adds a GFP tag to the protein, or 05423ClC-aGal4 which truncates the 

protein generating a Gal4 (RMCE 2). 
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METHODS

Immunohistochemistry

(Vector Laboratories). 

pig or chicken (Life technologies) were used at 1:250 concentration.

Imaging

Images were acquired with a Leica TCS SPE and a Zeiss LSM 880 confocal microscopes 
and processed using imageJ (W. S. Rasband, National Institutes of Health, Bethesda, 

For 3D reconstruction images Imaris 8.0 software (Bitplane, South Windsor, CT, USA) was 
used.

Brain measurements

hemisphere diameter were measured in the antero-posterior axis using imageJ.

To assess adult optic lobe and central brain size, we measured the antero-posterior and 

parameter (Figure 13).

A
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Photoreceptor phenotypes

lobes of the same brain were not independent, as a strong phenotype in one optic lobe 

the two optic lobes to determine the strength of the brain.

Neuroepithelia volume measurement in 3D

ClC-a mutants, neuroepithelia were 
labelled by anti-E-cadherin antibody and manually segmented using the “SURFACE” tool 
of Imaris 8.0 (Bitplane,
μm3 of the generated surfaces.

Counting of nuclei

To assess cell number for different experiments, we manually counted the nuclei in confocal 
stacks using the Cell Counter pluging of imageJ, which keeps track of the counted dots and 
helped us to be more accurate. 

For glial cells in the glial barrier, Repo+, ClC-a+ nuclei were counted.

For cells in MARCM clones, we used TOPRO-3 staining and membrane labelling to identify 

For INPs in the DL1-2, we used Dpn staining and type II neuroblast lineage labelling 

lineage chamber or the other.

Measuring cell death

 ClC-a mutants, we manually counted Dcp-
1+ puncta per brain hemisphere. + puncta 

of the hemispheres manually segmenting them using the “SURFACE” tool of Imaris 8.0 
(Bitplane, + 
puncta per μm3.

Figure 13. Brain measurements.

axis, x. (B) Adult optic lobe and central brain were measured in the antero-posterior (a for the optic lobe, x for 
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DL1-2 axonal tracts

To assess DL1-2 axonal tract path in reference to the mushroom body we used the 
R9D11tdtomato
with FasII staining. We manually segmented the axonal tracts and the mushroom body 
using the “SURFACE” tool of Imaris 8.0 (Bitplane, South Windsor, CT, USA). 

DeGradFP

The deGradFP technique (degrade Green Fluorescent Protein), is a genetically encoded 
method for direct and fast depletion of GFP tagged proteins (Caussinus et al. 2012). A 

G-trace

Gal4-expressing cells. The key feature is that the initiation of lineage reporter expression 
is Gal4-dependent whereas maintenance of lineage reporter expression is not. G-TRACE 

based analysis (enhanced GFP (EGFP)), thereby increasing screening throughput as there 
is no requirement for antibody staining .

To initiate lineage tracing, Gal4 mediates the expression of FLP recombinase, which in turn 

p63E (Ubi-p63E) promoter fragment and the EGFP open reading frame. Thereafter, the 
Ubi-p63E promoter maintains EGFP expression perpetually in all subsequent daughter 

. 

Gal4

RFPUAS

FLPUAS

STOPUbip63 nEGFPFRT FRT

Enhancher

Ubip63 nEGFPFRT

Cell color

Real-time 
expression

Lineage 
expression

Real-time and 
lineage expression
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FRT82B-MiMIC recombination

The MiMIC-ClC-a alleles were recombined in the same chromosome as FRT82B, a target for 
FLP recombinase , which is located near the base of 3R chromosome 
arm. The FRT82B has a neomycin resistance. Females laying recombined eggs were kept 

were heat-shocked for 30 minutes to enhance the expression of the neomycin resistance 

selection of possible recombinants. 

Clones

EGUF/hid

The EGUF/hid is a genetic method for generating Drosophila
of mitotic clones of a single genotype . This method combines 

. A GAL4 is expressed under the enhancer of eyeless, a gene expressed in 

. When the matched homologous chromosomes containing FRTs are 
present in the cell, FLP mediated mitotic recombination occurs (Figure 15). To eliminate all 
photoreceptor cells that are not homozygous for the mutation of interest, a chromosome 
containing an FRT and a dominant photoreceptor cell lethal transgene GMR-hid is used. 

hid hid much after mitotic 
clones are induced under eyeless 
mutation was added to the chromosome arm containing the GMR-hid. Because GMR-hid 

homozygous cells for this chromosome arm would die immediately after recombination, 
producing a recombinant adult eye that more closely resembles wild type (Stowers and 

 

Figure 14. Schematic of the molecular mechanisms of the G-TRACE system. 

expression of nuclear RFP and FLP recombinase. Cells expressing FLP recombinase then excise the FRT-

represents the apparent color of cells after initiation of Gal4 expression. ).
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MARCM 

The Mosaic Analysis with a Repressible Cell Markel or MARCM is a genetic mosaic system 
in which a dominant repressor of a cell marker is placed in trans to a mutant of interest. 

. This method combines the FRT/FLP system and the GAL4/UAS 

domain of GAL4. We did two different types of MARCM clones:

-Mutant MARCM clones in a heterozygous background

ClC-a mutant clones in a heterozygous 
background, where ClC-a 

For generation of ClC-a
ey3.5FLPg5d, a FLP that is expressed in the precursor cells of photoreceptors. Clones 
were labelled by an actGAL4 and UASsyteGFP

obtaining labeled homozygous mutant photoreceptors after FLP mediated recombination 

Lethal

Lethal

Lethal

Viable

FLP

GMR-hid, cl
GMR-hid, cl

ClC-a-

ClC-a-

GMR-hid, cl

GMR-hid, cl

ClC-a-

ClC-a-

GMR-hid, cl
GMR-hid, cl

ClC-a-

ClC-a-

GMR-hid, cl
GMR-hid, cl

ClC-a-

ClC-a-

GMR-hid, cl
ClC-a-

GMR-hid, cl
ClC-a-

Cell Fate

50%

50%

100%

DNA 
synthesis

Odd

Even

Figure 15. Schematic of the EGUF-hid method. 

homologous chromosome arms are shown. Photoreceptors containing GMR-hid will die, so as the cells 
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MARCM clones in homozygous mutant background

This technique allowed us to determine the proliferation of neuroepithelial and neuroblast 
clones in a homozygous mutant background, where all cells of the organism will be mutant 
for ClC-a. The glia that is in close contact with the clones and normally expresses the 

a different chromosome from the one that will mitotically recombine.  For generation of 
MARCM clones, we used the hsFLP, a FLP that is expressed after heat-shock induction. 

in mitosis during the heat-shock. Clones were labelled by an actGAL4 and UASmCD8GFP 

Gal80

ClC-a-

Gal80

ClC-a-

GFPUAS

Gal80

ClC-a-

Gal4

GFPUAS

G1
G2

Gal80

ClC-a-

Gal80

ClC-a-

GFPUAS

FLP

GFPUAS

GFPUAS

Gal80
Gal80

ClC-a-

ClC-a-

Labelled 
homozygous

 mutant daughter
 cell

Mitosis

Unlabelled 
homozygous

wild-type
 daughter cell

FLPey3.5g5dFLPey3.5g5d FLPey3.5g5d

act Gal4act Gal4act

Gal4act

Gal4act

Figure 16. Schematics for MARCM clones in a heterozygous mutant background. 

FLP mediated mitotic recombination. Homozygous mutant clones will not contain the GAL80 repressor and will 

Lee 

). 

Figure 17. Schematics for MARCM in homozygous mutant background. 

mitotic recombination. Clones will not contain the GAL80 repressor and will express the GFP marker. All the 

).

Gal80
Gal80

GFPUAS

Gal80

Gal4

GFPUAS

G1

G2

Gal80
Gal80

GFPUAS

FLP

GFPUAS

GFPUAS

Gal80
Gal80
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homozygous
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 cell

Mitosis
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 daughter cell

FLPhs

act Gal4act Gal4act

Gal4act
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FLPhs FLPhs

ClC-a-/ClC-a- ClC-a-/ClC-a- ClC-a-/ClC-a-

ClC-a-/ClC-a-

ClC-a-/ClC-a-Heat-shock
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the control, we left the clones grow for 48 hours (Figure 18).

Construction of transgenics

For generation of UAS-ClC-a and UAS-Rat-ClC-2 transgenes, we cloned the cDNA of ClC-
a’s isoform C within the plasmid pBID-UASC-G (Addgene plasmid #35202) in collaboration 

(Jeworutzki et al. 2012)
cells and described to be expressed in Drosophila´s head and body (Flores et al. 2006). 

transgenesis 
mediated 

Figure 18. Schematics for the design of induced MARCM clones. For 14007/+

14007/

Df

for brain dissection 48 hours later at mid L3 (120h AEL).
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between a bacterial attachment site (attB) and a phage attachment site (attP). Injecting 
plasmid containing attB site and white marker into attP-containing docking site strain(s) with 

w+ transformants containing the plasmid of interest 
between attL and attR sites. Both UAS-ClC-a and UAS-Rat-ClC-2 were inserted at attp40 
site (band 25C6) in the 2nd chromosome and attp3B (band 62E1) in the 3rd chromosome.

PCR

MiMIC14007 with different w+ 
y+ marker that could be followed if working in a y mutant 

MiMIC14007 

components were assembled on ice and quickly transferred to a preheated thermocycler. 
Primers:

EGFP FWD  ACGTAAACGGCCACAAGTTC

EGFP RV     TGCTCAGGTAGTGGTTGTCG

A list of components for a classical PCR reaction are depicted in Table 5.

Statistics

When the data followed a normal distribution, the parametric one-way ANOVA and t-student 

Ingredient Volume
Template DNA 2μl
10mM dNTPs 0,5μl
25Mm MgCl2 1,5μl

20mM Primer FW 1μl
20mM Primer RV 1μl

5x Taq reaction Buffer 4μl
Taq polymerase 0,2μl

H2O 9,8μl
Total volume 20μl

Table 5. List of components of a classical PCR reaction. Left column shows all necessary components for 
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In cases where the data did not follow a normal distribution or we multiplied different 
parameter to obtain the data, the non-parametric Kruskall-Wallis and Mann-Whitney test 

and the ends of the whiskers the minimum and maximum of all of the data.



RESULTS





CHAPTER I:

The ClC-a expression pattern and 

characterization of ClC-a mutants 
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ClC-a channel expression in glia of the developing brain

ClC-a has been poorly studied in the Drosophila´s brain, so we started characterizing its 
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Figure 19. ClC-a expression in the developing brain. ClC-a

ClC-aGFP

via 05423ClC-aGal4 mediated membrane (UAS-mCD8GFP

ClC-a
+ cells compartmentalize it, creating what resembles central brain neuroblast glial 

 illustration

ClC-a is expressed 

ClC-

aGFP ClC-a

05423ClC-aGal4 mediated membrane labeling 

leads to ClC-aGFP + nuclei (labeled 

using an UAS-H2BRFP it colocalizes with the 
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Drosophila 

ClC-a

could be due to the low expression the protein has in brain tissues.

ClC-a-GFP protein trap 

ClC-a expression. The signal obtained in homozygous animals was 

the same cells expressing ClC-a, ClC-a was 

05423ClC-aGal4, reporting ClC-a
the endogenous gene locus, 

development. We want to note that 05423ClC-aGal4 

05423ClC-aGal4 UAS-
mCD8-GFP UAS-H2B-RFP ClC-a
ClC-a-GFP 05423ClC-aGal4 

ClC-a + 

ClC-a was expressed 
+ glial cells were already surrounding the 

+ glial cells were already wrapping both neuroepithelia in 
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 ClC-a

with
+ glial membranes started encasing 

+ completely + 

+ glial membranes in
+ glial boundary between the developing lamina and lobula 

+ glial cells could be observed creating 
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05423ClC-aGal4

ClC-a-GFP

+ + cellular processes intermingle between 

+ glial 
process between the developing lamina and the lobula plug compartments, establishing 

origin, which never mix. 

The ClC-a channel expression in cortex glia and some types of ensheathing glia

ClC-a. The described ClC-a 
expression pattern resembled the cortex glia. Their glial processes encapsulate neuronal 

structure, the “trophospongium” . The 

+

mir8Gal4 P element insertion at the miR-8 gene (Karres 
, which is expressed in the mentioned glia 

colocalized with mir8Gal4 

Supporting this, the ClC-a general expression pattern was very similar to previously 
characterized cortex glial drivers, such us, R54H02Gal4

wrapper 
cortex glia in the brain 
colocalization was also observed between 05423ClC-aGal4 and wrapper932iLexA 

R54H02Gal4
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ClC-a
strategy which combined the 05423ClC-aGal4 with the wrapper932iGal80. We observed that 
ClC-a

o

ClC-a

ClC-a expression in cortex glia, 
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(UAS-H2BRFP mir8Gal4 membranes (UASmCD8GFP, 

line between the 

se also colocalize in central brain cortex glia creating 

UAS-

mCD8GFP UAS-H2BRFP 05423ClC-aGal4 ClC-a is expressed in cortex 

glia. 05423ClC-aGal4  wrapper932iLexA, 
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ClC-a

o i

Figure 22. ClC-a expression in some types of ensheathing glia. 05423ClC-aGal4

wrapper932iGal80, showed ClC-a

express ClC-a

express ClC-a. 
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Thus, ClC-a

Characterization of ClC-a mutants

ClC-a Minos
ClC-a

ClC-a Mi(MIC)ClC-a05423 and 
Mi(MIC)ClC-a14007 05423 and 14007

ClC-a

Df(3R)PS2 
Df ClC-a

The 05423/Df 
05423/Df escapers did not emerge 

05423 chromosome had a second 

The 05423 derived 05423ClC-aGal4 14007/Df 

compared to 05423/Df 
05423/14007 allelic combination was similar to 14007/Df. The 

14007
also seemed, that 14007/14007 homozygotes are healthier than other allelic combinations.

05423/Df, 14007/Df, 05423/14007, and 14007/14007 allelic 
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05423ClC-aGal4 > 05423/Df > 14007/Df = 05423ClC-

aGal4/14007 > 05423/14007 > 14007/14007 05423ClC-aGal4/
Df or 05423/Df animals, hence we mainly used 14007/Df and 05423ClC-aGal4/14007
our experiments.  These two allelic combinations behave in a very similar way and mutant 

Figure 23. ClC-a MiMIC mutants are strong loss of function alleles. 
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mutant animals.

ClC-a





CHAPTER II:

ClC-a mutants
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Mutations in ClC-a result in smaller brains with photoreceptor guidance defects

was observed, due to ClC-a expression at larval stage. We realized, that ClC-a mutant 
05423ClC-aGal4/Df

05423ClC-aGal4/14007

ClC-a expression was detected in a boundary 

.

Figure 24. ClC-a mutants have smaller brains. 
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Figure 25. ClC-a mutant photoreceptor guidance phenotypes. 
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ClC-a

Rh1Gal4 

phenotypes just one to three posterior to anterior thin misprojected bundles were seen 

stronger in 05423ClC-aGal4/Df and 05423/Df 14007/Df, 05423ClC-aGal4/14007, and 
05423/14007 

Rh6lacZ and R7 labeling Rh4EGFP

R7 and R8 photoreceptors start innervating the medulla at larval stages, projecting to 

growing 
R8 axons are in their respective temporary layers, misguided R8 axons were still targeting 

growth.
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ClC-a is required in glia for a normal brain size and photoreceptor guidance

ClC-a
down and rescue experiments.

ClC-a 05423ClC-aGal4 and, exclusively in glial cells, 
RepoGal4 repo

the ClC-a
deGradFP 

glia with RepoGal4 in homozygous ClC-aGFP ClC-aGFP tags the gene at the 
deGradFP

Figure 26. R8s targeting defects. Rh4EGFP, 14007/Df 

in ClC-a Rh6lacZ, 

14007/Df mutants. R8 axons in wild type enter the medulla distally 

t 14007/Df mutants. 
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UASClC-a and UASRatClC-2. They allowed us 
to do rescue experiments, expressing Drosophila’s ClC-a or ClC-a´s Rat homologue ClC-2 

05423ClC-aGal4 RepoGal4. The 
ClC-a 05423ClC-aGal4

ClC-a and 

driver GMRGal4

To be completely sure that ClC-a
clonal analysis. The MARCM technique was used to  generate positively 

EGUF-

Figure 27. ClC-a is required in glia for a correct guidance of photoreceptor and proper optic lobe size. 

ClC-a by 05423ClC-aGal4 and RepoGal4.
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hid technique , we generated eyes composed exclusively 

ClC-a expression in photoreceptors, our results indicated 
that ClC-a ClC-a mutants 

Figure 28. Photoreceptor phenotypes are non-

autonomous. ClC-a

GMRGal4. 

ClC-a in photoreceptors did 

not rescue the phenotypes. 
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Cortex glial cells wrap neuroepithelia and neuroblasts in mutants

ClC-a 
ClC-

membranes (UAS-mCD8GFP UAS-H2BRFP 05423ClC-aGal4 in controls and 
05423gal4/14007

also individually wrapped and the trophospongium seemed unaltered in both, the optic lobe 

We concluded that mutations in ClC-a

ClC-a is required for neuroepithelial expansion

that they integrate external, nutritional, and possible neuroblast signals that mediate the 

unaltered in ClC-a
 and their processes 

Figure 29. Cortex glial morphology remain unaltered in ClC-a mutants. 05423ClC-aGal4 mediated 

membrane (UAS-mCD8GFP UAS-H2BRFP
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edge generate neuroblasts that will produce optic lobe neurons. While asymmetric divisions 

Figure 30. Neuroepithelial proliferation decrease in ClC-a mutants. 
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adhesion protein E-cadherin

14007/Df 

Vsx

Dcp-1. We 
could not observe any apoptotic cell neither in controls nor in 14007/Df mutants in both the 

MARCM technique, we generated positively labeled 
clones in wild type and whole animal 14007/Df 

ClC-a, 

other hand, clones in 14007/Df mutants, where cortex glia were not expressing ClC-a, the 

gene expression that sweep the neuroepithelium and signal its transition to asymmetrically 
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ClC-a expression is required for neuroblast proliferation and neuronal survival

+ 

Figure 31. The anterior OPC is absent in late L3 ClC-a mutants. 
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ClC-a

Figure 32. ClC-a is required for neuroblast proliferation and neuronal survival. 
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A subset of ClC-a+ glial cells, which suffer a strong reduction in mutant animals, act 

as guidepost cells for photoreceptors 

lamina , but a detailed description was 

+ glial nucleus, with lower 
expression than cortex glia, progressively positioned in the expanding region between the 

 glial population 
 glial cells 

R43H01 line . 

o

o

o and palisade glia. We 

o

relation with innervating photoreceptors.

o and palisade glia into two glial types by morphology and location, 

o R25A01 line  
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Figure 34. A subset of ClC-a+ glial cells, showing strong reduction in mutant animals, act as guidepost 

cells for photoreceptors. 05423ClC-aGal4 mediated membrane (UAS-mCD8GFP UAS-

H2BRFP
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Figure 35. Developmental details of the glial barrier. R43H01LexA
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+

+

(Evans 
, using the 05423ClC-a gal4, showed how cells, that had expressed ClC-a

meaning a dip in expression.
due to cellular rearrangements and not a major apoptotic event.

14007/05423ClC-

aGal4 

during development.

o

inner chiasm glia, outer chiasm glia, and cortex glia . 

the R38H02Gal4 , 



R
E

S
U

LT
S

ClC-a mutants reached to the optic lobe and died 

slit mutants have similar photoreceptor guidance phenotypes

slit 

. 

Figure 36. Boundary glia migration and cell death in the barrier. 
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controlling photoreceptor axonal guidance 

slit . 

slit in these cells in relation to photoreceptor innervation.

The glial barrier expresses slit at the time of photoreceptor innervation

We already described the glial cell types, that contribute to the glial boundary between the 

slit-GFP slit locus, to 

space slit-GFP reporter line was located between 

slit

Figure 37. slit mutants show similar photoreceptor guidance phenotypes compared to ClC-a mutants. 
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slit-LacZ (slit05428) nuclear reporter in cells described to 
express slit slit-GFP and slit-LacZ labeled 

o and 

. We concluded that this reporter was reporting Slit expression correctly.

innervation, slit

will encounter a glial barrier, where all glial types are Slit+ slit was also 
expressed in satellite glia, and boundary glia derived outer chiasm glia and palisade glia 

Figure 38. slit-GFP  described slit expression. slitGFP
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Reduced slit expression in the glial barrier phenocopies axon guidance defects in   

ClC-a mutants

ClC-a mutant 

gene in cortex and boundary glia, with 05423ClC-aGal4

same photoreceptor phenotypes as in ClC-a
slit

slitdui mutation. This mutation is characterized by removing slit

Figure 39. slit is expressed in the glial barrier during photoreceptor innervation. slit expression 

(slitGFP with Repo 

with 05423ClC-aGal4 mediated membrane (UAS-mCD8GFP
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the optic lobe 

slit in ClC-a mutant 14007/14007, which originally 

we concluded that ClC-a and slit genetically interact.

themselves was enough to rescue Slit mutant phenotypes . We wondered, 
whether increasing Slit concentration in the region would rescue ClC-a mutant phenotypes, 

14007/Df 
remaining glia, with RepoGal4 and in photoreceptors, using GMRGal4. We could not rescue 

the Slit+

ClC-a

Figure 40. Slit is necessary in boundary glia for correct photoreceptor guidance. 
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brain and their positioning in the optic lobe

ClC-a

+

ClC-a. 

ClC-a

This time we used the previously mentioned cortex glia labeling mir8Gal4

its expression to glia, we used an intersectional strategy. We combined the driver with a 
tub>gal80> and repoFLP6:2

mir8 expressing glia 
mir8Gal4 o, or 

Figure 41. mir8Gal4 expression is restricted to cortex glia based on an intersectional strategy. 
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Figure 42. ClC-a expression in cortex glia rescues boundary glia reduction and photoreceptor 

phenotypes.  

glia expresses ClC-a ClC-a is only 

mir8Gal4

Mid L3

sg

cxg

OPCOPC

IPC
cxg

ClC-a expressing cells
Repo

Cortex glia>ClCa
Repo

14007/+ 14007/Df 100%

80%

0%

20%

40%

60%

tub
>g

al8
0>

; m
ir8

Gal4
/

Rep
oF

lp,
 U

ASClC
-a

14007/Df

tub
>g

al8
0>

; 

Rep
oF

lp,
 U

ASClC
-a/

+

%
 p

he
no

ty
pe

 s
tre

ng
th

Strong
Medium
Weak
No phenotype
n = 20 brainsRepo

0

20

40

60

80

100

N
um

be
r o

f r
ep

o+  n
uc

le
i

14007/+

14007/Df

mir8Gal4/
UASClC-a
(RepoFlp 
strategy)

*** **
*

sg

bg

cxg

OPCOPC

IPC
cxg

sg

bg

cxg

OPCOPC

IPC
cxg

A B C

05423ClC-aGal4 + cells in the barrier in 

ClC-a 

origin in the central brain to the optic lobe. 

Migration of boundary glia could be affected due to DL1 lineage mispositioning

R9D11-CD4-tdtomato reporter  labels selectively all 
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 , so we will name them 

ClC-a 
14007/Df 

Figure 43. Boundary glia reduction could be a consequence of DL1 mispositioning. 
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the optic lobe.

tracts  and their trajectories are well 

14007/Df 

Boundary glia generation could be affected by proliferation defects in DL1 lineage

 , 

Figure 44. Boundary glia reduction could be a consequence of decreased proliferation in DL1 lineage.  
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the clonal analysis protocol used in our study was very similar to the one used in other 

(Dpn

Deadpan (Dpn Dpn
with R9D11tdtomato and cortex glia with 05423ClC-aGal4 

14007/05423ClC-aGal4 

in ClC-a mutants, so it could also be, that less boundary glia are generated and the decrease 

generated in the central brain.

Mushroom body neurons also show guidance defects 

body in ClC-a 

body when possible.

neuroblasts project to the mushroom body. The mushroom body is an easily distinguishable 
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Figure 45. Neurons of the mushroom body show guidance defects. 
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MARCM 14007/
Df 

be elucidated.

+. To explain these phenotypes, we wondered 
whether this glia lamellae was still ensheathing the peduncle in ClC-a 
in some preliminary experiments in 14007/Df mutants, we could not observe any detectable 

Thus, guidance phenotypes are not exclusive to photoreceptors in ClC-a mutants, as they 

, it could be, that in the same 

14007/05423ClC-aGal4 
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Figure 46. Cortex glia, showing DM type II neuroblast encasing defects. 

05423ClC-aGal4 mediated UASmCD8GFP expression, 
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Ion channels, of all kinds, are expressed in glia and even though they are mainly responsible 
for regulating glial homeostasis, they also directly regulate the well-being of surrounding 
cells. This is due to their ability of controlling extracellular ionic concentration as well as 
secretion and uptake of different organic compounds. Regarding the mammalian mature 
CNS, knowledge about the relation between ion channels in glia and neuronal behavior is 
growing, with few studies investigating the roles of ion channels in glia in the developing 
CNS. The results of this work contribute to the understanding of how chloride channels 
can affect the development of neural tissue, controlling the niche microenvironment during 
neurogenesis.

ClC-a as a key channel in the glial niche for neural progenitor proliferation

In the mammalian mature CNS ClC-2 is expressed in neurons and glial populations, such 
as, astrocytes and oligodendrocytes (Nobile et al. 2000; Sík et al. 2000; Blanz et al. 2007b; 
Ratte and Prescott 2011). 
in glia not only in the mature CNS, but also in the developing one, while neuronal expression 
was not detected. Interestingly, only some types of glia express the channel. To obtain a 
detailed description, we tested and described new tools for ClC-a expression assessment; 
a ClC-a protein tagged by GFP (ClC-aGFP) and a Gal4 line (05423ClC-aGAL4), both under 
the control of ClC-a regulatory sequences. From early development to adulthood, ClC-a is 
expressed in cortex glia and some types of ensheathing glial cells. Astrocyte-like glia, which 

ClC-a mutants (05423 and 14007) had smaller brains and allowed us 
to investigate the consequences of removing the channel from the developing CNS. The 
lack of ClC-a in cortex glia, unveiled the 
glia, and especially on the development of the neuroepithelia. We concluded, that ClC-a is 
non-autonomously required for neuroepithelial proliferation. The central brain neuroblast 
lineage growth rate also decreased, although an overall higher cell death levels in mutant 

defects, less neuronal survival, or both. Interestingly, we observed an accumulation of INPs 
in DL1-2 type II lineages. This accumulation cannot be explained by dying INPs, but could 
be explained by reduced division rates and increased life expectancy of INPs. Therefore, 

 suggest, that apart from increased cell death, there might also be proliferative 
defects in the central brain. To elucidate whether proliferative defects are also responsible for 
decreased neuroblasts growth rate, MARCM clones could be induced in mutants,  blocking 
cell death. Cell death could be blocked by overexpression of the baculovirus P35 (Hay et al. 
1994)
If there were proliferative defects, the clones would still be smaller after blocking cell death.

Some studies indicate, that cortex glial cells are in close contact with neural progenitors and 
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are responsible for creating a niche microenvironment for neuroepithelial cells (Morante et 
al. 2013) and neuroblasts (Dumstrei et al. 2003; Bailey et al. 2015). Our study also supports, 
that cortex glia is part of the Drosophila NSC niche. Historically, glia in contact with the OPC 

(Morante et al. 2013) 
demonstrated, that a third glial layer belonging to cortex glial cells exists. However, there 

to this glial layer as surface glia (Coutinho-Budd et al. 2017). This is due to the atypical 
, that 

this
in this cortex glial niche to non-autonomously maintain growth of neuroepithelial cells and 
probably neuroblasts as well. 

It is believed, that ion channels provide the basis for generating bioelectric signals, that 
intrinsecally control migration, proliferation, and differentiation in a variety of stem cells 
(Reviewed in Li and Deng 2011). Therefore, the niche microenvironment should have the 
required
channel necessary in neurogenic niche cells to extrinsically regulate stem cell proliferation. 

Central brain neuroblast derived glial cells act as guidepost cells for neuronal 

guidance

Apart from studying stem cell proliferation defects, we also described the photoreceptor 
guidance phenotypes in ClC-a mutants and tried to identify the cause of these. 

photoreceptors were misguided during their targeting to the medulla. We showed, that they 
skipped the chiasm and reached the medulla from its proximal face. Afterwards, knock 

glia, in agreement with its expression pattern. Thus, photoreceptor phenotypes are non-
autonomous. 

As the guidance defects had a developmental origin, we moved to the larval brain 
trying to identify the phenotype cause, and described, in detail, glial cell interaction with 
photoreceptors during brain innervation. We found that a glial barrier compartmentalizing 
the optic lobe was present in the targeting area of photoreceptors. This was composed 
by two glial populations, ClC-a- and ClC-a+, and cortex glial membrane processes. The 
ClC-a- cells become the known satellite glial cells at later larval stages and proximal satellite 
glial cells in the adult. The proximal satellite glia, together with the distal satellite glia, is 

(Kremer et al. 2017). However, 
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the proximal satellite glia is the only cortex glial type, that does not express ClC-a. It could 
be, that in adults, the functions proximal satellite glia accomplish are different from the other 
cortex glial cell functions.

The ClC-a+ cells in the glial barrier, which we named boundary glia, turned out to be the 
precursors of two cell types, the outer chiasm glia and a new glial type, termed by us as 

and express the repulsive signal slit at innervation start. We linked the guidance phenotypes 
to a strong reduction of boundary glial cells in ClC-a mutants, since Slit signaling, necessary 
for correct photoreceptor guidance, is disrupted in these situations. We also showed 

photoreceptor phenotypes in ClC-a mutants. Therefore, ClC-a is not required for glial 
barrier correct positioning or photoreceptor guidance, in boundary glia, and its reduction is 
a secondary effect. Interestingly, the function ClC-a might accomplish in boundary glia or 
other ensheathing glia are still unknown.

It has been described that Xgo cells migrate from the central brain and belong to the 
DL1 neuroblast lineage (Viktorin et al. 2013; Ren et al. 2018). We demonstrated that the 
boundary glial cells, being Xgo precursors, are indeed coming from DL1 neuroblasts, and 
tried to decipher the origin of the strong reduction of those glial cells.

Although we could not conclude the cause of reduction, with certainty, we came up with 
two hypotheses, which could be complementary. On the one hand, the disorganization of 
type II lineages in the central brain, together with defects in the IPC, led us to hypothesize 
that the migration of boundary glia could be altered. On the other hand, the accumulation 
of INPs in DL1-2 lineages suggests, that in the same way as in neuroepithelia, proliferation 
could be decreased in those lineages, creating less boundary glial cells. An ex vivo analysis 
would be the best to answer this question. DL1 clone derived cells could be tracked ex vivo 
in cultured brains, where migration defects, generation of new cells and dying cells in the 
lineage could be easily assessed. The proliferation rate of neuroblasts could be assessed 
in the same way. Interestingly, a new technique, that allows creating individual clones for 
each type II neuroblast lineage (Ren et al. 2018), have been developed this year, and could 
be used for ex vivo experiments.

Furthermore, a study described the requirement of the Babo/Smad2 pathway in neuroblasts 
for correct proliferation and brain growth, as well as defects in photoreceptor axonal 
guidance. Mutants showed slower neuroblast proliferation and photoreceptor phenotypes 
were non-autonomous (Zhu et al. 2008). This previous link between neuroblast proliferation 
and photoreceptor guidance phenotypes is very interesting. However, due to a lack of 
detailed description of these guidance phenotypes in this study, we do not know whether 
the guidance phenotypes would be similar to the ClC-a ones. If those phenotypes were 
similar,  could support the idea, that proliferation defects are the main reason of  
reduction of boundary glia.
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Guidance defects are not exclusive to photoreceptors in ClC-a mutants. Neurons of the 
mushroom body misproject to the calyx, instead of going through the peduncle, and if 
they do, they go through the outer part of it, instead of going through the middle. Also, in 
the strongest phenotypes, the calyx is mispositioned to the surface. When Spindler and 
colleagues (Spindler et al. 2009) overexpressed the pro-apoptotic proteins Hid and Reaper 
with Nrv2Gal4, they created what they called a glial-less brain. In those brains the surface glia 
is wild type, but they killed cortex and neuropil glial cells. In glial-less brains the mushroom 

mushroom body fasciculation (Spindler et al. 2009). In an interesting way, DM2, DM3, DM5, 
and DM6 type II neuroblasts give glial offspring, that cover the mushroom body (Calyx, 
Peduncle) between other neuropils (Ren et al. 2018). It could be, that glia differentiated 
from the rest of type II lineages and necessary for neuropil compartmentalization are also 
affected, in a similar way as glia derived from DL1 lineage is strongly decreased. However, to 
answer this question, a detailed description of the mushroom body glia would be necessary 
through all developmental stages. A recent study described the adult glia in contact with the 
mushroom body (Kremer et al. 2017), and suggests, that developmental stage descriptions 
of the mushroom body glia would not be easy to obtain, as a lot of different kind of glia are 
present in this complex structure. Interestingly, we could observe some encasing problems 
of the DM type II neuroblasts, including the glia giving ones. It remains unknown if and how 
this behavior could affect proliferation. Encasing problems were not observed in DL1-2 
lineages, proposing that these defects are an additional phenotype unrelated to proliferative 
defects. As done for the DL1-2 lineages, INPs of the DM type II lineages could be counted, 
to see whether accumulation of INPs also occurs in those lineages. Photoreceptor and 
mushroom body neuron guidance phenotypes could be only two guidance examples and 
some other neurons that need neuroblast derived guidepost cells for their correct axonal 
guidance could be affected.

Towards the physiological mechanism of ClC-a

Although we  the requirement of ClC-a in cortex glia, the physiological mechanism 
of the channel is yet to be elucidated. We carried out some exploratory experiments, trying 
to address functional details. ClC-a, the same way as mammalian ClC-2, have an inwardly 
rectifying current (chloride leaves the cell), activated during hyperpolarized conditions 
(Jeworutzki et al. 2012). In mammals, the GLIALCAM subunit activates ClC-2 at positive 
potentials (chloride enters the cell), however, the subunit is not conserved in Drosophila. 
Interestingly, ClC-a can suffer naturally occurring RNA editing in the “gating” glutamate 
(E269G) (Stapleton et al. 2006), which activates the channel also at positive potentials. 
It has been shown, that this activation at positive potentials is necessary in glia for the K+ 
buffering process (Reviewed in Estévez et al. 2018). At this point, we wondered which ClC-a 
properties were required in cortex glia. As mentioned in the results section, ClC-a and ClC-2 
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. Hence, it seems, that 
the activation of the channel at negative potentials (chloride leaves the cell) is enough to 
rescue the phenotypes. A rescue with the edited version of ClC-a (E269G) in glia was also 
enough to completely rescue the photoreceptor guidance phenotypes, so the activation of 
the channel, also at positive potentials, did not alter its necessary function. 

Chloride channels have usually been related to cell volume regulation, including glial cells. 
For example, VRAC channel activity is crucial for restoring astrocyte cell volume after a 
hypotonic shock (Hoffmann et al. 2009). In Drosophila, two of the few studied channels 
in glia, K+/Cl  cotransporter Kcc and Na+/K+/2Cl- cotransporter Ncc69, maintain osmotic 
homeostasis,  (Leiserson and Keshishian 
2011; Rusan et al. 2014). ClC-2 has been related to glial volume regulation in mammals as 
well (Reviewed 
in Estévez et al. 2018). However, we could not detect any cell swelling or vacuoles in the 
ClC-a mutant brain; and cortex glia seems to maintain its trophospongium morphology, 

 
it could be, that brain vacuoles appear in

membrane potential. The hypothetical function of the channel could be to take chloride 
out in compensation for cell membrane hyperpolarization. So the lack of ClC-a would led 
to membrane hyperpolarization. We overexpressed the mammalian potassium channel 
Kir2.1 in cortex glia to test whether glial membrane hyperpolarization could phenocopy 
photoreceptor phenotypes. The overexpression of this channel will increase potassium 

Membrane hyperpolarization did not have 
any effect on photoreceptor guidance. The bacterial sodium channel NaChBac, which has 
the opposite effect than Kir2.1, increases hence depolarizing the membrane. 
Overexpressing NaChBac in ClC-a mutants we tried to rescue ClC-a photoreceptor 
phenotypes, but we could not see any rescue at all Hence, it seems that membrane potential 
alterations cannot phenocopy or rescue ClC-a phenotypes. These channels are normally 
used to block or activate neurons (Reviwed in Hodge 2009) and it could be that in glia the 
channels were not working as expected. 
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Another hypothesis was, that the lack of ClC-a could be impairing glial secretion of some 
necessary factors for stem cell proliferation. It has been described, that cortex glial are 
secreting cells (Morante et al. 2013; Coutinho-Budd et al. 2017) and secretion is usually 
regulated by an increase of intracellular calcium. Therefore, chloride homeostasis 
impairment could affect Ca2+

hypothesis was an overexpression of a dominant negative Shibire dynamin (SHIDN) (Moline 
et al. 1999) using the
We chose the photoreceptor phenotypes as a readout. Surprisingly, photoreceptors showed 
very similar guidance phenotypes as ClC-a mutants. However, unlike in ClC-a mutants, 
cortex glia at mid and late L3 stages increased in volume and their membrane processes 
were much thicker, mainly affecting the thickness of surface-associated cortex glia. The 
morphological differences observed in cortex glia by SHIDN suggest, that most probably 
photoreceptor phenotypes appeared due to reasons different from that in ClC-a mutants.

We also did a small RNAi screening of proteins known to regulate Ca2+ induced secretion in 

protein, which would recapitulate photoreceptor guidance phenotypes. It could be, that 
the selected candidates were not expressed in cortex glia. For example, a recent study 
demonstrated that Rab3 is not expressed in cortex glia (Coutinho-Budd et al. 2017). In 
any case, IP3R and RyR Ca2+ channels, the unique channels responsible for Ca2+ release 
from the endoplasmatic reticulum in Ca2+ induced secretion, did not show any phenotype 
in photoreceptors or general brain development. Therefore, the secretion in cortex glia is 
hardly controlled by calcium and other secretory machinery might be used. 

Most Cl- channels are also permeable for other anions, including amino acids and other 
organic and inorganic anions. A study in demonstrated that the ClC Cl- channel 
CLH-1 is highly permeable for HCO3

- and mediates HCO3
- uptake. At neutral extracellular 

pH, the cell would take up HCO3
-

1 would mediate HCO3
- (Grant et al. 

2015). In fact, CLH-1 shows homology to and has electrophysiological properties similar to 
the mammalian ClC-2 Cl- channel. Assays in  oocytes done by our collaborators 
from Raul Estevez´s group concluded that ClC-a and ClC-2 are not able to transport HCO3

-. 
(Jordt and Jentsch 1997). 

This activation might be required to regulate HCO3
- transport by creating a Cl- recycling 

pathway for HCO3
-/Cl- exchangers (Bösl et al. 2001). Assays in  oocytes also 

concluded, that ClC-a activity is also sensitive to pH. It could be, that the lack of ClC-a in 
cortex glia would lea  Cl- recycling for 
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HCO3
-/Cl- exchangers (Figure 47B). There are two HCO3

-/Cl- exchangers that could play this 
role in  and CG8177. It would be very interesting to investigate whether 
the exchangers are expressed in cortex glia and if they are, identify whether mutants have 
similar developmental phenotypes as described for ClC-a. Also, an experiment to assess pH 
in ClC mutants could be done. Genetically encoded pH-indicators (GEpHIs) (Rossano et al. 
2013) could be used in 
color depending on the pH. 

decrease neuronal survival. Several studies in several tissues describe the relation between 
pH and proliferation (Carswell and Papoutsakis 2000; Flinck et al. 2018), including cancer 
metabolism (Persi et al. 2018). Also, changes in pH can alter differentiation of different 
cell types (Bernard et al. 2006; Teo et al. 2014; Ulmschneider et al. 2016) and even affect 
oligodendrocyte precursor viability, migration, and differentiation (Jagielska et al. 2013). 

viability.

ClC-a in the mature nervous system, possible functions

ClC-a plays a role during CNS development, but we detected the channel is also expressed 
in cortex glia and different ensheathing glia in the mature CNS. In Drosophila, the mature 
CNS does not show any sign of neurogenesis. Therefore, ClC-a may play a different role. Ion 
channels have been shown to regulate seizure susceptibility (Leiserson et al. 2010; Melom 
and Littleton 2013; Rusan et al. 2014) and, with some controversy, mutations in mammalian 
ClCN2 have also been linked to epilepsy (Saint-Martin et al. 2009). While carrying out 

Figure 47. Hypothetic physiological mechanism of ClC-a.  (A) Proposed role of glial-expressed CLH-1 in C. 

 in intracellular and extracellular pH buffering. At neutral pH, the cell accumulates HCO3
- through CLH-

3
- via conversion to CO2 and H2O, 

CLH-1 may be activated and mediate HCO3
- Grant 

et al., 2015). (B) Proposed role of ClC-a. In cases of acidic  extracellular pH, ClC-a would release chloride to 

compensate positive charges, which in turn would create an increased extracellular chloride concentration. This 

chloride would be used by the exchanger, taking out HCO3
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a temperature-sensitive Ca2+ channel, under the control of a UAS promoter (UAS-TrpA1; 
Hamada et al. 2008). Prior studies overexpressing TrpA1 in cortex glia demonstrated that 
this manipulation resulted in acute and robust seizure activity in neurons, with epileptic 

(Melom and Littleton 2013). 05423ClC-aGal4/ 
UAS-TrpA1 controls and 05423ClC-aGal4/14007, UAS-TrpA1 mutants, were raised at 21ºC, 
to avoid TrpA1 activation during development, since it
transferred to new vials and moved to a 29ºC chamber to activate the channel. We could 
observe how little by little both controls and mutants started to have seizures until they were 
fully paralyzed and fell in food. We could not observe any differences between controls and 
mutants at this point. Surprisingly, when we took the vials at room temperature (25ºC), the 

after 60 seconds, ClC-a mutants needed more than 210 seconds to fully recover. We do not 
know whether this phenotype is due to a ClC-a role in recovering membrane potential after 
seizure or a secondary effect of the defective development of the mutant brain. The same 
experiment should be repeated conditionally removing the channel only in adult, having a 
normally developed brain. The best way for conditionally removing ClC-a only in adult would 
be to create a transgenic line having the ClC-a gene (or part of it) in a FRT cassette and at 
adult stages remove it by inducible FLP expression.

Biological relevance of the study 

Almost all phyla present a ClC-a homologue, but little is known about the processes 
the channel is involved in. In mammals, ClC-2 was mostly studied in relation to MLC 
leukoencephalopaty disease, in which ClC-2 functions attached to the GLIALCAM subunit 
and participates in charge compensation during K+ buffering process. ClC-2 chloride uptake 
is necessary for potassium positive charge compensation. GLIALCAM regulates ClC-
2 localization to cell-cell junctions and changes its physiological properties (Reviewed in 
Estevez et al. 2018). However, GLIALCAM is not conserved in insects and we demonstrated 

leave the cell, so the knowledge we obtained 

K+ buffering. 

However, it could contribute to the understanding of other ClC-2 functions. Human patients 
with mutations in ClC-2 also show mental symptoms, such as, learning disabilities and 
retardation (Depienne et al. 2013; Di Bella et al. 2014; Hanagasi et al. 2015). It could be, 
that mutations in ClCN2 affect the development of the CNS in a similar way as in 

ClC-a mutant phenotypes in Drosophila, so the ClC-a 
properties needed for its function in glia are conserved in mammals. Curiously, although we 
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tried to rescue ClC-a phenotypes using the human ClC-2, we did not observe any rescue. 
Our collaborators from Raul Estévez , who work with mammalian channels, informed 
us that the human ClC-2 does not move as easily to the membrane as the rat ClC-2, which 
could explain the absence of rescue. Indeed, the human ClC-2 was almost not detected in 
glial membranes when overexpressed in Drosophila glia.

Furthermore, the ClC-a regulation of niche ionic homeostasis could be conserved in other 
non-neural niches. Humans showing decreased vision and infertility have been observed as 
well. In agreement with th , mice ClCN2 mutants also show a post-natal retinal 
degeneration and azoospermia (Bösl et al. 2001; Edwards et al. 2010). In mammalian 
testis, ClC-2 is necessary in Sertoli cells, a cell type that creates a niche for germinal stem 

nutrient for the germ cells (Jutte et al. 1982). In the retina, ClC-2 is necessary in the retinal 
pigment epithelia (RPE), an epithelium, that creates the optimal microenvironment for 
photoreceptors. Even though it does not represent a niche and proliferation is not happening, 
the rationale is similar. In both cases, it has been suggested that ClC-2 would be necessary 
for transepithelial transport, although a role in extracellular pH regulation could be another 
plausible hypothesis. Both cases are very interesting, as different studies suggest that 
photoreceptor and germinal stem cell degeneration are non-autonomous. Hence, ClC-2 
would be necessary in the surrounding cells, which regulate the microenvironment for stem 
cell and photoreceptor survival. This  in which 
ClC-a is necessary in the cortex glial niche for the correct maintenance of neuroepithelia, 
neuroblasts, and neurons.

microenvironment is created by niche cells or supporting cells. The chloride channel is 
required in these cells for the correct proliferation or survival of different cell types. Although, 
used in different tissues, this mechanism seems to be conserved across different phyla.
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General overview

The hypothetical Cl- recycling pathway for HCO3
-/Cl- exchangers and pH control in the 

glial niche by ClC-a (Figure 48), would be necessary for neuroepithelial and neuroblast 
proliferation. A proper proliferation rate is needed in the DL1 neuroblast for giving rise to 
migratory glia that acts as guidepost cells for photoreceptors (Figure 48). Guidepost cells 
for other neurons, and derived from other neuroblasts, could also be required in the same 
way.

INPs

GMC

N

DL1

Cl-

Cortex glia

Subperineural
 glia

Perineural glia

H+

H+

H+

H+

H+
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pH regulation?
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Figure 48. Model of ClC-a function in the glial niche. Scheme of the DL1 neuroblast niche and its lineage, as 

well as the possible role of ClC-a in pH regulation. Although the neuroepithelia niche is not depicted, the function 

would be the same. DL1 derived migratory glia creates a barrier which is not crossed by photoreceptors. GMC, 

ganglion mother cell; INPs, intermediate neural progenitors; N, neuron.
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As a summary of this work, we described how the chloride channel ClC-a is required for 
CNS development.

-  ClC-a is expressed exclusively in some types of glia during development, from early 

-  Described ClC-a mutants (Mi(MIC)ClC-a05423 and Mi(MIC)ClC-a14007) are strong loss 
of function alleles.

ClC-a 
brains and photoreceptor guidance phenotypes.

-  ClC-a is required in the cortex glial niche for the correct proliferation of neuroepithelia 
and probably neuroblasts as well. Also, it is required in cortex glia for neuronal survival.  

-  The lack of ClC-a in cortex glia non-autonomously reduces the number of cells of 

guidance. 

-  ClC-a is also required for the wiring of mushroom body neurons, suggesting that 
proliferation defects could be widespread to different NB lineages
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Annex 1: Genotypes

Figure 13:

A. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

B. w; +/+; +/+

Figure 19:

A, D, G. w; +/+; +/+

B, E, H. w; +/+; ClC-aGFP/ClC-aGFP

C, F. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/+

I. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

Figure 20:

A, B, C, D, E, F, G, H, I. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

Figure 21:

A. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

B, C. w; mir8-Gal4/UAS-mCD8GFP; +/+

D. w; UAS-mCD8GFP/+; R54H02-Gal4/UAS-H2BRFP

E, F. w; UAS-mCD8GFP, lexO-CD2RFP/+; 05423ClC-aGAL4/wrapper932i-LexA

Figure 22:

A, B, C, D, E. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/wrapper932i-Gal80

F, G, H, I, K, L, M. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

J. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/+

Figure 23:

B, D. w; +/+; +/+

C, E.  w; +/+; 14007/Df(3R)PS2

F. w; +/+; 05423/Df(3R)PS2

G. 

w1118: w; +/+; +/+

Df/+: w; +/+; Df(3R)PS2/+
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05423/+: w; +/+; 05423/+

14007/+: w; +/+; 14007/+

05423/Df: w; +/+; 05423/Df(3R)PS2

14007/Df: w; +/+; 14007/Df(3R)PS2

14007/05423: w; +/+; 14007/05423

Figure 24:

A, B.

W1118: w; +/+; +/+

05423ClC-aGAL4/+: w; +/+; 05423ClC-aGAL4/+

14007/+: w; +/+; 14007/+

Df/+: w; +/+; Df(3R)PS2/+

05423ClC-aGAL4/14007: w; +/+; 05423ClC-aGAL4/14007

05423ClC-aGAL4/Df: w; +/+; 05423ClC-aGAL4/Df(3R)PS2

Figure 25:

A. w; +/+; 14007/+

B. w; +/+; 14007/Df(3R)PS2

C. 

05423ClC-aGAL4/+: w; +/+; 05423ClC-aGAL4/+

05423/+: w; +/+; 05423/+

14007/+: w; +/+; 14007/+

Df/+: w; +/+; Df(3R)PS2/+

05423ClC-aGAL4/Df: w; +/+; 05423ClC-aGAL4/Df(3R)PS2

05423/Df: w; +/+; 05423/Df(3R)PS2

14007/Df: w; +/+; 14007/Df(3R)PS2

05423ClC-aGAL4/14007: w; +/+; 05423ClC-aGAL4/14007

05423/14007: w; +/+; 05423/14007

D. w; Rh1Gal4/UASmCD8GFP; 14007/+
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E, F. w; Rh1Gal4/UASmCD8GFP; 14007/Df(3R)PS2

Figure 26:

A. w; Rh4-EGFP/+; 14007/+

B. w; Rh4-EGFP/+; 14007/Df(3R)PS2

C. w; Rh6-LacZ/+; 14007/+

D. w; Rh6-LacZ/+; 14007/Df(3R)PS2

E. w; Rh6-LacZ/ Rh4-EGFP; 14007/Df(3R)PS2

F. w; sensGal4, UASutrGFP/+; 14007/+

G. w; sensGal4, UASutrGFP /+; 14007/Df(3R)PS2

Figure 27:

A.

RepoGal4: w; +/+; Repo-Gal4/+

05423ClC-aGAL4/+: w; +/+; 05423ClC-aGAL4/+

ClC-aRNAi: w; UAS-ClC-aRNAi/+; UAS-Dcr2/+

RepoGal4>ClC-aRNAi: w; UAS-ClC-aRNAi /+; Repo-Gal4/UAS-Dcr2

05423ClC-aGAL4>ClC-aRNAi: w; UAS-ClC-aRNAi /+; 05423ClC-aGAL4/UAS-Dcr2

B.

ClC-aGFP/ClC-aGFP: w; +/+; ClC-aGFP/ClC-aGFP

deGRADFP: w; UAS-deGRADFP/+; +/+

RepoGal4: w; Repo-Gal4/+; +/+

RepoGal4>deGRADFP ClC-aGFP/ClC-a-GFP: w; Repo-Gal4/UAS-deGRADFP; ClC-
aGFP/ClC-a-GFP

C.

RepoGal4: w; Repo-Gal4/+; 14007/Df(3R)PS2

UASClC-a: w; UAS-ClC-a/+; 14007/Df(3R)PS2

UASRatClC-2: w; UAS-RatClC-2/+; 14007/Df(3R)PS2

RepoGal4>ClC-a: w; UAS-ClC-a/Repo-Gal4; 14007/Df(3R)PS2
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RepoGal4> RatClC-2: w; UAS-RatClC-2/Repo-Gal4; 14007/Df(3R)PS2

05423ClC-aGAL4/Df, UASClC-a: w; UAS-ClC-a/+; 05423ClC-aGAL4/Df(3R)PS2

05423ClC-aGAL4/Df, UASRatClC-2: w; UAS-RatClC-2/+; 05423ClC-aGAL4/Df(3R)PS2

D.

UASClC-a/+: w; UAS-ClC-a/+; +/+

UASRatClC-2/+: w; UAS-RatClC-2/+; +/+

05423ClC-aGAL4/Df: w; +/+; 05423ClC-aGAL4/Df(3R)PS2

05423ClC-aGAL4/Df, UASClC-a: w; UAS-ClC-a/+; 05423ClC-aGAL4/Df(3R)PS2

05423ClC-aGAL4/Df, UASRatClC-2: w; UAS-RatClC-2/+; 05423ClC-aGAL4/Df(3R)PS2

Figure 28:

GMRGal4: w; GMR-Gal4/+; +/+

ClC-aRNAi: w; UAS-ClC-aRNAi/+; UAS-Dcr2/+

GMRGal4>ClC-aRNAi: w; UAS-ClC-aRNAi/GMR-GAL4; UAS-Dcr2/+

GMRGal4, 14007/Df: w; GMR-Gal4/+; 14007/Df(3R)PS2

UASClC-a, 14007/Df: w; UAS-ClC-a/+; 14007/Df(3R)PS2

GMRGal4>UASClC-a, 14007/Df: w; GMR-Gal4/UASClC-a; 14007/Df(3R)PS2

Figure 29:

A, B, C, D. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

E, F, G, H. w; UAS-mCD8RFP/ UAS-H2BYFP; 05423ClC-aGAL4/14007

Figure 30:

A, B, C.

14007/+: w; +/+; 14007/+

14007/Df: w; +/+; 14007/Df(3R)PS2

D.

14007/+: hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/+

14007/Df: hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/Df(3R)
PS2
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Figure 31:

14007/+: w; +/+; 14007/+

14007/Df: w; +/+; 14007/Df(3R)PS2

Figure 32:

A.

14007/+: hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/+

14007/Df: hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/Df(3R)
PS2

B.

14007/+: w; +/+; 14007/+

14007/Df: w; +/+; 14007/Df(3R)PS2

Figure 33:

A.

14007/+: w; +/+; 14007/+

14007/Df: w; +/+; 14007/Df(3R)PS2

Figure 34:

A, B, C, D, E, N, O, P, Q. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

F. w; +/+; 14007/+

G, H, I, J, K. w; UAS-mCD8RFP/ UAS-H2BYFP; 05423ClC-aGAL4/14007

L. w; +/+; 14007/Df(3R)PS2

M.

05423ClC-aGAL4/+: w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP

05423ClC-aGAL4/14007: w; UAS-mCD8RFP/ UAS-H2BYFP; 05423ClC-aGAL4/14007

Figure 35:

A, B. w; UAS-mCD8GFP, lexO-CD2RFP/R43H01-LexA; 05423ClC-aGAL4/+

C. w; UAS-mCD8GFP/+; R25A01-Gal4/+

D, E. w; UAS-mCD8GFP/+; 05423ClC-aGAL4/UAS-H2BRFP
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F, G. w; UAS-G-trace/+; 05423ClC-aGAL4/+

Figure 36:

A, B. w; UAS-G-trace/+; R38H02-Gal4/+

C, D. w; UAS-H2BYFP /+; 05423ClC-aGAL4/14007

Figure 37:

A, B. w; +/+; 14007/Df(3R)PS2

C, D. w; slitdui, GMR-GFP/slitdui, GMR-GFP;+/+

Figure 38:

A, B. w; SlitGFP/UASmCD8RFP; 05423ClC-aGAL4/+

C, D. w; SlitlacZ/+; +/+

Figure 39:

A, B, C. w; SlitGFP/UASmCD8RFP; 05423ClC-aGAL4/+

Figure 40:

A. 

05423ClC-aGAL4/+: w; +/+; 05423ClC-aGAL4/+

SlitRNAi/+: w; UAS-SlitRNAi/+; UAS-Dcr2/+

05423ClC-aGAL4>SlitRNAi w; UAS-SlitRNAi/+; UAS-Dcr2/05423ClC-aGAL4

Slitdui/+; 05423ClC-aGal4>SlittRNAi: w; UAS-SlitRNAi/ w; UAS-SlitRNAi/+; UAS-
Dcr2/05423ClC-aGAL; UAS-Dcr2/05423ClC-aGAL

B. 

14007/+: w; +/+; 14007/+

slitdui /+: w; slitdui, GMR-GFP/+; 14007/+

14007/14007: w; +/+; 14007/14007

slitdui , 14007/14007: w; slitdui, GMR-GFP/+; 14007/14007

C. 

RepoGal4: w; RepoGal4/+; 14007/Df(3R)PS2

GMRGal4: w; GMRGal4/+; 14007/Df(3R)PS2
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UAS-Slit: w; UAS-Slit/+; 14007/Df(3R)PS2

RepoGal4/UAS-Slit: w; RepoGal4/UAS-Slit; 14007/Df(3R)PS2

GMRGal4/UAS-Slit: w; GMRGal4/UAS-Slit; 14007/Df(3R)PS2

Figure 41:

A, B, C. w; mir8-Gal4/UAS-mCD8GFP; +/+

D, E, F, G. tub>Gal80>/+; mir8-Gal4, RepoFLP6.2/+; UASmCD8GFP/+

Figure 42:

B.

14007/+: w; +/+; 14007/+

14007/Df: w; +/+; 14007/Df(3R)PS2

14007/Df, mir8Gal4/UASClC-a (RepoFLP strategy): tub>Gal80>/+; mir8-Gal4/
RepoFLP6.2, UASClC-a; 14007/Df(3R)PS2

C.

tub>Gal80>/+; +/RepoFLP6.2, UASClC-a; 14007/Df(3R)PS2

tub>Gal80>/+; mir8-Gal4/ RepoFLP6.2, UASClC-a; 14007/Df(3R)PS2

Figure 43:

A, D. w; +/+; 14007, R9D11tdtomato/+

B, C, E. w; +/+; 14007, R9D11tdtomato/Df(3R)PS2

Figure 44: 

A, B.  w; UASmCD8GFP/+; 05423ClC-aGAL4/R9D11tdtomato

C.  w; UASmCD8GFP/+; 05423ClC-aGAL4/14007, R9D11tdtomato

D.  

05423ClC-aGAL4/+: w; UASmCD8GFP/+; 05423ClC-aGAL4/R9D11tdtomato

05423ClC-aGAL4/14007: w; UASmCD8GFP/+; 05423ClC-aGAL4/14007, R9D11tdtomato

Figure 45: 

A, B, C.  w; UASmCD8GFP/+; 05423ClC-aGAL4/+

D.  w; +/+; 14007/+
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E, F, G.  w; UASmCD8GFP/+; 05423ClC-aGAL4/14007

H.  w; +/+; 14007/Df(3R)PS2

I.  hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/+

J, K, L.  hsFLP,FRT19A,tubGal80/ FRT19A; tubGAL4,UASmCD8GFP/+; 14007/Df(3R)
PS2

Figure 46: 

A.  w; UASmCD8GFP/+; 05423ClC-aGAL4/R9D11tdtomato

B, C.  w; UASmCD8GFP/+; 05423ClC-aGAL4/14007, R9D11tdtomato
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Annex 2: Photoreceptor clonal analysis

At the beginning of the project, we did not have the necessary tools to assess ClC-a 
expression, so we wanted to discard any possible contribution to the photoreceptor guidance 
phenotypes of an hypothetic ClC-a expression in them. We concluded that removing ClC-a 
only from photoreceptors by clonal analysis did not phenocopy photoreceptor phenotypes.

Figure 49. ClC-a mutant photoreceptor clones. (A) Homozygous photoreceptor MARCM clones. A 

control adult eye is shown, where clones can be detected by stronger pigmentation. Photoreceptor axonal 

guidance in controls and mutant homozygous clones is completely WT. (B) EGUF-hid photoreceptor clones, 

where the complete eye is homozygous mutant. When clones are induced, the eye is rescued, as only clonal 

photoreceptors will survive. No phenotypes were observed in photoreceptor axonal guidance in controls and 

mutant homozygous clones.
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